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Abstract

Beginning with the conjecture of Artin and Tate in 1966, there has been a series of
successively more general conjectures expressing the special values of the zeta function
of an algebraic variety over a finite field in terms of other invariants of the variety. In
this article, we present the ultimate such conjecture, and provide evidence for it. In
particular, we enhance Voevodsky’s ZŒ1=p�-category of étale motivic complexes with
a p-integral structure, and show that, for this category, our conjecture follows from
the Tate and Beilinson conjectures. As the conjecture is stated in terms of motivic
complexes, it (potentially) applies also to algebraic stacks, log varieties, simplicial
varieties, etc..
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1 Introduction

Motivating examples
We begin by reviewing two statements from the 1960s concerning the special values of
the zeta functions of varieties over finite fields. Our goal has been to find the ultimate
generalization of these statements, and to provide persuasive evidence for it.

Recall that the zeta function of an algebraic variety X over a finite field Fq is the formal
power series Z.X;t/ 2QŒŒt �� such that

log.Z.X; t//D
X
n>0

Nntn

n
(1)
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1 INTRODUCTION 2

with Nn D #.X.Fqn//, and that Dwork (1960) proved that Z.X;t/ 2Q.t/.
Let X be a smooth projective surface over a finite field Fq . The Néron-Severi group

NS.X/ of X is finitely generated, and the Tate conjecture says that its rank � is the order of
the pole of Z.X;t/ at t D q�1. Write

Z.X;t/D
P1.X; t/P3.X; t/

.1� t /P2.X; t/.1�q2t /
; Pi .X; t/ 2 ZŒt �:

Then the Artin-Tate conjecture says that the Brauer group of X is finite, and that its order
ŒBr.X/� satisfies

lim
t!q�1

P2.X; t/

.1�qt/�
D

ŒBr.X/� �D
q˛.X/ � ŒNS.X/tors�2

where D is the discriminant of the intersection pairing on NS.X/ and

˛.X/D �.X;OX /�1Cdim.PicVar.X//:

Now consider two abelian varieties A and B over a finite field, and write

Z.A;t/D
P1.A; t/ � � �

.1� t /P2.A; t/ � � �
; P1.A; t/D

Y
i
.1�ai t /

Z.B; t/D
P1.B; t/ � � �

.1� t /P2.B; t/ � � �
; P1.B; t/D

Y
j
.1�bj t /.

Weil showed that Hom.A;B/ is a finitely generated Z-module, and the Tate conjecture
(proved by Tate in this case) says that

rank.Hom.A;B//D #f.i;j / j ai D bj g:

According to Milne 1968, the group Ext1.A;B/ is finite, and its order satisfiesY
ai¤bj

�
1�

ai

bj

�
D ŒExt1.A;B/� �D �q�dim.A/�dim.B/

where D is the discriminant of the pairing

Hom.A;B/�Hom.B;A/
ı
�! End.A/

trace
�! Z.

Statement of the conjecture
Let k be a perfect field. Throughout the first six sections of the article, DM.k/ is a triangulated
category1 of “motivic complexes” equipped with exact “realization” functors

r`WDM.k/! Dbc .k;Z`/, all `¤ p;

rpWDM.k/! Dbc .R/

where Dbc .k;Z`/ is the `-adic triangulated category (Ekedahl; see �4) and Dbc .R/ is the
triangulated category of coherent complexes of graded modules over the Raynaud ring
(Ekedahl-Illusie-Raynaud; see �5). There are Tate twists in DM.k/, compatible with the

1In fact, we work throughout with pretriangulated differential graded categories. This aspect will be ignored
in the Introduction
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realization functors. We require that DM.k/ have an internal Hom, RHom.�;�/. We do not
require DM.k/ to have a t-structure. The Ext of two objects M;N in DM.k/ is defined by
the usual formula

Extj .M;N /D HomDM.k/.M;N Œj �/:

In �7 (resp. �8) we construct a candidate for DM.k/ based on Voevodsky’s category of
geometric motives (resp. the conjectural theory of rational Tate classes).

Now let k be a finite field with q elements. Using the finiteness of k, we construct (in
�2) a canonical complex

E.M;N;r/W � � � ! Extj�1.M;N.r//! Extj .M;N.r//! ExtjC1.M;N.r//! �� �

of abelian groups for each pair M;N in DM.k/. Here .r/ denotes the Tate twist in DM.k/.
We expect that each object P of DM.k/Q has a zeta function Z.P;t/ 2Q.t/ compatible

with the realization functors (see �3).
Attached to each P in Dbc .R/, there is a bounded complex R1˝LRP of graded k-vector

spaces whose cohomology groups have finite dimension. The Hodge numbers hi;j .P / of P
are defined to be the dimensions of the k-vector spaces H j .R1˝

L
RP /

i (see �5).

CONJECTURE 1.1. Let M;N 2 DM.k/ and let r 2 Z. Let P DRHom.M;N /.
(a) The groups Extj .M;N.r// are finitely generated Z-modules for all j , and the alter-

nating sum of their ranks is zero.
(b) The zeta function Z.P;t/ of P has a pole at t D q�r of order

�D
X

j
.�1/jC1 �j � rankZ.Extj .M;N.r///:

(c) The cohomology groups of the complex E.M;N;r/ are finite, and the alternating
product ��.M;N.r// of their orders satisfiesˇ̌̌̌

lim
t!q�r

Z.P;t/.1�qr t /�
ˇ̌̌̌
D ��.M;N.r// �q�.P;r/

where
�.P;r/D

X
i;j .i�r/

.�1/iCj .r � i/hi;j .rp.P //.

Assume that DM.k/ has a tensor structure, and let 11 be the identity object for this
structure. Then RHom.11;N / ' N . As we now explain, when we take M to be 11, the
statement of Conjecture 1.1 simplifies, and it doesn’t require the existence of internal Homs.

We define the absolute cohomology groups of P 2 obDM.k/ by

H
j
abs.P;r/D HomDM.k/.11;P Œj �.r//

(cf. Deligne 1994, 3.2). With .M;N /D .11;P /, the complexE.M;N;r/ becomes a complex

H �abs.P;r/W � � � !H
j�1
abs .P;r/!H

j
abs.P;r/!H

jC1
abs .P;r/! �� � :

and Conjecture 1.1 becomes the following statement.

CONJECTURE 1.2. (a) The groups H j
abs.P;r/ are finitely generated Z-modules for all j ,

and the alternating sum of their ranks is zero.
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(b) The zeta function Z.P;t/ of P has a pole at t D q�r of order

�D
X

j
.�1/jC1 �j � rankZ

�
H
j
abs.P;r/

�
:

(c) The cohomology groups of the complex H �abs.P;r/ are finite, and the alternating
product ��.P;r/ of their orders satisfiesˇ̌̌̌

lim
t!q�r

Z.P;t/.1�qr t /�
ˇ̌̌̌
D ��.P;r/ �q�.P;r/

where
�.P;r/D

X
i;j .i�r/

.�1/iCj .r � i/ �hi;j .rpP /:

Examples
In these examples, we take DM.k/ to be the category defined in �7.

1.3. Let X be a smooth projective surface over k D Fq . The terms of the complex
E.11;hX;1/ are finitely generated Z-modules, and all are finite except for E2 and E3,
which both have rank �D rank.NS.X//. Therefore (a) of (1.1) is true, and (b) is the Tate

conjecture for X . Modulo torsion, the map E2
d
�! E3 can be identified with the map

NS.X/!Hom.NS.X/;Z/ defined by the intersection pairing, whose cokernel has order D.
In this case, (c) of (1.1) essentially becomes the Artin-Tate conjecture.

1.4. Let M D h1A, N D h1B , and P D RHom.h1A;h1B/ where A and B are abelian
varieties over k D Fq . Then Z.P;t/ D

Q
i;j .1�

ai
bj
t /, and Conjecture 1.1 essentially

becomes the statement for A and B discussed above.2

1.5. Let X be a smooth projective variety over a finite field k D Fq , and let Z.r/ be the
complex of étale sheaves on X given by Bloch’s higher Chow groups (see the survey article
Geisser 2005). Define the Weil-étale motivic cohomology groups of X to be

H
j
mot.X;r/DH

j .XWét;Z.r//

where Wét denotes the Weil-étale topology (Lichtenbaum 2005). Geisser and Levine (2000,
2001) have shown that Z.r/ satisfies the “Kummer sequence” axiom (Lichtenbaum 1984,
(3), p.130; Milne 1988, (A2)p, p.68). Assume that X satisfies the Tate conjecture and that,
for some prime l , the ideal of l-homologically trivial correspondences in CHdimX .X �X/

is nil. It then follows from Milne 1986 (and addendum) that Conjecture 1.2 holds with the
groups H j

abs.X;r/ replaced by H j
mot.X;r/.

The proof of this has four steps (X is as above).
˘ From the Kummer sequence axiom, we get exact sequences

0!H
j
mot.X;r/l !H j .X;Zl.r//! TlH

jC1
mot .X;r/! 0:

Here Ml D lim
 �n

M .ln/ is the l-adic completion of M , and TlM D lim
 �n

Ker.M
ln

�!

M/.

2This should be taken with a grain of salt: the Ext’s are in different categories.



1 INTRODUCTION 5

˘ A theorem of Gabber shows that H j .X;Zl.r// is torsion-free for almost all l (i.e., for
all but possibly finitely many).

˘ Tate’s conjecture for X implies that the map

H
j
mot.X;r/

0
˝Zl !H j .X;Zl.r//

is an isomorphism. Here M 0 is the quotient of M by its largest uniquely divisible
subgroup. Together with Gabber’s theorem, and the local results in Milne 1986, this
implies Conjecture 1.2 for the groups H j

mot.X;r/
0.

˘ If the ideal of l-homologically trivial correspondences in CHdimX .X �X/ is nil, then
the groups H j

mot.X;r/ are finitely generated, and so Conjecture 1.2 holds for the
groups H j

mot.X;r/.

Notes
1.6. Statement (b) of Conjecture 1.1 should be regarded as the Tate conjecture for motivic

complexes. In particular, Conjecture 1.1 presupposes the usual Tate conjecture if the category
DM.k/ is defined using algebraic classes, but there is no need to do this. We envisage that
Deligne’s theory of absolute Hodge classes in characteristic zero can be extended to a theory
of rational Tate classes in characteristic p for which the Tate conjecture is automatically true
(see Milne 2009). Thus, we expect Conjecture 1.1 to be true (suitably interpreted) even if
the Tate conjecture proves false (see �8).

1.7. There appears to be no direct relation between Conjecture 1.1 and the Bloch-Kato
conjecture. The latter applies to a motive over a global field (see, for example, Fontaine
1992), whereas our conjecture applies to a complex of motives over a finite field.

Consider, for example, a smooth projective surface X over a finite field k. As noted
above, our conjecture for the motive of X essentially becomes the conjecture of Artin and
Tate for the surface X . Now let f WX ! C be a morphism from X onto a curve C , and let
J be the Jacobian of the generic fibre of f (so J is an abelian variety over the function field
k.C / of C ). Assume that f has connected geometric fibres and smooth generic fibre. The
conjecture of Bloch and Kato for the motive h1.J / over k.C / is essentially the conjecture
of Birch and Swinnerton-Dyer for J over k.C /. It is known that the Artin-Tate conjecture
for X=k is equivalent to the Birch/Swinnerton-Dyer conjecture for J=k.C /. Under some
hypotheses on the map f , this was proved directly (Gordon 1979), but the general proof is
difficult and indirect: it proceeds by showing that each conjecture is equivalent to the Tate
conjecture for X (Milne 1975, Kato and Trihan 2003). In other words, passing between the
two conjectures in this case is no easier than deducing the conjectures separately from the
Tate conjecture. We expect that a similar statement is true for the Bloch-Kato conjecture and
our conjecture in general.

1.8. For some background and history to these questions, see Milne 2013.

1.9. Let P be the motivic complex 11Œ�j0� over Fq . Then

H
j
abs.
xP ;r/

def
D HomDM.F/.11;11.r/Œj �j0�/

is zero except that H j0
abs.
xP ;r/D Z. From the spectral sequence

H i .�0;H
j
abs.
xP ;r// H) H

iCj
abs .P;r/
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we find that
H
j0
abs.P;r/' Z'H j0C1.P;r/

and the remaining groups are zero. As Z.P.r/; t/D .1�qr t /.�1/
j0C1 , we see that Conjec-

ture 1.2 is true for P .
For a general P 2 obDM.Fq/, the Tate and other conjectures predict that there should

be a distinguished triangle
P0! P ! P1! P0Œ1�

with P0 a direct sum of motivic complexes of the form 11Œ�j0� and P1 such that Z.P1; t /
has no pole or zero at t D q�r and H j

abs.P1; r/ is finite for all j . From this, (a) and (b) of
Conjecture 1.2 follow.

1.10. Conjecture 1.2 is a special case of Conjecture 1.1, and so Conjecture 1.1 implies
Conjecture 1.2. On the other hand, for M;N in DM.k/, we should have

RHom.M;N /'RHom.11;RHom.M;N //;

and so Conjecture 1.2 forP DRHom.M;N / implies Conjecture 1.1 forM;N . Nevertheless,
it is convenient to have both forms of the conjecture.

Evidence for the conjectures

THE LOCAL VERSIONS ARE TRUE

The statement of Conjecture 1.1 uses few properties of the triangulated category DM.k/. In
fact, the same arguments lead to similar conjectures for Dbc .k;Z`/ and Dbc .R/. Assume that
the Frobenius maps are semisimple. Then the conjecture for Dbc .Z`/ is easy to prove (see �4
below). That for Dbc .R/ is less easy, but is proved in Milne and Ramachandran 2013 (see �5
below).

The realization functors r` and rp define maps

HomDM.k/.M;N /! HomDbc .k;Z`/.r`M;r`N/

HomDM.k/.M;N /! HomDbc .R/
.rpM;rpN/

(M;N 2 ob.DM.k//), and hence maps

r`.M;N /WHomDM.k/.M;N /˝Z`! HomDbc .k;Z`/.r`M;r`N/

rp.M;N /WHomDM.k/.M;N /˝Zp! HomDbc .R/
.rpM;rpN/:

When k is finite, we expect the maps rl.M;N / to be isomorphisms (see below). If so, then
our local results imply a statement that is only a little weaker than Conjecture 1.1 (see 6.8).

VOEVODSKY MOTIVIC COMPLEXES

From Example 1.5, it is clear that, in order for Conjecture 1.2 to be true, we must have

HomDM.k/.11;M.X/.r/Œj �/'H
j
mot.X;r/

for all smooth projective varieties X , where M.X/ is the motivic complex of X and
H
j
mot.X;r/ is the Weil-étale motivic cohomology group. This excludes Voevodsky’s category

DMgm.k/
opp, which gives the Zariski motivic cohomology groups.
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Instead, we need to look at .DMet.k//
opp. This is known to give the étale motivic

cohomology groups except for the p-part; in fact, DMet.k/ is a ZŒp�1�-linear category. In
order to obtain a category that is also correct for p-torsion, we define an exact functor
.DMet.k//

opp
Q ! Dbc .R/Q and form the “fibred product” category

DM.k/ .DMet.k//
opp

Dbc .R/ Dbc .R/Q:

This category gives the full étale motivic cohomology groups, which is correct over F,
but over Fq we want the Weil-étale motivic cohomology groups. There are two more-or-
less equivalent ways of achieving this: repeat the above construction with Lichtenbaum’s
Weil-étale topology, or define DMWKet.Fq/ in terms of DMet.F/. See �7.

Once DM.k/ has been defined, we can proceed as in Example 1.5 (we use the same
notations).
˘ From the rigidity theorem of Suslin and Voevodsky (Voevodsky 2000, 3.3.3) and its p

counterpart, we obtain exact sequences

0! Extj .M;N.r//l ! Extj .rlM;rlN.r//! Tl Extj .M;N.r//! 0

for all l .
˘ Assuming that the category DM.k/Q is semisimple, we show that, for almost all l , the

group Extj .rlM;rlN.r// is torsion-free.
˘ Tate’s conjecture for smooth projective varieties implies that the map

Extj .M;N /0˝Zl ! Extj .rlM;rlN/

is an isomorphism. Together with the preceding statement and our local results (�4,�5),
this implies Conjecture 1.2 for the groups Extj .M;N /0.

˘ The groups Extj .M;N / contain no nontrivial uniquely divisible subgroups if and only
if some realization functor rl is faithful (in which case, they all are). This is true, for
example, if the Beilinson conjecture3 holds for smooth projective varieties.

Of course, a theorem that assumes the Tate conjecture for all smooth projective varieties
over Fq is not of much value, since we may never be able to prove this. Fortunately, our
results are more precise (see ��6,7,8).

Motivic complexes for rational Tate classes.
If the category DM.k/ is defined using algebraic cycles, then Conjecture 1.1 requires the
Tate conjecture. However, we expect that the theory of rational Tate classes will provide
a (unique) extension of Deligne’s theory of absolute Hodge cycles to mixed characteristic.
Assuming the rationality conjecture (8.1), which is weaker than the Hodge conjecture for
CM abelian varieties, we construct in �8 a category DM.Fq/ of motivic complexes for which
the conjectures are automatically true.

3The Beilinson conjecture says that, for smooth projective varieties over a finite field, rational equivalence
coincides with numerical equivalence with Q-coefficients.
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Notations
We use ` for a prime number ¤ p, and l for a prime number, possibly p. The l-adic absolute
value is normalized so that

jaj�1l D .Zl WaZl/; a 2 Zl :

For an object M of an abelian category, M .n/ denotes the cokernel of multiplication by n on
M . For an object M of a triangulated category, M .n/ denotes the cone of M

n
�!M .

2 The complex E.M;N;r/

Differential graded enhancements
Recall that a graded category is an additive category equipped with gradations

Hom.A;B/D
M

n2Z
Homn.A;B/

on the Hom groups that are compatible with composition of morphisms; in particular,
idA 2 Hom0.A;A/ . Such a category is a differential graded (dg) category if, in addition, it
is equipped with differentials d WHomn.A;B/! HomnC1.A;B/ such that d ıd D 0 and

d.g ıf /D dg ıf C .�1/degg.g ıdf /

whenever g is homogeneous and g ıf is defined. The homotopy category Ho.C/ of a dg
category C has the same objects a C but

HomHo.C/.A;B/DH
0.Hom�C.A;B//.

Let C be a triangulated category. By a dg enhancement of C; we mean a dg category C
such that Ho.C/D C and

Hom�C.A;BŒm�/' Hom�C.A;B/Œm� (2)

for A;B 2 obC, and

HomC.C;Cone.f //' Cone.HomC.C;A/
f ı�
�! Hom.C;B//

for all C 2 obC and morphism f WA!B in C such that d ıf D 0. More generally, we allow
a dg enhancement of C to be a pretriangulated dg category C together with an equivalence to
C from the triangulated category associated with C.

When C has a fixed dg enhancement of C, we write

RHom�C.A;B/D Hom�C.A;B/: (3)

Thus, RHom�C.A;B/ is a complex such that

Hn.RHom�C.A;B//D HomC.A;BŒn�/
def
D Extn.A;B/:
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The cohomology of �0
Let �0 be the free abelian group generated by a single element  (thus �0 ' Z), and let
Z�0 be its group ring. For a �-module M , we let M� denote the corresponding co-induced
module. Recall that this consists of the maps from �0 toM , and that � 2 �0 acts on f 2M�
according to the rule .�f /.�/D f .��/. For each �0-module M , there is an exact sequence

0!M �!M�
˛
�!M�! 0; (4)

in which the first map sends m 2M to the map � 7! �m and the second map sends f 2M�
to � 7! f .�/�f .�/. Let F denote the functor M 7!M�0 WMod.Z�0/!Mod.Z/. The
class of co-induced ��0-modules is F -injective, and so (4) defines isomorphisms

RF.M/' F.M�
˛
�!M�/' .M

1�
�!M/

in DC.Z/. For the second isomorphism, note that .M�/�0 consists of the constant functions
�0!M , and that if f is the constant function with value m, then

.af /.�/D f .�/�f .�/Dm�m, all � 2 �0.

For every complex X of Z�0-modules, there is an exact sequence

0!X !X�
˛
�!X�! 0 (5)

of complexes with Xj� D .Xj /� for all j . We deduce from (5) isomorphisms

RF.X/' s.F.X� �!X�//' s.X
1�
�!X/

in DC.Z/ where X
1�
�!X is a double complex with X as both its zeroth and first column

and s denotes the associated total complex. In other words,

RF.X/Œ1�' Cone.1� WX !X/. (6)

From (6), we get a long exact sequence

� � � !H j�1.X/
1�
�!H j�1.X/!RjF.X/!H j .X/

1�
�!H j .X/! �� � : (7)

Note that
R1F.Z/'H 1.�0;Z/' Hom.�0;Z/,

which has a canonical element � W 7! 1. We can regard � as an element of

Ext1.Z;ZŒ1�/ def
D HomDC.Z�0/.Z;ZŒ1�/:

Thus, for X in DC.Z�0/, we obtain maps

� WX !XŒ1�

R� WRF.X/!RF.X/Œ1�: (8)
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The second map is described explicitly by the following map of double complexes:

RF.X/ X X

RF.X/Œ1� X X

�1 0 1

R� 

1�

1�

For all j , the following diagram commutes

RjF.X/ RjC1F.X/

H j .X/ H j .X/

dj

id

(9)

where d j DH j .R�/ and the vertical maps are those in (7). The sequence

� � � !Rj�1F.X/
dj�1

�! RjF.X/
dj

�!RjC1F.X/! �� � (10)

is a complex because R� ıR� D 0.

Construction of the complex E.M;N;r/

Let xk be an algebraic closure of k, and let �0 � Gal.xk=k/ be the Weil group of k. We let 
denote the generator x 7! xq of �0.

We require a dg enhancement DM.k/ of DM.k/. In particular, this means that there is a
functor

RHomWDM.k/opp
�DM.k/! DC.Z/

such that
HomDM.k/.M;N Œj �/'H

j .RHom.M;N //

for M;N 2 obDM.k/ and j 2 Z. We require that RHom be related to the internal Hom by

RHom.11;RHom.M;N //'RHom.M;N /; M;N 2 obDM.k/. (11)

We require that the functor

RHom.11;�/WDM.k/! DC.Z/

factors through DC.Z�0/; moreover, that this factorization arises from a factorization of
M  HomDM.k/.11;M/ through M  HomDM.xk/.11;

xM/.4

From (11), we see that

RHomWDM.k/opp
�DM.k/! DC.Z/

4For the motivic complex of a smooth projective variety X , this amounts to requiring the existence of a
spectral sequence

H i .�0;H
j
abs.
xX;r// H) H

iCj
abs .X;r/

for each integer r .
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factors through RF WDC.Z�0/! DC.Z/:

DM.k/ DC.Z�0/ DC.Z/

DM.k/opp�DM.k/

RHom.11;�/

RF

RHom.�;�/
RHom.�;�/

Therefore, for each pair M;N of objects of DM.k/, there is a well-defined object X of
D.Z�0/ such that RFX DRHom.M;N /, and

H j .RFX/DH j .RHom.M;N //' HomDM.k/.M;N Œj �/
def
D Extj .M;N /:

Now (10) becomes a complex

E.M;N;r/: � � � �!Extj�1.M;N.r//
dj�1

�! Extj .M;N.r//
dj

�!ExtjC1.M;N.r//�!�� � .

3 The zeta function of a motivic complex
Throughout this section, k is a perfect field.

Let P be an object of Dbc .k;Z`/. We can think of P as a bounded complex of Z`-
modules with finitely generated cohomology, equipped with a continuous action of � . For
an endomorphism ˛ of P , we define c˛.t/ to be the alternating product of the characteristic
polynomials of ˛ acting on the Q`-vector spaces H i .P /Q` :

c˛.t/D
Y

i
det.1�˛t jH i .P /Q`/

.�1/iC1
2Q`.t/:

Let P be an object of Dbc .R/ and let ˛ be an endomorphism of P . We define c˛.t/ to
be the alternating product of the characteristic polynomials of ˛ acting on the isocrystals
H i .sP /K :

c˛.t/D
Y

i
det.1�˛t jH i .sP /K/

.�1/iC1
2Qp.t/

(cf. Demazure 1972, p.89).

Determinants
Let T be a triangulated category, and let T� denote the subcategory with the same objects
but with only the isomorphisms as morphisms. A determinant functor on T is a functor
f WT�! P from T to a Picard category satisfying certain natural conditions (Breuning 2011,
3.1). Every (essentially) small triangulated category admits a universal determinant functor
f WT�! P, which is unique up to a non-unique isomorphism (ibid. �4). The automorphism
group of an object X of P is independent of X up to a well-defined isomorphism — we
denote it by �1.P/. The determinant det.˛/ of an automorphism ˛ of an object P of T is
defined to be the element f .˛/ of AutP.f .P //' �1.P/:

Let f WDM.k/Q! P be the universal determinant functor for the triangulated category
DM.k/Q. Because DM.k/Q is Q-linear, �1.P/�Q�.
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PROPOSITION 3.1. Let P 2 obDM.k/Q, and let ˛ be an automorphism of PQ. If det.1�
˛n/2Q� for all n2Z, then there exists a unique c˛.t/2Q.t/ such that c˛.n/D det.1�˛n/
for all n 2 Z. Moreover, c˛.t/D crl .˛/.t/ for all l .

PROOF. Let P;P1;Q;Q1 2 QŒt � be such that P.n/=Q.n/D P1.n/=Q1.n/ for all n 2 Z.
Then P.t/Q1.t/�P1.t/Q.t/ has infinitely many roots, and so is zero. This proves the
uniqueness of c˛.t/.

Fix an l (possibly p). There is a commutative diagram

DM.k/ Dbc .Zl/

P Pl

det det

in which the vertical arrows are universal. Let crl .˛/.t/D P.t/=Q.t/ with P.t/, Q.t/ 2
Ql Œt �. Then P.n/=Q.n/ D det.1� ˛n/ for all n 2 Z. Let P.t/ D

P
ci t

i and Q.t/ DP
dj t

j . Choose distinct rational numbers n1; : : : ;nr with r at least max.deg.P /;deg.Q//.
Then .c1; c2; : : : ;d1; : : :/ is the unique solution of the system of linear equationsX

cin
i
s D det.1�˛ns/ �

X
djn

j
s ; s D 1; : : : ; r:

As the coefficients of these linear equations lie in Q, their solution does also. 2

ASIDE 3.2. The definition of the characteristic polynomial of an endomorphism of a motivic
complex in (3.1) follows that in Milne 1994, 2.1, for an endomorphism of a motive, which in
turn follows that in Weil 1948, IX, for an endomorphism of an abelian variety.

ASIDE 3.3. What (conjecturally) is the P attached to DM.k/?

Traces

Let P be an object in a tensor category. When P has a dual .P_;ev; ı/, we can define the
trace of an endomorphism ˛ of P to be the composite of

11
ı
�! P ˝P_

transpose
�����! P_˝P

id˝˛
�! P_˝P

ev
�! 11:

It is an element of End.11/.
Now assume that DM.k/Q has the structure of a rigid tensor category and that each of

the realization functors rl is a tensor functor. Define c˛.t/ to be the power series satisfying
(1) with Nn D Tr.˛njP /. Then c˛.t/ maps to crl .˛/.t/ under QŒŒt �� 7! Ql ŒŒt �� for all l
(including l D p). As5 Q.t/DQŒŒt ��\Ql.t/, this shows that c˛.t/ 2Q.t/.

Zeta functions
Now assume that k is finite, with q D pa elements, and let  be the generator x 7! xq of
Gal.F=Fq/. We define the zeta function Z.P;t/ of an object P of Dbc .k;Z`/ (resp. Dbc .R/)
to be c .t/ (resp. cF a.t/). Let P be an object of DM.k/. We say that an element Z.P;t/ of

5The condition that a power series be a rational function is linear; see Bourbaki, Algèbre, Chap. IV, �4, Ex. 1.
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Q.t/ is the zeta function of P if Z.P;t/DZ.rl.P /; t/ for all prime numbers l (including
l D p) — clearly Z.P;t/ is unique if it exists.

Now assume that there is a Frobenius endomorphism � of idDM.k/ such that r`.�P / acts
as  on r`.P / and rp.�P / acts as F a on rp.P /.

PROPOSITION 3.4. Under each of the following two hypotheses, every object of DM.k/
has a zeta function:

(a) for all P 2 obDM.k/ and n 2 Z, det.1��Pn/ 2Q�;
(b) the category DM.k/Q has a rigid tensor structure, and each of the realization functors

rl is a tensor functor.

PROOF. Immediate consequence of the above discussion. 2

4 The local conjecture at `

4.1. For a scheme X of finite type over a field k and a prime `¤ char.k/, we let Dbc .X;Z`/
denote the triangulated category of bounded constructible Z`-complexes on X (Ekedahl
1990). This can be constructed as follows. Let �D Z` and let �n D Z`=`nZ`. The inverse
systems

F D .� � �  Fn FnC1 �� �/

in which Fn is a sheaf of �n-modules on X form an abelian category S.X;��/, whose
derived category we denote by D.X;��/. An inverse system F D .Fn/ 2 obS.X;��/ is
said to be essentially zero if, for each n, there exists an m � n such that the transition
map Fm ! Fn is zero. A complex K 2 obD.X;��/ is essentially zero if each inverse
system H i .K/ is essentially zero. Now Dbc .X;Z`/ can defined to be the full subcategory of
D.X;��/ consisting of the complexes M D .Mn/n2N such that the inverse system

�1˝
L
��
M

def
D .�1˝

L
�n
Mn/n2N

of complexes is isomorphic, modulo essentially zero complexes, to the constant inverse
system defined by an object of Dbc .X;�1/ (triangulated category of bounded complexes of
�1-sheaves on X with constructible cohomology).

4.2. Let S.X;Z`/ denote the category of sheaves of Z`-modules on Xet. The obvious
functors

S.X;��/
��
�! S.X;Z`/

��

�! S.X;��/

induce functors on the corresponding derived categories

DC.X;��/
R��
�! DC.X;Z`/litt

L��

�! DC.X;��/

whose composite we denote by M  yM . The essential image DC.X;��/norm of L��

consists of the complexesM such thatM ' yM . Let Dbc .X;��/ denote the full subcategory of
DC.X;��/ consisting of complexesM such thatM ' yM and�1˝L��M lies in Dbc .X;�1/.
The canonical functor from DC.X;��/norm to Ekedahl’s category DC.X;Z`/ induces an
equivalence of categories

Dbc .X;��/! Dbc .X;Z`/.

See Fargues 2009, 5.15.
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4.3. Let k be a field, and let � be its absolute Galois group. Let Mod.Zl� / denote the
category of Zl -modules with a continuous action of � , and let D.Zl� / denote its derived
category. Define Dbc .Zl� / to be the subcategory of D.Zl� / of bounded complexes with
finitely generated cohomology (as a Zl -module). It is a triangulated category with t -structure
whose heart is the category of continuous representations of � on finitely generated Zl -
modules. When l ¤ char.k/, the functor sending .Mn/n lim

 �
Mn.k

sep/ derives to a functor

˛WDbc .k;Zl/! Dbc .Zl� /.

4.4. Now let k be a finite field with q elements, and equip � def
D Gal.xk=k/ with the topo-

logical generator  Wx 7! xq . For M in Dbc .Zl� /, we write xM for M as an object of
Dbc .Zl/.

Let M;N 2 Dbc .Z`� /, and let P DRHom.M;N /. Note that

P DRHom. xM; xN/

regarded as a continuous Z`� -module. Let

fj WExtj . xM; xN.r//� ! Extj . xM; xN.r//�

be the map induced by the identity map on Extj . xM; xN.r//.
Let ŒS� denote the cardinality of a set S . For a homomorphism f WM !N of abelian

groups, we let z.f /D ŒKer.f /�=ŒCoker.f /� when both cardinalities are finite. On applying
Lemma 5.1 of Milne and Ramachandran 2013 to the Z`� -module

H j .P /D Extj . xM; xN/,

we obtain the following statement:

z.fj / is defined if and only if the minimum polynomial of  on H j .P.r//Q
does not have qr as a multiple root, in which case

z.fj /D

ˇ̌̌̌
ˇ̌ Y
i; aj;i¤qr

�
1�

aj;i

qr

�ˇ̌̌̌ˇ̌ ;
where .aj;i /i is the family of eigenvalues of  acting on H j .P /Q.

4.5. By a ��� -module, we mean an inverse system

M D .M0 �� �  Mm MmC1 �� �/

withMm a discrete � -module killed by lm. For example,�� is the��� -module .Z=lmZ/m
with the trivial action of � . Let

F WMod.��� /!Mod.Zl/

denote the functor sending M D .Mm/ to the Zl -module lim
 �

M�
m . If M satisfies the Mittag-

Leffler condition, then
RjF.M/'H

j
cts.�; lim

 �
Mm/

(cohomology with respect to continuous cocycles).
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Let D.��� / denote the derived category of complexes of ��� -modules. Then F
derives to a functor RF WDC.��� /! DC.Zl/. For X in D.��� /,

RF.X/' s. EX
1�
�! EX/D Cone.1�/Œ�1� (12)

where EX D .R lim
 �
/.X/ (see Milne and Ramachandran 2013, �5). From (12), we get a long

exact sequence

� � � !H j�1. EX/
1�
�!H j�1. EX/!RjF.X/!H j . EX/

1�
�!H j . EX/! �� � (13)

The canonical generator  of � defines a canonical element �l in H 1
cts.�;Zl/, which we

can regard as an element of

Ext1��� .��;��/' HomD.��� /.��;��Œ1�/:

For each X in DC.��� /, �l defines morphisms

�l WX !XŒ1�

R�l WRF.X/!RF.X/Œ1�:

The second map is described explicitly by the following map of double complexes:

RF.X/ EX EX

RF.X/Œ1� EX EX

�1 0 1

R� 

1�

1�

For all j , the following diagram commutes

RjF.X/ RjC1F.X/

H j . EX/ H j . EX/

dj

id

(14)

where d j DH j .R�/ and the vertical maps are those in (13). The sequence

� � � !Rj�1F.X/
dj�1

�! RjF.X/
dj

�!RjC1F.X/! �� � (15)

is a complex because R� ıR� D 0.

4.6. Let M;N 2 Dbc .k;Z`/. The bifunctor

RHomWDbc .k;Z`/
opp
�Dbc .Z`� /!DC.Z`/

factors canonically through RF WDC.Z`� /! D.Z`/:

Dbc .k;Z`/ DC.Z`� / DC.Z/

Dbc .k;Z`/opp�Dbc .k;Z`/

RHom.11;�/

RF

RHom.�;�/
RHom.�;�/
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Hence
RHom.M;N.r//DRF.X/

for a well-defined object X in D.Z`� /. The sequence (13) gives us short exact sequences

0! Extj�1. xM; xN.r//� ! Extj .M;N.r//! Extj . xM; xN.r//� ! 0 (16)

in which .�/� and .�/� denote the kernel and cokernel of 1� . Moreover, (15) becomes
a complex E.M;N;r/,

� � � �! Extj�1.M;N.r//
dj�1

�! Extj .M;N.r//
dj

�! ExtjC1.M;N.r// �! �� � .

This is the unique complex for which the following diagram commutes,

Extj . xM; xN.r//� Extj . xM; xN.r//�

� � � Extj�1.M;N.r// Extj .M;N.r// ExtjC1.M;N.r// � � �

Extj�1. xM; xN.r//� Extj�1. xM; xN.r//�

f j

dj�1 dj

f j�1

(17)
(the vertical maps are those in (14) and the maps f j are induced by the identity map).

PROPOSITION 4.7. Let M;N 2 Dbc .k;Z`/, and let P D RHom.M;N /. Let r 2 Z, and
assume that, for all j , the minimum polynomial of  on H j .˛P /Q` does not have qr as a
multiple root.

(a) The groups Extj .M;N.r// are finitely generated Z`-modules, and the alternating sum
of their ranks is zero.

(b) The zeta function Z.P;t/ of P has a pole at t D q�r of order

�D
X

.�1/jC1 �j � rankZ`
�

Extj .M;N.r//
�
:

(c) The cohomology groups of the complex Ext�.M;N.r// are finite, and the alternating
product ��.M;N.r// of their orders satisfiesˇ̌̌̌

lim
t!q�r

Z.P;t/.1�qr t /�
ˇ̌̌̌�1
`

D ��.M;N.r//:

PROOF. (a) Note that Extj . xM; xN.r// D H j .˛P.r//, which is a finitely generated Z`-
module. From (16), we see that

rank.Extj .M;N.r///D rank.H j�1.˛P.r//� /C rankj .H j .˛P.r//� /:

The hypothesis on the action of the Frobenius element implies that

H j .˛P.r//� ˝Q'H j .˛P.r//� ˝Q
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for all j , and soX
j
.�1/j rank.Extj .M;N.r///

D

X
j
.�1/j

�
rank.H j�1.˛P.r//� /C rank.H j .˛P.r//� /

�
D 0

(b) Let �j be the multiplicity of qr as an inverse root of Pj . Then

�j D rankH j .˛P.r//� D rankH j .˛P.r//� ,

and so X
j
.�1/jC1 �j � rank.Extj .M;N.r///D

X
j
.�1/jC1 �j � .�j�1C�j /

D

X
j
.�1/jC1�j

D��.

(c) From Lemma 5.2 of Milne and Ramachandran 2013 applied to the diagram (17), we
find that

��.M;N.r//D
Y

j
z.f j /.�1/

j

.

According to (4.4),

z.f j /D

ˇ̌̌̌
ˇ̌ Y
i; aj;i¤qr

�
1�

aj;i

qr

�ˇ̌̌̌ˇ̌
`

where .aj;i /i is the family of eigenvalues of  acting on H j .˛P.r//Q` . Note that

Y
i ; aj;i¤qr

�
1�

aj;l

qr

�
D lim
t!q�r

Pj .t/

.1�qr t /�j
,

and so

��.M;N.r//D

ˇ̌̌̌
lim

t!q�r
Z.M;N;t/ � .1�qr t /�

ˇ̌̌̌�1
`

:
2

5 The local conjecture at p
This section is a brief review of Milne and Ramachandran 2013. The definitions and results
reviewed in (5.1, 5.2, 5.3) are due to Ekedahl, Illusie, and Raynaud.

5.1. Let k be a perfect field, and let W be the ring of Witt vectors over k equipped with
its Frobenius automorphism � . We let K denote the field of fractions of W . Recall that the
Raynaud ring is the graded algebra RDR0˚R1 DR0Œd � where R0 is the Dieudonné ring
W� ŒF;V � and d (of degree 1) satisfies d2 D 0, FdV D d , ad D da (a 2W ).
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5.2. The graded R-modules and homomorphisms of degree 0 form an abelian category,
whose derived category is denoted by D.R/. There is a well-defined “completion” functor
M  yM WD.R/! D.R/, and an object M of D.R/ is said to be complete if M ' yM .
A coherent complex of graded R-modules is a complete complex M in D.R/ such that
R1˝

L
RM is bounded with finite-dimensional cohomology. Here R1 D R=.VRCdVR/.

The coherent complexes form a full triangulated subcategory Dbc .R/ of D.R/.

5.3. A complex of graded R-modules is often viewed as a bicomplex M DM �� of R0-
modules in which the first index corresponds to the R-gradation. Let F 0 act on M i� as piF
(assuming only nonnegative i’s occur). The differentials in the bicomplex commute with
F 0, and so the associated simple complex sM is a complex of W� ŒF 0�-modules. When M is
coherent, Hn.sM/K is an F -isocrystal.

We now take k D Fq , q D pa.

5.4. We define the zeta function Z.M;t/ of an M in Dbc .R/ to be the alternating product
of the characteristic polynomials of F a acting on the F -isocrystals Hn.sM/K (see �3).

5.5. Let � denote the Galois group of xk=k equipped with its generator x 7! xq . By a
��� -module, we mean an inverse systemM D .Mm/m2N of discrete � -modulesMm killed
by pm. For example, �� denotes the ��� -module .Z=pmZ/m. Let F denote the functor
sending a ��� -module M to the Zp-module lim

 �
M�
m . If M satisfies the Mittag-Leffler

condition, then
RjF.M/'H

j
cts.�; lim

 �
Mm/

(cohomology with respect to continuous cocycles). Because � has a canonical generator,
there is a canonical element �p in H 1

cts.�;Zp/, which we can regard as an element of

Ext1��� .��;��/' HomD.��� /.��;��Œ1�/:

Here D.��� / is the derived category of the category of ��� -modules. For each X in
DC.��� /, �p defines morphisms

�pWX !XŒ1�

R�pWRF.X/!RF.X/Œ1�:

5.6. The functor
RHomWDbc .R/

opp
�Dbc .R/!D.Zp/

factors canonically through

RF WDC.��� /! D.Zp/.

This means that, for each pair M;N 2 Dbc .R/, there is a well-defined X 2 DC.��� / such
that

RHom.M;N.r//DRF.X/.

Now R�p is a morphism

RHom.M;N.r//!RHom.M;N.r//Œ1�

On setting Extj .M;N.r//DH j .RHom.M;N.r///, we obtain a complex

E.M;N;r/W � � � ! Extj .M;N.r//
dj

�! ExtjC1.M;N.r//! �� � .
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PROPOSITION 5.7. LetM;N 2 Dbc .R/, and let P DRHom.M;N /. Let r 2 Z, and assume
that qr is not a multiple root of the minimum polynomial of F a acting on H j .sP /K .

(a) The groups Extj .M;N.r// are finitely generated Zp-modules, and the alternating
sum of their ranks is zero.

(b) The zeta function Z.P;t/ has a pole at t D q�r of order

�D
X

.�1/jC1 �j � rankZp .Extj .M;N.r//:

(c) The cohomology groups of the complex E.M;N;r/ are finite, and the alternating
product ��.M;N.r// of their orders satisfiesˇ̌̌̌

lim
t!q�r

Z.M;N;t/ � .1�qr t /�
ˇ̌̌̌�1
p

D ��.M;N.r// �q�.M;N;r/

where
�.M;N;r/D

X
i<r
.�1/i .r � i/

�X
j
.�1/jhi;j .P /

�
:

6 How to prove the conjectures
This section consists of a series of somewhat unrelated subsections. Throughout, DM.k/
is a triangulated category of motivic complexes over a perfect field k, and rl is an exact
realization functor to Dbc .k;Zl/ (l ¤ p) or Dbc .R/ (l D p/. We sometimes write Dbc .k;Zp/
for Dbc .R/.

It suffices to construct DM.k/ for k algebraically closed

Throughout this subsection, all dg categories are pretriangulated. We write Dbc .k;Z`/ (resp.
Dbc .k;Zp/) for the natural dg enhancement of Dbc .k;Z`/ (resp. Dbc .R/). When k D F, each
object of Dbc .k;Zl/ is equipped with a germ of a Frobenius element (cf. Milne 1994, p.422).
We assume that the same is true of DM.F/ and that the realization functors send germs to
germs.

Suppose that we have constructed a dg category DM.F/ and dg realization functors
rl WDM.F/!Dbc .F;Zl/ for each l (including l D p). In this subsection we construct a dg
category DM.Fq/ and dg functors

DM.Fq/!DM.F/;

rl WDM.Fq/!Dbc .Fq;Zl/

such that

DM.F/ Dbc .F;Zl/

DM.Fq/ Dbc .Fq;Zl/

rl

rl

(18)

commutes. Moreover, the composite

DM.Fq/!DM.F/
RHom.11;�/
��������!D.Z/
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factors canonically through D.Z�0/:

DM.F/ D.Z/

DM.Fq/ D.Z�0/.

(19)

We define DM.Fq/ to be the category whose objects are pairs .X;�X / consisting of
an object X of DM.F/ and a q-representative of the germ of a Frobenius element on X . A
morphism .X;�X /! .Y;�Y / is a morphism X ! Y sending �X to �Y .

Similarly, let Dbc .Fq;Zl/0 be the category whose objects are pairs .X;�X / consisting of
an object X of Dbc .F;Zl/ and a q-representative of the germ of a Frobenius element on X .
The functors

.X;�X / X WDM.Fq/!DM.F/

.X;�X / .rl.X/;rl.�X //WDM.Fq/!Dbc .Fq;Zl/0

clearly make the diagram (18) commute. The functor

X . xX;�X /WDbc .Fq;Zl/!Dbc .Fq;Zl/0

is an equivalence of categories. On choosing a quasi-inverse, we obtain the functors making
(18) commute.

An object of D.Z�0/ is just an object of D.Z/ together with an action of 0, and so the
factorization of RHom.11;�/WDM.Fq/! D.Z/ through D.Z�0/ is obvious.

PROPOSITION 6.1. If rl WDM.F/!Dbc .F;Zl/ induces an equivalence of categories

rl WDM.F;Z=lnZ/!Dbc .F;Z=lnZ/

for all n, then rl WDM.Fq/!Dbc .Fq;Zl/ induces an equivalence of categories

rl WDM.Fq;Z=lnZ/!Dbc .Fq;Z=lnZ/

for all n.

PROOF. Omitted. 2

Here DM.k;Z=lnZ/ is the subcategory of DM.k;Zl/ of objects killed by ln.

Some folklore

Throughout this subsection, k is finitely generated over the prime field.6 We write P  xP

for base change to the algebraic closure xk of k. Let � D Gal.xk=k/.
Let P be an object of DM.k/. Set8̂̂<̂

:̂
H
j
abs.P;r/ D HomDM.k/.11;P Œj �.r//

H j .P;Zl.r// D HomD.k;Zl /.11;rl.P /Œj �.r//

H j .P;.Z=lnZ/.r// D HomD.k;Zl /.11;rl.P
.ln//Œj �.r//.

(20)

6So either k is finite or a finitely generated field extension of Q.
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Recall that, for l D p, D.k;Zl/
def
D Dbc .R/ and that, for an object P of a triangulated category,

P .l
n/ is the cone on lnWP ! P .
Let Aj .P;r/ denote the image of the canonical map

H
j
abs.P;r/Q! V

j

l
.P;r/

def
DQl˝Zl H

j . xP ;Zl.r//:

Let P 0 be a second object of DM.k/ equipped with a pairing

P ˝LP 0! 11.�d/

for some integer d . For example, P 0DRHom.P;11.�d//. Assume that the induced pairings

h ; iWV
j

l
.P;r/�V

2d�j

l
.P 0;d � r/!Ql

are nondegenerate, and that V j
l
.P;r/ and V 2d�j

l
.P 0;d � r/ are (noncanonically) isomor-

phic as � -modules. Elements a 2 Aj .P;r/ and a0 2 A2d�j .P 0;d � r/ pair to a rational
number ha;a0i independent of l . Let

N j .P;r/D fa 2 Aj .P;r/ j ha;a0i D 0 for all a0 2 A2d�j .P 0;d � r/g.

There is a canonical map

Ql˝QA
j .P;r/! V

j

l
.P;r/� : (21)

Consider the following statements.
T
j

l
.P;r/: The map (21) is surjective, i.e., QlAj .P;r/D V

j

l
.P;r/� .

I
j

l
.P;r/: The map (21) is injective.

E
j

l
.P;r/: The vector space N j .P;r/D 0.

S
j

l
.P;r/: The map V j

l
.P;r/� ! V j .P;r/� induced by the identity map is bijective.

In the next statement, we abbreviate T j
l
.P;r/ to T and T 2d�j

l
.P 0;d � r/ to T 0 etc..

THEOREM 6.2. The following statements are equivalent:
(a) dimQ.A

j .P;r/=N j .P;r//D dimQl V
j

l
.P;r/� I

(b) T CEI
(c) T CT 0CS I
(d) T CT 0CECE 0CI CI 0CSCS 0.

Moreover, if k is finite, then these statements are equivalent to:
(e) the multiplicity of 1 as a root of the characteristic polynomial of the Frobenius on

V
j

l
.P;r/� is equal to dimQ.A

j .P;r/=N j .P;r//.

PROOF. See Tate 1994, �2, and Milne 2009, �1. 2

We say that the Tate conjecture holds for P , j;r; l if the equivalent conditions (a),: : :,(d)
of the theorem hold for P;j;r; l . We say that the Tate conjecture holds for P and l if the
equivalent conditions of the theorem hold for all quadruples P;j;r; l (fixed P;l).
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Local torsion (Gabber’s theorem)
Throughout this subsection, k is a separably closed field of characteristic p ¤ 0 (not neces-
sarily perfect).

CONJECTURE 6.3. Let M;N 2 obDM.k/, and let j 2 Z. The group Extj .rlM;rlN/ is
torsion-free for almost all l .

Let X be an algebraic variety over k. Then (6.3) applied to 11 and the motivic complexes
attached toX predicts that the étale cohomology groupsH j .Xet;Zl.r// andH j

c .Xet;Zl.r//
are torsion-free for almost all l ¤ p.

6.4. Let X be a smooth projective variety over k. In this case Gabber (1983) shows that
H j .Xet;Zl.r// is torsion-free for almost l ¤ p. A specialization argument shows that it
suffices to prove this in the case that k D F. When k D F, Gabber applied Deligne 1980 to
obtain the statement.

6.5. Let X be proper and smooth over k. An application of Chow’s lemma and de Jong’s
alteration theorem shows that there exists a morphism � WX 0! X with X 0 projective and
smooth and � projective, surjective, and generically finite and étale. The composite

H j .Xet;Z`.r//
��

�!H j .X 0et;Z`.r//
��
�!H j .Xet;Z`.r//

is multiplication by deg.�/. Hence H j .Xet;Z`.r// is torsion-free for almost all ` (Suh
2012, 1.4).

We now take k D F.

6.6. Let X be an arbitrary variety over k. Then de Jong’s alteration theorem (de Jong 1996)
says that there exists an alteration X 0!X of X such that X 0 is smooth; moreover, X 0 can
be chosen to be the complement of a divisor with strict normal crossings in some smooth
projective variety.7

Therefore, by the argument in (6.5), we may suppose that U is an open subvariety of a
smooth projective variety X with complement a strict normal crossings divisor D. There is
then an exact sequence

� � � !H i
c .Uet;Z`/!H i .Xet;Z`/!H i .Det;Z`/!H iC1

c .Uet;Z`/! �� � :

Induction on the dimension of X allows us to suppose that H�.Det;Z`/ is torsion-free for
almost all `, and so it remains to show that the cokernel of

H i .Xet;Z`/!H i .Det;Z`/ (22)

is torsion-free for almost all `. This will be true if the map (22) arises from a map hi .X/!
hi .D/ of motives in a category that becomes semisimple when tensored with Q.

7An alteration is a dominant proper morphism that preserves the dimension. LetD be a divisor in a varietyX ,
and let Di �D, i 2 I , be its irreducible components (both D and the Di are closed subvarieties of codimension
1 in X ). ThenD is a strict normal crossings divisor if (a) every point s 2D is a smooth point on X , (b) for every
J � I , the closed subscheme DJ D

T
i2J Di is a smooth subvariety of codimension #J in V .
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6.7. We now consider the general statement. Assume that the triangulated category DM.k/Q
is semisimple (i.e., every distinguished triangle splits). This is certainly expected to be true
when k D F (see, for example, Milne 1994, 2.49). Fix M , and let

N 0!N !N 00!N 0Œ1�

be a distinguished triangle. If (6.3) is true for two of the pairs .M;N 0/, .M;N /, .M;N 00/,
then it is true for all three (cf. the last paragraph). A similar statement is true in the first
variable. It follows that if DM.k/ is generated as a triangulated category by the motives of
smooth varieties (which is true for the examples in �78 and �8), then (6.3) is true for all
M;N 2 obDM.k/.

Consequences of rl.M;N / being an isomorphism
In the remainder of this section, we require that each object of DM.k/ has a zeta function (see
�3), and that the realization functors rl are such that there is a canonical map of complexes

rlE.M;N;r/!E.rlM;rlN;r/

for M , N in DM.k/. More specifically, we require that the rl have dg-enhancements, and
that they map the factorization of

RHomWDM.k/opp
�DMC.k/! D.Z/

through RF WD.Z�0/! D.Z/ onto the canonical factorizations of

RHomWD.k;Z`/opp
�DC.k;Z`/! D.Z`/

RHomWDbc .R/
opp
�Dbc .R/! D.Zp/

through D.Zl� ).
Let M;N 2 obDM.k/. From the realization maps we get maps

r`.M;N /WHomDM.k/.M;N /˝Z`! HomDbc .Z`/.r`M;r`N/

rp.M;N /WHomDM.k/.M;N /˝Zp! HomDbc .R/
.rpM;rpN/

We say that an abelian groupX is pseudofinite if it is torsion and its l-primary component
X.l/ is finite for all primes l . The order of such a group is the formal product

Q
ln.l/ where

ln.l/ is the order of X.l/. We say that an abelian group X is pseudofinitely generated if Xtors
is pseudofinite and X=Xtors is finitely generated.

THEOREM 6.8. Let M;N 2 DM.k/, and let r 2 Z. Let P D RHom.M;N /. Assume that
rl.M;N / is an isomorphism for all primes l and that the Frobenius endomorphism of P is
semisimple.

(a) The groups Extj .M;N.r// are pseudofinitely generated, and the alternating sum of
their ranks is zero.

(b) The zeta function Z.P;t/ has a zero at t D q�r of order

�D
X

.�1/jC1 �j � rankZ.Extj .M;N.r//:

8See, for example, Bondarko 2011.
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(c) The cohomology groups of the complex Ext�.M;N.r// are pseudofinite, and the
alternating product ��.M;N.r// of their orders satisfiesˇ̌̌̌

lim
t!q�r

Z.P;t/.1�qr t /�
ˇ̌̌̌
D ��.M;N.r// �q�.P;r/

where
�.P;r/D

X
i;j .i�r/

.�1/iCj .r � i/hi;j .Rp.P //:

If, in addition, DM.k/Q is semisimple, then Conjecture 1.1 holds for M and N .

PROOF. The statements (a,b,c) are an immediate consequence of the hypotheses and Propo-
sitions 4.7 and 5.7. The final statement follows from (6.7). 2

Consequences of rigidity and the Tate conjecture

Let k D Fq . We assume that, for all primes l , the realization functor rl WDM.k/! Dbc .k;Zl/
defines an equivalence on the subcategories of objects killed by ln. For Voevodsky’s category
DMeff
�;et.k/ and l ¤p, this is the rigidity theorem (Suslin and Voevodsky 1996, �4; Voevodsky

2000, 3.3.3).

THEOREM 6.9. Let P 2 obDM.k/, and let r 2 Z. Assume that the Tate conjecture holds
for P , r , and a fixed prime l . Then, for all i 2 Z,

(a) the first Ulm subgroup U i of H i
abs.P;r/ is uniquely divisible by l ;

(b) the group H i
abs.P;r/

0 def
DH i

abs.P;r/=U
i is finitely generated modulo torsion, and its

l-primary subgroup is finite;
(c) the map H i

abs.P;r/
0˝Zl !H i .P;Zl.r// is an isomorphism for all i .

The proof will occupy the rest of this subsection.

PRELIMINARIES ON ABELIAN GROUPS

In this subsection, we review some elementary results on abelian groups from the first section
of the appendix to Milne 1986. An abelian group N is said to be bounded if nN D 0 for
some n� 1, and a subgroup M of N is pure if M \mN DmM for all m� 1.

LEMMA 6.10. (a) Every bounded abelian group is a direct sum of cyclic groups.
(b) Every bounded pure subgroup M of an abelian group N is a direct summand of N .

LEMMA 6.11. Let M be a subgroup of N; and let ln be a prime power. If M \ lnN D 0
and M is maximal among the subgroups with this property, then M is a direct summand of
N .

Every abelian group M contains a largest divisible subgroup Mdiv, which is obviously
contained in the first Ulm subgroup ofM , U.M/

def
D
T
n�1nM . Note that U.M=U.M//D 0.

PROPOSITION 6.12. If M=nM is finite for all n� 1, then U.M/DMdiv.

COROLLARY 6.13. If TM D 0 and all quotients M=nM are finite, then U.M/ is uniquely
divisible (= divisible and torsion-free = a Q-vector space).
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For an abelian groupM , we letMl denote the completion ofM with respect to the l-adic
topology. The quotient maps M !M=lnM induce an isomorphism Ml ! lim

 �n
M=lnM .

The kernel of the map M !Ml is
T
n l
nM .

LEMMA 6.14. Let N be a torsion-free abelian group. If N=lN is finite, then the l-adic
completion of N is a free finitely generated Zl -module.

PROPOSITION 6.15. Let �WM �N ! Z be a bi-additive pairing of abelian groups whose
extension �l WMl �Nl ! Zl to the l-adic completions has trivial left kernel. If N=lN is
finite and

T
n l
nM D 0, then M is free and finitely generated.

PROOF OF THEOREM 6.9

Let P 2 obDM.k/. We use the notations (20). From the factorization

DM.k/ DC.Z�0/ DC.Z/;

RHom.11;�/

RF

we get a spectral sequence

H i .�0;H
j
abs.
xP ;r// H) H

iCj
abs .P;r/;

and hence exact sequences

0!H i�1
abs .

xP ;r/�0 !H i
abs.P;r/!H i

abs.
xP ;r/�0 ! 0:

On applying the rigidity theorem to the exact cohomology sequence of the distinguished
triangle

P
ln

�! P �! P .l
n/
�! P Œ1�

(see the Notations), we get an exact sequence

0!H i
abs.P;r/

.ln/
!H i .P;.Z=lnZ/.r//!H iC1

abs .P;r/ln ! 0: (23)

Here the subscript ln denotes the kernel of multiplication by ln. We deduce thatH i
abs.P;r/

.ln/

and H iC1
abs .P;r/ln are finite for all i and n. On passing to the inverse limit, we get an exact

sequence
0!H i

abs.P;r/l !H i .P;Zl.r//! TlH
iC1
abs .P;r/! 0:

We now apply T i
l
.P;r/: the map

H i
abs.P;r/˝Ql !H i . xP ;Ql.r//�

is surjective. This implies that the cokernel of the map

H i
abs.P;r/˝ZZl !H i .P;Zl.r//

is torsion. As the map factors through H i
abs.P;r/l , it follows that TlH

iC1
abs .P;r/D 0 and

H i
abs.P;r/l 'H

i .P;Zl.r//:
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Consider the diagram

H i
abs.P;r/l H i .P;Zl.r//

H iC1
abs .P;r/l H iC1.P;Zl.r//:

'

.d i /l ıi

Here the vertical maps are the differentials in H �abs.P;r/ (see p.3) and its l-analogue. As
ıi has finite cokernel, so does the bottom arrow, and so TlH

2iC2
abs .P;r/D 0. We have now

shown that
TlH

i
abs.P;r/D 0 for all i

and so 8<: H i
abs.P;r/l 'H

i .P;Zl.r//

U.H i
abs.P;r// is uniquely l-divisible

for all i:

We have now proved (a) of the theorem, and we have proved (b) and (c) except that each
group H i

abs.P;r/
0 has been replaced by its l-adic completion. It remains to prove that

H i
abs.P;r/

0 is finitely generated for all i (for then H i
abs.P;r/l 'H

i
abs.P;r/

0˝Zl ).
The mapsH i

abs.P;Z.r//
0!H i

abs.P;Z.r//l are injective, and soH i
abs.P;Z.r//

0 is finite
unless 1 is an eigenvalue of the Frobenius map on H i . xP ;Zl.r// or H i�1. xP ;Zl.r//.

We next show that the groupH i
abs.P;Z.r//

0 is finitely generated. There is a commutative
diagram

H i
abs.P;r/

0=tors � H 2d�iC1
abs .P;d � r/0=tors Z

H i .P;Zl.r//=tors � H 2d�iC1.P;Zl.d � r//=tors Zl

to which we wish to apply (6.15). The bottom pairing is nondegenerate, U.H i
abs.P;r/

0/D

0 (the quotient of a group by its first Ulm group has trivial first Ulm group), and the
groupH 2d�iC1

abs .P;Z.d �r//.l/ is finite. Therefore (6.15) shows thatH i
abs.P;Z.r//

0=tors is
finitely generated. Because U.H i

abs.P;Z.r//
0/D 0, the torsion subgroup of H i

abs.P;Z.r//
0

injects into the torsion subgroup of H i .P;Zl.r//, which is finite. Hence H i
abs.P;r/

0 is
finitely generated modulo prime-to-l torsion.

The bijectivity of rl
Let k D Fq . Let P be an object of DM.k/ such that the Tate conjecture is true for P and all
i; r; l . According to Theorem 6.9, the map�

H i
abs.P;r/=U

i
�
˝ZZl !H i

et.P;Zl.r//

is an isomorphism for all i; r; l . Here U i is the first Ulm subgroup of H i
abs.P;r/, which

is uniquely divisible (hence a Q-vector space). Moreover, H i
abs.P;r/

0 def
D H i

abs.P;r/=U
i
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is finitely generated and its l-primary subgroup is finite for all l . Therefore the group
TorZ1.H

i
abs.P;r/

0;Zl/ is torsion, and so the sequence

0! U i ˝Zl !H i
abs.P;r/˝Zl !H i

abs.P;r/
0
! 0

is exact (because Q˝Zl 'Ql is torsion-free). To show that U i D 0, it suffices to show that

rl W.11;P /WH
i
abs.P;r/˝Zl !H i

et.P;Zl.r// (24)

is injective for a single l .
When P is the motivic complex with compact support of an algebraic variety X , we

write X for P .

LEMMA 6.16. Suppose that the map

rl.11;X/WH
�
abs.X;r/˝Zl !H�.X;Zl.r// (25)

is bijective for almost all primes l when X is smooth and projective. Then this is true for all
varieties X .

PROOF. From an alteration � WX 0!X we get a commutative diagram

H�abs.X;r/˝Zl H�abs.X
0; r/˝Zl H�abs.X;r/˝Zl

H�et .X;Zl.r// H�et .X;Zl.r// H�et .X;Zl.r//:

�� ��

�� ��

in which both composites �� ı�� are multiplication by deg.�/, and are therefore isomor-
phisms for almost all primes l . Therefore the statement is true for X if it is true for X 0. Now
de Jong’s alteration theorem (de Jong 1996) allow us to suppose that X is smooth and is the
complement of a divisor D with strict normal crossings in a smooth projective variety Y .
Induction on the dimension of X allows us to assume the statement for D, and a five-lemma
argument using the exact cohomology sequence

� � � !H i
c .X/!H i .Y /!H i .D/!

proves it for X . 2

ASIDE 6.17. Fix a prime l ¤p. Gabber’s improvement of de Jong’s theorem (see Bondarko
2011, 1.2.1) allows one to assume in the above proof that the degree of � is prime to l .
Therefore we obtain the following stronger result: if rl.11;X/ is an isomorphism for all
smooth projective varieties, then it is an isomorphism for all varieties (fixed l ¤ p). Of
course, with resolution, this would be true also for l D p.

LEMMA 6.18. LetX be a smooth projective variety over Fq that satisfies the Tate conjecture.
If the ideal of l-homologically trivial correspondences in CHdimX .X �X/Q is nil, then
rl.11;X/ is bijective.

PROOF. See, for example, the appendix to Milne 1986. 2
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ASIDE 6.19. For a smooth projective algebraic variety X whose Chow motive is finite-
dimensional, the ideal of l-homologically trivial correspondences in CHdimX .X �X/Q is nil
for all prime l (Kimura). It is conjectured (Kimura and O’Sullivan) that the Chow motives of
algebraic varieties are always finite-dimensional, and this is known for those in the category
generated by the motives of abelian varieties. On the other hand, Beilinson has conjectured
that, over finite fields, rational equivalence with Q-coefficients coincides with with numerical
equivalence, which implies that the ideal in question is always null (not merely nil).

THEOREM 6.20. Assume that, for each smooth projective variety X over Fq , the Tate
conjecture holds for X and, for some prime l , the ideal of l-homologically trivial correspon-
dences in CHdimX .X �X/Q is nil. If DM.k/ is generated as a triangulated category by the
motives of smooth algebraic varieties, then the maps rl.M;N / are isomorphisms for all l
(except possibly p).

PROOF. The hypotheses imply that rl.11;X/ is an isomorphism for all l if X is smooth and
projective (see 6.18 and the discussion above). Therefore rl.11;X/ is an isomorphism for
all l (except possibly p) if X is smooth (apply 6.16, 6.17). If rl.11;P / is an isomorphism
for two of the terms in a distinguished triangle, then it is an isomorphism for all three of
the terms. Because DM.k/ is generated by the motives of smooth algebraic varieties, we
deduce that rl.11;P / is an isomorphism all l (except possibly p). This proves the theorem
for .11;P /, and it can be deduced for .M;N / by taking P DRHom.M;N /. 2

The exception at p in the theorem can be removed under either of the following two
hypotheses.

(a) Resolution of singularities. This allows us to drop the condition l ¤ p in (6.17), and
hence in the rest of the proof.

(b) Numerical equivalence coincides with l-homological equivalence for l D p and at
least one other prime l1 (for smooth projective varieties; Q-coefficients). Let X be a smooth
variety. If rl.11;X/ is an isomorphism for all l ¤ p, then the Tate conjecture holds for X and
all l ¤ p. Under our hypothesis on the equivalence relations, Condition (e) of (6.2) holds for
l1 if and only if it holds for p (cf. Katz 1994, p.28). Therefore the Tate conjecture holds for
X and p, which in which in turn implies that rp.11;X/ is an isomorphism (6.9 et seq.). We
now know that rl.11;X/ is an isomorphism for all smooth varieties X and all primes l , and
so the proof can be completed as before.

THEOREM 6.21. Assume that the Tate and Beilinson conjectures hold for all smooth pro-
jective varieties over Fq . Then Theorem 6.8 holds for all M;N in DM.k/. If in addition,
DM.k/Q is semisimple, then Conjecture 1.1 holds for all M;N in DM.k/.

PROOF. Immediate from the above. 2

7 Motivic complexes following Voevodsky
Let k be a perfect field of characteristic p > 0, let W DW.k/ be the ring of Witt vectors
over k, and let K DW ˝Q be its fraction field. Let xk be an algebraic closure of k, and
let � the Galois group of xk over k. Recall that an F -isocrystal is a K� ŒF �-module that is
finite-dimensional as a K-vector space and such that F is bijective.
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At present, it is not known how to construct (in a natural way, i.e., without using
realizations) a triangulated category of motivic complexes k equipped with an integral p-
adic cohomological realization functor to Dbc .R/. We propose constructing such a category
as a dg fibred product of Voevodsky’s category with the category Dbc .R/.

In our earlier article Milne and Ramachandran 2004, we constructed the abelian category
of integral mixed motives as a fibred product. Our construction here is similar in spirit, but
takes place at the level of dg-categories.

There are roughly three steps:
(a) definition of a dg crystalline/rigid realization (k algebraically closed);
(b) formation of the fibred product category at the dg level and comparison of the Hom’s

in the various categories (k algebraically closed);
(c) passage to a finite base field and the Weil étale cohomology groups.

Various definitions of DMeff
gm.k;Q/

Voevodsky’s category DMeff
et .k;Z/ of effective étale motives over k has no p-torsion and is

ZŒp�1�-linear. Thus
DMeff

et .k;Z/D DMeff
et .k;ZŒp

�1�/:

With Q-coefficients, there is a canonical equivalence of categories

DMeff
Nis.k;Q/! DMeff

et .k;Q/

between the triangulated categories of effective Voevodsky motives and effective étale
motives with Q-coefficients (Mazza et al. 2006, 14.30, p.118). In fact, the various definitions
of the triangulated category of motivic complexes all give the same answer for rational
coefficients. In particular, the following categories are all canonically equivalent (Déglise
2013):
˘ DMet.k;Q/ of étale motives (Voevodsky)
˘ DMNis.k;Q/ of Voevodsky sheaves in the Nisnevich motives (Voevodsky)
˘ DAet.k;Q/ via motivic homotopy (Morel, Ayoub)
˘ DMh.k;Q/ of h-topology motives (Voevodsky).

The first two involve presheaves with transfers, but the third one does not. For a definition
of DAeff

et .k;Q/, see Ayoub 2013, begining of Section 3, just before 3.1. Ayoub (ibid., B.1)
has provided a canonical equivalence

DAeff
et .k;Q/! DMeff

et .k;Q/.

For details on the other categories, see Cisinski and Déglise 2012b
The integral versions of these categories, other than the second, are all ZŒp�1�-linear, i.e.,

they do not have any p-torsion. For this reason, we write DMet.k;ZŒp�1�/ for the integral
version of DMet.k;Q/. The p-part of the integral Nisnevich category remains mysterious;
no connection, as yet, has been established between the Nisnevich category and the de
Rham-Witt complex.

Glossary of categories
˘ Ho.C/ the homotopy category of a dg-category C. When C is pretriangulated, Ho.C/

is a triangulated category.
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˘ DMeff
et .k;ZŒp�1�/ Voevodsky’s triangulated category of effective étale motives over k.

˘ Dbc .R/ the triangulated category of coherent complexes of graded modules over the
Raynaud ring R (see �5).

˘ Dbc .K� ŒF �/ the bounded derived category of complexes of K� ŒF �-modules whose
cohomology groups are F -isocrystals.

˘ DMeff
et .k;ZŒp�1�/ the natural dg enhancement of DMeff

et .k;ZŒpD1�/ (Beilinson and
Vologodsky 2008).

˘ D.B/ the derived dg-category of an exact category B; this is the dg quotient of the dg
category C.B/ of unbounded complexes by the subcategory of acyclic ones (Drinfeld
2004, Tabuada 2010b).

˘ Dbc .R/ the natural dg enhancement of Dbc .R/.
˘ Dbc .K� ŒF �/ the natural dg enhancement of Dbc .K� ŒF �/.
˘ DM.k;Z/ the dg-category of integral motivic complexes over k (constructed below).

The dg-enhancement of Voevodsky’s category
For every Q-algebra A, there is a canonical equivalence of categories

� WDMeff
Nis.k;A/! DMeff

et .k;A/ (26)

between the triangulated categories of effective Voevodsky motives and effective étale
motives with coefficients in A (Mazza et al. 2006, 14.30, p.118). Voevodsky’s category
DMeff

Nis.k;Q/ of effective geometric motives over k admits a crystalline realization functor
(homology) (Cisinski and Déglise 2012a). It is a mixed Weil cohomology theory in the
terminology of Cisinski and Déglise. When composed with a quasi-inverse of � , it gives a
crystalline realization of DMeff

et .k;Q/.
We want to lift this to a dg-realization, i.e. a dg-quasifunctor

DMeff
et .k;ZŒp

�1�/!D.K� ŒF �/

where DMeff
et .k;ZŒp�1�/ is the dg-enhancement of DMeff

et .k;ZŒp�1�/ constructed in Beilin-
son and Vologodsky 2008.

We shall freely use Beilinson and Vologodsky 2008 and Vologodsky 2012.
In particular, Vologodsky (2012, Theorem 2, p.384; also the start of Section 2) has

provided a very convenient criterion for constructing dg-quasifunctors on DMeff
et .k;ZŒp�1�/.

For rational coefficients, i.e., for quasi-functors on DMeff
et .k;Q/, this criterion states9

A dg-realization DMeff
et .k;Q/! C into a cocomplete compactly generated dg-

category C is just an “ordinary” functor from the category of smooth connected
schemes to C which is A1-homotopy invariant and satisfies the descent property
for Voevodsky’s h-topology.

In other words, DMeff
et .k;Q/ is universal for dg-realizations of motives.

The canonical equivalence � admits a dg-enhancement: the canonical dg-quasifunctor
on the dg-enhancements DMeff

Nis.k;A/!DMeff
et .k;A/ is a homotopy equivalence for every

Q-algebra A (Vologodsky 2012, p.380, following Remark 2.6, ).

9Vologodsky informed us that, by results of Ayoub, the h-topology in the criterion can be replaced by étale
topology.
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REMARK 7.1. The construction of the category DMeff
et .k;Q/ is based on A1-homotopy

invariant étale presheaves with transfer on the category of all smooth schemes over k. The
category DAeff

et .k;Q/ in Ayoub’s theorem is a variant “sans transfers”. The equivalence in
Ayoub’s theorem provides a variant of Theorem 2.8(c) of Vologodsky 2012. Because of
this, one does not have to check for good properties with respect to transfers in constructing
dg-realizations.

The dg-realization of rigid homology
We assume that k is algebraically closed. Then the category of F -isocrystals is semisimple,
and so every object of D.K� ŒF �/ is isomorphic to its homology (viewed as a complex with
trivial differentials).

LEMMA 7.2. The category C.K� ŒF �/ of unbounded complexes of K� ŒF �-modules is a
pre-triangulated cocomplete compactly generated dg-category over Qp.

PROOF. Apply Beilinson and Vologodsky 2008, Example before 1.5.5, p.1718, which shows
that for every abelian category A, the category of complexes C.A/ is pretriangulated. 2

Our task is to define the dg-quasifunctor

CrysWDMeff
et .k;Q/!D.K� ŒF �/:

By Vologodsky’s criterion and Ayoub’s theorem (Ayoub 2013, B.1) it suffices to
(a) construct a functor from smooth connected schemes over k to C.K� ŒF �/ (hence to

D.K� ŒF �/) that is A1-homotopy invariant and satisfies étale descent, and
(b) check that the image lies in the dg subcategory Dbc .K� ŒF �/) of D.K� ŒF �/).

N. Tsuzuki has proved proper cohomological descent for rigid cohomology and, together
with B. Chiaroletto, étale descent for rigid cohomology (Tsuzuki 2003, Chiarellotto and
Tsuzuki 2003). It is known that rigid cohomology is A1-homotopy invariant.10

For a smooth scheme X over k, we define Crys.X/ to be Besser’s rigid complex
R� .X=K/ (Besser 2000, 4.9, 4.13), which is a canonical functorial complex of K-vector
spaces that computes the rigid cohomology of X . It is compatible with base change k! k0

and is endowed with a Frobenius map (ibid. Proposition 4.21, Corollary 4.22). Therefore
Crys.X/ is an object of C.K� ŒF �/. The assignment X Crys.X/ is a functor; it satisfies
étale descent and A1-homotopy invariance because rigid cohomology satisfies étale descent
and A1-homotopy invariance.

In summary, there exists a dg-crystalline realization functor

CrysWDMeff
et .k;ZŒp

�1�/!D.K� ŒF �/:

NOTES

7.3. The functor Crys becomes covariant if we take Crys.X/ to be the dual of Besser’s
complex.

7.4. On DMeff
et .k;ZŒp�1�/ this becomes the Borel-Moore rigid homology functor.

10It satisfies the Künneth formula, agrees with Monsky-Washnitzer cohomology on smooth affine varieties,
and the Monsky-Washnitzer cohomology of affine space is trivial except in degree 0 (see, for example, van der
Put 1986).
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7.5. As the Besser complex is compatible with base change, Crys.X/ for any smooth
variety X over a finite field k is a complex of K� ŒF �-modules with an action of �0.

7.6. Another method of obtaining Crys is to use the overconvergent site of B. Le Stum
(Le Stum 2011).

7.7. There is an alternative construction of Crys. The restriction functor from étale sheaves
on smooth schemes over k to étale sheaves on smooth affine schemes over k is an equivalence
of categories. Therefore, it suffices to define Crys on smooth affine schemes. Here we can
take the Monsky-Washnitzer complex of a smooth affine variety. It is known that the
cohomology of this complex computes the rigid cohomology of the variety.

Homotopy fibred products of dg-categories
In this subsection, we review the definition of homotopy fibred products of dg categories
(Drinfeld 2004, Section 15, Appendix IV; Tabuada 2010a, Chapter 3; Ben-Bassat and Block
2012, Section 4).

Let B be a dg category. Given objects x;y of B, we write Hom�B.x;y/ for the Z-graded
complex of morphisms from x to y. For the homotopy category HoB of B,

HomHoB.x;y/DH
0.Hom�B.x;y//:

Consider a diagram of dg-categories and dg-functors:

B

C D:

G

L

The homotopy fibred product C�D B is a dg-category (Ben-Bassat and Block 2012, Section
4). Its objects are triples

x D .M;N;�/ M 2 B; N 2 C; � 2 Hom0D.G.M/;L.N //

such that � is closed and becomes invertible in Ho.D/. The morphisms of degree i from an
object .M1;N1;�1/ to an object .M2;N2;�2/ are the triples

.�;�;/ 2 HomiB.M1;M2/˚HomiC.N1;N2/˚Homi�1D .G.M1/;L.N2//;

and the differential is

d.�;�;/D .d�;d�;dC�2G.�/� .�1/
iL.�/�1/:

Definition of DM.k;Z/
The full category DMet.k;Q/ of étale dg-motives is defined to be the localization of
DMeff

et .k;Q/ by the Tate motive (Beilinson and Vologodsky 2008, Section 6.1). Since the
Tate motive maps under Crys to an invertible object in Dbc .K� ŒF �/, the dg-realization Crys
automatically extends to

CrysWDMet.k;Q/!Dbc .K� ŒF �/:
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REMARK 7.8. (a) As mentioned earlier, the equivalence � in (26) has a dg enhancement;
this clearly extends to the non-effective categories. So the definitions of Beilinson and
Vologodsky 2008 for DM.k;Q/ of Voevodsky motives (Nisnevich topology) can be replaced
with the étale version.

(b) (Beilinson and Vologodsky 2008, Section 6.1). Explicitly, an object of DMet.k;Q/
is represented as M.a/, M 2DMeff

et .k;Q/, a 2 Z, and

HomDMet.k;Q/.M.a/;N.b//D lim
�!
n

HomDMeff
et .k;Q/.M.aCn/;N.bCn//I

here the inductive limit is taken as n!C1with aCn, bCn nonnegative. Cf. the definition
of the category Crys.k/, just before Lemma 1.7, in Milne and Ramachandran 2004.

We write Crys again for the composite

DMet.k;ZŒp�1�/!DMet.k;Q/
Crys
�!D.K� ŒF �/:

Let sWDbc .R/!Dbc .K� ŒF �/ be the dg functor sending a complex of graded R-modules to
the associated simple complex tensored with K. We define the dg category of motives over
k to be the fibred product

DM.k;Z/DDMet.k;ZŒp�1�/�Dbc .K� ŒF �/D
b
c .R/:

In other words, the following diagram is cartesian:

DM.k;Z/ Dbc .R/

DMet.k;ZŒp�1/ Dbc .K� ŒF �/

s

Crys

In the diagram, the vertical arrows are contravariant and covariant respectively, and the
horizontal arrows are covariant and contravariant respectively. We also write DM.k/ for
DM.k;Z/.

By definition, objects of DM.k;Z/ are triples .M;N;�/ where N is an object of
DMet.k;ZŒp�1�/, M is an object of D.R/ and � 2Dbc .K� ŒF �/.s.M/;Crys.N // is closed
and becomes invertible in Ho.D.K� ŒF �//DD.K� ŒF �/. The homotopy category of DM.k;Z/
is the triangulated category DM.k/D DM.k;Z/ of integral motivic complexes over k.

ASIDE 7.9. If we take the complex dual to Besser’s complex, we will get a covariant rigid
realization (Borel-Moore homology, dual to cohomology) and then all the arrows in the above
diagram will be covariant. But then the motive defined by a smooth projective variety will
be the triple .DR� .X;W˝X /;hX;�/ where the first component is the dual of the complex
computing the de Rham-Witt cohomology of X , or the triple .R� .X;W˝X /;DhX;�/
where we use duality in Voevodsky’s category.

Mayer-Vietoris sequence
Fix a commutative ring A and an A-linear dg-category B. The dg-category B-Mod of B-
modules is defined to be the category of dg-functors from B to the dg-category of complexes
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of A-modules. Every object y of B defines a dg-module x HomB.x;y/. There is a natural
embedding B! B-Mod (Yoneda) given by y 7! HomB.�;y/. Every dg-functor f WB0! B
induces a pullback dg-functor f �WB-Mod! B0-Mod.

Every y in B defines the dg-module HomB.�;y/ whereas the bi-functor HomB.�;�/
defines a canonical bimodule MB. See Section 2 of Tabuada 2013 for more details.

Consider the two bimodules U and V on DM.k;Z/ defined as follows. Say x D
.M;N;�/ and x0 D .M 0;N 0;�0/ are objects of DM.k;Z/. We define

U.x;x0/D HomDbc .K� ŒF �/.s.M/;Crys.N 0//Œ1�

and
V.x;x0/D HomDbc .R/.M;M

0/˚HomDMet.k;ZŒp�1�/.N;N
0/:

The definition of the morphisms in the homotopy fibred dg category provides the exact
sequence of DM.k;Z/-bimodules

0! U !MDZ! V ! 0:

Applied to any pair x;x0 of objects in DM.k;Z/, we get a short exact sequence of
Z-graded complexes

0! U.x;x0/! HomDM.k;Z/.x;x
0/! V.x;x0/! 0

and the associated (Mayer-Vietoris) long exact sequence

� � � ! ExtiDM.k/.x;x
0/! ExtiDbc .R/

.M;M/˚ExtiDMet.k;ZŒp�1�/
.N;N 0/!

! ExtiDbc .K� ŒF �/
.sM;Crys.N 0//! ExtiC1DM.k;Z/.x;x

0/! �� � :

Note: the homotopy fibre-product is designed to give the Mayer-Vietoris sequence!

Properties of DM.k/

We now develop some of the properties of DM.k/.

TRIANGULATED STRUCTURE

All the dg-categories involved in the construction of DM.k;Z/ are dg-enhancements of
triangulated categories, and are therefore pretriangulated. Recall that a dg-category C is
(strongly) pretriangulated if
˘ for each object A of C and m 2 Z, there exists an object, denoted AŒm�, representing

the functor C  Homm.C;A/), so

Hom.C;AŒm�/D Homm.C;A/, all C 2 ob.C/I

˘ for each morphism f WA! B in C with d ıf D 0, there exists an object, denoted
Cone.f /, representing the functor sending each C 2 ob.C/ to the cone on

Hom.C;A/
f ı�
�! Hom.C;B/.
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If C is strongly pre-triangulated, then Ho.C/ has a translation functor, namely, A AŒ1�,
and a class of distinguished triangles, namely, those isomorphic to one of the form

A
f
�! B! Cone.f /! AŒ1�:

With this structure, Ho.C/ becomes a triangulated category (Beilinson and Vologodsky 2008,
1.5.4).

For any object x D .N;N;�/ of DM.k;Z/ and any integer n, the object xŒn� represent-
ing the shift exists, and is given by .MŒn�;N Œn�;�n/. Similarly, one can check that the cone
of any map f Wx! x0 is representable. Therefore DM.k/ is a triangulated category

MOTIVES OF SMOOTH VARIETIES

The category DM.k/ contains an identity object 11D .W;N.Speck/; id/ where N.Speck/,
the motive of a point, is the identity object of DMeff

et .k;ZŒp�1�/ (Beilinson and Vologodsky
2008, �2.2, �2.3). The object W is the identity object of Dbc .R/, and s.W /DK considered
as a complex in degree zero with F D � . This is Crys.N.Spec.k//.

For any smooth proper variety X , consider the object

.R� .X;W˝/;N.X/;�/ 2DM.k;Z/

where the first term is a suitable complex computing the de Rham-Witt cohomology of
X , the second term is the motive of X , and the third term is the canonical isomorphism
between de Rham-Witt cohomology (tensored with K) and rigid cohomology (Berthelot
1986). The resulting object hX in DM.k;Z/ is well defined because any two suitable
complexes computing the de Rham-Witt cohomology are quasi-isomorphic.

For any smooth variety X , similarly consider the object .C.X/;N.X/;�/ where N.X/
is the motive of X (see above) and C.X/ is the object of Dbc .R/ attached to X in �6 of
Milne and Ramachandran 2013. The map � comes from the canonical isomorphism between
logarithmic de Rham-Witt cohomology and rigid cohomology (Nakkajima and Shiho 2008,
Nakkajima 2012).

TENSOR STRUCTURE AND INTERNAL HOM’S

We expect that the homotopy categories DM.k/ and DMeff.k/ are tensor triangulated cate-
gories.

We sketch the proof for DMeff.k/. There is a homotopy tensor structure on DMeff.k;ZŒp�1�/
(Beilinson and Vologodsky 2008, Section 2.2, 2.3; Vologodsky 2012, line before Lemma
2.3). There are clearly also homotopy tensor structures on Dbc .R/ and Dbc .K� ŒF �/. The
functors s and Crys are compatible with the tensor structure (up to homotopy) — for Crys
this is a consequence of the Künneth property for rigid cohomology. This suffices to endow
DMeff.k/ with the structure of a tensor triangulated category.

More precisely, the cartesian product of schemes induces a tensor product structure on
DMeff

et .k;ZŒp�1�/ (Vologodsky 2012, line before Lemma 2.3). The category is generated by
the motives N.X/ of smooth varieties. Thus, the homotopy tensor structure on DMeff.k;Z/,
which defines the tensor product structure on DMeff.k/ is determined by h.X/˝h.Y /'
h.Y /˝h.X/.

Similar comments apply to the internal Hom. The internal Hom of N.X/ and N.Y / in
DMeff.k;ZŒp�1�/ is defined by the following equality for all smooth varieties Z;

Hom.N.Z/;RHom.N.X/;N.Y //D Hom.N.Z�X/;N.Y //



7 MOTIVIC COMPLEXES FOLLOWING VOEVODSKY 36

(Beilinson and Vologodsky 2008, Section 2.2).
On the other hand, the existence of a homotopy tensor structure on DM.k;ZŒp�1�/

does not seem to be known (ibid., remark at the end of Section 6.1). Therefore, it does not
seem to be known that DM.k/ has a natural tensor structure.

TATE TWIST

The Tate object R.1/ in DMeff
et .k;ZŒp�1�/ is determined by the property

N.Speck/˚R.1/Œ1�DN.Gm/

where N.X/ is the motive of the smooth variety X (Beilinson and Vologodsky 2008, Section
2.2). The Tate twist is given by F.1/D F ˝R.1/. Recall that the rigid cohomology groups
of Gm are

H 0
rig.Gm/DK.0/; H 1

rig.Gm/DK.1/

where K.m/ is the F -isocrystal K with F D pm� . Thus Crys.R.1//DK.1/.
The Tate object E.1/ in DM.k/ is the triple

E.1/D .W.1/;R.1/;�/

whereW.1/ is the Tate twist of the identity object of Dbc .R/ (Milne and Ramachandran 2005,
Section 2, or Milne and Ramachandran 2013, 1.6) and � is the natural isomorphism between
sW.1/DK.1/ and Crys.R.1//. The Tate twist on DM.k/ is given by M.1/DM ˝E.1/
for M an object of DM.k/.

REALIZATION FUNCTORS

There are realization functors rl on DM.k/ for all primes l .
The dg functor

pr2WDM.k;Z/!DM.k;ZŒp�1�/; .M;N;�/ N;

induces a functor pr2WDM.k/! DMet.k;ZŒp�1�/ which is clearly an exact functor between
these triangulated categories. For each prime l ¤ p, there is an étale realization functor

r 0l WDMet.k;ZŒp�1�/! Dbc .k;Zl/

which is an exact functor of tensor triangulated categories (Ayoub 2013). We define the
l-adic realization rl to be the composite

r 0l ıpr2WDM.k/! Dbc .k;Zl/:

As r 0
l

is an exact functor of triangulated categories, so also is rl .
The dg functor

pr1WDM.k;Z/!Dbc .R/; .M;N;�/ M;

induces a functor DM.k/! Dbc .R/ on the associated triangulated categories. This is the
realization functor rp.
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RIGIDITY

PROPOSITION 7.10. For all l , including l D p, the realization functor rl defines an equiva-
lence on the subcategories of objects killed by ln.

PROOF. This follows from the Mayer-Vietoris sequence and Voevodsky 2000, 3.3.3. 2

We say that an object X of a triangulated category C is n-torsion (n 2 Z) if the abelian
group Hom.X;Y / is killed by n for all objects Y of C. We say that X is l-power torsion for
a prime l if every element of Hom.X;Y / is killed by a power of l , all Y in C.

PROPOSITION 7.11. For any xD .M;N;�/ and x0D .M 0;N 0;�0/ in DM.k;Z/, and every
positive integer n, the map

HomDM.k/.x;x
0/˝Z=pnZ! HomDbc .R/

.M;M 0/˝Z=pnZ

induced by rp is an isomorphism.

PROOF. Omitted. 2

Motivic complexes over Fq
We need a category DM.Fq/ such that the functor

RHom.11;�/WDM.Fq/! D.Z/

factors through D.Z�0/. We can either proceed as above, but with the Weil-étale topology
for the étale topology or, more simply, as in �6.

Applications to algebraic varieties

To give an object of DM.k/ amounts to giving objects of DMet.k;ZŒp�1�/ and Dbc .R/
together with an isomorphism between their realizations in Dbc .K� ŒF �/. In the final section
of Milne and Ramachandran 2013, we explained how to attach an object of Dbc .R/ to an
arbitrary variety, a variety with log structure, a Deligne-Mumford stack, etc.. All of the
statements there carry over mutatis mutandis to the present situation.

7.12. Choudhury (2012) attaches an object in Voevodsky’s category DMeff.k;Q/ to a
smooth Deligne-Mumford stack.

7.13. Voevodsky 2010 attaches an object in his category DMeff
� .k/ to a smooth simplicial

scheme over a field k.

8 Motivic complexes for rational Tate classes
In this section, we sketch the construction of a category DM.k/ for which the “Tate conjec-
ture” is automatically true. The construction requires only the rationality conjecture of Milne
2009, which is much weaker than the Tate conjecture.
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Rational Tate classes

In this subsection, we review part of Milne 2009. Let Qal denote the algebraic closure of
Q in C. Fix a p-adic prime w of Qal, and let F be its residue field. Then F is an algebraic
closure of Fp. We assume that the reader is familiar with the theory of absolute Hodge
classes (Deligne 1982).

RATIONALITY CONJECTURE 8.1. LetA be an abelian variety over Qal with good reduction
to an abelian variety A0 over F, and let d D dim.A/. An absolute Hodge class  of
codimension i on A defines (by specialization) classes l 2H 2i .A0;Ql.i// for all l ¤ p
and p 2H 2i

crys.A0=W /.i/Q. LetD1; : : : ;Dd�i be divisors on A0, and let ı1.l/; : : : ; ıd�i .l/
denote their l-cohomology classes. The conjecture says that

l � ı1.l/ � � � � � ıd�i .l/;

which a priori lies in Ql or
�
Qal
�
w

, is a rational number independent of l .

Now let S be a class of smooth projective algebraic varieties over F that is closed under
passage to a connected component and under the formation of finite products and disjoint
unions. We assume that S contains the class S0 of all abelian varieties over F, and that the
Frobenius elements of the varieties in S act semisimply on cohomology. For an X in S , we
let H 2i

A .X/.i/ denote the restricted product of the cohomology groups H 2i .X;Ql.i// for
l ¤ p with H 2i

crys.X=W /Q.

DEFINITION 8.2. A family .R�.X//X2S with each R�.X/ a graded Q-subalgebra of
H 2�

A .X/.�/ is a good theory of rational Tate classes on S if it satisfies the following
conditions:

(R1) for every regular map f WX ! Y of varieties in S, f � maps R�.Y / into R�.X/
and f� maps R�.X/ into R�.Y /;

(R2) for every X in S, R1.X/ contains the divisor classes;
(R3) for all CM abelian varieties A over Qal, the absolute Hodge classes on A map to

elements of R�.A0/ under the specialization map;
(R4) For all varieties X in S , the Q-algebra R�.X/ is of finite degree, and the l-primary

components of every element of R�.X/ are l-adic Tate classes.

Recall that an abelian variety A is CM if its endomorphism algebra End.A/Q contains an
étale subalgebra of degree 2dimA over Q, and that such an abelian variety over Qal has good
reduction at all the primes of Qal. For the space T i

l
.X/ of Tate classes in H 2i .X;Q`.i// or

H 2i
crys.X=W /.i/Q, see ibid. pp.112–113.

THEOREM 8.3. (a) There exists at most one good theory of rational Tate classes on S.
(b) There exists a good theory of rational Tate classes on S

0
if the rationality conjecture

holds.
(c) The Tate conjecture holds for every good theory of rational Tate classes, i.e., the

maps Ri .X/˝Ql ! T i
l
.X/ induced by the projection maps are isomorphisms for all X , i ,

and l .

PROOF. Ibid. Theorem 3.3; Theorem 4.5; Theorem 3.2. 2
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The category DM.k/

We assume that there exists a good theory of rational Tate classes for some class S as in the
last subsection. Grothendieck’s construction now gives us a Tannakian Q-linear category
Mot.k;Q/ of motives, and we define DM.k;Q/ to be its derived category.

Let Zp D
Q
l¤pZl . It is generally believed that the constructions of the `-adic trian-

gulated category Dbc .X;Z`/ (Deligne 1980, Ekedahl 1990, Bhatt and Scholze 2013) will
generalize to give an adic category Dbc .X;Zp/, but as far as we know, no proof has been
written out. Instead, we give an ad hoc construction of Dbc .k;Zp/. Let � be the absolute
Galois group of k. Let�D Zp and let�m D Z=mZ when .m;p/D 1. The inverse systems
M D .Mm/m in which Mm is a continuous �m� -module form an abelian category whose
derived category we denote by D.k;��/. As in (4.2), there is an obvious “completion”
functor M  yM WD.k;��/! D.k;��/. We define Dbc .k;Zp/ to be the full subcategory of
D.k;��/ consisting of complexes M such that M ' yM and .Z=`Z/˝L��M is a bounded
complex with bounded finite-dimensional cohomology for all primes `¤ p. The functor
.Mn/n lim

 �
Mn.k

sep/ defines a functor

˛WDbc .k;Z
p/! D.Zp� /.

It follows from the next lemma that the cohomology groups of ˛M are finitely presented
Zp-modules.

LEMMA 8.4. The following conditions on a Zp- module are equivalent.
(a) M is of finite presentation.
(b) The Z`-module Z`˝Zp M is finitely generated for all `, the natural map M !Q

`¤p .Z`˝ZpM/ is an isomorphism, and dimF`.M=`M/ is bounded (independently
of `).

(c) The natural map M ! lim
 �.m;p/

M=mM is an isomorphism, and dimF`.M=`M/ is
bounded (independently of `).

PROOF. Elementary exercise. 2

There is an exact functor of triangulated categories DM.k;Q/! Dbc .Zp/Q�Dbc .R/Q,
and we define DM.k/ to be the universal object fitting into a diagram

DM.k/ DM.k;Q/

Dbc .Zp/�Dbc .R/ Dbc .Zp/Q�Dbc .R/Q:

More precisely, we form the homotopy fibred product of the natural dg enhancements of
the categories, and then pass to the associated triangulated category (see �7). Conjecturally
DM.k/ is independent of the choice of S containing S0.

For this category, the “Tate conjecture” holds automatically, and so we can apply the
results of �6.
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FINAL NOTE

Contrary to our earlier claim, (1.1) is not in fact the ultimate conjecture. The zeta function
of an Artin stack is also defined, but it is a power series in t (not a rational function). To
accomodate Artin stacks, one will need to state a conjecture for a category of unbounded
motivic complexes, but we (the authors, and perhaps also the reader) are already exhausted.
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