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Introduction. Let ∼ be an adequate equivalence relation on algebraic cycles, for ex-
ample, rational equivalence (rat), homological equivalence with respect to some Weil
cohomology theory (hom), or numerical equivalence (num). For a smooth projective
variety X, Zs(X) will denote the group of algebraic cycles on X of codimension s,
and

Cs∼(X) = (Zs(X)/ ∼)⊗Q.

Then C∼(X) df
= ⊕sCs∼(X) becomes a graded Q-algebra under the intersection product,

and we define D∼(X) to be the Q-subalgebra of C∼(X) generated by the divisor
classes:

D∼(X) = Q[C1
∼(X)].

The elements of D∼(X) will be called the Lefschetz classes on X (for the relation ∼).
They are the algebraic classes on X expressible as linear combinations of intersections
of divisor classes (including the empty intersection, X).

Our main theorem states that, for any Weil cohomology theory X �→ H∗(X) and
any abelian variety A over an algebraically closed field, there is a reductive algebraic
group L(A) (not necessarily connected) such that the cycle class map induces an
isomorphism

Ds
hom(A

r)⊗Q k → H2s(Ar)(s)L(A)

for all integers r, s ≥ 0; moreover, Ds
num(A

r) = Ds
hom(A

r). Here Ar = A× · · · × A (r
copies), k is the coefficient field for the cohomology theory, and “(s)” denotes a Tate
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twist. In comparison with the results of Tanke’ev (1982), Ribet (1983), Murty (1984),
Hazama (1984), Ichikawa (1991), and Zarhin (1994), the main novelty of our theorem
is that it is completely general, applying to all abelian varieties over all algebraically
closed ground fields and to all Weil cohomology theories, and that it necessarily allows
the group L(A) to be nonconnected.

This theorem is an existence result for Lefschetz classes. It implies that, if the
cohomology classes t1, . . . , tm are Lefschetz, i.e., lie in the k-subspace spanned by
the cohomology classes of Lefschetz classes, then any class fixed by the group fixing
them is also Lefschetz. As a consequence, we obtain that for abelian varieties over
algebraically closed fields:

– the various classes predicted to be algebraic by Grothendieck’s stan-
dard conjectures (Grothendieck 1969) are not only algebraic, but even
Lefschetz;

– if γ is Lefschetz, and there exists a cohomology class γ′ such that γ ·γ′ �=
0, then there exists a Lefschetz cohomology class with this property;

– for any regular map φ:A→ B of abelian varieties,

φ∗:H2r(A)(r)→ H2r+2c(B)(r+ c), c = dimB − dimA,

sends Lefschetz classes to Lefschetz classes;
– the question of whether the Q-algebra of Hodge classes (or the Q�-
algebra of Tate classes) on a given abelian variety is generated by divisor
classes becomes a question of whether two reductive groups are equal.

These results are special to abelian varieties: in general φ∗ will not preserve Lefschetz
classes when φ is a regular map of arbitrary smooth projective varieties.

The group L(A) given by the theorem is called the Lefschetz group of A (for the
given Weil cohomology).

In a later work, we shall show that the theorem implies that there are sufficiently
many Lefschetz classes for there to exist a good theory of “Lefschetz motives” based
on abelian varieties. From this perspective, the Lefschetz groups for the various Weil
cohomology theories are the different realizations of the fundamental group of a single
Tannakian category.

By definition, L(A) is an algebraic group over the coefficient field of the Weil
cohomology. In two important cases it is naturally defined over Q: when the ground
field is C and the cohomology is the Betti cohomology (because, then the coefficient
field is Q); and when the ground field is the algebraic closure of a finite field (because
then the fundamental group in question is commutative). I do not expect there to
exist a naturally defined algebraic group L(A)0 over Q giving rise by base change to
the Lefschetz groups L(A)� attached to the �-adic étale cohomologies when A is an
abelian variety in characteristic p �= 0 whose moduli are transcendental.

In later work, we shall give applications of the theory developed in this article to
the Tate conjecture for abelian varieties over finite fields and to the points on Shimura
varieties over finite fields (Milne 1996, 1995).
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Notations and conventions. For a vector space V ,

rV = direct sum of r copies of V ,

V ∨ = dual of V ,⊗
V = tensor algebra on V ,∧
V = exterior algebra on V.

For a ring R, R× denotes the group of invertible elements of R, and Mm(R) denotes
the ring of m×m matrices with coefficients in R.

An involution on a k-algebra R (not necessarily commutative) is a bijective k-linear
map α �→ α†:R → R such that (αβ)† = β†α† and α†† = α for α, β ∈ R. A (skew-)
Hermitian form on a left R-module V is a k-bilinear map φ:V × V → R such that

φ(αx, βy) = α · φ(x, y) · β†, all α, β ∈ R, x, y ∈ V

and

φ(y, x)† = (−)φ(x, y).

When R is commutative, the identity map is an involution, and (skew-) Hermitian
forms for the identity involution are called (skew-) symmetric.

A CM-field is a finite extension K of Q admitting a nontrivial involution ι such
that ρ(ιx) = ρ(x) for all homomorphisms ρ:K → C. The involution ι is unique. We
sometimes denote ιx by x̄.

“Algebraic group” means “affine algebraic group”. For such a group G, G(K) is the
set of points on G with coordinates in K, and GK or G/K is G×Speck SpecK. For an
algebraic group G over a field K and a subfield k of K such that K has finite degree
over k, ResK/kG denotes the algebraic group over k obtained from G by restriction
of scalars.

For a Hermitian (or skew-Hermitian) form φ, U(φ)
df
= Aut(φ) is the unitary group;

for a skew-symmetric form φ, Sp(φ)
df
= Aut(φ) and GSp(φ) are the groups of sym-

plectic automorphisms and symplectic similitudes respectively; and for a symmetric

form φ, O(φ)
df
= Aut(φ) is the orthogonal group.

For abelian varieties A and B, Hom0(A,B) = Hom(A,B) ⊗Z Q. By an “isogeny
A→ B” we mean an element of Hom0(A,B) that admits an inverse in Hom0(B,A).

To signify that objectsX and Y are isomorphic, we writeX ≈ Y ; when a particular
isomorphism is given (or there is a canonical or preferred isomorphism), we write

X ∼= Y . Also, X
df
= Y means that X is defined to be Y , or that X = Y by definition.

1. Definition of C(A) and S(A)

In this section, we attach a k-algebra C(A) with involution † to an abelian variety
A and a Weil cohomology theory with coefficient field k. The elements γ of C(A)
such that γ†γ = 1 are the points of a reductive group S(A) over k whose fixed tensors
in the cohomology of A will be shown (in Section 3) to be precisely the Lefschetz
classes on A.
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Preliminaries. We fix an algebraically closed field Ω and a Weil cohomology theory
X �→ H∗(X) taking a variety X over Ω to a graded algebra H∗(X) over a field k. In
the appendix, we list the axioms to which such cohomology theory must submit, but
the reader may prefer simply to note the following examples:

Ω k Hs(X)

Betti cohomology C Q Hs(X(C),Q)
étale cohomology arbitrary Q�, � �= char(Ω) Hs(Xet,Q�)

de Rham cohomology char = 0 Ω Hs(XZar,Ω
·
X/Ω)

crystalline cohomology char �= 0 ff(W )) Hs
crys(X/W ) ⊗W k

In the bottom row, W is the ring of Witt vectors with coefficients in Ω and ff(W ) is
its field of fractions. When it is necessary to specify the cohomology theory, we add
subscripts B, �, dR, or crys.

For an abelian variety A over Ω, we define V (A) to be the dual of H1(A). For
example,

VB(A) = H1(A(C),Q),

V�(A) = (Tate module of A)⊗Z Q,

Vcrys(A) = covariant Dieudonné module of A.

Let k(1) = H2(P1)∨. For example, for the Betti cohomology theory Q(1) = 2πiQ,
and for the étale cohomology theory Q�(1) = (lim←−µ�n(Ω))⊗Z�

Q�. In every case, k(1)
is a one-dimensional vector space over k.

Cup-product defines an isomorphism of graded k-algebras∧
H1(A)→ H∗(A).

A divisor D on A defines a class cl(D) in H2(A)(1) and, via the isomorphisms,

H2(A)(1) ∼= (

2∧
H1(A))(1) ∼= Hom(

2∧
V (A), k(1)),

a skew-symmetric pairing

eD:V (A)× V (A)→ k(1).

When D is ample, eD is nondegenerate, and we let β† denote the adjoint with respect
to eD of a k-linear endomorphism β of V (A):

eD(βx, y) = eD(x, β†y), all x, y ∈ V (A).
Then β �→ β† is an involution of the k-algebra Endk(V (A)) whose restriction to
End0(A) is the Rosati involution defined by D. If D′ is a second divisor on A, then
eD

′
= eD ◦ (α × 1) for some α ∈ End0(A) with α† = α (Mumford 1970, p208), and

the involution defined by D′ (if also ample) is β �→ α−1β†α.

The k-algebra C(A). For an abelian variety A over Ω, we define C(A) to be the
centralizer of End0(A) in Endk(V (A)):

C(A) = EndEnd0(A)⊗Qk(V (A)).
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Then C(A) is a k-algebra stable under the involution † defined by an ample divisor
D, and the restriction of † to C(A) is independent of the choice of D.
An isogeny α:A→ B defines an isomorphism

γ �→ V (α) ◦ γ ◦ V (α)−1:C(A)→ C(B)

of k-algebras with involution, which is independent of the choice of α. Therefore
C(A), as a k-algebra with involution, depends only on the isogeny class of A (up to
a canonical isomorphism).

For any positive integer r, V (Ar) = rV (A), and the diagonal action of C(A) on
rV (A) identifies C(A) with C(Ar) (as k-algebras with involution).

Let A = A1 × · · · × As. Then

C(A) ⊂ C(A1)× · · · × C(As),

with equality holding if and only if Hom(Ai, Aj) = 0 for all i, j, i �= j. Moreover, if
Di is an ample divisor on Ai, i = 1, . . . , s, then

D =
∑
i

A1 × · · · × Ai−1 ×Di × Ai+1 × · · · ×As

is an ample divisor on A, and the involution it defines on C(A) is the restriction of
the product of the involutions on the C(Ai) defined by the Di.

On combining the remarks in the last three paragraphs, we obtain the following
statement:

Proposition 1.1. Let A1, . . . , As be a set of representatives for the simple isogeny
factors of A, so that there exists an isogeny Ar1

1 × · · · × Ars
s → A for some ri > 0.

Any such isogeny induces an isomorphism

C(A1)× · · · ×C(As)→ C(A)

of k-algebras with involution, which is independent of the choice of the isogeny.

Remark 1.2. Because End0(A) is a semisimple Q-algebra whose centre is sepa-
rable over Q, End0(A) ⊗Q k is a semisimple k-algebra. Therefore, the centralizer of
C(A) in Endk(V (A)) is End

0(A)⊗Q k.
Proposition 1.3. The skew-symmetric k-bilinear forms ψ:V (A)× V (A)→ k(1)

such that

ψ ◦ (γ × 1) = ψ ◦ (1× γ†), all γ ∈ C(A),
are exactly the k-linear combinations of forms eD with D a divisor on A.

Proof. Let D0 be an ample divisor on A, and let
† be the involution it defines on

Endk(V (A)). As we noted above, if D is a second divisor on A, then eD = eD0 ◦(α×1)
for some α ∈ End0(A). This implies that eD ◦ (γ×1) = eD ◦ (1×γ†) for all γ ∈ C(A).
Conversely, because eD0 is non-degenerate, any k-bilinear form ψ:V (A)× V (A)→

k(1) can be written ψ = eD0 ◦ (β × 1) for some β ∈ Endk(V (A)). If ψ is skew-
symmetric, then β = β†, and

ψ ◦ (γ × 1) = ψ ◦ (1× γ†), ∀γ ∈ C(A) =⇒ βγ = γβ, ∀γ ∈ C(A) (1.2)
=⇒ β ∈ End0(A)Qk.

Therefore, any ψ as in the statement of the proposition is of the form eD0 ◦ (β×1) for
some β ∈ End0(A)⊗Q k with β = β†. Hence β =

∑
ciβi with ci ∈ k, βi ∈ End0(A),
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β†
i = βi. According to (Mumford 1970, p208), e

D0 ◦ (βi × 1) is of the form eDi for a
divisor Di on A, which completes the proof.

Remark 1.4. Let A be an abelian variety over C, and let V = VB(A). To give
C(A) with its action on V is the same as to give End0(A) with its action on V , and
to give the involution † on C(A) is the same as to give the set

{eD | D a divisor on A}.

Moreover, if D0 is one ample divisor, then the cone {eD | D ample} is exactly the set
of forms eD0 ◦ (α × 1) with α an element of End0(A)× such that α = α† and α is a
square in Q[α]⊗Q R (the first condition implies Q[α]⊗Q R is a product of copies of
R, and the second is equivalent to the condition that the roots of the characteristic
polynomial of α on A are positive).

The group S(A). For an abelian variety A over Ω, we define S(A) to be the algebraic
subgroup of GL(V (A)) such that, for all commutative k-algebras R,

S(A)(R) = {γ ∈ C(A)⊗k R | γ†γ = 1}.

Thus, for any ample divisor D on A, S(A) is the largest algebraic subgroup of Sp(eD)
whose elements commute with the endomorphisms of A. Clearly S(A) depends only
on the isogeny class of A (up to a unique isomorphism). It is a reductive group (not
necessarily connected) over k whose nonabelian simple quotients are classical groups
(cf. Weil 1960).

Proposition 1.5. Let A1, . . . , As be a set of representatives for the simple isogeny
factors of A, so that there exists an isogeny Ar1

1 × · · · × Ars
s → A for some ri > 0.

Any such isogeny induces an isomorphism

S(A1)× · · · × S(As)→ S(A),

which is independent of the choice of the isogeny.

Proof. This is an immediate consequence of Proposition 1.1.

Remark 1.6. If X �→ H∗(X) is a Weil cohomology theory with coefficient field k,
and k′ is a field containing k, then X �→ H∗(X) ⊗k k

′ is a Weil cohomology theory
with coefficient field k′. If C ′(A) and S ′(A) denote the objects defined relative to the
second theory, then there are canonical isomorphisms

C ′(A) ∼= C(A)⊗k k
′, S ′(A) ∼= S(A)/k′.

Comparison isomorphisms. We write SB(A), S�(A), SdR(A), or Scrys(A) for S(A)
when we wish to indicate its dependence on the Weil cohomology theory used.

The comparison theorems between the various cohomology theories, together with
(1.6), show that, when A is an abelian variety over C, there are canonical isomor-
phisms

SB(A)/Q�
∼= S�(A), SB(A)/C ∼= SdR(A).
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Abelian varieties over F. Let A be an abelian variety over an algebraic closure F

of a finite field, and let C0(A) be the centre of the Q-algebra End0(A)—it is a product
of fields, each of which is either a CM-field or Q. Every Rosati involution † preserves
each factor of C0(A) and acts on it as complex conjugation. Define S0(A) to be the
algebraic group over Q such that, for all commutative Q-algebras R,

S0(A)(R) = {γ ∈ C0(A)⊗Q R | γ†γ = 1}.

Proposition 1.7. The action of End0(A) on V�(A) induces an isomorphism

C0(A)⊗Q Q� → C�(A)

of Q�-algebras with involution, and hence an isomorphism of algebraic groups

S0(A)/Q�
→ S�(A).

Proof. Both C0(A) and C�(A) satisfy the statement of Proposition 1.1, and so we
may suppose that A is simple. Let A0 be a model of A over a subfield Fq of F. After
possibly replacing Fq with a larger field, we may suppose that End(A0) = End(A).
Let π ∈ End(A0) be the Frobenius endomorphism of A0 relative to Fq. Tate’s theorem
(Tate 1966) shows that C0(A) = Q[π] and that the centralizerC�(A) of End

0(A)⊗QQ�

in EndQ�
(V�(A)) is Q[π]⊗Q Q�. Therefore the action of End0(A0) on V�(A) induces

an isomorphism C0(A) ⊗Q Q� → C�(A) of Q�-algebras, which clearly preserves the
involutions.

Similarly, the action of End0(A) on Vcrys(A) induces an isomorphism

S0(A)/ff(W (F)) → Scrys(A).

2. Calculation of C(A) and S(A).

We wish to calculate C(A) and S(A), together with their actions on V (A), for an
arbitrary abelian variety A. After Propositions 1.1 and 1.5 it suffices to do this in
the case that A is simple, in which case it is an exercise1 in linear algebra.

Recall (e.g. Mumford 1970, p201) that the simple abelian varieties fall into four

classes according to the type of their endomorphism algebra E
df
= End0(A):

Type I: E is a totally real field, and the Rosati involutions are trivial.
Type II: E is a totally indefinite quaternion division algebra over a totally real

field F . If α �→ α′ df
= TrdE/F α − α denotes the standard involution on E, then

the Rosati involutions are the maps α �→ aα′a−1 with a an element of E such
that a2 lies in F and is totally negative.

Type III: E is a totally definite quaternion algebra over a totally real field F ,
and the Rosati involutions are the maps α �→ aα′a−1 with a a totally positive
element of F ; in particular, the standard involution itself is a Rosati involution.

Type IV: E is a division algebra with centre a CM-field K. For a finite prime v
of K, {

Invv(E) = 0 if ιv = v,
Invv(E) + Invιv(E) = 0 if ιv �= v.

1There are similar calculations in Hazama 1984 and Murty 1984 for the case Ω = C and the Betti
cohomology theory.
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There exists an isomorphism

E ⊗Q R→ Md(C)× · · · ×Md(C),

carrying a Rosati involution into (. . . , (aij), . . . ) �→ (. . . , (āji), . . . ).

Preliminaries. As usual, we fix an algebraically closed field Ω and a Weil cohomol-
ogy theory with coefficient field k. We shall use the following notations:

A = a simple abelian variety of dimension g over Ω,

E = End0(A) (a division algebra),

K = the centre of E (a field),

F = the subfield of K on which the Rosati involutions act trivially,

f = [F :Q], d =
√
[E:K].

The field F is totally real, and K equals F except when A is of type IV, in which case
it is a CM-field of degree 2 over F . Always fd|g, and when A is of type II, 2fd|g.
We fix an isomorphism k(1) ≈ k, so that an ample divisor D on A now defines a

skew-symmetric k-bilinear form

eD:V (A)× V (A)→ k.

If † denotes the Rosati involution with respect to D, then

eD(αx, y) = eD(x, α†y), all α ∈ E, x, y ∈ V (A).
Let L be a semisimple k-subalgebra of E ⊗Q k stable under †. There exists2 a unique
skew-Hermitian pairing of L-modules

φ:V (A)× V (A)→ L

such that TrL/k ◦φ = eD. From the uniqueness of φ, one deduces that an L-linear
automorphism of V (A) fixes φ if and only if it fixes eD.

Let

F ⊗Q k = F1 × · · · × Ft,

be the decomposition of F ⊗Q k into a product of fields, and let
1 = e1 + · · ·+ et,

be the corresponding decomposition of 1 into a sum of orthogonal idempotents. Then

V (A) = V1 ⊕ · · · ⊕ Vt, Vi
df
= eiV = V ⊗F⊗Qk Fi.

Proposition 2.1 below shows that Vi has dimension 2g/f over Fi. Any k-linear map
α:V → V commuting with the action of F decomposes into

α = α1 ⊕ · · · ⊕ αt, αi:Vi → Vi, Fi-linear.

2The trace pairing (a, b) �→ TrL/k(ab):L× L→ k is nondegenerate. Let x, y ∈ V (A). If φ exists,
then

TrL/k(aφ(x, y)) = ψ(ax, y) for all a ∈ L.
Define φ(x, y) to be the unique element of L satisfying this equation for all a ∈ L, and check that
the map (x, y) �→ φ(x, y) has the required properties.
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Let D be an ample divisor on A, and let φ:V × V → F ⊗Q k be the skew-symmetric
F ⊗Q k-bilinear form such that TrF⊗Qk/k φ = eD. Because φ ◦ (α × 1) = φ ◦ (1 × α)
for α ∈ F , φ decomposes into
φ = φ1 ⊕ · · · ⊕ φt, where φi:Vi × Vi → Fi, is skew-symmetric and Fi-bilinear.

Proposition 2.1. Let A be an abelian variety, and let L be a subfield of
End0(A) containing the identity map. Then V (A) is a free L ⊗Q k-module of rank
2dimA/[L:Q].

Proof. If L⊗Q k is again a field, then there is nothing to prove. In general it will
decompose into a product of fields L⊗Qk =

∏
Li and correspondingly V (A) ≈ ⊕Lmi

i ,
some mi ≥ 0, as an L⊗Q k-module. Our task is to show that the mi are all equal (in
fact, to 2 dimA/[L:Q]).

Let α ∈ L. The characteristic polynomial PA,α(X) of α as an endomorphism of A
is monic of degree 2 dimA with coefficients in Q, and it is equal to the characteristic
polynomial of V (α) acting on the k-vector space V (A) (see the appendix).

From the decomposition L⊗Q k =
∏
Li we find that

PL/Q,α(X) =
∏
i

PLi/k,α(X)

where PL/Q,α(X) (resp. PLi/k,α(X)) denotes the characteristic polynomial of α in the
field extension L/Q (resp. Li/k).

From the isomorphism of L ⊗Q k-modules V (A) ≈ ⊕Lmi
i we find that

PA,α(X) =
∏

PLi/k,α(X)
mi .

If we assume that α generates L as a field extension of Q, so that PL/Q,α(X)
is irreducible, then the two equations show that any monic irreducible factor of
PA,α(X) in Q[X] shares a root with PL/Q,α(X), and therefore equals it. It follows
that PA,α(X) = PL/Q,α(X)

m for some integer m and that each mi = m. On equating
the degrees, we find that 2 dimA = m[L:Q].

Remark 2.2. Let k be a field, and let k′ be an étale k-algebra of degree 2 (so
that either k′ = k × k or k′ is a field of degree 2 over k). Let φ be a nondegenerate
skew-Hermitian form on a k′-vector space V relative to the nontrivial involution of k′

fixing k. Let Ω be a field containing k and large enough so that there exist distinct
k-homomorphisms σ1, σ2: k

′ → Ω. Write

V ⊗k Ω = V1 ⊕ V2, Vi
df
= V ⊗k′,σi Ω, i = 1, 2.

The form φ extends to an Ω× Ω-bilinear form on V ⊗k Ω, which we again denote φ.
Then

φ|V1 × V1 = 0 = φ|V2 × V2,

and there is a nondegenerate Ω-bilinear form φ1:V1 × V2 → Ω such that

φ((x1, x2), (y1, y2)) = (φ1(x1, y2),−φ1(x2, y1)), x1, y1 ∈ V1, x2, y2 ∈ V2.

Therefore, the map

α �→ α|V1: U(φ)Ω → GL(V1)
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is an isomorphism, and the representation of U(φ)Ω on V ⊗kΩ becomes the direct sum
of the representation of GL(V1) on V1 (standard representation) and the representation
of GL(V1) on V2 (contragredient of the standard representation).

Remark 2.3. Consider the abstract situation: k is a field, E is a simple k-algebra
with centre a field K of finite degree over k, and V is a left E-module. Then the
centralizer C(E) of E in Endk(V ) is equal to its centralizer in EndK(V ), and the
canonical homomorphism

E ⊗K C(E)→ EndK(V )

is an isomorphism. Let S be a simple E-module—any two such modules are iso-

morphic. Then ∆
df
= EndE(S) is a division algebra, and E = End∆(S). The choice

of a ∆-linear isomorphism S → ∆r determines an isomorphism E → Mr(∆
opp),

and the choice of an E-linear isomorphism V → St determines an isomorphism
C(E) = EndE(V )→ Mt(∆). In short:

E ≈Mr(∆
opp) =⇒ C(E) ≈ Mt(∆), t =

dimK(V )

r[∆:K]
.

Note that if ∆ admits aK-involution ∗, then αopp ↔ α∗ is an isomorphism ∆opp↔ ∆.

Remark 2.4. Let R be a k-algebra with an involution †, and endow Mm(R) with

the involution (aij) �→ (a†ji). Let e be the matrix with 1 in the (1, 1) position and
zeros elsewhere. The map (V, φ) �→ (eV, φ|eV ) defines an equivalence from

the category of pairs (V, φ) consisting of a finitely-generated projective
Mm(R)-module V and a (skew) Hermitian form φ:V × V → Mm(R),

to

the category of pairs (V, φ) consisting of a finitely-generated projective R-
module V and a (skew) Hermitian form φ:V × V → R.

A quasi-inverse is provided by the functor sending (V, φ) to the pair

(Rm ⊗R V, (ei ⊗ x, ej ⊗ y) �→ φ(x, y)Eij),

where {e1, . . . , em} is the standard basis for Rm and Eij is the matrix with 1 in the
(i, j) position and zero elsewhere (Knus 1991, I.9.5).

Simple abelian variety of type I. In this case E = F . Let D be an ample divisor
on A, and let φ:V (A) × V (A) → F ⊗Q k be the skew-symmetric form such that
TrF⊗Qk/k ◦φ = eD. Then φ is independent of the choice of D up to multiplication by
a nonzero element of F .

Corresponding to the decomposition F ⊗Q k =
∏t

i=1 Fi of F ⊗Q k into a product
of fields, there is a decomposition

(V (A), φ) = (V1, φ1)⊕ · · · ⊕ (Vt, φt), (Vi, φi)
df
= (V (A), φ)⊗F⊗Qk Fi.

Here φi is a nondegenerate skew-symmetric form on the Fi-vector space Vi. Therefore,

C(A) = C1 × · · · × Ct, Ci
df
= EndFi(Vi) ≈ M 2g

f
(Fi)

and the involution sends an element of Ci to its adjoint with respect to φi. Moreover,

S(A) = S1 × · · · × St, Si
df
= ResFi/k Sp(φi).
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Similarly, if

F ⊗Q kal =
∏

σ:F↪→kal

kσ, kσ = kal,

is the decomposition of F ⊗Q kal into a product of fields, then

(V (A), φ)⊗k k
al = ⊕σ:F↪→kal(Vσ, φσ), (Vσ, φσ)

df
= (V (A), φ)⊗F,σ k

al

and

S(A)kal
∼=

∏
σ:F→kal

Sp(φσ).

Simple abelian variety of type II. In this case E is a totally definite quaternion
algebra over a totally real field F . Therefore, there exists a basis 1, α, β, αβ for E
with

α2 = a ∈ F , totally negative,
β2 = b ∈ F , totally negative,
αβ = −βα.

Let D be an ample divisor on A whose Rosati involution is γ �→ γ† = αγ′α−1, and let
φ:V (A)× V (A)→ E ⊗Q k be the skew-Hermitian form such that TrE⊗k/k ◦φ = eD.

Corresponding to the decomposition F ⊗Q k =
∏t

i=1 Fi, there are decompositions

E ⊗Q k = E1 × · · · × Et, Ei
df
= E ⊗F Fi,

(V (A), φ) = (V1, φ1)⊕ · · · ⊕ (Vt, φt), (Vi, φi)
df
= (V (A), φ)⊗E⊗Qk Ei.

Here Ei is a quaternion algebra (possibly split) over Fi, and φi is a skew-Hermitian
form Vi × Vi → Ei. Therefore,

C(A) = C1 × · · · × Ct, Ci
df
= EndEi(Vi)

and the involution on Ci sends an Ei-endomorphism of Vi to its adjoint with respect
to φi.

Let L = F [α]. Then E = L · 1⊕ L · β, and so we can write
φ(x, y) = φ1(x, y) + φ2(x, y)β, φ1(x, y), φ2(x, y) ∈ L⊗Q k.

Then φ1 is a skew-Hermitian form V ×V → L⊗Qk, and φ2 is a skew-symmetric form.
Any L⊗Qk-linear automorphism of V (A) fixing φ1 and φ2 fixes φ and is E⊗Qk-linear3,
and so

AutE⊗Qk(V, φ) = AutL⊗Qk(V, φ1) ∩AutL⊗Qk(V, φ2) (inside AutL⊗Qk(V )).

Corresponding to the decomposition of F ⊗Q k, there are decompositions

L⊗Q k =
t∏

i=1

Li, Li
df
= L⊗F Fi, and

(V (A), φ1, φ2) = ⊕i(Vi, φ1,i, φ2,i), (Vi, φ1,i, φ2,i)
df
= (V (A), φ1, φ2)⊗F⊗k Fi.

3Let γ: V (A)→ V (A) be an L ⊗ k-linear automorphism fixing φ. Then

φ(βγx, γy) = βφ(γx, γy) = φ(βx, y) = φ(γβx, γy), all x, y ∈ V (A),

which implies that βγ = γβ, and hence that γ commutes with the action of L[β] = E.



12 J.S. MILNE

Here φ1,i:Vi × Vi → Li is skew-Hermitian and φ2,i is skew-symmetric. Therefore,

S(A) =
t∏

i=1

ResFi/kU(φ1,i) ∩ ResLi/k Sp(φ2,i).

Similarly,

S(A)/kal =
∏

σ:F↪→kal

U(φ1,σ) ∩ Sp(φ2,σ), (Vσ, φ1,σ, φ2,σ) = (V (A), φ1, φ2)⊗F,σ k
al.

Let σ1, σ2:L ↪→ kal be the extensions of σ to L. Then

Vσ = Vσ1 ⊕ Vσ2 , Vσi

df
= V ⊗L,σi k

al,

and (see 2.2) γ �→ γ|Vσ1 identifies U(φ1,σ)∩Sp(φ2,σ) with Sp(φ2,σ1). The representation
of Sp(φ2,σ1) on Vσ1 is its standard representation, and its representation on Vσ2 is the
contragredient of the standard representation (which is isomorphic to the standard
representation).

Simple abelian variety of type III. This is similar to the preceding case, except
that E =

(
a,b
F

)
with a ∈ F totally negative (as before) but b totally positive, and

the ample divisor D is chosen so that its Rosati involution is the standard involution.
Again we let L = F [α], where α2 = a, and Li = L⊗Q Fi. In this case β

† = −β, and

S(A) =
t∏

i=1

ResFi/kU(φ1,i) ∩ ResLi/kO(φ2,i)

with φ1,i a skew-Hermitian form Vi×Vi → Li on Vi, and φ2,i an Li-bilinear symmetric
form. Moreover

S(A)kal
∼=
∏

O(φ2,σ1)

where the product is indexed by the embeddings σ:F ↪→ kal of F into kal and σ1 is

an extension of σ to L. The representation of O(φ2,σ1) on Vσ1

df
= V (A) ⊗L,σ1 k

al is
its standard representation, and its representation on Vσ2 is the contragredient of the
standard representation (which is isomorphic to the standard representation).

Simple abelian variety of type IV. In this case E is a division algebra whose
centre is a CM-field K. We shall compute C(A) and S(A) over kal only.

Recall that d = [E:K]
1
2 and that fd|g. Let S be a simple Md(k

al)-module, and let

V1 = S ⊕ · · · ⊕ S, (g/df copies).

Then V1 is a kal-vector space of dimension g/f . Let V2 = V ∨
1 . It has a natural

structure of a right Md(k
al)-module, which we turn into a left module structure by

using the involution α �→ αtr. The bilinear form

(x1, x2) �→ φ0(x1, x2)
df
= x2(x1):V1 × V2 → k
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has the property that φ0(αx1, x2) = φ0(x1, α
trx2). Set:

V̄ = V1 ⊕ V2

Ē = Md(k
al)×Md(k

al), (α, β)† = (βtr, αtr),

K̄ = kal × kal,

F̄ = {(a, a) | a ∈ K̄} ∼= kal,

φ̄ : V̄ × V̄ → K̄, φ̄((x1, x2), (y1, y2)) = (φ0(x1, y2),−φ0(y1, x2)).

Let (α, β) ∈ Ē act on V̄ according to the rule:

(α, β)(x1, x2) = (αx1, βx2).

Then † is an involution on Ē, K̄ is the centre of Ē, and F̄ is the set of elements in K̄
fixed by †. Moreover, φ̄ is a Hermitian form on V̄ regarded as a free K̄-module, and

φ(αx̄, ȳ) = φ(x̄, α†ȳ), all α ∈ Ē, x̄, ȳ ∈ V̄ .

Let D be an ample divisor on A, and let φ:V (A)× V (A)→ K ⊗Q k be the skew-
Hermitian form such that TrK/Q ◦φ = eD. Corresponding to the decomposition

F ⊗Q kal =
∏

σ:F↪→kal

kσ, kσ = kal,

of F ⊗Q kal into a product of fields, there are the decompositions

E ⊗Q kal =
∏
σ

Eσ, Eσ = E ⊗F,σ k
al

K ⊗Q kal =
∏
σ

Kσ, Kσ = E ⊗F,σ k
al

(V (A), φ)⊗k F ⊗Q kal = (Vσ, φσ), (Vσ, φσ) = (V (A), φ)⊗F,σ k
al.

Using Remarks 2.2, 2.3, and 2.4, we find that, for each σ, there exist compatible
isomorphisms

Eσ → Ē, (Vσ, φσ)→ (V̄ , φ̄),

the first of which carries the Rosati involution on Eσ into the involution
† on Ē, and

therefore maps Kσ isomorphically onto K̄ and Fσ isomorphically onto F̄ .

Consequently,

C(A)⊗k k
al =

∏
Cσ,

where

Cσ ≈ EndĒ(V̄ ) ≈ M g
fd
(kal)×M g

fd
(kal).

Moreover,

S(A)/kal =
∏

Sσ

where

Sσ ≈ AutMd(kal)(V1) ≈ GL g
fd
(kal).

The representation of Sσ on Vσ is isomorphic to the direct sum of d copies of the
standard representation of GL g

fd
(kal) and d copies of its contragredient.
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Summary. The following table summarizes the properties of the reductive groups
S(A).

Type Group Semisimple Connected Dimension Rank

I Sp 2g
f

Yes Yes 2g2

f
+ g g

II Sp g
f

Yes Yes g2

2f
+ g

2
g
2

III O g
f

Yes No g2

2f
− g

2
g
2
− ε

IV GL g
df

No Yes g2

d2f
g
d

The group S(A)/kal is isomorphic to f copies of the group listed in the second column.
The third and fourth columns indicate whether the group is semisimple or connected,
and the remaining columns give its dimension and rank (over kal). The “ε” is 0 or
− f

2
according as g

f
is even or odd. Note that, except when ε is nonzero, the rank of

S(A) is g
d
.

3. The Cohomology Classes Fixed by S(A).

In Section 1, we attached a reductive group S(A) to an abelian variety A and a
Weil cohomology theory. In this section, we prove that the space of vectors in Hs(Ar)
fixed by S(A) is generated by cup-products of divisor classes4. After the calculations
in Section 2, we are able to derive the statement from standard results on invariant
theory (Weyl 1946). Because S(A) need not be connected, the definition of its space
of fixed vectors requires care.

The space of fixed vectors of an algebraic group. Throughout this subsection,
k will be a field of characteristic zero. Let G be an algebraic group over k, and let
G → GL(V ) be a representation of G on a finite-dimensional k-vector space V . A
vector in V is said to be fixed by G if its image in V ⊗ kal is fixed by all g ∈ G(kal).
The set of vectors in V fixed by G is a subspace of V , which we denote V G. When
G(k) is Zariski dense in G/kal , for example, when G is connected (Borel 1991, 18.3),
V G is the space of vectors in V fixed by the elements of G(k).

The next lemma shows that the formation of the space of fixed vectors commutes
with extension of scalars and with products.

Lemma 3.1. Let G and H be algebraic groups over k acting on finite-dimensional
k-vector spaces V and W respectively. Then

(V G)⊗k k
al = (V ⊗k k

al)Gkal

and

(V ⊗k W )G×H = V G ⊗k W
H.

Proof. Let I = (V ⊗k k
al)Gkal . Then I is a subspace of V ⊗k k

al stable under the
action of Gal(kal/k), and a standard lemma (cf. Serre 1959, V.20, Lemme 26) shows

that IGal(kal/k) ⊗k k
al = I . As IGal(kal/k) = I ∩ V = V G, this proves the first equality.

4For simple complex abelian varieties not of type III and the Betti cohomology theory, this is
proved in Murty 1984, 3.6.
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Clearly, (V ⊗k W )G×H ⊃ V G ⊗k W
H , and so it suffices to prove the equality with

k replaced with kal, i.e., we may assume k to be algebraically closed. We then have
to prove the same result with G and H replaced by G(k) and H(k). Let {f1, f2, . . .}
be a basis for W . Any element x of V ⊗k W can be written uniquely x =

∑
i ai ⊗ fi

with ai ∈ V . If x is fixed by all (g, 1) ∈ G(k) × H(k), then gai = ai for all i,
and so x ∈ V G ⊗ W . This shows that (V ⊗ W )G×1 = V G ⊗ W , and similarly
(V G ⊗W )1×H = V G ⊗WH. Therefore

(V ⊗W )G×H ⊂ V G ⊗WH.

Statement of the theorem. As in Section 1, we fix an algebraically closed field Ω
and a Weil cohomology theory with coefficient field k. From the canonical isomor-
phisms

H1(A)
df
= V (A)∨, H1(Ar) ∼= rH1(A), H∗(Ar) ∼=

∧
H1(Ar),

we obtain an action of S(A) on H∗(Ar) for all r.

We fix an isomorphism k → k(1), and we use it to identify H2(A)(1) with H2(A).
Thus the cohomology class of a divisor D on A now resides in H2(A).

Theorem 3.2. For any abelian variety A over Ω and integer r ≥ 0, the k-algebra
H∗(Ar)S(A) is generated by divisor classes.

This will be a consequence of the following two propositions.

Proposition 3.3. For any abelian variety A over Ω and integer r ≥ 0, the k-
vector space H2(Ar)S(A) is generated by divisor classes.

For a k-algebra R and a subset W of R, we let k[W ] denote the smallest k-
subalgebra of R containing W .

Proposition 3.4. For any abelian variety A over Ω and any integer r,
H∗(Ar)S(A) = k[H2(Ar)S(A)].

Proof of Proposition 3.3. Clearly, H∗(Ar)S(A) ⊃ k[H2(Ar)S(A)], and so Lemma 3.1
allows us to assume that k is algebraically closed. We have to show that the space
of skew-symmetric forms ψ:V (A)× V (A)→ k(1) invariant under the action of S(A)
on Hom(Λ2V (A), k(1)) is generated by the forms eD with D a divisor on A. But,
because γ†γ = 1 for γ ∈ S(A)(k), ψ is invariant under S(A) if and only if

ψ ◦ (γ × 1) = ψ ◦ (1× γ†), all γ ∈ S(A)(k).
The next lemma shows that the k-algebra C(A) is generated by the γ ∈ S(A)(k), and
so Proposition 3.3 follows from Proposition 1.3.

Lemma 3.5. Any semisimple algebra with involution (R,† ) of finite dimension over
an algebraically closed field k is generated (as a k-algebra) by the subset U of elements
u satisfying u†u = 1.

Proof. Each pair (R,† ) is a product of pairs of the following types:

(a) R =Mn(k)×Mn(k) and (A,B)
† = (Btr, Atr);

(b) R =Mn(k) and A
† = Atr;
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(c) R =M2n(k) and A† = J−1AtrJ with J an invertible skew-symmetric matrix.

We may assume (R,† ) is one of the above pairs. Let S = k[U ]. In each case, there is a
natural representation ofR on a finite-dimensional k-vector space, which is semisimple
when regarded as a representation of U (hence also as a representation of S). The
ring of k-linear endomorphisms commuting with the action of U (hence also of S)
is k × k in the first case, and k in the remaining cases. Now the following standard
result implies that S = R:

Let S be a finite-dimensional algebra over a field k, and let S → Endk(V )
be a faithful semisimple representation of S; let C(S) and C(C(S)) be the
centralizers of S and C(S) respectively in Endk(V ); then S = C(C(S)).

Start of the proof of Proposition 3.4. It follows from Proposition 1.5 that S(A) =
S(Ar), and so it suffices to prove the statement with r = 1. Moreover, an isogeny

A→ Ar1
1 × · · · × Ars

s

with the Ai simple and pairwise nonisogenous defines isomorphisms

H∗(A) → H∗(Ar1
1 )⊗ · · · ⊗H∗(Ars

s )

S(A) → S(A1)× · · · × S(As) (see 1.5)

and hence (by 3.1 and induction) an isomorphism

H∗(A)S(A) → H∗(Ar1
1 )

S(A1) ⊗ · · · ⊗H∗(Ars
s )

S(As).

If the proposition is true for each variety Ari
i , so that each k-algebra H∗(Ari

i )
S(Ai) is

generated by the vectors of degree 2 fixed by S(Ai), then it is clear that it is also true
for A. Thus, it suffices to prove the proposition for a simple abelian variety A. This
we shall do after reviewing some invariant theory.

Invariant theory. The results reviewed in this subsection can be found in Weyl
1946 or, more conveniently, in Appendix F of Fulton and Harris, 1991.

In this subsection, V will be a finite-dimensional vector space over an algebraically
closed field k of characteristic zero. We consider a representation G → GL(V ) of an
algebraic group G on V , and we wish to determine the space of fixed vectors (H⊗m)G

where H is the dual of V equipped with the contragredient representation. Note that
H⊗m can be identified with the space of m-linear forms on V . The tensor product
f ⊗ g of a p-linear form f with a q-linear form g is the (p + q)-linear form

(x1, . . . , xp+q) �→ f(x1, . . . , xp)g(xp+1, . . . , xp+q).

The symplectic group. Let φ be a nondegenerate skew-symmetric bilinear form on V ,
and let G = Sp(φ). Note that φ can be identified with an element of H ⊗ H. For
odd m, (H⊗m)G = 0, and for even m, (H⊗m)G is generated as a k[Sm]-algebra by
φ⊗ φ⊗ · · · ⊗ φ (m

2
copies) (Fulton and Harris 1991, F.13). Here Sm is the symmetric

group on {1, 2, . . . , m} acting on H⊗m according to the rule: σ(x1 ⊗ · · · ⊗ xm) =
xσ(1) ⊗ · · · ⊗ xσ(m).



LEFSCHETZ CLASSES ON ABELIAN VARIETIES 17

The orthogonal group. Let φ be a nondegenerate symmetric bilinear form on V , and
let G = O(φ). For odd m, (H⊗m)G = 0, and for even m, (H⊗m)G is generated as a
k[Sm]-module by φ⊗ φ⊗ · · · ⊗ φ (m

2
copies) (ibid. F.16).

The general linear group. Let G = GL(V ). Then (V ⊗m ⊗H⊗n)G = 0 for m �= n, and
(V ⊗m ⊗H⊗m)G is generated as a k-vector space by the tensors t(σ), σ ∈ Sm, where
t(σ) is the element

f1 ⊗ · · · ⊗ fm ⊗ x1 ⊗ · · · ⊗ xm �→ f1(xσ(1)) · · · fm(xσ(m))

of (H⊗m ⊗ V ⊗m)∨ = V ⊗m ⊗H⊗m (ibid. F.20).

Proposition 3.6. With the above notations,

(
⊗

rH)G = k[(⊗2rH)G] all r ≥ 1,

in each of the following cases:

(a) G = Sp(φ) with φ a nondegenerate skew-symmetric form on V ;
(b) G = O(φ) with φ a nondegenerate symmetric form on V ;
(c) G = GL(W ) and V = W ⊕W∨ (G acts on W∨ via the contragredient represen-

tation).

Proof. We first prove (a) and (b). Let V1, V2, . . . , Vr be the copies of V , and let
H1, . . . , Hr be their duals. Then

(H1 ⊕ · · · ⊕Hr)
⊗m

is a direct sum of spaces of the form

H⊗i1
1 ⊗ · · · ⊗H⊗ir

r , i1 + · · ·+ ir = m,

with G acting through its action on each Hi. But H⊗i1
1 ⊗ · · · ⊗ Hir

r = H⊗m, and
so it contains no G-invariant tensors unless m is even, in which case the G-invariant
tensors are linear combinations of the forms

φ⊗ · · · ⊗ φ ∈ (X1 ⊗X2)⊗ · · · ⊗ (Xm−1 ⊗Xm)

where each Xj is an H� and each H� occurs exactly i� times. Clearly such a form is
a product of G-invariant forms in

(H1 ⊕ · · · ⊕Hr)
⊗2 =

⊕
1≤i,j≤r

Hi ⊗Hj.

Next we prove (c). The same argument as in the previous case shows that we need
only consider a G-invariant tensor in a space

X1 ⊗X2 ⊗ · · · ⊗Xm

in which each Xi is either W or W∨. But this space contains no nonzero G-invariant
tensor unless m is even and there are m

2
copies each of W and W∨. After applying a

permutation, we may assume our space is W∨⊗m
2 ⊗W⊗m

2 . The G-invariant tensors
in this space are linear combinations of forms

(f1, . . . , fm
2
, x1, . . . , xm

2
) �→

∏
fi(xσ(i)), σ ∈ Sm

2
,

each of which is visibly a product of 2-forms.
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Remark 3.7. If the k-algebra (
⊗

H)G is generated by the G-invariant tensors of
degree 2, then the same is true of (

∧
H)G.

There are two approaches to proving this statement. For the first, we assume that
G is reductive. Since (by assumption) k has characteristic zero, this implies that the
representations of G are all semisimple. By definition,

∧mH is the quotient of
⊗mH

by the subspace generated by elements of the form v1 ⊗ · · · ⊗ vm with two of the vi
equal, and so the semisimplicity shows that (

∧
H)G is a quotient of (

⊗
H)G.

For the second approach, which is both more elementary and more general, we refer
the reader to Ribet 1983, p530.

Completion of the proof of Proposition 3.4. Recall that it remains to prove
Proposition 3.4 in the case of a simple abelian variety A and with the assumption
that k is algebraically closed. Let H = V (A)∨. Then H∗(Ar) = (

∧
rH). After

Remark 3.7, it suffices to show that the k-algebra of S(A)-invariant tensors in
⊗

rH
is generated by those of degree 2. Let F be the largest totally real subfield of the
centre of End0(A). Then (see Section 2) there are decompositions

H = ⊕σ:F↪→kHσ, S(A) =
∏

σ:F↪→k

Sσ,

and so (see 3.1),

(
⊗

(rH))S(A) =
⊗
σ

(
⊗

rHσ)
Sσ .

Now the explicit description of Sσ and its representation on Hσ, together with Propo-
sition 3.6, show that each of the k-algebras (

⊗
rHσ)

Sσ is generated by tensors of
degree 2, which completes the proof.

Abelian varieties over the algebraic closure of a finite field. Because it is so
much more elementary than the general case, we explain the proof of Theorem 3.2
in the case of an abelian variety over the algebraic closure F of a finite field. We
shall first need a lemma concerning a torus T acting on a vector space V over an
algebraically closed field k. For each character χ of T , Vχ denotes the subspace of V
on which T acts through χ. Then V = ⊕Vχ, and the χ for which Vχ �= 0 are called
the weights of T in V .

Lemma 3.8. Let Ξ be the set of weights of T in V , and assume that the elements
of Ξ can be numbered ξ1, . . . , ξ2m in such a way that the Z-module of relations among
the ξi is generated by the relations

ξi + ξm+i = 0, i = 1, . . . , m.

Then (
∧
V )T is generated as a Ω-algebra by (

∧2)T .

Proof. After Remark 3.7, it suffices to prove the analogous result for the tensor
algebra

⊗
V of V . Fix an integer n ≥ 1. For a 2m-tuple Σ = (n1, . . . , n2m) of

nonnegative integers with sum n, let [Σ] be the character
∑

niξi of T , and let V (Σ) =⊗2m
i=1 V

⊗ni
ξi

. Then V ⊗n = ⊕ΣV (Σ), and T acts on V (Σ) through the character [Σ].

Therefore, (V ⊗n)T = ⊕[Σ]=0V (Σ). By assumption, the character [Σ] is zero if and
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only if ni = nm+i for i = 1, . . . , m, and so

[Σ] = 0 =⇒ V (Σ) =
m⊗
i=1

(Vξi ⊗ Vξm+i)
⊗ni .

But Vξi⊗Vξm+i ⊂ (V ⊗2)T because ξi+ξm+i = 0 inX∗(T ), and so (
⊗n V )T is generated

as a kal-algebra by (
⊗2

V )T .

Let A be a simple abelian variety over F, and let K be the centre of End0(A).

If A is a supersingular elliptic curve, then K = Q, S(A) = µ2, and −1 ∈ µ2(Q)
acts as multiplication by (−1)i on Hi(Ar). Hence (H∗(Ar))S(A) = ⊕iH

2i(Ar). Since
Tate’s theorem (Tate 1966) implies that H2(Ar) is spanned by divisor classes, this
proves the theorem in this case.

If A is not a supersingular elliptic curve, then K is a CM-field, and S(A) is a torus.
Every embedding σ:K ↪→ kal defines a character ξσ of S(A), and the character group
of S(A) is the quotient of ⊕Zξσ by the subgroup generated by the elements ξσ + ξισ.

Lemma 2.1 shows thatH1(Ar)⊗kal is a freeK⊗Qkal-module. Therefore the weights
of S(A) in H1(A)⊗kal are precisely the characters ξσ, σ ∈ Hom(K, kal), and each has
the same multiplicity. Choose a CM-type {ϕ1, · · · , ϕm} for K. Then the character
group of S(A) has generators {ξϕ1 , . . . , ξϕm, ξιϕ1 , . . . , ξιϕm} and defining relations

ξϕi + ξιϕi = 0, i = 1, . . . , m.

Here ι denotes complex conjugation. We can now apply Lemma 3.8 to deduce that
H∗(Ar)S(A) is generated as a k-algebra by H2(Ar)S(A). But Tate’s theorem (Tate
1966) implies that this space is spanned by divisor classes.

4. Lefschetz Classes and the Lefschetz Group.

In this section, we define the Lefschetz group L(A) of an abelian variety A and prove
that it plays the same role for Lefschetz classes that the Hodge (alias, Mumford-Tate)
group plays for Hodge classes. By relating L(A) to S(A), we are able to use the results
of Section 2 to compute L(A) for any abelian variety.

As in the previous sections, we fix an algebraically closed field Ω and a Weil coho-
mology theory with coefficient field k. For any smooth projective variety X over Ω,
we define

H2∗(X)(∗) = ⊕rH
2r(X)(r).

Cup-product makes H2∗(X)(∗) into a k-algebra. Since we are now keeping track of
the Tate twists, we shall have to distinguish between the canonical pairing

eD:V (A)× V (A)→ k(1)

defined by a divisor D on an abelian variety A and its composite ED with a fixed
isomorphism k(1)→ k.

Lefschetz classes for homological equivalence. Two algebraic cycles on a
smooth complete variety X over Ω are said to be homologically equivalent (for the
given Weil cohomology theory) if their classes in H2∗(X)(∗) are equal. Homologi-
cal equivalence “hom” is an adequate equivalence relation, and so we obtain a Q-
algebra Dhom(X) as in the Introduction. We define Dhom(X)k to be the k-subspace
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of H2∗(X)(∗) spanned by the image of the cycle class map cl:Drat(X)→ H2∗(X)(∗).
The cycle class map induces an injection Dhom(X) → Dhom(X)k, and we shall
prove later (Corollary 5.3) that, when X is an abelian variety, the induced map
Dhom(A)⊗Q k → Dhom(A)k is an isomorphism.

Proposition 4.1. Let X and Y be smooth complete varieties over Ω. If the Q-
space DC(X, Y ) of divisorial correspondences between X and Y is zero, then the map

x⊗ y �→ p∗x · q∗y:Dhom(X)k ⊗Dhom(Y )k → Dhom(X × Y )k

is an isomorphism. Here p and q are the projection maps from X × Y to X and Y
respectively.

Proof. There is a canonical decomposition

NS(X × Y ) ∼= NS(X) ⊕NS(Y )⊕DC(X, Y )

which is compatible with the Künneth decomposition

H2(X × Y )(1) ∼= H2(X)(1)⊕H2(Y )(1) ⊕H1(X) ⊗H1(Y )(1).

By assumption DC(X, Y ) = 0, and so we obtain a diagram

D1
hom(X × Y )k = D1

hom(X)k ⊕D1
hom(Y )k

∩ ∩
H2(X × Y )(1) ⊃ H2(X)(1) ⊕H2(Y )(1)

The subalgebras ofH2∗(X×Y )(∗) = H2∗(X)(∗)⊗H2∗(Y )(∗) generated respectively by
D1

hom(X×Y )k and D1
hom(X)k⊕D1

hom(Y )k areDhom(X×Y )k and Dhom(X)k⊗Dhom(Y )k,
which are therefore equal.

Corollary 4.2. An isogeny

A→ Ar1
1 × · · · × Ars

s

with the Ai simple and pairwise nonisogenous abelian varieties defines an isomorphism
of Dhom(A)k onto the subring Dhom(A

r1
1 )k ⊗ · · · ⊗ Dhom(A

rs
s )k of H∗(A) = H∗(Ar1

1 )⊗
· · · ⊗H∗(Ars

s ).

Proof. In general, DC(X, Y ) ∼= Hom(A,B), where A is the Albanese variety of
X and B is the Picard variety of Y . Therefore, if A and B are abelian varieties with
Hom(A,B) = 0, then DC(A,B) = 0 and the projection maps define an isomorphism

Dhom(A)k ⊗Dhom(B)k →Dhom(A× B)k.

The general statement follows from this by induction.

The Lefschetz group. Let A be an abelian variety over Ω. From the canonical
isomorphisms

H1(A) ∼= Hom(V (A), k), H1(Ar) = rH1(A), H∗(Ar) ∼=
∧

H1(Ar).

we see that there is a natural left action of GL(V (A)) on Hs(Ar) for all r, s. Using
the identification Gm = GL(Q(1)), we extend this to an action of GL(V (A)) × Gm

on H2s(Ar)(m) for all r, s,m.
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Definition 4.3. The Lefschetz group L(A) of an abelian variety A over Ω is the
largest algebraic subgroup of GL(V (A))×Gm/k fixing

5 the elements of Ds
hom(A

r)k ⊂
H2s(Ar)(s) for all r, s.

Let G(A) be the algebraic subgroup of GL(V (A)) such that

G(A)(R) = {γ ∈ C(A)⊗ R | γ†γ ∈ R×}
for any k-algebra R. Thus, for any ample divisorD on A, G(A) is the largest algebraic
subgroup of GSp(ED) commuting with the endomorphisms of A.

Theorem 4.4. The map γ �→ (γ, γ†γ):G(A) → GL(V (A)) × Gm sends G(A)
isomorphically onto L(A).

Proof. For any γ ∈ G(A)(k) and divisor D on A,

eD(γx, γy) = eD(x, γ†γx) = γ†γ · eD(x, y), all x, y ∈ V (A),
and so (γ, γ†γ) fixes eD. It therefore fixes the class of D in H2(A)(1). More generally,
any γ ∈ G(A)(kal) will fix all divisor classes on Ar, all r. This shows that G(A) ⊂
L(A).

For the converse, note that Theorem 3.2 implies that H2∗(Ar)(∗)G(A) = Dhom(A
r)k

for all r, and so a variant of Chevalley’s theorem (Deligne 1982, 3.1) implies that
L(A) = G(A).

Corollary 4.5. For any abelian variety A and any r ≥ 0, H2∗(Ar)(∗)L(A) =
Dhom(A

r)k.

Proof. In the last proof, it was noted that the statement becomes true when L(A)
is replaced with G(A).

The projection map GL(V (A))× Gm → Gm defines a cocharacter of L(A), which
we denote l(A) (or just l). The theorem shows that the kernel of l(A), regarded as a
subgroup of GL(V (A)), equals S(A).

It is clear from the theorem that the homomorphism

a �→ (a−1, a−2):Gm → GL(V (A))×Gm

takes values in L(A). Therefore L(A) has a canonical cocharacter w. Note that
l ◦ w = −2.

Definition 4.6. Consider a family (Gi, ti)i∈I of pairs consisting of an algebraic
group Gi over k and a homomorphism ti:Gi → Gm. We define the product

∏
(Gi, ti)

of the family to be the pair (G, t) consisting of the largest subgroup of
∏
Gi on

which the characters (gi)i∈I �→ ti0(gi0) agree and of the common restriction of these
characters to G. It is universal with respect to the maps (G, t)→ (Gi, ti).

Corollary 4.7. An isogeny

A→ Ar1
1 × · · · × Ars

s

with the Ai simple and pairwise nonisogenous defines an isomorphism

(L(A), l(A))→
s∏

i=1

(L(Ai), l(Ai)),

5In the sense defined in the preceding section.
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which is independent of the choice of the isogeny.

Proof. Let (L, l) =
∏
(L(Ai), l(Ai)), and consider the diagram

0 → S(A) → L(A)
l(A)−−→ Gm → 0

↓ ↓ ‖
0 →

∏
S(Ai) → L

l−→ Gm → 0.

Because two of the vertical maps are isomorphisms, so also is the third.

Application: Lefschetz classes and Hodge classes. A Hodge class on an abelian
variety A over C is an element of type (0, 0) in H2s

B (A)(s) for some s. The Hodge
classes on A form a Q-subalgebra H(A) of H2∗

B (A)(∗). The Hodge group Hg(A) of A
is defined to be the largest algebraic subgroup of GL(VB(A))×Gm fixing all the Hodge
classes on A and its powers. It has the property that H2∗(Ar)(∗)Hg(A) = H(Ar) for
all r (Deligne 1982, proof of Proposition 3.4). Projection onto Gm defines a canonical
character of Hg(A), and we let Hg′(A) denote its kernel.
The Betti cohomology theory has coefficient fieldQ, and Dhom(A) ∼= Dhom(A)Q. We

drop the subscript in this case, and identify Dhom(A) with a subspace of H
2∗(A)(∗).

Clearly Dhom(A) ⊂ H(A), and so L(A) ⊃ Hg(A). A Hodge class not in Dhom(A) will
be said6 to be exotic.

Proposition 4.8. The following conditions on an abelian variety A are equiva-
lent:

(a) no power of A supports an exotic Hodge class;
(b) Hg(A) = L(A);
(c) Hg′(A) = S(A);

Proof. The groups Hg(A) and L(A) are the largest algebraic subgroups of
GL(H1(A))×Gm fixing respectively the Hodge classes and the Lefschetz classes on the
powers of A, and conversely, these are precisely the classes fixed by the two groups.
Hence

H(Ar) = D(Ar) for all r ⇐⇒ Hg(A) = L(A).

The proves the equivalence of the first two conditions, and the equivalence of the
second two follows from applying the Five Lemma to the diagram:

0 → Hg′(A) → Hg(A) −→ Gm → 0
↓ ↓ ‖

0 → S(A) → L(A)
l(A)−−→ Gm → 0.

Remark 4.9. When A has an isogeny factor of type III, the conditions in Propo-
sition 4.8 always fail because Hg′(A) is connected (Deligne 1982, p45) and S(A) is
not—see the table at the end of Section 2. In fact, a simple abelian variety A of
type III supports an exotic Hodge class c such that p∗(c) ∪ q∗(c) ∈ H2∗(A× A)(∗) is

6Similar classes have been called extraordinary (Weil 1977, p424), exceptional (Murty 1984,
p197), and sporadic (White 1993). In Ribet 1983, an abelian variety with no exotic Hodge class is
said to satisfy the (1, 1)-criterion. Other authors say that an abelian variety is nondegenerate if it
has no exotic Hodge classes, and stably nondegenerate if no power of it has an exotic Hodge class.
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Lefschetz (Murty 1984, 3.2). The class c is fixed by the identity component of S(A)
but not by S(A) itself.

When A does not have an factor of type III, then the conditions in Proposition 4.8
are equivalent to the following condition:

rankHg′(A) = rank S(A).

This can be proved by directly verifying it for simple abelian varieties (Hazama 1984),
and then applying the following statement to LieHg′(A) ⊂ ⊕i LieS(Ai) where the
Ai are the simple isogeny factors of A:

Let g1, . . . , gs be reductive Lie algebras over C, and let g be a reductive
subalgebra of g1 ⊕ · · · ⊕ gs. If g projects onto each gi and rank(g) =∑
rank(gi), then g = g1 ⊕ · · · ⊕ gs (ibid., 3.1).

Example 4.10. Let A be an abelian variety over C, and let i:K → End0(A) be
a homomorphism (sending 1 to 1) from a CM-field K into End0(A). The pair (A, i)
is said to be of Weil type if the tangent space to A at zero is a free K ⊗Q C-module.
A polarization of (A, i) is a polarization λ of A whose Rosati involution stabilizes K
and induces complex conjugation on it.

Let (A, i) be of Weil type, and let m = dimA
[K:Q]

. Then the subspace
∧m

K H1
B(A)(m)

of Hm
B (A)(

m
2
) consists of Hodge classes (Deligne 1982, 4.4)—they are called the Weil

classes on A.

Let D be an ample divisor on A inducing a polarization of (A, i), and let φ:V (A)×
V (A) → K be the skew-Hermitian form such that TrK/Q ◦φ = ED. Then S(A) =
U(φ). When A is general, Hg′(A) = SU(φ), and the Weil classes are exotic. Very
few of them have been shown to be algebraic (Schoen 1988).

When Hg′(A) = SU(φ), invariant theory shows that H(A) is generated as a Q-
algebra by the divisor classes and Weil classes on A.

The above statements are due to Weil (1977) in the case that K has degree 2 over
Q. The extension to arbitrary CM-fields is straightforward.

Application: Lefschetz classes and Tate classes. Let A be an abelian variety
over an algebraically closed field Ω, and let � be a prime different from the character-
istic of Ω. Define

T�(A) = ∪A0/KH
2∗
� (A)(∗)Gal(Kal/K)

where the union is over the models A0 of A over subfields K of Ω that are finitely
generated over the prime field (Kal is the algebraic closure ofK in Ω). Define the Tate
group T t(A) to be the largest algebraic subgroup of GL(V�(A)) × Gm/Q�

fixing the

Tate classes on A and its powers. It has the property that H2∗
� (A

r)(∗)T t(A) = T�(Ar)
for all r.

Clearly Dhom(A)Q�
⊂ T�(A), and so L(A) ⊃ T t(A). Moreover

Dhom(A
r)Q�

= T�(Ar) for all r ⇐⇒ L(A) = T t(A).

Analogues of the results in (4.8), (4.9), and (4.10) hold.

Example 4.11. Let A be a simple abelian variety over F. Let A0/Fq be a model
of A such that End0(A0) = End0(A), and let π be the Frobenius endomorphism of
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A0/Fq . Let L(A)0 be the group of multiplicative type over Q such that

L(A)0 = {γ ∈ Q[π] | γγ̄ ∈ Q×}.
Let T t(A)0 be the Zariski closure of π

m in L(A)0 for m sufficiently divisible. For any
� �= char(F), L�(A) = L(A)0/Q�

and T t�(A) = T t(A)0/Q�
. Therefore, no power of A

has an exotic Tate class if and only if T t(A)0 = L(A)0. This is an explicit criterion,
which one can use to prove the Tate conjecture for some classes of abelian varieties
(Zarhin 1991, Lenstra and Zarhin 1993), but Wei (1993) has shown that, in a certain
precise sense, the criterion fails for most isogeny classes of abelian varieties over F.

5. Existence of Lefschetz classes

In this section, we apply the results of the preceding sections to prove that many
naturally occurring cohomology classes on abelian varieties are Lefschetz, and that
the family of Lefschetz classes is stable under certain natural operations.

As usual, we fix an algebraically closed field Ω and a Weil cohomology theory with
coefficient field k. A regular map φ:X → Y of smooth projective varieties induces a
homomorphism φ∗:H∗(Y )→ H∗(X) of graded k-algebras and homomorphisms

φ∗:Hs(X)(r) → Hs+2c(X)(r + c), c = dimY − dimX,

of k-vector spaces. Because φ∗ is a homomorphism of graded k-algebras commuting
with the cycle maps, it maps Lefschetz classes to Lefschetz classes. On the other
hand, φ∗ will not in general map Lefschetz classes to Lefschetz classes. For example
let Z be a smooth closed connected subvariety of X whose cohomology class is not
Lefschetz, and let φ be the inclusion map Z ↪→ X. The space H0(Z) consists of
Lefschetz classes, but φ∗(1) is not Lefschetz because it is the cohomology class of Z
in H2c(X)(c), c = dimX − dimZ.

Proposition 5.1. For any abelian variety A, Dhom(A)k is a graded subalgebra
of H2∗(A)(∗), i.e., if α ∈ Dhom(A)k and α =

∑
αr with αr ∈ H2r(A)(r), then

αr ∈ Dhom(A)k.

Proof. Choose an isomorphism k(1) → k, and use it to identify Dhom(A)k with
a subalgebra of H∗(A)—it suffices to prove that this is a graded subalgebra. Define
w:Gm → GL(V (A)) to be the homomorphism such that w(c)x = c−1x for all c ∈ k×
and x ∈ V (A). Suppose α ∈ H∗(A) decomposes as α =

∑
αr, αr ∈ Hr(A). Then

w(c)α =
∑

crαr all c ∈ k×, and this equation determines the αr uniquely. Since the
action of w(Gm) commutes with that of S(A), this shows that if α is fixed by S(A)
then so also are the αr. Now we can apply Theorem 3.2 to complete the proof.

Proposition 5.2. Let A be an abelian variety over Ω. For any nonzero a ∈
Dhom(A)k, there exists b ∈ Dhom(B)k such that a · b �= 0.

Proof. Because L(A) acts semisimply, the nondegenerate pairing

H2s(A)(s)×H2g−2s(A)(g − s)→ H2g(A)(g) ∼= k, g = dimA,

induces a nondegenerate pairing

H2s(A)(s)L(A) × H2g−2s(A)(g − s)L(A) → k
‖ ‖

Ds
hom(A)k Dg−s

hom(A)k

.
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Corollary 5.3. (a) The canonical7 map Ds
hom(A)→Ds

num(A) is bijective.
(b) The canonical map Dhom(A)⊗Q k →Dhom(A)k is an isomorphism.

Proof. (a) This is an immediate consequence of the proposition.

(b) This can be proved by the same argument as in Tate 1994, 2.5.

In particular, on Lefschetz cycles, homological equivalence is independent of the
Weil cohomology and Dnum(A)⊗Q k ∼= Dhom(A)k.

Direct images of Lefschetz classes are Lefschetz. Let T be a finite set of distinct
isogeny classes of simple abelian varieties, and let L =

∏
B∈T (L(B), l(B)) (product

in the sense of (4.6)). For an abelian variety A whose simple isogeny factors lie
in T , L(A) is canonically a quotient L → L(A) of L, and so there is a natural
action of L on V (A). If A′ is a second such abelian variety, then the homomorphism
V (φ):V (A)→ V (A′) induced by a regular map φ:A→ A′ is L-equivariant. Because
φ∗:H∗(A′)→ H∗(A) equals

∧
V (φ)∨, it also is L-equivariant.

Proposition 5.4. For any regular map φ:A → B of abelian varieties, the map
φ∗:H2s(A)(s)→ H2s+2c(B)(s+ c) commutes with the actions of L(A× B).

Proof. Let g = dimA. Because H2g(A)(g) consists of Lefschetz classes—it is
generated by the class of Dg for any ample divisor D on A—the action of L(A) on it
is trivial. A similar remark applies to B. Let α ∈ L(A × B). On replacing x and y
with αx and αy in the projection formula

ηB(φ∗(x) ∪ y) = ηA(x ∪ φ∗(y)), x ∈ H2g−2s(A)(g − s), y ∈ H2s(B)(s),

and using that the action of α commutes with cup-products (by definition) and the
action of φ∗, we find that

ηB(φ∗(αx) ∪ αy) = ηA(αx ∪ φ∗(αy)) = ηA(x ∪ φ∗(y)) = ηB(φ∗(x) ∪ y).
Therefore

ηB(α
−1φ∗(αx) ∪ y) = ηB(φ∗(x) ∪ y).

Since this holds for all y ∈ H2s(B)(s), we find that α−1φ∗(αx) = φ∗(x) for all x ∈
H2g−2s(A)(g − s).

Corollary 5.5. For any regular map φ:A → B of abelian varieties, φ∗ maps
Lefschetz classes on A to Lefschetz classes on B.

Proof. Because φ∗ commutes with the actions of L(A×B), it maps classes fixed
by L(A) to classes fixed by L(B), and we can apply Corollary 4.5.

Corollary 5.6. The graph of any regular map α:A → B of abelian varieties is
Lefschetz.

Proof. In fact, Γα = (idA, α)∗(1A), and 1A ∈ H0(A) is Lefschetz.

7For abelian varieties over C, Lieberman 1968 shows that (Betti) homological equivalence agrees
with numerical equivalence on all algebraic cycles on abelian varieties.
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Correspondences. Let X and Y be smooth projective varieties over Ω. The ele-
ments of H2∗(X × Y )(∗) are called cohomological correspondences between X and
Y . The map sending u ∈ H2s(X × Y )(s) to the composite

H∗(X)
p∗−→ H∗(X × Y )

v →v∪u−−−−→ H∗+2s(X × Y )(s)
q∗−→ H∗+2s−2d(Y )(s− d), d = dimX,

is an isomorphism

u �→ ū:H∗(X × Y )→ Hom(H∗(X), H∗+2s−2d(Y )(s− d)).

A cohomological correspondence u ∈ H∗(X × Y ) is said to be Lefschetz if it lies in
the subalgebra Dhom(X × Y )k of H

∗(X × Y ).

Proposition 5.7. Let A and B be abelian varieties over Ω. A cohomological
correspondence u between A and B is Lefschetz if and only if ū:H∗(A) → H∗(B)
commutes with the actions of L(A × B). If u is Lefschetz, then ū maps D(A)k into
D(B)k.

Proof. The map u �→ ū is bijective and commutes with the action of L(A× B),
whence the first statement. The maps φ∗, φ∗, and cupping with a Lefschetz class, all
preserve Lefschetz classes, whence the second statement.

Corollary 5.8. For any abelian variety A over Ω, the Künneth components of
the diagonal are Lefschetz.

Proof. The projection operator H∗(A) → Hs(A) commutes with the action of
L(A).

Recall that a smooth projective variety X is said to satisfy the strong Lefschetz
theorem (with respect to a given Weil cohomology theory) if, for any hyperplane
section Z, the map

L:H∗(X)→ H∗(X)(1), x �→ x ∪ cl(Z)

has the property that, for s ≤ d = dimX,

Ld−s:Hs(X)→ H2d−s(X)(d − s)

is an isomorphism. For such a variety, the primitive elements ofHs(X) are those killed
by Ld−s+1. Any x ∈ Hs(X) can be written unquely in the form x =

∑
i≥0,s−d L

ixi
with xi a primitive element of H

s−2i(X). For x =
∑

Lixi ∈ Hs(X), define

Λx =
∑

i≥s−d,1

Li−1xi

cΛx =
∑

i≥s−d,1

i(d− s+ i+ 1)Li−1xi

∗x =
∑

i≥s−d,0

(−1)(s−2i)(s−2i+1)/2Ld−s+ixi.

Theorem 5.9. Let A be an abelian variety over Ω. The correspondences Λ, cΛ,
and ∗ between A and itself are all Lefschetz.
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Proof. It is known (e.g., Kleiman 1968, p367) that Λ, regarded as a map of
cohomology groups, is inverse to L. Since the latter is Lefschetz, it commutes with
the action of L(A), which implies that the same is true of Λ, which is therefore
Lefschetz. Consequently, all elements of the Q-algebra Q[L,Λ] are Lefschetz. Since
this algebra contains cΛ and ∗ (Kleiman 1968, 1.4.4), this completes the proof.

Most of (Kleiman 1968) can now be rewritten with “variety” replaced by “abelian
variety” and “algebraic cycle” with “Lefschetz cycle”.

Other adequate equivalence relations. In the above, we have proved that certain
naturally occurring classes in Chom(·) actually lie in Dhom(·). One can ask whether
the same is true for other adequate equivalence relations. I do not know the answer
in every case, but it is possible to extract the following theorem from Scholl 1994.

Theorem 5.10. For every adequate equivalence relation, the graph of a regular
map of abelian varieties φ:A→ B is a Lefschetz class on A× B.

Proof. It suffices to prove this for the finest adequate relation, namely, rational
equivalence. Let A be an abelian variety of dimension g. Choose a symmetric ample
divisor D on A, and let M = m∗D − p∗D − q∗D. Let λD be the polarization defined
by D. For 0 ≤ i ≤ 2g, define

pi =
(−1)i√
deg(λD)

∑
max(0,i−g)≤j≤ i

2

1

j!(g − 1 + j)!(i− 2j)!p
∗([Dg−i+j ]) · q∗([Dj ]) · [M ]i−2j

Here [∗] denotes the class of ∗ in C1
rat(·) = Pic(·)⊗Q, so that pi ∈ Cgrat(A×A). Then

p0 + p1 + · · ·+ p2g = ∆A (identity in Cgrat(A× A))

(Scholl 1994, Section 5). Clearly each pi is Lefschetz, and so ∆A is Lefschetz. Similarly
∆B is Lefschetz, and so the formula

(φ× id)∗(∆B) = ∆B ◦ Γφ = Γφ

(Fulton 1984, 16.1.1) shows that Γφ is also Lefschetz.

Let pi be the class in Cgrat(A×A) defined in the above proof. Then, for every Weil
cohomology theory, cl(pi) is the i

th Künneth component of the diagonal.

Remark 5.11. The referee points out that it is possible to show similarly that
the correspondences Λ, cΛ, ∗ etc. are Lefschetz for rational equivalence. Following
(Scholl 1994, 5.9), define for 0 ≤ i ≤ 2g,

fi =
∑

max(0,i−g)≤j≤ i
2

1

j!(g − i+ j)!(i− 2j)!p
∗([Dj ]) · q∗([Dj]) · [M ]i−2j.

Then fi is Lefschetz, and
(−1)i√
deg(λD)

fi is the inverse of the strong Lefschetz isomorphism

“cup with [D]g−i” (cf. ib. 5.9.1). Thus

Λ = deg(λD)
−1/2

(∑
2≤i≤g

(−1)ifi−2 · p∗[Dg+1−i] +
∑

g<i≤2g

(−1)if2g−i · q∗[Di−g−1]

)
.
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Also, the Fourier transform correspondence (Künneman 1994, p193),

F = exp[c1(P )] ∈ Crat(A× A∨), P = Poincaré line bundle,

is Lefschetz.

Other varieties. The above results hold, not only for abelian varieties, but also
for certain other (albeit still very special) varieties, for example, for algebraic vari-
eties whose connected components are products of projective spaces with varieties
admitting the structure of an abelian variety.

Appendix: Weil Cohomology

We fix an algebraically closed field Ω and a field k of characteristic zero. A con-
travariant functor X �→ H∗(X) from the category of smooth projective varieties over
Ω to the category of finite-dimensional, graded, anti-commutative k-algebras is said
to be a Weil cohomology theory if it carries disjoint unions to direct sums and admits
a Poincaré duality, a Künneth formula, and a cycle map.

Poincaré duality: Let X be a connected smooth projective variety over Ω of
dimension d.
(a) The groups Hs(X) are zero except for 0 ≤ s ≤ 2d, and H2d(X) has dimen-

sion 1.
(b) Let k(−1) = H2(P1). For any k-vector space V and integer m, let V (m) =

V ⊗k k(−1)⊗−m or V ⊗k k(−1)∨⊗m according as m is positive or negative.
Then, for each X, there is given a natural isomorphism ηX:H

2d(X)(d) → k.
(c) The pairings

Hr(X)×H2d−r(X)(d) → H2d(X)(d) ∼= k

induced by the product structure on H∗(X) are non-degenerate.

Let φ:X → Y be a regular map of smooth projective varieties over Ω, and let
φ∗ = H∗(φ):H∗(Y ) → H∗(X). Because the pairing in (c) is nondegenerate, there is
a unique linear map

φ∗:H∗(X)→ H∗+2c(Y )(c), c = dimY − dimX

such that the projection formula

ηY (φ∗(x) ∪ y) = ηX(x ∪ φ∗y)

holds for all x ∈ H2 dimX−2s(X)(dimX − s), y ∈ H2s(Y )(s).

Künneth formula: Let p, q:X × Y → X, Y be the projection maps. Then the
map

x⊗ y �→ p∗x ∪ q∗y:H∗(X)⊗H∗(Y )→ H∗(X × Y )

is an isomorphism of graded k-algebras.

Cycle map: There are given homomorphisms

clX:C
r
rat(X) → H2r(X)(r)

satisfying the following conditions:
(a) (functoriality) For any regular map φ:X → Y ,

φ∗ ◦ clY = clX ◦ φ∗, φ∗ ◦ clX = clY ◦ φ∗.
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(b) (multiplicativity) For any X, Y

clX×Y (Z ×W ) = clX(Z)⊗ clY (W ).

(c) (non-triviality) If P is a point, so that C∗
rat(P ) = Q and H∗(P ) = k, then

clP is the natural inclusion map.

In the functoriality statement, the φ∗ and φ∗ on the right of the equality signs refer
to the standard operations on the Q-algebras of algebraic cycles modulo rational
equivalence (Fulton 1984, Chapter I).

Proposition (A.1). Let i:Z ↪→ X be a smooth closed subvariety of X. Then
clX(Z) = i∗(1Z).

Proof. Let P = Spec k and let φ:Z → P be the structure map. Then

1Z = φ∗(1P ) = φ∗(clP (P )) = clZ(φ
∗P ) = clZ(Z).

Therefore

i∗(1Z) = i∗(clZ(Z)) = clX(i∗(Z)) = clX(Z).

Proposition (A.2). Let A be an abelian variety of dimension g over Ω.

(a) The dimension of H1(A) is 2g, and the inclusion H1(A) → H∗(A) extends to
an isomorphism of k-algebras

∧
H1(A)→ H∗(A).

(b) For any endomorphism α of A, the characteristic polynomial PA,α(T ) of α on A
is equal to the characteristic polynomial of α acting on V (A).

Proof. Statement (a) is proved in Kleiman 1968, 2A8.

For (b), it follows from the axioms that an isogeny γ:A → A acts on H2g(A) as
multiplication by deg γ. Let

P (T )
df
= det(H1(α)− T |H1(A))

be the characteristic polynomial of α acting on H1(A). Then P (n) = det(α − n) for
all integers n. But α−n acts on Λ2gH1(A) = H2g(A) as multiplication by det(α−n).
Therefore, P (n) = deg(α−n) for all integers. But this is the condition characterizing
PA,α(T ), and so P (T ) = PA,α(T ). Since α has the same characteristic polynomial on
V (A) as on H1(A) (End(A) acts on V (A) on the left and on H1(A) on the right),
this completes the proof.

The field k is called the coefficient field for the Weil cohomology theory. Note that
if X �→ H∗(X) is a Weil cohomology theory with coefficient field k, and k′ ⊃ k, then
X �→ H∗(X)⊗k k

′ is a Weil cohomology theory with coefficient field k′.
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