The de Rham–Witt and \mathbb{Z}_p-cohomologies of an algebraic variety

James S. Milnea,*, Niranjan Ramachandranb,

a2679 Bedford Rd., Ann Arbor, MI 48104, USA
bDepartment of Mathematics, University of Maryland, College Park, MD 20742, USA

Received 31 August 2004; accepted 14 January 2005

Communicated by Johan De Jong
To Mike Artin on the occasion of his 70th birthday.
Available online 7 April 2005

Abstract

We prove that, for a smooth complete variety X over a perfect field,

$$H^i(X, \mathbb{Z}_p(r)) \cong \text{Hom}_{\mathcal{D}_c^b(R)}(\mathbb{1}, R\Gamma(W\Omega^{\bullet}_X)(r)[i]).$$

where $H^i(X, \mathbb{Z}_p(r)) = \lim \leftarrow \mathbb{H}^{i-r}(X_{et}, v_n(r))$ (Amer. J. Math. 108 (2) (1986) 297–360), $W\Omega^{\bullet}_X$ is the de Rham–Witt complex on X (Ann. Scient. Ec. Num. Sup. 12 (1979b) 501–661), and $\mathcal{D}_c^b(R)$ is the triangulated category of coherent complexes over the Raynaud ring (Inst. Hautes. Etudes. Sci. Publ. Math. 57 (1983) 73–212).

© 2005 Published by Elsevier Inc.

Keywords: Crystalline cohomology; de Rham–Witt complex; Triangulated category

* Corresponding author.

E-mail addresses: math@jmilne.org (J.S. Milne), atma@math.umd.edu (N. Ramachandran)

1 Partially supported by GRB (University of Maryland) and IHES.

0001-8708/$-$ see front matter © 2005 Published by Elsevier Inc.
doi:10.1016/j.aim.2005.01.007

Copyright to the article was retained by the authors.
1. Introduction

According to the standard philosophy (cf. [2, 3.1]), a cohomology theory \(X \mapsto H^i(X, r) \) on the algebraic varieties over a fixed field \(k \) should arise from a functor \(R\Gamma \) taking values in a triangulated category \(D \) equipped with a \(t \)-structure and a Tate twist \(D \mapsto D(r) \) (a self-equivalence). The heart \(D^\geq \) of \(D \) should be stable under the Tate twist and have a tensor structure; in particular, there should be an essentially unique identity object \(\mathbb{1} \) in \(D^\geq \) such that \(\mathbb{1} \otimes D \cong D \cong D \otimes \mathbb{1} \) for all objects in \(D^\geq \). The cohomology theory should satisfy

\[
H^i(X, r) \cong \text{Hom}_D(\mathbb{1}, R\Gamma(X)(r)[i]).
\]

(1)

For example, motivic cohomology \(H^i_{\text{mot}}(X, \mathbb{Q}(r)) \) should arise in this way from a functor to a category \(D \) whose heart is the category of mixed motives \(k \). Absolute \(\ell \)-adic étale cohomology \(H^i_{\text{et}}(X, \mathbb{Z}_\ell(r)) \), \(\ell \neq \text{char}(k) \), arises in this way from a functor to a category \(D \) whose heart is the category of continuous representations of \(\text{Gal}(\overline{k}/k) \) on finitely generated \(\mathbb{Z}_\ell \)-modules [5]. When \(k \) is algebraically closed, \(H^i_{\text{et}}(X, \mathbb{Z}_\ell(r)) \) becomes the familiar group \(\lim_{\rightarrow} H^i_{\text{et}}(X, \mu_{p^i}) \) and lies in \(D^\geq \); moreover, in this case, (1) simplifies to

\[
H^i(X, r) \cong H^i(R\Gamma(X)(r)).
\]

(2)

Now let \(k \) be a perfect field of characteristic \(p \neq 0 \), and let \(W \) be the ring of Witt vectors over \(k \). For a smooth complete variety \(X \) over \(k \), let \(W\Omega^\bullet_X \) denote the de Rham–Witt complex of Bloch–Deligne–Illusie (see [10]). Regard \(\Gamma = \Gamma(X, -) \) as a functor from sheaves of \(W \)-modules on \(X \) to \(W \)-modules. Then

\[
H^i_{\text{cris}}(X/W) \cong H^i(R\Gamma(W\Omega^\bullet_X))
\]

[9, 3.4.3], where \(H^i_{\text{cris}}(X/W) \) is the crystalline cohomology of \(X \) [1]. In other words, \(X \mapsto H^i_{\text{cris}}(X/W) \) arises as in (2) from the functor \(X \mapsto R\Gamma(W\Omega^\bullet_X) \) with values in \(D^+(W) \).

Let \(R \) be the Raynaud ring, let \(D(X, R) \) be the derived category of the category of sheaves of graded \(R \)-modules on \(X \), and let \(D(R) \) be the derived category of the category of graded \(R \)-modules \([11, 2.1]\). Then \(\Gamma \) derives to a functor

\[
R\Gamma : D(X, R) \to D(R).
\]

When we regard \(W\Omega^\bullet_X \) as a sheaf of graded \(R \)-modules on \(X \), \(R\Gamma(W\Omega^\bullet_X) \) lies in the full subcategory \(D_c^b(R) \) of \(D(R) \) consisting of coherent complexes [12, II 2.2], which Ekedahl has shown to be a triangulated subcategory with \(t \)-structure [11, 2.4.8]. In this
note, we define a Tate twist \((r) \) on \(\mathbb{D}^b_c(R) \) and prove that

\[
H^i(X, \mathbb{Z}_p(r)) \cong \text{Hom}_{\mathbb{D}^b_c(R)}(1, R\Gamma(W\Omega^*_X)(r)[i]).
\]

Here \(H^i(X, \mathbb{Z}_p(r)) = \lim_{\to n} H^i_{et}(X, \mathcal{V}_n(r)) \) with \(\mathcal{V}_n(r) \) the additive subsheaf of \(W_n\Omega^*_X \) locally generated for the étale topology by the logarithmic differentials [14, §1], and 1 is the identity object for the tensor structure on graded \(R \)-modules defined by Ekedahl [11, 2.6.1]. In other words, \(X \mapsto H^i(X, \mathbb{Z}_p(r)) \) arises as in (1) from the functor \(X \mapsto R\Gamma(W\Omega^*_X) \) with values in \(\mathbb{D}^b_c(R) \).

This result is used in the construction of the triangulated category of integral motives in [16].

It is a pleasure for us to be able to contribute to this volume: the \(\mathbb{Z}_p \)-cohomology was introduced (in primitive form) by the first author in an article whose main purpose was to prove a conjecture of Artin, and, for the second author, Artin's famous 18.701-2 course was his first introduction to real mathematics.

2. The Tate twist

According to the standard philosophy, the Tate twist on motives should be \(N \mapsto N(r) = N \otimes \mathbb{T}^\otimes r \) with \(\mathbb{T} \) dual to \(\mathbb{L} \) and \(\mathbb{L} \) defined by \(R\mathbb{h}(\mathbb{P}^1) = \mathbb{L} \oplus \mathbb{L}[-2] \).

The Raynaud ring is the graded \(W \)-algebra \(R = R^0 \oplus R^1 \) generated by \(F \) and \(V \) in degree 0 and \(d \) in degree 1, subject to the relations \(FV = p = VF, Fa = \sigma a \cdot F, aV = V \cdot a, ad = da (a \in W), d^2 = 0, \) and \(FdV = d \); in particular, \(R^0 \) is the Dieudonné ring \(W_\sigma[F, V] \) [11, 2.1]. A graded \(R \)-module is nothing more than a complex

\[
M^* = (\cdots \rightarrow M^i \xrightarrow{d} M^{i+1} \rightarrow \cdots)
\]

of \(W \)-modules whose components \(M^i \) are modules over \(R^0 \) and whose differentials \(d \) satisfy \(FdV = d \). We define \(T \) to be the functor of graded \(R \)-modules such that \((TM)^i = M^{i+1} \) and \(T(d) = -d \). It is exact and defines a self-equivalence \(T : \mathbb{D}_c^b(R) \to \mathbb{D}_c^b(R) \).

The identity object for Ekedahl's tensor structure on the graded \(R \)-modules is the graded \(R \)-module

\[
1 = (W, F = \sigma, V = p\sigma^{-1})
\]

concentrated in degree zero [11, 2.6.1.3]. It is equal to the module \(E_{0/1} = d_f R^0/(F - 1) \) of Ekedahl [3, p. 66].

There is a canonical homomorphism

\[
1 \oplus T^{-1}(1)[-1] \to R\Gamma(W\Omega^{*,*}_{\mathbb{P}^1})
\]
(in $D^b_c(R)$), which is an isomorphism because it is on $W_1\Omega^*_p = \Omega^*_p$ and we can apply Ekedahl’s “Nakayama lemma” [11, 2.3.7]. See [8, I 4.1.11, p. 21], for a more general statement. This suggests our definition of the Tate twist r (for $r \geq 0$), namely, we set

$$M(r) = T^r(M)[-r]$$

for M in $D^b_c(R)$.

Ekedahl has defined a nonstandard t-structure on $D^b_c(R)$ the objects of whose heart Δ are called diagonal complexes [11, 6.4]. It will be important for our future work to note that $T = T(\mathbb{1})[-1]$ is a diagonal complex: the sum of its module degree (-1) and complex degree $(+1)$ is zero. The Tate twist is an exact functor which defines a self-equivalence of $D^b_c(R)$ preserving Δ.

3. Theorem and corollaries

Regard $W\Omega^*_X$ as a sheaf of graded R-modules on X, and write $R\Gamma$ for the functor $D(X, R) \to D(R)$ defined by $\Gamma(X, -)$. As we noted above, $R\Gamma(W\Omega^*_X)$ lies in $D^b_c(R)$.

Theorem. For any smooth complete variety X over a perfect field k of characteristic $p \neq 0$, there is a canonical isomorphism

$$H^i(X, \mathbb{Z}_p(r)) \cong \text{Hom}_{D^b_c(R)}(\mathbb{1}, R\Gamma(W\Omega^*_X)(r)[i]).$$

Proof. For a graded R-module M^*,

$$\text{Hom}(\mathbb{1}, M^*) = \text{Ker}(1 - F: M^0 \to M^0).$$

To obtain a similar expression in $D^b(R)$ we argue as in Ekedahl [3, p. 90]. Let \hat{R} denote the completion $\lim R/(V^n R + dV^n R)$ of R [3, p. 60]. Then right multiplication by $1 - F$ is injective, and $\mathbb{1} \cong \hat{R}^0/\hat{R}^0(1 - F)$. As F is topologically nilpotent on \hat{R}^1, this shows that the sequence

$$0 \longrightarrow \hat{R} \overset{(1-F)}{\longrightarrow} \hat{R} \longrightarrow \mathbb{1} \longrightarrow 0,$$

is exact. Thus, for a complex of graded R-modules M in $D^b(R)$,

$$\text{Hom}_{D(R)}(\mathbb{1}, M) \overset{[7,10,9]}{\cong} H^0(R\text{Hom}(\mathbb{1}, M)) \overset{(3)}{=} H^0(R\text{Hom}(\hat{R} \overset{(1-F)}{\longrightarrow} \hat{R}, M)).$$
If M is complete in the sense of Illusie 1983, 2.4, then $\text{RHom}(\hat{R}, M) \cong R\text{Hom}(R, M)$ [3, 5.9.3ii, p. 78], and so

$$\text{Hom}_{D(R)}(\mathbb{I}, M) \cong H^0(\text{Hom}(R \xrightarrow{(1-F)} \hat{R}, M))$$

$$\cong H^0(\text{Hom}(R, M) \xrightarrow{1-F} \text{Hom}(R, M)).$$

(4)

Following Illusie [11, 2.1], we shall view a complex of graded R-modules as a bicomplex M^{**} in which the first index corresponds to the R-grading; thus the jth row $M^{i,j}$ of the bicomplex is the R-module $(\cdots \to M^{i,j} \to M^{i+1,j} \to \cdots)$, and the ith column $M^{i,*}$ is a complex of (ungraded) R^0-modules. The jth-cohomology $H^j(M^{**})$ of M^{**} is the graded R-module

$$(\cdots \to H^j(M^{i,*}) \to H^j(M^{i+1,*}) \to \cdots).$$

Now, $\text{Hom}(R, M^{**}) = M^{0,*}$, and so

$$H^0(\text{Hom}(R, M^{**}(r)[i])) = H^{i-r}(M^{r,*}).$$

(5)

The complex of graded R-modules $R\Gamma(W\Omega^\bullet_X)$ is complete [11, 2.4, Example (b), p. 33], and so (4) gives an isomorphism

$$\text{Hom}_{D(R)}(\mathbb{I}, R\Gamma(W\Omega^\bullet_X)(r)[i])$$

$$\cong H^0(\text{Hom}(R, R\Gamma(W\Omega^\bullet_X)(r)[i]) \xrightarrow{1-F} \text{Hom}(R, R\Gamma(W\Omega^\bullet_X)(r)[i])).$$

(6)

The jth-cohomology of $R\Gamma(W\Omega^\bullet_X)$ is obviously

$$H^j(R\Gamma(W\Omega^\bullet_X)) = (\cdots \to H^j(X, W\Omega^j_X) \to H^j(X, W\Omega^{j+1}_X) \to \cdots)$$

[11, 2.2.1], and so (5) allows us to rewrite (6) as

$$\text{Hom}_{D(R)}(\mathbb{I}, R\Gamma(W\Omega^\bullet_X)(r)[i]) \cong H^{i-r}(R\Gamma(W\Omega^r_X) \xrightarrow{1-F} R\Gamma(W\Omega^r_X)).$$

This gives an exact sequence

$$\cdots \to \text{Hom}(\mathbb{I}, R\Gamma(W\Omega^\bullet_X)(r)[i]) \to H^{i-r}(X, W\Omega^r_X) \xrightarrow{1-F} H^{i-r}(X, W\Omega^r_X) \to \cdots$$

(7)

On the other hand, there is an exact sequence [10, I 5.7.2]

$$0 \to \nu_r \cdot (r) \to W_r \Omega^r_X \xrightarrow{1-F} W_r \Omega^r_X \to 0$$
of prosheaves on X_{et}, which gives rise to an exact sequence

$$
\cdots \to H^i(X, \mathbb{Z}_p(r)) \to H^{i-r}(X, W_\bullet \Omega_X^r) \to H^{i-r}(X, W_\bullet \Omega_X^r) \to \cdots
$$

(8)

[14, 1.10]. Here $v_\bullet(r)$ denotes the projective system $(v_n(r))_{n \geq 0}$, and $H^i(X, W_\bullet \Omega_X^r) = \lim_{\leftarrow n} H^i(X, W_n \Omega_X^r)$ (étale or Zariski cohomology— they are the same).

Since $H^r(X, W \Omega_X^r) \cong H^r(X, W_\bullet \Omega_X^r)$ [9, 3.4.2, p. 101], the sequences (7) and (8) will imply the theorem once we check that there is a suitable map from one sequence to the other, but the right hand square in

$$
\begin{array}{ccc}
W_\bullet \Omega_X^r & \xrightarrow{1-F} & W_\bullet \Omega_X^r \\
\downarrow & & \downarrow \\
W \Omega_X^r & \xrightarrow{1-F} & W \Omega_X^r
\end{array}
\quad
\begin{array}{ccc}
R \Gamma W_\bullet \Omega_X^r & \xrightarrow{1-F} & R \Gamma W_\bullet \Omega_X^r \\
\downarrow & & \downarrow \\
R \Gamma W \Omega_X^r & \xrightarrow{1-F} & R \Gamma W \Omega_X^r
\end{array}
$$

gives rise to such a map. □

As in Milne [14, p. 309], we let $H^i(X, (\mathbb{Z}/p^n\mathbb{Z})(r)) = H^i_{\text{et}}(X, v_n(r)).$

Corollary 1. There is a canonical isomorphism

$$
H^i(X, (\mathbb{Z}/p^n\mathbb{Z})(r)) \cong \text{Hom}_{D^b_c(R)}(\mathbb{I}, R \Gamma W_n \Omega_X^r(r)[i]).
$$

Proof. The canonical map $v_\bullet(r)/p^nu_\bullet(r) \to v_n(r)$ is an isomorphism [10, I 5.7.5, p. 598], and the canonical map $W \Omega_X^r/p^nu \Omega_X^r \to W_n \Omega_X^r$ is a quasi-isomorphism [10, I 3.17.3, p. 577]. The corollary now follows from the theorem by an obvious five-lemma argument. □

Lichtenbaum [13] conjectures the existence of a complex $\mathcal{Z}(r)$ on X_{et} satisfying certain axioms and sets $H^i_{\text{mot}}(X, r) = H^i_{\text{et}}(X, \mathcal{Z}(r))$. Milne [15, p. 68] adds the "Kummer p-sequence" axiom that there be an exact triangle

$$
\mathcal{Z}(r) \xrightarrow{p^u} \mathcal{Z}(r) \to v_n(r)[-r] \to \mathcal{Z}(r)[1].
$$

Geisser and Levine [6, Theorem 8.5] show that the higher cycle complex of Bloch (on X_{et}) satisfies this last axiom, and so we have the following result.

Corollary 2. Let $\mathcal{Z}(r)$ be the higher cycle complex of Bloch on X_{et}. Then there is a canonical isomorphism

$$
H^i_{\text{et}}(X, \mathcal{Z}(r)) \xrightarrow{p^u} \mathcal{Z}(r) \cong \text{Hom}_{D^b_c(R)}(\mathbb{I}, R \Gamma W_n \Omega_X^r(r)[i]).
$$
Acknowledgments

We thank P. Deligne for pointing out a misstatement in the introduction to the original version.

References
