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Throughout, k is a number field and S is a finite set of primes of k. LetG be a semisimple group
over k, and let Z be the centre of G (semisimple groups are always assumed to be connected). We
shall investigate the kernel Ker.G;S/ of

H 1.k;Z/!
Y
v…S

H 1.kv;Z/:

1 Inner forms of SLm.

We write �m for a primitivemth root of 1 (it will never matter which one), and �r for �2r C N�2r . The
Klein Veiergruppe Z=2Z�Z=2Z will be denoted by V .

LEMMA 1.1. Let k be a number field, and let t be an integer � 2. Then Gal.k.�2t /=k/ is not cyclic
if and only if there is an integer s < t such that

(a) �s 2 k, and

(b) �1, 2C�s , and �.2C�s/ are not squares in k.

In this case, Gal.k.�2sC1/=k/ � V , and k.i/ (D k.�2s //, k.�sC1/, and k.i�sC1/ are the three
subfields of k.�2sC1/ quadratic over k.

PROOF. (Artin and Tate 1961, pp. 93–96). Note that

�2rC1 D 2C�r I

hence any field containing �r also contains �r 0 for all r 0 < r .
Note that

�2rC1�rC1 D �2r C1I

hence any field containing �2r and �rC1, r � 2, also contains �2rC1 . On applying this repeatedly,
we find that any field containing i and �r for r > 2 contains �r .

Finally note that k.�r/ is cyclic over k.
Suppose k.�2t / is not cyclic over k. Then �t … k (else �2t 2 k.i/, which is cyclic over k).

Hence, there is an s < t , s � 2, such that �s 2 k but �sC1 … k. Note that i … k.�sC1/ (else i 2 k.�t /

I worked this out in the early 1980s because of its applications to Shimura varieties (see 5.23 of my Introduction
to Shimura varieties) and the only reference I could find, Raghunathan 1981, contained errors (he overlooks Wang’s
counterexample to Grunwald’s theorem).
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and so �2t 2 k.�t /). It follows that k.i/ and k.�sC1/ are linearly disjoint quadratic extensions of k,
and it is clear that (a) and (b) and the remaining statements are fulfilled.

The converse is obvious.

PROPOSITION 1.2. Let G be an inner form of SLm over k; then Ker.G;S/¤ 0 if and only if there
is an s such that

(a) 2sC1jmI

(b) �s 2 k;

(c) �1, 2C�s , and �.2C�s/ are not squares in k;

(d) S contains all primes v of k lying over 2 for which �1, 2C�s , and �.2C�s/ are not squares
in kv.

In this case, Ker.G;S/ has order 2.

PROOF. Since the centre of a group is not changed by an inner twist, Z D �m. Therefore,

H 1.k;Z/DH 1.k;�m/D k
�=k�m

and
H 1.kv;Z/DH

1.kv;�m/D k
�
v =k

�m
v :

Consequently,

Ker.G;S/D fa 2 k� j a is a local mth power for all v … Sg=k�m:

This is precisely the set studied by the Grunwald-Wang theorem, and so the proposition is an im-
mediate consequence of that theorem (Artin and Tate 1961, p. 96). (The Grunwald-Wang theorem
is a direct consequence of the above lemma.)

EXAMPLE 1.3. The simplest example where the Hasse principle fails is the following: k D Q,
G D SL8, and S D f2g. Then Ker.G;S/ consists of elements of Q� that are 8th powers locally at
all primes of k except 2, modulo global 8th powers. It is easily seen that 16 is an 8th power at all
such primes, but it is obviously not an 8th power in Q (ibid., p. 96).

REMARK 1.4. If �m 2 k, then Ker.G;S/D 0.

2 Outer forms of SLm

The group of outer automorphisms of SLm has order 2, and so, modulo inner twists, SLm has a
unique outer form for each quadratic extension F of k. The centre of this outer form is �0m Ddf
Ker.mWT 0! T 0/, where T 0 is the torus over k whose k-rational points are the elements of norm 1

in F �. We analyse the action of Gal. Nk=k/ on �0m.
Fix a quadratic extension F of k, and let T D ResF=k.Gm/. Then

T . Nk/D . Nk�/Hom.F;k/
� Nk�� Nk�:

An element � of Gal. Nk=k/ acts according to the rule

.�˛/.�/D �˛.��1 ı�/; � 2 . Nk�/Hom.F; Nk/:
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The map T .k/ ,! T . Nk/ is a 7! .�a/� WF
�! . Nk�/Hom.F; Nk/. The norm map T ! Gm is .˛� / 7!Q

˛� W. Nk
�/Hom.F; Nk/! Nk�.

Now write Gal.F=k/D f1;�g, and identify T . Nk/ with Nk�� Nk� (the factors correspond to 1 and
� respectively). Then � 2 Gal. Nk=k/ acts according to the rule:

� jF D id ; then �.˛;ˇ/D .�˛;�ˇ/I

� jF D � ; then �.˛;ˇ/D .�ˇ;�˛/:

(Check:

.˛;ˇ/ is fixed by all � fixing F ” .˛;ˇ/ 2 F �F I

.˛;ˇ/ is fixed by all � fixing k ” ˛ 2 F and ˇ D ˛:)

The map T .k/ ,! T . Nk/ is a 7! .a;�a/WF ,! Nk�� Nk�. The norm map T !Gm is .˛;ˇ/ 7! ˛ˇ.
Let T 0 be the kernel of the norm map T !Gm. Then T 0. Nk/ is the subset .˛;˛�1/ of Nk�� Nk�.

Use the first coordinate to identify T 0. Nk/ with Nk�. Then � 2 Gal. Nk=k/ acts according to the rule:

� jF D id ; then � �˛ D �˛I

� jF D � ; then � �˛ D �˛�1:

Let �0m be the kernel of multiplication by m on T 0. Then �0m becomes isomorphic to �m over
F . Let 2t be the power of 2 dividingm, and let � generate �2t .F /D�0

2t .F /; thus � D �2s for some
s � t , and �2t .F /D h�i. Then

� � � D �. N�/:

Since Aut.Z=2sZ/ has only 4 elements of order dividing 2, namely, ˙1, ˙2s�1, when s � 3, there
are 4 possible actions of � on �. They are:

(i) �� D N�; then � � � D �;

(ii) � 2 k, so that �� D �; then � � � D N�;

(iii) �� D�N�; then � � � D�� (s � 3);

(iv) �� D��; then � � � D N� (s � 3).

PROPOSITION 2.1. Let G be an outer form of SLm over k corresponding to a quadratic extension
F of k, and let S be a finite set of primes. Then there is an exact sequence

0! Ker.F=k;G;S/! Ker.G;S/! Ker.GF ;S/

where

Ker.F=k;G;S/D Ker

0@H 1.F=k;Z/!
Y
v…S

H 1.Fw=kv;Z/

1A :
Moreover, Ker.F=K;G;S/D 0 unless

(a) we are in case (ii) (hence � D �2s 2 k),

(b) 2sC1jm (by our notations, �2sC1 … F ), and
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(c) S contains v if v does not split in F and �2sC1 … Fv.

In this case, Ker.F=k;G;S/ has order 2.

PROOF. The exact sequence follows immediately from the diagram

0 H 1.Gal.F=k;Z/ H 1.k;Z/ H 1.F;Z/

0
Q
H 1.Gal.Fw=kv;Z/ � � � � � �

Let M DZ.F /.2/D h�i. Then

H 1.Gal.F=k/;M/Ddf Ker.1C�/= Im.1��/:

In the four cases, a direct computation shows that

(i) H 1.Gal.F=k/;M/D f˙1gI

(ii) H 1.Gal.F=k/;M/D h�i=h�2iI

(iii) H 1.Gal.F=k/;M/D 0I

(iv) H 1.Gal.F=k/;M/D 0I

Thus Ker.F=k;G;S/ D 0 in cases (iii) and (iv). Consider case (i) and choose a prime v of k
remaining inert in F ; then the same calculation shows that H 1.Gal.Fv=kv/;M/ D f˙1g and the
map from the global group to the local group is an isomorphism (note that s may change, but that
doesn’t matter in this case). Thus, Ker.F=k;G;S/D 0 in case (i) also.

It remains to consider (ii). Let v be a prime of k.
(a) If v splits in F , then the map from the global group to the local group is zero.
(b) Assume v does not split in F , and letw be the prime lying over it. Let �0 generateZ.Fw/.2/;

thus �D �0 or else it is a power of it. The same calculation as in the global situation shows h�0i=h�02i.
Since the map from the global group to the local group is the obvious one, we see that it is bijective
if and only if �0 D �; otherwise, it is zero. We see therefore that Ker.F=k;G;S/D 0 if and only if
there is a nonsplit v … S such that � generates Z.Fw/.2/. This proves the proposition.

EXAMPLE 2.2. The simplest example where Ker.F=k;G;S/¤ 0 is the following. Let k DQ, and
let F be any quadratic extension of Q not containing i . LetG be an outer form of SL4 corresponding
to F . There are only finitely many primes v of Q such that v does not split in F and Fw .wjv/

does not contain i (if v does not split in F and is unramified in both F and Q.i/, then Qv.i/� Fw ).
Choose S to be any finite set of primes of Q containing all these primes. Then � D�1 (so s D 1) ,
and we are in case (ii), 4jm, and S contains v if v does not split in F and i … Fw .

REMARK 2.3. The proposition shows that the order of Ker.G;S/ divides 4. It looks easy to write
down examples where it is exactly 4 (although I haven’t done this), and it is probably possible to find
examples where it is Z=2Z�Z=2Z and where it is Z=4Z. In particular, I don’t believe Raghunathan
1981, Lemma 2.1. (There is an error in his proof on p. 329 where he forgets the special case of the
Grunwald-Wang theorem.)
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3 Groups with no factors of type A

THEOREM 3.1. Let G be a simply connected semisimple group over a number field k. The kernel
Ker.G;S/ is zero if G has no factors of type Am.

PROOF. We can writeGD
Q
Gi , whereGi DReski=kG

i withGi absolutely almost simple (Milne
2017, 24.3). As Z.G/ D

Q
Z.Gi / D

Q
Reski=kZ.G

i /, and Ker.G;S/ D
Q

Ker.Gi ;S/ (S also
denotes the set of primes of ki lying over a prime of S ) we can assume that G itself is absolutely
almost simple (and simply connected).

PROPOSITION 3.2. Let G be an absolutely almost-simple group over a number field k, and let S be
any finite set of primes of k. Then Ker.G;S/D 0.

PROOF. Apply the next lemma to M Ddf Z. Nk/.

LEMMA 3.3. Let M be a Gal. Nk=k/-module, and assume that there is a Galois extension L of k
such that

(a) the action of Gal. Nk=k/ factors through Gal.L=k/;

(b) for all primes ` dividing the order of M , the `-Sylow subgroup of Gal.L=k/ is cyclic.

Then, for every set of primes S of k,

H 1.k;M/!
Y
v…S

H 1.kv;M/

is injective.

PROOF. Well-known (and easy).

Now apply the following table (Milne 2017, pp. 516–517):

Type Centre OutAut

Bn �2 1

Cn �2 1

D4 �2��2 S3

D2n .n > 2/ �2��2 Z=2Z
D2nC1 �4 Z=2Z
E6 �3 Z=2Z
E7 �2 1

E8;F4;G2 1 1
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Postscript December 11, 2003

For applications to Shimura varieties, it is interesting to have an example where the Hasse principle
fails for Z.G/ in the following case:

(a) G is simply connected,

(b) the ground field k is totally real, and

(c) S consists of the infinite primes.

Take k DQŒ
p
7�. Then

k�=k�8!
Y
v finite

k�v =k
�8
v

is not injective.1 Thus, the Hasse principle fails for the centre of an inner form of SL8 over k, and
therefore also for the centre of the simply connected group over Q obtained from an inner form of
SL8 by restriction of scalars.
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