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Abstract

It is shown that the classification theorems for semisimple algebraic groups in characteristic
zero can be derived quite simply and naturally from the corresponding theorems for Lie algebras
by using a little of the theory of tensor categories. This article is extracted from Milne 2007.

Introduction

The classical approach to classifying the semisimple algebraic groups over C (see Borel 1975, §1)
is to:
� classify the complex semisimple Lie algebras in terms of reduced root systems (Killing,

E. Cartan, et al.);
� classify the complex semisimple Lie groups with a fixed Lie algebra in terms of certain lattices

attached to the root system of the Lie algebra (Weyl, E. Cartan, et al.);
� show that a complex semisimple Lie group has a unique structure of an algebraic group com-

patible with its complex structure.
Chevalley (1956-58, 1960-61) proved that the classification one obtains is valid in all characteristics,
but his proof is long and complicated.1

Here I show that the classification theorems for semisimple algebraic groups in characteristic
zero can be derived quite simply and naturally from the corresponding theorems for Lie algebras by
using a little of the theory of tensor categories. In passing, one also obtains a classification of their
finite-dimensional representations. Beyond its simplicity, the advantage of this approach is that it
makes clear the relation between semisimple Lie algebras, semisimple algebraic groups, and tensor
categories in characteristic zero.

The idea of obtaining an algebraic proof of the classification theorems for semisimple alge-
braic groups in characteristic zero by exploiting their representations is not new — in a somewhat
primitive form it can be found already in Cartier’s announcement (1956) — but I have not seen an
exposition of it in the literature.

Throughout, k is a field of characteristic zero and “representation” of a Lie algebra or affine
group means “finite-dimensional linear representation”.

I assume that the reader is familiar with the elementary parts of the theories of algebraic groups
and tensor categories and with the classification of semisimple Lie algebras; see Milne 2007 for a
more detailed account.

∗ c©2007 J.S. Milne
1See Humphreys 1975, Chapter XI, and Springer 1998, Chapters 10 & 11. Despite its fundamental importance, many

books on algebraic groups, e.g., Borel 1991, don’t prove the classification, and some, e.g., Tauvel and Yu 2005, don’t
even state it.
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1 Elementary Tannaka duality

1.1. Let G be an algebraic group, and let R be a k-algebra. Suppose that for each representation
(V, rV ) of G on a finite-dimensional k-vector space V , we have an R-linear endomorphism λV of
V (R). If the family (λV ) satisfies the conditions,
� λV⊗W = λV ⊗ λW for all representations V,W ,
� λ11 = id11 (here 11 = k with the trivial action),
� λW ◦ αR = αR ◦ λV , for all G-equivariant maps α : V → W,

then there exists a g ∈ G(R) such that λV = rV (g) for all X (Deligne and Milne 1982, 2.8.

Because G admits a faithful finite-dimensional representation, g is uniquely determined by the
family (λV ), and so the map sending g ∈ G(R) to the family (rV (g)) is a bijection from G(R)
onto the set of families satisfying the conditions in the theorem. Therefore we can recover G from
the category Rep(G) of representations of G on finite-dimensional k-vector spaces.

1.2. Let G be an algebraic group over k. For each k-algebra R, let G′(R) be the set of families
(λV ) satisfying the conditions in (1.1). Then G′ is a functor from k-algebras to groups, and there
is a natural map G → G′. That this map is an isomorphism is often paraphrased by saying that
Tannaka duality holds for G.

2 Gradations on tensor categories

2.1. Let M be a finitely generated abelian group, and let D(M) be the associated diagonalizable
algebraic group. An M -gradation on an object X of an abelian category is a family of subobjects
(Xm)m∈M such that X =

⊕
m∈M Xm. An M -gradation on a tensor category C is an M -gradation

on each object X of C compatible with all arrows in C and with tensor products in the sense that
(X⊗Y )m =

⊕
r+s=m Xr⊗Xs. Let (C, ω) be a neutral tannakian category, and let G be its Tannaka

dual. To give an M -gradation on C is the same as to give a central homomorphism D(M) → G:
a homomorphism corresponds to the M -gradation such that Xm is the subobject of X on which
D(M) acts through the character m (Saavedra Rivano 1972; Deligne and Milne 1982, §5).

2.2. Let C be a semsimple k-linear tensor category such that End(X) = k for every simple ob-
ject X in C, and let I(C) be the set of isomorphism classes of simple objects in C. For elements
x, x1, . . . , xm of I(C) represented by simple objects X, X1, . . . , Xm, write x ≺ x1 ⊗ · · · ⊗ xm if
X is a direct factor of X1 ⊗ · · · ⊗Xm. The following statements are obvious.

(a) Let M be a commutative group. To give an M -gradation on C is the same as to give a map
f : I(C) → M such that

x ≺ x1 ⊗ x2 =⇒ f(x) = f(x1) + f(x2).

A map from I(C) to a commutative group satisfying this condition will be called a tensor
map. For such a map, f(11) = 0, and if X has dual X∨, then f([X∨]) = −f([X]).

(b) Let M(C) be the free abelian group with generators the elements of I(C) modulo the rela-
tions: x = x1 + x2 if x ≺ x1 ⊗ x2. The obvious map I(C) → M(C) is a universal tensor
map, i.e., it is a tensor map, and every other tensor map I(C) → M factors uniquely through
it. Note that I(C) → M(C) is surjective.
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2.3. Let (C, ω) be a neutral tannakian category such that C is semisimple and End(V ) = k for
every simple object in C. Let Z be the centre of G

def= Aut⊗(ω). Because C is semisimple, G
is reductive, and so Z is of multiplicative type. Assume (for simplicity) that Z is split, so that
Z = D(N) with N the group of characters of Z. According to (2.1), to give an M -gradation
on C is the same as to give a homomorphism D(M) → Z, or, equivalently, a homomorphism
N → M . On the other hand, (2.2) shows that to give an M -gradation on C is the same as to give a
homomorphism M(C) → M . Therefore M(C) ' N . In more detail: let X be an object of C; if X
is simple, then Z acts on X through a character n of Z, and the tensor map [X] 7→ n : I(C) → N
is universal.

2.4. Let (C, ω) be as in (2.3), and define an equivalence relation on I(C) by

a ∼ a′ ⇐⇒ there exist x1, . . . , xm ∈ I(C) such that a, a′ ≺ x1 ⊗ · · · ⊗ xm.

A function f from I(C) to a commutative group defines a gradation on C if and only if f(a) = f(a′)
whenever a ∼ a′. Therefore, M(C) ' I(C)/∼ .

3 Representations of split semisimple Lie algebras

Throughout this subsection, (g, h) is a split semisimple Lie algebra with root system R ⊂ h∨, and
b is the Borel subalgebra of (g, h) attached to a base S for R. According to a theorem of Weyl,
the representations of g are semisimple, and so to classify them it suffices to classify the simple
representations.

3.1. Let r : g → glV be a simple representation of g.
(a) There exists a unique one-dimensional subspace L of V stabilized by b.
(b) The L in (a) is a weight space for h, i.e., L = V$V for some $V ∈ h∨.
(c) The $V in (b) is dominant, i.e., $V ∈ P++;
(d) If $ is also a weight for h in V , then $ = $V −

∑
α∈S mαα with mα ∈ N.

The Lie-Kolchin theorem shows that there does exist a one-dimensional eigenspace for b — the
content of (a) is that when V is simple (as a representation of g), the space is unique. Since L is
mapped into itself by b, it is also mapped into itself by h, and so lies in a weight space. The content
of (b) is that it is the whole weight space. For the proof, see Bourbaki Lie, VIII, §7.

Because of (d), $V is called the heighest weight of the simple representation (V, r).

3.2. Every dominant weight occurs as the highest weight of a simple representation of g (ibid.).

3.3. Two simple representations of g are isomorphic if and only if their highest weights are equal.

Thus (V, r) 7→ $V defines a bijection from the set of isomorphism classes of simple representations
of g onto the set of dominant weights P++.

3.4. If (V, r) is a simple representation of g, then End(V, r) ' k.

To see this, let V = V$ with $ dominant. Every isomorphism V$ → V$ maps the highest weight
line L into itself, and is determined by its restriction to L because L generates V$ as a g-module.
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3.5. The category Rep(g) of representations of g is a semisimple k-linear category to which we can
apply (2.2). Statements (3.2, 3.3) allow us to identify the set of isomorphism classes of Rep(g) with
P++. Let M(P++) be the free abelian group with generators the elements of P++ and relations

$ = $1 + $1 if V$ ⊂ V$1 ⊗ V$2 .

Then P++ → M(P++) is surjective, and two elements $ and $′ of P++ have the same image in
M(P++) if and only there exist $1, . . . , $m ∈ P++ such that W$ and W$′ are subrepresentations
of W$1⊗· · ·⊗W$m (see 2.4). Later we shall prove that this condition is equivalent to $−$′ ∈ Q,
and so M(P++) ' P/Q. In other words, Rep(g) has a gradation by P++/Q ∩ P++ ' P/Q but
not by any larger quotient.

For example, let g = sl2, so that Q = Zα and P = Zα
2 . For n ∈ N, let V (n) be a simple

representation of g with heighest weight n
2 α. From the Clebsch-Gordon formula (Bourbaki Lie,

VIII, §9), namely,

V (m)⊗ V (n) ≈ V (m + n)⊕ V (m + n− 2)⊕ · · · ⊕ V (m− n), n ≤ m,

we see that Rep(g) has a natural P/Q-gradation (but not a gradation by any larger quotient of P ).

EXERCISE 3.6. 2Prove that the kernel of P++ → M(P++) is Q ∩ P++ by using the formulas for
the characters and multiplicities of the tensor products of simple representations (cf. Humphreys
1972, §24, especially Exercise 12).

4 Basic theory of semisimple algebraic groups

PROPOSITION 4.1. A connected algebraic group G is semisimple (resp. reductive) if and only if
its Lie algebra is semisimple (resp. reductive).

PROOF. Suppose that Lie(G) is semisimple, and let N be a normal commutative subgroup of G.
Then Lie(N) is a commutative ideal in Lie(G), and so is zero. This implies that N is finite.

Conversely, suppose that G is semisimple, and let n be a commutative ideal in g. When G acts
on g through the adjoint representation, the Lie algebra of H

def= CG(n) is

h = {x ∈ g | [x, n] = 0},

which contains n. Because n is an ideal, so is h:

[x, n] = 0, y ∈ g =⇒ [[y, x], n] = [y, [x, n]]− [x, [y, n]] = 0.

Therefore H◦ is normal in G, which implies that its centre Z(H◦) is normal in G. Because G is
semisimple, Z(H◦) is finite, and so z(h) = 0. But z(h) ⊃ n, and so n = 0.

The reductive case is similar. 2

COROLLARY 4.2. The Lie algebra of the radical of a connected algebraic group G is the radical of
the Lie algebra of g; in other words, Lie(R(G)) = r(Lie(G)).

2Not done by the author.
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PROOF. Because Lie is an exact functor, the exact sequence

1 → RG → G → G/RG → 1

gives rise to an exact sequence

0 → Lie(RG) → g → Lie(G/RG) → 0

in which Lie(RG) is solvable (obviously) and Lie(G/RG) is semisimple. The image in Lie(G/RG)
of any solvable ideal in g is zero, and so Lie(RG) is the largest solvable ideal in g. 2

A connected algebraic group G is simple if it is noncommutative and has no proper normal
algebraic subgroups 6= 1, and it is almost simple if it is noncommutative and has no proper normal
algebraic subgroups except for finite subgroups. An algebraic group G is said to be the almost-direct
product of its algebraic subgroups G1, . . . , Gn if the map

(g1, . . . , gn) 7→ g1 · · · gn : G1 × · · · ×Gn → G

is a surjective homomorphism with finite kernel; in particular, this means that the Gi commute with
each other and each Gi is normal in G.

THEOREM 4.3. Every connected semisimple algebraic group G is an almost-direct product

G1 × · · · ×Gr → G

of its minimal connected normal algebraic subgroups. In particular, there are only finitely many
such subgroups. Every connected normal algebraic subgroup of G is a product of those Gi that it
contains, and is centralized by the remaining ones.

PROOF. Because Lie(G) is semisimple, it is a direct sum of its simple ideals:

Lie(G) = g1 ⊕ · · · ⊕ gr.

Let G1 be the identity component of CG(g2 ⊕ · · · ⊕ gr). Then

Lie(G1) = cg(g2 ⊕ · · · ⊕ gr) = g1,

which is an ideal in Lie(G), and so G1 is normal in G. If G1 had a proper normal nonfinite algebraic
subgroup, then g1would have an ideal other than g1 and 0, contradicting its simplicity. Therefore
G1 is almost-simple. Construct G2, . . . , Gr similarly. Because [gi, gj ] = 0, the groups Gi and Gj

commute. The subgroup G1 · · ·Gr of G has Lie algebra g, and so equals G. Finally,

Lie(G1 ∩ . . . ∩Gr) = g1 ∩ . . . ∩ gr = 0

and so G1 ∩ . . . ∩Gr is finite.
Let H be a connected algebraic subgroup of G. If H is normal, then Lie H is an ideal, and so it

is a direct sum of those gi it contains and centralizes the remainder. This implies that H is a product
of those Gi it contains, and centralizes the remainder. 2

COROLLARY 4.4. An algebraic group is semisimple if and only if it is an almost direct product of
almost-simple algebraic groups.
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COROLLARY 4.5. All nontrivial connected normal subgroups and quotients of a semisimple alge-
braic group are semisimple.

PROOF. They are almost-direct products of almost-simple algebraic groups. 2

COROLLARY 4.6. A semisimple group has no commutative quotients 6= 1.

PROOF. This is obvious for simple groups, and the theorem then implies it for semisimple groups.2

DEFINITION 4.7. A semisimple algebraic group G is said to be splittable if it has a split maximal
subtorus. A split semisimple algebraic group is a pair (G, T ) consisting of a semisimple algebraic
group G and a split maximal torus T .

LEMMA 4.8. If T is a split torus in G, then Lie(T ) is a commutative subalgebra of Lie(G) consist-
ing of semisimple elements.

PROOF. Certainly Lie(T ) is commutative. Let (V, rV ) be a faithful representation of G. Then
(V, rV ) decomposes into a direct sum

⊕
χ∈X∗(T ) Vχ, and Lie(T ) acts (semisimply) on each factor

Vχ through the character dχ. As (V, drV ) is faithful, this shows that Lie(T ) consists of semisimple
elements. 2

5 Rings of representations of Lie algebras

Let g be a Lie algebra over k. A ring of representations of g is a collection of representations of
g that is closed under the formation of direct sums, subquotients, tensor products, and duals. An
endomorphism of such a ring R is a family

α = (αV )V ∈R, αV ∈ Endk-linear(V ),

such that
� αV⊗W = αV ⊗ idW + idV ⊗αW for all V,W ∈ R,
� αV = 0 if g acts trivially on V , and
� for any homomorphism β : V → W of representations in R,

αW ◦ β = αV ◦ β.

The set gR of all endomorphisms ofR becomes a Lie algebra over k (possibly infinite dimensional)
with the bracket

[α, β]V = [αV , βV ].

EXAMPLE 5.1 (IWAHORI 1954). Let g = k with k algebraically closed. To give a represention
of g on a vector space V is the same as to give an endomorphism α of V , and so the category of
representations of g is equivalent to the category of pairs (kn, A), n ∈ N, with A an n × n matrix.
It follows that to give an endomorphism of the ring R of all representations of g is the same as to
give a map A 7→ λ(A) sending a square matrix A to a matrix of the same size and satisfying certain
conditions. A pair (g, c) consisting of an additive homomorphism g : k → k and an element c of k
defines a λ as follows:
� λ(S) = Udiag(ga1, . . . , gan)U−1 if λ is the semisimple matrix Udiag(a1, . . . , an)U−1;
� λ(N) = cN if N is nilpotent;
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� λ(A) = λ(S)+λ(N) if A = S+N is the decomposition of A into its commuting semisimple
and nilpotent parts.

Moreover, every λ arises from a unique pair (g, c). Note that gR has infinite dimension.

Let R be a ring of representations of a Lie algebra g. For any x ∈ g, (rV (x))V ∈R is an
endomorphism of R, and x 7→ (rV (x)) is a homomorphism of Lie algebras g → gR.

LEMMA 5.2. If R contains a faithful representation of g, then g → gR is injective.

PROOF. For any representation (V, rV ) of g, the composite

g
x 7→(rV (x))−−−−−−−→ gR

λ7→λV−−−−→ gl(V ).

is rV . Therefore, g → gR is injective if rV . 2

PROPOSITION 5.3. Let G be an affine group over k, and let R be the ring of representations of g

arising from a representation of G. Then gR ' Lie(G); in particular, gR depends only of G◦.

PROOF. By definition, Lie(G) is the kernel of G(k[ε]) → G(k). Therefore, to give an element of
Lie(G) is the same as to give a family of k[ε]-linear maps

idV +αV ε : V [ε] → V [ε]

indexed by V ∈ R satisfying the three conditions of (1.1). The first of these conditions says that

idV⊗W +αV⊗W ε = (idV +αV ε)⊗ (idW +αW ε),

i.e., that
αV⊗W = idV ⊗αW + αV ⊗ idW .

The second condition says that
α11 = 0,

and the third says that the αV commute with all G-morphisms (= g-morphisms). Therefore, to give
such a family is the same as to give an element (αV )V ∈R of gR. 2

PROPOSITION 5.4. For a ring R of representations of a Lie algebra g, the following statements are
equivalent:

(a) the map g → gR is an isomorphism;
(b) g is the Lie algebra of an affine group G such that G◦ is algebraic and R is the ring of all

representations of g arising from a representation of G.

PROOF. This is an immediate consequence of (5.3) and the fact that an affine group is algebraic if
its Lie algebra is finite-dimensional. 2

COROLLARY 5.5. Let g → gl(V ) be a faithful representation of g, and let R(V ) be the ring of
representations of g generated by V . Then g → gR(V ) is an isomorphism if and only if g is
algebraic, i.e., the Lie algebra of an algebraic subgroup of GLV .

PROOF. Immediate consequence of the proposition. 2
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REMARK 5.6. Let g → gl(V ) be a faithful representation of g, and let R(V ) be the ring of rep-
resentations of g generated by V . When is g → gR(V ) an isomorphism? It is easy to show, for
example, when g = [g, g]. In particular, g → gR(V ) is an isomorphism when g is semisimple. For
an abelian Lie group g, g → gR(V ) is an isomorphism if and only if g → gl(V ) is a semisimple
representation and there exists a lattice in g on which the characters of g in V take integer values.
For the Lie algebra in (Bourbaki Lie, I, §5, Exercise 6), g → gR(V ) is never an isomorphism.

Let R be the ring of all representations of g. When g → gR is an isomorphism one says that
Tannaka duality holds for g. The aside shows that Tannaka duality holds for g if [g, g] = g. On
the other hand, Example 5.1 shows that Tannaka duality fails when [g, g] 6= g, and even that gR has
infinite dimension in this case.

6 An adjoint to the functor Lie

Let g be a Lie group, and let R be the ring of all representations of g . We define G(g) to be the
Tannaka dual of the neutral tannakian category Rep(g). Recall that this means that G(g) is the affine
group whose R-points for any k-algebra R are the families

λ = (λV )V ∈R, λV ∈ EndR-linear(V (R)),

such that
� λV⊗W = λV ⊗ λW for all V ∈ R;
� if xv = 0 for all x ∈ g and v ∈ V , then λV v = v for all λ ∈G(g)(R) and v ∈ V (R);
� for every g-homomorphism β : V → W ,

λW ◦ β = β ◦ λV .

For each V ∈ R, there is a representation rV of G(g) on V defined by

rV (λ)v = λV v, λ ∈ G(g)(R), v ∈ V (R), R a k-algebra,

and V  (V, rV ) is an equivalence of categories

Rep(g) ∼−→ Rep(G(g)). (1)

LEMMA 6.1. The homomorphism η : g → Lie(G(g)) is injective, and the composite of the functors

Rep(G(g))
(V,r) (V,dr)−−−−−−−−→ Rep(Lie(G(g)))

η∨−→ Rep(g) (2)

is an equivalence of categories.

PROOF. According to (5.3), Lie(G(g)) ' gR, and so the first assertion follows from (5.2) and
Ado’s theorem. The composite of the functors in (2) is a quasi-inverse to the functor in (1). 2

LEMMA 6.2. The affine group G(g) is connected.

PROOF. We have to show that if a representation V of g has the property that the category of subquo-
tients of direct sums of copies of V is stable under tensor products, then V is a trivial representation.
When g = k, this is obvious (cf. 5.1), and when g is semisimple it follows from (3.1).

Let V be a representation of g with the property. It follows from the commutative case that
the radical of g acts trivially on V , and then it follows from the semisimple case that g itself acts
trivially. 2
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PROPOSITION 6.3. The pair (G(g), η) is universal: for any algebraic group H and k-algebra
homomorphism a : g → Lie(H), there is a unique homomorphism b : G(g) → H such that
a = Lie(b) ◦ η. In other words, the map sending a homomorphism b : G(g) → H to the ho-
momorphism Lie(b) ◦ η : g → Lie(H) is a bijection

Homaffine groups(G(g),H) → HomLie algebras(g,Lie(H)). (3)

If a is surjective and Rep(G(g)) is semisimple, then b is surjective.

PROOF. From a homomorphism b : G(g) → H , we get a commutative diagram

Rep(H) b∨−−−−→ Rep(G(g))

fully faithful
y '

y(6.1)

Rep(Lie(H)) a∨−−−−→ Rep(g)

a
def= Lie(b) ◦ η.

If a = 0, then a∨ sends all objects to trivial objects, and so the functor b∨ does the same, which
implies that the image of b is 1. Hence (3) is injective.

From a homomorphism a : g → Lie(H), we get a tensor functor

Rep(H) → Rep(Lie(H)) a∨−→ Rep(g) ' Rep(G(g))

and hence a homomorphism G(g) → H , which acts as a on the Lie algebras. Hence (3) is surjective.
If a is surjective, then a∨ is fully faithful, and so Rep(H) → Rep(G(g)) is fully faithful, which

implies that G(g) → G is surjective. 2

PROPOSITION 6.4. For any finite extension k′ ⊃ k of fields, G(gk′) ' G(g)k′ .

PROOF. More precisely, we prove that the pair (G(g)k′ , ηk′) obtained from (G(g), η) by extension
of the base field has the universal property characterizing (G(gk′), η). Let H be an algebraic group
over k′, and let H∗ be the group over k obtained from H by restriction of the base field. Then

Homk′(G(g)k′ ,H) ' Homk(G(g),H∗) (universal property of H∗)

' Homk(g,Lie(H∗)) (6.3)

' Homk′(gk′ ,Lie(H)).

For the last isomorphism, note that

Lie(H∗)
def= Ker(H∗(k[ε]) → H∗(k)) ' Ker(H(k′[ε]) → H(k′)) def= Lie(H).

In other words, Lie(H∗) is Lie(H) regarded as a Lie algebra over k (instead of k′), and the isomor-
phism is simply the canonical isomorphism in linear algebra,

Homk-linear(V,W ) ' Homk′-linear(V ⊗k k′,W )

(V,W vector spaces over k and k′ respectively). 2

The next theorem shows that, when g is semisimple, G(g) is a semisimple algebraic group with
Lie algebra g, and any other semisimple group with Lie algebra g is a quotient of G(g); moreover,
the centre of G(g) has character group P/Q.
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THEOREM 6.5. Let g be a semisimple Lie algebra.
(a) The homomorphism η : g → Lie(G(g)) is an isomorphism.
(b) The group G(g) is a connected semisimple group.
(c) For any algebraic group H and isomorphism a : g → Lie(H), there exists a unique isogeny

b : G(g) → H◦ such that a = Lie(b) ◦ η.
(d) Let Z be the centre of G(g); then X∗(Z) ' P/Q.

PROOF. (a) Because Rep(G(g)) is semisimple, G(g) is reductive. Therefore Lie(G(g)) is reductive
(4.1), and so Lie(G(g)) = η(g)⊕a⊕c with a is semisimple and c commutative. If a or c is nonzero,
then there exists a nontrivial representation r of G(g) such that Lie(r) is trivial on g. But this is
impossible because η defines an equivalence Rep(G(g)) → Rep(g).

(b) Now (4.1) shows that G is semisimple.
(c) Proposition 6.3 shows that there exists a unique homomorphism b such that a = Lie(b) ◦ η,

which is an isogeny because Lie(b) is an isomorphism.
(d) In the next subsection, we show that if g is splittable, then X∗(Z) ' P/Q (as abelian

groups). As g becomes splittable over a finite Galois extension, this implies (d). 2

REMARK 6.6. The isomorphism X∗(Z) ' P/Q in (d) commutes with the natural actions of
Gal(kal/k).

7 Split semisimple algebraic groups

Let (g, h) be a split semisimple Lie algebra, and let P and Q be the corresponding weight and root
lattices. The action of h on a g-module V decomposes it into a direct sum V =

⊕
$∈P V$. Let

D(P ) be the diagonalizable group attached to P . Then Rep(D(P )) has a natural identification with
the category of P -graded vector spaces. The functor (V, rV ) 7→ (V, (V$)ω∈P ) is an exact tensor
functor Rep(g) → Rep(D(P )), and hence defines a homomorphism D(P ) →G(g). Let T (h) be
the image of this homomorphism.

THEOREM 7.1. With the above notations:
(a) The group T (h) is a split maximal torus in G(g), and η restricts to an isomorphism h →

Lie(T (h)).
(b) The map D(P ) → T (h) is an isomorphism; therefore, X∗(T (h)) ' P .
(c) The centre of G(g) is contained in T (h) and equals⋂

α∈R
Ker(α : T (h) → Gm)

(and so has character group P/Q).

PROOF. (a) The torus T (h) is split because it is the quotient of a split torus. Certainly, η restricts to
an injective homomorphism h → Lie(T (h)). It must be surjective because otherwise h wouldn’t be
a Cartan subalgebra of g. The torus T (h) must be maximal because otherwise h wouldn’t be equal
to its normalizer.

(b) Let V be the representation
⊕

V$ of g where $ runs through a set of fundamental weights.
Then G(g) acts on V , and the map D(P ) → GL(V ) is injective. Therefore, D(P ) → T (h) is
injective.

(c) A gradation on Rep(g) is defined by a homomorphism P → M(P++) (see 3.5), and hence
by a homomorphism D(M(P++)) → T (h). This shows that the centre of G is contained in T (h).
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Because the centre of g is trivial, the kernel of the adjoint map Ad: G → GLg is the centre Z(G)
of G, and so the kernel of Ad |T (h) is Z(G) ∩ T (h) = Z(G). But

Ker(Ad |T (h)) =
⋂

α∈R

Ker(α),

so Z(G) is as described. 2

THEOREM 7.2. Let T and T ′ be split maximal tori in G(g). Then T ′ = gTg−1 for some g ∈
G(g)(k).

PROOF. Let x be a nilpotent element of g. For any representation (V, rV ) of g, erV (x) ∈ G(g)(k).
There exist nilpotent elements x1, . . . , xm in g such that

ead(x1) · · · ead(xm) Lie(T ) = Lie(T ′).

Let g = ead(x1) · · · ead(xm); then gTg−1 = T ′ because they have the same Lie algebra. 2

8 Classification

We can now read off the classification theorems for split semisimple algebraic groups from the
similar theorems for split semisimple Lie algebras.

Let (G, T ) be a split semisimple algebraic group. Because T is diagonalizable, the k-vector
space g decomposes into eigenspaces under its action:

g =
⊕

α∈X∗(T )

gα.

The roots of (G, T ) are the nonzero α such that gα 6= 0. Let R be the set of roots of (G, T ).

PROPOSITION 8.1. The set of roots of (G, T ) is a reduced root system R in V
def= X∗(T ) ⊗ Q;

moreover,
Q(R) ⊂ X∗(T ) ⊂ P (R). (4)

PROOF. Let g = Lie G and h = Lie T . Then (g, h) is a split semisimple Lie algebra, and, when we
identify V with a subspace of h∨ ' X∗(T )⊗k, the roots of (G, T ) coincide with the roots of (g, h)
and (4) holds. 2

By a diagram (V,R, X), we mean a reduced root system (V,R) over Q and a lattice X in V
that is contained between Q(R) and P (R).

THEOREM 8.2 (EXISTENCE). Every diagram arises from a split semisimple algebraic group over
k.

More precisely, we have the following result.

THEOREM 8.3. Let (V,R, X) be a diagram, and let (g, h) be a split semisimple Lie algebra over k
with root system (V ⊗k, X). Let Rep(g)X be the full subcategory of Rep(g) whose objects are those
whose simple components have heighest weight in X . Then Rep(g)X is a tannakian subcategory of
Rep(g), and there is a natural functor Rep(g)X → Rep(D(X)). The Tannaka dual (G, T ) of this
functor is a split semisimple algebraic group with diagram (V,R, X).
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PROOF. When X = Q, (G, T ) = (G(g), T (h)), and the statement follows from Theorem 7.1. For
an arbitrary X , let

N =
⋂

χ∈X/Q
Ker(χ : Z(G(g)) → Gm).

Then Rep(g)X is the subcategory of Rep(g) on which N acts trivially, and so it is a tannakian
category with Tannaka dual G(g)/N . Now it is clear that (G(g)/N, T (h)/N) is the Tannaka dual
of Rep(g)X → Rep(D(X)), and that it has diagram (V,R, X). 2

THEOREM 8.4 (ISOGENY). Let (G, T ) and (G′, T ′) be split semisimple algebraic groups over k,
and let (V,R, X) and (V,R′, X ′) be their associated diagrams. Any isomorphism V → V ′ sending
R onto R′ and X into X ′ arises from an isogeny G → G′ mapping T onto T ′.

PROOF. Let (g, h) and (g′, h′) be the split semisimple Lie algebras of (G, T ) and (G′, T ′). An

isomorphism V → V ′ sending R onto R′ and X into X ′ arises from an isomorphism (g, h)
β−→

(g′, h′). Now β defines an exact tensor functor Rep(g′)X′ → Rep(g)X , and hence a homomorphism
α : G → G′, which has the required properties. 2
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