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In an earlier work, we showed that if the Hodge conjecture holds for all complex
abelian varieties of CM-type, then the Tate conjecture holds for all abelian varieties
over finite fields (Milne 1999b). In this article, we extract from the proof a statement
(Theorem 1.1) that sometimes allows one to deduce the Tate conjecture for the powers
of a single abelian variety A over a finite field from knowing that some Hodge classes
on their lifts to characteristic zero are algebraic.

Tate’s theorem (Tate 1966) implies that the Tate conjecture holds for any abelian
variety over a finite field whose Q�-algebra of Tate classes is generated by those of
degree 1. Examples are known of abelian varieties for which this condition (and hence
the Tate conjecture) hold (Lenstra, Spiess, Zarhin; see the examples in A.7 below).
Using Theorem 1.1 and a result of Schoen (1988, 1998), we construct examples of
abelian varieties for which the condition fails, but for which we are nevertheless able
to prove the Tate conjecture (see 1.7, 1.8).

The main results are stated in Section 1 and proved in Section 2. Appendix A
summarizes the theories of abelian varieties of CM-type over C and of abelian varieties
over finite fields, and how the reduction map relates the two. Appendix B sharpens
a result of Clozel on the relation between numerical and homological equivalence for
abelian varieties over finite fields.

Notations not introduced in §1 are listed at the start of Appendix A.

1. Statements

Let X be a smooth complete variety over an algebraic closure F of the field Fp of
p elements. The choice of a model X1 of X over a subfield Fpn of F determines an
action of Gal(F/Fpn) on the étale cohomology group H2r(X,Q�(r)), and we define

T r� (X) =
⋃

X1/Fpn

H2r(X,Q�(r))
Gal(F/Fpn)

(union over all models). The elements of T r� (X) are called the �-adic Tate classes of
degree r on X. We shall say that the Tate conjecture holds for X if the Q�-vector
space T r� (X) is spanned by the classes of algebraic cycles for all r and all � �= p.

This article includes research supported in part by the National Science Foundation.
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A Tate class is said to be exotic if it is not in the Q�-algebra generated by the Tate
classes of degree 1. For an abelian variety over F, Tate (1966) showed that all Tate
classes of degree 1 are divisor classes, and so the nonexotic Tate classes are algebraic.

Let A0 be an abelian variety over F. If the Tate conjecture holds for A0, then the
equivalent statements of Tate 1994, Theorem 2.9, hold for every model A1 of A over
a finite field. In particular, the Tate conjecture holds for A1/Fq, and for every r, the
order of the pole of the zeta function Z(A1, t) of A1 at t = q−r is equal to the rank
of the group of numerical equivalence classes of algebraic cycles of codimension r on
A1.

Let A be an abelian variety with many endomorphisms (see A.2) over an alge-
braically closed field k. Then (see A.3) there is a group of multiplicative type L(A)
over Q whose fixed tensors in any Weil cohomology of a powerAs of A are exactly the
Lefschetz classes, i.e., those in the algebra generated by divisor classes. We call L(A)
the Lefschetz group of A.

Now take k to be the algebraic closure Qal of Q in C, and let w0 be a prime of Qal

dividing p. It follows from the theory of Néron models, that A has good reduction at
w0 (Serre and Tate 1968, Theorem 6) and so defines an abelian variety A0 over the
residue field F at w. There is a canonical inclusion L(A0) ↪→ L(A) (see A.3, Remark).

Let Hr(A,Q) denote the usual cohomology group of the complex manifold A(C),
and let Hr(A,Q(m)) = Hr(A, (2πi)mQ) — it is a rational Hodge structure of weight
r − 2m. The action of L(A) on H2r(As,Q(r)) defines a decomposition

H2r(As,Q(r))⊗Qal =
⊕

χ∈X∗(L(A))

H2r(As,Q(r))χ

where (−)χ is the subspace on which L(A) acts through its character χ. We say that
χ is algebraic if H2r(As,Q(r))χ contains a nonzero algebraic class for some r and
s. The set of algebraic characters of L(A) is stable under the action of Gal(Qal/Q),
and if χ is algebraic then H2r(As,Q(r))χ consists entirely of algebraic classes.1 By
composition, an algebraic character of L(A) defines a character of L(A0).

A model A1/Fq of A0 over a finite field defines a Frobenius endomorphism π of A0.
Some power of π lies in L(A0)(Q), and we define P (A0) to be the smallest algebraic
subgroup of L(A0) containing a power of π (see A.3).

Theorem 1.1. If

P (A0) =
⋂

Ker(χ : L(A0)→ Gm)

(intersection over the algebraic characters of L(A)), then the Tate conjecture holds
for all powers of A0.

An element of H2r(A,Q(r)) ∩ H0,0 is called a Hodge class of degree r on A. We
say that the Hodge conjecture holds for A if the Q-vector space of Hodge classes on A
of degree r is spanned by the classes of algebraic cycles for all r. The Mumford-Tate
group MT (A) of A is the largest algebraic subgroup of L(A) fixing the Hodge classes
on all powers of A.

1The algebraic characters are precisely those that are trivial on the subgroup M(A) of L(A) —
see A.3.
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Corollary 1.2. If the Hodge conjecture holds for all powers of A and

P (A0) = L(A0) ∩MT (A) (intersection inside L(A)),

then the Tate conjecture holds all powers of A0.

A Hodge class is said2 to be exotic if it is not in the Q-algebra generated by
Hodge classes of degree 1. Lefschetz showed that all Hodge classes of degree 1 are
divisor classes, and so the nonexotic Hodge classes are exactly the Lefschetz classes
(in particular, they are algebraic).

Let E be a CM-field of degree 2n, n > 2, over Q containing a quadratic imaginary
field Q. Choose an embedding ρ0 : Q → Qal, and let {σ0, . . . , σn−1} be the set of
extensions of ρ0 to E. Then Φ0 =df {σ0, ι ◦ σ1, . . . , ι ◦ σn−1} (ι denotes complex
conjugation on C) is a CM-type on E and Φ =df {ρ0} is a CM-type on Q. Let (A, i)
and (B, j) be abelian varieties over Qal of CM-types (E,Φ0) and (Q,Φ) respectively.
We let Q act diagonally on A× Bn−2.

Lemma 1.3. The exotic Hodge classes on A× Bn−2 are exactly the nonzero ele-
ments of the subspace

W (A,B)
df
= (

2n−2∧
Q

H1(A× Bn−2,Q))(n− 1)

of H2n−2(A× Bn−2,Q(n− 1)).

As A × Bn−2 has dimension 2n − 2, H1(A × Bn−2,Q) has dimension 4n − 4
over Q, and so

∧2n−2
Q H1(A × Bn−2,Q) has dimension 1 over Q. The action of an

endomorphism of an abelian variety on its cohomology groups preserves algebraic
classes, and so, if W (A,B) contains one nonzero algebraic class, then it is spanned
as a Q-space by algebraic classes.

Theorem 1.4. If some exotic Hodge class on A × Bn−2 is algebraic, then the
Hodge conjecture holds for all abelian varieties of the form As × Bt, s, t ∈ N.

The abelian varieties A and B over Qal reduce modulo w0 to abelian varieties A0

and B0 over F. Let K be the Galois closure of σ0E in Qal, and let D(w0) be the
decomposition group of w0 in Gal(K/Q).

Theorem 1.5. Assume p splits in Q and that Gal(K/σ0E) ·D(w0) is a subgroup
of Gal(K/Q).

(a) For all � �= p, the exotic �-adic Tate classes on A0 × Bn−2
0 are exactly the

nonzero elements of the subspace

W (A0, B0) =df (
2n−2∧
Q⊗QQ�

H1(A0 × Bn−2
0 ,Q�))(n− 1)

of H2n−2(A0 × Bn−2
0 ,Q�(n− 1)).

(b) If some exotic Hodge class on A×Bn−2 is algebraic, then the Tate conjecture
holds for all abelian varieties over F of the form As0 ×Bt0, s, t ∈ N.

2Following Tate 1994, p. 82.
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Remark 1.6. (a) Note that, under the hypotheses of the theorem, the Q-algebra
of Hodge classes on A×Bn−2 is larger than the tensor product of the similar algebras
for A and Bn−2, and the Q�-algebra of Tate classes on A0 × Bn−2

0 is larger than
the tensor product of the similar algebras for A0 and Bn−2

0 . Moreover, the groups
L(A×B) and MT (A×B) (resp. L(A0×B0) and P (A0×B0)) are not distinguished
by their fixed tensors in the cohomology of A× B (resp. A0 × B0).

(b) The condition that Gal(K/σ0E) ·D(w0) be a subgroup of Gal(K/Q) holds, for
example, if E is Galois over Q. Without it, the analysis becomes very complicated,
and the theorem fails.

Examples. Let C be an abelian variety over C, and let i : Q → End0(C) be a
homomorphism of Q-algebras, where, as above, Q is a quadratic imaginary extension
of Q. The pair (C, i) is said to be of Weil type if the tangent space to C at 0 is a free
Q⊗Q C-module.

When (C, i) is of Weil type, its dimension is even, say, dimC = 2m, and the
subspace (

∧2m
Q H1(C,Q))(m) of H2m(C,Q(m)) consists of Hodge classes (Weil 1977)

— they are called the Weil classes on C .

Let λ be a polarization of C whose Rosati involution induces complex conjugation
on Q, and let Eλ be the Riemann form defined by λ. There exists a skew-Hermitian
form φ : H1(A,Q)×H1(A,Q)→ Q such that TrQ/Q ◦φ = E. The discriminant of φ is
an element of Q×/Nm(Q×) which is independent of the choice of the polarization, and
so can be denoted by det(C, i). The quotient Q×/Nm(Q×) is an infinite group killed
by 2, and for any a ∈ Q×/Nm(Q×) with (−1)ma > 0, there exists an m2-dimensional
family of abelian varieties of Weil type with determinant a (Weil 1977, van Geemen
1994). We say that φ is split when there is an m-dimensional Q-subspace of H1(A,Q)
on which φ is totally isotropic.

The Weil classes on C are known to be algebraic in the following cases:

(a) Q = Q[
√
−3], m = 3, and φ is split (Schoen 1998; see also van Geemen 1994,

7.3, p. 250);
(b) Q = Q[

√
−3], m = 2 (Schoen 1988 when φ is split and Schoen 1998 in

general);
(c) Q = Q[

√
−1], m = 2, and φ is split (van Geemen 1996).

Corollary 1.7. Let A,B,E,Q be as in Theorem 1.5, and let Q act diagonally
on A×Bn−2. If the Weil classes on A×Bn−2 are algebraic, then the Hodge conjecture
hold for all abelian varieties of the form As×Bt, s, t ∈ N×N, and the Tate conjecture
holds for all abelian varieties of the form As0 × Bt0, s, t ∈ N× N.

Proof. In this case, W (A,B) is the space of Weil classes on A× Bn−2. �

Example 1.8. Let Q = Q[
√
−3] and let p be a prime such that p ≡ 1 (mod 3);

let F be a totally real cubic extension of Q that is Galois over Q or such that p splits
in it, and let E = F ·Q; let Φ = {ρ0} and Φ0 = {σ0, ισ1, ισ2} be the CM-types on Q
and E respectively defined above. Then, for all abelian 3-folds A of CM-type (E,Φ0)
and all elliptic curves B of CM-type (Q,Φ),

(a) the Hodge conjecture holds for the abelian varieties As × Bt, s, t ∈ N; the
subspace W (A,B) of H4(A× B,Q(2)) consists of exotic Hodge classes;
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(b) the Tate conjecture holds for the abelian varieties As0 × Bt0, s, t ∈ N; the
subspace W (A0, B0) of H

4(A0 ×B0,Q�(2)) consists of exotic Tate classes.

2. Proofs

Notations concerning groups of multiplicative type are reviewed at the start of
Appendix A.

Proof of 1.1. After the theorem in A.3, in order to prove Theorem 1.1, it suffices
to show that its hypotheses imply that M(A0) = P (A0).

As numerical equivalence agrees with homological equivalence on abelian varieties
in characteristic zero (see B.1), we may regard M(A) as the subgroup of L(A) fixing
the algebraic classes in H2r(As,Q(r)) for all r, s, i.e., as the intersection of the kernels
of the algebraic characters on L(A). Hence

L(A0) ∩M(A) =
⋂

χ algebraic

Ker(χ : L(A0)→ Gm).

Thus, the hypotheses of Theorem 1.1 imply that L(A0) ∩M(A) = P (A0). Since

L(A0) ∩M(A) ⊃ M(A0) ⊃ P (A0),

this implies that M(A0) = P (A0).

Proof of 1.2. As we noted in the proof of 1.1,

M(A) =
⋂

χ algebraic

Ker(χ : L(A)→ Gm).

If the Hodge conjecture holds for the powers of A, then MT (A) = M(A) (see A.3).
If, in addition, P (A0) = L(A0) ∩MT (A), then

P (A0) =
⋂
χ

Ker(χ : L(A0)→ Gm)

(intersection over the algebraic characters of L(A)), and so (1.2) follows from (1.1).

Proofs of 1.3 and 1.4. Let E, Q, ρ0, {σ0, . . . , σn−1}, Φ and Φ0 be as in the para-
graph preceding the statement of Lemma 1.3. Let K be a CM-subfield of Qal, finite
and Galois over Q, containing the Galois closure of σ0E in Qal, and let SK be its
Serre group (see A.4). For each i, 0 ≤ i ≤ n− 1, let

Σi = {τ ∈ Gal(K/Q) | τ ◦ σ0 = σi}.
Then Σ0 is the subgroup Gal(K/σ0E) of Gal(K/Q) and Σ0, . . . ,Σn−1, ιΣ0, . . . , ιΣn−1

are its left cosets. Let ψi be the characteristic function of Σi ∪
⋃
j �=i ιΣj , and let ψ be

the characteristic function of
⋃
Σi = {τ | τ ◦ ρ0 = ρ0}. Note that ΣK acts on the set

{Σ0, . . . , ιΣn−1}, and that if τΣi = Σi′ , then τψi = ψi′. The linear relations among
ψ0, . . . , ψn−1, ψ, ιψ regarded as elements of X∗(SK) are exactly the multiples of

ψ0 + · · ·+ ψn−1 + (n− 2)ψ = (n− 1)(ψ + ιψ). (*)

Let (A, i) be an abelian variety of CM-type (E,Φ0), and identify X∗(L(A)) with
a quotient of ZΣE (see A.5). The map

X∗(ρΦ0) : X
∗(L(A))→ X∗(SK)
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(ibid.) sends [σ0] to ψ0 and hence, by equivariance and linearity, it sends [σi] to ψi
and [σ0+ ισ0] to ψ0+ ιψ0 = ψ+ ιψ. Because [σ0], . . . , [σn−1], [σ0+ ισ0] form a basis for
X∗(L(A)) and ψ0, . . . , ψn−1, ψ + ιψ are linearly independent in X∗(SK), we see that
X∗(ρΦ0) : X

∗(L(A))→ X∗(SK) is injective. Therefore, ρΦ0 : S
K → L(A) is surjective,

and MT (A) = L(A) (ibid.). Hence all Hodge classes on all powers of A are Lefschetz
(A.3, Theorem). In particular, the Hodge conjecture holds for A and its powers.

Let (B, i) be an elliptic curve of CM-type (Q,Φ). In this case, X∗(L(B)) = ZΣQ

and L(B) = (Gm)Q/Q. The map X∗(ρΦ) sends ρ0 to ψ and ιρ0 to ιψ. As ψ and ιψ are
linearly independent in X(SK), this shows that MT (B) = L(B), and so all Hodge
classes on all powers of B are Lefschetz.

The abelian variety A is simple because its CM-type is primitive (this uses that
n > 2). The product A×B is of CM-type (E×Q,Φ′) where Φ′ = Φ0 �Φ. The group
X∗(L(A×B)), regarded as a quotient of ZΣE�ΣQ , has basis {[σ0], . . . , [σn−1], [ρ0], [ρ0+
ιρ0]}, and X∗(ρΦ′) sends

[σi] �→ ψi, [ρ0] �→ ψ, [ρ0 + ιρ0] �→ ψ + ιψ.

As (*) is the only relation among ψ0, . . . , ψn−1, ψ, ιψ, the kernel of X
∗(L(A× B))→

X∗(SK) is free of rank 1 with generator

χ = [σ0 + · · ·+ σn−1 + (n− 2)ρ0 − (n− 1)(ρ0 + ιρ0)].

As MT (A×B) is the image of SK in L(A×B) (see A.5), this shows that there is an
exact sequence

0→MT (A× B)→ L(A× B) χ→ T → 0

where T is the 1-dimensional torus over Q whose character group 〈χ〉 is isomorphic
to Z with Gal(K/Q) acting nontrivially through Gal(ρ0Q/Q).

The exotic Hodge classes on A×B and its powers are those that lie in a rational
subspace on which L(A× B) acts through the characters mχ, m �= 0.

We now prove 1.3. The Lefschetz group of A×Bn−2 equals that of A×B. It acts
on

W (A,B) =
n∧
Q

H1(A)⊗
n−2∧
Q

((n− 2)H1(B))⊗Q(n− 1)

through the characters χ and ιχ = −χ. Because χ is trivial on MT (A × B), this
space consists of Hodge classes, and because χ is not trivial on L(A×B), the Hodge
classes are exotic. The group L(A×B) acts on no other subspace of a space H2r(A×
Bn−2,Q(r)) ⊗ Qal through the characters ±χ, and so the elements of W (A,B) are
the only exotic Hodge classes on A×Bn−2.

We now prove 1.4. If some exotic Hodge class in A×Bn−2 is algebraic, then χ is
trivial onM(A×B). HenceM(A×B) =MT (A×B). ButM(As×Bt) =M(A×B)
and MT (As × Bt) = MT (A × B) for any s, t ≥ 1 (see A.5), and so the Hodge
conjecture holds for As ×Bt (see A.3).
Proof of 1.5. We shall compute the terms in the diagram

SK −−−→ L(A×B)� �
PK −−−→ L(A0 × B0)
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or, equivalently, in the corresponding diagram of character groups. In fact, we shall
prove that there is an exact commutative diagram

0 −−−→ 〈χ〉 −−−→ X∗(L(A× B)) −−−→ X∗(SK)	∼=
	

	
0 −−−→ 〈χ0〉 −−−→ X∗(L(A0 × B0)) −−−→ X∗(PK).

(**)

The horizontal maps in the right-hand square are those defined in A.5 and A.7, the
map X∗(SK) → X∗(PK) is that in the fundamental diagram (A.8), and the map
L(A0 ×B0)→ L(A×B) comes from the inclusion C(A0 ×B0) ⊂ C(A×B) induced
by the reduction map End0(A×B) ↪→ End0(A0×B0). The character χ of L(A×B)
is that defined above, and χ0 is the composite of χ with L(A0 × B0)→ L(A× B).

The “subgroup” condition in the statement of the theorem implies that Σ0 ·D(w0)
is a subgroup of Gal(K/Q), even though we are no longer assuming K to be the Galois
closure of σ0E. In fact, we now assume that K is large enough to split End0(A0×B0)
(in the sense of A.6).

Let X be the set of primes of K dividing p. Suppose that the subsets Σi ·w0 and
Σj · w0 of X have nonempty intersection. Then τiw0 = τjw0 for some τi ∈ Σi and
τj ∈ Σj . Hence τi ∈ τjD(w0), and so

Σi · w0 = τiΣ0 · w0 ⊂ τjD(w0)Σ0 · w0 = τjΣ0D(w0) · w0 = Σj · w0.

By symmetry, Σi · w0 ⊃ Σj · w0, and so the two sets are equal: we have shown that
the sets Σi ·w0 and their complex conjugates form a partition of X. Let X0, . . . , Xm−1

be the distinct elements of {Σi · w0 | 0 ≤ i ≤ n− 1} with X0 chosen to be Σ0w0, and
let

Y = {X0, . . . , Xm−1, ιX0, . . . , ιXm−1}.
The group ΣK acts transitively on X and Y , and the stabilizers of w0 and X0 are
D(w0) and Σ0 · D(w0) respectively. By using w0 and X0 as base points, we can
identify the map of ΣK-sets X → Y with ΣK/D(w0) → ΣK/Σ0 · D(w0). Each Xj
then corresponds to the quotient of a left coset of Σ0 ·D(w0) by the right action of
D(w0). From these remarks, we see that

|X| = (ΣK : D(w0)),

|Y | = (ΣK : Σ0 ·D(w0)) (= 2m),

|Xj| = (Σ0 ·D(w0) : D(w0)).

For i ∈ {0, . . . , n − 1}, define j(i) to be the element of {0, . . . , m − 1} such that
Σi · w0 = Xj(i). For each j, there are (Σ0 · D(w0) : Σ0) = n/m sets Σi such that
Σi · w0 = Xj .

We next compute the terms in the diagram

X∗(L(A)) −−−→ X∗(SK)	
	

X∗(L(A0)) −−−→ X∗(PK).

(**A)

Recall that we have already shown that X∗(L(A))→ X∗(SK) sends the element [σi]
of X∗(L(A)) to ψi.
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We use the map π �→ fKπ (see A.6, A.7) to identify X∗(PK) with

{f ∈ ZX | there exists an m ∈ Z such that f + ιf = mn0}.
Here n0 = [Kw0 : Qp] = |D(w0)|. The map X∗(SK)→ X∗(PK) is

f =
∑
τ∈ΣK

f(τ )τ �→
∑
τ∈ΣK

f(τ )τw0 =
∑
w∈X

(
∑

τ , τw0=w

f(τ ))w

(see A.8). When f = ψi, w ∈ Xj occurs in the right-hand side with nonzero coefficient
if and only if j = j(i), in which case its coefficient is |Σ0 ∩D(w0)| = n0m/n. Thus
the map sends ψi to fj(i) where fj is the function determined by the conditions

fj(w) =

{
|Σ0 ∩D(w0)| w ∈ Xj
0 w ∈ Xj′ , j′ �= j

,

fj(w) + fj(ιw) = n0, all w.

We identify X∗(L(A0)) with

ZΠA0

{g | g = ιg,
∑
g(π) = 0}

where ΠA0 is the set of conjugates of πA0 in K (see A.7). Let u = ρ−1
0 w0, and let

v0 = σ
−1
0 w0. Note that σ

−1
i w0 lies over u0 and (ισi)

−1w0 lies over ιu0, 0 ≤ i ≤ n− 1.
Using this, we find that the slope function of the Frobenius germ πA0 of A0 satisfies

sπA0
(v) =

{
1/|ΣE(v0)| v = v0
0 v lies over u0, v �= v0

where ΣE(v0) = {σ ∈ ΣE | σ−1w0 = v0} (see A.8). As s+ ιs = 1, this determines s.
Note that

|ΣE(v0)| = (Σ0 ·D(w0) : Σ0) = (D(w0) : Σ0 ∩D(w0)).

Note also that X0 is the set of w ∈ X lying over the prime σ0v0 in σ0E. For any
τ ∈ Σi (i.e., such that τ ◦ σ0 = σi), the diagram

K
τ→≈ K X0 �→ τX0 = Xj(i)

| |
σ0E →≈ σiE σ0v0 �→ σiv0

shows that Xj(i) is the set of w ∈ X lying over σiv0 in σiE0. In other words, Xj(i) is
the set of w ∈ X such that σ−1

i w = v0. For σ ∈ ΣE , σπA0 is the Weil germ in K with

fKσπA0
(w) = sσπA0

(w) · n0 = sπA0
(σ−1w) · n0.

When σ = σi and w ∈ Xj , this becomes

fKσiπA0
(w) =

{
|Σ0 ∩D(w0)| j = j(i)

0 j �= j(i) .

Thus, fσiπAs
= fj(i). In particular, σiπA0 depends only on j(i). As the functions fj

are distinct, we see that

ΠA0 = {π0, . . . , πm−1, ιπ0, . . . , ιπm−1}
where πj(i) = σiπA0. The map X∗(L(A)) → X∗(L(A0)) sends [σi] to [πj(i)], and the
map X∗(L(A0))→ X∗(PK) sends [πj] to fj.
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We have now computed all the terms in the diagram (**A). It is clear that it
commutes.

We next compute the terms in the diagram

X∗(L(B)) −−−→ X∗(SK)	
	

X∗(L(B0)) −−−→ X∗(PK).

(**B)

Recall that X∗(L(B)) has basis [ρ0], [ιρ0], and that the map X∗(L(B)) → X∗(SK)
sends [ρ0] to ψ and [ιρ0] to ιψ. Here ψ is the characteristic function of

⋃
Σi. Clearly,

Q[πB0] = Q, and X∗(L(B0)) = ZΣQ . The left-hand vertical map in the diagram is
therefore the identity map. Let f ∈ ZX be the function

f(w) =

{
n0, if ρ−1

0 w = u0

0, otherwise
.

Then f ∈ X(PK) and the bottom map sends [ρ0] �→ f . The right-hand vertical map
sends ψ to f .

On combining the diagrams (**A) and (**B), we get the right-hand square in
(**). It remains to compute the kernel of X∗(L(A0 × B0))→ X∗(PK). Note that

X∗(L(A0 × B0)) =
Z

ΣΠA0
�ΣQ

{g | g = ιg and
∑
g(y) = 0} .

The elements [π0], . . . , [πm−1], [ρ0], [ρ0 + ιρ0] form a basis for X∗(L(A0 × B0)). They
are mapped respectively to f0, . . . , fm−1, f, f + ιf in X∗(PK). Clearly,

n

m
(f0 + · · · + fm−1) + (n− 2)f = (n− 1)(f + ιf),

and any relation among f0, . . . , fm−1, f, f + ιf is a multiple of this one. Therefore,
the kernel of X∗(L(A0×B0))→ X∗(PK) is the free Z-module of rank one generated
by

χ0 = [
n

m
(π0 + · · · + πm−1) + (n− 2)ρ0 − (n− 1)(ρ0 + ιρ0)].

The map X∗(L(A×B))→ X∗(L(A0 × B0)) sends χ to χ0, and so we have obtained
the diagram (**).

We now prove Theorem 1.5. The group L(A0 × B0) acts on the space W (A0, B0)
through the characters χ0 and ιχ0 = −χ0. Because χ0 is trivial on P (A0 × B0),
W (A0 × B0) consists of Tate classes, and because χ0 is nontrivial on L(A0 × B0),
the classes are exotic. The group L(A0 × B0) acts on no other subspace of a space
H2r(A0×Bn−2

0 ,Q�(r)) through the character χ0, and so W (A0×B0) contains all the
exotic Tate classes on A0 × Bn−2

0 .

From (**), we obtain an exact commutative diagram

0 −−−→ MT (A× B) −−−→ L(A× B) χ−−−→ T −−−→ 0�
�

�∼=

0 −−−→ P (A0 × B0) −−−→ L(A0 × B0)
χ0−−−→ T0 −−−→ 0

.

It follows that
P (A0 × B0) = L(A0 × B0) ∩MT (A× B).
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If some exotic Hodge class on A×Bn−2 is algebraic, then the Hodge conjecture holds
for all powers of A×Bn−2 (see Theorem 1.4), and so (b) of Theorem 1.5 follows from
Corollary 1.2.

Remark 2.1. It follows from the above calculations that P (A0) = L(A0) and
P (B0) = L(B0), and so all Tate classes on A0 and B0 are Lefschetz.

Remark 2.2. Choose E to be Galois over Q, and identify it with K. In this case,
the maps X∗(L(A× B))→ X∗(SK) and X∗(L(A0 × B0)) → X∗(PK) are surjective,
and so we obtain an exact commutative diagram

0 −−−→ 〈χ〉 −−−→ X∗(L(A×B)) −−−→ X∗(SK) −−−→ 0	∼=
	

	
0 −−−→ 〈χ0〉 −−−→ X∗(L(A0 × B0) −−−→ X∗(PK) −−−→ 0.

.

The vertical arrows are surjective, and so

0→ Ker(X∗(L(A× B))→ X∗(L(A0 × B0))→ X∗(SK)→ X∗(PK)→ 0

is exact. Hence

0→ PK → SK → L(A× B)/L(A0 × B0)

is exact, which implies that

0→ PK → SK → LK/TK

is exact (notations as in Milne 1999b) because the map L(A × B)/L(A0 × B0) →
LK/TK is injective. Therefore

PK = SK ∩ TK (intersection inside LK),

and we recover ibid., Theorem 6.1.

Appendix A. Abelian Varieties with Many Endomorphisms

A.1. Notations. Throughout, Qal is the algebraic closure of Q in C, and Γ =
Gal(Qal/Q). Complex conjugation on C, or a subfield of C, is denoted by ι or x �→ x̄.
In A.8, we fix a prime w0 of Qal dividing p, and denote the residue field at w0 by F.
We denote the restriction of w0 to a subfield of Qal by the same symbol. For a finite
étale Q-algebra E, ΣE = Hom(E,Qal). For a subfield K of Qal Galois over Q, ΣK
can be identified with Gal(K/Q).

A CM-algebra E is a finite product of finite field extensions of Q admitting an
involution ιE that is nontrivial on each factor and such that σ(ιEx) = σ(x) for all
σ : E → C; equivalently, E is a finite product of CM-fields.

For a finite set Y , ZY denotes the set of functions f : Y → Z. We sometimes
denote such a function by

∑
f(y)y; for example, the function f = y1 takes the value

1 on y1 and 0 on all y �= y1.
For a group of multiplicative type T over Q, X∗(T ) df

= Hom(TQal,Gm) is the
character group. We often use the pairing

χ, µ �→ 〈χ, µ〉 df
= χ ◦ µ : X∗(T )×X∗(T )→ End(Gm) ∼= Z
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to identify the cocharacter group X∗(T )
df
= HomQal(Gm, TQal) of T with the Z-linear

dual of X∗(T ). The group Γ acts on X∗(T ) and X∗(T ), and 〈γχ, γµ〉 = 〈χ, µ〉 for all
γ ∈ Γ, χ ∈ X∗(T ), and µ ∈ X∗(T ).

Let ρ : T → GL(V ) be a representation of a group T of multiplicative type on a
finite-dimensional Q-vector space V . For any subfield Ω of C that splits T , there is a
decomposition

V ⊗Q Ω ∼=
⊕

χ∈X∗(T )

Vχ

where Vχ is the subspace of V ⊗Q Ω on which T acts through χ. If Vχ is nonzero,
then we say that χ occurs in V . When Ω is Galois over Q, a subspace

⊕
χ∈Ξ Vχ,

Ξ ⊂ X∗(T ), is defined over Q (i.e., of the form W ⊗Q Ω for some subspace W ⊂ V )
if and only if Ξ is stable under Γ. The subspace of vectors in V fixed by T (in the
sense of Milne 1999a, §3) is denoted V T .

For a finite étale Q-algebra E, (Gm)E/Q =df ResE/Q(Gm) (Weil restriction of
scalars), so that X∗((Gm)E/Q) = ZΣE . Under this identification, an element f =∑
f(σ)σ of ZΣE maps an element a of E× = (Gm)E/Q(Q) to af =

∏
(σa)f(σ). We

sometimes identify a subset ∆ of ΣE with the character
∑
σ∈∆ σ; for example, if V is

an E-vector space, then (V ⊗r⊗Ω)∆ is the subspace on which a ∈ E acts as
∏
σ∈∆ σa.

There is a natural correspondence3 between

– triples (T, w, t) comprising a group of multiplicative type T , a cochar-
acter w of T , and a character t, all defined over Q, such that t◦w = −2;
and

– pairs (T0, ε) comprising a group of multiplicative type T0 and an element
ε of order 1 or 2 in T0(Q).

Given (T, w, t), define T0 to be the kernel of t and ε to be w(−1). Conversely, given
(T0, ε), define T by the diagram

0 −−−→ µ2 −−−→ Gm
−2−−−→ Gm −−−→ 0	ε 	w 	=

0 −−−→ T0 −−−→ T
t−−−→ Gm −−−→ 0

in which T = (T0 × Gm)/µ2. If (T1, w1, t1) ⊂ (T2, w2, t2), then T1 = T2 if and only if
(T1)0 = (T2)0.

Let ρ0 : T0 → GL(V ) be a representation of T0 such that ρ0(ε) acts on V as
multiplication by the scalar −1, and let W be a one-dimensional vector space with
basis e. Then

(x, y) �→ (ρ0(x) · y, y−2) : T0 ×Gm → GL(V )×GL(W )

sends (ε, ε) to 1, and therefore defines a homomorphism ρ : T → GL(V ) × GL(W ).
Note that (ρ ◦w)(y) acts on V as y, and that the composite of ρ with the projection
to GL(W ) is t. Let s ∈ V ⊗i. If s is fixed by T0, then i is even. There is a one-to-one
correspondence

s↔ s⊗ e⊗j
3Experts will recognize the Tannakian significance of this correspondence (Saavedra 1972, V

3.1.4; Deligne and Milne 1982, p. 190).
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between the elements s of V ⊗2j fixed by T0 and the elements of V ⊗2j ⊗W⊗j fixed by
T .

For a smooth projective variety X, Zr(X) is the space of algebraic cycles on
X of codimension r with coefficients in Q, and Zrnum(X) is the quotient of Zr(X)
by numerical equivalence. The space Z∗

num(X) =
⊕
r Zrnum(X) becomes a Q-algebra

under intersection product. An algebraic class in a cohomology group with coefficients
in a field Ω is an element of the Ω-subspace spanned by the classes of algebraic cycles.

For an abelian variety A over an algebraically closed field k of characteristic zero,
we often implicitly assume that there is given an embedding σ : k → C so that we
can define Hr(A,Q) to be rth cohomology group of the complex manifold (σA)(C).
We let Hom0(A,B) = Hom(A,B)⊗Z Q.

For Hodge structures and class field theory, we follow the usual conventions of
those areas rather than the conventions of Deligne used in my previous papers. For
example, z ∈ C× acts on a Hodge structure of type (r, s) as zrz̄s, and the Artin
reciprocity maps send prime elements to the Frobenius element x �→ xq.

We sometimes use [x] to denote an equivalence class containing x, and |X| to
denote the order of a finite set X.

For an explanation of the various cohomology groups of varieties, and their Tate
twists, see Deligne 1982, §1.

This section summarizes results due to many mathematicians. Omitted proofs
can be found in Milne 1999a, 1999b, Tate 1968/69, or in the references for those
articles.

A.2. Generalities. Let A be an abelian variety over an algebraically closed field
k. The reduced degree4 of the Q-algebra End0(A) is ≤ 2dimA, and when equality
holds the abelian variety is said5 to have many endomorphisms. An isotypic6 abelian
variety has many endomorphisms if and only if End0(A) contains a field of degree
2 dimA over Q, and an arbitrary abelian variety has many endomorphisms if and
only each isotypic isogeny factor of it does. Equivalent conditions:

(a) the Q-algebra End0(A) contains an étale subalgebra of degree 2 dimA over
Q;

(b) for a Weil cohomology X �→ H∗(X) with coefficient field Ω, the centralizer of
End0(A) in EndΩ(H

1(A)) is commutative (in which case it equals C(A)⊗QΩ
where C(A) is the centre of End0(A));

(c) (characteristic zero) A has CM-type, i.e., its Mumford-Tate group (see A.3
below) is commutative (hence a torus);

(d) (characteristic p �= 0) A is isogenous to an abelian variety defined over F

(theorems of Tate and Grothendieck).

4Let R be a semisimple algebra of finite degree over Q. Then R is a product of simple algebras,
say, R = R1× · · · ×Rm, and the centre Ei of each Ri is a field. The reduced degree [R : Q]red of R
over Q is defined to be

∑m
i=1[Ri : Ei]

1
2 [Ei : Q].

5Often such an abelian variety is said to admit “complex multiplication”, but this conflicts
with classical terminology — see Lange and Birkenhake 1992, p. 268. Also “multiplication” for
“endomorphism” seems archaic.

6An abelian variety is said to be isotypic if it is isogenous to a power of a simple abelian variety.
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Let k ⊂ k′ be algebraically closed fields. The functor A �→ Ak′ from the category
of abelian varieties over k to the similar category over k′ is fully faithful, because the
map on torsion points A(k)tors → A(k′)tors is bijective and A(k)tors is Zariski dense
in A. That the functor becomes essentially surjective on the categories of abelian
varieties with many endomorphisms up to isogeny is a result of Grothendieck (Oort
1973). Thus, in large part, the theory of abelian varieties with many endomorphisms
up to isogeny over an algebraically closed field depends only on the characteristic of
the field.

A.3. The groups attached to an abelian variety with many endomor-
phisms. Let A be an abelian variety with many endomorphisms over an algebraically
closed field k, and let C(A) be the centre of End0(A). Every Rosati involution on
End0(A) stabilizes C(A), and the different Rosati involutions restrict to the same
involution7 on C(A), which we denote †. Each factor of C(A) is either a CM-field, on
which † acts as complex conjugation, or is Q.

The Lefschetz group. We define L(A)0 to be the group of multiplicative type over
Q such that, for all commutative Q-algebras R,

L(A)0(R) = {α ∈ C(A)⊗ R | αα† = 1}.

Let ε = −1 ∈ L(A)0(Q), and let (L(A), w, t) be the triple associated (as in A.1) with
(L(A)0, ε).

Then

L(A)(Q) ∼= {α ∈ C(A)× | αα† ∈ Q×},

and, on Q-points, w is x �→ x and t is x �→ (xx†)−1.

The motivic group. Because L(A)0 is a subgroup of End
0(A)×, it acts on Z∗

num(A
s)

for all s, and we define M(A)0 to be the largest algebraic subgroup of L(A)0 acting
trivially on these Q-algebras. Then −1 ∈M(A)0(Q), and we let (M(A), w, t) be the
triple associated with (M(A)0,−1).
The Mumford-Tate group. When k has characteristic zero, L(A)0 acts on the Q-

algebra of Hodge classes on As for all s, and we define MT (A)0 to be the subgroup
of L(A)0 fixing the elements of these Q-algebras. Again −1 ∈ MT (A)0, and we let
(MT (A), w, t) be the triple associated with (MT (A)0,−1).
The group P . Let k = F. A model A1 of A over a finite field Fq defines a Weil

q-number π1, whose class πA in W (p∞) (see A.6 below) is independent of the choice
of A1. The group P (A) is defined to be the smallest algebraic subgroup of L(A)
containing some power of π1 — again, it is independent of the choice of A1.

Let π1 be a Weil p2n-number representing πA. Then π1/p
n ∈ L(A)0, and P (A)0 is

the smallest algebraic subgroup of L(A)0 containing some power of π1/p
n.

Let H∗ be a Weil cohomology with coefficients in a field Ω. Since L(A)0 ⊂
(Gm)C(A)/Q, there is a natural action of L(A)0 on H

1(A,Ω), and ε acts as −1. Hence

7The Rosati involution defined by a polarization λ : A → A∨ is α �→ α† = λ−1 ◦ α∨ ◦ λ. Let µ
be a second polarization, and let β = λ−1 ◦ µ. If α ∈ C(A), then α† ∈ C(A) and µ−1 ◦ α∨ ◦ µ =
β−1 ◦ α† ◦ β = α†.
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(see A.1) there is a natural action of L(A) on

Hr(As,Ω)(m) ∼= (
r∧
(

⊕
s copies

H1(A,Ω)))⊗ (Ω(1))⊗m.

Lemma. Let A be an abelian variety with many endomorphisms over an alge-
braically closed field k, and let H∗ be a Weil cohomology with coefficients in a field
Ω. Let H2∗(As)(∗) =

⊕
rH

2r(As)(r). Then, for all s,

(a) H2∗(As)(∗)L(A) is the Ω-subalgebra of H2∗(As)(∗) generated by the classes of
divisors on As (i.e., it is the space of Lefschetz classes);

(b) H2∗(As)(∗)M (A) is the space of algebraic classes in H2∗(As)(∗), provided
numerical equivalence coincides with homological equivalence for H∗;

(c) H2∗(As)(∗)MT (A) is the space of Hodge classes on As when k has characteristic
zero and H∗ is the cohomology defined by an embedding k → C;

(d) H2∗(As,Q�(∗))P (A) is the space of �-adic Tate classes on As when k = F and
H∗ is �-adic étale cohomology.

Proof. Statement (a) is proved in Milne 1999a (Theorem 4.4).

For (b), recall that theorems of Jannsen and Deligne show that the category of
motives over k, based on abelian varieties and defined using the numerical equivalence
classes of algebraic cycles as correspondences, is Tannakian (Jannsen 1992). Almost
by definition, M(A) is the fundamental group of the Tannakian subcategory 〈A〉⊗
of this category generated by A and the Tate object. When numerical equivalence
coincides with homological equivalence, the Weil cohomology defines a fibre functor,
and there is a natural map

Hom(11, h2r(As)(r))⊗Q Ω→ HomΩ(Ω, H
2r(As)(r))M (A),

which the theory of Tannakian categories shows to be bijective. But
Hom(11, h2r(As)(r)) = Zrnum(As).

Statement (c) is proved in Deligne 1982 (see the proof of 3.4).

Almost by definition of P (A), H2∗(As,Q�(∗))P (A) consists of the classes fixed by
the Frobenius germ πA, and these are exactly the Tate classes. �

Thus (Deligne 1982, 3.1), under the hypotheses in each part of the lemma, knowing
the group ?(A)Ω is equivalent to knowing the corresponding spaces of fixed classes:
?(A)Ω is the largest algebraic subgroup of GL(H1(A)) × Gm fixing the particular
classes on all As, and the particular classes are exactly those fixed by ?(A)Ω.

Theorem. (a) For any abelian variety A with many endomorphisms over an
algebraically closed field k of characteristic zero, MT (A) ⊂ M(A) ⊂ L(A),
and
(i) the Hodge conjecture holds for all powers of A if and only if MT (A) =
M(A);

(ii) all Hodge classes on all powers of A are Lefschetz if and only if
MT (A) = L(A).

When k = Qal, “Hodge” can be replaced by “Tate” in the above statements.
(b) For any abelian variety A0 over F, P (A0) ⊂M(A0) ⊂ L(A0), and

(i) all �-adic Tate classes on all powers of A0 are algebraic for one (or all)
� if and only if P (A0) =M(A0);
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(ii) all �-adic Tate classes on all powers of A0 are Lefschetz for one (or all)
� if and only if P (A0) = L(A0).

Proof. Since every character of L(A) occurs in a space of the form Hr(As)(m),
we see that the subgroups of L(A) are determined by their invariants in these spaces.
Thus (a) of the theorem is an immediate consequence of the lemma. That “Hodge”
can be replaced by “Tate” follows from Pohlmann 1968.

If P (A0) = M(A0), then the lemma shows that the �-adic Tate conjecture holds
for all powers of A0 and all � in the set in Proposition B.2, but if the �-adic Tate
conjecture holds for one � then it holds for all (Tate 1994, 2.9). Conversely, if the �-adic
Tate conjecture holds for all powers of A0 and a single �, then numerical equivalence
coincides with �-homological equivalence for that � (Tate 1994, 2.9, (c)⇒(b)), and
the preceding lemma then shows that P (A0)Q�

=M(A0)Q�
. As P (A0) ⊂ M(A0), this

implies that P (A0) =M(A0).

The proof of the remaining statement is similar. �

Example. If A has dimension 1, then either End0(A) is a quadratic imaginary
field E or a quaternion algebra D with centre Q. In the first case, all the groups
attached to A equal (Gm)E/Q and in the second, all the groups attached to A equal
Gm. Hence, there are no exotic Hodge or Tate classes on any power of an elliptic
curve, and the Hodge and Tate conjectures hold.

Remark. Let A be an abelian variety with many endomorphisms over Qal, and
let A0 be its reduction to an abelian variety over A0. The reduction map End0(A)→
End0(A0) is injective, and the image of the centre of End0(A) contains the centre
of End0(A0) (because the latter is generated as a Q-algebra by a Frobenius element
which lifts to an element of the centre of End0(A)). Therefore, L(A) ⊃ L(A0).

A.4. Classification over C of abelian varieties with many endomor-
phisms. Let E be a CM-algebra. A CM-type on E is the choice of one out of every
pair of complex conjugate homomorphisms E → C. It can variously be considered
as:

(a) a partition ΣE = Φ ∪ ιΦ;
(b) a function ϕ : ΣE → Z such that, for all σ, ϕ(σ) ≥ 0 and ϕ(σ) + ϕ(ισ) = 1;
(c) the choice of an isomorphism E ⊗Q R → CΣF where F is the product of the

maximal real subfields of the factors of E.

Here Φ is the support of ϕ and ϕ is the characteristic function of Φ.

Let A be a simple abelian variety over C with many endomorphisms. Then
End0(A) is a CM-field E, and the action of E on Γ(A,Ω1) defines a CM-type Φ on E,
which is primitive, i.e., not the extension of a CM-type on a proper CM-subfield of
E. The map A �→ (E,Φ) defines a bijection from the set of isogeny classes of simple
abelian varieties over C with many endomorphisms to the set of isomorphism classes
of pairs (E,Φ). It remains to classify the pairs (E,Φ).

Fix a (large) CM-field K ⊂ Qal, finite and Galois over Q. The Serre group SK

of K is the quotient of (Gm)K/Q whose character group consists of the f ∈ ZΣK for
which there is an integer wt(f) (the weight of f) such that f(τ ) + f(ιτ ) = wt(f) for
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all τ ∈ ΣK , that is,

X∗(SK) = {f ∈ ZΣK | f + ιf is constant}.

The reflex field of (E,Φ) is the fixed field of the subgroup {τ ∈ Γ | τΦ = Φ} of
Γ. We classify the pairs (E,Φ) whose reflex field is contained in K. Let ϕ be the
characteristic function of Φ. For each σ : E → Qal and τ ∈ Gal(Qal/Q), define

ψσ(τ ) = ϕ(τ
−1 ◦ σ).

Then ψσ(τ ) depends only on τ |K, and for any ρ ∈ Gal(Qal/Q), ψρ◦σ = ρψσ. Thus,
{ψσ} is a Γ-orbit in ZΣK . The map (E,Φ) �→ {ψσ} is a bijection from the set of
isomorphism classes of pairs (E,Φ) comprising a CM-field and a primitive CM-type
whose reflex field is contained in K to the set of Γ-orbits of elements f of X∗(SK)
such that f(τ ) ≥ 0 for all τ and wt(f) = 1.

A.5. Calculation of the groups over C. Let A be an abelian variety with
many endomorphisms over C. Then A is isogenous to a product As11 × · · · ×Astt with
the Ai simple and pairwise nonisogenous, and

L(A) ∼= L(A1 × · · · × At), (in fact L(A)0 ∼= L(A1)0 × · · · × L(At)0)
M(A) ∼= M(A1 × · · · × At)
MT (A) ∼= MT (A1 × · · · ×At).

Thus, in the following, we assume that A is a product of pairwise nonisogenous simple
abelian varieties. Then, E =df End

0(A) is a CM-algebra. The action of E on H1,0(A)
defines a CM-type Φ on E, and the Rosati involution is ιE .

The Lefschetz group. The group L(A) is the subgroup of (Gm)E/Q whose character
group is

ZΣE

{g | g = ιg and
∑
g(σ) = 0} .

The weight map w : Gm → L(A) corresponds to the map

[g] �→ wt(g)
df
=

∑
σ∈ΣE

g(σ)

on characters, and the homomorphism t : L(A) → Gm giving the action of L(A) on
the Tate object Q(1) sends 1 ∈ X∗(Gm) to the element of X∗(L(A)) represented by
−σ − ισ for any σ ∈ ΣE .

The group L(A)0 is the subgroup of (Gm)E/Q whose character group is

ZΣE

{g | g = ιg} .

The map µ2 → L(A)0 corresponds to the map on characters [g] �→
∑
g(σ) mod 2.

When A is simple, the map σ �→ ψσ is bijective and commutes with the action of
Γ, and so it identifies L(A) with the torus whose character group is

ZΨ

{g | g = ιg and
∑
g(ψ) = 0} , Ψ = {ψσ | σ ∈ ΣE}.
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The Mumford-Tate group. The Hodge decomposition on Hr(As,Q)(m) is defined
over Qal, i.e., there is a decomposition

Hr(As,Q)(m)⊗Qal ∼=
⊕

i+j=r−2m

Hr(As)(m)i,j

that becomes the Hodge decomposition when tensored with C. Since L(A)0 ⊂
(Gm)E/Q, there is a natural action of L(A)0 on H1(A,Q), and ε acts as −1. Hence
(see A.1) there is a natural action of L(A) on

Hr(As,Q)(m) ∼= (
r∧
(

⊕
s copies

H1(A,Q)))⊗ (Q(1))⊗m.

For χ = [g] ∈ X∗(L(A)), (Hr(As)(m))χ is of Hodge type

(
∑
σ∈Φ

g(σ),
∑
σ∈ιΦ

g(σ)).

Every character of L(A) occurs in Hr(As,Q)(m) for some r, s,m, and if [g] occurs in
Hr(As)(m), then wt(g) = r − 2m. A character χ of L(A) is trivial on MT (A) if and
only if ⊕τ∈ΓH

2r(As)(r)τχ is purely of type (0, 0) for some r, s for which the space is
nonzero. Hence, a character χ = [g] of L(A) is trivial on MT (A) if and only if∑

σ∈Φ

g(τ ◦ σ) = 0 for all τ ∈ Γ.

The motivic group. Let χ ∈ X∗(L(A)). Then χ is trivial on M(A) if and only if
H2r(As)(r)χ contains a nonzero algebraic class for some r and s, in which case the
spaces H2r(As)(r)χ consist entirely of algebraic classes for all r and s (see (b) of the
lemma in A.3).

Second description of MT (A). There is another description of MT (A) that is
useful. Let K be a CM-subfield of Qal, finite and Galois over Q, and let SK be its
Serre group. Let τ0 ∈ ΣK be the given embedding of K into Qal. Then f �→ f(τ0) is a
cocharacter µK of SK with the property that µK + ιµK is fixed by Γ and so is defined
over Q. The pair (SK , µK) is universal: if T is a second torus over Q and µ ∈ X∗(T )
is defined over K and µ+ ιµ is defined over Q, then there is a unique homomorphism
ρµ : S

K → T such that (ρµ)Qal ◦ µK = µ. On characters, ρµ sends χ ∈ X∗(T ) to the
element f of X∗(SK) with f(τ ) = 〈χ, τµ〉 for all τ .

Let A be an abelian variety of CM-type (E,Φ), and let µΦ be the cocharacter of
L(A) sending a character [g] of L(A) to

∑
σ∈Φ g(σ). If K contains the reflex field of

Φ, then µΦ is defined over K. Moreover µΦ+ ιµΦ is [g] �→ wt(g), which is defined over
Q, and so there is a unique homomorphism ρΦ : S

K → L(A) such that ρΦ ◦ µK = µΦ.
It sends a character g of L(A) to the character f of SK such that

f(τ ) = 〈[g], τµΦ〉 = 〈τ−1[g], µΦ〉 =
∑
σ∈Φ

g(τ ◦ σ).

The image of this homomorphism isMT (A). It is obvious that this description agrees
with the previous one.

Remark. The roles of K and E should be carefully distinguished. The first is a
“large” CM-subfield of Qal Galois over Q; the second is a finite product of abstract
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CM-fields acting on A. The field K contains the reflex field of (E,Φ). There are
homomorphisms

(Gm)K/Q � SK → L(A) ↪→ (Gm)E/Q.

The image of the middle homomorphism is MT (A).

A.6. Classification over F of abelian varieties. A Weil q-number8 of weight
m is an element π of a field of characteristic zero such that qNπ is an algebraic
integer for some N and σ(π) · ι(σ(π)) = qm for all homomorphisms σ : Q[π] ↪→ C.
The conditions imply that qNπ is a unit at all finite primes v of Q[π] not dividing p,
and hence that the same is true for π. For any prime v dividing p of a field containing
π, we let

sπ(v) =
ordv(π)

ordv(q)
;

thus sπ(v) + sπ(ιv) = wt(π). A Weil q-number is determined up to a root of 1 (as an
element of an algebraic number field) by the numbers sπ(v) because they determine
all of its valuations. We call sπ the slope function of π. A Weil q-number that is itself
an integer is called a Weil q-integer.

Weil germs. Let π be a Weil pn-number and π′ a Weil pn
′
-number in some field.

We say π and π′ are equivalent if πn
′
and π′n differ by a root of 1. A Weil germ is

an equivalence class of Weil numbers. The weight and slope function of a Weil germ
π are the weight and slope function of any representative of it, and Q[π] is defined to
be the smallest field containing a representative of π. A Weil germ is determined by
its slope function.

Let W (p∞) denote the set of Weil germs represented by elements of Qal. It is
an abelian group endowed with an action of Γ. Let W (p∞)m,+ denote the subset of
W (p∞) consisting of Weil germs of weight m represented by algebraic integers; thus,

W (p∞)m,+ = {π ∈W (p∞) | sπ(v) ≥ 0, sπ(v) + sπ(ιv) = m ∀v}.

Classification of abelian varieties. Let A0 be a simple abelian variety over F, and
let A1 be a model of A0 over Fq ⊂ F with the property that End(A1) = End(A0).
The Frobenius endomorphism πA1 of A1 is a Weil q-integer of weight 1 in C(A0),
and we let πA0 denote the germ represented by πA1 — it is independent of the choice
of A1/Fq . The conjugates of πA0 in Qal form a Γ-orbit ΠA0 in W (p∞), and the map
A0 �→ ΠA0 is a bijection from the set of isomorphism classes of simple abelian varieties
over F onto the set of Γ-orbits in W (p∞)1,+.

The various invariants of A0 can be read off from ΠA0 as follows. The images of
Q[πA0] in Qal are the fixed fields of the stabilizers of the different elements of ΠA0,
and so [Q[πA0] : Q] = |ΠA0 |. The division algebra D =df End

0(A0) has centre Q[πA0],
and D splits at no real prime of Q[πA0], splits at each finite prime not dividing p, and
has invariant

invv(D) = sπ(v)[Q[πA0]v : Qp] mod Z,

at each prime v dividing p. By class field theory, the order of D in the Brauer group
of Q[πA0] is the smallest positive integer e such that e · invv(D) ∈ Z for all v, and

8This conflicts with an earlier terminology (e.g., Tate 1968/69) which calls a “Weil q-number”
what we call a “Weil q-integer of weight 1”.
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[D : Q[πA0]]
1
2 = e. Moreover,

2 dimA0 = [D : Q[πA0]]
1
2 · [Q[πA0] : Q],

and so A0 has many endomorphisms. The set of slopes of the Dieudonné module of
A0 is {sπA0

(v) | v|p}, and an s in this set has multiplicity

∑
v, sπA0

(v)=s

2dimA0 · [Q[πA0]v : Qp]

[Q[πA0] : Q]
.

It remains to classify the Weil germs.

Classification of Weil germs. Fix a CM-subfield K of Qal, finite and Galois over
Q. For a Weil germ π in Qal and a prime w of Qal dividing p, let

fKπ (w) = sπ(w)[Kw : Qp].

DefineWK(p∞) to be the set of Weil germs in Qal represented by an element of K and
such that fKπ (w) ∈ Z. Since W (p∞) =

⋃
KW

K(p∞), it suffices to describe WK(p∞)
for each K.

Let F be the maximal real subfield of K, and let X and Y be the sets of primes
in K and F respectively dividing p. Then there is an exact sequence

0→ WK(p∞)→ ZX × Z → ZY → 0.

The first map is π �→ (fKπ , wt(π)) and the second is

(f,m) �→ f |Y − n0 ·m ·
∑
v∈Y

v

where n0 = [Kw : Qp] for any prime w of K dividing p (it is independent of w). Thus
π �→ fKπ identifies WK(p∞) with the set of f ∈ ZX such that f(w) + f(ιw) = n0 ·m
for some integer m (independent of w).

Under A0 ↔ ΠA0, the abelian varieties corresponding to orbits of Γ in WK(p∞)∩
W (p∞)1,+ are those with the property that, for every σ : Q[πA0] ↪→ Qal, σQ[πA0] ⊂ K
and End0(A0)⊗Q[πA0

],σ K is a matrix algebra. Thus, there is a one-to-one correspon-
dence between the isogeny classes of abelian varieties over F whose endomorphism
algebra is split by K in this sense and the Gal(K/Q)-orbits of f ∈ ZX such that
f(w) + f(ιw) = n0 and f(w) ≥ 0 for all w.

Remark. Given a possible slope function for a Weil germ π, the Dieudonné
module of the corresponding abelian variety imposes restrictions on the possible fac-
torizations of p in Q[π]. For example, suppose that A(π) has slopes 0, 1

2
, and 1,

that the multiplicity of 1
2
is 2, and that 0 and 1 do occur. Then the Dieudonné

module of A(π) has a simple isogeny factor of rank 2, which implies that a prime
w for which sπ(w) =

1
2
must be of degree 2 (if it had degree 1, the action of Q[π]w

on the Dieudonné module would split off an isogeny factor of rank 1). Thus, the
endomorphism algebra of such an abelian variety is commutative.

A.7. Calculation of the groups over F. Let A0 be an abelian variety over F.
Then A0 is isogenous to a product As11 × · · · × Astt with the Ai simple and pairwise
nonisogenous, and G(A0) ∼= G(A1×· · ·×At) for G = L,M , or P ; moreover, L(A0)0 ∼=
L(A1)0 × · · · × L(At)0. Thus, in the following, we assume that A0 is a product of
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pairwise nonisogenous simple abelian varieties. Then E
df
= C(A0) is either a CM-

algebra or the product of a CM-algebra with Q — the second case occurs when one
of the isogeny factors of A0 is a supersingular elliptic curve. The Rosati involution is
complex conjugation on each CM-factor of E and the identity map Q.

The Lefschetz group. The description of L(A0) as a subgroup of (Gm)E/Q in terms
of characters is the same as in the complex case.

Thus, the group L(A0) is the subgroup of (Gm)E/Q whose character group is

ZΣE

{g | g = ιg and
∑
g(σ) = 0} .

The weight map w : Gm → L(A0) corresponds to the map

[g] �→ wt(g)
df
=

∑
σ∈ΣE

g(σ)

on characters, and the homomorphism t : L(A0)→ Gm giving the action of L(A0) on
the Tate object sends 1 to the element of X∗(L(A0)) represented by −σ − ισ, any
σ ∈ ΣE .

It suffices to describe L(A0)0 in the case that A0 is simple. When A0 is a super-
singular elliptic curve, L(A0)0 = µ2; otherwise L(A0)0 is the subgroup of (Gm)E/Q
whose character group is

ZΣE

{g | g = ιg} .

The map µ2 → L(A)0 corresponds to the map on characters [g] �→
∑
g(σ) mod 2.

When A0 is simple, the map σ �→ σ(πA0) : ΣE → ΠA0 is bijective and commutes
with the action of Γ, and so identifies L(A0) with the torus whose character group is

ZΠA0

{g | g = ιg and
∑
g(π) = 0} .

The group P (A0). By definition, P (A0) ⊂ L(A0), and a character [g] of L(A0)
is trivial on P (A0) if and only if g(πA0) = 1, where g(πA0) is the Weil germ∏
σ∈ΣE

(σπA0)
g(σ). A Weil germ is 1 if and only if its slopes are all zero, and so

[g] is trivial on P (A0) if and only if
∑
σ∈ΣE

g(σ)sσπA0
(w) = 0, all w.

Note that sσπA0
(w) = sπA0

(σ−1w). Similarly, a character [g] of L(A0)0 is trivial on

L(A0)0 if and only if g(πA0/p
1
2 ) = g where p

1
2 also denotes the Weil germ represented

by the Weil p-number p
1
2 .

The motivic group. Fix a prime � ∈ S(A0) (see Appendix B). Let Ωλ be a finite
Galois extension of Q� splitting L(A0), and let χ ∈ X∗(L(A0)). Then χ is trivial
on M(A0) if and only if H2r(As0,Ωλ(r))χ contains a nonzero algebraic class for some
r and s, in which case all the spaces H2r(As0,Ωλ(r))χ consist entirely of algebraic
classes.
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Second description of P (A0). Let K be a CM-subfield of Qal, finite and Galois
over Q, and let PK be the torus over Q such that X∗(PK) = WK(p∞) (as a Γ-
module). Assume that K is large enough to contain the conjugates of Q[πA0] and
to split End0(A0). For any character χ of L(A0), χ(π) ∈ WK(p∞). Thus we have a
homomorphism [g] �→ [g(π)] : X∗(L(A0)) → WK(p∞), which clearly commutes with
the action of Γ. It corresponds to a homomorphism ρA0 : P

K(p∞) → L(A0), whose
image is P (A0).

Example. Let A0 be isogenous to a product of elliptic curves, A0 ∼ A1×· · ·×At,
no two of which are isogenous. The centre E of the endomorphism algebra of A0 is
the product E =

∏
Ei of the centres of the endomorphism algebras of the Ai. For

each i, choose an embedding σi : Ei ↪→ Qal. A character g of (Gm)E/Q is trivial on
L(A0)0 if and only if, for each i for which Ai is ordinary g(σi) = g(ισi), and for each
i (there is at most one) for which Ai is supersingular 2|g(σi).

Let π ∈ E be a Weil q-number representing πA0 , and let π = (π1, . . . , πt). Then
g is trivial on P (A0)0 if and only if g(πN) = qN ·wt(g)/2 for some N . The statement
(Spiess 1999, Proposition)

Let α1, . . . , α2m be Weil q-numbers of elliptic curves over Fq such
that α1 · · ·α2m = qm; then, after possibly renumbering the αi and
replacing each αi with α

N
i for some N , α2j−1α2j = q for j = 1, . . . , m.

implies that this holds only if g is trivial on L(A0)0. Thus P (A0) = L(A0), and so no
product of elliptic curves over F has an exotic Tate class.

Example. Let A0 be a simple abelian variety over F and let π be its Frobenius
germ. Assume that there is a prime v1 of degree 1 of Q[π] such that sπ(v1) = 0,
sπ(ιv1) = 1, and sπ(v) = 1/2 for v �= v1. Let π1 be a Weil q-number representing π,
and let g be a character of (Gm)Q[π]/Q. For any prime w of Qal dividing p,

ordw(g(π1/q
1
2 )) =

ordv1q

2
(−g(σ) + g(ισ))

where σ is the unique embedding of Q[π] such that σ−1w = v1. Therefore, g is trivial
on P (A0)0 if and only if g = ιg, i.e., if and only if g is trivial on L(A0)0. Thus
P (A0) = L(A0), and no power of A0 has an exotic Tate class. In particular, the Tate
conjecture holds for the powers of A0.

The abelian varieties of “K3-type” of Zarhin 1993 are covered by this example
(they are the varieties for which, additionally, [Q[π] : Q] = 2dimA0).

Example. Let A0 be a simple abelian variety of dimension > 1 over F and let π
be its Frobenius germ. Assume that there is a prime v1 of Q[π] whose decomposition
group is {1, ι} for which sπ(v1) = 1

2
= sπ(ιv1); assume moreover that sπ(v) = 0 or 1 for

all other primes. Let π1 be a Weil q-number representing π, and let χ be a character
of X∗(L(A0)0) that is trivial on P (A0)0. If χ = mχ1 for some χ1 ∈ X∗(L(A0)0),
then χ1 is also trivial on P (A0)0. Thus, we may assume that χ is not divisible in
X∗(L(A0)0). Let g =

∑
g(σ)σ be an element of ZΣQ[π0] representing χ and such that

g(σ) �= 0⇒ g(ισ) = 0. For any prime w of Qal dividing p,

ordw(g(π1))/ordw(q) ≡
1

2
g(σ) mod Z
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where σ is such that σ−1w = v1. Hence g(σ) is even. As w ranges over the primes
dividing p, σ ranges over the elements of ΣQ[πA0

] for which g(σ) �= 0. This contradicts
the fact that χ is not divisible. Hence χ = 0, and we see that P (A0) = L(A0). Hence
no power of A0 has an exotic Tate class.

The “almost ordinary” abelian varieties of Lenstra and Zarhin 1993 are covered
by this example.

A.8. Reduction of abelian varieties with many endomorphisms: the
fundamental diagram. Fix a prime w0 of Qal dividing p, and let F be the residue
field. As we noted in §1, it follows from the theory of Néron models that an abelian
variety A over Qal with many endomorphisms has good reduction at w0 to an abelian
variety A0 over F. We shall explain the map A �→ A0 in terms of the above classifi-
cations.

Assume A is isotypic, and let E be a CM-subfield of End0(A) for which H1(A,Q)
is free of rank 1, and let Φ be the CM-type on E defined by its action on H1,0. Let
πA0 be the Weil germ of A0 in E. We fix an embedding ρ0 : E ↪→ Qal, and explain
how to construct ρ0(πA0). Let K be a CM-subfield of Qal, finite and Galois over Q,
and large enough to contain all conjugates of E. As a subfield of Qal, K acquires a
prime w0. For some h, Phw0

will be principal, say Phw0
= (a). Let α = a2n where n is

the index of the unit group of the maximal real subfield of K in the full unit group
of K. Then ψρ0(α), where ψρ0 is the CM-type on K defined in A.4, is a well-defined
Weil p2nhf(Pw0/p)-integer of weight 1 lying in ρ0E. Its inverse image in E represents
πA0.

Assume now that E is a field. The value of the function sπA0
on a prime v of E

dividing p is given by the formula

sπA0
(v) =

|Φ(v)|
|ΣE(v)|

(***)

where

ΣE(v) = {σ ∈ ΣE | v = σ−1w0}
Φ(v) = Φ ∩ ΣE(v).

Suppose A is simple, and that it corresponds to a Gal(K/Q)-orbit Ψ in X∗(SK).
An element f ∈ X∗(SK) can be regarded as a function f : ΣK → Z. Define f̄ to
be the function X → Z such that f̄(w) =

∑
τw0=w

f(τ ), i.e., if f is
∑
f(τ )τ , then

f̄ is
∑
f(τ )τw0. Then A0 is isogenous to a power a simple abelian variety, which

corresponds (as in A.6) to the Gal(K/Q)-orbit {f̄ | f ∈ Ψ} ⊂ WK(p∞).
Let K be a CM-field, finite and Galois over Q, and let F be the maximal totally

real subfield of K. If no p-adic prime of F splits in K, then SK = Gm and the only
elements of WK(p∞) are those represented by the Weil p-numbers pm/2. Otherwise,
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all the p-adic primes in F split in K, and there is an exact commutative diagram:

0 −−−→ X∗(SK)
g−−−−−→( g

wt(g)

) ZΣK × Z
( gm )−−−−−−−−−−→

g|F−m∑σ∈ΣF
σ

ZΣF −−−→ 0

g

	[g(α)] ( τm )
	( τw0

m ) σ

	σv0
0 −−−→ WK(p∞) π−−−−−→(

fK
π

wt(π)

) ZX × Z
( fm )−−−−−−−−−−→

f |Y−n0 ·m
∑

v∈Y v
ZY −−−→ 0

The element above (or to the left of) an arrow is mapped to the element below (or to
the right) by the arrow. The symbol g(α) denotes

∏
σ(α)g(σ), n0 = [Kw0 : Qp], and

v0 is the prime on F induced by w0.

We saw above that an abelian variety (A, i) of CM-type (E,Φ) reduces modulo
the prime w0 of Qal to an isotypic abelian variety A0 whose Weil germ is determined
by (***). Every simple abelian variety arises in this way: let A0 be a simple abelian
variety over F, and let E be a CM-field that can be embedded as a maximal subfield
of End0(A) containing Q[πA0]; algebraic number theory shows that E exists, and it
is an elementary exercise to show that there exist CM-types Φ on E such that sπA0

is

given by the formula (***); let A be an abelian variety over Qal of CM-type (E,Φ);
it is uniquely determined up to isogeny, and A0 is isogenous to the reduction of A at
w0.

Thus, to give a lifting (up to isogeny) of A0 to characteristic zero is to give a CM
maximal subfield E of End0(A) and a CM-type on E satisfying (***).

Appendix B. Numerical Equivalence on Abelian Varieties with Many
Endomorphisms

Let A be an abelian variety of dimension g over an algebraically closed field. In
characteristic zero, two cycles in Zr(A) are homologically equivalent if their classes in
H2r(A,Q(r)) are equal, and in characteristic p �= 0, they are �-homologically equiv-
alent, � �= p, if their classes in the étale cohomology group H2r(A,Q�(r)) are equal.
Because of Poincaré duality and the compatibility of intersection products with cup
products, homological equivalence implies numerical equivalence. It is generally con-
jectured that they coincide.

Part (a) of the following theorem is a special case of a theorem of Lieberman
(1968, Theorem 4), and part (b) is a theorem of Clozel (1999). The proof is based on
that of Clozel.

Theorem B.1. (a) For any abelian variety A with many endomorphisms
over an algebraically closed field k of characteristic zero, homological equiva-
lence coincides with numerical equivalence on Zr(A), all r.

(b) For any abelian variety A0 over F, there exists a set S of primes � of density
> 0 (depending on A0) for which �-homological equivalence coincides with
numerical equivalence on Zr(A0), all r.

Proof. In the proof, we ignore Tate twists, i.e., we choose an identification of
Q ≈ Q(1) (or Q� ≈ Q�(1)).
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First consider the characteristic zero case. Choose9 an étale CM-algebra E ⊂
End0(A) such that H1(A,Q) is free of rank 1 as an E-module and E is stable under
the Rosati involution defined by some ample divisor D. The action of E⊗QR on H1,0

defines a CM-type Φ on E. We have Hom(E,Qal) = Φ � Φ̄.

Let Ω be the smallest subfield of Qal containing σE for every homomorphism
σ : E → Qal. It is a CM-field, finite and Galois over Q. Let Hr(A,Q)Ω = Hr(A,Q)⊗
Ω, and let H1(A)σ be the subspace of H

1(A,Q)Ω on which E acts through σ. Then
H1(A,Q)Ω =

⊕
σ∈Φ�Φ̄H

1(A)σ and H1(A)σ is one-dimensional. As Hr(A,Q)Ω =∧r
ΩH

1(A,Q)Ω, it follows that

Hr(A,Q)Ω =
⊕

I,J,|I|+|J|=r
Hr(A)I,J

where I and J are subsets of Φ and ιΦ respectively, and Hr(A)I,J =df H
r(A)I�J is

the subspace on which e ∈ E acts as
∏
σ∈I�J σe — it is of dimension 1 and of Hodge

type (|I |, |J |). For x ∈ Hr(A,Q)Ω, let xI,J denote the projection of x on Hr(A)I,J.
Because x �→ xI,J is multiplication by an idempotent eI,J of E⊗Ω, it sends algebraic
classes to algebraic classes.

Let L be the class in H2(A,Q) of the divisor D. Because L is algebraic, its
isotypic components in H2(A,Q)Ω are of type (σ, ισ), σ ∈ ΣE , and, because L defines
a nondegenerate form on H1(A,Q), each such component is nonzero.

For each σ, choose a nonzero element ωσ of H1(A)σ. Then (ωσ)Φ�ιΦ is a basis
for H1(A,Q)Ω. We may suppose that the ωσ have been chosen so that the (σ, ισ)
component of L is ωσωισ . Denote

∏
σ∈I ωσ

∏
σ∈J ωσ by ωI,J — it is a basis forHr(A)I,J.

For i ≤ g = dimA,

Lg−i = (
∑
σ∈ΣE

ωσωισ)
g−i =

∑
M

(g − i)!ωM,ιM

whereM runs over the subsets of Φ with |M | = g−i. In particular, ωM,ιM is algebraic.
Moreover,

Lg−iωIJ =
∑

|M |=g−i
(g − i)!ωI∪M,J∪ιM .

Only the subsets M disjoint from both I and J contribute to the sum.

We shall need the following theorem of Lieberman (Kleiman 1968, 2A11 and 2.2):

Let Ar be the space of algebraic classes inH2r(A,Q); then for 2r ≤ g,
the map Lg−2r : Ar → Ag−r is an isomorphism.

Suppose ωIJ is algebraic with |I | + |J | = 2r ≤ g. Let M = I ∩ ιJ , so that
there exist I0 and J0 for which I = I0 �M , J = J0 � ιM , I0 ∩ ιJ0 = ∅. We shall
prove by induction on |I ∩ ιJ | that ωI0,J0 is also algebraic. If |I ∩ ιJ | = 0, there is
nothing to prove. If not, |I ∪ ιJ | ≤ 2r − 1, and there exists a subset M of Φ with
g−2r+1 elements disjoint from I∪ ιJ . Then ωI�M,J�ιM is nonzero and algebraic. By
Lieberman’s theorem, there exists an x ∈ Ar−1 such that Lg−2r+2x = ωI�M,J�ιM . If

9For each isotypic isogeny factor Ai of A, choose a CM-field Ei in End0(Ai) of degree 2 dimAi,
and let E =

∏
Ei. Write H1(A, Q) = E · x0. For any c ∈ E× such that ιEc = −c, ax0, bx0 �→

TrE/Q(cab) is a Riemann form on A, and we can take D to be any divisor whose class it is. When
A, E, and Φ are as in this paragraph, one says that (A, i), where i is the inclusion E ↪→ End0(A),
is of CM-type (E,Φ).
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ωI′,J ′ occurs with nonzero coefficient in x, then it is algebraic. But if ωI′,J ′ is chosen so
that ωI�M,J�ιM occurs with nonzero coefficient in Lg−2r+2ωI′,J ′, then I

′
0 = I0, J

′
0 = J0.

Since |I ′ ∩ ιJ ′| = |I ∩ J | − 2, the induction hypothesis shows that ωI0,J0 is algebraic.

We now prove the theorem in the case of characteristic zero. We have to show
that, for each r ≤ g, the cup-product pairing

Ar ×Ag−r → Q

is nondegenerate. Lieberman’s theorem shows that the two spaces have the same
dimension, and so it suffices to show that the left kernel is zero. Thus, let x be a
nonzero element of Ar, r ≤ g, and suppose ωI,J occurs with nonzero coefficient in x. It
suffices to show that ωI′,J ′ is algebraic, where I

′ and J ′ are the complements of I and
J in Φ and ιΦ respectively. From the last paragraph, we know that ωI,J = ωI0�M,J0�ιM
with ωI0,J0 algebraic and I0, ιJ0, and M disjoint. Because Aj ⊗Q Ω is stable under
Gal(Ω/Q), ιωI0 ,J0 = ωιJ0,ιI0 is algebraic. But ωI′,J ′ = ωιJ0 ,ιI0 · ωN,ιN where N is the
complement of I0 � ιJ0 �M in Φ, which is obviously algebraic.

We now prove the theorem in the case k = F. After possibly replacing A0 with
an isogenous variety, we may assume that it lifts to an abelian variety A with many
endomorphisms in characteristic zero (see A.8). Let E be a CM-algebra for A as in
the first paragraph of the proof. If � is such that ι is in the decomposition group
of some prime λ of Ω dividing �, then the same argument as in characteristic zero
case applies once one replaces Q with Q� and Ω with Ωλ (Lieberman’s theorem holds
for every Weil cohomology; in particular, it holds for the étale cohomology). The
Frobenius density theorem shows that the set of primes � such that ι is the Frobenius
element at a prime λ dividing � has density 1/[Ω : Q]. For such a prime �, ι is in the
decomposition group of λ. �

Let A0 be an abelian variety over F, and let E0 be the centre C(A0) of End
0(A0).

When A0 does not have a supersingular elliptic curve as an isogeny factor, we define
Ω0 to be the composite of the fields σE0 for σ ∈ ΣE0; otherwise we define it to be the
composite of these fields with Q[

√−p]. Define S(A0) to be the set of finite primes
� �= p such that ι is contained in the decomposition group of λ for one (hence every)
prime λ of Ω0 dividing �. Note that S(A0) depends only on the finite set of simple
isogeny factors of A0; in particular, S(A0) = S(A

s
0).

Proposition B.2. Statement (b) of the Theorem B.1 holds with S = S(A0).

Proof. Suppose A0 is isogenous to A
s1
1 × · · · × Astt with the Ai simple and non-

isogenous in pairs. Assume initially that none of the Ai is a supersingular elliptic
curve. Then each C(Ai) is a CM-field.

For each i, let Di = End0(Ai), let mi = [Di : C(Ai)]
1
2 , and let C(Ai)+ be the

maximal real subfield of C(Ai). Fix an � ∈ S(A0). For each i, there exists a field Fi
cyclic of degree mi over C(Ai)+ and such that each real and �-adic prime of C(Ai)+
splits in Fi and the local degree at each p-adic prime ismi (Artin and Tate 1961, p. 105,
Theorem 5). Let Ei = Fi ·C(Ai). Then Ei is a CM-field that splits Di (Tate 1968/69,
p. 7) and can be realized as a subfield of Di. Therefore (Tate 1968/69, Théorème 2),
Ai is isogenous to the reduction of an abelian variety Ãi with End0(Ãi) = Ei.

After replacing A0 with an isogenous variety, we may suppose that it lifts to the
abelian variety A =df Ã

s1
1 × · · ·× Ãstt . The étale algebra E =df E

s1
1 × · · ·×Estt acts on
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A diagonally, and satisfies the conditions in the first paragraph of the proof Theorem
B.1. The field Ω generated by the images of E in Qal is Ω0 ·F1 · · ·Ft. Because of our
choice of the Fi, every �-adic prime in this field is fixed10 by ι. This completes the
proof of the proposition in this case.

When we add a factor A
st+1

t+1 to A0 with At+1 a supersingular elliptic curve, Ω is
replaced with Ω ·Et+1 where Et+1 can be taken to any quadratic field in which p does
not split. If we choose Et+1 = Q[

√−p], then Ω = Ω0 · F1 · · ·Ft still holds, and the
same argument applies. �

Let A be an abelian variety with many endomorphisms over Qal, and let A0 be
its reduction at the prime w0. Fix an � �= p. Then there are canonical isomor-
phisms Hi(A,Q�(j))→ Hi(A0,Q�(j)) for all i and j (proper and smooth base change
theorems in étale cohomology). We say that a cohomology class γ ∈ H2r(A,Q(r))
is w0-algebraic if its image γ� in H

2r(A0,Q�(r)) is in the Q-span of the algebraic
classes on A0. Every algebraic class is w0-algebraic, but not every w0-algebraic class
is algebraic.

Theorem B.3. For any nonzero w0-algebraic class α on A, there exists a w0-
algebraic class α′ such that α ∪ α′ �= 0.

Proof. Let Ar(w0) be the Q-space of w0-algebraic classes in H
2r(A,Q(r)). The

proof of the characteristic zero case of the theorem in A.3 will apply with “algebraic”
replaced by “w0-algebraic” once we have shown that Lieberman’s theorem holds for
Ar(w0): for 2r ≤ g, Lg−2r : Ar(w0)→ Ag−r(w0) is an isomorphism.

This map is automatically injective, and so we only have to prove surjectivity.

Let γ be a w0-algebraic class in H
2g−2r(A,Q(g− r)); by assumption, the image γ�

of γ in H2g−2r(A0,Q�(g−r)) equals the class α� of some α ∈ Zg−r(A0). There exists a
γ′ ∈ H2r(A,Q(r)) such that Lg−2rγ′ = γ (hard Lefschetz theorem), and Lieberman’s
theorem says that there is an α′ ∈ Zr(A0) such that Lg−2rα′ = α. The images of
α′ and γ′ in H2r(A0,Q�(r)) map to α� and γ� respectively under the isomorphism
Lg−r : H2r(A0,Q�(r)) → H2g−2r(A0,Q�(g − r)). As α� = γ�, this proves that γ

′ is
w0-algebraic. �

Corollary B.4. Suppose that the �-adic cohomology class c� of c ∈ Zr(A0) is
nonzero. If c� is the image of a rational cohomology class on A (i.e., of an element
of H2r(A,Q(r))), then c is not numerically equivalent to zero.

Proof. Immediate consequence of the theorem and the compatibility of the cup-
product pairings. �

The corollary implies that, if every algebraic class on A0 “lifts” to a rational
cohomology class in characteristic zero, then �-adic homological equivalence on A0

coincides with numerical equivalence.
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