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Introduction to Shimura Varieties

J.S. Milne

Abstract. This is an introduction to the theory of Shimura varieties,
or, in other words, to the arithmetic theory of automorphic functions
and holomorphic automorphic forms.
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Introduction

The arithmetic properties of elliptic modular functions and forms were exten-
sively studied in the 1800s, culminating in the beautiful Kronecker Jugendtraum.
Hilbert emphasized the importance of extending this theory to functions of several
variables in the twelfth of his famous problems at the International Congress in
1900. The first tentative steps in this direction were taken by Hilbert himself and
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266 J.S. MILNE

his students Blumenthal and Hecke in their study of what are now called Hilbert
(or Hilbert-Blumenthal) modular varieties. As the theory of complex functions
of several variables matured, other quotients of bounded symmetric domains by
arithmetic groups were studied (Siegel, Braun, and others). However, the modern
theory of Shimura varieties1 only really began with the development of the theory
of abelian varieties with complex multiplication by Shimura, Taniyama, and Weil
in the mid-1950s, and with the subsequent proof by Shimura of the existence of
canonical models for certain families of Shimura varieties. In two fundamental ar-
ticles, Deligne recast the theory in the language of abstract reductive groups and
extended Shimura’s results on canonical models. Langlands made Shimura varieties
a central part of his program, both as a source of representations of galois groups
and as tests for the conjecture that all motivic L-functions are automorphic. These
notes are an introduction to the theory of Shimura varieties from the point of view
of Deligne and Langlands. Because of their brevity, many proofs have been omitted
or only sketched.

Notations and conventions. Unless indicated otherwise, vector spaces are as-
sumed to be finite dimensional and free Z-modules are assumed to be of finite rank.
The linear dual Hom(V, k) of a vector space (or module) V is denoted V ∨. For
a k-vector space V and a k-algebra R, V (R) denotes R ⊗k V (and similarly for
Z-modules). By a lattice in an R-vector space V , I mean a full lattice, i.e., a Z-
submodule generated by a basis for V . The algebraic closure of a field k is denoted
kal.

A superscript + (resp. ◦) denotes a connected component relative to a real
topology (resp. a zariski topology). For an algebraic group, we take the identity
connected component. For example, (On)◦ = SOn, (GLn)◦ = GLn, and GLn(R)+

consists of the n × n matrices with det > 0. For an algebraic group G over Q,
G(Q)+ = G(Q)∩G(R)+. Following Bourbaki, I require compact topological spaces
to be separated.

Semisimple and reductive groups, whether algebraic or Lie, are required to be
connected. A simple algebraic or Lie group is a semisimple group with no connected
proper normal subgroups other than 1 (some authors say almost-simple). For a
torus T , X∗(T ) denotes the character group of T . The inner automorphism defined
by an element g is denoted ad(g). The derived group of a reductive group G is
denoted Gder (it is a semisimple group). For more notations concerning reductive
groups, see p303. For a finite extension of fields L ⊃ F of characteristic zero, the
torus over F obtained by restriction of scalars from Gm over L is denoted (Gm)L/F .

Throughout, I use the notations standard in algebraic geometry, which some-
times conflict with those used in other areas. For example, if G and G′ are algebraic
groups over a field k, then a homomorphism G → G′ means a homomorphism de-
fined over k; if K is a field containing k, then GK is the algebraic group over K
obtained by extension of the base field and G(K) is the group of points of G with
coordinates in K. If σ : k ↪→ K is a homomorphism of fields and V is an algebraic
variety (or other algebro-geometric object) over k, then σV has its only possible
meaning: apply σ to the coefficients of the equations defining V .

Let A and B be sets and let ∼ be an equivalence relation on A. If there exists
a canonical surjection A → B whose fibres are the equivalence classes, then I say

1The term “Shimura variety” was introduced by Langlands (1976, 1977), although earlier
“Shimura curve” had been used for the varieties of dimension one (Ihara 1968).
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that B classifies the elements of A modulo ∼ or that it classifies the ∼-classes of
elements of A.

A functor F : A → B is fully faithful if the maps HomA(a, a′) → HomB(Fa, Fa′)
are bijective. The essential image of such a functor is the full subcategory of B whose
objects are isomorphic to an object of the form Fa. Thus, a fully faithful functor
F : A → B is an equivalence if and only if its essential image is B (Mac Lane 1998,
p93).
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course notes (available at www.jmilne.org/math/).
AG: Algebraic Geometry, v5.0, February 20, 2005.
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1. Hermitian symmetric domains

In this section, I describe the complex manifolds that play the role in higher
dimensions of the complex upper half plane, or, equivalently, the open unit disk:

{z ∈ C | �(z) > 0} = H1

z → z−i
z+i
>

<
−i z+1

z−1 ← z

D1 = {z ∈ C | |z| < 1}.

This is a large topic, and I can do little more than list the definitions and results
that we shall need.

Brief review of real manifolds. A manifold M of dimension n is a separated
topological space that is locally isomorphic to an open subset of Rn and admits a countable
basis of open subsets. A homeomorphism from an open subset of M onto an open subset
of Rn is called a chart of M .

Smooth manifolds. I use smooth to mean C∞. A smooth manifold is a manifold
M endowed with a smooth structure, i.e., a sheaf OM of R-valued functions such that
(M,OM ) is locally isomorphic to Rn endowed with its sheaf of smooth functions. For an
open U ⊂ M , the f ∈ OM (U) are called the smooth functions on U . A smooth structure
on a manifold M can be defined by a family uα : Uα → Rn of charts such that M =

S

Uα

and the maps
uα ◦ u−1

β : uβ(Uα ∩ Uβ) → uα(Uα ∩ Uβ)

are smooth for all α, β. A continuous map α : M → N of smooth manifolds is smooth if
it is a map of ringed spaces, i.e., f smooth on an open V ⊂ N implies f ◦ α smooth on
α−1(V ).

Let (M,OM ) be a smooth manifold, and let OM,p be the ring of germs of smooth
functions at p. The tangent space TpM to M at p is the R-vector space of R-derivations
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Xp : OM,p → R. If x1, . . . , xn are local coordinates at p, then ∂
∂x1 , . . . , ∂

∂xn is a basis for

TpM and dx1, . . . , dxn is the dual basis.
Let U be an open subset of a smooth manifold M . A smooth vector field X on

U is a family of tangent vectors Xp ∈ Tp(M) indexed by p ∈ U , such that, for any
smooth function f on an open subset of U , p �→ Xpf is smooth. A smooth r-tensor
field on U is a family t = (tp)p∈M of multilinear mappings tp : TpM × · · · × TpM → R
(r copies of TpM) such that, for any smooth vector fields X1, . . . , Xr on an open subset
of U , p �→ tp(X1, . . . , Xr) is a smooth function. A smooth (r, s)-tensor field is a
family tp : (TpM)r × (TpM)∨s → R satisfying a similar condition. Note that to give a
smooth (1, 1)-field amounts to giving a family of endomorphisms tp : TpM → TpM with
the property that p �→ tp(Xp) is a smooth vector field for any smooth vector field X.

A riemannian manifold is a smooth manifold endowed with a riemannian metric,
i.e., a smooth 2-tensor field g such that, for all p ∈ M , gp is symmetric and positive definite.
In terms of local coordinates x1, . . . , xn at p,

gp =
P

gi,j(p)dxi ⊗ dxj , i.e., gp

`

∂
∂xi , ∂

∂xj

´

= gij(p).

A morphism of riemannian manifolds is called an isometry.
A real Lie group2 G is a smooth manifold endowed with a group structure defined

by smooth maps g1, g2 �→ g1g2, g �→ g−1.

Brief review of hermitian forms. To give a complex vector space amounts to
giving a real vector space V together with an endomorphism J : V → V such that J2 = −1.
A hermitian form on (V, J) is an R-bilinear mapping ( | ) : V × V → C such that

(Ju|v) = i(u|v) and (v|u) = (u|v). When we write

(1) (u|v) = ϕ(u, v) − iψ(u, v), ϕ(u, v), ψ(u, v) ∈ R,

then ϕ and ψ are R-bilinear, and

ϕ is symmetric ϕ(Ju, Jv) = ϕ(u, v),(2)

ψ is alternating ψ(Ju, Jv) = ψ(u, v),(3)

ψ(u, v) = −ϕ(u, Jv), ϕ(u, v) = ψ(u, Jv).(4)

As (u|u) = ϕ(u, u), ( | ) is positive definite if and only if ϕ is positive definite. Conversely,
if ϕ satisfies (2) (resp. ψ satisfies (3)), then the formulas (4) and (1) define a hermitian
form:

(5) (u|v) = ϕ(u, v) + iϕ(u, Jv) (resp. (u|v) = ψ(u, Jv) − iψ(u, v))

Complex manifolds. A C-valued function on an open subset U of Cn is
analytic if it admits a power series expansion in a neighbourhod of each point of
U . A complex manifold is a manifold M endowed with a complex structure,
i.e., a sheaf OM of C-valued functions such that (M,OM ) is locally isomorphic
to Cn with its sheaf of analytic functions. A complex structure on a manifold M
can be defined by a family uα : Uα → Cn of charts such that M =

⋃
Uα and the

maps uα ◦ u−1
β are analytic for all α, β. Such a family also makes M into a smooth

manifold denoted M∞. A continuous map α : M → N of complex manifolds is
analytic if it is a map of ringed spaces. A riemann surface is a one-dimensional
complex manifold.

A tangent vector at a point p of a complex manifold is a C-derivation OM,p →
C. The tangent spaces TpM (M as a complex manifold) and TpM

∞ (M as a smooth
manifold) can be identified. Explicitly, complex local coordinates z1, . . . , zn at a
point p of M define real local coordinates x1, . . . , xn, y1, . . . , yn with zr = xr + iyr.

2According to a theorem of Lie, this is equivalent to the usual definition in which “smooth”

is replaced by “real-analytic”.
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The real and complex tangent spaces have bases ∂
∂x1 , . . . ,

∂
∂xn ,

∂
∂y1 , . . . ,

∂
∂yn and

∂
∂z1 , . . . ,

∂
∂zn respectively. Under the natural identification of the two spaces, ∂

∂zr =
1
2

(
∂

∂xr − i ∂
∂yr

)
.

A C-valued function f on an open subset U of Cn is holomorphic if it is
holomorphic (i.e., differentiable) separately in each variable. As in the one-variable
case, f is holomorphic if and only if it is analytic (Hartog’s theorem, Taylor 2002,
2.2.3), and so we can use the terms interchangeably.

Recall that a C-valued function f on U ⊂ C is holomorphic if and only
if it is smooth (as a function of two real variables) and satisfies the Cauchy-
Riemann condition. This condition has a geometric interpretation: it requires that
dfp : TpU → Tf(p)C be C-linear for all p ∈ U . It follows that a smooth C-valued
function f on U ⊂ Cn is holomorphic if and only if the maps dfp : TpU → Tf(p)C
are C-linear for all p ∈ U .

An almost-complex structure on a smooth manifold M is a smooth tensor
field (Jp)p∈M , Jp : TpM → TpM , such that J2

p = −1 for all p, i.e., it is a smoothly
varying family of complex structures on the tangent spaces. A complex structure
on a smooth manifold endows it with an almost-complex structure. In terms of
complex local coordinates z1, . . . , zn in a neighbourhood of a point p on a complex
manifold and the corresponding real local coordinates x1, . . . , yn, Jp acts by

(6)
∂

∂xr
�→ ∂

∂yr
,

∂

∂yr
�→ − ∂

∂xr
.

It follows from the last paragraph that the functor from complex manifolds to
almost-complex manifolds is fully faithful: a smooth map α : M → N of complex
manifolds is holomorphic (analytic) if the maps dαp : TpM → Tα(p)N are C-linear
for all p ∈ M . Not every almost-complex structure on a smooth manifold arises
from a complex structure — those that do are said to be integrable. An almost-
complex structure J on a smooth manifold is integrable if M can be covered by
charts on which J takes the form (6) (because this condition forces the transition
maps to be holomorphic).

A hermitian metric on a complex (or almost-complex) manifold M is a
riemannian metric g such that

(7) g(JX, JY ) = g(X,Y ) for all vector fields X,Y .

According to (5), for each p ∈M , gp is the real part of a unique hermitian form hp

on TpM , which explains the name. A hermitian manifold (M, g) is a complex
manifold with a hermitian metric, or, in other words, it is a riemannian manifold
with a complex structure such that J acts by isometries.

Hermitian symmetric spaces. A manifold (riemannian, hermitian, . . . ) is
said to be homogeneous if its automorphism group acts transitively. It is sym-
metric if, in addition, at some point p there is an involution sp (the symmetry
at p) having p as an isolated fixed point. This means that sp is an automorphism
such that s2

p = 1 and that p is the only fixed point of sp in some neighbourhood of
p.

For a riemannian manifold (M, g), the automorphism group is the group Is(M, g)
of isometries. A connected symmetric riemannian manifold is called a symmetric
space. For example, Rn with the standard metric gp =

∑
dxidxi is a symmetric

space — the translations are isometries, and x �→ −x is a symmetry at 0.
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For a hermitian manifold (M, g), the automorphism group is the group Is(M, g)
of holomorphic isometries:

(8) Is(M, g) = Is(M∞, g) ∩Hol(M)

(intersection inside Aut(M∞); Hol(M) is the group of automorphisms of M as a
complex manifold). A connected symmetric hermitian manifold is called a hermit-
ian symmetric space.

Example 1.1. (a) The complex upper half plane H1 becomes a hermitian
symmetric space when endowed with the metric dxdy

y2 . The action(
a b
c d

)
z =

az + b

cz + d
,

(
a b
c d

)
∈ SL2(R), z ∈ H1,

identifies SL2(R)/{±I} with the group of holomorphic automorphisms of H1. For
any x+iy ∈ H1, x+iy =

(√
y x/

√
y

0 1/
√

y

)
i, and soH1 is homogeneous. The isomorphism

z �→ −1/z is a symmetry at i ∈ H1, and the riemannian metric dxdy
y2 is invariant

under the action of SL2(R) and has the hermitian property (7).
(b) The projective line P1(C) (= riemann sphere) becomes a hermitian sym-

metric space when endowed with the restriction (to the sphere) of the standard
metric on R3. The group of rotations is transitive, and reflection along a geodesic
(great circle) through a point is a symmetry. Both of these transformations leave
the metric invariant.

(c) Any quotient C/Λ of C by a discrete additive subgroup Λ becomes a her-
mitian symmetric space when endowed with the standard metric. The group of
translations is transitive, and z �→ −z is a symmetry at 0.

Curvature. Recall that, for a plane curve, the curvature at a point p is 1/r where
r is the radius of the circle that best approximates the curve at p. For a surface in
3-space, the principal curvatures at a point p are the maximum and minimum of the
signed curvatures of the curves obtained by cutting the surface with planes through
a normal at p (the sign is positive or negative according as the curve bends towards
the normal or away). Although the principal curvatures depend on the embedding
of the surface into R3, their product, the sectional curvature at p, does not
(Gauss’s Theorema Egregium) and so it is well-defined for any two-dimensional
riemannian manifold. More generally, for a point p on any riemannian manifold
M , one can define the sectional curvature K(p,E) of the submanifold cut out
by the geodesics tangent to a two-dimensional subspace E of TpM . Intuitively,
positive curvature means that the geodesics through a point converge, and negative
curvature means that they diverge. The geodesics in the upper half plane are the
half-lines and semicircles orthogonal to the real axis. Clearly, they diverge — in
fact, this is Poincaré’s famous model of noneuclidean geometry in which there are
infinitely many “lines” through a point parallel to any fixed “line” not containing it.
More prosaically, one can compute that the sectional curvature is −1. The Gauss
curvature of P1(C) is obviously positive, and that of C/Λ is zero.

The three types of hermitian symmetric spaces. The group of isometries of a
symmetric space (M, g) has a natural structure of a Lie group (Helgason 1978, IV
3.2). For a hermitian symmetric space (M, g), the group Is(M, g) of holomorphic
isometries is closed in the group of isometries of (M∞, g) and so is also a Lie group.



1. HERMITIAN SYMMETRIC DOMAINS 271

There are three families of hermitian symmetric spaces (ibid, VIII; Wolf 1984,
8.7):

Name example simply connected? curvature Is(M, g)+

noncompact type H1 yes negative adjoint, noncompact

compact type P1(C) yes positive adjoint, compact

euclidean C/Λ not necessarily zero

A Lie group is adjoint if it is semisimple with trivial centre.
Every hermitian symmetric space, when viewed as hermitian manifold, decom-

poses into a product M0 × M− × M+ with M0 euclidean, M− of noncompact
type, and M+ of compact type. The euclidean spaces are quotients of a complex
space Cg by a discrete subgroup of translations. A hermitian symmetric space is
irreducible if it is not the product of two hermitian symmetric spaces of lower
dimension. Each of M− and M+ is a product of irreducible hermitian symmetric
spaces, each of which has a simple isometry group.

We shall be especially interested in the hermitian symmetric spaces of noncom-
pact type — they are called hermitian symmetric domains.

Example 1.2 (Siegel upper half space). The Siegel upper half space Hg of
degree g consists of the symmetric complex g × g matrices with positive definite
imaginary part, i.e.,

Hg = {Z = X + iY ∈Mg(C) | X = Xt, Y > 0}.
Note that the map Z = (zij) �→ (zij)j≥i identifies Hg with an open subset of
Cg(g+1)/2. The symplectic group Sp2g(R) is the group fixing the alternating form∑g

i=1xiy−i −
∑g

i=1x−iyi:

Sp2g(R) =
{(

A B
C D

)∣∣∣∣ AtC = CtA AtD − CtB = Ig

DtA−BtC = Ig BtD = DtB

}
.

The group Sp2g(R) acts transitively on Hg by(
A B
C D

)
Z = (AZ + B)(CZ + D)−1.

The matrix
(

0 −Ig

Ig 0

)
acts as an involution on Hg, and has iIg as its only fixed

point. Thus, Hg is homogeneous and symmetric as a complex manifold, and we
shall see in (1.4) below that Hg is in fact a hermitian symmetric domain.

Example: Bounded symmetric domains. A domainD in Cn is a nonempty
open connected subset. It is symmetric if the group Hol(D) of holomorphic auto-
morphisms of D (as a complex manifold) acts transitively and for some point there
exists a holomorphic symmetry. For example, H1 is a symmetric domain and D1 is
a bounded symmetric domain.

Theorem 1.3. Every bounded domain has a canonical hermitian metric (called
the Bergman(n) metric). Moreover, this metric has negative curvature.

Proof (Sketch): Initially, let D be any domain in Cn. The holomorphic
square-integrable functions f : D → C form a Hilbert space H(D) with inner prod-
uct (f |g) =

∫
D
fgdv. There is a unique (Bergman kernel) function K : D×D → C

such that
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(a) the function z �→ K(z, ζ) lies in H(D) for each ζ,
(b) K(z, ζ) = K(ζ, z), and
(c) f(z) =

∫
K(z, ζ)f(ζ)dv(ζ) for all f ∈ H(D).

For example, for any complete orthonormal set (em)m∈N in H(D), K(z, ζ) =∑
mem(z) · em(ζ) is such a function. If D is bounded, then all polynomial func-

tions on D are square-integrable, and so certainly K(z, z) > 0 for all z. Moreover,
log(K(z, z)) is smooth and the equations

h =
∑

hijdz
idzj , hij(z) =

∂2

∂zi∂zj
logK(z, z),

define a hermitian metric on D, which can be shown to have negative curvature
(Helgason 1978, VIII 3.3, 7.1; Krantz 1982, 1.4). �

The Bergman metric, being truly canonical, is invariant under the action Hol(D).
Hence, a bounded symmetric domain becomes a hermitian symmetric domain for
the Bergman metric. Conversely, it is known that every hermitian symmetric do-
main can be embedded into some Cn as a bounded symmetric domain. Therefore,
a hermitian symmetric domain D has a unique hermitian metric that maps to the
Bergman metric under every isomorphism of D with a bounded symmetric domain.
On each irreducible factor, it is a multiple of the original metric.

Example 1.4. Let Dg be the set of symmetric complex matrices such that
Ig −Z

t
Z is positive definite. Note that (zij) �→ (zij)j≥i identifies Dg as a bounded

domain in Cg(g+1)/2. The map Z �→ (Z − iIg)(Z + iIg)−1 is an isomorphism of Hg

onto Dg. Therefore, Dg is symmetric and Hg has an invariant hermitian metric:
they are both hermitian symmetric domains.

Automorphisms of a hermitian symmetric domain.

Lemma 1.5. Let (M, g) be a symmetric space, and let p ∈ M . Then the sub-
group Kp of Is(M, g)+ fixing p is compact, and

a ·Kp �→ a · p : Is(M, g)+/Kp →M

is an isomorphism of smooth manifolds. In particular, Is(M, g)+ acts transitively
on M .

Proof. For any riemannian manifold (M, g), the compact-open topology makes
Is(M, g) into a locally compact group for which the stabilizer K ′

p of a point p is
compact (Helgason 1978, IV 2.5). The Lie group structure on Is(M, g) noted above
is the unique such structure compatible with the compact-open topology (ibid. II
2.6). An elementary argument (e.g., MF 1.2) now shows that Is(M, g)/K ′

p →M is a
homeomorphism, and it follows that the map a �→ ap : Is(M, g) →M is open. Write
Is(M, g) as a finite disjoint union Is(M, g) =

⊔
i Is(M, g)+ai of cosets of Is(M, g)+.

For any two cosets the open sets Is(M, g)+aip and Is(M, g)+ajp are either disjoint
or equal, but, as M is connected, they must all be equal, which shows that Is(M, g)+

acts transitively. Now Is(M, g)+/Kp →M is a homeomorphism, and it follows that
it is a diffeomorphism (Helgason 1978, II 4.3a). �

Proposition 1.6. Let (M, g) be a hermitian symmetric domain. The inclu-
sions

Is(M∞, g) ⊃ Is(M, g) ⊂ Hol(M)
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give equalities:
Is(M∞, g)+ = Is(M, g)+ = Hol(M)+.

Therefore, Hol(M)+ acts transitively on M , and Hol(M)+/Kp
∼= M∞.

Proof. The first equality is proved in Helgason 1978, VIII 4.3, and the second
can be proved similarly. The rest of the statement follows from (1.5). �

Let H be a connected real Lie group. There need not be an algebraic group
G over R such that3 G(R)+ = H. However, if H has a faithful finite-dimensional
representation H ↪→ GL(V ), then there exists an algebraic group G ⊂ GL(V ) such
that Lie(G) = [h, h] (inside gl(V )) where h = Lie(H) (Borel 1991, 7.9). If H,
in addition, is semisimple, then [h, h] = h and so Lie(G) = h and G(R)+ = H
(inside GL(V )). This observation applies to any connected adjoint Lie group and,
in particular, to Hol(M)+, because the adjoint representation on the Lie algebra is
faithful.

Proposition 1.7. Let (M, g) be a hermitian symmetric domain, and let h =
Lie(Hol(M)+). There is a unique connected algebraic subgroup G of GL(h) such
that

G(R)+ = Hol(M)+ (inside GL(h)).
For such a G,

G(R)+ = G(R) ∩Hol(M) (inside GL(h));

therefore G(R)+ is the stablizer in G(R) of M .

Proof. The first statement was proved above, and the second follows from
Satake 1980, 8.5. �

Example 1.8. The map z �→ z−1 is an antiholomorphic isometry of H1, and
every isometry ofH1 is either holomorphic or differs from z �→ z−1 by a holomorphic
isometry. In this case, G = PGL2, and PGL2(R) acts holomorphically on C � R
with PGL2(R)+ as the stabilizer of H1.

The homomorphism up : U1 → Hol(D). Let U1 = {z ∈ C | |z| = 1} (the
circle group).

Theorem 1.9. Let D be a hermitian symmetric domain. For each p ∈ D, there
exists a unique homomorphism up : U1 → Hol(D) such that up(z) fixes p and acts
on TpD as multiplication by z.

Example 1.10. Let p = i ∈ H1, and let h : C× → SL2(R) be the homomor-
phism z = a + ib �→

(
a b

−b a

)
. Then h(z) acts on the tangent space TiH1 as mul-

tiplication by z/z, because d
dz

(
az+b
−bz+a

)
|i = a2+b2

(a−bi)2 . For z ∈ U1, choose a square

root
√
z ∈ U1, and set u(z) = h(

√
z) mod ± I. Then u(z) is independent of the

choice of
√
z because h(−1) = −I. Therefore, u is a well-defined homomorphism

U1 → PSL2(R) such that u(z) acts on the tangent space TiH1 as multiplication by
z.

Because of the importance of the theorem, I sketch a proof.

3For example, the (topological) fundamental group of SL2(R) is Z, and so SL2(R) has many
proper covering groups (even of finite degree). None of them is algebraic.
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Proposition 1.11. Let (M, g) be symmetric space. The symmetry sp at p acts
as −1 on TpM , and, for any geodesic γ with γ(0) = p, sp(γ(t)) = γ(−t). Moreover,
(M, g) is (geodesically) complete.

Proof. Because s2
p = 1, (dsp)2 = 1, and so dsp acts semisimply on TpM

with eigenvalues ±1. Recall that for any tangent vector X at p, there is a unique
geodesic γ : I → M with γ(0) = p, γ̇(0) = X. If (dsp)(X) = X, then sp ◦ γ is a
geodesic sharing these properties, and so p is not an isolated fixed point of sp. This
proves that only −1 occurs as an eigenvalue. If (dsp)(X) = −X, then sp ◦ γ and
t �→ γ(−t) are geodesics through p with velocity −X, and so are equal. For the
final statement, see Boothby 1975, VII 8.4. �

By a canonical tensor on a symmetric space (M, g), I mean any tensor canon-
ically derived from g, and hence fixed by any isometry of (M, g).

Proposition 1.12. On a symmetric space (M, g) every canonical r-tensor with
r odd is zero. In particular, parallel translation of two-dimensional subspaces does
not change the sectional curvature.

Proof. Let t be a canonical r-tensor. Then

tp = tp ◦ (dsp)r 1.11= (−1)rtp,

and so t = 0 if r is odd. For the second statement, let ∇ be the riemannian
connection, and let R be the corresponding curvature tensor (Boothby 1975, VII
3.2, 4.4). Then ∇R is an odd tensor, and so is zero. This implies that parallel
translation of 2-dimensional subspaces does not change the sectional curvature. �

Proposition 1.13. Let (M, g) and (M ′, g′) be riemannian manifolds in which
parallel translation of 2-dimensional subspaces does not change the sectional cur-
vature. Let a : TpM → Tp′M ′ be a linear isometry such that K(p,E) = K(p′, aE)
for every 2-dimensional subspace E ⊂ TpM . Then expp(X) �→ expp′(aX) is an
isometry of a neighbourhood of p onto a neighbourhood of p′.

Proof. This follows from comparing the expansions of the riemann metrics in
terms of normal geodesic coordinates. See Wolf 1984, 2.3.7. �

Proposition 1.14. If in (1.13) M and M ′ are complete, connected, and simply
connected, then there is a unique isometry α : M → M ′ such that α(p) = p′ and
dαp = a.

Proof. See Wolf 1984, 2.3.12. �

I now complete the sketch of the proof of Theorem 1.9. Each z with |z| = 1 de-
fines an automorphism of (TpD, gp), and one checks that it preserves sectional curva-
tures. According to (1.11, 1.12, 1.14), there exists a unique isometry up(z) : D → D
such that dup(z)p is multiplication by z. It is holomorphic because it is C-linear on
the tangent spaces. The isometry up(z) ◦ up(z′) fixes p and acts as multiplication
by zz′ on TpD, and so equals up(zz′).

Cartan involutions. Let G be a connected algebraic group over R, and let
g �→ g denote complex conjugation on G(C). An involution θ of G (as an algebraic
group over R) is said to be Cartan if the group

(9) G(θ)(R) df= {g ∈ G(C) | g = θ(g)}
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is compact.

Example 1.15. Let G = SL2, and let θ = ad
(

0 1
−1 0

)
. For

(
a b
c d

)
∈ SL2(C), we

have
θ
((

a b
c d

))
=
(

0 1
−1 0

)
·
(

a b
c d

)
·
(

0 1
−1 0

)−1 =
(

d −c

−b a

)
.

Thus,

SL(θ)
2 (R) =

{(
a b
c d

)
∈ SL2(C) | d = a, c = −b

}
=
{(

a b
−b a

)
∈ GL2(C) | |a|2 + |b|2 = 1

}
= SU2,

which is compact, being a closed bounded set in C2. Thus θ is a Cartan involution
for SL2.

Theorem 1.16. There exists a Cartan involution if and only if G is reductive,
in which case any two are conjugate by an element of G(R).

Proof. See Satake 1980, I 4.3. �
Example 1.17. Let G be a connected algebraic group over R.
(a) The identity map on G is a Cartan involution if and only if G(R) is compact.
(b) Let G = GL(V ) with V a real vector space. The choice of a basis for V

determines a transpose operator M �→M t, and M �→ (M t)−1 is obviously a Cartan
involution. The theorem says that all Cartan involutions of G arise in this way.

(c) Let G ↪→ GL(V ) be a faithful representation of G. Then G is reductive
if and only if G is stable under g �→ gt for a suitable choice of a basis for V , in
which case the restriction of g �→ (gt)−1 to G is a Cartan involution; all Cartan
involutions of G arise in this way from the choice of a basis for V (Satake 1980, I
4.4).

(d) Let θ be an involution of G. There is a unique real form G(θ) of GC such
that complex conjugation on G(θ)(C) is g �→ θ(g). Then, G(θ)(R) satisfies (9), and
we see that the Cartan involutions of G correspond to the compact forms of GC.

Proposition 1.18. Let G be a connected algebraic group over R. If G(R) is
compact, then every finite-dimensional real representation of G → GL(V ) carries
a G-invariant positive definite symmetric bilinear form; conversely, if one faith-
ful finite-dimensional real representation of G carries such a form, then G(R) is
compact.

Proof. Let ρ : G→ GL(V ) be a real representation of G. If G(R) is compact,
then its image H in GL(V ) is compact. Let dh be the Haar measure on H, and
choose a positive definite symmetric bilinear form 〈 | 〉 on V . Then the form

〈u|v〉′ =
∫

H

〈hu|hv〉dh

is G-invariant, and it is still symmetric, positive definite, and bilinear. For the
converse, choose an orthonormal basis for the form. Then G(R) becomes identified
with a closed set of real matrices A such that At ·A = I, which is bounded. �

Remark 1.19. The proposition can be restated for complex representations: if
G(R) is compact then every finite-dimensional complex representation of G carries
a G-invariant positive definite Hermitian form; conversely, if some faithful finite-
dimensional complex representation of G carries a G-invariant positive definite Her-
mitian form, then G is compact. (In this case, G(R) is a subgroup of a unitary
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group instead of an orthogonal group. For a sesquilinear form ϕ to be G-invariant
means that ϕ(gu, gv) = ϕ(u, v), g ∈ G(C), u, v ∈ V .)

Let G be a real algebraic group, and let C be an element of G(R) whose square
is central (so that adC is an involution). A C-polarization on a real representation
V of G is a G-invariant bilinear form ϕ such that the form ϕC ,

(u, v) �→ ϕ(u,Cv),

is symmetric and positive definite.

Proposition 1.20. If adC is a Cartan involution of G, then every finite-
dimensional real representation of G carries a C-polarization; conversely, if one
faithful finite-dimensional real representation of G carries a C-polarization, then
adC is a Cartan involution.

Proof. An R-bilinear form ϕ on a real vector space V defines a sesquilinear
form ϕ′ on V (C),

ϕ′ : V (C)× V (C) → C, ϕ′(u, v) = ϕC(u, v).

Moreover, ϕ′ is hermitian (and positive definite) if and only if ϕ is symmetric (and
positive definite).

Let ρ : G→ GL(V ) be a real representation of G. For any G-invariant bilinear
form ϕ on V , ϕC is G(C)-invariant, and so

(10) ϕ′(gu, gv) = ϕ′(u, v), all g ∈ G(C), u, v ∈ V (C).

On replacing v with Cv in this equality, we find that

(11) ϕ′(gu, C(C−1gC)v) = ϕ′(u,Cv), all g ∈ G(C), u, v ∈ V (C),

which says that ϕ′
C is invariant under G(adC).

If ρ is faithful and ϕ is a C-polarization, then ϕ′
C is a positive definite hermitian

form, and so G(adC)(R) is compact (1.19): adC is a Cartan involution.
Conversely, if G(adC)(R) is compact, then every real representation G→ GL(V )

carries a G(adC)(R)-invariant positive definite symmetric bilinear form ϕ (1.18).
Similar calculations to the above show that ϕC−1 is a C-polarization on V . �

Representations of U1. Let T be a torus over a field k, and let K be a galois
extension of k splitting T . To give a representation ρ of T on a k-vector space V
amounts to giving an X∗(T )-grading V (K) =

⊕
χ∈X∗(T )Vχ on V (K) =df K ⊗k V

with the property that

σ(Vχ) = Vσχ, all σ ∈ Gal(K/k), χ ∈ X∗(T ).

Here Vχ is the subspace of K ⊗k V on which T acts through χ:

ρ(t)v = χ(t) · v, for v ∈ Vχ, t ∈ T (K).

If Vχ �= 0, we say that χ occurs in V .
When we regard U1 as a real algebraic torus, its characters are z �→ zn, n ∈ Z.

Thus, X∗(U1) ∼= Z, and complex conjugation acts on X∗(U1) as multiplication
by −1. Therefore a representation of U1 on a real vector space V corresponds to
a grading V (C) = ⊕n∈ZV

n with the property that V (C)−n = V (C)n (complex
conjugate). Here V n is the subspace of V (C) on which z acts as zn. Note that
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V (C)0 = V (C)0 and so it is defined over R, i.e., V (C)0 = V 0(C) for V 0 the subspace
V ∩ V (C)0 of V (see AG 16.7). The natural map

(12) V/V 0 → V (C)/
⊕

n≤0V (C)n ∼=
⊕

n>0V (C)n

is an isomorphism. From this discussion, we see that every real representation of
U1 is a direct sum of representations of the following types:

(a) V = R with U1 acting trivially (so V (C) = V 0);
(b) V = R2 with z = x + iy ∈ U1(R) acting as

( x y
−y x

)n, n > 0 (so V (C) =
V n ⊕ V −n).

Classification of hermitian symmetric domains in terms of real groups.
The representations of U1 have the same description whether we regard it as a
Lie group or an algebraic group, and so every homomorphism U1 → GL(V ) of Lie
groups is algebraic. It follows that the homomorphism up : U1 → Hol(D)+ ∼= G(R)+

(see 1.9, 1.7) is algebraic.

Theorem 1.21. Let D be a hermitian symmetric domain, and let G be the
associated real adjoint algebraic group (1.7). The homomorphism up : U1 → G
attached to a point p of D has the following properties:

(a) only the characters z, 1, z−1 occur in the representation of U1 on Lie(G)C

defined by up;
(b) ad(up(−1)) is a Cartan involution;
(c) up(−1) does not project to 1 in any simple factor of G.

Conversely, let G be a real adjoint algebraic group, and let u : U1 → G satisfy
(a), (b), and (c). Then the set D of conjugates of u by elements of G(R)+ has a
natural structure of a hermitian symmetric domain for which G(R)+ = Hol(D)+

and u(−1) is the symmetry at u (regarded as a point of D).

Proof (Sketch): Let D be a hermitian symmetric domain, and let G be the
associated group (1.7). Then G(R)+/Kp

∼= D where Kp is the group fixing p (see
1.6). For z ∈ U1, up(z) acts on the R-vector space

Lie(G)/Lie(Kp) ∼= TpD

as multiplication by z, and it acts on Lie(Kp) trivially. From this, (a) follows.
The symmetry sp at p and up(−1) both fix p and act as −1 on TpD (see

1.11); they are therefore equal (1.14). It is known that the symmetry at a point
of a symmetric space gives a Cartan involution of G if and only if the space has
negative curvature (see Helgason 1978, V 2; the real form of G defined by adsp is
that attached to the compact dual of the symmetric space). Thus (b) holds.

Finally, if the projection of u(−1) into a simple factor of G were trivial, then
that factor would be compact (by (b); see 1.17a), and D would have an irreducible
factor of compact type.

For the converse, let D be the set of G(R)+-conjugates of u. The centralizer
Ku of u in G(R)+ is contained in {g ∈ G(C) | g = u(−1) · g · u(−1)−1}, which,
according to (b), is compact. As Ku is closed, it also is compact. The equality
D = (G(R)+/Ku) · u endows D with the structure of smooth (even real-analytic)
manifold. For this structure, the tangent space to D at u,

TuD = Lie(G)/Lie(Ku),
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which, because of (a), can be identified with the subspace of Lie(G)C on which u(z)
acts as z (see (12)). This endows TuD with a C-vector space structure for which
u(z), z ∈ U1, acts as multiplication by z. Because D is homogeneous, this gives
it the structure of an almost-complex manifold, which can be shown to integrable
(Wolf 1984, 8.7.9). The action of Ku on D defines an action of it on TuD. Because
Ku is compact, there is a Ku-invariant positive definite form on TuD (see 1.18), and
because J = u(i) ∈ Ku, any such form will have the hermitian property (7). Choose
one, and use the homogeneity of D to move it to each tangent space. This will make
D into a hermitian symmetric space, which will be a hermitian symmetric domain
because each simple factor of its automorphism group is a noncompact semisimple
group (because of (b,c)). �

Corollary 1.22. There is a natural one-to-one correspondence between iso-
morphism classes of pointed hermitian symmetric domains and pairs (G, u) con-
sisting of a real adjoint Lie group and a nontrivial homomorphism u : U1 → G(R)
satisfying (a), (b), (c).

Example 1.23. Let u : U1 → PSL2(R) be as in (1.10). Then u(−1) =
(

0 1
−1 0

)
and we saw in 1.15 that adu(−1) is a Cartan involution of SL2, hence also of PSL2.

Classification of hermitian symmetric domains in terms of dynkin
diagrams. Let G be a simple adjoint group over R, and let u be a homomorphism
U1 → G satisfying (a) and (b) of Theorem 1.21. By base extension, we get an
adjoint group GC, which is simple because it is an inner form of its compact form,
and a cocharacter µ = uC of GC satisfying the following condition:

(*) in the action of Gm on Lie(GC) defined by ad ◦ µ, only the
characters z, 1, z−1 occur.

Proposition 1.24. The map (G, u) �→ (GC, uC) defines a bijection between the
sets of isomorphism classes of pairs consisting of

(a) a simple adjoint group over R and a conjugacy class of u : U1 → H satis-
fying (1.21a,b), and

(b) a simple adjoint group over C and a conjugacy class of cocharacters sat-
isfying (*).

Proof. Let (G,µ) be as in (b), and let g �→ g denote complex conjugation on
G(C) relative to the unique compact real form of G (cf. 1.16). There is a real form
H of G such that complex conjugation on H(C) = G(C) is g �→ µ(−1) · g ·µ(−1)−1,
and u =df µ|U1 takes values in H(R). The pair (H, u) is as in (a), and the map
(G,µ) → (H, u) is inverse to (H, u) �→ (HC, uC) on isomorphism classes. �

Let G be a simple algebraic group C. Choose a maximal torus T in G and a
base (αi)i∈I for the roots of G relative to T . Recall, that the nodes of the dynkin
diagram of (G, T ) are indexed by I. Recall also (Bourbaki 1981, VI 1.8) that there
is a unique (highest) root α̃ =

∑
niαi such that, for any other root

∑
miαi,

ni ≥ mi all i. An αi (or the associated node) is said to be special if ni = 1.
Let M be a conjugacy class of nontrivial cocharacters of G satisfying (*). Be-

cause all maximal tori of G are conjugate, M has a representative in X∗(T ) ⊂
X∗(G), and because the Weyl group acts simply transitively on the Weyl cham-
bers (Humphreys 1972, 10.3) there is a unique representative µ for M such that
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〈αi, µ〉 ≥ 0 for all i ∈ I. The condition (*) is that4 〈α, µ〉 ∈ {1, 0,−1} for all roots
α. Since µ is nontrivial, not all the values 〈α, µ〉 can be zero, and so this condition
implies that 〈αi, µ〉 = 1 for exactly one i ∈ I, which must in fact be special (other-
wise 〈α̃, µ〉 > 1). Thus, the M satisfying (*) are in one-to-one correspondence with
the special nodes of the dynkin diagram. In conclusion:

Theorem 1.25. The isomorphism classes of irreducible hermitian symmetric
domains are classified by the special nodes on connected dynkin diagrams.

The special nodes can be read off from the list of dynkin diagrams in, for
example, Helgason 1978, p477. In the following table, we list the number of special
nodes for each type:

Type An Bn Cn Dn E6 E7 E8 F4 G2

n 1 1 3 2 1 0 0 0

In particular, there are no irreducible hermitian symmetric domains of type
E8, F4, or G2 and, up to isomorphism, there are exactly 2 of type E6 and 1 of
type E7. It should be noted that not every simple real algebraic group arises as the
automorphism group of a hermitian symmetric domain. For example, PGLn arises
in this way only for n = 2.

Notes. For introductions to smooth manifolds and riemannian manifolds, see
Boothby 1975 and Lee 1997. The ultimate source for hermitian symmetric domains
is Helgason 1978, but Wolf 1984 is also very useful, and Borel 1998 gives a succinct
treatment close to that of the pioneers. The present account has been influenced
by Deligne 1973a and Deligne 1979.

2. Hodge structures and their classifying spaces

We describe various objects and their parameter spaces. Our goal is a descrip-
tion of hermitian symmetric domains as the parameter spaces for certain special
hodge structures.

Reductive groups and tensors. Let G be a reductive group over a field
k of characteristic zero, and let ρ : G → GL(V ) be a representation of G. The
contragredient or dual ρ∨ of ρ is the representation of G on the dual vector space
V ∨ defined by

(ρ∨(g) · f)(v) = f(ρ(g−1) · v), g ∈ G, f ∈ V ∨, v ∈ V.

A representation is said to be self-dual if it is isomorphic to its contragredient.
An r-tensor of V is a multilinear map

t : V × · · · × V → k (r-copies of V ).

For an r-tensor t, the condition

t(gv1, . . . , gvr) = (v1, . . . , vr), all vi ∈ V,

on g defines a closed subgroup of GL(V )t of GL(V ). For example, if t is a nonde-
generate symmetric bilinear form V ×V → k, then GL(V )t is the orthogonal group.
For a set T of tensors of V ,

⋂
t∈T GL(V )t is called the subgroup of GL(V ) fixing

the t ∈ T .

4The µ with this property are sometimes said to be minuscule (cf. Bourbaki 1981, pp226–
227).
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Proposition 2.1. For any faithful self-dual representation G→ GL(V ) of G,
there exists a finite set T of tensors of V such that G is the subgroup of GL(V )
fixing the t ∈ T .

Proof. In Deligne 1982, 3.1, it is shown there exists a possibly infinite set T
with this property, but, because G is noetherian as a topological space (i.e., it has
the descending chain condition on closed subsets), a finite subset will suffice. �

Proposition 2.2. Let G be the subgroup of GL(V ) fixing the tensors t ∈ T .
Then

Lie(G) =
{
g ∈ End(V )

∣∣∣∑jt(v1, . . . , gvj , . . . , vr) = 0, all t ∈ T , vi ∈ V
}
.

Proof. The Lie algebra of an algebraic group G can be defined to be the
kernel of G(k[ε]) → G(k). Here k[ε] is the k-algebra with ε2 = 0. Thus Lie(G)
consists of the endomorphisms 1 + gε of V (k[ε]) such that

t((1 + gε)v1, (1 + gε)v2, . . .) = t(v1, v2, . . .), all t ∈ T , vi ∈ V.

On expanding this and cancelling, we obtain the assertion. �

Flag varieties. Fix a vector space V of dimension n over a field k.
The projective space P(V ). The set P(V ) of one-dimensional subspaces L of

V has a natural structure of an algebraic variety: the choice of a basis for V
determines a bijection P(V ) → Pn−1, and the structure of an algebraic variety
inherited by P(V ) from the bijection is independent of the choice of the basis.

Grassmann varieties. Let Gd(V ) be the set of d-dimensional subspaces of V ,
some 0 < d < n. Fix a basis for V . The choice of a basis for W then determines a
d×n matrix A(W ) whose rows are the coordinates of the basis elements. Changing
the basis for W multiplies A(W ) on the left by an invertible d × d matrix. Thus,
the family of minors of degree d of A(W ) is well-determined up to multiplication
by a nonzero constant, and so determines a point P (W ) in P(n

d )−1. The map
W �→ P (W ) : Gd(V ) → P(n

d )−1 identifies Gd(V ) with a closed subvariety of P(n
d )−1

(AG 6.26). A coordinate-free description of this map is given by

(13) W �→
∧d

W : Gd(V ) → P(
∧d

V ).

Let S be a subspace of V of complementary dimension n− d, and let Gd(V )S

be the set of W ∈ Gd(V ) such that W ∩ S = {0}. Fix a W0 ∈ Gd(V )S , so
that V = W0 ⊕ S. For any W ∈ Gd(V )S , the projection W → W0 given by
this decomposition is an isomorphism, and so W is the graph of a homomorphism
W0 → S:

w �→ s ⇐⇒ (w, s) ∈W.

Conversely, the graph of any homomorphism W0 → S lies in Gd(V )S . Thus,

(14) Gd(V )S
∼= Hom(W0, S).

When we regard Gd(V )S as an open subvariety of Gd(V ), this isomorphism identi-
fies it with the affine space A(Hom(W0, S)) defined by the vector space Hom(W0, S).
Thus, Gd(V ) is smooth, and the tangent space to Gd(V ) at W0,

(15) TW0(Gd(V )) ∼= Hom(W0, S) ∼= Hom(W0, V/W0).
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Flag varieties. The above discussion extends easily to chains of subspaces. Let
d = (d1, . . . , dr) be a sequence of integers with n > d1 > · · · > dr > 0, and let
Gd(V ) be the set of flags

(16) F : V ⊃ V 1 ⊃ · · · ⊃ V r ⊃ 0

with V i a subspace of V of dimension di. The map

Gd(V )
F �→(V i)−−−−−→

∏
iGdi

(V ) ⊂
∏

iP(
∧diV )

realizes Gd(V ) as a closed subset of
∏

iGdi
(V ) (Humphreys 1978, 1.8), and so it

is a projective variety. The tangent space to Gd(V ) at the flag F consists of the
families of homomorphisms

(17) ϕi : V i → V/V i, 1 ≤ i ≤ r,

satisfying the compatibility condition

ϕi|V i+1 ≡ ϕi+1 mod V i+1.

Aside 2.3. A basis e1, . . . , en for V is adapted to the flag F if it contains a
basis e1, . . . , eji

for each V i. Clearly, every flag admits such a basis, and the basis
then determines the flag. Because GL(V ) acts transitively on the set of bases for
V , it acts transitively on Gd(V ). For a flag F , the subgroup P (F ) stabilizing F is
an algebraic subgroup of GL(V ), and the map

g �→ gF0 : GL(V )/P (F0) → Gd(V )

is an isomorphism of algebraic varieties. Because Gd(V ) is projective, this shows
that P (F0) is a parabolic subgroup of GL(V ).

Hodge structures.
Definition. For a real vector space V , complex conjugation on V (C) =df C⊗RV

is defined by
z ⊗ v = z ⊗ v.

An R-basis e1, . . . , em for V is also a C-basis for V (C) and
∑

aiei =
∑

aiei.
A hodge decomposition of a real vector space V is a decomposition

V (C) =
⊕

p,q∈Z×Z

V p,q

such that V q,p is the complex conjugate of V p,q. A hodge structure is a real
vector space together with a hodge decomposition. The set of pairs (p, q) for which
V p,q �= 0 is called the type of the hodge structure. For each n,

⊕
p+q=n V p,q is

stable under complex conjugation, and so is defined over R, i.e., there is a subspace
Vn of V such that Vn(C) =

⊕
p+q=n V p,q (see AG 16.7). Then V =

⊕
n Vn is called

the weight decomposition of V . If V = Vn, then V is said to have weight n.
An integral (resp. rational) hodge structure is a free Z-module of finite

rank V (resp. Q-vector space) together with a hodge decomposition of V (R) such
that the weight decomposition is defined over Q.

Example 2.4. Let J be a complex structure on a real vector space V , and
define V −1,0 and V 0,−1 to be the +i and −i eigenspaces of J acting on V (C).
Then V (C) = V −1,0⊕V 0,−1 is a hodge structure of type (−1, 0), (0,−1), and every
real hodge structure of this type arises from a (unique) complex structure. Thus, to
give a rational hodge structure of type (−1, 0), (0,−1) amounts to giving a Q-vector
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space V and a complex structure on V (R), and to give an integral hodge structure
of type (−1, 0), (0,−1) amounts to giving a C-vector space V and a lattice Λ ⊂ V
(i.e., a Z-submodule generated by an R-basis for V ).

Example 2.5. Let X be a nonsingular projective algebraic variety over C.
Then H = Hn(X,Q) has a hodge structure of weight n for which Hp,q ⊂ Hn(X,C)
is canonically isomorphic to Hq(X,Ωp) (Voisin 2002, 6.1.3).

Example 2.6. Let Q(m) be the hodge structure of weight −2m on the vector
space Q. Thus, (Q(m))(C) = Q(m)−m,−m. Define Z(m) and R(m) similarly.5

The hodge filtration. The hodge filtration associated with a hodge structure
of weight n is

F • : · · · ⊃ F p ⊃ F p+1 ⊃ · · · , F p =
⊕

r≥pV
r,s ⊂ V (C).

Note that for p + q = n,

F q =
⊕

s≥qV
s,r =

⊕
s≥qV

r,s =
⊕

r≤pV
r,s

and so

(18) V p,q = F p ∩ F q.

Example 2.7. For a hodge structure of type (−1, 0), (0,−1), the hodge filtra-
tion is

(F−1 ⊃ F 0 ⊃ F 2) = (V (C) ⊃ V 0,−1 ⊃ 0).

The obvious R-linear isomorphism V → V (C)/F 0 defines the complex structure on
V noted in (2.4).

Hodge structures as representations of S. Let S be C× regarded as a torus
over R. It can be identified with the closed subgroup of GL2(R) of matrices of
the form

(
a b
−b a

)
. Then S(C) ≈ C× × C× with complex conjugation acting by the

rule (z1, z2) = (z2, z1). We fix the isomorphism SC
∼= Gm × Gm so that S(R) →

S(C) is z �→ (z, z), and we define the weight homomorphism w : Gm → S so that
Gm(R) w−→ S(R) is r �→ r−1 : R× → C×.

The characters of SC are the homomorphisms (z1, z2) �→ zp
1z

q
2 , (r, s) ∈ Z × Z.

Thus, X∗(S) = Z×Z with complex conjugation acting as (p, q) �→ (q, p), and to give
a representation of S on a real vector space V amounts to giving a Z×Z-grading of
V (C) such that V p,q = V q,p for all p, q (see p276). Thus, to give a representation of
S on a real vector space V is the same as to give a hodge structure on V . Following
Deligne 1979, 1.1.1.1, we normalize the relation as follows: the homomorphism
h : S → GL(V ) corresponds to the hodge structure on V such that

(19) hC(z1, z2)v = z−p
1 z−q

2 v for v ∈ V p,q.

In other words,

(20) h(z)v = z−pz−qv for v ∈ V p,q.

Note the minus signs! The associated weight decomposition has

(21) Vn = {v ∈ V | wh(r)v = rn}, wh = h ◦ w.

5It would be a little more canonical to take the underlying vector space of Q(m) to be (2πi)mQ
because this makes certain relations invariant under a change of the choice of i =

√
−1 in C.
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Let µh be the cocharacter of GL(V ) defined by

(22) µh(z) = hC(z, 1).

Then the elements of F p
hV are sums of v ∈ V (C) satisfying µh (z) v = z−rv for

some r ≥ p.
To give a hodge structure on a Q-vector space V amounts to giving a homo-

morphism h : S → GL(V (R)) such that wh is defined over Q.

Example 2.8. By definition, a complex structure on a real vector space is a
homomorphism h : C → EndR(V ) of R-algebras. Then h|C× : C× → GL(V ) is a
hodge structure of type (−1, 0), (0,−1) whose associated complex structure (see
2.4) is that defined by h.6

Example 2.9. The hodge structure Q(m) corresponds to the homomorphism
h : S → GmR, h(z) = (zz)m.

The Weil operator. For a hodge structure (V, h), the R-linear map C = h(i) is
called the Weil operator. Note that C acts as iq−p on V p,q and that C2 = h(−1)
acts as (−1)n on Vn.

Example 2.10. If V is of type (−1, 0), (0,−1), then C coincides with the J of
(2.4). The functor (V, (V −1,0, V 0,−1)) �→ (V,C) is an equivalence from the category
of real hodge structures of type (−1, 0), (0,−1) to the category of complex vector
spaces.

Hodge structures of weight 0.. Let V be a hodge structure of weight 0. Then
V 0,0 is invariant under complex conjugation, and so V 0,0 = V 00(C), where V 00 =
V 0,0 ∩ V (see AG 16.7). Note that

(23) V 00 = Ker(V → V (C)/F 0).

Tensor products of hodge structures. The tensor product of hodge struc-
tures V and W of weight m and n is a hodge structure of weight m + n:

V ⊗W, (V ⊗W )p,q =
⊕

r+r′=p,s+s′=qV
r,s ⊗ V r′,s′

.

In terms of representations of S,

(V, hV )⊗ (W,hW ) = (V ⊗W,hV ⊗ hW ).

Morphisms of hodge structures. A morphism of hodge structures is a linear
map V → W sending V p,q into W p,q for all p, q. In other words, it is a morphism
(V, hV ) → (W,hW ) of representations of S.

Hodge tensors. Let R = Z, Q, or R, and let (V, h) be an R-hodge structure of
weight n. A multilinear form t : V r → R is a hodge tensor if the map

V ⊗ V ⊗ · · · ⊗ V → R(−nr/2)

it defines is a morphism of hodge structures. In other words, t is a hodge tensor if

t(h(z)v1, h(z)v2, . . .) = (zz)−nr/2 · tR(v1, v2, . . .), all z ∈ C, vi ∈ V (R),

or if

(24)
∑

pi �=
∑

qi ⇒ tC(vp1,q1
1 , vp2,q2

2 , . . .) = 0, vpi,qi

i ∈ V pi,qi .

6This partly explains the signs in (19); see also Deligne 1979, 1.1.6. Following Deligne

1973b, 8.12, and Deligne 1979, 1.1.1.1, hC(z1, z2)vp,q = z−p
1 z−q

2 vp,q has become the standard

convention in the theory of Shimura varieties. Following Deligne 1971a, 2.1.5.1, the convention
hC(z1, z2)vp,q = zp

1zq
2vp,q is commonly used in hodge theory (e.g., Voisin 2002, p147).
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Note that, for a hodge tensor t,

t(Cv1, Cv2, . . .) = t(v1, v2, . . .).

Example 2.11. Let (V, h) be a hodge structure of type (−1, 0), (0,−1). A
bilinear form t : V × V → R is a hodge tensor if and only if t(Ju, Jv) = t(u, v) for
all u, v ∈ V .

Polarizations. Let (V, h) be a hodge structure of weight n. A polarization of
(V, h) is a hodge tensor ψ : V ×V → R such that ψC(u, v) =df ψ(u,Cv) is symmetric
and positive definite. Then ψ is symmetric or alternating according as n is even or
odd, because

ψ(v, u) = ψ(Cv,Cu) = ψC(Cv, u) = ψC(u,Cv) = ψ(u,C2v) = (−1)nψ(u, v).

More generally, let (V, h) be an R-hodge structure of weight n where R is Z or
Q. A polarization of (V, h) is a bilinear form ψ : V × V → R such that ψR is a
polarization of (V (R), h).

Example 2.12. Let (V, h) be an R-hodge structure of type (−1, 0), (0,−1) with
R = Z, Q, or R, and let J = h(i). A polarization of (V, h) is an alternating bilinear
form ψ : V × V → R such that, for u, v ∈ V (R),

ψR(Ju, Jv) = ψ(u, v), and

ψR(u, Ju) > 0 if u �= 0.

(These conditions imply that ψR(u, Jv) is symmetric.)

Example 2.13. Let X be a nonsingular projective variety over C. The choice
of an embedding X ↪→ PN determines a polarization on the primitive part of
Hn(X,Q) (Voisin 2002, 6.3.2).

Variations of hodge structures. Fix a real vector space V , and let S be
a connected complex manifold. Suppose that, for each s ∈ S, we have a hodge
structure hs on V of weight n (independent of s). Let V p,q

s = V p,q
hs

and F p
s =

F p
s V = F p

hs
V .

The family of hodge structures (hs)s∈S on V is said to be continuous if, for
fixed p and q, the subspace V p,q

s varies continuously with s. This means that the
dimension d(p, q) of V p,q

s is constant and the map

s �→ V p,q
s : S → Gd(p,q)(V )

is continuous.
A continuous family of hodge structures (V p,q

s )s is said to be holomorphic if
the hodge filtration F •

s varies holomorphically with s. This means that the map ϕ,

s �→ F •
s : S → Gd(V )

is holomorphic. Here d = (. . . , d(p), . . .) where d(p) = dimF p
s V =

∑
r≥pd(r, q).

Then the differential of ϕ at s is a C-linear map

dϕs : TsS → TF•
s
(Gd(V ))

(17)
⊂
⊕

p Hom(F p
s , V/F

p
s ).

If the image of dϕs is contained in⊕
p Hom(F p

s , F
p−1
s /F p

s ),

for all s, then the holomorphic family is called a variation of hodge structures
on S.
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Now let T be a family of tensors on V including a nondegenerate bilinear form
t0, and let d : Z× Z → N be a function such that

d(p, q) = 0 for almost all p, q;

d(q, p) = d(p, q);

d(p, q) = 0 unless p + q = n.

Define S(d, T ) to be the set of all hodge structures h on V such that
◦ dimV p,q

h = d(p, q) for all p, q;
◦ each t ∈ T is a hodge tensor for h;
◦ t0 is a polarization for h.

Then S(d, T ) acquires a topology as a subspace of
∏

d(p,q) �=0Gd(p,q)(V ).

Theorem 2.14. Let S+ be a connected component of S(d, T ).
(a) If nonempty, S+ has a unique complex structure for which (hs) is a holo-

morphic family of hodge structures.
(b) With this complex structure, S+ is a hermitian symmetric domain if (hs)

is a variation of hodge structures.
(c) Every irreducible hermitian symmetric domain is of the form S+ for a

suitable V , d, and T .

Proof (Sketch). (a) Let S+ = S(d, T )+. Because the hodge filtration de-
termines the hodge decomposition (see (18)), the map x �→ F •

s : S+ ϕ→ Gd(V ) is
injective. Let G be the smallest algebraic subgroup of GL(V ) such that

(25) h(S) ⊂ G, all h ∈ S+

(take G to be the intersection of the algebraic subgroups of GL(V ) with this prop-
erty), and let ho ∈ S+. For any g ∈ G(R)+, ghog

−1 ∈ S+, and it can be shown
that the map g �→ g · ho · g−1 : G(R)+ → S+ is surjective:

S+ = G(R)+ · ho.

The subgroup Ko of G(R)+ fixing ho is closed, and so G(R)+/Ko is a smooth (in
fact, real analytic) manifold. Therefore, S+ acquires the structure of a smooth
manifold from

S+ = (G(R)+/Ko) · ho
∼= G(R)+/Ko.

Let g = Lie(G). From S
ho−→ G

Ad−→ g ⊂ End(V ), we obtain hodge structures on g

and End(V ). Clearly, g00 = Lie(Ko) and so Tho
S+ ∼= g/g00. In the diagram,

(26)

Tho
S+ ∼= g/g00 ⊂ � End(V )/End(V )00

g(C)/F 0

(23) ∼=
�

⊂ � End(V (C))/F 0

(23) ∼=
�

∼=Tho
Gd(V ).

the map from top-left to bottom-right is (dϕ)ho
, which therefore maps Tho

S+ onto
a complex subspace of Tho

Gd(V ). Since this is true for all ho ∈ S+, we see that
ϕ identifies S+ with an almost-complex submanifold Gd(V ). It can be shown that
this almost-complex structure is integrable, and so provides S+ with a complex
structure for which ϕ is holomorphic. Clearly, this is the only (almost-)complex
structure for which this is true.

(b) See Deligne 1979, 1.1.
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(c) Given an irreducible hermitian symmetric domain D, choose a faithful self-
dual representation G→ GL(V ) of the algebraic group G associated with D (as in
1.7). Because V is self-dual, there is a nondegenerate bilinear form t0 on V fixed
by G. Apply Theorem 2.1 to find a set of tensors T such that G is the subgroup

of GL(V ) fixing the t ∈ T . Let ho be the composite S
z �→z/z−→ U1

uo→ GL(V ) with uo

as in (1.9). Then, ho defines a hodge structure on V for which the t ∈ T are hodge
tensors and to is a polarization. One can check that D is naturally identified with
the component of S(d, T )+ containing this hodge structure. �

Remark 2.15. The map S+ → Gd(V ) in the proof is an embedding of smooth
manifolds (injective smooth map that is injective on tangent spaces and maps S+

homeomorphically onto its image). Therefore, if a smooth map T → Gd(V ) factors
into

T
α−→ S+ −→ Gd(V ),

then α will be smooth. Moreover, if the map T → Gd(V ) is defined by a holomor-
phic family of hodge structures on T , and it factors through S+, then α will be
holomorphic.

Aside 2.16. As we noted in (2.5), for a nonsingular projective variety V over
C, the cohomology group Hn(V (C),Q) has a natural hodge structure of weight
n. Now consider a regular map π : V → S of nonsingular varieties whose fibres
Vs (s ∈ S) are nonsingular projective varieties of constant dimension. The vector
spaces Hn(Vs,Q) form a local system of Q-vector spaces on S, and Griffiths showed
that the hodge structures on them form a variation of hodge structures in a slightly
more general sense than that defined above (Voisin 2002, Proposition 10.12).

Notes. Theorem 2.14 is taken from Deligne 1979.

3. Locally symmetric varieties

In this section, we study quotients of hermitian symmetric domains by certain
discrete groups.

Quotients of hermitian symmetric domains by discrete groups.

Proposition 3.1. Let D be a hermitian symmetric domain, and let Γ be a
discrete subgroup of Hol(D)+. If Γ is torsion free, then Γ acts freely on D, and
there is a unique complex structure on Γ\D for which the quotient map π : D → Γ\D
is a local isomorphism. Relative to this structure, a map ϕ from Γ\D to a second
complex manifold is holomorphic if and only if ϕ ◦ π is holomorphic.

Proof. Let Γ be a discrete subgroup of Hol(D)+. According to (1.5, 1.6), the
stabilizer Kp of any point p ∈ D is compact and g �→ gp : Hol(D)+/Kp → D is a
homeomorphism, and so (MF, 2.5):

(a) for any p ∈ D, {g ∈ Γ | gp = p} is finite;
(b) for any p ∈ D, there exists a neighbourhood U of p such that, for g ∈ Γ,

gU is disjoint from U unless gp = p;
(c) for any points p, q ∈ D not in the same Γ-orbit, there exist neighbourhoods

U of p and V of q such that gU ∩ V = ∅ for all g ∈ Γ.
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Assume Γ is torsion free. Then the group in (a) is trivial, and so Γ acts freely on
D. Endow Γ\D with the quotient topology. If U and V are as in (c) , then πU
and πV are disjoint neighbourhoods of πp and πq, and so Γ\D is separated. Let
q ∈ Γ\D, and let p ∈ π−1(q). If U is as in (b), then the restriction of π to U is a
homeomorphism U → πU , and it follows that Γ\D a manifold.

Define a C-valued function f on an open subset U of Γ\D to be holomorphic
if f ◦ π is holomorphic on π−1U . The holomorphic functions form a sheaf on Γ\D
for which π is a local isomorphism of ringed spaces. Therefore, the sheaf defines a
complex structure on Γ\D for which π is a local isomorphism of complex manifolds.

Finally, let ϕ : Γ\D → M be a map such that ϕ ◦ π is holomorphic, and let f
be a holomorphic function on an open subset U of M . Then f ◦ ϕ is holomorphic
because f ◦ ϕ ◦ π is holomorphic, and so ϕ is holomorphic. �

When Γ is torsion free, we often write D(Γ) for Γ\D regarded as a complex
manifold. In this case, D is the universal covering space of D(Γ) and Γ is the group
of covering transformations; moreover, for any point p of D, the map

g �→ [image under π of any path from p to gp] : Γ → π1(D(Γ), πp)

is an isomorphism (Hatcher 2002, 1.40).

Subgroups of finite covolume. We shall only be interested in quotients of D
by “big” discrete subgroups Γ of Aut(D)+. This condition is conveniently expressed
by saying that Γ\D has finite volume. By definition, D has a riemannian metric g
and hence a volume element Ω: in local coordinates

Ω =
√

det(gij(x))dx1 ∧ . . . ∧ dxn.

Since g is invariant under Γ, so also is Ω, and so it passes to the quotient Γ\D. The
condition is that

∫
Γ\D

Ω <∞.

For example, let D = H1 and let Γ = PSL2(Z). Then

F = {z ∈ H1 | |z| > 1, −1
2 < !z < 1

2}
is a fundamental domain for Γ and∫

Γ\D

Ω =
∫∫

F

dxdy

y2
≤
∫ ∞

√
3/2

∫ 1/2

−1/2

dxdy

y2
=
∫ ∞

√
3/2

dy

y2
<∞.

On the other hand, the quotient of H1 by the group of translations z �→ z + n,
n ∈ Z, has infinite volume, as does the quotient of H1 by the trivial group.

A real Lie group G has a left invariant volume element, which is unique up
to a positive constant (cf. Boothby 1975, VI 3.5). A discrete subgroup Γ of G is
said to have finite covolume if Γ\G has finite volume. For a torsion free discrete
subgroup Γ of Hol(D)+, an application of Fubini’s theorem shows that Γ\Hol(D)+

has finite volume if and only if Γ\D has finite volume (Witte 2001, Exercise 1.27).

Arithmetic subgroups. Two subgroups S1 and S2 of a group H are com-
mensurable if S1∩S2 has finite index in both S1 and S2. For example, two infinite
cyclic subgroups Za and Zb of R are commensurable if and only if a/b ∈ Q×. Com-
mensurability is an equivalence relation.

Let G be an algebraic group over Q. A subgroup Γ of G(Q) is arithmetic if it
is commensurable with G(Q) ∩GLn(Z) for some embedding G ↪→ GLn. It is then
commensurable with G(Q)∩GLn′(Z) for every embedding G ↪→ GLn′ (Borel 1969,
7.13).
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Proposition 3.2. Let ρ : G → G′ be a surjective homomorphism of algebraic
groups over Q. If Γ ⊂ G(Q) is arithmetic, then so also is ρ(Γ) ⊂ G′(Q).

Proof. Borel 1969, 8.9, 8.11, or Platonov and Rapinchuk 1994, Theorem 4.1,
p204. �

An arithmetic subgroup Γ of G(Q) is obviously discrete in G(R), but it need
not have finite covolume; for example, Γ = {±1} is an arithmetic subgroup of
Gm(Q) of infinite covolume in R×. Thus, if Γ is to have finite covolume, there can
be no nonzero homomorphism G → Gm. For reductive groups, this condition is
also sufficient.

Theorem 3.3. Let G be a reductive group over Q, and let Γ be an arithmetic
subgroup of G(Q).

(a) The space Γ\G(R) has finite volume if and only if Hom(G,Gm) = 0 (in
particular, Γ\G(R) has finite volume if G is semisimple).7

(b) The space Γ\G(R) is compact if and only if Hom(G,Gm) = 0 and G(Q)
contains no unipotent element (other than 1).

Proof. Borel 1969, 13.2, 8.4, or Platonov and Rapinchuk 1994, Theorem 4.13,
p213, Theorem 4.12, p210. [The intuitive reason for the condition in (b) is that the
rational unipotent elements correspond to cusps (at least in the case of SL2 acting
on H1), and so no rational unipotent elements means no cusps.] �

Example 3.4. Let B be a quaternion algebra over Q such that B ⊗Q R ≈
M2(R), and let G be the algebraic group over Q such that G(Q) is the group
of elements in B of norm 1. The choice of an isomorphism B ⊗Q R → M2(R)
determines an isomorphism G(R) → SL2(R), and hence an action of G(R) on H1.
Let Γ be an arithmetic subgroup of G(Q).

If B ≈ M2(Q), then G ≈ SL2, which is semisimple, and so Γ\ SL2(R) (hence
also Γ\H1) has finite volume. However, SL2(Q) contains the unipotent element
( 1 1

0 1 ), and so Γ\ SL2(R) is not compact.
If B �≈ M2(Q), it is a division algebra, and so G(Q) contains no unipotent

element �= 1 (for otherwise B× would contain a nilpotent element). Therefore,
Γ\G(R) (hence also Γ\H1) is compact

Let k be a subfield of C. An automorphism α of a k-vector space V is said to be
neat if its eigenvalues in C generate a torsion free subgroup of C× (which implies
that α does not have finite order). Let G be an algebraic group over Q. An element
g ∈ G(Q) is neat if ρ(g) is neat for one faithful representation G ↪→ GL(V ), in
which case ρ(g) is neat for every representation ρ of G defined over a subfield of C
(apply Waterhouse 1979, 3.5). A subgroup of G(Q) is neat if all its elements are.

Proposition 3.5. Let G be an algebraic group over Q, and let Γ be an arith-
metic subgroup of G(Q). Then, Γ contains a neat subgroup Γ′ of finite index.
Moreover, Γ′ can be defined by congruence conditions (i.e., for some embedding
G ↪→ GLn and integer N , Γ′ = {g ∈ Γ | g ≡ 1 modN}).

7Recall (cf. the Notations) that Hom(G, Gm) = 0 means that there is no nonzero homomor-
phism G → Gm defined over Q.
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Proof. Borel 1969, 17.4. �
Let H be a connected real Lie group. A subgroup Γ of H is arithmetic if

there exists an algebraic group G over Q and an arithmetic subgroup Γ0 of G(Q)
such that Γ0 ∩G(R)+ maps onto Γ under a surjective homomorphism G(R)+ → H
with compact kernel.

Proposition 3.6. Let H be a semisimple real Lie group that admits a faithful
finite-dimensional representation. Every arithmetic subgroup Γ of H is discrete of
finite covolume, and it contains a torsion free subgroup of finite index.

Proof. Let α : G(R)+ � H and Γ0 ⊂ G(Q) be as in the definition of arith-
metic subgroup. Because Ker(α) is compact, α is proper (Bourbaki 1989, I 10.3)
and, in particular, closed. Because Γ0 is discrete in G(R), there exists an open U
⊂ G(R)+ whose intersection with Γ0 is exactly the kernel of Γ0∩G(R)+ → Γ. Now
α(G(R)+�U) is closed in H, and its complement intersects Γ in {1Γ}. Therefore, Γ
is discrete in H. It has finite covolume because Γ0\G(R)+ maps onto Γ\H and we
can apply (3.3a). Let Γ1 be a neat subgroup of Γ0 of finite index (3.5). The image
of Γ1 in H has finite index in Γ, and its image under any faithful representation of
H is torsion free. �

Remark 3.7. There are many nonarithmetic discrete subgroup in SL2(R) of
finite covolume. According to the Riemann mapping theorem, every compact rie-
mann surface of genus g ≥ 2 is the quotient of H1 by a discrete subgroup of
PGL2(R)+ acting freely on H1. Since there are continuous families of such riemann
surfaces, this shows that there are uncountably many discrete cocompact subgroups
in PGL2(R)+ (therefore also in SL2(R)), but there only countably many arithmetic
subgroups.

The following (Fields medal) theorem of Margulis shows that SL2 is exceptional
in this regard: let Γ be a discrete subgroup of finite covolume in a noncompact
simple real Lie group H; then Γ is arithmetic unless H is isogenous to SO(1, n) or
SU(1, n) (see Witte 2001, 6.21 for a discussion of the theorem). Note that, because
SL2(R) is isogenous to SO(1, 2), the theorem doesn’t apply to it.

Brief review of algebraic varieties. Let k be a field. An affine k-algebra is
a finitely generated k-algebra A such that A ⊗k kal is reduced (i.e., has no nilpotents).
Such an algebra is itself reduced, and when k is perfect every reduced finitely generated
k-algebra is affine.

Let A be an affine k-algebra. Define specm(A) to be the set of maximal ideals in A
endowed with the topology having as basis D(f), D(f) = {m | f /∈ m}, f ∈ A. There is
a unique sheaf of k-algebras O on specm(A) such that O(D(f)) = Af for all f . Here Af

is the algebra obtained from A by inverting f . Any ringed space isomorphic to a ringed
space of the form

Specm(A) = (specm(A),O)

is called an affine variety over k. The stalk at m is the local ring Am , and so Specm(A)
is a locally ringed space.

This all becomes much more familiar when k is algebraically closed. When we write
A = k[X1, . . . , Xn]/a, the space specm(A) becomes identified with the zero set of a in kn

endowed with the zariski topology, and O becomes identified with the sheaf of k-valued
functions on specm(A) locally defined by polynomials.

A topological space V with a sheaf of k-algebras O is a prevariety over k if there
exists a finite covering (Ui) of V by open subsets such that (Ui,O|Ui) is an affine variety



290 J. S. MILNE

over k for all i. A morphism of prevarieties over k is simply a morphism of ringed
spaces of k-algebras. A prevariety V over k is separated if, for all pairs of morphisms of
k-prevarieties α, β : Z ⇒ V , the subset of Z on which α and β agree is closed. A variety
over k is a separated prevariety over k.

Alternatively, the varieties over k are precisely the ringed spaces obtained from
geometrically-reduced separated schemes of finite type over k by deleting the nonclosed
points.

A morphism of algebraic varieties is also called a regular map, and the elements of
O(U) are called the regular functions on U .

For the variety approach to algebraic geometry, see AG, and for the scheme approach,
see Hartshorne 1977.

Algebraic varieties versus complex manifolds.
The functor from nonsingular algebraic varieties to complex manifolds. For a

nonsingular variety V over C, V (C) has a natural structure as a complex manifold.
More precisely:

Proposition 3.8. There is a unique functor (V,OV ) �→ (V an,OV an) from
nonsingular varieties over C to complex manifolds with the following properties:

(a) as sets, V = V an, every zariski-open subset is open for the complex topol-
ogy, and every regular function is holomorphic;

(b) if V = An, then V an = Cn with its natural structure as a complex mani-
fold;

(c) if ϕ : V →W is étale, then ϕan : V an →W an is a local isomorphism.

Proof. A regular map ϕ : V → W is étale if the map dϕp : TpV → TpW is an
isomorphism for all p ∈ V . Note that conditions (a,b,c) determine the complex-
manifold structure on any open subvariety of An and also on any variety V that
admits an étale map to an open subvariety of An. Since every nonsingular variety
admits a zariski-open covering by such V (AG 5.27), this shows that there exists
at most one functor satisfying (a,b,c), and suggests how to define it. �

Obviously, a regular map ϕ : V → W is determined by ϕan : V an → W an, but
not every holomorphic map V an → W an is regular. For example, z �→ ez : C → C
is not regular. Moreover, a complex manifold need not arise from a nonsingular
algebraic variety, and two nonsingular varieties V and W can be isomorphic as
complex manifolds without being isomorphic as algebraic varieties (Shafarevich
1994, VIII 3.2). In other words, the functor V �→ V an is faithful, but it is neither
full nor essentially surjective on objects.

Remark 3.9. The functor V �→ V an can be extended to all algebraic varieties
once one has the notion of a “complex manifold with singularities”. This is called a
complex space. For holomorphic functions f1, . . . , fr on a connected open subset
U of Cn, let V (f1, . . . , fr) denote the set of common zeros of the fi in U ; one endows
V (f1, . . . , fr) with a natural structure of ringed space, and then defines a complex
space to be a ringed space (S,OS) that is locally isomorphic to one of this form
(Shafarevich 1994, VIII 1.5).

Necessary conditions for a complex manifold to be algebraic.

3.10. Here are two necessary conditions for a complex manifold M to arise from
an algebraic variety.
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(a) It must be possible to embed M as an open submanifold of a compact
complex manfold M∗ in such a way that the boundary M∗ �M is a finite
union of manifolds of dimension dimM − 1.

(b) If M is compact, then the field of meromorphic functions on M must have
transcendence degree dimM over C.

The necessity of (a) follows from Hironaka’s theorem on the resolution of singular-
ities, which shows that every nonsingular variety V can be embedded as an open
subvariety of a complete nonsingular variety V ∗ in such a way that the bound-
ary V ∗ � V is a divisor with normal crossings (see p293), and the necessity of
(b) follows from the fact that, when V is complete and nonsingular, the field of
meromorphic functions on V an coincides with the field of rational functions on V
(Shafarevich 1994, VIII 3.1).

Here is one positive result: the functor

{projective nonsingular curves over C} → {compact riemann surfaces}

is an equivalence of categories (see MF, pp88-91, for a discussion of this theorem).
Since the proper zariski-closed subsets of algebraic curves are the finite subsets,
we see that for riemann surfaces the condition (3.10a) is also sufficient: a riemann
surface M is algebraic if and only if it is possible to embed M in a compact riemann
surface M∗ in such a way that the boundary M∗ � M is finite. The maximum
modulus principle (Cartan 1963, VI 4.4) shows that a holomorphic function on a
connected compact riemann surface is constant. Therefore, if a connected riemann
surface M is algebraic, then every bounded holomorphic function on M is constant.
We conclude that H1 does not arise from an algebraic curve, because the function
z �→ z−i

z+i is bounded, holomorphic, and nonconstant.
For any lattice Λ in C, the Weierstrass ℘ function and its derivative embed

C/Λ into P2(C) (as an elliptic curve). However, for a lattice Λ in C2, the field of
meromorphic functions on C2/Λ will usually have transcendence degree < 2, and
so C2/Λ is not an algebraic variety. For quotients of Cg by a lattice Λ, condition
(3.10b) is sufficient for algebraicity (Mumford 1970, p35).

Projective manifolds and varieties. A complex manifold (resp. algebraic vari-
ety) is projective if it is isomorphic to a closed submanifold (resp. closed subvari-
ety) of a projective space. The first truly satisfying theorem in the subject is the
following:

Theorem 3.11 (Chow 1949). Every projective complex manifold has a unique
structure of a nonsingular projective algebraic variety, and every holomorphic map
of projective complex manifolds is regular for these structures. (Moreover, a similar
statement holds for complex spaces.)

Proof. See Shafarevich 1994, VIII 3.1 (for the manifold case). �

In other words, the functor V �→ V an is an equivalence from the category of
(nonsingular) projective algebraic varieties to the category of projective complex
(manifolds) spaces.

The theorem of Baily and Borel.

Theorem 3.12 (Baily and Borel 1966). Let D(Γ) = Γ\D be the quotient of a
hermitian symmetric domain by a torsion free arithmetic subgroup Γ of Hol(D)+.
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Then D(Γ) has a canonical realization as a zariski-open subset of a projective al-
gebraic variety D(Γ)∗. In particular, it has a canonical structure as an algebraic
variety.

Recall the proof for D = H1. Set H∗
1 = H1 ∪P1(Q) (rational points on the real

axis plus the point i∞). Then Γ acts on H∗
1, and the quotient Γ\H∗

1 is a compact
riemann surface. One can then show that the modular forms of a sufficiently high
weight embed Γ\H∗

1 as a closed submanifold of a projective space. Thus Γ\H∗
1 is

algebraic, and as Γ\H1 omits only finitely many points of Γ\H∗
1, it is automatically

a zariski-open subset of Γ\H∗
1. The proof in the general case is similar, but is

much more difficult. Briefly, D(Γ)∗ = Γ\D∗ where D∗ is the union of D with
certain “rational boundary components” endowed with the Satake topology; again,
the automorphic forms of a sufficiently high weight map Γ\D∗ isomorphically onto
a closed subvariety of a projective space, and Γ\D is a zariski-open subvariety of
Γ\D∗.

For the Siegel upper half space Hg, the compactification H∗
g was introduced by

Satake (1956) in order to give a geometric foundation to certain results of Siegel
(1939), for example, that the space of holomorphic modular forms on Hg of a fixed
weight is finite dimensional, and that the meromorphic functions on Hg obtained
as the quotient of two modular forms of the same weight form an algebraic function
field of transcendence degree g(g + 1)/2 = dimHg over C.

That the quotient Γ\H∗
g of H∗

g by an arithmetic group Γ has a projective
embedding by modular forms, and hence is a projective variety, was proved in
Baily 1958, Cartan 1958, and Satake and Cartan 1958.

The construction of H∗
g depends on the existence of fundamental domains for

the arithmetic group Γ acting on Hg. Weil (1958) used reduction theory to con-
struct fundamental sets (a notion weaker than fundamental domain) for the domains
associated with certain classical groups (groups of automorphisms of semsimple
Q-algebras with, or without, involution), and Satake (1960) applied this to con-
struct compactifications of these domains. Borel and Harish-Chandra developed a
reduction theory for general semisimple groups (Borel and Harish-Chandra 1962;
Borel 1962), which then enabled Baily and Borel (1966) to obtain the above theorem
in complete generality.

The only source for the proof is the original paper, although some simplifica-
tions to the proof are known.

Remark 3.13. (a) The variety D(Γ)∗ is usually very singular. The boundary
D(Γ)∗�D(Γ) has codimension ≥ 2, provided PGL2 is not a quotient of the Q-group
G giving rise to Γ.

(b) The variety D(Γ)∗ = Proj(
⊕

n≥0An) where An is the vector space of
automorphic forms for the nth power of the canonical automorphy factor (Baily
and Borel 1966, 10.11). It follows that, if PGL2 is not a quotient of G, then
D(Γ)∗ = Proj(

⊕
n≥0H

0(D(Γ), ωn)) where ω is the sheaf of algebraic differentials
of maximum degree on D(Γ). Without the condition on G, there is a similar de-
scription of D(Γ)∗ in terms of differentials with logarithmic poles (Brylinski 1983,
4.1.4; Mumford 1977).

(b) When D(Γ) is compact, Theorem 3.12 follows from the Kodaira embedding
theorem (Wells 1980, VI 4.1, 1.5). Nadel and Tsuji (1988, 3.1) extended this to
those D(Γ) having boundary of dimension 0, and Mok and Zhong (1989) give an
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alternative proof of Theorem 3.12, but without the information on the boundary
given by the original proof.

An algebraic variety D(Γ) arising as in the theorem is called a locally symmet-
ric variety (or an arithmetic locally symmetric variety, or an arithmetic
variety, but not yet a Shimura variety).

The theorem of Borel.

Theorem 3.14 (Borel 1972). Let D(Γ) and D(Γ)∗ be as in (3.12) — in par-
ticular, Γ is torsion free and arithmetic. Let V be a nonsingular quasi-projective
variety over C. Then every holomorphic map f : V an → D(Γ)an is regular.

The key step in Borel’s proof is the following result:

Lemma 3.15. Let D×
1 be the punctured disk {z | 0 < |z| < 1}. Then every

holomorphic map8 D×r
1 ×Ds

1 → D(Γ) extends to a holomorphic map Dr+s
1 → D(Γ)∗

(of complex spaces).

The original result of this kind is the big Picard theorem, which, interestingly,
was first proved using elliptic modular functions. Recall that the theorem says that
if a function f has an essential singularity at a point p ∈ C, then on any open
disk containing p, f takes every complex value except possibly one. Therefore, if a
holomorphic function f on D×

1 omits two values in C, then it has at worst a pole
at 0, and so extends to a holomorphic function D1 → P1(C). This can be restated
as follows: every holomorphic function from D×

1 to P1(C)�{3 points} extends to a
holomorphic function from D1 to the natural compactification P1(C) of P1(C) � {3
points}. Over the decades, there were various improvements made to this theorem.
For example, Kwack (1969) replaced P1(C) � {3 points} with a more general class
of spaces. Borel (1972) verified that Kwack’s theorem applies to D(Γ) ⊂ D(Γ)∗,
and extended the result to maps from a product D×r

1 ×Ds
1.

Using the lemma, we can prove the theorem. According Hironaka’s (Fields
medal) theorem on the resolution of singularities (Hironaka 1964; see also Bravo
et al. 2002), we can realize V as an open subvariety of a projective nonsingular
variety V ∗ in such a way that V ∗ � V is a divisor with normal crossings. This
means that, locally for the complex topology, the inclusion V ↪→ V ∗ is of the form
D×r

1 ×Ds
1 ↪→ Dr+s

1 . Therefore, the lemma shows that f : V an → D(Γ)an extends to
a holomorphic map V ∗an → D(Γ)∗, which is regular by Chow’s theorem (3.11).

Corollary 3.16. The structure of an algebraic variety on D(Γ) is unique.

Proof. Let D(Γ) denote Γ\D with the canonical algebraic structure provided
by Theorem 3.12, and suppose Γ\D = V an for a second variety V . Then the
identity map f : V an → D(Γ) is a regular bijective map of nonsingular varieties in
characteristic zero, and is therefore an isomorphism (cf. AG 8.19). �

The proof of the theorem shows that the compactification D(Γ) ↪→ D(Γ)∗ has
the following property: for any compactification D(Γ) → D(Γ)† with D(Γ)† �D(Γ)
a divisor with normal crossings, there is a unique regular map D(Γ)† → D(Γ)∗

making

8Recall that D1 is the open unit disk. The product D×r
1 × Ds

1 is obtained from Dr+s
1 by

removing the first r coordinate hyperplanes.
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D(Γ)†

����

D(Γ)

����
D(Γ)∗

�

commute. For this reason, D(Γ) ↪→ D(Γ)∗ is often called the minimal compacti-
fication. Other names: standard, Satake-Baily-Borel, Baily-Borel.

Aside 3.17. (a) Theorem 3.14 also holds for singular V — in fact, it suffices
to show that f becomes regular when restricted to an open dense set of V , which
we may take to be the complement of the singular locus.

(b) Theorem 3.14 definitely fails without the condition that Γ be torsion free.
For example, it is false for Γ\H1 = A1 — consider z �→ ez : C → C.

Finiteness of the group of automorphisms of D(Γ).

Definition 3.18. A semisimple group G over Q is said to be of compact type
if G(R) is compact, and it is of noncompact type if it does not contain a nonzero
normal subgroup of compact type.

A semisimple group over Q is an almost direct product of its minimal connected
normal subgroups, and it will be of noncompact type if and only if none of these
subgroups is of compact type. In particular, a simply connected or adjoint group
is of noncompact type if and only if it has no simple factor of compact type.

We shall need one last result about arithmetic subgroups.

Theorem 3.19 (Borel density theorem). Let G be a semisimple group over Q
of noncompact type. Then every arithmetic subgroup Γ of G(Q) is zariski-dense in
G.

Proof. Borel 1969, 15.12, or Platonov and Rapinchuk 1994, Theorem 4.10,
p205. �

Corollary 3.20. For G as in (3.19), the centralizer of Γ in G(R) is Z(R),
where Z is the centre of G (as an algebraic group over Q).

Proof. The theorem implies that the centralizer of Γ in G(C) is Z(C), and
Z(R) = Z(C) ∩G(R). �

Theorem 3.21. Let D(Γ) be the quotient of a hermitian symmetric domain D
by a torsion free arithmetic group Γ. Then D(Γ) has only finitely many automor-
phisms.

Proof. As Γ is a torsion free, D is the universal covering space of Γ\D and Γ
is the group of covering transformations (see p287). An automorphism α : Γ\D →
Γ\D lifts to an automorphism α̃ : D → D. For any γ ∈ Γ, α̃γα̃−1 is a covering
transformation, and so lies in Γ. Conversely, an automorphism of D normalizing Γ
defines an automorphism of Γ\D. Thus,

Aut(Γ\D) = N/Γ, N = normalizer of Γ in Aut(D).
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The corollary implies that the map ad: N → Aut(Γ) is injective. The group Γ is
countable because it is a discrete subgroup of a group that admits a countable basis
for its open subsets, and so N is also countable. Because Γ is closed in Aut(D),
so also is N . Write N as a countable union of its finite subsets. According to the
Baire category theorem (MF 1.3) one of the finite sets must have an interior point,
and this implies that N is discrete. Because Γ\Aut(D) has finite volume (3.3a),
this implies that Γ has finite index in N .

Alternatively, there is a geometric proof, at least when Γ is neat. According
to Mumford 1977, Proposition 4.2, D(Γ) is then an algebraic variety of logarithmic
general type, which implies that its automorphism group is finite (Iitaka 1982,
11.12). �

Aside 3.22. In most of this section we have considered only quotients Γ\D with
Γ torsion free. In particular, we disallowed Γ(1)\H1. Typically, if Γ has torsion,
then Γ\D will be singular and some of the above statements will fail for Γ\D.

Notes. Borel 1969, Raghunathan 1972, and (eventually) Witte 2001 contain
good expositions on discrete subgroups of Lie groups. There is a large literature
on the various compactifications of locally symmetric varieties. For overviews, see
Satake 2001 and Goresky 2003, and for a detailed description of the construction of
toroidal compactifications, which, in contrast to the Baily-Borel compactification,
may be smooth and projective, see Ash et al. 1975.

4. Connected Shimura varieties

Congruence subgroups. Let G be a reductive algebraic group over Q. Choose
an embedding G ↪→ GLn, and define

Γ(N) = G(Q) ∩ {g ∈ GLn(Z) | g ≡ In modN}.
For example, if G = SL2, then

Γ(N) =
{(

a b
c d

)
∈ SL2(Z) | ad− bc = 1, a, d ≡ 1, b, c ≡ 0 mod N

}
.

A congruence subgroup of G(Q) is any subgroup containing some Γ(N) as a
subgroup of finite index. Although Γ(N) depends on the choice the embedding,
this definition does not (see 4.1 below).

With this terminology, a subgroup of G(Q) is arithmetic if it is commensu-
rable with Γ(1). The classical congruence subgroup problem for G asks whether
every arithmetic subgroup of G(Q) is congruence, i.e., contains some Γ(N). For
split simply connected groups other than SL2, the answer is yes (Matsumoto 1969),
but SL2 and all nonsimply connected groups have many noncongruence arithmetic
subgroups (for a discussion of the problem, see Platonov and Rapinchuk 1994, sec-
tion 9.5). In contrast to arithmetic subgroups, the image of a congruence subgroup
under an isogeny of algebraic groups need not be a congruence subgroup.

The ring of finite adèles is the restricted topological product

Af =
∏

(Q� : Z�)

where � runs over the finite primes of � (that is, we omit the factor R). Thus, Af is
the subring of

∏
Q� consisting of the (a�) such that a� ∈ Z� for almost all �, and it

is endowed with the topology for which
∏

Z� is open and has the product topology.
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Let V = SpecmA be an affine variety over Q. The set of points of V with
coordinates in a Q-algebra R is

V (R) = HomQ(A,R).

When we write
A = Q[X1, . . . , Xm]/a = Q[x1, . . . , xm],

the map P �→ (P (x1) , . . . , P (xm)) identifies V (R) with

{(a1, . . . , am) ∈ Rm | f(a1, . . . , am) = 0, ∀f ∈ a}.
Let Z[x1, . . . , xm] be the Z-subalgebra of A generated by the xi, and let

V (Z�) = HomZ(Z[x1, . . . , xm],Z�) = V (Q�) ∩ Zm
� (inside Qm

� ).

This set depends on the choice of the generators xi for A, but if A = Q[y1, . . . , yn],
then the yi’s can be expressed as polynomials in the xi with coefficients in Q, and
vice versa. For some d ∈ Z, the coefficients of these polynomials lie in Z[ 1d ], and so

Z[ 1d ][x1, . . . , xm] = Z[ 1d ][y1, . . . , yn] (inside A).

It follows that for � � d, the yi’s give the same set V (Z�) as the xi’s. Therefore,

V (Af ) =
∏

(V (Q�) : V (Z�))

is independent of the choice of generators for9 A.
For an algebraic group G over Q, we define

G(Af ) =
∏

(G(Q�) : G(Z�))

similarly. For example,

Gm(Af ) =
∏

(Q×
� : Z×

� ) = A×
f .

Proposition 4.1. For any compact open subgroup K of G(Af ), K ∩G(Q) is
a congruence subgroup of G(Q), and every congruence subgroup arises in this way.

Proof. Fix an embedding G ↪→ GLn. From this we get a surjection Q[GLn] →
Q[G] (of Q-algebras of regular functions), i.e., a surjection

Q[X11, . . . , Xnn, T ]/(det(Xij)T − 1) → Q[G],

and hence Q[G] = Q[x11, . . . , xnn, t]. For this presentation of Q[G],

G(Z�) = G(Q�) ∩GLn(Z�) (inside GLn(Q�)).

For an integer N > 0, let

K(N) =
∏

�K�, where K� =
{

G(Z�) if � � N
{g ∈ G(Z�) | g ≡ In mod �r�} if r� = ord�(N).

Then K(N) is a compact open subgroup of G(Af ), and

K(N) ∩G(Q) = Γ(N).

It follows that the compact open subgroups of G(Af ) containing K(N) intersect
G(Q) exactly in the congruence subgroups of G(Q) containing Γ(N). Since every

9In a more geometric language, let α : V ↪→ Am
Q be a closed immersion. The zariski closure

Vα of V in Am
Z is a model of V flat over Spec Z. A different closed immersion β gives a different

flat model Vβ , but for some d, the isomorphism (Vα)Q
∼= V ∼= (Vβ)Q on generic fibres extends to

an isomorphism Vα → Vβ over Spec Z[ 1
d
]. For the primes � not dividing d, the subgroups Vα(Z�)

and Vβ(Z�) of V (Q�) will coincide.
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compact open subgroup of G(Af ) contains K(N) for some N , this completes the
proof. �

Remark 4.2. There is a topology on G(Q) for which the congruence subgroups
form a fundamental system of neighbourhoods. The proposition shows that this
topology coincides with that defined by the diagonal embedding G(Q) ⊂ G(Af ).

Exercise 4.3. Show that the image in PGL2(Q) of a congruence subgroup in
SL2(Q) need not be congruence.

Connected Shimura data.

Definition 4.4. A connected Shimura datum is a pair (G,D) consisting
of a semisimple algebraic group G over Q and a Gad(R)+-conjugacy class D of
homomorphisms u : U1 → Gad

R satisfying the following conditions:
SU1: for u ∈ D, only the characters z, 1, z−1 occur in the representation of

U1 on Lie(Gad)C defined by u;
SU2: for u ∈ D, adu(−1) is a Cartan involution on Gad;
SU3: Gad has no Q-factor H such that H(R) is compact.

Example 4.5. Let u : U1 → PGL2(R) be the homomorphism sending z =
(a + bi)2 to

(
a b

−b a

)
mod±I2 (cf. 1.10), and let D be the set of conjugates of this

homomorphism, i.e., D is the set of homomorphisms U1 → PGL2(R) of the form

z = (a + bi)2 �→ A
(

a b
−b a

)
A−1 mod±I2, A ∈ SL2(R).

Then (SL2, D) is a Shimura datum (here SL2 is regarded as a group over Q).

Remark 4.6. (a) If u : U1 → Gad(R) satisfies the conditions SU1,2, then so
does any conjugate of it by an element of Gad(R)+. Thus a pair (G, u) satisfy-
ing SU1,2,3 determines a connected Shimura datum. Our definition of connected
Shimura datum was phrased so as to avoid D having a distinguished point.

(b) Condition SU3 says that G is of noncompact type (3.18). It is fairly harm-
less to assume this, because replacing G with its quotient by a connected normal
subgroup N such that N(R) is compact changes little. Assuming it allows us to
apply the strong approximation theorem when G is simply connected (see 4.16
below).

Lemma 4.7. Let H be an adjoint real Lie group, and let u : U1 → H be a
homomorphism satisfying SU1,2. Then the following conditions on u are equivalent:

(a) u(−1) = 1;
(b) u is trivial, i.e., u(z) = 1 for all z;
(c) H is compact.

Proof. (a)⇔(b). If u(−1) = 1, then u factors through U1
2−→ U1, and so z±1

can not occur in the representation of U1 on Lie(H)C. Therefore U1 acts trivially
on Lie(H)C, which implies (b). The converse is trivial.

(a)⇔(c). We have

H is compact 1.17a⇐⇒ adu(−1) = 1
Z(H)=1⇐⇒ u(−1) = 1. �

Proposition 4.8. To give a connected Shimura datum is the same as to give
◦ a semisimple algebraic group G over Q of noncompact type,
◦ a hermitian symmetric domain D, and
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◦ an action of G(R)+ on D defined by a surjective homomorphism G(R)+ →
Hol(D)+ with compact kernel.

Proof. Let (G,D) be a connected Shimura datum, and let u ∈ D. Decompose
Gad

R into a product of its simple factors: Gad
R = H1 × · · · × Hs. Correspondingly,

u = (u1, . . . , us) where ui is the projection of u into Hi(R). Then ui = 1 if Hi is
compact (4.7), and otherwise there is an irreducible hermitian symmetric domain
D′

i such that Hi(R)+ = Hol(D′
i)

+ and D′
i is in natural one-to-one correspondence

with the set Di of Hi(R)+-conjugates of ui (see 1.21). The product D′ of the D′
i is a

hermitian symmetric domain on which G(R)+ acts via a surjective homomorphism
G(R)+ → Hol(D)+ with compact kernel. Moreover, there is a natural identification
of D′ =

∏
D′

i with D =
∏

Di.
Conversely, let (G,D,G(R)+ → Hol(D)+) satisfy the conditions in the propo-

sition. Decompose Gad
R as before, and let Hc (resp. Hnc) be the product of the

compact (resp. noncompact) factors. The action of G(R)+ on D defines an iso-
morphism Hnc(R)+ ∼= Hol(D)+, and {up | p ∈ D} is an Hnc(R)+-conjugacy class
of homomorphisms U1 → Hnc(R)+ satisfying SU1,2 (see 1.21). Now

{(1, up) : U1 → Hc(R)×Hnc(R) | p ∈ D} ,
is a Gad(R)+-conjugacy class of homomorphisms U1 → Gad(R) satisfying SU1,2.

�

Proposition 4.9. Let (G,D) be a connected Shimura datum, and let X be the
Gad(R)-conjugacy class of homomorphisms S → GR containing D. Then D is a
connected component of X, and the stabilizer of D in Gad(R) is Gad(R)+.

Proof. The argument in the proof of (1.5) shows that X is a disjoint union
of orbits Gad(R)+h, each of which is both open and closed in X. In particular, D
is a connected component of X.

Let Hc (resp. Hnc) be the product of the compact (resp. noncompact) simple
factors of GR. Then Hnc is a connected algebraic group over R such that Hnc(R)+ =
Hol(D), and G(R)+ acts on D through its quotient Hnc(R)+. As Hc(R) is connected
(Borel 1991, p277), the last part of the proposition follows from (1.7). �

Definition of a connected Shimura variety. Let (G,D) be a connected
Shimura datum, and regard D as a hermitian symmetric domain with G(R)+ acting
on it as in (4.8). Because Gad(R)+ → Aut(D)+ has compact kernel, the image Γ of
any arithmetic subgroup Γ of Gad(Q)+ in Aut(D)+ will be arithmetic (this is the
definition p289). The kernel of Γ → Γ is finite. If Γ is torsion free, then Γ ∼= Γ, and
so the Baily-Borel and Borel theorems (3.12, 3.14) apply to

D(Γ) df= Γ\D = Γ\D.

In particular, D(Γ) is an algebraic variety, and, for any Γ ⊃ Γ′, the natural map

D(Γ) ← D(Γ′)

is regular.

Definition 4.10. The connected Shimura variety Sh◦(G,D) is the inverse
system of locally symmetric varieties (D(Γ))Γ where Γ runs over the torsion-free
arithmetic subgroups of Gad(Q)+ whose inverse image in G(Q)+ is a congruence
subgroup.
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Remark 4.11. An element g of Gad(Q)+ defines a holomorphic map g : D → D,
and hence a map

Γ\D → gΓg−1\D.
This is again holomorphic (3.1), and hence is regular (3.14). Therefore the group
Gad(Q)+ acts on the family Sh◦(G,D) (but not on the individual D(Γ)’s).

Lemma 4.12. Write π for the homomorphism G(Q)+ → Gad(Q)+. The follow-
ing conditions on an arithmetic subgroup Γ of Gad(Q)+ are equivalent:

(a) π−1(Γ) is a congruence subgroup of G(Q)+;
(b) π−1(Γ) contains a congruence subgroup of G(Q)+;
(c) Γ contains the image of a congruence subgroup of G(Q)+.

Therefore, the varieties Γ\D with Γ a congruence subgroup of G(Q)+ such π(Γ) is
torsion free are cofinal in the family Sh◦(G,D).

Proof. (a) =⇒ (b). Obvious.
(b) =⇒ (c). Let Γ′ be a congruence subgroup of G(Q)+ contained in π−1(Γ).

Then
Γ ⊃ π(π−1(Γ)) ⊃ π(Γ′).

(c) =⇒ (a). Let Γ′ be a congruence subgroup of G(Q)+ such that Γ ⊃ π(Γ′),
and consider

π−1(Γ) ⊃ π−1π(Γ′) ⊃ Γ′.
Because π(Γ′) is arithmetic (3.2), it is of finite index in Γ, and it follows that
π−1π(Γ′) is of finite index in π−1(Γ). Because Z(Q) · Γ′ ⊃ π−1π(Γ′) and Z(Q) is
finite (Z is the centre of G), Γ′ is of finite index in π−1π(Γ′). Therefore, Γ′ is of
finite index in π−1(Γ), which proves that π−1(Γ) is congruence. �

Remark 4.13. The homomorphism π : G(Q)+ → Gad(Q)+ is usually far from
surjective. Therefore, ππ−1(Γ) is usually not equal to Γ, and the family D(Γ) with
Γ a congruence subgroup of G(Q)+ is usually much smaller than Sh◦(G,D).

Example 4.14. (a) G = SL2, D = H1. Then Sh◦(G,D) is the family of ellip-
tic modular curves Γ\H1 with Γ a torsion-free arithmetic subgroup of PGL2(R)+

containing the image of Γ(N) for some N .
(b) G = PGL2, D = H1. The same as (a), except that now the Γ are required

to be congruence subgroups of PGL2(Q) — there are many fewer of these (see 4.3).
(c) Let B be a quaternion algebra over a totally real field F . Then

B ⊗Q R ∼=
∏

v : F↪→RB ⊗F,v R

and each B ⊗F,v R is isomorphic either to the usual quaternions H or to M2(R).
Let G be the semisimple algebraic group over Q such that

G(Q) = Ker(Nm: B× → F×).

Then

(27) G(R) ≈ H×1 × · · · ×H×1 × SL2(R)× · · · × SL2(R)

where H×1 = Ker(Nm: H× → R×). Assume that at least one SL2(R) occurs (so
that G is of noncompact type), and let D be a product of copies of H1, one for each
copy of SL2(R). The choice of an isomorphism (27) determines an action of G(R)
on D which satisfies the conditions of (4.8), and hence defines a connected Shimura
datum. In this case, D(Γ) has dimension equal to the number of copies of M2(R)
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in the decomposition of B⊗Q R. If B ≈M2(F ), then G(Q) has unipotent elements,
e.g., ( 1 1

0 1 ), and so D(Γ) is not compact (3.3). In this case the varieties D(Γ) are
called Hilbert modular varieties. On the other hand, if B is a division algebra,
G(Q) has no unipotent elements, and so the D(Γ) are compact (as manifolds, hence
they are projective as algebraic varieties).

Aside 4.15. In the definition of Sh◦(G,D), why do we require the inverse
images of the Γ’s in G(Q)+ to be congruence? The arithmetic properties of the
quotients of hermitian symmetric domains by noncongruence arithmetic subgroups
are not well understood even for D = H1 and G = SL2 . Also, the congruence
subgroups turn up naturally when we work adèlically.

The strong approximation theorem. Recall that a semisimple group G
is said to be simply connected if any isogeny G′ → G with G′ connected is an
isomorphism. For example, SL2 is simply connected, but PGL2 is not.

Theorem 4.16 (Strong Approximation). Let G be an algebraic group over Q.
If G is semisimple, simply connected, and of noncompact type, then G(Q) is dense
in G(Af ).

Proof. Platonov and Rapinchuk 1994, Theorem 7.12, p427. �

Remark 4.17. Without the conditions on G, the theorem fails, as the following
examples illustrate:

(a) Gm: the group Q× is not dense in A×
f .

(b) PGL2: the determinant defines surjections

PGL2(Q) → Q×/Q×2

PGL2(Af ) → A×
f /A×2

f

and Q×/Q×2 is not dense in A×
f /A×2

f .
(c) G of compact type: because G(Z) is discrete in G(R) (see 3.3), it is finite,

and so it is not dense in G(Ẑ), which implies that G(Q) is not dense in
G(Af ).

An adèlic description of D(Γ).

Proposition 4.18. Let (G,D) be a connected Shimura datum with G simply
connected. Let K be a compact open subgroup of G(Af ), and let

Γ = K ∩G(Q)

be the corresponding congruence subgroup of G(Q). The map x �→ [x, 1] defines a
bijection

(28) Γ\D ∼= G(Q)\D ×G(Af )/K.

Here G(Q) acts on both D and G(Af ) on the left, and K acts on G(Af ) on the
right:

q · (x, a) · k = (qx, qak), q ∈ G(Q), x ∈ D, a ∈ G(Af ), k ∈ K.

When we endow D with its usual topology and G(Af ) with the adèlic topology (or
the discrete topology), this becomes a homeomorphism.
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Proof. Because K is open, G(Af ) = G(Q) · K (strong approximation theo-
rem). Therefore, every element of G(Q)\D×G(Af )/K is represented by an element
of the form [x, 1]. By definition, [x, 1] = [x′, 1] if and only if there exist q ∈ G(Q) and
k ∈ K such that x′ = qx, 1 = qk. The second equation implies that q = k−1 ∈ Γ,
and so [x, 1] = [x′, 1] if and only if x and x′ represent the same element in Γ\D.

Consider

D
x�→(x,[1])−−−−−−→ D × (G(Af )/K); ;

Γ\D [x] �→[x,1]−−−−−−→ G(Q)\D ×G(Af )/K.

As K is open, G(Af )/K is discrete, and so the upper map is a homeomorphism
of D onto its image, which is open. It follows easily that the lower map is a
homeomorphism. �

What happens when we pass to the inverse limit over Γ? The obvious map

D → lim←−Γ\D,

is injective because each Γ acts freely on D and
⋂

Γ = {1}. Is the map surjective?
The example

Z → lim←−Z/mZ = Ẑ

is not encouraging — it suggests that lim←−Γ\D might be some sort of completion
of D relative to the Γ’s. This is correct: lim←−Γ\D is much larger than D. In fact,
when we pass to the limit on the right in (28), we get the obvious answer:

Proposition 4.19. In the limit,

(29) lim←−KG(Q)\D ×G(Af )/K = G(Q)\D ×G(Af )

(adèlic topology on G(Af )).

Before proving this, we need a lemma.

Lemma 4.20. Let G be a topological group acting continuously on a topological
space X, and let (Gi)i∈I be a directed family of subgroups of G. The canonical map
X/
⋂
Gi → lim←−X/Gi is injective if the Gi are compact, and it is surjective if in

addition the orbits of the Gi in X are separated.

Proof. We shall use that a directed intersection of nonempty compact sets
is nonempty, which has the consequence that a directed inverse limit of nonempty
compact sets is nonempty.

Assume that each Gi is compact, and let x, x′ ∈ X. For each i, let

Gi(x, x′) = {g ∈ Gi | xg = x′}.

If x and x′ have the same image in lim←−X/Gi, then the Gi(x, x′) are all nonempty.
Since each is compact, their intersection is nonempty. For any g in the intersection,
xg = x′, which shows that x and x′ have the same image in X/

⋂
Gi.

Now assume that each orbit is separated and hence compact.For any(xiGi)i∈I ∈
lim←−X/Gi, lim←−xiGi is nonempty. If x ∈ lim←−xiGi, then x·

⋂
Gi maps to (xiGi)i∈I . �
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Proof of 4.19. Let (x, a) ∈ D × G(Af ), and let K be a compact open sub-
group of G(Af ). In order to be able to apply the lemma, we have to show that
the image of the orbit (x, a)K in G(Q)\D × G(Af ) is separated for K sufficiently
small. Let Γ = G(Q)∩aKa−1 — we may assume that Γ is torsion free (3.5). There
exists an open neighbourhood V of x such that gV ∩ V = ∅ for all g ∈ Γ � {1}
(see the proof of 3.1). For any (x, b) ∈ (x, a)K, g(V × aK) ∩ (V × bK) = ∅ for all
g ∈ G(Q) � {1}, and so the images of V × Ka and V × Kb in G(Q)\D × G(Af )
separate (x, a) and (x, b). �

Aside 4.21. (a) Why replace the single coset space on the left of (28) with the
more complicated double coset space on the right? One reason is that it makes
transparent that (in this case) there is an action of G(Af ) on the inverse system
(Γ\D)Γ, and hence, for example, on

lim−→Hi(Γ\D,Q).

Another reason will be seen presently — we use double cosets to define Shimura
varieties. Double coset spaces are pervasive in work on the Langlands program.

(b) The inverse limit of the D(Γ) exists as a scheme — it is even locally noe-
therian and regular (cf. 5.30 below).

Alternative definition of connected Shimura data. Recall that S is the
real torus such that S(R) = C×. The exact sequence

0 → R× r �→r−1

−−−−→ C× z �→z/z−−−−→ U1 → 0

arises from an exact sequence of tori

0 → Gm
w−→ S −→ U1 → 0.

Let H be a semisimple real algebraic group with trivial centre. A homomorphism
u : U1 → H defines a homomorphism h : S → H by the rule h(z) = u(z/z), and U1

will act on Lie(H)C through the characters z, 1, z−1 if and only if S acts on Lie(H)C

through the characters z/z, 1, z/z. Conversely, let h be a homomorphism S → H
for which S acts on Lie(H)C through the characters z/z, 1, z/z. Then w(Gm) acts
trivially on Lie(H)C, which implies that h is trivial on w(Gm) because the adjoint
representation H → Lie(H) is faithful. Thus, h arises from a u.

Now let G be a semisimple algebraic group over Q. From the above remark,
we see that to give a Gad(R)+-conjugacy class D of homomorphisms u : U1 →
Gad

R satisfying SU1,2 is the same as to give a Gad(R)+-conjugacy class X+ of
homomorphisms h : S → Gad

R satisfying the following conditions:
SV1: for h ∈ X+, only the characters z/z, 1, z/z occur in the representation

of S on Lie(Gad)C defined by h;
SV2: adh(i) is a Cartan involution on Gad.

Definition 4.22. A connected Shimura datum is a pair (G,X+) consisting
of a semisimple algebraic group over Q and a Gad(R)+-conjugacy class of homo-
morphisms h : S → Gad

R satisfying SV1, SV2, and

SV3: Gad has no Q-factor on which the projection of h is trivial.

In the presence of the other conditions, SV3 is equivalent to SU3 (see 4.7). Thus,
because of the correspondence u↔ h, this is essentially the same as Definition 4.4.
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Definition 4.4 is more convenient when working with only connected Shimura
varieties, while Definition 4.22 is more convenient when working with both con-
nected and nonconnected Shimura varieties.

Notes. Connected Shimura varieties were defined en passant in Deligne 1979,
2.1.8.

5. Shimura varieties

Connected Shimura varieties are very natural objects, so why do we need any-
thing more complicated? There are two main reasons. From the perspective of the
Langlands program, we should be working with reductive groups, not semisimple
groups. More fundamentally, the varieties D(Γ) making up a connected Shimura
variety Sh◦(G,D) have models over number fields, but the models depend a real-
ization of G as the derived group of a reductive group. Moreover, the number field
depends on Γ — as Γ shrinks the field grows. For example, the modular curve
Γ(N)\H1 is naturally defined over Q[ζN ], ζN = e2πi/N . Clearly, for a canonical
model we would like all the varieties in the family to be defined over the same
field.10

How can we do this? Consider the line Y + i = 0. This is naturally defined over
Q[i], not Q. On the other hand, the variety Y 2 +1 = 0 is naturally defined over Q,
and over C it decomposes into a disjoint pair of conjugate lines (Y − i)(Y + i) = 0.
So we have managed to get our variety defined over Q at the cost of adding other
connected components. It is always possible to lower the field of definition of a
variety by taking the disjoint union of it with its conjugates. Shimura varieties give
a systematic way of doing this for connected Shimura varieties.

Notations for reductive groups. Let G be a reductive group over Q, and
let G ad−→ Gad be the quotient of G by its centre Z. We let G(R)+ denote the group
of elements of G(R) whose image in Gad(R) lies in its identity component Gad(R)+,
and we let G(Q)+ = G(Q) ∩ G(R)+. For example, GL2(Q)+ consists of the 2 × 2
matrices with rational coefficients having positive determinant.

For a reductive group G (resp. for GLn), there are exact sequences

1 � Gder � G
ν� T � 1

1 � Z � G
ad� Gad � 1

1 � Z ′ � Z � T � 1

1 � SLn
� GLn

det � Gm
� 1

1 � Gm
� GLn

ad� PGLn
� 1

1 � µn
� Gm

x�→xn

� Gm
� 1

Here T (a torus) is the largest commutative quotient of G, and Z ′ =df Z ∩Gder (a
finite algebraic group) is the centre of Gder.

The real points of algebraic groups.

Proposition 5.1. For a surjective homomorphism ϕ : G → H of algebraic
groups over R, G(R)+ → H(R)+ is surjective.

10In fact, Shimura has an elegant way of describing a canonical model in which the varieties in

the family are defined over different fields, but this doesn’t invalidate my statement. Incidentally,
Shimura also requires a reductive (not a semisimple) group in order to have a canonical model

over a number field. For an explanation of Shimura’s point of view in the language of these notes,
see Milne and Shih 1981.
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Proof. The map ϕ(R) : G(R)+ → H(R)+ can be regarded as a smooth map
of smooth manifolds. As ϕ is surjective on the tangent spaces at 1, the image of
ϕ(R) contains an open neighbourhood of 1 (Boothby 1975, II 7.1). This implies
that the image itself is open because it is a group. It is therefore also closed, and
this implies that it equals H(R)+. �

Note that G(R) → H(R) need not be surjective. For example, Gm
x�→xn

−→ Gm

is surjective as a map of algebraic groups, but the image of Gm(R) n→ Gm(R) is
Gm(R)+ or Gm(R) according as n is even or odd. Also SL2 → PGL2 is surjective,
but the image of SL2(R) → PGL2(R) is PGL2(R)+.

For a simply connected algebraic group G, G(C) is simply connected as a topo-
logical space, but G(R) need not be. For example, SL2(R) is not simply connected.

Theorem 5.2 (Cartan 1927). For a simply connected group G over R, G(R)
is connected.

Proof. See Platonov and Rapinchuk 1994, Theorem 7.6, p407. �

Corollary 5.3. For a reductive group G over R, G(R) has only finitely many
connected components (for the real topology).11

Proof. Because of (5.1), an exact sequence of real algebraic groups

(30) 1 → N → G′ → G→ 1

with N ⊂ Z(G′) gives rise to an exact sequence

π0(G′(R)) → π0(G(R)) → H1(R, N).

Let G̃ be the universal covering group of Gder. As G is an almost direct product of
Z = Z(G) and Gder, there is an exact sequence (30) with G′ = Z× G̃ and N finite.
Now

◦ π0(G̃(R)) = 0 because G̃ is simply connected,
◦ π0(Z(R)) is finite because Z◦ has finite index in Z and Z◦ is a quotient

(by a finite group) of a product of copies of U1 and Gm, and
◦ H1(R, N) is finite because N is finite. �

For example, Gd
m(R) = (R×)d has 2d connected components, and each of

PGL2(R) and GL2(R) has 2 connected components.

Theorem 5.4 (real approximation). For any connected algebraic group G over
Q, G(Q) is dense in G(R).

Proof. See Platonov and Rapinchuk 1994, Theorem 7.7, p415. �

Shimura data.

Definition 5.5. A Shimura datum is a pair (G,X) consisting of a reductive
group G over Q and a G(R)-conjugacy class X of homomorphisms h : S → GR

satisfying the conditions SV1, SV2, and SV3 (see p302).

11This also follows from the theorem of Whitney 1957: for an algebraic variety V over R,

V (R) has only finitely many connected components (for the real topology) — see Platonov and
Rapinchuk 1994, Theorem 3.6, p119.
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Note that, in contrast to a connected Shimura datum, G is reductive (not
semisimple), the homomorphisms h have target GR (not Gad

R ), and X is the full
G(R)-conjugacy class (not a connected component).

Example 5.6. Let G = GL2 (over Q) and let X be the set of GL2(R)-
conjugates of the homomorphism ho : S → GL2R, ho(a+ ib) =

(
a b

−b a

)
. Then (G,X)

is a Shimura datum. Note that there is a natural bijection X → C � R, namely,
ho �→ i and ghog

−1 �→ gi. More intrinsically, h ↔ z if and only if h(C×) is the
stabilizer of z in GL2(R) and h(z) acts on the tangent space at z as multiplication
by z/z (rather than z/z).

Proposition 5.7. Let G be a reductive group over R. For a homomorphism
h : S → G, let h be the composite of h with G → Gad. Let X be a G(R)-conjugacy
class of homomorphisms S → G, and let X be the Gad(R)-conjugacy class of ho-
momorphisms S → Gad containing the h for h ∈ X.

(a) The map h �→ h : X → X is injective and its image is a union of connected
components of X.

(b) Let X+ be a connected component of X, and let X
+

be its image in X.
If (G,X) satisfies the axioms SV1–3 then (Gder, X

+
) satisfies the axioms

SV1–3; moreover, the stabilizer of X+ in G(R) is G(R)+ (i.e., gX+ =
X+ ⇐⇒ g ∈ G(R)+).

Proof. (a) A homomorphism h : S → G is determined by its projections to T
and Gad, because any other homomorphism with the same projections will be of
the form he for some regular map e : S → Z ′ and e is trivial because S is connected
and Z ′ is finite. The elements of X all have the same projection to T , because T is
commutative, which proves that h �→ h : X → X is injective. For the second part
of the statement, use that Gad(R)+ acts transitively on each connected component
of X (see 1.5) and G(R)+ → Gad(R)+ is surjective.

(b) The first assertion is obvious. In (a) we showed that π0(X) ⊂ π0(X). The
stabilizer in Gad(R) of [X

+
] is Gad(R)+ (see 4.9), and so its stabilizer in G(R) is

the inverse image of Gad(R)+ in G(R). �

Corollary 5.8. Let (G,X) be a Shimura datum, and let X+ be a connected
component of X regarded as a G(R)+-conjugacy class of homomorphisms S → Gad

R

(5.7). Then (Gder, X+) is a connected Shimura datum. In particular, X is a finite
disjoint union of hermitian symmetric domains.

Proof. Apply Proposition 5.7 and Proposition 4.8. �

Let (G,X) be a Shimura datum. For every h : S → G(R) in X, S acts on
Lie(G)C through the characters z/z, 1, z/z. Thus, for r ∈ R× ⊂ C×, h(r) acts
trivially on Lie(G)C. As the adjoint action of G on Lie(G) factors through Gad and
Ad: Gad → GL(Lie(G)) is injective, this implies that h(r) ∈ Z(R) where Z is the
centre of G. Thus, h|Gm is independent of h — we denote its reciprocal by wX (or
simply w) and we call wX the weight homomorphism. For any representation
ρ : GR → GL(V ), ρ ◦wX defines a decomposition of V =

⊕
Vn which is the weight

decomposition of the hodge structure (V, ρ ◦ h) for every h ∈ X.

Proposition 5.9. Let (G,X) be a Shimura datum. Then X has a unique struc-
ture of a complex manifold such that, for every representation ρ : GR → GL(V ),
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(V, ρ ◦ h)h∈X is a holomorphic family of hodge structures. For this complex struc-
ture, each family (V, ρ ◦ h)h∈X is a variation of hodge structures, and so X is a
finite disjoint union of hermitian symmetric domains.

Proof. Let ρ : GR → GL(V ) be a faithful representation of GR. The family
of hodge structures (V, ρ ◦ h)h∈X is continuous, and a slight generalization of (a)
of Theorem 2.14 shows that X has a unique structure of a complex manifold for
which this family is holomorphic. It follows from Waterhouse 1979, 3.5, that the
family of hodge structures defined by every representation is then holomorphic for
this complex structure. The condition SV1 implies that (V, ρ ◦ h)h is a variation of
hodge structures, and so we can apply (b) of Theorem 2.14. �

Of course, the complex structures defined on X by (5.8) and (5.9) coincide.

Aside 5.10. Let (G,X) be a Shimura datum. The maps π0(X) → π0(X) and
G(R)/G(R)+ → Gad(R)/Gad(R)+ are injective, and the second can be identified
with the first once an h ∈ X has been chosen. In general, the maps will not be
surjective unless H1(R, Z) = 0.

Shimura varieties. Let (G,X) be a Shimura datum.

Lemma 5.11. For any connected component X+ of X, the natural map

G(Q)+\X+ ×G(Af ) → G(Q)\X ×G(Af )

is a bijection.

Proof. Because G(Q) is dense in G(R) (see 5.4) and G(R) acts transitively
on X, every x ∈ X is of the form qx+ with q ∈ G(Q) and x+ ∈ X+. This shows
that the map is surjective.

Let (x, a) and (x′, a′) be elements of X+×G(Af ). If [x, a] = [x′, a′] in G(Q)\X×
G(Af ), then

x′ = qx, a′ = qa, some q ∈ G(Q).
Because x and x′ are both in X+, q stabilizes X+ and so lies in G(R)+ (see 5.7).
Therefore, [x, a] = [x′, a′] in G(Q)+\X ×G(Af ). �

Lemma 5.12. For any open subgroup K of G(Af ), the set G(Q)+\G(Af )/K is
finite.

Proof. Since G(Q)+\G(Q) → Gad(R)+\Gad(R) is injective and the second
group is finite (5.3), it suffices to show that G(Q)\G(Af )/K is finite. Later (The-
orem 5.17) we shall show that this follows from the strong approximation theorem
if Gder is simply connected, and the general case is not much more difficult. �

For K a compact open subgroup K of G(Af ), consider the double coset space

ShK(G,X) = G(Q)\X ×G(Af )/K

in which G(Q) acts on X and G(Af ) on the left, and K acts on G(Af ) on the right:

q(x, a)k = (qx, qak), q ∈ G(Q), x ∈ X, a ∈ G(Af ), k ∈ K.

Lemma 5.13. Let C be a set of representatives for the double coset space
G(Q)+\G(Af )/K, and let X+ be a connected component of X. Then

G(Q)\X ×G(Af )/K ∼=
⊔

g∈CΓg\X+
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where Γg is the subgroup gKg−1 ∩ G(Q)+ of G(Q)+. When we endow X with
its usual topology and G(Af ) with its adèlic topology (equivalently, the discrete
topology), this becomes a homeomorphism.

Proof. It is straightforward to prove that, for g ∈ C, the map

[x] �→ [x, g] : Γg\X+ → G(Q)+\X+ ×G(Af )/K

is injective, and that G(Q)+\X+ ×G(Af )/K is the disjoint union of the images of
these maps. Thus, the first statement follows from (5.11). The second statement
can be proved in the same way as the similar statement in (4.18). �

Because Γg is a congruence subgroup of G(Q), its image in Gad(Q) is arithmetic
(3.2), and so (by definition) its image in Aut(X+) is arithmetic. Moreover, when
K is sufficiently small, Γg will be neat for all g ∈ C (apply 3.5) and so its image
in Aut(X+)+ will also be neat and hence torsion free. Then Γg\X+ is an arith-
metic locally symmetric variety, and ShK(G,X) is finite disjoint of such varieties.
Moreover, for an inclusion K′ ⊂ K of sufficiently small compact open subgroups of
G(Af ), the natural map ShK′(G,X) → ShK(G,X) is regular. Thus, when we vary
K (sufficiently small), we get an inverse system of algebraic varieties (ShK(G,X))K .
There is a natural action of G(Af ) on the system: for g ∈ G(Af ), K �→ g−1Kg
maps compact open subgroups to compact open subgroups, and

T (g) : ShK(G,X) → Shg−1Kg(G,X)

acts on points as

[x, a] �→ [x, ag] : G(Q)\X ⊗G(Af )/K → G(Q)\X ×G(Af )/g−1Kg.

Note that this is a right action: T (gh) = T (h) ◦ T (g).

Definition 5.14. The Shimura variety Sh(G,X) attached to the Shimura
datum (G,X) is the inverse system of varieties (ShK(G,X))K endowed with the
action of G(Af ) described above. Here K runs through the sufficiently small com-
pact open subgroups of G(Af ).

Morphisms of Shimura varieties.

Definition 5.15. Let (G,X) and (G′, X ′) be Shimura data.

(a) A morphism of Shimura data (G,X) → (G′, X ′) is a homomorphism
G→ G′ of algebraic groups sending X into X ′.

(b) A morphism of Shimura varieties Sh(G,X) → Sh(G′, X ′) is an in-
verse system of regular maps of algebraic varieties compatible with the
action of G(Af ).

Theorem 5.16. A morphism of Shimura data (G,X) → (G′, X ′) defines a
morphism Sh(G,X) → Sh(G′, X ′) of Shimura varieties, which is a closed immer-
sion if G→ G′ is injective.

Proof. The first part of the statement is obvious from (3.14), and the second
is proved in Theorem 1.15 of Deligne 1971b. �
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The structure of a Shimura variety. By the structure of Sh(G,X), I mean
the structure of the set of connected components and the structure of each connected
component. This is worked out in general in Deligne 1979, 2.1.16, but the result
there is complicated. When Gder is simply connected,12 it is possible to prove
a more pleasant result: the set of connected components is a “zero-dimensional
Shimura variety”, and each connected component is a connected Shimura variety.

Let (G,X) be a Shimura datum. As on p303, Z is the centre of G and T the
largest commutative quotient of G. There are homomorphisms Z ↪→ G

ν−→ T , and
we define

T (R)† = Im(Z(R) → T (R)),

T (Q)† = T (Q) ∩ T (R)†.

Because Z → T is surjective, T (R)
† ⊃ T (R)+ (see 5.1), and so T (R)† and T (Q)†

are of finite index in T (R) and T (Q) (see 5.3). For example, for G = GL2, T (Q)† =
T (Q)+ = Q>0.

Theorem 5.17. Assume Gder is simply connected. For K sufficiently small,
the natural map

G(Q)\X ×G(Af )/K → T (Q)†\T (Af )/ν(K)

defines an isomorphism

π0(ShK(G,X)) ∼= T (Q)†\T (Af )/ν(K).

Moreover, T (Q)†\T (Af )/ν(K) is finite, and the connected component over [1] is
canonically isomorphic to Γ\X+ for some congruence subgroup Γ of Gder(Q) con-
taining K ∩Gder(Q).

In Lemma 5.20 below, we show that ν(G(Q)+) ⊂ T (Q)†. The “natural map”
in the theorem is

G(Q)\X ×G(Af )/K
5.11∼= G(Q)+\X+×G(Af )/K

[x,g] �→[ν(g)]−−−−−−−−→ T (Q)†\T (Af )/ν(K).

The theorem gives a diagram

G(Q)\X ×G(Af )/K �⊃ Γ\X+,

T (Q)†\T (Af )/ν(K)
�

� ⊃ [1]
�

in which T (Q)†\T (Af )/ν(K) is finite and discrete, the left hand map is continuous
and onto with connected fibres, and Γ\X+ is the fibre over [1].

Lemma 5.18. Assume Gder is simply connected. Then G(R)+ = Gder(R)·Z(R).

12The Shimura varieties with simply connected derived group are the most important — if
one knows everything about them, then one knows everything about all Shimura varieties (because

the remainder are quotients of them). However, there are naturally occurring Shimura varieties
for which Gder is not simply connected, and so we should not ignore them.
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Proof. Because Gder is simply connected, Gder(R) is connected (5.2) and so
Gder(R) ⊂ G(R)+. Hence G(R)+ ⊃ Gder(R) · Z(R). For the converse, we use the
exact commutative diagram:

1 −−−−→ Z ′(R)
z �→(z−1,z)−−−−−−−→ Z(R)×Gder(R)

(z,g) �→zg−−−−−−→ G(R) −−−−→ H1(R, Z ′)∥∥∥ ;(z,g) �→g

; ∥∥∥
1 −−−−→ Z ′(R) −−−−→ Gder(R) −−−−→ Gad(R) −−−−→ H1(R, Z ′).

As Gder → Gad is surjective, so also is Gder(R) → Gad(R)+ (see 5.1). Therefore, an
element g of G(R) lies in G(R)+ if and only if its image in Gad(R) lifts to Gder(R).
Thus,

g ∈ G(R)+ ⇐⇒ g �→ 0 in H1(R, Z ′)

⇐⇒ g lifts to Z(R)×Gder(R)

⇐⇒ g ∈ Z(R) ·Gder(R) �
Lemma 5.19. Let H be a simply connected semisimple algebraic group H over

Q.
(a) For every finite prime, the group H1(Q�, H) = 0.
(b) The map H1(Q, H) →

∏
l≤∞ H1(Ql, H) is injective (Hasse principle).

Proof. (a) See Platonov and Rapinchuk 1994, Theorem 6.4, p284.
(b) See ibid., Theorem 6.6, p286. �

Both statements fail for groups that are not simply connected.

Lemma 5.20. Assume Gder is simply connected, and let t ∈ T (Q). Then t ∈
T (Q)† if and only if t lifts to an element of G(Q)+.

Proof. Lemma 5.19 implies that the vertical arrow at right in the following
diagram is injective:

1 −−−−→ Gder(Q) −−−−→ G(Q) ν−−−−→ T (Q) −−−−→ H1(Q, Gder); ; ; ;injective

1 −−−−→ Gder(R) −−−−→ G(R) ν−−−−→ T (R) −−−−→ H1(R, Gder)

Let t ∈ T (Q)†. By definition, the image tR of t in T (R) lifts to an element
z ∈ Z(R) ⊂ G(R). From the diagram, we see that this implies that t maps to
the trivial element in H1(Q, Gder) and so it lifts to an element g ∈ G(Q). Now
gR · z−1 �→ tR · t−1

R = 1 in T (R), and so gR ∈ Gder(R) · z ⊂ Gder(R) ·Z(R) ⊂ G(R)+.
Therefore, g ∈ G(Q)+.

Let t be an element of T (Q) lifting to an element a of G(Q)+. According to
5.18, aR = gz for some g ∈ Gder(R) and z ∈ Z(R). Now aR and z map to the same
element in T (R), namely, to tR, and so t ∈ T (Q)† �

The lemma allows us to write

T (Q)†\T (Af )/ν(K) = ν(G(Q)+)\T (Af )/ν(K).

We now study the fibre over [1] of the map

G(Q)+\X+ ×G(Af )/K
[x,g] �→[ν(g)]−−−−−−−−→ ν(G(Q)+)\T (Af )/ν(K).
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Let g ∈ G(Af ). If [ν(g)] = [1]K , then ν(g) = ν(q)ν(k) some q ∈ G(Q)+ and
k ∈ K. It follows that ν(q−1gk−1) = 1, that q−1gk−1 ∈ Gder(Af ), and that
g ∈ G(Q)+ ·Gder(Af ) ·K. Hence every element of the fibre over [1] is represented
by an element (x, a) with a ∈ Gder(Af ). But, according to the strong approximation
theorem (4.16), G

der
(Af ) = Gder(Q) · (K ∩ Gder(Af )), and so the fibre over [1] is

a quotient of X+; in particular, it is connected. More precisely, it equals Γ\X+

where Γ is the image of K∩G(Q)+ in Gad(Q)+. This Γ is an arithmetic subgroup of
Gad(Q)+ containing the image of the congruence subgroup K∩Gder(Q) of Gder(Q).
Moreover, arbitrarily small such Γ’s arise in this way. Hence, the inverse system of
fibres over [1] (indexed by the compact open subgroups K of G(Af )) is equivalent
to the inverse system Sh◦(Gder, X+) = (Γ\X+).

The study of the fibre over [t] will be similar once we show that there exists
an a ∈ G(Af ) mapping to t (so that the fibre is nonempty). This follows from the
next lemma.

Lemma 5.21. Assume Gder is simply connected. Then the map ν : G(Af ) →
T (Af ) is surjective and sends compact open subgroups to compact open subgroups.

Proof. We have to show:
(a) the homomorphism ν : G(Q�) → T (Q�) is surjective for all finite �;
(b) the homomorphism ν : G(Z�) → T (Z�) is surjective for almost all �.
(a) For each prime �, there is an exact sequence

1 → Gder(Q�) → G(Q�)
ν→ T (Q�) → H1(Q�, G

der)

and so (5.19a) shows that ν : G(Q�) → T (Q�) is surjective.
(b) Extend the homomorphism G → T to a homomorphism of group schemes

G → T over Z[ 1
N ] for some integer N . After N has been enlarged, this map will

be a smooth morphism of group schemes and its kernel G′ will have nonsingular
connected fibres. On extending the base ring to Z�, � � N , we obtain an exact
sequence

0 → G′
� → G�

ν−→ T � → 0

of group schemes over Z� such that ν is smooth and (G′
�)F�

is nonsingular and
connected. Let P ∈ T �(Z�), and let Y = ν−1(P ) ⊂ G�. We have to show that
Y (Z�) is nonempty. By Lang’s lemma (Springer 1998, 4.4.17), H1(F�, (G′

�)F�
) = 0,

and so
ν : G�(F�) → T �(F�)

is surjective. Therefore Y (F�) is nonempty. Because Y is smooth over Z�, an
argument as in the proof of Newton’s lemma (e.g., ANT 7.22) now shows that a
point Q0 ∈ Y (F�) lifts to a point Q ∈ Y (Z�). �

It remains to show that T (Q)†\T (Af )/ν(K) is finite. Because T (Q)† has finite
index in T (Q), it suffices to prove that T (Q)\T (Af )/ν(K) is finite. But ν(K) is
open, and so this follows from the next lemma.

Lemma 5.22. For any torus T over Q, T (Q)\T (Af ) is compact.

Proof. Consider first the case T = Gm. Then

T (Af )/T (Ẑ) = A×
f /Ẑ× ∼=

⊕
� finite

Q×
� /Z×

�

⊕ord�−−−−→∼=

⊕
� finite

Z,
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which is the group of fractional ideals of Z. Therefore, Q×\A×
f /Ẑ× is the ideal class

group of Z, which is trivial: A×
f = Q× · Ẑ×. Hence Q×\A×

f is a quotient of Ẑ×,
which is compact.

For a number field F , the same argument using the finiteness of the class
number of F shows that F×\A×

F,f is compact. Here A×
F,f =

∏
v finite(F

×
v : O×

v ).

An arbitrary torus T over Q will split over some number field, say, TF ≈ Gdim(T )
m .

Then T (F )\T (AF,f ) ≈ (F×\A×
F,f )dim(T ), which is compact, and T (Q)\T (Af ) is a

closed subset of it. �

Remark 5.23. One may ask whether the fibre over [1] equals

Γ\X+ = Gder(Q)\X+ ×Gder(Af )/K ∩Gder(Af ), Γ = K ∩Gder(Q),

rather than quotient of X+ by some larger group than Γ. This will be true if Z ′

satisfies the Hasse principle for H1 (for then every element in G(Q)+ ∩K with K
sufficiently small will lie in Gder(Q) ·Z(Q)). It is known that Z ′ satisfies the Hasse
principle for H1 when Gder has no isogeny factors of type A, but not in general
otherwise (Milne 1987). This is one reason why, in the definition of Sh◦(Gder, X+),
we include quotients Γ\X+ in which Γ is an arithmetic subgroup of Gad(Q)+ con-
taining, but not necessarily equal to, the image of congruence subgroup of Gder(Q).

Zero-dimensional Shimura varieties. Let T be a torus over Q. According
to Deligne’s definition, every homomorphism h : C× → T (R) defines a Shimura
variety Sh(T, {h}) — in this case the conditions SV1,2,3 are vacuous. For any
compact open K ⊂ T (Af ),

ShK(T, {h}) = T (Q)\{h} × T (Af )/K ∼= T (Q)\T (Af )/K

(finite discrete set). We should extend this definition a little. Let Y be a finite set
on which T (R)/T (R)+ acts transitively. Define Sh(T, Y ) to be the inverse system
of finite sets

ShK(T, Y ) = T (Q)\Y × T (Af )/K,
with K running over the compact open subgroups of T (Af ). Call such a system a
zero-dimensional Shimura variety.

Now let (G,X) be a Shimura datum with Gder simply connected, and let T =
G/Gder. Let Y = T (R)/T (R)†. Because T (Q) is dense in T (R) (see 5.4), Y ∼=
T (Q)/T (Q)† and

T (Q)†\T (Af )/K ∼= T (Q)\Y × T (Af )/K

Thus, we see that if Gder is simply connected, then

π0(ShK(G,X)) ∼= Shν(K)(T, Y ).

In other words, the set of connected components of the Shimura variety is a zero-
dimensional Shimura variety (as promised).

Additional axioms. The weight homomorphism wX is a homomorphism Gm →
GR over R of algebraic groups that are defined over Q. It is therefore defined over
Qal. Some simplifications to the theory occur when some of the following conditions
hold:

SV4: The weight homomorphism wX : Gm → GR is defined over Q (we then
say that the weight is rational).

SV5: The group Z(Q) is discrete in Z(Af ).
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SV6: The torus Z◦ splits over a CM-field (see p334 for the notion of a CM-
field).

Let G→ GL(V ) be a representation of G (meaning, of course, a Q-representation).
Each h ∈ X defines a hodge structure on V (R). When SV4 holds, these are ra-
tional hodge structures (p283). It is hoped that these hodge structures all occur
in the cohomology of algebraic varieties and, moreover, that the Shimura variety
is a moduli variety for motives when SV4 holds and a fine moduli variety when
additionally SV5 holds. This will be discussed in more detail later. In Theorem
5.26 below, we give a criterion for SV5 to hold.

Axiom SV6 makes some statements more natural. For example, when SV6
holds, w is defined over a totally real field.

Example 5.24. Let B be a quaternion algebra over a totally real field F , and
let G be the algebraic group over Q with G(Q) = B×. Then, B⊗QF =

∏
v B⊗F,v R

where v runs over the embeddings of F into R. Thus,

B ⊗Q R ≈ H × · · · × H × M2(R) × · · · × M2(R)

G(R) ≈ H× × · · · × H× × GL2(R) × · · · × GL2(R)

h(a + ib) = 1 · · · 1
(

a b
−b a

)
· · ·

(
a b

−b a

)
w(r) = 1 · · · 1 r−1I2 · · · r−1I2

Let X be the G(R)-conjugacy class of h. Then (G,X) satisfies SV1 and SV2,
and so it is a Shimura datum if B splits at at least one real prime of F . Let
I = Hom(F,Qal) = Hom(F,R), and let Inc be the set of v such that B ⊗F,v R is
split. Then w is defined over the subfield of Qal fixed by the automorphisms of
Qal stabilizing Inc. This field is always totally real, and it equals Q if and only if
I = Inc.

Arithmetic subgroups of tori. Let T be a torus over Q, and let T (Z) be an
arithmetic subgroup of T (Q), for example,

T (Z) = Hom(X∗(T ),O×
L )Gal(L/Q),

where L is some galois splitting field of T . The congruence subgroup problem is
known to have a positive answer for tori (Serre 1964, 3.5), i.e., every subgroup of
T (Z) of finite index contains a congruence subgroup. Thus the topology induced
on T (Q) by that on T (Af ) has the following description: T (Z) is open, and the
induced topology on T (Z) is the profinite topology. In particular,

T (Q) is discrete ⇐⇒ T (Z) is discrete ⇐⇒ T (Z) is finite.

Example 5.25. (a) Let T = Gm. Then T (Z) = {±1}, and so T (Q) is discrete
in T (Af ). This, of course, can be proved directly.

(b) Let T (Q) = {a ∈ Q[
√
−1]× | Nm(a) = 1}. Then T (Z) = {±1,±

√
−1}, and

so T (Q) is discrete.
(c) Let T (Q) = {a ∈ Q[

√
2]× | Nm(a) = 1}. Then T (Z) = {±(1 +

√
2)n | n ∈

Z}, and so neither T (Z) nor T (Q) is discrete.

Theorem 5.26. Let T be a torus over Q, and let T a =
⋂

χ Ker(χ : T → Gm)
(characters χ of T rational over Q). Then T (Q) is discrete in T (Af ) if and only if
T a(R) is compact.
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Proof. According to a theorem of Ono (Serre 1968, pII-39), T (Z) ∩ T a(Q) is
of finite index in T (Z), and the quotient T a(R)/T (Z) ∩ T a(Q) is compact. Now
T (Z) ∩ T a(Q) is an arithmetic subgroup of T a(Q), and hence is discrete in T a(R).
It follows that T (Z) ∩ T a(Q) is finite if and only if T a(R) is compact. �

For example, in (5.25)(a), T a = 1 and so certainly T a(R) is compact; in (b),
T a(R) = U1, which is compact; in (c), T a = T and T (R) = {(a, b) ∈ R×R | ab = 1},
which is not compact.

Remark 5.27. A torus T over a field k is said to be anisotropic if there are
no characters χ : T → Gm defined over k. A real torus is anisotropic if and only
if it is compact. The torus T a =df

⋂
Ker(χ : T → Gm) is the largest anisotropic

subtorus of T . Thus (5.26) says that T (Q) is discrete in T (Af ) if and only if the
largest anisotropic subtorus of T remains anisotropic over R.

Note that SV5 holds if and only if (Z◦a)R is anisotropic.
Let T be a torus that splits over CM-field L. In this case there is a torus

T+ ⊂ T such that T+
L =

⋂
ιχ=−χ Ker(χ : TL → Gm). Then T (Q) is discrete in

T (Af ) if and only if T+ is split, i.e., if and only if the largest subtorus of T that
splits over R is already split over Q.

Passage to the limit. Let K be a compact open subgroup of G(Af ), and let
Z(Q)− be the closure of Z(Q) in Z(Af ). Then Z(Q) ·K = Z(Q)− ·K (in G(Af ))
and

ShK(G,X) =df G(Q)\X × (G(Af )/K)

∼=
G(Q)
Z(Q)

∖
X × (G(Af )/Z(Q) ·K)

∼=
G(Q)
Z(Q)

∖
X × (G(Af )/Z(Q)− ·K).

Theorem 5.28. For any Shimura datum (G,X),

lim←−
K

ShK(G,X) =
G(Q)
Z(Q)

∖
X × (G(Af )/Z(Q)−).

When SV5 holds,
lim←−
K

ShK(G,X) = G(Q)\X ×G(Af ).

Proof. The first equality can be proved by the same argument as (4.19), and
the second follows from the first (cf. Deligne 1979, 2.1.10, 2.1.11). �

Remark 5.29. Put SK = ShK(G,X). For varying K, the SK form a variety
(scheme) with a right action of G(Af ) in the sense of Deligne 1979, 2.7.1. This
means the following:

(a) the SK form an inverse system of algebraic varieties indexed by the com-
pact open subgroups K of G(Af ) (if K ⊂ K ′, there is an obvious quotient
map SK′ → SK);

(b) there is an action ρ of G(Af ) on the system (SK)K defined by isomorphisms
(of algebraic varieties) ρK(a) : SK → Sg−1Kg (on points, ρK(a) is [x, a′] �→
[x, a′a]);
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(c) for k ∈ K, ρK(k) is the identity map; therefore, for K ′ normal in K, there
is an action of the finite group K/K ′ on SK′ ; the variety SK is the quotient
of SK′ by the action of K/K ′.

Remark 5.30. When we regard the ShK(G,X) as schemes, the inverse limit
of the system ShK(G,X) exists:

S = lim←− ShK(G,X).

This is a scheme over C, not(!) of finite type, but it is locally noetherian and regular
(cf. Milne 1992, 2.4). There is a right action of G(Af ) on S, and, for K a compact
open subgroup of G(Af ),

ShK(G,X) = S/K

(Deligne 1979, 2.7.1). Thus, the system (ShK(G,X))K together with its right action
of G(Af ) can be recovered from S with its right action of G(Af ). Moreover,

S(C) ∼= lim←− ShK(G,X)(C) = lim←−G(Q)\X ×G(Af )/K.

Notes. Axioms SV1, SV2, SV3, and SV4 are respectively the conditions
(2.1.1.1), (2.1.1.2), (2.1.1.3), and (2.1.1.4) of Deligne 1979. Axiom SV5 is weaker
than the condition (2.1.1.5) ibid., which requires that adh(i) be a Cartan involution
on (G/w(Gm))R, i.e., that (Z◦/w(Gm))R be anisotropic.

6. The Siegel modular variety

In this section, we study the most important Shimura variety, namely, the Siegel
modular variety.

Dictionary. Let V be an R-vector space. Recall (2.4) that to give a C-
structure J on V is the same as to give a hodge structure hJ on V of type
(−1, 0), (0,−1). Here hJ is the restriction to C× of the homomorphism

a + bi �→ a + bJ : C → EndR(V ).

For the hodge decompostion V (C) = V −1,0 ⊕ V −1,0,

V −1,0 V 0,−1

J acts as +i −i
hJ (z) acts as z z

Let ψ be a nondegenerate R-bilinear alternating form on V . A direct calculation
shows that

ψ(Ju, Jv) = ψ(u, v) ⇐⇒ ψ(zu, zv) = |z|2ψ(u, v) for all z ∈ C.

Let ψJ (u, v) = ψ(u, Jv). Then

ψ(Ju, Jv) = ψ(u, v) ⇐⇒ ψJ is symmetric

and
ψ(Ju, Jv) = ψ(u, v) and
ψJ is positive definite

(2.12)⇐⇒ ψ is a polarization of the
hodge structure (V, hJ).
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Symplectic spaces. Let k be a field of characteristic �= 2, and let (V, ψ) be a
symplectic space of dimension 2n over k, i.e., V is a k-vector space of dimension
2n and ψ is a nondegenerate alternating form ψ. A subspace W of V is totally
isotropic if ψ(W,W ) = 0. A symplectic basis of V is a basis (e±i)1≤i≤n such
that

ψ(ei, e−i) = 1 for 1 ≤ i ≤ n,

ψ(ei, ej) = 0 for j �= ±i.

Lemma 6.1. Let W be a totally isotropic subspace of V . Then any basis of W
can be extended to a symplectic basis for V . In particular, V has symplectic bases
(and two symplectic spaces of the same dimension are isomorphic).

Proof. Standard. �

Thus, a maximal totally isotropic subspace of V will have dimension n. Such
subspaces are called lagrangians.

Let GSp(ψ) be the group of symplectic similitudes of (V, ψ), i.e., the group
of automorphisms of V preserving ψ up to a scalar. Thus

GSp(ψ)(k) = {g ∈ GL(V ) | ψ(gu, gv) = ν(g) · ψ(u, v) some ν(g) ∈ k×}.
Define Sp(ψ) by the exact sequence

1 → Sp(ψ) → GSp(ψ) ν→ Gm → 1.

Then GSp(ψ) has derived group Sp(ψ), centre Gm, and adjoint group GSp(ψ)/Gm =
Sp(ψ)/± I.

For example, when V has dimension 2, there is only one nondegenerate alter-
nating form on V up to scalars, which must therefore be preserved up to scalars by
any automorphism, and so GSp(ψ) = GL2 and Sp(ψ) = SL2.

The group Sp(ψ) acts simply transitively on the set of symplectic bases: if (e±i)
and (f±i) are bases of V , then there is a unique g ∈ GL2n(k) such that ge±i = f±i,
and if (e±i) and (f±i) are both symplectic, then g ∈ Sp(ψ).

The Shimura datum attached to a symplectic space. Fix a symplectic
space (V, ψ) over Q, and let G = GSp(ψ) and S = Sp(ψ) = Gder.

Let J be a complex structure on V (R) such that ψ(Ju, Jv) = ψ(u, v). Then
J ∈ S(R), and hJ (z) lies in G(R) (and in S(R) if |z| = 1) — see the dictionary. We
say that J is positive (resp. negative) if ψJ(u, v) =df ψ(u, Jv) is positive definite
(resp. negative definite).

Let X+ (resp. X−) denote the set of positive (resp. negative) complex struc-
tures on V (R), and let X = X+ $ X−. Then G(R) acts on X according to the
rule

(g, J) �→ gJg−1,

and the stabilizer in G(R) of X+ is

G(R)+ = {g ∈ G(R) | ν(g) > 0}.
For a symplectic basis (e±i) of V , define J by Je±i = ±e∓i, i.e.,

ei
J�−→ e−i

J�−→ −ei, 1 ≤ i ≤ n.

Then J2 = −1 and J ∈ X+ — in fact, (ei)i is an orthonormal basis for ψJ .
Conversely, if J ∈ X+, then J has this description relative to any orthonormal
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basis for the positive definite form ψJ . The map from symplectic bases to X+ is
equivariant for the actions of S(R). Therefore, S(R) acts transitively on X+, and
G(R) acts transitively on X.

For J ∈ X, let hJ be the corresponding homomorphism C× → G(R). Then
hgJg−1(z) = ghJ(z)g−1. Thus J �→ hJ identifies X with a G(R)-conjugacy class
of homomorphisms h : C× → G(R). We check that (G,X) satisfies the axioms
SV1–SV6.

(SV1). For h ∈ X, let V + = V −1,0 and V − = V 0,−1, so that V (C) = V +⊕V −

with h(z) acting on V + and V − as multiplication by z and z respectively. Then

Hom(V (C), V (C)) = Hom(V +, V +) ⊕ Hom(V +, V −) ⊕ Hom(V −, V +) ⊕ Hom(V −, V −)
h(z) acts as 1 z/z z/z 1

The Lie algebra of G is the subspace

Lie(G) = {f ∈ Hom(V, V ) | ψ(f(u), v) + ψ(u, f(v)) = 0},
of End(V ), and so SV1 holds.

(SV2). We have to show that adJ is a Cartan involution on Gad. But, J2 = −1
lies in the centre of S(R) and ψ is a J-polarization for SR in the sense of (1.20),
which shows that adJ is a Cartan involution for S.

(SV3). In fact, Gad is Q-simple, and Gad(R) is not compact.
(SV4). For r ∈ R×, wh(r) acts on both V −1,0 and V 0,−1 as v �→ rv. Therefore,

wX is the homomorphism GmR → GL(V (R)) sending r ∈ R× to multplication by
r. This is defined over Q.

(SV5). The centre of G is Gm, and Q× is discrete in A×
f (see 5.25).

(SV6). The centre of G is split already over Q.
We often write (G(ψ), X(ψ)) for the Shimura datum defined by a symplectic space
(V, ψ), and (S(ψ), X(ψ)+) for the connected Shimura datum.

Exercise 6.2. (a) Show that for any h ∈ X(ψ), ν(h(z)) = zz. [Hint: for
nonzero v+ ∈ V + and v− ∈ V −, compute ψC(h(z)v+, h(z)v−) in two different
ways.]

(b) Show that the choice of a symplectic basis for V identifies X+ with Hg as
an Sp(ψ)-set (see 1.2).

The Siegel modular variety. Let (G,X) = (G(ψ), X(ψ)) be the Shimura
datum defined by a symplectic space (V, ψ) over Q. The Siegel modular variety
attached to (V, ψ) is the Shimura variety Sh(G,X).

Let V (Af ) = Af ⊗Q V . Then G(Af ) is the group of Af -linear automorphisms
of V (Af ) preserving ψ up to multiplication by an element of A×

f .
Let K be a compact open subgroup of G(Af ), and let HK be the set of triples

((W,h), s, ηK) where
◦ (W,h) is a rational hodge structure of type (−1, 0), (0,−1);
◦ ±s is a polarization for (W,h);
◦ ηK is a K-orbit of Af -linear isomorphisms V (Af ) →W (Af ) sending ψ to

an A×
f -multiple of s.

An isomorphism

((W,h), s, ηK) → ((W ′, h′), s′, η′K)
of triples is an isomorphism b : (W,h) → (W ′, h′) of rational hodge structures such
that b(s) = cs′ some c ∈ Q× and b ◦ η = η′ mod K.
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Note that to give an element of HK amounts to giving a symplectic space (W, s)
over Q, a complex structure on W that is positive or negative for s, and ηK. The
existence of η implies that dimW = dimV , and so (W, s) and (V, ψ) are isomorphic.
Choose an isomorphism a : W → V sending ψ to a Q×-multiple of s. Then

ah =df (z �→ a ◦ h(z) ◦ a−1)

lies in X, and
V (Af )

η→W (Af ) a→ V (Af )

lies in G(Af ). Any other isomorphism a′ : W → V sending ψ to a multiple of s
differs from a by an element of G(Q), say, a′ = q ◦ a with q ∈ G(Q). Replacing a
with a′ only replaces (ah, a ◦ η) with (qah, qa ◦ η). Similarly, replacing η with ηk
replaces (ah, a ◦ η) with (ah, a ◦ ηk). Therefore, the map

(W . . .) �→ [ah, a ◦ η]K : HK → G(Q)\X ×G(Af )/K

is well-defined.

Proposition 6.3. The set ShK(G,X) classifies the triples in HK modulo iso-
morphism. More precisely, the map (W, . . .) �→ [ah, a ◦ η]K defines a bijection

HK/≈→ G(Q)\X ×G(Af )/K.

Proof. It is straightforward to check that the map sends isomorphic triples to
the same class, and that two triples are isomorphic if they map to the same class.
The map is onto because [h, g] is the image of ((V, h), ψ, gK). �

Complex abelian varieties. An abelian variety A over a field k is a con-
nected projective algebraic variety over k together with a group structure given by
regular maps. A one-dimensional abelian variety is an elliptic curve. Happily, a
theorem, whose origins go back to Riemann, reduces the study of abelian varieties
over C to multilinear algebra.

Recall that a lattice in a real or complex vector space V is the Z-module gen-
erated by an R-basis for V . For a lattice Λ in Cn, make Cn/Λ into a complex
manifold by endowing it with the quotient structure. A complex torus is a com-
plex manifold isomorphic to Cn/Λ for some lattice Λ in Cn.

Note that Cn is the universal covering space of M = Cn/Λ with Λ as its group
of covering transformations, and π1(M, 0) = Λ (Hatcher 2002, 1.40). Therefore,
(ib. 2A.1)

(31) H1(M,Z) ∼= Λ

and (Greenberg 1967, 23.14)

(32) H1(M,Z) ∼= Hom(Λ,Z).

Proposition 6.4. Let M = Cn/Λ. There is a canonical isomorphism

Hn(M,Z) ∼= Hom(
∧nΛ,Z),

i.e., Hn(M,Z) is canonically isomorphic to the set of n-alternating forms Λ×· · ·×
Λ → Z.

Proof. From (32), we see that∧n
H1(M,Z) ∼=

∧n Hom(Λ,Z).
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Since13 ∧n Hom(Λ,Z) ∼= Hom(
∧nΛ,Z),

we see that it suffices to show that cup-product defines an isomorphism

(33)
∧n

H1(M,Z) → Hn(M,Z).

Let T be the class of topological manifolds M whose cohomology groups are free
Z-modules of finite rank and for which the maps (33) are isomorphisms for all n.
Certainly, the circle S1 is in T (its cohomology groups are Z, Z, 0, . . .), and the
Künneth formula (Hatcher 2002, 3.16 et seq.) shows that if M1 and M2 are in T ,
then so also is M1 ×M2. As a topological manifold, Cn/Λ ≈ (S1)2n, and so M is
in T . �

Proposition 6.5. A linear map α : Cn → Cn′
such that α(Λ) ⊂ Λ′ defines

a holomorphic map Cn/Λ → Cn′
/Λ′ sending 0 to 0, and every holomorphic map

Cn/Λ → Cn′
/Λ′ sending 0 to 0 is of this form (for a unique α).

Proof. The map Cn α→ Cn′ → Cn′
/Λ′ is holomorphic, and it factors through

Cn/Λ. Because C/Λ has the quotient structure, the resulting map Cn/Λ → Cn′
/Λ′

is holomorphic. Conversely, let ϕ : C/Λ → C/Λ′ be a holomorphic map such that
ϕ(0) = 0. Then Cn and Cn′

are universal covering spaces of Cn/Λ and Cn′
/Λ′, and

a standard result in topology (Hatcher 2002, 1.33, 1.34) shows that ϕ lifts uniquely
to a continuous map ϕ̃ : Cn → Cn′

such that ϕ̃(0) = 0:

Cn ϕ̃−−−−→ Cn′; ;
Cn/Λ

ϕ−−−−→ Cn′
/Λ′.

Because the vertical arrows are local isomorphisms, ϕ̃ is automatically holomorphic.
For any ω ∈ Λ, the map z �→ ϕ̃(z + ω) − ϕ̃(z) is continuous and takes values in
Λ′ ⊂ C. Because Cn is connected and Λ′ is discrete, it must be constant. Therefore,
for each j, ∂ϕ̃

∂zj
is a doubly periodic function, and so defines a holomorphic function

Cn/Λ → Cn′
, which must be constant (because Cn/Λ is compact). Write ϕ̃ as an

n′-tuple (ϕ̃1, . . . , ϕ̃n′) of holomorphic functions ϕ̃i in n variables. Because ϕ̃i(0) = 0
and ∂ϕ̃i

∂zj
is constant for each j, the power series expansion of ϕ̃i at 0 is of the form∑

aijzj . Now ϕ̃i and
∑

aijzj are holomorphic functions on Cn that coincide on a
neighbourhood of 0, and so are equal on the whole of Cn. We have shown that

ϕ̃(z1, . . . , zn) = (
∑

a1jzj , . . . ,
∑

an′jzj). �
Aside 6.6. The proposition shows that every holomorphic map ϕ : Cn/Λ →

Cn′
/Λ′ such that ϕ(0) = 0 is a homomorphism. A similar statement is true for

abelian varieties over any field k: a regular map ϕ : A→ B of abelian varieties such
that ϕ(0) = 0 is a homomorphism (AG, 7.14). For example, the map sending an
element to its inverse is a homomorphism, which implies that the group law on A

13For a free Z-module Λ of finite rank, the pairing
VnΛ∨ ×

VnΛ → Z

determined by

(f1 ∧ · · · ∧ fn, v1 ⊗ · · · ⊗ vn) = det(fi(vj))

is nondegenerate (since it is modulo p for every p — see Bourbaki 1958, §8).
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is commutative. Also, the group law on an abelian variety is uniquely determined
by the zero element.

Let M = Cn/Λ be a complex torus. The isomorphism R ⊗ Λ ∼= Cn defines a
complex structure J on R ⊗ Λ. A riemann form for M is an alternating form
ψ : Λ × Λ → Z such that ψR(Ju, Jv) = ψR(u, v) and ψR(u, Ju) > 0 for u �= 0. A
complex torus Cn/Λ is said to be polarizable if there exists a riemann form.

Theorem 6.7. The complex torus Cn/Λ is projective if and only if it is polar-
izable.

Proof. See Mumford 1970, Chapter I, (or Murty 1993, 4.1, for the “if” part).
Alternatively, one can apply the Kodaira embedding theorem (Voisin 2002, Th.
7.11, 7.2.2). �

Thus, by Chow’s theorem (3.11), a polarizable complex torus is a projective
algebraic variety, and holomorphic maps of polarizable complex tori are regular.
Conversely, it is easy to see that the complex manifold associated with an abelian
variety is a complex torus: let Tgt0 A be the tangent space to A at 0; then the
exponential map Tgt0 A→ A(C) is a surjective homomorphism of Lie groups with
kernel a lattice Λ, which induces an isomorphism (Tgt0 A)/Λ ∼= A(C) of complex
manifolds (Mumford 1970, p2).

For a complex torus M = Cn/Λ, the isomorphism Λ⊗Z R ∼= Cn endows Λ⊗Z

R with a complex structure, and hence endows Λ ∼= H1(M,Z) with an integral
hodge structure of weight −1. Note that a riemann form for M is nothing but a
polarization of the integral hodge structure Λ.

Theorem 6.8 (Riemann’s theorem). 14The functor A �→ H1(A,Z) is an equiv-
alence from the category AV of abelian varieties over C to the category of polarizable
integral hodge structures of type (−1, 0), (0,−1).

Proof. We have functors

AV
A�→Aan

−−−−−→ {category of polarizable complex tori }
M �→H1(M,Z)−−−−−−−−→ {category of polarizable integral hodge structures of type(−1, 0), (0,−1)}.

The first is fully faithful by Chow’s theorem (3.11), and it is essentially surjective
by Theorem 6.7; the second is fully faithful by Proposition 6.5, and it is obviously
essentially surjective. �

Let AV0 be the category whose objects are abelian varieties over C and whose
morphisms are

HomAV0(A,B) = HomAV(A,B)⊗Q.

Corollary 6.9. The functor A �→H1(A,Q) is an equivalence from the category
AV0 to the category of polarizable rational hodge structures of type (−1, 0), (0,−1).

Proof. Immediate consequence of the theorem. �

14In fact, it should be called the “theorem of Riemann, Frobenius, Weierstrass, Poincaré,
Lefschetz, et al.” (see Shafarevich 1994, Historical Sketch, 5), but “Riemann’s theorem” is shorter.
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Remark 6.10. Recall that in the dictionary between complex structures J on
a real vector space V and hodge structures of type (−1, 0), (0,−1),

(V, J) ∼= V (C)/V −1,0 = V (C)/F 0.

Since the hodge structure on H1(A,R) is defined by the isomorphism Tgt0(A) ∼=
H1(A,R), we see that

(34) Tgt0(A) ∼= H1(A,C)/F 0

(isomorphism of complex vector spaces).

A modular description of the points of the Siegel variety. Let MK

be the set of triples (A, s, ηK) in which A is an abelian variety over C, s is an
alternating form on H1(A,Q) such that s or −s is a polarization on H1(A,Q), and
η is an isomorphism V (Af ) → Vf (Af ) sending ψ to a multiple of s by an element
of A×

f . An isomorphism from one triple (A, s, ηK) to a second (A′, s′, η′K) is an
isomorphism A→ A′ (as objects in AV0) sending s to a multiple of s′ by an element
of Q× and ηK to η′K.

Theorem 6.11. The set ShK(G,X) classifies the triples (A, s, ηK) in MK

modulo isomorphism, i.e., there is a canonical bijection MK/ ≈→ G(Q)\X ×
G(Af )/K.

Proof. Combine (6.9) with (6.3). �

7. Shimura varieties of hodge type

In this section, we examine one important generalization of Siegel modular
varieties.

Definition 7.1. A Shimura datum (G,X) is of hodge type if there exists
a symplectic space (V, ψ) over Q and an injective homomorphism ρ : G ↪→ G(ψ)
carrying X into X(ψ). The Shimura variety Sh(G,X) is then said to be of hodge
type. Here (G(ψ), X(ψ)) denotes the Shimura datum defined by (V, ψ).

The composite of ρ with the character ν of G(ψ) is a character of G, which we
again denote by ν. Let Q(r) denote the vector space Q with G acting by rν, i.e.,
g · v = ν(g)r · v. For each h ∈ X, (Q(r), h ◦ ν) is a rational hodge structure of type
(−r,−r) (apply 6.2a), and so this notation is consistent with that in (2.6).

Lemma 7.2. There exist multilinear maps ti : V × · · · × V → Q(ri), 1 ≤ i ≤ n,
such that G is the subgroup of G(ψ) fixing the ti.

Proof. According to Deligne 1982, 3.1, there exist tensors ti in V ⊗ri ⊗V ∨⊗si

such that this is true. But ψ defines an isomorphism V ∼= V ∨ ⊗Q(1)), and so

V ⊗ri ⊗ V ∨⊗si ∼= V ∨⊗(ri+si) ⊗Q(ri) ∼= Hom(V ⊗(ri+si),Q(ri)). �

Let (G,X) be of hodge type. Choose an embedding of (G,X) into (G(ψ), X(ψ))
for some symplectic space (V, ψ) and multilinear maps t1, . . . , tn as in the lemma.
Let HK be the set of triples ((W,h), (si)0≤i≤n, ηK) in which

◦ (W,h) is a rational hodge structure of type (−1, 0), (0,−1),
◦ ±s0 is a polarization for (W,h),
◦ s1, . . . , sn are multilinear maps si : W × · · · ×W → Q(ri), and
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◦ ηK is a K-orbit of isomorphisms V (Af ) → W (Af ) sending ψ onto an
A×

f -multiple of s0 and each ti to si,

satisfying the following condition:
(*) there exists an isomorphism a : W → V sending s0 to a Q×-
multiple of ψ, si to ti each i ≥ 1, and h onto an element of X.

An isomorphism from one triple (W, . . .) to a second (W ′, . . .) is an isomorphism
(W,h) → (W ′, h′) of rational hodge structures sending s0 to a Q×-multiple of s′0,
si to s′i for i > 0, and ηK to η′K.

Proposition 7.3. The set ShK(G,X)(C) classifies the triples in HK modulo
isomorphism.

Proof. Choose an isomorphism a : W → V as in (*), and consider the pair
(ah, a◦η). By assumption ah ∈ X and a◦η is a symplectic similitude of (V (Af ), ψ)
fixing the ti, and so (ah, a ◦ η) ∈ X × G(Af ). The isomorphism a is determined
up to composition with an element of G(Q) and η is determined up to composition
with an element of K. It follows that the class of (ah, a◦η) in G(Q)\X×G(Af )/K
is well-defined. The proof that (W, . . .) �→ [ah, a ◦ η]K gives a bijection from the set
of isomorphism classes of triples in HK onto ShK(G,X)(C) is now routine (cf. the
proof of 6.3). �

Let t : V × · · · × V → Q(r) (m-copies of V ) be a multilinear form fixed by G,
i.e., such that

t(gv1, . . . , gvm) = ν(g)r · t(v 1, . . . , vm), for all v1, . . . , vm ∈ V , g ∈ G(Q).

For h ∈ X, this equation shows that t defines a morphism of hodge structures
(V, h)⊗m → Q(r). On comparing weights, we see that if t is nonzero, then m = 2r.

Now let A be an abelian variety over C, and let V = H1(A,Q). Then (see 6.4)

Hm(A,Q) ∼= Hom(
∧m

V,Q).

We say that t ∈ H2r(A,Q) is a hodge tensor for A if the corresponding map

V ⊗2r →
∧2r

V → Q(r)

is a morphism of hodge structures.
Let (G,X) ↪→ (G(ψ), X(ψ)) and t1, . . . , tn be as above. Let MK be the set of

triples (A, (si)0≤i≤n, ηK) in which
◦ A is a complex abelian variety,
◦ ±s0 is a polarization for the rational hodge structure H1(A,Q),
◦ s1, . . . , sn are hodge tensors for A or its powers, and
◦ ηK is a K-orbit of Af -linear isomorphisms V (Af ) → Vf (A) sending ψ

onto an A×
f -multiple of s0 and each ti to si,

satisfying the following condition:
(**) there exists an isomorphism a : H1(A,Q) → V sending s0 to
a Q×-multiple of ψ, si to ti each i ≥ 1, and h to an element of
X.

An isomorphism from one triple (A, (si)i, ηK) to a second (A′, (s′i), η
′K) is an iso-

morphism A→ A′ (as objects of AV0) sending s0 to a multiple of s′0 by an element
of Q×, each si to s′i, and η to η′ modulo K.
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Theorem 7.4. The set ShK(G,X)(C) classifies the triples in MK modulo
isomorphism.

Proof. Combine Propositions 7.3 and 6.9. �

The problem with Theorem 7.4 is that it is difficult to check whether a triple
satisfies the condition (**). In the next section, we show that when the hodge
tensors are endomorphisms of the abelian variety, then it is sometimes possible to
replace (**) by a simpler trace condition.

Remark 7.5. When we write A(C) = Cg/Λ, then (see 6.4),

Hm(A,Q) ∼= Hom(
∧mΛ,Q)

Now Λ⊗ C ∼= T ⊕ T where T = Tgt0(A). Therefore,

Hm(A,C) ∼= Hom(
∧m(Λ⊗ C),C) ∼= Hom(

⊕
p+q=m

∧p
T ⊗

∧q
T ,C) ∼=

⊕
p+q=m

Hp,q

where
Hp,q = Hom(

∧p
T ⊗

∧q
T ,C).

This rather ad hoc construction of the hodge structure on Hm does agree with the
usual construction (2.5) — see Mumford 1970, Chapter I. A hodge tensor on A is
an element of

H2r(A,Q) ∩Hr,r (intersection inside H2r(A,C)).

The Hodge conjecture predicts that all hodge tensors are the cohomology classes
of algebraic cycles with Q-coefficients. For r = 1, this is known even over Z. The
exponential sequence

0 → Z −→ OA
z �→exp(2πiz)−→ O×

A → 0

gives a cohomology sequence

H1(A,O×
A) → H2(A,Z) → H2(A,OA).

The cohomology group H1(A,O×
A) classifies the divisors on A modulo linear equiv-

alence, i.e., Pic(A) ∼= H1(A,O×
A), and the first arrow maps a divisor to its coho-

mology class. A class in H2(A,Z) maps to zero in H2(A,OA) = H0,2 if and only if
it maps to zero in its complex conjugate H2,0. Therefore, we see that

Im(Pic(A)) = H2(A,Z) ∩H1,1.

8. PEL Shimura varieties

Throughout this section, k is a field of characteristic zero. Bilinear forms are
always nondegenerate.

Algebras with involution. By a k-algebra I mean a ring B containing k in
its centre and finite dimensional over k. A k-algebra A is simple if it contains no
two-sided ideals except 0 and A. For example, every matrix algebra Mn(D) over a
division algebra D is simple, and conversely, Wedderburn’s theorem says that every
simple algebra is of this form (CFT, IV 1.9). Up to isomorphism, a simple k-algebra
has only one simple module (ibid, IV 1.15). For example, up to isomorphism, Dn

is the only simple Mn(D)-module.
Let B = B1 × · · · × Bn be a product of simple k-algebras (a semisimple k-

algebra). A simple Bi-module Mi becomes a simple B-module when we let B
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act through the quotient map B → Bi. These are the only simple B-modules,
and every B-module is a direct sum of simple modules. A B-module M defines a
k-linear map

b �→ Trk(b|M) : B → k

which we call the trace map of M .

Proposition 8.1. Let B be a semisimple k-algebra. Two B-modules are iso-
morphic if and only if they have the same trace map.

Proof. Let B1, . . . , Bn be the simple factors of B, and let Mi be a simple Bi-
module. Then every B-module is isomorphic to a direct sum

⊕
jrjMj with rjMj

the direct sum of rj copies of Mi. We have to show that the trace map determines
the multiplicities rj . But for ei = (0, . . . , 0, 1

i
, 0, . . .),

Trk(ei|
∑

rjMj) = ri dimk Mi . �
Remark 8.2. The lemma fails when k has characteristic p, because the trace

map is identically zero on pM .

An involution of a k-algebra B is a k-linear map b �→ b∗ : B → B such that
(ab)∗ = b∗a∗ and b∗∗ = b. Note that then 1∗ = 1 and so c∗ = c for c ∈ k.

Proposition 8.3. Let k be an algebraically closed field, and let (B, ∗) be a
semisimple k-algebra with involution. Then (B, ∗) is isomorphic to a product of
pairs of the following types:

(A): Mn(k)×Mn(k), (a, b)∗ = (bt, at);
(C): Mn(k), b∗ = bt;
(BD): Mn(k), b∗ = J · bt · J−1, J =

(
0 −I
I 0

)
.

Proof. The decomposition B = B1 × · · · × Br of B into a product of simple
algebras Bi is unique up to the ordering of the factors (Farb and Dennis 1993, 1.13).
Therefore, ∗ permutes the set of Bi, and B is a product of semisimple algebras with
involution each of which is either (i) simple or (ii) the product of two simple algebras
interchanged by ∗.

Let (B, ∗) be as in (i). Then B is isomorphic to Mn(k) for some n, and the
Noether-Skolem theorem (CFT, 2.10) shows that b∗ = u·bt·u−1 for some u ∈Mn(k).
Then b = b∗∗ = (utu−1)−1b(utu−1) for all b ∈ B, and so utu−1 lies in the centre
k of Mn(k). Denote it by c, so that ut = cu. Then u = utt = c2u, and so c2 = 1.
Therefore, ut = ±u, and u is either symmetric or skew-symmetric. Relative to a
suitable basis, u is I or J , and so (B, ∗) is of type (C) or (BD).

Let (B, ∗) be as in (ii). Then ∗ is an isomorphism of the opposite of the first
factor onto the second. The Noether-Skolem theorem then shows that (B, ∗) is
isomorphic to Mn(k)×Mn(k)opp with the involution (a, b) �→ (b, a). Now use that
a↔ at : Mn(k)opp ∼= Mn(k) to see that (B, ∗) is of type (A). �

The following is a restatement of the proposition.

Proposition 8.4. Let (B, ∗) and k be as in (8.3). If the only elements of the
centre of B invariant under ∗ are those in k, then (B, ∗) is isomorphic to one of
the following:

(A): Endk(W )× Endk(W∨), (a, b)∗ = (bt, at);
(C): Endk(W ), b∗ the transpose of b with respect to a symmetric bilinear

form on W ;
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(BD): Endk(W ), b∗ the transpose of b with respect to an alternating bilinear
form on W .

Symplectic modules and the associated algebraic groups. Let (B, ∗) be
a semisimple k-algebra with involution ∗, and let (V, ψ) be a symplectic (B, ∗)-
module, i.e., a B-module V endowed with an alternating k-bilinear form ψ : V ×
V → k such that

(35) ψ(bu, v) = ψ(u, b∗v) for all b ∈ B, u, v ∈ V.

Let F be the centre of B, and let F0 be the subalgebra of invariants of ∗
in F . Assume that B and V are free over F and that for all k-homomorphisms
ρ : F0 → kal, (B⊗F0,ρ k

al, ∗) is of the same type (A), (C), or (BD). This will be the
case, for example, if F is a field. Let G be the subgroup of GL(V ) such that

G(Q) = {g ∈ AutB(V ) | ψ(gu, gv) = µ(g)ψ(u, v) some µ(g) ∈ k×},
and let

G′ = Ker(µ) ∩Ker(det).

Example 8.5. (Type A.) Let F be k × k or a field of degree 2 over k, and
let B = EndF (W ) equipped with the involution ∗ defined by a hermitian form15

φ : W ×W → F . Then (B, ∗) is of type A. Let V0 be an F -vector space, and let
ψ0 be a skew-hermitian form V0 × V0 → F . The bilinear form ψ on V = W ⊗F V0

defined by

(36) ψ(w ⊗ v, w′ ⊗ v′) = TrF/k(φ(w,w′)ψ0(v, v′))

is alternating and satisfies (35): (V, ψ) is a symplectic (B, ∗)-module. Let C =
EndB(V ) (the centralizer of B in EndF (V )). Then C is stable under the involution
∗ defined by ψ, and

G(k) = {c ∈ C× | cc∗ ∈ k×}(37)

G′(k) = {c ∈ C× | cc∗ = 1, det(c) = 1}.(38)

In fact, C ∼= EndF (V0) and ∗ is transposition with respect to ψ0. Therefore, G is
the group of symplectic similitudes of ψ0 whose multiplier lies in k, and G′ is the
special unitary group of ψ0.

Conversely, let (B, ∗) be of type A, and assume
(a) the centre F of B is of degree 2 over k (so F is a field or k × k);
(b) B is isomorphic to a matrix algebra over F (when F is a field, this just

means that B is simple and split over F ).
Then I claim that (B, ∗, V, ψ) arises as in the last paragraph. To see this, let W
be a simple B-module — condition (b) implies that B ∼= EndF (W ) and that ∗ is
defined by a hermitian form φ : W ×W → F . As a B-module, V is a direct sum of
copies of W , and so V = W ⊗F V0 for some F -vector space V0. Choose an element
f of F � k whose square is in k. Then f∗ = −f , and

ψ(v, v′) = TrF/k (fΨ(v, v′))

for a unique hermitian form Ψ: V ×V → F (Deligne 1982, 4.6), which has the prop-
erty that Ψ(bv, v′) = Ψ(v, b∗v′). The form (v, v′) �→ fΨ(v, v′) is skew-hermitian,

15There is a unique involution of F fixing k, which we again denote ∗. To say that φ is
hermitian means that it is F -linear in one variable and satisfies φ(w, v) = φ(v, w)∗.
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and can be16 written fΨ = φ⊗ψ0 with ψ0 skew-hermitian on V0. Now ψ, φ, ψ0 are
related by (36).

Example 8.6. (Type C.) Let B = Endk(W ) equipped with the involution ∗
defined by a symmetric bilinear form φ : W ×W → k. Let V0 be a k-vector space,
and let ψ0 be an alternating form V0×V0 → k. The bilinear form ψ on V = W ⊗V0

defined by
ψ(w ⊗ v, w′ ⊗ v′) = φ(w,w′)ψ0(v, v′)

is alternating and satisfies (35). Let C = EndB(V ). Then C is stable under the
involution ∗ defined by ψ, and G(k) and G′(k) are described by the equations
(37) and (38). In fact, C ∼= Endk(V0) and ∗ is transposition with respect to ψ0.
Therefore G = GSp(V0, ψ0) and G′ = Sp(V0, ψ0). Every system (B, ∗, V, ψ) with B
simple and split over k arises in this way (cf. 8.5).

Proposition 8.7. For (B, ∗) of type A or C, the group G is reductive (in
particular, connected), and G′ is semisimple and simply connected.

Proof. It suffices to prove this after extending the scalars to the algebraic
closure of k. Then (B, ∗, V, ψ) decomposes into quadruples of the types considered
in Examples 8.5 and 8.6, and so the proposition follows from the calculations made
there. �

Remark 8.8. Assume B is simple, and let m be the reduced dimension of
V ,

m =
dimF (V )
[B : F ]

1
2
.

In case (A), G′
Qal ≈ (SLm)[F0:Q] and in case (C), G′

Qal ≈ (Spm)[F0:Q].

Remark 8.9. In case (BD), the group G is not connected (G′ is a special
orthogonal group) although its identity component is reductive.

Algebras with positive involution. Let C be a semisimple R-algebra with
an involution ∗, and let V be a C-module. In the next proposition, by a hermitian
form on V we mean a symmetric bilinear form ψ : V ×V → R satisfying (35). Such
a form is said to be positive definite if ψ(v, v) > 0 for all nonzero v ∈ V .

Proposition 8.10. Let C be a semisimple algebra over R. The following con-
ditions on an involution ∗ of C are equivalent:

(a) some faithful C-module admits a positive definite hermitian form;
(b) every C-module admits a positive definite hermitian form;
(c) TrC/R(c∗c) > 0 for all nonzero c ∈ C.

Proof. (a) =⇒ (b). Let V be a faithful C-module. Then every C-module is
a direct summand of a direct sum of copies of V (see p323). Hence, if V carries a
positive definite hermitian form, then so does every C-module.

(b) =⇒ (c). Let V be a C-module with a positive definite hermitian form ( | ),
and choose an orthonormal basis e1, . . . , en for V . Then

TrR(c∗c|V ) =
∑

i(ei|c∗cei) =
∑

i(cei|cei),

16Probably the easiest way to prove things like this is use the correspondence between invo-
lutions on algebras and (skew-)hermitian forms (up to scalars) — see Knus et al. 1998, I 4.2. The

involution on EndF (V ) defined by ψ stabilizes C and corresponds to a skew-hermitian form on
V0.
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which is > 0 unless c acts as the zero map on V . On applying this remark with
V = C, we obtain (c).

(c) =⇒ (a). The condition (c) is that the hermitian form (c, c′) �→ TrC/R(c∗c′)
on C is positive definite. �

Definition 8.11. An involution satisfying the equivalent conditions of (8.10)
is said to be positive.

Proposition 8.12. Let B be a semisimple R-algebra with a positive involution
∗ of type A or C. Let (V, ψ) be a symplectic (B, ∗)-module, and let C be the
centralizer of B in EndR(V ). Then there exists a homomorphism of R-algebras
h : C → C, unique up to conjugation by an element c of C× with cc∗ = 1, such that

◦ h(z) = h(z)∗ and
◦ u, v �→ ψ(u, h(i)v) is positive definite and symmetric.

Proof. To give an h satisfying the conditions amounts to giving an element
J (= h(i)) of C such that

(39) J2 = −1, ψ(Ju, Jv) = ψ(u, v), ψ(v, Jv) > 0 if v �= 0.

Suppose first that (B, ∗) is of type A. Then (B, ∗, V, ψ) decomposes into systems
arising as in (8.5). Thus, we may suppose B = EndF (W ), V = W ⊗ V0, etc., as
in (8.5). We then have to classify the J ∈ C ∼= EndC(V0) satisfying (39) with ψ
replaced by ψ0. There exists a basis (ej) for V0 such that

(ψ0(ej , ek))j,k = diag(i, . . . , i
r
,−i, . . . ,−i), i =

√
−1.

Define J by J(ej) = −ψ0(ej , ej)ej . Then J satisfies the required conditions, and
it is uniquely determined up to conjugation by an element of the unitary group of
ψ0. This proves the result for type A, and type C is similar. (For more details, see
Zink 1983, 3.1). �

Remark 8.13. Let (B, ∗) and (V, ψ) be as in the proposition. For an h satis-
fying the conditions of the proposition, define

t(b) = TrC(b|V/F 0
hV ), b ∈ B.

Then, t is independent of the choice of h, and in fact depends only on the iso-
morphism class of (V, ψ) as a B-module. Conversely, (V, ψ) is determined up to
B-isomorphism by its dimension and t. For example, if V = W ⊗C V0, φ, ψ0, etc.
are as in the above proof, then

Trk(b|V ) = r · Trk(b|W ),

and r and dimV0 determine (V0, ψ0) up to isomorphism. Since W and φ are deter-
mined (up to isomorphism) by the requirement that W be a simple B-module and
φ be a hermitian form giving ∗ on B, this proves the claim for type A.

PEL data. Let B be a simple Q-algebra with a positive involution ∗ (meaning
that it becomes positive on B ⊗Q R), and let (V, ψ) be a symplectic (B, ∗)-module.
Throughout this subsection, we assume that (B, ∗) is of type A or C.

Proposition 8.14. There is a unique G(R)-conjugacy class X of homomor-
phisms h : S → GR such that each h ∈ X defines a complex structure on V (R) that
is positive or negative for ψ. The pair (G,X) satisfies the conditions SV1–4.
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Proof. The first statement is an immediate consequence of (8.12). The com-
posite of h with G ↪→ G(ψ) lies in X(ψ), and therefore satisfies SV1, SV2, SV4. As
h is nontrivial, SV3 follows from the fact that Gad is simple. �

Definition 8.15. The Shimura data arising in this way are called simple PEL
data of type A or C.

The simple refers to the fact that (for simplicity), we required B to be simple
(which implies that Gad is simple).

Remark 8.16. Let b ∈ B, and let tb be the tensor (x, y) �→ ψ(x, by) of V . An
element g of G(ψ) fixes tb if and only if it commutes with b. Let b1, . . . , bs be a set
of generators for B as a Q-algebra. Then (G,X) is the Shimura datum of hodge
type associated with the system (V, {ψ, tb1 , . . . , tbs

}).

PEL Shimura varieties.

Theorem 8.17. Let (G,X) be a simple PEL datum of type A or C associated
with (B, ∗, V, ψ) as in the last subsection, and let K be a compact open subgroup
of G(Af ). Then ShK(G,X)(C) classifies the isomorphism classes of quadruples
(A, s, i, ηK) in which

◦ A is a complex abelian variety,
◦ ±s is a polarization of the hodge structure H1(A,Q),
◦ i is a homomorphism B → End(A)⊗Q, and
◦ ηK is a K-orbit of B⊗Af -linear isomorphisms η : V (Af ) → H1(A,Q)⊗Af

sending ψ to an A×
f -multiple of s,

satisfying the following condition:
(**) there exists a B-linear isomorphism a : H1(A,Q) → V send-
ing s to a Q×-multiple of ψ.

Proof. In view of the dictionary b↔ tb between endomorphisms and tensors
(8.16), Theorem 7.4 shows that ShK(G,X)(C) classifies the quadruples (A, i, t, ηK)
with the additional condition that ah ∈ X, but ah defines a complex structure on
V (R) that is positive or negative for ψ, and so (8.14) shows that ah automatically
lies in X. �

Let (G,X) be the Shimura datum arising from (B, ∗) and (V, ψ). For h ∈ X,
we have a trace map

b �→ Tr(b|V (C)/F 0
h) : B → C.

Since this map is independent of the choice of h in X, we denote it by TrX .

Remark 8.18. Consider a triple (A, s, i, ηK) as in the theorem. The existence
of the isomorphism a in (**) implies that

(a) s(bu, v) = s(u, b∗v), and
(b) Tr(i(b)|Tgt0A) = TrX(b) for all b ∈ B ⊗ C.

The first is obvious, because ψ has this property, and the second follows from the
B-isomorphisms

Tgt0(A)
(34)∼= H1(A,C)/F 0 a−→ V (C)/F 0

h .

We now divide the type A in two, depending on whether the reduced dimension
of V is even or odd.



328 J. S. MILNE

Proposition 8.19. For types Aeven and C, the condition (**) of Theorem 8.17
is implied by conditions (a) and (b) of (8.18).

Proof. Let W = H1(A,Q). We have to show that there exists a B-linear
isomorphism α : W → V sending s to a Q×-multiple of ψ. The existence of η shows
that W has the same dimension as V , and so there exists a B ⊗Q Qal-isomorphism
α : V (Qal) →W (Qal) sending t to a Qal×-multiple of ψ. For σ ∈ Gal(Qal/Q) write
σα = α ◦ aσ with aσ ∈ G(Qal). Then σ �→ aσ is a one-cocycle. If its class in
H1(Q, G) is trivial, say, aσ = a−1 · σa, then α ◦ a−1 is fixed by all σ ∈ Gal(Qal/Q),
and is therefore defined over Q.

Thus, it remains to show that the class of (aσ) in H1(Q, G) is trivial. The
existence of η shows that the image of the class in H1(Q�, G) is trivial for all finite
primes �, and (8.13) shows that its image in H1(R, G) is trivial, and so the statement
follows from the next two lemmas. �

Lemma 8.20. Let G be a reductive group with simply connected derived group,
and let T = G/Gder. If H1(Q, T ) →

∏
l≤∞ H1(Ql, T ) is injective, then an element

of H1(Q, G) that becomes trivial in H1(Ql, G) for all l is itself trivial.

Proof. Because Gder is simply connected, H1(Ql, G
der) = 0 for l �= ∞ and

H1(Q, Gder) → H1(R, Gder) is injective (5.19). Using this, we obtain a commutative
diagram with exact rows

T (Q) −−−→ H1(Q, Gder) −−−→ H1(Q, G) −−−→ H1(Q, T ); injective

; ; injective

;
G(R)−−−→ T (R) −−−→ H1(R, Gder) →

∏
lH

1(Ql, G) −−−→
∏

lH
1(Ql, T ).

If an element c of H1(Q, G) becomes trivial in all H1(Ql, G), then a diagram
chase shows that it arises from an element c′ of H1(Q, Gder) whose image c′∞
in H1(R, Gder) maps to the trivial element in H1(R, G). The image of G(R) in
T (R) contains T (R)+ (see 5.1), and the real approximation theorem (5.4) shows
that T (Q) · T (R)+ = T (R). Therefore, there exists a t ∈ T (Q) whose image in
H1(R, Gder) is c′∞. Then t �→ c′ in H1(Q, Gder), which shows that c is trivial. �

Lemma 8.21. Let (G,X) be a simple PEL Shimura datum of type Aeven or C,
and let T = G/Gder. Then H1(Q, T ) →

∏
l≤∞ H1(Ql, T ) is injective.

Proof. For G of type Aeven, T = Ker((Gm)F

NmF/k−→ (Gm)F0) × Gm. The
group H1(Q,Gm) = 0, and the map on H1’s of the first factor is

F×
0 /NmF× →

∏
vF

×
0v/NmF×

v .

This is injective (CFT, VIII 1.4).
For G of type C, T = Gm, and so H1(Q, T ) = 0. �

PEL modular varieties. Let B be a semisimple algebra over Q with a posi-
tive involution ∗, and let (V, ψ) be a symplectic (B, ∗)-module. Let K be a compact
open subgroup of G(Af ). There exists an algebraic variety MK over C classifying
the isomorphism classes of quadruples (A, s, i, ηK) satisfying (a) and (b) of (8.18)
(but not necessarily condition (**)), which is called the PEL modular variety
attached to (B, ∗, V, ψ). In the simple cases (Aeven) and (C), Proposition 8.17
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shows that MK coincides with ShK(G,X), but in general it is a finite disjoint union
of Shimura varieties.

Notes. The theory of Shimura varieties of PEL-type is worked out in detail in
several papers of Shimura, for example, Shimura 1963, but in a language somewhat
different from ours. The above account follows Deligne 1971c, §§5,6. See also
Zink 1983 and Kottwitz 1992, §§1–4.

9. General Shimura varieties

Abelian motives. Let Hod(Q) be the category of polarizable rational hodge
structures. It is an abelian subcategory of the category of all rational hodge struc-
tures closed under the formation of tensor products and duals.

Let V be a variety over C whose connected components are abelian varieties,
say V =

⊔
Vi with Vi an abelian variety. Recall that for manifolds M1 and M2,

Hr(M1 $M2,Q) ∼= Hr(M1,Q)⊕Hr(M2,Q).

For each connected component V ◦ of V ,

H∗(V ◦,Q) ∼=
∧
H1(V ◦,Q) ∼= HomQ(

∧
H1(V ◦,Q),Q)

(see 6.4). Therefore, H∗(V,Q) acquires a polarizable hodge structure from that on
H1(V,Q). We write H∗(V,Q)(m) for the hodge structure H∗(V,Q) ⊗ Q(m) (see
2.6).

Let (W,h) be a rational hodge structure. An endomorphism e of (W,h) is an
idempotent if e2 = e. Then

(W,h) = Im(e)⊕ Im(1− e)

(direct sum of rational hodge structures).
An abelian motive over C is a triple (V, e,m) in which V is a variety over

C whose connected components are abelian varieties, e is an idempotent in
End(H∗(V,Q)), and m ∈ Z. For example, let A be an abelian variety; then the
projection

H∗(A,Q) → Hi(A,Q) ⊂ H∗(A,Q)

is an idempotent ei, and we denote (A, ei, 0) by hi(A).
Define Hom((V, e,m), (V ′, e′,m′)) to be the set of maps H∗(V,Q) → H∗(V ′,Q)

of the form e′ ◦ f ◦ e with f a homomorphism H∗(V,Q) → H∗(V ′,Q) of degree
d = m′ −m. Moreover, define

(V, e,m)⊕ (V ′, e′,m) = (V $ V ′, e⊕ e′,m)

(V, e,m)⊗ (V ′, e′,m) = (V × V ′, e⊗ e′,m + m′)

(V, e,m)∨ = (V, et, d−m) if V is purely d-dimensional.

For an abelian motive (V, e,m) over C, let H(V, e,m) = eH∗(V,Q)(m). Then
(V, e,m) �→ H(V, e,m) is a functor from the category of abelian motives AM to
Hod(Q) commuting with ⊕, ⊗, and ∨. We say that a rational hodge structure
is abelian if it is in the essential image of this functor, i.e., if it is isomorphic
to H(V, e,m) for some abelian motive (V, e,m). Every abelian hodge structure is
polarizable.
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Proposition 9.1. Let Hodab(Q) be the full subcategory of Hod(Q) of abelian
hodge structures. Then Hodab(Q) is the smallest strictly full subcategory of Hod(Q)
containing H1(A,Q) for each abelian variety A and closed under the formation of di-
rect sums, subquotients, duals, and tensor products; moreover, H : AM → Hodab(Q)
is an equivalence of categories.

Proof. Straightforward from the definitions. �

For a description of the essential image of H, see Milne 1994, 1.27.

Shimura varieties of abelian type. Recall (§6) that a symplectic space
(V, ψ) over Q defines a connected Shimura datum (S(ψ), X(ψ)+) with S(ψ) = Sp(ψ)
and X(ψ)+ the set of complex structures on V (R), ψ).

Definition 9.2. (a) A connected Shimura datum (H,X+) with H simple is of
primitive abelian type if there exists a symplectic space (V, ψ) and an injective
homomorphism H → S(ψ) carrying X+ into X(ψ)+.

(b) A connected Shimura datum (H,X+) is of abelian type if there exist pairs
(Hi, X

+
i ) of primitive abelian type and an isogeny

∏
i Hi → H carrying

∏
i X

+
i into

X.
(b) A Shimura datum (G,X) is of abelian type if (Gder, X+) is of abelian

type.
(c) The (connected) Shimura variety attached to a (connected) Shimura datum

of abelian type is said to be of abelian type.

Proposition 9.3. Let (G,X) be a Shimura datum, and assume
(a) the weight wX is rational SV4 and Z(G)◦ splits over a CM-field SV6, and
(b) there exists a homomorphism ν : G→ Gm such that ν ◦ wX = −2.

If G is of abelian type, then (V, h ◦ ρ) is an abelian hodge structure for all represen-
tations (V, ρ) of G and all h ∈ X; conversely, if there exists a faithful representation
ρ of G such that (V, h ◦ ρ) is an abelian hodge structure for all h, then (G,X) is of
abelian type.

Proof. See Milne 1994, 3.12. �

Let (G,X) be a Shimura datum of abelian type satisfying (a) and (b) of the
proposition, and let ρ : G→ GL(V ) be a faithful representation of G. Assume that
there exists a pairing ψ : V × V → Q such that

(a) gψ = ν(g)mψ for all g ∈ G,
(b) ψ is a polarization of (V, h ◦ ρ) for all h ∈ X.

There exist multilinear maps ti : V × · · · × V → Q(ri), 1 ≤ i ≤ n, such that G is
the subgroup of GL(V ) whose elements satisfy (a) and fix t1, . . . tn (cf. 7.2).

Theorem 9.4. With the above notations, Sh(G,X) classifies the isomorphism
classes of triples (A, (si)0≤i≤n, ηK) in which

◦ A is an abelian motive,
◦ ±s0 is a polarization for the rational hodge structure H(A),
◦ s1, . . . , sn are tensors for A, and
◦ ηK is a K-orbit of Af -linear isomorphisms V (Af ) → Vf (A) sending ψ to

an A×
f -multiple of s0 and each ti to si,

satisfying the following condition:
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(**) there exists an isomorphism a : H(A) → V sending s0 to a
Q×-multiple of ψ, each si to ti, and h onto an element of X.

Proof. With A replaced by a hodge structure, this can be proved by an ele-
mentary argument (cf. 6.3, 7.3), but (9.3) shows that the hodge structures arising
are abelian, and so can be replaced by abelian motives (9.1). For more details, see
Milne 1994, Theorem 3.31. �

Classification of Shimura varieties of abelian type. Deligne (1979) clas-
sifies the connected Shimura data of abelian type. Let (G,X+) be a connected
Shimura datum with G simple. If Gad is of type A, B, or C, then (G,X+) is of
abelian type. If Gad is of type E6 or E7, then (G,X+) is not of abelian type. If Gad

is of type D, (G,X+) may or may not be of abelian type. There are two problems
that may arise.

(a) Let G be the universal covering group of Gad. There may exist homomor-
phisms (G,X+) → (S(ψ), X(ψ)+) but no injective such homomorphism, i.e., there
may be a nonzero finite algebraic subgroup N ⊂ G that is in the kernel of all ho-
momorphisms G→ S(ψ) sending X+ into X(ψ)+. Then (G/N ′, X+) is of abelian
type for all N ′ ⊃ N , but (G,X+) is not of abelian type.

(b) There may not exist a homomorphism G→ S(ψ) at all.
This last problem arises for the following reason. Even when Gad is Q-simple, it
may decompose into a product of simple group G

ad

R = G1 × · · · × Gr over R. For
each i, Gi has a dynkin diagram of the shape shown below:

�

�����
αn−1

Dn(1):� ◦ · · · ◦ (n ≥ 4)
α1 α2 αn−2

					�
αn

◦
�����

αn−1
Dn(n): � ◦ · · · ◦ (n ≥ 4)

α1 α2 αn−2

					�
αn

Dn(n− 1): Same as Dn(n) by with αn−1 and αn interchanged (rotation about the
horizontal axis).

Nodes marked by squares are special (p278), and nodes marked by stars cor-
respond to symplectic representations. The number in parenthesis indicates the
position of the special node. As is explained in §1, the projection of X+ to a con-
jugacy class of homomorphisms S → Gi corresponds to a node marked with a �.
Since X+ is defined over R, the nodes can be chosen independently for each i. On
the other hand, the representations GiR → S(ψ)R correspond to nodes marked with
a ∗. Note that the ∗ has to be at the opposite end of the diagram from the �. In
order for a family of representations GiR → S(ψ)R, 1 ≤ i ≤ r, to arise from a sym-
plectic representation over Q, the ∗’s must be all in the same position since a galois
group must permute the dynkin diagrams of the Gi. Clearly, this is impossible if
the �’s occur at different ends. (See Deligne 1979, 2.3, for more details.)
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Shimura varieties not of abelian type. It is hoped (Deligne 1979, p248)
that all Shimura varieties with rational weight classify isomorphism classes of mo-
tives with additional structure, but this is not known for those not of abelian type.
More precisely, from the choice of a rational representation ρ : G → GL(V ), we
obtain a family of hodge structures h ◦ ρR on V indexed by X. When the weight of
(G,X) is defined over Q, it is hoped that these hodge structures always occur (in a
natural way) in the cohomology of algebraic varieties. When the weight of (G,X)
is not defined over Q they obviously can not.

Example: simple Shimura varieties of type A1. Let (G,X) be the Shimura
datum attached to a B be a quaternion algebra over a totally real field F , as in
(5.24). With the notations of that example,

G(R) ≈
∏

v∈Ic
H× ×

∏
v∈Inc

GL2(R).

(a) If B = M2(F ), then (G,X) is of PEL-type, and ShK(G,X) classifies iso-
morphism classes of quadruples (A, i, t, ηK) in which A is an abelian variety of di-
mension d = [F : Q] and i is a homomorphism homomorphism i : F → End(A)⊗Q.
These Shimura varieties are called Hilbert (or Hilbert-Blumenthal) varieties,
and whole books have been written about them.

(b) If B is a division algebra, but Ic = ∅, then (G,X) is again of PEL-type, and
ShK(G,X) classifies isomorphism classes of quadruples (A, i, t, ηK) in which A is an
abelian variety of dimension 2[F : Q] and i is a homomorphism i : B → End(A)⊗Q.
In this case, the varieties are projective. These varieties have also been extensively
studied.

(c) If B is a division algebra and Ic �= ∅, then (G,X) is of abelian type, but
the weight is not defined over Q. Over R, the weight map wX sends a ∈ R to the
element of (F⊗R)× ∼=

∏
v : F→RR with component 1 for v ∈ Ic and component a for

v ∈ Inc. Let T be the torus over Q with T (Q) = F×. Then wX : Gm → TR is defined
over the subfield L of Q whose fixed group is the subgroup of Gal(Q/Q) stabilizing
Ic ⊂ Ic $ Inc. On choosing a rational representation of G, we find that ShK(G,X)
classifies certain isomorphism classes of hodge structures with additional structure,
but the hodge structures are not motivic — they do not arise in the cohomology of
algebraic varieties (they are not rational hodge structures).

10. Complex multiplication: the Shimura-Taniyama formula

Where we are headed. Let V be a variety over Q. For any σ ∈ Gal(Qal/Q)
and P ∈ V (Qal), the point σP ∈ V (Qal). For example, if V is the subvariety of An

defined by equations

f(X1, . . . , Xn) = 0, f ∈ Q[X1, . . . , Xn],

then
f(a1, . . . , an) = 0 =⇒ f(σa1, . . . , σan) = 0

(apply σ to the first equality). Therefore, if we have a variety V over Qal that we
suspect is actually defined over Q, then we should be able to describe an action of
Gal(Qal/Q) on its points V (Qal).

Let E be a number field contained in C, and let Aut(C/E) denote the group of
automorphisms of C (as an abstract field) fixing the elements of E. Then a similar
remark applies: if a variety V over C is defined by equations with coefficients in
E, then Aut(C/E) will act on V (C). Now, I claim that all Shimura varieties are



10. COMPLEX MULTIPLICATION: THE SHIMURA-TANIYAMA FORMULA 333

defined (in a natural way) over specific number fields, and so I should be able to
describe an action of a big subgroup of Aut(C/Q) on their points. If, for example,
the Shimura variety is of hodge type, then there is a set MK whose elements are
abelian varieties plus additional data and a map

(A, . . .) �→ P (A, . . .) : MK → ShK(G,X)(C)

whose fibres are the isomorphism classes in MK . On applying σ ∈ Aut(C/Q) to the
coefficients of the polynomials defining A, . . ., we get a new triple (σA, . . .) which
may or may not lie in MK . When it does we define σP (A, . . .) to be P (σA, . . .).
Our task will be to show that, for some specific field E, this does give an action of
Aut(C/E) on ShK(G,X) and that the action does arise from a model of ShK(G,X)
over E.

For example, for P ∈ Γ(1)\H1, σP is the point such that j(σP ) = σ (j(P )). If j
were a polynomial with coefficients in Z (rather than a power series with coefficients
in Z), we would have j(σP ) = σj(P ) with the obvious meaning of σP , but this is
definitely false (if σ is not complex conjugation, then it is not continuous, nor even
measurable).

You may complain that we fail to explicitly describe the action of Aut(C/E) on
Sh(G,X)(C), but I contend that there can not exist a completely explicit description
of the action. What are the elements of Aut(C/E)? To construct them, we can
choose a transcendence basis B for C over E, choose a permutation of the elements
of B, and extend the resulting automorphism of Q(B) to its algebraic closure C.
But proving the existence of transcendence bases requires the axiom of choice (e.g.,
FT, 8.13), and so we can have no explicit description of, or way of naming, the
elements of Aut(C/E), and hence no completely explicit description of the action
is possible.

However, all is not lost. Abelian class field theory names the elements of
Gal(Eab/E), where Eab is a maximal abelian extension of E. Thus, if we sus-
pect that a point P has coordinates in Eab, the action of Aut(C/E) on it will
factor through Gal(Eab/E), and we may hope to be able to describe the action of
Aut(C/E) explicitly. This the theory of complex multiplication allows us to do for
certain special points P .

Review of abelian varieties. The theory of abelian varieties is very similar
to that of elliptic curves — just replace E with A, 1 with g (the dimension of A),
and, whenever E occurs twice, replace one copy with the dual A∨ of A.

Thus, for any m not divisible by the characteristic of the ground field k,

(40) A(kal)m ≈ (Z/mZ)2g.

Here A(kal)m consists of the elements of A(kal) killed by m. Hence, for � �= char(k),

T�A
df= lim←−A(kal)�n

is a free Z�-module of rank 2g, and

V�(A) df= T�A⊗Z�
Q�

is a Q�-vector space of dimension 2g. In characteristic zero, we set

TfA =
∏
T�A = lim←−

m

A(kal)m,

VfA = Tf ⊗Z Q =
∏

(V�A : T�A) (restricted topological product).
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They are, respectively, a free Ẑ-module of rank 2g and a free Af -module of rank
2g. The galois group Gal(kal/k) acts continuously on these modules.

For an endomorphism a of an abelian variety A, there is a unique monic poly-
nomial Pa(T ) with integer coefficients (the characteristic polynomial of a) such
that |Pa(n)| = deg(a− n) for all n ∈ Z. Moreover, Pa is the characteristic polyno-
mial of a acting on V�A (� �= char(k)).

For an abelian variety A over a field k, the tangent space Tgt0(A) to A at 0 is a
vector space over k of dimension g. As we noted in §6, when k = C, the exponential
map defines a surjective homomorphism Tgt0(A) → A(C) whose kernel is a lattice
Λ in Tgt0(A). Thus A(C)m

∼= 1
mΛ/Λ ∼= Λ/mΛ, and

(41) T�A ∼= Λ⊗Z Z�, V�A ∼= Λ⊗Z Q�, TfA = Λ⊗Z Ẑ, VfA = Λ⊗Z Af .

An endomorphism a of A defines a C-linear endomorphism (da)0 = α of Tgt0(A)
such that α(Λ) ⊂ Λ (see 6.5), and Pa(T ) is the characteristic polynomial of α on
Λ.

For abelian varieties A,B, Hom(A,B) is a torsion free Z-module of finite rank.
We let AV(k) denote the category of abelian varieties and homomorphisms over k
and AV0(k) the category with the same objects but with

HomAV0(k)(A,B) = Hom0(A,B) = HomAV(k)(A,B)⊗Q.

An isogeny of abelian varieties is a surjective homomorphism with finite kernel.
A homomorphism of abelian varieties is an isogeny if and only if it becomes an
isomorphism in the category AV0. Two abelian varieties are said to be isogenous
if there is an isogeny from one to the other — this is an equivalence relation.

An abelian variety A over a field k is simple if it contains no nonzero proper
abelian subvariety. Every abelian variety is isogenous to a product of simple abelian
varieties. If A and B are simple, then every nonzero homomorphism from A to B
is an isogeny. It follows that End0(A) is a division algebra when A is simple and a
semisimple algebra in general.

Notes. For a detailed account of abelian varieties over algebraically closed
fields, see Mumford 1970, and for a summary over arbitrary fields, see Milne 1986.

CM fields. A number field E is a CM (or complex multiplication) field
if it is a quadratic totally imaginary extension of a totally real field F . Let a �→ a∗

denote the nontrivial automorphism of E fixing F . Then ρ(a∗) = ρ(a) for every
ρ : E ↪→ C. We have the following picture:

(42)
E ⊗Q R ≈ C× · · · × C

| |
F ⊗Q R ≈ R× · · · × R

The involution ∗ is positive (in the sense of 8.11), because we can compute
TrE⊗QR/F⊗QR(b∗b) on each factor on the right, where it becomes TrC/R(zz) =
2|z|2 > 0. Thus, we are in the PEL situation considered in §8.

Let E be a CM-field with largest real subfield F . Each embedding of F into R
will extend to two conjugate embeddings of E into C. A CM-type Φ for E is a
choice of one element from each conjugate pair {ϕ, ϕ}. In other words, it is a subset
Φ ⊂ Hom(E,C) such that

Hom(E,C) = Φ $ Φ (disjoint union, Φ = {ϕ | ϕ ∈ Φ}).
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Because E is quadratic over F , E = F [α] with α a root of a polynomial
X2 + aX + b. On completing the square, we obtain an α such that α2 ∈ F×. Then
α∗ = −α. Such an element α of E is said to be totally imaginary (its image in
C under every embedding is purely imaginary).

Abelian varieties of CM-type. Let E be a CM-field of degree 2g over Q.
Let A be an abelian variety of dimension g over C, and let i be a homomorphism
E → End0(A). If

(43) Tr(i(a) | Tgt0(A)) =
∑

ϕ∈Φϕ(a), all a ∈ E,

for some CM-type Φ of E, then (A, i) is said to be of CM-type (E,Φ).

Remark 10.1. (a) In fact, (A, i) will always be of CM-type for some Φ. Recall
(p319) that A(C) ∼= Tgt0(A)/Λ with Λ a lattice in Tgt0(A) (so Λ⊗R ∼= Tgt0(A)).
Moreover,

Λ⊗Q ∼= H1(A,Q)

Λ⊗ R ∼= H1(A,R),∼= Tgt0(A)

Λ⊗ C = H1(A,C) ∼= H−1,0 ⊕H0,−1 ∼= Tgt0(A)⊕ Tgt0(A).

Now H1(A,Q) is a one-dimensional vector space over E, so H1(A,C) ∼=
⊕

ϕ : E→CCϕ

where Cϕ denotes a 1-dimensional vector space with E acting through ϕ. If ϕ

occurs in Tgt0(A), then ϕ occurs in Tgt0(A), and so Tgt0(A) ∼=
⊕

ϕ∈ΦCϕ with Φ
a CM-type for E.

(b) A field E of degree 2g over Q acting on a complex abelian variety A of
dimension g need not be be CM unless A is simple.

Let Φ be a CM-type on E, and let CΦ be a direct sum of copies of C indexed
by Φ. Denote by Φ again the homomorphism OE → CΦ, a �→ (ϕa)ϕ∈Φ.

Proposition 10.2. The image Φ(OE) of OE in CΦ is a lattice, and the quotient
CΦ/Φ(OE) is an abelian variety AΦ of CM-type (E,Φ) for the natural homomor-
phism iΦ : E → End0(AΦ). Any other pair (A, i) of CM-type (E,Φ) is E-isogenous
to (AΦ, iΦ).

Proof. We have

OE ⊗Z R ∼= OE ⊗Z Q⊗Q R ∼= E ⊗Q R
e⊗r �→(...,r·ϕe,...)−−−−−−−−−−−→∼=

CΦ,

and so Φ(OE) is a lattice in CΦ.
To show that the quotient is an abelian variety, we have to exhibit a riemann

form (6.7). Let α be a totally imaginary element of E. The weak approximation
theorem allows us to choose α so that �(ϕα) > 0 for ϕ ∈ Φ, and we can multiply
it by an integer (in N) to make it an algebraic integer. Define

ψ(u, v) = TrE/Q(αuv∗), u, v ∈ OE .

Then ψ(u, v) ∈ Z. The remaining properties can be checked on the right of (42).
Here ψ takes the form ψ =

∑
ϕ∈Φψϕ, where

ψϕ(u, v) = TrC/R(αϕ · u · v), αϕ = ϕ(α), u, v ∈ C.

Because α is totally imaginary,

ψϕ(u, v) = αϕ(uv − uv) ∈ R,
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from which it follows that ψϕ(u, u) = 0, ψϕ(iu, iv) = ψϕ(u, v), and ψϕ(u, iu) > 0
for u �= 0. Thus, ψ is a riemann form and AΦ is an abelian variety.

An element α ∈ OE acts on CΦ as muliplication by Φ(α). This preserves
Φ(OE), and so defines a homomorphism OE → End(AΦ). On tensoring this with
Q, we obtain the homomorphism iΦ. The map CΦ → CΦ/Φ(OE) defines an isomor-
phism CΦ = Tgt0(CΦ) → Tgt0(AΦ) compatible with the actions of E. Therefore,
(AΦ, iΦ) is of CM-type (E,Φ).

Finally, let (A, i) be of CM-type (E,Φ). The condition (43) means that Tgt0(A)
is isomorphic to CΦ as an E ⊗Q C-module. Therefore, A(C) is a quotient of CΦ by
a lattice Λ such that QΛ is stable under the action of E on CΦ given by Φ (see 6.7
et seq.). This implies that QΛ = Φ(E), and so Λ = Φ(Λ′) where Λ′ is a lattice in
E. Now, NΛ′ ⊂ OE for some N , and we have E-isogenies

CΦ/Λ N→ CΦ/NΛ ← CΦ/Φ(OE). �

Proposition 10.3. Let (A, i) be an abelian variety of CM-type (E,Φ) over C.
Then (A, i) has a model over Qal, uniquely determined up to isomorphism.

Proof. Let k ⊂ Ω be algebraically closed fields of characteristic zero. For
an abelian variety A over k, the torsion points in A(k) are zariski dense, and the
map on torsion points A(k)tors → A(Ω)tors is bijective (see (40)), and so every
regular map AΩ → WΩ (W a variety over k) is fixed by the automorphisms of
Ω/k and is therefore defined over k (AG 16.9; see also 13.1 below). It follows that
A �→ AΩ : AV(k) → AV(Ω) is fully faithful.

It remains to show that every abelian variety (A, i) of CM-type over C arises
from a pair over Qal. The polynomials defining A and i have coefficients in some
subring R of C that is finitely generated over Qal. According to the Hilbert Null-
stellensatz, a maximal ideal m of R will have residue field Qal, and the reduction
of (A, i) mod m is called a specialization of (A, i). Any specialization (A′, i′) of
(A, i) to a pair over Qal with A′ nonsingular will still be of CM-type (E,Φ), and
therefore (see 10.2) there exists an isogeny (A′, i′)C → (A, i). The kernel H of this
isogeny is a subgroup of A′(C)tors = A′(Qal)tors, and (A′/H, i) will be a model of
(A, i) over Qal. �

Remark 10.4. The proposition implies that, in order for an elliptic curve A
over C to be of CM-type, its j-invariant must be algebraic.

Let A be an abelian variety of dimension g over a subfield k of C, and let i : E →
End0(A) be a homomorphism with E a CM-field of degree 2g. Then Tgt0(A) is a
k-vector space of dimension g on which E acts k-linearly, and, provided k is large
enough to contain all conjugates of E, it will decompose into one-dimensional k-
subspaces indexed by a subset Φ of Hom(E, k). When we identify Φ with a subset of
Hom(E,C), it becomes a CM-type, and we again say (A, i) is of CM-type (E,Φ).

Let A be an abelian variety over a number field K. We say that A has good
reduction at P if it extends to an abelian scheme over OK,P, i.e., a smooth proper
scheme over OK,P with a group structure. In down-to-earth terms this means the
following: embed A as a closed subvariety of some projective space Pn

K ; for each
polynomial P (X0, . . . , Xn) in the homogeneous ideal a defining A ⊂ Pn

K , multiply
P by an element of K so that it (just) lies in OK,P[X0, . . . , Xn] and let P denote the
reduction of P modulo P; the P ’s obtained in this fashion generate a homogeneous
a ideal in k[X0, . . . , Xn] where k = OK/P; the abelian variety A has good reduction
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at P if it is possible to choose the projective embedding of A so that the zero set of
a is an abelian variety A over k. Then A is called the reduction of A at P. It can
be shown that, up to a canonical isomorphism, A is independent of all choices. For
� �= char(k), V�(A) ∼= V�(A). There is an injective homorphism End(A) → End(A)
compatible with V�(A) ∼= V�(A) (both are reduction maps).

Proposition 10.5. Let (A, i) be an abelian variety of CM-type (E,Φ) over
a number field K ⊂ C, and let P be a prime ideal in OK . Then, after possibly
replacing K by a finite extension, A will have good reduction at P.

Proof. We use the Néron (alias, Ogg-Shafarevich) criterion (Serre and Tate
1968, Theorem 1):

an abelian variety over a number field K has good reduction at
P if for some prime � �= char(OK/P), the inertia group I at P

acts trivially on T�A.
In our case, V�A is a free E ⊗Q Q�-module of rank 1 because H1(AC,Q) is a one-
dimensional vector space over E and V�A ∼= H1(AC,Q)⊗Q� (see (41)). Therefore,
E⊗Q Q� is its own centralizer in EndQ�

(V�A) and the representation of Gal(Qal/Q)
on V�A has image in (E⊗Q�)×, and, in fact, in a compact subgroup of (E⊗Q�)×.
But such a subgroup will have a pro-� subgroup of finite index. Since I has a pro-p
subgroup of finite index (ANT, 7.5), this shows that image of I is finite. After K
has been replaced by a finite extension, the image of I will be trivial, and Néron’s
criterion applies. �

Abelian varieties over a finite field. Let F be an algebraic closure of the
field Fp of p-elements, and let Fq be the subfield of F with q = pm elements. An
element a of F lies in Fq if and only if aq = a. Recall that, in characteristic p,
(X + Y )p = Xp + Y p. Therefore, if f(X1, . . . , Xn) has coefficients in Fq, then

f(X1, . . . , Xn)q = f(Xq
1 , . . . , X

q
n), f(a1, . . . , an)q = f(aq

1, . . . , a
q
n), ai ∈ F.

In particular,

f(a1, . . . , an) = 0 =⇒ f(aq
1, . . . , a

q
n) = 0, ai ∈ F.

Proposition 10.6. There is a unique way to attach to every variety V over
Fq a regular map πV : V → V such that

(a) for any regular map α : V →W , α ◦ πV = πW ◦ α;
(b) πAn is the map (a1, . . . , an) �→ (aq

1, . . . , a
q
n).

Proof. For an affine variety V = SpecmA, define πV be the map correspond-
ing to the Fq-homomorphism x �→ xq : A→ A. The rest of the proof is straightfor-
ward. �

The map πV is called the Frobenius map of V .

Theorem 10.7 (Weil 1948). For an abelian variety A over Fq, End0(A) is a
finite-dimensional semisimple Q-algebra with πA in its centre. For every embedding
ρ : Q[πA] → C, |ρ(πA)| = q

1
2 .

Proof. See, for example, Milne 1986, 19.1. �
If A is simple, Q[πA] is a field (p334), and πA is an algebraic integer in it (p334).

An algebraic integer π such that |ρ(π)| = q
1
2 for all embeddings ρ : Q[π] → C is

called a Weil q-integer (formerly, Weil q-number).
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For a Weil q-integer π,

ρ(π) · ρ(π) = q = ρ(π) · ρ(q/π), all ρ : Q[π] → C,

and so ρ(q/π) = ρ(π). It follows that the field ρ(Q[π]) is stable under complex
conjugation and that the automorphism of Q[π] induced by complex conjugation
sends π to q/π and is independent of ρ. This implies that Q[π] is a CM-field (the
typical case), Q, or Q[

√
p].

Lemma 10.8. Let π and π′ be Weil q-integers lying in the same field E. If
ordv(π) = ordv(π′) for all v|p, then π′ = ζπ for some root of 1 in E.

Proof. As noted above, there is an automorphism of Q[π] sending π to q/π.
Therefore q/π is also an algebraic integer, and so ordv(π) = 0 for every finite v � p.
Since the same is true for π′, we find that |π|v = |π′|v for all v. Hence π/π′ is a
unit in OE such that |π/π′|v = 1 for all v|∞. But in the course of proving the unit
theorem, one shows that such a unit has to be root of 1 (ANT, 5.6). �

The Shimura-Taniyama formula.

Lemma 10.9. Let (A, i) be an abelian variety of CM-type (E,Φ) over a number
field k ⊂ C having good reduction at P ⊂ Ok to (A, ı) over Ok/P = Fq. Then the
Frobenius map πA of A lies in ı(E).

Proof. Let π = πA. It suffices to check that π lies in ı(E) after tensoring with
Q�. As we saw in the proof of (10.5), V�A is a free E ⊗Q Q�-module of rank 1. It
follows that V�A is also a free E ⊗Q Q�-module of rank 1 (via ı). Therefore, any
endomorphism of V�A commuting with the action of E ⊗Q� will lie in E ⊗Q�. �

Thus, from (A, i) and a prime P of k at which A has good reduction, we get a
Weil q-integer π ∈ E.

Theorem 10.10 (Shimura-Taniyama). In the situation of the lemma, assume
that k is galois over Q and contains all conjugates of E. Then for all primes v of
E dividing p,

(44)
ordv(π)
ordv(q)

=
|Φ ∩Hv|
|Hv|

where Hv = {ρ : E → k | ρ−1(P) = pv} and |S| denotes the order of a set S.

Remark 10.11. (a) According to (10.8), the theorem determines π up to a root
of 1. Note that the formula depends only on (E,Φ). It is possible to see directly
that different pairs (A, i) over k of CM-type (E,Φ) can give different Frobenius
elements, but they will differ only by a root of 1.

(b) Let ∗ denote complex conjugation on Q[π]. Then ππ∗ = q, and so

(45) ordv(π) + ordv(π∗) = ordv(q).

Moreover,
ordv(π∗) = ordv∗(π)

and
Φ ∩Hv∗ = Φ ∩Hv.

Therefore, (44) is consistent with (45):

ordv(π)
ordv(q)

+
ordv(π∗)
ordv(q)

(44)
=

|Φ ∩Hv|+ |Φ ∩Hv∗ |
|Hv|

=
|(Φ ∪ Φ) ∩Hv|

|Hv|
= 1.
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In fact, (44) is the only obvious formula for ordv(π) consistent with (45), which
is probably a more convincing argument for its validity than the proof sketched
below.

The OE-structure of the tangent space. Let R be a Dedekind domain. Any
finitely generated torsion R-module M can be written as a direct sum

⊕
i R/pri

i

with each pi an ideal in R, and the set of pairs (pi, ri) is uniquely determined by
M . Define |M |R =

∏
p

ri
i . For example, for R = Z, M is a finite abelian group and

|M |Z is the ideal in Z generated by the order of M .
For Dedekind domains R ⊂ S with S finite over R, there is a norm homomor-

phism sending fractional ideals of S to fractional ideals of R (ANT, p58). It is
compatible with norms of elements, and

Nm(P) = p
f(P/p), P prime, p = P ∩R

Clearly,

(46) |S/A|R = Nm(A)

since this is true for prime ideals, and both sides are multiplicative.

Proposition 10.12. Let A be an abelian variety of dimension g over Fq, and
let i be a homomorphism from the ring of integers OE of a field E of degree 2g over
Q into End(A). Then

|Tgt0 A|OE
= (πA).

Proof. Omitted (for a scheme-theoretic proof, see Giraud 1968, Théorème
1). �

Sketch of the proof the Shimura-Taniyama formula. We return to the situation
of the Theorem 10.10. After replacing A with an isogenous variety, we may assume
i(OE) ⊂ End(A). By assumption, there exists an abelian scheme A over Ok,P

with generic fibre A and special fibre an abelian variety A. Because A is smooth
over Ok,P, the relative tangent space of A/Ok,P is a free Ok,P-module T of rank
g endowed with an action of OE such that

T ⊗Ok,P
k = Tgt0(A), T ⊗Ok,P

Ok,P/P = Tgt0(A).

Therefore,

(47) (π) 10.12=
∣∣Tgt0 A

∣∣
OE

=
∣∣T ⊗Ok,P

(Ok,P/P)
∣∣
OE

.

For simplicity, assume that (p) =df P∩Z is unramified in E. Then the isomor-
phism of E-modules

T ⊗Ok,P
k ≈ kΦ

induces an isomorphism of OE-modules

(48) T ≈ OΦ
k,P

In other words, T is a direct sum of copies of Ok,P indexed by the elements of Φ,
and OE acts on the ϕth copy through the map

OE
ϕ−→ Ok ⊂ Ok,P.

As Ok/P ∼= Ok,P/P (ANT, 3.11), the contribution of the ϕth copy to (π) in (47)
is

|Ok/P|OE

(46)
= ϕ−1(Nmk/ϕE P).
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Thus,

(49) (π) =
∏

ϕ∈Φϕ
−1(Nmk/ϕE P).

It is only an exercise to derive (44) from (49).

Notes. The original formulation of the Shimura-Taniyama theorem is in fact
(49). It is proved in Shimura and Taniyama 1961, III.13, in the unramified case
using spaces of differentials rather than tangent spaces. The proof sketched above
is given in detail in Giraud 1968, and there is a proof using p-divisible groups in
Tate 1969, §5. See also Serre 1968, pII-28.

11. Complex multiplication: the main theorem

Review of class field theory. Classical class field theory classifies the abelian
extensions of a number field E, i.e., the galois extensions L/E such Gal(L/E) is
commutative. Let Eab be the composite of all the finite abelian extensions of E
inside some fixed algebraic closure Eal of E. Then Eab is an infinite galois extension
of E.

According to class field theory, there exists a continuous surjective homomor-
phism (the reciprocity or Artin map)

recE : A×
E → Gal(Eab/E)

such that, for every finite extension L of E contained in Eab, recE gives rise to a
commutative diagram

E×\A×
E

recE−−−−→
onto

Gal(Eab/E); ;σ �→σ|L

E×\A×
E/NmL/E(A×

L )
recL/E−−−−→∼=

Gal(L/E).

It is determined by the following two properties:
(a) recL/E(u) = 1 for every u = (uv) ∈ A×

E such that
i) if v is unramified in L, then uv is a unit,
ii) if v is ramified in L, then uv is sufficiently close to 1 (depending only

on L/E), and
iii) if v is real but becomes complex in L, then uv > 0.

(b) For every prime v of E unramified in L, the idèle

α = (1, . . . , 1, π
v
, 1, . . .), π a prime element of OEv

,

maps to the Frobenius element (v, L/E) ∈ Gal(L/E).
Recall that if P is a prime ideal of L lying over pv, then (v, L/E) is the automor-
phism of L/E fixing P and acting as x �→ x(OE : pv) on OL/P.

To see that there is at most one map satisfying these conditions, let α ∈ A×
E ,

and use the weak approximation theorem to choose an a ∈ E× that is close to αv

for all primes v that ramify in L or become complex. Then α = auβ with u an idèle
as in (a) and β a finite product of idèles as in (b). Now recL/E(α) = recL/E(β),
which can be computed using (b).

Note that, because Gal(Eab/E) is totally disconnected, the identity component
of E×\A×

E is contained in the kernel of recE . In particular, the identity component
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of
∏

v|∞E×
v is contained in the kernel, and so, when E is totally imaginary, recE

factors through E×\A×
E,f .

For E = Q, the reciprocity map factors through Q×\{±} × A×
f , and every

element in this quotient is uniquely represented by an element of Ẑ× ⊂ A×
f . In this

case, we get the diagram

(50)

Ẑ× recQ−−−−→∼=
Gal(Qab/Q)

⋃
Q[ζN ]; ;restrict

(Z/NZ)×
[a] �→(ζN �→ζa

N )−−−−−−−−−→∼=
Gal(Q[ζN ]/Q)

which commutes with an inverse. This can be checked by writing an idèle α in the
form auβ as above, but it is more instructive to look at an example. Let p be a
prime not dividing N , and let

α = p · (1, . . . , 1, p−1

p
, 1, . . .) ∈ Z · A×

f = A×
f .

Then α ∈ Ẑ× and has image [p] in Z/NZ, which acts as (p,Q[ζN ]/Q) on Q[ζN ]. On
the other hand, recQ(α) = recQ((1, . . . , p−1, . . .)), which acts as (p,Q[ζN ]/Q)−1.

Notes. For the proofs of the above statements, see Tate 1967 or my notes
CFT.

Convention for the (Artin) reciprocity map. It simplifies the formulas
in Langlands theory if one replaces the reciprocity map with its reciprocal. For
α ∈ A×

E , write

(51) artE(α) = recE(α)−1.

Now, the diagram (50) commutes. In other words,

artQ(χ(σ)) = σ, for σ ∈ Gal(Qab/Q),

where χ is the cyclotomic character Gal(Qab/Q) → Ẑ×, which is characterized by

σζ = ζχ(σ), ζ a root of 1 in C×.

The reflex field and norm of a CM-type. Let (E,Φ) be a CM-type.

Definition 11.1. The reflex field E∗ of (E,Φ) is the subfield of Qal charac-
terized by any one of the following equivalent conditions:

(a) σ ∈ Gal(Qal/Q) fixes E∗ if and only if σΦ = Φ; here σΦ = {σ ◦ ϕ|ϕ ∈ Φ};
(b) E∗ is the field generated over Q by the elements

∑
ϕ∈Φϕ(a), a ∈ E;

(c) E∗ is the smallest subfield k of Qal such that there exists a k-vector space
V with an action of E for which

Trk(a|V ) =
∑

ϕ∈Φϕ(a), all a ∈ E.

Let V be an E∗-vector space with an action of E such that TrE∗(a|V ) =∑
ϕ∈Φϕ(a) for all a ∈ E. We can regard V as an E∗ ⊗Q E-space, or as an E-

vector space with a E-linear action of E∗. The reflex norm is the homomorphism
NΦ∗ : (Gm)E∗/Q → (Gm)E/Q such that

NΦ∗(a) = det E(a|V ), all a ∈ E∗×.
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This definition is independent of the choice of V because V is unique up to an
isomorphism respecting the actions of E and E∗.

Let (A, i) be an abelian variety of CM-type (E,Φ) defined over C. According
to (11.1c) applied to Tgt0(A), any field of definition of (A, i) contains E∗.

Statement of the main theorem of complex multiplication. A homo-
morphism σ : k → Ω of fields defines a functor V �→ σV , α �→ σα, “extension of
the base field” from varieties over k to varieties over Ω. In particular, an abelian
variety A over k equipped with a homomorphism i : E → End0(A) defines a similar
pair σ(A, i) = (σA, σi) over Ω. Here σi : E → End(σA) is defined by

σi(a) = σ(i(a)).

A point P ∈ A(k) gives a point σP ∈ A(Ω), and so σ defines a homomorphism
σ : Vf (A) → Vf (σA) provided that k and Ω are algebraically closed (otherwise one
would have to choose an extension of k to a homomorphism kal → Ωal).

Theorem 11.2. Let (A, i) be an abelian variety of CM-type (E,Φ) over C, and
let σ ∈ Aut(C/E∗). For any s ∈ A×

E∗,f with artE∗(s) = σ|E∗ab, there is a unique
E-linear isogeny α : A→ σA such that α(NΦ∗(s) · x) = σx for all x ∈ VfA.

Proof. Formation of the tangent space commutes with extension of the base
field, and so

Tgt0(σA) = Tgt0(A)⊗C,σ C

as an E ⊗Q C-module. Therefore, (σA, σi) is of CM type σΦ. Since σ fixes E∗,
σΦ = Φ, and so there exists an E-linear isogeny α : A→ σA (10.2). The map

Vf (A) σ→ Vf (σA)
Vf (α)−1

→ Vf (A)

is E⊗Q Af -linear. As Vf (A) is free of rank one over E⊗Q Af = AE,f , this map must
be multiplication by an element of a ∈ A×

E,f . When the choice of α is changed,
then a is changed only by an element of E×, and so we have a well-defined map

σ �→ aE× : Gal(Qal/E∗) → A×
E,f/E

×,

which one checks to be a homomorphism. The map factors through Gal(E∗ab/E∗),
and so, when composed with the reciprocity map artE∗ , it gives a homomorphism

η : A×
E∗,f/E

∗× → A×
E,f/E

×.

We have to check that η is the homomorphism defined by NΦ∗ , but it can be
shown that this follows from the Shimura-Taniyama formula (Theorem 10.10). The
uniqueness follows from the faithfulness of the functor A �→ Vf (A). �

Remark 11.3. (a) If s is replaced by as, a ∈ E∗×, then α must be replaced by
α ◦NΦ∗(a)−1.

(b) The theorem is a statement about the E-isogeny class of (A, i). If β : (A, i) →
(B, j) is an E-linear isogeny, and α satisfies the conditions of the theorem for (A, i),
then (σβ) ◦ α ◦ β−1 satisfies the conditions for (B, j).

Aside 11.4. What happens in (11.2) when σ is not assumed to fix E∗? This
also is known, thanks to Deligne and Langlands. For a discussion of this, and much
else concerning complex multiplication, see my notes Milne 1979.
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12. Definition of canonical models

We attach to each Shimura datum (G,X) an algebraic number field E(G,X),
and we define the canonical model of Sh(G,X) to be an inverse system of varieties
over E(G,X) that is characterized by reciprocity laws at certain special points.

Models of varieties. Let k be a subfield of a field Ω, and let V be a variety
over Ω. A model of V over k (or a k-structure on V ) is a variety V0 over k
together with an isomorphism ϕ : V0Ω → V . We often omit the map ϕ and regard
a model as a variety V0 over k such that V0Ω = V .

Consider an affine variety V over C and a subfield k of C. An embedding V ↪→
An

C defines a model of V over k if the ideal I(V ) of polynomials zero on V is gener-
ated by polynomials in k[X1, . . . , Xn], because then I0 =df I(V ) ∩ k[X1, . . . , Xn] is
a radical ideal, k[X1, . . . , Xn]/I0 is an affine k-algebra, and V (I0) ⊂ An

k is a model
of V . Moreover, every model (V0, ϕ) arises in this way because every model of an
affine variety is affine. However, different embeddings in affine space will usually
give rise to different models. For example, the embeddings

A2
C

(x,y) � (x,y)←−−−−−−−−−−− V (X2 + Y 2 − 1)
(x,y) � (x,y/

√
2)−−−−−−−−−−−−−−→ A2

C

define the Q-structures

X2 + Y 2 = 1, X2 + 2Y 2 = 1

on the curve X2 + Y 2 = 1. These are not isomorphic.
Similar remarks apply to projective varieties.
In general, a variety over C will not have a model over a number field, and

when it does, it will have many. For example, an elliptic curve E over C has a
model over a number field if and only if its j-invariant j(E) is an algebraic number,
and if Y 2Z = X3 +aXZ2 + bZ3 is one model of E over a number field k (meaning,
a, b ∈ k), then Y 2Z = X3 + ac2XZ2 + bc3Z3 is a second, which is isomorphic to
the first only if c is a square in k.

The reflex field. For a reductive group G over Q and a subfield k of C, we
write C(k) for the set of G(k)-conjugacy classes of cocharacters of Gk defined over
k:

C(k) = G(k)\Hom(Gm, Gk).
A homomorphism k → k′ induces a map C(k) → C(k′); in particular, Aut(k′/k)
acts on C(k′).

Lemma 12.1. Assume G splits over k, so that it contains a split maximal torus
T , and let W be the Weyl group NG(k)(T )/CG(k)(T ) of T . Then the map

W\Hom(Gm, Tk) → G(k)\Hom(Gm, Gk)

is bijective.

Proof. As any two maximal split tori are conjugate (Springer 1998, 15.2.6),
the map is surjective. Let µ and µ′ be cocharacters of T that are conjugate by an
element of G(k), say, µ = ad(g) ◦ µ′ with g ∈ G(k). Then ad(g)(T ) and T are both
maximal split tori in the centralizer C of µ(Gm), which is a connected reductive
group (ibid., 15.3.2). Therefore, there exists a c ∈ C(k) such that ad(cg)(T ) = T .
Now cg normalizes T and ad(cg) ◦ µ′ = µ, which proves that µ and µ′ are in the
same W -orbit. �
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Let (G,X) be a Shimura datum. For each x ∈ X, we have a cocharacter µx of
GC:

µx(z) = hxC(z, 1).

A different x ∈ X will give a conjugate µx, and so X defines an element c(X) of
C(C). Neither Hom(Gm, TQal) nor W changes when we replace C with the algebraic
closure Qal of Q in C, and so the lemma shows that c(X) contains a µ defined over
Qal and that the G(Qal)-conjugacy class of µ is independent of the choice of µ.
This allows us to regard c(X) as an element of C(Qal).

Definition 12.2. The reflex (or dual) field E(G,X) is the field of definition
of c(X), i.e., it is the fixed field of the subgroup of Gal(Qal/Q) fixing c(X) as an
element of C(Qal) (or stabilizing c(X) as a subset of Hom(Gm, GQal)).

Note that the reflex field a subfield of C.

Remark 12.3. (a) Any subfield k of Qal splitting G contains E(G,X). This
follows from the lemma, because W\Hom(Gm, T ) does not change when we pass
from k to Qal. If follows that E(G,X) has finite degree over Q.

(b) If c(X) contains a µ defined over k, then k ⊃ E(G,X). Conversely, if
G is quasi-split over k and k ⊃ E(G,X), then c(X) contains a µ defined over k
(Kottwitz 1984, 1.1.3).

(c) Let (G,X)
i
↪→ (G′, X ′) be an inclusion of Shimura data. Suppose σ fixes

c(X), and let µ ∈ c(X). Then σµ = g · µ · g−1 for some g ∈ G(Qal), and so, for any
g′ ∈ G′(Qal),

σ(g′ · (i ◦ µ) · g′−1) = (σg′)(i(g)) · i ◦ µ · (i(g))−1(σg′)−1 ∈ c(X ′).

Hence σ fixes c(X ′), and we have shown that

E(G,X) ⊃ E(G′, X ′).

Example 12.4. (a) Let T be a torus over Q, and let h be a homomorphism
S → TR. Then E(T, h) is the field of definition of µh, i.e., the smallest subfield of
C over which µh is defined.

(b) Let (E,Φ) be a CM-type, and let T be the torus (Gm)E/Q, so that T (Q) =
E× and

T (R) = (E ⊗Q R)× ∼= (CΦ)×, (e⊗ r) �→ (ϕ(e) · r)ϕ∈Φ.

Define hΦ : C× → T (R) to be z �→ (z, . . . , z). The corresponding cocharacter µΦ is

C× → T (C) ∼= (CΦ)× × (CΦ)×

z �→ (z, . . . , z, 1, . . . , 1)

Therefore, σµΦ = µΦ if and only if σ stabilizes Φ, and so E(T, hΦ) is the reflex field
of (E,Φ) defined in (11.1).

(c) If (G,X) is a simple PEL datum of type (A) or (C), then E(G,X) is the
field generated over Q by {TrX(b) | b ∈ B} (Deligne 1971c, 6.1).

(d) Let (G,X) be the Shimura datum attached to a quaternion algebra B over
a totally real number field F , as in Example 5.24. Then c(X) is represented by the
cocharacter µ:

G(C) ≈ GL2(C)Ic × GL2(C)Inc

µ(z) = (1, . . . , 1) × (( z 0
0 1 ) , . . . , ( z 0

0 1 )) .
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Therefore, E(G,X) is the fixed field of the stabilizer in Gal(Qal/Q) of Inc ⊂ I. For
example, if Inc consists of a single element v (so we have a Shimura curve), then
E(G,X) = v(F ).

(e) When G is adjoint, E(G,X) can be described as follows. Choose a maximal
torus T in GQal and a base (αi)i∈I for the roots. Recall that the nodes of the dynkin
diagram ∆ of (G, T ) are indexed by I. The galois group Gal(Qal/Q) acts on ∆.
Each c ∈ C(Qal) contains a µ : Gm → GQal such that 〈αi, µ〉 ≥ 0 for all i (cf. 1.25),
and the map

c �→ (〈αi, µ〉)i∈I : C(Qal) → NI (copies of N indexed by I)

is a bijection. Therefore, E(G,X) is the fixed field of the subgroup of Gal(Qal/Q)
fixing (〈αi, µ〉)i∈I ∈ NI . It is either totally real or CM (Deligne 1971b, p139).

(f) Let (G,X) be a Shimura datum, and let G
ν→ T be the quotient of G by

Gder. From (G,X), we get Shimura data (Gad, Xad) and (T, h) with h = ν ◦ hx for
all x ∈ X. Then E(G,X) = E(Gad, Xad) · E(T, h) (Deligne 1971b, 3.8).

(g) It follows from (e) and (f) that if (G,X) satisfies SV6, then E(G,X) is
either a totally real field or a CM-field.

Special points.

Definition 12.5. A point x ∈ X is said to be special if there exists a torus
T ⊂ G such that hx(C×) ⊂ T (R). We then call (T, x), or (T, hx), a special pair
in (G,X). When the weight is rational and Z(G)◦ splits over a CM-field (i.e., SV4
and SV6 hold), the special points and special pairs are called CM points and CM
pairs.

Remark 12.6. Let T be a maximal torus of G such that T (R) fixes x, i.e., such
that ad(t) ◦ hx = hx for all t ∈ T (R). Because TR is its own centralizer in GR, this
implies that hx(C×) ⊂ T (R), and so x is special. Conversely, if (T, x) is special,
then T (R) fixes x.

Example 12.7. Let G = GL2 and let H±
1 = C � R. Then G(R) acts on H±

1 by(
a b
c d

)
z =

az + b

cz + d
.

Suppose that z ∈ C�R generates a quadratic imaginary extension E of Q. Using the
Q-basis {1, z} for E, we obtain an embedding E ↪→ M2(Q), and hence a maximal
subtorus (Gm)E/Q ⊂ G. As (Gm)E/Q(R) fixes z, this shows that z is special.
Conversely, if z ∈ H±

1 is special, then Q[z] is a field of degree 2 over Q.

The homomorphism rx. Let T be a torus over Q and let µ be a cocharacter of
T defined over a finite extension E of Q. For Q ∈ T (E), the element

∑
ρ : E→Qal ρ(Q)

of T (Qal) is stable under Gal(Qal/Q) and hence lies in T (Q). Let r(T, µ) be the
homomorphism (Gm)E/Q → T such that

(52) r(T, µ)(P ) =
∑

ρ : E→Qal

ρ(µ(P )), all P ∈ E×.

Let (T, x) ⊂ (G,X) be a special pair, and let E(x) be the field of definition of
µx. We define rx to be the homomorphism

(53) A×
E(x)

r(T,µ)−−−−→ T (AQ)
project−−−−→ T (AQ,f ).
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Let a ∈ A×
E(x), and write a = (a∞, af ) ∈ (E(x)⊗Q R)× × A×

E(x),f ; then

rx(a) =
∑

ρ : E→Qal

ρ(µx(af )).

Definition of a canonical model. For a special pair (T, x) ⊂ (G,X), we
have homomorphisms ((51),(53)),

artE(x) : A×
E(x) � Gal(E(x)ab/E(x))

rx : A×
E(x) → T (Af ).

Definition 12.8. Let (G,X) be a Shimura datum, and let K be a compact
open subgroup of G(Af ). A model MK(G,X) of ShK(G,X) over E(G,X) is
canonical if, for every special pair (T, x) ⊂ (G,X) and a ∈ G(Af ), [x, a]K has
coordinates in E(x)ab and

(54) σ[x, a]K = [x, rx(s)a]K ,

for all
σ ∈ Gal(E(x)ab/E(x))
s ∈ A×

E(x)

}
with artE(x)(s) = σ.

In other words, MK(G,X) is canonical if every automorphism σ of C fixing E(x)
acts on [x, a]K according to the rule (54) where s is any idèle such that artE(x)(s) =
σ|E(x)ab.

Remark 12.9. Let (T1, x) and (T2, x) be special pairs in (G,X) (with the same
x). Then (T1∩T2, x) is also a special pair, and if the condition in (54) holds for one
of (T1 ∩ T2, x), (T1, x), or (T2, x), then it holds for all three. Therefore, in stating
the definition, we could have considered only special pairs (T, x) with, for example,
T minimal among the tori such that TR contains hx(S).

Definition 12.10. Let (G,X) be a Shimura datum.
(a) A model of Sh(G,X) over a subfield k of C is an inverse system M(G,X) =

(MK(G,X))K of varieties over k endowed with a right action of G(Af ) such that
M(G,X)C = Sh(G,X) (with its G(Af ) action).

(b) A model M(G,X) of Sh(G,X) over E(G,X) is canonical if each MK(G,X)
is canonical.

Examples: Shimura varieties defined by tori. For a field k of charac-
teristic zero, the functor V �→ V (kal) is an equivalence from the category of zero-
dimensional varieties over k to the category of finite sets endowed with a continuous
action of Gal(kal/k). Continuous here just means that the action factors through
Gal(L/k) for some finite galois extension L of k contained in kal. In particular, to
give a zero-dimensional variety over an algebraically closed field of characteristic
zero is just to give a finite set. Thus, a zero-dimensional variety over C can be
regarded as a zero-dimensional variety over Qal, and to give a model of V over a
number field E amounts to giving a continuous action of Gal(Qal/Q) on V (C).

Tori. Let T be a torus over Q, and let h be a homomorphism S → TR. Then
(T, h) is a Shimura datum, and E =df E(T, h) is the field of definition of µh. In
this case

ShK(T, h) = T (Q)\{h} × T (Af )/K
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is a finite set (see 5.22), and (54) defines a continuous action of Gal(Eab/E) on
ShK(T, h). This action defines a model of ShK(T, h) over E, which, by definition,
is canonical.

CM-tori. Let (E,Φ) be a CM-type, and let (T, hΦ) be the Shimura pair defined
in (12.4b). Then E(T, hΦ) = E∗, and r(T, µΦ) : (Gm)E∗/Q → (Gm)E/Q is the reflex
norm NΦ∗ .

Let K be a compact open subgroup of T (Af ). The Shimura variety ShK(T, hΦ)
classifies isomorphism classes of triples (A, i, ηK) in which (A, i) is an abelian variety
over C of CM-type (E,Φ) and η is an E⊗Af -linear isomorphism V (Af ) → Vf (A).
An isomorphism (A, i, ηK) → (A′, i′, η′K) is an E-linear isomorphism A → A′ in
AV0(C) sending ηK to η′K. To see this, let V be a one-dimensional E-vector space.
The action of E on V realizes T as a subtorus of GL(V ). If (A, i) is of CM-type
(E,Φ), then there exists an E-homomorphism a : H1(A,Q) → V carrying hA to hΦ

(see 10.2). Now the isomorphism

V (Af )
η−→ Vf (A) a−→ V (Af )

is E⊗Af -linear, and hence is multiplication by an element g of (E⊗Af )× = TE(Af ).
The map (A, i, η) �→ [g] gives the bijection.

In (10.3) and its proof, we showed that the functor (A, i) �→ (AC, iC) defines
an equivalence from the category of abelian varieties over Qal of CM-type (E,Φ)
to the similar category over C (the abelian varieties are to be regarded as objects
of AV0). Therefore, ShK(TE , hΦ) classifies isomorphism classes of triples (A, i, ηK)
where (A, i) is now an abelian variety over Qal of CM-type (E,Φ).

The group Gal(Qal/E∗) acts on the set MK of such triples: let (A, i, η) ∈MK ;
for σ ∈ Gal(Qal/E∗), define σ(A, i, ηK) to be the triple (σA, σi, σηK) where ση is
the composite

(55) V (Af )
η−→ Vf (A) σ−→ Vf (σA);

because σ fixes E∗, (σA, σi) is again of CM-type (E,Φ).
The group Gal(Qal/E∗) acts on ShK(TE , hΦ) by the rule (54):

σ[g] = [rhΦ(s)g]K , artE∗(s) = σ|E∗.

Proposition 12.11. The map (A, i, η) �→ [a ◦ η]K : MK → ShK(TE , hΦ) com-
mutes with the actions of Gal(Qal/E∗).

Proof. Let (A, i, η) ∈ MK map to [a ◦ η]K for an appropriate isomorphism
a : H1(A,Q) → V , and let σ ∈ Gal(Qal/E∗). According to the main theorem of
complex multiplication (11.2), there exists an isomorphism α : A → σA such that
α(NΦ∗(s) · x) = σx for x ∈ Vf (A), where s ∈ AE∗ is such that artE∗(s) = σ|E∗.
Then σ(A, i, η) �→ [a ◦H1(α)=1 ◦ σ ◦ η]K . But

Vf (α)=1 ◦ σ = NΦ∗(s) = rhΦ(s),

and so
[a ◦H1(α)−1 ◦ σ ◦ η]K = [rhΦ(s) · (a ◦ η)]K

as required. �

Notes. Our definitions coincide with those of Deligne 1979, except that we
have corrected a sign error there (it is necessary to delete “inverse” in ibid. 2.2.3,
p269, line 10, and in 2.6.3, p284, line 21).
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13. Uniqueness of canonical models

In this section, I sketch a proof that a Shimura variety has at most one canonical
model (up to a unique isomorphism).

Extension of the base field.

Proposition 13.1. Let k be a subfield of an algebraically closed field Ω of
characteristic zero. If V and W are varieties over k, then a regular map VΩ →WΩ

commuting with the actions of Aut(Ω/k) on V (Ω) and W (Ω) arises from a unique
regular map V →W . In other words, the functor

V �→ VΩ + action of Aut(Ω/k) on V (Ω)

is fully faithful.

Proof. See AG 16.9. [The first step is to show that the ΩAut(Ω/k) = k, which
requires Zorn’s lemma in general.] �

Corollary 13.2. A variety V over k is uniquely determined (up to a unique
isomorphism) by VΩ and the action of Aut(Ω/k) on V (Ω).

Uniqueness of canonical models. Let (G,X) be a Shimura datum.

Lemma 13.3. There exists a special point in X.

Proof (sketch). Let x ∈ X, and let T be a maximal torus in GR containing
hx(C). Then T is the centralizer of any regular element λ of Lie(T ). If λ0 ∈ Lie(G)
is chosen sufficiently close to λ, then the centralizer T0 of λ0 in G will be a maximal
torus in G (Borel 1991, 18.1, 18.2), and T0 will become conjugate17 to T over R:

T0R = gTg−1, some g ∈ G(R).

Now hgx(S) =df ghg
−1(S) ⊂ T0R, and so gx is special. �

Lemma 13.4 (Key Lemma). For any finite extension L of E(G,X) in C, there
exists a special point x0 such that E(x0) is linearly disjoint from L.

Proof. See Deligne 1971b, 5.1. [The basic idea is the same as that of the proof
of 13.3 above, but requires the Hilbert irreducibility theorem.] �

If G = GL2, the lemma just says that, for any finite extension L of Q in C,
there exists a quadratic imaginary extension E over Q linearly disjoint from L.
This is obvious — for example, take E = Q[

√−p] for any prime p unramified in L.

Lemma 13.5. For any x ∈ X, {[x, a]K | a ∈ G(Af )} is dense in ShK(G,X) (in
the zariski topology).

Proof. Write

ShK(G,X)(C) = G(Q)\X × (G(Af )/K)

and note that the real approximation theorem (5.4) implies that G(Q)x is dense in
X for the complex topology, and, a fortiori, the zariski topology. �

17Any element sufficiently close to a regular element will also be regular, which implies that
T0 is a maximal torus. Not all maximal tori in G/R are conjugate — rather, they fall into several

connected components, from which the second statement can be deduced.
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Let g ∈ G(Af ), and let K and K ′ be compact open subgroups such that
K ′ ⊃ g−1Kg. Then the map T (g)

[x, a]K �→ [x, ag]K′ : ShK(C) → ShK′(C)

is well-defined.

Theorem 13.6. If ShK (G,X) and ShK′ (G,X) have canonical models over
E(G,X), then T (g) is defined over E(G,X).

Proof. After (13.1), it suffices to show that σ(T (g)) = T (g) for all automor-
phisms σ of C fixing E(G,X). Let x0 ∈ X be special. Then E(x0) ⊃ E(G,X) (see
12.3b), and we first show that σ(T (g)) = T (g) for those σ’s fixing E(x0). Choose
an s ∈ A×

E0
such that art(s) = σ|E(x0)ab. For a ∈ G(Af ),

[x0, a]K
T (g) � [x0, ag]K′

[x0, rx0(s)a]K

σ
�

T (g)� [x0, rx0(s)ag]K′

σ
�

commutes. Thus, T (g) and σ(T (g)) agree on {[x0, a] | a ∈ G(Af )}, and hence on
all of ShK by Lemma 13.5. We have shown that σ(T (g)) = T (g) for all σ fixing
the reflex field of any special point, but Lemma 13.4 shows that these σ’s generate
Aut(C/E(G,X)). �

Theorem 13.7. (a) A canonical model of ShK(G,X) (if it exists) is unique up
to a unique isomorphism.

(b) If, for all compact open subgroups K of G(Af ), ShK(G,X) has a canonical
model, then so also does Sh(G,X), and it is unique up to a unique isomorphism.

Proof. (a) Take K = K′ and g = 1 in (13.6).
(b) Obvious from (13.6). �
In more detail, let (MK(G,X), ϕ) and (M ′

K(G,X), ϕ′) be canonical models of
ShK(G,X) over E(G,X). Then the composite

MK(G,X)C
ϕ−→ ShK(G,X)

ϕ′−1

−→ M ′
K(G,X)C

is fixed by all automorphisms of C fixing E(G,X), and is therefore defined over
E(G,X).

Remark 13.8. In fact, one can prove more. Let a : (G,X) → (G′, X ′) be a mor-
phism of Shimura data, and suppose Sh(G,X) and Sh(G′, X ′) have canonical mod-
els M(G,X) and M(G′, X ′). Then the morphism Sh(a) : Sh(G,X) → Sh(G′, X ′)
is defined over E(G,X) · E(G′, X ′).

The galois action on the connected components. A canonical model for
ShK(G,X) will define an action of Aut(C/E(G,X)) on the set π0(ShK(G,X)). In
the case that Gder is simply connected, we saw in §5 that

π0(ShK(G,X)) ∼= T (Q)\Y × T (Af )/ν(K)

where ν : G→ T is the quotient of G by Gder and Y is the quotient of T (R) by the
image T (R)† of Z(R) in T (R). Let h = ν ◦ hx for any x ∈ X. Then µh is certainly
defined over E(G,X). Therefore, it defines a homomorphism

r = r(T, µh) : A×
E(G,X) → T (AQ).
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The action of σ ∈ Aut(C/E(G,X)) on π0(ShK(G,X)) can be described as fol-
lows: let s ∈ A×

E(G,X) be such that artE(G,X)(s) = σ|E(G,X)ab, and let r(s) =
(r(s)∞, r(s)f ) ∈ T (R)× T (Af ); then

(56) σ[y, a]K = [r(s)∞y, r(s)f · a]K , for all y ∈ Y, a ∈ T (Af ).

When we use (56) to define the notion a canonical model of a zero-dimensional
Shimura variety, we can say that π0 of the canonical model of ShK(G,X) is the
canonical model of Sh(T, Y ).

If σ fixes a special x0 mapping to y, then (56) follows from (54), and a slight
improvement of (13.4) shows that such σ’s generate Aut(C/E(G,X)).

Notes. The proof of uniqueness follows Deligne 1971b, §3, except that I am
more unscrupulous in my use of the Zorn’s lemma.

14. Existence of canonical models

Canonical models are known to exist for all Shimura varieties. In this section,
I explain some of the ideas that go into the proof.

Descent of the base field. Let k be a subfield of an algebraically closed field
Ω of characteristic zero, and let A = Aut(Ω/k). In (13.1) we observed that the
functor

{varieties over k} → {varieties V over Ω + action of A on V (Ω)},

is fully faithful. In this subsection, we find conditions on a pair (V, ·) that ensure
that it is in the essential image of the functor, i.e., that it arises from a variety over
k. We begin by listing two necessary conditions.

The regularity condition. Obviously, the action · should recognize that V (Ω) is
not just a set, but rather the set of points of an algebraic variety. Recall that, for
σ ∈ A, σV is obtained from V by applying σ to the coefficients of the polynomials
defining V , and σP ∈ (σV )(Ω) is obtained from P ∈ V (Ω) by applying σ to the
coordinates of P .

Definition 14.1. An action · of A on V (Ω) is regular if the map

σP �→ σ · P : (σV )(Ω) → V (Ω)

is a regular isomorphism for all σ.

A priori, this is only a map of sets. The condition requires that it be induced
by a regular map fσ : σV → V . If (V, ·) arises from a variety over k, then σV = V
and σP = σ · P , and so the condition is clearly necessary.

Remark 14.2. (a) When regular, the maps fσ are automatically isomorphisms
provided V is nonsingular.

(b) The maps fσ satisfy the cocycle condition fσ ◦σfτ = fστ . Conversely, every
family (fσ)σ∈A of regular isomorphisms satisfying the cocycle condition arises from
an action of A satisfying the regularity condition. Such families (fσ)σ∈A are called
descent data, and normally one expresses descent theory in terms of them rather
than actions of A.
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The continuity condition.

Definition 14.3. An action · of A on V (Ω) is continuous if there exists a
subfield L of Ω finitely generated over k and a model V0 of V over L such that the
action of Aut(Ω/L) on V (Ω) defined by V0 is ·.

More precisely, the condition requires that there exist a model (V0, ϕ) of V over
L such that ϕ(σP ) = σ · ϕ(P ) for all P ∈ V0(Ω) and σ ∈ Aut(C/L). Clearly this
condition is necessary.

Proposition 14.4. A regular action · of A on V (Ω) is continuous if there exist
points P1, . . . , Pn ∈ V (Ω) such that

(a) the only automorphism of V fixing every Pi is the identity map;
(b) there exists a subfield L of Ω finitely generated over k such that σ ·Pi = Pi

for all σ fixing L.

Proof. Let (V0, ϕ) be a model of V over a subfield L of Ω finitely generated
over k. After possibly enlarging L, we may assume that ϕ−1(Pi) ∈ V0(L) and that
σ · Pi = Pi for all σ fixing L (because of (b)). For such a σ, fσ and ϕ ◦ (σϕ)−1 are
regular maps σV → V sending σPi to Pi for each i, and so they are equal (because
of (a)). Hence

ϕ(σP ) = fσ((σϕ)(σP )) = fσ(σ(ϕ(P ))) = σ · ϕ(P )

for all P ∈ V0(Ω), and so the action of Aut(C/L) on V (Ω) defined by (V0, ϕ) is
·. �

A sufficient condition for descent.

Theorem 14.5. If V is quasiprojective and · is regular and continuous, then
(V, ·) arises from a variety over k.

Proof. This is a restatement of the results of Weil 1956 (see Milne 1999,
1.1). �

Corollary 14.6. The pair (V, ·) arises from a variety over k if
(a) V is quasiprojective,
(b) · is regular, and
(c) there exists points P1, . . . , Pn in V (Ω) satisfying the conditions (a) and (b)

of (14.4).

Proof. Immediate from (14.5) and (14.6). �
For an elementary proof of the corollary, not using the results of Weil 1956, see

AG 16.33.

Review of local systems and families of abelian varieties. Let S be a
topological manifold. A local system of Z-modules on S is a sheaf F on S that
is locally isomorphic to the constant sheaf Zn (n ∈ N).

Let F be a local system of Z-modules on S, and let o ∈ S. There is an action
of π1(S, o) on Fo that can be described as follows: let γ : [0, 1] → S be a loop
at o; because [0, 1] is simply connected, there is an isomorphism from γ∗F to the
constant sheaf defined by a group M say; when we choose such an isomorphism,
we obtain isomorphisms (γ∗F )i → M for all i ∈ [0, 1]; now (γ∗F )i = Fγ(i) and
γ(0) = o = γ(1), and so we get two isomorphisms Fo → M ; these isomorphisms
differ by an automorphism of Fo, which depends only the homotopy class of γ.
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Proposition 14.7. If S is connected, then F �→ (Fo, ρo) defines an equivalence
from the category of local systems of Z-modules on S to the category of finitely
generated Z-modules endowed with an action of π1(S, o).

Proof. This is well known; cf. Deligne 1970, I 1. �

Let F be a local system of Z-modules on S. Let π : S̃ → S be the universal
covering space of S, and choose a point o ∈ S̃. We can identifiy π∗F with the
constant sheaf defined by Fπ(o). Suppose that we have a hodge structure hs on
Fs ⊗ R for every s ∈ S. We say that F , together with the hodge structures, is a
variation of integral hodge structures on S if s �→ hπ(s) (hodge structure on
Fπ(o)⊗R) is a variation of hodge structures on S̃. A polarization of a variation of
hodge structures (F, (hs)) is a pairing ψ : F ×F → Z such that ψs is a polarization
of (Fs, hs) for every s.

Let V be a nonsingular algebraic variety over C. A family of abelian vari-
eties over V is a regular map f : A → V of nonsingular varieties plus a regular
multiplication A ×V A → A over V such that the fibres of f are abelian varieties
of constant dimension (in a different language, A is an abelian scheme over V ).

Theorem 14.8. Let V be a nonsingular variety over C. There is an equivalence
(A, f) �→ (R1f∗Z)∨ from the category of families of abelian varieties over V to the
category of polarizable integral variations of hodge structures of type (−1, 0), (0,−1)
on S.

This is a generalization of Riemann’s theorem (6.8) — see Deligne 1971a, 4.4.3.

The Siegel modular variety. Let (V, ψ) be a symplectic space over Q, and
let (G,X) = (GSp(ψ), X(ψ)) be the associated Shimura datum (§6). We also
denote Sp(ψ) by S. We abbreviate ShK(G,X) to ShK .

The reflex field. Consider the set of pairs (L,L′) of complementary lagrangians
in V (C):

(57) V (C) = L⊕ L′, L, L′ totally isotropic.

Every symplectic basis for V (C) defines such a pair, and every such pair arises
from a symplectic basis. Therefore, G(C) (even S(C)) acts transitively on the
set of pairs (L,L′) of complementary lagrangians. For such a pair, let µ(L,L′) be
the homomorphism Gm → GL(V ) such that µ(z) acts as z on L and as 1 on L′.
Then, µ(L,L′) takes values in GC, and as (L,L′) runs through the set of pairs of
complementary lagrangians in V (C), µ(L,L′) runs through c(X) (notation as on
p343). Since V itself has symplectic bases, there exist pairs of complementary
lagrangians in V . For such a pair, µ(L,L′) is defined over Q, and so c(X) has a
representative defined over Q. This shows that the reflex field E(G,X) = Q.

The special points. Let K be a compact open subgroup of G(Af ), and, as in
§6, let MK be the set of triples (A, s, ηK) in which A is an abelian variety over C,
s is an alternating form on H1(A,Q) such that ±s is a polarization, and η is an
isomorphism V (Af ) → Vf (A) sending ψ to a multiple of s. Recall (6.11) that there
is a natural map MK → ShK(C) whose fibres are the isomorphism classes.

In this subsubsection we answer the question: which triples (A, s, ηK) corre-
spond to points [x, a] with x special?
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Definition 14.9. A CM-algebra is a finite product of CM-fields. An abelian
variety A over C is CM if there exists a CM-algebra E and a homomorphism
E → End0(A) such that H1(A,Q) is a free E-module of rank 1.

Let E → End0(A) be as in the definition, and let E be a product of CM-fields
E1, . . . , Em. Then A is isogenous to a product of abelian varieties A1 × · · · × Am

with Ai of CM-type (Ei,Φi) for some Φi.
Recall that, for an abelian variety A over C, there is a homomorphism hA : C× →

GL(H1(A,R)) describing the natural complex structure on H1(A,R) (see §6).

Proposition 14.10. An abelian variety A over C is CM if and only if there
exists a torus T ⊂ GL(H1(A,Q)) such that hA(C×) ⊂ T (R).

Proof. See Mumford 1969, §2, or Deligne 1982, §3. �

Corollary 14.11. If (A, s, ηK) �→ [x, a]K under MK → ShK(G,X), then A
is of CM-type if and only if x is special.

Proof. Recall that if (A, s, ηK) �→ [x, a]K , then there exists an isomorphism
H1(A,Q) → V sending hA to hx. Thus, the statement follows from the proposition.

�

A criterion to be canonical. We now define an action of Aut(C) on MK . Let
(A, s, ηK) ∈MK . Then s ∈ H2(A,Q) is a hodge tensor, and therefore equals r[D]
for some r ∈ Q× and divisor D on A (see 7.5). We let σs = r[σD]. The condition
that ±s be positive definite is equivalent to an algebro-geometric condition on D
(Mumford 1970, pp29–30) which is preserved by σ. Therefore, ±σs is a polarization
for H1(A,Q). We define σ(A, s, ηK) to be (σA, σs, σηK) with ση as in (55).

Proposition 14.12. Suppose that ShK has a model MK over Q for which the
map

MK →MK(C)

commutes with the actions of Aut(C). Then MK is canonical.

Proof. For a special point [x, a]K corresponding to an abelian variety A with
complex multiplication by a field E, the condition (54) is an immediate consequence
of the main theorem of complex multiplication (cf. 12.11). For more general special
points, it also follows from the main theorem of complex multiplication, but not
quite so immediately. �

Outline of the proof of the existence of a canonical model. Since the action of
Aut(C) on MK preserves the isomorphism classes, from the map MK → ShK(C),
we get an action of Aut(C) on ShK(C). If this action satisfies the conditions of hy-
potheses of Corollary 14.6, then ShK(G,X) has a model over Q, which Proposition
14.12 will show to be canonical.

Condition (a) of (14.6). We know that ShK(G,X) is quasi-projective from
(3.12).

Condition (b) of (14.6). We have to show that the map

σP �→ σ · P : σ ShK(C)
fσ−→ ShK(C)

is regular. It suffices to do this for K small, because if K′ ⊃ K, then ShK′(G,X)
is a quotient of ShK(G,X).
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Recall (5.17) that π0(ShK) ∼= Q>0\A×
f /ν(K). Let ε ∈ Q>0\A×

f /ν(K), and
let Shε

K be the corresponding connected component of ShK . Then Shε
K = Γε\X+

where Γε = G(Q) ∩Kε for some conjugate Kε of K (see 5.17, 5.23)
Let (A, s, ηK) ∈ MK and choose an isomorphism a : H1(A,Q) → V sending s

to a multiple of ψ. Then the image of (A, s, ηK) in Q>0\A×
f /ν(K) is represented

by ν(a ◦ η) where a ◦ η : V (Af ) → V (Af ) is to be regarded as an element of G(Af ).
Write Mε

K for the set of triples with ν(a ◦ η) ∈ ε. Define Hε
K similarly.

The map MK → Q>0\A×
f /ν(K) is equivariant for the action of Aut(C) when

we let Aut(C) act on Q>0\A×
f /ν(K) through the cyclotomic character, i.e.,

σ[α] = [χ(σ)α] where χ(σ) ∈ Ẑ×, ζχ(σ) = σζ, ζ a root of 1.

Write X+(Γε) for Γε\X+ regarded as an algebraic variety, and let σ(X+(Γε))
be the algebraic variety obtained from X+(Γε) by change of base field σ : C → C.
Consider the diagram:

X+ α←−−−− U; ;
X+(Γσε)

fσ←−−−− σ(X+(Γε))

Mσε
K

σ←−−−− Mε
K

The map σ sends (A, . . .) to σ(A, . . .), and the map fσ is the map of sets σP �→ σ ·P .
The two maps are compatible. The map U → σ(X+(Γε)) is the universal covering
space of the complex manifold (σ(X+(Γε)))an.

Fix a lattice Λ in V that is stable under the action of Γε. From the action of Γε

on Λ, we get a local system of Z-modules M on X+(Γε) (see 14.7), which, in fact,
is a polarized integral variation of hodge structures F . According to Theorem 14.8,
this variation of hodge structures arises from a polarized family of abelian varieties
f : A → X+(Γε). As f is a regular map of algebraic varieties, we can apply σ to
it, and obtain a polarized family of abelian varieties σf : σA → σ(X+(Γε)). Then
(R1(σf)∗Z)∨ is a polarized integral hodge structure on σ(X+(Γε)). On pulling this
back to U and tensoring with Q, we obtain a variation of polarized rational hodge
structures over the space U , whose underlying local system can identified with the
constant sheaf defined by V . When this identification is done correctly, each u ∈ U
defines a complex structure on V that is positive for ψ, i.e., a point x of X+, and
the map u �→ x makes the diagram commute. Now (2.15) shows that u �→ x is
holomorphic. It follows that fσ is holomorphic, and Borel’s theorem (3.14) shows
that it is regular.

Condition (c) of (14.6). For any x ∈ X, the set {[x, a]K | a ∈ G(Af )} has the
property that only the identity automorphism of ShK(G,X) fixes its elements (see
13.5). But, there are only finitely many automorphisms of ShK(G,X) (see 3.21),
and so a finite sequence of points [x, a1], . . . , [x, an] will have this property. When
we choose x to be special, the main theorem of complex multiplication (11.2) tells
us that σ · [x, ai] = [x, ai] for all σ fixing some fixed finite extension of E(x), and
so condition (c) holds for these points.

Simple PEL Shimura varieties of type A or C. The proof is similar to
the Siegel case. Here ShK(G,X) classifies quadruples (A, i, s, ηK) satisfying certain
conditions. One checks that if σ fixes the reflex field E(G,X), then σ(A, i, s, ηK)
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lies in the family again (see 12.7). Again the special points correspond to CM
abelian varieties, and the Shimura-Taniyama theorem shows that, if ShK(G,X) has
a model MK over E(G,X) for which the action of Aut(C/E(G,X)) on MK(C) =
ShK(G,X)(C) agrees with its action on the quadruples, then it is canonical.

Shimura varieties of hodge type. In this case, ShK(G,X) classifies isomor-
phism classes of triples (A, (si)0≤i≤n, ηK) where the si are hodge tensors. A proof
similar to that in the Siegel case will apply once we have defined σs for s a hodge
tensor on an abelian variety.

If the Hodge conjecture is true, then s is the cohomology class of some algebraic
cycle Z on A (i.e., formal Q-linear combination of integral subvarieties of A). Then
we could define σs to be the cohomology class of σZ on σA. Unfortunately, a proof
of the Hodge conjecture seems remote, even for abelian varieties. Deligne succeeded
in defining σs without the Hodge conjecture. It is important to note that there is no
natural map between Hn(A,Q) and Hn(σA,Q) (unless σ is continuous, and hence
is the identity or complex conjugation). However, there is a natural isomorphism
σ : Hn(A,Af ) → Hn(σA,Af ) coming from the identification

Hn(A,Af ) ∼= Hom(
n∧
Λ,Af ) ∼= Hom(

n∧
(Λ⊗ Af ),Af ) ∼= Hom(

n∧
VfA,Af )

(or, equivalently, from identifying Hn(A,Af ) with étale cohomology).

Theorem 14.13. Let s be a hodge tensor on an abelian variety A over C, and
let sAf

be the image of s the Af -cohomology. For any automorphism σ of C, there
exists a hodge tensor σs on σA (necessarily unique) such that (σs)Af

= σ(sAf
).

Proof. This is the main theorem of Deligne 1982. [Interestingly, the theory
of locally symmetric varieties is used in the proof.] �

As an alternative to using Deligne’s theorem, one can apply the following result
(note, however, that the above approach has the advantage of giving a description
of the points of the canonical model with coordinates in any field containing the
reflex field).

Proposition 14.14. Let (G,X) ↪→ (G′, X ′) be an inclusion of Shimura data;
if Sh(G′, X ′) has canonical model, so also does Sh(G,X).

Proof. This follows easily from 5.16. �

Shimura varieties of abelian type. Deligne (1979, 2.7.10) defines the notion
of a canonical model of a connected Shimura variety Sh◦(G,X). This is an inverse
system of connected varieties over Qal endowed with the action of a large group (a
mixture of a galois group and an adèlic group). A key result is the following.

Theorem 14.15. Let (G,X) be a Shimura datum and let X+ be a connected
component of X. Then Sh(G,X) has a canonical model if and only if Sh◦(Gder, X+)
has a canonical model.

Proof. See Deligne 1979, 2.7.13. �

Thus, for example, if (G1, X1) and (G2, X2) are Shimura data such that
(Gder

1 , X+
1 ) ≈ (G

der

2 , X+
2 ), and one of Sh (G1, X1) or Sh(G2, X2) has a canonical

model, then they both do.
The next result is more obvious (ibid. 2.7.11).
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Proposition 14.16. (a) Let (Gi, Xi) (1 ≤ i ≤ m) be connected Shimura data.
If each connected Shimura variety Sh◦(Gi, Xi) has a canonical model M◦(Gi, Xi),
then

∏
iM

◦(Gi, Xi) is a canonical model for Sh◦(
∏

iGi,
∏

iXi).
(b) Let (G1, X1) → (G2, X2) be an isogeny of connected Shimura data. If

Sh◦(G1, X1) has a canonical model, then so also does Sh◦(G2, X2).

More precisely, in case (b) of the theorem, let Gad(Q)+1 and Gad(Q)+2 be
the completions of Gad(Q)+ for the topologies defined by the images of congru-
ence subgroups in G1(Q)+ and G2(Q)+ respectively; then the canonical model for
Sh◦(G2, X2) is the quotient of the canonical model for Sh◦(G2, X2) by the kernel
of Gad(Q)+1 → Gad(Q)+2 .

We can now prove the existence of canonical models for all Shimura varieties
of abelian type. For a connected Shimura variety of primitive type, the existence
follows from (14.15) and the existence of canonical models for Shimura varieties of
hodge type (see above). Now (14.16) proves the existence for all connected Shimura
varieties of abelian type, and (14.16) proves the existence for all Shimura varieties
of abelian type.

Remark 14.17. The above proof is only an existence proof: it gives little in-
formation about the canonical model. For the Shimura varieties it treats, Theorem
9.4 can be used to construct canonical models and give a description of the points
of the canonical model in any field containing the reflex field.

General Shimura varieties. There is an approach that proves the existence
of canonical models for all Shimura varieties, and is largely independent of that
discussed above except that it assumes the existence18 of canonical models for
Shimura varieties of type A1 (and it uses (14.15) and (14.16)).

The essential idea is the following. Let (G,X) be a connected Shimura datum
with G the group over Q obtained from a simple group H over a totally real field
F by restriction of scalars.

Assume first that H splits over a CM-field of degree 2 over F . Then there exist
many homomorphisms Hi → H from groups of type A1 into H. From this, we get
many inclusions

Sh◦(Gi, Xi) ↪→ Sh◦(G,X)
where Gi is the restriction of scalars of Hi. From this, and the existence of canonical
models for the Sh◦(Gi, Xi), it is possible to prove the existence of the canonical
model for Sh◦(G,X).

In the general case, there will be a totally real field F ′ containing F and such
that HF ′ splits over a CM-field of degree 2 over F . Let G∗ be the restriction of
scalars of HF ′ . Then there is an inclusion (G,X) ↪→ (G∗, X∗) of connected Shimura
data, and the existence of a canonical model for Sh◦(G∗, X∗) implies the existence
of a canonical model for Sh◦(G,X) (cf. 14.14).

For the details, see Borovoi 1984, 1987 and Milne 1983.

Final remark: rigidity. One might expect that if one modified the condition
(54), for example, by replacing rx(s) with rx(s)−1, then one would arrive at a
modified notion of canonical model, and the same theorems would hold. This is
not true: the condition (54) is the only one for which canonical models can exist.

18In fact, the approach assumes a stronger statement for Shimura varieties of type A1, namely,
Langlands’s conjugation conjecture, and it proves Langlands’s conjecture for all Shimura varieties.
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In fact, if G is adjoint, then the Shimura variety Sh(G,X) has no automorphisms
commuting with the action of G(Af ) (Milne 1983, 2.7), from which it follows that
the canonical model is the only model of Sh(G,X) over E(G,X), and we know that
for the canonical model the reciprocity law at the special points is given by (54).

Notes. The concept of a canonical model characterized by reciprocity laws
at special points is due to Shimura, and the existence of such models was proved
for major families by Shimura, Miyake, and Shih. Shimura recognized that to
have a canonical model it is necessary to have a reductive group, but for him the
semisimple group was paramount: in our language, given a connected Shimura
datum (H,Y ), he asked for Shimura datum (G,X) such that (Gder, X+) = (H,Y )
and Sh(G,X) has a canonical model (see his talk at the 1970 International Congress
Shimura 1971). In his Bourbaki report on Shimura’s work (1971b), Deligne placed
the emphasis on reductive groups, thereby enlarging the scope of the field.

15. Abelian varieties over finite fields

For each Shimura datum (G,X), we now have a canonical model Sh(G,X)
of the Shimura variety over its reflex field E(G,X). In order, for example, to
understand the zeta function of the Shimura variety or the galois representations
occurring in its cohomology, we need to understand the points on the canonical
model when we reduce it modulo a prime of E(G,X). After everything we have
discussed, it would be natural to do this in terms of abelian varieties (or motives)
over the finite field plus additional structure. However, such a description will not
be immediately useful — what we want is something more combinatorial, which
can be plugged into the trace formula. The idea of Langlands and Rapoport (1987)
is to give an elementary definition of a category of “fake” abelian varieties (better,
abelian motives) over the algebraic closure of a finite field that looks just like the
true category, and to describe the points in terms of it. In this section, I explain
how to define such a category.

Semisimple categories. An object of an abelian category M is simple if it
has no proper nonzero subobjects. Let F be a field. By an F -category, I mean an
additive category in which the Hom-sets Hom(x, y) are finite dimensional F -vector
spaces and composition is F -bilinear. An F -category M is said to be semisimple
if it is abelian and every object is a direct sum (necessarily finite) of simple objects.

If e is simple, then a nonzero morphism e → e is an isomorphism. Therefore,
End(e) is a division algebra over F . Moreover, End(re) ∼= Mr(End(e)). Here re
denotes the direct sum of r copies of e. If e′ is a second simple object, then either
e ≈ e′ or Hom(e, e′) = 0. Therefore, if x =

∑
riei (ri ≥ 0) and y =

∑
siei (si ≥ 0)

are two objects of M expressed as sums of copies of simple objects ei with ei �≈ ej

for i �= j, then
Hom(x, y) =

∏
Msi,ri

(End(ei)).

Thus, the category M is described up to equivalence by:

(a) the set Σ(M) of isomorphism classes of simple objects in M;
(b) for each σ ∈ Σ, the isomorphism class [Dσ] of the endomorphism algebra

Dσ of a representative of σ.

We call (Σ(M), ([Dσ])σ∈Σ(M)) the numerical invariants of M.
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Division algebras; the Brauer group. We shall need to understand what
the set of isomorphism classes of division algebras over a field F look like.

Recall the definitions: by an F -algebra, we mean a ring A containing F in
its centre and finite dimensional as F -vector space; if F equals the centre of A,
then A is called a central F -algebra; a division algebra is an algebra in which
every nonzero element has an inverse; an F -algebra A is simple if it contains no
two-sided ideals other than 0 and A. By a theorem of Wedderburn, the simple
F -algebras are the matrix algebras over division F -algebras.

Example 15.1. (a) If F is algebraically closed or finite, then every central
division algebra is isomorphic to F .

(b) Every central division algebra over R is isomorphic either to R or to the
(usual) quaternion algebra:

H = C⊕ Cj, j2 = −1, jzj−1 = z (z ∈ C).

(c) Let F be a p-adic field (finite extension of Qp), and let π be a prime
element of OF . Let L be an unramified extension field of F of degree n,
and let σ denote the Frobenius generator of Gal(L/F ) — σ acts as x �→ xp

on the residue field. For each i, 1 ≤ i ≤ n, define

Di,n = L⊕ La⊕ · · · ⊕ Lan−1, an = πi, aza−1 = σ(z) (z ∈ L).

Then Di,n is a central simple algebra over F , which is a division algebra
if and only if gcd(i, n) = 1. Every central division algebra over F is
isomorphic to Di,n for exactly one relatively prime pair (i, n) (CFT, IV
4.2).

If B and B′ are central simple F -algebras, then so also is B⊗F B′ (CFT, 2.8).
If D and D′ are central division algebras, then Wedderburn’s theorem shows that
D ⊗F D′ ≈ Mr(D′′) for some r and some central division algebra D′′ well-defined
up to isomorphism, and so we can set

[D][D′] = [D′′].

This law of composition is obviously, and [F ] is an identity element. Let Dopp

denote the opposite algebra to D (the same algebra but with the multiplication
reversed: aoppbopp = (ba)opp). Then (CFT, IV 2.9)

D ⊗F Dopp ∼= EndF -linear(D) ≈Mr(F ),

and so [D][Dopp] = [F ]. Therefore, the isomorphism classes of central division
algebras over F (equivalently, the isomorphism classes of central simple algebras
over F ) form a group, called the Brauer group of F .

Example 15.2. (a) The Brauer group of an algebraically closed field or
a finite field is zero.

(b) The Brauer group R has order two: Br(R) ∼= 1
2Z/Z.

(c) For a p-adic field F , the map [Dn,i] �→ i
n mod Z is an isomorphism

Br(F ) ∼= Q/Z.
(d) For a number field F and a prime v, write invv for the canonical homomor-

phism Br(Fv) → Q/Z given by (a,b,c) (so invv is an isomorphism except
when v is real or complex, in which case it has image 1

2Z/Z or 0). For a
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central simple algebra B over F , [B ⊗F Fv] = 0 for almost all v, and the
sequence

0 −−−−→ Br(F )
[B] �→[B⊗F Fv ]−−−−−−−−−→ ⊕Br(Fv)

P

invv−−−−→ Q/Z −−−−→ 0.

is exact.

Statement (d) is shown in the course of proving the main theorem of class
field theory by the cohomological approach (CFT, VIII 2.2). It says that to give
a division algebra over F (up to isomorphism) is the same as to give a family
(iv) ∈

⊕
v finiteQ/Z⊕

⊕
v real

1
2Z/Z such that

∑
iv = 0.

The key tool in computing Brauer groups is an isomorphism

Br(F ) ∼= H2(F,Gm) df= H2(Gal(F al/F ), F al×) df= lim−→H2(Gal(L/F ), L×).

The last limit is over the fields L ⊂ F al of finite degree and galois over Q. This
isomorphism can be most elegantly defined as follows. Let D be a central simple
division of degree n2 over F , and assume that D contains a subfield L of degree
n over F and galois over F . Then each β ∈ D normalizing L defines an element
x �→ βxβ−1 of Gal(L/F ), and the Noether-Skolem theorem (CFT, IV 2.10) shows
that every element of Gal(L/F ) arises in this way. Because L is its own centralizer
(ibid., 3.4), the sequence

1 → L× → N(L) → Gal(L/F ) → 1

is exact. For each σ ∈ Gal(L/F ), choose an sσ ∈ N(L) mapping to σ, and let

sσ · sτ = dσ,τ · sστ , dσ,τ ∈ L×.

Then (dσ,τ ) is a 2-cocycle whose cohomology class is independent of the choice of
the family (sσ). Its class in H2(Gal(L/F ), L×) ⊂ H2(F,Gm) is the cohomology
class of [D].

Example 15.3. Let L be the completion of Qun
p (equal to the field of fractions

of the ring of Witt vectors with coefficients in F), and let σ be the automorphism
of L inducing x �→ xp on its residue field. An isocrystal is a finite dimensional
L-vector space V equipped with a σ-linear isomorphism F : V → V . The category
Isoc of isocrystals is a semisimple Qp-linear category with Σ(Isoc) = Q, and the
endomorphism algebra of a representative of the isomorphism class λ is a division
algebra over Qp with invariant λ. If λ ≥ 0, λ = r/s, gcd(r, s) = 1, s > 0, then Eλ

can be taken to be (Qp/(T r − ps))⊗Qp
L, and if λ < 0, Eλ can be taken to be the

dual of E−λ. See Demazure 1972, Chap. IV.

Abelian varieties. Recall (p334) that AV0(k) is the category whose objects
are the abelian varieties over k, but whose homs are Hom0(A,B) = Hom(A,B)⊗Q.
It follows from results of Weil that AV0(k) is a semisimple Q-category with the
simple abelian varieties (see p334) as its simple objects. Amazingly, when k is
finite, we know its numerical invariants.

Abelian varieties over Fq, q = pn. Recall that a Weil q-integer is an algebraic
integer such that, for every embedding ρ : Q[π] → C, |ρπ| = q

1
2 . Two Weil q-integers

π and π′ are conjugate if there exists an isomorphism Q[π] → Q[π′] sending π to
π′.
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Theorem 15.4 (Honda-Tate). The map A �→ πA defines a bijection from
Σ(AV(Fq)) to the set of conjugacy classes of Weil q-integers. For any simple A,
the centre of D =df End0(A) is F = Q[πA], and for a prime v of F ,

invv(D) =


1
2 if v is real
ordv(πA)
ordv(q) [Fv : Qp] if v|p

0 otherwise.

Moreover, 2 dimA = [D : F ]
1
2 · [F : Q].

In fact, Q[π] can only have a real prime if π =
√
pn. Let W1(q) be the set of

Weil q-integers in Qal ⊂ C. Then the theorem gives a bijection

Σ(AV0(Fq)) → Γ\W1(q), Γ = Gal(Qal/Q).

Notes. Except for the statement that every πA arises from an A, the theorem
is due to Tate. That every Weil q-integer arises from an abelian variety was proved
(using 10.10) by Honda. See Tate 1969 for a discussion of the theorem.

Abelian varieties over F. We shall need a similar result for an algebraic closure
F of Fp.

If π is a Weil pn-integer, then πm is a Weil pmn-integer, and so we have a
homomorphism π �→ πm : W1(pn) →W1(pnm). Define

W1 = lim−→W1(pn).

If π ∈ W1 is represented by πn ∈ W1(pn), then πm
n ∈ W1(pnm) also represents π,

and Q[πn] ⊃ Q[πm
n ]. Define Q{π} to be the field of smallest degree over Q generated

by a representative of π.
Every abelian variety over F has a model defined over a finite field, and if

two abelian varieties over a finite field become isomorphic over F, then they are
isomorphic already over a finite field. Let A be an abelian variety over Fq. When
we regard A as an abelian variety over Fqm , then the Frobenius map is raised to
the mth-power (obviously): πAFqm

= πm
A .

Let A be an abelian variety defined over F, and let A0 be a model of A over
Fq. The above remarks show that sA(v) =df

ordv(πA0
)

ordv(q) is independent of the choice
of A0. Moreover, for any ρ : Q[πA0 ] ↪→ Qal, the Γ-orbit of the element πA of W1

represented by ρπA0 depends only on A.

Theorem 15.5. The map A �→ ΓπA defines a bijection Σ(AV0(F)) → Γ\W1.
For any simple A, the centre of D =df End0(A) is isomorphic to F = Q{πA}, and
for any prime v of F ,

invv(D) =


1
2 if v is real
sA(v) · [Fv : Qp] if v|p
0 otherwise.

Proof. This follows from the Honda-Tate theorem and the above discussion.
�

Our goal in the remainder of this section is to give an elementary construction
of a semisimple Q-category that contains, in a natural way, a category of “fake
abelian varieties over F” with the same numerical invariants as AV0(F).

For the remainder of this section F is a field of characteristic zero.
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Tori and their representations. Let T be a torus over F split by a ga-
lois extension L/F with galois group Γ. As we noted on p276, to give a repre-
sentation ρ of T on an F -vector space V amounts to giving an X∗(T )-grading
V (L) =

⊕
χ∈X∗(T )Vχ of V (L) with the property that σVχ = Vσχ for all σ ∈ Γ and

χ ∈ X∗(T ). In this, L/F can be an infinite galois extension.

Proposition 15.6. Let Γ = Gal(F al/F ). The category of representations
Rep(T ) of T on F -vector spaces is semisimple. The set of isomorphism classes
of simple objects is in natural one-to-one correspondence with the orbits of Γ acting
on X∗(T ), i.e., Σ(Rep(T )) = Γ\X∗(T ). If VΓχ is a simple object corresponding to
Γχ, then dim(VΓχ) is the order of Γχ, and

End(Vχ) ≈ F (χ)

where F (χ) is the fixed field of the subgroup Γ(χ) of Γ fixing χ.

Proof. Follows easily from the preceding discussion. �

Remark 15.7. Let χ ∈ X∗(T ), and let Γ(χ) and F (χ) be as in the proposition.
Then Hom(F (χ), F al) ∼= Γ/Γ(χ), and so X∗((Gm)F (χ)/F ) = ZΓ/Γ(χ). The map∑

nσσ �→
∑

nσσχ : ZΓ/Γ(χ) → X∗(T )

defines a homorphism

(58) T → (Gm)F (χ)/F .

From this, we get a homomorphism of cohomology groups

H2(F, T ) → H2(F, (Gm)F (χ)/F ).

But Shapiro’s lemma (CFT, II 1.11) shows that H2(F,(Gm)F (χ)/F )∼=H2(F (χ),Gm),
which is the Brauer group of F (χ). On composing these maps, we get a homomor-
phism

(59) H2(F, T ) → Br(F (χ)).

The proposition gives a natural construction of a semisimple category M with
Σ(M) = Γ\N , where N is any finitely generated Z-module equipped with a con-
tinuous action of Γ. However, the simple objects have commutative endomorphism
algebras. To go further, we need to look at new type of structure.

Affine extensions. Let L/F be a Galois extension of fields with Galois group
Γ, and let G be an algebraic group over F . In the following, we consider only
extensions

1 → G(L) → E → Γ → 1
in which the action of Γ on G(L) defined by the extension is the natural action,
i.e.,

if eσ �→ σ, then eσge
−1
σ = σg (eσ ∈ E, σ ∈ Γ, g ∈ T (F al)).

For example, there is always the split extension EG =df G(L) � Γ.
An extension E is affine if its pull-back to some open subgroup of Γ is split.

Equivalently, if for the σ in some open subgroup of Γ, there exist eσ �→ σ such that
eστ = eσeτ . We sometimes call such an E an L/F -affine extension with kernel G.

Consider an extension

1 → T → E → Γ → 1
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with T commutative. If E is affine, then it is possible to choose the eσ’s so that
the 2-cocycle d : Γ× Γ → T (L) defined by

eσeτ = dσ,τeσeτ , dσ,τ ∈ T (F al).

is continuous. Thus, in this case E defines a class cl(E) ∈ H2(F, T ).
A homomorphism of affine extensions is a commutative diagram

1 −−−−→ G1(L) −−−−→ E1 −−−−→ Γ −−−−→ 1; ;φ

∥∥∥
1 −−−−→ G2(L) −−−−→ E2 −−−−→ Γ −−−−→ 1

such that the restriction of the homomorphism φ to G1(L) is defined by a homo-
morphism of algebraic groups (over L). A morphism φ → φ′ of homomorphisms
E1 → E2 is an element of g of G2(L) such that ad(g) ◦ φ = φ′, i.e., such that

g · φ(e) · g−1 = φ′(e), all e ∈ E1.

For a vector space V over F , let EV be the split affine extension defined by the
algebraic group GL(V ). A representation of an affine extension E is a homomor-
phism E → EV .

Remark 15.8. To give a representation of EG on EV is the same as to give
a representation of G on V . More precisely, the functor Rep(G) → Rep(EG) is an
equivalence of categories. The proof of this uses that H1(F,GL(V )) = 1.

Proposition 15.9. Let E be an L/F -affine extension whose kernel is a torus
T split by L. The category Rep(E) is a semisimple F -category with Σ(Rep(E)) =
Γ\X∗(T ). Let VΓχ be a simple representation of E corresponding to Γχ ∈ Γ\X∗(T ).
Then, D = End(VΓχ

) has centre F (χ), and its class in Br(F (χ)) is the image of
cl(E) under the homomorphism (59).

Proof. Omitted (but it is not difficult). �

We shall also need to consider affine extensions in which the kernel is allowed
to be a protorus, i.e., the limit of an inverse system of tori. For T = lim←−Ti,
X∗(T ) = lim−→X∗(Ti), and T �→ X∗(T ) defines an equivalence from the category
of protori to the category of free Z-modules with a continuous action of Γ. Here
continuous means that every element of the module is fixed by an open subgroup
of Γ. Let L = F al. By an affine extension with kernel T , we mean an exact
sequence

1 → T (F al) → E → Γ → 1

whose push-out
1 → Ti(F al) → Ei → Γ → 1

by T (F al) → Ti(F al) is an affine extension in the previous sense. A representation
of such an extension is defined exactly as before.

Remark 15.10. Let
L

⊂
L′

F

Γ

⊂
F ′

Γ′
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be a diagram of fields in which L′/F ′ is Galois with group Γ′. From an L/F -affine
extension

1 → G(L) → E → Γ → 1

with kernel G we obtain an L′/F ′-affine extension

1 → G(L′) → E′ → Γ′ → 1

with kernel GF ′ by pulling back by σ �→ σ|L : Γ′ → Γ and pushing out by G(L) →
G(L′)).

Example 15.11. Let Qun
p be a maximal unramified extension of Qp, and let

Ln be the subfield of Qun
p of degree n over Qp. Let Γn = Gal(Ln/Qp), let D1,n be

the division algebra in (15.1c), and let

1 → L×
n → N(L×

n ) → Γn → 1

be the corresponding extension. Here N(L×
n ) is the normalizer of L×

n in D1,n:

N(L×
n ) =

⊔
0≤i≤n−1L

×
n a

i.

This is an Ln/Qp-affine extension with kernel Gm. On pulling back by Γ → Γn and
pushing out by L×

n → Qun×
p , we obtain a Qun×

p /Qp-affine extension Dn with kernel
Gm. From a representation of Dn we obtain a vector space V over Qun

p equipped
with a σ-linear map F (the image of (1, a) is (F, σ)). On tensoring this with the
completion L of Qun

p , we obtain an isocrystal that can be expressed as a sum of
Eλ’s with λ ∈ 1

nZ.
Note that there is a canonical section to N(L×

n ) → Γn, namely, σi �→ ai, which
defines a canonical section to Dn → Γ.

There is a homomorphism Dnm → Dn whose restriction to the kernel is mul-
tiplication by m. The inverse limit of this system is a Qun

p /Qp-affine extension D

with kernel G =df lim←−Gm. Note that X∗(G) = lim−→
1
nZ/Z = Q. There is a natural

functor from Rep(D) to the category of isocrystals, which is faithful and essentially
surjective on objects but not full. We call D the Dieudonné affine extension.

The affine extension P. Let W (pn) be the subgroup of Qal× generated by
W1(pn), and let W = lim−→W (pn). Then W is a free Z-module of infinite rank with
a continuous action of Γ = Gal(Qal/Q). For π ∈ W , we define Q{π} to be the
smallest field generated by a representative of π. If π is represented by πn ∈W (pn)
and |ρ(πn)| = (pn)m/2, we say that π has weight m and we write

sπ(v) =
ordv(πn)
ordv(q)

.

Theorem 15.12. Let P be the protorus over Q with X∗(P ) = W . Then there
exists an affine extension

1 → P (Qal) → P → Γ → 1

such that

(a) Σ(Rep(P)) = Γ\W ;
(b) for π ∈ W , let D(π) = End(VΓπ) where VΓπ is a representation corre-

sponding to Γπ; then D(π) is isomorphic to the division algebra D with
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centre Q{π} and the invariants

invv(D) =

 ( 1
2 )wt(π) if v is real

sπ(v) · [Q{π}v : Qp] if v|p
0 otherwise.

Moreover, P is unique up to isomorphism.

Proof. Let c(π) denote the class in Br(Q{π}) of the division algebra D in (b).
To prove the result, we have to show that there exists a unique class in H2(Q, P )
mapping to c(π) in Br(Q{π}) for all π:

c �→ (c(π)) : H2(Q, P )
(59)→
∏

Γπ∈Γ\W Br(Q{π}).
This is an exercise in galois cohomology, which, happily, is easier than it looks. �

We call a representation of P a fake motive over F, and a fake abelian
variety if its simple summands correspond to π ∈ Γ\W1. Note that the category of
fake abelian varieties is a semisimple Q-category with the same numerical invariants
as AV0(F).

The local form Pl of P. Let l be a prime of Q, and choose a prime wl of Qal

dividing l. Let Qal
l be the algebraic closure of Ql in the completion of Qal at wl.

Then Γl =df Gal(Qal
l /Ql) is a closed subgroup of Γ =df Gal(Qal/Q), and we have

a diagram

(60)

Qal Qal
l

Q

Γ

Ql.

Γl

From P we obtain a Qal
l /Ql-affine extension P(l) by pulling back by Γl → Γ and

pushing out by P (Qal) → P (Qal
l ) (cf. 15.10).

The Q�-space attached to a fake motive. Let � �= p,∞ be a prime of Q.

Proposition 15.13. There exists a continuous homomorphism ζ� making
Γ�


���ζ� ||

1 � P (Qal
� ) � P(�) � Γ�

� 1
commute.

Proof. To prove this, we have to show that the cohomology class of P in
H2(Q, P ) maps to zero in H2(Q�, P ), but this is not difficult. �

Fix a homomorphism ζ� : Γ� → P(�) as in the diagram. Let ρ : P → EV be a
fake motive. From ρ, we get a homomorphism

ρ(�) : P(�) → GL(V (Qal
� )) � Γ�.

For σ ∈ Γ�, let (ρ(�) ◦ ζ�)(σ) = (eσ, σ). Because ζ� is a homomorphism, the
automorphisms eσ of V (Qal

� ) satisfy

eσ ◦ σeτ = eστ , σ, τ ∈ Γ�,

and so
σ · v = eσ(σv)
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is an action of Γ� on V (Qal
� ), which one can check to be continuous. Therefore

(AG 16.14), V�(ρ) =df V (Q
al

� )Γ� is a Q�-structure on V (Qal
� ). In this way, we get a

functor ρ �→ V�(ρ) from the category of fake motives over F to vector spaces over
Q�.

The ζ� can be chosen in such a way that the spaces V�(ρ) contain lattices Λ�(ρ)
that are well-defined for almost all � �= p, which makes it possible to define

V p
f (ρ) =

∏
� �=p,∞(V�(ρ) : Λ�(ρ)).

It is a free module over Ap
f =df

∏
� �=p,∞(Q� : Z�).

The isocrystal of a fake motive. Choose a prime wp of Qal dividing p, and let
Qun

p and Qal
p denote the subfields of the completion of Qal at wp. Then Γp =df

Gal(Qal
p /Qp) is a closed subgroup of Γ =df Gal(Qal/Q) and Γun

p =df Gal(Qun
p /Qp)

is a quotient of Γp.

Proposition 15.14. (a) The affine extension P(p) arises by pull-back and
push-out from a Qun

p /Qp-affine extension P(p)un.
(b) There is a homomorphism of Qun

p /Qp-extensions D → P(p)un whose re-
striction to the kernels, G → PQp

, corresponds to the map on characters π �→
sπ(wp) : W → Q.

Proof. (a) This follows from the fact that the image of the cohomology class
of P in H2(Γp, P (Qal

p )) arises from a cohomology class in H2(Γun
p , P (Qun

p )).
(b) This follows from the fact that the homomorphism H2(Qp,G)→H2(Qp,PQp

)
sends the cohomology class of D to that of P(p)un. �

In summary:

1 −−−−→ Gm(Qun
p ) −−−−→ D −−−−→ Γun

p −−−−→ 1; ; ∥∥∥
1 −−−−→ P (Qun

p ) −−−−→ P(p)un −−−−→ Γun
p −−−−→ 1; ...
>

1 −−−−→ P (Qal
p ) −−−−→ P(p) −−−−→ Γp −−−−→ 1

A fake motive ρ : P → EV gives rise to a representation of P(p), which arises
from a representation of P(p)un (cf. the argument in the preceding subsubsection).
On composing this with the homomorphism D → P(p)un, we obtain a representa-
tion of D, which gives rise to an isocrystal D(ρ) as in (15.11).

Abelian varieties of CM-type and fake abelian varieties. We saw in (10.5) that
an abelian variety of CM-type over Qal defines an abelian variety over F. Does it
also define a fake abelian variety? The answer is yes.

Proposition 15.15. Let T be a torus over Q split by a CM-field, and let µ be a
cocharacter of T such that µ+ ιµ is defined over Q (here ι is complex conjugation).
Then there is a homomorphism, well defined up to isomorphism,

φµ : P → ET .

Proof. Omitted. �
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Let A be an abelian variety of CM-type (E,Φ) over Qal, and let T = (Gm)E/Q.
Then Φ defines a cocharacter µΦ of T (see 12.4(b)), which obviously satisfies the
conditions of the proposition. Hence we obtain a homomorphism φ : P → ET . Let
V = H1(A,Q). From φ and the representation ρ of T on V we obtain a fake abelian
variety ρ ◦ φ such that V�(ρ ◦ φ) = H1(A,Q�) (obvious) and D(ρ) is isomorphic to
the Dieudonné module of the reduction of A (restatement of the Shimura-Taniyama
formula).

Aside 15.16. The category of fake abelian varieties has similar properties to
AV0(F). By using the Q�-spaces and the isocrystals attached to a fake abelian
variety, it is possible to define a Z-linear category with properties similar to AV(F).

Notes. The affine extension P is defined in Langlands and Rapoport 1987,
§§1–3, where it is called “die pseudomotivische Galoisgruppe”. There an affine ex-
tension is called a Galoisgerbe although, rather than a gerbe, it can more accurately
be described as a concrete realizations of a groupoid. See also Milne 1992. In the
above, I have ignored uniqueness questions, which can be difficult (see Milne 2003).

16. The good reduction of Shimura varieties

We now write ShK(G,X), or just ShK , for the canonical model of the Shimura
variety over its reflex field.

The points of the Shimura variety with coordinates in the algebraic
closure of the rational numbers. When we have a description of the points of
the Shimura variety over C in terms of abelian varieties or motives plus additional
data, then the same description holds over Qal. For example, for the Siegel modular
variety attached to a symplectic space (V, ψ), ShK(Qal) classifies the isomorphism
classes of triples (A, s, ηK) in which A is an abelian variety defined over Qal, s is
an element of NS(A) ⊗ Q containing a Q×-multiple of an ample divisor, and η is
a K-orbit of isomorphisms V (Af ) → Vf (A) sending ψ to an A×

f -multiple of the
pairing defined by s. Here NS(A) is the Nèron-Severi group of A (divisor classes
modulo algebraic equivalence).

On the other hand, I do not know a description of ShK(Qal) when, for example,
Gad has factors of type E6 or E7 or mixed type D. In these cases, the proof of the
existence of a canonical model is quite indirect.

The points of the Shimura variety with coordinates in the reflex
field. Over E = E(G,X) the following additional problem arises. Let A be an
abelian variety over Qal. Suppose we know that σA is isomorphic to A for all
σ ∈ Gal(Qal/E). Does this imply that A is defined over E? Choose an isomorphism
fσ : σA → A for each σ fixing E. A necessary condition that the fσ arise from a
model over E is that they satisfy the cocycle condition: fσ ◦ σfτ = fστ . Of course,
if the cocycle condition fails for one choice of the fσ’s, we can try another, but
there is an obstruction to obtaining a cocycle which lies in the cohomology set
H2(Gal(Qal/E),Aut(A)).

Certainly, this obstruction would vanish if Aut(A) were trivial. One may hope
that the automorphism group of an abelian variety (or motive) plus data in the
family classified by ShK(G,X) is trivial, at least when K is small. This is so when
condition SV5 holds, but not otherwise.
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In the Siegel case, the centre of G is Gm and so SV5 holds. Therefore, provided
K is sufficiently small, for any field L containing E(G,X), ShK(L) classifies triples
(A, s, ηK) satisfying the same conditions as when L = Qal. Here A an abelian
variety over L, s ∈ NS(A)⊗Q, and η is an isomorphism V (Af ) → Vf (A) such that
ηK is stable under the action of Gal(Lal/L).

In the Hilbert case (4.14), the centre of G is (Gm)F/Q for F a totally real field
and SV5 fails: F× is not discrete in A×

F,f because every nonempty open subgroup
of A×

F,f will contain infinitely many units. In this case, one has a description
of ShK(L) when L is algebraically closed, but otherwise all one can say is that
ShK(L) = ShK(Lal)Gal(Lal/L).

Hyperspecial subgroups. The modular curve Γ0(N)\H1 is defined over Q,
and it has good reduction at the primes not dividing the level N and bad reduction
at the others. Before explaining what is known in general, we need to introduce
the notion of a hyperspecial subgroup.

Definition 16.1. Let G be a reductive group over Q (over Qp will do). A
subgroup K ⊂ G(Qp) is hyperspecial if there exists a flat group scheme G over Zp

such that
◦ GQp

= G (i.e., G extends G to Zp);
◦ GFp

is a connected reductive group (necessarily of the same dimension as
G because of flatness);

◦ G(Zp) = K.

Example 16.2. Let G = GSp(V, ψ). Let Λ be a lattice in V (Qp), and let Kp

be the stabilizer of Λ. Then Kp is hyperspecial if the restriction of ψ to Λ×Λ takes
values in Zp and is perfect (i.e., induces an isomorphism Λ → Λ∨; equivalently,
induces a nondegenerate pairing Λ/pΛ× Λ/pΛ → Fp). In this case, GFp

is again a
group of symplectic similitudes over Fp (at least if p �= 2).

Example 16.3. In the PEL-case, in order for there to exist a hyperspecial
group, the algebra B must be unramified above p, i.e., B⊗Q Qp must be a product
of matrix algebras over unramified extensions of Qp. When this condition holds,
the description of the hyperspecial groups is similar to that in the Siegel case.

There exists a hyperspecial subgroup in G(Qp) if and only if G is unramified
over Qp, i.e., quasisplit over Qp and split over an unramified extension.

For the remainder of this section we fix a hyperspecial subgroup Kp ⊂ G(Qp),
and we write Shp(G,X) for the family of varieties ShKp×Kp

(G,X) with Kp running
over the compact open subgroups of G(Ap

f ). The group G(Ap
f ) acts on the family

Shp(G,X).

The good reduction of Shimura varieties. Roughly speaking, there are
two reasons a Shimura variety may have bad reduction at a prime dividing p: the
reductive group itself may be ramified at p or p may divide the level. For example,
the Shimura curve defined by a quaternion algebra B over Q will have bad reduction
at a prime p dividing the discriminant of B, and (as we noted above) Γ0(N)\H1 has
bad reduction at a prime dividing N . The existence of a hyperspecial subgroup Kp

forces G to be unramified at p, and by considering only the varieties ShKpKp
(G,X)

we avoid the second problem.
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Theorem 16.4. Let Shp(G,X) be the inverse system of varieties over E(G,X)
defined by a Shimura datum (G,X) of abelian type and a hyperspecial subgroup
Kp ⊂ G(Qp). Then, except possibly for some small set of primes p depending only
on (G,X), Shp(G,X) has canonical good reduction at every prime p of E(G,X)
dividing p, .

Remark 16.5. Let Ep be the completion of E at p, let Ôp be the ring of
integers in Ep, and let k(p) be the residue field Ôp/p.

(a) By Shp(G,X) having good reduction p, we mean that the inverse system

(ShKpKp
(G,X))Kp , Kp ⊂ G(Ap

f ) compact open, Kp fixed,

extends to an inverse system of flat schemes Sp = (SKp) over Ôp whose reduction
modulo p is an inverse system of varieties (ShKpKp

(G,X))Kp over k(p) such that,
for Kp ⊃ K ′p sufficiently small,

ShKpKp
← ShK′pKp

is an étale map of smooth varieties. We require also that the action of G(Ap
f ) on

Shp extends to an action on Sp.
(b) A variety over Ep may not have good reduction to a smooth variety over

k(p) — this can already be seen for elliptic curves — and, when it does it will
generally have good reduction to many different smooth varieties, none of which is
obviously the best. For example, given one good reduction, one can obtain another
by blowing up a point in its closed fibre. By Shp(G,X) having canonical good
reduction at p, I mean that, for any formally smooth scheme T over Ôp,

(61) HomÔp
(T, lim←−

Kp

SKp) ∼= HomEp
(TEp

, lim←−
Kp

ShKpKp
).

A smooth scheme is formally smooth, and an inverse limit of schemes étale over a
smooth scheme is formally smooth. As lim←−SKp is formally smooth over Ôp, (61)
characterizes it uniquely up to a unique isomorphism (by the Yoneda lemma).

(c) In the Siegel case, Theorem 16.4 was proved by Mumford (his Fields medal
theorem; Mumford 1965). In this case, the SKp and ShKpKp

are moduli schemes.
The PEL-case can be considered folklore in that several authors have deduced it
from the Siegel case and published sketches of proof, the most convincing of which
is in Kottwitz 1992. In this case, Sp(G,X) is the zariski closure of Shp(G,X)
in Sp(G(ψ), X(ψ)) (cf. 5.16), and it is a moduli scheme. The hodge case19 was
proved by Vasiu (1999) except for a small set of primes. In this case, Sp(G,X) is
the normalization of the zariski closure of Shp(G,X) in Sp(G(ψ), X(ψ)). The case
of abelian type follows easily from the hodge case.

(d) That Shp should have good reduction when Kp is hyperspecial was conjec-
tured in Langlands 1976, p411. That there should be a canonical model character-
ized by a condition like that in (b) was conjectured in Milne 1992, §2.

19Over the reflex field, Shimura varieties of hodge type are no more difficult than Shimura
varieties of PEL-type, but when one reduces modulo a prime they become much more difficult

for two reasons: general tensors are more difficult to work with than endomorphisms, and little is
known about hodge tensors in characteristic p.
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Definition of the Langlands-Rapoport set. Let (G,X) be a Shimura da-
tum for which SV4,5,6 hold, and let

Shp(C) = Sh(C)/Kp = lim←−
Kp

ShKpKp
(G,X)(C).

For x ∈ X, let I(x) be the subgroup G(Q) fixing x, and let

S(x) = I(x)\Xp(x)×Xp(x), Xp(x) = G(Ap
f ), Xp(x) = G(Qp)/Kp.

One sees easily that there is a canonical bijection of sets with G(Ap
f )-action⊔

S(x) → Shp(C)

where the left hand side is the disjoint union over a set of representatives for
G(Q)\X. This decomposition has a modular interpretation. For example, in the
case of a Shimura variety of hodge type, the set S(x) classifies the family of iso-
morphism classes of triples (A, (si), ηK) with (A, (si)) isomorphic to a fixed pair.

Langlands and Rapoport (1987, 5e) conjecture that Shp(F) has a similar de-
scription except that now the left hand side runs over a set of isomorphism classes
of homomorphisms φ : P → EG. Recall that an isomorphism from one φ to a second
φ′ is an element g of G(Qal) such that

φ′(p) = g · φ(p) · g−1, all p ∈ P.

Such a φ should be thought of as a “pre fake abelian motive with tensors”. Specif-
ically, if we fix a faithful representation G ↪→ GL(V ) and tensors ti for V such
that G is the subgroup of GL(V ) fixing the ti, then each φ gives a representation
P → GL(V (Qal)) � Γ (i.e., a fake abelian motive) plus tensors.

Definition of the set S(φ). We now fix a homomorphism φ : P → EG and define
a set S(φ) equipped with a right action of G(Ap

f ) and a commuting Frobenius
operator Φ.

Definition of the group I(φ). The group I(φ) is defined to be the group of
automorphisms of φ,

I(φ) = {g ∈ G(Qal) | ad(g) ◦ φ = φ}.
Note that if ρ : G → GL(V ) is a faithful representation of G, then ρ ◦ φ is a fake
motive and I(φ) ⊂ Aut(ρ ◦ φ) (here we have abbreviated ρ � 1 to ρ).

Definition of Xp(φ). Let � be a prime �= p,∞. We choose a prime w� of Qal

dividing �, and define Qal
� and Γ� ⊂ Γ as on p364.

Regard Γ� as an Qal
� /Q�-affine extension with trivial kernel, and write ξ� for

the homomorphism

σ �→ (1, σ) : Γ� → EG(�), EG(�) = G(Qal
� ) � Γ�.

From φ we get a homomorphism φ(�) : P(�) → EG(�), and, on composing
this with the homomorphism ζ� : Γ� → P(�) provided by (15.13), we get a second
homomorphism Γ� → EG(�).

Define
X�(φ) = Isom(ξ�, ζ� ◦ φ(�)).

Clearly, Aut(ξ�) = G(Q�) acts on X�(φ) on the right, and I(φ) acts on the left. If
X�(φ) is nonempty, then the first action makes X�(φ) into a principal homogeneous
space for G(Q�).

Note that if ρ : G→ GL(V ) is a faithful representation of G, then

(62) X�(φ) ⊂ Isom(V (Q�), V�(ρ ◦ φ)).
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By choosing the ζ� judiciously (cf. p365), we obtain compact open subspaces
of the X�(φ), and we can define Xp(φ) to be the restricted product of the X�(φ).
If nonempty, it is a principal homogeneous space for G(Ap

f ).
Definition of Xp(φ). We choose a prime wp of Qal dividing p, and we use the

notations of p365. We let L denote the completion of Qun
p , and we let OL denote

the ring of integers in L (it is the ring of Witt vectors with coefficients in F). We
let σ Frobenius automorphism of Qun

p or L that acts as x �→ xp on the residue field.
From φ and (15.14), we have homomorphisms

D −→ P(p)un φ(p)un

−→ G(Qun
p ) � Γun

p .

For some n, the composite factors through Dn. There is a canonical element in Dn

mapping to σ, and we let (b, σ) denote its image in G(Qun
p ) � Γun

p . The image b(φ)
of b in G(L) is well-defined up to σ-conjugacy, i.e., if b(φ)′ also arises in this way,
then b(φ)′ = g−1 · b(φ) · σg.

Note that if ρ : G → GL(V ) is a faithful representation of G, then D(φ ◦ ρ) is
V (L) with F acting as v �→ b(φ)σv.

Recall p344 that we have a well-defined G(Qal)-conjugacy class c(X) of cochar-
acters of GQal . We can transfer this to conjugacy class of cocharacters of GQal

p
,

which contains an element µ defined over Qun
p (see 12.3; G splits over Qun

p because
we are assuming it contains a hyperspecial group). Let

Cp = G(OL) · µ(p) ·G(OL).

Here we are writing G(OL) for G(OL) with G as in the definition of hyperspecial.
Define

Xp(φ) = {g ∈ G(L)/G(OL) | g−1 · b(φ) · g ∈ Cp}.
There is a natural action of I(φ) on this set.

Definition of the Frobenius element Φ. For g ∈ Xp(φ), define

Φ(g) = b(φ) · σb(φ) · · · · · σm−1b(φ) · σmg

where m = [Ev : Qp].
The set S(φ). Let

S(φ) = I(φ)\Xp(φ)×Xp(φ).

Since I(φ) acts on both Xp(φ) and Xp(φ), this makes sense. The group G(Ap
f ) acts

on S(φ) through its action on Xp(φ) and Φ acts through its action on Xp(φ).
The admissibility condition. The homomorphisms φ : P → EG contributing to

the Langlands-Rapoport set must satisfy an admissibility condition at each prime
plus one global condition.

The condition at ∞. Let E∞ be the extension

1 → C× → E∞ → Γ∞ → 1, Γ∞ = Gal(C/R) = 〈ι〉
associated with the quaternion algebra H, and regard it as an affine extension with
kernel Gm. Note that E∞ = C× $ C×j and jzj−1 = z.

From the diagram (60) with l = ∞, we obtain a C/R-affine extension

1 → P (C) → P(∞) → Γ∞ → 1.

Lemma 16.6. There is a homomorphism ζ∞ : E∞ → P(∞) whose restriction
to the kernels, Gm �→ PC, corresponds to the map on characters π �→ wt(π).
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Proof. This follows from the fact that the homomorphism H2(Γ∞,Gm) →
H2(Γ∞, PR) sends the cohomology class of E∞ to that of P(∞). �

Lemma 16.7. For any x ∈ X, the formulas

ξx(z) = (wX(z), 1), ξx(j) = (µx(−1)−1, ι)

define a homomorphism E∞ → P(∞). Replacing x with a different point, replaces
the homomorphism with an isomorphic homomorphism.

Proof. Easy exercise. �

Write ξX for the isomorphism class of homomorphisms defined in (16.7). Then
the admissibility condition at ∞ is that ζ∞ ◦ φ(∞) ∈ ξX .

The condition at � �= p. The admissibility condition at � �= p is that the set
X�(φ) be nonempty, i.e., that ζ� ◦ φ(�) be isomorphic to ξ�.

The condition at p. The condition at p is that the set Xp(φ) be nonempty.
The global condition. Let ν : G→ T be the quotient of G by its derived group.

From X we get a conjugacy class of cocharacters of GC, and hence a well defined
cocharacter µ of T . Under our hypotheses on (G,X), µ satisfies the conditions of
(15.15), and so defines a homomorphism φµ : P → ET . The global condition is that
ν ◦ φ be isomorphic to φµ.

The Langlands-Rapoport set. The Langlands-Rapoport set

LR(G,X) =
⊔

S(φ)

where the disjoint union is over a set of representatives for the isomorphism classes
of admissible homomorphism φ : P → EG. There are commuting actions of G(Ap

f )
and of the Frobenius operator Φ on LR(G,X).

The conjecture of Langlands and Rapoport.

Conjecture 16.8 (Langlands and Rapoport 1987). Let (G,X) be a Shimura
datum satisfying SV4,5,6 and such that Gder is simply connected, and let Kp be
a hyperspecial subgroup of G(Qp). Let p be a prime of E(G,X) dividing p, and
assume that Shp has canonical good reduction at p. Then there is a bijection of sets

(63) LR(G,X) → Shp(G,X)(F)

compatible with the actions G(Ap
f ) and the Frobenius elements.

Remark 16.9. (a) The conditions SV5 and SV6 are not in the original conjec-
ture — I included them to simplify the statement of the conjecture.

(b) There is also a conjecture in which one does not require SV4, but this
requires that P be replaced by a more complicated affine extension Q.

(c) The conjecture as originally stated is definitely wrong without the assump-
tion that Gder is simply connected. However, when one replaces the “admissible
homomorphisms” in the statement with another notion, that of “special homomor-
phisms”, one obtains a statement that should be true for all Shimura varieties. In
fact, it is known that the statement with Gder simply connected then implies the
general statement (see Milne 1992, §4, for the details and a more precise statement).

(d) It is possible to state, and prove, a conjecture similar to (16.8) for zero-
dimensional Shimura varieties. The map (G,X) → (T, Y ) (see p311) defines a map
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of the associated Langlands-Rapoport sets, and we should add to the conjecture
that

LR(G,X) −−−−→ Shp(G,X)(F); ;
LR(T, Y ) −−−−→ Shp(T, Y )(F)

commutes.

17. A formula for the number of points

A reader of the last two sections may be sceptical of the value of a description
like (63), even if proved. In this section we briefly explain how it leads to a very
explicit, and useful, formula for the number of points on the reduction of a Shimura
variety with values in a finite field.

Throughout, (G,X) is a Shimura datum satisfying SV4,5,6 and Kp is a hy-
perspecial subgroup of G(Qp). We assume that Gder simply connected and that
Shp(G,X) has canonical good reduction at a prime p|p of the reflex field E =
E(G,X). Other notations are as in the last section; for example, Ln is the sub-
field of Qun

p of degree n over Qp and L is the completion of Qun
p . We fix a field

Fq ⊃ k(p) ⊃ Fp, q = pn.

Triples. We consider triples (γ0; γ, δ) where
◦ γ0 is a semisimple element of G(Q) that is contained in an elliptic torus

of GR (i.e., a torus that is anisotropic modulo the centre of GR),
◦ γ = (γ(�))� �=p,∞ is an element of G(Ap

f ) such that, for all �, γ(�) becomes
conjugate to γ0 in G(Qal

� ),
◦ δ is an element of G(Ln) such that

N δ
df= δ · σδ · . . . · σn−1δ,

becomes conjugate to γ0 in G(Qal
p ).

Two triples (γ0; γ, δ) and (γ′
0; γ′, δ′) are said to be equivalent , (γ0; γ, δ) ∼ (γ′

0; γ′, δ′),
if γ0 is conjugate to γ′

0 in G(Q), γ(�) is conjugate to γ′(�) in G(Q�) for each � �= p,∞,
and δ is σ-conjugate to δ′ in G(Ln).

Given such a triple (γ0; γ, δ), we set:
◦ I0 = Gγ0 , the centralizer of γ0 in G; it is connected and reductive;
◦ I∞ = the inner form of I0R such that I∞/Z(G) is anisotropic;
◦ I� = the centralizer of γ(�) in GQ�

;
◦ Ip = the inner form of GQp

such that Ip(Qp) = {x ∈ G(Ln) | x−1 · δ ·σx =
δ}.

We need to assume that the triple satisfies the following condition:
(*) there exists an inner form I of I0 such that IQ�

is isomorphic
to I� for all � (including p and ∞).

Because γ0 and γ� are stably conjugate, there exists an isomorphism a� : I0,Qal
�
→

I�,Qal
�
, well-defined up to an inner automorphism of I0 over Qal

� . Choose a system
(I, a, (j�)) consisting of a Q-group I, an inner twisting a : I0 → I (isomorphism
over Qal), and isomorphisms j� : IQ�

→ I� over Q� for all �, unramified for almost
all �, such that j� ◦ a and a� differ by an inner automorphism — our assumption
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(*) guarantees the existence of such a system. Moreover, any other such system is
isomorphic to one of the form (I, a, (j� ◦ adh�)) where (h�) ∈ Iad(A).

Let dx denote the Haar measure on G(Ap
f ) giving measure 1 to Kp. Choose a

Haar measure dip on I(Ap
f ) that gives rational measure to compact open subgroups

of I(Ap
f ), and use the isomorphisms j� to transport it to a measure on G(Ap

f )γ

(the centralizer of γ in G(Ap
f )). The resulting measure does not change if (j�) is

modified by an element of Iad(A). Write dx for the quotient of dx by dip. Let f
be an element of the Hecke algebra H of locally constant K-bi-invariant Q-valued
functions on G(Af ), and assume that f = fp · fp where fp is a function on G(Ap

f )
and fp is the characteristic function of Kp in G(Qp) divided by the measure of Kp.
Define

Oγ(fp) =
∫

G(Ap
f )γ\G(Ap

f )

fp(x−1γx) dx

Let dy denote the Haar measure on G(Ln) giving measure 1 to G(OLn
). Choose

a Haar measure dip on I(Qp) that gives rational measure to the compact open
subgroups, and use jp to transport the measure to Ip(Qp). Again the resulting
measure does not change if jp is modified by an element of Iad(Qp). Write dy for
the quotient of dy by dip. Proceeding as on p370, we choose a cocharacter µ in
c(X) well-adapted to the hyperspecial subgroup Kp and defined over Ln, and we
let ϕ be the characteristic function of the coset G(OLn

) · µ(p) ·G(OLn
). Define

TOδ(ϕ) =
∫

I(Qp)\G(Ln)

ϕ(y−1δσ(y))dy

Since I/Z(G) is anisotropic over R, and since we are assuming SV5, I(Q) is a
discrete subgroup of I(Ap

f ), and we can define the volume of I(Q)\I(Af ). It is a
rational number because of our assumption on dip and dip. Finally, define

I(γ0; γ, δ) = I(γ0; γ, δ)(fp, r) = vol(I(Q)\I(Af )) ·Oγ(fp) · TOδ(φr).

The integral I(γ0; γ, δ) is independent of the choices made, and

(γ0; γ, δ) ∼ (γ′
0; γ

′, δ′) =⇒ I(γ0; γ, δ) = I(γ′
0; γ

′, δ′).

The triple attached to an admissible pair (φ, ε). An admissible pair
(φ, γ0) is an admissible homomorphism φ : P → EG and a γ ∈ Iφ(Q) such that
γ0x = Φrx for some x ∈ Xp(φ). Here r = [k(p) : Fp]. An isomorphism (φ, γ0) →
(φ′, γ′

0) of admissible pairs is an isomorphism φ → φ′ sending γ to γ′, i.e., it is a
g ∈ G(Qal) such that

ad(g) ◦ φ = φ′, ad(g)(γ) = γ′.

Let (T, x) ⊂ (G,X) be a special pair. Because of our assumptions on (G,X),
the cocharacter µx of T satisfies the conditions of (15.15) and so defines a homo-
morphism φx : P → ET . Langlands and Rapoport (1987, 5.23) show that every
admissible pair is isomorphic to a pair (φ, γ) with φ = φx and γ ∈ T (Q). For
such a pair (φ, γ), b(φ) is represented by a δ ∈ G(Ln) which is well-defined up to
conjugacy.

Let γ be the image of γ0 in G(Ap
f ). Then the triple (γ0; γ, δ) satisfies the

conditions in the last subsection. A triple arising in this way from an admissible
pair will be called effective.
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The formula. For a triple (γ0 . . .), the kernel of

H1(Q, I0) → H1(Q, G)⊕
∏

lH
1(Ql, I0)

is finite — we denote its order by c(γ0).

Theorem 17.1. Let (G,X) be a Shimura datum satisfying the hypotheses of
(16.8). If that conjecture is true, then

(64) # Shp(Fq) =
∑

(γ0;γ,δ)

c(γ0) · I(γ0; γ, δ)

where the sum is over a set of representatives for the effective triples.

Proof. See Milne 1992, 6.13. �

Notes. Early versions of (64) can be found in papers of Langlands, but the first
precise general statement of such a formula is in Kottwitz 1990. There Kottwitz
attaches a cohomological invariant α(γ0; γ, δ) to a triple (γ0; γ, δ), and conjectures
that the formula (64) holds if the sum is taken over a set of representatives for
the triples with α = 1 (ibid. §3). Milne (1992, 7.9) proves that, among triples
contributing to the sum, α = 1 if and only if the triple is effective, and so the con-
jecture of Langlands and Rapoport implies Kottwitz’s conjecture.20 On the other
hand, Kottwitz (1992) proves his conjecture for Shimura varieties of simple PEL
type A or C unconditionally (without however proving the conjecture of Langlands
and Rapoport for these varieties).
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Bourbaki, N. (1958), Éléments de mathématique. I: Les structures fondamentales de l’analyse.
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