ABELIAN VARIETIES DEFINED OVER THEIR FIELDS OF MODULI, I
ABELIAN VARIETIES DEFINED OVER THEIR FIELDS OF MODULI, I

J. S. MILNE

Whenever we consider a triple \((A, \Phi, \theta)\) we will mean that \(A\) is an abelian variety of dimension \(d\), \(\Phi\) is a polarization of \(A\), \(\theta : F \to \text{End}^d(A) = \text{End} (A) \otimes_{\mathbb{Q}} \mathbb{Q}\) is a ring homomorphism where \(F\) is a field of degree \(2d\) over \(\mathbb{Q}\), \(\theta(F') = \theta(F)\) where \(\alpha \mapsto \alpha'\) is the involution of \(\text{End}^d(A)\) induced by \(\Phi\), and that \(A\), \(\Phi\), and \(\theta\) are all defined over some subfield of the complex numbers \(\mathbb{C}\). \(F\) is then necessarily a CM-field, and \((A, \Phi, \theta)\) is of type \((F, \Phi; a, \zeta)\) in the sense of [5, p. 128] for some lattice \(a\) in \(F\) and element \(\zeta\) of \(F\). We will assume that the reader is familiar with the definitions in [5].

Our main result is that \((A, \Phi, \theta)\) always has a model defined over its field of moduli \(k_0\), i.e. that there is an \((A_0, \Phi_0, \theta_0)\) defined over \(k_0\) which becomes isomorphic to \((A, \Phi, \theta)\) over \(\mathbb{C}\). As a consequence, one gets an alternative proof of a theorem of Casselman's [6, Theorem 6] characterizing those Grössen-characters which arise from abelian varieties. Also, one obtains a positive answer to a question of Shimura's concerning the existence of such Grössen-characters [6, p. 513].

In a second paper we intend to consider the question of, given \((A, \Phi, \theta)\), when is the pair \((A, \Phi)\) defined over its field of moduli.

We write \(k_{ab}\) for the maximal abelian extension of a field \(k\), and \(\bar{k}\) for its algebraic closure. \((F', \Phi')\) denotes the reflex of a CM-type \((F, \Phi)\).

Theorem. Let \((A, \Phi, \theta)\), as above, be of CM-type \((F, \Phi)\). Then there is a model \((A_0, \Phi_0, \theta_0)\) of \((A, \Phi, \theta)\) defined over the field of moduli \(k_0\) of \((A, \Phi, \theta)\) and such that all torsion points of \(A_0\) are rational over \(F'_{ab}\).

Proof. Let \(S\) be the (ordered) set of points of \(A\) of order 3, and let \(k_1\) be the field of moduli of \((A, \Phi, \theta, S)\).

(i) \(F' \subset k_1 \subset F_{ab}\)

This follows from [5, 5.16]

(ii) There is a model \((A_1, \Phi_1, \theta_1, S)\) for \((A, \Phi, \theta, S)\) defined over \(k_1\).

It is easy to see that there is a finite normal extension \(K\) of \(k_1\) such that \((A, \Phi, \theta, S)\) is defined over \(K\) and such that for every \(\sigma \in \text{Gal}(K/k_1)\) there is an isomorphism \(\lambda_\sigma : (A, \Phi, \theta, S) \to (A^\sigma, \Phi^\sigma, \theta^\sigma, S^\sigma)\) defined over \(K\). Let \(\lambda_{1, \sigma} = \lambda^\sigma_{-1}\) for \(\sigma, \tau \in \text{Gal}(K/k_1)\). From the fact that \(\text{Aut}(A, \Phi, \theta, S) = \{1\}[3, \S 21, \text{Thm 5}]\) it follows that

\[
\lambda^\sigma_{1, \rho} = \lambda_{\rho \tau, \rho \sigma}
\]

\[
\lambda_{1, \sigma} \lambda_{\rho, \rho} = \lambda_{1, \rho}
\]

Received 8 June, 1972.

†This paper was written while the author was a visitor at King's College, London and the University of Nottingham, and was supported by the Science Research Council.

[BULL. LONDON MATH. SOC., 4 (1972), 370–372]
for all \(\rho, \sigma, \tau \in \text{Gal}(K/k_1) \). Assertion (ii) now follows from [7].

(iii) \(A_1 \), as in (ii) above, has all of its torsion points rational over \(F_{\text{ab}}' \). This is [5, 7.8.8].

Regard now \((A, \mathcal{C}, \theta) \) as being defined over \(k_1 \) and satisfying (iii). If \(k_1 = k_0 \) then the theorem is proved. If not, there is a field \(k_2 \), \(k_1 \supset k_2 \supset k_0 \supset F' \), such that \(k_1/k_2 \) is Galois of prime degree \(p \) (use (i)). Let \(\sigma \) generate \(\text{Gal}(k_1/k_2) \) and let \(\lambda : (A, C, \theta) \to (A^\sigma, C^\sigma, \theta^\sigma) \) be an isomorphism.

(iv) \(\lambda \) is defined over \(k_1 \).

This is a consequence of [6, Thm 5, Pptn 1]. Alternatively it may be proved as follows. \(a \mapsto a^\sigma \) is an isomorphism \(V_i A \to V_i A^\sigma \) which commutes with the actions of \(F \) and of \(\text{Gal}(k_1/k_1) \) (use (iii)). But it is clear from [4, Cor 2 to Thm 5] that any homomorphism \(V_i A \to V_i A \) which commutes with the action of \(F \) commutes with the action of \(\text{Gal}(k_1/k_1) \). Thus \(x^\tau = \lambda \) for all \(\tau \in \text{Gal}(k_1/k_1) \) which proves (iv).

Write \(v \) for the canonical isomorphism \(a^\sigma \mapsto a : (A^\sigma, \mathcal{C}^\sigma, \theta^\sigma) \to (A, \mathcal{C}, \theta) \). Then \(\Lambda = v \lambda^{\sigma^{-1}} \cdots \lambda^{\sigma} \) is an automorphism of \((A, \mathcal{C}, \theta) \), and hence may be written as \(\theta(\alpha) \) with \(\alpha \in \mu(R) \) where \(R = \theta^{-1}(\text{End}_C(A)) \) and \(\mu(R) \) is the set of roots of unity in \(R \).

(v) \(\alpha \) is a \(p \)th power in \(R \).

If \(\mu \) is a homomorphism of abelian varieties we write \(\mu_i \) for the corresponding map on the Tate groups \(T_i \) (or \(V_i \)). The map \(a \mapsto \lambda_i^{-1}(a^\sigma) : T_i A \to T_i A \) is \(Z_i \)-linear and commutes with the action of \(\theta(R) \). By [4, Cor. 1 to Thm. 5] there exists an \(\alpha_i \in R_i = R \otimes Z_i \) such that \(\lambda_i^{-1}(a^\sigma) = \theta(\alpha_i^{-1})(a) \) all \(a \in T_i A \). It follows that \(\Lambda_i(a) = \theta(\alpha_i^\sigma)(a) \) all \(a \in T_i A \). Hence \(\theta(\alpha) = \theta(\alpha_i^\sigma) \), and so \(\alpha \) is a \(p \)th power in \(R_i \) for all primes \(l \). By class field theory, e.g. [1, X], this implies that \(\alpha \) is a \(p \)th power in \(F \), say \(\alpha = \beta^p \). By using that \(\alpha \in \mu(R) \) and is a \(p \)th power in \(R_i \) for all \(l \), one gets that \(\beta \in R_i \) for all \(l \). But \(R = \bigcap R_i \), and so \(\beta \in R \).

Replace \(\lambda \) by \(\lambda \theta(\beta^{-1}) \), so that now \(\Lambda = 1 \). Define \(\lambda_{j, i} : A^{\sigma^j} \to A^{\sigma^i} \) by

\[
\lambda_{j, i} = \lambda^{\sigma^{j-1}} \cdots \lambda^{\sigma^i},
\]

\(0 \leq i \leq j \leq p-1 \), and \(\lambda_{j, i} = v^{\sigma^j} \lambda_{j+p, i} \), \(0 \leq j \leq i \leq p-1 \). Then \(\lambda_{k,j} \lambda_{j, i} = \lambda_{k, i} \) and \(\lambda_{j, i} = \lambda_{j+1, i+1} \) and so [7] there is an \((A_2, \mathcal{C}_2, \theta_2) \) defined over \(k_2 \) which is isomorphic to \((A, \mathcal{C}, \theta) \) over \(k_1 \). Note that \(A_2 \) will therefore also satisfy (iii). If \(k_2 = k \) the proof is complete. If not, the above process may be used to find an \((A_3, \mathcal{C}_3, \theta_3) \) over some \(k_3 \), \(k_2 \supset k_3 \supset k, k_2 \neq k_3 \). By continuing in this way, one eventually obtains the desired result.

In order to state the two corollaries, consider \((A, \mathcal{C}, \theta) \) defined over some number field \(k \), and let it be of type \((F, \Phi; \alpha, \zeta) \). Regard \(F \) as a subfield of \(C \), write \(\mathcal{I}_k \) for the idèle group of \(k \), put \(\mathcal{I}_k,_{\infty} = k \otimes Q R \subset \mathcal{I}_k \), and write \(\mathcal{I}_k,_{\infty} \) for the group of finite idèles of \(k \), i.e. those whose component at any infinite prime is 1. If \(x \in \mathcal{I}_F \), write \(x_1 \) for the component of \(x \) corresponding to the infinite prime defined by the given embedding of \(F \subset C \). Then \(\text{det} \Phi' \) defines a homomorphism \(F^{*} \to F^{*} \) and, since \(k \supset F' \), we
get a homomorphism $g = (\det \Phi') N_{k/k'} : k^* \to F^*$. This extends to a continuous homomorphism $I_k \to I_F$ which we also denote by g.

As explained in [6, p. 510], one obtains from (A, \mathcal{C}, θ) a Groessen-character $\psi : I_k \to \mathbb{C}^*$ such that,

1. for all $x \in I_{k, \infty}$, $\psi(x) = g(x)_1^{-1}$, and
2. for all $x \in I_{k, 0}$, $\psi(x) \in F^*$, $\psi(x) \overline{\psi(x)} = |x|_0$, and $\psi(x) a = g(x) a$, where $\overline{\psi(x)}$ is the complex conjugate of $\psi(x)$ and $|x|_0$ is the absolute norm of the ideal associated to x. Conversely, there is the following result.

Corollary 1. Let k be a finite extension of F'. Any Groessen-character $\psi : I_k \to \mathbb{C}^*$ satisfying (1) and (2) arises from some (A, \mathcal{C}, θ) of type $(F, \Phi; a, \zeta)$ defined over k.

Proof. Let (A, \mathcal{C}, θ) be any structure of type $(F, \Phi; a, \zeta)$. It follows from [5, 5.16] that k contains the field of moduli of (A, \mathcal{C}, θ) and so we may take (A, \mathcal{C}, θ) to be defined over k. Let ψ' be the Groessen-character arising from (A, \mathcal{C}, θ) and put $\chi = \psi/\psi'$. By (1), χ is a Dirichlet character and so may be regarded as a character of $G = \text{Gal}(K/k)$ for some finite abelian extension K of k. Let R_χ be R regarded as a G-module by defining $\sigma \alpha = \chi(\sigma) \alpha$ for $\sigma \in G$, $\alpha \in R$. Then, in the notation of [2, §2], $(A', \mathcal{C}', \theta')$ with $A' = R_\chi \otimes_R A$ and obvious θ' and \mathcal{C}' is of type $(F, \Phi; a, \zeta)$ and has Groessen-character $\chi \psi' = \psi$.

Corollary 2. Let k be a finite extension of Q and let $(F, \Phi; a, \zeta)$ be a possible type for a structure (A, \mathcal{C}, θ). Then there is a Groessen-character $\psi : I_k \to \mathbb{C}^*$ satisfying (1) and (2) if and only if k contains the field of moduli of some (A, \mathcal{C}, θ) of type $(F, \Phi; a, \zeta)$.

Proof. The necessity follows from [5, 5.16] and the sufficiency from the theorem.

Remarks 1. In [6], Corollary 1 is proved directly and then, under certain hypotheses on R ((5.2) loc. cit.), Shimura explicitly constructs a Groessen-character ψ satisfying (1) and (2) and so deduces a weaker form of our Theorem 1.

2. Given A and the map θ it is always possible to find a polarization \mathcal{C} such that $\theta(F') = \theta(F)$ [5, p. 128]. Moreover [6, Ppnt 4] the field of moduli of (A, \mathcal{C}, θ) is independent of the \mathcal{C} chosen. Thus it makes sense to speak of the field of moduli of (A, θ), and then Theorem 1 implies that this is also the smallest field of definition of (A, θ).

References

1. E. Artin and J. Tate, *Class field theory* (Harvard University, 1961).
CORRECTION: ABELIAN VARIETIES DEFINED OVER THEIR FIELDS OF MODULI, I

J. S. MILNE

The proof of the theorem contains an error. Before giving a correct proof, we state two lemmas.

Lemma 1. Let K/k be a cyclic Galois extension of degree m, let σ generate $\text{Gal}(K/k)$, and let (A, \mathcal{C}, θ) be defined over K. Suppose that there exists an isomorphism $\lambda : (A, \mathcal{C}, \theta) \to (A^\sigma, \mathcal{C}^\sigma, \theta^\sigma)$ over K such that $\nu^\lambda_{\sigma^{-1}} \ldots \lambda^\sigma \lambda = 1$, where ν is the canonical isomorphism $(A'^m, \mathcal{C}^m, \theta'^m) \to (A, \mathcal{C}, \theta)$. Then (A, \mathcal{C}, θ) has a model over k, which becomes isomorphic to $(A, \mathcal{C}, 0)$ over K.

Proof. This follows easily from [7], as is essentially explained on p. 371.

Lemma 2. Let G be an abelian pro-finite group and let $\phi : G \to \mathbb{Q}/\mathbb{Z}$ be a continuous character of G whose image has order p. Then either:

(a) there exist subgroups G' and H of G such that H is cyclic of order p^m for some m, $\phi(G') = 0$, and $G = G' \times H$, or

(b) for any $m > 0$ there exists a continuous character ϕ_m of G such that $p^m \phi_m = \phi$.

Proof. If (b) is false for a given m, then there exists an element $\sigma \in G$, of order p' for some $r \leq m$, such that $\phi(\sigma) \neq 0$. (Consider the sequence dual to $0 \to \text{Ker}(\phi(p^m)) \to G \to \mathbb{Q}/\mathbb{Z}$). There exists an open subgroup G_0 of G such that $\phi(G_0) = 0$ and σ has order p' in G/G_0. Choose H to be the subgroup of G generated by σ, and then an easy application to G/G_0 of the theory of finite abelian groups shows the existence of G' (note that $\phi(\sigma) \neq 0$ implies that σ is not a p-th power in G).

We now prove the theorem. The proof is correct up to the statement (iv) (except that (i) should read: $F' \subset k_1 \subset F'_{\text{ab}}$). To remove a minor ambiguity in the proof of (iv), choose σ to be an element of $\text{Gal}(F'_{\text{ab}}/k_2)$ whose image $\bar{\sigma}$ in $\text{Gal}(k_1/k_2)$ generates this last group. The error occurs in the statement that the canonical map $\nu : A'^p \to A$ acts on points by sending $a'^p \mapsto a$; it, of course, sends $a \mapsto a$.

The proof is correct, however, in the case that it is possible to choose σ so that $\sigma^p = 1$ (in $\text{Gal}(F'_{\text{ab}}/k_2)$).

By applying Lemma 2 to $G = \text{Gal}(F'_{\text{ab}}/k_2)$ and the map $G \to \text{Gal}(k_1/k_2)$ one sees that only the following two cases have to be considered.

(a) It is possible to choose σ so that $\sigma^p = 1$, for some m, and $G = G' \times H$ where G' acts trivially on k_1 and H is generated by σ.

(b) For any $m > 0$ there exists a field K, $F'_{\text{ab}} \supset K \supset k_1 \supset k_2$, such that K/k_2

Received 29 August, 1973.

is a cyclic Galois extension of degree p^n.

In the first case, we let $K \subset F'_{ab}$ be the fixed field of G'. Then (A, \mathcal{C}, θ), regarded as being defined over K, has a model over k_2. Indeed, if $m = 1$, then this was observed above, but when $m > 1$ the same argument applies.

In the second case, let $\lambda: (A, \mathcal{C}, \theta) \to (A^{\bar{g}}, \mathcal{C}^{\bar{g}}, \theta^{\bar{g}})$ be an isomorphism defined over k_1 and let $\nu \lambda^* \cdots \lambda^m = \alpha \in \mu(R).

If λ is replaced by $\lambda \gamma$ for some $\gamma \in \text{Aut}_k((A, \mathcal{C}, \theta))$ then α is replaced by $\alpha \gamma^p$. Thus, as $\mu(R)$ is finite, we may assume that $\alpha^{p^{m-1}} = 1$ for some m. Choose K, as in (b), to be of degree p^n over k_2. Let σ_m be a generator of $\text{Gal}(K/k_2)$ whose restriction to k_1 is $\bar{\sigma}$. Then

$$\lambda: (A, \mathcal{C}, \theta) \to (A^{\bar{g}}, \mathcal{C}^{\bar{g}}, \theta^{\bar{g}}) = (A^{\sigma_m}, \mathcal{C}^{\sigma_m}, \theta^{\sigma_m})$$

is an isomorphism defined over K and $\nu \lambda^{m=p^{m-1}}, \ldots \lambda^m \lambda = \alpha^{p^{m-1}} = 1$, and so, by Lemma 1, (A, \mathcal{C}, θ) has a model over k_2 which becomes isomorphic to (A, \mathcal{C}, θ) over K.

The proof may now be completed as before.

Addendum: Professor Shimura has pointed out to me that the claim on lines 25 and 26 of p. 371, viz that $\mu(R)$ is a pure subgroup of Π^*_R, does not hold for all rings R. Thus this condition, which appears to be essential for the validity of the theorem, should be included in the hypotheses. It holds, for example, if $\mu(R)$ is a direct summand of $\mu(F)$.

University of Michigan