ON A THEOREM OF MAZUR AND ROBERTS.

By J. S. Milne.

The purpose of this paper is to give a short proof of a local flat duality theorem of Mazur and Roberts [3; 9.3], [2; 1.6], and to make some related remarks.

Let R be a complete discrete valuation ring with finite residue field. If N is a flat finite commutative group scheme over R and K is the field of fractions of R, then the flat (f.p.q.f.) cohomology group $H^1(R, N)$ may be regarded as a subgroup of $H^1(K, N \otimes_R K)$ [5; p. 293]. Let \hat{N} be the Cartier dual of N. Then the theorem states:

THEOREM. If K has characteristic zero, then $H^1(R, N)$ is the exact annihilator of $H^1(R, \hat{N})$ in the non-degenerate cup-product pairing [7; II Theorem 2]

$$H^1(K, N \otimes_R K) \times H^1(K, \hat{N} \otimes_R K) \rightarrow H^2(K, G_m) \simeq Q/Z.$$

We first prove a duality result for p-divisible groups. The definitions and results in [10; § 2] will be freely used.

Let K be as in the theorem and let Γ be the Galois group over K of the algebraic closure \bar{K} of K. If G is a p-divisible group over R, we define $M_G = \bigcup G(R_L)$ where L runs over all finite Galois extensions of K contained in \bar{K} and R_L is the integral closure of R in L. M_G becomes a discrete Γ-module under the obvious action. Multiplication by p^r is surjective on M_G by [10; 2.4 Cor. 1] and has kernel $G_p(\bar{K})$ because the torsion subgroup of $G(R_L)$ may be identified with $G(L)$.

If G is étale then $G(R_L)^r = G(R)$ because in this case, $G(R_L)$ can be identified with $G(L)$; if G is connected then the same equality holds because $G(R_L)$ can be identified with the group of points on the formal group associated to G; the equality for a general G now follows from [10; Prop. 4], and from this it follows that $(M_G)^r = G(R)$.

We shall use A^* to denote the Pontryagin dual of a locally compact abelian group A, and if $\phi: A \rightarrow B$ is a homomorphism of abelian groups we write A_ϕ and $B^{(\phi)}$ for the kernel and cokernel respectively of ϕ.

Received April 21, 1971.
Lemma. $G(R)$ is canonically isomorphic to $H^1(\Gamma, M_\delta)^*$, where $G(R)$ is given the topology induced by that of R and $H^1(\Gamma, M_\delta)$ is given the discrete topology, provided that the torsion subgroups of $G(R)$ and $\hat{G}(R)$ are finite.

(The reader will check easily that the torsion subgroup of $G(R)$ is infinite if and only if G^{st} contains \mathbb{Q}_p/Z_p as a subgroup, and that the lemma is false for $G = \mathbb{Q}_p/Z_p$.)

Proof. From the cohomology sequence of

\[(*) \quad 0 \rightarrow G_\nu(\hat{K}) \rightarrow M_G \xrightarrow{p^\nu} M_G \rightarrow 0\]

we get an exact sequence

\[(***) \quad 0 \rightarrow G(R)^{\langle p \rangle} \rightarrow H^1(\Gamma, G_\nu(\hat{K})) \rightarrow H^1(\Gamma, M_G)_{p^\nu} \rightarrow 0.\]

$G(R)^{\langle p \rangle}$ maps into the subgroup $H^1(R, G_\nu)$ of

\[H^1(\Gamma, G_\nu(\hat{K})) = H^1(\hat{K}, G_\nu \otimes_R K)\]

because $(**)$ is compatible with the cohomology sequence over R coming from

\[0 \rightarrow G_\nu \rightarrow G \xrightarrow{p^\nu} G \rightarrow 0.\]

Since $H^1(R, G_\nu)$ and $H^1(R, \hat{G}_\nu)$ annihilate each other in the pairing of the theorem ([4; p. 279] or [2; p. 347]) it follows that $G(R)^{\langle p \rangle}$ and $\hat{G}(R)^{\langle p \rangle}$ annihilate each other in the same pairing. Thus the cup-product isomorphisms $H^1(\Gamma, G_\nu(\hat{K})) \rightarrow H^1(\Gamma, \hat{G}_\nu(\hat{K}))^*$ induce injections $G(R)^{\langle p \rangle} \rightarrow H^1(\Gamma, M_\delta)_{p^\nu}^*$ which in the limit give an injection

\[G(R) = \lim_{\rightarrow} G(R)^{\langle p \rangle} \rightarrow (\lim_{\rightarrow} H^1(\Gamma, M_\delta)_{p^\nu})^* = H^1(\Gamma, M_\delta)^*.\]

To prove that this map is surjective it suffices to prove that $[G(R)^{\langle p \rangle}] = [H^1(\Gamma, M_\delta)]$ (where $[S]$ denotes the number of elements in a set S). By [7; II Thm. 5], the Euler-Poincaré characteristic of $\hat{G}_1(\hat{K})$, $\chi(\hat{G}_1(\hat{K})) = (R: pR)^{-h}$ where h is the height of \hat{G} (or G). From the cohomology sequence of $(*)$ (with $\nu = 1$) we get that

\[\chi(\hat{G}_1(\hat{K}) = \frac{[\hat{G}(R)_{p}][H^2(\Gamma, \hat{G}_1(\hat{K}))]}{[\hat{G}(R)^{\langle p \rangle}][H^1(\Gamma, M_\delta)]}.\]

The required equality now follows from: (i) $[H^2(\Gamma, \hat{G}_1(\hat{K}))] = [G(R)_{p}]$ (see [7; II Thm. 2]); (ii) $[G(R)^{\langle p \rangle}]/[G(R)_{p}] = (R: pR)$ where d is the dimension of G (the theory of the logarithm [10; 2.4] shows that $G(R)$ is isomorphic to R^d apart from finite groups); (iii) same statement for \hat{G}; (iv) $d + \hat{d} = h$ [10; Prop. 3].
Proof of the Theorem. In order to be able to apply the lemma, we use Oort's theorem [6] to embed N in an exact sequence

$$
0 \to N \to G \overset{\phi}{\to} H \to 0
$$

in which G and H are p-divisible groups over R. (***) induces an exact sequence $0 \to N(R) \to M_g \to M_H \to 0$. G (and so H) satisfy the condition of the lemma because, in Oort's construction, $G \otimes_R k = A(p)$ for some abelian variety A over k.

Since $H^1(R, N)$ and $H^1(R, \hat{N})$ annihilate each other in the pairing of the theorem, we have

$$
[H^1(R, N)] [H^1(R, \hat{N})] \leq [H^1(K, N \otimes_R K)] = [H(R)^{(\phi)}] [H^1(\Gamma, M_G)^{\phi}]
$$

(where ϕ has also been used to denote the maps induced on the cohomology groups). From the cohomology sequences over R of (***) and its dual, we get that

$$
[H^1(R, N)] = [H(R)^{(\phi)}][H^1(R, G)^{\phi}] \supseteq [H(R)^{(\phi)}]
$$

$$
[H^1(R, \hat{N})] = [\hat{G}(R)^{(\hat{\phi})}][H^1(R, \hat{H})^{\hat{\phi}}] \supseteq [\hat{G}(R)^{(\hat{\phi})}].
$$

From the lemma, $\hat{H}(R) \overset{\phi}{\longrightarrow} \hat{G}(R)$ is dual to the map $H^1(\Gamma, M_G) \overset{\phi}{\longrightarrow} H^1(\Gamma, M_H)$, and so $[\hat{G}(R)^{(\hat{\phi})}] = [H^1(\Gamma, M_G)^{\phi}]$. It follows now that all these inequalities must actually be equalities, and this proves the theorem.

Remarks. 1. The above lemma is closely related to a duality theorem of Tate [8] and, in fact, our proof of the lemma mimics a proof of Tate's of the theorem (cf. [9]).

If X is an abelian scheme over R and $G = X(p)$, then $G(R) = X(K) \otimes \mathbb{Z}_p$ and $H^1(\Gamma, M_G) = H^1(\Gamma, X(K)) \otimes \mathbb{Q}_p/\mathbb{Z}_p$, and so Tate's theorem for X is equivalent to the lemma for $X(p)$ (all p).

2. The lemma can be used to prove that $H^2(\Gamma, M_G) = 0$ if $\hat{G}(R)^{\text{tors}}$ is finite. ($H^i(\Gamma, M_G) = 0$ for $i \geq 2$ because Γ has strict cohomological dimension 2). The cohomology sequence of (*) (with $\nu = 1$) gives an exact sequence

$$
0 \to H^1(\Gamma, M_G)^{(\phi)} \to H^2(\Gamma, G_1(K)) \to H^2(\Gamma, M_G)_p \to 0.
$$

If $G(R)^{\text{tors}}$ also is finite, then the lemma implies that $[H^1(\Gamma, M_G)^{(\phi)}] = [\hat{G}(R)_p]$ and [7; II Thm. 2] implies that $[\hat{G}(R)_p] = [H^2(\Gamma, G_1(K))]$. Thus $H^2(\Gamma, M_G)_p = 0$ and this implies that $H^2(\Gamma, M_G) = 0$ because it is a p-torsion group (multiplication by $l \neq p$ is an automorphism of M_G).
If \(G = \mathbb{Q}_p/\mathbb{Z}_p \) then \(H^2(\Gamma, M_G) \) is dual to \(\lim \downarrow \mathcal{U}_p^\nu(R) \) (loc. cit.) which is zero.

If \(G = \mathcal{G}_m(p) = \mathbb{Q}_p/\mathbb{Z}_p \) then \(H^2(\Gamma, M_G) = Br(K)(p) = \mathbb{Q}_p/\mathbb{Z}_p \neq 0 \).

3. To complete the proof of all statements of \([2; 1.6] \) one should show that \(H^i(R, N) = 0 \) for all \(i \geq 2 \). Probably the most elementary proof of this part of the theorem is that given in \([2] \). However, it is quite easy to prove that, for any complete noetherian local ring \(R \) with finite residue field \(k \), \(H^i(R, N) = 0 \) for all \(i \geq 2 \).

Indeed, \(N \) may be embedded in an exact sequence \(0 \to N \to G_0 \to G_1 \to 0 \) in which \(G_0 \) and \(G_1 \) are smooth group schemes of finite type over \(R \) \([3; 5.1(i)]\), and \([1; 11.7(2)]\) shows that \(H^i(R, G) \to H^i(k, G \otimes_R k) \) for \(i > 0 \) and \(G = G_0 \) or \(G_1 \). \(H^i(k, G \otimes_R k) = 0 \) for \(i \geq 2 \) \([7]\) which shows that \(H^i(R, N) = 0 \) for \(i \geq 3 \). If \(k \) is the algebraic closure of \(k \), then \(0 \to N(k) \to G_0(k) \to G_1(k) \to 0 \) is exact and \(H^2(k, N(k)) = 0 \) which shows that \(H^1(k, G_0 \otimes k) \to H^1(k, G_1 \otimes k) \) is surjective. Hence \(H^1(R, G_0) \to H^1(R, G_1) \) is surjective, and \(H^2(R, N) = 0 \).

4. The argument in the last paragraph of the theorem shows that \(H(R)^{(\phi)} \to H^1(R, N) \) and \(H^1(R, G)_\phi = 0 \). In particular, if \(\phi \) is multiplication by \(p^\nu \) on \(G \) then (a) \(G(R)^{(p^\nu)} \to H^1(R, G_\nu) \) and (b) \(H^1(R, G)_p^{p^\nu} = 0 \).

(b) implies that \(H^1(R, G) = 0 \) and remark 3 implies that \(H^i(R, G) = 0 \) for \(i > 1 \).

The theorem implies the existence of an exact sequence,

\[0 \to H^1(R, G_\nu) \to H^1(K, G_\nu \otimes_R K) \to H^1(R, G_\nu)^* \to 0 \]

which, after (a), may be identified with,

\[0 \to G(R)^{(p^\nu)} \to H^1(K, G_\nu \otimes_R K) \to (G(R)^{(p^\nu)})^* \to 0. \]

After passing to the direct limit with \(\nu \) one obtains Mazur's duality theorem for \(p \)-divisible groups \([2; 3.5]\), viz. that there is an exact sequence

\[0 \to G(R) \otimes \mathbb{Q}_p/\mathbb{Z}_p \to H^1(K, G \otimes_R K) \to G(R)^* \to 0. \]

(where \(H^1(K, G \otimes_R K) \) is defined to be \(\lim H^1(K, G_\nu \otimes_R K) \)).

5. As is explained in \([2]\), by introducing flat cohomology groups “with compact support” it is possible to give a statement of the theorem which is closer to the usual statements of Poincaré duality.

6. One may ask whether the theorem still holds if \(K \) has non-zero
characteristic p. That it does is essentially proved in [4]. We show how the theorem may be deduced from Lemma 5 of that paper. (It has also been proved by M. Artin and B. Mazur, unpublished).

Step 0. We may assume that N has order a power of p.

Proof. If p does not divide the order of N then the theorem reduces to an easy statement about Galois cohomology (cf. [7, II Proposition 19]).

Step 1. There exists a finite extension L/K of degree prime to p such that $N \otimes_{R} R_{L}$ has a composition series all of whose quotients are of the form $N_{a,b}$ with $(a, b) = (t^{(p-1)c}, 0), (0, 0), \text{ or } (0, t^{(p-1)c})$. (Notation as in [4].)

Proof. This is shown in [4; pp. 278-9] except that we do not check that L can be chosen so that $p \nmid [L : K]$. However, this is easy. (To get a composition series for $N \otimes_{R} L$ whose quotients are only $\mathfrak{q}_{p}, \mathfrak{a}_{p}$, or $\mathbb{Z}/p\mathbb{Z}$ one has to use that a p-group acting on an abelian p-group always has a fixed element.)

Step 2. If L/K is finite of degree prime to p, and the theorem is true for $N \otimes_{R} R_{L}$ over R_{L}, then it is true for N over R.

Proof. Since the Galois group of K is solvable, we may reduce to considering a cyclic Galois extension of prime degree l. Let $\Gamma_{l} = \text{Gal}(L/K)$ be generated by σ. Γ_{l} acts on $H^{1}(R_{L}, N)$.

Lemma. The restriction map $r: H^{1}(R, N) \to H^{1}(R_{L}, N)$ is injective with image $H^{1}(R_{L}, N)^{\Gamma_{l}}$.

Proof. The exact sequence

$$0 = H^{1}(\Gamma_{l}, N(L)) \to H^{1}(K, N) \xrightarrow{r} H^{1}(L, N)^{\Gamma_{l}} \to H^{2}(\Gamma_{l}, N(L)) = 0$$

shows that the corresponding fact for cohomology over the fields is true. Interpret the cohomology groups as Čech cohomology groups and let $x \in H^{1}(R_{L}, N)^{\Gamma_{l}}$ be represented by the 1-cocyle c. As $\sigma \cdot c = x$, $c = r(c') + b$ where c' is a 1-cocycle for N over K and b is a 1-coboundary for N over L. As $N(R_{L}) = N(L)$, b is also a 1-coboundary for N over R_{L}. Then $r(c') = c - b$ is a 1-cocycle for N over R_{L}, fixed under Γ_{l}, and hence c' is a 1-cocycle for N over R. Thus $x \in r(H^{1}(R, N))$.

Now let \langle , \rangle_{K} denote the cup-product pairing

$$H^{1}(K, N) \times H^{1}(K, N) \to H^{2}(K, G_{m}) \approx \mathbb{Q}/\mathbb{Z}$$

and let \langle , \rangle_{L} denote the corresponding pairing over L. We will need the formulas,
THEOREM OF MAZUR AND ROBERTS.

(i) \(\langle rx, ry \rangle_L = l \langle x, y \rangle_L \) for \(x, y \in H^1(K, N) \);

(ii) \(\langle sx, sy \rangle_L = \langle x, y \rangle_L \) for \(x, y \in H^1(L, N) \).

Let \(y_0 \in H^1(K, \tilde{N}) \) be such that \(\langle x, y_0 \rangle_K = 0 \) for all \(x \in H^1(R, N) \). For any \(x \in H^1(R_L, \tilde{N}) \), one has \(lx = x_1 + (\sigma - 1)x_2 \) where \(x_1 = \sum_{i=0}^{l-1} \sigma^i x \) and \(x_2 = \sum_{i=1}^{l-1} \iota \sigma^i x \). \(\sigma x_1 = x_1 \), and so it may be written \(x_1 = r(x'_1) \). Thus,

\[
\langle x_1, ry_0 \rangle_L = l \langle x'_1, y_0 \rangle_K = 0,
\]

\[
\langle (\sigma - 1)x_2, ry_0 \rangle_L = \langle x_2, \sigma^{-1}ry_0 \rangle_L - \langle x_2, ry_0 \rangle_L = 0,
\]

and

\[
l \langle x, ry_0 \rangle = \langle x_1, ry_0 \rangle + \langle (\sigma - 1)x_2, ry_0 \rangle = 0.
\]

It follows that \(\langle x, ry_0 \rangle_L = 0 \) for all \(x \in H^1(R_L, N) \), that \(ry_0 \in H^1(R_L, N) \), and that \(y_0 \in H^1(R, N) \).

Step 3. \(H^i(R, N) = 0 \) for \(i \geq 2 \).

Proof. This is proved in remark 3 above.

To complete the proof, replace \(K \) by an extension field as in Step 1, and prove by induction on the order of \(\tilde{N} \) making use of [4, Lemma 5] and Step 3. This induction argument is written out in [4, p. 283].

7. Once one has remark 4, it is possible to give a proof of the Euler characteristic formula of Mazur and Roberts [3; 8.1] based on the methods of Tate [10; §2].

Indeed, consider the sequence (***) and let \(\Omega \) and \(\Omega' \) be the modules of formal differentials of the formal Lie groups associated to \(G \) and \(H \). Let \((\omega_i)_{1 \leq i \leq d} \) and \((\omega'_i)_{1 \leq i \leq d} \) be bases of \(\Omega \) and \(\Omega' \) consisting of translation-invariant differentials, and let \(\theta = \omega_1 \wedge \cdots \wedge \omega_d \) and \(\theta' = \omega'_1 \wedge \cdots \wedge \omega'_d \). If \(d\phi(\theta') = a\theta \) then the same argument as that in the proof of Lemma 1 and Proposition 3 of [10, §2] shows that the discriminant ideal of \(N \) over \(R \) is generated by \(g^2 \) where \(g \) is the rank of \(N \). On the other hand, the theory of the logarithm mapping shows that \([H(R)^{(\phi)}/[G(R)_{\phi}] = (R : bR) \) where \(b \) is the determinant of \(t(\phi) : t_0(K) \to i_H(K) \) with respect to the dual bases of \((\omega_i) \) and \((\omega'_i) \) (cf. the second definition of log, [10; p. 169]). Obviously \(b = a \). Since \(G(R)_{\phi} = H^0(R, N) \) and \(H(R)^{(\phi)} \approx H^1(R, N) \), this proves the formula.

This proof is essentially the first proof in [3] except that there it has been made more elementary.

UNIVERSITY OF MICHIGAN.
REFERENCES.