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Most mathematicians have encountered modular functions. For example, when the
group theorists discovered the monster group, they were surprised to find that the degrees of
its irreducible representations were already encoded in the q-coefficients of the j-function.
The theory of Shimura varieties grew out of the applications of modular functions and
modular forms to number theory. Roughly speaking, Shimura varieties are the varieties on
which modular functions live.

SHIMURA CURVES

According to the uniformization theorem, every simply connected Riemann surface is iso-
morphic to the Riemann sphere, the complex plane, or the open unit disk (equivalently the
complex upper half plane D1). The Shimura curves are the quotients of D1 by the actions
of certain discrete groups, which I now describe.

The action
(

a b
c d

)
z = az+b

cz+d of SL2(R) on D1 realizes SL2(R)/{±I} as the group of holo-
morphic automorphisms Hol(D1) of D1. Let B be a quaternion algebra over a totally real
number field F such that R⊗F B is isomorphic to M2(R) for exactly one embedding of F
into R, and let G be the algebraic group over Q whose R-points for any Q-algebra R are the
elements of B⊗Q R of norm 1. Then G(R) is a product of SL2(R) with a compact group,
and so there is a surjective homomorphism ϕ : G(R)→ Hol(D1) with compact kernel. A
Shimura curve is the quotient of D1 by the image in Hol(D1) of a congruence subgroup of
G(Q).

For example, when B = M2(Q), the group G is SL2, and we get the familiar elliptic
modular curves, namely, the quotients of D1 by a discrete subgroup Γ of Hol(D1) containing
the image of a principal congruence subgroup

Γ(N)
def
= {A ∈ SL2(Z) | A≡ I mod N}.

In this case, the Riemann surface Γ\D1 can be compactified in a natural way by adding a
finite number of points (called the cusps), and so Γ\D1 has a unique structure of an algebraic
curve compatible with its analytic structure. In all other cases, Γ\D1 is compact, and so is
automatically an algebraic curve.

Each Shimura curve has a natural embedding in projective space. Consider, for exam-
ple, the elliptic modular curve Y (N)

def
= Γ(N)\D1. A cusp form of weight 2k for Γ(N) is a

holomorphic function f on D1, vanishing at the cusps, and such that

f (Az) = (cz+d)2k · f (z) for all A =
(

a b
c d

)
∈ Γ(N). (1)

For some fixed k, a basis f0, . . . , fn for the cusp forms of weight 2k defines an embedding

P 7→ ( f0(P) : . . . : fn(P)) : Y (N)→ Pn(C)
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of Y (N) as an algebraic subvariety of Pn(C). In fact, we can do better. Each of the cusps is
fixed by a unipotent matrix

(
1 h
0 1

)
with h a positive integer. For such a matrix, (1) becomes

f (z) = f (z+h), and so a cusp form f has an expansion

f (z) = a1q+a2q2 +a3q3 + · · · , q = e2πi/h. (2)

Let Q[ζN ] be the field generated over Q by a primitive Nth root of 1. It is possible to choose
the basis f0, . . . , fn so that the coefficients in (2) lie in the field Q[ζN ], and when this is done,
the homogeneous polynomials defining Y (N) have coefficients in Q[ζN ].

Thus Y (N) has a canonical model over Q[ζN ]. This property of Y (N) is very unusual.
Typically, an algebraic variety over C will not have a model over an algebraic number field,
and when it does, it will have many distinct models, none of which is to be preferred.

The above explanation for why Y (N) has a canonical model over Q[ζN ] is that of the
analysts. The geometers have an entirely different explanation. For an elliptic curve E over
C, the group E(C)N of elements of order N is a free Z/NZ-module of rank 2 equipped with
a skew-symmetric pairing eN taking values in the group of Nth roots of 1 in C. A level-N
structure on E is a basis (t1, t2) for E(C)N such that eN(t1, t2) = ζN . For N ≥ 3, the canonical
model of Y (N) represents the functor sending a Q[ζN ]-algebra R to the set of isomorphism
classes of elliptic curves over R equipped with a level-N structure.

Both explanations fail when B 6= M2(Q): then the curves are compact, so there are no
cusps and no q-expansions, and they are not moduli varieties in any natural way. Thus
both the analysts and the geometers were surprised when Shimura (in 1967) proved that all
these curves do have canonical models over specific number fields. The theory of Shimura
varieties, as distinct from the theory of moduli varieties, can be said to have been born with
Shimura’s paper. Ihara (in 1968) attached Shimura’s name to these curves.

SHIMURA VARIETIES, ACCORDING TO SHIMURA

A complex manifold is symmetric if each point is an isolated fixed point of an involution.
For example, D1 is symmetric because it is homogeneous and i is an isolated fixed point of
the involution z 7→

(
0 −1
1 0

)
z =−1/z. A connected symmetric complex manifold is called a

hermitian symmetric domain if it is isomorphic to a bounded open subset of Cn for some
n. Every hermitian symmetric domain is simply connected, and so the Riemann mapping
theorem shows that D1 is the only hermitian symmetric domain of dimension one. The con-
nected Shimura varieties are the quotients of hermitian symmetric domains by the actions
of certain discrete groups, which I now describe.

The group of holomorphic automorphisms of a hermitian symmetric domain D is a
semisimple Lie group, whose identity component we denote by Hol(D)+. To define a
family of connected Shimura varieties covered by D, we need a semisimple algebraic group
G over Q and a surjective homomorphism G(R)→ Hol(D)+ with compact kernel. The
connected Shimura varieties are then the quotients Γ\D of D by a torsion-free subgroup Γ

of Hol(D)+ containing the image of a congruence subgroup of G(Q) as a subgroup of finite
index.

Baily and Borel proved that, as in the curve case, the modular forms on D relative Γ

embed Γ\D as an algebraic subvariety of some projective space. Thus, each manifold Γ\D
has a canonical structure as an algebraic variety over C, and a later theorem of Borel shows
that the algebraic structure is in fact unique.

Shimura introduced the notion a canonical model for these algebraic varieties. This
is a model of the variety over a specific number field, which is uniquely determined by
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specifying the fields generated by the coordinates of certain special points. Shimura and his
students Miyake and Shih proved the existence of canonical models for several fundamental
families of connected Shimura varieties.

SHIMURA VARIETIES, ACCORDING TO DELIGNE

When Deligne was asked to report on Shimura’s work in a 1971 Bourbaki seminar, he
rewrote the foundations. For Deligne, a Shimura variety is defined by a reductive group G
over Q and a G(R)-conjugacy class of homomorphisms h : C×→ G(R) satisfying certain
axioms. The Shimura variety itself is a certain double coset space. The axioms ensure
that, on the one hand, this double coset space is a finite disjoint union of the varieties
considered in the preceding section, and on the other that it is the base space for a variation
of Hodge structures. Sometimes the variation of Hodge structures arises from a family of
abelian varieties, in which case the existence of a canonical model follows from the theory
of moduli varieties. In other cases, Deligne was able to prove the existence of a canonical
model by relating the Shimura variety to one that is a moduli variety. In the remaining
cases, the existence of a canonical model was proved by the author and Borovoi (somewhat
independently).

Shimura varieties interested Langlands as a source of Galois representations and as a
test for his idea that all zeta functions are automorphic. In a 1974 lecture he introduced
the term “Shimura variety” for the varieties defined by Deligne. Once the existence (and
uniqueness) of their canonical models had been demonstrated, it became customary to refer
to the canonical model as the Shimura variety (rather than the variety over C). The con-
nected components of these varieties are the connected Shimura varieties of the preceding
section.

FURTHER READING

For Shimura’s approach, I suggest looking first at his notes Automorphic Functions and
Number Theory1 and his ICM talks. For Deligne’s approach, there are the difficult original
articles of Deligne2 and the author’s Introduction to Shimura Varieties.3

1 Lecture Notes in Mathematics, No. 54 Springer, 1968. 2 Travaux de Shimura. Séminaire Bourbaki,
(1970/71), Exp. No. 389; Variétés de Shimura, Proc. Sympos. Pure Math., 33, AMS, 1979, pp. 247–289.
3 Clay Math. Proc., 4, AMS 2005, pp.265–378.
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