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Abstract

These are my notes for a talk at the The Tate Conjecture workshop at the American
Institute of Mathematics in Palo Alto, CA, July 23–July 27, 2007, somewhat revised
and expanded. The intent of the talk was to review what is known and to suggest
directions for research.

CONVENTIONS All varieties are smooth and projective. Complex conjugation on C is
denoted by �. The symbol F denotes an algebraic closure of Fp, and ` always denotes
a prime ¤ p. For a variety X , H�.X;Q`/ D

L
i H

i .X;Q`/ (étale cohomology) and
H 2�.X;Q`.�// D

L
i H

2i .X;Q`.i//; both are graded Q`-algebras. I denote a canonical
(or a specifically given) isomorphism by'.

1 The conjecture, and some folklore

Let X be a variety over F. A model X1 of X over a finite subfield k1 of F gives rise to a
commutative diagram:

Zr.X/
cr

����! H 2r.X;Q`.r//x?? x??
Zr.X1/

cr

����! H 2r.X1;Q`.r//:
Here Zr.�/ denotes the group of algebraic cycles of codimension r on a variety � (free
Z-module generated by the irreducible subvarieties of codimension r) and cr is the cycle
map. The image of the vertical arrow at right is contained in H 2r.X;Q`.r//Gal.F=k1/ and
Z.X/ D lim

�!X1=k1

Z.X1/, and so the image of the top cycle map is contained in

H 2r.X;Q`.r//0
def
D

[
X1=k1

H 2r.X;Q`.r//Gal.F=k1/:

In his talk at the AMS Summer Institute at Woods Hole in July, 1964, Tate conjectured the
following:1

1Tate’s talk is included in the mimeographed proceedings of the conference, which were distributed by
the AMS to only a select few. Despite their great historical importance — for example, they contain the only
written account by Artin and Verdier of their duality theorem, and the only written account by Serre and Tate
of their lifting theorem — the AMS has ignored requests to make the proceedings more widely available. For-
tunately, Tate’s talk was reprinted in the proceedings of an earlier conference (Arithmetical algebraic geometry.
Proceedings of a Conference held at Purdue University, December 5–7, 1963. Edited by O. F. G. Schilling,
Harper & Row, Publishers, New York 1965).
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CONJECTURE T r.X; `/ (TATE). The Q`-vector space H 2r.X;Q`.r//0 is spanned by al-
gebraic classes.

Conjecture T r.X; `/ implies that, for any modelX1=k1, the Q`-subspaceH 2r.X;Q`.r//Gal.F=k1/

is spanned by the classes of algebraic cycles on X1; conversely, if this is true for all models
X1=k1 over (sufficiently large) finite fields k1, then T r.X; `/ is true.

I write T r.X/ (resp. T .X; `/, resp. T .X/) for the conjecture that T r.X; `/ is true for
all ` (resp. all r , resp. all r and `).

In the same talk, Tate mentioned the following “conjectural statement”:

CONJECTURE Er.X; `/ (EQUALITY OF EQUIVALENCE RELATIONS). The kernel of the cy-
cle class map cr WZr.X/ ! H 2r.XF;Q`.r// consists exactly of the cycles numerically
equivalent to zero.

Both conjectures are existence statements for algebraic classes. It is well known that Con-
jecture E1.X/ holds for all X (see Tate 1994, �5).

REMARK 1.3. One can ask whether the Tate conjecture holds integrally, i.e., whether the
map

cr WZr.X/˝ Z` ! H 2r.XF;Z`.r//Gal.F=Fq/ (1)

is surjective for all varieties X over Fq . Essentially the same argument that shows that not
all torsion Hodge classes are algebraic, shows that not all torsion Tate classes are algebraic.2

However, I don’t know of any varieties over finite fields for which the map (1) is not surjec-
tive modulo torsion. It is known that if T r.X; `/ and Er.X; `/ hold for a single `, then the
map (1) is surjective for all but possibly finitely many `. For more details, see Milne and
Ramachandran 2004, �3.

LetX be a variety over F. The choice of a model ofX over a finite subfield of F defines
a Frobenius map � WX ! X . For example, for a model X1 � Pn over Fq , � acts as

.a1W a2W : : :/ 7! .a
q
1 W a

q
2 W : : :/WX1.F/! X1.F/; X1.F/ ' X.F/:

Any such map will be called a Frobenius map ofX (or a q-Frobenius map if it is defined by
a model over Fq). If �1 and �2 are pn1- and pn2-Frobenius maps ofX , then �n2N

1 D �
n1N
2

for some N > 1.3 For a Frobenius map � of X , we use a subscript a to denote the
generalized eigenspace with eigenvalue a, i.e.,

S
N Ker

�
.� � a/N

�
:

CONJECTURE Sr.X; `/ (PARTIAL SEMISIMPLICITY). Every Frobenius map � of X acts
semisimply on H 2r.X;Q`.r//1 (i.e., it acts as 1).

Weil proved that, for an abelian variety A over F, the Frobenius maps act semisimply
on H 1.A;Q`/. Hence they acts semisimply on all the cohomology groups H i .A;Q`/ 'Vi

H 1.A;Q`/. In particular, Conjecture S.X/ holds when X is an abelian variety over F.
From now on, I’ll write T r

`
.X/ for H 2r.X;Q`.r//0 and call its elements the Tate

classes of degree r on X . Note that T �
`
.X/

def
D
L
r T r`.X/ is a graded Q`-subalgebra

of H 2�.X;Q`.�//.
2The proof shows that the odd dimensional Steenrod operations are zero on the torsion algebraic classes

but not on all torsion cohomology classes.
3Because any two models of X become isomorphic over a finite subfield of F; when X1=k1 is replaced by

X1K=K then its Frobenius � is replaced by � ŒKWk1�.
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Folklore

The next three theorems are folklore.

THEOREM 1.5. Let X be a variety over F of dimension d . The following statements are
equivalent:

(a) T r.X; `/ and Er.X; `/ are true for a single `.
(b) T r.X; `/, Sr.X; `/, and T d�r.X; `/ are true for a single `.
(c) T r.X; `/, Er.X; `/, Sr.X; `/, T d�r.X; `/, and Ed�r.X; `/ are true for all `, and

the Q-subspace Ar
`
.X/ of T r

`
.X/ generated by the algebraic classes is a Q-structure

on T r
`
.X/, i.e., Ar

`
.X/˝Q Q` ' T r`.X/.

(d) the order of the pole of the zeta function Z.X; t/ at t D q�r is equal to the rank of
the group of numerical equivalence classes of algebraic cycles of codimension r .

The proof is explained in Tate 1994, �2.

THEOREM 1.6. Let X be a variety over F of dimension d . If S2d .X � X; `/ is true, then
every Frobenius endomorphism � acts semisimply on H�.X;Q`/.

PROOF. If a occurs as an eigenvalue of � onH r.X;Q`/, then 1=a occurs as an eigenvalue
of � on H 2d�r.X;Q`.d// (by Poincaré duality), and

H r.X;Q`/a ˝H 2d�r.X;Q`.d//1=a � H 2d .X �X;Q`.d//1

(Künneth formula), from which the claim follows. 2

A `-adic Tate q-structure is a finite dimensional Q`-vector space together with a linear
(Frobenius) map � whose characteristic polynomial has rational coefficients and whose
eigenvalues are Weil q-numbers, i.e., algebraic numbers ˛ such that, for some integer m
called the weight of ˛, j�.˛/j D qm=2 for every homomorphism �WQŒ˛� ! C and, for
some integer n, qn˛ is an algebraic integer. When the eigenvalues of � are all algebraic
integers, the Tate structure is said to be effective. For example, for a variety X over Fq ,
H r.X;Q`.s// is a Tate q-structure of weight r � 2s, which is effective if s D 0.

A Tate pn1-structure �1 and a Tate pn2-structure �2 on a Q`-vector space V are equiv-
alent if �n1N

1 D �
n2N
2 for some N . This is an equivalence relation, and a `-adic Tate

structure is a finite dimensional Q`-vector space together with an equivalence class of Tate
q-structures. For example, for a variety X over F, H r.X;Q`.s// is a Tate q-structure of
weight r � 2s, which is effective if s D 0.

Let X be a smooth projective variety over F. For each r , let F raH
i .X;Q`/ denote the

subspace of H i .X;Q`/ of classes with support in codimension r , i.e.,

F raH
i .X;Q`/ D

[
U

Ker.H i .X;Q`/! H i .U;Q`//

where U runs over the open subvarieties of X such that X X U has codimension � r . If
Z D X X U has codimension r and eZ ! Z is a desingularization of Z, then

H i�2r.eZ;Q`/.�r/! H i .X;Q`/! H i .U;Q`/

is exact (see Deligne 1974, 8.2.8; a similar proof applies to étale cohomology). This shows
thatF raH

i .X;Q`/ is an effective Tate substructure ofH i .X;Q`/ such thatF raH
i .X;Q`/.r/

is still effective.
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CONJECTURE (GENERALIZED TATE CONJECTURE). For a smooth projective variety X
over F, every Tate substructure V � H i .X;Q`/ such that V.r/ is effective is contained in
F raH

i .X;Q`/ (cf. Grothendieck 1968, 10.3).

THEOREM 1.8. Let X be a variety over F. If the Tate conjecture holds for all varieties of
the formA�X withA an abelian variety (and some `), then the generalized Tate conjecture
holds for X (and the same `).

The proof is explained in Milne and Ramachandran 2006, 1.10.4

REMARK 1.9. There are p-analogues of all of the above conjectures and statements. Let
W.k/ be the ring of Witt vectors with coefficients in a perfect field k, and let B.k/ be its
field of fractions. Let � be the automorphism of W.k/ (or B.k/) that acts as x 7! xp on k.
LetH r

p.X/ denote the crystalline cohomology group with coefficients in B.k/. It is a finite
dimensional B.k/-vector space with a � -linear Frobenius map F . Define

T rp.X/ D
[

X1=k1

H 2r
p .X/F

n1Dpn1 (pn1 D jk1j).

The Tate conjecture T r.X; p/ says that the Qp-vector space T rp.X/ is spanned by algebraic
classes.

Motivic interpretation

Let Mot.F/ be the category of motives over F defined using algebraic cycles modulo nu-
merical equivalence. It is known that Mot.F/ is a semisimple Tannakian category (Jannsen
1992). Conjecture E.X; `/ holds for all X if and only if `-adic cohomology defines a func-
tor !` on Mot.F/ (which will automatically be a fibre functor). Assuming this, conjecture
T .X; `/ holds for all X if and only if, for all X and Y , the image of the map

Hom.X; Y /˝Q` ! HomQ`
.!`.X/; !`.Y // (2)

defined by !` consists of the homomorphisms ˛W!`.X/ ! !`.Y / such that ˛ ı �X D
�Y ı˛ for some Frobenius maps �X and �Y ofX and Y (necessarily q-Frobenius maps for
the same q). In other words, the conjectures E and T imply that !` defines an equivalence
from Mot.F/˝Q Q` to the category of `-adic Tate structures.

2 Divisors on abelian varieties

Tate (1966) proved the Tate conjecture for divisors on abelian varieties over F, in the form:

THEOREM 2.1. For all abelian varieties A and B over Fq , the map5

Hom.A;B/˝ Z` ! HomQ`
.V`A; V`B/

Gal.F=Fq/ (3)

is an isomorphism.
4An equivalent statement of the generalized Tate conjecture is that a motive is effective if its `-adic realiza-

tion is effective. When one assume Conjecture E in addition to the Tate conjecture, this follows immediately
from the Honda-Tate theorem.

5The reader will note the similarity of (2) and (3). Tate (1994) describes how he was led to his conjecture
partly by his belief that (3) was true. Today, one would say that if (3) is true, so also must (2) because “every-
thing that’s true for abelian varieties is true for motives”. However, when Tate was thinking about these things,
motives didn’t exist. Apparently, the first text in which the notion of a motif appears is Grothendieck’s letter to
Serre of August 16, 1964 (Grothendieck and Serre 2001, p173, p276).
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SKETCH OF PROOF. It suffices to prove this with A D B (because Hom.A;B/ is a direct
summand of End.A � B/). Choose a polarization on A, of degree d2 say. It defines a
nondegenerate skew-symmetric form on V`A, and a maximal isotropic subspace W of V`A
stable under Gal.F=Fq/ will have dimension g D 1

2
dimV`A. Let

X.n/ D T`A \W C `
nT`A � T`A:

For each n, there exists an abelian variety A.n/ and an isogeny A.n/! Amapping T`A.n/
isomorphically onto X.n/. There are only finitely many isomorphism classes of abelian
varieties in the set fA.n/g because each A.n/ has a polarization of degree d2, and hence
can be realized as a closed subvariety of P3gd�1 of degree 3gd.gŠ/. Thus two of the A.n/’s
are isomorphic, and we have constructed a (nonobvious) isogeny. From this beginning, Tate
was able to deduce the theorem by exploiting the semisimplicity of the Frobenius map. 2

COROLLARY 2.2. For varieties X and Y over F,

T 1.X � Y; `/ ” T 1.X; `/C T 1.Y; `/:

PROOF. Compare the decomposition

NS.X � Y / ' NS.X/˚ NS.Y /˚ Hom.Alb.X/;Pic0.Y //

with the similar decomposition of H 2.X � Y;Q`.1// given by the Künneth formula. 2

COROLLARY 2.3. The Tate conjecture T 1.X/ is true when X is a product of curves and
abelian varieties over F.

PROOF. Let A be an abelian variety over F. Choose a polarization �WA ! A_ of A, and
let � be the Rosati involution on End0.A/ defined by �. The map D 7! ��1 ı �D defines
an isomorphism

NS.A/˝Q ' f˛ 2 End0.A/ j ˛� D ˛g:

Similarly,

T 1`.A/ ' f˛ 2 EndQ`
.V`A/ j ˛

�
D ˛ and ˛� D �˛ for some Frobenius map �g;

and so T 1 for abelian varieties follows from Theorem 2.1. Since T 1 is obvious for curves,
the general statement follows from Corollary 2.2. 2

As E1.X; `/ is true for all varieties X , the equivalent statements in Theorem 1.5 hold
for products of curves and abelian varieties. According to some more folklore (Tate 1994,
5.2), T 1.X/ and E1.X/ hold for any variety X for which there exists a dominant rational
map Y ! X with Y a product of curves and abelian varieties.

Abelian varieties with no exotic Tate classes

THEOREM 2.4. The Tate conjecture T .A/ holds for any abelian variety A such that, for
some `, the Q`-algebra T �

`
.A/ is generated by T 1

`
.A/; in fact, the equivalent statements of

(1.5) hold for A and all r � 0.
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PROOF. If the Q`-algebra T �
`
.A/ is generated by T 1

`
.A/, then, because the latter is spanned

by algebraic classes (2.3), the former is generated by algebraic classes. Thus T r.A; `/ holds
for all r , and as S.A/ is known, this implies that the equivalent statements of (1.5) hold for
A. 2

An abelian variety A is said to have sufficiently many endomorphisms if End0.A/
contains a Q-subalgebra of degree 2 dimA over Q. Tate’s theorem (2.1) implies that every
abelian variety over F has sufficiently many endomorphisms.

Let L�
`
.A/ be the Q`-subalgebra of H 2�.A;Q`.�// generated by the divisor classes.

ThenL�
`
.A/ � T �

`
.A/. The elements ofL�

`
.A/ are called the Lefschetz classes inH 2�.A;Q`.�//,

and the Tate classes not in L�
`
.A/ are said to be exotic.

Let A be an abelian variety over an algebraically closed field k with sufficiently many
endomorphisms, and let C.A/ be the centre of End0.A/. The Rosati involution � defined by
a polarization of A stabilizes C.A/, and its restriction to A is independent of the choice of
the polarization. Define L.A/ to be the algebraic group over Q such that, for any Q-algebra
R,

L.A/.R/ D fa 2 C.A/˝R j aa� 2 R�g:

It is a group of multiplicative type (not necessarily connected), which acts in a natural way
on the cohomology groups H r.An;Q`.s//, all r; n 2 N and s 2 Z. It is known that

H 2�.An;Q`.�//L.A/ D L�` .A
n/, all n and `; (4)

(see Milne 1999a). Let � be a Frobenius endomorphism of A. Some power �N of � lies in
C.A/, hence in L.A/.Q/, and (4) shows that no power of A has an exotic Tate class if and
only if �N is Zariski dense in L.A/. This gives the following explicit criterion:

2.5 Let A be an abelian variety over F, let � be a Frobenius endomorphism
of A lying in C.A/, and let .˛i /1�i�2g be the roots in C of the characteristic
polynomial of � , numbered so that ˛i˛iCg D q. Then no power of A has an
exotic Tate class (and so the Tate conjecture holds for all powers of A) if and
only if f˛1; : : : ; ˛g ; qg is a Z-linearly independent in C� (i.e., ˛m1

1 � � �˛
mg

g D

qm, mi ; m 2 Z, implies m1 D � � � D mg D 0 D m).

Spiess (1999) verifies this criterion for products of elliptic curves, and Zarhin (1991) and
Lenstra and Zarhin (1993) verify it for certain abelian varieties.

Abelian varieties with exotic Tate classes

Typically, an abelian variety over F will have exotic Tate classes.

PROPOSITION 2.6. Let K be a CM-subfield of C, finite and Galois over Q. Assume that
K is sufficiently large that the decomposition group of a p-adic prime in K is not normal.
Let A� be the abelian variety corresponding to a Weil q-integer of weight 1 in K. If the
exponents mi in the factorization

.�/ D pm1

1 � � � p
mt

t

of .�/ in OK are distinct, then some power of A� supports an exotic Tate class.

PROOF. Wei 1993, Theorem 1.6.9. 2
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THEOREM 2.7. There exists a family of abelian varieties A over F for which the Tate
conjecture T .A/ is true and T �

`
.A/ is not generated by T 1

`
.A/.

PROOF. See Milne 2001 (and �5 below). 2

3 K3 surfaces

The next theorem was proved by Artin and Swinnerton-Dyer (1973).

THEOREM 3.1. The Tate conjecture holds for K3 surfaces over F that admit a pencil of
elliptic curves.

SKETCH OF PROOF. Let X be an elliptic K3 surface, and let f WX ! P1 be the pencil of
elliptic curves. A transcendental Tate class onX gives rise to sequence .pn/n�1 of elements
of the Tate-Shafarevich group of the generic fibre of E D X� of f such that `pnC1 D pn
for all n. From the pns, we get a tower

� � � ! PnC1 ! Pn ! � � �

of principle homogeneous spaces for E over F.P1/. By studying the behaviour of certain
invariants attached to the Pn, Artin and Swinnerton-Dyer were able to show that no such
tower can exist. 2

ASIDE 3.2. With the proof of the theorems of Tate (2.1) and of Artin and Swinnerton-Dyer (3.1),
there was considerable optimism in the early 1970s that the Tate conjecture would soon be proved for
surfaces over finite fields — all one had to do was attach a sequence of algebro-geometric objects
to a transcendental Tate class, and then prove that such a sequence couldn’t exist. However, the
progress since then has been meagre. For example, we still don’t know the Tate conjecture for all
K3 surfaces over F.

4 Algebraic classes have the Tannaka property

Let S be a class of algebraic varieties over F containing the projective spaces and closed
under disjoint unions and products and passage to a connected component.

THEOREM 4.1. Let HW be a Weil cohomology theory on the algebraic varieties over F
with coefficients in a field Q. Assume that for all X 2 S the kernel of the cycle map
Z�.X/ ! H 2�

W .X/.�/ consists exactly of the cycles numerically equivalent to zero. Let
X 2 S, and let GX be the algebraic subgroup of GL.H�W .X// � GL.Q.1// fixing all
algebraic classes on all powers of X . Then the Q-vector space H 2�

W .Xn/.�/GX is spanned
by algebraic classes for all n.

PROOF. Let Mot.F/ be the category of motives over F based on the varieties in S and using
numerical equivalence classes of algebraic cycles as correspondences. Because the Künneth
components of the diagonal are known to be algebraic, Mot.F/ is a semisimple Tannakian
category (Jannsen 1992). Our assumption on the cycle map implies thatHW defines a fibre
functor ! on Mot.F/. It follows from the definition of Mot.F/, that for any variety X over
F and n � 0,

Z�num.X
n/Q ' Hom.11; h2�.Xn/.�//
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whereZ�num.X
n/ is the graded Z-algebra of algebraic cycles modulo numerical equivalence

and the subscript means that we have tensored with Q. On applying ! to this isomorphism,
we obtain an isomorphism

Z�num.X
n/Q ' HomG.Q;H 2�

W .Xn/.�// D H 2�
W .Xn/.�/G

where G D Aut˝.!/. Since GX is the image of G in GL.H�W .X// � GL.Q.1//, this
implies the assertion. 2

This is a powerful result: once we know that some cohomology classes are algebraic, it
allows us to deduce that many more are (the group fixing the classes we know to be algebraic
contains the group fixing all algebraic classes, and so any class that it fixes is in the span
of the algebraic classes). On applying the theorem to the smallest class S satisfying the
conditions and containing a variety X , we obtain the following criterion:

4.2 LetX be an algebraic variety over F such thatE.Xn; `/ holds for all n. In
order to prove that T .Xn; `/ holds for all n, it suffices to find enough algebraic
classes on the powers of X for some Frobenius map to be Zariski dense in the
algebraic subgroup of GL.H�.X;Q`// � GL.Q`.1// fixing the classes.

ASIDE 4.3. Theorem 4.1 holds also for almost-algebraic classes in characteristic zero in the sense
of Serre 1974, 5.2 and Tate 1994, p76.

5 On the equality of equivalence relations

Recall that an abelian variety A has sufficiently many endomorphisms if End0.A/ contains
a Q-subalgebra E of degree 2 dimA. It is known that such an E can be chosen to be a
product of CM-fields. There then exists a unique involution �E of E such that �ı �E D �ı�
for any homomorphism �WE ! C.

The next theorem is an abstract version of the main theorem of Clozel 1999.

THEOREM 5.1. Let k be an algebraically closed field, and let H�W be a Weil cohomology
theory on k-varieties with coefficients in a field Q. Let A be an abelian variety over k, and
choose a Q-subalgebra E of End0.A/ as above. Assume that Q splits E (i.e., E ˝Q Q �
QŒE WQ�) and that there exists an involution �Q of Q such that � ı �E D �Q ı � . Then
the kernel of the cycle class map Z�.X/ ! H 2�

W .X/.�/ consists exactly of the cycles
numerically equivalent to zero.

SKETCH OF PROOF. Choose a CM-type ˚ on E, i.e., a subset ˚ of Hom.E;C/ such that

Hom.E;C/ D ˚ t �˚

where
�˚ D f� ı ' j ' 2 ˚g D ˚�E :

Then H 1
W .A/ is free of rank one over E ˝Q Q, and so H 1

W .A/ D
L
�2˚t�˚ H

1
W .A/�

where H 1
W .A/� is the one-dimensional Q-subspace on which E acts through � . Similarly,

H r
W .A/ '

^r

Q
H 1
W .A/ D

M
I;J;jI jCjJ jDr

H r
W .A/I;J
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where I and J are subsets of ˚ and �˚ respectively, andH r
W .A/I;J is the one-dimensional

subspace on which a 2 E acts as
Q
�2ItJ �a. We say that a cohomology class is algebraic

if it is in theQ-span of the classes of algebraic cycles. Clearly the space of algebraic classes
is stable under automorphisms of Q. Therefore, if H 2r

W .A/ItJ .r/ consists of algebraic
classes, then so also does

�QH
2r
W .A/ItJ .r/ D H

2r
W .A/I �EtJ �E .r/ D H

2r
W .A/�It�J .r/:

Using this, Clozel proves that, for every nonzero algebraic class, there exists an algebraic
class of complementary degree whose product with the first class is nonzero. 2

COROLLARY 5.2. For an abelian variety A over F, there is an infinite set of primes ` ¤ p
such that E.An; `/ is true for all n.

PROOF. Choose a Q-subalgebra E of End0.A/ as before, and let Q0 be the composite of
the images of E in C under homomorphisms E ! C. Then Q0 is a finite Galois extension
of Q that splits E and it is a CM-field. Let S be the set of primes ` ¤ p such that � lies in
the decomposition group of some `-adic prime v of Q. For example, if � is the Frobenius
element of an `-adic prime of Q0, then ` 2 S , and so S has density > 0. The Weil
cohomology theory HW D H` ˝Q0v satisfies the hypotheses of the theorem for A. For
An, we can choose the Q-algebra to be En acting diagonally and use the same set S . 2

On combining (5.2) with (4.2) we obtain the following criterion:

5.3 Let A be an abelian variety over F. In order to prove that T .An/ holds for
all n, it suffices to find enough algebraic classes on powers of A for some
Frobenius endomorphism to be Zariski dense in the algebraic subgroup of
GL.H�

`
.X// � GL.Q`.1// fixing the classes for a suitable `.

The proof of Theorem 2.7 applies this criterion with the algebraic classes taken to be the
reductions of the exotic Hodge classes shown to be algebraic in Schoen 1988, 1998.

6 The Hodge conjecture and the Tate conjecture

To go further, we shall need to consider the Hodge conjecture (following Deligne 1982).
For a variety X over an algebraically closed field k of characteristic zero, define

H�A .X/ D H
�
Af
.X/ �H�dR.X/ where H�Af

.X/ D

 
lim
 �
m

H�.Xet;Z=mZ/

!
˝Z Q:

For any algebraically closed field K containing k;

H�Af
.XK/ ' H

�
Af
.X/ and H�dR.XK/ ' H

�
dR.X/˝k K;

and so there is a canonical homomorphism H�A .X/! H�A .XK/.
Let � be a homomorphism k ! C.6 An element of H 2�

A .X/.�/ is Hodge relative to �
if its image in H 2�

A .XC/.�/ is a Hodge class, i.e., lies in H 2�.XC;Q/.�/ � H 2�
A .XC/.�/

and is of type .0; 0/.

6Throughout, I assume that k is not too big to be embedded into C. See Deligne 1982 for how to avoid this
assumption.
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CONJECTURE (DELIGNE). If an element of H 2�
A .X/.�/ is Hodge relative to one homo-

morphism � W k ! C, then it is Hodge relative to every such homomorphism.

An element of H 2�
A .X/.�/ is absolutely Hodge if it is Hodge relative to every � .

Let B�abs.X/ be the set of absolutely Hodge classes on X . Then B�abs.X/ is a graded Q-
subalgebra of H 2�

A .X/.�/ of finite degree, and (Deligne 1982)
(a) for any regular map f WX ! Y , f � maps B�abs.Y / into B�abs.X/ and f� maps B�abs.X/

into B�abs.Y /;
(b) all algebraic classes lie in B�abs.X/;
(c) for any homomorphism k ! K of algebraically closed fields, B�abs.X/ ' B�abs.XK/;
(d) for any model X1 of X over a subfield k1 of k with k algebraic over k1, Gal.k=k1/

acts on B�abs.X/ through a finite quotient.
Property (d) shows that the image of B�abs.X/ in H 2�.X;Q`.�// consists of Tate classes.

THEOREM 6.2. If the Tate conjecture holds for X , then all absolutely Hodge classes on X
are algebraic.

PROOF. Let A�.X/ be the Q-subspace of H 2�
A .X/.�/ spanned by the classes of algebraic

cycles, and consider the diagram defined by a homomorphism k ! C,

A�.XC/
� � // B�.XC/

� � // H 2�
B .XC/.�/

� � // H 2�.XC;Q`.�//

A�.X/

'

OO

� � // B�abs.X/
?�

OO

� � // T �.X; `/ �
� // H 2�.X;Q`.�//:

'

OO

The five groups at upper left are finite dimensional Q-vector spaces, and the map at top right
gives an isomorphism H 2�

B .XC/.�/ ˝Q Q` ' H 2�.XC;Q`.�//. Therefore, on tensoring
the Q-vector spaces in the above diagram with Q`, we get injective maps

A�.X/˝Q Q` ,! B�abs.X/˝Q Q` ,! T �.X; `/:

If the Tate conjecture holds forX , then the composite of these maps is an isomorphism, and
so the first is also an isomorphism. This implies that A�.X/ D B�abs.X/. 2

THEOREM 6.3. When Deligne’s conjecture holds for X , the Tate conjecture for X implies
the Hodge conjecture for XC.

PROOF. For any homomorphism k ! C, the homomorphismH 2�
A .X/.�/ ,! H 2�

A .XC/.�/
maps B�abs.X/ into B�.XC/. When Deligne’s conjecture holds for X , B�abs.X/ ' B�.XC/.
Therefore, if B�abs.X/ consists of algebraic classes, so also does B�.XC/. 2

ASIDE 6.4. The Hodge conjecture is known for divisors, and the Tate conjecture is generally ex-
pected to be true for divisors. However, there is little evidence for either conjecture in higher codi-
mensions, and hence little reason to expect them to be true. On the other hand, Deligne expects his
conjecture to be true.

ASIDE 6.5. As Tate pointed out at the workshop, one reason the Tate conjecture is harder than the
Hodge conjecture is that it doesn’t tell you which cohomology classes are algebraic; it only tells you
the Q`-span of the algebraic classes.
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Deligne’s theorem on abelian varieties

The following is an abstract version of a theorem of Deligne (1982)

THEOREM 6.6. Let k be an algebraically closed subfield of C. Suppose that for every
abelian variety A over k, we have a graded Q-subalgebra C�.A/ of B�.AC/ such that

(A1) for every regular map f WA! B of abelian varieties over k, f � maps C�.B/ into
C�.A/ and f� maps C�.A/ into C�.B/;

(A2) for every abelian variety A, C1.A/ contains the divisor classes; and
(A3) let f WA ! S be an abelian scheme over a connected smooth (not necessarily

complete) k-variety S , and let  2 � .SC; R
2�fC�Q.�/); if t is a Hodge class for all

t 2 S.C/ and s lies in C�.As/ for one s 2 S.k/, then it lies in C�.As/ for all s 2 S.k/.
Then C�.A/ ' B�.AC/ for all abelian varieties over k.

For the proof, see the endnotes to Deligne 1982). I list three applications of this theorem.

THEOREM 6.7. In order to prove the Hodge conjecture for abelian varieties, it suffices to
prove the variational Hodge conjecture.

PROOF. Take C�.A/ to be the Q-subspace of H 2�
B .AC/.�/ spanned by the classes of alge-

braic cycles on A. Clearly (A1) and (A2) hold, and (A3) is (one form of) the variational
Hodge conjecture. 2

THEOREM 6.8. Deligne’s conjecture holds for all abelian varieties A over k (hence the
Tate conjecture implies the Hodge conjecture for abelian varieties).

PROOF. Take C�.A/ to be B�abs.A/. Clearly (A2) holds, and we have already noted that
(A1) holds. That (A3) holds is proved in Deligne 1982. 2

The theorem implies that, for an abelian variety A over an algebraically closed field
k of characteristic zero, any homomorphism k ! C defines an isomorphism B�abs.A/ !

B�.AC/. In view of this, I now write B�.A/ for B�abs.A/ and call its elements the Hodge
classes on A.

MOTIVATED CLASSES (FOLLOWING ANDRÉ 1996) Let k be an algebraically closed
field, and letHW be a Weil cohomology theory on the varieties over k with coefficient field
Q. For a variety X over k, let L and � be the operators defined by a hyperplane section of
X , and define

E�.X/ D QŒL;�� �A�W .X/ � H
2�
W .X/.�/:

Then E�.X/ is a graded Q-subalgebra of H 2�
W .X/.�/, but these subalgebras are not (obvi-

ously) stable under direct images. However, when we define

C�.X/ D
[
p�E�.X � Y /;

then C�.X/ is graded Q-subalgebra of H 2�
W .X/.�/, and these algebras satisfy (A1). They

obviously satisfy (A2).

THEOREM 6.9. Let k be an algebraically closed subfield of C, and let HW be the Weil
cohomology theory X 7! H�B.XC/. For every abelian variety A, C�.A/ D B�.AC/.
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PROOF. Clearly (A2) holds, and that (A3) holds is proved in André 1996, 0.5. 2

The elements of C�.X/ are called motivated classes.

ASIDE 6.10. As Ramakrishnan pointed out at the workshop, since proving the Hodge conjecture is
worth a million dollars and the Tate conjecture is harder, it should be worth more.

7 Rational Tate classes

There are by now many papers proving that, if the Tate conjecture is true, then something
else even more wonderful is true. But what if we are never able to decide whether the Tate
conjecture is true? or worse, what if it turns out to be false? In this section, I suggest an
alternative to the Tate conjecture for varieties over finite fields, which appears to be much
more accessible, and which has some of the same consequences.

An abelian variety with sufficiently many endomorphisms over an algebraically closed
field of characteristic zero will now be called a CM abelian variety. Let Qal be the algebraic
closure of Q in C. Then the functor A  AC from CM abelian varieties over Qal to CM
abelian varieties over C is an equivalence of categories.

Fix a p-adic prime w of Qal, and let F be its residue field. It follows from the theory
of Néron models that there is a well-defined reduction functor A  A0 from CM abelian
varieties over Qal to abelian varieties over F, which the Honda-Tate theorem shows to be
surjective on isogeny classes.

Let Qal

w be the completion of Q at w. For a variety X over F, define

H�A .X/ D H
�
Af
.X/�H�p .X/ where

(
H�Af

.X/ D
�

lim
 �m;p−m

H�.Xet;Z=mZ/
�
˝Z Q

H�p .X/ D H�crys.X/˝W.F/ Qal

w :

For a CM abelian variety A over Qal,

H�Af
.AK/ .not-p/ ' H�Af

.A0/ and

H�dR.A/˝Qal Q
al

w ' H
�
crys.A0/˝W.F/ Q

al

w ;

and so there so there is a canonical (specialization) map H�A .A/! H�A .A0/.
Let S be a class of smooth projective varieties over F satisfying the following condition:

(*) it contains the abelian varieties and projective spaces and is closed under
disjoint unions, products, and passage to a connected component.

DEFINITION 7.1. A family .R�.X//X2S with each R�.X/ a graded Q-subalgebra of
H 2�

A .X/.�/ is a good theory of rational Tate classes if
(R1) for all regular maps f WX ! Y of varieties in S, f � maps R�.Y / into R�.X/

and f� maps R�.X/ into R�.Y /;
(R2) for all varieties X in S, R1.X/ contains the divisor classes;
(R3) for all CM abelian varieties A over Qal, the specialization map H 2�

A .A/.�/ !

H 2�
A .A0/.�/ sends the Hodge classes on A to elements of R�.A0/;

(R4) for all varietiesX in S and all primes l (including l D p), the projectionH 2�
A .X/.�/!

H 2�
l
.X/.�/ defines an isomorphism R�.X/˝Q Ql ! T �

l
.X/.
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In particular, (R4) says that R�.X/ is simultaneously a Q-structure on each of the Ql -
spaces T �

l
.X/ of Tate classes (including for l D p). The elements ofR�.X/ will be called

the rational Tate classes on X (for the theory R).
The next theorem is an abstract version of the main theorem of Milne 1999b.

THEOREM 7.2. In the definition of a good theory of rational Tate classes, the condition
(R4) can be weakened to:

(R4*) for all varietiesX in S and all primes `, the projection mapH 2�
A .X/! H 2�

`
.X/.�/

sends R�.X/ into T �
`
.X/.

In other words, if a family satisfies (R1-3), and (R4*), then it satisfies (R4). For the proof,
see Milne 2007. I list three applications of it.

Any choice of a basis for a Q`-vector space defines a Q-structure on the vector space.
Thus, there are many choices of Q-structures on the Q`-spaces T �

`
.X/. The next theorem

says that there is exactly one family of choices satisfying the compatibility conditions (R1–
4).

THEOREM 7.3. There exists at most one good theory of rational Tate classes on S. In other
words, if R�1 and R�2 are two such theories, then, for all X 2 S, the Q-subalgebras R�1.X/
and R�2.X/ of H�A .X/ are equal.

PROOF. It follows from (R4) that if R�1 and R�2 are both good theories of rational Tate
classes andR�1 � R�2 , then they are equal. But ifR�1 andR�2 satisfy (R1–4), thenR�1\R�2
satisfies (R1–3) and (R4*), and hence also (R4). Therefore R�1 D R�1 \R�2 D R�2 . 2

THEOREM 7.4. The Hodge conjecture for CM abelian varieties implies the Tate conjecture
for abelian varieties over F.

PROOF. Let S0 be the smallest class satisfying (*). For X 2 S0, let R�.X/ be the Q-
subalgebra of H 2�

A .X/.�/ spanned by the algebraic classes. The family .R�.X//X2S0

satisfies (R1), (R2), and (R4*), and the Hodge conjecture implies that it satisfies (R3).
Therefore it satisfies (R4), which means that the Tate conjecture holds for abelian varieties
over F. 2

Hazama (2002, 2003) has shown that, in order to prove the Hodge conjecture for CM
abelian varieties over C, it suffices to prove it in codimension 2. It follows that, in order
to prove the Tate conjecture for abelian varieties over F, it suffices to prove the Hodge
conjecture in codimension 2. The following is a more natural statement.

THEOREM 7.5. In order to prove the Tate conjecture for abelian varieties over F, it suffices
to prove it in codimension 2 (or dimension 2).

For the proof, see Milne 2007.

THEOREM 7.6. All Tate classes on abelian varieties over F are motivated.

For the proof, see André 2006. The key point is that a motivated class on a CM abelian
variety A over Qal specializes to a motivated class on A0.
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The Hodge standard conjecture

Let k be an algebraically closed field, and let HW be a Weil cohomology theory on the
varieties over k. For a variety X over k, let ArW .X/ be the Q-subspace of H 2r

W .X/.r/

spanned by the classes of algebraic cycles. Let � 2 H 2
W .X/.1/ be the class of a hyperplane

section of X , and let LWH i
W .X/ ! H iC2

W .X/.1/ be the map [�. The primitive part
ArW .X/prim of ArW .X/ is defined to be

ArW .X/prim D fz 2 ArW .X/ j L
dim.X/�rC1z D 0g.

CONJECTURE (HODGE STANDARD). Let d D dimX . For 2r � d , the symmetric bilinear
form

.x; y/ 7! .�1/rx � y � �d�2r WArW .X/prim �ArW .X/prim ! AdW .X/ ' Q

is positive definite (Grothendieck 1969, Hdg(X )).

The next theorem is an abstract version of the main theorem of Milne 2002.

THEOREM 7.8. The Hodge standard conjecture holds for every good theory of rational
Tate classes.

In more detail, let .R�.X//X2S be a good theory of rational Tate classes. For X 2 S,
the cohomology class � of a hyperplane section of X lies in R1.X/, and we can define
Rr.X/prim and the pairing on Rr.X/prim by the above formulas. The theorem states that
this pairing

Rr.X/prim �Rr.X/prim ! Q

is positive definite.
For the proof, see Milne 2007. I list one application of this theorem.

THEOREM 7.9. If there exists a good theory of rational Tate classes for which all algebraic
classes are rational Tate classes, then the Hodge standard conjecture holds.

PROOF. The bilinear form onRr.X/prim restricts to the correct bilinear form onAr.X/prim.
If the first is positive definite, then so is the second, which implies that the form onArW .X/prim
is positive definite for any Weil cohomology theory HW . 2

ASIDE 7.10. Let S0 be the smallest class satisfying (*) and let S be a second (possibly larger)
class. If the Hodge conjecture holds for CM abelian varieties, then the family .Ar .X//X2S0

is a
good theory of rational Tate classes for S0; if moreover, the Tate conjecture holds for all varieties
in S, then .Ar .X//X2S is good theory of rational Tate classes for S. However, the Tate conjecture
alone does not imply that .Ar .X//X2S is a good theory of rational Tate classes on S; in particular,
we don’t know that the Tate conjecture implies the Hodge standard conjecture. Thus, in some
respects, the existence of a good theory of rational Tate classes is a stronger statement than the Tate
conjecture for varieties over F.

ASIDE 7.11. Assume that there exists a good theory of rational Tate classes for abelian varieties
over F. Then one would expect that all Hodge classes on an abelian variety A over Qal with good
reduction at w (not necessarily CM) specialize to rational Tate classes. This will follow from know-
ing that every F-point on a Shimura variety lifts to a special point, which is perhaps already known.
Note that it implies the “particularly interesting” corollary of the Hodge conjecture noted in Deligne
2006, �6.
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On the existence of a good theory of rational Tate classes

I consider this only for the smallest class S0 satisfying (*), which, I recall, contains the
abelian varieties.

CONJECTURE (RATIONALITY CONJECTURE). Let A be a CM abelian variety over Qal.
The product of the specialization to A0 of any Hodge class on A with any Lefschetz class
on A0 of complementary dimension lies in Q.

In more detail, a Hodge class on A is an element of  of H 2�
A .A/.�/ and its specializa-

tion 0 is an element of H 2�
A .A0/.�/. Thus the product 0 � ı of 0 with a Lefschetz class

of complementary dimension ı lies in in H 2�
A .A0/.�/, and 0 � ı lies in

H 2d
A .A0/.d/ ' Ap

f
�Qal

w ; d D dim.A/:

The conjecture says that it lies in Q � Ap
f
�Qal

w . Equivalently, it says that the l-component
of 0 � ı is a rational number independent of l .

REMARK 7.13. (a) The conjecture is true for a particular  if 0 is algebraic. Therefore,
the conjecture is implied by the Hodge conjecture for CM abelian varieties (or even by the
weaker statement that the Hodge classes specialize to algebraic classes).

(b) The conjecture is true for a particular ı if it lifts to a rational cohomology class on
A. In particular, the conjecture is true if A

0
is ordinary and A is its canonical lift (because

then all Lefschetz classes on A0 lift to Lefschetz classes on A).

For an abelian varietyA over F, letL�.A/ be the Q-subalgebra ofH 2�
A .A/.�/ generated

by the divisor classes, and call its elements the Lefschetz classes on A.

DEFINITION 7.14. Let A be an abelian variety over Qal with good reduction to an abelian
varietyA0 over F. A Hodge class  onA is locallyw-Lefschetz if its image 0 inH 2�

A .A0/.�/

is in the A-span of the Lefschetz classes, and it is w-Lefschetz if 0 is Lefschetz.

CONJECTURE (WEAK RATIONALITY CONJECTURE). Let A be an abelian variety over
Qal with good reduction to an abelian variety A0 over F. Every locally w-Lefschetz Hodge
class is itself w-Lefschetz.

THEOREM 7.16. The following statements are equivalent:
(a) The rationality conjecture holds for all CM abelian varieties over Qal.
(b) The weak rationality conjecture holds for all CM abelian varieties over Qal.
(c) There exists a good theory of rational Tate classes on abelian varieties over F.

PROOF. (a) H) (b): Choose a Q-basis e1; : : : ; et for the space of Lefscetz classes of
codimension r on A0, and let f1; : : : ; ft be the dual basis for the space of Lefscetz classes
of complementary dimension (here we use Milne 1999a, 5.2, 5.3). If  is a locally w-
Lefschetz class of codimension r , then 0 D

P
ciei for some ci 2 A. Now

h0 � fj i D cj ;

which (a) implies lies in Q.
(c) H) (b): If there exists a good theory R of rational Tate classes, then certainly the

rationality conjecture is true, because then 0 � ı 2 R2d ' Q.
(b) H) (c): See Milne 2007. 2
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Two questions

QUESTION 7.17. Let A be a CM abelian variety over Qal, let  be a Hodge class on A, and
let ı be a divisor class on A0. Does .A0; 0; ı/ always lift to characteristic zero? That is,
does there always exist a CM abelian variety A0 over Qal, a Hodge class  0 on A0, a divisor
class ı0 on A0 and an isogeny A00 ! A0 sending  00 to 0 and ı00 to ı?

PROPOSITION 7.18. If Question 7.17 has a positive answer, then the rationality conjecture
holds for all CM abelian varieties.

PROOF. Let  be a Hodge class on a CM abelian variety A of dimension d over Qal. If 
has dimension � 1, then it is algebraic and so satisfies the rationality conjecture. We shall
proceed by induction on the codimension of  . Assume  has dimension r � 2, and let
ı be a Lefschetz class of dimension d � r . We may suppose that ı D ı1 � ı2 � � � where
ı1; ı2; : : : are divisor classes. Apply (7.17) to .A; ; ı/. Then  0 � ı01 is a Hodge class on A0

of codimension r � 1, and

0 � ı 2 .
0
� ı01/0 � ı2 � � � � � ıd�rQ � Q. 2

A pair .A; �/ consisting of an abelian variety A over C and a homomorphism � from
a CM field E to End0.A/ is said to be of Weil type if the tangent space to A at 0 is a free
E ˝Q k-module. For such a pair .A; �/, the space

W d .A; �/
def
D

^d

E
H 1.A;Q/ � Hd .A;Q/; where d D dimE H 1.A;Q/;

consists of Hodge classes (Deligne 1982, 4.4). When E is quadratic over Q, the spaces
W d were studied by Weil (1977), and for this reason its elements are called Weil classes.
A polarization of an abelian variety .A; �/ of Weil type is a polarization of A whose Rosati
involution stabilizes E and induces complex conjugation on it. There then exists a E-
hermitian form � on H1.A;Q/ and an f 2 E� with Nf D �f such that  .x; y/ def

D

TrE=Q.f �.x; y// is a Riemann form for � (ibid. 4.6). We say that the Weil classes on
.A; �/ are split if there exists a polarization of .A; �/ for which the E-hermitian form � is
split (i.e., admits a totally isotropic subspace of dimension dimE H1.A;Q/=2).

QUESTION 7.19. Is it possible to prove the weak rationality conjecture for split Weil
classes on CM abelian variety by considering the families considered in Deligne 1982,
proof of 4.8, and André 2006, �3?

A positive answer to this question implies the weak rationality conjecture because of
the following result of Andre (1992) (or the results of Deligne 1982, �5).

THEOREM 7.20. Let A be a CM abelian variety over C. Then there exist CM abelian
varieties Bi and homomorphisms A ! Bi such that every Hodge class on A is a linear
combination of the inverse images of split Weil classes on the Bi .

PROOF. See André 1992, Théorème. 2

In the spirit of Weil 1967, I leave the questions as exercises for the interested reader.
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ASIDE 7.21. In the paper in which they state their conjecture concerning the structure of the points
on a Shimura variety over a finite field, Langlands and Rapoport prove the conjecture for some sim-
ple Shimura varieties of PEL-type under the assumption of the Hodge conjecture for CM-varieties,
the Tate conjecture for abelian varieties over finite fields, and the Hodge standard conjecture for
abelian varieties over finite fields. I’ve proved that the first of these conjectures implies the other
two (see 7.4 and 7.9), and so we have gone from needing three conjectures to needing only one. A
proof of the rationality conjecture would eliminate the need for the remaining conjecture. Probably
we can get by with much less, but having come so far I would like to finish it off with no fudges.

ASIDE 7.22. Readers of the Wall Street Journal on August 1, 2007, were excited to find a headline
on the front page of Section B directing them to a column on “The Secret Life of Mathematicians”.
The column was about the workshop, and included the following paragraph:

Progress, though, was made. V. Kumar Murty, of the University of Toronto, said that
as a result of the sessions, he’d be pursuing a new line of attack on Tate. It makes
use of ideas of the J.S. Milne of Michigan, who was also in attendance, and involves
Abelian varieties over finite fields, in case you want to get started yourself.

This becomes more-or-less correct when you replace “Tate” with the “weak rationality conjecture”.
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Bourbaki, Vol. 1973/1974, 26ème année, Exp. No. 446. Springer, Berlin.

SPIESS, M. 1999. Proof of the Tate conjecture for products of elliptic curves over finite fields. Math. Ann.
314:285–290.

TATE, J. T. 1966. Endomorphisms of abelian varieties over finite fields. Invent. Math. 2:134–144.

TATE, J. T. 1994. Conjectures on algebraic cycles in l-adic cohomology, pp. 71–83. In Motives (Seattle, WA,
1991), volume 55 of Proc. Sympos. Pure Math. Amer. Math. Soc., Providence, RI.

WEI, W. 1993. Weil numbers and generating large field extensions. PhD thesis, University of Michigan.
Unavailable except at the library of the University of Michigan, Ann Arbor.
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