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Abstract

In April, 2006, Kontsevich asked me whether the category of motives over Fp (p
prime), has a fibre functor over a number field of finite degree since he had a conjecture
that more-or-less implied this. This article is my response. Unfortunately, since the
results are generally negative or inconclusive, they are of little interest except perhaps
for the question they raise on the existence of a cyclic extension of Q having certain
properties (see Question 6.5).

Let k be a finite field. Starting from any suitable class S of algebraic varieties over k

including the abelian varieties and using the correspondences defined by algebraic cycles
modulo numerical equivalence, we obtain a graded tannakian category Mot.k/ of motives.
Let Mot0.k/ be the subcategory of motives of weight 0 and assume that the Tate conjecture
holds for the varieties in S.

For a simple motive X , D D End.X/ is a division algebra with centre the subfield
F D QŒ�X � generated by the Frobenius endomorphism �X of X and

rank.X/ D ŒDWF �
1
2 � ŒF WQ�:

Therefore, D can act on a Q-vector space of dimension rank.X/ only if it is commutative.
Since this is never the case for the motive of a supersingular elliptic curve or of the abelian
variety obtained by restriction of scalars from such a curve, there cannot be a Q-valued fibre
functor on the full category Mot.k/. Let k D Fq . Then, for each prime v of F ,

invv.D/ D

8̂̂<̂
:̂

1=2 if v is real and X has odd weight
ordv.�X /

ordv.q/
� ŒFv W Qp� if vjp

0 otherwise

(1)

(Tate’s formula; see Milne 1994, 2.16). When q D p, ordv.p/ is the ramification index
e.v=p/, which divides the local degree ŒFvWQp�. Thus, for k D Fp and X a motive of
weight 0 (modulo 2/, D is commutative, and so the endomorphism algebras provide no
obstruction to Mot0.Fp/ being neutral. In this note, we examine whether it is, in fact,
neutral.

Before stating our results, we need some notations. Let K be a CM subfield of C, finite
and galois over Q, and let n be a sufficiently divisible positive integer. Define W K.p; n/ to
be the group of algebraic numbers � in C such that
B j� 0j D 1 for all conjugates � 0 of � in C;
B pN � is an algebraic integer for some N ;
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1 THE COHOMOLOGY OF GROUPS OF MULTIPLICATIVE TYPE 2

B �n 2 K, and for every p-adic prime of w of K,
ordw.�n/

n � ordw.p/
ŒKw WQp� 2 Z.

Define MotK0 .Fp; n/ to be the category of motives over Fp whose Weil numbers lie in
W K.p; n/. Let m be the order of �.K/. We prove the following.
(3.3) There exists a Ql -valued fibre functor on MotK0 .Fp; n/ for every prime l of Q (in-

cluding p and1).
(5.2) There exists a Q-valued fibre functor on MotK0 .Fp; n/ if and only if there exists a

cyclic field extension L of Q of degree mn such that
(a) .p/ remains prime1 in L;
(b) � is a local norm at every prime v of QŒ�mn� that ramifies in Q.�mn/˝Q L.

Moreover, we show that the generalized Riemann hypothesis sometimes implies that
there exists such an L.

Now consider the full category Mot0.Fp/ of motives of weight 0 over Fp. Then

Mot0.Fp/ D
[

K;n
MotK0 .Fp; n/;

but the existence of a Q-valued fibre functor on each of the categories MotK0 .Fp; n/ does
not imply that there exists a Q-valued fibre functor on Mot0.Fp/. In fact, we give a heuristic
argument (due to Kontsevich) to show that there does not exist such a fibre functor.

Throughout the article, we fix a class S of smooth projective varieties2 over k, closed
under the formation of products, disjoint sums, and passage to a connected component, and
containing the abelian varieties, projective spaces, and varieties of dimension zero. Except
in the last section, we assume that the Tate conjecture holds for the varieties in S.

1 The cohomology of groups of multiplicative type

Let M be a finitely generated Z-module with a continuous action of � D Gal.Qal=Q/

(discrete topology on M ), and let T D D.M/ be the corresponding algebraic group of
multiplicative type over Q. Thus

X�.T /
def
D Hom.TQal ; Gm/ DM:

For m 2M , let QŒm� be the fixed field of �m
def
D f� 2 Gal.Qal=Q/ j �m D mg, so that

˙m
def
D Hom.QŒm�; Qal/ ' � =�m:

Let .Gm/QŒm�=Q be the torus over Q obtained from Gm by (Weil) restriction of scalars from
QŒm� to Q, so that

X�..Gm/QŒm�=Q/ ' ZŒ˙m�

(free Z-module on ˙m with � 2 � acting by �.
P

n��/ D
P

n�� B�). The mapP
� n�� 7!

P
� n� � �mWZŒ˙m�!M; (2)

defines a homomorphism T ! .Gm/QŒm�=Q and hence a homomorphism

˛mWH
2.Q; T /! H 2.Q; .Gm/QŒm�=Q/ ' Br.QŒm�/: (3)

1By this I mean that the ideal generated by p in OL is prime.
2By a variety, I mean a geometrically reduced scheme of finite type over the ground field.
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PROPOSITION 1.1 Let c 2 H 2.Q; T /. If ˛m.c/ D 0 for all m 2 M , then c lies in the
kernel of

H 2.Q; T /! H 2.Ql ; T /

for every prime l of Q (including l D1).

PROOF. Let c be an element of H 2.Q; T / such that ˛m.c/ D 0 for all m 2 M , and fix a
finite prime l of Q. To show that c maps to zero in H 2.Ql ; T /, it suffices to show that the
family of homomorphisms

˛m;l WH
2.Ql ; T /! H 2.Ql ; .Gm/QŒm�=Q/; m 2M;

is injective. Choose an extension of l to Qal, and let � .l/ � � be the corresponding
decomposition group. A standard duality theorem (Milne 1986, I 2.4) shows that the ˛m;l

is obtained from the homomorphism

ZŒ˙m�� .l/
!M � .l/ (4)

by applying the functor Hom.�; Q=Z/. Thus it suffices to prove that the family of homo-
morphisms (4), indexed by m 2M , is surjective. Let m 2M � .l/. Because the group � .l/

fixes m, it is contained in �m, and so it fixes the inclusion �0WQŒm� ,! Qal. Thus �0 is an
element of ZŒ˙m�� .l/, and it maps to m.

The proof with l D1 is similar (apply Milne 1986, I 2.13b). 2

NOTES The proposition is abstracted from Milne 1994 (proof of Theorem 3.13).

2 Review of the category of motives over F

Let q D pn. Recall that a Weil q-number of weight m is an algebraic number � such that
B j� 0j D qm=2 for all conjugates � 0 of � in C and
B qN � is an algebraic integer for some N .

The first condition implies that � 7! qm=� defines an automorphism �0 of QŒ�� such that
� B�0 D �B� for all � WQŒ��! C. Therefore, QŒ�� is totally real or CM. Note that, because
qN � is an algebraic integer and .qN � �/.qN � �0�/ D q2N Cm, the ideal .�/ is divisible
only by p-adic primes.

Fix a CM-subfield K of Qal, finite and galois over Q, and let W K
0 .q/ denote the set of

Weil q-numbers of weight 0 in K such that

nw.�/
def
D

ordw.�/

ordw.q/
ŒKw WQp�

lies in Z for all p-adic primes w of K. Note that the torsion subgroup of W K
0 .q/ is �.K/,

the group of roots of 1 in K. Let X and Y be the sets of p-adic primes of K and of its
largest real subfield F . Write fK for the common inertia degree3 of the p-adic prime ideals
of K and hK for their common order in the class group of K.

3The inertia degree of a prime p of K is the degree f .p=p/ D ŒOK=pWFp � of the field extension OK=p �

Fp .
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PROPOSITION 2.1 For any n divisible by fKhK , the sequence

0 ��! W K
0 .pn/=�.K/

� 7!
P

wjp nw.�/w
�������������! ZX

P
aww 7!

P
awwjF

��������������! ZY ��! 0 (5)

is exact.

PROOF. Everything is obvious except that every element in the kernel of the second map is
in the image of the first.

Let � D Hom.K; Qal/ D Gal.K=Qal/. The group I0.K/ of infinity types of weight 0

on K is the subgroup of ZŒ� � consisting of the sums
P

n�� such that n� C n�� D 0 for
all � . Fix a p-adic prime w0 of Qal. As � acts transitively on X , the sequence

I0.K/

P
n� � 7!

P
n� �w0

�������������! ZX

P
aww 7!

P
awwjF

��������������! ZY ����! 0

is exact. Because n=fK is divisible by hK , there exists an element $ of OK such that
p

n=fK
w0

D .$/, i.e., such that for w a finite prime of K,

ordw.$/ D

(
n=fK if w D w0

0 otherwise.

For � D
P

n�� 2 I0.K/ and a 2 K�, let

�.a/ D
Q

�2� .�a/n� :

Then �.a/ D 1 for a 2 F �. As the group of units in F has finite index in the group of
units in K, this shows that �

def
D �.$/ is independent of the choice of $ up to an element

of �.K/. It lies in W K
0 .pn/, and the diagram

I0.K/

))SSSSSSS

�

��

ZX

W K
0 .pN /

55llllll

commutes, which completes the proof. 2

If njn0, then � 7! �n0=n is a homomorphism W K.pn/ ! W K.pn0

/; we define
W K.p1/ D lim

�!
W K.pn/. Similarly, W K

0 .p1/ D lim
�!

W K
0 .pn/. Thus, an element of

W K
0 .p1/ is represented by a pair .�; n/ with n 2 N� and � 2 W K

0 .pn/.

COROLLARY 2.2 When n divides n0 and both are divisible by fKhK ,

W K
0 .pn/=�.K/ ' W K

0 .pn0

/=�.K/ ' W K
0 .p1/:

The sequence
0! W K.p1/! ZX

! ZY
! 0

is exact.
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PROOF. The diagram
W K

0 .pn/ ����! ZX

� 7!�n=n0

??y 
W K

0 .pn0

/ ����! ZX

commutes, and so this follows from (5). 2

Let P K.pn/ be the algebraic group of multiplicative type over Q with character group
X�.P K.pn// D W K.pn/.

COROLLARY 2.3 Let m D j�.K/j. For any n divisible by fKhK , there are exact se-
quences

0 �! .Gm/F=Q �! .Gm/K=Q �! P K.p1/ �! 0
0 �! P K.p1/ �! P K.pn/ �! Z=mZ �! 0

PROOF. Obvious from (2.1) and (2.2). 2

PROPOSITION 2.4 (a) The family of maps H 1.Q; P K
0 .p1// ! H 1.Ql ; P K

0 .p1/, with
l running over the primes of Q, is injective.

(b) H 2.Q; P K
0 .p1// '

L
l H 2.Ql ; P K

0 .p1// (sum over all primes of Q).

PROOF. This follows from the cohomology sequence of the upper exact sequence in (2.3)
and class field theory (Milne 1994, 3.11). 2

PROPOSITION 2.5 The family of maps H 2.Q; P K
0 .p1// ! Br.QŒ��/, � 2 W K

0 .p1/,
(see (3)) is injective.

PROOF. Apply Proposition 1.1 and (b) of Proposition 2.4. 2

Let X be a simple object in MotK0 .F/, and let �X be its Frobenius endomorphism.

PROPOSITION 2.6 The map H 2.˛�X
/WH 2.Q; P K

0 .p1// ! Br.QŒ�X �/ sends the class
of MotK0 .F/ in H 2.Q; P K

0 .p1// to the class of End.X/ in Br.QŒ�X �/.

PROOF. This can be proved by the same argument as in Saavedra Rivano 1972, VI 3.5.3.2

REMARK 2.7 Let W0.p1/ D lim
�!n

W0.pn/ and P0.p1/ D lim
 �K

P K
0 .p1/; thus P0.p1/

is the pro-torus with character group W0.p1/. Proposition 2.5 shows that the family of
maps H 2.Q; P0.p1// ! Br.QŒ��/, � 2 W0.p1/, has kernel lim

 �

1

K
H 1.Q; P K

0 .p1//,
which is zero (Milne 2003, 3.8).

NOTES This section reviews results from Langlands and Rapoport 1987; Wei 1993; Milne 1994,
2003.
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3 The category of motives over Fp

As before, fix a (large) CM-subfield K of Qal, finite and galois over Q. Let W K
0 .p; n/ be

the group of Weil p-numbers � in Qal of weight 0 such that �n 2 W K
0 .pn/. Note that,

W K
0 .p; 1/ D W K

0 .p/, but otherwise the elements of W K
0 .p; n/ need not lie in K.

LEMMA 3.1 For any n divisible by fKhK , there is an exact sequence

0 ����! �mn ����! W K
0 .p; n/

� 7!Œ�n;n�
�������! W K

0 .p1/ ����! 0:

where m D j�.K/j and �mn D �mn.Qal/.

PROOF. According to (2.2), an element of W K
0 .p1/ is represented by a � 2 W K

0 .pn/.
Now any nth root �

1
n of � in Qal lies in W K

0 .p; n/ and maps to � .
If � 2 W K

0 .p; n/ is such that �n represents 1 in W K
0 .p1/, then �n 2 W K

0 .pn/tors D

�.K/. Therefore .�n/m D 1. Conversely, if �mn D 1, then � 2 W0.p; n/ and maps to 1

in W K
0 .p1/. 2

Let P K
0 .p; n/ be the group of multiplicative type over Q such that X�.P K

0 .p; n// D

W K
0 .p; n/.

PROPOSITION 3.2 For any n divisible by fKhK , there is an exact sequence

0! P K
0 .p1/! P K

0 .p; n/! Z=nmZ! 0: (6)

PROOF. Immediate from the lemma. 2

Recall that the isomorphism classes of simple objects in Mot.Fp/ are classified by the
conjugacy classes of elements of W.p/ (Weil p-numbers in Qal) (see, for example, Milne
1994, 2.6). Let MotK0 .Fp; n/ be the category of motives over Fp whose Weil p-numbers lie
in W K

0 .p; n/.

PROPOSITION 3.3 The category MotK0 .Fp; n/ has a Ql -valued fibre functor for all primes
l of Q (including p and1).

PROOF. As we noted in the introduction, the endomorphism algebras of simple objects in
MotK0 .Fp; n/ are commutative, and so this follows from Propositions 2.6 and 1.1. 2

4 Cyclic algebras

Let F be field.

DEFINITION 4.1 A cyclic semifield over F is an étale F -algebra E together with an action
of a cyclic group C such that C acts simply transitively on HomF -algebra.E; F al/. In other
words, it is a galois F -algebra with cyclic galois group (in the sense of Grothendieck).

PROPOSITION 4.2 Let E be a cyclic field extension of F with generating automorphism
�0. Then .Em; �/, with �.a1; : : : ; am/ D .�0am; a1; : : : ; am�1/, is a cyclic semifield over
F , and every cyclic semifield over F is isomorphic to one of this form.
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PROOF. Routine application of galois theory (in the sense of Grothendieck). 2

We denote .Em; �/ by .E; �0/m.

EXAMPLE 4.3 Let .E; �/ be a cyclic field over F . Let F 0 be a field containing F , and let
EF 0 be the composite of E and F 0 in some common larger field. Let m be the least positive
integer such that �m fixes E \ F 0. Then

h�m
i D Gal.E=E \ F 0/ ' Gal.EF 0=F 0/;

and so .EF 0; �m/ is a cyclic field over F . Clearly, .E ˝F F 0; �/ � .EF 0; �m/m.

Let .E; �/ be a cyclic semifield over F . For any element a 2 F �, define

B.E; �; a/ D E � 1CE � x C � � � CExn�1

with the multiplication determined by

xn
D a; x � e D �.e/ � x for b 2 E:

Then B.E; �; a/ is a central simple F -algebra (Albert 1939, VII). Algebras of this form are
called cyclic.4 Because E is a maximal étale subalgebra of B , it splits B , and so B.E; �; a/

represents a class in Br.E=F /.

PROPOSITION 4.4 With the notations of (4.2),

B.Em; �; a/ � B.E; �0; a/˝F Mm.F /:

PROOF. See Albert 1939, VII 1, Theorem 1. 2

COROLLARY 4.5 Let .E; �/ be a cyclic field over F . Let F 0 be a field containing F , and
let a 2 F �. With the notations of (4.3),

ŒB.E ˝F F 0; �; a/� D ŒB.E; �; a/˝F F 0� D ŒB.EF 0; �m; a/�

(equality of classes in Br.F 0/). More generally, when a 2 F 0�, one still has

ŒB.E ˝F F 0; �; a/� D ŒB.EF 0; �m; a/�

PROOF. Apply the proposition to .E ˝F F 0; �/ � .EF 0; �m/m. See also Reiner 2003,
30.8, for the case where a 2 F �. 2

4.6 For a fixed .E=F; �/, the map

a 7! ŒB.E; �; a/�WF �
! Br.E=F /

has the following cohomological description. The choice of the generator � for the galois
group of E=F determines an isomorphism of the Tate cohomology groups H 0.E=F; E�/!

H 2.E=F; E�/, i.e., an isomorphism

F �= Nm E�
! Br.E=F / (7)

(periodicity of the cohomology of cyclic groups; see, for example, Milne 1997, II 2.11).
This isomorphism maps a 2 F � to the class of B.E; �; a/. When F is a local or global
field, it is known that every element of Br.F / is split by a cyclic extension, and so is
represented by a cyclic algebra.

4Classically, they were called “generalized cyclic algebras”, and “cyclic algebra” was reserved for those
with E is a field.
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EXAMPLE 4.7 Let F be a finite extension of Qp and let E be an unramified field extension
of F of degree n. Choose � to be the Frobenius element. For any a 2 F �, B.E; �; a/ has
invariant ordK.a/=n (cf. Milne 1997, IV 4.2). Here ordK is normalized to map onto Z.

We now fix .F; a/ and give a cohomological description of

.E; �/ 7! ŒB.E; �; a/�WH 1.F; Z=nZ/! Br.F /: (8)

Let F Œx� D F ŒX�=.Xn � a/. The inclusion F � ,! F Œx�� defines a homomorphism
Gm ! .Gm/F Œx�=F , and we let T be the cokernel. The class of x in F Œx��=F � � T .Q/

has order dividing n, and the diagram

1 ����! Gm ����! .Gm/F Œx�=F ����! T ����! 0x??1 7!Œx�

Z=nZ

of groups of multiplicative type gives rise to a diagram of cohomology groups

H 1.F; T / ����! Br.F / ����! Br.F Œx�/x??
H 1.F; Z=nZ/

LEMMA 4.8 The composite of the maps

H 1.F; Z=nZ/! H 1.F; T /! Br.F /

is the map (8).

PROOF. Omitted (for the moment). 2

PROPOSITION 4.9 Let L be an unramified cyclic field extension of Qp of degree n, and
let � be the Frobenius automorphism of L over Qp. For any finite extension F of Qp and
a 2 F ,

invv B.L˝Qp
F; �; a/ D

ordF .a/

n � ordF .p/
� ŒF WQp�: (9)

PROOF. Let e and f be the ramification and inertia indices of p in F . The composite LF

of L and F in some common larger field is an unramified extension of F of degree n=f

with Frobenius element �f . Thus (see 4.5, 4.7),

invF B.L˝Qp
F; �; a// D invF .B.LF; �f ; a/

D
ordF .a/

n=f
:

Since ordF .p/ D e, this gives (9). 2
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5 The Q-valued fibre functors on MotK0 .Fp; n/

As before, K is a CM subfield of Qal, finite and galois over Q, and n is an integer divisible
by fKhK .

LEMMA 5.1 Let � 2 W K
0 .p; n/, and let � be the image of � in W0.p1/. Let X.�/ be the

simple motive over F corresponding to � . Then the centre of End.X.�// is QŒ�mn�.

PROOF. Recall that � is represented by �n 2 W K
0 .pn/. The centre of End.X.�// is QŒ��

(notations as in �1, i.e., QŒ�� is the fixed field of the subgroup of Gal.Qal=Q/ fixing �).
An element � of Gal.Qal=Q/ fixes � if and only if it fixes its image in ZX (notation as in
�2), but this equals the image �n in ZX , which is fixed by � if and only if � fixes .�n/m.2

THEOREM 5.2 There exists a Q-valued fibre functor ! on MotK0 .p; n/ if and only if there
exists a cyclic field extension L of Q of degree mn such that

(a) .p/ remains prime in L;
(b) �mn is a local norm at every prime v of QŒ�mn� that ramifies in QŒ�mn�˝Q L.

PROOF. Consider the diagram arising from (6) and (8)

H 1.Q; Z=mnZ/
˛ //

 ((QQQQQQQQQQQQQ
H 2.Q; P K

0 .p1/
ˇ

//

injective
��

H 2.Q; P K
0 .p; n//

Y
�2W K

0 .p;n/

Br.QŒ�mn�/

The map ˇ sends the cohomology class of MotK0 .Fp/ to that of MotK0 .Fp; n/. Thus,
MotK0 .Fp; n/ is neutral if and only if the cohomology class of MotK0 .Fp/ is in the im-
age of ˛. Since  sends an element .L; �/ of H 1.Q; Z=mnZ/ to the class of B.L ˝Q
QŒ�mn�; �; �mn/ in Br.QŒ�mn�/ (cf. 4.8), we see that MotK0 .p; n/ is neutral if and only
if there exists a cyclic field extension .L; �/ of degree dividing mn such that, for all
� 2 W K

0 .p; n/ and all primes v of QŒ�mn�,

invv.B.L˝Q QŒ�mn�; �; �mn// D

8<:
ordv.�/

ordv.pmn/
� ŒQŒ�mn�v W Qp� if vjp

0 otherwise
(10)

Let L be a cyclic field extension of Q of degree mn satisfying the conditions (a) and
(b) and let � D .p; L=Q/. Condition (a) implies that (10) holds for the primes v dividing
p (apply Proposition 4.9 with L˝Q Qp for L, QŒ�mn�v for F , �mn for a), and condition
(b) implies that (10) holds for the primes not dividing p (see (4.6)).

Conversely, let .L; �/ be a cyclic extension of Q of degree dividing mn satisfying
(10). By considering the primes dividing p and applying Proposition 4.9, one sees that L

has degree mn, that .p/ remains primes in L, and � D .p; L=K/. On the other hand,
the invariant at a prime not dividing p vanishes automatically unless the prime ramifies in
QŒ�mn�, in which case it vanishes if and only if (b) holds (by 4.6). 2

THEOREM 5.3 Let F be a the field generated over Q by the elements of W K
0 .p; n/ — it

is a finite galois extension of Q. The generalized Riemann hypothesis implies that there
exists a field L satisfying the conditions (a) and (b) of (5.2) provided p is not an r th power
in F �Qab for any r dividing mn.
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PROOF. Note that F is generated over Q by any set of generators for the abelian group
W K

0 .p; n/, which can be chosen to be finite and stable under the action of Gal.Qal=Q/,
which shows that F is finite and galois over Q. Note that condition (b) is implied by the
stronger condition:

(b0) every prime l ¤ p ramifying in L splits in F:

(Because then � 2 QŒ�mn�v D Ql , and so �mn is an mnth power inside QŒ�mn�v.) A
natural place to look for such an extension L is inside QŒ�l � for some prime l . Since only l

ramifies in QŒ�l �, it will contain an L satisfying (a) and (b0) if
(c) .Z=lZ/� has a quotient of order mn generated by the class of p,
(d) l splits in F .

We show in the next section that the generalized Riemann hypothesis implies that, under
our hypothesis on p, r , and F , there are always infinitely many primes satisfying these
conditions (c,d). 2

REMARK 5.4 We can make the relation between the Q-valued fibre functors on MotK0 .Fp; n/

and the cyclic field extensions of Q more precise. The base change functor

ˇWMotK0 .Fp; n/! MotK0 .F/

realizes the second category as a normal quotient of the first category (in the sense of Milne
2005, �2). The objects of MotK0 .Fp; n/ becoming trivial in MotK0 .F; n/ are exactly the Artin
motives. Let !ˇ be the fibre functor on ArtK.Fp; n/ defined by ˇ (ib. �2). Note that the
fundamental group of ArtK.Fp; n/ is Z=mnZ, and that the motive Xmn of Fpmn lies in
ArtK.Fp; n/.

Now let ! be a Q-valued fibre functor on MotK0 .Fp; n/, and let } D Hom˝.!j; !q/

where !j is the restriction of ! to ArtK.Fp; n/. Then } is a Z=mnZ-torsor whose class in
H 1.Q; Z=mnZ/ maps to the class of MotK0 .F/ in H 2.Q; P K

0 .p1// (ib. 2.11). On the other
hand, one sees easily that the class of } in H 1.Q; Z=mnZ/ is represented by L D !.Xmn/.

We have seen that each Q-valued fibre functor ! on MotK0 .Fp/ gives rise to a cyclic
extension L D !.Xmn/ of Q, and we have characterized the cyclic extensions that arise in
this way. To complete the classification, we have to describe the set of fibre functors giving
rise to the same field.

THEOREM 5.5 Let ! be a Q-valued fibre functor on MotK0 .p; n/. The isomorphism classes
of pairs consisting of a Q-valued fibre functor !0 and an isomorphism !.Xmn/! !0.Xmn/

are classified by Br.E=F / where E is the fixed field of the decomposition group of a p-adic
prime of K and F is its largest real subfield.

PROOF. Let }.!0/ be the set of isomorphisms ! ! !0 inducing the given isomorphism
on Xmn. Then }.!0/ is a torsor for P K

0 .p1/ (cf. Milne 2004, 1.6), and }.!0/ �

}.!00/ if and only if !0 � !00. Therefore, the pairs modulo isomorphism are classified
by H 1.Q; P K

0 .p1//, which equals Br.E=F / (Milne 1994, 3.10). 2

6 The existence of the field L

Let a ¤ ˙1 be a square-free integer, let k be a second integer, and let F be a finite galois
extension of Q. Consider the set M of prime numbers p such that
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B p does not divide a,
B p splits in F ,
B the index in .Z=pZ/� of the subgroup of generated by the class of a divides k:

For each prime number l , let q.l/ be the smallest power of l not dividing k, and let Ll D

QŒ�q.l/; a1=q.l/� be the splitting field of Xq.l/ � a over Q. If p does not divide a, then

p splits in Ll ”

�
l jp � 1, and
a is a q.l/th power modulo p.

Therefore, a necessary condition for M to be nonempty is that none of the fields Ll be
contained in F .

THEOREM 6.1 If the generalized Riemann hypothesis holds for each field Ll and no Ll is
contained in F , then the set M is infinite.

PROOF. When k D 1 and F D Q, the statement becomes Artin’s primitive root conjecture:
every square-free integer a ¤ ˙1 is a primitive root for infinitely many prime numbers p.
That this follows from the generalized Riemann hypothesis for the fields Ll was proved by
Hooley (1967). The general case is proved in Lenstra 1977, 4.6.5 2

LEMMA 6.2 Let a ¤ ˙1 be a square-free integer, and let F be a finite galois extension of
Q. Then there exists an integer N such that, if a is an mth power in F �Qab, then mjN .

PROOF. For odd primes l , the galois group of X l � a is never commutative, and so a is
not an l th power in Qab. It follows that, for any odd m, Xm � a is irreducible over Qab

(e.g., Lang 2002, VI Theorem 9.1, p297). Therefore, if a is an mth power in Qab, then
mjŒF QabWQab�.

The proof for even m is similar. 2

THEOREM 6.3 Let a ¤ ˙1 be a square-free integer, let n be a positive integer, and let F

be a finite galois extension of Q. Let M be the set of prime numbers p such that
B p does not divide a,
B p splits in F , and
B .Z=pZ/� has a quotient of order n generated by the class of a.
The set M is empty if a is an mth power in F for some m > 1 dividing n, and it is

infinite if a is not an mth power in F �Qab for any m dividing n.

PROOF. Suppose p 2 M . If a is an mth power in F for some m dividing n, then, because
p splits in F , a is an mth power in Qp. Therefore, it is an mth power in .Z=pZ/�, and in
any cyclic quotient Cn of .Z=pZ/�. Therefore, it can’t generate Cn.

For the converse statement, the condition on a implies that there exists a k relatively
prime to n such that a is not a q.l/th power in F � Qab for any prime l (with q.l/ defined
as above). Then none of the fields Ll is contained in F Œ�kn�, and so there exist infinitely
many primes p such that
B p does not divide a,
B p splits in F Œ�nk�,
B the index in .Z=pZ/� of the subgroup of generated by the class of a divides k.

5Note that Lenstra frequently muddles his quantifiers. For example, his condition “an ¤ 0 for all n” should
read “no an is zero”.
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Because p splits in QŒ�kn�, kn divides p � 1, and so .Z=pZ/� has a quotient Cn of order
n. Because k and n are relatively prime, the image of a in Cn generates it. 2

COROLLARY 6.4 Theorem 5.3 holds.

PROOF. Apply the theorem with .a; n/ replaced by .p; mn/. 2

QUESTION 6.5 Does there exist a field L satisfying conditions (a) and (b) of Theorem 5.2
for each pair .K; n/?

I don’t see how to remove the proviso in Theorem 5.3 much less the appeal to the
generalized Riemann hypothesis. In fact, I suspect that the answer to the question is no.
Here are two comments:
B Let L D QŒ�l �, and let a 2 Z be relatively prime to l . When is a local norm at l? As

l is totally ramified in L, the local Galois group is .Z=lZ/�, and so this is true if and
only if a � 1 modulo l . Similarly, a is a local norm from the subextension of QŒ�l �

of degree m if and only if a is an mth power in .Z=lZ/�.
B See Wei 1993 for a description of the subfields of a CM-field generated by Weil

numbers.

7 Fibre functors on MotK.Fp; n/

PROPOSITION 7.1 If there exists a Q-valued fibre functor on MotK0 .Fp; n/, then

(a) there exists a Q-valued fibre functor on MotKeven.Fp; n/, and
(b) for a number field L, there exists an L-valued fibre functor on MotK.Fp; n/ if and

only if the local degrees of the real and p-adic primes of L are even.

PROOF. Omitted (for the present). 2

8 Explicit description of the categories of motives

In this section, we assume there exists an L as in Theorem and give explicit descriptions of
various categories of motives.

The category MotK0 .Fp; n/

The choice of a fibre functor ! on defines an equivalence X 7! !.X/ from MotK0 .Fp; n/

to the tannakian category whose objects are the pairs .V; F / with V a finite-dimensional
vector space over Q and F a semisimple endomorphism of V whose eigenvalues lie in
W K

0 .p; n/.

The category MotK0 .F/

The realization of MotK0 .F/ as a quotient of MotK0 .Fp; n/ defines an equivalence from
MotK0 .F/ to the tannakian category whose objects are pairs .V; F / as before together with
an action L

def
D !.Xmn/ such that

F.av/ D �a � F v; a 2 L, v 2 V

(cf. Milne 2005, 2.3 and 2.12 et seq.).
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The category MotK.Fp; n/

Let F be a quadratic extension of Q such that the local degrees at p and1 are both 2. Then
MotK.Fp; n/ has an explicit description as an F -linear category with a descent datum.

The category MotK.F/.

Again, realize MotK.F/ as a quotient of MotK.Fp; n/.

9 Fibre functors on Mot0.Fp/.

If each of MotK0 .Fp; n/ is neutral, does this imply that Mot0.Fp/ D
S

K;n MotK0 .Fp; n/ is
neutral? Let ! be a Q-valued fibre functor on Mot0.Fp/. Then ! restricts to a Q-valued
fibre on MotK0 .Fp; n/ for each K; n.

(Kontsevich email, May 7, 2006). The tower structure means that we have an
epimorphism bZ�

! Gal.Qab=Q/! bZ�.

One cannot get Zp factor in the image if one uses only unramified at p exten-
sions; also if one ignores Zp component there will be still something wrong:
we should get an epimorphismQ

l¤p Z�
l

=.Z=.l � 1/Z/ �
Q

l¤p Zl

which splits the inclusion of the closure of the subgroup generated by the ele-
ment p. There is a well-known conjecture, 100% solid by probabilistic reasons,
that for any prime p there are infinitely many primes l such that pl�1 D 1 mod
l2, hence p generates a proper closed subgroup in Z�

l
=.Z=.l � 1/Z D Zl by

the logarithmic map.

We look at this more generally. Let M be a tannakian category over k that is a countable
union M D

S
Mn, Mn � MnC1, of neutral algebraic tannakian subcategories.

Suppose first that k is algebraically closed, and chose a k-valued fibre functor !n on
each Mn. Because k is algebraically closed, !nC1jMn � !n. In fact, given !n, we can
modify !nC1 so that !nC1jMn D !n. Thus, there exists a fibre functor ! on M such that
!jMn D !n.

When we try to do this with k not algebraically closed, then we obtain a sequence of
torsors Hom˝.!n; !nC1jMn/. Of course, by making a different choice of fibre functors,
we get a different sequence of torsors, but if, for example, the fundamental groups Pn of
the Mn are commutative, then we get in this way a well-defined element of lim

 �

1 H 1.k; Pn/,
which is the obstruction to M being neutral.6

6Recall that for an inverse system .An; un/ of abelian groups indexed by .N;�/, lim
 �

An and lim
 �

1 An are
the kernel and cokernel respectively of

.: : : ; an; : : :/ 7! .: : : ; an � unC1.anC1/; : : :/W
Y

n
An

1�u
���!

Y
n

An. (11)
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10 A replacement for the Tate conjecture

Let Ap;1 be the restricted product of the Ql for l ¤ p;1, and let A be the product of
Ap;1 with the field of fractions of the ring of Witt vectors with coefficients in the ground
field.

DEFINITION 10.1 Suppose that for each variety X in S and each integer r we have a Q-
structure T r.X/ on the A-module T r.X/ of Tate classes. We call the family .T r.X//X;r a
theory of rational Tate classes on S if

(a) for each variety X in S, T �.X/
def
D

L
r T r.X/ is a Q-subalgebra of T �.X/;

(b) for every regular map f WX ! Y of abelian varieties, f�and f � preserve the Q-
structures;

(c) every divisor class on X lies in T 1.X/.

The elements of T �.X/ will then be called the rational Tate classes on X (for the
particular theory).

Now let S be the smallest class satisfying the conditions in the introduction, and assume
there exists a theory of rational Tate classes. Then we can define categories of motives using
the varieties in S with the rational Tate classes as the correspondences, and everything in the
preceding sections holds true. If, moreover, algebraic classes are rational Tate classes, then
there is an exact tensor functor from the category of motives defined by algebraic classes to
the category of motives defined by rational Tate classes. In particular, a fibre functor on the
latter gives rise to a fibre functor on the former.
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