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Abstract

Deligne has expressed the hope that a Shimura variety whose weight is defined over
Q is the moduli variety for a family of motives. Here we prove that this is the case for
“most” Shimura varieties. As a consequence, for these Shimura varieties, we obtain an
explicit interpretation of the canonical model and a modular description of its points
in any field containing the reflex field. Moreover, when we assume the existence of
a sufficiently good theory of motives in mixed characteristic, we are able to obtain a
description of the points on the Shimura variety modulo a prime of good reduction.

Contents

1 Abelian Motives and Their Mumford-Tate Groups . . . . . . . . . . . 4
2 Moduli of Motives . . . . . . . . . . . . . . . . . . . . . . 20
3 Shimura Varieties as Moduli Varieties . . . . . . . . . . . . . . . 34
4 The points modulo a prime of good reduction. . . . . . . . . . . . . 50

Introduction
A Shimura variety Sh.G;X/ is a projective system of algebraic varieties over C. The data
needed to define it are a reductive group G over Q together with a G.R/-conjugacy class X
of homomorphisms hWC�!G.R/ satisfying conditions sufficient to ensure that X is, in a
natural way, a finite union of bounded symmetric domains.

In a small number of cases, the Shimura variety can be interpreted as a moduli variety for
abelian varieties with the additional structure of an endomorphism ring, a polarization, and a
level structure. Such a Shimura variety is said to be of PEL-type. For example, the Shimura
variety defined by a group of symplectic similitudes (a Siegel modular variety) or by the
group GL2 over a totally real field (a Hilbert-Blumenthal variety) is of PEL-type. When
such a modular interpretation exists, it is a great help in studying the variety, for example, in
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constructing a model of the variety over a number field, or, better, the ring of integers in the
number field, and in studying the compactification of the model. See Faltings and Chai 1990
for Siegel modular varieties, and Rapoport 1978 for Hilbert-Blumenthal varieties.1 In fact,
the realization of elliptic modular curves as the moduli varieties of elliptic curves with level
structure has been extraordinarily fruitful both for the study of the modular curves and for
the study of elliptic curves.

If the group G can be embedded into a group of symplectic similitudes G. / in such a
way that the elements h of X define on V a Hodge structure of type f.�1;0/; .0;�1/g for
which˙2�i is a polarization, then Sh.G;X/ has an interpretation as a moduli variety for
abelian varieties with absolute Hodge cycle and level structure. Such a Shimura variety is
said to be of Hodge type. Unfortunately, this interpretation is valid only in characteristic
zero because absolute Hodge cycles only make sense there (so long as the Hodge conjecture
for abelian varieties remains open), but the interpretation can again be used to study models
and compactifications of the Shimura variety over number fields—see Brylinski 1983.

A Shimura variety whose weight is defined over Q can always be interpreted (over C/ as
a parameter space for Hodge structures, and Deligne notes: “Pour interpréter des structures
de Hodge de type plus compliqué, on aimerait remplacer les variétés abéliennes par des
“motifs” convenables, mais il ne s’agit encore que d’un rêve.” (Deligne 1979, p. 248). The
main purpose of this article is to provide such an interpretation when G has no factors of
type E6, E7, or certain typesD, and hence to realize the Shimura variety as a moduli variety
for motives. As for Shimura varieties of Hodge type, the interpretation is valid only in
characteristic zero and depends in a crucial way on Deligne’s theorem that all Hodge cycles
on abelian varieties are absolutely Hodge (Deligne 1982).

I now describe the contents of the article in more detail.
Betti cohomology provides a functor from the category of motives over C (defined using

algebraic cycles) to the category HdgQ of polarizable rational Hodge structures. The Hodge
conjecture predicts that the functor is fully faithful, but there is no description, not even
conjectural, for its essential image.

Define the category of abelian motives Motab.C/ over C to be the tensor subcategory
of the category of motives over C (defined using absolute Hodge cycles) generated by the
motives of abelian varieties. The main theorem of Deligne 1982 implies that the Betti fibre
functor

Motab.C/! HdgQ

is fully faithful. In �1 we describe the essential image of this functor, i.e., we describe
the Hodge structures that are the Betti realization of an abelian motive, and we classify
the reductive groups that arise as the Mumford-Tate group of an abelian motive. The key
ingredients in the proof of the classification are Satake’s results on symplectic embeddings
of semisimple groups and the well-known fact that every polarizable Hodge structure with
commutative Mumford-Tate group is the Betti realization of an abelian motive.

In �2 we investigate, along the lines of Griffiths 1970 and Deligne 1979, the problem of
realizing a motive over C, endowed with the structure provided by a family of tensors, as a
member of a universal family. In general it is not known how to do this, but we show that it
is possible when the motive is abelian.

1Added 2017. For general Shimura varieties of PEL-type, see Lan, Kai-Wen, Arithmetic compactifications of
PEL-type Shimura varieties. London Mathematical Society Monographs Series, 36. Princeton University Press,
Princeton, NJ, 2013.
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The study of the moduli of motives leads very naturally to the notion of a Shimura
variety, and in �3 we classify the Shimura varieties that are moduli varieties for abelian
motives; the class includes all but those whose defining group has factors of type E6, E7, or
certain types D. For these Shimura varieties we are able to obtain a more direct proof of
the existence of canonical models than that in Deligne 1979, and, for those whose weight is
rational, we deduce a modular interpretation of the canonical model.

As noted above, the theory is restricted to characteristic zero. However, when we assume
the existence of a sufficiently good theory of motives in mixed characteristic, we can extend
the description of the Shimura variety as a moduli variety for abelian motives to characteristic
p, and use this to obtain an explicit description of the points of a reduction of the Shimura
variety with coordinates in the algebraic closure of a finite field. The statement we arrive at
is (essentially) the main conjecture of Langlands and Rapoport 1987.

Roughly speaking, when one combines the results of �4 of this paper with the results of
��5–7 of Milne 1992 and Theorem 7.1 of Kottwitz 1990, then one arrives at the following
statement: for Shimura varieties of abelian type and rational weight, Langlands’s conjecture
on the contribution of the variety itself (i.e., ignoring its boundary) to the local component
of the zeta function at a good prime is a consequence of standard conjectures in algebraic
geometry and representation theory, the most significant of which are the existence of a good
theory of motives in mixed characteristic and the fundamental lemma.2

It is a pleasure to thank J-M. Fontaine, W. Messing, and A. Ogus for their help with
p-adic cohomology, G. Prasad for his help with buildings, S. Zucker for his help with the
proof of 2.41, and C-L. Chai for his comments on an earlier draft.

Notation and conventions
An affine group scheme over a field k is said to be algebraic when it is of finite type over
k. Every affine group scheme is the projective limit of its algebraic quotients. A simple
algebraic group is a nontrivial semisimple algebraic group with only finite normal proper
subgroups. For an algebraic group G over a field k, Gı denotes the connected component
of G containing 1 for the Zariski topology; when k D R, G.R/C denotes the connected
component containing 1 for the real topology.

For a reductive group G, Gder denotes the derived group of G, Gsc the simply connected
covering group of Gder, Z.G/ the centre of G, Gad the adjoint group G=Z.G/ of G, and
Gab the maximal abelian quotient G=Gder of G. If G D Gad, then G is called an adjoint
group. This notation extends in an obvious way to affine group schemes: write G D lim

 �
G0

(limit over the algebraic quotients of G), and set G� D lim
 �

G0�. The map adWG! Aut.G/,
sending an element of G to the inner automorphism it defines, factors through Gad,

G
ad
!Gad

! Aut.G/:

The map sending an element g of G to the differential of ad.g/,

G! GL.g/; gD Lie.G/;

is denoted by Ad.
Let F W A! B be a functor, and let A be an object of A. A map ˇ W B! F.A/ is said

to generate A if the following holds: for every subobject A0 ,! A of A such that ˇ factors
through F.A0/! F.A/, the map A0! A is an isomorphism.

2Added 2017. The fundamental lemma has now been proved.



1 ABELIAN MOTIVES AND THEIR MUMFORD-TATE GROUPS 4

When S is a set of objects in a Tannakian category T over a field k, we define the tensor
category generated by S to be the smallest full subcategory T0 of T containing S and closed
under the formation of subobjects, quotient objects, direct sums, duals, and finite tensor
products (in particular, it contains with any object X of T, all objects isomorphic to X ). It is
again a Tannakian category over k.

We often write V.R0/ for V ˝RR0. Other notation agrees with that in Milne 1994 except
that here we denote the field of fractions of the Witt vectors by B .

1 Abelian Motives and Their Mumford-Tate Groups
Throughout this section, k is an algebraically closed field of characteristic zero.

Hodge structures: definitions
We write S for the torus ResC=RGm over R; thus

S.R/D C�; SC DGm�Gm:

The last identification is made in such a way that the map

S.R/D C� ,! C��C� D S.C/

induced by R ,! C is z 7! .z;xz/. Let U 1 D Ker.S
Nm
��!Gm/, so that

U 1.R/D fz 2 C� j zxz D 1g:

With any homomorphism hWS!G of real algebraic groups there are associated homo-
morphisms

�hWGm!GC; �h.z/D hC.z;1/; z 2Gm.C/D C�;

and
whWGm!G; wh.r/D h.r/

�1; r 2Gm.R/D R� � C� D S.R/

(the weight homomorphism). The following formulas are useful:

hC.z1;z2/D �h.z1/ � x�h.z2/I h.z/D �.z/ ��.z/ (1.1.1)

h.i/� �h.�1/ mod wh.Gm/ (1.1.2)

A real Hodge structure on an R-vector space V can be variously defined as:

(1.2.1) a representation h of S on V ;
(1.2.2) a (Hodge) decomposition V ˝CD

L
p;q2ZV

p;q such that V p;q D V q;p all p;q;
(1.2.3) a (weight) gradation V D

L
m2ZVm and a descending (Hodge) filtration

� � � � F p � F pC1 � �� �

such that Vm D .Vm\F p/˚ .Vm\F q) for all m;p;q with pCq DmC1.
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To pass from one definition to another, use the following rules:

v 2 V p;q ” h.z/v D z�p � xz�qv, all z 2 C�I

Vm˝CD
M

pCqDm

V p;q; F p D
M
p0�p

V p
0;q0
I

V p;q D VpCq \F
p
\F q:

Note that the weight gradation is defined by wh. From the definition (1.2.1) it is clear that
the real Hodge structures form a Tannakian category HdgR over R with the forgetful functor
! as a fibre functor, and that Aut˝.!/D S.

A rational Hodge structure is a vector space V over Q together with a representation h
of S on V ˝R such that wh is defined over Q. Thus to give a rational Hodge structure on
V is the same as giving a gradation V D

L
Vm of V together with a real Hodge structure

of weight m on Vm˝R for each m. The rational Hodge structure Q.m/ has .2�i/mQ as
its underlying vector space with h.z/ acting as multiplication by .zxz/m (so Q.m/ is of type
f.�m;�m/g). There are similar definitions with Q replaced by a subring R � R.

A polarization of a real Hodge structure .V;h/ is a family of morphisms of Hodge
structures

 mWVm�Vm �! R.�m/; m 2 Z;

such that
.x;y/ 7! .2�i/m m.x;h.i/y/WVm�Vm �! R

is symmetric and positive-definite for each m; equivalently, such that .2�i/m m is symmet-
ric or skew-symmetric according asm is even or odd and .2�i/m m.x;h.i/x/ > 0 all x¤ 0.
A polarization of a rational Hodge structure is a family of morphisms of rational Hodge
structures  mWVm�Vm!Q.�m/ such that the family . m˝R/m is a polarization of real
Hodge structures. The polarizable rational Hodge structures form a Tannakian category
HdgQ over Q with the forgetful functor ! as fibre functor; we let GHdg D Aut˝.!/. The
tensor functor

HdgQ! HdgR; V  V ˝R;

defines a homomorphism hHdgWS!GHdg.

The conditions (SV)
We list some conditions on a homomorphism hWS!G of real algebraic groups:

(SV1) the Hodge structure on the Lie algebra g of G defined by AdıhWS! GL.g/ is of
type f.1;�1/; .0;0/; .�1;1/g;

(SV2) adh.i/ is a Cartan involution of Gad.

When G is connected, (SV1) implies that wh.Gm/ � Z.G/. In the presence of this
condition, we sometimes need to consider a stronger form of (SV2):

(SV2*) adh.i/ is a Cartan involution of G=wh.Gm/.
Note that (SV2*) implies that G is reductive.
Let G be an algebraic group over Q, and let h be a homomorphism S! GR. We say

that .G;h/ satisfies the condition (SVx) when .GR;h/ satisfies (SVx). For such a pair, we
shall also need to consider the condition:
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(SV4) 3The weight homomorphism whWGm! GR is defined over Q and maps into the
centre of G.

Finally, when G is an affine group scheme over Q, we say that .G;h/ satisfies (SVx) if
.H;qR ıh/ satisfies (SVx) for every algebraic quotient qWG!H of G.

Abelian motives: definition
Let Mot.k/ denote the category of motives over k defined using absolute Hodge cycles (see
Deligne and Milne 1982, �6). We shall be concerned with the tensor subcategory Motab.k/

of Mot.k/ generated by the motives h1.A/ for A an abelian variety over k. An object of
Motab.k/ will be called an abelian motive over k.

EXAMPLE 1.3. (a) The Tate motive, being isomorphic to
V2

h1.E/ for any elliptic curve
E, is an abelian motive.

(b) Let X be a smooth projective variety over k. Then h.X/ is an abelian motive if X
is a curve, a unirational variety of dimension � 3, a Fermat hypersurface, or a K3-surface
(Deligne and Milne 1982, 6.26).

(c) Recall that the level of a pure Hodge structure .V;h/ is the maximum value of jq�pj
for which V p;q ¤ 0. Let .V;h/ be a polarizable Hodge structure of level � 1. If .V;h/ has
even weight 2m, then it is isomorphic to a sum of copies of Q.�m/; if it has odd weight
2m�1, then V ˝Q.�m/ is of type f.�1;0/; .0;�1/g which Riemann’s theorem shows to
equal h1.A/ for some abelian variety. In either case, .V;h/ is the Betti realization of an
abelian motive.

(d) Write Vn.a1; : : : ;ad / for the complete intersection of d smooth hypersurfaces of
degrees a1; : : : ;ad in general position in PnCd over C. The varieties Vn.2/, Vn.2;2/, V2.3/,
Vn.2;2;2/ (n odd), V3.3/, V3.2;3/, V5.3/, V3.4/ have rational cohomology groups with
Hodge structures of level � 1 (see Rapoport 1972), and so, if all Hodge cycles are absolutely
Hodge, their motives are abelian.

By definition, the abelian motives over k form a Tannakian category over Q, and Betti
cohomology provides a fibre functor !B over Q once we choose an embedding k! C. Let
GMab D Aut˝.!B/. The functor

M  !B.M/˝RWMotab.C/ �! HdgR

defines a homomorphism hMabWS! GMab. In 1.34 below, we shall exhibit a universal
property for the pair .GMab;hMab/.

Polarizable rational Hodge structures

Let .V;h/ be a polarizable rational Hodge structure, and let G D Aut˝.!/, where ! is the
forgetful functor on the tensor category generated by .V;h/. Then G can be identified with a
subgroup of GL.V /, and h can be regarded as a homomorphism S!GR. We call the pair
.G;h/ the Mumford-Tate group of .V;h/.4

3Added 2017. I have changed the numbering to agree with that in my article Introduction to Shimura varieties
(2005).

4Sometimes the Mumford-Tate group of .V;h/ is defined to be the group attached to the tensor category
generated by .V;h/ and Q.1/. For the relation between the two notions, see the penultimate subsection of this
section.
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LEMMA 1.4. The following conditions on a t 2 V ˝r˝V _˝s are equivalent:

(a) t is of type .0;0/;
(b) t is fixed by h.C�/;
(c) t is fixed under the action of G on V ˝r˝V _˝s .

PROOF. The implications (a)” (b) and (c) H) (b) are obvious. For (a) H) (c), note
that if t is of type (0,0), then the map Q.0/! V ˝r ˝V _˝s sending 1 to t is a morphism
of Hodge structures, and that, by definition, the action of G commutes with morphisms of
Hodge structures. �

A tensor t satisfying the equivalent conditions in the lemma is called a Hodge tensor of
V .

Let G be a real algebraic group, and let C be an element of G.R/ whose square is
central. A C -polarization of a real representation .V;�/ of G is a G-invariant bilinear form
 WV �V ! R such that .x;y/ 7!  .x;Cy/ is symmetric and positive-definite.

LEMMA 1.5. Let G and C be as above. The following conditions are equivalent:

(a) ad.C / is a Cartan involution of G;
(b) every real representation of G is C -polarizable;
(c) G admits a faithful representation that is C -polarizable.

PROOF. See Deligne 1972, 2.8.5 �

PROPOSITION 1.6. 6 Let G be a connected algebraic group over Q, and let h be a homo-
morphism S! GR. The pair .G;h/ is the Mumford-Tate group of a polarizable rational
Hodge structure if and only if it satisfies the conditions (SV2*,4) and G is generated by h
(i.e., there is no proper Q-rational subgroup H of G such that Im.h/�HR).

PROOF. Let .G;h/ be the Mumford-Tate group of a polarizable rational Hodge structure
.V;h/. That wh is defined over Q is part of the definition of a rational Hodge structure. For
all a 2Q�, wh.a/WV ! V is a morphism of Hodge structures and hence commutes with the
action of G. Therefore .G;h/ satisfies (SV4).

Let H be a subgroup of G such that HR contains h.S/. Then

t fixed by H H) t is a Hodge tensor H) t fixed by G;

and it follows that H DG because they have the same fixed tensors in spaces V ˝r˝V _˝s ,
G is reductive, and every character of H extends7 to G (Deligne 1982, 3.1, 3.5). Thus h
generates G.

Let C D h.i/. Then C 2 D h.�1/ D wh.�1/, which lies in the centre of G.R/. Let
.W;�/ be a representation of G=wh.Gm/. The rational Hodge structure .W;� ıh/ is in the
tensor category generated by .V;h/, and so it is polarizable. Let  WW ˝W !Q.0/ be a

5Added 2017. Or 1.20 of my article Introduction to Shimura varieties, which incorporates many results from
Deligne 1971b, 1972, and 1979.

6Added. The proposition describes the pairs .G;h/ that arise as Mumford-Tate groups of polarizable rational
Hodge structures. It therefore answers the question raised later by Green, Griffiths, and Kerr (Mumford-Tate
Groups and Domains, PUP, 2012) and Moonen 1999. The description of G can be made more explicit as in the
proof of Theorem 1.27 below.

7Added. For this, we need to take H to be the smallest such subgroup.
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polarization of .W;� ıh/ as a rational Hodge structure. Then  is fixed under the action
of h.S/, and because G=wh.Gm/ is generated by h, it is also fixed under the action of
G=wh.Gm/, and so it is a C -polarization. Therefore Lemma 1.5 shows that adC is a Cartan
involution for .G=wh.Gm//R, i.e., that .G;h/ satisfies (SV2*).

Conversely, let .G;h/ be a pair satisfying (SV2*,4) and such that G is generated by h.
We first show that, for every representation �WG! GL.V / of G on a Q-vector space, the
rational Hodge structure .V;� ıh/ is polarizable. Again let C D h.i/. If .V;� ıh/ has weight
0, then every C -polarization of .V;�/ is also a polarization of .V;� ıh/. If the weight is
nonzero, there will be a smallest m> 0 such that Q.m/ lies in the tensor category generated
by .V;h/, and we let G1 be the subgroup of G that acts trivially on Q.m/. The element C
acts as 1 on Q.m/, and so lies in G1.R/. The map G1! G=w.Gm/ is an isogeny, and so
the condition (SV2*) for .G;h/ implies that adC is a Cartan involution of G1.R/. Therefore
there is a G1-invariant C -polarization  of V . After replacing V with a homogeneous
component, we may suppose that .V;� ıh/ has weight n, and then the map

.2�i/�n WV ˝V �!Q.�n/

is a polarization of .V;� ıh/.
Now choose � to be a faithful representation of G, and let G0 be the Mumford-Tate

group of the polarizable rational Hodge structure .V;� ıh/. Both G and G0 are algebraic
subgroups of GL.V / generated by h, and so they must be equal. �

COROLLARY 1.7. The pair .GHdg;hHdg/ satisfies the conditions (SV2*,4); moreover, for
any algebraic group G and map h satisfying these conditions, there is a unique homomor-
phism �.h/WGHdg!G such that hD �.h/R ıhHdg.

PROOF. The algebraic quotients of .GHdg;hHdg/ are precisely the Mumford-Tate groups
of polarizable rational Hodge structures, and so the proposition shows that .GHdg;hHdg/

satisfies (SV2*,4) and is generated by hHdg. Let .G;h/ be a pair satisfying (SV2*,4), and
let G0 be the subgroup of G generated by h. Then .G0;h/ is the Mumford-Tate group of a
polarizable Hodge structure, and so there is a homomorphism �.h/WGHdg!G0 �G such
that hD �.h/R ıhHdg. It is unique because h generates GHdg. �

Note that the conditions in the corollary determine the pair .GHdg;hHdg/ uniquely (up to
a unique isomorphism).

The Mumford-Tate group of a polarizable Hodge structure is reductive (because it satis-
fies (SV2*)) and connected (because it is generated by h and S is connected). Consequently
GHdg is pro-reductive and connected.

The functor
!B WMotab.C/ �! HdgQ

induces a homomorphism
�WGHdg �!GMab

such that �R ıhHdg D hMab, and � is the unique homomorphism satisfying this condition.
Because !B is fully faithful, � is surjective (i.e., faithfully flat).
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Hodge structures of CM-type
A polarizable rational Hodge structure is said to be of CM-type if its Mumford-Tate group
is commutative, and hence a torus. The Hodge structures of CM-type form a Tannakian
subcategory Hdgcm

Q of HdgQ over Q.

PROPOSITION 1.8. Every Hodge structure of CM-type is the Betti realization of an abelian
motive.

PROOF. This is well known. For a proof, see Milne 1994, 4.6. �

COROLLARY 1.9. The kernel of �WGHdg!GMab is contained in .GHdg/
der.

PROOF. Let S D Aut˝.!/, where ! is the forgetful functor on Hdgcm
Q . The proposition

shows that the inclusion Hdgcm
Q ,! HdgQ factors through Motab.C/ ,! HdgQ, and so the

homomorphism GHdg! S factors through GHdg!GMab. Thus,

Hdgcm
Q Motab.C/ HdgQ

S GMab GHdg:

Hence Ker.�/� Ker.GHdg� S/D .GHdg/
der. �

The pro-torus S in the proof is called the Serre group. For a description of it in terms of
its character group, see, for example, Milne 1994, �4.

Dynkin diagrams
1.10. For future reference, we provide a table of Dynkin diagrams on the next page. As

will be explained later, solid nodes are special, and nodes marked by stars correspond to
symplectic representations. The number in parenthesis indicates the position of the special
node.8

Special Hodge structures
A special Hodge structure is a polarizable rational Hodge structure whose Mumford-Tate
group .G;h/ satisfies (SV1). The next two statements are from Deligne 1972, 7.3.

PROPOSITION 1.11. The special Hodge structures form a Tannakian subcategory of HdgQ.

PROOF. A direct sum of special Hodge structures is obviously special. Let .V;h/ be a
special Hodge structure, and let .G;h/ be its Mumford-Tate group. The Mumford-Tate group
of any Hodge structure in the tensor category generated by .V;h/ is a quotient of .G;h/, and
hence satisfies (SV1). �

PROPOSITION 1.12. The Betti realization of an abelian motive is special.
8Added. The table corrects errors in the original article and in Deligne 1979, Table 1.3.9. For a detailed

explanation of the table, see Milne 2013.
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An(1) (n ≥ 1)
α1 α2 α3 αn−2 αn−1 αn

An(n) (n ≥ 1)
α1 α2 α3 αn−2 αn−1 αn

An(j) (n ≥ 1, 1 < j < n)
α1 α2 αj αn−1 αn

Bn(1) (n ≥ 2)
α1 α2 α3 αn−2 αn−1 αn

Cn(n) (n ≥ 3)
α1 α2 α3 αn−2 αn−1 αn

D4(1)
α1 α2

α3

α4

D4(3)
α1 α2

α3

α4

D4(4)
α1 α2

α3

α4

Dn(1) (n ≥ 5)
α1 α2 α3 αn−3 αn−2

αn−1

αn

Dn(n− 1) (n ≥ 5)
α1 α2 α3 αn−3 αn−2

αn−1

αn

Dn(n) Same as Dn(n− 1) but with αn−1 and αn interchanged (reflection)

E6(1)
α1 α3 α4

α2

α5 α6

E6(6) Same as E6(1) but with (α1, α3) interchanged with (α6, α5) (reflection)

E7(7)
α1 α3 α4

α2

α5 α6 α7
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PROOF. After Proposition 1.11, it suffices to prove this for an abelian variety. The Betti real-
ization .V;h/ of an abelian variety9 is of type f.�1;0/; .0;�1/g; let .G;h/ be its Mumford-
Tate group. Then g� End.V /' V ˝V _, which is of type f.�1;1/; .0;0/; .1;�1/g. �

It is reasonable to hope that the following statement may be true.

HYPOTHESIS 1.13. Every special Hodge structure is the Betti realization of a motive.

More explicitly, this means the following: for any special Hodge structure .V;h/, there
exists a projective algebraic variety X and an integer m such that .V;h/ is a direct factor of
HB.X/.m/ and the projection HB.X/.m/! V �HB.X/.m/ is an absolute Hodge cycle
on X (e.g., the class of an algebraic cycle).

A motive whose Betti realization is special will be called a special motive. The next
example indicates that they are indeed exceptional among motives. Apparently, no special
motive is known that is not already abelian, although the hypothesis predicts their existence.
In �3 we shall see that Deligne’s hope that all Shimura varieties with rational weight are
moduli varieties for motives implies the hypothesis.

EXAMPLE 1.14. Let X ! P1 be a Lefschetz pencil of hypersurfaces of degree d and odd
dimension 2r �1 over C, and let Xs be the fibre over s 2 P1.C/. It is known (see Deligne
1972, 7.6) that for s outside a countable subset of P1.C/, the Mumford-Tate group of the
rational Hodge structureH 2r�1.Xs;Q/ is the full group of symplectic similitudes. It follows
that the Hodge structure is not special unless it has level � 1.

PROPOSITION 1.15. A pair .G;h/ is the Mumford-Tate group of a special Hodge structure
if and only if it satisfies (SV1,2*,4) and h generates G.

PROOF. Immediate consequence of Proposition 1.6 and the definition of a special Hodge
structure. �

CLASSIFICATION

Following Deligne 1979, we classify the pairs .G;h/ as in Proposition 1.15 with G a simple
adjoint group. Note that for an adjoint group, (SV4) simply says that h is a homomorphism
S=Gm!GR, and that (SV2) implies (SV2*).

LEMMA 1.16. A simple adjoint group G over Q for which there exists a homomorphism
hWS=Gm!GR satisfying (SV2) is of the form ResF=QG0 for some absolutely simple group
G0 over a totally real number field F .

PROOF. Every simple adjoint group over Q is of the form ResF=QG0 for some absolutely
simple group G0 over a number field F , and so the only problem is to show that F is totally
real. A compact simple group over R is absolutely simple, and an inner form of an absolutely
simple group is also absolutely simple. The condition (SV2) implies that GR is an inner
form of its compact form, and hence its simple factors are absolutely simple. Since

GR D
Y
vj1

ResFv=RG0;Fv
;

this shows that F must be totally real. �
9Added. More accurately, of h1 of an abelian variety.



1 ABELIAN MOTIVES AND THEIR MUMFORD-TATE GROUPS 12

Thus to give a pair .G;h/ as in Proposition 1.15 with G simple and adjoint is the same
as giving an absolutely simple adjoint group G0 over a totally real field F together with
homomorphisms

hvWS=Gm!Gv; Gv
def
DG0˝F Fv; v a real prime of F;

satisfying (SV1,2) and such that at least one hv is nontrivial.
We fix a simple adjoint group G1 over C, and consider the triples .G;;h/ consisting of

a real inner form1011 .G;/ of the compact form Gc of G1 and a nontrivial homomorphism
hWS=Gm!G satisfying (SV1,2).

Choose a maximal torus T in G1. Let R � X�.T / be the corresponding system of
roots, and choose a system of simple roots B . The nodes of the Dynkin diagram D are
parametrized by the elements of B . Recall (Bourbaki 1981, VI.1.8) that there is a unique
(highest) root ęDP˛2B n.˛/˛ with the property that, for every other root

P
˛2Bm.˛/˛,

the coefficient n.˛/�m.˛/ for all ˛ 2 B . We call a node s˛ of D special if n.˛/D 1.
From .G;;h/ we obtain a G1.C/-conjugacy class of cocharacters  ı�h of G1. This

class contains a unique element � 2X�.T / such that

h˛;�i � 0 for all ˛ 2 B:

The condition (SV1) implies that

h˛;�i 2 f1;0;�1g for ˛ 2R:

Since � is nontrivial, not all the values h˛;�i can be zero, and so these conditions imply
that h˛;�i D 1 for exactly one ˛ 2 B , which must in fact be special (otherwise hę;�i > 1);
moreover, this condition is also sufficient for (SV1) to hold.

PROPOSITION 1.17. The map .G;;h/ 7! s˛ defines a one-to-one correspondence between
the set of isomorphism classes of triples (as above) and the set of special nodes of D. The
isomorphism class of the pair .G;/ itself determines s˛ unless the opposition involution �
moves s˛, in which case

.G;;h/$ s˛; .G;;h�1/$ �s˛:

PROOF. We explain only how to construct the triple .G;;h/ corresponding to a special
node s˛—see Deligne 1979, 1.2 for more details. There is a unique � 2X�.T / such that

h˛;�i D 1; h˛0;�i D 0 for all ˛0 2 B; ˛0 ¤ ˛: (1.17.1)

10Let G0 be an algebraic group over a field k0 of characteristic zero and let k be an algebraic closure of k0.
An inner form of G0 is an algebraic group G over k0 together with a G0.k/-conjugacy class  of isomorphisms
cWG0;k ! Gk such that c�1 ı �c is an inner automorphism of G0;k for all � 2 Gal.k=k0/. Two inner forms
.G;/ and .G0; 0/ are isomorphic if there is an isomorphism of algebraic groups 'WG!G0 (over k0) such that

c 2  H) ' ı c 2  0:

Such a ' is uniquely determined up to an inner automorphism of G over k0. If .G;/ is an inner form of G0
and c 2  , then c� D c�1 ı �c is a 1-cocycle for Gad

0 whose cohomology class does not depend on the choice of
c. In this way, the set of isomorphism classes of inner forms of G0 becomes identified with H1.k0;G

ad
0 /.

11Added. It is equivalent, but less clumsy, to say that an inner form of G0 is a pair .G;c/ consisting of
an algebraic group G over k0 and an isomorphism cWG0;k ! Gk such that c�1 ı �c is inner for all � . An
isomorphism .G;c/! .G0; c0/ of inner forms is an isomorphism 'WG!G0 such that c0 differs from 'k ı c by
an inner automorphism of G0k .
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Let .G;/ be the real form of the compact form Gc corresponding to the Cartan involution
ad�.�1/, i.e., such that

c.�.�1/ � �g ��.�1//D �c.g/; g 2Gc.C/; some c 2 ;

and set h.z1;z2/D �.z1/ � .��/.z2/ (cf. 1.1.1, 1.1.2). Then h, when regarded as a map into
GC, is defined over R, and because s˛ is special, .G;h/ satisfies (SV1). The final statement
follows from Deligne 1979, 1.2.7. �

An examination of the tables in Bourbaki 1981, pp. 250–275 reveals that every node of
the Dynkin diagram of type An is special, that the Dynkin diagrams of type Bn, Cn, and E7
each have one special node, that the Dynkin diagrams of type Dn each have three special
nodes, and that the Dynkin diagram of type E6 has two special nodes. This is illustrated in
Table 1.10, where the special nodes are filled. The Dynkin diagrams of type E8, F4, and G2
have no special nodes, and so groups of these types cannot occur as factors of the adjoint
group of the Mumford-Tate group of a special Hodge structure.

Following Deligne, we write DR
n for the diagrams Dn.1/, D4.3/, and D4.4/, and we

write DH
n for the remaining diagrams of type Dn. A simple adjoint group G over R will be

said to be of type An, Bn, Cn, DR
n , DH

n , E6, or E7 if it corresponds to a diagram of that
type in Table 1.10.

Let G be a simple group over Q such that GR is noncompact. We say that G is of type
An, Bn, Cn, DR

n , DH
n , E6, or E7 if all the noncompact factors of Gad

R are of this type. When
noncompact factors of type DR

n and DH
n both occur, we say G is of mixed type D.

Symplectic representations
In this subsection, we review the symplectic representations of groups. These were studied
by Satake in a series of papers (see especially Satake 1965, 1967, 1980). Our exposition
follows that of Deligne 1979. 12

A symplectic space .V; / over a field k is a finite-dimensional vector space V over
k together with a nondegenerate alternating form  on V . The corresponding symplectic
group is the subgroup of GL.V / such that

Sp. /.k/D fg 2 GL.V / j  .gx;gy/D  .x;y/; all x;y 2 V g;

and the group of symplectic similitudes, G. /, is Sp. / �Gm (here Gm is identified with
the group of nonzero diagonal matrices). Write PSp. / for the adjoint group of Sp. /.
The Siegel upper half-space X. /C corresponding to a real symplectic space .V; / is the
set of Hodge structures h on V of type f.�1;0/; .0;�1/g for which 2�i is a polarization.
Each h 2X. /C factors through G. /, and the map h 7! xhD adıh identifies X. /C with
an Sp. /.R/-conjugacy class of maps S=Gm! PSp. /.

THE REAL CASE

Let H be a semisimple group over R, and let xh be a homomorphism S=Gm!H ad, none of
whose components are trivial, satisfying (SV1,2).

12Added 2017. See �10 of Milne 2013 for a detailed exposition of this material.
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We shall say that a representation �WH !GL.V / with finite kernel is symplectic if there
exists a real reductive group G, a homomorphism hWS! G, a nondegenerate alternating
form  on V , and a factorization

H !G! GLV

of � such that

(1.18.1) H has image Gder in G (so H ad 'Gad), and xhD adıh;
(1.18.2) .G;h/ maps into .G. /;X. /C).

Assume H is simply connected, and set �D �xh. Choose a maximal torus T in HC, and
let R �X�.T / be the corresponding system of roots. Let B D f˛1; : : : ;˛ng be a system of
simple roots such that h˛;�i � 0 for all ˛ 2 B . Recall that the lattice of weights is

P.R/D f$ 2X�.T /˝Q j h$;˛_i 2 Z all ˛_ 2R_g;

that the fundamental weights are the elements of the dual basis f$1; : : : ;$ng to f˛_1 ; : : : ;˛
_
n g,

and that the dominant weights are the elements
P
ni$i , ni 2 N. The quotient P.R/=Q.R/

of P.R/ by the latticeQ.R/ generated by R is the character group of Z.H/. Write � for the
opposition involution acting on the Dynkin diagram (or on R or on the set of fundamental
weights): it preserves each connected component of the diagram, and acts as the unique
nontrivial involution on a component of type An, Dn (n odd), or E6, and trivially on the
other components.

PROPOSITION 1.19. Let � be an irreducible representation of H on a real vector space,
and let $ be the highest weight of an irreducible component of �C. The representation � is
symplectic if and only if

h$C �$; x�i D 1: (1.19.1)

PROOF. See Deligne 1979, 1.3.6, or Milne 2013, 10.6. �

COROLLARY 1.20. If � is symplectic, then $ is a fundamental weight. Therefore the
representation factors through a simple factor of H .

PROOF. For every dominant weight $ , h$ C �$;�i 2 N because $ C �$ 2Q.R/. If
$ ¤ 0, h$C �$;�i > 0 unless � kills all the weights of the representation corresponding
to $ . Hence a dominant weight satisfying (1.19.1) cannot be a sum of two dominant
weights. �

PROPOSITION 1.21. LetH be a simply connected simple group over R, and let xhWS=Gm!
H ad be a nontrivial homomorphism satisfying (SV1,2). There exists a nontrivial symplectic
representation of .H; xh/ if and only if H is of type A, B , C , or D. If H is of type A, B , C ,
or DR, then the symplectic representations form a faithful family of representations of H ; if
H is of type DH they form a faithful family of representations of the double covering of the
adjoint group corresponding to the subgroup of P.R/=Q.R/ generated by $1.

PROOF. The proof proceeds by an examination of the tables. We treat only the cases B , D,
and E6, since the remaining cases are similar. In each case, .H; xh/ corresponds to a special
simple root ˛ ofHC, and h$i ;�i is the coefficient of ˛ in the expression of$i as a Q-linear
combination of the simple roots (see 1.17.1).
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(Bn). In this case �$ ˛1, and the opposition involution acts trivially on the Dynkin
diagram. Thus we seek a fundamental weight $i such that $i D 1

2
˛1C�� � . According to

the tables in Bourbaki,

$i D ˛1C2˛2C�� �C .i �1/˛i�1C i.˛i C˛iC1C�� �C˛n/ .1� i < n/

$n D
1
2
.˛1C2˛2C�� �Cn˛n/;

and so only $n has this property. Because $n generates P=Q, the representation with
highest weight $n is a faithful representation of H .

(DRn
n ). Suppose first that nD 4 and �$ ˛4. The opposition involution acts trivially,

and so $1 and $3 give rise to symplectic representations; they generate P=Q. The case
�$ ˛3 is similar. Otherwise �$ ˛1. The opposition involution acts trivially if n is even,
and switches ˛n�1 and ˛n if n is odd. In the first case, $n and $n�1 give rise to symplectic
representations and together they generate P=Q. In the second case, $n and$n�1 give rise
to symplectic representations, and each generates P=Q.

.D
Hn
n /. In this case, �$ ˛n (or ˛n�1). Only $1 gives rise to a symplectic representa-

tion, and it generates a subgroup of order 2 (and index 2) in P.R/=Q.R/. The corresponding
representation factors through H=C , where C is the kernel of $1 regarded as a character of
Z.H/.

.E6/. In this case, �$ ˛1 or ˛6. No fundamental weight qualifies. �

REMARK 1.22. Let H be the identity component of the group of automorphisms of a
nondegenerate skew-hermitian form on a vector space of dimension n over a quaternion
algebra H over R. Then H is an inner form of SO.2n/, and it is of type DH

n . It is the double
covering of Gad corresponding to the subgroup of P.R/=Q.R/ generated by $1.

THE RATIONAL CASE

Now let H be a semisimple group over Q, and let xhWS=Gm!H ad
R be a homomorphism

satisfying (SV1,2) and generating H ad. We choose the maximal torus T in HC to be rational
over Qal.

We shall say that a representation �WH ! GL.V / (over Q) with finite kernel is sym-
plectic if there exists a reductive group G, a homomorphism hWS!GR, a nondegenerate
alternating form  on V , and a factorization

H !G! GLV

of � such that

(1.23.1) H has image Gder in G (so Gad 'H ad), and xhD adıh;
(1.23.2) .G;h/ maps into .G. /;X. /C/.

LEMMA 1.24. Let H be a simply connected and simple group over Q, and let xhWS=Gm!
H ad

R be a nontrivial homomorphism satisfying (SV1,2). If .H; xh/ has a symplectic represen-
tation over Q, then H cannot be of exceptional type or of mixed type D.

PROOF. Because .H; xh/ satisfies (SV2), H D ResF=QH0 for some absolutely simple group
H0 over a totally real field F (see 1.16). Thus

HR D
Y
v2I

Hv; Hv DH0˝F;vR; I D Hom.F;R/:
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Let Inc be the subset of I of v for which Hv is not compact, and let Hnc D
Q
v2Inc

Hv.
Because xh generates H ad, Inc is nonempty. The Galois group Gal.Qal=Q/ acts on the
Dynkin diagram of HC in a manner consistent with its projection to I .

Let .V;�/ be a symplectic representation of .H; xh/. The restriction of �R to Hnc is a
real symplectic representation of Hnc, and so (by 1.20, 1.21) every nontrivial irreducible
component of �CjHnc factors through Hv for some v 2 Inc and corresponds to a node of the
Dynkin diagram Dv of Hv marked in (1.10) with a star.

An irreducible component W of �C is of the form
N
v2T Wv, where T is a subset of I

and Wv is the representation of GvC corresponding to a node sv 2Dv. Let S.�/ be the set
of all nodes that arise in this fashion from an irreducible component of �C. Then S.�/ is
nonempty, stable under the action of Gal.Qal=Q/, and, if s 2 S.�/\Dv, v 2 Inc , then s is
marked by a star in (1.10). Since the diagrams for E6 and E7 have no starred nodes, no such
set exists in this case. If G is of mixed type D, then there is no such set S.�/ because there
is no automorphism of a Dynkin diagram of type Dn, n� 5, carrying the node s1 into either
sn�1 or sn. �

We shall need to consider the following condition on a semisimple group H over Q:

(1.25) there exists an isogeny H 0!H with H 0 a product of simple groups H 0i such that
either
(a) H 0i is simply connected of type A, B , C , or DR, or,
(b) H 0i is of type DH

n .n� 5/ and equals ResF=QH0 for H0 the double covering of an
adjoint group that is a form of SO.2n/ (cf. 1.22).

THEOREM 1.26. Let H be a semisimple group over Q, and let xh be a homomorphism
S=Gm!H ad

R satisfying (SV1,2) and generating H ad. There exists an isogeny H 0!H

such that .H 0; xh/ admits a faithful family of symplectic representations if and only if H
satisfies (1.25).

PROOF. Suppose that H satisfies (1.25), and let H 0!H be an isogeny as in the statement
of (1.25). It suffices to show that H 0 admits a faithful family of symplectic representations,
and for this it suffices show that each simple factor of H 0 admits such a family. This is
proved in (Deligne 1979, 2.3.10).

Conversely, suppose that H has a covering H 0 such that .H 0; xh/ admits a faithful family
of symplectic representations. According to Lemma 1.24, H 0 (hence H ) cannot be of
exceptional type or mixed type D. Let H sc be the universal covering group of H 0 (hence
of H ), and let H 00 be the quotient of H sc by the intersection of the kernels of the rational
symplectic representations of H sc. Then H 00 is still a covering of H 0, and it follows from
(1.20, 1.21) that it satisfies (1.25). �

Abelian motives: Mumford-Tate groups

As we noted above, Deligne’s theorem (Deligne 1982) shows that !B WMotab.C/! HdgQ is
fully faithful, and so the homomorphism GHdg! GMab it defines is surjective. When we
identify rational Hodge structures with representations of GHdg on Q-vector spaces, abelian
motives become identified with those representations that factor through GMab (cf. Deligne
1990, 8.17).



1 ABELIAN MOTIVES AND THEIR MUMFORD-TATE GROUPS 17

THEOREM 1.27. Let G be an algebraic group over Q, and let hWS! GR be a homomor-
phism satisfying (SV1,2*,4) and generating G. The pair .G;h/ is the Mumford-Tate group
of an abelian motive if and only if Gder satisfies (1.25).

The proof will occupy the rest of this subsection.

PROPOSITION 1.28. For every semisimple groupH over Q and homomorphism xhWS=Gm!
H ad

R satisfying (SV1,2), there exists a reductive group G with Gder DH and a homomor-
phism hWS!GR lifting xh and satisfying (SV1,2*,4).

PROOF. (Milne 1988, A.2) For every finite extension L of Q splitting H , there exists a
central extension defined over Q

1 �!N �!G �!H ad
�! 1

such that Gder DH and N is a product of copies of .Gm/L=Q (the Q-torus obtained from
Gm;L by restriction of scalars). For a proof, see Milne and Shih 1982, 3.1.

Assume first that xh “special”, i.e., that it factors through TR for some maximal torus
T in H ad. Then (SV2) implies that TR is anisotropic, and so T splits over a CM-field L,
which we may choose to be Galois over Q. Construct G as above using this L. According
to Borel 1991, 12.4, 13.17, there is a maximal torus T 0 � G mapping onto T . Since T 0

is its own centralizer, it contains N , which is therefore the kernel of T 0 ! T . Hence
X�.T

0/! X�.T / is surjective, and we can choose � 2 X�.T 0/ mapping to �xh 2 X�.T /.
The weight w Ddf ��� �� of � lies in X�.N /. Because X�.N / is an induced Galois
module, its cohomology groups are zero; in particular, the zeroth Tate (modified) group

H 0
Tate.Gal.C=R/;X�.N //

def
D
X�.N /

Gal.C=R/

.�C1/X�.N /
D 0:

Clearly �w D w, and so there exists a �0 2 X�.N / such that .�C 1/�0 D w. When we
replace � with �C�0, then we find that the weight becomes 0; in particular, it is defined
over Q. Choose h so that h.z/D �.z/ ��.z/.

For a general xh, there will exist a xg 2 H ad.R/ such that ad xg ı xh is special (Deligne
1982, p. 75). Construct G and h as in the last paragraph corresponding to ad xg ı xh. Because
H 1.R;N /DH 1.L˝QR;Gm/D 0, xg will lift to an element g 2 G.R/, and we take the
pair .G;adg�1 ıh/.

The pair .G;h/ we have constructed satisfies (SV1,2,4), and its centre is split by a
CM-field. Let T be the subtorus of Gab generated by h. Then TR is anisotropic, and when
we replace G with the inverse image of T , we obtain a pair .G;h/ satisfying (SV1,2*,4).�

COROLLARY 1.29. Let H be a semisimple group over Q, and let xhWS=Gm!H ad
R be a ho-

momorphism satisfying (SV1,2). There exists a unique homomorphism �.H; xh/W.GHdg/
der!

H such that the following diagram commutes:

.GHdg/
der H

GHdg H ad

�.H;xh/

�.xh/

Here �.xh/ is the unique homomorphism such that xhD �.xh/R ıhHdg (see 1.7).
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PROOF. Two such homomorphisms �.H; xh/ would differ by a map into Z.H/. Because
.GHdg/

der is connected, every such map is constant, and so the homomorphisms will be
equal.

For the existence, choose a pair .G;h/ as in 1.28, and take �.H; xh/D �.h/j.GHdg/
der.�

REMARK 1.30. Let G be a reductive group over Q, and let h be a homomorphism S!GR
satisfying (SV1,2*,4). Let H DGder and let xhD adıh. The restriction of �.h/ to .GHdg/

der

satisfies the condition of 1.29 relative to .H; xh/, and hence equals �.H; xh/.

LEMMA 1.31. The assignment .H; xh/ 7! �.H; xh/ is functorial: if ˛WH !H 0 is a homo-
morphism mapping Z.H/ into Z.H 0/ and carrying xh to xh0, then �.H 0; xh0/D ˛ ı�.H; xh/.

PROOF. After replacing H and H 0 with the subgroups generated by h and h0, we may
assume that ˛ is surjective. Choose .G;h/ for .H; xh/ as in 1.28, and let G0 D G=Ker.˛/.
Write ˛ again for the projection G!G0 and let h0 D ˛R ıh. On restricting the maps in the
equality

�.h0/D ˛ ı�.h/

to .GHdg/
der we obtain the equality

�.H 0; xh0/D ˛ ı�.H; xh/: �

LEMMA 1.32. Let H be a semisimple group over Q, and let xh be a homomorphism
S=Gm ! H ad

R satisfying (SV1,2) and generating H . If .H; xh/ has a faithful family of
symplectic representations, then �.H; xh/ factors through .GMab/

der.

PROOF. It is clear from the definition of a symplectic representation 1.23 that �.H; xh/
maps Ker.GHdg!GMab/ into the kernel of every symplectic representation of H , but, by
assumption, the intersection of these kernels is trivial. �

LEMMA 1.33. Let H be a semisimple group over Q, and let xh be a homomorphism
S=Gm!H ad

R satisfying (SV1,2). The homomorphism �.H; xh/ factors through .GMab/
der if

and only if H satisfies (1.25).

PROOF. Suppose H satisfies (1.25). According to (1.26), there is a finite covering ˛WH 0!
H such that .H 0; xh/ has a faithful family of symplectic representations. By (1.32), �.H 0; xh/
factors through .GMab/

der, and therefore so also does �.H; xh/D ˛ ı�.H 0; xh/.
Conversely, suppose �.H; xh/ factors through .GMab/

der. There will be an algebraic
quotient .G;h/ of .GMab;hMab/ such that .H; xh/ is a quotient of .Gder;adıh/. Consider the
category of abelian motives M for which the action of GMab on !B.M/ factors through G.
By definition, this category is contained in the tensor category generated by h1.A/ for some
abelian variety A. We can replace G with the Mumford-Tate group of A. Then .Gder;adıh/
has a symplectic embedding, and according to (1.26), this implies that Gder satisfies (1.25).
Since H is a quotient of Gder, it also satisfies (1.25). �

We can now complete the proof of the Theorem 1.27. From (1.9), we know that �.h/
factors through GMab if and only if �.Gder;adıh/ factors through .GMab/

der, and from (1.33)
we know that this is true if and only if Gder satisfies (1.25). �
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COROLLARY 1.34. For every pair .G;h/ satisfying (SV1,2*,4) and such that Gder satisfies
(1.25), there is a unique homomorphism �.h/WGMab!G such that �.h/R ıhMab D h.

PROOF. Let G0 be the subgroup of G generated by h. The theorem implies that .G0;h/ is
the Mumford-Tate group of an abelian motive, and so it is a quotient of .GMab;hMab/. �

COROLLARY 1.35. Let .V;h/ be a special Hodge structure, and let .G;h/ be its Mumford-
Tate group. Then .V;h/ is the Betti realization of an abelian motive if and only if Gder

satisfies (1.25).

PROOF. From the theorem we know that the action of GHdg on V factors through GMab if
and only if Gder satisfies (1.25). �

REMARK 1.36. In order to prove (1.13), it suffices to prove the following: letH be a simple
simply connected group over Q, and let xhWS=Gm!H ad

R be a homomorphism satisfying
(SV1,2); then �.H; xh/ factors through the group GMot attached to Mot.C/ and the Betti fibre
functor. If we knew that all Hodge cycles were absolutely Hodge, this would be equivalent
to showing that such a pair is of the form .Gder;adıh/ with .G;h/ the Mumford-Tate group
of the Betti realization of a motive. Of course, this has to be shown only for groups H not
satisfying (1.25), i.e., for (simply connected) groups of type DH, mixed type D, and the
exceptional types E6 and E7.

The extended Mumford-Tate group

Let .V;h/ be a polarizable rational Hodge structure, and let .G0;h0/ be the Mumford-Tate
group of V ˚Q.1/. The action of G0 on Q.1/ determines a homomorphism t WG0! Gm
(defined over Q) such that t ıwh0 D�2, and we define the extended Mumford-Tate group
of .V;h/ to be the triple .G0;h0; t /. We want to relate .G0;h0; t / to the Mumford-Tate group
.G;h/ of .V;h/.

Suppose first that .V;h/ has weight zero. Then G0 DG�Gm, h0 is the map

z 7! .h.z/; jzj�2/; z 2 C�;

and t is the projection map.
When the weight is not zero, there is a smallest m> 0 for which Q.m/ is in the tensor

category generated by .V;h/, and there is a commutative diagram

1 Ker.t/ G0 Gm 1

1 Ker.tm/ G Gm 1

t

m

tm

in which tm is the map defined by the action of G on Q.m/ and the right hand square is
cartesian, i.e.,

G0 DG �
tm;Gm;m

Gm:

Moreover, G DG0=Ker.mı t /. Using these statements, it is possible to express the earlier
results in terms of extended Mumford-Tate groups.
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The variation of Mumford-Tate groups in families
13 Let S be a complex manifold. A holomorphic family of rational Hodge structures on S
is a triple .V;F;W / consisting of a local system V of Q-vector spaces on S together with a
decreasing (Hodge) filtration of the vector bundle V def

DOS˝QV by holomorphic subbundles

� � � � F pV � F pC1V � �� �
and a (weight) gradation VD

L
WmV of V such that, for every s 2 S and every m 2 Z, the

Q-vector space WmVs together with the filtration induced by F is a rational Hodge structure
of weight m.

PROPOSITION 1.37. Let VD .V;F;W / be a holomorphic family of rational Hodge struc-
tures on a complex manifold S , and let Gs be the Mumford-Tate group of V∼, s 2 S . Then
there exists a subset U of S with thin complement such that s 7!Gs is locally constant on
U .

This is a consequence of the following more precise result.

PROPOSITION 1.38. Let .V;F;W / be a holomorphic family of rational Hodge structures
on a connected complex manifold S . Assume that V is the constant sheaf with stalk V , and
regard Gs as a subgroup of GL.V /. Then there exists a subset U of S with thin complement
such that Gu is constant for u 2 U , say Gu DG, and G �Gs for s … U .

PROOF. A tensor t 2 V ˝r ˝V _˝r
0

is a Hodge tensor for a Hodge structure h on V if
and only if it has weight 0 and lies in F 0

h
.V ˝r ˝V _˝r

0

/. Thus the s 2 S where t is a
Hodge tensor form a closed analytic set. Let G be the subgroup of GL.V / fixing all tensors
t 2 V ˝r˝V _˝r that are Hodge tensors for all s 2 S . We can take U to be the set of s such
that G DGs . �

2 Moduli of Motives
We discuss the problem of realizing a motive as a member of a universal family.

The concept of a moduli variety
Let ˝ be an algebraically closed field. A moduli problem over ˝ is a contravariant functor
M from the category of algebraic varieties over ˝ to the category of sets together with
equivalence relations � on each of the sets M.T / such that

m�m0 in M.T / H) ��.m/� ��.m0/ in M.T 0/ for all morphisms �WT 0! T:

A point t of a variety T with coordinates in ˝, i.e., a morphism Spec.˝/! T , defines a
map

m 7!mt
def
D t�mWM.T /!M.˝/:

A solution .S;˛/ to the moduli problem is an algebraic variety S over ˝ and a bijection

˛WM.˝/=�! S.˝/

with the following properties:
13Added. For a detailed treatment of this topic, see �6 of Milne 2013. The subset U in Proposition 1.37 can

be chosen so that its complement is a countable union of proper analytic subspaces.
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(2.1.1) for every variety T over ˝ and m 2M.T /, the map t 7! ˛.mt /WT .˝/! S.˝/ is
a morphism of algebraic varieties over ˝;

(2.1.2) for some open covering fSig of S , there exist elements mi 2M.Si / such that
˛..mi /s/D s for all s 2 S .

These conditions determine .S;˛/ uniquely up to a unique isomorphism, for if .S 0;˛0/ is
a second pair satisfying the conditions, then (2.1.2) for S and (2.1.1) for S 0 show that the
map ˛0 ı˛�1WS.˝/! S 0.˝/ becomes a morphism when restricted to the members of some
open covering of S , and is therefore a morphism S ! S 0. Similarly, there is a morphism
S 0! S , which is inverse to S ! S 0 because it is on the on points with coordinates in ˝.

A solution .S;˛/ to the moduli problem is said to be fine (and S is called a fine moduli
variety) if

(2.2.1) for every variety T over ˝, the equivalence class of m 2M.T / is determined by
the equivalence classes of the elements mt , t 2 T .˝/;

(2.2.2) there exists an element m0 2M.S/ such that ˛.m0s/D s for all s 2 S.˝/.

Let m0 be as in (2.2.2). Then (2.2.1) implies that, for every m 2M.T /, there is a unique
morphism 'WT ! S such that '�.m0/ � m. Therefore the pair .S; Œm0�/ represents the
functor T  M.T /=�. Here Œm0� is the equivalence class ofm0. Conversely, if there exists
an m0 2M.S/ such that .S; Œm0�/ represents M=�, then .M;�/ is a fine moduli problem
and .S;˛/, with ˛ the inverse of s 7! Œm0s�, is a solution to the moduli problem.

There are variants of these definitions that are also useful. For example, we could replace
the category of varieties over ˝ with that of smooth varieties over ˝ or we could allow the
covering in (2.1.2) to be with respect to the étale or flat topologies. Alternatively, we could
replace the category of algebraic varieties with that of complex manifolds.

In �3, we shall also need the notion of a moduli variety over a nonalgebraically closed
field k. To avoid problems with inseparability, we assume k to be of characteristic zero. A
moduli problem over k is a pair .M;�/ as before, but with M a functor from the category
of algebraic varieties over k to that of sets. Fix an algebraically closed field ˝ containing k,
and define

M.˝/D lim
�!

M.R/;

where the limit is over the subalgebras R of ˝ that are finitely generated over k and
M.R/

def
DM.SpecR/. The equivalence relations on the sets M.R/ define an equivalence

relation on M.˝/. A point t of a k-variety T with coordinates in ˝, i.e., a k-morphism
Spec˝ ! T , defines a map m 7! mt WM.T /!M.˝/. A solution .S;˛/ to the moduli
problem is an algebraic variety S over k together and a bijection ˛WM.˝/=�! S.˝/ with
the following properties:

(2.3.1) for every variety T over k andm 2M.T /, there exists a morphism ˇmWT ! S such
that ˇm.t/D ˛.mt / for all t 2 T .˝/;

(2.3.2) for some open covering .Si / of S , there exist elements mi 2M.Si / such that
˛..mi /t /D t for all t 2 S.˝/.

The map ˇm in (2.3.1) is uniquely determined, and the conditions determine the pair .S;˛/
uniquely up to a unique isomorphism.

Moduli of Hodge structures
Since our approach to the moduli of motives is through their Hodge structures, it is natural
to begin by considering the problem of realizing a rational polarizable Hodge structure as a
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member of a universal family. Experience from abelian varieties suggests that we should
study the moduli, not of Hodge structures, but of polarized Hodge structures. Also that, in
order to obtain more general results, we should endow the Hodge structures with additional
structure, for example with an endomorphism ring or, more generally, a family of Hodge
tensors.

Thus let .V;h0/ be a polarizable rational Hodge structure, which, for simplicity, we
take to be of pure weight m. Let t0 D .t 0i /i2I be a family of Hodge tensors of .V;h0/, i.e.,
elements of type .0;0/ in V ˝ri ˝V _˝si .mi / for some ri , si ,mi withmri �msi �2mi D 0.
We assume that t0 contains a tensor t 00 2 V

_˝2.�m/ that is a polarization for .V;h0/, and
we write t 00 D  ˝ .2�i/

m. Thus  is a nondegenerate bilinear pairing

 WV �V !Q

such that

(2.4.1)  is symmetric or skew-symmetric according as m is even or odd;
(2.4.2)  .V p;q;V r;s/ D 0 if pC r ¤ m; equivalently,  .F p;Fm�pC1/ D 0 for all p,

where F D Fh0
(the Hodge filtration of h0);

(2.4.3)  .v;h0.i/v/ > 0, if v 2 V.R/, v¤ 0; equivalently, ip�q .v;xv/> 0 if v 2F p\F q ,
v ¤ 0.

Let G0 be the subgroup of GL.V /�Gm fixing the t 0i . The action of G0 on Q.1/ defines
a homomorphism t WG0 ! Gm, and we let G D Ker.t/. Write t 0i D ti ˝ .2�i/

mi with
ti 2 V

˝ri ˝V _˝si , and let tD .ti /i2I . Then ti is of type .mi ;mi /, and G is the subgroup
of GL.V / fixing the ti , i.e., for all Q-algebras R,

G.R/D f˛ 2 GL.V .R// j .˛˝ri ˝ {̨
˝si /.ti /D ti , all i 2 I g:

Note that h00
def
D .h0;Nm/ maps into G0R, and u0 D h0jU 1 maps into GR. In particular,

C
def
D h0.i/ 2G.R/, and  is a C -polarization of the representation ofG on V.R/. Therefore

(see (1.5)) G is reductive.

EXAMPLE 2.5. There are two cases of particular interest.
(a) The family t0 contains all the Hodge tensors of .V;h0/. In this caseG0 is the extended

Mumford-Tate group of .V;h0/, and we call G the special Mumford-Tate group of .V;h0/.
(b) The family t consists only of t0 D  , so that G is the subgroup of GL.V / fixing  

and G0 DG �Gm. This case is studied in Griffiths 1968, 1970; Schmid 1973; El Zein 1991,
Chapter 7.

Let F_ be the set of filtrations F on V.C/ such that

dimF p D dimF p
h0

all p:

The group GL.V .C// acts transitively on F_, and the subgroup P stabilizing Fh0
is

parabolic.14 Hence the bijection

GL.V /=P �! F_; gP 7! gFh0

14Let �WG ,! GL.V / be a faithful representation of a reductive group G over a field k of characteristic zero,
and let F be a filtration on V . Suppose that there exists a cocharacter � of G splitting the filtration, i.e., such
that F pV D

L
i�p V

i , V i D fv 2 V j ��.x/v D xiv, 8xg. The subgroup P of G of elements preserving F
is parabolic with unipotent radical the subgroup U of elements acting as the identity map on

L
F iV=F iC1V .

The cocharacter � defines a filtration on every representation of G, in particular on the adjoint representation of
G on g, and Lie.P /D F 0g, Lie.U /D F 1g. See Saavedra 1972, IV.2.2.5.
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realizes F_ as a smooth projective algebraic variety over C. The subset F of F_ of those
filtrations F such that

V.C/D F p˚ xFm�pC1 for each p;

is open in F_ (for the complex topology). It parametrizes exactly the Hodge structures on
V.R/ whose Hodge numbers are the same as those of .V;h0/.

Consider the set of filtrations F in F_ such that, for all i 2 I , ti 2 Fmi . It is a closed
algebraic subvariety of F_ stable under the action of G.C/, and we let X_ denote the orbit
containing Fh0

. Then X_ is the quotient of G.C/ by a parabolic subgroup, and so it is a
smooth projective variety over C. An F 2 X_ satisfying (2.4.3) automatically defines a
Hodge structure (see the references in (2.5b)), and so lies in F . The set of such F ’s is open
in X_ and stable under G.R/, and we write X for the orbit containing Fh0

.
We now regard X as a complex manifold rather than a set of filtrations, and we write Fx

for the filtration, and hx , ux , and �x for the homomorphisms, corresponding to x 2X .

REMARK 2.6. (a) When t consists only of t0, X_ contains all filtrations such that t 00 2 F
0,

and X contains all F 2X_ satisfying (2.4.3). Thus in this case, X contains all the filtrations
on V.C/ defining Hodge structures for which .2�i/m is a polarization (see the references
in (2.5b)).

(b) Let x 2X_\F , and let Fx be the corresponding filtration on V.C/. The cocharacter
�x WGm ! GL.V .C// has image in G �Z, where Z D Gm D Z.GL.V .C//, and so �x
defines a filtration on gC. The stabilizer of Fx in G has Lie algebra F 0gC, and so

gC=F
0gC

'
�! TgtxX

_:

Now assume x 2 X . The stabilizer B of x in GR has Lie algebra gR\F
0gC D gR\g

0;0,
and so

gR=.gR\g
0;0/

'
�! TgtxX:

Note that
dimgC=F

0gC D dimgR=.gR\g
0;0/

(as real vector spaces).

Choose a lattice V.Z/ in V , and let

� .N/D fg 2G.Q/ j gV.Z/D V.Z/; g D id on V.Z/=NV.Z/g:

Consider a triple .W;s;�/ consisting of an integral Hodge structure W D .W.Z/;h/, a
family of tensors sD .si /i2I of W.Q/ def

DW.Z/˝Q, and an isomorphism

�WV.Z/=NV.Z/ �!W.Z/=NW.Z/:

We call � a level-N -structure on W. Let H.C/ be the set of such triples for which there
exists an isomorphism ˇWW.Q/! V satisfying the following conditions:

(2.7.1) for some x 2X , ˇ is a morphism of rational Hodge structures

.W.Q/;h/ �! .V;hx/I

(2.7.2) for all i 2 I , ˇ.si /D ti ;
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(2.7.3) ˇ.W.Z//D V.Z/ and the composite

V.Z/=NV.Z/
�
�!W.Z/=NW.Z/

ˇ.N/
���! V.Z/=NV.Z/

is the identity map.

Note that the conditions imply that si is an element of type .mi ;mi / in W.Q/˝ri ˝

W.Q/_˝si . An isomorphism from one such system .W;s;�/ to a second .W 0;s0;�0/ is an
isomorphism of integral Hodge structures  W.W.Z/;h/! .W 0.Z/;h0/ such that .si /D s0i
for all i 2 I and .N /ı�D �0.

Let .W;s;�/ be such a system, and choose an isomorphism ˇWW.Q/! V satisfying
the conditions (2.7). A second such isomorphism is of the form g ıˇ for some g 2 GL.V /.
But (2.7.2) implies that g.ti / D ti for all i , and so g 2 G.Q/. Also (2.7.3) implies that
gV.Z/ D V.Z/ and that g acts as the identity map on V.Z/=NV.Z/, and so g 2 � .N/.
Therefore, when we write adˇ ıhD hx , the orbit of x in � .N/nX is independent of the
choice of ˇ.

PROPOSITION 2.8. The map .W;s;�/ 7! Œx� just defined gives a bijection

˛WH.C/=�! � .N/nX:

PROOF. Let .W 0;s0;�0/ be a second system. If  W.W 0;s0;�0/! .W;s;�/ is an isomorphism
of triples and ˇWW.Q/! V.Q/ is an isomorphism of vector spaces satisfying (2.7), then
ˇ ı satisfies (2.7) for .W 0;s0;�0/, and it follows that .W 0;s0;�0/ maps to the same element
of � .N/nX as .W;s;�/. Conversely, if .W;s;�/ and .W 0;s0;�0/ map to the same class Œx�,
then we can choose the maps ˇ and ˇ0 so that the triples map to the same element of X ; now


def
D ˇ�1 ıˇ0 is an isomorphism

.W 0;s0;�0/! .W;s;�/:

Finally, if x 2X , then ..V .Z/;hx/; t; id/ maps to Œx�. �

We next wish to endow � .N/nX with the structure of a complex manifold.

LEMMA 2.9. (a) The group � .N/ acts properly discontinuously15 on X .
(b) For N sufficiently divisible, � .N/ is torsion-free.

PROOF. (a) According to a standard criterion (see Miyake 1989, 1.5.2), it suffices to check
that the stabilizers in G.R/ of the elements of X are compact and that � .N/ is a discrete
subgroup ofG.R/, but the stabilizer of h 2X is compact because it fixes the positive definite
symmetric form

.v;w/ 7!  .v;Cw/; C D h.i/;

and � .N/ is discrete because it is a congruence subgroup.
(b) If N is sufficiently divisible, � .N/ will be neat, and hence torsion-free (see Borel

1969, �17). �

PROPOSITION 2.10. If � .N/ is torsion-free, then � .N/nX has a unique structure of a
complex manifold such that the quotient map X ! � .N/nX is a local isomorphism.

15Recall that this means that for any pair of points x1 and x2 of X , there exist neighbourhoods U1 and U2 of
x1 and x2 such that fg 2 � .N/ j gU1\U2 ¤¿g is finite.
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PROOF. If � .N/ is torsion-free, then the map X! � .N/nX is a local homeomorphism.�

WhenN is sufficiently divisible that � .N/ is neat, we write S.N / for � .N/nX regarded
as a complex manifold.

An integral structure on a holomorphic family of rational Hodge structures .V;F;W / is
a local system of Z-modules V.Z/�V such that V.Z/˝QDV and V.Z/D

L
V.Z/\Wm.

A holomorphic family of rational Hodge structures together with an integral structure will
be referred to as a holomorphic family of integral Hodge structures.

Let T be a complex manifold, and consider triples mD .W;s;�/ consisting of a holo-
morphic family of integral Hodge structures WD .W.Z/;F;W / on T , a family of global
tensors s of W.Q/ def

DW.Z/˝Q indexed by I , and an isomorphism � from the constant
sheaf .V .Z/=NV.Z//T on T to W.Z/=NW.Z/. We define H.T / to be the set of such
triples m with the property that mt 2H.C/ for all t 2 T . An isomorphism

.W;s;�/ �! .W0;s0;�0/

is an isomorphism of integral Hodge structures W!W0 carrying carrying s and � into s0

and �0. With the obvious notion of pull-back, the pair .H;�/ becomes a moduli problem on
the category of complex manifolds and holomorphic maps.

EXAMPLE 2.11. OnX there is a holomorphic family of integral Hodge structures of weight
m whose underlying local system of Z-modules is the constant system defined by V.Z/ and
which is such that the filtration at a point x is the Hodge filtration of hx .

If N is sufficiently divisible, then � .N/ is the group of covering transformations of X
over S.N /, and we obtain a holomorphic family of integral Hodge structures V.N / on S.N /:
for oD h0, the local system of Z-modules underlying V.N / corresponds to the representation
of � .N/D �1.S.N /;o/ on V.Z/. Because ti is fixed by � .N/, it defines a global tensor of
V.N /, and because � .N/ acts trivially on V.Z/=NV.Z/ there is a canonical isomorphism
�W.V .Z/=NV.Z//S.N/! V.N /=NV.N/. The system m0 D .V.N /; t;�/ 2H.S.N //.

THEOREM 2.12. For N sufficiently divisible, the pair .S.N /;˛/ is a fine solution to the
moduli problem .H;�/ (in the category of complex manifolds and holomorphic maps).

PROOF. Let mD .W;s;�/ 2H.T / for some complex manifold T . We have to prove that
the map

'mWT �! S.N /; t 7! ˛.mt /;

is holomorphic. Let t0 2 T . Choose an open neighbourhood U of t0 over which W is trivial,
and fix an isomorphism WjU ! VU (constant local system on U ). The map t 7! Ft WT !F
is holomorphic, and its image is contained in X . Hence it is holomorphic as a map into X ,
and so the composite U !X ! S.N / is holomorphic. Obviously, '�mm0 �m, and 'm is
the unique morphism with this property, and so .S.N /; Œm0�/ represents the functor H=�.�

REMARK 2.13. In the above, we should of course allow .V;h0/ to have more than one
weight, but this complicates the exposition. Once one is willing to work in that generality, it
is natural to replace V with V ˚Q.1/ to ensure that Q.1/ is in the tensor category generated
by .V;h0/.

From now on, we assume that we are in Case (2.5a). It follows from (1.38), that there
is no essential loss of generality in doing this.
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Questions
If .V;h0/ is the Betti realization of a motive, then is S.N / a moduli variety for motives?
Four problems present themselves.

(2.14.1) Does S.N / have a (unique) structure of an algebraic variety compatible with its
complex structure?

(2.14.2) Is every Hodge structure .V;h/, h 2X , motivic, i.e., the Betti realization of motive?
(2.14.3) Assuming that (2.14.1) and (2.14.2) have positive answers, is the canonical family

V.N / of Hodge structures on S.N / defined in (2.11) the Betti realization of a “family
of motives” (whatever that may be)?

(2.14.4) Is S.N / a moduli variety for motives? Since S.N / parametrizes Hodge structures
with additional structure, and we are asking that it parametrize motives, this implies
that the motives in the family are determined (up to isomorphism) by their Betti
realizations.

We shall see shortly that, in order for (2.14.3) to be true, it is necessary that .V;h0/ be a
special Hodge structure. Remarkably, when we assume this and that Hypothesis 1.13 holds
in families, then all statements become true.

Variations of Hodge structures
Let S be a connected complex manifold. Recall that a connection on a holomorphic vector
bundle V is a C-linear homomorphism

rWV �!˝1S ˝V

satisfying the Leibnitz identity

r.f v/D df ˝vCf �rv;

for f and v local sections of O and V . A connection is flat if its curvature tensor is zero.
A local section of V is horizontal if rv D 0, and we write Vr for the sheaf of horizontal
sections. The functor .V;r/ Vr is an equivalence from the category of vector bundles
with flat connections to that of complex local systems on S .

DEFINITION 2.15. A holomorphic family of rational Hodge structures .V;F;W / on a
complex manifold is a variation of rational Hodge structures if

(2.15.1) .V;F;W / admits an integral structure;
(2.15.2) (axiom of transversality): r.F pV/�˝1S ˝F p�1V .

A polarization of a variation of Hodge structures V of weight m is a morphism of local
systems V˝V ! Q.�m/ that at each point s of S defines a polarization of the Hodge
structure Vs .

PROPOSITION 2.16. The category HdgQ.S/ of polarizable variations of rational Hodge
structures on a connected complex manifold S is a semisimple Tannakian category over Q.

PROOF. It is obvious that HdgQ.S/ is closed under the formation of direct summands, direct
sums, and tensor products; moreover it contains the constant variations Q.m/. Therefore we
can apply Deligne 1971a, 4.2.3, to deduce that HdgQ.S/ is a semisimple abelian subcategory
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of the category of continuous families of Hodge structures, and that it is closed under
the formation of duals. For every point o 2 S , .V;F;W / Vo is a fibre functor, and so
HdgQ.S/ is a Tannakian category. The identity object is Q.0/, and End.Q.0//DQ. �

THEOREM 2.17. Let � WY ! S be a smooth projective map of algebraic varieties over C;
for all r , Rr��Q is a polarizable variation of rational Hodge structures on S of weight r .

PROOF. This is a fundamental result in Griffiths’s theory. For proofs see Griffiths 1968 and
Deligne 1971c. �

The last two results show that the Betti realization of a family of motives must be a
polarizable variation of Hodge structures. It is therefore natural to require that V.N / be a
variation of Hodge structures on S.N /, or equivalently, that .V;Fx/ be a variation of Hodge
structures on X . There is a simple criterion for this.

PROPOSITION 2.18. The following statements are equivalent:

(a) the family .V;Fx/ is a variation of Hodge structures on X ;
(b) for all x 2X , .G0;h0x/ satisfies (SV1);
(c) for all x 2X , the Hodge structure .V;hx/ is special;
(d) the Hodge structure .V;h0/ is special.

PROOF. (a)” (b). Consider the inclusion map 'WX ,! X_. The map on the tangent
spaces at a point x of X is

.d'/x WTgtx.X/D gR=.gR\g
0;0/

'
�! gC=F

0gC; gD Lie.G/;

(see 2.6). The axiom of tranversality says that the image of .d'/x is contained inF�1x gC=F
0
x gC

for all x, i.e., that gC D F�1x gC. But

gC D F
�1
x gC ” g is of type f.�1;1/; .0;0/; .1;�1/g ” .G0;h0x/ satisfies (SV1).

(b)H) (c). The extended Mumford-Tate group of .V;hx/ is a subgroup of G0.
(c)H) (d). Obvious.
(d)H) (b). Because of our assumption that we are in case (2.5a), G0 is the extended

Mumford-Tate group of .V;h0/, and so (d) says that .G0;h00/ satisfies (SV1). To deduce (b),
set x D gx0, g 2G.R/, and note that ad.g/ is an isomorphism .G0;h00/! .G0;h0x/. �

Before providing answers to the Questions 2.14, we review some of the fundamental
results concerning variations of Hodge structures.

THEOREM 2.19. Let V be a polarizable variation of Hodge structures on a smooth quasi-
projective algebraic variety S over C. Then the vector bundle V def

D V˝Oan
S carries a unique

algebraic structure such that the connection r becomes algebraic and such that r has regular
singular points at infinity relative to any smooth compactification of M . With respect to this
structure, the subbundles F r � V are algebraic.

PROOF. See Schmid 1973, 4.13, where the result is credited to Griffiths. �

REMARK 2.20. Let � WY ! S be a smooth projective morphism of algebraic varieties over
a field k. The vector bundle Rr��OY has a canonical (de Rham) filtration FdR arising from
the identification Rr��OY D Rr��˝ �Y=S and a flat (Gauss-Manin) connection r. When
k D C these structures agree with those defined by (2.17) and (2.19).
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THEOREM 2.21 (THEOREM OF THE FIXED PART). Let S be a smooth connected alge-
braic variety over C, and let V be a polarizable variation of Hodge structures on S . The
largest constant local system Vf � V is a constant variation of Hodge substructures of V.

PROOF. When the base space is a compact complex manifold, this is proved in Griffiths
1970, �7, and in the general case it is proved in Schmid 1973, 7.22. See also 4.1.2 and
footnote p. 45 of Deligne 1971a. �

Consequently, a global section of V (in fact, even of V˝C) that is of type .p;q/ at one
point, is of type .p;q/ at every point. When we apply this to an endomorphism of V, we
obtain the following result.

COROLLARY 2.22. Let .V;F / and .V0;F 0/ be two polarizable variations of Hodge struc-
tures on a smooth connected algebraic variety S . An isomorphism ˛WV! V0 of local
systems such that ˛.o/ is an isomorphism of Hodge structures for some o 2 S.C/ is an
isomorphism of variations of Hodge structures.

Let S be a smooth connected algebraic variety over C. The corollary implies that, given
a representation of �1.S;o/ on a finite-dimensional rational vector space V and a polarized
Hodge structure on V , there is at most one way of extending these data to a polarizable
variation of Hodge structures on S .

Algebraicity of S.N /
Recall that a bounded domain in Cg is a bounded open connected subset of Cg , and that a
hermitian manifold is a complex manifold together with a holomorphic family of positive-
definite hermitian forms on its tangent spaces. A bounded domain or hermitian manifold
D is said to be symmetric if each point of D is an isolated fixed point of an involution of
D. A complex manifold isomorphic to a symmetric bounded domain is called a symmetric
hermitian domain. Since the Bergmann metric provides a symmetric bounded domain with
a hermitian structure invariant under all automorphisms of the domain, every symmetric
hermitian domain has a canonical hermitian structure with respect to which it is symmetric.

PROPOSITION 2.23. If .V;h0/ is special, then every connected component of X is a sym-
metric hermitian domain.

PROOF. Identify a connected component XC of X with a G0.R/C-conjugacy class of
homomorphisms S!G0R, and apply Deligne 1979, 1.1.17. �

THEOREM 2.24. Let XC be a symmetric hermitian domain, and let � be a torsion-free
arithmetic subgroup of Aut.XC/. Then S.� / def

D � nXC has a unique structure of an alge-
braic variety with the following property:

2.24.1 every holomorphic map S ! S.� / from a smooth complex algebraic variety to S.� /
is a morphism of algebraic varieties.

PROOF. The main theorem of Baily and Borel 1966 shows that S.� / has a canonical
algebraic structure compatible with its complex structure. That the structure has the property
(2.24.1) is proved in Borel 1972, 3.10. It is obvious that this property determines the algebraic
structure uniquely. �
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THEOREM 2.25. If .V;h0/ is special, then V.N / is a polarizable variation of Hodge struc-
tures on S.N /, and S.N / has a unique algebraic structure compatible with its complex
structure. Conversely, if V.N / is a variation of Hodge structures, then .V;h0/ is special.

PROOF. Combine (2.18), (2.23), and (2.24). �

The motivicity of .V;hx/
PROPOSITION 2.26. If .V;h0/ is the Betti realization of an abelian motive, then so also is
.V;hx/ for all x 2X .

PROOF. We saw in (2.18) that if .V;h0/ is a special Hodge structure, then so also is .V;hx/
for all x 2X .

Let .G0;h0/ and .Gx;hx/ be the Mumford-Tate groups of .V;h0/ and .V;hx/ respec-
tively (thus G D Ker.G0! Gm//. If hx D adg ıh0 with g 2 G0.Q/, then Gx D G, and
it follows from (1.35) that .V;hx/ is the Betti realization of an abelian motive. The real
approximation theorem states that G.Q/ is dense in G.R/, and so we can assume that
hx D adg ıh0 with g 2G0.R/C:

By assumption, .V;h0/ lies in the tensor category generated by the Betti realization of
an abelian variety A. Let .G1;h1/ be the Mumford-Tate group of A. We have a diagram

.G0;h0/� .G1;h1/ ,! .G. /;X. //

with G. / the group of symplectic similitudes defined by H1.A/ and a Riemann form. Lift
g to an element g1 2G1.R/C. Then we have a diagram:

.G0;hx/� .G1;ad.g/ıh1/ ,! .G. /;X. //:

If Gx1 denotes the inverse image of Gx in G1, then .Gx1;ad.g/ıh1/ is the Mumford-Tate
group of an abelian variety, and it has .Gx;hx/ as a quotient. It follows that .V;hx/ is the
Betti realization of an abelian motive. �

REMARK 2.27. Assume Hypothesis 1.13. If .V;h0/ is special, then for all x 2 X , the
Hodge structure .V;hx/ is the Betti realization of a special motive.

Motivic variations of Hodge structures
By a global tensor of a local system of Q-vector spaces V on a complex manifold S , we
mean an element of � .S;V˝r˝V_˝s˝Q.m// for some r;s 2 N, m 2 Z.

DEFINITION 2.28. Let � WY ! S be a projective smooth morphism of smooth varieties
over C. A global tensor t of HB.Y=S/ def

D
L
i R

i��Q is an absolute Hodge tensor of Y=S
if, for all s 2 S.C/, ts is an absolute Hodge tensor of Ys . A sum of absolute Hodge tensors
will also be called an absolute Hodge tensor.

REMARK 2.29. When S is connected, a global tensor t of HB.Y=S/ is an absolute Hodge
tensor of Y=S if ts is an absolute Hodge tensor on Ys for a single s (Deligne 1982, 2.12,
2.14).

DEFINITION 2.30. Let S be a smooth variety over C.
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(a) (Deligne 1971, 4.2.4). A variation of Hodge structures V on S is algebraic if there
exists a dense open subset U of S , an integer m, and a projective smooth morphism
� WY ! U such that VjU is a direct summand of HB.Y=U /.m/.

(b) If in (a) the projector realizing VjU as a direct summand is an absolute Hodge tensor,
then V will be said to be motivic.

(c) If in (a) Y is an abelian scheme over U , then V will be said to be abelian-motivic.

Note that the projector implicit in (a) of the definition is automatically a Hodge tensor at
every point of U , and so, when Y is an abelian scheme, the main theorem of (Deligne 1982)
implies that it is an absolute Hodge tensor. Thus

abelian-motivic H) motivic H) algebraic.

In general, when � WY ! S is a projective smooth morphism and p 2 End.HB.Y=S// is
both a projector and an absolute Hodge tensor, we write HB.Y=S;p;m/ for Im.p/˝Q.m/.

LEMMA 2.31. (a) A direct sum, or tensor product of algebraic (resp. motivic, abelian-
motivic) variations of Hodge structures is algebraic (resp. motivic, abelian-motivic); the
constant variation of Hodge structures Q.m/ is abelian-motivic.

(b) A direct summand of an algebraic (resp. abelian-motivic) variation of Hodge struc-
tures is algebraic (resp. abelian-motivic).

(c) Every algebraic variation of Hodge structures is polarizable.

PROOF. The statements concerning algebraic variations are proved in (Deligne 1971a, 4.2.5).
Similar proofs give the statements concerning abelian-motivic or motivic variations. �

PROPOSITION 2.32. The category of abelian-motivic variations of Hodge structures on S
is a semisimple abelian category; it is a tensor subcategory of the semisimple Tannakian
category of polarizable variations of Hodge structures on S . If S is connected, then for every
o 2 S.C/, V Vo is a fibre functor.

PROOF. We can again apply Deligne 1971a, 4.2.3. �

LEMMA 2.33. A variation of Hodge structures V on S is abelian-motivic if there is a
smooth dominant morphism f WS 0! S of finite-type such that f �V is abelian-motivic.

PROOF. The image of f is a dense open subschemeU of S , and there exists a surjective étale
morphism hWU 0! U and a morphism gWU 0! S 0 such that hD f ıg (see Grothendieck
1964/67, 17.16.3):

S 0 U 0

S
open
�U

f

g

étale

h

Hence h�V is abelian-motivic, say h�V D HB.Y=U 0;p;m/. After replacing U with an
open subset, the map hWU 0! U will be finite. It is clear that h�h�V is abelian-motivic, and
VjU is a subobject, hence direct summand, of it, and so we can apply (2.31b). �
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The motivicity of V.N /
THEOREM 2.34. If .V;h0/ is the Betti realization of an abelian motive, then the variation
of Hodge structures V.N / on S.N / defined in (2.11) is abelian-motivic.

PROOF. Suppose first that .V;h0/ is the Betti realization of an abelian variety. In this
case V.N / is a polarizable variation of Hodge structures of type f.�1;0/; .0;�1/g, and so
V.N /DHB.Y=S.N // for some abelian scheme Y (see Deligne 1971a, 4.4.3). Moreover,
if G! GL.W / is a second representation of G and W is the corresponding variation of
Hodge structures on S.N /, then, because W lies in the tensor category generated by V , W
will lie in the tensor category generated by V, and so (2.32) shows it to be abelian-motivic.

Now consider the general case. Because .V;h0/ is the Betti realization of an abelian
motive, there is a surjective homomorphism .G1;u1/! .G;u0/ with .G1;u1/ the special
Mumford-Tate group of an abelian variety. Correspondingly, we have a smooth morphism

f W�1.N /nX1! � .N/nX:

The pull-back f �V.N / of V.N / to �1.N /nX1 is the variation of Hodge structures defined
by the representation G1! G ,! GL.V /, and is therefore abelian-motivic. Now apply
(2.33). �

SPECIAL HODGE STRUCTURES

Hypothesis 1.13 asserts that every special Hodge structure is of the form HB.Y;p;m/ for
some projective smooth variety Y over C, projector p that is an absolute Hodge tensor, and
integer m. The next hypothesis asserts that this holds in families.

HYPOTHESIS 2.35. Let .V;h0/ be a special Hodge structure, and let o be the point � .N/ �
h0 in S.N / (N sufficiently divisible). There exists an open neighbourhood U of o, a
projective smooth morphism � WY ! U , a projector p that is an absolute Hodge tensor, and
an integer m such that VjU DHB.Y=U;p;m/:

Let M be a motive over C. We say that all the Hodge tensors of M are absolutely
Hodge if the functor

!B WMot.C/ �! HdgQ

becomes fully faithful when restricted to the tensor subcategory generated by M and Q.1/.

PROPOSITION 2.36. Let .V;h0/ be special. If Hypothesis 2.35 holds for .V;h0/, then
.V;h0/ is the Betti realization of a motive M , and all Hodge tensors on M are absolutely
Hodge.

PROOF. A Hodge tensor t of .V;h0/ defines a global Hodge tensor of V.N /. Let U be a
neighbourhood of o as in (2.35). There will be a point x 2 U such Im.hx/� TR for some
torus T � G, and the pair .V;hx/ will be the Betti realization of a CM-motive. Hence tx
is an absolute Hodge tensor, and, as we noted in (2.29), this implies that tu is an absolute
Hodge tensor for all u 2 U . In particular, t D t0 is an absolute Hodge tensor. �

Hypothesis 2.35 is definitely a stronger statement than Hypothesis 1.13, but any proof of
1.13 is likely also to yield a proof of 2.35. Note that 2.35 implies that

!B WMotsp.C/! HdgQ



2 MODULI OF MOTIVES 32

is fully faithful, where Motsp.C/ is the category of special motives. Hence every special
Hodge structure will be the Betti realization of a unique special motive (unique up to a
unique isomorphism).

Moduli of motives
We now define the category of motives for absolute Hodge tensors over any smooth variety
S in characteristic zero. Our definition is suggested by the following theorem: let S be a
smooth connected variety with generic point � over a field of characteristic zero; the functor
A A� from the category of abelian schemes over S to the category of abelian varieties
over � is fully faithful, with essential image the category of abelian varieties B such that
the action of �1.�;x�/ on H 1.Bet;Q`/ factors through �1.S;x�/. Here x� is the spectrum of
an algebraically closed field containing �.�/. (This theorem is a consequence of the theory
of Néron models and of a theorem of Chai and Faltings16—see Milne 1992, 2.13, for a
discussion of it.)

DEFINITION 2.37. A motive M over a smooth connected k-variety S is a motive M� over
the generic point � of S such that the action of �1.�;x�/ on !f .M�/ factors through �1.S;x�/.
If M� is an abelian motive, then we call M an abelian motive over S . (Here !f is the fibre
functor, defined by étale cohomology, taking values in Af -modules.)

LetM be a motive over S . For somem, M�.�m/ will be an effective motive, and hence
a direct summand of a motive h.Y /, where Y is a smooth projective variety over the field
�.�/. Let p be the absolute Hodge tensor for Y projecting h.Y /.m/ onto M�. For some
open subset U of S , Y will extend to a smooth projective scheme YU over U , and p will
extend to a global tensor pU for the de Rham and étale cohomologies of YU =U . We then
say that .YU ;pU ;m/ represents M over U , and we write M jU D h.YU ;pU ;m/.

PROPOSITION 2.38. For every smooth connected variety S over a field k of characteristic
zero, the category Mot.S/ of motives over S is a Tannakian category over Q, and the category
Motab.S/ of abelian motives over S is a Tannakian subcategory of Mot.S/. There is an exact
tensor functor from Mot.S/ to the Tannakian category of local systems of Af -modules on
Set.

PROOF. Since Mot.�/ is a Tannakian category, it suffices to prove that Mot.S/ is a Tannakian
subcategory of Mot.�/, but this is obvious. Similarly Motab.S/ is a Tannakian subcategory
of Mot.S/ and of Motab.�/. To give a local system of Af -modules on S is the same as to
give a continuous representation of �1.S;x�/ on a finite-dimensional Af -module, and, by
assumption, the representation of �1.�;x�/ on !f .M�/ factors through �1.S;x�/. �

DEFINITION 2.39. An integral structure on a motive M is the choice of a local system
of torsion-free bZ-modules M.bZ/ such that M.bZ/˝QDMf . A motive together with an
integral structure is an integral motive.

As we have just seen, almost by definition, a motive over a smooth variety S defines
a local system of Af -modules. Less obvious is that, when the ground field is C, a motive
defines a polarizable variation of Hodge structures on S .

16The “theorem” in question is the notorious Theorem 6.7 of Chapter V of Faltings and Chai 1990 and its
Corollary 6.8, which are true in characteristic zero (this is all we need here), but not in general.
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THEOREM 2.40. LetM be a motive over a smooth algebraic variety S over C. There exists
a unique polarizable variation of Hodge structures HB.M/ on S with the following property:
if .Y;p;m/ represents M over the open subset U of S , then HB.M/DHB.Y=U;p;m/.

PROOF. Let .Y;p;m/ represent M over U , and let VDHB.Y=U /. Choose a point u 2 U .
The action of �1.U;u/ on Vu factors through �1.S;u/, and so V extends (uniquely) to a
local system of Q-vector spaces on S , which we still denote V. Thus we have a local system
of Q-vector spaces V on S , and the structure of polarizable variation of Hodge structures on
VjU . The next lemma shows that this structure extends uniquely to V, which completes the
proof. �

LEMMA 2.41. Let S be a smooth algebraic variety over C. Let V be a local system of
Q-vector spaces on S , and let  be a bilinear form on V. Suppose that there is a Zariski open
subset U of S and a filtration F on OU ˝V such that .VjU;F; jU/ is a polarized variation
of Hodge structures on U of some weight m. Then F extends uniquely to a filtration on
V˝OV such that .V;F; / is a polarized variation of Hodge structures on S .

PROOF. There exists a Zariski open subvariety S 0 of S containing U and such that S XS 0

has codimension � 2 and S 0XU is smooth of pure codimension 1 (i.e., a smooth divisor).
Thus it suffices to consider two cases: S XU is a smooth divisor; S XU has codimension 2.
In the first case, the Hodge structure on VjU will in general degenerate into a mixed Hodge
structure on the boundary, but the description of the weight filtration in terms of the action of
the local monodromy group shows that it is trivial (i.e., the mixed Hodge structure is pure)
when the local monodromy group acts trivially. See (Schmid 1973, 4.12; Cattani et al 1986).
For the second case, let D be the classifying space for polarized Hodge structures of the
same type as .V;hu; /, u 2 U . Then VjU defines a horizontal, locally liftable holomorphic
mapping U ! � nD, which (Griffiths and Schmid 1969, 9.8) shows extends to all of S
(because D is “negatively curved in the horizontal direction”). From the extended map we
obtain an extension of the variation of Hodge structures to S . �

PROPOSITION 2.42. Let S be a smooth connected scheme over C. The functor

HB WMotab.S/! HdgQ.S/

defined in (2.41) is fully faithful with essential image the category of abelian-motivic
variations of Hodge structures on S .

PROOF. Recall the following result (Deligne 1971a, 4.4.3): there is an equivalence between
the category of abelian schemes on S and the category of torsion-free integral polarizable
variations of Hodge structures on S of type f.�1;0/; .0;�1/g. When we apply this to an
open subvariety U of S , we find that there is an equivalence between the category of abelian
motives on S whose restriction to U can be realized as a Tate twist of a factor of the motive of
an abelian scheme over U and the category of abelian-motivic variations of Hodge structures
on S whose restriction to U can be represented in the form HB.Y=U;p;m/ with Y an
abelian scheme over U . Now take the union over all U . �

Let T be a smooth variety over C, and consider triples .M;s;�/ consisting of an abelian
motiveM over T , a family s of Hodge tensors ofM indexed by I , and a level-N structure on
HB.M/. We define M.T / to be the set of triples .M;s;�/ such that .HB.M/;s;�/ 2H.T /.
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With the obvious notion of pull-back and isomorphism, we obtain a moduli problem .M;�/

on the category of smooth varieties over C.
Now assume that .V;h0/ is the Betti realization of an abelian motive. It follows from

(2.26) and (2.8) that the elements of H.C/ are also Betti realizations of abelian motives, and
hence that HB defines a bijection

HB WM.C/=�!H.C/=� :

THEOREM 2.43. If .V;h0/ is the Betti realization of an abelian motive, then the pair
.S.N /;˛ ıHB/ is a fine solution to the moduli problem .M;�/.

PROOF. Let T be a smooth variety over C. It follows from (2.42) that

HB WM.T /=�!H.T /=�

is injective, and from (2.34), (2.12), and (2.42) that it is surjective. Hence the theorem
follows from (2.12). �

REMARK 2.44. Theorem 2.43 realizes a vast family of varieties as moduli varieties. Except
for the moduli varieties of abelian varieties, the only example I know of where this has been
exploited is that in which the initial Hodge structure is the second cohomology group of a
K3-surface (see for example Deligne 1972).

REMARK 2.45. The moduli problems for Hodge structures and motives have been defined
above only for the category of smooth varieties over C (see 2.15 and 2.37). Ching-Li Chai has
suggested to me that they can be defined for all schemes over C by replacing the connections
with Grothendieck’s notion of a stratification (Grothendieck 1968). A stratification on an
OS -module V is an isomorphism

'Wp�1V �! p�2V;

where p1,p2 are the projections y�� S from the formal completion of the diagonal in S �S
to S , satisfying the cocycle condition p�31.'/D p

�
32.'/p

�
21.'/. Each of p�1V and p�2V has

the product filtration, that on O y� being given by the defining ideal and its powers, and in this
context Griffiths transversality (2.15.2) becomes the condition that ' preserves the filtrations.
It should be possible to prove that S.N / solves the moduli problems on the category of all
schemes by using the methods of Artin. A similar remark applies to Theorem 3.31 below.

3 Shimura Varieties as Moduli Varieties
In the last two sections we saw that the study of Mumford-Tate groups and the moduli
varieties of motives leads to the consideration of pairs .G;h/ satisfying certain conditions
(SV). In this section, we reverse the process: starting with a reductive group G over Q
and a G.R/-conjugacy class X of homomorphisms S!GR satisfying conditions (SV), we
construct a pro-variety Sh.G;X/, the Shimura variety defined by .G;X/, and show that in
many cases Sh.G;X/ can be realized as a moduli variety for motives over a number field.
Then we give some applications of this result.
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Review of Shimura varieties
Let G be a connected reductive group over Q, and let X be a G.R/-conjugacy class of
homomorphisms hWS!GR satisfying the conditions (SV1), (SV2), and

(SV3) Gad has no Q-factor that is anisotropic over R.

Note that it suffices to verify the conditions for a single h, because the map ad.g/WGR!GR
is an isomorphism carrying h into ad.g/ıh. The condition (SV1) implies that the image of
wh is contained in Z.G/, and hence is independent of h 2X—we denote it by wX and call
it the weight. It is convenient to impose the following condition on the group G:

(SV6) 17the torus Z.G/ı splits over a CM-field.

Recall that a CM-field is a finite extension E of Q admitting a nontrivial involution �E
such that �.�Ez/D ��.z/ for all embeddings �WE ,! C. If X�.Zı/ denotes the group of
characters of Zı defined over the algebraic closure of Q in C, then Zı splits over a CM-field
if and only if, for all � 2 Gal.Qal=Q/, �� and �� have the same action on X�.Zı/. Since Zı

and Gab are isogenous tori, the condition is equivalent to Gab splitting over a CM-field, and
in the presence of (SV2), it implies that G itself splits over a CM-field.

The condition on Gad implies that the strong approximation theorem holds in the follow-
ing form: the groupGsc.Q/ is dense inGsc.Af /. This simplifies the theory, but unfortunately
eliminates zero-dimensional Shimura varieties except for those defined by tori.

Fix a pair .G;X/ satisfying the conditions (SV1,2,3,6). Then X has a unique complex
structure for which the Hodge filtrations Fh on V ˝C vary holomorphically (Deligne 1979,
1.1.14; cf. �2). Moreover, X has only finitely many connected components, and each is a
symmetric hermitian domain (Deligne 1979, 1.1.17; cf. 2.23). As before, I write x for an
element of X , and hx , �x for the corresponding homomorphisms.

If K is a compact open subgroup of G.Af /, then � .K/ def
DG.Q/\K is (by definition)

a congruence subgroup of G.Q/, and hence its image � ad.K/ in Gad.Q/ is an arithmetic
group. For K sufficiently small, � .K/ is contained in G.R/C (Deligne 1979, 2.0.14) and
� ad.K/ is torsion-free (cf. 2.9).

For K a compact open subgroup of G.Af /, define

ShK.G;X/DG.Q/nX �G.Af /=K;

where G.Q/ and K act on X �G.Af / according to the rule

q.x;a/k D .qx;qak/; q 2G.Q/; x 2X; a 2G.Af /; k 2K:

Let G.Q/C be the subgroup of G.Q/ of elements mapping into Gad.R/C; it is the stabilizer
in G.Q/ of any connected component XC of X (Deligne 1979, 1.2.7). Let C be a set of
representatives for G.Q/CnG.Af /=K—the strong approximation theorem implies that it is
finite. For K sufficiently small, the mapa

c2C
� ad.cKc�1/nXC �!G.Q/nX �G.Af /=K

sending an element Œx� 2 � ad.cKc�1/nXC to Œx;c� is a homeomorphism. Therefore (see
2.24) ShK.G;X/ has a unique algebraic structure compatible with its complex structure;

17Added 2017. I have changed the numbering to agree with that in my article Introduction to Shimura varieties
(2005).
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moreover, for every smooth algebraic variety T over C, every holomorphic map T .C/!
ShK.G;X/ is algebraic.

From now on, we regard ShK.G;X/ as an algebraic variety.
When we varyK among (small) compact open subgroups ofG.Af /, we obtain a filtered

projective system of algebraic varieties

Sh.G;X/D .ShK.G;X//K :

The group G.Af / acts continuously on this system in the sense of (Deligne 1979, 2.7.1),
and Sh.G;X/, together with this action, is called the Shimura variety defined by .G;X/.

Alternatively (and equivalently), we can define Sh.G;X/ to be the projective limit,

Sh.G;X/D lim
 �

ShK.G;X/ (scheme, not of finite type, over C/;

together with the action of G.Af /. The variety ShK.G;X/ can be recovered as the quotient
Sh.G;X/=K of Sh.G;X/.

Recall (Deligne 1979, 2.1.10; see also 4.11 below) that

Sh.G;X/.C/ def
D lim
 �

ShK.G;X/.C/DG.Q/nX �G.Af /=Z.Q/�

where Z D Z.G/ and Z.Q/� is the closure of Z.Q/ in Z.Af /. An element g 2 G.Af /
acts on Sh.G;X/.C/ as follows:

Œx;a�g D Œx;ag�; x 2X; a 2G.Af /:

Because Zı splits over a CM-field, the largest split subtorus of ZR is defined over Q. When
this subtorus is also split over Q, Z.Q/ is closed in Z.Af / and we have

Sh.G;X/.C/DG.Q/nX �G.Af /:

EXAMPLE 3.1. Let .G;h/ be the Mumford-Tate group of a special Hodge structure .V;h/.
We saw in (1.6) that h satisfies (SV2*) and, a fortiori, (SV2) and that the weight wh is
defined over Q. If H is a factor of Gad such that HR is anisotropic, then (SV2) implies

that the composite S
h
�! GR �!HR is trivial, and since h generates H , H itself must be

trivial. The pair .Gab;hab/ is the Mumford-Tate group of a Hodge structure of CM-type, and
therefore Gab splits over a CM-field. Thus G satisfies (SV3,6), and, by assumption, .G;h/
satisfies (SV1). Therefore, when we define X to be the G.R/-conjugacy class of h, .G;X/
satisfies the conditions to define a Shimura variety. Choose a lattice V.Z/ in V , and let

K.N/D fg 2G.Af / j gV.bZ/D V.bZ/; g D id on V.bZ/=NV.bZ/g:
Then the variety S.N / attached to .V;h/ in �2 is an open and closed subvariety of ShK.N/.G;X/.

DEFINITION 3.2. If Gder satisfies the condition (1.25), then the Shimura variety Sh.G;X/
is said to be of abelian type.18

18This is precisely the class of Shimura varieties for which Deligne proved the existence of canonical models
in his Corvallis article (Deligne 1979, 2.7.21). The name was coined by Shih and the author (Milne and Shih
1982) because, at the time, they seemed to be exactly the Shimura varieties that were approachable by methods
involving the moduli of abelian varieties. Below we shall see a much more compelling justification for the name:
among the Shimura varieties whose weight is defined over Q, they are the varieties that are moduli varieties for
abelian motives.
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REMARK 3.3. Let .G;h/ be the Mumford-Tate group of an abelian motive, and let X be
the G.R/-conjugacy class of h; then Sh.G;X/ is a Shimura variety of abelian type, and wX
is defined over Q. Conversely, let Sh.G;X/ be a Shimura variety of abelian type whose
weight is defined over Q; if G0 is the subgroup of G generated by the elements of X , then
there is an h 2X such that .G0;h/ is the Mumford-Tate group of an abelian motive.

CANONICAL MODELS

We recall the notion of the canonical model of a Shimura variety. Let T be a torus over Q
that splits over a CM-field, and let � 2X�.T / (group of cocharacters defined over Qal � C).
The pair .T;h/, h.z/D �.z/ ��.z/, defines a Shimura variety. Let E D E.T;h/ � Qal be
the field of definition of �, let Eab be the maximal abelian extension of E (in Qal/, and
let recE be the Artin reciprocity map A�E ! Gal.Eab=E/. On applying the restriction of
scalars functor ResE=Q to the homomorphism �WGmE ! TE and composing with the norm
map, we obtain a homomorphism

NhWResE=QGm
Res.�/
����! ResE=QTE

Nm
��! T:

For every Q-algebra R, this gives a homomorphism

Nh.R/W.E˝R/
�
�! T .R/:

Let T .Q/� be the closure of T .Q/ in T .Af /. The reciprocity map19

r.T;h/WGal.Eab=E/ �! T .Af /=T .Q/�

is defined as follows: let � 2 Gal.Eab=E/, and let s 2 A�E be such that recE .s/D � ; write
s D s1 � sf with s1 2 .E˝R/� and sf 2 .E˝Af /�; then r.T;x/.�/ D Nh.sf / (mod
T .Q/�).

Now consider a Shimura variety Sh.G;X/. The reflex field E.G;X/ of Sh.G;X/ is
the field of definition (in C) of the G.C/-conjugacy class of homomorphisms �WGm!GC
containing �h, h 2 X . A special pair .T;h/ in .G;X/ is a torus T � G together with an
h 2X such that h factors through TR. Clearly E.T;h/�E.G;X/.

By a model of Sh.G;X/ over a subfield k of C, we mean a scheme S over k en-
dowed with an action of G.Af / (defined over k) and a G.Af /-equivariant isomorphism
Sh.G;X/! S˝k C. We use this isomorphism to identify Sh.G;X/.C/ with S.C/.

DEFINITION 3.4. A model of Sh.G;X/ over a number field E, C�E �E.G;X/, is said
to be canonical if it has the following property: for all special pairs .T;h/ � .G;X/ and
elements a 2G.Af /, the point Œh;a� is rational over E.h/ab and � 2Gal.E.h/ab=E.h// acts
on Œh;a� according to the rule:

�Œh;a�D Œh;r.�/ �a�; where r D r.T;h/I (3.4.1)

here E.h/DE �E.T;h/.

PROPOSITION 3.5. Let f WG!G0 be a homomorphism mapping X into X 0, and suppose
that Sh.G;X/ and Sh.G0;X 0/ have canonical models over E. Then the morphism

Œx;g� 7! Œf .x/;f .g/�WSh.G;X/! Sh.G0;X 0/

is defined over E.
19For an explanation of the sign, which differs from that in Deligne 1979, see Milne 1992, 1.10.
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PROOF. See Deligne 1971b, 5.4. �

COROLLARY 3.6. If it exists, the canonical model of Sh.G;X/ over E is uniquely deter-
mined up to a unique isomorphism.

PROOF. Apply the proposition with f the identity map G!G. �

In his report on Shimura’s work, Deligne (1971b) proves that Shimura varieties that are
moduli varieties for abelian varieties have canonical models over their reflex fields, and he
deduces a similar result for one class of Shimura varieties whose members are not moduli
varieties and, in fact, do not have weight defined over Q (“les modèles étranges”, ibid.
�6). In the next subsection, we prove that Shimura varieties of abelian type with rational
weight are moduli varieties for abelian motives. This allows us in the following subsection
to prove, using the methods of Deligne’s article, that all Shimura varieties of abelian type
have canonical models over their reflex fields20.

Shimura varieties as moduli varieties over C
Throughout this subsection, Sh.G;X/ is a Shimura variety whose weight wX is defined over
Q. For simplicity, we assume that there is given a homomorphism t WG!Gm D GL.Q.1//
such that t ıwX D�2. Then tR ıhx defines on Q.1/ its usual Hodge structure for all x 2X .

The realization of Sh.G;X/ as a moduli variety depends on the choice of a faithful
representation �WG ,! GL.V / of G. We fix such a � and identify G with a subgroup of
GL.V /. There will be a family of tensors tD .ti /i2I , ti 2 V ˝ri ˝V _˝si some ri ; si , such
that, for every Q-algebra R,

G.R/D fg 2 GL.V ˝R/ j gti D ti ; all i 2 I g:

For all x 2X , ti will be fixed by hx.S/, and so ti is a Hodge tensor for the rational Hodge
structure .V;hx/. For some r and s, the representation t of G on Q.1/ will be a direct
summand of the representation of G on V ˝r˝V _˝s defined by � . Thus it makes sense to
add the requirement that there is an element 0 2 I such that t0 or �t0 is a polarization for
.V;hx/, all x 2X .

Fix a (small) compact open subgroup K of G.Af /, and let .W;h/ be a rational Hodge
structure. Then K acts on the space of Af -linear isomorphisms V.Af /!W.Af / on the
right, and an orbit for the action is called a K-level structure on .W;h/.

EXAMPLE 3.7. Choose lattices V.Z/ and W.Z/ in V and W , and define K.N/ as in (3.1).
To give a K.N/-level structure on W is the same as to give a level N -structure in the sense
of �2.

Consider triples .W;s; Œ��/ consisting of a rational Hodge structure W D .W;h/, a
family s of Hodge cycles indexed by I , and a K-level structure Œ�� on .W;h/. We define
HK.G;X;�/ to be the set of such triples satisfying the following conditions:

(3.8.1) there exists an isomorphism of Q-vector spaces ˇWW ! V mapping each si to ti
and sending h to hx , some x 2X ;

20As noted in a previous footnote, the existence of canonical models for Shimura varieties of abelian type was
proved in Deligne 1979, but by less explicit methods involving connected Shimura varieties. The result was
extended to all Shimura varieties in Milne 1983 and in Borovoi 1983/4, 1987.
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(3.8.2) for one (hence every) � representing the level structure, � maps each ti to si .

An isomorphism from one such triple .W;s; Œ��/ to a second .W 0;s0; Œ�0�/ is an isomor-
phism  W.W;h/! .W 0;h0/ of rational Hodge structures mapping each si to s0i and such that
Œ˛ ı��D Œ�0�. An element g 2G.Af / defines a map

.W;s; Œ��/ 7! .W;s; Œ�ıg�/WHK.G;X;�/ �!Hg�1Kg.G;X;�/:

Let .W;s; Œ��/ be an element of HK.G;X;�/. Choose an isomorphism ˇWW ! V

satisfying (3.8.1), so that ˇ sends h to hx some x 2X . The composite

V.Af /
�
�!W.Af /

ˇ
�! V.Af /; � 2 Œ��;

sends each ti to ti , and it is therefore multiplication by an element g 2G.Af /, well-defined
up to multiplication on the right by an element ofK (corresponding to a different choice of the
representative � of the level structure). Since every other choice of ˇ is of the form q ıˇ for
some q 2G.Q/; Œx;g� is a well-defined element ofG.Q/nX �G.Af /=K D ShK.G;X/.C/.

PROPOSITION 3.9. The above construction defines a bijection

˛K WHK.G;X;�/=��! ShK.G;X/.C/:

The maps ˛K are compatible with the action of G.Af /, in the sense that, for every g 2
G.Af /, there is a commutative diagram

HK.G;X;�/=� ShK.G;X/

Hg�1Kg.G;X;�/=� Shg�1Kg.G;X/:

˛K

g g

˛
g�1Kg

PROOF. Straightforward, and essentially the same as that of (2.8). �

We now fix .G;X/ and � and drop them from the notation.
Let V be a variation of Hodge structures on a smooth algebraic variety T over C. Because

in our definition (2.15) we required V to admit an integal structure, there is a well-defined
local system of Af -modules W for the étale topology on T such that, for every connected
component T ı of T and any o 2 T ı.C/, Wo D Vo˝QAf as �1.T ı.C/;o/-modules. We
denote this étale sheaf by V.Af /.

AK-level structure on a local system W.Af / of Af -modules on Tet is aK-equivalence
class of isomorphisms �WV.Af /T !W.Af / on T . Here V.Af /T is the constant local
system defined by the Af -module V.Af /. The class Œ�� is required to be defined on Tet, not
its individual members, which may only be defined on the universal covering of T . If T
is connected and o 2 T , then to give a K-level structure on W.Af / is the same as to give
K-level structure on Wo that is stable under the action of �1.Tet;o/ (algebraic fundamental
group).

Consider triples .W;s; Œ��/ consisting of a polarizable variation of Hodge structures
W on T , a family of global Hodge tensors s of W indexed by I , and a K-level structure
Œ�� on W.Af /. We define HK.T / to be the set of such triples having the property that,
for all t 2 T , .Vt ;st ; Œ�t �/ lies in HK.C/. With the obvious notions of isomorphism and
pull-back, HK is a moduli problem on the category of smooth algebraic varieties over C,
and HK.point)DHK.G;X;�/.
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PROPOSITION 3.10. With the above notations, .ShK.G;X/;˛K/ is a solution to the moduli
problem .HK ;�/.

PROOF. Let m 2HK.T /. The same argument as in the proof of (2.12) shows that m 7!
˛.mt /WT ! ShK.G;X/.C/ is holomorphic, and hence is a morphism of algebraic varieties.
As in (2.11), on each connected component Sc D � ad.cKc�1/nXC of ShK.G;X/.C/,
there is anmc 2HK.Sc/ such that ˛..mc/s/D s for all s 2 Sc.C/, and so .ShK.G;X/;˛K/
satisfies the conditions (2.1). �

REMARK 3.11. If the largest R-split subtorus of Z is already split over Q, then Z.Q/
is closed in Z.Af /, and the moduli problem is fine. More precisely, there is an element
m0 2H.ShK.G;X// such that .ShK.G;X/; Œm0�/ represents the functor HK=�.

The next proposition and theorem show that Sh.G;X/ is a moduli variety for abelian
motives if and only if it is of abelian type. (Recall that we are assuming that wX is defined
over Q.)

PROPOSITION 3.12. The elements of HK.C/ are the Betti realizations of abelian motives
if and only if Sh.G;X/ is of abelian type. When this is the case, then, for each connected
component Sc of Sh.G;X/, the element mc 2 HK.Sc/ defined in the proof of (3.10) is
abelian-motivic.

PROOF. Let G0 be the Q-subgroup of G generated by fhx j x 2 Xg. The second part of
condition (SV3,6) implies that fadıhx j x 2 Xg generates Gad, and therefore G0=G0 \
Z.G/DGad. Hence G0der is of finite index in Gder, and, being connected, the two groups
are equal. Proposition 1.38 applied to the holomorphic family of Hodge structures .V;hx/
on a connected component XC of X shows that G0 is the Mumford-Tate group of .V;ho/ for
some o 2XC. If .V;ho/ is the Betti realization of an abelian motive, then (1.27) shows that
G0der satisfies (1.25), and therefore that Sh.G;X/ is of abelian type. Conversely, if Sh.G;X/
is of abelian type, then (1.27) shows that .V;ho/ is the Betti realization of an abelian motive,
and the same argument as in the proof of (2.26) then shows that the same is true of .V;hx/
for every x 2X . The proof of the last statement is the same as that of (2.34). �

For any smooth variety T over C, define MK.T / to be the set of triples .M;s; Œ��/
consisting of an abelian motive M over T , a family of tensors s of M indexed by I , and a
level K-structure Œ�� on M , such that the Betti realization of the triple lies in HK.T /. With
the obvious notions of pull-back and isomorphism, MK becomes a moduli problem on the
category of smooth algebraic varieties over C.

THEOREM 3.13. Let Sh.G;X/ be a Shimura variety of abelian type whose weight is de-
fined over Q and for which there exists a homomorphism t WG!Gm such that t ıwX D�2.
For every representation �WG ,!GL.V / possessing a fixed tensor t0 such that˙t0 is a polar-
ization of .V;�R ıhx/ for all x 2X , (ShK.G;X/;˛K) is a solution of the moduli problem
.MK ;�/. When Z.Q/ is discrete in Z.Af /, there is an element m0 2MK.ShK.G;X//
such that .Sh.G;X/; Œm0�/ represents the functor MK=�.

PROOF. Propositions 2.42 and 3.12 show that the map sending an element of MK.T / to its
Betti realization defines an isomorphism of moduli problems .MK ;�/! .HK ;�/. Thus
the theorem follows from (3.10) and (3.11). �

REMARK 3.14. When we assume Hypothesis 2.35, the same arguments show that every
Shimura variety whose weight is defined over Q is a moduli variety for special motives.
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Canonical models of Shimura varieties of abelian type
In this subsection, we prove the existence of canonical models for Shimura varieties of
abelian type. For those whose weight is defined over Q, we realize the canonical model as a
moduli variety.

MOTIVES OF CM-TYPE

Let M be a motive of CM-type over C, and let .T;h/ be the extended Mumford-Tate group
of M . Then T .Q/ acts on HB.M/, and T .Af / acts on !f .M/. Associated with the pair
.T;h/, we have the reciprocity map

r.T;h/WGal.Eab=E/ �! T .Af /=T .Q/:

As was noted in (Milne 1994, 4.7), we can regard M and any Hodge tensor on it as being
defined over Qal.

THEOREM 3.15. Let � 2 Gal.Qal=E.T;h//. For every representative zr.�/ 2 T .Af / of
r.T;h/.�/, there exists a unique isomorphism  WM ! �M such that

(a) for all Hodge tensors s on M , .s/D �s;
(b) for all v 2 !f .M/, �v D f .zr.�/v/.

PROOF. When M is an abelian variety and the Hodge tensors are endomorphisms or a
polarization, this theorem essentially goes back to Shimura and Taniyama 1961. For a
discussion of a stronger result (due to Deligne and Langlands) see Milne 1990, I.5. �

GENERALIZED SIEGEL MODULAR VARIETIES

We first treat the varieties that play the same role for abelian motives that the Siegel modular
varieties play for abelian varieties.

Let M be an abelian motive, and let N be the direct sum of M with the Tate motive.
Let HB.N / D .V;h0/ and let t0 be a polarization of M , which we can identify with a
polarization of HB.M/. Define G to be the subgroup of GL.V / of elements g such that

(3.16.1) g centralizes wh0
;

(3.16.2) g preserves the decomposition V DHB.M/˚Q.1/;
(3.16.3) gt0 D t0.

The second condition implies that G � GL.HB.M//�Gm, and we write t for the
projection of G onto Gm. In (3.16.3), G is to be understood as acting on Q.1/ through t .
Let X be the G.R/-conjugacy class of homomorphisms hWS!GR containing h0. Then (cf.
2.6a) X consists of all Hodge structures h on V such that:

(3.17.1) the weight gradation V D
L
m2ZVm defined by h is the same as that of h0;

(3.17.2) for each m 2 Z, the Hodge structure on Vm defined by h has the same Hodge
numbers as that of h0;

(3.17.3) the projection of V onto Q.1/ is a morphism of Hodge structures relative to h, and
˙t0 is a polarization of Ker.V !Q.1//.

The pair .G;X/ satisfies the conditions (SV1,2*,3,4,6). In particular, it defines a Shimura
variety Sh.G;X/.
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REMARK 3.18. LetW DHB.M/, and letW D
L
m2ZWm be its weight gradation. Under

the decomposition, t0 corresponds to a family .tm/ with tm a polarization of Wm. Let
 m D .2�i/

mtm. Then  m is a pairing Vm�Vm!Q satisfying the conditions (2.4), and
Ker.G!Gm/ is a product of groups Gm, m 2 Z, with

Gm.Q/D fg 2 GL.Wm/ j g m D  mg:

In particular, Ker.G!Gm/ is a product of symplectic and orthogonal groups.

EXAMPLE 3.19. Let A be an abelian variety over C, and let t0 be a polarization of A.
Identify t0 with a polarization of W def

DHB.A/
def
DH1.A;Q/, and let  D .2�i/�1t0. The

projection G! GL.W / identifies G with the group of symplectic similitudes of the sym-
plectic space .W; /, and X is the Siegel double space of all real Hodge structures of
type f.�1;0/; .0;�1/g on W for which ˙t0 is a polarization. Thus Sh.G;X/ is the Siegel
modular variety.

LEMMA 3.20. The reflex field E.G;X/DQ.

PROOF. Let V D
L
m2ZVm be the weight gradation of h0 and let V.C/ D V p;q be the

Hodge decomposition of h0. The G.C/-conjugacy class of �h0
can be identified with the

set of gradations V.C/D
L
p V

p of V.C/ such that

Vm.C/D
M

p
Vm.C/\V p

dim.Vm.C/\V p/D dimV p;m�p, and

 .Vm.C/\V p;Vm.C/\V p
0

/D 0; pCp0 ¤m:

Since both the weight gradation and  are defined over Q, so is this set, which shows that
E.G;X/DQ. �

THEOREM 3.21. The Shimura variety Sh.G;X/ has a canonical model over Q.

The proof will occupy the rest of this subsubsection. The centre of G is Gm, and Q�
is discrete in A�

f
. Hence (see 3.13), there is an element m0 2M.ShK.G;X// with the

following property: for every m 2MK.T /, there is a unique morphism  WT ! ShK.G;X/
such that �m0 �m. For every automorphism � of Aut.C/, �m0 2M.� Sh.G;X//, and so
there is a unique morphism

� W� Sh.G;X/ �! Sh.G;X/

such that �� m0 � �m0.

LEMMA 3.22. For all �;� 2 Aut.C/, � ı�� D �� .

PROOF. The composite � ı�� is a map �� Sh.G;X/! Sh.G;X/ with the property that

.� ı�� /
�m0 D .�� /

�
ı��m0 � .�� /

�.�m0/D �.
�
� m0/� ��m0:

It therefore equals �� . �
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We shall need to use some descent theory. Let V be a variety over an algebraically
closed field ˝ of characteristic zero, and let k be a subfield of ˝. A family of isomorphisms
� W�V ! V indexed by the elements � of Aut.˝=k/ is a descent system if � ı�� D ��
for all �;� . A model .V0; WV0;˝ ! V / of V over k splits .� /� if � D  ı .�/�1 for all
� ; such a model .V0;/ is uniquely determined up to a unique k-isomorphism. A descent
system is effective if it is split by some model over k.

PROPOSITION 3.23. 21Assume that ˝ has infinite transcendence degree over k. A descent
system .� /�2Aut.˝=k/ on a quasiprojective variety V over ˝ is effective if, for some
subfield L of ˝ finitely generated over k, the descent system .� /�2Aut.˝=L/ is effective.

PROOF. This is a restatement of a theorem of Weil (1956); see Milne 1999, 1.1. �

The proposition has the following corollary: let ˝, k, and V be as in the theorem; a
descent system .� /�2Aut.˝=k/ is effective if there exists a finite set ˙ of points in V.˝/
such that

(a) the only automorphism of V fixing all P 2˙ is the identity map, and
(b) there exists a subfield L of ˝ finitely generated over k such that f� .�P /D P for all

P 2˙ and all � 2 Aut.˝=L/,

(Milne 1999, 1.2).
Consider a Shimura variety Sh.G;X/ over C, and let E.G;X/ be its reflex field. We

say that a descent system .� /� for Sh.G;X/ over E.G;X/ is canonical if the maps � are
G.Af /-equivariant and

� .�Œx;a�/D Œx;rx.� jE.x/
ab
�a�

whenever x is a special point of X , � is an automorphism of C over E.x/, and a 2G.Af /.
On applying the corollary to a suitable finite set of special points, one sees that every canoni-
cal descent system is effective; moreover, the resulting model over E.G;X/ is canonical.

We now prove Theorem 3.21. We have to show that the descent system given by Lemma
3.22 is canonical. Obviously, the maps � commute with the action of G.Af /. Let

˛WMK.C/ �! SK.C/

be the given bijection. Let x be a special point in X , and let .M;s; Œ��/ map to Œx;1� under ˛.
Recall that this means that there exists an isomorphism

ˇWHB.M/ �! .V;hx/

of rational Hodge structures such that ˇ.si /D ti for all i 2 I and � ıˇf D id. Such a ˇ
defines an isomorphism of the Mumford-Tate group T ofM with the Mumford-Tate group of
.V;hx/, which (by definition) is commutative, and soM is of CM-type. Let � 2Gal.Qal=Q/,
and extend it to an automorphism of C. Then

�Œx;1�D �˛.M;s; Œ��/D ˛.�M;.�si /i ; Œ� ı��/:

According to (3.15), there is an isomorphism  WM ! �M such that .s/D �s for all Hodge
cycles s on M and �v D f .zr.�/v/ for all v 2 !f .M/. Define ˇ0WHB.�M/! V to be

21Added. This corrects the original statement, which omitted the “continuity” condition.
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ˇ ıHB.
�1/. Then ˇ0 is a morphism of Hodge structures HB.�M/! .V;hx/, that maps

�si to ti for each i , and has the property that ˇ0
f
ı .� ı�/D zr.�/. Hence

˛.�M;.�si /i ; Œ� ı��/D Œx;zr.�/�;

where zr.�/ represents r.T;hx/.�/.

SHIMURA VARIETIES WHOSE WEIGHT IS DEFINED OVER Q

We next construct the canonical model of a Shimura variety of abelian type whose weight is
defined over Q. The following proposition from Deligne 1971b will be useful.

PROPOSITION 3.24. Let f WG ,! G0 be an injective homomorphism sending X into X 0.
The map

Œx;g� 7! Œf .x/;f .g/�WSh.G;X/ �! Sh.G0;X 0/

is a closed immersion. If Sh.G0;X 0/ has a canonical model over a number field E �
E.G0;X 0/, then the image of Sh.G;X/ in Sh.G0;X 0/ is defined over E �E.G;X/ and is a
canonical model.

PROOF. That the map is a closed immersion is 1.15.1 of Deligne 1971b. Identify Sh.G;X/
with its image. Let .T;x/ be a special pair in .G;X/. For every � fixing E �E.T;x/ and a 2
G.Af /, we have �Œx;a�D Œx;a � r.T;hx/.�/� 2 Sh.G;X/.C/. We now apply the following
two lemmas. The first shows that � Sh.G;X/D Sh.G;X/ for any � fixing E �E.T;x/, and
the second shows that such elements generate Aut.C=E �E.G;X//. �

LEMMA 3.25. For every special point x of X ,

fŒx;a� j a 2G.Af /g

is Zariski dense in Sh.G;X/.

PROOF. See Deligne 1971b, 5.2. �

LEMMA 3.26. Let .G;X/ be a pair satisfying (SV1,2,3,6). For every finite extension E 0 of
E.G;X/, there exists a special pair .T;x/� .G;X/ such that E 0 and E.T;x/ are linearly
disjoint over E.G;X/.

PROOF. See Deligne 1971b, 5.1. �

THEOREM 3.27. Every Shimura variety of abelian type whose weight is defined over Q
has a canonical model over its reflex field.

PROOF. From (3.21) and (3.24) we obtain the following criterion: a Shimura variety
Sh.G;X/ has a canonical model over its reflex field if there exists an inclusion .G;X/ ,!
.G0;X 0/ with .G0;X 0/ the pair attached (as in (3.16)) to a polarized abelian motive .M;t0/.

Let Sh.G;X/ be a Shimura variety of abelian type with weight defined over Q. Assume
that G is generated as a group over Q by fhx j x 2Xg, and choose a faithful representation
�WG ,!GL.V /. Then it follows from (1.38) thatG is the Mumford-Tate group of .V;ho/ for
some o 2X . Since Sh.G;X/ is of abelian type, .V;ho/ is the Betti realization of an abelian
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motive M (see 3.12), and it is clear that Sh.G;X/ satisfies the above criterion relative to M
and any polarization t0 of M .

Now drop the hypothesis that G is generated by fhxg. The composite

S
hx
��!GR �!Gab

R

is independent of x. Denote it by hX , and let H be the Q-subtorus of Gab generated
by hX . Let G0 be the inverse image of H in G, and let X 0 be a G0.R/-conjugacy class
of maps S! G0R such that the inclusion G0 ,! G maps X 0 into X . Then E.G;X/ D
E.G0;X 0/, Sh.G;X/ D Sh.G0;X 0/ �G.Af /, and, after possibly enlarging Z.G/ so that
H 1.Q;Z.G//D 0 (this is permissible by 3.24)

s �g D s0; s; s0 2 Sh.G0;X 0/; g 2G.Af / H) g 2G0.Af / �Z.G/.Q/�:

For � 2 Aut.C=E.G;X//, let � W� Sh.G0;X 0/! Sh.G0;X 0/ be the map defined by the
canonical model of Sh.G0;X 0/. Then � has a unique extension to a G.Af /-equivariant
map  0� W� Sh.G;X/! Sh.G;X/, namely,

 0� .s �g/
def
D � .s/ �g; s 2 Sh.G0;X 0/; g 2G.Af /;

Obviously the  0�s satisfy the cocycle condition, and so define a model of Sh.G;X/ over
E.G;X/, which is canonical. �

Let M be a motive over a field k of characteristic zero. Choose an algebraic closure
kal of k, and let !f .M/ be the restricted product (over `) of the `-adic étale cohomology
groups of M ˝kal. For every compact open subgroup K of G.Af /, a level K-structure on
M is a K-orbit Œ�� of isomorphisms �WV.Af /! !f .M/ that is stable under the action of
Gal.kal=k/, i.e., such that

�0 2 Œ��; � 2 Gal.kal=k/ H) � ı�0 2 Œ��:

Let Sh.G;X/ be a Shimura variety of abelian type whose weight is defined over Q.
Assume that there is given a homomorphism t WG!Gm such that t ıwX D�2, a faithful
representation �WG ,! GL.V / of G, and a tensor t0 for V fixed by G and such that˙t0 is a
polarization of .V;hx/ for all x 2X . Choose a point o 2X . Then ..V;ho/; t0/ is the Betti
realization of a polarized abelian motive M , and if .G0;X 0/ is the pair associated with M
(as in 3.16), then .G;X/� .G0;X 0/.

For any field k�E.G;X/, we define MK.k/ to be the set of triples .M;s; Œ��/ consisting
of an abelian motive M over k, a set s of Hodge cycles on M , and a level K-structure Œ�� on
M satisfying the following conditions:

(3.28.1) for everyE.G;X/-homomorphism � W k ,!C, there is an isomorphism ˇ WHB.�M/!

V sending each si to ti and hM to an element of X ;
(3.28.2) one (hence every) representative � of the level structure maps each si to ti .

LEMMA 3.29. If (3.28.1) holds for one E.G;X/-homomorphism � , then it holds for all.

PROOF. Suppose (3.28.1) holds for one embedding � . Then �.M;s; Œ��/ defines a point
P of MK.G;X/.C/. There exists a compact open subgroup K 0 of G0.Af / such that
.G;X/ ,! .G0;X 0/ induces a closed immersion

ShK.G;X/ ,! ShK0.G0;X 0/
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and, by construction, this is defined over E.G;X/. The point P in ShK0.G0;X 0/ is rational
over k, and lies in ShK.G;X/.C/. If we replace � by its composite � 0 with an element of
Aut.C=E.G;X//, the point remains in ShK.G;X/.C/, and this implies that � 0.M;s; Œ��/ 2
MK.G;X/.C/. �

REMARK 3.30. In essence, Lemma 3.29 says that the moduli problem M is defined over
E.G;X/. It is possible to prove this directly, i.e., without using the existence of canonical
models, but the argument then is more complicated.

Lemma 3.29 allows us to define a moduli problem on smooth algebraic varieties T over
E.G;X/. Let MK.T / be the set of triples .M;s; Œ��/ consisting of an abelian motive M
over T , a family of Hodge tensors s on M indexed by I , and a level K-structure on M
such that, for all C-valued points t of T , .M;s; Œ��/t 2MK.C/. With the obvious notion
pull-back and isomorphism, this becomes a moduli problem on the category of smooth
algebraic varieties over E.G;X/.

THEOREM 3.31. The pair (ShK.G;X/;˛K/, where Sh.G;X/ here denotes the canonical
model of the Shimura variety, is a solution to the moduli problem over E.G;X/.

PROOF. First note that it follows from Lemma 3.29 that MK.C/ D lim
�!

MK.R/, where
the limit is over the subalgebras R of ˝ that are finitely generated over E.G;X/. From
our construction of the canonical model, it is clear that the map ˇmWTC! ShK.G;X/C
corresponding to an element m 2MK.T / is defined over E.G;X/. Finally, an obvious
extension of (3.23) to motives, provides us with elements mi defined on some étale covering
of ShK.G;X/ and satisfying (2.3.2). �

APPLICATION 3.32. In the case that the reflex field E.G;X/ is real, it is possible to use
(3.31) to give a description of the action of complex conjugation on Sh.G;X/.C/—see
Milne and Shih 1981.

THE GENERAL CASE

THEOREM 3.33. Every Shimura variety of abelian type admits a canonical model over its
reflex field.

PROOF. Consider a Shimura variety Sh.G;X/ of abelian type. The weight map wX is a
homomorphism Gm!Zı

def
DZ.G/ı.

Write .Gad;X ad/D
Q
.Gi ;Xi /, where the Gi are the simple factors of Gad, and Xi is

the projection of X onto Gi . Then E.G;X/ is the composite of the fields E.Gi ;Xi / and
E.Gab;hX /, and each field E.Gi ;Xi / is either totally real or a CM-field (Deligne 1971b,
3.8). Because of our assumption (SV3,6), E.Gab;hX / is a subfield of a CM-field, and so
E.G;X/ is a subfield of a CM-field. The weightwX is defined overE.G;X/ and is invariant
under �; it is therefore defined over a totally real subfield F of E.G;X/. Choose a quadratic
imaginary extension E of Q in C, and let Z� D ResE=Q.Zı/E . Define

"0 D ResEF=F .w
�1
X / W ResEF=F Gm �! ResE=F Z

0
E D .Z�/F :

Then "0 is defined over F , and over R it can be identified with a homomorphism "
def
D

"0;RWS!Z�;R. The weight of " is wX .
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There are natural inclusions Zı ,!G, Zı ,!Z�, and we define G� to be the quotient:

G� DG�Z�=Z
ı (diagonal embedding of Zı/:

Let h0 2X . The composite

S
.h0;"/
����!GR�Z�R �!G�R

has weight zero, and we define X� to be its G�.R/-conjugacy class. Clearly Sh.G�;X�/
is of abelian type, and so (3.27) shows that it has a canonical model over its reflex field
E.G�;X�/. Moreover

E.G�;X�/ �E DE.G;X/ �E:

Let "0 be the composite

S
.1;"/
���!GR�Z�R �!G�R;

and let
X� � "

0�1
D fh � "0�1 j h 2X�g:

On applying Lemma 3.34 below to Sh.G�;X�/, we find that Sh.G�;X� � "0�1/ has a
canonical model over E �E.G�;X�/. The inclusion G ,! G� maps X into X� � "0�1,
and so we can apply Lemma 3.24 to show that Sh.G;X/ has a canonical model over
E �E.G�;X�/ D E �E.G;X/. Since E is an arbitrary quadratic imaginary extension of
Q, we can apply Lemma 3.35 below to show that Sh.G;X/ has a canonical model over
E.G;X/. �

LEMMA 3.34. Let Sh.G;X/ be a Shimura variety, and let " be a homomorphism S!
Z.G/R. If Sh.G;X/ admits a canonical model over a field E containing E.G;X/ �E.Z0; "/,
then so also does Sh.G;X � "/.

PROOF. We have a morphism

Œh;g�; Œ";z� 7! Œh � ";gz�WSh.G;X/�Sh.Z0; "/ �! Sh.G;X � "/:

Let d WZ0!G�Z0 be the homomorphism z 7! .z;z�1/. This defines an action ofZ0.Af /
on Sh.G;X/� Sh.Z0; "/ with quotient Sh.G;X � "/. The quotient of the product of the
canonical models of Sh.G;X/ and Sh.Z0; "/ by Z0.Af / is a canonical model for Sh.G;X �
"/. See Deligne 1971b, 5.11. �

LEMMA 3.35. Let fEig be a family of finite extensions of E.G;X/ whose intersection is
E.G;X/. If Sh.G;X/ has a canonical model Sh.G;X/Ei

over each Ei , then it has a unique
model Sh.G;X/E over E.G;X/ such that, for all i , the model Sh.G;X/E ˝Ei over Ei is
isomorphic to Sh.G;X/Ei

. If further the family fEig has the property that
T
EiF D F for

any finite extension F of E.G;X/, then the model Sh.G;X/E is canonical.

PROOF. The first statement is proved in Deligne 1971b, 5.10. To show that the model
satisfies (3.4.1) for a specific special pair .T;h/, use that

T
Ei �E.T;h/DE.T;h/. �

REMARK 3.36. Let F �E.G;X/ be the field of definition of wX . Corresponding to any
quadratic imaginary extension E of Q, we have map

Sh.G;X/�Sh.Z�; "/ �! Sh.G�;X�/

rational over E �E.G;X/. Sometimes this can be interpreted as the map sending two Hodge
structures to their tensor product (see Deligne 1971b 6.6 for an example of this), and it can
be used to obtain information about the points of Sh.G;X/.



3 SHIMURA VARIETIES AS MODULI VARIETIES 48

REMARK 3.37. The existence of a canonical model over the reflex field shows that, for
any automorphism � of C fixing E.G;X/, there is a canonical isomorphism � Sh.G;X/!
Sh.G;X/. Langlands (1979) conjectured that for every automorphism � of C, there is
a canonical isomorphism � Sh.G;X/! Sh.G0;X 0/ for a suitable pair .G0;X 0/ defined
explicitly in terms of .G;X/, � , and a special point of x. For Shimura varieties of abelian
type, this conjecture can be proved using similar techniques to the above.

Applications
In many respects, Theorem 3.31 allows us treat Shimura varieties of abelian type as easily as
Shimura varieties of PEL-type, at least in characteristic zero. To illustrate this, I list some
applications.

CONSEQUENCES OF THE TATE CONJECTURE

The Tate conjectures (Tate 1994, T(X), E(X)) imply the following statement:

(3.38) For all motives M and N over a field k finitely generated over Q and primes `, the
homomorphism

Hom.M;N /˝Q` �! Hom.!`.M/;!`.N //
� ; � D Gal.kal=k/;

is bijective.

Faltings (1983) proved (3.38) for motives of the form h1.A/, A an abelian variety.
Consequently, it is also true for direct factors of such motives.22 Silverberg (1992, 1993)
investigated the consequences of (3.38) for one class of Shimura varieties (essentially that
described in (4.31) below). Here we explain its consequences for a Shimura variety Sh.G;X/
of abelian type whose weight is defined over Q and such that Z.Q/ is closed in Z.Af /.

To a point x 2 X , Shimura attaches an adèlic representation �x (Shimura 1970, 7.2,
7.3, 7.6, 7.8). When we choose a faithful representation .V;�/ of G as above, then �f ı�x
becomes the Galois representation on !f .Mx/ for Mx the motive attached to Œx;1� 2
Sh.G;X/. If (3.38) holds for the motives in the family parametrized by Sh.G;X/, then we
can read off the following result:

(3.39) for x;y 2X and ˛ 2G.Q/,

˛x D y ” ad˛ ı�x D �y :

Let I.x/D Aut.Nx/, where Nx D .Mx;sx/ is the motive together with tensor structure
attached to the point [x,1] and a faithful representation of G. Assume that I.x/ satisfies the
Hasse principle for H 1, i.e.,

H 1.Q;I.x// �!
Y

`
H 1.Q`;I.x//

is injective. Then (3.38) implies the following statement:

(3.40) if there exists an ˛f 2 G.Af / such that ad.˛f / ı �x D �y , then there exists an
˛0 2G.Q/ such that ˛0x D y.

22Of course, if the Tate conjecture were known for abelian varieties, then the map would be bijective for all
abelian motives, but that is not what Faltings proves.
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In geometric terms, the Tate conjecture implies that the I.x/Af
-torsor

Hom.!f .Nx/;!f .Ny//

is obtained from the I.x/-torsor Hom.Nx;Ny/ by the base change Q!Af . The hypothesis
in (3.40) implies that the first torsor is trivial. The Hasse principal then implies that the
second torsor is trivial, which implies the conclusion of (3.40).

SYSTEMS OF REALIZATIONS

Let S be a smooth scheme over a number field E. A system of realizations on S is given by
the following data:

(3.41.1) For each embedding � WE ,! C, a local system of Q-vector spaces on .�S/.C/.
(3.41.2) A vector bundle HdR on S endowed with a flat connection r and a descending

(Hodge) filtration F by subbundles. The connection is required to satisfy the axiom of
transversality (2.15.2) and to have regular singularities at infinity.

(3.41.3) A local system of Af -modules Hf on Set.
(3.41.4) Comparison isomorphisms relating the above data.
(3.41.5) Weight gradations on each of H� , HdR, and Hf which are respected by the com-

parison isomorphisms.
(3.41.6) An involution F1W

L
H� !

L
H� (Frobenius map at infinity) respecting the

weight gradation.

The data are required to satisfy certain conditions, for example, the “Betti realization”
H� , endowed with the weight gradation and the filtration provided, via the comparison
isomorphism, by that on HdR, is a variation of Hodge structures. See Deligne 1989, �1, for
more details.

Consider a Shimura variety of abelian type, and let Gc be the largest quotient of G
such that, for any h 2X , .Gc ;h/ satisfies (SV2*) and has weight defined over Q (Gc is the
quotient of G by a subgroup of its centre). Then there is a canonical tensor functor from
RepQ.G

c/ to the category of systems of realizations on the canonical model of Sh.G;X/.
In fact, every rational representation of Gc defines a family of abelian motives on Sh.G;X/,
and every family of motives defines a system of realizations.

AUTOMORPHIC VECTOR BUNDLES

Automorphic vector bundles are those vector bundles on Shimura varieties whose sections
are holomorphic automorphic forms (in the classical sense). It is known that automorphic
vector bundles have canonical models over number fields, and hence that it makes sense to
speak of an automorphic form being defined over such a field. In Milne 1990, III, a heuristic
explanation of this statement is given in terms of motives. For Shimura varieties of abelian
type, the explanation is now a proof.

THE BOUNDARIES OF SHIMURA VARIETIES

The study of the boundary of a moduli variety for abelian varieties (with additional structure)
is equivalent to the study of the degeneration of the abelian varieties—see Namikawa 1980
for for Siegel modular varieties over C, Faltings and Chai 1990 for Siegel modular varieties
over Z, and Brylinski 1983 for Shimura varieties of Hodge type over Q. Theorem 3.31
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allows us to treat Shimura varieties of abelian type in the same fashion. I hope to return to
this in a future work.

4 The Points on a Shimura Variety Modulo a Prime
of Good Reduction

Let Sh.G;X/ be a Shimura variety of abelian type whose weight is defined over Q. In the
last section, we obtained a motivic description of the points of Sh.G;X/ with coordinates in
any field containing E.G;X/. In this section, we show that, if one assumes the existence
of a good theory of abelian motives in mixed characteristic, then the description extends to
the points of Sh.G;X/ in finite fields, and we thereby obtain a heuristic derivation of the
conjecture of Langlands and Rapoport 1987.

Statement of the problem
As we saw in �3, starting from a connected reductive group G over Q, a G.R/-conjugacy
class X of homomorphisms S!GR satisfying the conditions (SV1,2,3,6), and a compact
open subgroup K of G.Af /, we obtain a variety ShK.G;X/ over C. The reflex field
E.G;X/ is a number field (contained in C) that is defined purely in terms of G and X , and
ShK.G;X/ has a canonical model over E.G;X/. Let v be a prime of E lying over a finite
prime p of Q, and let Ev be the completion of E.G;X/ at v. Assume that ShK.G;X/ has
good reduction at v, i.e., that there is a smooth scheme ShK.G;X/v over the ring of integers
Ov in Ev whose generic fibre is ShK.G;X/Ev

. The problem then is to describe the sets

ShK.G;X/v.k/

for k a finite field containing the residue field �.v/ at v, or, equivalently, to describe the set

ShK.G;X/v.F/; FD kal;

together with the action of the Frobenius element of Gal.F=�.v//. For the applications, we
shall also need to know how G.Af / acts on the sets. Note that the problem is well-posed
only if ShK.G;X/ has a canonical smooth model over Ov.

The next example illustrates the fact that, unless the component of K at p is maximal,
we cannot expect ShK.G;X/ to have good reduction at primes lying over p.

EXAMPLE 4.1. LetGDGL2, and letX be the conjugacy class of homomorphisms S!GR
containing the map aCbi 7!

�
a �b
b a

�
. Then ShK.N/.G;X/ is the moduli variety for elliptic

curves with level N structure, and it is known that this variety has good reduction at p if and
only if p does not divide N (Deligne and Rapoport 1973).

Thus we should assume that K is of the form Kp �Kp with Kp a maximal compact
open subgroup of G.Qp/, and Kp a compact open subgroup of G.Ap

f
/. However, the next

example shows that even this is not sufficient to ensure that ShK.G;X/ has good reduction
at v.

EXAMPLE 4.2. Let B be a quaternion algebra over Q that splits at the real prime. Let G D
GL1.B/. Then GR � GL2, and we can define X as in the last example. Let K DKp �Kp,
where Kp is a maximal compact subgroup of G.Qp/. Then ShK.G;X/ has good reduction
at p if and only if p does not divide the discriminant of B .
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Langlands (1976, p. 411) suggested that ShK.G;X/ should have good reduction at vjp
if K DKp �Kp with Kp a hyperspecial subgroup 23 of G.Qp/. Recall (Tits 1979, 3.8.1)
that a subgroup Kp of G.Qp/ is said to be hyperspecial if there is a smooth group scheme
Gp over Zp such that

(4.3.1) Gp.Zp/DKpI
(4.3.2) the reduction of Gp modulo p is a connected reductive group over Fp.

Since algebraic groups over finite fields are quasi-split, a necessary condition that there
exist a hyperspecial subgroup of G.Qp/ is that G be quasi-split over Qp and split over an
unramified extension of Qp, i.e., that G be unramified at p. Conversely, Tits 1979, p. 36,
shows that this condition is sufficient. Consequently hyperspecial subgroups exist in G.Qp/
for almost all p.

EXAMPLE 4.4. Let .V; / be a symplectic space over Q, and let G DG. / be the group
of symplectic similitudes. A hyperspecial subgroup of G.Qp/ is the stabilizer of a lattice
�� V.Qp/ such that  (or some multiple of  ) restricts to a Zp-valued form on � with
determinant a p-adic unit.

In the following, we fix a hyperspecial subgroup Kp, and we again write G for the
smooth group scheme over Zp such that G.Zp/DKp. Thus G.R/ is defined whenever R
is a Q-algebra or a Zp-algebra.

We may as well pass to the limit over the compact open subgroups Kp of G.Ap
f
/, and

write
Shp.G;X/D lim

 �
Kp

ShKp �Kp
.G;X/:

Assume that Shp.G;X/ has a smooth model over Ov (see below), and denote it by Shp.G;X/v .
By definition, the action of G.Ap

f
/ extends to Shp.G;X/v, and so we obtain a set

Shp.F/D Shp.G;X/v.F/

together with commuting actions of G.Ap
f
/ and the geometric Frobenius element24 ˚ 2

Gal.F=�.v//. The problem discussed in this section is that of determining the isomorphism
class of the system .Shp.F/;�;˚/ consisting of the set Shp.F/ together with the action “�”
of G.Ap

f
/ and the action of ˚ .

The building
There is a more natural definition of hyperspecial subgroups in terms of the building B.G;F /
that Bruhat and Tits attach to a reductive group G over a local field F (Tits 1979). This is a
set with a left action of G.F /, certain of whose vertices are said to be hyperspecial, and a
subgroupKp of G.F / is hyperspecial if it is the stabilizer of such a vertex. The construction
of the building commutes with the formation of unramified extensions of F .

The building B.G;F / is a union of apartments, and the apartments are in one-to-one
correspondence with the maximal F -split subtori S of G. Let p0 be a hyperspecial vertex of
the apartment of S , and let G.OF / be its stabilizer. Assume that G is split over F . Because
S is split, it has a canonical OF -structure such that S.R/D Hom.X�.S/;R�/ for every
OF -algebra R. Our hypotheses imply that

23Conversations with Blasius, Chai, and Prasad suggest that this condition can be weakened.
24This is the element x 7! xq

�1
.
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(4.5.1) S.OF /�G.OF /;
(4.5.2) N.F /�G.OF / �S.F /, where N is the normalizer of S ;
(4.5.3) G.F /DG.OF / �S.B/ �G.OF /.

The equality (4.5.3) is the Cartan decomposition (Tits 1979, 3.3.3). The remaining two
statements imply that the Weyl group has a set of representatives in G.OF /.

Now return to the situation of the previous subsection, so that G is a reductive group
over Q. For any field F �Q, write C.F / for the set ofG.F /-conjugacy classes of homomor-
phisms Gm! GF . Note that a map F ! F 0 defines a map C.F /! C.F 0/; in particular,
when F 0 is Galois over F , Gal.F 0=F / acts on C.F 0/.

PROPOSITION 4.6. (a) For any maximal F -split torus S in GF , with F -Weyl group ˝, the
map X�.S/=˝! C.F / is bijective.

(b) If G is quasi-split over F , then C.F /D C.F al/Gal.F al=F /.
(c) If F � F 0 are algebraically closed fields, then C.F /! C.F 0/ is a bijection.
(d) If G is split over F , then C.F /! C.F al/ is a bijection.

PROOF. 25(a) Because S is split, X�.S/D HomF .Gm;S/. The surjectivity of X�.S/!
C.F / follows from the fact that any two maximal F -split tori in GF are conjugate under
G.F / (Milne 2017, 25.10). To prove the injectivity, let �1;�2 2 X�.S/ be such that
�2 D ad.g/ı�1 for some g 2G.F /. Then ad.g/.S/ and S are both maximal F -split tori
in the centralizer M of �2.Gm/ in G, which is reductive (ibid. 17.59), and so there exists
an m 2M.F / such that ad.mg/S D S . Now ad.mg/ı�1 D �2. As mg is an element of
G.F / normalizing S , it follows that �1 and �2 lie in the same ˝F -orbit.

(b) Because GF is quasi-split, the centralizer T of S in G is a maximal torus in GF .
After (a), it remains to show that the map

X�.S/=˝F ! .X�.T /=˝/
Gal.F al=F /

is an isomorphism, where ˝ is the absolute Weyl group of T in G. Let B be a Borel
subgroup ofGF containing T , and let C denote the B-positive Weyl chamber ofX�.T /˝R.
Recall that ˝ acts simply transitively on the set of Weyl chambers. Because B is defined
over F , C is stable under Gal.F al=F /.

We first show that the map is surjective. Let � be an element of X�.T / whose ˝-orbit is
stable under Gal.F al=F /. We may suppose that�2 xC . Then ��2 xC for all � 2Gal.F al=F /.
As �� and � are in the same ˝-orbit, this implies that ��D � (because xC is a fundamental
domain for the action of ˝ on X�.T /˝R). Therefore � 2X�.T /Gal.F al=F / DX�.S/.

We now show that the map is injective. Let �1;�2 2 X�.S/ be such that �2 D w ��1
for some w 2˝. Let C0 D C \ .X�.S/˝R/. Then C0 is a Weyl chamber in X�.S/˝R,
and we may suppose that �1;�2 2 xC0. Then �1;�2 2 xC , and so w D 1 (as before).

The remaining statements follow from the first two. �

Let c.X/ denote the G.C/-conjugacy class of cocharacters of GC containing �x for
x 2 X . According to (c) of the proposition, c.X/ corresponds to an element c.X/Qal of
C.Qal/. The group Gal.Qal=Q/ acts on C.Qal/; and, by definition, the fixed field of the
stabilizer of c.X/Qal in C.Qal/ is the reflex field E DE.G;X/ of Sh.G;X/.

Consequently Ev is the subfield of Eal
v fixed by the stabilizer of c.X/E al

v
. Because G

splits over Qun
p , (d) of the proposition shows Ev �Qun

p , and because G is quasi-split over

25Added the proof to the original.
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Qp, (b) shows that there exists a cocharacter of G defined over Ev representing c.X/E al
v

.
Hence we have the following result.

COROLLARY 4.7. (a) The prime v is unramified over p.
(b) Let S be a maximal split torus of GEun

v
whose apartment contains the hyperspecial

vertex fixed by Kp. Then c.X/E al
v

is represented by a cocharacter �0 of S .

NOTATION 4.8. We write B for the completion of Eun
v , W for the ring of integers in B , and

F for the residue field of W . Thus F is an algebraic closure of �.v/, W is the ring of Witt
vectors over F, and B is the field of fractions of W .

Let Cp be the completion of an algebraic closure of B , and extend the inclusion E ,!B

to an isomorphism C! Cp. We use this isomorphism to identify B with a subfield of C,
and hence to define a fibre functor !B WMot.B/! Vec.Q/.

We fix a choice of a maximal Qp-split torus S0 of GQp
whose apartment contains the

hyperspecial point fixed by Kp, a maximal B-split torus S of GB containing S0, and a
cocharacter �0 of S representing c.X/B .

The points with coordinates in C
By definition

Shp.C/D lim
 �
Kp

G.Q/nX �G.Af /=Kp �Kp:

Set G.Z.p//DG.Q/\Kp and Z.Z.p//DZ.Q/\Kp, where Z is the centre of G.

LEMMA 4.9. Let G be a connected reductive group over Q. For every hyperspecial sub-
group Kp of G.Qp/, G.Qp/DG.Q/ �Kp.

PROOF. As we noted above, the existence of a hyperspecial subgroup implies that GQp splits
over an unramified extension of Qp. Because Kp is open in G.Qp/, the lemma follows
from the next result. �

LEMMA 4.10. Let G be a reductive group over Q that splits over an unramified extension
of Qp. Then G.Q/ is dense in G.Qp/.

PROOF. The hypothesis says that G acquires a split maximal torus T over an unramified
extension of Qp, and it is known (see Tits 1979, p. 36) that T can be chosen to be defined
over Qp . According to Harder 1966, 5.5.3, there will exist a torus T0 �G such that T0Qp

is
conjugate to T (by an element of G.Qp/). Let E be the smallest extension of Q over which
T0 splits. It is Galois over Q, and the decomposition group at a prime lying over p is the
Galois group of the smallest extension of Qp splitting T , which is unramified. This group
is therefore cyclic, and we can apply Sansuc 1981, 3.5ii, to conclude that G.Q/ is dense in
G.Qp/. �

PROPOSITION 4.11. We have

Shp.C/DG.Z.p//

- 
X �

G.Ap
f
/

Zp

!
;

where Zp is the closure of Z.Z.p// in Z.Ap
f
/.
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PROOF. It follows from (4.9) that the natural map

G.Z.p//nX �
G.Ap

f
/

Kp
�!G.Q/nX �

G.Ap
f
/

Kp
�
G.Qp/
Kp

:

is a homeomorphism. For Kp open and compact in G.Ap
f
/,

G.Z.p//nX �
G.Ap

f
/

Kp
D
G.Z.p//
Z.Z.p//

-
X �

G.Ap
f
/

Kp �Z.Z.p//
D
G.Z.p//
Z.Z.p//

-
X �

G.Ap
f
/

Kp �Zp
:

Write � for the discrete group G.Z.p//\Kp. The image of this in Gad.Q/ acts properly
discontinuously on X (cf. 2.9), and it follows easily that G.Z.p//=Z.Z.p// acts properly on

X �
�
G.Ap

f
/=Zp

�
(see Bourbaki 1960, III, 4.4, Proposition 7). Hence the quotient space

G.Z.p//nX �G.A
p

f
/=Zp is separated (ibid. III.4.2, Proposition 3). Now we can apply (ibid.

III, 7.2, Corollary 1) to the compact groups Kp �Zp acting on the (fixed) separated space
E DG.Z.p//nX �G.A

p

f
/=Zp to conclude that

E= lim
 �
.Kp �Zp/D lim

 �
E=Kp �Zp:

But lim
 �
.Kp �Zp/D\Kp �Zp DZp. �

COROLLARY 4.12. We have

Shp.C/DG.Q/

- 
X �

G.Ap
f
/

Zp
�
G.Qp/
Kp

!
:

PROOF. Again (4.9) implies that the natural map

G.Z.p//nX �
G.Ap

f
/

Zp
�!G.Q/nX �

G.Ap
f
/

Zp
�
G.Qp/
Kp

:

is a homeomorphism. �

For x 2X , let I.x/ be the stabilizer of x in G.Q/. Set

S.x/D I.x/nXp.x/�Xp.x/

with Xp.x/DG.Ap
f
/=Zp and Xp.x/DG.Qp/=Kp.

COROLLARY 4.13. There is a canonical bijectiona
S.x/! Shp.C/;

where the left hand side runs over a set of representatives for G.Q/nX .

PROOF. Trivial. �
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We interpret the decomposition in (4.13) motivically. For this we need to return to the
situation of (3.13), namely, we suppose that Sh.G;X/ is of abelian type, that wX is defined
over Q, and that there is a homomorphism t WG!Gm such that t ıwX D�2. Moreover,
we choose a faithful representation �WG ,! GL.V / and a family of tensors tD .ti /i2I such
that G is the subgroup of GL.V / fixing the ti . We assume that for some 0 2 I , ˙t0 is a
polarization of .V;� ıhx/, all x 2 X . Because Kp is a maximal compact subgroup, there
exists a lattice V.Zp/ in V.Qp/ whose stabilizer is Kp.

Call a pairN D .M;s/ consisting of an abelian motive and a family of tensors admissible
if there exists an isomorphism ˇW!B.M/! V mapping each si to ti and sending hM to hx ,
some x 2X . Given such a pair, define Xp.N / to be the set of isomorphisms

�WV.Ap
f
/! !

p

f
.M/

modulo Zp-equivalence mapping each ti to si , and let Xp.N / be the set of lattices �p in
!p.M/ for which there exists an isomorphism V.Qp/! !p.M/ mapping each ti to si and
V.Zp/ onto �p . Here !` is the `-adic étale fibre functor, and !p

f
is the restricted product of

the !` for `¤ p. Let

S.N /D I.N /nXp.N /�Xp.N /; I.N /D Aut.N /:

The group G.Ap
f
/ acts on S.N / according to the following rule:

Œ�;�p�g D Œ�ıg;�p�:

COROLLARY 4.14. There is a canonical equivariant bijectiona
S.N /! Shp.C/;

where the disjoint union is over a set of representatives for the isomorphism classes of
admissible pairs N D .M;s/.

PROOF. Let N be an admissible pair, and choose a ˇ satisfying the above condition. The
G.Q/-orbit of the element x 2 X corresponding to hM is independent of the choice of ˇ,
and in this way we obtain a one-to-one correspondence between the isomorphism classes
of admissible pairs and the set G.Q/nX (cf. 3.13). The choice of a ˇ determines an
isomorphism I.N /! I.x/ and equivariant bijections

Xp.N /!Xp.x/; � 7! ˇ ı�;

Xp.N /!Xp.x/; �p 7! Œg� if ˇ.�p/D gV.Zp/;

and hence an equivariant bijection

S.N / �! S.x/: �

We interpret the decomposition in (4.14) in terms of homomorphisms from the motivic
Galois groupGMab toG. (Recall thatGMabD Aut˝.!B/, where !B is the Betti fibre functor
on the category of abelian motives.)

If H and G are algebraic groups over a field k, and ' and '0 are homomorphisms
H !G, we set jsm

Isom.';'0/D fg 2G.k/ j ad.g/ı' D '0g;

Aut.'/D Isom.';'/:
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This notation is justified by noting that Isom.';'0/ is the set of isomorphisms from ' to '0

regarded as functors of groupoids. 26

Call a homomorphism 'WGMab!G admissible if 'R ıhMab 2X . For such a homomor-
phism, set

I.'/D Aut.'/:

Let �` be the inclusion e ,! .GMab/Q`
, where e is the one-element group scheme, and let

�` be the inclusion e ,!GQ`
. Let '.`/ be the homomorphism obtained from ' by the base

change Q!Q`. Define

X`.'/D Isom.�`; �` ı'.`//D fg 2G.Q`/ j adg ı �` D '.`/ı �`g:

Then I.'/ acts on X`.'/ on the left, and G.Q`/ acts on it on the right and makes it into a
principal homogeneous space. Choose a Z-structure on G, and let X 0

`
.'/ be the subset of

X`.'/ of integral elements. Define Xp.'/ to be the restricted product of the X`.'/, `¤ p,
relative to the subsets X 0

`
.'/. It is independent of the choice of the Z-structure, and it is a

principal homogeneous space for the group G.Ap
f
/. Define

Xp.'/DG.Qp/=G.Zp/;

and let
S.'/D I.'/n.Xp.'/=Zp/�Xp.'/:

COROLLARY 4.15. There is a canonical bijectiona
S.'/! Shp.C/;

where ' runs over the isomorphism classes of admissible homomorphisms GMab!G.

PROOF. The Betti functor !B identifies the category of abelian motives with the category
of representations of GMab. Choose a representation .V;�/ and tensors ti as in the discussion
preceding (4.14). An admissible homomorphism ' then defines an admissible pair N.'/,
and there is a canonical isomorphism S.'/! S.N.'//. Since the map ' 7!N.'/ defines a
bijection from the set of isomorphism classes of admissible homomorphisms to the set of
isomorphism classes of admissible pairs, (4.15) follows from (4.14). �

Of course, (4.14) and (4.15) are clumsy compared to the description (4.11) of Shp.C/
as a single set of double cosets. However, they are the descriptions that will persist into
characteristic p.

The points of Shp.G;X/ with coordinates in B
Since B is not algebraically closed, in order to have a good description of the points we
should assume that the moduli problem is fine. In the present context, this amounts to
assuming that Z.Z.p// is closed in Z.Ap

f
). Then (cf. 3.28, 4.14) the points of Shp.G;X/

with coordinates in B def
D B.F/ are in one-to-one correspondence with the isomorphism

classes of quadruples .M;s;�p;�p/ satisfying the following conditions:

26Let H and G be (abstract) groups, and regard them as groupoids in sets, i.e., as categories with a single
object and with G and H as the sets of morphisms. A homomorphism 'WH !G of groups can be regarded as a
functor H !G, and if '0 is a second homomorphism (functor), then to give a morphism of functors '! '0 is
to give an element g 2G such that '0 D ad.g/ı'.
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(4.16.1) M is an abelian motive over B and sD .si /i2I is a family of tensors on M for
which there exists an isomorphism

ˇW!B.M/ �! V.Q/

mapping each si to ti and hM to hx , some x 2 X . (Here hM defines the Hodge
structure on !B.M/.)

(4.16.2) �p is an isomorphism
�pWV.Ap

f
/ �! !

p

f
.M/

which maps each ti to si and which is invariant under the action of Gal. xB=B/.
(4.16.3) �p is a Zp-lattice in !p.M/, invariant under the action of Gal. xB=B/, for which

there exists an isomorphism

�pWV.Qp/ �! !p.M/

which maps each ti to si and maps V.Zp/ onto �p.

REMARK 4.17. (a) The condition (4.16.1) is independent of the choice of the isomorphism
C! Cp (extending the embedding E ,! B) because of (3.29).

(b) To say that �p is invariant under the action of Gal. xB=B/ simply means that Gal. xB=B/
acts trivially on !p

f
.M/.

(c) Giving�p is equivalent to giving aKp-equivalence class of isomorphisms �pWV.Qp/!
!p.M/ such that each �p maps each ti to si and such that the class is stable under the action
of Gal. xB=B/.

REMARK 4.18. Fix a quadruple .M;s;�p;�p/, and an isomorphism �p as in (4.16.3). Use
�p to transfer the action ofG on V.Qp/ to !p.M/. If we assume that the p-adic realizations
of the si are fixed by the action of Gal. xB=B/, then the action of Gal. xB=B/ on �p defines a
homomorphism Gal. xB=B/!G.Zp/. Let Q be its image. Every � satisfying (4.16.3) is of
the form g�p for some g 2G.Qp/, and there is a one-to-one correspondence

f� satisfying (4.16.3)g $ fg 2G.Qp/=G.Zp/ j g�1Qg �G.Zp/g:

We want to pass from the points of Shp.G;X/ with coordinates in B to its points in F,
via its points in W , but the p-adic étale fibre functor does not persist into characteristic p.
Thus we need to re-interpret the data in terms of the de Rham, or crystalline, fibre functor.
First we review some of the theory of p-adic cohomology.

Review of p-adic cohomology
Let k be a perfect field, let W.k/ be the ring of Witt vectors over k, and let B.k/ be the
field of fractions of W.k/. The absolute Frobenius automorphism x 7! xp and its liftings
to W.k/ and B.k/ are denoted by � . A crystal over k is a free finitely generated W.k/-
module N together with an injective �-linear map � W N ! N ; an isocrystal over k is a
finite-dimensional B.k/-vector space N together with a bijective �-linear map �WN !N .
For example, if X is a smooth projective variety over k, then H i

crys.X/=ftorsiong is a crystal
over k, and H i

crys.X/˝W.k/B.k/ is an isocrystal. The isocrystal with underlying space
B.k/ and with ' D p�1 id is called the Tate isocrystal.
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The category of k-isocrystals is a nonneutral Tannakian category over Qp. The dual
of an isocrystal N is obtained as follows: regard � as a B.k/-linear map �N !N , where
�N D N ˝B.k/;� B.k/; form the B.k/-linear dual �t W N_! .�N/_ D �.N_/, and take
� on N_ to be �_ def

D .�t /�1 W �N_!N_.
Let R be a complete discrete valuation ring of characteristic zero and residue field k,

and let K be the field of fractions of R. Identify W.k/ and B.k/ with subrings of R and
K. A filtered Dieudonné K-module is an isocrystal .N;�) over k together with a finite
decreasing filtration Fil on N ˝B.k/K such that Fili .N ˝K/D N ˝K for i sufficiently
small and Fili .N˝K/D 0 for i sufficiently large. We shall be mainly concerned with filtered
Dieudonné B.k/-modules, and we usually drop the “Dieudonné”. A filtered B.k/-module
N is said to be weakly admissible if it contains a lattice � such thatX

p�i�.FiliN \�/D�;

and a lattice � with this property is said to be strongly divisible. The weakly admissible
filtered B.k/-modules form a neutral Tannakian category with coefficients in Qp (see
Fontaine 1979 and Lafaille 1980).

Let X be a smooth proper scheme over R. Then (Berthelot and Ogus 1983) there is a
canonical isomorphism

H i
dR.X/˝RK

'
�!H i

crys.Xk/˝W.k/K; Xk DX �SpecR Speck:

Therefore the Hodge filtration on H i
dR.X/ defines on H i

crys.Xk/˝B.k/ the structure of
a filtered Dieudonné K-module. For a smooth proper scheme X over W , one even has a
canonical isomorphism H i

dR.X/'H
i
crys.Xk/ (Berthelot and Ogus 1978, 7.26).

If X is a smooth proper scheme over B.k/ having good reduction, i.e., extending to a
smooth proper scheme X over W , then the �-linear map on H i

dR.X/ induced by that on
H i

crys.Xk/ via the isomorphisms

H i
dR.X/'H

i
dR.X /˝W.k/B.k/'H i

crys.Xk/˝W.k/B.k/;

is independent of the choice of X (Gillet and Messing, 1987). Therefore H i
dR.X/ has a

canonical structure of a filtered Dieudonné B.k/-module.
By a p-adic representation of Gal.B.k/al=B.k// we mean a continuous representation

of Gal.B.k/al=B.k// on a finite-dimensional Qp-vector space. Let Bcrys be the topological
B.k/-algebra defined in Fontaine 1983; it has a continuous action of Gal.B.k/al=B.k// and
a decreasing filtration. When N is a weakly admissible filtered B.k/-module, we set

V.N /D fx 2 Fil0.Bcrys˝B.k/N/ j �.x/D xg:

This is a p-adic representation of Gal.B.k/al=B.k// with dimension at most that of N ; if
dimQp V.N /D dimB.k/N , then N is said to be admissible.

When V is a p-adic representation, we set

D.V /D .B.k/crys˝Qp V /
Gal.B.k/al=B.k//:

This is a filtered B.k/-module of dimension at most that of V; if dimB.k/D.V /D dimQp V;

then V is said to be crystalline.
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PROPOSITION 4.19. The functor D defines a˝-equivalence from the category of crystalline
p-adic representations to that of admissible filtered Dieudonné modules, with quasi-inverse
V.

PROOF. See Fontaine 1979, 1983, and Fontaine and Laffaille 1982. �

THEOREM 4.20. Let X be a nonsingular projective variety over B.k/ with good reduction;
then H i

dR.X/˝W.k/B.k/ is an admissible filtered B.k/-module, H i
et.X/

def
DH i

et.XBal ;Qp/
is a crystalline p-adic representation, and there are canonical isomorphisms

V.H i
crys.X/˝W.k/B.k//'H

i
et.X/; D.H i

et.X//'H
i
crys.X/:

PROOF. See Fontaine and Messing 1987 and Faltings 1989. �

REMARK 4.21. (a) Let � be a lattice in a filtered B.k/-module N , and suppose �WGm!
GL.�/ splits the filtration on �, i.e., if we set

N i
D fn 2N j �.x/nD xin all x 2 B.k/�g;

then
FilpN D

M
i�p

N i ; �D
M

i
�\N i :

The condition for � to be strongly divisible then becomes

��D �.p/�: (4.21.1)

(b) Let N be a weakly admissible filtered B.k/-module. In Wintenberger 1984 it is
shown that there is a canonical splitting �W WGm! GL.N / of the filtration on N . When
k is algebraically closed, a lattice � in N is strongly divisible if and only if �W splits the
filtration on � and (4.21.1) holds.

The points of Shp.G;X/ with coordinates in B: crystalline interpre-
tation

The points of Shp.G;X/ with coordinates in B def
D B.F/ are in one-to-one correspondence

with the set of isomorphism classes of of quadruples .M;s;�p;�crys/, where .M;s/ is as in
(4.16.1), �p is as in (4.16.2), and

(4.22) �crys is a strongly divisible lattice in !dR.M/ for which there exists an isomorphism

�dRWV.B/ �! !dR.M/

which maps each ti to si , maps V.W / onto �crys, and makes the filtration Filt.��10 /

correspond to the Hodge filtration on !dR.M/ .

EXPLANATION 4.23. We give a heuristic explanation of how to pass from (4.16.3) to (4.22).
Let � D Gal. xB=B/. We noted above that D and V define a ˝-equivalence between

the category of crystalline representations of � and that of admissible filtered Dieudonné
B.k/-modules. In Fontaine and Laffaille 1982, it is shown that a weakly admissible filtered
B.k/-module is admissible if the length of its filtration is < p� 1. Hence V defines a
˝-equivalence from the category of (weakly) admissible filtered B.k/-modules generated
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by those with length < p�1 to a category crystalline representations of � . It is known that
this equivalence underlies an equivalence between a category of strongly divisible lattices
and a category of � -stable lattices in crystalline representations. See Fontaine 1990, 2.3.

Let � D �W .p�1/ı�. Then � defines a Qp-structure on any weakly admissible filtered
B.F/-module i.e., if we set

N �D1
D fx 2N j �x D xg

then N �D1˝Qp B.F/DN . Moreover, (4.21.1) implies that, for any strongly divisible lattice
� in N , ��D1 is a Zp-structure on �.

Let Repcrys.� / be the (Tannakian) category of crystalline representations of � . There
are two fibre functors on Repcrys.� / over Qp, namely the forgetful functor and the functor
H  D.H/�D1: Assume that the torsor relating the two is trivial (cf. Wintenberger 1984,
4.2.5) and choose a trivialization. Then we can identify D.V.H// with H�D1˝B endowed
with the filtration defined by �W and with � acting as x 7! �W .p/ ��x.

Given�p satisfying (4.16.3), define�crysD�p˝W and �dRD �p˝1. Then �dR maps
each ti to si and it maps V.W / onto �crys. Note that these properties determine it uniquely
up to conjugation by an element of G.W /. When we make a base change by B! C, we
obtain a homomorphism

�dR˝1WV.C/ �! !dR.MC/

carrying each ti into si . By (4.16.1), we already have such a map, namely, ˇ�1˝1, which,
moreover, has the property that it maps �x , some x 2 X , to �M . Since the two maps
differ by conjugation with an element of G.C/, this shows that �dR˝1 maps c.X/ into the
conjugacy class of �M . By definition, ��1M splits the Hodge filtration on !dR.MC/, and it
follows that, after possibly replacing it with a G.W /-conjugate, �dR will map Filt.��10 / to
the Hodge filtration on !dR.M/.

Conversely, given �crys we can define �p D .�crys/
�D1.

Integral canonical models
As we saw in 4.16, in the case that Shp.G;X/ is a fine moduli variety, its points with
coordinates in B parametrize certain quadruples .M;s;�p;�p/. The existence of �p implies
that Gal. xB=B/ acts trivially on !p

f
.M/, and this should imply that the motive has good

reduction. In fact the whole quadruple should extend over W , and so we should have
Shp.W / D Shp.B/. In Milne 1992, �2, this intuition is turned into the definition of a
canonical model of Shp.G;X/ over W . In order to achieve uniqueness, it is necessary to
specify the points of the model, not just in W , but in very large, not necessarily Noetherian,
W -algebras.

DEFINITION 4.24. A model of Shp.G;X/ over Ov is a scheme S over Ov together with a
continuous action of G.Ap

f
/ and a G.Ap

f
/-equivariant isomorphism

 WS˝Ov
Ev! Shp.G;X/Ev

(of pro-varieties over Ev). Such a model is said to be smooth if there is a compact open
subgroup K0 of G.Ap

f
/ such that SK is smooth over Ov for all K �K0, and SK0 is étale

over SK for all K 0 �K �K0 . Such a model is said to have the extension property if, for
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every regular scheme Y (not necessarily Noetherian)27 over Ov such that YEv
is dense in Y ,

every Ev-morphism YEv
! SEv

extends uniquely to an Ov-morphism Y ! S . An integral
canonical model of Shp.G;X/ is a smooth model over Ov with the extension property.

CONJECTURE 4.25. The variety Shp.G;X/ always has an integral canonical model.

In Milne 1992, the following results are proved:

(4.26) The integral canonical model of Shp.G;X/, if it exists, is uniquely determined up to
a unique isomorphism.

(4.27) The Siegel modular variety Shp.G. /;X. // has an integral canonical model2829,
namely, the moduli scheme constructed in Mumford 1965.

(4.28) Consider an inclusion .G;X/ ,! .G0;X 0/ of pairs satisfying the axioms (SV1,2,3,6).
Let K 0p be a hyperspecial subgroup of G0.Qp/, and assume that Kp

def
DK 0p\G.Qp/

is hyperspecial in G0.Qp/. Then (cf. 3.24) there is a closed immersion

Shp.G;X/ ,! Shp.G0;X 0/

defined over E.G;X/. If Shp.G0;X 0/ has a model S 0 over Ov with the extension
property, then the closure of Shp.G;X/ in S 0 also has the extension property (and
hence will be canonical if it is smooth).

We offer two further remarks.

REMARK 4.29. Let Sh.G;X/ be a Shimura variety of PEL-type, so that Shp.G;X/ solves
a moduli problem over E.G;X/ classifying isomorphism classes of triples consisting of a
polarized abelian variety, an identification of the endomorphism algebra of the abelian variety
with a fixed algebra, and a level structure, all satisfying certain conditions. (See Milne 1992,
1.1, for a precise definition.) There is a homomorphism G ,!G. / sending X into X. /,
and hence a closed immersion Shp.G;X/ ,! Shp.G. /;X. // into the Siegel modular
variety for any hyperspecial subgroup K 0p of G. /.Qp/ such that Kp D G.Qp/\K 0p.
It is more-or-less known that the closure of Shp.G;X/ in the integral canonical model
of Shp.G. /;X. // represents a smooth functor, and therefore is itself smooth (see for
example, Langlands and Rapoport 1987, 6.2; corrected in Kottwitz 1992, �5). Together with
(4.28), this proves that Shp.G;X/ has an integral canonical models.

REMARK 4.30. The validity of Conjecture 4.25 does not depend on Z.G/, at least if Gder

is simply connected. To prove this, we need to make use of connected Shimura varieties
(Deligne 1979; Milne 1990, II.1), and a descent theorem (Bosch et al. 1990, 6.2, Proposition
C.1).

27Added 2017. Actually, there is no need to consider non Noetherian rings because S D lim
 �

ShK is Noetherian
(Milne 1992, 3.4).

28The proof of this uses, in an essential way, Theorem V.6.8 of Faltings and Chai 1990. Recently I have
learned that Gabber has a counterexample to this theorem, but the example appears to require ramification. Thus
it is possible that the theorem of Faltings and Chai remains valid over the Witt vectors, at least for p ¤ 2. If not,
the definition of an integral canonical model will have to be modified. [Added 2017. In fact, Theorem 6.8 of
Faltings and Chai does hold when e < p�1 (Vasiu and Zink, Doc. Math. 2010).]

29Added 2017. The example was found by Raynaud, reconstructed by Gabber, popularized by Ogus, and
published by de Jong and Oort (J. Alg. Geom. 1997). Note that the last authors, when referring to my 1992
conjecture, cite the wrong paper and fail to acknowledge that I had earlier pointed out the error in this article and
elsewhere.



4 THE POINTS MODULO A PRIME OF GOOD REDUCTION 62

The descent theorem says the following: The functor that attaches to an Ov-scheme
S the triple .S1;S2;�/ consisting of the Ev-scheme S1

def
D S˝Ov

Ev, the W -scheme S2
def
D

S˝Ov
W , and the canonical isomorphism � WS1˝Ev

B ! S2˝W B , is fully faithful. Its
essential image consists of all triples .S1;S2;�/ that admit a quasi-affine open covering (in
an obvious sense).

Now consider a system .G;X;Kp/ as before, and suppose that Gder is simply connected.
The composite of h 2 X with G ! Gab is independent of h—we write it hX . The map
G!Gab defines a surjection

Sh.G;X/! Sh.Gab;hX /;

which, for simplicity, we assume identifies �0.Sh.G;X// with Sh.Gab;hX / (in general,
�0.Sh.G;X/) will be a finite covering of Sh.Gab;hX /; see Deligne 1971b, 2.7.1). The
inverse image of e D Œhab;1� in Sh.G;X/ can be identified with the connected Shimura
variety Sh0.Gder;XC/ for a suitable connected component XC of X .

On passing to the quotient by Kp we obtain a surjection

Shp.G;X/! Shp.Gab;hX /

whose fibre over ŒhX ;1� we denote by Sh0p.G
der;XC/. Because G is unramified at p, Gab

splits over B , and all the points of Shp.Gab;hX / are rational over B (cf. Milne 1992, 2.16).
Now suppose Shp.G;X/ has an integral canonical model S over Ov . From S2 we obtain

a model of the connected Shimura variety Sh0p.G
der;XC/ over W that is smooth and has

the extension property (in the sense of 4.24), and S2 can be recovered from this integral
canonical model by “induction”, i.e., by translating it by elements of G.Ap

f
/�Z.Qp/. Thus,

by using the descent theorem, we see that S can be recovered from the integral canonical
model of Sh0p.G

der;XC/ over W .
Suppose now that Sh0p.G

der;XC/ arises in the same way from a second variety Shp.G1;X1/.
From the above discussion we see that, if Shp.G1;X1/ has an integral canonical model, then
so also does Shp.G;X/.

EXAMPLE 4.31. Let B be a quaternion algebra over a totally real field F , split at the real
primes vi for 1 � i � r and nonsplit at the real primes vi for i > r . Denote its canonical
involution by z 7! xz . Let V be a free B-module endowed with a nondegenerate symmetric
F -bilinear form ˚ such that

˚.bx;y/D ˚.x; xby/; b 2 B; x;y 2 V:

Assume that for i > r , the form defined by ˚ on V ˝F;vi
R is positive-definite. Define G to

be the reductive group over Q such that

G.Q/D fg 2 GLB.V / j ˚.gx;gy/D �.g/˚.x;y/, some �.g/ 2 F �g:

There is a unique G.R/-conjugacy class X of homomorphisms S!GR satisfying (SV1,2).
The Shimura variety Sh.G;X/ is not a moduli variety if r ¤ ŒF WQ� because its weight is
not defined over Q. However, there is a Shimura variety of PEL-type Sh.G�;X� / such
that .G;X/C D .G�;X� /C (see Deligne 1971b, �6). Therefore we can apply the preceding
remarks to show that Shp.G;X/ has an integral canonical model.

Henceforth, we assume that Shp.G;X/ has an integral canonical model, which we again
denote Shp.G;X/.
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The points of Shp.G;X/ with coordinates in W
From the definition of the integral canonical model, the points of Shp.G;X/with coordinates
in W are the same as those with coordinates in B , but we shall need a second interpretation.

The following conditions on a motive M over B should be equivalent:

(4.32.1) the action of Gal.Bal=B/ on !p
f
.M/ is trivial;

(4.32.2) the filtered Dieudonné module !dR.M/ is admissible;
(4.32.3) M has good reduction.

We assume the equivalence of (4.32.1) and (4.32.2) for abelian motives, and use (4.32.3)
to define good reduction. It is probably too optimistic to expect that the conditions imply
that M extends to a motive over W constructed from smooth schemes over W . Rather, one
expects that M will extend to a “log-smooth” motive over W whose reduction is smooth. If
M is a motive over B with a Zp-integral structure, so that !dR.M/ is a W -module, then one
expects it to be a strongly divisible lattice in !dR.M/˝Q when M ˝Q has good reduction
and the length of the filtration on !dR.M/˝Q is < p.

Define Motab.W / to be the subcategory of Motab.B/ satisfying the conditions (4.32),
and let Mot.F/ be the category of motives over F, defined as in (Milne 1994, �1). We shall
need to assume that the étale and crystalline fibre functors are defined on Mot.F/ and that
there is a “reduction” functor of tensor categories

M  xM WMotab.W /!Mot.F/

such that

(4.33.1) !p
f
. xM/D !

p

f
.M/; !crys. xM/D !dR.M/;

(4.33.2) the functor M  . xM;!dR.M// is fully faithful (here !dR.M/ is regarded as a
filtered Dieudonné B-module).

Of course, we also expect that the functor M  xM and the isomorphisms implicit in
(4.33.1) are compatible with those on abelian varieties.

With the above assumptions, we see that the points of Shp.G;X/ with coordinates in W
are in natural one-to-one correspondence with the set of isomorphism classes of quintuples
.M;s;F;�p;�crys/ consisting of a motive M over F, a family s of tensors on M , a filtration
F on !crys.M/, an isomorphism �pWV.Ap

f
/! !

p

f
.M/, and a lattice �crys � !crys.M/

satisfying the following condition:

(4.34) there is a quadruple ( zM;zs; z�p; z�crys/ satisfying (4.16.1, 4.16.2, 4.22) that maps to
.M;s;F;�p;�crys/ under the reduction functor.

The points of Shp.G;X/ with coordinates in F
Because Shp.G;X/ is smooth over W , the reduction map

Shp.G;X/.W / �! Shp.G;X/.F/

is surjective. When we interpret Shp.G;X/.W / as in (4.34), this map should correspond
to the reduction of motives. Assume this. Then the points of Shp.G;X/ with coordinates
in F are in natural one-to-one correspondence with the set of isomorphism classes of
quadruples .M;s;�p;�crys/ consisting of a motiveM over F, a family s of tensors onM , an
isomorphism �pWV.Ap

f
/! !

p

f
.M/, and a lattice�crys � !crys.M/ satisfying the following

condition:
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(4.35) there exists a filtration F on !crys.M/ and a quadruple ( zM;zs; z�p; z�crys/ satisfying
(4.16.1, 4.16.2, 4.22) that maps to .M;s;F;�p;�crys/ under the reduction functor.

Call a pairN D .M;s/ admissible if there exists a pair .�p;�crys/ such that .M;s;�p;�crys/

satisfies the condition (4.35).
Fix N , and let S.N / be the set of quadruples .M;s;�p;�crys/ such that .M;s/ � N .

Then
Shp.F/D

a
S.N /;

where the disjoint union is over a set of representatives for the isomorphism classes of the
admissible pairs. The actions of G.Ap

f
/ and ˚ preserve S.N /.

Let I.N / D Aut.M;s/. Define Xp.N / to be the set of isomorphisms �pWV.Ap
f
/!

!
p

f
.M/ carrying each ti to si , and define Xp.N / to be the set of lattices �crys in !crys.M/

for which there exists a filtration F on !crys.M/ such that .M;s;F;�crys/ is the reduction
of a triple . zM;zs;�crys/ satisfying (4.22). There is an action of I.N / on Xp.N /�Xp.N /
on the left, an action of G.Ap

f
/ on Xp.N /, an action of Z.Qp/ on Xp.N / and an action of

˚ on Xp.N /.

PROPOSITION 4.39. With the above assumptions, there is a canonical bijection

S.N /' I.N /nXp.N /�Xp.N /

compatible with the actions of G.Ap
f
/ and ˚ .

PROOF. Obvious. �

Let N D .M;s/ be admissible. Choose an isomorphism

ˇW!crys.M/ �! V.B/

sending si to ti for all i . The map

x 7! ˇ�ˇ�1.��1x/WV.B/! V.B/

is linear, and it maps ti to ti for all i . Therefore it is multiplication by an element b 2G.B/.
This b is the unique element of G.B/ such that

ˇ�.y/D b�ˇ.y/; all y 2 !crys.M/:

If we replace ˇ with g ıˇ, g 2G.B/, then b is replaced by its � -conjugate gb.�g/�1.
Let �crys 2Xp.N /. According to our assumption, there exists an isomorphism

�pWV.B/ �! !crys.M/

mapping each ti to si , mapping V.W / onto�crys, and such that�crys is strongly divisible for
the filtration defined by ��10 . The composite ˇ ı�p fixes each ti , and hence is multiplication
by g 2G.B/ . The situation is summarized by the following diagram:

V.B/ !crys.M/ V.B/

ti si ti

V.W / �crys gV.W /

g�1b�g � b�

Filt.��10 / F Filt.g��10 /:

�p ˇ
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The vector space V.B/ endowed with the �-linear map x 7! g�1b�.gx/ and the filtration
Filt.��10 / is a weakly admissible filtered module, with V.W / as a strongly divisible module.
Since ��10 splits the filtration on V.W /, according to (4.21.1) this last condition means that

.g�1b�g/V .W /D �0.p
�1/V .W /:

But the stabilizer in G.B/ of V.W / is G.W /, and so

g�1b�g 2G.W / ��0.p
�1/ �G.W /:

PROPOSITION 4.40. The map �crys 7! g �G.W / defines a bijection

Xp.N / �! fg �G.W / 2G.B/=G.W / j g
�1
�b ��g 2G.W / ��0.p

�1/ �G.W /g:

PROOF. Straightforward. �

We now restate our results in terms of the groupoid attached to the category of motives
over F. Let w be the extension of v to Qal induced by the inclusion Qal ,! Cp, and let
Qw D Qal\B . The category Mot.F/ has a fibre functor over Qal (Milne 1994), and the
obstruction to it having a fibre functor over Qw lies in H 2.Qw ;P /, where P is the Weil
number pro-torus (ibid. �2). But a theorem of Lang shows that Qw is a C1-field (Shatz 1972,
p. 116, Theorem 27), and so H 2.Qw ;P /D 0. Thus Mot.F/ has a fibre functor over Qw .
We choose one, and let M be the corresponding Qw=Q-groupoid. For each `¤ p;1, étale
cohomology provides a fibre functor !` over Q`, and correspondingly we obtain a morphism
of groupoids

�`WG` �!M.`/;

where G` is the trivial Qal
`
=Q`-groupoid and M.`/ is the Qal

`
=Q`-groupoid obtained from

M by base change. Let Gp be the B=Qp-groupoid attached to the category of isocrystals
over F and the forgetful functor. Then !crys defines a morphism of groupoids

�pWGp �!M.p/:

Finally, there is a morphism of groupoids over R,

�1WG1 �!M.1/

(Milne 1994, 3.29). Let GG denote the Qw=Q-groupoid defined by G. With each homo-
morphism 'WM!GG and representation of G, there is associated a motive N.'/ over F
endowed with a family of tensors, and we say that ' is admissible if N.'/ is admissible
in the above sense for one (hence every) faithful representation of G. For an admissible ',
define

I.'/D Aut.'/ def
D fg 2G.Qw/ j ad.g/ı' D 'g

Xp.'/D
Y
`¤p

X`.'/ (restricted product), where X`.'/D Isom.�`;'.`/ı �`/:

Here '.`/ is obtained from ' by base change, and �` is the obvious morphism G`!GG.`/
(see Milne 1992, p. 186, for more details). Choose an s.�/ in Gp mapping to � 2Gal.F=Fp/,
and let .'.p/ı �p/.s.�//D .b;�/. Define

Xp.'/D fg �G.W / 2G.B/=G.W / j g
�1
�b ��g 2G.W / ��0.p

�1/ �G.W /g:
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As (ibid. p. 188) we can define an operator ˚ on Xp.'/. Let

S.'/D I.'/nXp.'/�Xp.'/;

with G.Ap
f
/ acting through its action on Xp.'/, and ˚ acting through its action on Xp.'/.

THEOREM 4.41. With the above assumptions, there is an isomorphism of sets with actions

.Shp.F/;�;˚/ �!
a
'

.S.'/;�.'/;˚.'//;

where the disjoint union is over a set of representatives for the isomorphism classes of
admissible homomorphisms M!GG .

PROOF. The choice of a faithful representation of G determines a bijection ' 7! N.'/

from the set of isomorphism classes of admissible ' to the set of isomorphism classes of
admissible pairs. Moreover, using (4.35), one sees that

.S.'/;�.'/;˚.'//D .S.N /;�.N /;˚.N //;

and so it follows from (4.36) and the discussion preceding (4.36) that there is a bijection
Shp.F/!

`
S.'/ compatible with the action of G.Ap

f
/. Checking that the actions of ˚

agree is straightforward (it is similar to the proof of the last step of the proof of 3.21). �

Statement of the conjecture
We now drop all unproven assumptions, and state a conjecture. Let .P; .�`// be a system as
Milne 1994, 3.31, except that now P is a Qw=Q-groupoid (rather than a Qal=Q-groupoid).

Given a homomorphism 'WP!GG , we can define a set S.'/ with an action of G.Ap
f
/

and a commuting action of a Frobenius element ˚ exactly as in the last section (see also
Milne 1994, �4). The conjecture will then state that there is an isomorphism of sets with
operators

.Shp.F/;�;˚/ �!
a
'

.S.'/;�.'/;˚.'//;

where the disjoint union is over a set of representatives for the isomorphism classes of
“admissible” homomorphisms 'WP! GG . The only remaining problem in stating the
conjecture is to define “admissible”.

NECESSARY LOCAL CONDITIONS

There are some obvious necessary conditions for ' to be admissible.

(4.39`) The set X`.'/ is nonempty.
(4.39p) The set Xp.'/ is nonempty.
(4.391) The homomorphism '.1/ı �1WG1!GG.1/ of C=R-groupoids is isomorphic

to that defined by X (see Milne 1992, 4.5).
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THE CASE OF A TORUS

Consider a pair .T;h/ satisfying the conditions (SV1,2,3,6) with T a torus. There is a unique
homomorphism �.h/WS ! T such that �.h/R ıhcan D h. As is explained in (Milne 1994,
�4), there is a canonical homomorphism P0!GS , and we write 'h for its composite with
the map GS !GT defined by �.h/. Here P0 is the Qal=Q-groupoid obtained from P by
base change. Assume T .Qp/ has a hyperspecial subgroup T .Zp/. Then 'h arises from a
homomorphism P!GT .

PROPOSITION 4.43. Let Shp D Shp.T;x/; then the sets with operators .Shp.F/;�;˚/ and
.S.'h/;�.'h/;˚.'h// are isomorphic.

PROOF. See Milne 1992, 4.2. �

The homomorphism 'h satisfies the conditions (4.39) above, but unless unless T satisfies
the Hasse principle for H 1 there will be other such homomorphisms. This suggests adding
another condition.

(4.390) The composite of ' with the projection GG!GGab is equal to 'hX
.

STATEMENT OF THE CONJECTURE

In the above, we have found conditions that are surely necessary for ' to be admissible. We
now provide one that is surely sufficient.

Let .T;x/� .G;X/ be a special pair. As above, we obtain a homomorphism 'x WP!
GT �GG . Define 'WP!GG to be special if it becomes isomorphic to 'x for some special
pair .T;x/ when extended to P0. We should have the following implications:

' special H) ' admissible H) ' satisfies (4.39).

THEOREM 4.44. If Gder is simply connected, then 'WP!GG is special if and only if it
satisfies the conditions (4.39).

PROOF. See Langlands and Rapoport 1987, 5.3. �

In other words, when Gder is simply connected, the obvious necessary condition agrees
with the obvious sufficient condition. Thus, when Gder is simply connected we can define '
to be admissible if it satisfies (4.39) or (equivalently) if it is special.

Unfortunately, the two notions is diverge whenGder is not simply connected. For reasons
that we shall presently explain, we choose the second condition.

CONJECTURE 4.45. There is an isomorphism of sets with operators

.Shp.F/;�;˚/!
a
'

.S.'/;�.'/;˚.'//;

where the ' runs over a set of representatives for the isomorphism classes of special homo-
morphisms 'WP!GG .

THEOREM 4.46. If Conjecture 4.42 is true for all Shimura varieties defined by groups with
simply connected derived groups, then it is true for all Shimura varieties.
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PROOF. See Milne 1992, 4.19. �

An example of Langlands and Rapoport shows that (4.43) is false if the disjoint union in
(4.42) is taken over isomorphism classes of homomorphisms satisfying (4.39). It is for this
reason that we use special homomorphisms in the statement of (4.42).

In the case that Gder is simply connected, Conjecture 4.42 is essentially Conjecture 5.e
of Langlands and Rapoport 1987.
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