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Abstract. We prove that Grothendieck’s Hodge standard conjecture holds for
abelian varieties in arbitrary characteristic if the Hodge conjecture holds for complex
abelian varieties of CM-type. For abelian varieties with no exotic algebraic classes,
we prove the Hodge standard conjecture unconditionally.
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Introduction. In examiningWeil’s proofs (Weil 1948) of the Riemann hypothesis
for curves and abelian varieties over finite fields, Grothendieck was led to state two
“standard” conjectures (Grothendieck 1969), which imply the Riemann hypothesis
for all smooth projective varieties over a finite field, essentially by Weil’s original ar-
gument. Despite Deligne’s proof of the Riemann hypothesis, the standard conjectures
retain their interest for the theory of motives.

The first, the Lefschetz standard conjecture (Grothendieck 1969, §3), states that,
for a smooth projective variety V over an algebraically closed field, the operators Λ
rendering commutative the diagrams (0 ≤ r ≤ 2n = 2dimV )

Hr(V )
Ln−r

−−−→
≈

H2n−r(V )
�Λ

�L

Hr−2(V )
Ln−r+2

−−−−→
≈

H2n−r+2(V )
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are algebraic. HereH is a Weil cohomology theory and L is cup product with the class
of a smooth hyperplane section (Ln−r is assumed to be an isomorphism for n ≥ r, and
Ln−r = (Lr−n)−1 for n < r). This conjecture is known for curves (trivial), abelian
varieties (Lieberman 1968, Kleiman 1968), surfaces and Weil cohomologies for which
dimH1(V ) = 2dimPic0(V ) (Grothendieck), generalized flag manifolds (trivial), com-
plete intersections (trivial), and products of such varieties (see Kleiman 1994, 4.3).
For abelian varieties, it is even known that the operator Λ is defined by a Lefschetz
class, i.e., a class in the Q-algebra generated by divisor classes (Milne 1999a, 5.9).

The second, the Hodge standard conjecture (Grothendieck 1969, §4), states that,
for r ≤ n/2, the bilinear form

(x, y) �→ (−1)r〈Ln−2rx · y〉 : P r(V )× P r(V )→ Q

is positive-definite. Here P r(V ) is the Q-space of primitive algebraic classes of codi-
mension r modulo homological equivalence. In characteristic zero, Hdg(V ) is a conse-
quence of Hodge theory (Weil 1958). In nonzero characteristic, Hdg(V ) is known for
surfaces (Segre 1937; Grothendieck 1958). An important consequence of the Hodge
standard conjecture for abelian varieties, namely, the positivity of the Rosati involu-
tion was proved in nonzero characteristic by Weil (1948, Théorème 38). Apart from
these examples and the general coherence of Grothendieck’s vision, there appears to
have been little evidence for the conjecture in nonzero characteristic.

In fact, no progress seems to have been made on these conjectures since they were
first formulated: the lists of known cases in Kleiman 1968 and in Kleiman 1994 are
identical.

In this paper, we prove that the Hodge standard conjecture holds for abelian
varieties in arbitrary characteristic if the Hodge conjecture holds for complex abelian
varieties of CM-type.

Let Mot(F;A) be the category of motives based on abelian varieties over F using
the numerical equivalence classes of algebraic cycles as correspondences. This is a
Tannakian category (Jannsen 1992, Deligne 1990), and it is known that the Tate
conjecture for abelian varieties over finite fields implies that it has all the major
expected properties but one, namely, that the Weil forms coming from algebraic
geometry are positive for the canonical polarization on Mot(F;A) (see Milne 1994,
especially 2.47).

In Milne 1999b it is shown that the Hodge conjecture for complex abelian vari-
eties of CM-type is stronger than (that is, implies) the Tate conjecture for abelian
varieties over finite fields. Here, we show that the stronger conjecture also implies
the positivity of the Weil forms coming from algebraic geometry (Theorem 3.1). As
a consequence, we obtain the Hodge standard conjecture for abelian varieties over
finite fields, and a specialization argument then proves it over any field of nonzero
characteristic (Theorem 4.6).

Most of the arguments in the paper hold with “algebraic cycle” replaced by “Lef-
schetz cycle”. We prove that the analogue of the Hodge standard conjecture holds
(unconditionally) for Lefschetz classes on abelian varieties. In particular, the Hodge
standard conjecture is true for abelian varieties without exotic (i.e., non-Lefschetz)
algebraic classes (4.11, 4.12).
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In preparation for proving these results, we study in §1 the polarizations on a
category of Lefschetz motives, and in §2 the polarizations on a quotient Tannakian
category.

Notations and Conventions. The symbol k always denotes an algebraically
closed field, and all algebraic varieties over k are smooth and projective but not
necessarily connected.

The algebraic closure of Q in C is denoted Qal. We fix a p-adic prime on Qal and
let F be the residue field.

By the Hodge conjecture for a variety V over C, we mean the statement that, for
all r, the Q-space H2r(V,Q) ∩Hr,r is spanned by the classes of algebraic cycles.

For abelian varieties A and B, Hom(A,B)Q = Hom(A,B)⊗Q. An abelian variety
A over C (or Qal) is said to be of CM-type if, for each simple isogeny factor B of A,
End(B)Q is a commutative field of degree 2 dimB over Q. A polarization of A is an
isogeny A→ A∨ from A to its dual of the form a �→ [Da−D] for some ample divisor
D.

By the Tate conjecture for a variety V over a finite field Fq we mean the statement
that, for all r, the order of the pole of the zeta function Z(V, t) at t = q−r is equal to the
rank of the group of numerical equivalence classes of algebraic cycles of codimension
r on V (Tate 1994, 2.9). We say that a variety over F satisfies the Tate conjecture if
all of its models over finite fields satisfy the Tate conjecture (equivalently, one model
over a “sufficiently large” finite field).

We shall need the following categories of motives:

Based on Correspondences
Mot(F) (smooth projective) varieties over F algebraic cycles mod numerical equivalence
Mot(k;A) abelian varieties over k algebraic cycles mod numerical equivalence
CM(Qal) abelian varieties of CM-type over Qal (absolute) Hodge classes
LM(k) abelian varieties over k Lefschetz classes
LCM(Qal) abelian varieties of CM-type over Qal Lefschetz classes

Each is a Tannakian category with a natural structure of a Tate triple (Jannsen 1992;
ibid.; Deligne and Milne 1982, §6; Milne 1999b, §1; ibid., §2).

For a Tate triple T = (C, w,T), C0 is the quotient of C in which T has been
identified with 11 (Deligne and Milne 1982, 5.8; also 2.5 below). The category of vector
spaces over a field F is denoted VecF . The Tate triple defined in ibid. 5.3, is denoted
V, and V0 denotes the corresponding quotient category (ibid., 5.9). Sometimes we
use C to denote a Tate triple (C, w,T).

For a finite separable extension of fields K ⊃ F , (Gm)K/F is the torus over F
obtained from Gm/K by restriction of scalars. The notation X ≈ Y means that X
and Y are isomorphic, and X ∼= Y means that X and Y are canonically isomorphic
(or that a particular isomorphism is given).

1. Polarizations on categories of Lefschetz motives

We refer to Deligne and Milne 1982 for the definitions of a Weil form (ibid., p. 165),
a polarization on a Tannakian category over R (ibid., 4.10), and a graded polarization
on a Tate triple over R (ibid., 5.12). We define a polarization on a Tannakian category
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C (or Tate triple) over Q to be a polarization on C(R). The canonical polarizations
on V0 and V are denoted ΠV0 and ΠV (ibid., p. 185, p. 195).

A morphism F : (C1, w1,T1)→ (C2, w2,T2) of Tate triples is an exact tensor func-
tor F : C1 → C2 preserving the gradations together with an isomorphism F (T1) ∼= T2.
Such a morphism is compatible with graded polarizations Π1 and Π2 on T1 and T2

(denoted F : Π1 �→ Π2) if

ψ ∈ Π1(X)⇒ Fψ ∈ Π2(FX),

in which case, for any X homogeneous of weight n, Π1(X) consists of the sesquilinear
forms ψ : X ⊗ X̄ → 11(−n) such that Fψ ∈ Π2(FX). In particular, given F and Π2,
there exists at most one graded polarization Π1 on T1 such that F : Π1 �→ Π2.

Let HodR be the category of real Hodge structures: it is a Tannakian category
over R with a natural Tate triple structure and a canonical graded polarization ΠHod

(ibid., 2.31, 5.2, 5.21). Betti cohomology defines a morphism of Tate triples

H : CM(Qal)(R) → HodR

and, because Lefschetz classes are Hodge, there is an evident morphism

J : LCM(Qal)→ CM(Qal).

Proposition 1.1. There are graded polarizations ΠLCM and ΠCM on LCM(Qal)
and CM(Qal) (necessarily unique) such that

ΠLCM J�→ ΠCM H�→ ΠHod.

Proof. We begin by reviewing the classification of the graded polarizations on
a neutralized algebraic Tate triple (T, ω). Such a pair (T, ω) defines a triple (G,w, t)
(ibid., 5.5). An element C of G(R) is a Hodge element for (T, ω) if C2 = w(−1),
t(C) = 1, and the real form of Ker(t : G → Gm) defined by C is an anisotropic (=
compact) group (ibid., p. 194). A Hodge element defines a graded polarization ΠC

on T, and every graded polarization on T arises from a Hodge element (ibid., 5.18).

Because of the uniqueness, in proving the proposition, we may replace LCM(Qal)
and CM(Qal) with their subcategories based on a finite set of abelian varieties, and
hence suppose them to be algebraic. We endow each with the Betti fibre functor ωB,
and let T ′ and S ′ be the corresponding algebraic groups. The functors J and H define
homomorphisms

S → S ′
/R → T ′

/R, S = (Gm)C/R.

The image of i ∈ S(R) = C× in S ′(R) is a Hodge element for the neutralized Tate
triple (CM(Qal), ωB), and its image in T

′(R) is a Hodge element for (LCM(Qal), ωB)
(Milne 1999b, 2.5, 2.6; in both case Ker(t) is an anisotropic torus). The graded
polarizations defined by these Hodge elements are evidently compatible with J and
H. �

For an abelian variety A over F, 〈A〉⊗ denotes the Tannakian subcategory of
LM(F) generated by h1A and T.

Lemma 1.2. For any abelian variety A over F, the Tate triple (〈A〉⊗, w,T) is
polarizable.
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Proof. A Tate triple T = (C, w,T) is polarizable if and only if C0 has a polar-
ization of parity ε =df w(−1) (Deligne and Milne 1982, 5.13). If A1, . . . , Ar are the
distinct simple isogeny factors of A, then 〈A〉⊗0 is equivalent to 〈A1〉⊗0 ⊗ · · · ⊗ 〈Ar〉⊗0
(apply Milne 1999b, 1.8; Milne 1999a, 4.7). Therefore, it suffices to prove the lemma
when A is simple (to see this apply Deligne and Milne 1982, 4.29, Deligne 1990, 5.13,
and Proposition 2.1 below).

Recall that a Tannakian category C over a field F is determined up to a tensor
equivalence inducing the identitymap on its band B by its class inH2(F,B) (Saavedra
1972, III 2.3.3.1, III 3.2.6), and that a commutative band can be identified with an
affine group scheme.

When A is a supersingular elliptic curve, the band of 〈A〉⊗ is Gm, and its cohomol-
ogy class in H2(R,Gm) = Br(R) is the class of End(A)R, which is nonzero. Therefore,
〈A〉⊗ is Gm-equivalent to V, which is polarizable.

When A is not a supersingular elliptic curve, the centre of End(A)Q is a CM-field
E (Tate 1968/69, p. 3), and the band of 〈A〉⊗0 is the subtorus U of (Gm)E/Q with
U(Q) = {a ∈ E× | a · ā = 1} (Milne 1999b, 1.8; Milne 1999a, 4.4). As U/R is
isomorphic to a product of copies of U1 =df {z ∈ C | zz̄ = 1} and H2(R, U1) = 0,
〈A〉⊗0(R) is neutral. Because U/R is anisotropic, 〈A〉

⊗
0(R) has a symmetric polarization,

and so it has a polarization of parity ε if and only if ε is a square in U(R) (Deligne
and Milne 1982, 4.20(e)), but this is obviously true because ε = (−1, . . . ,−1). �

A divisor D on an abelian variety A over k defines a pairing ψD : h1A× h1A→ T

which is a Weil form if D is very ample (Weil 1948, Théorème 38). Such a Weil form
will be said to be geometric.

Remark 1.3. The geometric Weil forms are positive for ΠLCM and ΠCM.

Lemma 1.4. If (LM(k), w,T) is polarizable, then it has a unique graded polariza-
tion for which the geometric Weil forms are positive.

Proof. The uniqueness follows from the fact the LM(k) is generated by the
objects h1A.

Once a geometric Weil form ψ on h1A has been fixed, the set of such forms is
parametrized by the set

{α ∈ End(A)Q | αψ = α, α is totally positive}
(Mumford 1970, p. 208), and so the geometric Weil forms lie in a single compatibility
class (Deligne and Milne 1982, 4.6). Therefore, if one geometric Weil form on h1A is
positive for a graded polarization Π, then all are.

To prove the existence, it suffices to prove the analogous statement for the quotient
category LM(F)0, namely, that it has a polarization of parity ε = w(−1) for which
the geometric Weil forms are positive. Because of the uniqueness, it suffices to do
this for each subcategory 〈A〉⊗0 of LM(F)0.

Let Y be a simple object of Tannakian category C over R. If φ is a Weil form
on Y with parity (some) ε, then the Weil forms on Y with parity ε fall into exactly
two compatibility classes, represented by φ and −φ (ibid. 4.8). An isotypic object
in C of type Y can be written W ⊗ Y with W a finite-dimensional R-vector space
(regarded as an object of Cπ(C)), and the Weil forms on W ⊗Y again fall into exactly
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two compatibility classes, represented by ψ ⊗ φ and −ψ ⊗ φ where ψ is any positive-
definite bilinear form on W .

Let X denote h1A regarded as an object of 〈A〉⊗0(R), and let X ≈
⊕

iXi be the
decomposition of X into its isotypic components. The preceding remarks show that
the Weil forms on X with parity ε = w(−1) are parametrized by the e ∈ Aut(X)
such that e acts as ±1 on each factor Xi.

Let Z = Aut(id〈A〉⊗
0(R)
), and let Π0 be a polarization on 〈A〉⊗0(R) with parity ε. A

z ∈ Z(R) of order 2 defines a polarization zΠ0 of parity ε by the rule

φ ∈ zΠ0(Y ) ⇐⇒ φzY
∈ Π0(Y ),

and each polarization of parity ε is of this form for a unique z (ibid., 4.20d).

From the definition of the category of Lefschetz motives, it is clear that any
e ∈ Aut(X) such that e acts on each Xi as ±1 is an element of order 2 in Z(R),
and, in fact, that these elements exhaust Z(R)2 (Milne 1999a, 4.4). Therefore the
map Π �→ Π(X) from the set of polarizations on 〈A〉⊗0(R) of parity ε to the set of

compatibility classes of Weil forms on X of parity ε is bijective.

Choose Π so that Π(X) is the R-span of the geometric Weil forms. Then the
geometric Weil forms for each isogeny factor of A will also be positive for Π. �

Let RL : LCM(Qal) → LM(F) be the reduction functor corresponding to the
p-adic prime we have fixed on Qal (Milne 1999b, §5).

Proposition 1.5. There exists a graded polarization ΠLM on LM(F) such that

(a) all geometric Weil forms are positive for ΠLM ;
(b) the reduction functor RL : LCM(Qal) → LM(F) is compatible with ΠLCM

and ΠLM .

Moreover, ΠLM is uniquely determined by each of the conditions (a) and (b).

Proof. Lemmas 1.2 and 1.4 show that there is a graded polarization ΠLM on
LM(F) satisfying (a). It satisfies (b) because a polarization λ on A reduces to a
polarization λF on the reduction AF of A (Faltings and Chai 1990, I 1.10).

The next lemma shows that, if ΠLM satisfies (b), then it satisfies (a), which we
know determines ΠLM uniquely. �

Lemma 1.6. Let (A, λ) be a polarized abelian variety over F. For some discrete
valuation ring R containing the ring of Witt vectors W (F) and finite over W (F),
there exists a polarized abelian scheme (B, µ) over R whose generic fibre has complex
multiplication and whose special fibre is isogenous to (A, λ).

Proof. Mumford 1970, Corollary 1, p. 234, allows us to assume that the polar-
ization λ is principal, in which case we can apply Zink 1983, 2.7 (with L = Q). �

Exercise 1.7. Show that the category of Lefschetz motives over an arbitrary k
has a unique graded polarization Π for which all geometric Weil forms are positive
(see 4.13 below).
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2. Polarizations on quotients of Tannakian categories

We refer to Deligne 1989, §§5,6, and Deligne 1990, §8, for the theory of algebraic
geometry in a Tannakian category C. In particular, the fundamental group π(C) of
C is an affine group scheme “in” C, such that, for any fibre functor ω,

Aut⊗(ω) ∼= ω(π(C)).

The fundamental group acts on the objects of C, and every fibre functor ω on C
transforms the action of π(C) on X into the natural action of Aut⊗(ω) on ω(X).

When H is a closed subgroup of π(C), we let CH denote the full subcategory of C
of objects on which the action of H is trivial. For example, for a Tate triple (C, w,T),
Cw(Gm) is the full subcategory of objects of weight 0. The functor Hom(11,−) is a
tensor equivalence Cπ(C) → VecF , F = End(11), which we denote γ

C . In particular,
γC is an F -valued fibre functor on Cπ(C); any other F -valued fibre functor on Cπ(C)

is isomorphic to γC by a unique isomorphism (trivial case of the main theorem of
neutral Tannakian categories). When π(C) is commutative, it lies in Ind(Cπ(C)), and
hence can be regarded as a group scheme in the usual sense.

Let T = (C, w,T) be an algebraic Tate triple over R such that w(−1) �= 1. Given
a graded polarization Π on T, there exists a morphism of Tate triples ξΠ : T → V
(well defined up to isomorphism) such that ξΠ : Π �→ ΠV (Deligne and Milne 1982,
5.20). Let ωΠ be the composite

Cw(Gm) ξΠ→ Vw(Gm) γV

→ VecR;

it is a fibre functor on Cw(Gm).

A criterion for the existence of a polarization.

Proposition 2.1. Let T = (C, w,T) be an algebraic Tate triple over R such that
w(−1) �= 1, and let ξ : T → V be a morphism of Tate triples. There exists a graded
polarization Π on T (necessarily unique) such that ξ : Π �→ ΠV if and only if the real
algebraic group Aut⊗(γV ◦ ξ|Cw(Gm)) is anisotropic.

Proof. Let G =df Aut
⊗(γV ◦ ξ|Cw(Gm)).

Assume Π exists. The restriction of Π to Cw(Gm) is a symmetric polarization,
which the fibre functor γV ◦ ξ maps to the canonical polarization on VecR. This
implies that G is anisotropic (Deligne 1972, 2.6).

For the converse, let X be an object of weight n in C(C). A sesquilinear form

ψ : ξ(X) ⊗ ξ(X) → 11(−n) arises from a sesquilinear form on X if and only if it
is fixed by G. Because G is anisotropic, there exists a ψ ∈ ΠV (ξ(X)) fixed by G
(ibid., 2.6), and we define Π(X) to consist of all sesquilinear forms φ on X such
that ξ(φ) ∈ ΠV (ξ(X)). It is now straightforward to check that X �→ Π(X) is a
polarization on T. �

Corollary 2.2. Let F : (C1, w1,T1) → (C2, w2,T2) be a morphism of Tate
triples, and let Π2 be a graded polarization on C2. There exists a graded polar-
ization Π1 on C1 such that F : Π1 �→ Π2 if and only if the real algebraic group

Aut⊗(γV ◦ ξΠ2 ◦ F |C
w(Gm)
1 ) is anisotropic.
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Quotients of Tannakian categories. An exact tensor functor q : C → Q of Tan-
nakian categories over F defines a morphism π(q) : π(Q) → q(π(C)) (Deligne 1990,
8.15.2), and π(q) is a closed immersion if and only if every object in Q is a subquo-
tient of an object in the image of q (this can be proved as Deligne and Milne 1982,
2.21(b), by working with bi-algebras “in” Q).

Definition 2.3. Let q : C → Q be an exact tensor functor, and let H be a
closed subgroup of π(C). We say that (Q, q) is a quotient of C by H if π(q) is an
isomorphism of π(Q) onto q(H).

Lemma 2.4. Let C be Tannakian category over F , and let (Q, q) be a quotient of
C by a closed subgroup H of π(C).

(a) The functor ωq =df γ
Q ◦ (q|CH) is an F -valued fibre functor on CH ; in

particular, CH is neutral.
(b) For X, Y in C, there is a canonical functorial isomorphism

HomQ(qX, qY ) ∼= ωq(Hom(X, Y )H).

Proof. (a) The functor ωq is the composite of the exact tensor functor q : C
H →

Qπ(Q) with the fibre functor γQ.

(b) From the various definitions and Deligne and Milne 1982, 1.6.4, 1.9,

HomQ(qX, qY ) ∼= HomQ(11,Hom(qX, qY )
π(Q))

∼= HomQ(11, (qHom(X, Y ))
q(H))

∼= HomQ(11, q(Hom(X, Y )
H)) ∼= ωq(Hom(X, Y )H).

�

Example 2.5. Let (C, w,T) be a Tate triple. The functor q : C → C0 (Deligne
and Milne 1982, 5.8) realizes C0 as a quotient of C by Ker(t) ⊂ π(C). In this case,
the fibre functor ωq on CKer(t) is

X �→ lim−→
n

Hom(
r=n⊕
r=−n

11(r), X).

Remark 2.6. Let (Q, Q) be a quotient of C by H ⊂ π(C), and assume that Q
is semisimple. Define (C/ωQ)

′ to be the category with one object X̄ for each object
X of C and with morphisms

Hom(C/ωQ)′(X̄, Ȳ ) = ωQ(Hom(X, Y )
H).

There is a unique structure of an F -linear tensor category on (C/ωQ)
′ for which

q : X �→ X̄ is a tensor functor. With this structure, (C/ω0)
′ is rigid, and we define

C/ωQ to be its pseudo-abelian hull. The functor Q factors through q : C → C/ωQ,
say, Q = R ◦ q with R : C/ωQ → Q. Because Q is semisimple, every object in Q is a
direct summand of an object in the image of Q. Therefore, R is essentially surjective,
and (2.4(b)) shows that it is also full and faithful; hence it is a tensor equivalence.

Remark 2.7. Given a closed subgroup H of π(C) and an F -valued fibre functor
ω on C, there always exists a quotient (Q, q) of C by H with ωq ≈ ω; moreover,
(Q, q) is unique up to equivalence. The proof is an exercise in gerbology.
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Polarizations on quotients. The next proposition gives a criterion for a polariza-
tion on a Tate triple to pass to a quotient Tate triple.

Proposition 2.8. Let T = (C, w,T) be an algebraic Tate triple over R such that
w(−1) �= 1. Let (Q,q) be a quotient of C by H ⊂ π(C), and let ωq be the corresponding
fibre functor on CH . Assume H ⊃ w(Gm), so that Q inherits a Tate triple structure
from that on C, and that Q is semisimple. Given a graded polarization Π on T, there
exists a graded polarization Π ′ on Q such that q : Π �→ Π ′ if and only if ωq ≈ ωΠ |CH .

Proof. ⇒: Let Π ′ be such a polarization on Q, and consider the exact tensor
functors

C
q→ Q

ξΠ′→ V, ξΠ ′ : Π ′ �→ ΠV .

Both ξΠ ′ ◦ q and ξΠ are compatible with Π and ΠV and with the Tate triple struc-
tures on C and V, and so ξΠ ′ ◦ q ≈ ξΠ (Deligne and Milne 1982, 5.20). On
restricting everything to Cw(Gm) and composing with γV , we get an isomorphism
ωΠ ′ ◦ (q|Cw(Gm)) ≈ ωΠ . Now restrict this to CH , and note that

(
ωΠ ′ ◦ (q|Cw(Gm))

)
|CH = (ωΠ ′|Qπ(Q)) ◦ (q|CH) ∼= ωq

because ωΠ ′ |Qπ(Q) ∼= γQ.

⇐: The choice of an isomorphism ωq → ωΠ |CH determines an exact tensor functor

C/ωq → C/ωΠ

(notations as in 2.6). As the quotients C/ωq and C/ωΠ are tensor equivalent re-
spectively to Q and V, this shows that there is an exact tensor functor ξ : Q → V
such that ξ ◦ q ≈ ξΠ . Evidently Aut

⊗(γV ◦ ξ|Qw(Gm)) is isomorphic to a subgroup of
Aut⊗(γV ◦ ξΠ |Cw(Gm)). Since the latter is anisotropic, so also is the former (Deligne
1972, 2.5). Hence ξ defines a graded polarization Π ′ on Q (Proposition 2.1), and
clearly q : Π �→ Π ′. �

3. Polarizations on categories of motives over finite fields

If the Tate conjecture holds for all abelian varieties over F, then the Tannakian
category Mot(F;A) has as fundamental group the Weil number torus P (see, for
example, Milne 1994, 2.26); moreover, there exist exactly two graded polarizations
on Mot(F;A), and for exactly one of these (denoted ΠMot) the geometric Weil forms
on any supersingular elliptic curve are positive (ibid., 2.44).

If the Hodge conjecture holds for complex abelian varieties of CM-type, then
the Tate conjecture holds for abelian varieties over F (Milne 1999b, 7.1), and, cor-
responding to the p-adic prime we have fixed on Qal, there is a reduction functor
R : CM(Qal) → Mot(F;A), which realizes Mot(F;A) as the quotient of CM(Qal)
by the closed subgroup P of the Serre group S. (A description of the inclusion P ↪→ S
can be found, for example, in Milne 1994, 4.12.)

Theorem 3.1. If the Hodge conjecture holds for complex abelian varieties of CM-
type, then R : ΠCM �→ ΠMot and all geometric Weil forms on all abelian varieties are
positive for ΠMot.

Proof. I claim that to prove the theorem it suffices to show:

(*) there exists a polarizationΠ onMot(F;A) such that R :ΠCM �→Π.
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Indeed, if R : ΠCM �→ Π, then every geometric Weil form is positive for Π (1.3, 1.6).
In particular, the geometric Weil forms on a supersingular elliptic curve are positive,
and so Π = ΠMot. This proves the claim.

We now prove (*). Let ωR be the fibre functor on CM(Qal)P defined by R (see
2.4(a)). According to (2.8), there exists a Π such that R : ΠCM �→ Π if and only if
(ωR)(R) ≈ ωΠCM|CM(Qal)P(R), i.e., if and only if the (S/P )R-torsor

℘ = Hom⊗((ωR)(R), ωΠCM|CMP
(R))

is trivial.

Consider the diagrams

CM(Qal)
J←−−− LCM(Qal)�R

�RL

Mot(F;A) I←−−− LM(F),

S −−−→ T�
�

P −−−→ L.

The first is a commutative diagram of Tate triples, and the second is the corresponding
diagram of fundamental groups (all commutative; cf. Milne 1999b, §6).

According to (1.5), the analogue of (*) is true for RL, and so (2.8) shows that the
(T/L)R-torsor

℘′ = Hom⊗((ωRL)(R), ωΠLCM|LCML
(R))

is trivial. But ℘′ ∼= ℘∧S/P T/L, and so it remains to show that the mapH1(R, S/P )→
H1(R, T/L) is injective. From Milne 1999b, 6.1, we know that the map S/P → T/L
is injective. Fix a CM-field K ⊂ Q

al finite and Galois over Q, and let SK , PK ,
TK , and LK be the corresponding quotients of S, P , T , and L (ibid.). When K
is chosen to have degree at least 4 and contain a quadratic imaginary field Q in
which p splits, then the map SK/PK → TK/LK admits a section1 (Milne 1999c,
2.2), and so H1(R, SK/PK) → H1(R, TK/LK) is injective. This shows that ℘K(R)
is nonempty, where ℘K = ℘ ∧S/P SK/PK . As (SK/PK)(R) is compact, this implies
that ℘(R) = lim←−℘

K(R) is nonempty. �

4. The Hodge standard conjecture

Throughout this section, S will be a class of varieties over k satisfying the following
condition:

1Let A and B be the abelian varieties defined in Milne 1999c, §1, and let AF and BF be their
reductions. We have a diagram

CMK(Qal) J←−−−− LCMK(Qal) ←−−−− 〈A ×B〉⊗
�R

�RL

�

MotK(F;A) I←−−−− LMK(F) ←−−−− 〈AF × BF〉⊗.

of Tannakian categories, and correspondingly homomorphisms of groups

SK/P K → TK/LK → L(A× B)/L(AF × BF).

The exact commutative diagram of character groups ibid., 2.2, shows that the composite of these
homomorphisms is an isomorphism.
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(*): the projective spaces are in S, and S is closed under passage to a connected
component and under the formation of products and disjoint unions.

For example, S could be the class T of all varieties over k or the smallest class A
satisfying (*) and containing the abelian varieties.

By a Weil cohomology theory on S, we mean a contravariant functor V �→ H∗(V )
satisfying the conditions in Kleiman 1968, 1.2, (equal to the conditions (1)–(4) of
Kleiman 1994, §3) except that we remember the Tate twists (Milne 1999a, Appendix).
We say that such a cohomology theory is good if homological equivalence coincides
with numerical equivalence on algebraic cycles with Q-coefficients for all varieties in
S, and we say that it is very good if, in addition, the strong Lefschetz theorem holds:

for every connected variety V in S and map L defined by a smooth
hyperplane section of V ,

Ln−r : Hr(V )→ H2n−r(V )(n− r),
is an isomorphism for 0 ≤ r ≤ n = dimV .

For a Weil cohomology theory H, πr denotes the projection onto Hr, and when
H satisfies the strong Lefschetz theorem, Λ, cΛ, ∗, pr denote the maps defined in
Kleiman 1968, 1.4 (corrected in Kleiman 1994, §4).

Proposition 4.1. For all very good Weil cohomology theories H on S, the op-
erators Λ, cΛ, ∗, pr, and πrare defined by algebraic cycles that (modulo numerical
equivalence) depend only on L (not H).

Proof. Let H be a very good Weil cohomology theory on S. Then the Lefschetz
standard conjecture holds for all V ∈ S (Kleiman 1994, 5-1, 4-1(1)), and the propo-
sition can be proved as in ibid., 5.4, (the Hodge standard conjecture is used there
only to deduce that numerical equivalence coincides with homological equivalence on
V × V ). �

Let A∗
∼(V ) denote the Q-algebra of algebraic classes on V modulo an admissible

equivalence relation ∼, for example, numerical equivalence (num), or homological
equivalence (hom) with respect to some Weil cohomology.

When there exists a very good Weil cohomology theory on S, we defineMot(k;S)
to be the category of motives based on S using the elements of A∗

num(V × V ) as the
correspondences and with the commutativity constraint modified using the πr’s given
by (4.1). It is semisimple (Jannsen 1992), hence Tannakian (Deligne 1990), and it
has a natural structure of a Tate triple.

Proposition 4.2. If there exists a very good Weil cohomology theory on S, then
all good Weil cohomology theories on S are very good.

Proof. Let V ∈ S be connected of dimension n, and let Z be a smooth
hyperplane section of V . Then l =df ∆V (Z) ∈ An+1(V × V ) is a morphism
l : h(V )→ h(V )(1). Consider the morphisms

ln−r : hr(V )→ h2n−r(V )(n− r), 0 ≤ r ≤ n.

A good Weil cohomology theory H on S defines a fibre functor ωH on Mot(k;S),
and ωH(l

n−r) is Ln−r : Hr(V )→ H2n−r(V )(n− r). If H is very good, then ln−r is an
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isomorphism, which in turn implies that Ln−r is an isomorphism for every good Weil
cohomology theory. �

Proposition 4.3. When k = F, there exists a very good Weil cohomology theory
on A (and therefore the conclusions of Propositions 4.1 and 4.2 hold for A).

Proof. For all 7 �= p, the 7-adic étale cohomology theory satisfies the strong
Lefschetz theorem (Deligne 1980). Let S be a finite set of abelian varieties over k.
When A is replaced by the smallest class A(S) containing S and satisfying (*), then
there exist 7 for which 7-adic étale cohomology theory is good (Clozel 1999; see also
Milne 1999c, B.2). Therefore (see the proof of Proposition 4.2), for the varieties in
A(S),

ln−r : hr(V )→ h2n−r(V )(n− r)
is an isomorphism for 0 ≤ r ≤ n = dimV . Since S was arbitrary, this shows that
ln−r is an isomorphism for all connected varieties in A, which implies that every good
Weil cohomology theory on A is very good. But, any fibre functor ω on Mot(F;A)
defines a good cohomology theory with Hr(V ) = ω(hrV ). �

Define P r
∼(V ) to be the Q-subspace of Ar

∼(V ) on which L
n−2r+1 is zero, and let θr

be the bilinear form

(x, y) �→ (−1)r〈Ln−2rx · y〉 : P r
∼(V )× P r

∼(V )→ Q, r ≤ n/2.

As originally stated (Grothendieck 1969), the Hodge standard conjecture asserts that
these pairings are positive-definite when ∼ is 7-adic homological equivalence. Kleiman
(1994, §5) states the conjecture for any Weil cohomology theory. When the pairings
θr are positive-definite with ∼ equal to numerical equivalence, we shall say that the
numerical Hodge standard conjecture holds. Note the Hodge standard conjecture
for a good Weil cohomology theory coincides with the numerical Hodge standard
conjecture.

Remark 4.4. In the presence of the Lefschetz standard conjecture, the Hodge
standard conjecture for a Weil cohomology H is false unless homological equivalence
coincides with numerical equivalence, in which case it coincides with the numerical
Hodge standard conjecture (Kleiman 1994, 5-1).

Assume that there exists a very good Weil cohomology theory on S, so that
Mot(k;S) is defined. Let V ∈ S be connected of dimension n, and let pr(V ) be the
largest subobject of

Ker(ln−2r+1 : h2r(V )(r)→ h2n−2r+2(V )(n − r + 1))
on which π =df π(Mot(k;S)) acts trivially. Then2

γMot(pr(V )) = P r
num(V )

and there is a pairing

ϑr : pr(V )⊗ pr(V )→ 11,

also fixed by π, such that γMot(ϑr) = θr.

2Recall (§2) that γMot is the “unique” fibre functor on Mot(k;S)π.
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Proposition 4.5. Assume there exists a very good Weil cohomology theory on
S. Then the numerical Hodge standard conjecture holds for all V ∈ S if and only if
there exists a polarization Π on Mot(k;S) for which the forms ϑr are positive.

Proof. ⇒: If the numerical Hodge standard conjecture holds for all V ∈ S, then
there is a canonical polarization ΠMot on Mot(k;S) for which the bilinear forms

ϕr : hr(V )⊗ hr(V ) id⊗∗→ hr(V )⊗ h2n−r(V )(n− r)→ h2n(V )(n− r) ∼= 11(−r)
are positive (cf. Saavedra 1972, VI 4.4) — here V ∈ S is connected of dimension n and
∗ is defined by any smooth hyperplane section of V . The restriction of ϕ2r⊗ id11(2r) to
the subobject pr(V ) of h2r(V )(r) is the form ϑr, which is therefore positive for ΠMot

(Deligne and Milne 1982, 4.11b).

⇐: Let Π be a polarization on Mot(k;S) for which the forms ϑr are positive.
There exists a morphism of Tate triples ξ : Mot(k;S)(R) → V such that ξ : Π �→ ΠV ;
in particular, for X of weight 0 and φ ∈ Π(X), (γV ◦ ξ)(φ) is a positive-definite
symmetric form on (γV ◦ ξ)(X) (Deligne and Milne 1982, p. 195). The restriction
of γV ◦ ξ to Mot(k;S)π(R) is (uniquely) isomorphic to γ

Mot, and so θr = γMot(ϑr) is
positive-definite. �

Theorem 4.6. Let k be an algebraically closed field. If the Hodge conjecture holds
for complex abelian varieties of CM-type, then

(a) numerical equivalence coincides with 7-adic étale homological equivalence on
abelian varieties over k (all 7 �= char(k)), and

(b) the Hodge standard conjecture holds for abelian varieties over k and all good
Weil cohomologies on A (for example, for the 7-adic étale cohomology, 7 �=
char(k)).

Proof. (a) for k = F. For an abelian variety A over a finite field, the Frobenius
endomorphism acts semisimply on the 7-adic étale cohomology (Weil 1948). Hence,
the Tate conjecture implies that numerical equivalence coincides with 7-adic étale ho-
mological equivalence (see, for example, Tate 1994, 2.7), and our assumption implies
that the Tate conjecture holds (Milne 1999b, 7.1).

(b) for k = F. Since the Hodge standard conjecture holds in characteristic zero,
there is a polarization Π on CM(Qal) for which the forms

ϕr : hr(A)⊗ hr(A)→ 11(−r)
are positive for all abelian varieties A of CM-type over Qal. Clearly, Π is the polar-
ization ΠCM defined in Proposition 1.1. Let Z be the hyperplane section of A used
in the definition of ϕr. Because R : ΠCM �→ ΠMot (Theorem 3.1), the form

ϕr : hr(AF)⊗ hr(AF)→ 11(−r)
defined by the reduction ZF of Z on AF is positive for Π

Mot. As in the proof of (4.5),
this implies that ϑr : pr(AF) ⊗ pr(AF) → 11 is positive for ΠMot and that AF satisfies
the numerical Hodge standard conjecture. Because of (1.6), the pair

(AF, ZF modulo numerical equivalence)

is arbitrary, and so the numerical Hodge standard conjecture holds for all abelian
varieties over F.
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(a) for arbitrary k. For an abelian variety A of dimension n over k, consider the
commutative diagram:

H2r(A,Q$(r))×H2n−2r(A,Q$(n− r))
∪✲ H2n(A,Q$(n))∼= Q$

⋃

P r(A)

cl

∪

✻

× P r(A)

Ln−2r ◦ cl

∪

✻

θ ✲ Q

Here P r(A) denotes the group of primitive algebraic classes modulo 7-adic homologi-
cal equivalence. There is a similar diagram for a smooth specialization AF of A to an
abelian variety over F. The specialization maps on the cohomology groups are bijec-
tive and hence they are injective on the P ’s. Since the pairings are compatible, this
implies the Hodge standard conjecture for A and 7-adic étale cohomology. Since the
Lefschetz standard conjecture is known for abelian varieties, this in turn implies that
numerical equivalence coincides with 7-adic homological equivalence for A (Kleiman
1994, 5-4).

(b) for arbitrary k. In the last step we proved that the 7-adic étale Weil cohomol-
ogy is a good Weil cohomology theory on A and that the 7-adic étale Hodge standard
conjecture holds for abelian varieties over k. It follows that the numerical Hodge
standard conjecture holds for abelian varieties over k. �

Corollary 4.7. If the Hodge conjecture holds for complex abelian varieties of
CM-type, then, for every k such that there exists a very good Weil cohomology theory
on A, Mot(k;A) has a polarization (necessarily unique) for which the forms ϑr are
positive.

Proof. Apply 4.5 and 4.6. �
Remark 4.8. It is possible to prove directly that, if the geometric Weil forms are

positive for a polarization Π on Mot(k;A), then the forms ϕr are also positive for
Π. Indeed, by assumption ϕ1 ∈ Π(A). The restriction of the form ⊗rϕ1 on ⊗rh1(A)
to Hr(A) ∼= ∧rH1(A) is a positive rational multiple of ϕr (see the proof of Kleiman
1968, 3.11), which is therefore positive for Π.

Remark 4.9. Let K be a CM-subfield of Qal that is Galois over Q and properly
contains a quadratic imaginary number field in which p splits. The preceding argu-
ments can be modified to show that, if the Hodge conjecture holds for all complex
abelian varieties with reflex field contained in K, then the conclusions of Theorem
4.6 hold for all abelian varieties over F whose endomorphism algebra is split by K.

Remark 4.10. If the Tate conjecture holds for all varieties over F, then
Mot(F; T ) = Mot(F;A) (see, for example, Milne 1994, 2.7). Unfortunately, it does
not3 appear that this equality can be used to deduce the Hodge standard conjecture
for all varieties over F from knowing it for abelian varieties over F.

Remark 4.11. Most of the preceding arguments hold with “algebraic cycle” re-
placed by “Lefschetz cycle” (cf. Milne 1999a, §5). Let A be an abelian variety over
k. Recall that, for any Weil cohomology theory, if a Lefschetz class a on A is not

3Contrary to what was asserted in the first version of this manuscript.
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homologically equivalent to zero, then there exists a Lefschetz class b on A of com-
plementary dimension such that 〈a · b〉 �= 0; in particular, homological equivalence on
Lefschetz classses is independent of the Weil cohomology theory, and coincides with
numerical equivalence (ibid. 5.2).

Let Dr(A) be the Q-space of Lefschetz classes on A of codimension r modulo nu-
merical equivalence, and letDP r(A) be the Q-subspace on which Ln−2r+1 is zero. The
argument in (4.8) shows that the forms ϕr are positive for the canonical polarization
Π on LM(F). Hence (cf. the proof of 4.5), the bilinear forms

(x, y) �→ (−1)r〈Ln−2rx · y〉 : DP r(A)×DP r(A)→ Q

are positive-definite for r ≤ n/2. In other words, the Lefschetz analogue of the
Hodge standard conjecture holds unconditionally for abelian varieties over F. A
specialization argument (as in the proof of 4.6) extends the statement to arbitrary k.

Remark 4.12. Recall that a Hodge, Tate, or algebraic class on a variety is said
to be exotic if it is not Lefschetz. Remark 4.11 shows that the Hodge standard
conjecture holds unconditionally for abelian varieties with no exotic algebraic classes.
For examples (discovered by Lenstra, Spiess, and Zarhin) of abelian varieties over F

with no exotic Tate classes, and hence no exotic algebraic classes, see Milne 1999c,
A.7.

Solution 4.13 (Solution to Exercise 1.7). Lemma 1.2 can be proved over an
arbitrary k by a similar case-by-case argument; then Exercise 1.7 follows from Lemma
1.4. More elegantly, it follows from (4.11) and the Lefschetz analogue of (4.5).

Remark 4.14. Grothendieck (1969) stated: “Alongside the problem of resolution
of singularities, the proof of the standard conjectures seems to me to be the most
urgent task in algebraic geometry.” Should the Hodge conjecture remain inaccessible,
even for abelian varieties of CM-type, Theorem 4.6 suggests a possible approach to
proving the Hodge standard conjecture for abelian varieties, namely, improve the
theory of absolute Hodge classes (Deligne 1982) sufficiently to remove the hypothesis
from the theorem.
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Schémas pp. 359–386, North-Holland, Amsterdam; Masson, Paris, 1968.
Kleiman, S. L., The standard conjectures. Motives (Seattle, WA, 1991), 3–20, Proc. Sympos.

Pure Math., 55, Part 1, Amer. Math. Soc., Providence, RI, 1994.
Lieberman, D. I., Numerical and homological equivalence of algebraic cycles on Hodge manifolds.

Amer. J. Math. 90, 366–374, 1968.
Milne, J. S., Motives over finite fields. Motives (Seattle, WA, 1991), 401–459, Proc. Sympos.

Pure Math., 55, Part 1, Amer. Math. Soc., Providence, RI, 1994.
Milne, J. S., Lefschetz classes on abelian varieties. Duke Math. J. 96, 639–675, 1999a.
Milne, J. S., Lefschetz motives and the Tate conjecture. Compositio Math. 117, 45–76, 1999b.
Milne, J.S., The Tate conjecture for certain abelian varieties over finite fields, Preprint August

1, 1999c, arXiv:math.NT/9911218 (to appear in Acta Arith.).
Mumford, D., Abelian varieties. Tata Institute of Fundamental Research Studies in Mathemat-

ics, No. 5 Published for the Tata Institute of Fundamental Research, Bombay; Oxford University
Press, London 1970.

Saavedra Rivano, Neantro, Catégories Tannakiennes. Lecture Notes in Mathematics, Vol. 265.
Springer-Verlag, Berlin-New York, 1972.

Segre, B., Intorno ad teorema di Hodge sulla teoria della base per le curve di una superficie
algebrica, Ann. Mat. 16, 157–163, 1937.

Tate, J.T., Classe d’isogénie des variétés abéliennes sur un corps fini (d’après T. Honda),
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