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Abstract: In the 1950s and 1960s Tate proved some duality theorems in the Galois
cohomology of finite modules and abelian varieties. As for most of Tate’s work this
has had a profound influence on mathematics with many applications and further
developments. I’ll discuss Tate’s theorems and some of these developments.

These are the slides for my talk, except that I’ve added a rough transcript of what I
said while the slides were being displayed. The talk was my response to a request from
the organizers:

We’ve chosen speakers to put aspects of Tate’s work into perspective and point to
the future so that the current and next generation can be inspired by them as much
as our generations were. In particular, we’d be very grateful if you could speak on
the theme of arithmetic duality.

Notation: I generally follow the notation I learned from Tate. For example, 𝑋(𝓁) is the
𝓁-primary component of an abelian group 𝑋.

1 Local duality (Tate 1957)
Tate’s duality theorems are probably hismost cited results.1 Hediscovered his first duality
theorem while trying to understand the Weil–Châtelet group of an abelian variety.

The Weil–Châtelet group of an abelian variety, for example, of an elliptic curve, is
the first Galois cohomology group of the variety. It also has a geometric interpretation
as the principal homogeneous spaces of the variety.
For an abelian variety 𝐴 over a field 𝐾, the Weil–Châtelet group

WC(𝐴,𝐾) def= { 𝐻
1(𝐾,𝐴) def= 𝐻1(Gal(�̄�∕𝐾), 𝐴(�̄�)), �̄� = 𝐾sep

{principal homogeneous spaces mod isomorphism} .
Châtelet was the first to recognize its importance for the diophantine study of elliptic

curves, and Weil for the study of abelian varieties, so, in his 1957 Bourbaki talk, Tate
named themWeil–Châtelet groups.

Except that they are torsion, almost nothing was known about the groups until
Tate, in his Bourbaki talk, proved that, when 𝐾 is a local field of characteristic zero, the
Weil–Châtelet group (with its discrete topology) is dual to the group of rational points
on the dual abelian variety (a compact group).

1I think this is correct, but it is difficult to document as there is no canonical source for the theorems.
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When 𝐾 is a local field of characteristic zero (nonarchimedean, finite residue field of
characteristic 𝑝), Tate constructed an isomorphism

𝐻1(𝐾,𝐴) ≃,→ 𝐴′(𝐾)∗,

where 𝐴′ is the dual abelian variety and ∗means the Pontryagin dual.
Since𝐴′(𝐾)waswell-understood at the time, this tells us a great deal aboutWC(𝐴,𝐾).

The group 𝐴′(𝐾) contains a subgroup of finite index isomorphic to 𝒪dim𝐴
𝐾 (Mattuck

1957).
For example, it showed that the non-𝑝 part ofWC(𝐴,𝐾) is finite, andhas a description

in terms of the torsion subgroup of 𝐴′(𝐾). Lang and Tate had proved this earlier, and it
was by thinking about this and investigating the elliptic curve case that Tate was led to
his theorem.

Many readers will recognize the statement as being part of what we now call Tate
local duality. It took Tate a little longer. In the final paragraph of his Bourbaki talk,
almost as an afterthought, he noted that there are canonical pairings for all 𝑟, 𝑠, and that
they should give dualities when 𝑟 + 𝑠 = 1.
Tate defined canonical pairings

𝐻𝑟(𝐾,𝐴) ×𝐻𝑠(𝐾,𝐴′)→ 𝐻𝑟+𝑠+1(𝐾,𝔾𝑚)
def= 𝐻𝑟+𝑠+1(Gal(�̄�∕𝐾), �̄�×)

and showed they give a duality when 𝑟 + 𝑠 = 1,

𝐻𝑟(𝐾,𝐴) ×𝐻1−𝑟(𝐾,𝐴′)→ 𝐻2(𝐾,𝔾𝑚) ≃ ℚ∕ℤ.
Once he had proved that, he was able to deduce, by a five-lemma argument, a 2

dimensional duality for the finite Galois modules2 occurring as submodules of 𝐴(𝐾).
From the exact sequence

0→ 𝑀 → 𝐴(𝐾)→ 𝐵(𝐾)→ 0

defined by an isogeny 𝐴 → 𝐵 and its dual,

0→ 𝑀𝐷 → 𝐵′(𝐾)→ 𝐴′(𝐾)→ 0, 𝑀𝐷 def= Hom(𝑀, �̄�×)

Tate deduced (five-lemma)

𝐻0(𝐾,𝐴) 𝐻0(𝐾, 𝐵) 𝐻1(𝐾,𝑀) 𝐻1(𝐾,𝐴) 𝐻1(𝐾, 𝐵)

𝐻1(𝐾,𝐴′)∗ 𝐻1(𝐾, 𝐵′)∗ 𝐻1(𝐾,𝑀𝐷)∗ 𝐻0(𝐾,𝐴′)∗ 𝐻0(𝐾, 𝐵′)∗.

←→

←→ ≃

←→

←→ ≃

←→

←→

←→

←→ ≃ ←→ ≃

←→ ←→ ←→ ←→

a duality
𝐻𝑟(𝐾,𝑀) ×𝐻2−𝑟(𝐾,𝑀𝐷)→ 𝐻2(𝐾,𝔾𝑚) ≃ ℚ∕ℤ.

For a while, Tate thought this was a curious property of the Galois submodules of
𝐴(𝐾). Eventually, of course, he realized that all finite Galois modules have this property,
and so obtained what we now call Tate local duality.3

2By a finite Galois module, I mean a finite abelian group with a continuous action of the Galois group.
3Thus, the duality theorem for abelian varieties was proved before the (easier!) duality theorem for finite

Galois modules, and even before a local duality theorem was available for elliptic curves.
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There are compatible dualities

𝐻𝑟(𝐾,𝑀) ×𝐻2−𝑟(𝐾,𝑀𝐷)→ 𝐻2(𝐾,𝔾𝑚) ≃ ℚ∕ℤ, 𝔾𝑚
def= GL1

𝐻𝑟(𝐾,𝐴) ×𝐻1−𝑟(𝐾,𝐴′)→ 𝐻2(𝐾,𝔾𝑚) ≃ ℚ∕ℤ,

𝑀 a finite Galois module,𝑀𝐷 = Hom(𝑀, �̄�×), 𝐴 an abelian variety, 𝐴′ the dual abelian
variety.
I should say a word about the dual abelian variety. Every abelian variety has a dual,

which is an abelian variety of the same dimension, but not necessarily isomorphic. The
dual of an elliptic curve is the curve itself. Usually, the dual of 𝐴 is defined to classify
translation invariant line bundles on 𝐴, but, as Weil observed, when you remove the
zero-section of such line bundle, it acquires a group structure that makes it an extension
of 𝐴 by 𝔾𝑚.
The dual abelian variety

𝐴′ = { Pic
0(𝐴) [translation invariant line bundles]

Ext(𝐴,𝔾𝑚) [1→ 𝔾𝑚 → 𝐸 → 𝐴 → 1].
In this way, 𝐴′ can be identified with Ext(𝐴,𝔾𝑚). This makes it easier to define the

pairings. Indeed, when his collected works were published almost 60 years after he gave
his Bourbaki talk, Tate added a note saying exactly that.

In hindsight, the [cohomological] pairing for dual abelian varieties 𝐴 and 𝐵 is
evident from the relation 𝐵 = Ext(𝐴,𝔾𝑚),. . . (Tate, Collected Works, I, p.127).

2 Global duality (Tate 1962 ICM)
Tate immediately recognized the importance of extending his local duality theorems to
global fields. By 1960 he knew the statements he wanted, but not the proofs. By early
1962 he had the proofs, in time to announce his theorems at the 1962 ICM in Stockholm.4

One statement of his theorem is that there is a nine-term exact sequence, as below.
To understand the sequence, note that the 𝛽’s map the global Galois cohomology group
into a product of the local groups. One would like to know the kernels and cokernels of
these maps, but there is no simple expression for these. The best one can do is Tate’s
sequence.

4Poitou proved similar theorems for finite Galois modules at about the same time as Tate, and so the
duality theorems are usually credited to both. Except that Serre alerted each of Poitou and Tate to the work
of the other, they do not seem to have had any direct contact.
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⋄ 𝐾 =global field; �̄� = separable closure of 𝐾;
⋄ 𝑀 finite Gal(�̄�∕𝐾)-module; char(𝐾) ∤ [𝑀];
⋄ 𝑀𝐷 = Hom(𝑀, �̄�×); ∗=Pontryagin dual;
⋄ 𝐻0(ℝ,𝑀) = 𝑀Gal(ℂ∕ℝ)∕(1 + 𝜄)𝑀, 𝐻0(ℂ,𝑀) = 0.

0 𝐻0(𝐾,𝑀)
∏

𝑣𝐻
0(𝐾𝑣,𝑀) 𝐻2(𝐾,𝑀𝐷)∗

𝐻1(𝐾,𝑀𝐷)∗
∐∏

𝑣𝐻1(𝐾𝑣,𝑀) 𝐻1(𝐾,𝑀)

𝐻2(𝐾,𝑀)
⨁

𝑣𝐻
2(𝐾𝑣,𝑀) 𝐻0(𝐾,𝑀𝐷)∗ 0.

←→ ←→𝛽
0 ←→𝛾

0

←→
←→

←→𝛾
1

←→𝛽
1

←→𝛽
2 ←→𝛾

2 ←→

For 𝑟 ≥ 3,𝐻𝑟(𝐾,𝑀) ≃
⨁

𝑣 real𝐻
𝑟(𝐾𝑣,𝑀).

Tate’s 1963 proof
I do not think we know Tate’s original proofs of his global duality theorems, but in a
letter to Serre (25.04.63), he observed that the nine-term sequence can be obtained as an
Ext-sequence.
The nine-term sequence is the Ext(𝑀,−) sequence

0 Ext0𝐾(𝑀,𝔾𝑚) Ext0𝐾(𝑀, 𝐽) Ext0𝐾(𝑀,𝐶)

Ext1𝐾(𝑀,𝐶) Ext1𝐾(𝑀, 𝐽) Ext1𝐾(𝑀,𝔾𝑚)

Ext2𝐾(𝑀,𝔾𝑚) Ext2𝐾(𝑀, 𝐽) Ext2𝐾(𝑀,𝐶) 0

←→ ←→ ←→

←→
←→

←→ ←→

←→ ←→ ←→

of the exact sequence of Gal(�̄�∕𝐾)-modules

0→ 𝔾𝑚 → 𝐽 → 𝐶 → 0,

obtained as the direct limit of the sequences

0→ 𝐿× → (idèles of 𝐿)→ (idèle classes of 𝐿)→ 0,

where 𝐿 runs over the finite extensions of 𝐾 in �̄�. To make this true, we have to switch
𝑀 and𝑀𝐷, and modify the groups at the infinite primes.
In the spectral sequence below, the Exts on the right are in the category of Galois

modules and those on the left in the category of abelian groups. From the divisibility
of �̄�×, we see that the sequence collapses and identifies Ext𝑟𝐾(𝑀,𝔾𝑚) with𝐻𝑟(𝐾,𝑀𝐷).
This completes the easy third of Tate’s proof.
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There is a spectral sequence

𝐻𝑟(𝐾,Ext𝑠AbGps(𝑀, �̄�×)) ⇐⇒ Ext𝑟+𝑠𝐾 (𝑀, �̄�×).

As �̄�× is divisible by the primes ≠ 𝑝, Ext𝑠AbGps(𝑀, �̄�×) = 0 for 𝑠 > 0, and so

Ext𝑟𝐾(𝑀,𝔾𝑚) ≃ 𝐻𝑟(𝐾,𝑀𝐷).
Tate gave a detailed account of this proof in a letter to Springer (13.01.66), which was

intended to be published in the Cassels–Fröhlich volume, but somehow did not make it.
However, the letter was widely distributed and eventually published in Tate’s collected
works.

Global duality (variant)
We state a variant of Tate’s global duality theorem in which the products over all primes
of 𝐾 are replaced by a direct sum over a finite set 𝑆 of primes. The previous version can
be obtained from this version by passing to a direct limit over the sets 𝑆.

⋄ 𝐾 =global field;
⋄ 𝑆 finite set of primes (including archimedean primes);
⋄ 𝐾𝑆 =maximal extension of 𝐾 ramified only in 𝑆;
⋄ 𝑀 a finite 𝐺𝑆-module, 𝐺𝑆 = Gal(𝐾𝑆∕𝐾),
⋄ [𝑀] not divisible by residue characteristic at any 𝑣 ∉ 𝑆;
⋄ 𝐻𝑟(𝐾𝑆,𝑀) = 𝐻𝑟(Gal(𝐾𝑆∕𝐾,𝑀).

0 𝐻0(𝐾𝑆,𝑀)
⨁
𝑣∈𝑆

𝐻0(𝐾𝑣,𝑀) 𝐻2(𝐾𝑆,𝑀𝐷)∗

𝐻1(𝐾𝑣,𝑀𝐷)∗
⨁
𝑣∈𝑆

𝐻1(𝐾𝑣,𝑀) 𝐻1(𝐾𝑆,𝑀)

𝐻2(𝐾𝑆,𝑀)
⨁
𝑣∈𝑆

𝐻2(𝐾𝑣,𝑀) 𝐻0(𝐾𝑆,𝑀𝐷)∗ 0.

←→ ←→𝛽
0 ←→𝛾

0

←

→
←

→

←→𝛾
1

←→𝛽
1

←→𝛽
2 ←→𝛾

2 ←→

We now sketch a geometric derivation of the nine-term sequence in the function
field case.

Étale duality over a curve
Consider a smooth complete curve 𝑋 over a field 𝑘.

(a) When 𝑘 = ℂ, 𝑋(ℂ) is a 2-dimensional manifold, so there is a 2-dimensional
Poincaré duality theorem. When 𝑘 is an arbitrary algebraically closed field, we still have
a 2-dimensional duality theorem, but now in étale cohomology, provided we stick to
finite sheaves prime to the characteristic of 𝑘.

(b) When 𝑘 is a finite field, there is an obvious 1-dimensional duality theorem for
finite Galois modules.
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(c) When 𝑋 is a smooth complete curve over finite field, the two dualities add to give
a 3-dimensional duality theorem.

Let 𝑋 be a complete smooth curve over a field 𝑘, and 𝐹 a constructible locally free sheaf
of ℤ∕𝑚ℤ-modules,𝑚 not divisible by 𝑝 if char(𝑘) = 𝑝 ≠ 0. Let 𝐹∨ =ℋ𝑜𝑚(𝐹,𝔾𝑚).
(a) 𝑘 algebraically closed. The pairing 𝐹∨ × 𝐹 → 𝔾𝑚 defines a duality of finite groups

𝐻2−𝑟(𝑋, 𝐹∨) ×𝐻𝑟(𝑋, 𝐹)→ 𝐻2(𝑋,𝔾𝑚) ≃ ℚ∕ℤ.

(b) 𝑘 a finite field,𝑀 a Gal(�̄�∕𝑘)-module, 𝑝𝑀 = 𝑀. Let𝑀∨ = Hom(𝑀,ℚ∕ℤ). The
pairing𝑀∨ ×𝑀 → �̄�× defines a duality of finite groups

𝐻1−𝑟(𝑘,𝑀∨) ×𝐻𝑟(𝑘,𝑀)→ 𝐻1(𝑘,ℚ∕ℤ) ≃ ℚ∕ℤ.

(c) 𝑋, 𝑘, 𝐹 as in (a), but with 𝑘 finite. The pairing 𝐹∨ × 𝐹 → 𝔾𝑚 defines a duality of
finite groups

𝐻3−𝑟(𝑋, 𝐹∨) ×𝐻𝑟(𝑋, 𝐹)→ 𝐻3(𝑋,𝔾𝑚) ≃ ℚ∕ℤ.

Etale duality↔ Tate duality (char 𝑝 ≠ 0).
Now consider a smooth open curve 𝑈 over a finite field. When we write the exact
sequence relating the usual cohomology of 𝑈 to its cohomology with compact support,
and replace the latter with the group given by the duality theorem, we obtain Tate’s
nine-term exact sequence.

This gives a geometric explanation for the sequence, as well as a second proof.

Let 𝑋, 𝑘, 𝐹 be as in (c), and let 𝑗∶ 𝑈 → 𝑋 be an open subscheme of 𝑋. We get the top
row of the following diagram with𝐻𝑟

𝑐 (𝑈,𝐹) = 𝐻𝑟(𝑋, 𝑗!𝐹), 𝑆 = 𝑋 ∖𝑈, and 𝐾(𝑣) =field of
fractions of the henselization of 𝒪𝑋,𝑣. This essentially becomes Tate’s 9-term sequence
when we replace𝐻𝑟

𝑐 (𝑈,𝐹) with𝐻3−𝑟(𝑈,𝐹∨)∗

⋯ 𝐻𝑟
𝑐 (𝑈,𝐹) 𝐻𝑟(𝑈,𝐹)

⨁

𝑣∈𝑆
𝐻𝑟(𝐾(𝑣), 𝐹) ⋯

𝐻3−𝑟(𝑈,𝐹∨)∗

⋯ 𝐻3−𝑟(𝐾𝑆,𝑀𝐷)∗ 𝐻𝑟(𝐾𝑆,𝑀)
⨁

𝑣∈𝑆
𝐻𝑟(𝐾𝑣,𝑀) ⋯

←→ ←→

⇐⇐

←→

⇐
⇐

←→

⇐

⇐
⇐⇐

←→ ←→ ←→ ←→

𝑀 ↔ 𝐹 on 𝑈, 𝑀 = 𝐹(𝑈), 𝐺𝑆 = 𝜋ét1 (𝑈).

Artin-Verdier duality (Woods Hole 1964)
Below, is the theorem as Artin and Verdier originally stated it. This gives a geometric
explanation for Tate’s nine-term sequence in the number field case, as well as a second
proof (but one much more difficult than Tate’s proof).
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⋄ 𝐾 a number field, 𝑋 = Spec(𝒪𝐾);
⋄ 𝑗∶ 𝑈 → 𝑋 a nonempty open subset of 𝑋;
⋄ for a sheaf 𝐹 on 𝑈, let𝐻𝑟

𝑐 (𝑈,𝐹) = 𝐻𝑟(𝑋, 𝑗!𝐹).

Theorem 2.1 (Artin–Verdier 1964). For any constructible sheaf 𝐹 on𝑈, the Yoneda
pairing

Ext𝑟𝑈(𝐹,𝔾𝑚) ×𝐻3−𝑟
𝑐 (𝑈,𝐹)→ 𝐻3

𝑐 (𝑈,𝔾𝑚) ≃ ℚ∕ℤ

is a nondegenerate pairing of finite groups, except possibly on the 2-torsion when 𝐾 has a
real prime.

⋄ Note that there is no condition on primes.
⋄ Can modify𝐻𝑖

𝑐 so that the theorem also holds for 2.
⋄ Have𝐻𝑟(𝑈,ℰ𝑥𝑡𝑠(𝐹,𝔾𝑚)) ⇐⇒ Ext𝑟+𝑠(𝐹,𝔾𝑚),. . .
⋄ Can deduce Tate’s global duality as before.

3 Global duality for abelian varieties
The group 𝐴(𝐾) of rational points on an abelian variety 𝐴 over a global field 𝐾 is finitely
generated. It is easy to find the torsion subgroup of 𝐴(𝐾) (at least for elliptic curves)
so the problem of computing 𝐴(𝐾) comes down to finding a set of generators for 𝐴(𝐾)
modulo torsion. By computing, one obtains a lower bound; the general theory using
Weil-Châtelet groups) gives an upper bound. Roughly speaking, the difference between
the bounds is measured by the Tate–Shafarevich group. On the basis of calculations,
Selmer found that the order of this group always seemed to be a square, which would be
explained by its carrying an nondegenerate alternating form. Cassels proved that this
was so in various cases, and finally for a general elliptic curve (assuming the group is
finite). Tate proved a similar result for abelian varieties.
Let 𝐴 be an abelian variety over a global field 𝐾 and 𝐴′ the dual abelian variety.
The Tate–Shafarevich group of 𝐴 is defined to be

X(𝐾,𝐴) = Ker(𝐻1(𝐾,𝐴)→
⨁

all 𝑣
𝐻1(𝐾𝑣, 𝐴)).

Tate defined a bi-additive pairing

X(𝐾,𝐴)(𝑙) ×X(𝐾,𝐴′)(𝑙)→ ℚ∕ℤ

and showed that it is nondegenerate ifX(𝐾,𝐴)(𝑙) is finite and 𝑙 ≠ char(K).
⋄ Proved for elliptic curves by Cassels 1959, 1962, 1964. Origin of duality onX is a

conjecture of Selmer (1951, 1954) based on calculations for elliptic curves with
𝑗 = 0.

⋄ Proved for abelian varieties by Tate (statement, ICM 1962; proof outlined in letter
to Serre, 28 July 1962).
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Better, ignoring 𝑝 components. . . and assumingX finite, we get dual exact sequences,

0 X(𝐾,𝐴) 𝐻1(𝐾,𝐴)
⨁

all 𝑣
𝐻1(𝐾𝑣, 𝐴) B 0

0 X(𝐾,𝐴′) 𝐻1(𝐾,𝐴)∗
∏

all 𝑣
𝐴′(𝐾𝑣) 𝐴′(𝐾)∧ 0,

←→ ←→ ←→ ←→ ←→

← → ← → ←→ ←→ ← →

where 𝐴′(𝐾)∧ is the profinite completion of 𝐴′(𝐾) and 𝐴′(𝐾𝑣) is to be replace by
𝜋0(𝐴′(𝐾𝑣)) if 𝑣 is archimedean.

4 Application: Isogeny invariance of BSD

“It seemed tome that the natural setting for [the BSD conjectures] is abelian varieties
of any dimension, defined over any global field.” Tate CW, p.237.

Conjecture 4.1 (BSD, Tate SB 1966). Let 𝐴 be an abelian variety over a global field 𝐾.
Then

lim
𝑠→1

𝐿∗(𝐴, 𝑠)
(𝑠 − 1)rk(𝐴(𝐾))

= [X(𝐴)] ⋅ 𝐷
[𝐴(𝐾)tors][𝐴′(𝐾)tors]

,

where 𝐴′ is the dual abelian variety and 𝐷 is the discriminant of the Néron-Tate height
pair 𝐴(𝐾) × 𝐴′(𝐾)→ ℝ.
One important application of the duality theorems is the isogeny invariance of the

BSD conjecture.
Theorem 4.2 (Tate, Cassels for elliptic curves). Let𝐴 and 𝐵 be abelian varieties
over a global field. If 𝐴 and 𝐵 are isogenous by an isogeny of degree prime to the character-
istic, then BSD is true for both if it true for one.

Proof uses

⋄ Tate’s global duality theorem for

𝑀 def= Ker(𝐴(𝐾𝑆)→ 𝐵(𝐾𝑆)).

⋄ Cassels-Tate duality (for 𝐴 and 𝐵)

X(𝐾,𝐴) ×X(𝐾,𝐴′)→ ℚ∕ℤ

⋄ Euler-Poincaré formula (Tate),

[𝐻0(𝐾𝑆,𝑀)][𝐻2(𝐾𝑆,𝑀)]
[𝐻1(𝐾𝑆,𝑀)]

=
∏

𝑣 arch

[𝐻0(𝐾𝑣,𝑀)]
|[𝑀]|𝑣

.

More precisely, using the first two assertions, one finds that BSD for 𝐴 and 𝐵 are equiva-
lent if and only if the third assertion is true, so Tate proved it (not without difficulty).

In the summer of 1967, I asked Tate how to prove the theorem, and my recollection
is that he was able to write the proof down without looking anything up.
Tate (SB 1966; CW p. 227): The proof of compatibility with 𝑝-isogenies looks like an
interesting problem.
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Indeed.

5 Interlude: étale vs flat cohomology

Tate always worked with Galois cohomology. This entailed some restrictions, which we
now remove.
⋄ Étale topology: coverings are surjective families of flat unramified morphisms

(plus a finiteness condition).
⋄ Flat topology: coverings are surjective families of flat morphisms (plus a finiteness

condition)
⋄ For a field, étale cohomology = Galois cohomology.
⋄ Flat cohomology of smooth group schemes = étale cohomology.
⋄ Over a field of characteristic zero, all group schemes are smooth.
⋄ Over a field of characteristic 𝑝, a finite group scheme is smooth if 𝑝 does not divide

its order.
⋄ Over a field, smooth finite group scheme = étale group scheme “=” finite Galois

module.
For a commutative group scheme𝑁 over a field𝐾 and a finite extension 𝐿 of𝐾, there

is a natural definition of Čech cohomology groups𝐻𝑟(𝐿∕𝐾,𝑁). The Galois cohomology
groups are obtained by passing to the direct limit over the separable 𝐿 contained in a
fixed algebraic closure of 𝐾, and the flat cohomology groups by passing to the limit over
all 𝐿.
Example 5.1. Let 𝐺 be a commutative group scheme over a field 𝐾, and 𝐿 a finite
extension of 𝐾. From the system

𝐿 𝐿 ⊗𝐾 𝐿 𝐿 ⊗𝐾 𝐿 ⊗𝐾 𝐿 ⋯

←→𝑎↦1⊗𝑎←→𝑎↦𝑎⊗1

←→←→←→

←→←→←→←→

we get a complex,

𝐺(𝐿) 𝐺(𝐿 ⊗𝐾 𝐿) 𝐺(𝐿 ⊗𝐾 𝐿 ⊗𝐾 𝐿) ⋯←→ ←→ ←→

whose 𝑟th cohomology group we denote𝐻𝑟(𝐿∕𝐾,𝐺). Then

𝐻𝑟
ét(𝐾,𝐺) = lim,,→

𝐿⊂�̄�, 𝐿 separable over 𝐾
𝐻𝑟(𝐿∕𝐾,𝐺)

𝐻𝑟
fl(𝐾,𝐺) = lim,,→

𝐿⊂�̄�
𝐻𝑟(𝐿∕𝐾,𝐺).

⋄ If 𝐿∕𝐾 is Galois, then 𝐿 ⊗𝐾 𝐿 is a product of copies of 𝐿 indexed by the Galois
group.

⋄ If 𝐿∕𝐾 is inseparable, 𝐿 ⊗𝐾 𝐿may have nilpotents.
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Abelian varieties in characteristic 𝑝
In the 1940s, André Weil developed a robust theory of algebraic varieties, including
abelian varieties, over arbitrary fields. This theory had difficulty handling 𝑝-phenomena
in characteristic 𝑝.5 For example, in the algebraic geometry of that period, there are
many maps that should be isomorphisms, but are only proved to be purely inseparable.

Cartier (1960) and Nishi (1959) independently extendedWeil’s theory of abelian varieties
to cover 𝑝-phenomena in characteristic 𝑝. Let 𝛼∶ 𝐴 → 𝐵 be an isogeny of abelian
varieties over a field 𝐾 and 𝛼′∶ 𝐵′ → 𝐴′ the dual isogeny. In the exact sequences

0→ 𝑁 ,→𝐴
𝛼
,→ 𝐵 → 0

0→ 𝑁𝐷 ,→𝐵′
𝛼′
,→ 𝐴′ → 0,

the finite group scheme 𝑁𝐷 is the Cartier dual of 𝑁,

𝑁𝐷 def= ℋ𝑜𝑚(𝑁,𝔾𝑚).

Moreover, the canonical map 𝐴 → 𝐴′′ from 𝐴 into its double dual is an isomorphism,
and the second sequence can be obtained as the ℰ𝑥𝑡(−,𝔾𝑚) sequence of the first.

6 Local flat duality
A student of Tate, Steve Shatz, took up the problem of extending Tate’s local duality to
local fields of characteristic 𝑝 ≠ 0. He succeeded in proving a flat duality theorem for
finite group schemes in 1962, but the corresponding theorem for abelian varieties was
not proved until almost 10 years later.
Theorem 6.1 (Shatz thesis, 1962). Let𝐾 be local field of characteristic𝑝 (finite residue
field). Let𝑁 be a finite commutative group scheme over 𝐾, with Cartier dual𝑁𝐷 . For all 𝑟,
the cup-product pairing

𝐻𝑟(𝐾,𝑁) ×𝐻2−𝑟(𝐾,𝑁𝐷)→ 𝐻2(𝐾,𝔾𝑚) ≃ 𝔾𝑚

is a perfect duality of locally compact groups.

Theorem 6.2 (M 1970/72). Let 𝐴 be an abelian variety over a local field 𝐾 and 𝐴′ the
dual abelian variety. For all 𝑟, Tate’s pairing

𝐻𝑟(𝐾,𝐴) ×𝐻1−𝑟(𝐾,𝐴′)→ 𝐻2(𝐾,𝔾𝑚) ≃ ℚ∕ℤ

is a perfect duality (of locally compact groups).

The proof is based on Shatz’s theorem. It passes to the case that𝐴 and𝐴′ have semistable
reduction, and uses the structure of the Néron minimal models.
Note that the statement of Theorem 6.2 is exactly the same as that of Tate’s theorem

— in particular, the groups are Galois cohomology groups — except that it also holds for
the 𝑝 parts of the groups in characteristic 𝑝.

5Essentially because it didn’t allow nilpotents.
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7 Global flat duality

The following theorem, which has been widely used, was first stated by Mazur (1972,
7.2).

Theorem 7.1. Let𝑈 be a nonempty open subset of the spectrum of the ring of integers in
a number field, and let𝑁 be a finite flat commutative group scheme𝑁 over𝑈 with Cartier
dual𝑁𝐷 . For all 𝑟, the canonical pairing

𝐻3−𝑟
𝑐 (𝑈,𝑁) ×𝐻𝑟(𝑈,𝑁𝐷)→ 𝐻3

𝑐 (𝑈,𝔾𝑚) ≃ ℚ∕ℤ

is a perfect duality of finite groups (appropriate definition of𝐻𝑐).

There are various accounts of the theorem in the literature, most recently in Demarche
and Harari 2019, which also includes the case of an open curve over a finite field.
There are also global flat duality theorems for abelian varieties, which I shall skip.

8 Interlude: Harvard in the 1960s
I was a student at Harvard 1964–1967.

⋄ Brauer and Zariski were still on the faculty, but so also were Hironaka, Mazur,
Mumford, Tate. . . .

⋄ Zariski students: Artin 1960, Hironaka 1960, Mumford 1961, . . .
⋄ Paris – Cambridge axis.
⋄ Visitors Grothendieck (1959-60, 1961-62, . . . ), Serre (Fall 1964,. . . ).
⋄ Seminars 1962: Hironaka resolution; Artin étale cohomology; Tate; Grothendieck;

Zariski; Kodaira; Thompson classification of minimal finite simple groups.
⋄ Woods Hole conference 1964 (Tate conjecture, Artin-Verdier duality, Serre-Tate,

. . . )
⋄ Mumford course 1965/66.

Tate spent the academic year 1965/66 in Paris, during which he wrote his article with
Shafarevich, proved an important case of the Tate conjecture, and, as I shall describe
shortly, gave a Bourbaki seminar.

When he returned in the summer of 1966, I told him that I had been studying flat
cohomology and he suggested that I should prove that the Tate-Shafarevich group6 is
finite.

9 Tate conjecture for a surface over a finite field
The following should be considered the first case of the Tate conjecture.

6Tate always called it the Shafarevich group, while I stubbonly stuck to “Tate-Shafarevich group”, until
one day we both switched to “Shah”. Peace reigned.
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Let 𝑋 be a smooth complete surface over 𝔽𝑞.

𝜁(𝑋, 𝑠) =
𝑃1(𝑋, 𝑞−𝑠)𝑃3(𝑋, 𝑞−𝑠)

(1 − 𝑞−𝑠)𝑃2(𝑋, 𝑞−𝑠)(1 − 𝑞2−𝑠)
, 𝑃𝑖(𝑋, 𝑇) ∈ ℤ[𝑇].

Conjecture 9.1 (Tate). The order of the pole of 𝜁(𝑋, 𝑠) at 𝑠 = 1 is the rank of the Néron–
Severi group.
Note that the order of the pole of 𝜁(𝑋, 𝑠) at 𝑠 = 1 is equal to the order of zero of 𝑃2(𝑋, 𝑞−𝑠)
at 𝑠 = 1.

According to Tate, just as the original BSD conjecture has a refined version, every
Tate conjecture should have a refined version.

The [Tate conjecture] must be formulated for schemes of finite type over ℤ, for
𝐿-series as well as zeta’s, and most important [the Tate conjecture] should get a
refinement relating the highest coefficient of the principal part of 𝜁 at the pole to a
discriminant attached to the group of Néron-Severi type whose rank is the order of
the pole and to the order of a Shafarevich or Brauer-type group, just as Birch and
Swinnerton-Dyer are attempting to do in their special case.
Tate, letter to Serre 11.06.63.

So what is the refined Tate conjecture for surfaces over finite fields? Following
BSD, one could do some calculations and try to interpret the result. Instead Tate (in
collaboration with Mike Artin) piggy-backed off the BSD conjecture.

10 Tate SB1966 (Séminaire Bourbaki Feb 1966)
Given a smooth complete surface 𝑋 over a finite field 𝑘, Tate’s idea was to map 𝑋 to a
curve 𝐶 in such a way that the generic fibre 𝑋𝜂 → 𝜂 is smooth. Hence, 𝑋𝜂 is a smooth
curve over the global function field 𝐾 def= 𝑘(𝐶), and Tate’s idea was to investigate what
the BSD conjecture for the Jacobian of 𝑋𝜂 said about 𝑋.

𝑋 𝑋𝜂 𝐴 = Jac(𝑋𝜂)

𝐶 𝜂 𝐾 = 𝑘(𝐶)

←→ 𝑓 ←→ generic
fibre

←→

←→

Base field 𝑘 = 𝔽𝑞 (finite)
𝑋 smooth projective surface
𝐶 smooth projective curve
𝑓 has smooth generic fibre 𝑋𝜂∕𝐾.

The result is summarized in the next slide.
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Conjecture 10.1 (BSD).

lim
𝑠→1

𝐿∗(𝐴, 𝑠)
(𝑠 − 1)rk(𝐴(𝐾))

= [X(𝐴)] ⋅ 𝐷
[𝐴(𝐾)tors][𝐴′(𝐾)tors]

,

Conjecture 10.2 (Artin-Tate).

lim
𝑠→1

𝑃2(𝑋, 𝑞−𝑠)
(1 − 𝑞1−𝑠)rk(NS(𝑋)))

= [Br(𝑋)] ⋅ 𝐷
𝑞𝛼(𝑋)[NS(𝑋)tors]2

,

Br(𝑋) is the Brauer group of 𝑋, 𝐷 is the discriminant of the intersection pairing on the
divisors of 𝑋, and 𝛼(𝑋) def= 𝜒(𝑋,𝒪𝑋) − 1 + dimPic0(𝑋).

The terms of the two conjectures roughly correspond. For example, Artin showed that,
for 𝓁 ≠ 𝑝, the 𝓁-primary components ofX(𝐴) and Br(𝑋) differ by finite groups.

Conjecture 10.3 (d). In the situation of the diagram, the two conjectures are equivalent.
In the seminar, Tate stated four conjectures: (A) is the first form of BSD for abelian

varieties over global fields, (B) is the full form of BSD (as above), (C) is what we now
call the Artin–Tate conjecture, and (d) is the conjecture that, in the context of the above
diagram, Conjectures (B) and (C) are equivalent. The last conjecture gets only a small
“d” because, rather than being a deep conjecture, it is a conjectural relation between
deep conjectures.

Theorems (Artin–Tate)
Tate’s Bourbaki talk was not all conjectures. He also proved the theorems in the next
slide (which he describes as joint with with Artin).
Let 𝑋 be a smooth complete surface over 𝔽𝑞, 𝑞 = 𝑝𝑎. Let 𝓁 ≠ 𝑝.

Theorem 10.4 (5.1). There is a canonical skew-symmetric form

Br(𝑋)(𝓁) × Br(𝑋)(𝓁)→ ℚ∕ℤ

that is nondegenerate if Br(𝑋)(𝓁) is finite.

Theorem 10.5 (5.2). Br(𝑋)(𝓁) is finite if and only if the Tate conjecture holds for 𝑋, in
which case it has the order predicted by the Artin-Tate conjecture.
Tate concluded his Bourbaki talk with the statement.

The problem of proving analogs of theorems 5.1 and 5.2 for 𝓁 = 𝑝 should furnish
a good test for any 𝑝-adic cohomology theory, and might well serve as a guide for
sorting out and unifying the various constructions that have been suggested: Serre’s
Witt vectors, Dwork’s Banach spaces, the raisings via special affines of Washnitzer-
Monsky, and Grothendieck’s flat cohomology for 𝜇𝑝𝑛 .

Indeed, by the time we were able to prove the 𝑝-analogs of 5.1 and 5.2, we did know
the “correct” 𝑝-adic cohomology theories. In the rest of the talk, I’ll explain this and
also how Conjecture d was proved.7

7While Tate was confident of these conjectures, not everyone was. Indeed, it was a leap to take a
statement based on calculations concerning elliptic curves over ℚ and extend it all abelian varieties over
global fields, including their 𝑝-phenomena in characteristic 𝑝. While I was still working on my thesis,
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𝑝 analogue (product of two curves)
When Tate arrived back at Harvard, not long after giving his Bourbaki talk, and I told
him that I had been studying flat cohomology, my thesis topic became clear: understand
the 𝑝-part of the Artin-Tate conjecture, and, a related question, the 𝑝-part of the BSD
conjecture over a global function field.

For a while I made no progress, but, at some point, Tate suggested that I look at an
example where the conjecture predicted that the Brauer group is trivial, because it may
be easier to prove that a group is trivial than to prove that it is finite. Indeed, in special
cases, the Artin–Tate conjecture takes on a simple and explicit form.
For nonisogenous elliptic curves, 𝐸1 and 𝐸2 over 𝔽𝑞, the Artin-Tate conjecture says that

[Br(𝐸1 × 𝐸2)] = (𝑁1 −𝑁2)2, 𝑁𝑖 = [𝐸𝑖(𝔽𝑞)].
Note that this predicts that the order of the Brauer group is a square, as expected.

Also that, while the Brauer group may be trivial, its order can’t be zero, and so the
equation predicts that two elliptic curves over a finite field with the same number of
rational points must be isogenous. This can be considered the zeroth case of the Tate
conjecture (essentially proved by Deuring in the 1930s).

For the case of the product of two elliptic curves, I eventually concluded that the key
was a certain flat cohomology group.
Key to understanding the 𝑝-analog in the case 𝑋 = 𝐸1 × 𝐸2,

𝐻1
f l(𝐸1, 𝐸2,𝑝), 𝐸2,𝑝 = Ker(𝐸2

𝑝
,→ 𝐸2).

When I explained this to Tate, I had no idea that anyone knew anything about the
finite group scheme 𝐸𝑝 = Ker(𝐸

𝑝
,→ 𝐸), but, in fact, Tate did. When he explained its

structure to me I was able, on the spot, to obtain to prove the finiteness of Br(𝑋)(𝑝) in
some cases.

Eventually, in my thesis (1967), I proved the 𝑝-analogs of the theorems 5.1 and 5.2
for the product of two curves. Since Tate had proved the Tate conjecture in that case,
this gave the following theorem.
Theorem 10.6 (Tate, Artin–Tate, Milne). The Artin–Tate conjecture holds for the
product of two curves.
A little later, I proved that the full BSD conjecture holds for constant abelian varieties

over global fields — in particular, that their Tate-Shafarevich groups are finite. (An
abelian variety is constant if it is defined by equations with coefficients in the field of
constants). 8

This is a interesting theorem, but not yet what I promised.

Key step in proof of 𝑝 analogue: duality!
Although it seems trivial now, what gave me the most trouble in my thesis was proving a
duality theorem for finite flat group schemes over a curve.

Tate got a letter from André Weil claiming an example of an elliptic curve over a global function field with
infinite Tate-Shafarevich group, but by then I had already proved that the group was finite in the case
considered by Weil.

8Weil’s example was an elliptic curve with constant 𝑗-invariant. Thus, the curve need not be constant,
but becomes constant after a finite extension. If a Tate–Shafarevich group becomes finite after a finite
extension of the base field, then it was already finite.
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Theorem 10.7 (Artin-M 1976). Let 𝑋 be a smooth complete curve over a finite field 𝑘.
Let𝑁 be a finite flat commutative group scheme over 𝑋, and let𝑁𝐷 be its Cartier dual. For
all 𝑟, the cup-product pairing

𝐻𝑟(𝑋,𝑁) ×𝐻3−𝑟(𝑋,𝑁𝐷)→ 𝐻3(𝑋,𝔾𝑚) ≃ ℚ∕ℤ

is a perfect duality.
For my thesis, I only needed the duality for the pairs (𝛼𝑝, 𝛼𝑝) and (ℤ∕𝑝ℤ, 𝜇𝑝). Note

that the pairing
(𝑚, 𝜁)↦ 𝜁𝑚 ∶ ℤ∕𝑝ℤ × 𝜇𝑝 → 𝔾𝑚.

realizes each of ℤ∕𝑝ℤ and 𝜇𝑝 as the Cartier dual of the other. Following is a sketch of
the proof in this case.
Artin-Schreier sequence (exact on 𝑋et)

0 ℤ∕𝑝ℤ 𝒪𝑋 𝒪𝑋 0.←→ ←→ ←→𝑥↦𝑥𝑝−𝑥 ←→

Kummer sequence (exact on 𝑋fl),

1 𝜇𝑝 𝔾𝑚 𝔾𝑚 1.←→ ←→ ←→𝑥↦𝑥𝑝 ←→

Apply 𝑓∶ 𝑋fl → 𝑋et (identity map); deduce

𝑅𝑖𝑓∗𝜇𝑝 = { 𝒪
×
𝑋∕𝒪

×𝑝
𝑋

def= 𝜈(1) if 𝑖 = 1
0 otherwise,

so
𝐻𝑖
fl(𝑋, 𝜇𝑝) = 𝐻𝑖−1

et (𝑋, 𝜈(1)).

Now use

0 𝒪×
𝑋 𝒪×

𝑋 Ω1
𝑋 Ω1

𝑋 0

𝜈(1)

←→ ←→ℎ↦ℎ𝑝 ← →
ℎ↦𝑑ℎ∕ℎ

←↠

←→𝐶−1 ←→
← →

Now have

1-dimensional duality 𝒪𝑋 , Ω1
𝑋 Zariski topology

2-dimensional duality ℤ∕𝑝ℤ, 𝜈(1) étale topology
3-dimensiional duality ℤ∕𝑝ℤ, 𝜇𝑝 flat topology

The 𝐶 in the above diagram is the Cartier operator.
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For a smooth variety 𝑋 over a perfect field 𝑘, Cartier (1957) showed that there is a
(unique) family of maps

𝐶∶ Ω𝑟
𝑋∕𝑘,closed → Ω𝑟

𝑋∕𝑘

such that
⋄ 𝐶(𝜔 + 𝜔′) = 𝐶(𝜔) + 𝐶(𝜔′), 𝐶(ℎ𝑝𝜔) = ℎ𝐶(𝜔),
⋄ 𝐶(𝜔 ∧ 𝜔′) = 𝐶(𝜔) ∧ 𝐶(𝜔′),
⋄ 𝐶(𝜔) = 0 ⇐⇒ 𝜔 is exact,
⋄ 𝐶(𝑑ℎ∕ℎ) = 𝑑ℎ∕ℎ.

For curves, the Cartier operator was defined in Tate 1952. 9

11 Flat duality (Artin’s conjecture 1974)
In an important article, Artin (1974) used flat cohomology to study supersingular 𝐾3
surfaces. This led him to conjecture a duality theorem in the flat cohomology of surfaces
over fields of characteristic 𝑝 ≠ 0.

Let 𝜋∶ 𝑋 → Spec 𝑘 be a smooth complete surface over a perfect field 𝑘 of characteristic
𝑝 ≠ 0.

Rough form of conjecture: when 𝑘 is algebraically closed, there is a 4-dimensional
duality for the finite part of 𝐻𝑖

f l(𝑋, 𝜇𝑝) and a 5-dimensional duality for the vector space
part.

Clearly this needs to be restated in terms of derived categories. Artin proved that the
functor 𝑅𝑟𝜋∗𝜇𝑝𝑛 (flat cohomology) is represented by a group scheme of finite type over
𝑘. His conjecture concerned only these group schemes modulo infinitesimal group
schemes

Precise form of conjecture: There is a canonical isomorphism

𝑅𝜋∗𝜇𝑝𝑛 → 𝑅Hom(𝑅𝜋∗𝜇𝑝𝑛 ,ℚ∕ℤ)[−4]

in the derived category of the category of commutative group schemes over 𝑘 modulo
infinitesimal group schemes.

Proof of Artin’s conjecture (𝑛 = 1)
In the proof of the flat duality theorem for curves, we saw that we should identify the
flat cohomology of 𝜇𝑝 with the étale cohomology of the sheaf 𝜈(1) shifted by 1. This idea
works more generally.

9In this early paper, Tate studied how the genus of a curve changes under extension of the base field.
The reader may object that the genus doesn’t change under base field extension. This is true in 2025, but in
1952 things were different. Consider a normal complete curve 𝑋 over a field 𝑘. The curve 𝑋′ obtained by
extending the base field to 𝑘′ does have the same genus as 𝑋, but it may no longer be normal, for example,
its structure sheaf may acquire nilpotents. In 1952, by the extended curve one meant the associated normal
curve, whose genus may indeed drop (but only by a multiple of (𝑝 − 1)∕2, as proved by Tate).
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Let 𝜋∶ 𝑋 → Spec 𝑘 be a smooth complete variety of dimension 𝑑 over a perfect field 𝑘
of characteristic 𝑝. Define a sheaf on 𝑋ét by

𝜈(𝑟) = Ker(𝐶 − 1∶ Ω𝑟
𝑋,closed → Ω𝑟

𝑋).

Theorem 11.1 (M 1976). There is a canonical isomorphism

𝑅𝜋∗𝜈(𝑟)→ 𝑅Hom(𝑅𝜋∗𝜈(𝑑 − 𝑟),ℤ∕𝑝ℤ)[−𝑑]

in the derived category of the category of commutative group schemes killed by 𝑝modulo
infinitesimal group schemes.

When 𝑑 = 2, 𝑟 =1, this becomes Artin’s conjecture for 𝜇𝑝: we have

(𝑋f l
𝑓
,→ 𝑋et

𝜋et
,→ Spec 𝑘) = 𝜋f l

and
𝑅𝑓∗𝜇𝑝 = 𝜈(1)[−1],

so
𝑅𝜋fl∗𝜇𝑝 = 𝑅𝜋et∗ 𝑅𝑓∗𝜇𝑝 = 𝑅𝜋et∗ 𝜈(1)[−1].

Proof of Artin’s conjecture (all 𝑛)
The defect of the above theorem is that it applies only to 𝜇𝑝, not 𝜇𝑝𝑛 , because its proof
depends on the sheaves of differentials, which are killed by 𝑝 in characteristic 𝑝.

In 1974, I shared an office at the University of Michigan with Spencer Bloch. When
I explained my problem to him he said that he had defined objects that were just like the
sheaves of differentials, except killed by 𝑝𝑛, not 𝑝. Indeed, he had. This was the famous
de Rham-Witt complex.
Bloch 1974/1976 constructed a projective system of complexes

𝑊𝑛𝒪𝑋
𝑑
,→𝑊𝑛Ω1

𝑋
𝑑
,→𝑊𝑛Ω2

𝑋 →⋯

of𝑊𝑛(𝒪𝑋)-modules (de Rham-Witt complex).
Bloch defined the de Rham-Witt complex in order to relate 𝐾-theory to crystalline

cohomology, but once he had introduced it, its importance was apparent, and it was soon
developed further by others.10 Not only does it give a new construction of crystalline
cohomology, but it adds structure to it. For example, as mentioned earlier, Serre had
studied the cohomology of the sheaf of Witt vectors on a variety, and had correctly
concluded that it gives only part of the “good” cohomology. With the de Rham–Witt
complex, it became possible to say exactly which part.

10Initially Illusie and Raynaud; more recently by Bhatt and Lurie.
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Using the de Rham-Witt complex, it is possible to define sheaves 𝜈𝑛(𝑟) (killed only by
𝑝𝑛) and prove that there is a canonical isomorphism

𝑅𝜋∗𝜈𝑛(𝑟)→ 𝑅Hom(𝑅𝜋∗𝜈𝑛(𝑑 − 𝑟),ℚ∕ℤ)[−𝑑].

When 𝑑 = 2, this becomes the statement of Artin’s conjecture for 𝜇𝑝𝑛 .

12 Conclusion

The analogs for 𝓁 = 𝑝 of Theorems 5.1 and 5.2 of Tate SB1966
Using the sheaves 𝜈𝑛(𝑟), it became possible to complete the proof of the analogs for
𝓁 = 𝑝 of the theorems in Tate’s 1966 Bourbaki talk.
Let 𝑋 be a smooth complete surface over a finite field 𝑘 of characteristic 𝑝.

Theorem 12.1 (M 1975). Tate’s skew-symmetric pairing

Br(𝑋)(𝑝) × Br(𝑋)(𝑝)→ ℚ∕ℤ

is nondegenerate if Br(𝑋)(𝑝) is finite.

Theorem 12.2 (M 1975, completing Artin–Tate 5.2). The following are equivalent.

(a) The Tate conjecture holds for 𝑋.
(b) For some prime 𝑙 (𝑙 = 𝑝 is allowed), Br(𝑋)(𝑙) is finite.
(c) The Artin-Tate conjecture holds for 𝑋 (including the 𝑝 part).

Proof of Conjecture (d)

Theorem 12.3 (Kato–Trihan 2003). Let 𝐴 be an abelian variety over a global function
field 𝐾. The following are equivalent.
(a) The order of the zero of 𝐿(𝑠, 𝐴) at 𝑠 = 1 is the rank of 𝐴(𝐾).
(b) For some prime 𝑙,X(𝐴∕𝐾)(𝑙) is finite.
(c) The full BSD conjecture for 𝐴∕𝐾.

Proof. The proof uses global flat duality over a curve. 2

We can now prove Tate’s Conjecture d for the pair

𝑋 𝑋𝜂 𝐴 = Jac(𝑋𝜂)

𝐶 𝜂 𝐾 = 𝑘(𝐶)

←→ 𝑓 ←→ generic
fibre

←→

←→

Recall that Conjecture (d) says that, in the situation of the diagram,

statement (c) of 12.2 for 𝑋 ⇐⇒ statement (c) of 12.3 for 𝐴.

Because of the equivalences in the theorem, it suffices to prove that

statement (b) of 12.2 for 𝑋 ⇐⇒ statement (b) of 12.3 for 𝐴.
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As noted earlier, Artin had proved this for 𝑙 ≠ 𝑝.

The “good” 𝑝-adic cohomology theories in characteristic 𝑝
Let 𝑋 be a smooth complete variety over a field 𝑘 of characteristic 𝑝 ≠ 0,

{
Weil cohomology: 𝐻𝑟

crys(𝑋∕𝑊) ≃ 𝐻𝑟(𝑋,𝑊Ω∙
𝑋)

“𝐻𝑖
f l(𝑋, 𝜇

⊗𝑟
𝑝𝑛 )”∶ 𝐻𝑖−𝑟

ét (𝑋, 𝜈𝑛(𝑟)).
Note that the quotation marks can be removed with 𝑟 ≤ 1. The second definition may
seem too ad hoc to be convincing, but there is a second description of it.

When we apply 𝑅𝛤 to the de Rham–Witt complex of a variety, we get a complex of
𝑊(𝑘)-modules, from which we can deduce the crystalline cohomology. The de Rham–
Witt complex has extra structure, namely, an action of the Raynaud ring. When we re-
member this action, the same construction gives lim←,,

𝑛
𝐻𝑖−𝑟
ét (𝑋, 𝜈𝑛(𝑟)) instead𝐻

𝑟
crys(𝑋∕𝑊).

When we regard 𝑅𝛤(𝑊Ω∙
𝑋) as an object in the triangulated category with 𝑡-structure

𝖣+(𝑊),
𝐻𝑖
crys(𝑋∕𝑊) ≃ Hom𝖣+(𝑊)(11, 𝑅𝛤(𝑊Ω∙

𝑋)[𝑖]).

When we regard 𝑅𝛤(𝑊Ω∙
𝑋) as an object in the triangulated category with 𝑡-structure

𝖣𝑏𝑐 (𝑅) (𝑅 the Raynaud ring),

“ lim←,,
𝑛
𝐻𝑖
f l(𝑋, 𝜇

⊗𝑟
𝑝𝑛 )” ≃ Hom𝖣𝑏𝑐 (𝑅)(11, 𝑅𝛤(𝑊Ω∙

𝑋)(𝑟)[𝑖]).

(M. and Ramachandran 2005).
The de Rham–Witt complex has operators 𝐹,𝑉, 𝑑 satisfying certain conditions. To

say that an object has these operators satisfying the conditions is exactly to say that it
has an action of the Raynaud ring.

Last revised April 18, 2025.
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