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Abstract

The category of motives over the algebraic closure of a finite field is known to be a
semisimple Q-linear Tannakian category, but unless one assumes the Tate conjecture
there is little further one can say about it. However, once this conjecture is assumed, it is
possible to give an almost entirely satisfactory description of the category together with
its standard fibre functors. In particular it is possible to list properties of the category
that characterize it up to equivalence and to prove (without assuming any conjectures)
that there does exist a category with these properties. The Hodge conjecture implies
that there is a functor from the category of CM-motives over Qal to the category of
motives over F. We construct such a functor.
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Introduction
After sketching the construction of the category of motives over a finite field or its algebraic
closure in �1, we develop the basic properties of the categories in �2 (under the assumption
of the Tate conjecture). In particular we classify the simple objects up to isomorphism and
compute their endomorphism algebras. We show that the category of motives over F has
exactly two polarizations.

In �3, we list properties of the category of motives over F together with the structure
provided by the Frobenius automorphisms sufficient to characterize it uniquely up to equiv-
alence, and we show (without any assumptions) that there does exist a category with the

Partially supported by the National Science Foundation. Not supported by the ICS, CIA, NRO, DSRP,
NSA, DIA, USAF, Army, ONI, TIARA, INR, DOE, FBI, or any other intelligence agency of the United States
government.

This is the author’s manuscript for

Milne, J.S., Motives over finite fields, In: Motives (Eds. U. Jannsen, S. Kleiman, J.-P. Serre),
Proc. Symp. Pure Math., AMS, 55, 1994, Part 1, pp. 401–459.

except that the TEX has been updated, some corrections and a few minor editorial changes made, and some
footnotes added. Significant changes to the original article have been noted in footnotes. The numbering is
unchanged.

1



CONTENTS 2

properties. We also prove a similar result for the category together with its standard fibre
functors.

There is one other category of motives for which there is a similarly explicit description,
namely, the category of CM-motives over Qal. Conjecturally reduction modulo p defines a
tensor functor from this Tannakian category to that of motives over the F. We construct such
a reduction functor (assuming the Tate conjecture).

Beyond its intrinsic interest, the study of motives over finite fields gives a beautiful
illustration of the power of the Tannakian formalism in a nonelementary (i.e., nonneutral)
case. Also the theory of motives over F provides the philosophical underpinning for the
conjecture of Langlands and Rapoport describing the points on the reduction of a Shimura
variety to characteristic p, which is the starting point of Langlands’s program to realize the
zeta functions of such varieties as automorphic L-series.

SOME PHILOSOPHY

Since we shall be describing a category with varying degrees of definiteness, we discuss
what this means.

Consider first an object X of a category. When we say that X (possibly plus additional
data) is determined by a property P we may mean one of several things:

(a) The object X (plus data) is uniquely determined by P , i.e., X is the only object (plus
data) satisfying P .

(b) The objectX (plus data) is uniquely determined by P up to a unique isomorphism, i.e.,
if Y (plus data) is a second object satisfying P , then there is a unique isomorphism
between X and Y (respecting the data) and any morphism from one to the other
(respecting the data) is an isomorphism.

(c) The object X (plus data) is uniquely determined by P up to isomorphism, i.e., if
Y (plus data) also satisfies P , then there exists an isomorphism between X and Y
respecting the data, and any morphism from one to the other (respecting the data) is
an isomorphism.

For example, the algebraic closure of a field is determined in the sense (c), whereas an
object plus the data of a morphism is determined by a universal property in the sense (b).
For all intents and purposes, (b) is as good as (a)—for example, it allows us to speak of a
specific element of X�–but (c) is much weaker.

Similarly, when we say that a category C (plus data) is determined by a property P we
may mean one of several things:

(a) The category C (plus data) is uniquely determined by P .
(b) The category C (plus data) is uniquely determined by P up to a unique equivalence

(respecting the data).
(c) The category C (plus data) is uniquely determined by P up to an equivalence (re-

specting the data) which itself is uniquely determined up to a unique isomorphism
(respecting the data).

(d) The category C (plus data) is uniquely determined by P up to an equivalence (re-
specting the data) which is uniquely determined up to isomorphism (respecting the
data).

(e) The category C (plus data) is uniquely determined by P up to an equivalence (respect-
ing the data).
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For example, a Tannakian category is determined by its gerb of fibre functors in the
sense (b). For all intents and purposes, (c) is as good as (b) and (a)—for example it allows us
to speak of a specific object of C—but (d) is a little weaker than (c), and (e) is much weaker
than (d).
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Notation
Throughout, F is an algebraic closure of the field Fp, and Fq is the subfield of F with q
elements. The letter ` denotes a prime of Q, possibly p or1. The symbol kal denotes an
algebraic closure of a field k. For Q, we take Qal to be the algebraic closure of Q in C.
Complex conjugation on C or any subfield is denoted by � or by z 7! xz. We often use Œ��
denote an equivalence class containing �.

The ring of adèles over Q is denoted by A; a subscript f on A indicates that the infinite
component has been omitted, and a superscript p indicates that the component at p has been
omitted.

For a prime w of a number field K, k � kw denotes the normalized valuation at w.
An algebraic variety over a field k is a geometrically reduced scheme of finite-type (not

necessarily connected) over k. When V is an algebraic variety over Fq , �V denotes the
Frobenius automorphism of V relative to Fq: it acts as the identity map on the underlying
set of V , and it acts as f 7! f q on OV .

By a k-linear tensor category we mean a k-linear category T together with a k-bilinear
functor˝WT�T! T and sufficient constraints so that the tensor product of any (unordered)
set of objects of T is well defined up to a canonical isomorphism. This means that there is an
identity object, an associativity constraint, and a commutativity constraint satisfying certain
axioms.

For an abelian category T,˙.T/ denotes the set of isomorphism classes of simple objects
in T, and K.T/ denotes the Grothendieck group of T.

For a category T, Ind.T/ denotes the category of direct systems of objects .X˛/ in T
indexed by small directed sets with Hom defined by

Hom..X˛/; .Yˇ //D lim
 �
˛

lim
�!
ˇ

Hom.X˛;Yˇ /:

For a perfect field k of characteristic p ¤ 0, W.k/ is the ring of Witt vectors with
coefficients in k, and K.k/ is the field of fractions of W.k/. The Frobenius automorphism
x 7! xp of k and its liftings to W.k/ and K.k/ are denoted by � .

When K is a finite field extension of k, .Gm/K=k is the torus over k obtained from Gm
over K by restriction of scalars. We write S for .Gm/C=R. For any affine group scheme G
over a field k, X�.G/ denotes the group of characters of G defined over some algebraic
closure of k.

When we say that a statement P.N/ holds for all N >> 1, we mean that it holds for all
sufficiently divisible positive integers N , i.e., that there exists an N0 such that

N > 0; N 2 N; N0jN H) P.N/ is true.



1 CONSTRUCTION OF THE CATEGORY OF MOTIVES 4

We use the following categories (see �1 for detailed definitions).

CV0.k/: category of correspondences of degree 0.
HdgQ: category of polarizable rational Hodge structures.
Mot.k/: category of motives over k.
Repk.G/: category of representations of G on finite-dimensional vector spaces over k.
V1: category of Z-graded complex vector spaces with a semilinear endomorphism F such

that F 2 D .�1/m on an object of weight m.
V`.Fq/: category of semisimple continuous representations of Gal.F=Fq/ on finite-dimensional

vector spaces over Q`.
V`.F/: category of germs of semisimple continuous representations of Gal.F=Fq/ on finite-

dimensional vector spaces over Q`.
Vp.k/: category of F -isocrystals over k.

1 Construction of the Category of Motives over a Fi-
nite Field

Algebraic correspondences
Fix a field k. For a smooth projective variety V over k, we defineZr.V / (space of algebraic
cycles of codimension r on V ) to be the Q-vector space with basis the closed irreducible
subvarieties of V of codimension r , and we define Ar.V / to be the quotient of Zr.V / by
the subspace of cycles numerically equivalent to zero. When all the irreducible components
of V have dimension d and W is a second smooth projective variety over k, the elements of
Ad .V �W / are called algebraic correspondences from V to W of degree 0. For example,
the graph of a morphism from W to V defines an algebraic correspondence from V to W of
degree zero.

The category CV0.k/ is constructed as follows: it has one object h.V / for each smooth
projective variety V over k, and a morphism from h.V / to h.W / in CV0.k/ is an algebraic
correspondence of degree 0 from V to W . Composition of morphisms is defined by:

AdimU .U �V /�AdimV .V �W /! AdimU .U �W /

.a;b/ 7! b ıa
def
D .pU�W /�.p

�
U�V .a/ �p

�
V�W .b//:

See Saavedra 1972, p. 385. It is an additive Q-linear category, and V  h.V / is a contravari-
ant functor from the category of smooth projective varieties over k to CV0.k/. There is a
tensor structure on CV0.k/ for which

h.V /˝h.W /D h.V �W /

and for which the commutativity and associativity constraints are defined by the obvious
isomorphisms

V �W !W �V; U � .V �W /! .U �V /�W:

On adding the images of projectors and inverting the Lefschetz motive, one obtains the false
category of motives M.k/ over k (ibid. VI.4). This is a Q-linear tensor category with duals,
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but it cannot be Tannakian: in any tensor category with duals there is a notion of the rank1 (or
dimension) of an object, which is intrinsic, and is therefore preserved by any tensor functor;
hence, when a fibre functor exists, the dimension of an object is a positive integer; but the
dimension of h.V / in M.k/ is the Euler-Poincaré characteristic .� ��/ of V , which is often
negative.

The category of motives over a finite field
In order to obtain a Tannakian category, we must define a gradation on M.k/ and use it to
modify the commutativity constraint. For a general field it has not been proved that this
is possible, but for a finite field we can proceed as follows. Let V be a smooth projective
variety of dimension d over a Fq , and let �V be the Frobenius morphism of V over Fq .
It follows from the results of Grothendieck and Deligne on the Weil conjectures (Deligne
1974) that for i D 0;1; : : : ;2d there is a well-defined polynomial Pi .T / 2QŒT � which is the
characteristic polynomial of �V acting on the étale cohomology group H i .V ˝F;Q`/ for
any `¤ p;1 (or on the corresponding crystalline cohomology group (Katz and Messing
1974)). These polynomials are relatively prime because their roots have different absolute
values, and the graph of the map

Q2d
iD0Pi .�V / is numerically equivalent to zero because it

is homologically equivalent to zero for all `¤ p;1. The Chinese remainder theorem shows
that there are polynomials P i .T / 2QŒT � such that

P i .T /�

�
1 mod Pi .T /
0 mod Pj .T / for j ¤ i:

The graph of pi def
D P i .�V / is a well-defined projector in Ad .V �V /,2 and

1D p0Cp1C�� �Cp2d :

There is a unique gradation on M.k/ for which

h.V /D
M

hi .V /; hi .V /D Im.pi /; all V:

We can now modify the commutativity constraint in M.Fq/ as follows: write the given
commutativity constraint

P X;Y WX˝Y
�
�! Y ˝X;

as a direct sum,

P X;Y D˚ P 
r;s; P r;s WXr˝Y s! Y s˝Xr ;

and define
 X;Y D˚.�1/

rs P r;s:

Now
rankh.V /D

P
i rankhi .V /

rather than
P
.�1/i rankhi .V //.3 Write Mot.Fq/ for M.Fq/ with this new commutativity

constraint. Its objects are the motives over Fq .

1In the notation of the proof of (1.1), the rank of X is evX ıı regarded as an element of k; equivalently, in
the notation introduced below, it is the trace of idX .

2Added. Misprint fixed.
3Added. Misprint fixed.
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PROPOSITION 1.1. The tensor category Mot.Fq/ is a semisimple Tannakian category over
Q.

PROOF. By construction, it is a pseudo-abelian tensor category, and End.1/ D Q. As is
explained in Saavedra 1972, VI, 4.1.3.5, duals exist, i.e., for every object X of Mot.Fq/,
there is an object X_ and morphisms evX WX˝X_! 1 and ıW1!X_˝X such that

.evX ˝ idX /ı .idX˝ı/D idX ; .idX_˝evX /ı .ı˝ idX_/D idX_ :

In fact, for an irreducible smooth projective variety V of dimension d , h.V /_ D h.V /.d/
and evh.V / is deduced from

h.V /˝h.V /D h.V �V /
h.�/
���! h.V /

p2d

���! h2d .V /DQ.�d/

by tensoring with Q.d/. Because we have worked with numerical equivalence, Theorem 1
of Jannsen 1992 shows that Mot.Fq/ is a semisimple abelian category. Finally, because of
our modification of the commutativity constraint, the rank of every object of Mot.Fq/ is a
positive integer, and so (Deligne 1990, Theorem 7.1) shows that Mot.Fq/ is Tannakian. �

Let T be a Tannakian category over a field k. A fibre functor on T over a k-algebra R is
an exact k-linear tensor functor from T to the category of R-modules. It automatically takes
values in the category of projective R-modules of finite rank and is faithful (unless RD 0),
and for any X;Y 2 ob.T/ the map

Hom.X;Y /˝R! HomR.!.X/;!.Y //

is injective (Deligne 1990, 2.10, 2.13.)

Tate triples
Recall (Deligne and Milne 1982, 5.1), that to give a Z-gradation on a Tannakian category T
is the same as to give a homomorphism wWGm! Aut˝.idT/. A Tate triple over a field F is
a system .T;w;T / consisting of a Tannakian category T over F , a Z-gradation on T (called
the weight gradation), and an invertible object T (called the Tate object) of weight -2. For
an object X of T and an integer n, we set X.n/DX˝T˝n. A morphism of Tate triples

.T1;w1;T1/! .T2;w2;T2/

is a morphism of tensor categories T1 ! T2 preserving the gradations together with an
isomorphism �.T1/! T2.

EXAMPLE 1.2. (a) The system .Mot.Fq/;w;T / with w the gradation defined above and T
the dual of the Lefschetz motive, T D h2.P1/_, is a Tate triple over Q.

(b) By a rational Hodge structure we mean a finite-dimensional vector space V over Q
together with a homomorphism hWS! GL.V ˝R/ such that the corresponding weight map
wh

def
D h�1jGm is defined over Q. The category of rational Hodge structures together with

its natural weight gradation and Tate object Q.1/ def
D .2�iQ;z 7! zxz/ is a Tate triple over Q.
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Extension of coefficients
Let .T;˝/ be a tensor category over a field k, and letL be a field containing k. AnL-module
in T is an object X of T together with an k-linear homomorphism L! End.X/. A subobject
of X is said to generate .X; i/ if it is not contained in any proper L-submodule of X .

Now assume T to be Tannakian, and consider the category Ind.T/ of small filtered direct
systems of objects in T. Identify T with a full subcategory of Ind.T/, and define T˝L to be
the category whose objects are the L-modules in Ind.T/ generated by objects in T.

PROPERTIES

(1.3.1) The category T˝L has a natural tensor structure for which it is a Tannakian category
over L.

(1.3.2) There is a canonical tensor functor

X X˝LWT! T˝L

having the property that

Hom.X;Y /˝LD Hom.X˝L;Y ˝L/:

This functor is faithful, and when k has characteristic zero and T is semisimple, T˝L
is the pseudo-abelian envelope of its image.

(1.3.3) A fibre functor ! of T over R extends uniquely to a fibre functor !˝L of T˝L
over R˝kL such that .!˝L/.X/D !.X/˝kL for X in T. Moreover, the groupoid
attached to .T˝L;!˝L/ is obtained from that attached to .T;!/ by base change.
(For the notion of the groupoid attached to a Tannakian category, see Breen 1992,
Deligne 1990, 1.12, or 3.24 below.)

(1.3.4) Suppose that L is a finite extension of k. An L-module .X; i/ of T is generated as
an L-module by X itself, and so can be regarded as an object of T˝L. In this way,
T˝L becomes identified with the category of L-modules in T (cf. Deligne 1979,
p. 321).

(1.3.5) The extension of scalars of a Tate triple is a Tate triple.

There is no good reference for these statements, but some can be obtained by realizing T
as the category of representation of a groupoid, and applying Deligne 1989, 4.6iii. See also
Saavedra 1972, p. 201.

EXAMPLE 1.4. LetL be a field of characteristic zero, and replaceZr.V / in the construction
of the category of motives over Fq withZr.V /˝L. We then obtain a semisimple Tannakian
category Mot.Fq/L over L, called the category of motives over Fq with coefficients in L.
The obvious tensor functor Mot.Fq/!Mot.Fq/L extends canonically to an equivalence of
tensor categories Mot.Fq/˝L!Mot.Fq/L.

EXAMPLE 1.5. Let T be a Tannakian category over R. From T we obtain a Tannakian
category T˝C over C, together with a semi-linear tensor functor

X xX WT˝C! T˝C;

and a functorial isomorphism of tensor functors�X WX! xxX such that� xX D x�X . Conversely,
every such triple .T0;X 7! xX;�/ arises from a Tannakian category T over R (the category T
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can be recovered from the triple as the category whose objects are the pairs .X;aWX ! xX/
such that xa ıaD �X ).

From the point of view (1), we can also regard T˝C as the category of C-modules
.X; i/ in T. Then .X; i/D .X; i ı �/ and �X is the identity map. The functor X 7! X˝C
sends X to X˚X with aCbi 2 C acting as

�
a �b
b a

�
.

Polarizations
Let .T;w;T / be a Tate triple over a subfield k of R. A bilinear form on an object X of
weight n of T is a morphism

'WX˝X ! T˝.�n/:

It is said to be nondegenerate if the map X !X_.�n/ it defines is an isomorphism. The
parity of a nondegenerate ' is the unique morphism "WX !X such that4

'.x;x0/D '.x0; "x/:

Let u 2 End.X/; the transpose ut of u with respect to a nondegenerate ' is defined by

'.ux;x0tx0/:

Then .uv/t D vtut , at D a for a 2 k, "t D "�1, and if " is in the centre of End.X/, then
ut t D u.

The evaluation map (see the proof of 1.1) allows us to define a trace map

TrWEnd.X/D Hom.1;X˝X_/@> Hom.1;ev/ >> Hom.1;1/D k:

A nondegenerate bilinear form ' is said to be a Weil form if its parity " is central and if for
all nonzero u 2 End.X/, Tr.u �ut / > 0. Two Weil forms ' and  are said to be compatible
if '˚ is also a Weil form.

Suppose there is given for each homogeneous X in T an equivalence class (for the
relation of compatibility) ˘.X/ of Weil forms of parity wX .�1/D .�1/wt.X/ on X ; we say
that ˘ is a (graded) polarization on .T;w;T / if

(1.6.1) for all homogeneous X and Y of the same weight,

' 2˘.X/;  2˘.Y / H) '˚ 2˘.X˚Y /I

(1.6.2) for all homogeneous X and Y ,

' 2˘.X/;  2˘.Y / H) '˝ 2˘.X˝Y /I

(1.6.3) the identity map T ˝T ! T˝2 lies in ˘.T /.

The axioms have the consequence that

' 2˘.X/; X 0 �X H) 'jX 0 2˘.X 0/I

in particular, 'jX 0 is nondegenerate. A polarizable Tannakian category is semisimple. (See
Saavedra 1972, V.2.4.1.1.)

4Here, and elsewhere, we identify an object X with its functor of “points” Z Hom.Z;X/. The parity
can also be described as the automorphism of X that measures the difference between the two isomorphisms
X !X_.�n/; x 7! '.x˝�/; x 7! '.�˝x/.
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Let ˘0 be a polarization on .T;w;T /, and let z be an element of Aut˝.idT/ of order
2 that acts as the identity on T . If ' 2 ˘0.X/, then z' def

D ..x;y/ 7! '.x;zy// is also a
Weil form, and z �˘0 D fz' j ' 2˘0g is a polarization on .T;w;T /. Every polarization on
.T;w;T / is of the form z �˘0 for a unique z (Deligne and Milne 1982, 5.15).

EXAMPLE 1.7. Let V1 be the category of pairs .V;F / with V a Z-graded vector space
over C and F a semi-linear automorphism of V such that F 2 acts as .�1/m on the mth

graded piece of V . Then V1 has a natural tensor structure relative to which it is a nonneutral
Tannakian category over R. The pair T D .C;z 7! xz/, with C regarded as a homogeneous
vector space of weight -2, is a Tate object for V1. For .V;F / homogeneous of degree m,
define a .�1/m-symmetric form on V to be a nondegenerate bilinear form 'WV ˝V !

T˝�m with parity .�1/m, i.e., such that '.x;y/ D .�1/m'.y;x/, and call such a form
positive-definite if '.x;F x/ > 0, all x ¤ 0. For any .V;F / homogeneous of weight m, let
˘can.V;F / be the set of all .�1/m-symmetric positive-definite forms on V . Then ˘can is a
polarization on V1. There is exactly one other polarization, namely, w.�1/ �˘can.

EXAMPLE 1.8. A polarization of a rational Hodge structure .V;h/ of weight m is a mor-
phism 'WV ˝V !Q.�m/ of rational Hodge structures such that .x;y/ 7! .2�i/m'.x;h.i/y/

is a symmetric positive-definite form on V ˝R. The category HdgQ of polarizable rational
Hodge structures together with the weight gradation and the Tate object Q.1/ is a Tate triple
over Q, and there is a polarization on HdgQ such that ˘.V;h/ comprises the polarizations
of .V;h/ in the sense just defined.

CONJECTURE 1.9. The Tate triple .Mot.Fq/;w;T / has a polarization.

In fact, Grothendieck’s standard conjectures imply that Mot.Fq/ has a canonical polarization—
see Saavedra 1972, VI.4.4. Later (2.44) we shall see that the Tate conjecture implies that
Mot.F/ has a polarization which is unique up to multiplication by w(-1).

PROPOSITION 1.10. Let˘ be a polarization on Mot.Fq/˝R. There exists an exact faithful
tensor functor !1WMot.Fq/˝R! V1 of Tate triples carrying ˘ into ˘can; moreover, !1
is unique up to multiplication by w(-1).

PROOF. Apply Deligne and Milne 1982, 5.20. �

The `-adic fibre functors
Let V be a smooth projective variety over a field k, and let ` be a prime number not equal to
the characteristic of k. For every r , there is a cycle map

clr WZr.V /!H 2r.V ˝kal;Q`.r// (étale cohomology).

Unfortunately, we don’t know that this map factors through Ar.V /, i.e., that if an algebraic
cycle is numerically equivalent to zero then its cohomology class is zero. This is equivalent
to the following existence statement for algebraic cycles: if there exists a cohomology class
c such that cl.Z/ � c ¤ 0, then there exists an algebraic cycle Z0 such that Z �Z0 ¤ 0.

PROPOSITION 1.11. Assume that for any smooth projective variety V over Fq the cycle
maps Zr.V /!H 2r.V ˝F;Q`.r// factor through Ar.V /. Then the functor

V  H`.V /
def
D

M
r
H r.V ˝F;Q`/

extends uniquely to a fibre functor !` on Mot.Fq/ over Q`.
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PROOF. Standard properties of étale cohomology (see for example Milne 1980, VI.11.6)
show that H` is a functor on CV0.Fq/, and it is then obvious that it extends to Mot.Fq/.
The Künneth formula implies that it is a tensor functor on Mot.Fq/. It is exact because it is
additive. (For more details, see Demazure 1969/70, �8.) �

REMARK 1.12. If the hypothesis of (1.11) holds for all `¤ p, then there is a fibre functor
!p over Ap

f
such that !p˝Ap

f
Q` D !` for all `.

The p-adic fibre functor
Let k be a perfect field of characteristic p ¤ 0. For any smooth projective variety V over k,
we set

H r
crys.V /DH

r.V=W.k//˝W.k/K.k/

where H r.V=W.k// is the r th crystalline cohomology group of V with respect to W.k/
(Berthelot 1974). Then H r

crys.V / is a finite-dimensional vector space over K.k/.

PROPOSITION 1.13. Assume that for any smooth projective variety V over Fq the cycle
map Zr.V /!H 2r

crys.V / factors through Ar.V /. Then the functor

V  Hcrys.V /
def
D˚H r

crys.V /

extends uniquely to a fibre functor !p on Mot.Fq/ over K.k/.

PROOF. Standard properties of crystalline cohomology (Berthelot 1974; Milne 1986, 2.11;
Gillet and Messing 1987) show that Hcrys is a functor on CV0.Fq/, and the same argument
as in the proof of (1.11) shows that this functor then extends to a fibre functor on Mot.Fq/.�

The Tate conjecture and consequences
We write �.V;s/ for the zeta function of a variety V over Fq .

CONJECTURE 1.14. (Tate conjecture) For all smooth projective varieties V over Fq and
r � 0, the dimension of Ar.V / is equal to the order of the pole of �.V;s/ at s D r .

PROPOSITION 1.15. Assume the Tate conjecture (1.14). For every smooth projective variety
V over Fq and every ` ¤ p;1, the cycle map Zr.V /!H 2r.V ˝F;Q`.r// defines an
isomorphism

Ar.V /˝Q`!H 2r.V ˝F;Q`.r//Gal.F=Fq/; all r:

Moreover, �V acts semisimply on H`.V /.

PROOF. See Tate 1992, 2.9; Milne 1986, 8.6. �

In particular, the Tate conjecture implies that an algebraic cycle on V is numerically
equivalent to zero if and only if its class in H`.V / is zero, and so we can apply (1.11).
Let V`.Fq/ be the category of semisimple continuous representations of Gal.F=Fq/ on
finite-dimensional Q`-vector spaces. It is a Tannakian category over Q`.

COROLLARY 1.16. Assume (1.14). For every ` ¤ p;1, the functor !` defines a fully
faithful tensor functor

Mot.Fq/˝Q`! V`.Fq/:
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PROOF. Proposition 1.15 says that H` is a fully faithful functor CV0.Fq/˝Q`! V`.Fq/,
and it follows that its extension to Mot.Fq/˝Q` is also fully faithful. �

Let k be a perfect field of characteristic p ¤ 0. An F -isocrystal over k is a finite-
dimensional vector space M over K.k/ together with a �-linear isomorphism F WM !M .
We shall drop the “F ” and simply call them isocrystals over k. The isocrystals over k form
a Tannakian category over Qp, which we denote by Vp.k/.

PROPOSITION 1.17. Assume (1.14). The functor !p defines a fully faithful tensor functor

Mot.Fq/˝Qp! Vp.Fq/:

PROOF. There is analogous statement to (1.15) for the crystalline cohomology, which can
be applied as in the proof of (1.16) to obtain the proposition. �

The category of motives over F
Everything in this section holds mutatis mutandis with Fq replaced by F.

Let �1 and �2 be continuous semisimple representations of open subgroups U1 and U2
of Gal.F=Fp/ on the same finite-dimensional Q`-vector space V . We say that �1 and �2
are related if they agree on an open subgroup of U1\U2. This is an equivalence relation,
and we call an equivalence class of representations a germ of an `-adic representation of
Gal.F=Fp/. With the obvious structure, the germs of `-adic representations of Gal.F=Fp/
form a Tannakian category V`.F/ over Q`.

THEOREM 1.18. The category Mot.F/ of motives over F is a semisimple Tannakian cate-
gory over Q. Assume the Tate conjecture (1.14).

(a) The functor V  
L
rH

r.V;Q`/ (étale cohomology) extends to a fully faithful tensor
functor

!`WMot.F/˝Q`! V`.F/:

(b) The functor V  
L
rH

r.V=W.F//˝K.F/ (crystalline cohomology) extends to a
fully faithful tensor functor

!pWMot.F/˝Qp! Vp.F/:

PROOF. Straightforward extension of previous results. �

Notes
This section reviews standard material, most of which can be found already in Saavedra
1972.

2 Basic Properties of the Category of Motives over a
Finite Field

Throughout this section, we assume the Tate conjecture (1.14). Then Mot.Fq/ and Mot.F/
are semisimple Tannakian categories over Q with the fibre functors !`, `D 2;3;5; : : : ;1,
described in �1.
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Characteristic polynomials
For a motive X and an integer r , consider the alternating map

aD
P

sgn.�/ �� WX˝r !X˝r

h(sum over the elements of the symmetric group on r letters). Then a=rŠ is a projector
in End.X˝r/, and we define

Vr
X to be its image. For any fibre functor !, !.�rX/D

�r!.X/, and so

rank.
^r

X/D

 
rank X
r

!
:

In particular, rank.
Vr

X/D 1 if r D rank.X/. For an endomorphism ˛ of X , we define
det.˛/ to be

VrankX
˛ (regarded as an element of Q/.

PROPOSITION 2.1. For any endomorphism ˛ of a motive X , there is a unique polynomial
P˛.t/ 2QŒt � such that

P˛.n/D det.n�˛/, all n 2Q:

Moreover, P˛.t/ is monic of degree equal to the rank ofX , and it is equal to the characteristic
polynomial of ˛ acting on !.X/ for any fibre functor !.

PROOF. If P.t/ and Q.t/ both have the property, then their difference has infinitely many
roots, and hence is zero. Thus there is at most one such polynomial P˛.t/.

Let ! be a fibre functor over a field K. The characteristic polynomial P.t/ of !.˛/
acting on !.X/ is a monic polynomial of degree r D rankX with coefficients in K such that
P.n/D det.n�˛/ for all n 2 K. Write P.t/D

P
ci t

i , ci 2K. Choose r distinct elements
nj of Q, and note that .ci /1�i�r is the unique solution of the system of linear equations

c0C c1nj C c2n
2
j C : : :C cr�1n

r�1
j Cnrj D det.nj �˛/; j D 1;2; : : : ; r;

with coefficients in Q. Therefore each ci 2Q.
Alternatively, and more directly, we can simply set

cr�i D .�1/
i Tr

�
˛j
Vi

X
�
D .�1/i Tr

� a
iŠ
ı˝

i˛
�
: �

We call P˛.t/ the characteristic polynomial of ˛, and sometimes write it P˛.X; t/.

The Frobenius endomorphism
Recall that for any variety V over Fq , �V denotes the Frobenius endomorphism of V relative
to Fq . These morphisms commute with all morphisms of varieties over Fq , and, more
generally, with algebraic correspondences of degree zero (see Kleiman 1972, p. 80). It
follows that, for each motive X , there is a �X 2 End.X/ such that

(a) if X D h.V /, then �X D h.�V /;
(b) �X˝Y D �X ˝�Y ; �1 D id1; �Y ı˛ D ˛ ı�X for all morphisms ˛WX ! Y .

Condition (b) says that the �X ’s form an endomorphism of the identity functor of
Mot.Fq/ regarded as a tensor functor, i.e., .�X / 2 End˝.id/, which implies that each �X
is an automorphism (Deligne and Milne 1982, 1.13). Note that � acts on H 2.P1;Q`/ as
multiplication by q, and therefore it acts on the Tate motive as multiplication by q�1.
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PROPOSITION 2.2. For a motive X over Fq , QŒ�X �� End.X/ is a product of fields, and
if X is homogeneous of weight m, then for every homomorphism �WQŒ�X �! C, j��X j D
qm=2.

PROOF. Because �X acts semisimply on !`.X/ (see 1.15, 1.16), QŒ�X �˝Q` is a product
of fields, and this implies that the same is true of QŒ�X �. If X D hm.V / for V a smooth
projective variety over Fq , the second assertion is part of the Weil conjectures (Deligne
1974), and the general case follows easily from this special case. �

REMARK 2.3. If X is effective, then (by definition)

X˚Y D h.V /

for some motive Y and smooth projective variety V . The eigenvalues of �V are algebraic
integers, and therefore the same is true of �X . If X is an arbitrary motive over Fq , then X.n/
is effective for some n, and so qn�X is an algebraic integer for some n.

Classification of the isomorphism classes of simple motives
By a central division (respectively simple) algebra over a field K, we mean a division
(respectively simple) algebra having centre K and of finite dimension over K.

PROPOSITION 2.4. Let X be a simple motive over Fq . Then QŒ�X � is a field, and End.X/
is a central division algebra over QŒ�X �.

PROOF. Because X is simple, any nonzero endomorphism ˛ of X is an isomorphism, which
shows that End.X/ is a division algebra and that QŒ�X � is a subfield. The Tate conjecture
(1.14) implies that End.X/˝Q` is the centralizing ring of QŒ�X �˝Q` in End.!`.X//, and
because QŒ�X �˝Q` is semisimple the double centralizer theorem (Bourbaki, 1958, 5.4,
Corollary 2, p. 50) then implies that QŒ�X �˝Q` is the centre of End.X/˝Q`. It follows
that QŒ�X � is the centre of End.X/. �

DEFINITION 2.5. An algebraic number � is said to be a Weil q-number of weight m if

(a) for every embedding �WQŒ�� ,! C, j�.�/j D qm=2;
(b) for some n, qn� is an algebraic integer.

The set of Weil q-numbers in Qal is denoted by W.q/. It is a subgroup of Qal� stable
under the action of � def

D Gal.Qal=Q/. We can associate with an arbitrary Weil q-number
� the orbit Œ�� 2 � nW.q/ consisting of the set of conjugates of � in Qal, i.e., of the set of
images of � under the embeddings QŒ�� ,!Qal.

Condition (2.5a) implies that � 7! � 0 D qm=� defines an involution ˛ 7! ˛0 of QŒ��
such that �.˛0/D ��.˛/ for all embeddings �WQŒ�� ,! C. Hence, if � is a Weil q-number,
then QŒ�� is either a CM-field or a totally real field according as � ¤ � 0 or � D � 0.

From (2.2, 2.3, 2.4) we know that, for a simple motive X of weight m over Fq , �X is a
Weil q-number of weight m. Recall that ˙.Mot.Fq// is the set of isomorphism classes of
simple objects in Mot.Fq/.

PROPOSITION 2.6. The map X 7! Œ�X � defines a bijection

˙.Mot.Fq//! � nW.q/:
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PROOF. Let X and X 0 be simple motives over Fq whose Weil numbers � and � 0 are conju-
gate. Then Hom.!`.X/;!`.X 0//� ¤ 0, and so the Tate conjecture implies Hom.X;X 0/¤ 0.
Hence X and X 0 are isomorphic.

Let � be a Weil q-number in Qal; we have to prove that Œ�� arises from a motive. For
some n� 0, qn� will be an algebraic integer. If X is a simple motive with Œ�X �D Œqn��,
then X.n/ will be a simple motive with Œ�X.n/�D Œ��. Therefore we can assume that � is
an algebraic integer. Let m be its weight. If mD 0, then � is a root of unity and it arises
from an Artin motive. Otherwise Honda’s theorem (Tate 1968/69, Thm 1) shows that there
is a simple abelian variety A over Fqm such that Œ�A�D Œ��. Consider the abelian variety
A� over Fq obtained from A by restriction of scalars. Then P.h1.A�/; t/D P.h1.A/; tm/,
and so � occurs as a root of P.h1.A�/˝m; t /. For some simple factor X of h1.A�/˝m, �
will be conjugate to �X . �

REMARK 2.7. The proof shows that, under the assumption of the Tate conjecture, the
Tannakian category Mot.Fq/ is generated (as a Tannakian category) by the motives of
abelian varieties and Artin motives.

Isotypic motives
An object in an abelian category is isotypic if it is isomorphic to a direct sum of copies of
a single simple object. Proposition 2.4 shows that the endomorphism ring of an isotypic
motive X over Fq is a matrix algebra over a central division algebra over the field QŒ�X �,
i.e., it is a central simple algebra over QŒ�X �.

Let E be a central simple algebra of degree e2 over a field F of finite degree f over Q,
and let K be an extension of Q that splits E, i.e., such that E˝QK is a product of matrix
algebras over K. Write Hom.F;K/D f�1; : : : ;�f g. Then E˝QK DE1� � � ��Ef where
Ei

def
D E˝E;�i

K is a matrix algebra of degree e2 over K. Up to isomorphism, there are
exactly f nonisomorphic simple representations V1; : : : ;Vf of E overK, each of dimension
e over K, and their sum V D˚Vi is called the reduced representation of E.

PROPOSITION 2.8. Let X be an isotypic motive over Fq , and let E D End.X/.

(a) The rank of X is ŒEWQŒ�X ��1=2 � ŒQŒ�X �WQ�.
(b) For any fibre functor ! over a field K that splits E, the representation of E on !.X/

is isomorphic to the reduced representation.
(c) For ˛ 2E,

P˛.X; t/D NmQŒ�X �=Q.c˛.t//;

where c˛.t/ is the reduced characteristic polynomial of ˛ in E=QŒ�X �. In particular,
P�.X; t/Dm�.t/

e where m�.t/ is the minimum polynomial of � in the extension
QŒ��=Q and e D ŒEWQŒ���1=2.

PROOF. (a) The number ŒEWQŒ���1=2 � ŒQŒ��WQ� is the degree over Q of a maximal commu-
tative étale subalgebra ofE. It is therefore also the degree over Q` of a maximal commutative
étale subalgebra of E˝Q`, ` ¤ p;1. But E˝Q` is the centralizer in End.!`.X// of
the semisimple endomorphism !`.�/, and so this degree is the dimension of !`.X/ as a
Q`-vector space, which equals the rank of X .

(b) Suppose the representation of E on !(X) is isomorphic to ˚miVi , mi � 0. For
any ˛ 2 QŒ��, the characteristic polynomial of ˛ on Vi is .t � �i˛/e, and so P˛.t/ D
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Q
1�i�f .t ��i˛/

emi , where f D ŒQŒ��WQ�. Because P˛.t/ has coefficients in Q, the mi ’s
must be equal, and because P˛.t/ has degree ef , each mi D 1. (Alternatively, let L be
a maximal commutative étale subalgebra of E. For any fibre functor ! over a field K,
L˝QK acts faithfully on !.X/, and ŒL˝QKWK�D dimK !.X/, and so !.X/ is a free
L˝QK-module of rank 1. When K splits E, this implies that !.X/ is isomorphic to the
reduced representation.)

(c) Choose a fibre functor as in (b) and note that the two polynomials become equal in
KŒt�. On taking ˛ D �X , we find that

P�X
.X; t/D NmQŒ�X �=Q.t ��/

e
D .m�X

.t//e: �

The isocrystal of a motive
We first recall the Dieudonné-Manin classification of isocrystals (i.e., F -isocrystals) over an
algebraically closed field k. For each pair of relatively prime integers .r; s/ with r � 1,

Nr;s DQpŒT �=.T r �ps/; FN Dmultiplication by T;

is an isocrystal over Fp, and we define

Mr;s DK.k/˝Qp Nr;s; FM D �˝FN :

It is an isocrystal over k of rank r . (In general, the rank of an isocrystal .M;F / as an element
of the Tannakian category Vp.k/ is the dimension of M as a vector space over K.k/:)

THEOREM 2.9. Let k be an algebraically closed field of characteristic p ¤ 0. The category
Vp.k/ is semisimple. For each pair of relatively prime integers .r; s/with r � 1, the isocrystal
Mr;s is simple, and every simple isocrystal over k is isomorphic to Mr;s for exactly one pair
.r; s/.

PROOF. See Demazure 1972, IV. �

Write Ms=r for Mr;s . Every isocrystal M over k can be written uniquely as a direct sum

M D .M�1
/r1˚�� �˚ .M�n

/rn ; �1 < �2 < :: : < �n; ri � 1:

The numbers �i are called the slopes of M , and ri is the multiplicity of �i .
For an isocrystal M over Fpn , we let �M D F n. It is a K.Fpn/-linear endomorphism

of M . When k is not algebraically closed, the category Vp.k/ need not be semisimple.

PROPOSITION 2.10. The following conditions on an isocrystal .M;F / over Fq are equiva-
lent:

(a) .M;F / is semisimple, i.e., it is a direct sum of simple isocrystals over Fq;
(b) End.M;F / is semisimple;
(c) �M is a semisimple endomorphism of M regarded as a vector space over K.Fq/.

When these conditions hold, the centre of End.M;F / is QpŒ�M �.
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PROOF. (a)H) (b): If M is simple, then End.M;F / is a division algebra; if M is isotypic,
then End.M;F / is a matrix algebra over a division algebra; if M is semisimple, then
End.M;F / is a product of matrix algebras over division algebras.

(b)H) (c): Because QpŒ�M � is contained in the centre of End.M;F /, it is a product of
fields.

(c)H) (b,a): Condition (c) implies that the centralizing ringC ofK.Fq/Œ�M � in the ring
of endomorphisms of M (regarded as a K.Fq/-vector space) is a semisimple K.Fq/-algebra.
The map

End.M;F /˝QpK.Fq/ ,! C

is injective, and on counting dimensions, we see that it is an isomorphism. Therefore
End.M;F / must also be semisimple.

The category of all isocrystals over Fq satisfying (c) is therefore a Qp-linear abelian
category such that the endomorphism ring of every object is a semisimple ring of finite-
dimension over Qp . It is well-known that this implies that all the objects of the category are
semisimple (see Jannsen 1992, Lemma 2).

Finally, because �M is a semisimple endomorphism of M , the centre of the ring C
defined above isK.Fq/Œ�M �. But C D End.M;F /˝QpK.Fq/, and it follows that the centre
of End.M;F / is QpŒ�M �. �

REMARK 2.11. The map M 7! Œ�M � defines a bijection from the set of isomorphism
classes of simple isocrystals over Fq to the set of orbits of Gal.Qal

p=Qp/ acting on Qal�
p

(Kottwitz 1992, 11.2, 11.4).

Let .M;F / be an isocrystal over a perfect field k. For any perfect field k0 � k,

.Mk0 ;Fk0/
def
D .K.k0/˝M;�˝F /

is an isocrystal over k0. The slopes (and multiplicities) of M are defined to be the slopes
(and multiplicities) of Mkal .

Let ordp denote the p-adic valuation Q�p� Z on Qp or its extension to any field
algebraic over Qp.

PROPOSITION 2.12. Let M be an isocrystal over Fq of rank d , and let fa1; : : : ;ad g be the
family of eigenvalues of �M . Then the family of slopes of M is

fordp.a1/=ordp.q/; : : : ;ordp.ad /=ordp.q/g:

PROOF. See Demazure 1972, p. 90. �

THEOREM 2.13. Let X be a motive over Fq . Then !p.X/ is a semisimple isocrystal over
Fq of rank equal to rankX . The characteristic polynomial of �X on X is equal to the charac-
teristic polynomial of �!p.X/ on !p.X/. If fa1; : : : ;ad g is the family of roots of P�X

.X; t/,
then the family of slopes of !.X/ is fordp.a1/=ordp.q/; : : : ;ordp.ad /=ordp.q/g.

PROOF. The Tate conjecture implies that End.!p.X/;F /D End.X/˝Qp (see 1.17), and
so it, and !p.X/, are semisimple. It is clear from the definition of the action of F on the
crystalline cohomology of a variety (Berthelot 1974) that the Frobenius endomorphism �X
of a motive X induces the Frobenius endomorphism �!p.X/ of !p.X/, i.e. that

�!p.X/ D !p.�X /;

and so they have the same characteristic polynomial. The final statement follows from
(2.12). �
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The endomorphism algebra of a simple motive
Let K be a nonarchimedean local field, and consider a central division algebra D over
K. Choose a maximal subfield L of D that is unramified over K. The Skolem-Noether
theorem (Bourbaki 1958, �10) shows that every automorphism of L is induced by an inner
automorphism ofD. In particular, there is a  2D such that x�1D Frob.x/ for all x 2L,
where Frob is the geometric Frobenius element in Gal.L=K/ (it acts as x 7! xq

�1

on the
residue field). The valuation ordWL�� Z extends uniquely to a valuation ordWD�! Q,
and the invariant of D is defined by the rule:

invK.D/D ord./ 2Q=Z:

The Wedderburn theorems imply that a central simple algebra E over K is isomorphic to a
matrix algebra over a division algebra D over K, uniquely determined up to isomorphism,
and the invariant of E is defined to be that of D.

In the proof of the next proposition, we shall need to use the following fact. Let K 0 be a
field

K �K 0 �D

and let D0 be the centralizing ring of K 0 in D. The double centralizer theorem shows that
D0 is a central division algebra over K 0. When K 0 is unramified over K, then we can choose
the field L in the definition of invK.D/ to contain it, and then it is clear that

invK0D0 D ŒK 0WK� � invKD:

This formula holds even when K 0 is ramified over K.

PROPOSITION 2.14. Let .M;F / be a simple isocrystal over Fq . Then E def
D End.M;F / is a

central division algebra over QpŒ�M � with invariant

�
ordp.�M /
ordp.q/

� ŒQpŒ�M �WQp�I

moreover
rankM D ŒEWQpŒ�M ��1=2 � ŒQpŒ�M �WQp�:

PROOF. Because M is simple, QpŒ�M � is a field, and so the term “ordp.�M /” is well-
defined, and is equal to ordp.�/ for any conjugate � of �M .

Let �D ordp.�M /=ordp.q/. Then MF is isomorphic to a direct sum of copies of M�,
and so End.MF;F / is a matrix algebra over a End.M�;F /. But (see Demazure 1972, p. 80),
End.M�;F / is a central division algebra over Qp with invariant 5 ��.

When we extend the action of �M on M to MF D K.F/˝M by linearity, so that
F nF D�M ı�

n where nD ordp q, then End.M;F / becomes the centralizing ring of QpŒ�M �
in End.MF;FF/. Hence,

invQpŒ�M �End.M;F /D ŒQpŒ�M �WQp� � invQp
End.MF;FF/D ŒQpŒ�M �WQp� � .��/;

which proves the first statement.
Recall from the proof of (2.10) that

E˝QpK.Fq/� C
5We are using a different sign convention for the invariant from Demazure.
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where C is the centralizing ring of K.Fq/Œ�M � in End.M/. The second statement in the
proposition can be proved by noting that the right hand side is equal to the degree over Qp
of a maximal commutative étale subalgebra of E, and that this and the left hand side are
both equal to the degree over K.Fq/ of a maximal commutative étale subalgebra of C . �

For a central division algebra D over an archimedean local field K, invK.D/ is defined
to be 0 or 1

2
(mod 1) according as D is split or nonsplit. For a central division algebra over a

number field K and a prime v of K, we set

invv.D/D invKv
.D˝KKv/:

THEOREM 2.15. Let K be an algebraic number field.

(a) Two central division algebras D and D0 over K are isomorphic if and only if
invv.D/D invv.D0/ for all primes v of K.

(b) An element .iv/ 2
L
vQ=Z (sum over all primes of K) is the family of invariants of

a central division algebra over K if and only if
P
v iv D 0, 2iv D 0 if v is real, and

iv D 0 if v is complex.
(c) For a central division algebra over a number field K, ŒDWK�1=2 is the least common

denominator of the numbers invv.D/.

PROOF. This is a restatement of fundamental results in class field theory. For a discussion
of the results, with references, see Reiner 1975, Chapter 8, or Pierce 1982, Chapter 18. �

Since End.X/ is a central division algebra over the field QŒ�X � when X is simple, to
describe its isomorphism class, we only have to give its invariants at the primes of QŒ�X �.

THEOREM 2.16. Let X be a simple motive over Fq , and let E D End.X/. For any prime v
of QŒ�X �, k�Xkv D qinvv.E/. Explicitly, this says that

invv.E/D

8̂̂̂̂
<̂
ˆ̂̂:
1=2 if v is real and X has odd weightI

�
ordv.�X /
ordv.q/

� ŒQŒ�X �vWQp� if vjpI

0 otherwise.

PROOF. If vj` with ` ¤ p;1, then !`.X/ is a free module over Q`˝QŒ�X � of rank
e D ŒEWQŒ�X ��1=2 (see the proof of 2.8), and so E˝Q` is the ring of e� e matrices over
QŒ�X �˝Q`. Hence in this case the invv.E/D 0.

If vjp, then the statement follows from (2.13) and (2.14).
If v is real, then it corresponds to an embedding QŒ�X � ,! R, and we can regard �X

as real number such that �2X D q
m. If m is even, then X DQ.�m

2
/ or becomes isomorphic

to it over Fq2 (depending on whether �X D q
m
2 or �q

m
2 ). In either case, X has rank

1, and so invv.E/ D 0. Hence we can assume that m is odd. If q is a square in Q, then
QŒ�X �DQ, and invv.E/D 1=2 because invp.E/D 1=2 and the sum of the invariants is 0
(mod 1). Suppose q is not a square in Q, and let X 0 be the base change of X to Fq2 . Then
�X 0 D �

2
X D q

m, and so, according to the case just considered, End.X 0/ is a central simple
algebra over Q with invariant 1/2 at1. Because End.X/ is the centralizer in End.X 0/ of
QŒ�X �, we see that it has invariant 1/2 at each of the two infinite primes of QŒpq�. �
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The tensor structure on Mot.Fq/
Because Mot.Fq/ is semisimple, the Grothendieck group K.Mot.Fq// of Mot.Fq/ is the free
abelian group on the set of isomorphism classes of simple objects in Mot.Fq/. The tensor
structure on Mot.Fq/ defines a multiplication on K.Mot.Fq//, which we now determine.

Let W be a set with an action of a group � , and let ZŒ� nW � be the free abelian group
generated by � nW . Assume that every orbit is finite, and that W has a group structure
compatible with the action of � , i.e., such that

g.ww0/D .gw/.gw0/; g 2 �; w;w0 2W:

Then we can define a multiplication on ZŒ� nW � as follows: for orbits oD fw1; : : : ;wmg
and o0 D fw01; : : : ;w

0
ng, write fwiw0j j 1� i �m; 1� j � ng as a disjoint union of orbits

with multiplicities,
`
rioi , and define

o �o0 D
P
rioi :

With this structure ZŒ� nW � becomes a commutative ring (with 1 if the identity element of
W is fixed by � ). For example, to see that the associative law holds, note that if oDfw1; : : :g,
o0 D fw01; : : :g, and o00 D fw001 ; : : :g, then both o.o000/ and .oo000 are obtained by decomposing
the family fwiw0jw

00
k
g into a disjoint union of orbits with multiplicities.

For � 2W.q/, let d.�/ be the least common denominator of the numbers iv.�/ where
k�kv D q

iv.�/, v a prime of QŒ��. Note that d.� 0/D d.�/ if � 0 is conjugate to � .
Define

 WK.Mot.Fq//! ZŒ� nW.q/�
to be the Z-linear map that sends the isomorphism class of a simple objectX to d.�X / � Œ�X �.

PROPOSITION 2.17. The map  is an injective homomorphism of rings with image the set
of elements

P
nŒ�� � Œ�� such that d.�/jnŒ�� for all Œ��.

PROOF. For any object X of a semisimple Tannakian category over a field k, End.X/ is a
finitely generated semisimple k-algebra, and

X is isotypic ” End.X/ is simple ” the centre of EndX is a field.

Let C be the centre of End.X/. Then C is a product of fields, and X decomposes into a
product of isotypic components according as C decomposes into a product of fields: if

C D C1� � � ��Cr ; 1D .e1; : : : ; er/;

then
X DX1˚�� �˚Xr ; Xi D Im.ei /;

with the Xi the isotypic components of X .
Choose a fibre functor ! for Mot.Fq/ over some large field K containing Qal. For a

motiveX over Fq , the centre of End.X/ is QŒ�X �, and the factors of QŒ�X � can be identified
with the orbits of � acting on Hom.QŒ�X �;Qal/. But this last set can be identified with
the set of eigenvalues of �X acting on !.X/, and so the isotypic components of X are in
natural one-to-one correspondence with the orbits of � acting on this set of eigenvalues.
Moreover (2.8b) shows that, if mŒ�� is the multiplicity with which an orbit Œ�� occurs in
the family of eigenvalues, then .X/D

P
mŒ�� � Œ��. With this description of  , it is clear

that  takes products to products, because the family of eigenvalues of �X˝X 0 acting on
!.X˝X 0/D !.X/˝!.X 0/ is the family of products �� 0 with � and eigenvalue of �X
and � 0 an eigenvalue of �X 0 .

The remaining statements are obvious. �
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Motives over F
Let R be a ring, and consider the set of pairs .a;n/ where a 2 R and n � 1. We say that
two pairs .a;n/ and .a0;n0/ are equivalent if an

0N D a0nN for some N � 1. An equivalence
class of such pairs will be called a germ of an element of R.

Suppose R is a Q-algebra of finite dimension, and let ˛ be a germ of an element of R
represented by .a;n/. For N >> 1, the algebra QŒaN � is independent of the choice of .a;n/
and N . We denote it by QŒ˛�.

LetX be a motive over F. For any modelXn ofX over a field Fpn we obtain a Frobenius
element �Xn

2 End.Xn/ � End.X/. The germ of an element of End.X/ represented by
.�Xn

;n/ is independent of the choice ofXn and will be called the Frobenius endomorphism
�X of X .

When njn0, there is a homomorphism

� 7! �n
0=n
WW.pn/!W.pn

0

/;

and we define W.p1/D lim
�!

W.pn/. Thus an element of W.p1/ is represented by a pair
.�;n/ with � 2W.pn/, and .�;n/ and .� 0;n0/ represent the same element ofW.p1/ if and
only if �n

0N D � 0nN for some N � 1. The Galois group � D Gal.Qal=Q/ acts on W.p1/,
and we write Œ�� for the orbit of an element � .

To a simple motive X over F, we can attach an orbit Œ�X � 2 � nW.p1/ as follows: for
any representative .�;n/ of �X , Œ�X � is the image of Œ�� 2 � nW.pn/ in � nW.p1/.

THEOREM 2.18. The map X 7! Œ�X � defines a bijection

˙.Mot.F//! � nW.p1/:

PROOF. This follows easily from (2.6). �

THEOREM 2.19. Let X be a simple motive over F.

(a) The endomorphism ring End.X/ of X is a central division algebra over QŒ�X �.
(b) If �X is represented by .�;n/, then the invariant of End.X/ at a prime v of QŒ�X � is

determined by the rule:
k�kv D .p

n/invv.End.X//:

(c) The rank of X is ŒEnd.X/WQŒ�X ��1=2 � ŒQŒ�X �WQ�.

PROOF. The motive X , together with all its endomorphisms, will be defined over some field
Fq , and so this theorem follows from (2.4), (2.8), and (2.16). �

Suppose �X is represented by .�;n/. Define d.�/ to be the least common denominator
of the numbers iv.�/, where k�nkv D .pn/iv.�/.

COROLLARY 2.20. The map

ŒX� 7! d.�X / � Œ�X �W˙.Mot.F//! ZŒ� nW.p1/�

extends by linearity to a homomorphism of rings

K.Mot.F//! ZŒ� nW.p1/�:

PROOF. The proof is the same as that of (2.17). �
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The category Mot.Fq/˝Qal

Let L be a subfield of Qal. As noted in (1.4), we can obtain Mot.Fq/˝L by replacing
Zr.V / with Zr.V /˝L in the definition of Mot.Fq/. Just as before, there is a bijection

˙.Mot.Fq/˝L/! �LnW.q/; �L D Gal.Qal=L/:

Moreover, if X is a simple object of Mot.Fq/˝L, then E D End.X/ is a central division
algebra over LŒ�X � with rank ŒEWLŒ�X ��1=2 � ŒLŒ�X �WL� whose invariant at a prime v of
LŒ�X � is determined by the formula k�Xkv D qinvv.E/. There is a canonical homomorphism
of rings

K.Mot.Fq/˝L/! ZŒ�LnW.q/�:

On applying these remarks in the case LDQal, we obtain the following result.

PROPOSITION 2.21. The simple objects of Mot.Fq/˝Qal are all of rank 1, and the map
X 7! �X is a bijection

˙.Mot.Fq//!W.q/

with the property that �X˝X 0 D �X ��X 0 .

Recall (Gabriel and Demazure 1970, p. 472) that with any abelian group ˙ , there is
associated an affine group scheme D.˙/ over k such that, for any k-algebra R,

D.˙/.R/D Hom.˙;R�/:

In fact D.˙/D SpecA with AD kŒ˙�, and the group structure on D.˙/ is defined by the
following co-algebra structure on A:

�.�/D �˝�; �� D 1; inv.�/D ��1; � 2˙:

Note that ˙ can be recovered from D.˙/ because ˙ DX�.D/: The group schemes of the
form D.˙/ are said to be diagonalizable.

PROPOSITION 2.22. The Tannakian category Mot.Fq/˝Qal is neutral, and the group as-
sociated with any fibre functor over Qal is the diagonalizable group scheme P.q/ with
X�.P.q//DW.q/.

PROOF. We first recall a general result on Tannakian categories.

LEMMA 2.23. Let T be a semisimple Tannakian category over a field k of characteristic
zero. If every simple object of T has rank 1, then for any fibre functor ! of T over k,
Aut˝.!/DD.˙/ where ˙ is the set of isomorphism classes of simple objects in T with the
group structure given by tensor product.

PROOF. Let G D Aut˝.!/. Then G is a pro-reductive affine group scheme over k whose
simple representations are all of dimension 1. This implies that G is diagonalizable and that
the simple representations correspond to the characters of G. Therefore X�.G/D ˙.T/,
and G DD.˙.T//. �
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Because Mot.Fq/ is Tannakian, it has fibre functor over some field ˝, which we may
assume to be algebraically closed and to contain Qal. Then Mot.Fq/˝˝ is neutral, and
(2.23) and the analogue of (2.21) for˝ show that the affine group scheme associated with any
fibre functor is P.q/. This implies that the band of Mot.Fq/˝Qal is represented by the affine
group scheme P.q/ over Qal. The obstruction to the existence of a fibre functor over Qal is a
class in H 2.Qal;P.q// (cohomology with respect to the fpqc topology) (see Saavedra 1972,
III.3.2). In contrast to the more common cohomology groups, those with respect to the fpqc
topology commute with projective limits, and so H 2.Qal;P /D lim

 �
H 2.Qal;P 0/ where the

limit is over the algebraic quotients of P . But for an algebraic group, the cohomology groups
with respect to the fpqc and fppf topologies agree (ibid. III.3.1), and so H 2.Qal;P /D 0.�

REMARK 2.24. For each element � 2W.q/, choose a simple motive X.�/ over Fq with
Weil number � . Let ! be a fibre functor, and choose a nonzero element e� 2 !.X.�// for
each � . Then

.f�/ 7!
P
f�.e�/W

L
�2W.q/Hom.X.�/;X/! !.X/

is an isomorphism for all motives X .

Let T be a Tannakian category over a field k, and let ! be a fibre functor over some
extension fieldL. Then Aut˝.!/ is an affine group scheme overL. In general, it only has the
structure of a band over k, but when it is commutative, it is independent of the fibre functor,
and it is defined over k. (For an intrinsic way of looking at the group, see the subsection on
the fundamental group below.)

An affine group scheme over a field k is said to be of multiplicative type if it becomes
diagonalizable over kal. For fields k of characteristic zero, the correspondence between
diagonalizable groups and abstract abelian groups extends to a correspondence between
group schemes of multiplicative type and discrete � -modules, � D Gal.kal=k/.

COROLLARY 2.25. The category Mot.Fq/ has a fibre functor ! over Qal; for any such !,
Aut˝.!/ is the group scheme of multiplicative type P.q/ over Q such that X�.P.q//D
W.q/ (as a � -module).

PROOF. If ! is a fibre functor for Mot.Fq/˝Qal, then the composite

Mot.Fq/!Mot.Fq/˝Qal !
�! VecQal

is a fibre functor for Mot.Fq/. Clearly the associated affine group scheme is a group of
multiplicative type P with character group W.q/, and one verifies directly that the action of
Gal.Qal=Q/ on P agrees with its natural action on W.q/. �

REMARK 2.26. The same arguments show that Mot.F/ has a fibre functor over Qal, and that
the associated affine group scheme is the pro-torus P.p1/ with X�.P.p1//DW.p1/.

The group schemes P.q/ and P.p1/
By definition P.q/ and P.p1/ are the affine group schemes of multiplicative type over Q
such that

X�.P.q//DW.q/; X�.P.p1//DW.p1/:

Deleted
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PROPOSITION 2.27. Let F be the maximal totally real subfield of L.

(a) If p is a square in L, then W L.q/DW L
0 .q/˚q

1
2
Z; if further q is a square in Q, then

PL.q/D PL0 .q/�Gm.
(b) Let q D pn, for n >> 1; there is an exact sequence

0!W L
0 .q/=torsion

˛
�!

M
wjp

Zw
ˇ
�!

M
vjp

Zv! 0

where the sums are over the primes of L and F respectively dividing p, and ˛ and ˇ
are defined as follows:

˛.�/D
P
n.w/ �w if k�kw D qn.w/I

ˇ.
P
n.w/ �w/D

P
n.w/ � .wjF /:

PROOF. (a) For any integer m and wjp,

kq
m
2 kw D q

�ŒLWQp�
m
2 ;

and the hypothesis on L implies that ŒLWQp� is even. Obviously therefore q
m
2 2W L.q/,

and an element � of W L.q/ of weight m can be written � D .�=q
m
2 / �q

m
2 with .�=q

m
2 / 2

W L
0 .q/. If q is an even power of p, then Gal.Qal=Q/ acts trivially on q

1
2
Z, and the corre-

sponding group scheme is Gm.
(b) The only serious difficulty is in showing that ˛ maps onto the kernel of ˇ. For this

one has to be able to construct Weil numbers. We explain how to do this in (4.14). �

Define
W L.p1/D lim

�!
W L.pn/; W L

0 .p
1/D lim

�!
W L
0 .p

n/

and let PL.p1/ and PL0 .p
1/ be the groups of multiplicative type over Q with character

groups W L.p1/ and W L
0 .p

1/. Sometimes we drop the p1 from the notation. For any
N � 1, there is a commutative diagram:

W L
0 .q/

L
wjpZ

W L
0 .q

N /
L
wjpZ:

˛

� 7!�N

˛

Therefore, on passing to the limit in (2.27), we obtain the following result.

COROLLARY 2.28. (a) If p is a square in L, W L.p1/DW L
0 .p

1/˚Z and PL.p1/D
PL0 .p

1/�Gm.
(b) There is an exact sequence

0!W L
0 .p

1/!
M
wjp

Zw!
M
vjp

Zv! 0:

In particular, we see that PL.p1/ is an algebraic group.
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REMARK 2.29. The group W.p1/ is torsion-free, and the subgroup W0.p1/ is divisible:
a Weil pn-number � of weight zero is also a Weil pnN -number of weight zero, and .�;nN /
represents theN th root of the class of .�;n/ inW0.p1/. ThusW0.p1/ is a Q-vector space.

Fix a CM-field L�Qal Galois over Q. Let PL;n0 .p1/ be the torus with character group
n�1W L

0 .p
1/�W.p1/. For all n and N there is a commutative diagram

P
L;nN
0 .p1/ PL0 .p

1/

P
L;n
0 .p1/ PL0 .p

1/

�

N

�

corresponding to

.nN /�1W0.p
1/ W L

0 .p
1/

n�1W L
0 .p

1/ W L
0 .p

1/

.nN/�1

n�1

N

and so the projective system .P
L;n
0 .p1//n is the universal covering torus6 of PL0 .p

1/.

The fundamental group of Mot.F/
Let T be a Tannakian category. Then Ind.T/ also has a tensor structure, and we define
a commutative ring in Ind.T/ to be an object A of Ind.T/ together with a commutative
associative product A˝A! A admitting an identity 1! A. In order to be able to use our
geometric intuition, we define the category of affine schemes in T to be the opposite of the
category of commutative rings in Ind.T/, and we write Sp.A/ for the affine scheme in T
corresponding to A. (For more details, see Deligne 1989, �5.)

For example, if T is the category of finite-dimensional vector spaces over k, then a
commutative ring in Ind.T/ is just a commutative k-algebra in the usual sense, and the
category of affine schemes in T can be identified with the category of affine schemes over k.

Since tensor products exist in the category of commutative rings in Ind.T/, fibre products
exist in the category of affine schemes in T. Therefore, we can define an affine group
scheme in T to be a group in the category of affine schemes in T. An action of an affine
group scheme G D Sp.A/ in T on an object X of T is a morphism X !X˝A satisfying
the usual axioms for a comodule (Waterhouse 1979, 3.2).

THEOREM 2.30. Let T be a Tannakian category over a field k. There exists an affine group
scheme �.T/ in T together with an action of �.T/ on every object X of T such that, for every
fibre functor ! over a k-algebra R, the actions of the affine group scheme !.�.T// on the
R-modules !.X/ identifies !.�.T// with Aut˝R.!/. The affine group scheme �.T/ and the
actions of it on the objects of T are uniquely determined by this condition.

PROOF. See Deligne 1990, 8.13, 8.14. �

EXAMPLE 2.31. Let TD Repk.G/ with G D SpecA. Then �.T/DG. The action of �.T/
on the objects of T extends to objects of Ind.T/, and, for TD Reppk.G/, the action of G on
A is induced by the action of G on itself by inner automorphisms. (Ibid. 8.14.)

6For a torus T , the projective system .Tn;Tmn
m
�! Tn/ with Tn D T for all n is called the universal covering

torus of T . It has character group X�.T /˝Q.
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REMARK 2.32. An exact tensor functor �WT1! T2 of Tannakian categories over a field k
defines a morphism �.T2/! �.�.T1// of affine group schemes in T2. For each object X of
T1, �.�.T1// acts on �.X/, and this action is compatible via �.T2/! �.�.T1// with the
natural action of �.T2/ on �.X/. (Ibid. 8.15.)

THEOREM 2.33. Let T1 and T2 .¤ 0/ be Tannakian categories over a field k, and let
�WT1! T2 be an exact tensor functor. Then � defines a tensor equivalence of T1 with the
category of pairs .Y;�/ consisting of an object Y of T2 and an action � of �.�.T1// on Y
compatible with the action of �.T2/.

PROOF. See Deligne 1990, 8.17. �

REMARK 2.34. When T is a Tannakian category over k and � is a fibre functor over k,
then (2.33) becomes the fundamental classification theorem for neutral Tannakian categories
(Breen 1992, �1; Deligne and Milne 1982, 2.11).

COROLLARY 2.35. Let �WT1! T2 be an exact tensor functor of Tannakian categories over
a field k. If �.T2/! �.�.T1// is an isomorphism, then �WT1! T2 is an equivalence of
tensor categories.

PROOF. Immediate consequence of the theorem. �

COROLLARY 2.36. Let T be a Tannakian category over k. An object X in T is isomorphic
to a direct sum of copies of 1 if and only if �.T/ acts trivially on it.

PROOF. Take T1 in (2.33) to be the category .� Veck/ of multiples of 1 in T, and note that
�.Veck/D 1. �

REMARK 2.37. It follows from (2.36) that we can identify Veck with the subcategory of
T of objects on which �.T/ acts trivially. If �.T/D Sp.A/ is commutative, then the action
of �.T/ on A is trivial, and so �.T/ is an affine group scheme in the Tannakian category
Veck � T, i.e., it is an affine group scheme over k in the usual sense.

PROPOSITION 2.38. Let h1i (�VecQ) be the subcategory of Mot.Fq/ on which �.Mot.Fq//
acts trivially. Then �.Mot.Fq// is the affine group scheme in h1i of multiplicative type
having character group W.q/. Similarly, �.Mot.F// is the affine group scheme in the
subcategory h1i of Mot.F/ of multiplicative type having character group W.p1/.

PROOF. The affine group scheme �.Mot.Fq// in Mot.Fq/ is commutative because its image
under one (hence every) fibre functor is commutative. The remaining statements follow from
(2.25) and (2.26). �

In (3.4) we make the result more precise by describing the action of � on each motive.

The decomposition of Mot.F/ into a tensor product
We first recall from Deligne 1990, �5, the notion of the tensor product of two Tannakian
categories. We say that a k-bilinear functor is left (or right) exact if it is left (or right) exact
in each variable.
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THEOREM 2.39. Let T1 and T2 be Tannakian categories over a field k which, for simplicity,
we take to be of characteristic zero. There exists a category T1˝T2 together with a right
exact k-bilinear functor

˝WT1�T2! T1˝T2

such that, for every abelian k-linear category C, the functor˝ defines an equivalence from
the category of right exact k-linear functors T1˝T2! C to the category of right exact
k-bilinear functors T1�T2! C.

PROOF. See Deligne 1990, 5.13.7 �

PROPERTIES

(2.40.1) The pair .T1˝T2;˝/ is uniquely determined up to an equivalence which itself is
unique up to a unique isomorphism (Deligne 1990, p. 143).

(2.40.2) The functor˝ is exact in each variable (ibid. 5.13).
(2.40.3) For objects X1;Y1 of T1 and X2;Y2 of T2,

Hom.X1;Y1/˝k Hom.X2;Y2/
�
�! Hom.X1˝X2;Y1˝Y2/:

(2.40.4) There is a unique tensor structure on T1˝T2 such that

˝.X1˝Y1;X2˝Y2/DX1˝Y1˝X2˝Y2;

X1;Y1 2 ob.T1/; X2;Y2 2 ob.T2/:

(The ˝ on the left is the functor ˝WT1 � T2 ! T1˝ T2/. Relative to this tensor
structure, T1˝T2 is a Tannakian category (ibid. 5.17, 6.9).

(2.40.5) The functor

inj1WT1 D T1˝Veck! T1˝T2; X1 7!X1˝1;

identifies T1 with a full subcategory of T1˝T2 stable under passage to subquotients.
A similar statement holds for T2, and

˝.X1;X2/D .X1˝1/˝ .1˝X2/:

The canonical map

�.T1˝T2/! inj1.�.T1//� inj2.�.T2//

is an isomorphism. If T1 and T2 are both semisimple, then so also is T1˝T2, and every
object of T1˝T2 is a direct factor of an object of the form X1˝X2, X1 2 ob.T1/,
X2 2 ob.T2/. Ibid. p. 183.

Let Mot0.F/ be the subcategory of Mot.F/ of motives of weight zero, and let E be the
strictly full Tannakian subcategory of Mot.F/ generated by a supersingular elliptic curve A
over F. Since any two such curves are isogenous, E is independent of the choice of A. Note
that E is graded and contains the Tate object.

7Added. For a study of tensor products of categories, see Lopez Franco, J. Algebra 396 (2013), 207–219.
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THEOREM 2.41. The functor

.X;Y / X˝Y WMot0.F/�E!Mot.F/

defines an equivalence of tensor categories

�WMot0.F/˝E!Mot.F/:

PROOF. According to (2.35), it suffices to check that the homomorphism

�.Mot.F//! �.�.Mot0.F/˝E//

induced by � is an isomorphism. But, by (2.40.5),

�.Mot0.F/˝E/D �.Mot0.F//��.E/;

and the homomorphism can be identified with the isomorphism

P.p1/! P0.p
1/�Gm

of (2.28a). �

Thus the study of Mot.F/ breaks down into the study of Mot0.F/ and E.

The polarization on Mot.F/˝R

For any CM-field L�Qal Galois over Q and any n� 1, let MotL;n0 .F/ be the subcategory of
Mot.F/ containing those motives X such that �X 2 n�1W L

0 .p
1/. The fundamental group

of MotL;n0 .F/ is PL;n0 .p1/ (see 2.29 for this notation).

PROPOSITION 2.42. For any CM-field L�Qal Galois over Q, MotL;n0 .F/˝R is neutral.

PROOF. As we explained in the proof of (2.22), the obstruction to the existence of a fibre
functor is an element of H 2.R;PL;n0 .p1//. But PL;n0 .p1/R is an anisotropic torus over
R, and hence is isomorphic to U d , d D dimPL;n0 .p1/, where U is the kernel of

1! U ! .Gm/C=R!Gm! 1:

Clearly H 2.R;U /DH 1.R;Gm/D 0, and so H 2.R;PL;n0 .p1//D 0. �

We shall need the notion of a polarization of a nongraded Tannakian category. Let T
be a Tannakian category over R, and let Z be the centre of �.T/. We can regard Z as a
commutative affine group scheme over R in the usual sense (cf. 2.38), andZ.R/DAut˝.idT/.
Let � 2Z.R/ and suppose there is given for each object X of T an equivalence class (for the
relation of compatibility) ˘.X/ of Weil forms of parity �. We say that ˘ is a polarization
on T if

(2.43.1) for all X and Y

' 2˘.X/;  2˘.Y / H) '˚ 2˘.X˚Y /I
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(2.43.2) for all X and Y

' 2˘.X/;  2˘.Y / H) '˝ 2˘.X˝Y /:

THEOREM 2.44. There are exactly two graded polarizations on Mot.F/˝R.

PROOF. A graded polarization on Mot.F/˝R restricts to a graded polarization on E and
a polarization of parity 1 on Mot0.F/˝R, and so the theorem follows from the next two
lemmas. �

LEMMA 2.45. There are exactly two graded polarizations on E˝R.

PROOF. The fundamental group of E is Gm. Therefore E˝R is determined up to a tensor
equivalence inducing the identity map on Gm by its cohomology class in H 2.R;Gm/D
Br.R/D 2�1Z=Z. This class can not be zero, because E does not have a fibre functor over
R. Therefore E˝R is Gm-equivalent to V1, which, as we observed in (1.7), has exactly
two graded polarizations. �

LEMMA 2.46. There exists a unique polarization on Mot0.F/˝R with parity 1.

PROOF. We first recall the classification of polarizations on neutral Tannakian categories
over R (Deligne and Milne 1982, pp. 179–183). Let G be an algebraic group over R with
centre Z, and let C 2 G.R/. A G-invariant bilinear form  WV �V ! R is said to be a
C -polarization if

.x;y/ 7!  .x;Cy/

is a positive-definite symmetric form on V . When every object of RepR.G/ has a C -
polarization, then C is called a Hodge element. There is then a polarization˘C of RepR.G/
with parity C 2 for which the positive forms are exactly the C -polarizations. Every polar-
ization of RepR.G/ is of the form ˘C for some Hodge element. If C and C 0 are Hodge
elements, then there exists a g 2 G.R/ and a unique z 2 Z.R/ such that C 0�1; moreover
˘C 0 D z˘C , and so ˘C 0 D˘C if and only if C and C 0 are conjugate in G.R/. An element
C 2G.R/ such that C 2 2Z.R/ is a Hodge element if and only if adC is a Cartan involution.

Fix a CM-field L, and consider the subcategory MotL;n0 .F/ of Mot.F/ described above.
The polarizations of parity 1 of MotL;n0 .F/˝R are in one-to-one correspondence with the
elements C of PL;n0 .R/ of order 2. Consider one such polarization ˘C . If ˘C extends to a
polarization of MotL;2n0 .F/˝R, say to ˘C 0 where C 0 is an element of order 2 in PL;2n0 .R/,
then C 0 maps to C under the canonical map (2.29) PL;2n0 .R/! P

L;n
0 .R/. But it is clear

from the commutative diagram in (2.29) that this map kills all elements of order 2. Therefore
C D 1, and we have proved the uniqueness.

Because .PL;n0 /R is compact, id
P

L;n
0

is a Cartan involution, and so the element C D 1

defines a polarization on MotL;n0 .F/. For varying n and L, these polarizations are compatible,
and so they define a polarization on

S
L;nMotL;n0 .F/DMot0.F/. �

REMARK 2.47. We have shown that the Tate conjecture implies that Mot.F/˝R is polariz-
able. Grothendieck’s standard conjectures imply more, namely, that there is a polarization
on Mot.F/ whose Weil forms for the motive h.V / of an algebraic variety V have a specific
algebraic construction (Saavedra 1972, VI.4.4). In particular, it implies that there is a po-
larization ˘ on Mot.F/ such that for every abelian variety A the Weil form defined by a
polarization on A (in the usual sense of algebraic geometry) lies in ˘.h1.A//.
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Alternative approach
In the above we have made use of Deligne’s results on the Weil conjectures. Grothendieck
originally envisaged that these results would be obtained as a consequence of his standard
conjectures (Grothendieck 1969). The standard conjectures imply directly that Mot.Fq/ is a
polarizable (hence semisimple) Tannakian category. Using only that, we have the following
result.

PROPOSITION 2.48. Let X be a motive of weight m over Fq , and let ˛ 7! ˛t be the
involution of End.X/ defined by a Weil form '. The following statements hold for � D �X :

(a) � �� t D qm; hence QŒ�� is stable under the involution ˛ 7! ˛t ;
(b) QŒ��� End.X/ is a product of fields;
(c) for every homomorphism �WQŒ��! C, �.� t /D �.��/, and j��j D qm=2.

PROOF. (a) By definition, ' is a morphism X˝X ! T˝.�m/. It is invariant under � , and
so

'.�x;�y/D �.'.x;y//D qm'.x;y/D '.x;qmy/:

But '.�x;�y/D '.x;� t�y/, and because ' is nondegenerate, this implies that � t �� D qm.
Therefore QŒ�� is stable under ˛ 7! ˛t , and we obtain (a).

(b) Let R be a commutative subalgebra of End.X/ stable under ˛ 7! ˛t , and let r be
a nonzero element of R. Then s D rr t ¤ 0 because Tr.rr t / > 0. As st D s, Tr.s2/ D
Tr.sst / > 0, and so s2¤ 0. Similarly s4¤ 0, and so on, which implies that s is not nilpotent,
and so neither is r . Thus R is a finite-dimensional commutative Q-algebra without nonzero
nilpotents, and the only such algebras are products of fields.

(c) In an abuse of notation, we set RŒ�� D R˝Q QŒ��. As in (b), this is a product
of fields stable under ˛ 7! ˛t . This involution permutes the maximal ideals of RŒ�� and,
correspondingly, the factors of RŒ��. If the permutation were not the identity, then ˛ 7! ˛t

would not be a positive involution. Therefore each factor of RŒ�� is stable under the
involution. The only involution of R is the identity map (= complex conjugation), and the
only positive involution of C is complex conjugation. Therefore we obtain the first statement
of (c), and the second then follows from (a). �

This (conjectural) proof of the Riemann hypothesis for motives is very close to Weil’s
original proof for abelian varieties (Weil 1940).

Mixed motives over a finite field
THEOREM 2.49. Every mixed motive over a finite field is a direct sum of pure motives.

PROOF. If the category of mixed motives over a finite field does not exist, then there is
nothing to prove. Otherwise, according to any reasonable definition, a mixed motive X over
Fq will have an increasing weight filtration,

� � � �Wi�1X �WiX � �� �

such thatWiX=Wi�1X is a pure motive of weight i. Let �X be the Frobenius endomorphism
of X . The same argument as in �1 shows that there is a polynomial Pi .X/ with rational
coefficients such that Pi .�X / �X DWiX=Wi�1X, and so X D

L
iWiX=Wi�1X . �
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REMARK 2.50. As S. Lichtenbaum pointed out to me, the theorem is not expected to be
true for the category of mixed motives over a finite field with coefficients in Z (a Z-linear
Tannakian category). In fact, it is expected that Ext1.Z;Z.1//� k� in the category of mixed
motives over a field k.

Notes
The results (2.41), (2.46), and (2.49) were explained to me by Deligne (who credits them to
Grothendieck). For the rest, this section represents my attempt to extend the Weil-Tate-Honda
theory of abelian varieties over finite fields to motives.

3 Characterizations of the Category of Motives over
F and its Fibre Functors

Characterization of P.q/ and P.p1/

Let P D P.q/, and let � D Gal.Qal=Q/. Then

P.Q/D Hom.X�.P /;Qal�/� D Hom.W.q/;Qal�/� :

The inclusion map W.q/ ,!Qal� commutes with the action of �—that is how we define
the Galois action on W.q/—and hence corresponds to an element f 2 P.Q/, which we call
the Frobenius element. It is characterized by the following condition: if �� is the character
of P corresponding to the Weil q-number � , then ��.f /D � .

PROPOSITION 3.1. Let P D P.q/. Let T be an algebraic group over Q of multiplicative
type and a an element of T .Q/ such that �.a/ 2W.q/ for all � 2 X�.T /. Then there is a
unique homomorphism ˛WP ! T carrying f to a.

PROOF. If ˛ exists, then for every character � of T , we must have

.�ı˛/.f /D �.a/:

Define ˛ to be the homomorphism corresponding to the map on characters

X�.T /!W.q/; � 7! �.a/: �

Obviously, the pair .P.q/;f / is uniquely determined by the condition in the proposition
up to a unique isomorphism.

For each L Galois over Q, there is similarly a canonical element f L 2 PL.pn/ having
the following universal property: for any algebraic group T of multiplicative type over Q and
a 2 T .Q/ such that �.a/ 2W L.pn/ for all � 2 X�.T /, there is a unique homomorphism
˛WPL.pn/! T such that ˛.f L/D a.

There is a similar, but more complicated, characterization of P.p1/, but first we
compare P.p1/ with P.q/.
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PROPOSITION 3.2. Let L�Qal be a CM-field Galois over Q, and let m be the number of
roots of 1 in L. For n >> 1, there is an exact sequence

0! PL.p1/! PL.pn/
f L 7!1
�����! Z=mZ! 0

identifying PL.p1/ with the identity component of PL.pn/. For every n, there is an exact
sequence

P.p1/! P.pn/
f 7!1
���!bZ! 0:

PROOF. It follows from (2.27b) that, for n >> 1, the map

W L.pn/=torsion!W L.p1/

is bijective. Since the torsion subgroup of W L.pn/ is �.L/, the group of roots of 1 in L,
this gives an exact sequence

0! �.L/!W L.pn/!W L.p1/! 0:

This is the sequence of character groups of the first sequence in the proposition. Because
X�.PL.p1// is the quotient of X�.PL.pn// by its torsion subgroup, PL.p1/ is the
identity component of PL.pn/. The second exact sequence can be derived in the same way
as the first. �

Consider f L 2 PL.pn/.Q/. Then .f L/m 2 PL.p1/.Q/ if m is the number of roots
of 1 in L, and we write f Lnm for this element. In this way we obtain a family .f Ln /n>>1 of
elements of PL.p1/.Q/ with the property that .f Ln /

N D f LnN for all N > 1.
If L0 � L, then f L

0

n 7! f Ln under PL
0

.p1/.Q/! PL.p1/.Q/ whenever f L
0

n is
defined. Unfortunately, as L grows, the smallest n for which f Ln is defined tends to infinity.
Thus for no n do we get an element .f Ln /L 2 P.p

1/.Q/ def
D lim
 �

PL.p1/.Q/.
This suggests the following definition: let M be an affine group scheme over a field

k, and write it as a projective limit, M D lim
 �

ML, of its quotients of finite-type; suppose
that for each L and n >> 1 (depending on L) there is given an element f Ln 2M

L.k/;
if for each L < L0 and njn0, the element .f Ln /

n0=n is the image of f L
0

n0 under the map
ML0.k/!ML.k/, then we call the family .f Ln / a germ of an element ofM.k/. Note that,
for any homomorphism ˛WM !G fromM into an algebraic groupG, there is a well-defined
element ˛.fn/ 2G.k/, n >> 1, since we can set ˛.fn/D ˛.f Ln / for any choice of L such
that ˛ factors through ML.

PROPOSITION 3.3. There is a unique germ of an element f D .f Ln / in P.p1/.Q/ having
the following property: for every algebraic group T over Q of multiplicative type and element
a 2 T .Q/ such that �.a/ 2 W.pn/ for all � 2 X�.T /, there is a unique homomorphism
˛WP ! T such that ˛.fnN /D aN for some N � 1.

PROOF. Straightforward from the above discussion. �

Applications
We apply the above results and Theorem 2.33 to obtain descriptions of Mot.Fq/, Mot.Fq/˝
Q`, and Mot.F/˝Q`.

Recall (2.38) that �.Mot.Fq//D P.q/, and that it acts on each object X of Mot.Fq/.
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LEMMA 3.4. The element f of P.q/.Q/ acts on a motive X over Fq as �X ; the germ of
an element f of P.p1/.Q/ acts on a motive X over F as �X .

PROOF. The first statement follows directly from the various definitions, and the second
follows directly from the first. �

PROPOSITION 3.5. Let q D pn. The natural functor

Mot.Fq/!Mot.F/

identifies Mot.Fq/ with the category of pairs .X;�/ consisting of a motive X over F and an
endomorphism � of X such that .�;n/ represents �X .

PROOF. According to (2.33), the functor identifies Mot.Fq/ with the category of pairs .X;�/
in which X is a motive over F and � is an action of P.q/ on X compatible with the action of
P.p1/. It follows from (3.1) that to give an action of P.q/ on X commuting with the action
of the endomorphisms of X is to give an element � 2 .Gm/QŒ�X �=Q such that �.�/ 2W.q/
for all characters �. The action of P(q) on X defined by � is compatible with the action of
P if and only if .�;n/ represents �Xn

. �

Since the proposition determines Mot.Fq/ in terms of Mot.F/, we shall concentrate on
characterizing Mot.F/.

PROPOSITION 3.6. The choice of a functor

!1WMot.Fq/˝R! V1

as in (1.10) identifies Mot.Fq/˝R with the category of pairs .V;�/ consisting of an object
V of V1 and a semisimple endomorphism � of V whose eigenvalues on the part of V of
weight m are Weil q-numbers of weight m. Similarly, the choice of a functor

!1WMot.F/˝R! V1

identifies Mot.F/˝R with the category of pairs .V;.�n// where .�n/ is a germ of an
endomorphism of V satisfying an analogous condition.

PROOF. The fundamental group of V1 is Gm, and the map Gm! P.q/R induced by !1
is the weight map w (corresponding to the map on characters � ! wt.�/). According to
(2.33), !1 identifies Mot.Fq/˝R with the category of pairs .V;�/ in which V is an object
of V1 and � is an action of P on V compatible with the action of Gm. To give such a � is
the same as to give an endomorphism � as in the statement of the proposition. �

Let Frobn denote the geometric Frobenius element x 7! xp
�n

of Gal.F=Fpn/.

PROPOSITION 3.7. Let q D pn. For `¤ p;1, the functor

!`WMot.Fq/˝Q`! V`.Fq/

identifies Mot.Fq/˝Q` with the full subcategory of V`.Fq/ consisting of semisimple
representations .V;�/ of Gal.F=Fpn/ such that the eigenvalues of �.Frobn/ are Weil q-
numbers. The functor

!`WMot.F/˝Q`! V`.F/
identifies Mot.F/˝Q` with the full subcategory of V`.F/ consisting of germs of semisimple
representations .V; Œ��/ such that, for any � 2 Œ�� and any n for which it is defined, �.Frobn/
has eigenvalues that are Weil pn-numbers.
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PROOF. The functor !` is fully faithful, and so (2.33) shows that it identifies Mot.Fq/˝Q`
with the full subcategory of V`.Fq/ of objects for which the action of �.V`.F// factors
through �.Mot.Fq/˝Q`/. The fundamental group of V`.Fq/ is the group of multiplicative
type with character group U , the group of units in the ring of integers in Qal

`
, and the map

on fundamental groups corresponds to the inclusion W.q/ ,! U defined by some choice
of an embedding Qal ,! Qal

`
. The first statement is now clear, and the second is proved

similarly. �

PROPOSITION 3.8. The functor

!pWMot.Fq/˝Qp! Vp.Fq/;

identifies Mot.Fq/˝Qp with the full subcategory of objects .M;FM / in Vp.Fq/ such that
�M acts semisimply on M with eigenvalues that are Weil q-numbers. The functor

!pWMot.F/˝Qp! Vp.Fq/;

identifies Mot.F/˝Qp with the full subcategory of objects .M;FM / in Vp.F/ such that, for
some model .M 0;FM 0/ of .M;FM / over a finite field Fq , �M 0 acts semisimply on M with
eigenvalues that are Weil q-numbers.

PROOF. The proof is similar to that of (3.7). �

The cohomology of P

Choose a prime w0 of Qal lying over p, and use the same symbol to denote its restriction
to any subfield. Let L�Qal be a CM-field Galois over Q, and let D.w0/� Gal.L=Q/ be
the decomposition group of w0. Define E D LD.w0/, and let F be the maximal totally real
subfield of E. Thus either � …D.w0/ and E is a CM-field with F as its maximal totally real
subfield, or � 2D.w0/ and E and F are equal and totally real.

PROPOSITION 3.9. There is an exact sequence

0! .Gm/F=Q! .Gm/E=Q! PL0 .p
1/! 0:

PROOF. To verify that a sequence of tori is exact, it suffices to check that the corresponding
sequence of character groups is exact. But on applying X� to the sequence in the corollary,
we obtain the sequence in (2.28b). �

PROPOSITION 3.10. There are exact sequences:

0! F �!E�!H 0.Q;PL0 .p
1//! 0;

0!H 1.Q;PL0 .p
1//! Br.F /! Br.E/!H 2.Q;PL0 .p

1//! 0:

PROOF. Except for the zero at the right of the second sequence, the statement follows
directly from the preceding proposition and Hilbert’s Theorem 90, but a theorem of Tate
shows that H 3.F;Gm/

�
�!

L
v realH

3.Fv;Gm/, and H 3.R;Gm/DH 1.R;Gm/D 0 (see
Milne 1986, I.4.10). �
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For an affine group scheme G over a field K, we define

H r.K;G/D lim
 �

H r.K;G0/ (Galois cohomology)

where the limit is over the quotients G0 of G of finite type over K. When K is a number
field, we set

Kerr.K;G/D Ker
�
H r.K;G/!

Y
v
H r.Kv;G/

�
(product over all primes of K).

PROPOSITION 3.11. Let L�Qal be a CM-field Galois over Q. Then:

(a) Ker1.Q;PL0 .p
1//D 0;

(b) H 1.Q;P0.p1//D 0DH 1.Q;P.p1//;
(c) H 2.Q;PL0 .p

1//
�
�!˚`H

2.Q`;PL0 .p
1// (sum over all primes of Q);

(d) Ker2.Q;PL.p1//D 0 when L contains
p
p.

PROOF. 8We drop “p1” from the notation.
(a) Let L be a CM-subfield of Qal, finite and Galois over Q. Then

H 1.Q;PL0 /D Br.E=F /

where E is the fixed field of the decomposition group D.w0/ and F is the largest real
subfield of E. This implies (a).

(b) For a torus T , let zT be the universal covering of T , i.e., zT is a the projective system
.Tn;Tmn

m
�! Tn/ with Tn D T for all integers n� 1. For any additive covariant functor to

abelian groups, H. zT /D Hom.Q;H.T //; in particular H. zT /D 0 if H.T / is torsion. Thus

H 1.Q;ePL0 /D Hom.Q;Br.E=F //D 0:

The map P0! PL0 factors through the map ePL0 ! PL0 , and so the map H 1.Q;P0/!
H 1.Q;PL0 / is zero. This shows that H 1.Q;P0/D 0, and a similar argument shows that
H 1.Q;P /D 0.

(c) Consider the exact commutative diagram,

0 0

0 Br.E=F / Br.F / Br.E/ H 2.Q;PL0 / 0

0
L
vBr.Ew=Fv/

L
vBr.Fv/

L
w Br.Ew/

L
vH

2.Qp;PL0 / 0

0 1
2
Z Q=Z Q=Z 0

0 0 0

2

8The original proof of 3.11 was garbled.
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in which the two middle columns are given by class field theory, and the top two rows
are the cohomology sequences of the sequence in (3.9). A diagram chase shows that
H 2.Q;PL0 /

�
�!˚`H

2.Q`;PL0 /.
(d) If

p
p 2 L, then PL D PL0 ˚Gm, and

Ker2.Q;PL/D Ker2.Q;PL0 /˚Ker2.Q;Gm/D 0: �

Characterization of Mot.F/
As we noted in �2, the Frobenius endomorphisms of motives over Fq form a tensor endomor-
phism of the identity functor, i.e., ˛ ı�X D �Y ı˛ for any morphism ˛WX ! Y , �1 D id,
and �X˝Y D �X ˝�Y . In order to handle the Frobenius endomorphisms of motives over F,
we define (for any Tannakian category T) a germ of a tensor endomorphism of idT to be a
family �X of germs of endomorphisms satisfying the same three conditions. For example,
the Frobenius endomorphisms of the motives over F form a germ of a tensor endomorphism
of idMot.F/.

Consider a Tannakian category T over Q and a germ � of a tensor endomorphism of idT

such that:

(3.12.1) For all objects X , EndX is a semisimple algebra with centre QŒ�X � (hence T is a
semisimple category).

(3.12.2) For all simple objects X and representatives .�;n/ for �X , � is a Weil pn-number.
Moreover, the invariants of E D End.X/ (as a central division algebra over QŒ�X �)
are given by the rule,

k�kv D .p
n/invv.E/;

and
rankX D ŒEWQŒ�X ��

1
2 � ŒQŒ�X �WQ�:

(3.12.3) The map X 7! Œ�X � defines a bijection ˙.T/! � nW.p1/.

For example, the pair .Mot.F/; .�X // satisfies these conditions, and the next theorem
shows that they determine it up to equivalence.

THEOREM 3.13. Let .T;�/ and .T0;� 0/ be two pairs satisfying the conditions (3.12).

(a) There is a tensor equivalence S WT! T0 such that, for all objects X of T, S.�X /D
�S.X/.

(b) If S1 and S2 are two such tensor equivalences, then there is an isomorphism ˛WS1!

S2 of tensor functors; if ˛0 is a second such isomorphism, then there is an a 2 Q�
such that ˛0 D w.a/ �˛ (i.e., such that ˛0mX ˛X if X is pure of weight m).

PROOF. The proof will occupy the rest of this subsection.
Let T be a semisimple Tannakian category over a field K of characteristic zero, and

consider T˝L where L � K is a field. Let X be a simple object of T, and let C be the
centre of End(X). Then C is a field, and X˝K L decomposes into a sum of isotypic objects
according as C ˝K L decomposes into a product of fields (see the proof of 2.17). In more
detail, if

C ˝K LD C1� � � ��Cr ;
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then
End.X˝L/D

Y
End.X/˝C Ci

and End.X/˝C Ci is a central simple algebra over Ci .

LEMMA 3.14. In the above situation, there is a well-defined map

˙.T˝L/!˙.T/

sending the isomorphism class ŒY � of a simple object Y of T˝L to ŒX� if Y is a factor
X ˝L. The map is surjective, and, when L is Galois over K, its fibres are the orbits of
Gal.L=K/ acting on ˙.T˝L/.

PROOF. From (1.3) we know that T˝L is a semisimple Tannakian category over L and
every object of T˝L is a factor of an object of the form X ˝L, X 2 ob.T/. Let Y be a
simple object of T˝L. Clearly it is a factor of X ˝L for some simple X . If it is also a
factor of X 0˝L with X 0 simple, then

Hom.X;X 0/˝LD Hom.X˝L;X 0˝L/¤ 0;

and so X �X 0. Thus the map is well-defined. It is obviously surjective.
Assume L is a Galois extension of K. The fibres of the map are invariant under the

action of Gal.L=K/, and hence are the unions of orbits. Let X be a simple object of T, and
let C be the centre of End.X/. The elements of the fibre over [X] are indexed by the set
of factors of C ˝K L, which equals HomK.C;L/, and Gal.L=K/ acts transitively on this
set. �

When we apply the lemma to a pair .T;�/ as in (3.12) and LDQal, we see that there is
a canonical map

˙.T˝Qal/!˙.T/;

and for a simple X in T, the fibre over ŒX� is HomQ.QŒ�X �;Qal/. But this set can be
identified with Œ�X �, and so there is a canonical map ˙.T˝Qal/!W.p1/ making the
following diagram commute:

˙.T˝Qal/ W.p1/

˙.T/ � nW.p1/:

Now, the same arguments as in the proof of (2.22) show that there is a unique isomorphism
P ! �.T/ such that f acts on X as �X , all X . Here P D P.p1/.

Let .T0;� 0/ be a second pair satisfying (3.12). A tensor equivalence S WT! T0 maps � to
� 0 if and only it induces the identity map on P . Therefore, there exists such an S if and only
if T and T0 define the same class9 in H 2.Q;P /. Thus we have to show that the conditions
(3.12) determine this class.

Let X be a simple object of T. The action of P on X defines a homomorphism P !

.Gm/QŒ�X �=Q, which is uniquely determined by the fact that it sends f to �X .

9We are using that the gerb of fibre functors determines a Tannakian category up to a unique equivalence
(Saavedra 1972, III.3.2.3.2), that gerbs with band B are classified up to B-equivalence by H2.k;B/ (this is how
H2.k;B/ is defined in (Giraud 1971)), and that when B is the band defined by a smooth affine commutative
group scheme P , H2.k;B/ equals the group H2.k;P / defined above (Saavedra 1972, III.3.1).
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LEMMA 3.15. The map

H 2.Q;P /!H 2.Q; .Gm/QŒ�X �=Q/D Br.QŒ�X �/;

sends the class of T in H 2.Q;P / to the class of EndX in Br.QŒ�X �/.

PROOF. This can be proved by the same argument as (Saavedra 1972, VI.3.5.3). �

Thus we have to prove the following statement:
(*) An element c of H 2.Q;P / is zero if its image in H 2.Q; .Gm/QŒ��=Q/ is zero for all

� 2W.p1/.
The group P D P0 �Gm, and the projection P ! Gm can be identified with the map
P ! .Gm/QŒ��=Q where � is represented by .p

n
2 ;n/ for any even n (see 2.28). Therefore

the component of c in H 2.Q;Gm/ is zero. Henceforth, we regard c as an element of
H 2.Q;P0/.

Let cL be the image of c in H 2.Q;PL0 /. Because Ker2.Q;PL0 / D 0 (see 3.11), it
suffices to show that the image of cL in H 2.Q`;PL0 / is zero for all `. This is automatic for
`D1 because H 2.R;PL0 /D 0 (see the proof of 2.42).

Thus consider an `¤1, and let D.`/ be the decomposition group of some prime of
Qal lying over `. Let � 2W L

0 .p
1/. A standard duality theorem (Milne 1986, I.2.4) shows

that the map
H 2.Q`;PL0 /!H 2.Q`; .Gm/QŒ��=Q/

is obtained from the map

X�.PL0 /
D.`/
 X�..Gm/QŒ��=Q/D.`/

by applying the functor Hom.�;Q=Z/.
Thus we have to prove the following statement:
(**) Every element ofW L

0 .p
1/D.`/ is the image of an element ofX�..Gm/QŒ��=Q/D.`/

for some � 2W L
0 .p

1/.
We note that

X�..Gm/QŒ��=Q/D ZHom.QŒ��;Qal/

and that the map
ZHom.QŒ��;Qal/

!W L
0 .p

1/

is � 7! �.�/.
Let � 2 W L

0 .p
1/ be represented by .� 0;n/, � 0 2 W L

0 .p
n/. By definition, QŒ�� D

QŒ� 0N � for all N >> 1. If � is fixed by D.`/, then the elements of D.`/ multiply � 0 by
roots of 1, and so � 0N is fixed by D.`/ for all N >> 1. Hence QŒ�� (as a subfield of Qal/ is
fixed by D.`/, and if we denote the given inclusion QŒ�� ,!Qal by �0, then � is the image
of the element �D �0 2 .ZHom.QŒ��;Qal//D.`/, which proves (**).

Thus we have a tensor equivalence S1WT! T0 sending � to � 0. If S2 is second such
equivalence, then Hom˝.S1;S2/ is a torsor for Aut˝.S1/D P . But H 1.Q;P /D 0, and so
the torsor is trivial. Therefore, there exists a tensor isomorphism ˛WS1! S2. A second such
isomorphism ˛0 is of the form ˛0 D ˛ ıˇ where ˇ is a tensor automorphism of S1. But this
is an element of P.Q/. The next lemma implies that P0.Q/D 0, and so P.Q/DQ�. �

LEMMA 3.16. For any torus T over Q, eT .Q/D 0.
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PROOF. An element of eT .Q/ is a family .an/n�1, an 2 T .Q/, such that an D .amn/m. In
particular, an is infinitely divisible. If T D .Gm/L=Q, then T .Q/D L�, and

T
L�m D 1.

Every torus T can be embedded in a product of tori of the form .Gm/L=Q, and so againT
T .Q/m D 1. �

REMARK 3.17. (a) We shall prove in (3.32) below, that, without assuming any conjectures,
there does exist a pair .T;�/ satisfying (3.12).

(b) The same proof shows that the pair .Mot0.F/;�/ is characterized by the conditions
(3.12) (with � required to be a Weil pn-number of weight 0 in (3.12.2)) up to a tensor
equivalence which itself is uniquely determined up to unique isomorphism.

(c) The category Mot.F/ has a canonical Tate object T and a canonical isomorphism
class of objects

fh1.A/ j A a supersingular elliptic curve over Fg:

There is a unique polarization ˘ on Mot.F/ such that, whenever A is a supersingular elliptic
curve, ˘.h1.A// is the set of Weil forms defined by a polarization of A. For a 2Q�, w.a/
acts on T as a�2, and w.�1/ maps ˘ to a different polarization. Consequently, the system
.Mot.F/;�;T;fh1.A/g;˘/ is uniquely determined up to a tensor equivalence (preserving �;
T , fh1.A/g, and ˘ ) which itself is uniquely determined up to a unique isomorphism.

Characterization of Mot.F/ and its fibre functors
We now characterize Mot.F/ together with its standard fibre functors. Consider a triple
.T;�;!/ where

(3.18.1) T is a semisimple Tannakian category over Q for which there exists a tensor functor
!1WT! V1 preserving weights;

(3.18.2) � is a germ of an endomorphism of idT for which there exists an isomorphism
 WP ! �.T/ sending f to � ;

(3.18.3) ! D .!p;!p/ with !p a fibre functor over Ap
f

and !p an exact tensor functor
T! Vp.F/ such that, for each object X of T, !p.fX /D �!p.X/.

The system .Mot.F/;�;!/ satisfies these conditions, and the next theorem shows that
they determine it up to equivalence.

THEOREM 3.19. Suppose .T;�;!/ and .T0;� 0;!0/ are two triples satisfying (3.18). There
exists an equivalence of tensor categories S WT! T0 carrying � into � 0 and isomorphisms
s D .sp; sp/ of fibre functors on T

spW!p! !0p ıS

spW!p! !0p ıS:

PROOF. By assumption,
�.T/D P D �.T0/;

and an equivalence S WT! T0 of tensor categories will map f to f 0 if and only if it induces
the identity map on P . There exists such an S if and only if T and T0 have the same
cohomology class in H 2.Q;P /. Because Ker2.Q;P /D 0, it suffices to check this locally.
By assumption, there is a functor !1WT˝R! V1 such that the map �.V1/! �.T/ is the
weight map wWGm! P . Therefore the class of T˝R inH 2.R;P / is the image of the class
of V1 in H 2.R;Gm/ under the map defined by w. Similarly, the functor !pWT! Vp.F/
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determines the class of T˝Qp in H 2.Qp;P /. Finally, the assumption that there is a fibre
functor over Q` for all `¤ p;1, implies that the class of T in H 2.Q`;P / is zero. Hence S
exists.

Because H 1.Q;P /D 0, the functor S is unique up to isomorphism.
Choose one S . Then !p and !0p ıS are both fibre functors on T, andHom˝.!p;!0p ıS/

is a torsor for P over Qp. Since H 1.Qp;P / D 0, we see that there is an isomorphism
spW!p! !0p ıS . The proof that sp exists is similar. �

For the subcategory Mot0.F/ of motives of weight zero, we can be a little more precise.

THEOREM 3.20. Let .T;�;!/ and .T0;� 0;!0/ be two triples satisfying the conditions (3.18)
with P replaced by P0. There exists an equivalence of tensor categories S WT! T0 carrying
� into � 0 and isomorphisms s D .sp; sp/ of fibre functors on T

spW!p! !0p ıS

spW!p! !0p ıS:

Any two such pairs .S1; s1/ and .S2; s2/ are isomorphic, i.e., there is an isomorphism of
tensor functors ˛WS1! S2 such that the following diagram commutes for all objects X of T:

!.X/ !.X/

!0.S1.X// !0.S2.X//:

s1 s2

!0.˛.X//

PROOF. The same proof as for (3.19) shows that there exists a pair .S;s/.
Consider two pairs .S1; s1/ and .S2; s2/. We know from (3.13) that there is an isomor-

phism ˛WS1! S2 of tensor functors. Both !0.˛/ ı s1 and s2 are isomorphisms of fibre
functors !! !0 ıS2, and hence they differ by an automorphism of !, i.e., by an element of
P0.Af /. Thus it remains to prove that P0.Af /D 1. This is achieved by the next lemma.�

LEMMA 3.21. Let T be a torus over Q such that T .R/ is compact. Then eT .Af /D 1.

PROOF. Because T .R/ is compact, T .Q/ is discrete in T .Af /, and the quotient T .Af /=T .Q/
is compact. Therefore, ignoring finite groups, the quotient is isomorphic to T .bZ/, andT
T .bZ/N D 1. �

For the much simpler category E we have only the following result. Consider pairs .T;!/
where

(3.22.1) T is polarizable Tate triple over Q having no fibre functor over R for which the
weight map is an isomorphism wWG! �.T/;

(3.22.2) ! D .!p;!p/ with !p a fibre functor over Ap
f

and !p an exact tensor functor
T! Vp.F/ such that if X has weight m, then !p.X/ has slope m=2.

For example, .E;!/ is such a pair.

PROPOSITION 3.23. Suppose we have two pairs .T;!/ and .T0;!0/ satisfying (3.22). Then
there exists an equivalence of Tate triples S WT! T0 and an isomorphism sW!! !0 ıS of
tensor functors.



3 CHARACTERIZATIONS 40

PROOF. Straightforward. �

Unfortunately, two such pairs .S1; s1/ and .S2; s2/ need not be isomorphic, because we
can replace s1 with its product by an element of a 2 A�

f
, and the resulting pair will not be

isomorphic to the original pair unless a 2Q�.

The groupoid attached to Mot.F/
We shall need the notion of a groupoid scheme (see Deligne 1989, �10; Deligne 1990, �3;
Milne 1992, Appendix A; Breen 1992).

Let S0 D Speck, where k is a field of characteristic zero, and let S D Speckal. An
S=S0-groupoid is a scheme G over S0 together with two S0-morphisms s; t WG! S and a
law of composition (morphism of S �S0

S -schemes)

ıWG�s;S;t G!G

such that, for all schemes T over S0, .S.T /;G.T /; .t; s/;ı/ is a groupoid in sets, i.e., S.T /
is the set of objects and G.T / the set of morphisms for a category whose morphisms are all
isomorphisms (t and s map a morphism to its target and source respectively, and ı gives the
composition). A groupoid is said to be affine if it is an affine scheme, and it is said to be
transitive if the map .t; s/WG! S �S0

S makes G into a faithfully flat S �S0
S -scheme. We

refer to (Deligne 1990, 1.6), for the notion of a representation of a groupoid over S . The
collection of such representations forms a Tannakian category Rep.S WG/ over k.

Henceforth, all groupoids will be affine and transitive.
The kernel of an S=S0-groupoid is

G
def
DG�

def
D��G; �WS ! S �S0

S .diagonal morphism).

Under our assumptions, it is a faithfully flat affine group scheme over S .
Let T be a Tannakian category over k, and let ! be a fibre functor over kal. Write

Aut˝.!/ for the functor sending an S �S0
S-scheme .b;a/WT ! S �S0

S to the set of
isomorphisms of tensor functors a�!! b�!.

THEOREM 3.24. Let T be a Tannakian category over k, and let ! be a fibre functor of T
over kal; then Aut˝.!/ is represented by an S=S0-groupoid, and ! defines an equivalence of
tensor categories T! Rep.S WG/. Conversely, let G be an S=S0-groupoid, and let ! be the
forgetful fibre functor of Rep.S WG/; then the natural map G! Aut˝.!/ is an isomorphism.

PROOF. See Deligne 1990, 1.12. �

REMARK 3.25. (a) Let G be the groupoid attached to .T;!/. Then G def
D G� is an affine

group scheme over S with a canonical “descent datum up to inner automorphisms”, i.e., it
represents a band (see Milne 1992, p. 223). In fact it represents the band of the gerb of fibre
functors of T. In the case that the band is commutative, the descent datum defines an affine
group scheme over k, which can be identified with �.T/.

(b) Assume G has a section over S �S0
S . Then the map

G.S/
.t;s/
���! .S �S0

S/.S/D Gal.kal=k/

is surjective and the law of composition on G defines a group structure on G.S/ for which
following sequence is exact:

1!G.S/!G.S/! Gal.kal=k/! 1:
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EXAMPLE 3.26. The C=R-groupoid G1 associated with V1 and the forgetful fibre functor
has kernel Gm, and the associated exact sequence

1! C�!G1.C/! Gal.C=R/! 1

identifies G1.C/ with the real Weil group.

EXAMPLE 3.27. Let G be a group scheme over k. The neutral S=S0-groupoid defined by
G is

GG
def
DG�S0

.S �S0
S/:

The associated exact sequence is

1!G.kal/!G.kal/ÌGal.kal=k/! Gal.kal=k/! 1:

Let T be a Tannakian category over k with a fibre functor ! over k, and let G D Aut˝.!/;
then the groupoid attached to T and !˝kal is GG .

EXAMPLE 3.28. The Qal
p=Qp-groupoid Gp attached to Vp.F/ has kernel G, the universal

covering group of Gm. If M is an isocrystal over F of slope �, then G acts on M through
the character � 2QDX�.G/.

Choose for each prime ` a commutative diagram:

Qal Qal
`

Q Q`

For `D1, Q` D R and Qal
`
D C. On pulling back a Qal=Q-groupoid P by the map

Spec.Qal
` ˝Q`

Qal
` /! Spec.Qal

˝QQal/

we obtain a Qal
`
=Q`-groupoid P.`/.

Write z1 for the weight homomorphism G�1 DGm! P.p1/R (corresponding to the
map W.p1/! Z sending � to its weight).

Write zp for the homomorphism G�p DG! P.p1/Qp corresponding to the map � 7!
ordp.�n/=nWW.p1/! Q, where .�n;n/ represents � and ordp is the extension of the
p-adic valuation on Q corresponding to the chosen embedding of Qal into Qal

p.
For `¤ p;1, write G` for the trivial Qal

`
=Q`-groupoid Spec.Qal

`
˝Q`

Qal
`
/, and z` for

the unique homomorphism G�
`
D 1! P.p1/Q`

.

THEOREM 3.29. Let M.!/ be the Qal=Q-groupoid defined by a fibre functor ! of Mot.F/
over Qal. Then

(a) the kernel of M.!/ is P.p1/;
(b) for each prime ` of Q (including p and 1/, there is a homomorphism �`WG` !

M.!/.`/, well defined up to isomorphism, whose restriction to the kernel is z`.

If M.!0/ is the groupoid attached to a second fibre functor over Qal, then the choice of
an isomorphism ! � !0 determines an isomorphism ˛WM.!/!M.!0/ whose restriction
to the kernel is the identity map; moreover ˛.`/ı �` � �0`, and changing the isomorphism
between the fibre functors replaces ˛ with an isomorphic isomorphism.
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PROOF. That M.!/� D P.p1/ follows from (3.25a) and (2.38). The homomorphism
�`WG`!M.!/.`/ is induced by the choice of an isomorphism !˝Qal Qal

`
! !`˝Q`

Qal
`

.
The rest of the proof is a a straightforward application of the theory of Tannakian categories,
using what has already been proved. �

REMARK 3.30. A fibre functor ! of Mot.F/ over Qal defines by composition a fibre functor
!0 of Mot.Fq/ over Qal. The groupoid M.!0/ attached to Mot.Fq/ and !0 is obtained from
M.!/ by pushing out with respect to P.p1/! P.q/ (see Deligne 1989, 10.8, for the
“push-out” of a groupoid).

Existence results
Now drop the assumption of the Tate conjecture (1.14).

THEOREM 3.31. There exists a system .P; .�`// consisting of a Qal=Q-groupoid P such
that P�DP.p1/ and a family of morphisms �`WG`!P.`/ such that ��

`
D z`. If .P0; .�0

`
//

is second such system, then there is an isomorphism ˛WP! P0 such that ˛� D id and
�0
`
� ˛ ı �`; moreover, ˛ is uniquely determined up to isomorphism.

PROOF. Let c` be the cohomology class of the groupoid G` in H 2.Q`;G`/. I claim that
there is a unique class c 2H 2.Q;P / mapping to z`.c`/ for all `. Since P D P0˚Gm, it
suffices to prove this for each factor. But

H 2.Q;P0/
�
�!

M
`
H 2.Q`;P0/

and so this is obvious on the first factor. On the other hand, z`.c`/D 0 (in H 2.Q`;Gm/) for
`¤ p;1 , and

invp.zp.cp//D 1=2D inv1.z1.c1//;

and so it is also obvious for the second factor. Choose a groupoid P corresponding to c.
If .P0; .�0

`
// is a second pair, then the existence of the maps �0

`
implies that the cohomol-

ogy class of P0 is the same as that of P locally, and hence (see 3.11d) globally. Therefore,
there is an isomorphism ˛WP! P0 that is the identity map on the kernel. The scheme
Hom˝.˛ ı �`; �0`/ is a torsor for PQ`

. Now (3.11b) shows that the torsor is trivial, and so
˛ ı �` � �

0
`
. �

COROLLARY 3.32. There exists a Tate triple .T;w;T /, a germ of a tensor endomorphism
� of T, and a pair ! D .!p;!p/ such that the system .T;�;!/ satisfies the conditions (??).

PROOF. Take T D Rep.S WP/. The weight homomorphism Gm ! P defines a weight
filtration on T. The action of f defines � , and the homorphisms �` define !. �

Notes
The form of the statement of Theorem 3.13 was suggested by a general remark of Grothen-
dieck on the classification of Tannakian categories. Theorems 3.19 and 3.20 were explained
to me by Deligne (who credits them to Grothendieck), and Theorem 3.31 is proved in
Langlands and Rapoport, 1987.10

10The proof of Langlands and Rapoport is completed in Milne 2003.
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4 The Reduction of CM-Motives to Characteristic p

Hodge structures of CM-type
The Mumford-Tate group MT.H/ of a polarizable rational Hodge structure H D .V;h/ is
the algebraic group attached to the forgetful fibre functor on the Tannakian subcategory of
HdgQ generated by H and Q.1/. It can also be described as the largest algebraic subgroup
of GL.V /�Gm fixing the Hodge tensors of V , or the smallest algebraic subgroup G of
GL.V /�Gm such that GC contains the image of

z 7! .�h.z/;z/WGm! GL.V ˝C/�Gm:

Here �hWGm! GL.V ˝C/ is the homomorphism such that �h.z/ acts on V r;s as multipli-
cation by z�r . The Mumford-Tate group is connected and reductive.

A polarizable rational Hodge structure .V;h/ is said to be of CM-type if its Mumford-
Tate group is commutative, and hence is a torus T . We regard z 7! .�h.z/;z/ as a cocharacter
� of T .

PROPOSITION 4.1. A pair .T;�/ arises as above from a rational Hodge structure of CM-
type if and only if

(a) the weight ��� �� of � is defined over Q;
(b) � is defined over a CM-field; and
(c) � generates T , i.e., there does not exist a proper subtorus T 0 of T such that T 0C contains

the image of �.

PROOF. See Deligne 1982, pp. 42–47. �

For a CM-field L� C, let SL be the quotient of .Gm/L=Q having character group

X�.SL/D f� 2 ZHom.L;C/
j �.�/C�.��/D constantg:

Define �L to be the cocharacter of SL such that

h�;�Li D �.�0/; all � 2X�.SL/;

where �0 is the given embedding of L into C. If L � L0 � C, the norm map defines a
homomorphism SL

0

! SL carrying �L
0

to �L. We define

S D lim
 �

SL; �can D lim
 �

�L:

The pair .S;�can/ is called the Serre group. If Qcm denotes the union of all CM-subfields
of Qal, then X�.S/ can be identified with the set of all locally constant functions

�WGal.Qcm=Q/! Z

such that �.�/C�.��/D�m for some integer m (called the weight of �).

PROPOSITION 4.2. The rational Hodge structures of CM-type form a Tannakian subcat-
egory Hdgcm

Q of HdgQ. The affine group scheme attached to the forgetful fibre functor is
S .
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PROOF. Since Aut˝.!forget/D lim
 �

MT.H/ where H ranges over the Hodge structures of
CM-type, this follows from (4.1) and the next lemma. �

LEMMA 4.3. Let .T;�/ be a pair satisfying the conditions (a) and (b) of (4.1). Then there is
a unique homomorphism ��WS! T (defined over Q) such that .��/Q ı�can D�; moreover

.S;�can/D lim
 �
.T;�/

where the limit is over all pairs .T;�/ satisfying (4.1a,b,c).

PROOF. When restated in terms of character groups, the lemma becomes obvious. �

REMARK 4.4. Let T be a torus over a field k of characteristic zero. If k is algebraically
closed, then each character � of T defines a one-dimensional representation V.�/ of T over
k, and every irreducible representation is isomorphic to V.�/ for exactly one �; consequently

˙.Repk.T //DX
�.T /:

More generally, Repk.T / is a semisimple Tannakian category over k, and Repk.T /˝k
al D

Repkal.T /. Therefore (3.14) shows that there is a bijection

� nX�.T /!˙.Repk.T /); � D Gal.kal=k/;

under which a simple representation V of T over k corresponds to the set of characters
occurring in V ˝k kal.

Motives of CM-type
For an abelian variety (or motive) A over C, the Mumford-Tate group of A is defined to be
Mumford-Tate group of HB.A/

def
DH1.A;Q/.

A simple abelian variety A over an algebraically closed field k is said to be of CM-type
if End.A/˝Q is a field of degree 2dimA over Q, and a general abelian variety over k is
said to be of CM-type if its simple (isogeny) factors are. An abelian variety over an arbitrary
field k is of CM-type11 if it becomes of CM-type over kal.

PROPOSITION 4.5. An abelian variety over C is of CM-type if and only if the rational
Hodge structure HB.A/ is of CM-type.

PROOF. See, for example, Deligne 1982, 5.1. �

PROPOSITION 4.6. The category Hdgcm
Q is generated by

fHB.A/ j A an abelian variety of CM-type over Cg:

PROOF. We have to show that RepQ.S/ is generated by the representations of S on
fHB.A/g. For this, it suffices to show that X�.S/ is generated by the set of characters
arising from abelian varieties of CM-type over C.

LetL�Qcm be Galois over Q. A CM-type˚ forL is a function˚ WHom.L;C/!f0;1g
such that ˚ C �˚ D id. An abelian variety A over C together with a homomorphism

11Some authors say “potentially of CM-type”.
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L! End.A/˝Q is said to be of CM-type .L;˚/ if HB.A/ is a one-dimensional vector
space over L and the representation of L on the tangent space to A at 0 is equivalent toP
˚.'/'. An abelian variety of CM-type .L;˚/ always exists, and for such a variety A, ˚ ,

when regarded as a character of S , occurs in the representation of S on HB.A/˝Qal.
Thus it suffices to show that, for any CM-field L Galois over Q, X�.SL/ is generated

by CM-types. Choose a set of representatives RD f'1; : : : ;'gg for Hom.L;C/=f1; �g, and
let ˚j be the CM-type with support f'1; : : : ;'j�1; �'j ;'jC1; : : : ;'gg. For any � 2X�.S/,
��

Pg
iD1�.�'i /˚i takes the value 0 on any element of �R, and hence is a multiple of the

CM-type ˚ having support R. �

For a smooth projective variety V over a field k of characteristic zero and integer r ,
Deligne has defined a space AraH .V / of absolute Hodge cycles of codimension r on V
(Deligne 1982, p. 36). When k D C, there are maps

Ar.V / Zr.V /! AraH .V /� A
r
H .V /

where ArH .V / is the space of Hodge cycles of codimension r . The Hodge conjecture asserts
that the map Zr.V /! ArH .V / is surjective, which implies that it has the same kernel as
Zr.V /! Ar.V /, and hence induces isomorphisms

Ar.V /
�
�! AraH .V /

�
�! ArH .V /.

Fix a field k of characteristic zero. Analogously to CV0.k/ we can define a category
having one object h.V / for each smooth projective variety V over k, and having the absolute
Hodge cycles as morphisms, i.e.,

Hom.h.V /;h.W //D AdimV
aH .V �W /:

On adding the images of projectors and inverting the Lefschetz motive, we obtain a Q-linear
tensor category. In this case, the Künneth components of the diagonal are automatically
morphisms, and so we can define a gradation on the category and use it to modify the
commutativity constraint. In this way we obtain the category MotaH .k/ of motives over k
for absolute Hodge cycles (see Deligne and Milne 1982, �6).

Define CM.k/ to be the Tannakian subcategory of MotaH .k/ generated by the objects
h1.A/ for A an abelian variety of CM-type over k, the Tate motive, and the objects h.V / for
V a finite scheme over k. We refer to the objects of CM.k/ as CM-motives over k.

PROPOSITION 4.7. For any algebraically closed field k � C, the functor

X HB.XC/WCM.k/! Hdgcm
Q

is an equivalence of Tannakian categories.

PROOF. Assume first that k D C. The main theorem of Deligne 1982 shows that for abelian
varieties A and B over C,

AraH .A�B/D A
r
H .A�B/;

and therefore
Hom.h1.A/;h1.B//D Hom.HB.A/;HB.B//:

That X  HB.X/ is fully faithful is now obvious, and (4.6) shows that it is essentially
surjective.
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Now consider an arbitrary algebraically closed field k � C. For any smooth projective
varieties V and W over k,

AraH .V �W /D A
r
aH .VC�WC/

(ibid. 2.9a) and so the functor

X XCWMotaH .k/!MotaH .C/

is fully faithful. Hence its restriction to CM.k/ is also fully faithful, and because every
abelian variety of CM-type over C has a model12 over k, it is also essentially surjective. �

COROLLARY 4.8. For any algebraically closed field k � C, the affine group scheme at-
tached to the fibre functor HB on CM.k/ is S . Hence

�.CM.k//D S

and
˙.CM.k//D˙.RepQ.S//D � nX

�.S/:

PROOF. Immediate consequence of (4.7), (4.2), and (4.4). �

REMARK 4.9. In fact, for any algebraically closed field k of characteristic 0, CM.k/ is a
neutral Tannakian category over Q, and the affine group scheme attached to any fibre functor
! over Q is canonically isomorphic to S . In more detail, each object of CM.k/ has a (de
Rham) filtration, and there is a unique isomorphism ˛WS ! �.CM.k// such that ˛ ı�can
splits the de Rham filtration on each X .

Discussion of the problem of reducing CM-motives

For the rest of this section, we fix a prime w0 of Qal lying over p, and define Qal
p to be the

algebraic closure of Qp in the completion of Qal at w0. We take F to be the residue field of
Qal
p.

Let A be an abelian variety over Qal of CM-type. Then A will be defined over a number
field K, and it follows easily from Néron’s criterion for good reduction that, after we pass
to a finite extension L of K, A will acquire good reduction at w0 (see Serre and Tate 1968,
Theorem 6). We therefore obtain an abelian variety A.w0/ over the residue field k.w0/ of
w0 in L, and, by extension of scalars, we obtain an abelian variety A.p/ over F.

LEMMA 4.10. The abelian variety A.p/ is well-defined by A (up to a canonical isomor-
phism).

PROOF. Consider two models .A1;'1/ and .A2;'2/ of A over number fields K1 and K2.
There will be a number field L containing both K1 and K2 and such that

(a) A1 and A2 both acquire good reduction over L at w0;

(b) the map ' def
D '2 ı'

�1
1 W.A1/Qal ! .A2/Qal is defined over L.

Now the reduction of ' is an isomorphism A1.p/! A2.p/. �
12An abelian variety A over C of CM-type will have a specialization over k that is of the same CM-type as A,

and hence becomes isogenous to A over C
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In this way, we obtain a functor A A.p/ from the category of abelian varieties of
CM-type over Qal to the category of abelian varieties over F.

Consider a CM-motive X over Qal. After replacing X with X.m/ for some m, there will
exist a CM-motive Y and abelian varieties Ai of CM-type such that

X˚Y D
O

i
h1.Ai /;

i.e., X D .
N
h1.Ai /;q/ for some projector q. If q is algebraic, then we can define X.p/ to

be .
N
h1.Ai .p//;q.p//. Consequently, if the Hodge conjecture holds for abelian varieties

of CM-type, then there is a functor

RD .X X.p//WCM.Qal/!Mot.F/

such that, for any abelian variety A of CM-type over Qal, h.A/.p/D h.A.p//. In particular,
we will obtain the following:

(a) a map ˙.CM.Qal//!˙.Mot.F//;
(b) a map �.Mot.F//! �.CM/;
(c) for all `, a functor !` ıR.`/WCM.Qal/˝Q`! V`;

Recall that, under the assumption of the Tate conjecture, we showed that ˙.Mot.F//D
� nW.p1/ and �.Mot.F// D P.p1/. We shall construct a canonical homomorphism
 WP.p1/! S , a canonical map � nX�.S/! � nW.p1/, and canonical functors

�`WRepQ`
.S/D CM.Qal/˝Q`! V`:

Then we show that if .T;�;!/ is a triple satisfying the conditions (3.18), there is a functor

RWCM.Qal/! T

such that �.R/D  and !` ıR.`/� �`.

The map on isomorphism classes
LEMMA 4.11. Let L be a CM-field that is Galois over Q, and let w0 be a prime of L lying
over p. Let h be such that phw0

is principal, let r D .U WUC/ where U is the group of units
in L and UC is the subgroup of totally real units, and let f be the residue class degree
f .w0=p/. Let a be a generator of phw0

. For any n divisible by 2hrf and � 2 X�.SL/,
�.a�n=hf / is independent of the choice of a, and lies in W L.pn/.

PROOF. Straightforward. �

Thus we have a well-defined map

� 7! �Ln .�/D �.a
n=hf /WX�.SL/!W.pn/:

For a fixed L, these maps define a homomorphism

� 7! �L.�/WX�.SL/!W.p1/;

and when we let L vary over the CM-subfields of Qal, they define a homomorphism

� 7! �.�/WX�.S/!W.p1/:

This map is invariant under the action of � D Gal.Qal=Q/, and so we have proved the
following result.



4 THE REDUCTION OF CM-MOTIVES TO CHARACTERISTIC p 48

PROPOSITION 4.12. (a) There is a canonical homomorphism

 WP.p1/! S:

(b) There is a canonical homomorphism

˙.CM.Qal//D � nX�.S/
Œ��7!Œ�.�/�
��������! � nW.p1/D � n˙.Mot.F//:

PROPOSITION 4.13. The homomorphism in (4.12) is compatible with the reduction of
abelian varieties of CM-type, i.e., if � is the character of S associated with a simple abelian
variety of CM-type A over Q, then Œ�.�/� is the Frobenius element of A.p/.

PROOF. This is a restatement of the theorem of Shimura and Taniyama (1961, p. 110,
Theorem 1). �

REMARK 4.14. Let X�.SL/0 be the subset of X�.SL/ of elements of weight 0. For any n
divisible by hrf , the composite

X�.SL/0
�
�!W L

0 .q/=torsion
˛
�!

M
wjp

Zw;

where ˛ is as in (2.27b), is

� 7!
X X

�w0Dw

�.�/

!
w:

The image of this map is equal to the kernel of ˇ, which completes the proof of (2.27b). This
remark also proves that the map X�.S/!W.p1/ is surjective. In conjunction with the
Hodge and Tate conjectures, this implies that the reduction functor

CM.Qal/!Mot.F/

is surjective: every motive over F lifts to a motive of CM-type.

The functor CM.Qal/˝R! V1

Let .V;�/ be a real representation of S . Then w.�/ def
Dwcan ı� defines a gradation on V ˝C.

Let F be the map
v 7! �.�.i/�1/xvWV ˝C! V ˝C:

Clearly F is semilinear, and F 2 is multiplication by �.i/�.i/D w.�1/. Therefore it acts
as .�1/m on the mth graded piece, and so .V .�/˝C;˛/ is an object of V1.

PROPOSITION 4.15. The above construction defines a tensor functor �1WRepR.S/! V1.

PROOF. Straightforward. �
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The functor CM.Qal/˝Q`! V`.F/, `¤ p;1
Let X be a CM-motive over Qal. Then X will have a model over a finite extension L of Q,
and, after replacing L with a finite extension, we may assume that the action of Gal.Qal=L/

on !`.X/ is unramified at w0. Therefore, we obtain a representation of D.w0/=I.w0/D
Gal.F=Fq/ on !`.X/.

PROPOSITION 4.16. The germ of a representation of Gal.F=Fp/ on !`.X/ given by the
above construction is independent of the choices involved. In this way we obtain a canonical
functor

�`WCM.Qal/˝Q`! V`.F/:

PROOF. Straightforward. �

REMARK 4.17. It is possible to give a direct construction (i.e., without mentioning CM-
motives) of �`. The construction uses the Taniyama group and a result of Grothendieck
(Serre and Tate 1968, p. 515).

The functor CM.Qal/˝Qp! Vp.F/
Let .V;�/ be a representation of S over Qp . Then �will factor through SL for someL�Qcm.
Choose a generator a for the maximal ideal in Lw0

, and let b D NmLw0
=K.�

L.a�1// 2

SL.K/ where K is the maximal unramified extension of Qp contained in Lw0
. Define

M D V ˝K.F/; F .x/D .1˝�/.bx/:

PROPOSITION 4.18. The above construction defines a tensor functor

�pWRepQp.S/! Vp.F/:

PROOF. Straightforward. �

REMARK 4.19. The functor �p defines a homomorphism G!S on the fundamental groups.
The corresponding map on the character groups is

X�.SL/!Q; � 7! �ŒLw0
WQp��1 �

X
�2D.w0/

�.�/

where D.w0/� Gal.L=Q/ is the decomposition group.

The cohomology of S
It is convenient at this point to compute the cohomology of S .

LEMMA 4.20. LetL be a CM-field, with largest totally real subfield F . There is a canonical
exact sequence

1! .Gm/F=Q! .Gm/L=Q�Gm! SL! 1:
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PROOF. It suffices to check that the corresponding sequence of character groups is exact,
but this follows from the fact that the map

ZHom.L;C/
�Z! ZHom.F;C/;0@ X

�2Hom.L;C/

�.�/�;m

1A 7! X
�2Hom.L;C/

�.�/� jF �m

0@ X
�2Hom.F;C/

�

1A
is surjective with kernel X�.SL/. �

PROPOSITION 4.21. For any CM-field L,

H 1.Q;SL/
�
�!

M
`

H 1.Q`;SL/;

H 2.Q;SL/ ,!
M
`

H 2.Q`;SL/:

PROOF. Consider the following exact commutative diagram:

0 0

H 1.Q;SL/
L̀
H 1.Q`;SL/

0 Br.F /
L
v

Br.Fv/ Q=Z 0

0 Br.L/�Br.Q/
L
w

Br.Lw/�
L̀

Br.Q`/ Q=Z�Q=Z 0

H 2.Q;SL/
L̀
H 2.Q`;SL/

0 0

The columns are the cohomology sequences over Q and Q` of the exact sequence in
(4.20), and the two middle rows come from class field theory. The vertical map at right is
that making the following diagram commute:

H 2.F;C / Q=Z

H 2.L;C /�H 2.Q;C / Q=Z�Q=Z:

inv
�

(res,cores)

(inv,inv)
�

Here C is the idèle class group and inv is the invariant map of class field theory. Let
mD ŒF WQ�. It is known that the restriction map

H 2.Q;C /!H 2.F;C /
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induces multiplication by m on Q=Z. Because

coresı resDm

we see that cores must induce the identity map on Q=Z. Therefore the map at right is
injective, and now the snake lemma completes the proof. �

The functor CM.Qal/!Mot.F/
THEOREM 4.22. Let .T;�;!/ be a triple satisfying the conditions of (3.18). Then there
exists a tensor functor

RWCM.Qal/! T

such that

(a) the homomorphism P ! S defined by R on the fundamental groups is equal to the
map  in (4.12a).

(b) for all `, the composite

CM.Qal/˝Q`
R
�! T˝Q`

!`
�! V`

is isomorphic to the functor �`.

Any other tensor functor with these properties is isomorphic to R.

PROOF. We first should note that the two conditions are compatible, i.e., the map

G`
z`
�! PQ`


�! SQ`

is equal to that induced by �` on the fundamental groups. Only the prime `D p presents
difficulties, but this case follows easily from the formula in (4.19).

There exists a tensor functor satisfying (a) if and only if the class of T in H 2.Q;P /
maps to zero in H 2.Q;S/. After (4.21), it suffices to check this in the local cohomology
groups H 2.Q`;S/.

Consider
H 2.Q`;G`/

z`
�!H 2.Q`;P /!H 2.Q`;S/:

The existence of the functors !` shows that the class of T in H 2.Q`;P / is the image of the
class of V` in H 2.Q`;G`/. But the existence of the functors �` show that this class maps to
zero in H 2.Q`;S/.

Hence there exists a functor RWCM.Qal/! T satisfying (a). Then !` ıR.`/ and �`
are both tensor functors CM.Qal/˝Q`! V`, and Hom˝.!` ıR.`/;�`/ is a torsor for S
over Q`. According to (4.21), the cohomology classes of these torsors arise from a unique
element of H 1.Q;S/, which we use to modify R. Then R satisfies (b), and is uniquely
determined up to isomorphism.13 �

REMARK 4.23. Consider a pair .R;.r`// where R is a tensor functor CM.Qal/! T and r`
is an isomorphism !` ıR.`/! �`. If .R0; .r 0

`
// is a second such pair, then the theorem tells

us there exists an isomorphism ˛WR!R0, but it may not be possible to choose ˛ to be carry
r` into r 0

`
.

13The proof of Theorem 4.22 is incomplete—it only proves the statements with P and S replaced by PK and
SK for K sufficiently large. See Milne 2003.
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Notes
This section gives a geometric re-interpretation of the cocycle calculations in Langlands and
Rapoport 1987, pp 118-152.
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