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Abstract

These are my notes for four talks at the Institute for Advanced Study, February
21,23,28, and March 2, 1995. Appearances to the contrary, they are rough notes.

After giving a brief introduction to Shimura varieties, and in particular explain-
ing how to realize them as moduli varieties, we give a heuristic derivation of a
formula for the number of points on the reduction of a Shimura variety with coor-
dinates in a finite field.
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Introduction
Shimura varieties generalize elliptic modular curves. They have canonical models
over number fields, and the study of their Hasse–Weil zeta functions has guided much
research in the theory of automorphic representations. For example, the problem of 𝐿-
indistinguishability, now called endoscopy, first manifested itself in the study of Shimura
varieties.

For a smooth projective variety 𝑌 over a number field 𝐸, the zeta function is defined
as follows: for all but finitely many prime ideals 𝔭𝑣, reducing the equations for𝑌modulo
𝔭𝑣 will give a smooth projective variety over the residue field 𝑘(𝑣), and one defines

𝑍𝑣(𝑌, 𝑇) = exp (
∞∑

𝑚=1

𝑁𝑚𝑇𝑚

𝑚 ) , 𝑁𝑚 = #𝑌(𝑘(𝑣)𝑚), [𝑘(𝑣)𝑚 ∶ 𝑘(𝑣)] = 𝑚,

and
𝜁(𝑌, 𝑠) =

∏

𝑣 good
𝑍𝑣(𝑌, 𝑞−𝑠𝑣 ) ×

∏

𝑣 bad
⋯ , 𝑞𝑣 = #𝑘(𝑣).

One should also add 𝛤-factors for the infinite primes.
By “understanding the zeta function” we mean understanding some regularity in

the 𝑁𝑚, but the regularity may be quite complicated. For example, a curve of genus 0
over ℚ with a rational point is just ℙ1, and

𝜁(ℙ1, 𝑠) = 𝜁(𝑠)𝜁(𝑠 − 1), 𝜁(𝑠) = Riemann’s zeta function.

A curve of genus 1 over ℚ with a rational point is an elliptic curve 𝐴, and

𝜁(𝐴, 𝑠) =
𝜁(𝑠)𝜁(𝑠 − 1)

𝐿(𝑠)
,

where 𝐿(𝑠) is the Mellin transform of a modular form of weight 2, at least if the curve has
no worse than multiplicative reduction at 3 and 5.1 For a Shimura variety, we hope that
the zeta function is expressible in terms of the 𝐿-series of automorphic representations.

One can also define the zeta function in terms of the étale cohomology of 𝑌, namely,

𝑍𝑣(𝑌, 𝑇) =
𝑃1(𝑇)𝑃3(𝑇)⋯

𝑃0(𝑇)𝑃2(𝑇)⋯𝑃2 dim𝑌(𝑇)
, 𝑃𝑖(𝑇) = det(1 − Frob𝑣 ⋅ 𝑇|𝐻𝑖(𝑌𝑘(𝑣)al ,ℚ𝓁))

When the variety is not complete, for example, a Zariski open subset of a projective
variety, one can define the zeta function in terms of the intersection cohomology (with
middle perversity) of a good compactification of the variety — in the case of a Shimura
variety, one takes the Baily–Borel compactification. The resulting function depends on
the compactified variety, but there is a part of it that can be regarded as the contribution
of the variety itself, not its boundary, and which can be defined in terms of the numbers
𝑁𝑚 as above.

At the conference inAnnArbor in 1988, Kottwitz began bywriting down a conjectural
formula for the number of points on a Shimura variety over a finite field, and then gave
a heuristic stabilization of the formula (Kottwitz 1990). In these four expository lectures,
I shall review the definition and basic properties of Shimura varieties, especially their

1Added. Now known for all elliptic curves, and more.
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interpretation as moduli varieties, and then I shall give a heuristic derivation of the
conjecture of Langlands and Rapoport (1987) on the structure of the points of a Shimura
variety modulo a prime; finally, I shall briefly indicate how one derives the formula in
Kottwitz’s talk from the conjecture of Langlands and Rapoport.

Thus, I’ll ignore the contributions to the zeta function of the boundary, the bad
primes, and the infinite primes.

1 Locally Symmetric Varieties

1.1 Symmetric hermitian domains
A bounded symmetric domain 𝑋 is a bounded open connected subset of ℂ𝑚, for some
𝑚, that is symmetric in the sense that, for each point 𝑥 ∈ 𝑋 there is an automorphism
𝑠𝑥 of 𝑋 of order 2 having 𝑥 as an isolated fixed point. The simplest examples of bounded
symmetric domains are the unit balls:

𝐵𝑚 = {𝐱 ∈ ℂ𝑚 ∣ |𝐱| < 1}.

A complex manifold isomorphic to a bounded symmetric domain is called a sym-
metric hermitian domain. The simplest example of a symmetric hermitian domain is
the complex upper-half-plane 𝐻+ = {𝑧 ∈ ℂ ∣ ℑ(𝑧) > 0}, which is isomorphic to 𝐵1 by
the map

𝑧 ↦ 𝑧 − 𝑖
𝑧 + 𝑖 ∶ 𝐻

+ → 𝐵1.

The symmetric hermitian domainswere classified byÉlieCartan andHarish-Chandra
using the theory of semisimple groups. Let 𝑋+ be a symmetric hermitian domain. The
group𝐴 = Aut(𝑋+) of automorphisms of𝑋+ (as a complexmanifold) is a real semisimple
Lie group with trivial centre; moreover, the identity component2 𝐴+ of𝐴 acts transitively
on 𝑋+, and the stabilizer of any point is a maximal compact subgroup of 𝐴+. Thus every
symmetric hermitian domain can be realized as a quotient

𝐺(ℝ)+∕𝐾,

where 𝐺 is a real semisimple algebraic group with trivial centre. However, not all such
quotients 𝐺(ℝ)+∕𝐾 are symmetric hermitian domain.

Let𝐻 be a simple adjoint group over ℂ, and choose a maximal torus 𝑇 and a simple
set of roots 𝐵. There is a unique (highest) root �̃� =

∑
𝛼∈𝐵 𝑛(𝛼)𝛼 such that 𝑛(𝛼) ≥ 𝑚(𝛼)

for any other root
∑
𝑚(𝛼)𝛼. A node of the Dynkin diagram 𝑠𝛼 is special if 𝑛(𝛼) = 1.

Theorem 1.1. The symmetric hermitian domains 𝑋+ such that Aut(𝑋+)+ is the identity
component of a real form of𝐻 are in one-to-one correspondence with the special nodes of
the Dynkin diagram of𝐻.

Given a special node 𝑠𝛼0 , there exists a unique 𝜇 ∈ 𝑋∗(𝑇) such that 𝛼0◦𝜇 = 1 and
𝛼◦𝜇 = 0 for the other simple roots 𝛼. Then 𝐺 is the real form of𝐻 corresponding to the
Cartan involution ad𝜇(−1).

2In general, a + denotes a connected component for the real topology.
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An examination of the tables in Helgason 1978, pp. 477–478, reveals that: every node
of the Dynkin diagram of type 𝐴𝑛 is special; the Dynkin diagrams of type 𝐵𝑛, 𝐶𝑛, and 𝐸7
each have a single special node; the Dynkin diagram of type 𝐷𝑛 has three special nodes;
the Dynkin diagram of type 𝐸6 has two special nodes; the Dynkin diagrams of type 𝐸8,
𝐹4, and 𝐺2 have no special nodes.

1.2 Locally symmetric varieties
Let𝑋+ be a symmetric hermitian domain, and let𝐺 be a semisimple algebraic group over
ℚ such that 𝑋+ = 𝐺(ℝ)+∕𝐾 with 𝐾 a maximal compact subgroup of 𝐺(ℝ)+. Recall that
a subgroup of 𝐺(ℚ) is said to be arithmetic if it is commensurable with 𝐺(ℚ) ∩ GL𝑛(ℤ)
for one (hence all) embeddings 𝐺 → GL𝑛. A sufficiently small arithmetic subgroup 𝛤
will be torsion-free — we always assume that this is so. Then 𝑆 = 𝛤∖𝑋+ will again be a
complex manifold, with 𝑋+ as universal covering space and the image of 𝛤 in Aut(𝑋+)
as its fundamental group.

Theorem 1.2. The complex manifold 𝑆 has a canonical structure of an algebraic variety.
With this structure, every holomorphic map 𝑉an → 𝑆 from a complex algebraic variety 𝑉
(viewed as an analytic space) to 𝑆 is a morphism of algebraic varieties.

The first statement is the theorem of Baily and Borel (1966), and the second is proved
in Borel 1972, 3.10.

The varieties arising as in the theorem are called locally symmetric varieties.
In fact, Baily and Borel define a canonical map 𝑆 → �̄� realizing 𝑆 as an open subvari-

ety of projective algebraic variety �̄�, called the Baily–Borel compactification. If 𝑆 has no
factors of dimension 1, �̄� can be described as follows: letΩ1 be the sheaf of holomorphic
differential forms, and let 𝜔 =

⋀dim 𝑆 Ω1; define 𝐴 =
⨁

𝑛≥0 𝛤(𝑆, 𝜔
⊗𝑛); it is a finitely

generated graded ℂ-algebra, and so defines a projective algebraic variety �̄� = Proj𝐴;
there is a canonical map 𝑆 → �̄� = Proj𝐴.

The compactification 𝑆 → �̄� is minimal in the sense that for any nonsingular
algebraic variety 𝑆′ containing 𝑆 as an open subvariety and such that 𝑆′ − 𝑆 has only
normal crossings as singularities, there is a unique morphism 𝑆′ → �̄� whose restriction
to 𝑆 is the identity map.

Let 𝐺 be an algebraic group overℚ, and let 𝐺(ℤ) = 𝐺(ℚ) ∩ GL𝑛(ℤ) for some embed-
ding 𝐺 → GL𝑛. A subgroup of 𝐺(ℚ) is a congruence subgroup if it contains

𝛤(𝑁) def= Ker(𝐺(ℤ)→ 𝐺(ℤ∕𝑁ℤ))

for some 𝑁 ≥ 1. More canonically, let 𝔸𝑓 be the ring of finite adéles, i.e., 𝔸𝑓 = ℤ̂⊗ℚ,
where ℤ̂ = lim←,,𝑁 ℤ∕𝑁ℤ; then the congruence subgroups of 𝐺(ℚ) are the subgroups of
the form 𝐺(ℚ) ∩ 𝐾 with 𝐾 a compact open subgroup in 𝐺(𝔸𝑓).

Notes. For the material in Section 1.1, see Helgason 1978, Chapter VIII.

2 Shimura Varieties
As everyone knows, the modular curve 𝛤(1)∖𝐻+ parametrizes isomorphism classes of
elliptic curves over ℂ, but what parametrizes isomorphism classes of elliptic curves with
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level 𝑁 structure, i.e., pairs (𝐴, (ℤ∕𝑁ℤ)2 ≈,→ 𝐴[𝑁])? One might guess 𝛤(𝑁)∖𝐻+, but
this can’t be correct because such pairs have a discrete invariant, namely, the𝑁th root of
1 that is the image of 1 under the map

ℤ∕𝑁ℤ =
⋀2

(ℤ∕𝑁ℤ)
⋀2 𝛼
,,,,→

⋀2
𝐴[𝑁] ≈ 𝜇𝑁 ,

and so they don’t forma connected family. The correct answer is that they are parametrized
by a certain Shimura variety, which is a finite disjoint union of locally symmetric varieties.

2.1 Definition
We write 𝕊 for ℂ× regarded as a real algebraic group:

𝕊 = Resℂ∕ℝ𝔾𝑚.

Thus𝕊ℂ ≈ 𝔾𝑚×𝔾𝑚, andwe normalize the isomorphism so that, on points,𝕊(ℝ)→ 𝕊(ℂ)
is 𝑧 ↦ (𝑧, �̄�).

The data needed to define a Shimura variety are a connected reductive group 𝐺 over
ℚ and a 𝐺(ℝ)-conjugacy class 𝑋 of homomorphisms 𝕊→ 𝐺ℝ satisfying the following
axioms:

(SV1) for each 𝑥 ∈ 𝑋, the Hodge structure on Lie𝐺 defined by ℎ𝑥 is of type

{(−1, 1), (0, 0), (1,−1)};

(SV2) for each 𝑥 ∈ 𝑋, adℎ(𝑖) is a Cartan involution on 𝐺ad
ℝ ;

(SV3) the adjoint group 𝐺ad has no factor defined over ℚ whose real points form a
compact group; the identity component of the centre 𝑍 of 𝐺 splits over a CM-field
(equivalently, the action of complex conjugation on 𝑋∗(𝑍0) commutes with the
action of all other elements of Gal(ℚ̄∕ℚ)).3

The Shimura variety Sh(𝐺,𝑋) is then the family

Sh𝐾(𝐺,𝑋) = 𝐺(ℚ)∖𝑋 × 𝐺(𝔸𝑓)∕𝐾,

where 𝐾 runs through the compact open subgroups of 𝐺(𝔸𝑓). In forming the quotient,
we let 𝐺(ℚ) act on 𝑋 and 𝐺(𝔸𝑓) on the left, and 𝐾 act on 𝐺(𝔸𝑓) on the right.

Write 𝐺ad
ℝ =

∏
𝐺𝑖 with the 𝐺𝑖 simple. For 𝑥 ∈ 𝑋, ℎ𝑥 defines by projection a

homomorphism ℎ𝑖 ∶ 𝕊→ 𝐺𝑖, and the connected component 𝑋+ of 𝑋 containing 𝑥 is a
product,

𝑋+ =
∏

𝑋𝑖, 𝑋𝑖 = 𝐺𝑖(ℝ)+∕𝐾𝑖,

where𝐾𝑖 is the stabilizer in𝐺𝑖(ℝ)+ ofℎ𝑖. The axioms imply that 𝑧 ↦ ℎ𝑖(𝑧, 1), if nontrivial,
is the “𝜇” attached to a special node of the Dynkin diagram of 𝐺𝑖ℂ, and hence that 𝑋𝑖 is
a symmetric hermitian domain. Therefore 𝑋+ is a symmetric hermitian domain, and 𝑋
is a finite disjoint union of symmetric hermitian domains.

3Added. The second part of (SV3) is not one of Deligne’s axioms, but without it the Hodge structures
attached to special points need not be motivic (see Milne 1988, A.3).
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Let𝐺(ℚ)+ be the subgroup of𝐺(ℚ) of elementsmapping into the identity component
of 𝐺ad(ℝ)+; it is the stabilizer in 𝐺(ℚ) of any connected component 𝑋+ of 𝑋. The strong
approximation theorem implies that the double coset space

𝐺(ℚ)+∖𝐺(𝔸𝑓)∕𝐾

is finite. Choose a set of representatives {𝑔} for this set, and let 𝛤ad𝑔 be the image of
𝛤𝑔

def= 𝑔𝐾𝑔−1 ∩ 𝐺(ℚ)+ in 𝐺ad(ℚ)— 𝛤𝑔 is a congruence subgroup of 𝐺(ℚ) and 𝛤ad𝑔 is an
arithmetic subgroup of 𝐺ad(ℚ). The map

∐

𝑔
𝛤ad𝑔 ∖𝑋+ → 𝐺(ℚ)∖𝑋 × 𝐺(𝔸𝑓)∕𝐾,

sending [𝑥] ∈ 𝛤ad𝑔 ∖𝑋+ to [x,g] is a homeomorphism. For 𝐾 sufficiently small, 𝛤ad𝑔 will
be torsion free, and so Sh𝐾(𝐺,𝑋) is a finite union of locally symmetric varieties. In
particular, it is an algebraic variety.

From now on, we always assume 𝐾 to be sufficiently small that the groups 𝛤ad𝑔
will be torsion free.

For varying 𝐾, the varieties Sh𝐾(𝐺,𝑋) form a projective system, on which the group
𝐺(𝔸𝑓) acts: an element 𝑔 of 𝐺(𝔸𝑓) acts by

[𝑥, 𝑎]↦ [𝑥, 𝑎𝑔]∶ Sh𝐾(𝐺,𝑋)→ Sh𝑔−1𝐾𝑔(𝐺,𝑋).

Because of the second statement in Theorem 1.2, these maps are algebraic.
The inclusion ℝ× → ℂ× corresponds to an inclusion 𝔾𝑚 → 𝕊; for any homomor-

phism ℎ∶ 𝕊→ 𝐺, we let 𝑤ℎ = ℎ−1|𝔾𝑚 . Because of (SV1), 𝑤ℎ maps into the centre of 𝐺ℝ,
and hence is independent of ℎ—we denote it 𝑤𝑋 , and call it the weight of the Shimura
variety. It is always defined over a totally real number field, and we shall be especially
interested in those Shimura varieties for which it is defined over ℚ.

2.2 Examples
Let 𝐹 be a totally real number field, and let 𝐵 be a central simple algebra over 𝐹 of degree
4. Then

𝐵 ⊗ℚ ℝ = 𝐵 ⊗𝐹 (𝐹 ⊗ℚ ℝ) =
∏

𝜎∶𝐹→ℝ
𝐵 ⊗𝐹,𝜎 ℝ ≈ 𝑀2(ℝ)𝑐 × ℍ𝑑.

Assume 𝑐 ≥ 1. Let 𝐺 be the reductive group over ℚ such that 𝐺(ℚ) = 𝐵×. Then

𝐺ℝ ≈ GL2(ℝ)𝑐 × (ℍ×)𝑑

andwe can define a homomorphism ℎ∶ 𝕊→ 𝐺ℝ by requiring that the first 𝑐 components
ofℎ(𝑎+𝑖𝑏) be

( 𝑎 −𝑏
𝑏 𝑎

)
, and that the remainder are 1. We define𝑋 to be the𝐺(ℝ)-conjugacy

class containing ℎ.
If 𝐹 = ℚ and 𝐵 = 𝑀2(ℚ), then 𝐺 = GL2 and 𝑋 = 𝐻± = ℂ ∖ℝ. For 𝐾 = 𝐾(𝑁),

𝐾(𝑁) def= Ker(GL2(ℤ̂)→ GL2(ℤ̂∕𝑁ℤ̂)),

the Shimura variety is the moduli variety for elliptic curves with level 𝑁-structure.
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If 𝐵 = 𝑀2(𝐹), then 𝐺 = GL2,𝐹 , and we get the Hilbert modular varieties. The
Shimura variety is a moduli variety for abelian varieties with real multiplication and
level structure.

If 𝐹 = ℚ and 𝐵 is division algebra, the Shimura variety is a family of curves, which,
in contrast to the elliptic modular curves, are projective.

If 𝑑 ≠ 0, so that factors ℍ occur, then the Shimura variety is not a moduli variety in
any useful sense.

Notes. See Deligne 1971, 1979.

3 ShimuraVarieties asParameter Spaces forHodge
Structures

So far, we have only defined the Shimura variety as a variety over ℂ. In order to be
able to talk about the zeta function of a Shimura variety, we need a “canonical” model
over a number field. Now it is known that every Shimura variety Sh(𝐺,𝑋) does have a
canonical model over a certain explicit number field 𝐸(𝐺,𝑋), but, in general, both the
characterization of the canonical model and its construction are somewhat indirect. In
particular, neither gives a description of its points in fields containing 𝐸, much less on
the reduction of the Shimura variety. As a first step toward providing such a description
we give a description of the points of the Shimura variety over ℂ in terms of Hodge
structures with tensor and level structures.

3.1 Hodge structures
A real Hodge structure is a vector space 𝑉 over ℝ together with a homomorphism
ℎ∶ 𝕊→ GL(𝑉). One then gets a decomposition (theHodge decomposition)

𝑉 ⊗ ℂ =
⨁

𝑉𝑝,𝑞, 𝑉𝑝,𝑞 = 𝑉𝑞,𝑝, ℎ(𝑧) acts on 𝑉𝑝,𝑞 as 𝑧−𝑝�̄�−𝑞,

and a filtration (theHodge filtration)

⋯ ⊃ 𝐹𝑝𝑉 ⊃ 𝐹𝑝+1𝑉 ⊃⋯ , 𝐹𝑝𝑉 =
⨁

𝑝′≥𝑝
𝑉𝑝′,𝑞′ .

Theweight gradation

𝑉 =
⨁

𝑉𝑚, 𝑉𝑚 =
⨁

𝑝+𝑞=𝑚
𝑉𝑝,𝑞,

is that defined by the map 𝑤ℎ = ℎ−1|𝔾𝑚 . If 𝑉 = 𝑉𝑚, then 𝑉 is said to haveweight𝑚.
A rational Hodge structure is a vector space 𝑉 over ℚ together with a Hodge

structure on 𝑉 ⊗ℝ such that the weight gradation is defined over ℚ, or, equivalently,
such that 𝑤ℎ is a cocharacter of GL(𝑉) defined over ℚ. For example, the rational Hodge
structureℚ(𝑚) has underlying vector space (2𝜋𝑖)𝑚ℚ with ℎ(𝑧) acting as (𝑧�̄�)𝑚 (hence
ℚ(𝑚) is of weight −2𝑚).

One similarly defines an integral Hodge structure.
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A polarization of a rational Hodge structure of weight𝑚 is a morphism of Hodge
structures 𝜓∶ 𝑉 × 𝑉 → ℚ(−𝑚) such that

(𝑥, 𝑦)↦ (2𝜋𝑖)𝑚𝜓(𝑥, ℎ(𝑖)𝑦)∶ 𝑉(ℝ) × 𝑉(ℝ)→ ℝ

is symmetric and positive-definite.
If 𝑍 is a complete smooth variety over ℂ, then Hodge theory provides𝐻𝑚(𝑍,ℚ)with

a canonical polarizable Hodge structure of weight𝑚. An algebraic cycle of codimension
𝑚 on 𝑍 defines a cohomology class which lies in

𝐻2𝑚(𝑍,ℚ) ∩𝐻𝑚,𝑚,

and the Hodge conjecture predicts that each of these ℚ-vector spaces is generated by
algebraic classes. More canonically, the algebraic classes are conjectured to generate the
space

(𝐻2𝑚(𝑍,ℚ)⊗ℚ(𝑚)) ∩𝐻0,0,

which can also be described as the subspace of𝐻2𝑚(𝑍,ℚ(𝑚)) of vectors (whose image
in𝐻2𝑚(𝑍,ℚ(𝑚))⊗ℝ is) fixed by ℎ(𝑧) for all 𝑧 ∈ ℂ×.

From now on, we consider only polarizable rational Hodge structures.

3.2 A reinterpretation of the notion of a level structure
Fix an 𝑁. By an elliptic curve with level 𝑁 structure, one normally means a pair

(𝐴, 𝛼∶ (ℤ∕𝑁ℤ)2 ≈,→ 𝐸[𝑁]).

We wish to give another interpretation of the set of isomorphism classes of such pairs.
For an elliptic curve (or abelian variety) 𝐴 over ℂ, we define

𝑇𝑓𝐴 = lim←,,𝐴[𝑛] =
∏

𝑇𝓁𝐴,

where 𝐴[𝑛] is the set of 𝑛-torsion points and 𝑇𝓁𝐴 is the Tate module, and we define

𝑉𝑓𝐴 = 𝑇𝑓𝐴⊗ℤ ℚ.

It is a free 𝔸𝑓-module of rank 2 (more generally, 2 dim𝐴 if 𝐴 is an abelian variety).
The category of abelian varieties up to isogeny over a field 𝑘 has as objects the

abelian varieties over 𝑘, but the morphisms are Hom(𝐴, 𝐵)⊗ℚ. Note that 𝐴 ⇝ 𝑉𝑓𝐴 is
a functor on the category of abelian varieties up to isogeny, but 𝐴 ⇝ 𝑇𝑓𝐴 is not.

I claim that the isomorphism classes of pairs (𝐴, 𝛼) as above are in natural one-to-one
correspondence with the isomorphism classes of pairs (𝐵, [𝜂]∶ (𝔸𝑓)2 → 𝑉𝑓𝐵), where 𝐵
is an elliptic curve up to isogeny and [𝜂] is a 𝐾(𝑁)-orbit of isomorphisms. Indeed, given
(𝐵, [𝜂]), let𝐴 be an abelian variety such that some 𝜂 ∈ [𝜂] is an isomorphism ℤ̂2 → 𝑇𝑓𝐴,
and let 𝛼 be the composite

(ℤ∕𝑁ℤ)2 ≃ (ℤ̂∕𝑁ℤ̂)2
𝜂⊗ℤ∕𝑁ℤ
,,,,,,,,→ 𝑇𝑓𝐴∕𝑁𝑇𝑓𝐴 ≃ 𝐴[𝑁].
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3.3 Shimura varieties as parameter spaces for Hodge structures
Consider a Shimura variety Sh(𝐺,𝑋) whose weight is defined over ℚ. Choose a faithful
representation 𝐺 → GL(𝑉). Because 𝐺 is reductive, there will be a set of tensors
𝔱 = (𝑡𝑖)𝑖∈𝐼 , which we may take to be finite, such that 𝐺 can be characterized as the
subgroup of GL(𝑉) fixing the 𝑡𝑖; more precisely, for any ℚ-algebra 𝑅,

𝐺(𝑅) = {𝛼 ∈ GL(𝑉(𝑅)) ∣ 𝛼𝑡𝑖 = 𝑡𝑖, 𝑖 ∈ 𝐼}, 𝑉(𝑅) def= 𝑅 ⊗ℚ 𝑉.

Definition 3.1. Consider triples (𝑊, 𝔰, [𝜂]) consisting of a rational Hodge structure
𝑊 = (𝑊,ℎ), a family 𝔰 of Hodge cycles indexed by 𝐼, and a 𝐾-level structure [𝜂] on
𝑊, i.e., a 𝐾-orbit of isomorphisms 𝜂∶ 𝑉(𝔸𝑓)→𝑊(𝔸𝑓), 𝐾 acting on 𝑉(𝔸𝑓). We define
ℋ𝐾(𝐺,𝑋) to be the set of such triples satisfying the following conditions:
(a) there exists an isomorphism ofℚ-vector spaces 𝛽∶ 𝑊 → 𝑉 mapping each 𝑠𝑖 to 𝑡𝑖

and sending ℎ to ℎ𝑥, some 𝑥 ∈ 𝑋;
(b) for one (hence every) 𝜂 representing the level structure, 𝜂 maps each 𝑡𝑖 to 𝑠𝑖.

An isomorphism from one such triple (𝑊, 𝔰, [𝜂]) to a second (𝑊′, 𝔰′, [𝜂′]) is an isomor-
phism 𝛾∶ 𝑊 → 𝑊′ of rational Hodge structures mapping each 𝑠𝑖 to 𝑠′𝑖 and such that
[𝛾◦𝜂] = [𝜂′].

Let (𝑊, 𝔰, [𝜂]) be an element of ℋ𝐾(𝐺,𝑋). Choose an isomorphism 𝛽∶ 𝑊 → 𝑉
satisfying (3.1a), so that 𝛽 sends ℎ to ℎ𝑥 for some 𝑥 ∈ 𝑋. The composite

𝑉(𝔸𝑓)
𝜂
,→𝑊(𝔸𝑓)

𝛽
,→ 𝑉(𝔸𝑓), 𝜂 ∈ [𝜂],

sends each 𝑡𝑖 to 𝑡𝑖, and is therefore multiplication by an element 𝑔 ∈ 𝐺(𝔸𝑓), well defined
up to multiplication on the right by an element of 𝐾 (corresponding to a different choice
of a representative 𝜂 of the level structure). Since any other choice of 𝛽 is of the form
𝑞◦𝛽 for some 𝑞 ∈ 𝐺(ℚ), [𝑥, 𝑔] is a well-defined element of 𝐺(ℚ)∖𝑋 × 𝐺(𝔸𝑓)∕𝐾.

Proposition 3.2. The above construction defines a bijection

𝛼𝐾 ∶ ℋ𝐾(𝐺,𝑋)∕≈→ Sh𝐾(𝐺,𝑋)(ℂ).

Sketch of proof. Let (𝑊′, 𝔰′, [𝜂′]) be a second system. If

𝛾∶ (𝑊′, 𝔰′, [𝜂′])→ (𝑊, 𝔰, [𝜂])

is an isomorphism of triples and 𝛽∶ 𝑊(ℚ)→ 𝑉(ℚ) is an isomorphism of vector spaces
satisfying (3.1a), then𝛽◦𝛾 satisfies (3.1a) for (𝑊′, 𝔰′, [𝜂′]), and it follows that (𝑊′, 𝔰′, [𝜂′])
maps to the same element of Sh𝐾(𝐺,𝑋) as (𝑊, 𝔰, [𝜂]). Conversely, if (𝑊, 𝔰, [𝜂]) and
(𝑊′, 𝔰′, [𝜂′]) map to the same class [𝑥, 𝑔], we can choose maps 𝛽 and 𝛽′ so that the
triples map to the same element of 𝑋 × 𝐺(𝔸𝑓); now 𝛾 def= 𝛽−1◦𝛽′ is an isomorphism

(𝑊′, 𝔰′, [𝜂′])→ (𝑊, 𝔰, [𝜂]).

Finally, for any (𝑥, 𝑔) ∈ 𝑋 × 𝐺(𝔸𝑓), ((𝑉, ℎ𝑥), 𝔱, [𝑔])maps to [𝑥, 𝑔]. 2

Remark 3.3. A 𝑔 ∈ 𝐺(𝔸𝑓) defines a map

(𝑊, 𝔰, [𝜂])↦ (𝑊, 𝔰, [𝜂◦𝑔])∶ ℋ𝐾(𝐺,𝑋)→ℋ𝑔−1𝐾𝑔(𝐺,𝑋).

When we vary 𝐾, the maps 𝛼𝐾 are compatible with the actions of 𝐺(𝔸𝑓).
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Remark 3.4. (a) Consider the constant vector bundle 𝒱 over 𝑋 with fibre 𝑉(ℝ). When
we endow the fibre over 𝑥 with the Hodge structure defined by ℎ𝑥, then the Hodge
filtrations vary holomorphically on the base 𝑋; moreover, the complex structure on 𝑋 is
the unique one for which this is true.

(b) If the centre𝑍 of𝐺 is such that𝑍(ℚ) is discrete in𝑍(𝔸𝑓), then the family of Hodge
structure over 𝑋 descends to a family of Hodge structures over Sh(𝐺,𝑋). Axiom (SV1)
then implies that the family is a variation of Hodge structures, i.e., Griffiths transversality
holds.

(c) Axiom (SV2) implies that the Hodge structures inℋ𝐾(𝐺,𝑋) are polarizable.
(d) If we drop the assumption that the weight is defined over ℚ, then Proposition

3.2 fails because, although the vector spaces𝑊 are defined over ℚ, their weights are
defined only over a totally real field.

Notes. See Deligne 1979 and Milne 1990, II.3.

4 Shimura Varieties as Moduli Varieties for Mo-
tives.

4.1 Techniques for obtaining models of varieties over number fields
Suppose we are given an algebraic variety 𝑌 over ℂ. How do we construct a model of
it over a number field 𝐸? If we know the equations for 𝑌 over ℂ, we can try to find
equations for it with coefficients in 𝐸, but even when this is possible, it may not be the
most useful description of the model.

Roughly speaking, if 𝑌 is the solution to a moduli problem over ℂ (for example, if it
represents a functor), and the moduli problem (for example, the functor) is defined over
the subfield 𝐸 of ℂ, then descent theory shows4 that 𝑌 will have a model over 𝐸 that, in
fact, will be a solution to the moduli problem over 𝐸.

4.2 Motivic Hodge structures
Consider a pair (Λ, 𝐽), where Λ is a free ℤ-module of rank 2 and 𝐽 is an automorphism
of Λ⊗ ℝ such that 𝐽2 = −1. This may not seem to be a very interesting object until
you notice that it is an elliptic curve over ℂ: 𝐽 defines a complex structure on Λ⊗ ℝ,
and the quotient Λ⊗ℝ∕Λ has a unique structure as an elliptic curve. More precisely,
𝐴 ⇝ (𝐻1(𝐴,ℤ), 𝐽) is an equivalence from the category of elliptic curves over ℂ to the
category pairs (Λ, 𝐽). It makes sense to speak of an elliptic curve being defined over a
subfield of ℂ, or of the conjugate of an elliptic curve by an automorphism of ℂ, whereas
neither makes sense for an arbitrary rational Hodge structure. Now a pair (Λ, 𝐽) is just
an integral Hodge structure of rank 2 and type {(−1, 0), (0,−1)}— take (Λ⊗ ℂ)−1,0 and
(Λ⊗ ℂ)0,−1 to be the +𝑖 and −𝑖 eigenspaces respectively.

More generally, we have the following theorem.

Theorem 4.1. The functor 𝐴 ⇝ 𝐻1(𝐴,ℚ) defines an equivalence from the category of
abelian varieties overℂ up to isogeny to the category of polarizable rationalHodge structures
of type {(−1, 0), (0,−1)}.

4Added. Better, “we should expect descent theory to show. . . ”
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Thus, if theHodge structures inℋ𝐾(𝐺,𝑋) are of this type, then Sh(𝐺,𝑋)parametrizes
abelian varieties with Hodge cycle and level structure.

Definition 4.2. A Hodge structure ismotivic if it is in the smallest subcategory that
contains the cohomology groups of all algebraic varieties and is closed under the forma-
tion of tensor products, direct sums, duals, and direct summands. It is abelian-motivic
if it is in the smallest subcategory containing the cohomology groups of abelian varieties
and is closed under the same operations.

4.3 Shimura varieties whose Hodge structures are motivic
For which Shimura varieties are the Hodge structures inℋ𝐾(𝐺,𝑋)motivic? A necessary
condition is that the weight be defined over ℚ, and one hopes that it is also sufficient.
Henceforth, we assume the weight is rational.

TheMumford–Tate group of a rational Hodge structure (𝑉, ℎ) is the smallest alge-
braic subgroup 𝐻 of GL(𝑉) (in particular, rational over ℚ) such that 𝐻ℝ contains the
image of ℎ. It is connected (because 𝕊 is connected) and it is reductive (because Hodge
structures are assumed to be polarizable). TheMumford–Tate group of an abelian variety
𝐴 over ℂ is the Mumford–Tate group of the rational Hodge structure𝐻1(𝐴,ℚ).

Satake gave a list of the almost-simple groups over ℚ that arise as the derived group
of the Mumford–Tate group of an abelian variety, or, more generally as follows: it
may happen that an almost-simple group𝐻 has finite subgroups 𝑁1 and 𝑁2 such that
𝑁1 ∩ 𝑁2 = 1 and both 𝐻∕𝑁1 and 𝐻∕𝑁2 arise as the derived groups of Mumford–Tate
groups but not𝐻 itself; such an𝐻 is also to be included on the list.

Groups not on Satake’s list: Among the groups arising in the theory of Shimura
varieties, the groups 𝐸6, 𝐸7, and those of mixed type 𝐷𝑛, 𝑛 > 4, do not occur on Satake’s
list. Also for certain nonmixed types 𝐷𝑛, the simply connected group is not on Satake’s
list.

A simple group overℚ is of mixed type 𝐷𝑛 if its simple factors over ℝ correspond to
special nodes at opposite ends of the Dynkin diagram.

In order to show a group is on Satake’s list, one has to find a faithful family of
representations (overℚ) on symplectic spaces with certain properties. It turns out that
the highest weight of each representation will be a fundamental weight, and hence
will correspond to a node of Dynkin diagram. For groups of type 𝐷, it will be a node
at the opposite end from the special node. Since there is no automorphism of the
Dynkin diagram switching nodes at opposite ends of the diagram, there is no symplectic
representation defined over ℚ that over ℝ gives the correct representations.

Theorem 4.3. The Hodge structures inℋ𝐾(𝐺,𝑋) are abelian-motivic if and only if 𝐺der

has a finite covering by a product of groups on Satake’s list.

The Shimura varieties satisfying the condition in the theoremare said to be ofabelian
type. As was mentioned above, it is hoped that the Hodge structures inℋ𝐾(𝐺,𝑋) will
be motivic whenever the weight is defined over ℚ, but this is not known for a single
Shimura variety not of abelian type.

We can state things more canonically as follows: let 𝐺𝖧𝖽𝗀 be the pro-reductive group
attached to the Tannakian category of polarizable rational Hodge structures, and let𝐺𝖬𝗈𝗍

be the quotient group attached to the Tannakian subcategory of motives (defined using
Hodge cycles). If theweight is defined overℚ, each point𝑥 of𝑋 defines a homomorphism
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𝜌𝑥 ∶ 𝐺𝖧𝖽𝗀 → 𝐺: it is the unique homomorphism defined overℚ such that 𝜌𝑥◦ℎ𝖧𝖽𝗀 = ℎ𝑥.
The “hope” is that each 𝜌𝑥 will factor through 𝐺𝖬𝗈𝗍; the theorem is that 𝜌𝑥 will factor
through 𝐺𝖬𝗈𝗍, and even the quotient group attached to the category of abelian motives,
provided 𝐺der has a finite covering by groups on Satake’s list.

We explain the theorem in more detail. Let 𝐴 be an abelian variety, and let 𝑞 be
an endomorphism of the rational Hodge structure𝐻∗(𝐴,ℚ) def=

⨁
𝑟𝐻

𝑟(𝐴,ℚ) such that
𝑞2 = 𝑞; then

𝐻∗(𝐴,ℚ) = Ker(𝑞)⊕ Im(𝑞).

For an integer𝑚, we define

𝐻(𝐴, 𝑞,𝑚) = Im(𝑞)⊗ℚ(𝑚).

Then the theorem says that each Hodge structure in the familyℋ𝐾(𝐺,𝑋) is a sum of
Hodge structures of the form𝐻(𝐴, 𝑞,𝑚).

It makes sense to talk of an abelian variety being defined over a subfield of ℂ, but
what about Hodge tensors (including 𝑞)? The Hodge conjecture would say that the
Hodge tensors are all the classes of algebraic cycles on powers of the abelian variety. The
Hodge conjecture is not known for abelian varieties, but a theorem of Deligne shows
that Hodge cycles do make good sense on abelian varieties over fields of characteristic
zero (Deligne 1982). More precisely, as we explain in the next subsection, one can define
a good theory of motives over such fields.

4.4 Abelian motives in characteristic zero
Let 𝐺 be an algebraic group over a field 𝑘, or, more generally, a projective limit of
such groups. The category 𝖱𝖾𝗉𝑘(𝐺) of representations of 𝐺 on finite-dimensional vector
spaces over 𝑘 is a 𝑘-linear abelian category with good notions of tensor product and duals.
Conversely, every category possessing these properties and also an exact faithful functor
𝜔 to 𝖵𝖾𝖼𝑘 preserving the structures can be realized as the category of representations of
a pro-algebraic group 𝐺. Such a category is called a neutral Tannakian category.

For any field 𝑘 of characteristic zero, it is possible to define a neutral Tannakian
category𝖬𝗈𝗍(𝑘), the category of abelian motives over 𝑘. Each triple (𝐴, 𝑞,𝑚) as above
defines a motive ℎ(𝐴, 𝑞,𝑚) over 𝑘, and if we ignore the Artin motives, each motive is a
direct sum of such objects. Once an embedding of 𝑘 into ℂ has been chosen, one obtains
a functor 𝜔𝐵 from𝖬𝗈𝗍(𝑘) to rational Hodge structures extending 𝐴 ⇝ 𝐻1(𝐴⊗𝑘 ℂ,ℚ).
Also, once an algebraic closure �̄� of 𝑘 has been chosen, one obtains a functor 𝜔𝑓 from
𝖬𝗈𝗍(𝑘) to 𝔸𝑓-modules with a continuous action of Gal(�̄�∕𝑘) extending

𝐴 ⇝ 𝑉𝑓𝐴, 𝑉𝑓𝐴 = 𝑇𝑓𝐴, 𝑇𝑓𝐴 = lim←,,𝑁 𝐴(�̄�)[𝑁].

When 𝑘 = ℂ, 𝜔𝑓(𝑀) = 𝜔𝐵(𝑀)⊗ℚ 𝔸𝑓, and the functor 𝜔𝐵 defines an equivalence of
𝖬𝗈𝗍(ℂ) with the category of abelian-motivic Hodge structures.

4.5 The canonical model
Before explaining how to realize the Shimura variety as a moduli variety over a number
field, we must define the number field that is the “natural” field of definition for the
Shimura variety.
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The reflex field. Attached to each ℎ ∈ 𝑋, there is a cocharacter

𝜇ℎ ∶ 𝔾𝑚 → 𝐺ℂ, 𝜇ℎ(𝑧) = ℎℂ(𝑧, 1),

of 𝐺ℂ. The set of cocharacters {𝜇ℎ} lies in a single 𝐺(ℂ)-conjugacy class,𝑀𝑋 say. Let 𝑇
be a maximal torus in 𝐺 (rational overℚ). Since all maximal tori in 𝐺ℂ are conjugate,
some element of 𝑀𝑋 will have image in 𝑇ℂ. But 𝑇 splits over ℚal, and so 𝑀𝑋 has a
representative defined over ℚal. If two cocharacters of 𝐺ℚal are 𝐺(ℂ)-conjugate, then
they are 𝐺(ℚal)-conjugate. Hence any two elements of 𝑀𝑋 that are defined over ℚal

lie in the same 𝐺(ℚal)-conjugacy class, 𝑀𝑋(ℚal) say. We may define the reflex field
𝐸(𝐺,𝑋) to be the field of definition of𝑀𝑋(ℚal), i.e., to be the fixed field of the subgroup
of Gal(ℚal∕ℚ) stabilizing𝑀𝑋(ℚal).

Definition 4.4. Let 𝑘 be a field containing 𝐸(𝐺,𝑋). Consider triples (𝑀, 𝔰, [𝜂]) con-
sisting of an abelian motive𝑀 over 𝑘, a family 𝔰 of Hodge cycles on𝑀 indexed by 𝐼,
and a 𝐾-level structure [𝜂] on𝑀, i.e., a 𝐾-orbit of isomorphisms 𝑉(𝔸𝑓)→ 𝜔𝑓(𝑀). We
defineℳ𝐾(𝐺,𝑋)(𝑘) to be the set of such triples satisfying the following conditions:
(a) there exists an isomorphism ofℚ-vector spaces 𝛽∶ 𝜔𝐵(𝑀)→ 𝑉 mapping each 𝑠𝑖

to 𝑡𝑖 and sending ℎ to ℎ𝑥, some 𝑥 ∈ 𝑋;
(b) for one (hence every) 𝜂 representing the level structure, 𝜂 maps each 𝑡𝑖 to 𝑠𝑖;

moreover, [𝜂] is stable under the action of Gal(𝑘al∕𝑘).
An isomorphism from one such triple (𝑀, 𝔰, [𝜂]) to a second (𝑀′, 𝔰′, [𝜂′]) is an

isomorphism 𝛾∶ 𝑀 → 𝑀′ of motives mapping each 𝑠𝑖 to 𝑠′𝑖 and such that [𝜔𝑓(𝛾)◦𝜂] =
[𝜂′].

Remark 4.5. The functor 𝜔𝐵 depends on the choice of an embedding of 𝑘 into ℂ, but if
we choose this to be an 𝐸(𝐺,𝑋)-embedding, then the condition (a) and the setℳ𝐾(𝐺,𝑋)
do not depend on the choice of the embedding.

The functor 𝜔𝐵 defines a bijection

ℳ𝐾(𝐺,𝑋)(ℂ)∕≈→ℋ𝐾(𝐺,𝑋)∕≈ .

On combining this with the bijection in Proposition 3.2, we obtain a bijection

ℳ𝐾(𝐺,𝑋)(ℂ)∕≈→ Sh𝐾(𝐺,𝑋)(ℂ).

This can be shown to define Sh𝐾(𝐺,𝑋)(ℂ) as a moduli variety, and the moduli problem
is defined over 𝐸(𝐺,𝑋). Therefore, as was discussed briefly in Section 4.1, this defines
Sh𝐾(𝐺,𝑋) as a moduli variety over 𝐸(𝐺,𝑋). In particular, this implies the following
theorem.

Theorem 4.6. There is a canonical model of Sh𝐾(𝐺,𝑋) over 𝐸(𝐺,𝑋) and a map

𝛽(𝑘)∶ ℳ𝐾(𝐺,𝑋)(𝑘)→ Sh𝐾(𝐺,𝑋)(𝑘)

for each field 𝑘 ⊃ 𝐸(𝐺,𝑋); the maps 𝛽(𝑘) are functorial in 𝑘 and commute with the action
of 𝐺(𝔸𝑓); each map 𝛽(𝑘) defines a map

ℳ𝐾(𝐺,𝑋)(𝑘)∕≈→ Sh𝐾(𝐺,𝑋)(𝑘),

which is bijective when 𝑘 is algebraically closed, and is bijective for all fields if 𝑍(ℚ) is
discrete in 𝑍(𝔸𝑓). For 𝑘 = ℂ, the map is that defined above.
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Example 4.7. (a) Let 𝐺 = GL2 and𝑋 = 𝐻±. Here the reflex field isℚ, and Sh𝐾(𝐺,𝑋) is
realized as a moduli variety overℚ for elliptic curves with level structures. For example,
for𝑁 ≥ 3, Sh𝐾(𝑁)(𝐺,𝑋) is defined overℚ, and its points in any field (or ring) 𝐿 containing
ℚ are the isomorphism classes of pairs (𝐵, [𝜂]∶ (𝔸𝑓)2

≈,→ 𝑉𝑓(𝐵)) discussed in Section
3.2.

(b) Let 𝐺 = GL2,𝐹 with 𝑋 as above. Again the reflex field is ℚ, but the moduli
problem is coarse because 𝑍(ℚ) = 𝐹× is not discrete in 𝑍(𝔸𝑓) = (𝔸𝑓 ⊗ 𝐹)×. For any
field 𝑘 containingℚ,ℳ𝐾(𝐺,𝑋)(𝑘) is the set of triples (𝐴, 𝔰, [𝜂]), where 𝐴 is an abelian
variety up to isogeny over 𝑘 such that End(𝐴) ⊃ 𝐹 and dim𝐴 = [𝐹 ∶ ℚ]. The set 𝔰 can
be taken to be any set of generators for 𝐹.

(c) Let 𝜓 be a nondegenerate skew-symmetric form on a finite-dimensional vector
space𝑉 overℚ, and let𝐺 = GSp(𝜓), the group of symplectic similitudes (automorphisms
of 𝑉 fixing 𝜓 up to a rational number). Let 𝑋 be the set of Hodge structures of type
{(−1, 0), (0,−1)} on 𝑉 for which ±2𝜋𝑖𝜓 is a polarization. Then 𝐺 is the subgroup of
GL(𝑉)⊕ GLℚ(1) fixing 2𝜋𝑖𝜓. This is the subgroup of GL(𝑉 ⊕ℚ(1)) commuting with
(i.e., fixing) the projections onto the factors and fixing 𝜓. Again the reflex field is ℚ, and
for any field containing ℚ,ℳ𝐾(𝐺,𝑋)(𝑘) is the set of triples (𝐴, 𝜆, [𝜂]), where 𝐴 is an
abelian variety up to isogeny of dimension (dim𝑉)∕2 and 𝜆 is a polarization of 𝐴.

(d) Let 𝐺 = PGL2, and let 𝑋 be the obvious conjugacy class of homomorphisms
𝕊→ 𝐺ℝ. Then 𝐺 has a natural representation on a three-dimensional vector space, and
the motives are of the form Sym2(𝐴), for 𝐴 an elliptic curve.

To proceed further, we need to assume that there is a good theory of abelian motives in
characteristic 𝑝 and a good reduction functor. Thus the next two sections are heuristic: we
make plausible assumptions in order to discover what the description of the points over the
finite fields should be.

Notes. See Deligne and Milne 19825 for the notion of a Tannakian category and of a motive.
Theorem 4.3 is proved in Milne 1994b.

5 Integral Models

5.1 A criterion for good reduction
When should Sh𝐾(𝐺,𝑋) have good reduction at a prime 𝑣 of 𝐸 = 𝐸(𝐺,𝑋) lying over 𝑝? If
𝑝|𝑁 then it is known that themoduli variety Sh𝐾(𝑁)(GL2, 𝐻±) of elliptic curves with level
𝑁 structure does not have good reduction at 𝑝 (see, for example, Deligne and Rapoport
1973). Thus we should assume that 𝐾 contains a maximal compact subgroup 𝐾𝑝 at 𝑝;
in fact, we may as well assume 𝐾 = 𝐾𝑝 ⋅ 𝐾𝑝, here 𝐾𝑝 is a compact open subgroup of
𝐺(𝔸𝑝

𝑓); here 𝔸
𝑝
𝑓 = (

∏
𝓁≠𝑝 ℤ𝓁)⊗ℤ ℚ. However, even this is not sufficient to ensure that

Sh𝐾(𝐺,𝑋) has good reduction at 𝑝: if Sh(𝐺,𝑋) is the Shimura variety associated with a
quaternion algebra over ℚ, then Sh𝐾𝑝⋅𝐾𝑝(𝐺,𝑋), 𝐾𝑝 maximal, will have good reduction
at 𝑝 only if 𝑝 does not divide the discriminant of 𝐵. That the following should be true
was suggested in Langlands 1976, p. 411.

5Added: this has been superseded by, J.S. Milne, Tannakian Categories, to appear (draft available at
jmilne.org).
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Conjecture 5.1. The variety Sh𝐾(𝐺,𝑋), 𝐾 = 𝐾𝑝 ⋅ 𝐾𝑝 has good reduction at 𝑣|𝑝 if 𝐾𝑝 is
a hyperspecial group of 𝐺(ℚ𝑝).

The algebraic group 𝐺ℚ𝑝 will have a hyperspecial subgroup if and only if it has a
smooth model 𝐺𝑝 over ℤ𝑝 whose reduction modulo 𝑝 is again a connected reductive
group; the hyperspecial subgroup is then 𝐺𝑝(ℤ𝑝). In order for 𝐺 to have a hyperspecial
subgroup, it is obviously necessary that 𝐺 be quasi-split over ℚ𝑝 and split over an
unramified extension, and the Bruhat–Tits theory of buildings shows that this condition
is also sufficient.

5.2 The points on Sh𝑝(𝐺,𝑋)
From now on we assume that 𝐾 = 𝐾𝑝 ⋅𝐾𝑝 with 𝐾𝑝 hyperspecial, and we choose a lattice
𝑉(ℤ𝑝) in 𝑉(ℚ𝑝) whose stabilizer is 𝐺𝑝; this means that for any ℤ𝑝-algebra 𝑅, 𝐺𝑝(𝑅) is
the stabilizer of 𝑉(𝑅) in 𝑉(𝑅)⊗ℚ𝑝.

Since we shall need to know the points on the Shimura variety with coordinates in
nonalgebraically closed fields, we shall assume that 𝑍(ℚ) is discrete in 𝑍(𝔸𝑓). Then we
might as well pass to the limit over smaller and smaller groups 𝐾𝑝, and set

Sh𝑝(𝐺,𝑋) = lim←,,𝐾𝑝
Sh𝐾𝑝⋅𝐾𝑝(𝐺,𝑋).

An isomorphism 𝜂∶ 𝑉(𝔸𝑓)→ 𝜔𝑓(𝑀) can be decomposed into a product 𝜂𝑝 × 𝜂𝑝, where
𝜂𝑝 is an isomorphism 𝑉(𝔸𝑝

𝑓) → 𝜔𝑝𝑓(𝑀) and 𝜂𝑝 is an isomorphism 𝑉(ℚ𝑝) → 𝜔𝑝(𝑀).
Here 𝔸𝑝

𝑓 is the ring of finite adèles away from 𝑝, i.e., the restricted product of the ℚ𝓁 for
𝓁 ≠ 𝑝,∞, and 𝜔𝑝𝑓(𝑀) and 𝜔𝑝(𝑀) are suitable étale realizations of𝑀.

Definition 5.2. Let 𝑘 be a field containing𝐸(𝐺,𝑋). Consider quadruples (𝑀, 𝔰, 𝜂𝑝,Λ𝑝)
consisting of an abelian motive𝑀 over 𝑘, a family 𝔰 of Hodge cycles indexed by 𝐼, an
isomorphism 𝑉(𝔸𝑝

𝑓)→ 𝜔𝑝𝑓(𝑀), and a lattice Λ𝑝 in 𝜔𝑝(𝑀). We defineℳ𝑝(𝐺,𝑋)(𝑘) to be
the set of such triples satisfying the following conditions:

(a) there exists an isomorphism ofℚ-vector spaces 𝛽∶ 𝜔𝐵(𝑀)→ 𝑉 mapping each 𝑠𝑖
to 𝑡𝑖 and sending ℎ to ℎ𝑥, some 𝑥 ∈ 𝑋;

(b) the isomorphism 𝜂𝑝maps each 𝑡𝑖 to 𝑠𝑖 and is invariant under the action ofGal(�̄�∕𝑘);
(c) Λ𝑝 is a ℤ𝑝-lattice in 𝜔𝑝(𝑀), stable under the action of Gal(�̄�∕𝑘), for which there

exists an isomorphism
𝑉(ℚ𝑝)→ 𝜔𝑝(𝑀)

mapping each 𝑡𝑖 onto 𝑠𝑖 and such that 𝑉(ℤ𝑝)maps onto Λ𝑝.
There is an obvious notion of an isomorphism from one such quadruple to a second.

The map (𝑀, 𝔰, [𝜂])↦ (𝑀, 𝔰, 𝜂𝑝, 𝜂𝑝(𝑉(ℤ𝑝)) defines a bijection

lim←,,𝐾𝑝
ℳ𝐾𝑝𝐾𝑝(𝐺,𝑋)(𝑘)→ℳ𝑝(𝐺,𝑋)(𝑘).

Hence, for any field 𝑘 containing 𝐸(𝐺,𝑋), there is a canonical bijection

ℳ𝑝(𝐺,𝑋)(𝑘)∕≈ → Sh𝑝(𝑘).
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5.3 The integral canonical model
Let 𝑣 be a prime of 𝐸 lying over 𝑝. Then 𝑣 is unramified over 𝑝, and we let 𝐵 be the
completion of the maximal unramified extension of 𝐸𝑣. Then 𝐵 is the field of fractions
of the ring of Witt vectors over an algebraic closure 𝔽 of the residue field at 𝑣. Let 𝒪𝑣 be
the ring of integers in 𝐸𝑣. We have the diagram:

𝐵 − − − 𝑊 − − − 𝔽
| | |
𝐸𝑣 − − − 𝒪𝑣 − − − 𝑘(𝑣).

We want to understand the points of Sh𝑝(𝐺,𝑋) with coordinates in 𝔽, but first we need
a model of Sh𝑝(𝐺,𝑋) over 𝒪𝑣, and we need to have a description of the points on the
model.

Consider S𝑁 = Sh𝐾(𝑁)(GL2, 𝐻±). Its points over 𝐵 are isomorphism classes of pairs

(𝐴, 𝛼∶ (ℤ∕𝑁ℤ)2 ≈,→ 𝐴[𝑁])

where 𝐴 is an elliptic curve over 𝐵 and 𝛼 is a level𝑁-structure on 𝐴. If 𝑝 does not divide
𝑁, then 𝑆𝑁 has good reduction, and, in fact extends canonically to a smooth curve over
𝑊, whose points are the pairs (𝐴, 𝛼) over 𝐵 such that𝐴 has good reduction. Thus 𝑆𝑁(𝑊)
will be a proper subset of 𝑆𝑁(𝐵). But recall that the Néron–Ogg–Shafarevich criterion
for good reduction says that any elliptic curve 𝐴 over 𝐵 having all its 𝑁-torsion points
rational over 𝐵 has good reduction. Therefore, when we pass to the limit,

lim←,,𝑝∤𝑁 𝑆𝑁(𝐵) = lim←,,𝑝∤𝑁 𝑆𝑁(𝑊).

This example suggests that Sh𝑝(𝐺,𝑋) should have a model over 𝒪𝑣 with the property
that

Sh𝑝(𝐺,𝑋)(𝑊) = Sh𝑝(𝐺,𝑋)(𝐵).

In fact, an extension of this property can be used to characterize an integral canonical
model over𝑊, namely, it should be a smooth model 𝑆 of Sh𝑝(𝐺,𝑋) over 𝒪𝑣 such that

𝑆(𝑌) = Sh𝑝(𝐺,𝑋)(𝑌 ⊗𝒪𝑣 𝐸𝑣)

for every regular𝒪𝑣-scheme 𝑌 such that 𝑌⊗𝒪𝑣 𝐸𝑣 is dense in 𝑌. A theorem of Chai and
Faltings allows one to verify that the Siegel modular variety satisfies this condition, at
least for 𝑝 ≠ 2.6

5.4 The points with coordinates in 𝔽
In the following, we assume that a smooth integral model exists. We expect a commuta-
tive diagram:

ℳ𝑝(𝑊)∕≈ Sh𝑝(𝑊) Sh𝑝(𝐵)

ℳ𝑝(𝔽)∕≈ Sh𝑝(𝔽)

←→1∶1

←→

⇐⇐

←→

←→1∶1

(1)

6Added. The theorem in question is false. This requires a modification in the notion of the “test”
schemes 𝑌.
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The vertical arrow at right is onto because Sh𝑝(𝑊) is smooth. Unfortunately, the
description ofℳ𝑝 given inDefinition 5.2 does notmake sense in characteristic𝑝, because
𝑝-adic étale cohomology is pathological in characteristic 𝑝. We need to change the
description so that it is in terms of the de Rham (or crystalline) cohomology.

Let 𝑍 be a smooth projective variety over 𝐵 with good reduction. It has two 𝑝-adic
cohomologies:
⋄ the 𝑝-adic étale cohomology groups; these are finite-dimensionalℚ𝑝-vector spaces

with an action of Gal(𝐵al∕𝐵);
⋄ the de Rham cohomology groups; these are finite-dimensional 𝐵-vector spaces

with a canonical filtration. Since we are assuming 𝑍 reduces to a smooth variety 𝑍0
over 𝔽, the de Rham cohomology of 𝑍 will be equal to the crystalline cohomology
of 𝑍0, and hence acquires a 𝑝-linear Frobenius operator 𝜙.

The same should be true for our abelian motives. Grothendieck conjectured many
years ago that there should be a canonical way of going from one cohomology theory to
the other. Thanks to the work of Fontaine and others, this is now well understood in the
above situation, but is less well understood on the level of lattices.

In attempting to translate the Definition 5.2 from étale cohomology to de Rham
cohomology, I arrived at the following definition.

Definition 5.3. Consider quadruples (𝑀, 𝔰, 𝜂𝑝,Λcrys) consisting of an abelian motive
𝑀 over 𝐵, a family 𝔰 of algebraic classes indexed by 𝐼, an isomorphism 𝑉(𝔸𝑝

𝑓)→ 𝜔𝑝𝑓(𝑀)
and a lattice Λcrys in 𝜔dR(𝑀). We define ℳ′

𝑝(𝐺,𝑋)(𝐵) to be the set of such triples
satisfying the following conditions:
(a) there exists an isomorphism ofℚ-vector spaces 𝛽∶ 𝜔𝐵(𝑀)→ 𝑉 mapping each 𝑠𝑖

to 𝑡𝑖 and sending ℎ to ℎ𝑥, some 𝑥 ∈ 𝑋;
(b) the isomorphism 𝜂𝑝maps each 𝑡𝑖 to 𝑠𝑖 and is invariant under the action ofGal(�̄�∕𝑘);
(c) Λcrys is a𝑊-lattice in𝜔dR(𝑀) that is strongly divisible, i.e., such that

∑
𝑝−𝑖𝜙(𝐹𝑖𝑙𝑖Λ) =

Λ, and such that there exists an isomorphism

𝜂crys∶ 𝑉(𝐵)→ 𝜔dR𝑀

sending each 𝑡𝑖 to 𝑠𝑖 and mapping 𝐹𝑖𝑙𝑡(𝜇−10 ) to the Hodge filtration.

Here 𝜇0 is a cocharacter of 𝐺𝐵 representing 𝑀𝑋 and well-adapted for 𝐾𝑝. More
precisely, 𝜇0 ∈ 𝑋∗(𝑇), where 𝑇 is a maximal 𝐵-split torus in 𝐺𝐵 containing the maximal
ℚ𝑝-split torus corresponding to appartment containing the hyperspecial point fixed by
𝐾𝑝.

I expect that Fontaine’s theory provides a bijection

ℳ𝑝(𝐵)↔ℳ′
𝑝(𝐵),

at least if 𝑝 is not too small relative to the lengths of the filtrations. Furthermore, I expect
that the diagram (5.1) exists withℳ′

𝑝(𝔽) defined as follows.

Definition 5.4. Consider quadruples (𝑀, 𝔰, 𝜂𝑝,Λcrys) consisting of an abelian motive
𝑀 over 𝔽, a family 𝔰 of algebraic cycles indexed by 𝐼, an isomorphism 𝑉(𝔸𝑝

𝑓)→ 𝜔𝑝𝑓(𝑀),
and a lattice Λcrys in 𝜔crys(𝑀). We defineℳ′

𝑝(𝐺,𝑋)(𝔽) to be the set of such quadruples
that lift to a quadruple inℳ′(𝐺,𝑋)(𝐵).
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In particular, we should have a bijection

ℳ′
𝑝(𝔽)∕≈→ Sh𝑝(𝔽)

commuting with the actions of 𝐺(𝔸𝑝
𝑓) and the Frobenius automorphisms. Call a pair

𝑁 = (𝑀, 𝔰) admissible if there exists an 𝜂𝑝 and a Λcrys such that (𝑀, 𝔰, 𝜂𝑝,Λcrys) ∈
ℳ′

𝑝(𝔽). Fix an admissible 𝑁 and define 𝑆(𝑁) to be the set of isomorphism classes of
quadruples (𝑀, 𝔰, 𝜂𝑝,Λcrys) inℳ′

𝑝(𝔽) with (𝑀, 𝔰) ≈ 𝑁. Then

Sh𝑝(𝔽) =
∐

𝑁
𝑆(𝑁)

where the disjoint union is over a set of representatives for the isomorphism classes
admissible 𝑁’s. Moreover

𝑆(𝑁) = 𝐼(𝑁)∖𝑋𝑝(𝑁) × 𝑋𝑝(𝑁)

where 𝐼(𝑁) is the set of automorphisms of 𝑁 and 𝑋𝑝(𝑁) and 𝑋𝑝(𝑁) are the sets of 𝜂𝑝
and Λcrys such that (𝑁, 𝜂𝑝,Λcrys) ∈ℳ′

𝑝(𝔽).
Note that 𝑋𝑝(𝑁) is a principal homogeneous space for 𝐺(𝔸𝑝

𝑓)— therefore the choice
of an element of 𝑋𝑝(𝑁) determines a bijection 𝐺(𝔸𝑝

𝑓) → 𝑋𝑝(𝑁). Similarly, the choice
of an isomorphism 𝛽∶ 𝜔crys(𝑀) → 𝑉(𝐵) sending each 𝑠𝑖 to 𝑡𝑖 determines an explicit
description of 𝑋𝑝(𝑁). There will a 𝑏 ∈ 𝐺(𝐵) such that action of the Frobenius 𝜙 on
𝜔crys(𝑀) corresponds to 𝑥 ↦ 𝑏 ⋅ 𝜎𝑥 on 𝑉(𝐵). Here 𝜎 is the map on 𝑉(𝐵) = 𝐵 ⊗ℚ𝑝 𝑉 by
the Frobenius automorphism of 𝐵. Under 𝛽, Λcrys will correspond to 𝑔𝑉(𝑊) for some
𝑔 ∈ 𝐺(𝐵) and the map Λcrys ↦ 𝑔𝐺(𝑊) determines a bijection

𝑋𝑝(𝑁)→ {𝑔 ⋅ 𝐺(𝑊) ∈ 𝐺(𝐵)∕𝐺(𝑊) ∣ 𝑔−1 ⋅ 𝑏 ⋅ 𝜎𝑔 ∈ 𝐺(𝑊) ⋅ 𝜇0(𝑝−1) ⋅ 𝐺(𝑊)}.

In order for this description of Sh𝑝(𝔽) to be useful, we need to understand the
admissible pairs 𝑁 = (𝑀, 𝔰). Fortunately, this is possible (conjecturally).

Notes. See Milne 1992, §2; 1994b, §4.

6 Abelian Motives over 𝔽
We need a down-to-earth description of the category of abelian motives over a 𝔽. It
should be a Tannakian category over ℚ but with no exact tensor functor to the category
of ℚ-vector spaces. According to the Tannakian philosophy, such a category should be
equivalent to the category of representations of a groupoid.

A groupoid in sets is a small category in which every morphism has an inverse.
Thus it consists of a set 𝑆 of objects, a set𝔊 of morphisms, maps 𝑡, 𝑠 ∶ 𝔊⇉ 𝑆 sending
each object to its target and source, and a law of composition

𝔊 ×
𝑠,𝑆,𝑡

𝔊→ 𝔊 where𝔊 ×
𝑠,𝑆,𝑡

𝔊→ 𝔊 = {(ℎ, 𝑔) ∈ 𝔊 ×𝔊 ∣ 𝑠(ℎ) = 𝑡(𝑔)}.

For example, if 𝑆 has a single element, then𝔊 is just a group. For each 𝑎 ∈ 𝑆,

𝔊𝑎
def= Aut(𝑎) = {𝑔 ∈ 𝔊 ∣ 𝑠(𝑔) = 𝑎 = 𝑡(𝑔)}
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is a group. If𝔊 is transitive, i.e., Hom(𝑎, 𝑏) is always nonempty, then these groups are
all isomorphic, but not (quite) canonically so unless they are commutative.

Now consider a morphism of schemes 𝑆 → 𝑆0, for example, Specℚal → Specℚ. An
𝑆∕𝑆0-groupoid is a scheme𝔊 over 𝑆0 together with two 𝑆0-morphisms 𝑡, 𝑠∶ 𝔊⇉ 𝑆 and
a law of composition

𝔊 ×
𝑠,𝑆,𝑡

𝔊→ 𝔊

such that, for all 𝑆0-schemes 𝑇, (𝑆(𝑇),𝔊(𝑇), (𝑡, 𝑠), ◦) is a groupoid in sets. Thus a
groupoid in schemes generalizes the notion of a group scheme, just as a groupoid in
sets generalizes the notion of group. We shall always assume that our groupoids are
transitive, i.e., that the map (𝑡, 𝑠)∶ 𝔊 → 𝑆 ×𝑆0 𝑆 is surjective and flat. The kernel
𝐺 = 𝔊∆ def= (𝑡, 𝑠)−1(∆) of𝔊 is a group scheme over 𝑆, or over 𝑆0 when 𝐺 is commutative.

A group scheme 𝐺 over 𝑆0 defines a “trivial” 𝑆∕𝑆0-groupoid,𝔊𝐺 = 𝐺 ×𝑆0 (𝑆 ×𝑆0 𝑆).
A vector space 𝑉 overℚal defines aℚal∕ℚ-groupoid𝔊𝑉 . There is an obvious notion

of a morphism of two groupoids, and a representation of a groupoid is a morphism
𝔊→ 𝔊𝑉 .

In general, theℚal∕ℚ-groupoids with a given kernel 𝐺 are classified by a nonabelian
cohomology group𝐻2(ℚ, 𝐺); when the kernel is commutative, then this becomes a more
usual abelian cohomology group.

Let 𝑇 be a torus over a fieldℚ. If 𝑇 is split, then the simple representations are classi-
fied by the characters 𝑋∗(𝑇): the representation corresponding to 𝜒 is one-dimensional,
and 𝑇 acts via 𝜒.

More generally, 𝑇 will split over ℚal, and the simple representations are classified
by the orbits of Gal(ℚal∕ℚ) in 𝑋∗(𝑇). Given 𝜒, let 𝐸(𝜒) be the subfield of ℚal fixed by
the stabilizer of 𝜒. There is a homomorphism 𝑇 → Res𝐸(𝜒)∕ℚ𝔾𝑚 corresponding to the
homomorphism of character groups

ℤHom(𝐸(𝜒),ℚal) → 𝑋∗(𝑇),
∑

𝑛𝜎𝜎 ↦
∑

𝑛𝜎𝜎𝜒.

The representation corresponding to the orbit of 𝜒 is the composite of this homomor-
phism with the obvious representation of Res𝐸(𝜒)∕ℚ𝔾𝑚 on 𝐸(𝜒) regarded as aℚ-vector
space. The endomorphism algebra of the representation is 𝐸(𝜒).

For a groupoid𝒯with kernel a torus𝑇, the simple representations are again parametrized
by the orbits of Gal(ℚal∕ℚ) in 𝑋∗(𝑇), but now the representation has as endomorphism
algebra a division algebra with centre 𝐸(𝜒); moreover, the class of the division algebra
in the Brauer group of 𝐸(𝜒) is the image of the class of 𝒯 under the homomorphism

𝐻2(𝑘, 𝑇)→ 𝐻2(𝑘,Res𝐸(𝜒)∕𝑘 𝔾𝑚) = 𝐻2(𝐸(𝜒),𝔾𝑚) = Br(𝐸(𝜒)).

What should the groupoid attached to the category of abelianmotives over𝔽 be? Each
abelian variety defines an abelian motive, and hence a representation of the groupoid.
Thus, we seek a groupoid that contains among its represenations, one representation for
each simple abelian variety over 𝔽, and whose category of representations is generated
by such representations.

Fortunately, Tate and Honda have classified the isogeny classes of simple abelian
varieties over a finite field. Let 𝐴 be a simple abelian variety over 𝔽𝑞. Weil showed
that Frobenius endomorphism 𝜋 of 𝐴 is an algebraic integer with the property that
|𝜌𝜋| = 𝑞1∕2 for every 𝜌∶ ℚ[𝜋] → ℂ. Call such a 𝜋 aWeil 𝑞-integer. To each simple
abelian variety over 𝔽𝑞 we can attach the set of conjugates of𝜋 inℚal (algebraic closure of
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ℚ in ℂ), and the theorem of Honda and Tate says that the map 𝐴 ↦ {𝜋} gives a bijection
from the set of isogeny classes of abelian varieties and to the set of Galois orbits of Weil
𝑞-integers. Moreover, End𝐴⊗ℚ is a central division algebra overℚ[𝜋]whose invariant
𝑖𝑣 at a prime 𝑣 of ℚ[𝜋] is determined by the rule,

||𝜋||𝑣 = 𝑞𝑖𝑣

where || ⋅ ||𝑣 denotes normalized valuation.
Let𝑊(𝑞) be the subgroup of ℚal× generated by the Weil 𝑞-integers — its elements

will be called theWeil numbers. There is a map 𝜋 ↦ 𝜋𝑁 ∶𝑊(𝑞)→𝑊(𝑞𝑁), and we let

𝑊(𝑝∞) = lim,,→𝑁
𝑊(𝑝𝑁).

An element 𝜋 of𝑊(𝑝∞) is represented by a Weil 𝑝𝑛-number 𝜋𝑛 for some 𝑛, and 𝜋𝑛 and
𝜋𝑚 represent the same element of𝑊(𝑝∞) if and only if 𝜋𝑚𝑁𝑛 = 𝜋𝑛𝑁𝑚 for some 𝑁. Define
ℚ{𝜋} = ℚ[𝜋𝑛], where 𝜋𝑛 is chosen so that [ℚ[𝜋𝑛] ∶ ℚ] is as small as possible. With the
same 𝜋𝑛, let 𝛿(𝜋) be the element of Br(ℚ{𝜋}) whose invariant 𝑖𝑣 satisfies

||𝜋𝑛||𝑣 = (𝑝𝑛)𝑖𝑣 .

The theorem of Honda and Tate then gives a bijection from the set of isogeny classes
of abelian varieties over 𝔽 and to the set of Galois orbits in𝑊(𝑝∞) represented by a
Weil 𝑝𝑛-integer for some 𝑛; moreover the endomorphism algebra of the abelian variety
corresponding to 𝜋 is a central division algebra over ℚ{𝜋} with invariant 𝛿(𝜋).

It is now evident that the groupoid𝔓 we seek should have kernel a pro-torus 𝑃 with
𝑋∗(𝑃) =𝑊(𝑝∞); moreover, the class 𝛿 of𝔓 in𝐻2(ℚ, 𝑃) should map to 𝛿(𝜋) under the
map𝐻2(ℚ, 𝑃)→ Br(ℚ{𝜋}) defined by 𝜋. Happily7, such a groupoid does exist, and, in
fact, is uniquely determined up to a (nonunique) isomorphism by these conditions.

Conjecturally, the category of abelian motives over 𝔽 is equivalent to the category of
representations 𝜙 of𝔓, and the category of pairs 𝑁 = (𝑀, 𝔰)—motives with tensors —
should be equivalent to the category of morphisms 𝜙∶ 𝔓→ 𝔊𝐺 . Now, it is possible to
attach to each such morphism 𝜙 a set

𝑆(𝜙) = 𝐼(𝜙)∖𝑋𝑝(𝜙) × 𝑋𝑝(𝜙),

and the conjecture of Langlands and Rapoport takes the form

Sh𝑝(𝔽) =
∐

𝜙
𝑆(𝜙)

where8 the disjoint union is over the set of isomorphism classes of “admissible” mor-
phisms 𝜙∶ 𝔓→ 𝔊𝐺 . The set 𝐼(𝜙) is the automorphism group of 𝜙, 𝑋𝑝(𝜙) is a principal
homogenous space for 𝐺(𝔸𝑝

𝑓), and 𝑋𝑝(𝜙) has a description similar to that of 𝑋𝑝(𝑁).
In order to have a completely down-to-earth conjecture, it remains to characterize

the “admissible” homomorphisms, namely, those that conjecturally correspond to the
admissible pairs 𝑁 = (𝑀, 𝔰).

7Otherwise the Tate conjecture would fail for abelian varieties over finite fields!
8More precisely, the conjecture says that there exists a one-to-one correspondence between the two sides,

and the correspondence can be chosen to respect the actions of 𝐺(𝔸𝑝
𝑓) and the Frobenius automorphism.
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A point 𝑥 ∈ 𝑋 is special if the image of ℎ𝑥 is contained in 𝑇ℝ for some rational torus
𝑇 ⊂ 𝐺. Langlands and Rapoport (1987) attach to such an 𝑥 a special homomorphism
𝜙𝑥 ∶ 𝔓→ 𝔊𝐺 . Every special homomorphism should be admissible. On the other hand, it
is possible to give a necessary condition that 𝜙 be admissible, namely, a local condition for
each prime 𝓁 (including 𝑝 and∞) and the condition that𝔓→ 𝔊𝐺 → 𝔊𝐺ab be special.
Happily, the two conditions, one sufficient and the other necessary, are equivalent
when 𝐺der is simply connected. Thus, in this case, one can take either condition as the
definition. When 𝐺der is not connected, it is known that one must define a morphism to
be admissible if it is isomorphic to a special homomorphism.

Notes. This section motivates the conjecture of Langlands and Rapoport (1987, p. 169). See
also Milne 1992, §3,4; 1994a.

7 The Formula for the Number of Points in a Fi-
nite Field

The Shimura variety Sh𝑝 has no points in a finite field because the objects it parametrizes
have infinite level structure — for example, there is no elliptic curve defined over a finite
field and having its𝑁-torsion points rational over the field for all𝑁 prime to 𝑝. To obtain
a meaningful result, we must put the 𝐾𝑝 back in, and look at

Sh𝐾(𝐺,𝑋) = Sh𝑝(𝐺,𝑋)∕𝐾𝑝, 𝐾 = 𝐾𝑝 ⋅ 𝐾𝑝.

Assume

⋄ the weight is defined over ℚ;
⋄ 𝑍(ℚ) is discrete in 𝑍(𝔸𝑓), 𝑍 = 𝑍(𝐺);
⋄ 𝐺der is simply connected.

Then it is possible to derive from the conjecture of Langlands and Rapoport a formula
of the following shape:

Card Sh𝐾(𝔽𝑞) =
∑

(𝛾0;𝛾,𝛿)
𝑐(𝛾0) ⋅ 𝐼(𝛾0; 𝛾, 𝛿).

The sum is over a set of representatives for triples (𝛾0; 𝛾, 𝛿) satisfying a certain cohomo-
logical condition,

𝑐(𝛾0) = Card(Ker(Ker1(ℚ, 𝐼0)→ 𝐻1(ℚ, 𝐺)))

measures the failure of a Hasse principle, and

𝐼(𝛾0; 𝛾, 𝛿) = vol(𝐼(ℚ)∖𝐼(𝔸𝑓)) ⋅ 𝑂𝛾(𝑓𝑝) ⋅ 𝑇𝑂𝛿(𝜙𝑟)

is the product of a volume with an orbital integral and a twisted orbital integral. The
triples (𝛾0; 𝛾, 𝛿) are of the following form:
⋄ 𝛾0 is a semisimple element of 𝐺(ℚ) that is elliptic in 𝐺(ℝ);
⋄ 𝛾 = (𝛾(𝓁))𝓁≠𝑝,∞ is an element of𝐺(𝔸𝑝

𝑓) such that, for all𝓁, 𝛾(𝓁) becomes conjugate
to 𝛾0 in 𝐺(ℚal

𝓁 );
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⋄ 𝛿 is an element of 𝐺(𝐵(𝔽𝑞)) such that

𝒩𝛿 def= 𝛿 ⋅ 𝜎𝛿 ⋅ … ⋅ 𝜎𝑛−1𝛿, 𝑛 = [𝔽𝑞 ∶ 𝔽𝑝]

becomes conjugate to 𝛾0 in 𝐺(ℚal
𝑝 ).

Moreover 𝐼𝛾0 is the centralizer of 𝛾0 in 𝐺; 𝐼 is a certain inner form of 𝐼0 defined by
local conditions involving the 𝛾(𝓁) and 𝛿.

Variants of the formula occur in the writings of Langlands, but it is stated most
definitively in Kottwitz 1990, §3. Historically, the form of the formula was suggested,
not by studying the points on the Shimura variety, but by examining what one needs to
prove that the zeta function takes the form conjectured by Langlands. The passage from
the formula to the zeta function is now a problem in representation theory.

Notes. The derivation of the formula for the cardinality of Sh𝐾(𝔽𝑞) from the conjecture of
Langlands and Rapoport is carried out in Milne 1992, §§4,5.
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