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Abstract

As an introduction to Shimura varieties, and, in particular, to Deligne’s Bourbaki
and Corvallis talks (Deligne 1971, 1979), I explain the main ideas and results of the
general theory of Shimura varieties in the context of Shimura curves.

These notes had their origin in a two-hour lecture I gave on September 10, 2002.
They are available at www.jmilne.org/math/. Please send corrections and comments
to me at math@jmilne.org.
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Introduction

Let
X+ = {z ∈ C | =(z) > 0}.

ThenSL2(R) acts transitively onX+,(
a b
c d

)
· z =

az + b

cz + d
,

and the subgroup fixingi is the compact group

SO2 =

{(
a b
−b a

)∣∣∣∣ a2 + b2 = 1

}
.

A congruence subgroupΓ of SL2(Z) is any subgroup containing theprincipal congruence
subgroup of levelN ,

Γ(N) =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ (
a b
c d

)
≡

(
1 0
0 1

)
mod N

}
.

Consider1

S◦
Γ

df
= Γ\X+.

Initially, this is a Riemann surface, but when a finite set of points (the “cusps”) is added,
it becomes a compact Riemann surface, which is automatically2 a nonsingular projective
algebraic curve. Therefore,S◦

Γ is an algebraic curve.3

The theorem I want to discuss is thatS◦
Γ has a canonical modelC◦

Γ over a certain number
field FΓ. More precisely, there exists a curveC◦

Γ overFΓ equipped with an isomorphism
(C◦

Γ)C → S◦
Γ satisfying certain natural conditions sufficient to determine it uniquely. So one

thing I’ll have to do is tell you how to attach a number fieldFΓ to a congruence subgroup.
Later, I’ll discuss a similar theorem for curvesS◦

Γ = Γ\X+ whereΓ is again a congruence
subgroup, but in a group different fromSL2.

Note that, in general, a variety overC will not have a model over a number field, and
when it does, it will usually have many. For example, an elliptic curveE over C has a
model over a number field if and only if itsj-invariantj(E) is an algebraic number, and if
Y 2Z = X3 + aXZ2 + bZ3 is one model ofE over a number fieldk (meaning,a, b ∈ k),
thenY 2Z = X3 + ac2XZ2 + bc3Z3 is a second which is isomorphic to the first only ifc is

1Unfortunately, in his Bourbaki talk, Deligne writes this asX+/Γ. There used to be left-wingers (those
who write the discrete group on the left) and right-wingers. Now there are only left-wingers — the right
wingers either converted or . . . .

2The functorC 7→ C(C) from nonsingular projective curves overC to compact Riemann surfaces is an
equivalence of categories. For a discussion of this result, see my notes on modular forms, 7.3–7.7.

3The same is not true ofX+, i.e., it is not possible to realizeX+ (with its complex structure) as a Zariski-
open subset of a nonsingular projectiveC curve overC — if you could, the complement ofX+ in C(C)
would be a finite set, and any bounded holomorphic function onX+ would extend to a bounded holomorphic

function onC(C), and so would be constant, butz−i
z+i is holomorphic onX+ and

∣∣∣ z−i
z+i

∣∣∣ < 1.

This is one reason we work withΓ\X+ rather thanX+ — asX+ is not an algebraic curve, it makes no
sense to talk of it having a model over a number field.
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a square ink. As another example, all the projective curvesaX2 + bY 2 + cZ2 = 0 overQ
become isomorphic toX2 + Y 2 + Z2 = 0 overC, but they fall into infinitely many distinct
isomorphism classes overQ.

A problem with the theorem as stated above is that the fieldsFΓ grow asΓ shrinks. One
of Deligne’s innovations in his Bourbaki talk was to replace (in a systematic way) theS◦

Γ

with nonconnected curves which have canonical models overQ.

Notations and terminology

I use the language of algebraic varieties as, for example, in my course notes on algebraic
geometry: the affine varieties over a fieldk are the ringed spacesSpecm A with A a finitely
generatedk-algebra such thatA ⊗ kal is reduced, and the varieties overk are the ringed
spaces that are finite unions of open affine varieties satisfying a separatedness condition.
Thus, a variety overk is essentially the same thing as a geometrically reduced separated
scheme of finite type overk (not necessarily connected). For a varietyV overk, k[V ] =
Γ(V,OV ) is the ring of regular functions onV and, whenV is irreducible,k(V ) is the field
of rational functions onV .

For simplicity, throughout the notes “variety” will mean “nonsingular variety”. With
this convention, every connected variety is irreducible.

Throughout,Qal is the algebraic closure ofQ in C, andι or z 7→ z̄ denotes complex
conjugation onC.

For ak-vector spaceV and a commutativek-algebraA, I often write V (A) for the
A-moduleA⊗k V .

Given an equivalence relation, [*] denotes the equivalence class containing *.
The notationX ≈ Y means thatX andY are isomorphic, whereasX ∼= Y means that

they are canonically isomorphic or that there is a given (or unique) isomorphism.4
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1 Preliminaries

Algebraic varieties and their connected components

A variety V over a fieldk is said to begeometrically connectedif Vkal is connected, in
which case,VΩ is connected for every fieldΩ containingk (Hartshorne 1977, II, Exercise
3.15).

We first examine zero-dimensional varieties. OverC, a zero-dimensional variety is
nothing more than a finite set (finite disjoint union of copiesA0). Over R, a connected
zero-dimensional varietyV is either geometrically connected (e.g.,A0

R) or geometrically
nonconnected (e.g.,V : X2 + 1; subvariety ofA1), in which caseV (C) is a conjugate pair
of complex points. Thus, one sees that to give a zero-dimensional variety overR is to give
a finite set with an action ofGal(C/R).

Similarly, a connected varietyV over R may be geometrically connected, or it may
decompose overC into a pair of conjugate varieties. Consider, for example, the following
subvarieties ofA2:

L : Y + 1 is a geometrically connected line overR;
L′ : Y 2 +1 is connected overR, but overC it decomposes as the pair of conjugate lines

Y = ±i.
Note thatR is algebraically closed5 in

R[L] = R[X, Y ]/(Y + 1) ∼= R[X]

but not in

R[L′] = R[X, Y ]/(Y 2 + 1) ∼=
(
R[Y ]/(Y 2 + 1)

)
[X]∼= C[X].

PROPOSITION1.1. A connected varietyV over a fieldk is geometrically connected if and
only if k is algebraically closed ink(V ).

PROOF. This follows from the statement: letA be a finitely generatedk-algebra such that
A is an integral domain andA ⊗k kal is reduced; thenA ⊗ kal is an integral domain if and
only if k is algebraically closed inA (Zariski and Samuel 1958, III 15, Theorem 40).

PROPOSITION1.2. To give a zero-dimensional varietyV overQ is to give (equivalently)

(a) a finite setE plus, for eache ∈ E, a finite field extensionQ(e) of Q, or

(b) a finite setS with a continuous6 (left) action ofΣ =df Gal(Qal/Q).7

PROOF. The underlying topological spaceV of a zero-dimensional variety(V,OV ) is finite
and discrete, and for eache ∈ V , Γ(e,OV ) is a finite field extension ofQ.

The setS in (b) is V (Qal) with the natural action ofΣ. We can recover(V,OV ) from
S as follows: letV be the setΣ\S of orbits endowed with the discrete topology, and, for
e = Σs ∈ Σ\S, let Q(e) = (Qal)Σs whereΣs is the stabilizer ofs in Σ; then, forU ⊂ V ,
Γ(U,OV ) =

∏
e∈UQ(e).

5A field k is algebraically closed in ak-algebraA if everya ∈ A algebraic overk lies ink.
6This means that the action factors through the quotient ofGal(Qal/Q) by an open subgroup (all open

subgroups ofGal(Qal/Q) are of finite index, but not all subgroups of finite index are open).
7The cognoscente will recognize this as Grothendieck’s way of expressing Galois theory overQ.
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PROPOSITION1.3. Given a varietyV overQ, there exists a mapf : V → π from V to a
zero-dimensional varietyπ such that, for alle ∈ π, the fibreVe is a geometrically connected
variety overQ(e).

PROOF. Let π be the zero-dimensional variety whose underlying set is the set of connected
components ofV overQ and such that, for eache = Vi ∈ π, Q(e) is the algebraic closure
of Q in Q(Vi). Apply (1.1) to see that the obvious mapf : V → π has the desired property.

EXAMPLE 1.4. LetV be a connected variety over aQ, and letk be the algebraic closure
of Q in Q(V ). The mapf : V → Specm k realizesV as a geometrically connected variety
overk. Conversely, for a geometrically connected varietyf : V → Specm k over a number
field k, the composite off with Specm k → Specm Q realizesV as a variety overQ
(connected, but not geometrically connected ifk 6= Q).

EXAMPLE 1.5. Letf : V → π be as in (1.3). When we regardπ as a set with an action of
Σ, then its points are in natural one-to-one correspondence with the connected components
of VQal (equivalentlyVC) and itsΣ-orbits are in natural one-to-one correspondence with the
connected components ofV . Lete ∈ π and letV ′ = f−1

Qal (e) — it is a connected component
of VQal. Let Σe be the stabilizer ofe; thenV ′ arises from a geometrically connected variety

overQ(e)
df
= QΣe.

Easy descent theory

By descent (in these notes), I mean passing from objects overC to objects overQ. One
of the themes of these notes is that information on objects overQ (hence, possessing an
interesting arithmetic) can be obtained from information on objects overC (hence, involv-
ing only analysis). Easy descent describes the information overC needed to determine a
variety overQ. Hard descent (see§3 below) will say which sets of information arise from
varieties overQ.

Let A = Aut(C) (automorphisms ofC as an abstract field). There are two obvious
automorphisms, namely, thez 7→ z andz 7→ ιz (complex conjugation), and the remainder
can be constructed as follows. Recall that a transcendence basisB for C over Q is an
algebraically independent set such thatC is algebraic overQ(B). Transcendence bases
exist (FT 8.13),8 and any two have the same cardinality. Choose transcendence basesB
and C for C over Q; then any bijectionσ : B → C defines an isomorphism of fields
σ : Q(B)→ Q(C), which extends to an automorphism ofC (cf. FT 6.5).

For a vector spaceV overQ,A acts onV (C) =df C⊗Q V through its action onC:

σ(
∑

zi ⊗ vi) =
∑

σzi ⊗ vi, σ ∈ A, zi ∈ C, vi ∈ V.

LEMMA 1.6. Let V be a vector space overQ, and letW be a subspace ofC ⊗ V . If W
is stable under the action ofA, thenW ∩ V spansW (and soC⊗Q (W ∩ V )→ W is an
isomorphism).

8This requires the Axiom of Choice. Probably, I could rewrite the notes to avoid assuming the Axiom of
Choice, but that would complicate things.



1 PRELIMINARIES 7

PROOF. First note thatCA = Q, i.e., everyz ∈ C r Q is moved by an element ofA: if z
is transcendental, it is part of a transcendence basis forC overQ, and any permutation of
the transcendence basis extends to an automorphism ofC; if z is algebraicQ, it is moved
by an automorphism ofQal, which extends to an automorphism ofC.

Next note that(C ⊗Q V )A = V . To see this, choose9 a basis(ei)i∈I for V , and let
v =

∑
zi ⊗ ei ∈ C⊗Q V . Thenσv =

∑
σzi ⊗ ei for σ ∈ A, and sov is fixed byA if and

only if eachzi is fixed.
We now prove the lemma. LetW ′ be a complement ofW ∩ V in V , so that

V = (W ∩ V )⊕W ′.

If W ∩ V doesn’t spanW , there will exist a nonzerow ∈ W in theC-span ofW ′. Choose
a basis(ei)i∈I for W ′, and write

w =
∑

i∈Iciei (ci ∈ C).

We may suppose thatw has been chosen so that the sum has the fewest nonzero coefficients
ci, and, after scaling, thatci0 = 1 for somei0 ∈ I. Forσ ∈ A, σw − w ∈ W and

σw − w =
∑

i6=i0
(σci − ci)ei

has fewer nonzero coefficients thanw, and soσw − w = 0. Since this holds for allσ,
w ∈ W ∩ (V ⊗ C)A = W ∩ V , which is a contradiction because

C⊗ V = (C⊗ (W ∩ V ))⊕ (C⊗W ′) .

PROPOSITION1.7. Let V be a variety overQ, and letW be a closed subvariety ofVC.
If W (C) is stable under the action ofA on V (C), thenW = W0C for a (unique) closed
subvarietyW0 of V .

PROOF. Suppose first thatV is affine, and letI(W ) ⊂ C[VC] be the ideal of functions
zero onW . BecauseW is stable underA, so also isI(W ), and soI(W ) is spanned by
I(W )∩Q[V ] (Lemma 1.6). Therefore, the zero-set ofI(W )∩Q[V ] is a closed subvariety
W0 of V with the property thatW = W0C.

To deduce the general case, coverV with open affines.

PROPOSITION1.8. Let V andW be varieties overQ, and letf : VC → WC be a regular
map. If f commutes with the actions ofA on V (C) and W (C), thenf arises from a
(unique) regular mapV → W overQ.

PROOF. Apply Proposition 1.7 to the graph off , Γf ⊂ (V ×W )C.

COROLLARY 1.9. A varietyV overQ is uniquely determined (up to a unique isomorphism)
byVC together with the action ofA onV (C).

PROOF. An isomorphismVC → V ′
C commuting with the actions ofA arises from a unique

isomorphismV → V ′.

REMARK 1.10. Proposition 1.8 says that the functorV 7→ (VC,A-action) is fully faithful.
Later (hard descent theory) we shall determine the essential image of the functor, i.e., the
pairs that arise (up to isomorphism) from varieties overQ.

9Axiom of Choice again since we are not assumingV to be finite dimensional.
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Adèles

Let Ẑ =
∏

`Z` (product over the prime numbers2, 3, 5, . . .). As eachZ` is compact,
Tikhonov’s theorem shows that̂Z is a compact topological ring. It equals the inverse limit
lim←−Z/mZ.

Thering Af of finite ad̀elesis defined to be the subring of
∏

`Q` consisting of families
(a`)` such thata` ∈ Z` for almost all10 `. ThusAf ⊃ Ẑ and consists of theα ∈

∏
`Q`

such thatmα ∈ Ẑ for somem. In fact,Af
∼= Q ⊗Z Ẑ. When endowed with the topology

for which Ẑ is an open subring,Af becomes a locally compact topological ring. A basis of
neighbourhoods of0 is formed by the sets

∏
U` with U` an open neighbourhood of0 in Z`

for all ` and equal toZ` for almost all`.
Similarly, for G = Gm (=df GL1), SL2, GL2 etc., define the topological groupG(Af )

to be
{(a`) ∈

∏
`G(Q`) | a` ∈ G(Z`) for almost all`}

endowed with the topology for which
∏

`G(Z`) is an open subgroup. It is locally compact.
We embedG(Q) in G(Af ) diagonally,a 7→ (a, a, a, . . .).

For example,Gm(Af ) = A×
f (thegroup of finite id̀eles) is the topological group

A×
f = {(a`) ∈

∏
Q×

` | a` ∈ Z×
` for almost all`}

endowed with the topology for whicĥZ× =
∏

Z×
` is an open subgroup. A basis for the

neighbourhoods of1 is formed by the sets
∏

U` with U` an open neighbourhood of1 in Z×
`

for all ` and equal toZ` for almost all`. Note thatA×
f is the group of units inAf , but the

topology on it is stronger (has more open subsets) than the subspace topology.11

LEMMA 1.11. The fieldQ (embedded diagonally) is dense inAf .

PROOF. It suffices to prove the following statement: given anε > 0 and elementsa` ∈ Q`

for ` in a finite setS, there exists ana ∈ Q such that

|a− a`|` < ε for ` ∈ S, and

|a|` ≤ 1 for ` /∈ S.

After replacing thea` with ma` for somem ∈ Z (and possibly changingε andS), we may
suppose that thea` lie in Z`. The Chinese remainder theorem states that

Z→
∏

`∈SZ/`n(`)Z

is surjective for all families(n(`))`∈S, n(`) > 0. Any a ∈ Z having the same image in∏
`∈SZ/`n(`)Z as(a`)`∈S for sufficiently largen(`) will satisfy the requirement.

THEOREM 1.12 (STRONG APPROXIMATION). The groupSL2(Q) is dense inSL2(Af ).

10This means “for all but (possibly) finitely many”.
11Let α(n) be the id̀ele whosenth component is thenth prime and whose other components are1. Then

α(n)→ 1 asn→∞ in Af but not inA×f .
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PROOF. For any fieldk, SL2(k) is generated by the subgroups

A(k) =

{(
1 a
0 1

)∣∣∣∣ a ∈ k

}
, B(k) =

{(
1 0
b 1

)∣∣∣∣ b ∈ k

}
.

This follows, for example, from the equalities:(
1 a−1

c

0 1

) (
1 0
c 1

) (
1 d−1

c

0 1

)
=

(
a ad−1

c

c d

)
, c 6= 0,(

1 0
a−1−1

b
1

) (
1 b
0 1

) (
1 0

a−1
b

1

)
=

(
a b
0 1

a

)
, a, b 6= 0,(

1 −ba
0 1

) (
1 0

a−1−1
b

1

) (
1 b
0 1

) (
1 0

a−1
b

1

)
=

(
a 0
0 1

a

)
, a, b 6= 0.

In fact, the equalities show that, for any finite set of primesS,
∏

`∈S SL2(Q`) is generated
by its subgroups

∏
`∈SA(Q`) and

∏
`∈SB(Q`).

We now prove the theorem. According to the lemma,A(Af ) andB(Af ) are contained
in the closure ofSL2(Q) (even ofA(Q) andB(Q)). Thus, the closure ofSL2(Q) contains∏

`∈S SL2(Q`)×
∏

` 6=S1 for every finite setS of primes, and these sets are obviously dense12

in SL2(Af ).

REMARK 1.13. The strong approximation theorem fails in each of the following cases:

(a) Gm: the groupQ× is not dense inA×
f .13

(b) PGL2: the determinant defines surjections

PGL2(Q)→ Q×/Q×2

PGL2(Af )→ A×
f /A×2

f

andQ×/Q×2 is not dense inA×
f /A×2

f .

(c) The algebraic groupG overQ such thatG(Q) is the group of elements of norm1 in
a quaternion division algebraD overQ for which D ⊗ R is also a division algebra
(hence isomorphic to the usual (Hamiltonian) quaternions). The proof in the case of
SL2 fails becauseG has no unipotent subgroupsA, B, but the key reason that strong
approximation fails forG is thatG(R) is compact, which forcesG(Q) to be too
small.

These examples essentially exhaust the counterexamples to strong approximation: the gen-
eral theorem says thatG(Q) is dense inG(Af ) wheneverG is a simply connected semisim-
ple group overQ without aQ-factor H for which H(R) is compact (Platonov and Rap-
inchuk 1994, Theorem 7.12, p427).

12Let a = (a`) ∈ SL2(Af ) and letU be an open neighbourhood of1. After possibly replacingU with a
smaller open neighbourhood, we may suppose thatU =

∏
U`. Let S be a finite set of primes containing all`

for whicha` /∈ SL2(Z`) or U` 6= SL2(Z`). Thena · U contains an element of
∏

`∈S SL2(Q`)× 1.
13Let (a`)` ∈

∏
Z×` ⊂ A×f and letS be a finite set. IfQ× is dense, there is ana ∈ Q× that is close toa`

for ` ∈ S and aǹ -adic unit for` /∈ S. But such ana would be aǹ -adic unit for all`, hence equal to±1,
and so this is not always possible.
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1.14 (CONGRUENCE SUBGROUPS OFSL2(Q)). The open subgroups ofSL2(Af ) are those
containing a basic open subgroup:

U =
∏

`U`, U` open subgroup ofSL2(Q`) for all `, U` = SL2(Z`) for almost all`.

For a primè andn ≥ 0, let

U`(n) =

{(
a b
c d

)
∈ SL2(Z`)

∣∣∣∣ (
a b
c d

)
≡

(
1 0
0 1

)
mod `n

}
.

Thus,
U`(n) = SL2(Z`) ⇐⇒ n = 0.

For a fixed̀ , theU`(n) form a basis of neighbourhoods of1 in SL2(Q`).
For a positive integerN , let

K(N) =
∏

`U`(ord`(N)).

Then theK(N) form a basis of neighbourhoods of1 in SL(Af ), and

K(N) ∩ SL2(Q) = Γ(N).

Thus, for any open subgroupU of SL2(Ẑ), Γ = U ∩ SL2(Q) is a congruence subgroup of
SL2(Z). In fact,Γ is dense inU , and so there is a one-to-one correspondence between the
congruence subgroups ofSL2(Z) and the open subgroupsSL2(Ẑ):

Γ↔ U, Γ = U ∩ SL2(Z), U = closure ofΓ.

We define acongruence subgroup ofSL2(Q) to be any subgroup of the form

K ∩ SL2(Q)

with K a compact open subgroup ofSL2(Af ). A congruence subgroup is commensurable14

with SL2(Z) and containsΓ(N) for someN . It is a congruence subgroup ofSL2(Z) when
it is contained inSL2(Z).

ASIDE 1.15. LetV be a2-dimensional vector space overQ, and letG = SL(V ), i.e.,G is
the algebraic group overQ such that, for anyQ-algebraR,

G(R) = {α ∈ EndR(V (R)) | det(α) = 1}.

Choose a latticeΛ in V , and define

G(Af ) = {(a`) ∈
∏

G(Q`) | a`Λ` = Λ` for almost all`}
14Two subgroupsH1 andH2 of a group are said to becommensurableif H1∩H2 has finite index both inH1

and inH2. Evidently, ifH1 andH2 are both compact and open, thenH1/H1∩H2 andH2/H1∩H2 are both
compact and discrete, and soH1 andH2 are commensurable. In particular, any two compact open subgroups
of SL2(Af ) are commensurable, which implies that their intersections withSL2(Q) are commensurable.

In general, a subgroup ofSL2(Q) commensurable withSL2(Z) is said to be anarithmetic subgroup. Not
all arithmetic subgroups are congruence.
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whereΛ` = Z` ⊗ Λ. If Λ′ is a second lattice inV , thenΛ` = Λ′
` for almost all`, and

soG(Af ) is independent of the choice ofΛ. EndowG(Af ) with the obvious topology. A
congruence subgroup ofG(Q) is any subgroup of the formK ∩ G(Q) with K a compact
open subgroup ofG(Af ). The choice of a basis forV determines an isomorphismG ≈ SL2

under which the notions of congruence subgroup coincide. An advantage of the adèlic
approach is that it only requires an algebraic group overQ (i.e., there is no need for a
Z-structure).
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2 Elliptic modular curves over C
We shall define a curveSK overC which is a finite disjoint union of the curvesS◦

Γ = Γ\X+

considered in the introduction, and we shall realize it as a moduli variety for elliptic curves
with level structure. In the next section, we shall see that, unlikeS◦

Γ, SK always has a
canonical model overQ.

The curveS◦Γ as a double coset space

PROPOSITION2.1. LetK be a compact open subgroup ofSL2(Af ), and let

Γ = K ∩ SL2(Q)

be the corresponding congruence subgroup ofSL2(Q). The mapx 7→ [x, 1] defines a
bijection

Γ\X+ ∼= SL2(Q)\X+ × SL2(Af )/K. (1)

Here SL2(Q) acts on bothX+ and SL2(Af ) on the left, andK acts onSL2(Af ) on the
right:

q · (x, a) · k = (qx, qak), q ∈ SL2(Q), x ∈ X+, a ∈ SL2(Af ), k ∈ K.

When we endowX+ with its usual topology andSL2(Af ) with the ad̀elic topology (equiv-
alently, the discrete topology), this becomes a homeomorphism.

PROOF. Consider

x 7→ [x, 1] : X+ → SL2(Q)\X+ × SL2(Af )/K.

Forγ ∈ Γ = K ∩ SL2(Q),

(γx, 1) = (γx, γ · γ−1) = γ(x, 1)γ−1,

and so
[γx, 1] = [x, 1].

Thus, the map factors throughΓ\X+.
By definition, [x, 1] = [x′, 1] if and only if there existq ∈ SL2(Q) andk ∈ K such

thatx′ = qx, 1 = qk. The second equation implies thatq = k−1 ∈ Γ, and so[x] = [x′] in
Γ\X+. We have shown that

[x] 7→ [x, 1] : Γ\X+ → SL2(Q)\X+ × SL2(Af )/K

is injective, and it remains to show that it is surjective. Let[x, a] be an element of the
target space. BecauseK is open, the strong approximation theorem (1.12) shows that
SL2(Af ) = SL2(Q) ·K. Write a = q · k, q ∈ SL2(Q), k ∈ K. Then

(x, a) = (x, qk) = q(q−1x, 1)k
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and so
[q−1x] 7→ [x, a].

Consider
X+ x 7→(x,[1])−−−−−→ X+ × (SL2(Af )/K)y y

Γ\X+ [x] 7→[x,1]−−−−−→ SL2(Q)\X+ × SL2(Af )/K.

As K is open,SL2(Af )/K is discrete, and so the upper map is a homeomorphism ofX+

onto its image, which is open. It follows easily that the lower map is a homeomorphism.

ASIDE 2.2. (a) What happens when we pass to the inverse limit overΓ? There is a map

X+ → lim←−Γ\X+

which is injective because∩Γ = {1}. Is the map surjective? The example

Z→ lim←−Z/mZ = Ẑ

is not encouraging — it suggestslim←−Γ\X+ might be some sort of completion ofX+ rela-
tive to theΓ’s. This is correct. In fact, when we pass to the limit on the right in (1), we get
the obvious answer, namely,

lim←−K SL2(Q)\X+ × SL2(Af )/K = SL2(Q)\X+ × SL2(Af ).

Why the difference? Well, given an inverse system(Gi)i∈K of groups acting on an inverse
system(Si)i∈I of topological spaces, there is always a canonical map

lim←−Gi\ lim←−Si → lim←− (Gi\Si)

and it is known that, under certain hypotheses, the map is an isomorphism (Bourbaki 1989,
III §7). The system on the right in (1) satisfies the hypotheses; that on the left doesn’t.

(b) Why replace the single coset space on the left with the more complicated double
coset space on the right? One reason is that it makes transparent the action ofSL2(Af ) on
the inverse system(Γ\X+)Γ, and hence, for example, the action ofSL2(Af ) on

lim−→H1(Γ\X+, Q).

Another reason will be seen presently — we defineSK as a double coset. Double coset
spaces are pervasive in work on the Langlands program.15

15Casselman 2001, p220, writes: Tamagawa tells me it might have been Taniyama who first noticed that
one could translate classical automorphic forms to certain function on adèle quotients.
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A finiteness statement

LEMMA 2.3. For any compact open subgroupK of GL2(Af ),

Q×\{±} × A×
f / det K

is finite and discrete. Here{±} = {+,−} is a discrete two-element set,Q× acts on both
sets on the left, anddet K acts onA×

f on the right.

PROOF. The map

(r, (u`)`) 7→ (sign(r), (ru`)`) : Q× ×
∏

Z×
` → {±} × A×

f

is a topological isomorphism (discrete topology onQ×) — cf. CFT V 5.9. Therefore,

Q×\{±} × A×
f
∼= Ẑ×,

which is compact. On the other hand,det(K) is open, and so
(
{±} × A×

f

)
/ det(K) is

discrete. On combining these statements, we find thatQ×\{±} × A×
f / det K is compact

and discrete, and is therefore finite.

REMARK 2.4. From the projection

{±} × A×
f → A×

f

we obtain a topological isomorphism

Q×\{±} × A×
f → Q>0\A×

f

and hence a bijection

Q×\{±} × A×
f / det K → Q>0\A×

f / det K.

The curveSK

Let X be the complex plane with the real axis removed:

X = C r R = X+ tX−.

ThenGL2(R) acts transitively onX:

α(z) =
az + b

cz + d
, α =

(
a b
c d

)
∈ GL2(R). (2)

Note that

=(αz) = =
(

az + b

cz + d

)
= =

(
(az + b)(cz̄ + d)

|cz + d|2

)
=
=(adz + bcz̄)

|cz + d|2
=

(ad− bc) · =(z)

|cz + d|2
,

and soα preserves the upper half-plane or interchanges it with the lower half-plane accord-
ing asdet(α) > 0 or det(α) < 0.
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LEMMA 2.5. LetK be a compact open subgroup ofGL2(Af ). For anya0 ∈ GL2(Af ), the
fibre of

[x, a] 7→ [[x], det a] : GL2(Q)\X ×GL2(Af )/K → Q×\{±} × A×
f / det(K)

containing[X+, a0] is

SL2(Q)\
(
X+ × SL2(Af ) · a0

)
/K ∩ SL2(Af ).

PROOF. We shall use the following (obvious) statement:

(*) Let G be a group, and letf : A → B be a map ofG-sets; for eachb ∈ B,
the fibre ofG\A → G\B overG · b is Gb\f−1(b) whereGb stabilizer ofb in
G.

We apply this first to

(x, a) 7→ ([x], det a) : X ×GL2(Af )→ {±} × A×
f

regarded as a map ofGL2(Q)-sets. Note thatGL2(Q) acts on{±}×A×
f through its quotient

Q×. For any(+, b) ∈ {+} × A×
f , the stabilizer of(+, b) in GL2(Q) is SL2(Q), and so (*)

shows that the fibre of

GL2(Q)\X ×GL2(Af )→ Q×\{±} × A×
f

overQ× · (+, b) is SL2(Q)\X+ × SL2(Af ) · a0 wherea0 is any element ofGL2(Af ) with
det(a0) = b.

Next note thatK acts onQ×\{±} × A×
f through its quotientdet(K). For any[+, b] ∈

Q×\{±}×A×
f the stabilizer of[+, b] in K is K ∩ SL2(Af ), and so (*) shows that the fibre

over [+, b] is
SL2(Q)\

(
X+ × SL2(Af ) · a0

)
/K ∩ SL2(Af )

with a0 as before.

REMARK 2.6. Of course, the lemma holds with+ replaced by−, but we won’t need this
because every fibre of the map contains[X+, a] for somea.

On takinga0 = 1 in the lemma, we obtain a fibre product diagram:

SL2(Q)\X+ × SL2(Af )/K ∩ SL2(Af ) ⊂- GL2(Q)\X ×GL2(Af )/K

{[+, 1]}
?

⊂ - Q×\{±} × A×
f / det(K).

sign×det
?

Therefore, according to (2.1), the fibre over[+, 1] is the connected curveΓ\X+ with Γ =
K ∩ SL2(Q). A similar remark applies to all fibres.
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PROPOSITION2.7. LetK be a compact open subgroup ofGL2(Af ), and letb1, . . . , bh be a
set of representatives inA×

f for the orbits inQ>0\A×
f . For eachi, choose anai ∈ GL2(Af )

with det(ai) = bi, and letΓi = SL2(Q) ∩ aiKa−1
i . ThenΓi is a congruence subgroup of

SL2(Q), and the maps

[xi] 7→ [xi, ai] : Γi\X+ → GL2(Q)\X ×GL2(Af )/K (3)

define a topological isomorphism∐
Γi\X+ → GL2(Q)\X ×GL2(Af )/K. (4)

PROOF. Clearly,SL2(Af ) ∩ aiKa−1
i is a compact open subgroup ofSL2(Af ), and so its

intersection withSL2(Q) is a congruence subgroup. We have canonical isomorphisms

Γi\X+ (2.1)−−−−−−→ SL2(Q)\X+ × SL2(Af )/ SL2(Af ) ∩ aiKa−1
i

[x,a] 7→[x,a·ai]−−−−−−−→ SL2(Q)\X+ × SL2(Af ) · ai/ SL2(Af ) ∩K
(2.5)−−−−−−→ fibre over[+, bi] in Q×\{±} × A×

f / det K.

Thus, the statement follows from Lemma 2.3.

DEFINITION 2.8. For a compact open subgroupK of GL2(Q), SK is the algebraic curve
overC for which

SK(C) = GL2(Q)\X ×GL2(Af )/K

and (4) is an isomorphism of Riemann surfaces.

Thus,SK is an algebraic curve overC such that

(a) the set of connected components ofSK ,

π0(SK) ∼= Q×\{±} × A×
f / det(K)

(b) each connected component ofSK is a curveS◦
Γ for a suitable congruence subgroup

Γ of SL2(Q).

REMARK 2.9. For varyingK, the SK form a variety (scheme) with a right action of
GL2(Af ) in the sense of Deligne 1979, 2.7.1. This means the following:

(a) theSK form an inverse system of algebraic curves indexed by the compact open
subgroupsK of GL2(Af ) (if K ⊂ K ′, there is an obvious quotient mapSK′ → SK);

(b) there is an actionρ of GL2(Af ) on the system(SK)K defined by isomorphisms (of
algebraic curves)ρK(a) : SK → Sg−1Kg (on points,ρK(a) is [x, a′] 7→ [x, a′a]);

(c) for k ∈ K, ρK(k) is the identity map; therefore, forK ′ normal inK, there is an
action of the finite groupK/K ′ on SK′; the curveSK is the quotient ofSK′ by the
action ofK/K ′.
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REMARK 2.10. When we regard theSK as schemes, the inverse limit of this system in
(2.9) exists16:

S = lim←−SK .

This is a scheme overC, not(!) of finite type, with a right action ofGL2(Af ), and, forK a
compact open subgroup ofGL2(Af ),

SK = S/K

(Deligne 1979, 2.7.1). Thus, the system(SK)K together with its right action ofGL2(Af )
can be recovered fromS with its right action ofGL2(Af ). Moreover,

S(C) ∼= lim←−SK(C) = lim←−G(Q)\X ×G(Af )/K ∼= G(Q)\X ×G(Af ).

The first isomorphism follows from the definition of inverse limits,

S(C)
df
= Hom(Spec C, S) ∼= lim←− Hom(Spec C, SK)

df
= lim←−SK(C),

and the second requires Bourbaki 1989, III 7.2.

REMARK 2.11. The curvesS◦
Γ for Γ a torsion-freecongruence subgroup ofSL2(Q) have

the following remarkable property: every holomorphic mapV → S◦
Γ from a smooth com-

plex algebraic varietyV to S◦
Γ is a morphism of algebraic varieties (Borel 1972, 3.10). Note

that this is false without the condition thatΓ be torsion-free:S◦
Γ(1) ≈ A1 and there are cer-

tainly holomorphic mapsA1(C) → A1(C), i.e.,C → C, that are not regular, for example,
ez.

Re-interpretation of X

Let V be a finite dimensional vector space overR. By acomplex structureon V we mean
anR-linear action ofC onV , i.e., a homomorphism ofR-algebrash : C→ EndR(V ).

PROPOSITION2.12. The following sets are in natural one-to-one correspondence:

(a) the complex structures onV ;

(b) the endomorphismsJ of V such thatJ2 = −1;

16Let (Ai)i∈I be a direct system of commutative rings indexed by a directed setI, and letA = lim−→Ai.
Then, for any schemeX,

Hom(X, Spec A) ∼= Hom(A,Γ(X,OX)) ∼= lim←−Hom(Ai,Γ(X,OX)) ∼= lim←−Hom(X, Spec Ai).

(For the first and third isomorphisms, see Hartshorne 1977, II, Exercise 2.4; the middle isomorphism is the
definition of direct limit). This shows thatSpec A is the inverse limit of the inverse system(Spec Ai)i∈I in
the category of schemes. More generally, inverse limits of schemes in which the transition morphisms are
affine exist, and can be constructed in the obvious way. In our case, the schemesSK , being noncomplete
curves, are themselves affine.
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(c) the pairs17 of subspaces(V +, V −) of V (C) such thatιV + = V − andV (C) = V +⊕
V − (hereι denotes complex conjugationι⊗ 1 onC⊗ V = V (C));

(d) (casedim V = 2) the nonreal linesW in V (C) passing through0 (nonreal means
W 6= ιW ).

PROOF. (a)↔(b). Given a complex structureh, takeJ = h(i). Conversely, givenJ , let C
act through the isomorphisma + bi 7→ a + bJ : C→ R[J ].

(b)↔(c). GivenJ , defineV + andV − to be the+i and−i eigenspaces of1⊗ J acting
on C ⊗ V . Conversely, given(V +, V −), defineJ to be the operator onV (C) that acts as
+i on V + and−i on V −. BecauseV + andV − are complex conjugates of each other,J
commutes with the action ofι,18 and so preservesV ⊂ V (C).

(c)→(a). The mapV → V (C)/V − is an isomorphism of real vector spaces, and soV
acquires a complex structure from that onV (C)/V −.

(c)↔(d). The subspaceV − determines the pair(V +, V −), and it can be any nonreal
line whendim V = 2; we let(V +, V −)↔ V −.

2.13. Now takeV to have dimension2, and letY be the set of complex structures onV . Let
P1 = P (V ), the projective space of lines through0 in V (C). The map sending a complex
structure(V +, V −) on V to V − is a bijection fromY ontoP1(C) r P1(R). This bijection
endowsY with the structure of a complex manifold. Note that

C r R = P1(C) r P1(R).

The choice of a basis forV identifiesY with X.

ASIDE 2.14. Observe that the map

z 7→ z − i

z + i
(5)

sendsi to 0 and the real line onto the unit circle|z| = 1 (because, ifz is real, thenz − i is
the complex conjugate ofz + i). Therefore, it mapsX+ isomorphically (conformally) onto
the interior of the disk, and it mapsX isomorphically ontoP1(C) r {unit circle}.

Elliptic curves over C
DefineT to be the category:

17The cognoscente will recognize this as a Hodge structure of type(−1, 0), (0,−1) on V . Implicitly, we
are using Deligne’s convention (Deligne 1979, 1.3) thath(z) acts onV p,q asz−pz̄−q.

18Let x ∈W+, y ∈W−. Then

ιJ(x + y) = ι(ix− iy) (definition ofJ)

= −iιx + iιy (ι is semilinear)

= J(ιx + ιy) (ι switchesW+ andW−).
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OBJECTS: triples (V, J, Λ) with V a two-dimensional real vector space,J a complex
structure onV , andΛ a lattice inV ;

M ORPHISMS: a morphism(V, J, Λ) → (V ′, J ′, Λ′) is anR-linear mapα : V → V ′ such
thatJ ′ ◦ α = α ◦ J ′ andαΛ ⊂ Λ′.

Let Ell(C) be the category of elliptic curves overC.

THEOREM 2.15. The functor

(V, J, Λ) 7→ (V, J)/Λ: T →Ell(C)

is an equivalence of categories.

PROOF. By (V, J)/Λ we mean the quotient of the one-dimensional complex vector space
(V, J) by the latticeΛ. Certainly,(V, J, Λ) 7→ (V, J)/Λ defines a functor fromT to the
category of compact Riemann surfaces of genus1 provided with a “zero”. That it is fully
faithful (i.e., bijective on arrows) follows from EC 10.3. Now(V, J)/Λ has a unique struc-
ture of a nonsingular algebraic curve of genus1 (cf. footnote 2, p3, or use℘ and℘′ to
embed(V, J)/Λ in P2). Thus, we have a fully faithful functorT → Ell(C), and to show
that it is an equivalence of categories, it remains to show that every elliptic curve over
C is isomorphic to a curve of the form(V, J)/Λ. In fact, every elliptic curve overC is
isomorphic to a curve of the formC/Λ (EC 10.14).

REMARK 2.16. We can define a quasi-inverse to(V, J, Λ) 7→ (V, J)/Λ: T →Ell(C) as
follows: the Abel-Jacobi mapping

P 7→
(

ω 7→
∫ P

0

ω

)
: E(C)→ H0(E, Ω1)∨

H1(E(C), Z)

is an isomorphism (easy case of the Abel-Jacobi theorem, Fulton 1995, 20.25). Thus, we
can takeΛ = H1(E(C), Z) andV = H0(E, Ω1)∨ with its natural complex structure.

Alternatively, becauseΛ is a lattice inH0(E, Ω1)∨,

R⊗ Λ ∼= H0(E, Ω1)∨ ∼= Tgt0(E). (6)

Thus, we can takeΛ = H1(E, Z), V = H1(E, R) (∼= R⊗ Λ), andJ equal to the complex
structure onV defined by the canonical isomorphismV ∼= Tgt0(E).

Let Ell0(C) be the category19 whose objects are elliptic curves overC, but whose mor-
phisms are given by

Hom0(E1, E2) = Hom(E1, E2)⊗Q.

Let T 0 be the category whose objects are pairs(V, J) with V a two-dimensionalQ-vector
space andJ a complex structure onV ⊗ R.

19This is called the category of “elliptic curves up to isogeny” — see Mumford 1970, p172. Presumably
the name was suggested by the fact that two elliptic curves are isomorphic inEll0(C) if and only if they are
isogenous. The name is unfortunate: a bit like referring toEll(C) as the category of elliptic curves up to
isomorphism. However, we seem to be stuck with it.
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COROLLARY 2.17. There is an equivalence of categoriesT 0→Ell0(C).

PROOF. Obviously, the functor in (2.15) defines an equivalence ofEll0(C) with the cate-
gory obtained fromT by tensoring theHom’s with Q, but the functor(V, J, Λ) 7→ (Q ⊗Z
Λ, J) is an equivalence of this category withT 0.

The above results are not difficult to prove, but they and their higher dimensional ana-
logues are quite remarkable: they show that the study of elliptic curves and abelian varieties
overC, which are richly interesting objects, is nothing more than linear algebra. Note that
for an automorphismσ of C and an elliptic curveE, the curveσE makes sense — it is
the elliptic curve obtained by applyingσ to the coefficients of a polynomial definingE —
whereas, applyingσ to an object ofT has no obvious meaning (except via the equivalence
of T with Ell(C)).

NOTATIONS 2.18. For an elliptic curveE overC, we let

TfE = H1(E, Z)⊗ Ẑ, VfE = H1(E, Z)⊗ Af .

If E(C) = (V, J)/Λ, then

H1(E, Z) ∼= Λ, H1(E, Q) ∼= Q⊗ Λ,

and so
TfE = Λ⊗ Ẑ, VfE = Λ⊗ Af .

In particular,TfE is a freeẐ-module of rank2, andVfE is a freeAf -module of rank2.
Let E[N ] denote the subgroup ofE(C) of points killed byN . If E(C) = (V, J)/Λ,

then
E[N ] ∼= 1

N
Λ/Λ ∼= Λ/NΛ,

and so, on passing to the inverse limit, we find that

TfE ∼= lim←−E[N ]

and
Vf (E) ∼= TfE ⊗Q.

Note thatE 7→ VfE is a functor on bothEll(C) andEll0(C), butE 7→ TfE is a functor
only onEll(C).

Elliptic modular curves as parameter spaces overC
Now fix a two-dimensionalQ-vector spaceV , and letG = GL(V ), i.e.,G is the algebraic
group overQ such thatG(R) = AutR(V (R)) for anyQ-algebraR. In particular,

G(Af ) = AutAf
(V (Af )).

We now defineX to be the set of complex structuresJ on V (R) (cf. 2.13), and we let
G(Q) act onX by conjugation:

qJ = q ◦ J ◦ q−1.
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The choice of a basis forV identifiesG with GL2, X with the space inC r R, and the
action ofG onX with that in (2), but making such a choice would only confuse things.

For a compact open subgroupK of G(Af ), let SK be the (nonconnected) algebraic
curve overC such that

SK(C) = G(Q)\X ×G(Af )/K

(see 2.8).
Consider the setE of pairs(E, η) with E an elliptic curve overC andη anAf -linear

isomorphism
V (Af )→ Vf (E).

An isomorphism(E, η)→ (E ′, η′) is an isomorphismα : E → E ′ in Ell0(C) such that

V (Af )

	�
�

�η @
@

@
η′

R

Vf (E)
Vf (α)

- Vf (E
′)

commutes. There is a natural action ofG(Af ) onE ,

E ×G(Af )→ E , (E, η), a 7→ (E, η ◦ a),

which preserves isomorphism classes:(E, η)
α
≈ (E ′, η′) =⇒ (E, η ◦ a)

α
≈ (E ′, η′ ◦ a).

V (Af )

��
�
�
�
�
�
�
�

η◦a

A
A
A
A
A
A
A
A

η′◦a

U

V (Af )

a

?

	�
�

�η @
@

@
η′

R

Vf (E)
Vf (α)

- Vf (E
′).

Given(E, η) in E , choose an isomorphism

α : H1(E, Q)→ V .

Let J be the complex structure onV ⊗ R corresponding to the complex structure on
H1(E, R) (see 2.16), and leta be the composite

V ⊗ Af
η→ Vf (E)

α⊗1→ V (Af ).

Thus, from(E, η) and a choice ofα, we obtain a pair

(J, a) ∈ X ×G(Af ).

Whenα is replaced byq ◦ α, (J, α) is replaced by(qJ, qα), and so we have a well-defined
map

E → G(Q)\X ×G(Af ).
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PROPOSITION2.19. The map just defined gives a bijection

E/≈→ G(Q)\X ×G(Af ).

It is compatible with the action ofK, and therefore induces a bijection

(E/≈)/K → SK(C).

PROOF. Using (2.17), we see that isomorphism classes of pairs(E, η) are in one-to-one
correspondence with isomorphism classes of triples(W, J, a) whereW is a two-dimensional
Q-vector space,J is a complex structure onW , anda is an isomorphismV (Af )→ W (Af ).
But any such triple is isomorphic to one withW = V . ThusE/≈ is in one-to-one corre-
spondence with the isomorphism classes of pairs(J, a) whereJ is a complex structure on
V anda is an isomorphismV (Af ) → V (Af ), i.e., with isomorphism classes of pairs in
X ×G(Af ). An isomorphism(J, a)→ (J ′, a′) is an isomorphismq : V → V of Q-vector
spaces carryingJ to J ′ anda to a′. Thus, the isomorphism classes of pairs are the orbits of
X ×G(Af ) under the action ofG(Q) = Aut(V ).

It follows from the definitions that the bijection is compatible with the action ofK.
Therefore, on passing to the quotient, we obtain a bijection

(E/≈)/K → G(Q)\X ×G(Af )/K
df
= SK(C).

REMARK 2.20. LetK be a compact open subgroupG(Af ), and letE be an elliptic curve
overC. For an isomorphismη : V (Af )→ VfE, write [η]K for theK-orbit {η ◦ a | a ∈ K}
of η. DefineEK to be the set of pairs(E, [η]K). With the obvious notion of isomorphism
for objects inEK , there is a commutative diagram of bijections

(E/≈)/K
1:1−−−→ (G(Q)\X ×G(Af )) /Ky1:1

y1:1

EK/≈ 1:1−−−→ G(Q)\ (X ×G(Af )/K)

EXAMPLE 2.21. Choose a latticeΛ in V , and letK(N) be the subgroup ofG(Af ) stabi-
lizing Λ⊗ Ẑ (insideV ⊗Af ) and acting as the identity on(Λ⊗ Ẑ)/N(Λ⊗ Ẑ) (∼= Λ/NΛ).
Let E be an elliptic curve. Every isomorphism

ν : Λ/NΛ→ E[N ]

lifts to an isomorphism
ν̃ : Λ⊗ Ẑ→ TfE,

whose orbit̃ν ·K(N) is independent of the choice ofν̃. Let

η = ν̃ ⊗Q : V ⊗ Af → VfE.

Then(E, ν) 7→ (E, [η]) gives a bijection

{(E, ν)}/≈ → EK(N)/≈ .
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WhenV = R2 andΛ = Z2, K(N) is the group in (1.14), and an isomorphismν : (Z/NZ)2 →
E[N ] is a level-N structure onE. The mapβ

{(E, ν)}/≈ → Q×\{±} × A×
f /K(N) ∼= (Z/NZ)×

sends(E, ν) the composite

Z/NZ ∼=
∧2(Z/NZ)2

∧2
ν
→

∧2E[N ] ∼= µN(C) ∼= Z/NZ

the second isomorphism being defined by theeN -pairing and the last bye2πin/N 7→ n
mod N . This last map is a discrete invariant of(E, ν) — in fact, the only discrete invariant,
for the pairs with the same invariant lie in the connected family.

ASIDE 2.22. Every isomorphism class of triples(V, J, Λ) in T is represented by a triple in
which (V, J) = C, andΛ = Z⊕ Zz, z ∈ X+.

Elliptic modular curves as moduli varieties overC
In the previous subsection, we showed that there is a one-to-one correspondence between
the C-valued points ofSK and the isomorphism classes of elliptic curves overC with a
level K-structure. This by itself doesn’t determineSK : in fact, for any curveC over C,
C(C) has the same cardinality asC. In this subsection, we prove an additional property of
the correspondence that does determineSK uniquely (up to a unique isomorphism).

Definition of a moduli variety

A moduli problem(M,∼) overC consists of a contravariant functorM from the category
of algebraic varieties overC to the category of sets, and equivalence relations∼ on each of
the setsM(T ) that are compatible with morphisms in the sense that

m ∼ m′ =⇒ ϕ∗(m) ∼ ϕ∗(m′), m, m′ ∈M(S), ϕ : T → S.

A point t of a varietyT with coordinates inC can be regarded as a mapSpecm C → T ,
and so defines a map

m 7→ mt
df
= t∗m : M(T )→M(C).

A solution to the moduli problemis a varietyV overC together with a bijectionα : M(C)/∼
→ V (C) with the properties:

(a) For any varietyT overC andm ∈ M(T ), the mapt 7→ α(mt) : T (C) → V (C) is
regular (i.e., defined by a morphism of algebraic varieties);

(b) (Universality)Let Z be a variety overC and letβ : M(C) → Z(C) be a map such
that, for any pair(T,m) as in (a), the mapt 7→ β(ft) : T (C)→ Z(C) is regular; then
the mapβ ◦ α−1 : V (C)→ Z(C) is regular.

A varietyV that occurs as the solution of a moduli problem is called a(coarse) moduli
variety.
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PROPOSITION2.23. Up to a unique isomorphism, there exists at most one solution to a
moduli problem.

PROOF. Suppose there are two solutions(V, α) and(V ′, α′). Then because of the univer-
sality of (V, α), α′ ◦α−1 : V (C)→ V ′(C) is a regular map, and because of the universality
of (V ′, α′), its inverse is also a regular map.

Of course, in general there may exist no solution to a moduli problem, and when there
does exist a solution, it may be very difficult to prove it.

The moduli variety(V, α) is fine if there exists a universalm0 ∈ M(V ), i.e., an object
such that, for all varietiesT over C andm ∈ M(T ), there exists a unique regular map
ϕ : T → V such thatϕ∗m0 ≈ m. ThenV represents the functorT 7→ M(T )/ ∼.

REMARK 2.24. The above definitions can be stated also for the category of complex man-
ifolds: simply replace “algebraic variety” by “complex manifold” and “regular map” by
“holomorphic (or complex analytic) map”. Proposition 2.23 clearly also holds in the con-
text of complex manifolds.

The curveS1 as a coarse moduli variety overC

Recall (e.g., EC§5) that an elliptic curve over a fieldk is a pair(E, O) consisting of a
complete nonsingular curveE of genus1 over k and a pointO ∈ E(k). A morphism
(E, O) → (E ′, O′) is a regular mapE → E ′ carryingO to O′.20 The plane projective
curve

E : Y 2Z + a1XY Z + a3Y Z2 = X3 + a2X
2Z + a4XZ2 + a6Z

3 (7)

with the distinguished pointO = (0 : 1 : 0) is an elliptic curve provided it is nonsingular
(equivalently, the discriminant∆(a1, a2, a3, a4, a6) 6= 0), and every elliptic curve overk is
isomorphic to one of this form.

Let T be a variety over a fieldk′. We define anelliptic curve(better,family of elliptic
curves) overT to be a pair consisting of a smooth morphism of algebraic varietiesϕ : E →
T whose fibres are complete nonsingular curves of genus1 and a (zero) sectiono : T → E
to ϕ. A morphism(E, ϕ, o) → (E ′, ϕ′, o′) is a regular mapE → E ′ carryingϕ ando to
ϕ′ ando′. As for an elliptic curve over a field, one can show that, locally for the Zariski
topology onT , there exist regular functionsai such that∆(a1, a2, a3, a4, a6) is never zero
andE is isomorphic to the subvariety ofT × P2 defined by the equation (7).

For a varietyT , let E(T ) be the set of elliptic curves overT . On taking∼ to be≈, we
get a moduli problem. Thej-invariant defines a map

E 7→ j(E) : E(C)→ A1(C) = C,

and the theory of elliptic curves shows that this map is a bijection.

THEOREM 2.25. The pair(A1, j) is a solution to the moduli problem(E ,≈).

20There is a unique group law onE having the distinguished element as zero, and a morphism of elliptic
curves is automatically a homomorphism of groups.
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PROOF. Let E → T be a family of elliptic curves overT , whereT is a variety overC. The
mapt 7→ j(Et) : T (C)→ A1(C) is regular because, locally onT , j(Et) = c3

4/∆ wherec4

is a polynomial in theai’s and∆ is a nowhere-zero polynomial in theai’s.
Now let (Z, β) be a pair as in (b). We have to show thatj 7→ β(Ej) : A1(C) → Z(C),

whereEj is an elliptic curve overC with j-invariantj, is regular. LetU be the open subset
of A1 obtained by removing the points0 and1728. Then

E : Y 2Z + XY Z = X3 − 36

u− 1728
XZ2 − 1

u− 1728
Z3, u ∈ U,

is an elliptic curve overU with the property thatj(Eu) = u. Because of the property
possessed by(Z, β), E/U defines a regular mapu 7→ β(Eu) : U → Z. But this is just the
restriction of the mapj 7→ β(Ej) to U(k), which is therefore regular, and it follows that
the map is regular on the whole ofA1.

The Riemann surfaceΓ(N)\X as a moduli space

Fix a2-dimensionalR-vector spaceV , a latticeΛ ⊂ V , and an integerN . We letX denote
the set of nonreal lines inV (C) (see 2.13), and we letΓ(N) be the subgroup ofGL(Λ⊗Q)
of elements that preserveΛ and act trivially onΛ/NΛ. If N is sufficiently large,Γ(N) is
torsion free.

Let T be a complex manifold. By alocal system ofZ-modules of rank2, we mean a
sheafH on T that is locally isomorphic to the constant sheaf defined byZ2 (or Λ). Then
OT ⊗H is a locally free sheaf of rank2 onT , and we letH− denote a locally free subsheaf
of rank1 such that, for allt ∈ T , H−

t is a nonreal line inH t. LetHN(T ) denote the set
of triples (H, H−, η) whereη is an isomorphism from the constant sheaf onT defined by
Λ/NΛ to H/NH. With ∼ equal to the obvious notion of isomorphism,HN becomes a
moduli problem on the category of complex manifolds.

Let (H, H−, η) ∈ HN(C). Choose an isomorphismγ : H → Λ. ThenγC(H−) is non-
real line inV (C) and(H, H−, η) 7→ γC(H−) defines a bijectionα : HN(C)→ Γ(N)\X.

PROPOSITION2.26. If Γ(N) is torsion free, the pair(Γ(N)\X,α) is a fine moduli space
forHN .

PROOF. Let m = (H, H−, η) ∈ HN(T ). We have to show that the map

ϕm : T → Γ(N)\X, t 7→ α(mt),

is holomorphic. Lett0 ∈ T . Choose an open neighbourhoodU of t0 over whichH is trivial,
and fix an isomorphismH|U ≈ ΛU (constant local system onU ). This isomorphism
identifies eachH−

t with a nonreal line through the origin inV (C). Since theH−
t vary

holomorphically,t 7→ H−
t : U → X is holomorphic, and so the mapU → X → Γ(N)\X

is holomorphic. [To be continued.]

The Shimura curveSK as a moduli variety

[Summary.] Define a moduli problem(M,∼) such that(M(C),∼) = (EK ,≈).



3 CANONICAL MODELS OF ELLIPTIC MODULAR CURVES 26

THEOREM 2.27. The bijectionEK/≈→ SK(C) in (2.21) is a solution to the moduli prob-
lem.

PROOF. It follows from Proposition 2.26 that it is a solution in the category of complex
manifolds, but then (2.11) implies it is a solution in the category of nonsingular algebraic
varieties.

3 Canonical models of elliptic modular curves

[To be rewritten.]

Statement of the main theorem

Let ζm be the primitivemth-root of onee2πi/m. Recall that there is a canonical isomorphism

(Z/mZ)× → Gal(Q(ζm)/Q), [n]ζm = ζn
m.

On passing to the inverse limit, we get an isomorphism

Ẑ× → Gal(Qab/Q) (8)

(Kronecker-Weber theorem).
Let E be an elliptic curve overC, and letσ be an automorphism ofC. DefineσE by

the fibre product diagram
E ←−−− σEy y

Specm k ←−−− Specm k

in which the bottom arrow is induced byσ. If

E : Y 2Z = X3 + aXZ2 + bZ3,

then21

σE : Y 2Z = X3 + (σa)XZ2 + (σb)Z3.

A point P = (x : y : z) on E defines a pointσP = (σx : σy : σz) on σE. This carries
0 = (0 : 1 : 0) on E to 0 on σE, and so is a homomorphismσ : E(C) → (σE)(C).
Therefore,σ defines an isomorphismE[N ] → σE[N ] for eachN . On passing to the
limit and tensoring withQ, we obtain an isomorphismσ : Vf (E) → Vf (σE). For a level

21Obviously,

C[X, Y, Z]/(Y 2 −X3 − aX − b) −−−−→ C[X, Y, Z]/(Y 2 −X3 − σaX − σb)x x
C σ−−−−→ C

is a tensor product diagram.
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structureη : V (Af )→ VfE, we defineση : V ⊗ Af → Vf (σE) to beσ ◦ η. Therefore, we
get an action ofA =df Aut(C) onE ,

σ(E, η) = (σE,σ η),

which commutes with the action ofG(Af ) and preserves isomorphism classes.
On the other hand, a model ofSK overQ determines an action ofA onSK(C).

THEOREM 3.1. For each compact open subgroupK of G(Af ), there exists a modelCK of
SK overQ for which

(E/≈)/K
1:1←→ G(Q)\X ×G(Af )/K

is compatible with the action ofA on E and the action ofA on G(Q)\X × G(Af )/K
defined by its identification withCK(C).

We discuss the proof in the remainder of this section.

REMARK 3.2. According to Proposition 1.8, the model is uniquely determined by the con-
dition. We shall see later that it is the canonical model ofSK .

REMARK 3.3. For compact open subgroupsK ′ ⊂ K, the mapSK′(C) → SK(C) is com-
patible with the action ofA.

The Galois action on the set of connected components

Consider
E/≈ −−−→ G(Q)\X ×G(Af )/K Ay y

Q×\{±} × A×
f / det(K) Gal(Qab/Q).

EXERCISE3.4. LetA act onπ through its quotientGal(Qal/Q) ∼= Ẑ× in the obvious way.
Show that the mapdet in (3) is compatible with the actions ofA.

REMARK 3.5. The exercise answers one question raised in the introduction, namely, given
a congruence subgroupΓ ⊂ SL2(Z), what is the fieldFΓ that Γ\X+ is defined over?
Choose a compact open subgroupK of GL2(Af ) such thatK ∩ SL2(Z) = Γ, let U be the
subgroup of̂Z× fixing [+, 1] in Q×\{±} × A×

f / det(K), and thenFΓ is the fixed field of
U acting onQab.

(a) LetΓ = Γ(N) = SL2(Z) ∩K(N). Thendet(K(N)) = ...

(b) LetΓ = Γ0(N). Thendet(K) = Ẑ×, and soFΓ = Q.

How, exactly, doesA act onSK(C)? Let K = K(1) =Revert to the traditional ap-
proach.

Γ(1)\X+ 1: 1←→ {elliptic curves}/ ≈
z ←→ E(z)

df
= C/(Z + Zz).
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Here,E(z) is an elliptic curve overC with j-invariantj(E(z)) = j(z), where the secondj
is the holomorphic function

j(z) =
1

q
+ 744 + 196884q + · · · , q = e2πiz.

Thej-invariant ofσE(z), is

j(σE(z)) = σ(j(E(z)).

Thus,σE(z) = E(σz) whereσz is any element ofX+ such that

σ(j(z)) = j(σz).

Such aσz exists, becausej defines an isomorphism ofΓ(1)\X+ → C, but, in general,
there is nothing we can say about it that we haven’t already said. Note that, unlessσ = 1
or ι, it isn’t continuous, so we can’t expect anything likeσ(j(z)) = j(σz) to hold.

Complex multiplication

Amazingly, whenz ∈ X+ is quadratic overQ, we can describe howA acts onj(z).
Assume[Q[z] : Q] = 2 and (for simplicity) that thatz generates the ring of integers in
Q[z]: thenj(z) generates the Hilbert class field ofQ[z], and there is an explicit formula
describing howGal(Q[z]ab/Q[z]) acts onj (z) (see Serre 1967 or MF§12).

We can say more. For a number fieldF , define

A×
f,F = {(av) ∈

∏
Fv | av ∈ Ov for almost allv}

wherev runs through the finite (i.e., nonarchimedean) primes ofF and, for such a prime,
Fv is the completion ofF andOv is the ring of integers inFv.

Let F be a quadratic imaginary field with a given embeddingρ : F ↪→ C, and letV be
a one-dimensionalF -vector space. We consider triples(E, i, η) with

– E an elliptic curve overC,

– i an isomorphismF → End0(E) such that the homomorphismF → C
given byi and the action ofEnd(E) onTgt0(E) is ρ, and

– η anA×
f,F -isomorphismV (Af )→ Vf (E).

An isomorphism(E, i, η)→ (E ′, i′, η′) is an isomorphismE → E ′ in Ell0(C) compatible
with i andη. Given such a triple(E, i, η), choose anF -linear isomorphismα : H1(E, Q)→
V , and leta ∈ A×

f,F be the composite

V ⊗F Af,F
η−→ Vf (E)

α⊗1−−→ V ⊗F Af,F .

The class ofa in F×\A×
f,F is independent of the choiceα and depends only on the isomor-

phism class of(E, i, η).
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LEMMA 3.6. The map(E, i, η) 7→ a gives a bijection from the set of isomorphism classes
of triples toF×\A×

f,F .

PROOF. Consider the pairs(W, η) with W a one-dimensionalF -vector space andη an
isomorphismV (Af ) → W (Af ). On the one hand, the isomorphism classes of these pairs
are obviously classified byF×\A×

f,F . On the other hand, the isomorphismW ⊗Q R ∼=
W ⊗F,ρ C providesW ⊗Q R with a complex structureJ , and it follows from (2.17) that
there is an equivalence of categories(W, η) 7→ (E, i, η).

For any number fieldF , class field theory provides a continuous surjective homomor-
phism

recF :
∏

v|∞F×
v × A×

f → Gal(F ab/F ).

SinceGal(F ab/F ) is totally disconnected, this homomorphism factors throughA×
f when

F is totally imaginary. In fact, whenF = Q or a quadratic imaginary field, it gives an
isomorphism22

recF : F×\A×
f,F → Gal(F ab/F ).

Write t(E, i, η) for the element ofF×\A×
f,F defined by a triple(E, i, η).

THEOREM 3.7. For σ ∈ Aut(C/R), the isomorphism class ofσ(E, i, η) depends only on
the restriction ofσ to F ab, and ifσ|F ab = recF (b), then

t(σ(E, i, η)) = t(E, i, η)b

(or perhapst(E, i, η)b−1 depending on the sign conventions).

This is one statement of the Main Theorem of Complex Multiplication for elliptic
curves.

ASIDE 3.8. The signs in Deligne’s Bourbaki talk (Deligne 1971) are correct. Those in his
Corvallis talk (Deligne 1979) are wrong23 — specifically, delete “inverse” from line 10,
page 269.

22To be consistent with (8), I choose the map to send prime elements to Frobenius elements (x 7→ xq). This
convention is used in (7), my notes CFT, and Deligne 1971, but it is the reciprocal of that used in Deligne
1979 and most of the work on the Langlands program.

In general, the kernel of the reciprocity map is the closure of the image of the identity component of∏
v|∞F×v in A×F /F×, but the image of this identity component is already closed whenF = Q or a quadratic

imaginary field (and only then Artin and Tate 1961, Theorem 3, p90).
23I once wrote to Deligne to point this out, and noted that there were three changes of sign between his

Bourbaki talk and his Corvallis article. He responded: “Mea culpa, mea maxima culpa. My sign is wrong,
and your explanation ... plausible: I could not count to three.” Thus, it appears that the prerequisite for
understanding Shimura varieties is being able to count to two — three would be useful, but not strictly
necessary.
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Special points

RegardX as the complex double plane. A pointz ∈ X is specialif Q(z) has degree2 over
Q.

RegardX as the set ofR-homomorphismsh : C→ EndR(V ⊗R). LetF be a quadratic
imaginary field, and choose an action ofF onV , i.e., a homomorphismF → End(V ). On
tensoring this withC we obtain a homomorphismF ⊗R→ EndR(V ⊗R). The composite
of such an isomorphism with one of the two isomorphismsC → F ⊗ R will be said to be
special.

These definitions agree.
A point [x, a] of ShK(C) is specialif x is special24.

DEFINITION 3.9. To be added: define the action ofA on the special points.

THEOREM 3.10. There exists a unique family of models(CK) of (ShK) overQ such that
the action ofA on the special points is described by (3.9).

PROOF. That the family of models in Theorem 3.1 has this property follows from the main
theorem of complex multiplication for elliptic curves (9.2).

The uniqueness follows from the fact that the special points are Zariski dense.

REMARK 3.11. The proof of the uniqueness is complicated by the fact that, for each special
point [x, a], we only know how the automorphisms fixingQ(x) act. However, in this case,
the full group of automorphisms is generated by those fixingQ(x) and by ι, and it is
possible to say also howι acts.

In the general case, an extension of the main theorem of complex multiplication (due
to Langlands and Deligne25) allows one to say how all automorphisms act on the special
points.

Hard descent

Deligne bases his proof of the existence of canonical models on Mumford 1965. One
shouldn’t do this. Mumford proved the existence of moduli schemes for polarized abelian
varieties with levelN -structure overSpec Z[ 1

N
]. This is a very difficult theorem, and is

much more than one needs. Moreover, there are Shimura varieties to which Mumford’s
theorem can’t be applied. Instead, one should use descent theory.26

Recall that “easy descent” gives us a fully faithful functor from varieties overQ to
varieties overC + an action ofA on their points. “Hard descent” will describe the essential
image of the functor, i.e., it gives necessary and sufficient conditions for a pair to arise from
a variety overQ.

From now on, all varieties are quasi-projective.

24In this case, the special points are also CM.
25See Deligne’s articleMotifs et groupes de Taniyama, in Hodge Cycles, Motives, and Shimura Varieties,

SLN 900, 1982. Also, my notesAbelian varieties with complex multiplication (for pedestrians), available on
my website.

26Also, so far as I know, Shimura and his students never used Mumford’s results.
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Consider a pair(V, ∗) whereV is a variety overC and∗ is an action ofA on V (C),
which I write

(σ, P ) 7→ σ ∗ P : A× V (C)→ V (C).

I’ll say that (V, ∗) is effectiveif there exists a varietyV0 over Q and an isomorphism
f : V0C → V carrying the natural action ofA on V0(C) into ∗. Such a pair(V0, f) will
be called amodelof (V, ∗) overQ. Recall that easy descent shows that, when it exists, the
model is unique up to a unique isomorphism.

Consider the following two conditions on a pair(V, ∗).
Regularity condition: The map

σP 7→ σ ∗ P : (σV )(C)→ V (C)

is regular. (A priori, this is only a map of sets. The condition requires that it be induced by
a regular map (morphism)fσ : σV → V .)

Continuity condition: There exists a subfieldL of C finitely generated overQ and a
model(V0, f) of (V, ∗) overL, i.e.,V0 is a variety overL andf : V0C → V is an isomor-
phism carrying the natural action ofAut(C/L) onV0(C) into ∗.

THEOREM 3.12. A pair (V, ∗) is effective if and only if it satisfies the regularity and conti-
nuity conditions.

PROOF. =⇒: If (V, ∗) has a model(V0, φ) overQ, then

fσ = f ◦ (σf)−1,

and so(V, ∗) satisfies the regularity condition. It obviously satisfies the continuity condi-
tion.
⇐=: At the moment, alas, one has to appeal to Weil 1956.27

The next result replaces the continuity condition with another condition that is often
easier to check.

COROLLARY 3.13. A pair (V, ∗) is effective if it satisfies the regularity condition and there
exists a finite subsetΣ of V (C) such that

(a) any automorphism ofV fixing theP ∈ Σ is the identity;

(b) for some fieldL finitely generated overQ, σ ∗ P = P for all P ∈ Σ and all σ ∈
Aut(C/L).

PROOF. See Milne 1999.
27Varshavsky has transcribed part of Weil’s paper into the language of schemes (Appendix to his paper

ArXive NT 9909142). Sometime, I’ll explain how to derive the theorem from Grothendieck’s faithfully flat
descent (which is quite elementary).
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EXERCISE 3.14. Assume the existence of a good theory of Jacobians overC, and use
(3.13) to deduce the existence of a good theory over any subfield ofC. (Hint: use that any
automorphism of a polarized abelian variety fixing the points of order3 is the identity).28

ASIDE 3.15. It is easy to construct examples of actions of automorphism groups that fail the
regularity condition, the continuity condition, or both. However, in practice, any naturally
arising action (for example, one arising from a moduli problem) will satisfy the conditions,
although this has to be proved in each case.

Existence of canonical models

Of course, it is easy to prove the existence of canonical models of elliptic modular curves
by ad hoc methods. Thus, what follows should be considered as an introduction to the
general case.

Note that it suffices to prove the existence of the canonical model ofSK for K suffi-
ciently small: ifK ′ containsK as a normal subgroup, thenSK′ is the quotient ofSK by the
action of the finite groupK ′/K. Thus, we can takeK = K(N) for N large. (Implicitly
therefore, we are choosing a latticeΛ in V .)

The regularity condition

This is immediate from Theorem 2.27.

The continuity condition

Apply Corollary 3.13 withΣ equal to a set of special points — see Milne 1999.

Definition of “canonical”

There are three different ways of characterizing the family of models we have constructed.

(A) The moduli criterion

The modelCK of ShK satisfies the condition in Theorem 3.1.

(B) The analytic criterion

Since we knowπK , to characterize theCK it suffices to characterize their geometrically
connected components, i.e., the modelsCΓ overFΓ of the curvesΓ\X+.

A holomorphic functionf onX+ is a modular form of weight2k if and only if f(dz)k

is invariant under the action ofΓ, and hence defines ak-differentialω onΓ\X+. The curve
CΓ/FΓ has the following property, which determines it: ak-differentialω = f(dz)k arises
from ak-differential onCΓ if and only the Fourier coefficients off lie FΓ.

28Niranjan Ramachandran has pointed out that Corollary 3.13 can be used to show that certain abelian
varieties attached by Murre to varieties (maximal algebraic quotients of intermediate Jacobians) are defined
over the same subfield ofC as the variety.
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(C) Special points

The modelCK of ShK satisfies the condition in Theorem 3.10.

Which definition is best?

According to Deligne’s approach, in defining a Shimura variety one begins with an abstract
reductive groupG and additional dataX. In order to realize the Shimura variety overC as
a moduli variety (when this is possible) it is necessary to choose a faithful representation
of G. Thus, Definition A is not really intrinsic (you have to make a choice, and then show
that it is independent of the choice). More significantly, many Shimura varieties are not
moduli varieties, not even conjecturally, and so Definition A doesn’t apply to such Shimura
varieties.

Definition B has a similar problem: if the Shimura variety is compact (see below), there
are no cusps, and hence no Fourier expansions. Hence Definition B doesn’t apply to such
Shimura varieties. Moreover, when the boundary components are not points (they will in
general be lower dimensional Shimura varieties), the Fourier series become Fourier-Jacobi
series whose coefficients are functions, not complex numbers, and so this criterion becomes
complicated to state.

The correct, general definition, is C. Moreover, when either A or B apply, they will
coincide with C. For A, this is essentially the Shimura-Taniyama Theorem (Deligne 1971,
4.19). For B, it is the theory of canonical models of automorphic vector bundles (see§4
below, or Milne 1990, Chapter III, for the general case).

ASIDE 3.16. Historically, Definition B seemed the natural definition. In his acceptance
of the Steele prize (Shimura 1996) Shimura recounts that Siegel initially reacted with dis-
belief to his statement that he could prove the existence of canonical models for certain
compact modular curves, presumably because of the lack of Fourier expansions. On the
other hand, to algebraic geometers, Definition A is the most natural. Deligne once told
me that initially he was very surprised that Shimura could prove the existence of canonical
models for nonmodular curves.

4 Automorphic vector bundles

[To be added.]
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5 Quaternionic Shimura curves

[To be completed.]
The elliptic modular curves are the simplest Shimura varieties, and for that reason pro-

vide a good introduction to the general theory. However, in some respects they aretoo
simple, and so may lead to false expectations about the general case. In this section, we
examine the other Shimura curves.

Quaternion algebras

(CFT Chapter IV, especially 5.1)
Let F be a field of characteristic zero. The matrix algebraM2(F ) has the following

properties:

(a) it is central, i.e.,F is the centre ofB;

(b) it is simple, i.e., it has no two-sided ideals;

(c) it has dimension4 as anF -vector space.

Any F -algebra with these three properties is called aquaternion algebra.
For a, b ∈ F×, let B = Ba,b be theF -algebra with basis{1, i, j, k} and multiplication

given by
i2 = a, j2 = b, ij = k = −ji.

ThenB is a quaternion algebra, and every quaternion algebra is of this form for somea, b.
Let B be a quaternion algebra overF . According to a theorem of Wedderburn, eitherB

is a division algebra or it is isomorphic toM2(F ) (in which caseB is said to be split). For
B = Ba,b, the second case occurs exactly when the quadratic formW 2−aX2−bY 2+abZ2

has a nontrivial zero inF .
ForF algebraically closed, every quaternion algebra is split.
For F = R, every quaternion algebra is isomorphic toM2(R) or the usual (Hamilto-

nian) quaternion algebraB−1,−1.
ForF = Qp or a finite extension ofQp, there are again exactly two isomorphism classes

of quaternion algebras.
Finally, letF be a number field. For a quaternion algebraB overF , let d(B) be the set

of primesv of F such thatFv ⊗B is a division algebra. Then

– d(B) is a finite set with an even number of elements;

– B ≈ B′ if and only if d(B) = d(B′);

– every set containing a finite even number of primes ofF is of the formd(B)
for some quaternion algebra overF .

ForF = Q, this statement has a fairly elementary proof, but for an arbitrary number field,
the proof requires class field theory.
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Quaternionic modular curves

Let B be a quaternion division algebra overQ split at infinity. Thus,B is aQ-algebra such
that

B 6≈M2(Q)

but
B ⊗ R ≈M2(R).

Let G be the algebraic group overQ such thatG(R) = (B ⊗Q R)× for all Q-algebrasR.
Then,G(R) ≈ GL2,R and the choice of such an isomorphism determines an action ofG(R)
onX. For any compact open subgroupK in G(Af ), we define

SK = G(Q)\X ×G(Af )/K,

as before. This is a finite union ofcompactRiemann surfaces. More precisely, letG1 be
the subgroup ofG such that

G1(Q) = Ker(B× Norm−−−→ Q×).

ThenΓ =df K∩G1(Q) is a discrete subgroupG1(Q), Γ\X+ is a compact Riemann surface,
andSK is a finite union of copies ofΓ\X+ (Shimura 1971, Proposition 9.2).

Let Bopp be the opposite quaternion algebra. ThusBopp = B as an abelian group, but
multiplication is reversed:aoppbopp = (ba)opp. Let V beB regarded as aQ-vector space.
Left multiplication makesV into a leftB-module, and right multiplication makes it into a
right B-module or, what is the same thing, a leftBopp-module. These actions identifyB
andBopp with commuting subalgebras ofEndQ(V ). In fact, by counting dimensions, one
sees that each is the centralizer of the other.

Let A be the set of triples(A, i, η) with A an abelian variety of dimension2 over C,
i a homomorphism ofQ-algebrasB → End(A) ⊗ Q, andη is a B ⊗ Af -isomorphism
V (Af ) → Vf (A). An isomorphism(A, i, η) → (A′, i′, η′) is an isomorphismA → A′ in
the category of abelian varieties up to isogeny commuting withi andη. The groupG(Af )
acts onA through its action onV (Af ).

[Define the mapA → G(Q)\X ×G(Af ).]

PROPOSITION5.1. The map just defined gives a bijection

A/≈→ G(Q)\X ×G(Af ).

It is compatible with the action ofK, and therefore induces a bijection

(A/≈) /K → G(Q)\X ×G(Af )/K.

PROOF. The proof is similar to that of Proposition 2.19.

THEOREM 5.2. For each compact open subgroupK of G(Af ), there exists a modelCK of
SK overQ for which

(A/≈)/K
1:1←→ G(Q)\X ×G(Af )/K

is compatible with the action ofA onA and the action ofA on G(Q)\X × G(Af )/K
defined by its identification withCK(C).

Etc.

REMARK 5.3. In this case,CK has noR-points, hence noQ-points (explain).
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Quaternionic nonmodular curves

Next letF be a totally real field of degree> 1 and letB be a quaternion algebra overF
that is split at exactly one infinite prime ofF , i.e.,B ⊗F,ρ1 R ≈M2(R) for one embedding
ρ1 : F → R, andB⊗F,ρR ≈ H for the remaining embeddings. LetG be the algebraic group
overQ such thatG(R) = (B ⊗Q R)× for all Q-algebrasR. Then,G(R) ≈ GL2,R×H× ×
· · · , and we letX be the conjugacy class of homomorphismsh that project onto the usual
class on the first factor, and onto the trivial map on the other factors. For any compact open
K in G(Af ), we define

SK(G, X) = G(Q)\X ×G(Af )/K,

as before. Again, this is a finite union of complete algebraic curves, but this time it isnot a
moduli variety. Nevertheless, it does have a canonical model (overF rather thanQ now).

The idea of the proof is as follows. LetQ be a quadratic imaginary extension ofQ,
and letL = Q · F — it is a CM-field with largest real subfieldF . Let V andW be one-
dimensional vector spaces overB andL. ThenG× (Gm)L/Q acts onV ⊗W throught the
quotientG′:

1→ (Gm)F/Q → G× (Gm)L/Q → G′ → 0.

Then

R⊗Q V ∼= ⊕ρ : F→RVρ,

R⊗Q W ∼= ⊕ρ : F→RWρ,

R⊗ (V ⊗F W ) ∼= ⊕ρ : F→RVρ ⊗Wρ.

The spaceV ⊗F,ρ1 R has dimension4 andB ⊗F,ρ1 R ≈ M2(R) acts on it. The set of
complex structures onV ⊗F,ρ1 R commuting with the action ofB⊗F,ρ1 R can be identified
with X. Let J act onWρ1 as the identity and onWρ, ρ 6= ρ1, as an element of square−1 in
L⊗F,ρ R. Then eachJ ∈ X defines a complex structure on

R⊗Q (V ⊗F W ) ∼= V (R)⊗F⊗R W (R)

as follows: letJW act onWρ1 as the identity and onWρ, ρ 6= ρ1, as an element of square
−1 in L⊗F,ρ R; let JV act onWρ1 asJ and onWρ as the identity; thenJV⊗W = JV ⊗ JW .
Let X ′ (∼= X) be the set of such complex structures. ThenS(G′, X ′) is a moduli variety,
and so has a canonical model over its reflex fieldL. Moreover, there is a canonical map

ϕ : S(G, X)× S(T, {h})→ S(G′, X ′).

EndowS(T, {h}) with the obvious action ofA. If S(T, {h}) had a pointP fixed byA,
then

x, P 7→ ϕ(x, P ) : S(G, X)→ S(G′, X ′)

would realizeS(G, X) as a closed subvariety ofS(G′, X ′) stable underA. According to
(1.7), it would then have a modelL = F ·Q, which, because of our definitions, satisfies the
condition on the special points to be canonical. ButQ was any quadratic imaginary field,
so this can be shown to imply thatS(G, X ′) has a model overF satisfying the condition.

Unfortunately, it is not that simple:S(T, {h}) does not have a pointP fixed byA.
Nevertheless, essentially this argument can be made to work (Deligne 1971,§6).
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6 Remarks on the general case

In the general theory, the complex upper half plane (∼= to the open unit disk) is replaced by
a bounded symmetric domain, i.e., with an open bounded subsetX+ of a spaceCm that is
symmetric in the sense that, for eachx ∈ X+, there exists an automorphismsx of X+ of
order2 havingx as an isolated fixed point. E. Cartan (and Harish Chandra) classified the
bounded symmetric domains in terms of semisimple real groups. Deligne showed that they
could be reinterpreted as parameter spaces for certain special Hodge structures. [Mention
the Borel embedding and Deligne’s interpretation of it as the map sending a Hodge structure
to the associated Hodge filtration.]

Deligne’s axioms

Let G = GL(V ) for V some two-dimensionalQ-vector space. Recall (2.13) that we saw
that we could identifyX = C r R with the set of homomorphismsC → EndR(V ).
According to the Noether-Skolem theorem (CFT, Theorem 2.10), these homomorphisms
form a single conjugacy class. By restriction, we get a conjugacy class of homomorphisms
C× → G(R). These homomorphisms become homomorphisms of real algebraic groups
when we realizeC× as the points of the algebraic group

S df
= Specm(R[X, Y, T ]/((X2 + Y 2)T − 1).

We now take as our initial data, an abstract algebraic groupG over Q for which there
exists an isomorphismG ≈ GL2 plus a conjugacy classX of homomorphisms of real
algebraic groupsS → GR. We define the Shimura variety purely in terms of the pair
(G, X). Choosing an isomorphismG → GL(V ) realizes the Shimura variety as a moduli
variety.

In Deligne’s approach, to define a Shimura variety one needs a pair (a Shimura datum)
(G, X) whereG is a connected reductive group overQ and X is conjugacy class29 of
homomorphismsS → GR satisfying certain axioms. From one perspective, the axioms
ensure thatX acquires a natural structure as a finite disjoint union of bounded symmetric
domains. From another perspective, they ensure that attached to any representationG →
GL(V ) of G, there is a variation of Hodge structures onX of a special type.

The axioms also imply that the restriction of anh to Gm ⊂ S is independent ofh.
Thus, we have a well-defined homomorphismwX : Gm → GR, called theweight homo-
morphism.30 Note that it is a homomorphism, defined overR, of algebraic groups defined
overQ. It makes sense to ask whether it is defined overQ. For example, for elliptic modu-
lar curves or quaternionic modular curves it is defined overQ, whereas for nonquaternionic
modular curves it isn’t. Conjecturally, the Shimura variety is a moduli variety (in general
for motives) whenwX is defined overQ, and it is not a moduli variety whenwX is not
defined overQ.

29Of course,X is determined by a singleh ∈ X. In his Bourbaki talk, Deligne started with anh rather
thanX. Thus, the Shimura varieties of his Bourbaki talk have a distinguished point[h, 1]. He corrected this
in his Corvallis article — Shimura varieties should not come with a distinguished point.

30According to the conventions of Deligne 1979,wX is the inverse ofh|Gm.
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Rough classification of Shimura varieties

PEL type: These are moduli varieties for polarized abelian varieties with endomorphism
and level structure.

Hodge type: These are moduli varieties for polarized abelian varieties with Hodge class
and level structure. (Hodge classes in the sense of Deligne 1982).

Hodge type includes PEL type, since endomorphisms of abelian varieties are Hodge classes.
In both these cases,wX is defined overQ.

Abelian type: Initially, these are defined in terms of the classification of semisimple groups
overR. For the Shimura varietySh(G, X) to be of abelian type, the groupG mod-
ulo its centre can’t have anyQ-simple factors that become of typeE6, E7 or certain
mixed typesD overR.

Not of abelian type: The rest.

Abelian type includes Hodge type. For Shimura varieties of abelian type, the weight
homomorphism may, or may not, be defined overQ. Each of the classes

{PEL type} ⊂ {Hodge type} ⊂ {abelian type}

is muchlarger than its predecessor.

Main results on the existence of canonical models (post Shimura)

Here, ignoring the earlier work of Shimura and his students31, is a brief summary of work
the existence of canonical models.

1971: Deligne gave an axiomatic definition of Shimura varieties and canonical models,
and proved that canonical models (if they exist) are unique (Bourbaki talk, Deligne
1971).

1971: Deligne proved the existence of canonical models of Shimura varieties of PEL and
Hodge type32 (with hindsight, since Deligne’s theory of Hodge classes didn’t exist in
1971). He also proved the existence of canonical models of some associated Shimura
varieties whose weight is not defined overQ by a method that he later called33 “mal-
adroite” (Bourbaki talk, Deligne 1971).

1979 Deligne proved the existence of canonical models for all Shimura varieties of abelian
type (he deduced his general result from the case of Hodge type by a different, more
adroit, method than in his Bourbaki talk) (Deligne 1979)

31Which, of course, was fundamental to the later work.
32Essentially by the method sketched above, except he used Mumford’s GIT rather than Weil’s descent

theory.
33Corvallis talk p250.
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1983 Borovoi and Milne (Milne 1983) proved the existence canonical models for all Shimura
varieties, including those not of abelian type, by a method that is somewhat indepen-
dent of preceding methods (it assumes only the existence of canonical models of
Shimura varieties defined by groups of typeA1).

1994 I proved that all Shimura varieties of abelian type with rational weight are moduli
varieties for abelianmotives. Hence, the canonical models of such Shimura varieties
can be shown to exist by the method sketched in the body of this talk. In a clearly ret-
rograde step, I deduced the existence of canonical models for the remaining Shimura
varieties of abelian type by Deligne’s maladroit method (Milne 1994). The advantage
of this approach is that it realizes many more canonical models as moduli varieties
— it is much more than just an existence proof.

With the current technology, handling Shimura varieties of abelian type and their canon-
ical models is not much more difficult than handling Shimura varieties of PEL type. How-
ever, the situation is very different when one looks at the varieties modulop. Apart from
Vasiu’s big theorem (Vasiu 1999), not much is known here except for Shimura varieties
of PEL type. Fortunately, the representation theorists have so far been able to find all the
Galois representations they need in the cohomology of Shimura varieties of PEL type (see,
for example, the proofs of the Langlands local conjecture by Harris and Taylor and by
Henniart).
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