The (failure of the) Hasse principle for centres of semisimple groups

J.S. Milne

June 6th, 1987; updated 2017

Throughout, k is a number field and S is a finite set of primes of k. Let G be a semisimple group over k, and let Z be the centre of G (semisimple groups are always assumed to be connected). We shall investigate the kernel Ker(G, S) of

$$H^1(k,\mathbb{Z}) \to \prod_{v \notin S} H^1(k_v,Z)$$

1 Inner forms of SL_m.

We write ζ_m for a primitive *m*th root of 1 (it will never matter which one), and η_r for $\zeta_{2^r} + \overline{\zeta}_{2^r}$. The Klein Veiergruppe $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ will be denoted by *V*.

LEMMA 1.1. Let k be a number field, and let t be an integer ≥ 2 . Then $Gal(k(\zeta_{2^t})/k)$ is not cyclic if and only if there is an integer s < t such that

- (a) $\eta_s \in k$, and
- (b) -1, $2 + \eta_s$, and $-(2 + \eta_s)$ are not squares in k.

In this case, $\operatorname{Gal}(k(\zeta_{2^{s+1}})/k) \approx V$, and $k(i) (= k(\zeta_{2^s}))$, $k(\eta_{s+1})$, and $k(i\eta_{s+1})$ are the three subfields of $k(\zeta_{2^{s+1}})$ quadratic over k.

PROOF. (Artin and Tate 1961, pp. 93-96). Note that

$$\eta_{r+1}^2 = 2 + \eta_r;$$

hence any field containing η_r also contains $\eta_{r'}$ for all r' < r.

Note that

$$\zeta_{2^{r+1}}\eta_{r+1} = \zeta_{2^r} + 1;$$

hence any field containing ζ_{2^r} and η_{r+1} , $r \ge 2$, also contains $\zeta_{2^{r+1}}$. On applying this repeatedly, we find that any field containing *i* and η_r for r > 2 contains ζ_r .

Finally note that $k(\eta_r)$ is cyclic over k.

Suppose $k(\zeta_{2^t})$ is not cyclic over k. Then $\eta_t \notin k$ (else $\zeta_{2^t} \in k(i)$, which is cyclic over k). Hence, there is an $s < t, s \ge 2$, such that $\eta_s \in k$ but $\eta_{s+1} \notin k$. Note that $i \notin k(\eta_{s+1})$ (else $i \in k(\eta_t)$)

I worked this out in the early 1980s because of its applications to Shimura varieties (see 5.23 of my *Introduction to Shimura varieties*) and the only reference I could find, Raghunathan 1981, contained errors (he overlooks Wang's counterexample to Grunwald's theorem).

2 OUTER FORMS OF SL

and so $\zeta_{2^t} \in k(\eta_t)$). It follows that k(i) and $k(\eta_{s+1})$ are linearly disjoint quadratic extensions of k, and it is clear that (a) and (b) and the remaining statements are fulfilled.

The converse is obvious.

PROPOSITION 1.2. Let G be an inner form of SL_m over k; then $Ker(G, S) \neq 0$ if and only if there is an s such that

- (a) $2^{s+1}|m;$
- (b) $\eta_s \in k$;
- (c) -1, $2 + \eta_s$, and $-(2 + \eta_s)$ are not squares in k;
- (d) *S* contains all primes v of k lying over 2 for which -1, $2 + \eta_s$, and $-(2 + \eta_s)$ are not squares in k_v .

In this case, Ker(G, S) has order 2.

PROOF. Since the centre of a group is not changed by an inner twist, $Z = \mu_m$. Therefore,

$$H^{1}(k, Z) = H^{1}(k, \mu_{m}) = k^{\times}/k^{\times m}$$

and

$$H^{1}(k_{v}, Z) = H^{1}(k_{v}, \mu_{m}) = k_{v}^{\times} / k_{v}^{\times m}.$$

Consequently,

$$\operatorname{Ker}(G,S) = \{a \in k^{\times} \mid a \text{ is a local } m \text{th power for all } v \notin S\}/k^{\times m}$$

This is precisely the set studied by the Grunwald-Wang theorem, and so the proposition is an immediate consequence of that theorem (Artin and Tate 1961, p. 96). (The Grunwald-Wang theorem is a direct consequence of the above lemma.) \Box

EXAMPLE 1.3. The simplest example where the Hasse principle fails is the following: $k = \mathbb{Q}$, $G = SL_8$, and $S = \{2\}$. Then Ker(G, S) consists of elements of \mathbb{Q}^{\times} that are 8th powers locally at all primes of k except 2, modulo global 8th powers. It is easily seen that 16 is an 8th power at all such primes, but it is obviously not an 8th power in \mathbb{Q} (ibid., p. 96).

REMARK 1.4. If $\eta_m \in k$, then Ker(G, S) = 0.

2 Outer forms of SL_m

The group of outer automorphisms of SL_m has order 2, and so, modulo inner twists, SL_m has a unique outer form for each quadratic extension F of k. The centre of this outer form is $\mu'_m =_{df} Ker(m:T' \to T')$, where T' is the torus over k whose k-rational points are the elements of norm 1 in F^{\times} . We analyse the action of $Gal(\bar{k}/k)$ on μ'_m .

Fix a quadratic extension F of k, and let $T = \operatorname{Res}_{F/k}(\mathbb{G}_m)$. Then

$$T(\bar{k}) = (\bar{k}^{\times})^{\operatorname{Hom}(F,k)} \approx \bar{k}^{\times} \times \bar{k}^{\times}.$$

An element τ of Gal(k/k) acts according to the rule

$$(\tau \alpha)(\sigma) = \tau \alpha(\tau^{-1} \circ \sigma), \quad \sigma \in (\bar{k}^{\times})^{\operatorname{Hom}(F,k)}.$$

2 OUTER FORMS OF SL

The map $T(k) \hookrightarrow T(\bar{k})$ is $a \mapsto (\sigma a)_{\sigma} : F^{\times} \to (\bar{k}^{\times})^{\operatorname{Hom}(F,\bar{k})}$. The norm map $T \to \mathbb{G}_m$ is $(\alpha_{\sigma}) \mapsto \prod \alpha_{\sigma} : (\bar{k}^{\times})^{\operatorname{Hom}(F,\bar{k})} \to \bar{k}^{\times}$.

Now write $\operatorname{Gal}(F/k) = \{1, \sigma\}$, and identify $T(\overline{k})$ with $\overline{k}^{\times} \times \overline{k}^{\times}$ (the factors correspond to 1 and σ respectively). Then $\tau \in \operatorname{Gal}(\overline{k}/k)$ acts according to the rule:

$$\tau | F = \text{id}; \text{ then } \tau(\alpha, \beta) = (\tau \alpha, \tau \beta)$$

 $\tau | F = \sigma; \text{ then } \tau(\alpha, \beta) = (\tau \beta, \tau \alpha).$

(Check:

$$(\alpha, \beta)$$
 is fixed by all τ fixing $F \iff (\alpha, \beta) \in F \times F$;
 (α, β) is fixed by all τ fixing $k \iff \alpha \in F$ and $\beta = \alpha$.)

The map $T(k) \hookrightarrow T(\bar{k})$ is $a \mapsto (a, \sigma a)$: $F \hookrightarrow \bar{k}^{\times} \times \bar{k}^{\times}$. The norm map $T \to \mathbb{G}_m$ is $(\alpha, \beta) \mapsto \alpha\beta$.

Let T' be the kernel of the norm map $T \to \mathbb{G}_m$. Then $T'(\bar{k})$ is the subset (α, α^{-1}) of $\bar{k}^{\times} \times \bar{k}^{\times}$. Use the first coordinate to identify $T'(\bar{k})$ with \bar{k}^{\times} . Then $\tau \in \text{Gal}(\bar{k}/k)$ acts according to the rule:

$$\tau | F = \text{id}; \text{ then } \tau * \alpha = \tau \alpha;$$

 $\tau | F = \sigma; \text{ then } \tau * \alpha = \tau \alpha^{-1}.$

Let μ'_m be the kernel of multiplication by *m* on *T'*. Then μ'_m becomes isomorphic to μ_m over *F*. Let 2^t be the power of 2 dividing *m*, and let ζ generate $\mu_{2^t}(F) = \mu'_{2^t}(F)$; thus $\zeta = \zeta_{2^s}$ for some $s \leq t$, and $\mu_{2^t}(F) = \langle \zeta \rangle$. Then

$$\sigma * \zeta = \sigma(\bar{\zeta}).$$

Since Aut($\mathbb{Z}/2^s\mathbb{Z}$) has only 4 elements of order dividing 2, namely, ± 1 , $\pm 2^{s-1}$, when $s \ge 3$, there are 4 possible actions of σ on ζ . They are:

- (i) $\sigma\zeta = \overline{\zeta}$; then $\sigma * \zeta = \zeta$;
- (ii) $\zeta \in k$, so that $\sigma \zeta = \zeta$; then $\sigma * \zeta = \overline{\zeta}$;
- (iii) $\sigma \zeta = -\overline{\zeta}$; then $\sigma * \zeta = -\zeta$ ($s \ge 3$);
- (iv) $\sigma \zeta = -\zeta$; then $\sigma * \zeta = \overline{\zeta}$ ($s \ge 3$).

PROPOSITION 2.1. Let G be an outer form of SL_m over k corresponding to a quadratic extension F of k, and let S be a finite set of primes. Then there is an exact sequence

$$0 \rightarrow \operatorname{Ker}(F/k, G, S) \rightarrow \operatorname{Ker}(G, S) \rightarrow \operatorname{Ker}(G_F, S)$$

where

$$\operatorname{Ker}(F/k, G, S) = \operatorname{Ker}\left(H^{1}(F/k, Z) \to \prod_{v \notin S} H^{1}(F_{w}/k_{v}, Z)\right).$$

Moreover, Ker(F/K, G, S) = 0 unless

- (a) we are in case (ii) (hence $\zeta = \zeta_{2^s} \in k$),
- (b) $2^{s+1}|m$ (by our notations, $\zeta_{2^{s+1}} \notin F$), and

2 OUTER FORMS OF SL

(c) *S* contains *v* if *v* does not split in *F* and $\zeta_{2^{s+1}} \notin F_v$.

In this case, Ker(F/k, G, S) has order 2.

PROOF. The exact sequence follows immediately from the diagram

Let $M = Z(F)(2) = \langle \xi \rangle$. Then

$$H^{1}(\operatorname{Gal}(F/k), M) =_{\operatorname{df}} \operatorname{Ker}(1+\sigma) / \operatorname{Im}(1-\sigma).$$

In the four cases, a direct computation shows that

- (i) $H^1(\text{Gal}(F/k), M) = \{\pm 1\};$
- (ii) $H^1(\text{Gal}(F/k), M) = \langle \xi \rangle / \langle \xi^2 \rangle;$
- (iii) $H^1(Gal(F/k), M) = 0;$
- (iv) $H^1(Gal(F/k), M) = 0;$

Thus $\operatorname{Ker}(F/k, G, S) = 0$ in cases (iii) and (iv). Consider case (i) and choose a prime v of k remaining inert in F; then the same calculation shows that $H^1(\operatorname{Gal}(F_v/k_v), M) = \{\pm 1\}$ and the map from the global group to the local group is an isomorphism (note that s may change, but that doesn't matter in this case). Thus, $\operatorname{Ker}(F/k, G, S) = 0$ in case (i) also.

It remains to consider (ii). Let v be a prime of k.

(a) If v splits in F, then the map from the global group to the local group is zero.

(b) Assume v does not split in F, and let w be the prime lying over it. Let ζ' generate $Z(F_w)(2)$; thus $\zeta = \zeta'$ or else it is a power of it. The same calculation as in the global situation shows $\langle \zeta' \rangle / \langle \zeta'^2 \rangle$. Since the map from the global group to the local group is the obvious one, we see that it is bijective if and only if $\zeta' = \zeta$; otherwise, it is zero. We see therefore that Ker(F/k, G, S) = 0 if and only if there is a nonsplit $v \notin S$ such that ζ generates $Z(F_w)(2)$. This proves the proposition.

EXAMPLE 2.2. The simplest example where $\text{Ker}(F/k, G, S) \neq 0$ is the following. Let $k = \mathbb{Q}$, and let *F* be any quadratic extension of \mathbb{Q} not containing *i*. Let *G* be an outer form of SL₄ corresponding to *F*. There are only finitely many primes *v* of \mathbb{Q} such that *v* does not split in *F* and F_w (w|v)does not contain *i* (if *v* does not split in *F* and is unramified in both *F* and $\mathbb{Q}(i)$, then $\mathbb{Q}_v(i) \subset F_w$). Choose *S* to be any finite set of primes of \mathbb{Q} containing all these primes. Then $\zeta = -1$ (so s = 1), and we are in case (ii), 4|m, and *S* contains *v* if *v* does not split in *F* and $i \notin F_w$.

REMARK 2.3. The proposition shows that the order of Ker(G, S) divides 4. It looks easy to write down examples where it is exactly 4 (although I haven't done this), and it is probably possible to find examples where it is $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ and where it is $\mathbb{Z}/4\mathbb{Z}$. In particular, I don't believe Raghunathan 1981, Lemma 2.1. (There is an error in his proof on p. 329 where he forgets the special case of the Grunwald-Wang theorem.)

3 GROUPS WITH NO FACTORS OF TYPE A

3 Groups with no factors of type A

THEOREM 3.1. Let G be a simply connected semisimple group over a number field k. The kernel Ker(G, S) is zero if G has no factors of type A_m .

PROOF. We can write $G = \prod G_i$, where $G_i = \operatorname{Res}_{k_i/k} G^i$ with G^i absolutely almost simple (Milne 2017, 24.3). As $Z(G) = \prod Z(G_i) = \prod \operatorname{Res}_{k_i/k} Z(G^i)$, and $\operatorname{Ker}(G, S) = \prod \operatorname{Ker}(G^i, S)$ (S also denotes the set of primes of k_i lying over a prime of S) we can assume that G itself is absolutely almost simple (and simply connected).

PROPOSITION 3.2. Let G be an absolutely almost-simple group over a number field k, and let S be any finite set of primes of k. Then Ker(G, S) = 0.

PROOF. Apply the next lemma to $M =_{df} Z(\bar{k})$.

LEMMA 3.3. Let M be a $Gal(\overline{k}/k)$ -module, and assume that there is a Galois extension L of k such that

- (a) the action of $\operatorname{Gal}(\overline{k}/k)$ factors through $\operatorname{Gal}(L/k)$;
- (b) for all primes ℓ dividing the order of M, the ℓ -Sylow subgroup of $\operatorname{Gal}(L/k)$ is cyclic.

Then, for every set of primes S of k,

$$H^1(k,M) \to \prod_{v \notin S} H^1(k_v,M)$$

is injective.

PROOF. Well-known (and easy).

Now apply the following table (Milne 2017, pp. 516–517):

Туре	Centre	OutAut
B _n	μ_2	1
C_n	μ_2	1
D_4	$\mu_2 \times \mu_2$	S_3
$D_{2n} \ (n>2)$	$\mu_2 \times \mu_2$	$\mathbb{Z}/2\mathbb{Z}$
D_{2n+1}	μ_4	$\mathbb{Z}/2\mathbb{Z}$
E_6	μ_3	$\mathbb{Z}/2\mathbb{Z}$
E_7	μ_2	1
E_8, F_4, G_2	1	1

5

Postscript December 11, 2003

For applications to Shimura varieties, it is interesting to have an example where the Hasse principle fails for Z(G) in the following case:

- (a) G is simply connected,
- (b) the ground field k is totally real, and
- (c) *S* consists of the infinite primes.

Take $k = \mathbb{Q}[\sqrt{7}]$. Then

$$k^{\times}/k^{\times 8} \to \prod_{v \text{ finite}} k_v^{\times}/k_v^{\times 8}$$

is not injective.¹ Thus, the Hasse principle fails for the centre of an inner form of SL₈ over k, and therefore also for the centre of the simply connected group over \mathbb{Q} obtained from an inner form of SL₈ by restriction of scalars.

References.

Artin, E., and Tate, J., 1961, Class Field Theory, Harvard University, Department of Mathematics.

- Raghunathan, M. S., 1981, Isogenies and congruence subgroups. Manifolds and Lie groups (Notre Dame, Ind., 1980), pp. 325–336, Progr. Math., 14, Birkhäuser, Boston, Mass.
- Milne, J., 2017, Algebraic groups, The theory of group schemes of finite type over a field, Cambridge University Press, 2017.

¹Neukirch, Jürgen; Schmidt, Alexander; Wingberg, Kay. Cohomology of number fields. Grundlehren der Mathematischen Wissenschaften, 323. Springer-Verlag, Berlin, 2000, p. 459.