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Section 2, p314. In his thesis1, Berthelot defined the crystalline cohomology class of a
closed subvariety only when the subvariety is smooth. In the early 1980s, I pointed out to
Berthelot, Gabber, Illusie, and others, that the definition could be extended to all singular
subvarieties by using the �n-cohomology (thereby proving that crystalline cohomology is a
Weil cohomology). This section represents my exposition of this idea. A more comprehensive
exposition of it can be found in the thesis of Illusie’s student Gros (Mem. Soc. Math. France,
21, 1985).2 There is a different proof that crystalline cohomology is a Weil cohomology in
Gillet and Messing 1987.3

p320, 2.12. This conjecture is proved, even for the Zariski topology, in Gros and Suwa,
Duke Math. J. 57 (1988). See also the remark pp72–73 in my paper, Compos. math. 68
(1988), 59-102.

Erratum

In (0.4a) q1�s should be q�s .
For some corrections (most notably, a term was dropped from the definition of ˛r.X/

on p. 299), see pages 94 and 100–101 of the sequel, Motivic cohomology and values of zeta
functions, Compositio Math. 68 (1988), 59–102.

Addendum

As the article was being completed,4 Lichtenbaum conjectured that there should exist
complexes Z.r/ of sheaves for the étale topology on a smooth variety X extending the
sequence Z, GmŒ�1�, . . . (see Afterthought 10.7). It is now (2009) generally accepted that,
for smooth varieties, Z.r/ should be taken to be the complex of étale sheaves given by
Bloch’s higher Chow groups5 (see for example the survey article Geisser 2005, 1.2.26).
The main theorem of my paper (Theorem 0.1) has a beautiful restatement in terms of the
Weil-étale cohomology of the complex Z.r/, which I now explain.

REVIEW OF ABELIAN GROUPS

In this subsubsection, we review some elementary results on abelian groups.

1Berthelot, Pierre, Cohomologie cristalline des schémas de caractéristique p > 0. Lecture Notes in Mathe-
matics, Vol. 407. Springer-Verlag, Berlin-New York, 1974. 604 pp.

2The closest Gros comes to acknowledging the origin of the idea is in the statement p7: “Je remercie
également O. Gabber qui m’a communiqué certains résultats qui ont servi de catalyseur à ceux présentés ici.”

3Gillet, Henri; Messing, William. Cycle classes and Riemann-Roch for crystalline cohomology. Duke Math.
J. 55 (1987), no. 3, 501–538.

4It was submitted in September 1983.
5There is an alternative complex defined by Suslin and Voevodsky, but Voevodsky (Int. Math. Res. Not.

2002, no. 7, 351–355) proves (but doesn’t state) that the two complexes are canonically isomorphic on smooth
varieties.

6Geisser, Thomas. Motivic cohomology, K-theory and topological cyclic homology. Handbook of K-theory.
Vol. 1, 2, 193–234, Springer, Berlin, 2005.
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LEMMA 1. Let M be a subgroup of an abelian group N . If M is bounded (i.e., nM D 0
for some n� 1) and pure (i.e., M \nN D nM for all n� 1), then M is a direct summand
of N .

PROOF. Kaplansky 1954, Theorem 7, p18, or Fuchs 1970, 27.5. 2

LEMMA 2. Let M be a subgroup of N; and let ln be a prime power. If M \ lnN D 0 and
M is maximal among subgroups with this property, thenM is pure (hence a direct summand
of N ).

PROOF. As lnM �M \ lnN D 0, M is a bounded l-group. To prove that it is pure, one
shows by induction on k 2 N that M \ lkN � lkM . See Fuchs 1970, 27.7. 2

Every abelian group M contains a largest divisible subgroup Mdiv, which is (obviously)
contained in the first Ulm subgroup U.M/

def
D
T
n�1nM of M .

PROPOSITION 3. If M=nM is finite for all n� 1, then U.M/DMdiv.

PROOF. (Cf. Milne 1988, 3.3) If U.M/ is not divisible, then there exists an x 2U.M/ and a
prime l such that x is not divisible by l in U.M/. For each n� 1, there exists an element xn
of M such that lnxn D x (because x 2 U.M/), and ln�1xn … U.M/ (because x … lU.M//.
Therefore, xn has order exactly ln in M=U.M/, and so M=U.M/ contains finite subgroups
S with dimFl

S .l/ arbitrarily large.
We claim that U.M=U.M//D 0. Let x be an element of M that becomes divisible by n

in M=U.M/. Then there exists a y 2M such that ny�x 2 U.M/, and so ny�x D ny0 for
some y0 2M . Now x D n.y�y0/, and so x is divisible by n in M . This proves the claim.

Let S be a finite subgroup of M=U.M/ of l-power order. As U.M=U.M//D 0 and S
is finite, there exists an n such that S \ ln.M=U.M//D 0. By Zorn’s lemma, there exists a
subgroup N of M=U.M/ that is maximal among the subgroups satisfying (a) N � S and
(b) N \ ln.M=U.M//D 0. Moreover, N is maximal with respect to (b) alone. Therefore
N is a direct summand of M=U.M/ (Lemma 2), and so

N .l/ ,! .M=U.M//.l/ 'M .l/:

Hence
dimFl

M .l/
� dimFl

N .l/
� dimFl

S .l/;

which contradicts the hypothesis. 2

COROLLARY 4. If TM D 0 and all quotients M=nM are finite, then U.M/ is uniquely
divisible (D divisible and torsion-freeDa Q-vector space).

PROOF. The first condition implies that Mdiv is torsion-free, and the second that U.M/D

Mdiv. 2

For an abelian group M , we let Ml denote the completion of M with respect to the
l-adic topology. Any continuous homomorphism from M into a complete separated group
factors uniquely through Ml . In particular, the quotient maps M !M=lnM extend to
homomorphisms Ml !M=lnM , and these induce an isomorphism Ml ! lim

 �n
M=lnM .

The kernel of M !Ml is
T
n l
nM . See Fuchs 1970, �13.
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LEMMA 5. Let N be a torsion-free abelian group such that N=lN is finite. The l-adic
completion Nl D lim

 �n
N=lnN of N is a free finitely generated Zl -module.

PROOF. Let y1; : : : ;yr be elements of N that form a basis for N=lN . Then

N D
P

Zyi C lN D
P

Zyi C l.
P

Zyi C lN /D �� � D
P

Zyi C lnN;

and so y1; : : : ;yr generate N=lnN . As N=lnN has order lnr , it is in fact a free Z=lnZ-
module with basis fy1; : : : ;yrg. Let a 2Nl , say aD .an/n2N with an 2N=lnC1N . Then

an D cn;1y1C�� �C cn;ryr

for some cn;i 2 Z=lnC1Z. As an maps to an�1 in N=lnN and the cn;i are unique, cn;i
maps to cn�1;i in Z=lnZ. Hence .cn;i /n2N 2 Zl , and it follows that fy1; : : : ;yrg is a basis
for Nl as a Zl -module. 2

PROPOSITION 6. Let M and N be abelian groups and let

�WM �N ! Z

be a bi-additive map. Assume that, for some prime l ,
T
n l
nM D 0 and N=lN is finite. If

the pairing
�l WMl �Nl ! Zl

defined by � on the l-adic completions of M and N has trivial left kernel, then M is finitely
generated.

PROOF. As
T
n l
nM D 0, the map M !Ml is injective. Choose elements y1; : : : ;yr of N

that form a basis for N=lN . According to the proof of (5), their images form a basis for Nl
as a Zl -module. Consider the map

x 7! .�.x;y1/; : : : ;�.x;yr//WM ! Zr :

If x is in the kernel of this map, then �l.x;y/D 0 for all y 2Nl , and so x D 0. Therefore
M injects into Zr , which shows that it is free and finitely generated. 2

VALUES OF ZETA FUNCTIONS

For reference, we state the following conjectures (X is a smooth projective variety over a
finite field k).
T r.X/ (Tate conjecture): The order of the pole of the zeta function Z.X;t/ at t D q�r is

equal to the rank �r of the group of numerical equivalence classes of algebraic cycles
of codimension r on X .

T r.X; l/ (l-Tate conjecture): The map CHr.X/˝Ql !H 2r. xXét;Ql.r//� is surjective.
Sr.X; l/ (semisimplicity at 1/: The map H 2r. xXét;Ql.r//� !H 2r. xXét;Ql.r//� induced

by the identity map is bijective.
The statement T r.X/ is equivalent to the conjunction of the statements T r.X; l/, T d�r.X; l/,
and Sr.X; l/ for one (or all) l (see Tate 1994, 2.9).

LetX be a variety over a finite field k. To give a sheaf onXét is the same as giving a sheaf
on xXét together with a continuous action of � . Let �0 be the subgroup of � generated by the
Frobenius element (so �0 ' Z). The Weil-étale topology is defined so that to give a sheaf on
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XWét is the same as giving a sheaf on xXét together with an action of �0 (Lichtenbaum 2005).
For example, for X D A0, the sheaves on Xét are the discrete � -modules, and the sheaves
on XWét are the �0-modules. For the Weil-étale topology, the Hochschild-Serre spectral
sequence becomes

H i .�0;H
j . xXét;F // H) H iCj .XWét;F /: (1)

Since7

H i .�0;M/DM�0 ; M�0
; 0; 0; : : : for i D 0;1;2;3; : : : ; (2)

this gives exact sequences

0!H i�1. xXét;F /�0
!H i .XWét;F /!H i . xXét;F /

�0 ! 0; all i � 0:

If F is a sheaf onXét such that the groupsH j . xXét;F / are torsion, then the Hochschild-Serre
spectral sequence for the étale topology gives exact sequences

0!H i�1. xXét;F /� !H i .Xét;F /!H i . xXét;F /
�
! 0; all i � 0:

Thus, for such a sheaf F , the canonical mapsH i .Xét;F /!H i .XWét;F / are isomorphisms.
There is an obvious element in H 1.Spec.k/Wét;Z/'H 1.�0;Z/' Hom.�0;Z/, which

defines, by cup-product, canonical maps

ei WH i .XWét;Z.r//!H iC1.XWét;Z.r//;

and we let
�.XWét;Z.r//D

Y
i¤2r;2rC1

ŒH i .XWét;Z.r//�.�1/
i

z.e2r/

when all terms are defined and finite. Let

�.X;OX ; r/D
X

0�i�r
0�j�d

.�1/iCj dimH j .X;˝i /

where d D dimX .
For an abelian groupM , letM 0DM=U.M/, and let �0.XWét;Z.r// equal �.XWét;Z.r//

but with each group H i .XWét;Z.r// replaced by H i .XWét;Z.r//0.

THEOREM 7. Let X be a smooth projective variety over a finite field. If T r.X/ holds for
some integer r � 0, then �0.XWét;Z.r// is defined, and

�.X;s/�˙�0.XWét;Z.r// �q�.X;OX ;r/ � .1�qr�s/��r as s! r: (3)

In particular, the groups H i .XWét;Z.r//0 are finite for i ¤ 2r;2rC 1. For i D 2r;2rC 1,
they are finitely generated. For all i , U.H i .XWét;Z.r/// is uniquely divisible.

PROOF. We begin with a brief review of Milne 1986. Let �s.r/ be the sheaf of logarithmic
de Rham-Witt differentials on Xét killed by ps (ibid. p307). For an integer nD n0ps with
gcd.p;n0/D 1,

H i .Xét; .Z=nZ/.r//
def
DH i .Xét;�

˝r
n0
/�H i�r.Xét;�s.r//, and

H i .Xét; yZ.r//
def
D lim
 �n

H i .Xét; .Z=nZ/.r//

7The sequence 0! I ! ZŒ�0�! Z! 0 is a free resolution of Z regarded as �0-module with trivial action.
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(ibid. p309). There is an obvious element inH 1.Spec.k/ét; yZ/'H 1.�; yZ/'Homcont.�; yZ/,
which defines, by cup-product, canonical maps �i WH i .Xét; yZ.r//!H iC1.Xét; yZ.r//, and

�.X; yZ.r// def
D

Y
i¤2r;2rC1

ŒH i .Xét; yZ.r//�.�1/
i

z.�2r/

when all terms are defined and finite (ibid. p298). Theorem 0.1 (ibid. p298) states that
�.X; yZ.r// is defined if and only if Sr.X; l/ holds for all l , in which case

�.X;s/�˙�.X; yZ.r// �q�.X;OX ;r/ � .1�qr�s/��r as s! r: (4)

In particular, if Sr.X; l/ holds for all l , then the groups H i .Xét; yZ.r// are finite for all
i ¤ 2r , 2rC1.

The first property of Z.r/ that we shall need is the following.8

(A)n0
. For any integer n0 prime to the characteristic of k, the cycle class map�

Z.r/
n0
�! Z.r/

�
! �˝rn0

Œ0�

is a quasi-isomorphism (Geisser and Levine 2001, 1.5).

(A)p. For any integer s � 1, the cycle class map�
Z.r/

ps

�! Z.r/
�
! �s.r/Œ�r �1�

is a quasi-isomorphism (Geisser and Levine 2000, Theorem 15).

For each n� 1 and i � 0, (A) gives an exact sequence

0!H i .XWét;Z.r//.n/!H i .Xét; .Z=nZ/.r//!H iC1.XWét;Z.r//n! 0:

in which the middle term is finite. On passing to the inverse limit, we obtain an exact
sequence

0!H i .XWét;Z.r//ˆ!H i .Xét; yZ.r//! TH iC1.XWét;Z.r//! 0 (5)

in which the middle term is finite for i ¤ 2r;2rC1. As TH iC1.XWét;Z.r// is torsion-free, it
must be zero for i ¤ 2r;2rC1. In other words, TH i .XWét;Z.r//D 0 for i ¤ 2rC1;2rC2:

So far we have only used conjecture Sr.X; l/ (all l) and property (A) of Z.r/. To
continue, we need to use T r.X; l/ (all l) and the following property of Z.r/.

(B) There exists a cycle class map CHr.X/!H 2r.Xét;Z.r// compatible (via
(A)) with the cycle class map into H 2r.Xét; yZ.r//.

The l-Tate conjecture T r.X; l/ for all l implies that the cokernel of the map CHr.X/˝Z yZ!
H 2r.Xét; yZ.r// is torsion. As this map factors through H 2r.XWét;Z.r//ˆ, it follows that
TH 2rC1.XWét;Z.r//D 0 and H 2r.XWét;Z.r//ˆ'H 2r.Xét; yZ.r//. Consider the diagram

H 2r.XWét;Z.r//ˆ
'
����! H 2r.Xét; yZ.r//??yce2r

??y�2r

H 2rC1.XWét;Z.r//ˆ ����! H 2rC1.Xét; yZ.r//:
8For an abelian group M , it is customary to define M.r/ to be Z.r/˝M (Geisser 2005, p196). When

M D Z=nZ, this gives another definition of the groups H i .Xét; .Z=nZ/.r// which happily, because of property
(A), coincides with the previous definition.
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As �2r has finite cokernel, so does the bottom arrow, and so TH 2rC2.XWét;Z.r//D 0. We
have now shown that

TH i .XWét;Z.r//D 0 for all i

and so �
H i .XWét;Z.r//ˆ'H i .Xét; yZ.r//
U.H i .XWét;Z.r// is uniquely divisible

for all i:

In particular, we have proved the first statement of the theorem except that each group
H i .XWét;Z.r//0 has been replaced by its completion. It remains to prove thatH i .XWét;Z.r//0
is finite for i ¤ 2r;2rC1 and is finitely generated for i D 2r;2rC1 (for thenH i .XWét;Z.r//ˆ'
H i .XWét;Z.r//0˝ yZ).

The maps H i .XWét;Z.r//0!H i .XWét;Z.r//ˆ are injective, and so H i .XWét;Z.r//0 is
finite for i ¤ 2r;2rC1.

We next show that the groups H 2r.XWét;Z.r//0 and H 2rC1.XWét;Z.r//0 are finitely
generated. For this we shall need one last property of Z.r/.

(C). There exist pairings

Z.r/˝LZ.s/! Z.rC s/

compatible (via (A)n) with the natural pairings

�˝rn ��
˝s
n ! �˝rCsn ; gcd.n;p/D 1I

moreover, there exists a trace map H 2dC1.XWét;Z.d//! Z compatible (via
(A)n) with the usual trace map in étale cohomology.

For a fixed prime l ¤ p, these pairings give rise to a commutative diagram

H 2r.XWét;Z.r//0=tors � H 2d�2rC1.XWét;Z.d � r//0=tors ! Z

# # #

H 2r.Xét;Zl.r//=tors � H 2d�2rC1.Xét;Zl.d � r//=tors ! Zl

to which we wish to apply Proposition 6. The bottom pairing is nondegenerate,U.H 2r.XWét;Z.r//0/D
0 by Corollary 4, and the group H 2d�2rC1.XWét;Z.d � r//.l/ is finite, and so the Proposi-
tion shows thatH 2r.XWét;Z.r//0=tors is finitely generated. BecauseU.H 2r.XWét;Z.r//0/D
0, the torsion subgroup ofH 2r.XWét;Z.r//0 injects into the torsion subgroup ofH 2r.Xét; yZ.r//,
which is finite (Gabber 1983). Hence H 2r.XWét;Z.r//0 is finitely generated. The group
H 2rC1.XWét;Z.r//0 can be treated similarly. 2

REMARK 8. In the proof, we didn’t use the full force of T r.X/, but only that T r.X; l/ and
Sr.X; l/ hold for all primes l .

We shall need the following standard result.

LEMMA 9. Let A be a (noncommutative) ring and let xA be the quotient of A by a nil ideal
I (i.e., a two-sided ideal in which every element is nilpotent). Then:

(a) an element of A is invertible if it maps to an invertible element of xA;
(b) every idempotent in xA lifts to an idempotent in A, and any two liftings are conjugate

by an element of A lying over 1 xA;
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(c) let a 2 A; every decomposition of xa into a sum of orthogonal idempotents in xA lifts to
a similar decomposition of a in A.

PROOF. We denote aCI by xa.
(a) It suffices to consider an element a such that xaD 1 xA. Then .1�a/N D 0 for some

N > 0, and so

a‚ …„ ƒ
.1� .1�a//

�
1C .1�a/C .1�a/2C�� �C .1�a/N�1

�
D 1:

(b) Let a be an element of A such that xa is idempotent. Then .a�a2/N D 0 for some
N > 0, and we let a0 D .1� .1�a/N /N . A direct calculation shows that a0a0 D a0 and that
xa0 D xa.

Let e and e0 be idempotents in A such that xe D xe0. Then a def
D e0eC .1� e0/.1� e/ lies

above 1 xA and satisfies e0aD e0e D ae.
(c) Follows easily from (b). 2

THEOREM 10. Let X be a smooth projective variety over a finite field such that the ideal of
l-homologically trivial correspondences in CHdimX .X �X/Q is nil for some prime l (e.g.,
X is an abelian variety), and let r 2 N. Then H i .Xet;Z.r// is torsion for all i ¤ 2r . If
T r.X/ holds, then H 2r.Xet;Z.r//� Z�r modulo torsion.

PROOF. This is essentially proved in Jannsen 2007, pp131–132, and so we only sketch the
argument. Set d D dimX and let q D Œk�.

According to Lemma 9c, there exist orthogonal idempotents �0; : : : ;�2d in CHdimX .X�

X/Q lifting the Künneth components of the diagonal in the l-adic topology. Let hiX D
.hX;�i /. Let Pi .T / be the characteristic polynomial det.T �$X jH i . xXet;Ql/ of the
Frobenius endomorphism $X of X acting on H i . xXet;Ql/. Then Pi .$X / acts as zero
hihomX , and soPi .$X /N acts as zero on hiX for someN � 1. But$X acts as multiplication
by qr onK2r�i .X/.r/ 'H i .Xet;Q.r// whereK2r�i .X/.r/ is the subspace ofK2r�i .X/Q
on which the nth Adams operator acts as nr for all r . Therefore H i .Xet;Q.r// is killed by
Pi .q

r/N , which is nonzero for i ¤ 2r (by the Weil conjectures).
Tate’s conjecture implies that P2r.T /DQ.T / �.T �qr/�r whereQ.qr/¤ 0. As before,

P2r.!X /
N acts as zero on h2rX for some N � 1. Now

1D q.T /Q.T /N Cp.T /.T �qr/N�r ; some q.T /, p.T / 2QŒT �:

Therefore q.$X /Q.$X /N and p.$X /.$X�qr/N�r are orthogonal idempotents in End.h2rX/
with sum 1, and correspondingly h2rX DM1˚M2. Now H 2r.M1;Q.r// D 0 because
Q.$X /

N is zero on M1 and Q.qr/¤ 0. On the other hand, M2 is isogenous to .L˝r/�r

(Jannsen 2007, p132), and soH 2r.M2;Z.r// differs fromH 2r.L˝r ;Z.r//�r 'H 2r.Pd ;Z.r//�r '

Z�r by a torsion group. 2

THEOREM 11. Let X be a smooth projective variety over a finite field such that the ideal of
l-homologically trivial correspondences in CHdimX .X �X/ is nil for some l (e.g., X is an
abelian variety). If the Tate conjecture T r.X/ holds, then �.XWét;Z.r// is defined, and

�.X;s/�˙�.XWét;Z.r// �q�.X;OX ;r/ � .1�qr�s/��r as s! r: (6)

In particular, the groups H i .XWét;Z.r// are finite for i ¤ 2r;2rC 1. For i D 2r;2rC 1,
they are finitely generated.
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PROOF. We have to show that the groupsU i def
DU.H i .XWét;Z.r/// are zero. If a �0-module

M is finitely generated modulo torsion, then so also are its cohomology groups H i .�0;M/

(see (2)). Since the groups H i . xXet;Z.r// are finitely generated modulo torsion (10), the
spectral sequence (1) shows that the groups H i .XWét;Z.r// are also finitely generated
modulo torsion. In particular, H i .XWét;Z.r// does not contain a nonzero Q-vector space,
and so U i D 0.

Alternative proof for i D 2r . The hypotheses imply that the composite of the maps

CHr.X/˝ZQl
a
�!H 2r.XWét;Z.r//˝ZQl

b
�!H 2r.Xet;Ql.r//

is an isomorphism (Kimura 2005, 7.6; Jannsen 2007, 6.1.4). The kernel of b is U 2r˝QQl ,
and the map a is an isomorphism (see below; not quite). It follows that U 2r D 0, and so
H 2r.XWét;Z.r// is finitely generated. 2
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