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Preface
For one who attempts to unravel the story, the
problems are as perplexing as a mass of hemp with
a thousand loose ends.
Dream of the Red Chamber, Tsao Hsueh-Chin.

This book represents my attempt to write a modern successor to the three standard works,
all titled “Linear Algebraic Groups”, by Borel, Humphreys, and Springer. More specifically,
it is an exposition of the theory of group schemes of finite type over a field, based on modern
algebraic geometry, but with minimal prerequisites.

It has been clear for fifty years that such a work has been needed.1 When Borel,
Chevalley, and others introduced algebraic geometry into the theory of algebraic groups,
the foundations they used were those of the period (e.g., Weil 1946), and most subsequent
writers on algebraic groups have followed them. Specifically, nilpotents are not allowed,
and the terminology used conflicts with that of modern algebraic geometry. For example,
algebraic groups are usually identified with their points in some large algebraically closed
fieldK, and an algebraic group over a subfield k ofK is an algebraic group overK equipped
with a k-structure. The kernel of a k-homomorphism of algebraic k-groups is an object over
K (not k) which need not be defined over k.

In the modern approach, nilpotents are allowed,2 an algebraic k-group is intrinsically
defined over k, and the kernel of a homomorphism of algebraic groups over k is (of course)
defined over k. Instead of the points in some “universal” field, it is more natural to consider
the functor of k-algebras defined by the algebraic group.

The advantages of the modern approach are manifold. For example, the infinitesimal
theory is built into it from the start instead of entering only in an ad hoc fashion through the
Lie algebra. The Noether isomorphisms theorems hold for algebraic group schemes, and so
the intuition from abstract group theory applies. The kernels of infinitesimal homomorphisms
become visible as algebraic group schemes.

The first systematic exposition of the theory of group schemes was in SGA 3. As was
natural for its authors (Demazure, Grothendieck, . . . ), they worked over an arbitrary base
scheme and they used the full theory of schemes (EGA and SGA).3 Most subsequent authors
on group schemes have followed them. The only books I know of that give an elementary
treatment of group schemes are Waterhouse 1979 and Demazure and Gabriel 1970. In
writing this book, I have relied heavily on both, but neither goes very far. For example,
neither treats the structure theory of reductive groups, which is a central part of the theory.

As noted, the modern theory is more general than the old theory. The extra generality
gives a richer and more attractive theory, but it does not come for free: some proofs are more
difficult (because they prove stronger statements). In this work, I have avoided any appeal
to advanced scheme theory by passing to the algebraic closure where possible and by an
occasional use of Hopf algebras. Unpleasantly technical arguments that I have not (so far)
been able to avoid have been placed in separate sections where they can be ignored by all

1“Another remorse concerns the language adopted for the algebrogeometrical foundation of the theory ...
two such languages are briefly introduced ... the language of algebraic sets ... and the Grothendieck language of
schemes. Later on, the preference is given to the language of algebraic sets ... If things were to be done again, I
would probably rather choose the scheme viewpoint ... which is not only more general but also, in many respects,
more satisfactory.” J. Tits, Lectures on Algebraic Groups, Fall 1966.

2To anyone who asked why we need to allow nilpotents, Grothendieck would say that they are already
there in nature; neglecting them obscures our vision. And indeed they are there, for example, in the kernel of
SLp! PGLp .

3They also assumed the main classification results of the old theory.
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but the most serious students. By considering only schemes algebraic over a field, we avoid
many of the technicalities that plague the general theory. Also, the theory over a field has
many special features that do not generalize to arbitrary bases.

The exposition incorporates simplifications to the general theory from Allcock 2009,
D̄oković 1988, Iversen 1976, Luna 1999, and Steinberg 1998, 1999 and elsewhere.
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The experienced reader is cautioned that, throughout the text, “algebraic group scheme”
is shortened to “algebraic group”, nonclosed points are ignored, and a “group variety” is a
smooth algebraic group.

Equivalently, a group variety is group in the category of algebraic varieties (geometrically
reduced separated schemes of finite type over a field). However, it is important to note that
varieties are always regarded as special algebraic schemes. For example, fibres of maps are
to be taken in the sense of schemes, and the kernel of a homomorphism of group varieties
is an algebraic group which is not necessarily a group variety (it need not be smooth). A
statement here may be stronger than a statement in Borel 1991 or Springer 1998 even when
the two are word for word the same.4

We use the terminology of modern (post 1960) algebraic geometry; for example, for
algebraic groups over a field k; a homomorphism is (automatically) defined over k, not over
some large algebraically closed field.

To repeat: all constructions are to be understood as being in the sense of schemes.

In writing this book, I have depended heavily on the expository efforts of earlier authors.
The following works have been especially useful to me.

Demazure, Michel; Gabriel, Pierre. Groupes algébriques. Tome I: Géométrie algébrique,
généralités, groupes commutatifs. Masson & Cie, Éditeur, Paris; North-Holland Publishing
Co., Amsterdam, 1970. xxvi+700 pp.

Séminaire Heidelberg-Strasbourg 1965–66 (Groupes Algébriques), multigraphié par
l’Institut de Mathématique de Strasbourg (Gabriel, Demazure, et al.). 407 pp.

The expository writings of Springer, especially: Springer, T. A., Linear algebraic groups.
Second edition. Progress in Mathematics, 9. Birkhäuser Boston, Inc., Boston, MA, 1998.
xiv+334 pp.

Waterhouse, William C., Introduction to affine group schemes. Graduate Texts in
Mathematics, 66. Springer-Verlag, New York-Berlin, 1979. xi+164 pp.

Notes of Ngo, Perrin, and Pink have also been useful.
Finally, I note that the new edition of SGA 3 is a magnificent resource.

4An example is Chevalley’s theorem on representations; see 4.21.
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Notations and conventions

Throughout, k is a field and R is a k-algebra. All algebras over a field or ring are required to
be commutative and finitely generated unless it is specified otherwise. Unadorned tensor
products are over k. An extension of k is a field containing k. When V is a vector space
over k, we often write VR or V.R/ for R˝V . The symbol kal denotes an algebraic closure
of k, and ksep denotes the separable closure of k in kal.

An algebraic scheme over k (or algebraic k-scheme) is a scheme of finite type over k
(EGA I, 6.5.1). An algebraic variety is a geometrically-reduced separated algebraic scheme.
A “point” of an algebraic scheme or variety means “closed point”.5 For an algebraic scheme
.X;OX / over k, we often let X denote the scheme and jX j the underlying topological space
of closed points. When the base field k is understood, we write “algebraic scheme” for
“algebraic scheme over k”.

Let R be a finitely generated k-algebra. We let AlgR denote the category of finitely
generated R-algebras.

All categories are locally small (i.e., the objects may form a proper class, but the
morphisms from one object to a second are required to form a set). When the objects form a
set, the category is said to be small.

A functor is said to be an equivalence of categories if it is fully faithful and essentially
surjective. A sufficiently strong version of the axiom of global choice then implies that there
exists a quasi-inverse to the functor. We loosely refer to a natural transformation of functors
as a map of functors.

An element g of a partially ordered set P is a greatest element if, for every element a in
P , a � g. An element m in P is maximal if, for a in P , m� a implies aDm. If a partially
ordered set has a greatest element, it must be the unique maximal element, but otherwise
there can be more than one maximal element (or none). Least and minimal elements are
defined similarly. When the partial order is inclusion, we often say smallest for least.

A diagram A! B� C is said to be exact if the first arrow is the equalizer of the pair
of arrows.

After p.161, all algebraic groups are affine. (The reader may wish to assume this
throughout, and skip Chapters 7 and 10.)

Foundations

We use the von Neumann–Bernays–Gödel (NBG) set theory with the axiom of choice, which
is a conservative extension of Zermelo–Fraenkel set theory with the axiom of choice (ZFC).
This means that a sentence that doesn’t quantify over proper classes is a theorem of NBG if
and only if it is a theorem of ZFC. The advantage of NBG is that it allows us to speak of
classes.

It is not possible to define an “unlimited category theory” that includes the category of
all sets, the category of all groups, etc., and also the categories of functors from one of these
categories to another (Ernst 2015). Instead, one must consider only categories of functors
from categories that are small in some sense. To this end, we fix a family of symbols .Ti /i2N
indexed by N, and let Alg0

k
denote the category of k-algebras of the form kŒT0; : : : ;Tn�=a

5Let X be an algebraic scheme over a field, and let X0 be the set of closed points in X with the induced
topology. Then the map U 7! U \X0 is a bijection from the set of open subsets of X onto the set of open
subsets of X0. In particular, X is connected if and only if X0 is connected. To recover X from X0, add a point z
for each proper irreducible closed subset Z of X0; the point z lies in an open subset U if and only if U \Z is
nonempty.
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for some n 2 N and ideal a in kŒT0; : : : ;Tn�. Thus the objects of Alg0
k

are indexed by the
ideals in some subring kŒT0; : : : ;Tn� of kŒT0; : : :� — in particular, they form a set, and so
Alg0

k
is small. We call the objects of Alg0

k
small k-algebras. If R is a small k-algebra, then

the category Alg0R of small R-algebras has as objects pairs consisting of a small k-algebra A
and a homomorphism R! A of k-algebras. Note that tensor products exist in Alg0

k
— in

fact, if we fix a bijection N$ N�N, then˝ becomes a well-defined bi-functor.
The inclusion Alg0

k
,! Algk is an equivalence of categories because every finitely gen-

erated k-algebra is isomorphic to a small k-algebra. Choosing a quasi-inverse amounts
to choosing an ordered set of generators for each finitely generated k-algebra. Once a
quasi-inverse has been chosen, every functor on Alg0

k
has a well-defined extension to Algk .

Alternatively, readers willing to assume additional axioms in set theory, may use
Mac Lane’s “one universe” solution to defining functor categories (Mac Lane 1969) or
Grothendieck’s “multi universe” solution (DG, p.xxv), and take a small k-algebra to be one
that is small relative to the chosen universe.6

Prerequisites

A first course in algebraic geometry. Since these vary greatly, we review the definitions and
statements that we need from algebraic geometry in Appendix A. In a few places, which can
usually be skipped, we assume more algebraic geometry.

References

In addition to the references listed at the end (and in footnotes), I shall refer to the following
of my notes (available on my website):
AG Algebraic Geometry (v6.00, 2014).

CA A Primer of Commutative Algebra (v4.01, 2014).

LAG Lie Algebras, Algebraic Groups, and Lie Groups (v2.00, 2013).
I also refer to:

DG Demazure, Michel; Gabriel, Pierre. Groupes algébriques. Tome I: Géométrie algébrique,
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A reference monnnn is to question nnnn on mathoverflow.net.

Introduction

The work can be divided roughly into six parts.
6Or they may simply ignore the problem, which is what most of the literature does.
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16 CONTENTS

A. BASIC THEORY (CHAPTERS 1–10

)
The first ten chapters cover the general theory of algebraic groups (not necessarily affine).

After defining algebraic groups and giving some examples, we show that most of the basic
theory of abstract groups (subgroups, normal subgroups, normalizers, centralizers, Noether
isomorphism theorems, subnormal series, etc.) carries over with little change to algebraic
group schemes. We relate affine algebraic groups to Hopf algebras, and we prove that all
affine algebraic groups in characteristic zero are smooth. We study the linear representations
of algebraic groups and the actions of algebraic groups on algebraic schemes. We show
that every algebraic group is an extension of a finite étale algebraic group by a connected
algebraic group, and that every connected group variety over a perfect field is an extension
of an abelian variety by an affine group variety (Barsotti-Chevalley theorem).

B. PRELIMINARIES ON AFFINE ALGEBRAIC GROUPS (CHAPTERS 11-13)

The next three chapters are preliminary to the more detailed study of affine algebraic groups
in the later chapters. They cover Tannakian duality, in which the category of representations
of an algebraic group plays the role of the topological dual of a locally compact abelian
group; Jordan decompositions; the Lie algebra of an algebraic group; the structure of finite
algebraic groups.

C. SOLVABLE ALGEBRAIC GROUPS (CHAPTERS 14-17

The next four chapters study solvable algebraic groups. Among these are the diagonalizable
groups and the unipotent groups.

An algebraic group G is diagonalizable if every linear representation r WG! GLV of
G is a direct sum of one-dimensional representations. In other words if, relative to some
basis for V , r.G/ lies in the algebraic subgroup Dn of diagonal matrices in GLn. An
algebraic group that becomes diagonalizable over an extension of the base field is said to be
of multiplicative type.

An algebraic group G is unipotent if every nonzero representation V of G contains
a nonzero fixed vector. This implies that, relative to some basis for V , r.G/ lies in the
algebraic subgroup Un of strictly upper triangular matrices in GLn.

Every smooth connected solvable algebraic group over a perfect field is an extension of
a group of multiplicative type by a unipotent group.

D. REDUCTIVE GROUPS (CHAPTERS 18-25)

This is the heart of the book.

E. SURVEY CHAPTERS (CHAPTERS 26-27)

These describe the classification theorems of Satake-Selbach-Tits (the anistropic kernel etc.)
and the Galois cohomology of algebraic groups (classification of the forms of an algebraic
group; description of the classical algebraic groups in terms of algebras with involution;
etc.).

APPENDICES

In an appendix, we review the algebraic geometry needed.



CHAPTER 1
Basic definitions and properties

Recall that k is a field, and that an algebraic k-scheme is a scheme of finite type over k. We
often omit the k. Morphisms of k-schemes are required to be k-morphisms.

a. Definition

An algebraic group over k is a group object in the category of algebraic schemes over k. In
detail, this means the following.

DEFINITION 1.1. Let G be an algebraic scheme over k and let mWG�G!G be a regular
map. The pair .G;m/ is an algebraic group over k if there exist regular maps

eW� !G; invWG!G (1)

such that the following diagrams commute:

G�G�G G�G

G�G G

m�id

id�m

m

m

��G G�G G��

G

e�id

'
m

id�e

'

(2)

G G�G G

� G �

.inv;id/

m

.id;inv/

e e

(3)

Here � is the one-point variety Spm.k/. When G is a variety, we call .G;m/ a group
variety, and when G is an affine scheme, we call .G;m/ an affine algebraic group.1 A
homomorphism 'W.G;m/! .G0;m0/ of algebraic groups is a regular map 'WG!G0 such
that ' ımDm0 ı .'�'/.

Similarly, an algebraic monoid over k is an algebraic schemeM over k together with reg-
ular mapsmWM �M !M and eW�!M such that the diagrams (2) commute. An algebraic
groupG is trivial if eW�!G is an isomorphism, and a homomorphism 'W.G;m/! .G0;m0/

is trivial if it factors through e0W� !G0.

1As we note elsewhere (p.3, p.5, 1.50, 5.40, p.515) in most of the current literature, an algebraic group over
a field k is defined to be a group variety over some algebraically closed field K containing k together with a
k-structure. In particular, nilpotents are not allowed.
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18 1. Basic definitions and properties

For example,

SLn
def
D SpmkŒT11;T12; : : : ;Tnn�=.det.Tij /�1/

becomes a group variety with the usual matrix multiplication,

.aij /; .bij / 7! .cij /; cij D
P
l ailblj .

For many more examples, see Chapter 2.

DEFINITION 1.2. An algebraic subgroup of an algebraic group .G;mG/ over k is an alge-
braic group .H;mH / over k such that H is a k-subscheme of G and the inclusion map is
a homomorphism of algebraic groups. An algebraic subgroup that is a variety is called a
subgroup variety.

HOMOGENEITY

1.3. For an algebraic scheme X over k, we write jX j for the underlying topological space
of X , and �.x/ for the residue field at a point x of jX j (it is a finite extension of k). We
identify X.k/ with the set of points x of jX j such that �.x/D k. Let .G;m/ be an algebraic
group over k. The map m.k/WG.k/�G.k/!G.k/ makes G.k/ into a group with neutral
element e.�/ and inverse map inv.k).

When k is algebraically closed, G.k/ D jGj, and so mWG �G ! G makes jGj into
a group. The maps x 7! x�1 and x 7! ax (a 2 G.k/) are automorphisms of jGj as a
topological space.

In general, when k is not algebraically closed, m does not make jGj into a group, and
even when k is algebraically closed, it does not make jGj into a topological group.2

1.4. Let .G;m/ be an algebraic group over k. For each a 2G.k/, there is a translation map

laWG ' fag�G
m
�!G; x 7! ax.

For a;b 2G.k/,
la ı lb D lab

and le D id. Therefore la ı la�1 D idD la�1 ı la , and so la is an isomorphism sending e to
a. Hence G is homogeneous3 when k is algebraically closed (but not in general otherwise;
see 1.7).

ALGEBRAIC GROUPS AS FUNCTORS

Since we allow nilpotents in the structure sheaf, the points of an algebraic group with
coordinates in a field, even algebraically closed, do not convey much information about the
group. Thus, it is natural to consider its points in a k-algebra. Once we do that, the points
capture all information about the algebraic group.

2Assume k is algebraically closed. The map jmjW jG�Gj ! jGj is continuous, and jG�Gj D jGj� jGj as
a set, but not as a topological space. The multiplication map jGj� jGj ! jGj, i.e., G.k/�G.k/!G.k/, need
not be continuous for the product topology.

3An algebraic scheme X over k is said to be homogeneous if the group of automorphisms of X (as a
k-scheme) acts transitively on jX j.



a. Definition 19

1.5. An algebraic scheme X over k defines a functor

QX WAlg0k! Set; R X.R/;

and the functor X QX is fully faithful (Yoneda lemma, A.28); in particular, QX determines
X uniquely up to a unique isomorphism. We say that a functor from k-algebras to sets is
representable if it is of the form QX .

Let .G;m/ be an algebraic group over k. Then R .G.R/;m.R// is a functor from k-
algebras to groups whose underlying functor to sets is representable, and every such functor
arises from an essentially unique algebraic group. Thus, to give an algebraic group over k
amounts to giving a functor Alg0

k
! Grp whose underlying functor to sets is representable

by an algebraic scheme. We sometimes write QG for G regarded as a functor.
We often describe a homomorphism of algebraic groups by describing its action on

R-points. For example, when we say that invWG!G is the map x 7! x�1, we mean that,
for all k-algebras R and all x 2G.R/, inv.x/D x�1.

From this perspective, SLn is the algebraic group over k whose R-points are the n�n
matrices with entries in R and determinant 1.

1.6. An algebraic subscheme H of an algebraic group G is an algebraic subgroup of G if
and only if H.R/ is a subgroup of G.R/ for all k-algebras R. In more detail, assume that
H.R/ is a subgroup of G.R/ for all (small) R; then the Yoneda lemma (A.28) shows that
the maps

.h;h0/ 7! hh0WH.R/�H.R/!H.R/

arise from a morphismmH WH �H !H , and .H;mH / is an algebraic subgroup of .G;mG/.

1.7. Consider the functor of k-algebras

�3WR fa 2R j a3 D 1g:

This is represented by Spm.kŒT �=.T 3�1//, and so it is an algebraic group. We consider
three cases.

(a) The field k is algebraically closed of characteristic¤ 3. Then

kŒT �=.T 3�1/' kŒT �=.T �1/�kŒT �=.T � �/�kŒT �=.T � �2/

where 1;�;�2 are the cube roots of 1 in k. Thus, �3 is a disjoint union of three copies
of Spm.k/ indexed by the cube roots of 1 in k.

(b) The field k is of characteristic ¤ 3 but does not contain a primitive cube root of 1.
Then

kŒT �=.T 3�1/' kŒT �=.T �1/�kŒT �=.T 2CT C1/;

and so �3 is a disjoint union of Spm.k/ and Spm.kŒ��/ where � is a primitive cube
root of 1. In particular, j�3j is not homogeneous.

(c) The field k is of characteristic 3. Then

T 3�1D .T �1/3;

and so �3 is not reduced. Although �3.K/ D 1 for all fields K containing k, the
algebraic group �3 is not trivial.
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DENSITY OF POINTS

In general, the k-points of an algebraic group tell us little about the group, but sometimes they
do. For example, a smooth algebraic group G over a separably closed field k is commutative
if G.k/ is commutative (1.21).

1.8. Let X be an algebraic scheme over k, and let S be a subset of X.k/� jX j. We say
that S is schematically dense in X if the family of homomorphisms

f 7! f .s/WOX ! �.s/D k; s 2 S;

is injective. Let S �X.k/ be schematically dense in X :

(a) if Z is a closed algebraic subscheme of X such that Z.k/ contains S , then Z DX ;

(b) if u;vWX ! Y are regular maps from X to a separated algebraic scheme Y such that
u.s/D v.s/ for all s 2 S , then uD v.

If S �X.k/ is schematically dense in X , then S is dense in jX j, and the converse is true if
X is reduced. A schematically dense subset remains schematically dense under extension
of the base field. If an algebraic scheme X admits a schematically dense subset S �X.k/,
then it is geometrically reduced. For a geometrically reduced scheme X , a subset of X.k/ is
schematically dense in X if and only if it is dense in jX j. See (A.62) et seq.

1.9. Let G be an algebraic group over a field k, and let k0 be a field containing k. We
say that G.k0/ is dense in G if the only closed algebraic subscheme Z of G such that
Z.k0/DG.k0/ is G itself.

(a) If G.k0/ is dense in G, then G is reduced. Conversely, if G is geometrically reduced,
then G.k0/ is dense in G if and only if it is dense in the topological space jGk0 j. (A.59,
A.60).

(b) If G is smooth, then G.k0/ is dense in G whenever k0 contains the separable closure
of k (A.44).

(c) G.k/ is dense in G if and only if G is reduced and G.k/ is dense jGj.

ALGEBRAIC GROUPS OVER RINGS

Although we are only interested in algebraic groups over fields, occasionally, we shall need
to consider them over more general base rings.

1.10. Let R be a (finitely generated) k-algebra. Formally, an algebraic scheme over R
is a scheme X equipped with a morphism X ! SpmR of finite type. Less formally, we
can think of X as an algebraic scheme over k such that OX is equipped with an R-algebra
structure compatible with its k-algebra structure. For example, affine algebraic schemes
over R are the spectra finitely generated R-algebras A. A morphism of algebraic R-schemes
'WX ! Y is a morphism of schemes compatible with the R-algebra structures, i.e., such
that OY ! '�OX is a homomorphism of sheaves of R-algebras. Let G be an algebraic
scheme over R and let mWG�G!G be a morphism of R-schemes. The pair .G;m/ is an
algebraic group over R if there exist R-morphisms eWSpm.R/!G and invWG!G such
that the diagrams (2) and (3) commute. For example, an algebraic group .G;m/ over k gives
rise to an algebraic group .GR;mR/ over R by extension of scalars.
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b. Basic properties of algebraic groups

PROPOSITION 1.11. The maps e and inv in (1.1) are uniquely determined by .G;m/. If
'W.G;mG/! .H;mH / is a homomorphism of algebraic groups, then ' ı eG D eH and
' ı invG D invH ı'.

PROOF. It suffices to prove the second statement. For a k-algebra R, the map '.R/ is a
homomorphism of abstract groups .G.R/;mG.R//! .H.R/;mH .R//, and so it maps the
neutral element of G.R/ to that of H.R/ and the inversion map on G.R/ to that on H.R/.
The Yoneda lemma (A.28) now shows that the same is true for '. 2

PROPOSITION 1.12. Algebraic groups are separated (as algebraic schemes).

PROOF. Let .G;m/ be an algebraic group. The diagonal inG�G is the inverse image of the
closed point e 2G.k/ under the map mı .id� inv/WG�G!G sending .g1;g2/ to g1g�12 ,
and so it is closed. 2

Therefore “group variety” = “geometrically reduced algebraic group”.

COROLLARY 1.13. Let G be an algebraic group over k, and let k0 be a field containing k.
If G.k0/ is dense in G, then a homomorphism G!H of algebraic groups is determined by
its action on G.k0/.

PROOF. Let ';'0 be homomorphisms G!H . Because H is separated, the subscheme
Z of G on which they agree is closed (see A.37). If '.x/D '0.x/ for all x 2 G.k0/, then
Z.k0/DG.k0/, and so Z DG. 2

Recall that an algebraic scheme over a field is a finite disjoint union of its (closed-open)
connected components (A.14). For an algebraic group G, we let Gı denote the connected
component of G containing e, and we call it the identity (or neutral) component of G.

PROPOSITION 1.14. Let G be an algebraic group. The identity component Gı of G is an
algebraic subgroup of G. Its formation commutes with extension of the base field: for every
field k0 containing k, �

Gı
�
k0
' .Gk0/

ı:

In particular, G is connected if and only if Gk0 is connected; the algebraic group Gı is
geometrically connected; every connected algebraic group is geometrically connected.

For the proof, we shall need the following elementary lemma. Recall (A.84) that the
set of connected components of an algebraic scheme X can be given the structure of a
zero-dimensional algebraic variety �0.X/. Moreover, X ! �0.X/ is a regular map whose
fibres are the connected components of X .

LEMMA 1.15. Let X be a connected algebraic scheme over k such that X.k/¤ ;. Then X
is geometrically connected; moreover, for any algebraic scheme Y over k,

�0.X �Y /' �0.Y /:

In particular, X �Y is connected if Y is connected.
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PROOF. Because �0.X/ is a zero-dimensional algebraic variety, it equals Spm.A/ for some
étale k-algebra A (A.82). If A had more than one factor, O.X/ would contain nontrivial
idempotents, and X would not be connected. Therefore, A is a field containing k, and,
because X.k/ is nonempty, it equals k. Now

�0.Xkal/
A.84
D �0.X/kal D Spm.kal/,

which shows that Xkal is connected, and

�0.X �Y /
A.84
' �0.X/��0.Y /' �0.Y /;

as required. 2

PROOF (OF 1.14). The identity component Gı of G has a k-point, namely, e, and so
Gı�Gı is a connected component of G�G (1.15). Asm maps .e;e/ to e, it maps Gı�Gı

into Gı. Similarly, inv maps Gı into Gı. Therefore Gı is an algebraic subgroup of G. For
any extension k0 of k,

.G! �0.G//k0 'Gk0 ! �0.Gk0/

(see A.84). As Gı is the fibre over e, this implies that .Gı/k0 ' .Gk0/ı. In particular,
.Gı/kal ' .Gkal/ı, and so Gı is geometrically connected. 2

COROLLARY 1.16. A connected algebraic group is irreducible.

PROOF. It suffices to show thatG is geometrically irreducible. Thus, we may suppose that k
is algebraically closed, and hence that G is homogeneous (1.4). By definition, no irreducible
component is contained in the union of the remainder. Therefore, there exists a point that
lies on exactly one irreducible component. By homogeneity, all points have this property,
and so the irreducible components are disjoint. As jGj is connected, there must be only one,
and so G is irreducible. 2

SUMMARY 1.17. The following conditions on an algebraic group G over k are equivalent:

(a) G is irreducible;

(b) G is connected;

(c) G is geometrically connected.

When G is affine, the conditions are equivalent to:

(d) the quotient of O.G/ by its nilradical is an integral domain.

Algebraic groups are unusual. For example, the subscheme of A2 defined by the equation
XY D 0 is connected but not irreducible (and hence is not the underlying scheme of an
algebraic group).

PROPOSITION 1.18. Let G be an algebraic group over k.

(a) If G is reduced and k is perfect, then G is geometrically reduced (hence a group
variety).

(b) If G is geometrically reduced, then it is smooth (and conversely).

PROOF. (a) This is true for every algebraic scheme (A.39).
(b) It suffices to show that Gkal is smooth, but some point of Gkal is smooth (A.52), and

so every point is smooth because Gkal is homogeneous (1.4). 2
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Therefore
“group variety” = “smooth algebraic group”.

In characteristic zero, all algebraic groups are smooth (see 3.38 below for a proof in the
affine case and 10.36 for the general case).

EXAMPLE 1.19. Let k be a nonperfect field of characteristic p, and let a 2 kXkp. Let G
be the algebraic subgroup of A1 defined by the equation

Y p�aXp D 0:

The ring AD kŒX;Y �=.Y p�aXp/ is reduced because Y p�aXp is irreducible in kŒX;Y �,
but A acquires a nilpotent y�a

1
p x when tensored with kal, and so G is not geometrically

reduced. (Over the algebraic closure of k, it becomes the line Y D a
1
pX with multiplicity

p.)

DEFINITION 1.20. An algebraic group .G;m/ is commutative if mı t Dm, where t is the
transposition map .x;y/ 7! .y;x/WG�G!G�G.

PROPOSITION 1.21. An algebraic group G is commutative if and only if G.R/ is commu-
tative for all k-algebras R. A group variety G is commutative if G.ksep/ is commutative.

PROOF. According to the Yoneda lemma (A.28), mı t Dm if and only if m.R/ı t .R/D
m.R/ for all k-algebras R, i.e., if and only if G.R/ is commutative for all R. The proves the
first statement. Let G be a group variety. If G.ksep/ is commutative, then mı t and m agree
on .G�G/.ksep/, which is dense in G�G (1.9). 2

PROPOSITION 1.22. The following conditions on an algebraic group G are equivalent:

(a) G is smooth;

(b) Gı is smooth;

(c) the local ring OG;e is regular;

(d) the tangent space Te.G/ to G at e has dimension dimG;

(e) G is geometrically reduced;

(f) for all k-algebras R and all ideals I in R such that I 2 D 0, the map G.R/!G.R=I /

is surjective.

PROOF. (a)H) (b)H) (c)H) (d): These implications are obvious (see A.48, A.51).
(d)H) (a). The condition implies that the point e is smooth on G (A.51), and hence on

Gkal . By homogeneity (1.4), all points on Gkal are smooth, which means that G is is smooth.
(a)” (e). This was proved in (1.18).
(a)” (f). This is a standard criterion for an algebraic scheme to be smooth (A.53).2

COROLLARY 1.23. For an algebraic group G,

dimTe.G/� dimG;

with equality if and only if G is smooth.

PROOF. In general, for a point e on an algebraic k-scheme G with �.e/D k, dimTe.G/�
dimG with equality if and only if OG;e is regular (A.48). But we know (1.22), that OG;e is
regular if and only if G is smooth. 2
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c. Algebraic subgroups

For a closed subset S of an algebraic scheme X , we let Sred denote the reduced closed
subscheme of X with jSredj D S . A morphism �WY !X factors through Sred if j�j factors
through S and Y is reduced. See A.25.

PROPOSITION 1.24. Let .G;m/ be an algebraic group over k. If Gred is geometrically
reduced, then it is an algebraic subgroup of G.

PROOF. If Gred is geometrically reduced, then Gred�Gred is reduced (A.39), and so the
restriction of m to Gred�Gred factors through Gred ,!G:

Gred�Gred
mred
�!Gred ,!G.

Similarly, e and inv induce maps �!Gred and Gred!Gred, and these make the diagrams
(2, 3), p.17, commute for .Gred;mred/. 2

COROLLARY 1.25. Let G be an algebraic group over k. If k is perfect, then Gred is a
smooth algebraic subgroup of G.

PROOF. Over a perfect field, reduced algebraic schemes are geometrically reduced (1.46),
and so Gred is geometrically reduced, hence an algebraic subgroup of G, and hence smooth
(1.22). 2

LEMMA 1.26. Let G be an algebraic group over k. The Zariski closure NS of a(n abstract)
subgroup S of G.k/ is a subgroup of G.k/.

PROOF. For a 2 G.k/, the map x 7! axWG.k/! G.k/ is a homeomorphism because its
inverse is of the same form. For a 2 S , we have aS � S � NS , and so a NS D .aS/� � NS .
Thus, for a 2 NS , we have Sa � NS , and so NSa D .Sa/� � NS . Hence NS NS � NS . The map
x 7! x�1WG.k/!G.k/ is a homeomorphism, and so . NS/�1 D .S�1/� D NS . 2

PROPOSITION 1.27. Every algebraic subgroup of an algebraic group is closed (in the
Zariski topology).

PROOF. Let H be an algebraic subgroup of an algebraic group G. If Hkal is closed in Gkal

then H is closed in G (see A.10) and so we may suppose that k is algebraically closed.
We may also suppose that H and G are reduced, because passing to the reduced algebraic
subgroup doesn’t change the underlying topological space. By definition, jH j is locally
closed, i.e., open in its closure S . Now S is a subgroup of jGj (1.26), and it is a finite disjoint
union of cosets of jH j. As each coset is open, it is also closed. Therefore H is closed in S ,
and so equals it. 2

COROLLARY 1.28. The algebraic subgroups of an algebraic group satisfy the descending
chain condition.

PROOF. In fact, the closed subschemes of an algebraic scheme satisfy the descending chain
condition (A.19). 2

COROLLARY 1.29. Every algebraic subgroup of an affine algebraic group is affine.

PROOF. Closed subschemes of affine algebraic schemes are affine (A.19). 2
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COROLLARY 1.30. Let H and H 0 be subgroup varieties of an algebraic group G over k.
Then H DH 0 if H.k0/DH 0.k0/ for some field k0 containing the separable closure of k.

PROOF. The condition implies that

H.k0/D
�
H \H 0

�
.k0/DH 0.k0/: (4)

But H \H 0 is closed in H (1.27). As H is a variety, H.k0/ is dense in H (A.61), and so
(4) implies that H \H 0 DH . Similarly, H \H 0 DH 0. 2

PROPOSITION 1.31. Let G be an algebraic group over k, and let S be a closed subgroup of
G.k/. There is a unique reduced algebraic subgroup H of G such that S DH.k/ (and H is
geometrically reduced). The algebraic subgroups H of G that arise in this way are exactly
those for which H.k/ is schematically dense in H (i.e., such that H is reduced and H.k/ is
dense in jH j).

PROOF. Let H denote the reduced closed subscheme of G such that jH j is the closure of
S in jGj. Then S DG.k/\jH j DH.k/. As H is reduced and H.k/ is dense in jH j, it is
geometrically reduced (1.8). Therefore H �H is reduced, and so the mapmG WH �H !G

factors through H . Similarly, invG restricts to a regular map H !H and �! G factors
through H . Thus H is an algebraic subgroup of G. Also H.k/ is schematically dense in
H because it is dense and H is reduced. Conversely, if H is a reduced algebraic subgroup
of G such that H.k/ is dense in jH j, then the above construction starting with S DH.k/
gives back H . 2

COROLLARY 1.32. Let G be an algebraic group over k, and let S be a closed subgroup
of G.k/. There is a unique subgroup variety H of G such that S DH.k/. The subgroup
varieties H of G that arise in this way are exactly those for which H.k/ is dense in jH j.

PROOF. This is a restatement of the proposition. 2

COROLLARY 1.33. Let G be an algebraic group over a separably closed field k. The map
H 7! H.k/ is a bijection from the set of subgroup varieties of G onto the set of closed
(abstract) subgroups of G.k/.

PROOF. As k is separably closed, H.k/ is dense in jH j for every group subvariety of G.2

DEFINITION 1.34. Let G be an algebraic group over k, and let S be a subgroup of G.k/.
The unique subgroup variety H of G such that H.k/ is the Zariski closure of S is called the
Zariski closure of S in G.

ASIDE 1.35. Let k be an infinite perfect field. Then H.k/ is dense in jH j for any connected group
variety H over k (cf. 3.26 below). Let G be an algebraic group over k; then the map H 7!H.k/ is a
bijection from the set of connected subgroup varieties of G to the set of closed subgroups of G.k/
whose closures in jGj are connected.

PROPOSITION 1.36. Let .Hj /j2J be a family of algebraic subgroups of G. Then H def
DT

j2J Hj is an algebraic subgroup of G. If G is affine, then H is affine, and its coordinate
ring is O.G/=I where I is the ideal in O.G/ generated by the ideals I.Hj / of the Hj .
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PROOF. Certainly, H is a closed subscheme (A.19). Moreover, for all k-algebras R,

H.R/D
\
j2J

Hj .R/ (intersection inside G.R/),

which is a subgroup of G.R/, and so H is an algebraic subgroup of G (1.6). Assume that G
is affine. For any k-algebra R,

Hj .R/D fg 2G.R/ j fR.g/D 0 for all f 2 I.Hj /g:

Therefore,

H.R/D fg 2G.R/ j fR.g/D 0 for all f 2
[
I.Hj /g

D Hom.O.G/=I;R/: 2

In fact, because of (1.28), every infinite intersection is equal to a finite intersection.

EXAMPLE 1.37. (a) Let G D GLp over a field of characteristic p. Then SLp and the group
H of scalar matrices in G are smooth subgroups of G, but SLp\H D �p is not reduced.

(b) Let G DG2a. Then H1 DGa�f0g and H1 D f.x;x2Cax4/g are smooth algebraic
subgroups of G, but their intersection is not reduced.

NORMAL AND CHARACTERISTIC SUBGROUPS

DEFINITION 1.38. Let G be an algebraic group.
(a) An algebraic subgroupH ofG is normal ifH.R/ is normal inG.R/ for all k-algebras

R.

(b) An algebraic subgroup H of G is characteristic if ˛ .HR/DHR for all k-algebras
R and all automorphisms ˛ of GR.

The conditions hold for all k-algebras R if they hold for all small k-algebras. In (b) GR and
HR can be interpreted as functors from the category of (small) finitely generated R-algebras
to the category of groups, or as algebraic R-schemes (i.e., as algebraic k-schemes equipped
with a morphism to Spm.R/ (1.10)). Because of the Yoneda lemma (loc. cit.), the two
interpretations give the same condition.

PROPOSITION 1.39. The identity component Gı of an algebraic group G is a characteristic
subgroup of G (hence a normal subgroup).

PROOF. As Gı is the unique connected open subgroup of G containing e, every automor-
phism of G fixing e maps Gı into itself. Let k0 be a field containing k. As .Gı/k0 D .Gk0/ı,
every automorphism of Gk0 fixing e maps .Gı/k0 into itself.

Let R be a k-algebra and let ˛ be an automorphism of GR. We regard GıR and GR as
algebraic R-schemes. It suffices to show that ˛.GıR/ � G

ı
R, and, because GıR is an open

subscheme of GR, for this it suffices to show that ˛.jGıRj/� jG
ı
Rj. Let x 2 jGıRj, and let s

be the image of x in Spm.R/. Then x lies in the fibre G�.s/ of GR over s:

GR G�.s/

Spm.R/ Spm.�.s//:

In fact, x 2 jGıR\G�.s/j D jG
ı
�.s/
j. From the first paragraph of the proof, ˛�.s/.x/ 2 jGı�.s/j,

and so ˛.x/ 2 jGıRj, as required. 2



d. Examples 27

REMARK 1.40. LetH be an algebraic subgroup ofG. If ˛.HR/�HR for all k-algebrasR
and endomorphisms ˛ ofGR, thenH is characteristic. To see this, let ˛ be an automorphism
of GR. Then ˛�1.HR/�HR, and so HR � ˛.HR/�HR.

NOTES. The definition of characteristic subgroup agrees with DG II, �1, 3.9, p.166. The proof that
Gı is characteristic is from DG II, �5, 1.1, p.234.

DESCENT OF SUBGROUPS

1.41. Let G be an algebraic scheme over a field k, and let k0 be a field containing k. Let
G0 DGk0 , and let H 0 be an algebraic subgroup of Gk0 .

(a) There exists at most one algebraic subgroup H of G such that Hk0 D H 0 (as an
algebraic subgroup of Gk0). When such an H exists, we say that H 0 is defined over k
(as an algebraic subgroup of G0).

(b) Let k0 be a Galois extension of k (possibly infinite), and let � DGal.k0=k/. Then H 0

is defined over k if and only if it is stable under the action of � on G0, i.e., the sheaf
of ideals defining it is stable under the action of � on OG0 .

(c) Let k0 D ksep. A subgroup variety H 0 is stable under the action of � on G0 (hence
defined over k) if and only if H 0.k0/ is stable under the action of � on G.k0/.

Apply (A.55, A.56).

d. Examples

We give some examples to illustrate what can go wrong.

1.42. Let k be a nonperfect field of characteristic p > 2, and let t 2 kXkp. Let G be the
algebraic subgroup of A2 defined by

Y p�Y D tXp.

This is a connected group variety over k that becomes isomorphic to A1 over kal, but G.k/
is finite (and so not dense in G). If k D k0.t/, then G.k/D feg (Rosenlicht 1957, p.46).

1.43. Let k be nonperfect of characteristic p, and let t 2 kXkp. Let G be the algebraic
subgroup of A1 defined by the equation

Xp
2

� tXp D 0:

Then Gred is not an algebraic group for any map mWGred�Gred!Gred (Exercise 2-5; SGA
3, VIA, 1.3.2a).

1.44. Let k be nonperfect of characteristic p � 3, and let t 2 kXkp . LetG be the algebraic
subgroup of A4 defined by the equations

U p� tV p D 0DXp� tY p:

Then G is a connected algebraic group of dimension 2, but Gred is singular at the origin, and
hence not an algebraic group for any map m (SGA 3, VIA, 1.3.2b).

1.45. We saw in (1.25) that Gred is an algebraic subgroup of G when k is perfect. However,
it need not be normal even when G is connected. For examples, see (2.23) below.
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1.46. The formation of Gred doesn’t commute with change of the base field. For example,
G may be reduced without Gkal being reduced (1.19). The best one can say is that the
algebraic subgroup .Gkal/red of Gkal is defined over a finite purely inseparable extension of
k.

To see this, let G be an algebraic group over a field k of characteristic p ¤ 0, and let

k0 D kp
�1 def
D fx 2 kal

j 9m� 1 such that xp
m

2 kg:

Then k0 is the smallest perfect subfield of kal containing k, and .Gk0/red is a smooth algebraic
subgroup ofGk0 (1.25). The algebraic variety .Gk0/red and its multiplication map are defined
over a finite subextension of k0.

e. Kernels

Let 'WG!H be a homomorphism of algebraic groups, and let

Ker.'/DG�H � �

G H

e

'

Then Ker.'/ is a closed subscheme of G such that

Ker.'/.R/D Ker.'.R//

for all k-algebras R. Therefore Ker.'/ is an algebraic subgroup of G (see 1.6). It is called
the kernel of '. When G and H are affine, so also is N D Ker.'/, and

O.N /DO.G/˝O.H/ k 'O.G/=IHO.G/

where IH D Ker.O.H/ f 7!f .e/������! k/ is the augmentation ideal of H .

EXAMPLE 1.47. Let Ga be the algebraic group .A1;C/. The algebraic group G in (1.19)
is the kernel of the homomorphism

�WGa�Ga!Ga; .x;y/ 7! yp�axp:

It is not geometrically reduced, and so Ker.�/ is not a group variety even though � is a
homomorphism of group varieties. In the old terminology, one defined the kernel of � to be
the subgroup variety G0WY D a

1
pX of .Ga�Ga/kal , and observed that it is not defined over

k (cf. Springer 1998, 12.1.6).

DEFINITION 1.48. A sequence of algebraic groups

e!N
i
�!G

�
�!Q! e (5)

is exact if � is faithfully flat and i is an isomorphism of N onto the kernel of � . When (5)
is exact, G is called an extension of Q by N .

We shall see (5.17) that, for group varieties (but not algebraic groups in general), a
homomorphism � WG ! Q is faithfully flat if it is surjective as a map of schemes, i.e.,
j�j W jGj ! jQj is surjective.
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PROPOSITION 1.49. A surjective homomorphism 'WG!H of group varieties is smooth
if and only if Ker.'/ is smooth.

PROOF. We may suppose that k is algebraically closed. Recall (A.107), that a dominant map
'WY !X of smooth algebraic varieties is smooth if and only if the maps .d'/y WTy.Y /!
T'.y/.X/ on the tangent spaces are surjective for all y 2 Y .

Let N D Ker.'/. The exact commutative diagram

0 N.kŒ"�/ G.kŒ"�/ H.kŒ"�/

0 N.k/ G.k/ H.k/:

gives an exact sequence of kernels

0! Te.N /! Te.G/! Te.H/:

The fibres of ' are the cosets of N in G, which all have the same dimension, and so

dimN D dimG�dimH

(A.99). On the other hand (1.23),

dimG D dimTe.G/

dimH D dimTe.H/

dimTe.N /� dimN , with equality if and only if N is smooth.

Thus, we see that dimTe.N /D dimN (and N is smooth) if and only if .d'/eWTe.G/!
Te.H/ is surjective. It remains to note that, by homogeneity (1.4), if .d'/e is surjective,
then .d'/g is surjective for all g 2G. 2

NOTES. There is the more precise statement. Let 'WG ! H be a homomorphism of algebraic
groups over k. Suppose that G is smooth. The following conditions are equivalent:

(a) Lie.'/Wg! h is surjective;

(b) Ker.'/ is smooth and '.G/red is open in H ;

(c) H is smooth and ' is smooth.

Proof to be added (DG II, �5, 5.3, p.250).

ASIDE 1.50. Let 'WG!H be a homomorphism of group varieties over k. Borel 1991 et al. define
the kernel of ' to be the subgroup variety Ker.'kal/red of Gkal , which “need not be defined over k”
(see 1.47). Springer 1998, 12.1.3 writes:

Let �WG!G0 be a k-homomorphism of group varieties over k. If k is perfect or the
tangent map .d�/e is surjective, then the “kernel” is defined over k.

In the first case, Ker.�/red is geometrically reduced (A.39), and so Ker.�kal/red D .Ker.�/red/kal ; in
the second case, Ker.�/ is smooth, and so Ker.�kal/red D Ker.�/kal .

ASIDE 1.51. In the language of EGA/SGA, our algebraic groups over k are algebraic group schemes
over k, i.e., group schemes over k whose underlying scheme is of finite type over k (SGA 3, VIA,
p.295). Some of the above results hold without finiteness conditions. For example, group schemes
over a field are always separated (ibid. 0.3, p.296). For a quasicompact morphism uWG!H of
group schemes locally of finite type over k, the following conditions are equivalent:
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(a) u is a closed immersion;

(b) u is a monomorphism;

(c) Ker.u/ is trivial;

in particular, every subgroup scheme of H is closed (SGA 3, VIB , 1.4.2, p.341). However, let
.Z/k denote the constant group scheme over a field k of characteristic zero (cf. 2.3 below). The
obvious homomorphism of .Z/k!Ga;k of group schemes over k has trivial kernel but is not a closed
immersion (ibid. 1.4.3, p.341). As another example, over an algebraically closed field k there is a
zero-dimensional (nonaffine) reduced group scheme G with G.k/D k; the obvious homomorphism
k!Ga of group schemes is both mono and epi, but it is not an isomorphism.

f. Group actions

By a functor (resp. group functor) we mean a functor from small k-algebras to sets (resp.
groups). An action of a group functor G on a functor X is a natural transformation �WG�
X !X such that �.R/ is an action of G.R/ on X.R/ for all k-algebras R.

An action of an algebraic group G on an algebraic scheme X is a regular map

�WG�X !X

such that the following diagrams commute:

G�G�X G�X

G�X X

id��

m�id �

�

��X G�X

X:

'
�

Because of the Yoneda lemma (A.28), to give an action of G on X is the same as giving an
action of QG on QX . We often write gx or g �x for �.g;x/.

Let �WG�X !X be an action of an algebraic group G on an algebraic scheme X . The
following diagram commutes

G�X G�X

X X;

.g;x/ 7!.g;gx/

.g;x/7!gx� .g;x/ 7!xp2

x 7!x

and both horizontal maps are isomorphisms. It suffices to check this on the R-points (R a
k-algebra), where it is obvious (the inverse of the top map is .g;x/ 7! .g;g�1x/). Therefore,
the map �WG�X!X is isomorphic to the projection map p2. It follows that � is faithfully
flat, and that it is smooth (resp. finite) if G is smooth (resp. finite).

Let �WG�X !X be an action of an algebraic group G on an algebraic scheme X . For
an x 2X.k/, the orbit map

�x WG!X; g 7! gx;

is defined to be the restriction of � to G�fxg ' G. We say that G acts transitively on X
if G.kal/ acts transitively on X.kal/, in which case the orbit map �x is surjective for all
x 2X.k/ (because it is on kal-points).

PROPOSITION 1.52. Let G be an algebraic group. Let X and Y be nonempty algebraic
schemes on which G acts, and let f WX ! Y be an equivariant map.
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(a) If Y is reduced and G acts transitively on Y , then f is faithfully flat.

(b) If G acts transitively on X , then the set f .X/ is locally closed in Y .

(c) If X is reduced and G acts transitively on X , then f factors into

X
faithfully
�����!

flat
f .X/red

immersion
������! Y ;

moreover, f .X/red is stable under the action of G.

Because the set f .X/ is locally closed in Y , there exists a unique reduced subscheme
f .X/red of Y having it as its underlying set.

PROOF. (a) As G acts transitively on Y and X is nonempty, the map f .kal/ is surjective,
which implies that f is surjective. In proving that f is flat, we may replace k with its
algebraic closure. By generic flatness (A.88), there exists a nonempty open subset U of Y
such that f defines a flat map from f �1U onto U . As G.k/ acts transitively on Y.k/, the
translates gU of U by elements g of G.k/ cover Y , which shows that f is flat. As it is also
surjective, it is faithfully flat.

(b) Because f .X/ is the image of a regular map, it contains a dense open subset U of
its closure f .X/ (A.59). We shall show that f .X/ is open in f .X/ (hence locally closed).
Regard f .X/ as a reduced algebraic subscheme of Y , and let y 2 f .X/. If y D gu for
some .g;u/ 2G.k/�U.k/, then y 2 gU � f .X/, and so y is an interior point of f .X/. In
general, there exists a finite field extension K of k, a point y0 of f .X/.K/ lying over y, and
a .g;u/ 2G.K/�U.K/ such that guD y0. Now y0 2 gUK � f .XK/, and so y lies in the
image of gUK in f .X/, which is open,4 and so again y is an interior point of f .X/.

(c) BecauseX is reduced, f factors through f .X/red, and so the first part of the statement
follows from (a) and (b). For the second part, let Z D f .X/red. As Z is reduced, it suffices
to show that Z.R/ is stable under the action of G.R/ when R is a field containing k, but
this is obvious. 2

g. Closed subfunctors: definitions and statements

Before defining normalizers and centralizers, we discuss some more general constructions.
By a functor in this section, we mean a functor Alg0

k
! Set.

1.53. Let A be a k-algebra, and let hA denote the functor R Hom.A;R/. Let a be an
ideal in A. The set of zeros of a in hA.R/ is

Z.R/D f'WA!R j '.a/D 0 for all ' 2 ag:

A homomorphism of k-algebras R! R0 defines a map Z.R/! Z.R0/, and these maps
make R Z.R/ into a subfunctor of hA, called the functor of zeros of a. For example, if
AD kŒT1; : : : ;Tn�, then hA D An, and the set of zeros of aD .f1; : : : ;fm/ in hA.R/ is the
set of zeros in Rn of the polynomials fi 2 kŒT1; : : : ;Tn�

1.54. LetZ be a subfunctor of a functorX . From a map of functors f WhA!X , we obtain
a subfunctor h�1.Z/ def

DZ�X h
A of hA, namely,

R fa 2 hA.R/ j f .R/.a/ 2Z.R/g:

We say that Z is a closed subfunctor of X if, for every map f WhA! X , the subfunctor
f �1.Z/ of hA is the functor of zeros of some ideal a in A.

4The map XK !X , being flat, is open (A.87).
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Later in this chapter (�1k), we shall prove the following statements.

1.55. Let X be an algebraic scheme over k. The closed subfunctors of hX are exactly those
of the form hZ with Z a closed subscheme of X (1.77). Recall that hX denotes the functor
R X.R/.

1.56. Let Z be a closed subfunctor of a functor X . For every map Y ! X of functors,
Z�X Y is a closed subfunctor of Y (1.78).

Let R be a small k-algebra. For a functor X , we let XR denote the functor of small
R-algebras defined by composing X with the forgetful functor Alg0R! Alg0

k
. For functors

Y and X , we let Mor.Y;X/ denote the functor

R Mor.YR;XR/:

If Z is a subfunctor of X , then Mor.Y;Z/ is a subfunctor of Mor.Y;X/.

1.57. Let Z be a subfunctor of a functor X , and let Y be an algebraic scheme. If Z is
closed in X , then Mor.Y;Z/ is closed in Mor.Y;X/ (1.82).

h. Transporters

Let G�X !X be an action of an algebraic group G on an algebraic scheme over k. Given
algebraic subschemes Y and Z of X , the transporter TG.Y;Z/ of Y into Z is the functor

R fg 2G.R/ j gYR �ZRg:

Here YR and ZR can be interpreted as algebraic R-schemes (A.32) or as functors on
the category of small R-algebras. Because of the Yoneda lemma (A.32), the different
interpretations give the same condition. Explicitly,

gYR �ZR ” gY.R0/�Z.R0/ for all (small) R-algebras R0:

Note that, because G.R/ is a group,

TG.Y;Y /.R/D fg 2G.R/ j gYR D YRg.

PROPOSITION 1.58. If Z is closed in X , then TG.Y;Z/ is represented by a closed sub-
scheme of G.

PROOF. Consider the diagram:

TG.Y;Z/' Mor.Y;Z/�Mor.Y;X/G G

Mor.Y;Z/ Mor.Y;X/

b

c

The map b is defined by the action of G on X , and c is defined by the inclusion of Z into
X . According to (1.57), Mor.Y;Z/ is a closed subfunctor of Mor.Y;X/, and so TG.Y;Z/
is a closed subfunctor of X (1.56). Therefore it is represented by a closed subscheme of G
(1.55). 2
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i. Normalizers

Let G be an algebraic group over k.

PROPOSITION 1.59. Let H be an algebraic subgroup of G. There is a unique algebraic
subgroup NG.H/ of G such that

NG.H/.R/D
˚
g 2G.R/ j gHRg

�1
DHR

	
for all k-algebras R.

In other words, NG.H/ represents the functor

R N.R/
def
D fg 2G.R/ j gH.R0/g�1 DH.R0/ for all R-algebras R0g.

PROOF. The uniqueness follows from the Yoneda lemma (A.28). Clearly N.R/ is a sub-
group of G.R/, and so it remains to show that N is represented by a closed subscheme of G
(1.6). But, when we let G act on itself by inner automorphisms,

N D TG.H;H/;

and so this follows from (1.58). 2

The algebraic subgroup NG.H/ is called the normalizer of H in G. Directly from its
definition, one sees that the formation of NG.H/ commutes with extension of the base field.
Clearly H is normal in G if and only of NG.H/DG.

PROPOSITION 1.60. Let H be a subgroup variety of G, and let k0 be a field containing
k. If H.k0/ is dense in H , then NG.H/.k/ consists of the elements of G.k/ normalizing
H.k0/ in G.k0/.

PROOF. Let g 2 G.k/ normalize H.k0/, and let gH denote the image of H under the
isomorphism x 7! gxg�1WG!G. Then gH \H is an algebraic subgroup of H such that

.gH \H/.k0/D gH.k0/\H.k0/DH.k0/:

As H.k0/ is dense in H , this implies that gH \H DH , and so gH DH . In particular,
gH.R/g�1DH.R/ for all k-algebrasR, and so g 2NG.H/.k/. The converse is obvious.2

COROLLARY 1.61. Let H be an algebraic subgroup of a smooth algebraic group G. If for
some separably closed field k0 containing k, Hk0 is stable under all inner automorphisms
inn.g/ with g 2G.k0/, then H is normal in G.

PROOF. LetN DNG.H/. ThenN is an algebraic subgroup ofG, and the condition implies
that N.k0/DG.k0/. As G is smooth, this implies that N DG (1.9b). 2

COROLLARY 1.62. LetH be a subgroup variety of a group variety G. IfH.ksep/ is normal
in G.ksep/, then H is normal in G.

PROOF. BecauseH is a variety,H.ksep/ is dense inH , and so (1.60) shows thatNG.H/.ksep/D

G.ksep/. Because G is a variety, this implies that NG.H/DG. 2

COROLLARY 1.63. Let H be a normal algebraic subgroup of a group variety G. If Hred is
a subgroup variety of G, then it is normal in G.



34 1. Basic definitions and properties

PROOF. As H is normal, H.ksep/ is normal in G.ksep/, but H.ksep/DHred.k
sep/ and so

we can apply (1.62). 2

The examples in (1.45) show that it is necessary to take G to be a group variety in
(1.62) and (1.63). Specifically, when k is perfect, Gred is a subgroup variety of G and
Gred.k/DG.k/, but Gred need not be normal.

DEFINITION 1.64. An algebraic subgroup H of an algebraic group G is weakly character-
istic if, for all fields k0 containing k, Hk0 is stable under all automorphisms of Gk0 .

COROLLARY 1.65. Let N be a normal subgroup variety of a group variety G, and let H be
a subgroup variety of N . If H is weakly characteristic in N , then it is normal in G.

PROOF. By hypothesis, Hksep is stable under all automorphisms of Nksep , in particular, by
those induced induced by an inner automorphism of Gksep . Therefore H.ksep/ is normal in
G.ksep/, and so we can apply (1.62). 2

EXAMPLE 1.66. A weakly characteristic algebraic subgroup need not be characteristic.
For example, every commutative algebraic group G over a perfect field contains a greatest
unipotent subgroup U (17.17 below). Clearly ˛U D U for all automorphisms ˛ of G.
The formation of U commutes with extensions of the base field, and so U is even weakly
characteristic. However, it need not be characteristic (17.22 below).

j. Centralizers

Let G be an algebraic group over k.

PROPOSITION 1.67. Let H be an algebraic subgroup of G. There is a unique algebraic
subgroup CG.H/ of G such that, for all k-algebras R,

CG.H/.R/D fg 2G.R/ j g centralizes H.R0/ in G.R0/ for all R-algebras R0g:

PROOF. Let G act on G�G by

g.g1;g2/D .g1;gg2g
�1/; g;g1;g2 2G.R/:

Recall (1.12) that the diagonal �H is closed in H �H , and hence in G�G. Now

C D TG.H;�H /;

which is represented by a closed subscheme G (by 1.58). 2

The algebraic subgroup CG.H/ is called the centralizer of H in G. Directly from its
definition, one sees that the formation of CG.H/ commutes with extension of the base field.
The centre Z.G/ of G is defined to be CG.G/.

EXAMPLE 1.68. Let k be a field of characteristic 2¤ 0, and let a 2 kXk2. Let G D SL4,
and let

hD

0BB@
0 0 0 a

0 0 a�1 0

0 1 0 0

1 0 0 0

1CCA 2G.k/:
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Then CG.h/ is the algebraic subgroup of G of matrices0BB@
x 0 0 ay

0 z t 0

0 at z 0

y 0 0 x

1CCA 2G.R/
with .xzCayt/2�a.xtCyz/2 D 1. This is not reduced.

PROPOSITION 1.69. Let H be a subgroup variety of G, and let k0 be a field containing
k. If H.k0/ is dense in H , then CG.H/.k/ consists of the elements of G.k0/ centralizing
H.k0/ in G.k0/.

PROOF. zLet n be an element of G.k/ centralizing H.k0/. Then n 2NG.H/.k/ (1.60), and
the homomorphism x 7! nxn�1WH !H coincides with the identity map on an algebraic
subgroupH 0 ofH such thatH 0.k0/DH.k0/. This implies thatH 0DH , and so n centralizes
H . 2

COROLLARY 1.70. Let H be a subgroup variety of a group variety G. If H.ksep/ is
contained in the centre of G.ksep/, then H is contained in the centre of G.

PROOF. We have to show that CG.H/DG. For this, we may replace k with ksep (1.41a),
and so assume that k is separably closed. Because H is a variety, H.k/ is dense in H , and
so (1.69) shows that CG.H/.k/D G.k/. Because G is a group variety, this implies that
CG.H/DG (1.9d). 2

COMPLEMENTS

1.71. The centre Z.G/ of a smooth algebraic group need not be smooth — for example, in
characteristic p, the centre of SLp is the nonreduced algebraic group �p .5 Similarly, CG.H/
and NG.H/ need not be smooth, even when H and G are. For some situations where they
are smooth, see 16.23 and 14.66 below.

1.72. Assume that k is perfect, and letH be a subgroup variety of a group variety G. Then

CG.H/red.k
al/D CG.H/.k

al/
(1.69)
D CG.kal/.H.k

al//;

and so CG.H/red is the unique subgroup variety C of G such that C.kal/ is the centralizer
of H.kal/ in G.kal/. Similarly, NG.H/red is the unique subgroup variety N of G such that
N.kal/ is the normalizer of H.kal/ in G.kal/.

1.73. When k has characteristic zero, all algebraic groups over k are smooth (3.38, 10.36
below). It follows from (1.72) that, over a field of characteristic zero, CG.H/ is the unique
algebraic subgroup C of G such that C.kal/ is the centralizer of H.kal/ in G.kal/, and
NG.H/ is the unique algebraic subgroup N of G such that N.kal/ is the normalizer of
H.kal/ in G.kal/.

1.74. LetH be a subgroup variety of a group varietyG. In Borel 1991, p.52, the normalizer
N of H in G is defined to be the subgroup variety NGkal .Hkal/red of Gkal , which “need not
be defined over k”. The centralizer is similarly defined to be a subgroup variety of Gkal .

5For another example, let G, ', and N be as in (8.43) below, and let H D Ga Ì' G. Then Z.H/D N ,
which is not reduced.
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k. Closed subfunctors: proofs

In this section, “functor” means “functor Alg0
k
! Set” unless indicated otherwise.

CLOSED SUBFUNCTORS

LEMMA 1.75. Let Z be a subfunctor of a functor X . Then Z is closed in X if and only if
it satisfies the following condition: for every k-algebra A and map of functors f WhA! Y ,
the subfunctor f �1.Z/ of hA is represented by a quotient of A.

PROOF. This is a restatement of the definition. 2

According to the Yoneda lemma, a map of functors f WhA!X corresponds to an element
˛ 2X.A/. Explicitly, f .R/WhA.R/!X.R/ is the map sending ' 2 hA.R/D Hom.A;R/
to X.'/.˛)2X.R/, and so

f �1.Z/.R/D f'WA!R jX.'/.˛/ 2Z.R/g.

Therefore, Z is closed in X if and only if, for every A and ˛ 2X.A/, the functor

R f'WA!R jX.'/.˛/ 2Z.R/g

is represented by a quotient of A; in down-to-earth terms, this means that there exists an
ideal a� A such that

X.'/.˛/ 2Z.R/ ” '.a/D 0:

EXAMPLE 1.76. Let B be a k-algebra, and let Z be a subfunctor of X D hB . For the
identity map f WhB ! X , f �1.Z/ D Z. It follows that, if Z is closed in hB , then it is
represented by a quotient of B . Conversely, suppose that Z is represented by a quotient B=b
of B , so that

Z.R/D f'WB!R j '.b/D 0g:

Let ˛ 2X.A/D Hom.B;A/, and let f be the corresponding map f WhA!X . Then

f �1.Z/.R/D f'WA!R j ' ı˛ 2Z.R/g

D f'WA!R j '.˛.b//D 0g,

and so f �1.Z/ is represented by the quotient A=˛.b/ of A.
We conclude that the closed subfunctors of hB are exactly those defined by closed

subschemes of Spm.B/.

EXAMPLE 1.77. Consider the functor hX WR X.R/ defined by an algebraic scheme X
over k. If Z is a closed subscheme of X , then certainly hZ is a closed subfunctor of hX .
Conversely, let Z be a closed subfunctor of X . For each open affine subscheme U of X ,
there is a unique ideal I.U / in O.U / such thatZ\hU D hO.U /=I.U / (apply 1.76). Because
of the uniqueness, the sheaves on U and U 0 defined by I.U / and I.U 0/ coincide on U \U 0.
Therefore, there exists a (unique) coherent sheaf I on X such that � .U;I/D I.U / for all
open affines U in X . Now Z D hZ0 where Z0 is the closed subscheme of X defined by I
(A.19).

We conclude that the closed subfunctors of hX are exactly those defined by closed
subschemes of X .
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PROPOSITION 1.78. Let Z be a closed subfunctor of a functor X . For every map Y !X

of functors, Z�X Y is a closed subfunctor of Y .

PROOF. Let f WhA! Y be a map of functors. Then

f �1.Z�X Y /
def
D .Z�X Y /�Y h

A
DZ�X h

A,

which is the functor of zeros of some a� A because Z is closed in X . 2

RESTRICTION OF SCALARS

LEMMA 1.79. Let A and B be k-algebras, and let b be an ideal in B˝A. Among the ideals
a in A such that B˝a� b, there exists a smallest one.

PROOF. Choose a basis .ei /i2I for B as k-vector space. Each element b of B˝A can be
expressed uniquely as a finite sum

b D
X

ei ˝ai ; ai 2 A;

and we let a0 denote the ideal in A generated by the coordinates ai of the elements b 2 b.
Clearly B˝a0 � b. Let a be a second ideal such that B˝a� b. Then the coordinates of
all elements of b lie in a, and so a� a0. 2

Let B be a small k-algebra, and let X be a functor X WAlg0
k
! Set. We define X� to be

the functor
R X.B˝R/WAlg0k! Set:

PROPOSITION 1.80. Let B be a small k-algebra, and let Z be a subfunctor of a functor X .
If Z is closed in X , then Z� is closed in X�.

PROOF. Let A be a k-algebra, and ˛ 2X�.A/. To prove that Z� is closed in X� we have
to show that there exists an ideal a� A such that, for all homomorphisms 'WA!R,

X�.'/.˛/ 2Z�.R/ ” '.a/D 0;

i.e.,
X.B˝'/.˛/ 2Z.B˝R/ ” '.a/D 0:

We can regard ˛ as an element of X.B˝A/. Because Z is closed in X , there exists an
ideal b in B˝A such that, for all homomorphisms '0WB˝A!R0,

X.'0/.˛/ 2Z.R0/ ” '0.b/D 0:

In particular (taking '0 D B˝'/, we have

X.B˝'/.˛/ 2Z.B˝R/ ” .B˝'/.b/D 0: (6)

According to (1.79), there exists an ideal a in A such that an ideal a0 of A contains a if
and only if b� B˝a0. On taking a0 D Ker', we find that

a� Ker.'/ ” b� B˝Ker.'/D Ker.B˝'/: (7)

Now
'.a/D 0

(7)
” .B˝'/.b/D 0

(6)
” X.B˝'/.˛/ 2Z.B˝R/;

as required. 2
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APPLICATION TO Mor

LEMMA 1.81. An intersection of closed subfunctors of a functor is closed.

PROOF. Let Zi , i 2 I , be closed subfunctors of X , and let f WhA!X be map of functors.
For each i 2 I , there is an ideal ai of A such that f �1.Zi /� hA.R/ is the functor of zeros
of ai . Now f �1.

T
i2I Zi /D

T
i2I f

�1.Zi / is the functor of zeros of aD
P
i2I ai . 2

THEOREM 1.82. Let Z be a subfunctor of a functor X , and let Y be an algebraic scheme.
If Z is closed in X , then Mor.Y;Z/ is closed in Mor.Y;X/.

PROOF. Suppose first that Y D hB for some k-algebra B (which we may assume to be
small). Then, for every k-algebra R,

Mor.Y;X/.R/DX.B˝R/;

and so Mor.Y;X/DX�. In this case, the theorem is proved in (1.80).
Let Y D

S
i Yi be a finite covering of Y by open affines, and consider the diagram

Mor.Y;X/
�i
�! Mor.Yi ;X/

[ [

Mor.Y;Z/ �! Mor.Yi ;Z/

in which �i is the restriction map. We know that Mor.Yi ;Z/ is closed in Mor.Yi ;X/, hence
��1i .Mor.Yi ;Z// is closed in Mor.Y;X/ (1.78), and so (see 1.81) it remains to show that

Mor.Y;Z/D
\

i
��1i .Mor.Yi ;Z// .

Let Hi D ��1i .Mor.Yi ;Z//. Certainly, Mor.Y;Z/�
T
iHi , and for the reverse inclu-

sion it suffices to show that the map of functors�\
i
Hi

�
�Y !X

defined by the evaluation map

�WMor.Y;X/�Y !X

factors through Z. For each i , we know that Hi �Yi !X factors through Z. By definition,
Z will become a closed subscheme of an (affine) scheme X after we have pulled back by a
map of functors hA!X . Then ��1.Z/ is a closed subscheme of Mor.Y;X/�Y containing�T

iHi
�
�Yi for all i , and hence containing

�T
iHi

�
�Y . Since this holds for all maps

hA!X , it follows that ��1.Z/�
�T

iHi
�
�Y . 2

ASIDE 1.83. In this section, we used that k is a field only to deduce in the proof of (1.79) that B is
free as a k-module. Thus, the same arguments suffice to prove the following more general statement:
let k be a commutative ring, let X be a functor of k-algebras, and let Z be a closed subfunctor of X ;
let Y be a locally free scheme over k, i.e., such that Y admits a covering by open affines Yi for which
O.Yi / is a free k-module; then Mor.Y;Z/ is a closed subfunctor of Mor.Y;X/. See DG I, �2, 7.5,
p. 64; also Jantzen 1987, 1.15.



CHAPTER 2
Examples; some basic

constructions

Let G be an algebraic group over k. Then O.G/ is a k-algebra. When G is affine, G D
Spec.O.G//, and we call O.G/ the coordinate ring of G. When G is embedded as a closed
subvariety of some affine space An, O.G/ is the ring of functions on G generated by the
coordinate functions on An, whence the name. For an affine algebraic group .G;m/, the
homomorphism of k-algebras

�WO.G/!O.G/˝O.G/
corresponding to mWG�G!G is called the comultiplication map.

At the opposite extreme, when O.G/D k, the algebraic groupG is said to be anti-affine.
For example, if G is complete as an algebraic scheme, then it is anti-affine.

Later (10.33), we shall show that every algebraic group is an extension of an affine
algebraic group by an anti-affine algebraic group in a unique way. In this chapter, we give
examples of affine algebraic groups and anti-affine algebraic groups, and we describe some
methods of constructing algebraic groups.

Recall (1.5) that to give an algebraic group over k amounts to giving a functor from
k-algebras to groups whose underlying functor F to sets is representable by an algebraic
scheme. In the affine case, this means that there is a k-algebra A and a “universal” element
a 2 F.A/ such that, for every x 2 F.R/, there is a unique homomorphism A!R such that
F.A/! F.R/ sends a to x.

a. Affine algebraic groups

2.1. The additive group Ga is the functorR .R;C/. It is represented by O.Ga/D kŒT �,
and the universal element in Ga.kŒT �/ is T :

for every r 2Ga.R/, there is a unique homomorphism kŒT �!R such that the
map Ga.kŒT �/!Ga.R/ sends T to r .

The comultiplication map is the k-algebra homomorphism�WkŒT �! kŒT �˝kŒT � such that

�.T /D T ˝1C1˝T:

2.2. The multiplicative group Gm is the functorR .R�; �/. It is represented by O.Gm/D
kŒT;T �1�� k.T /, and the comultiplication map is the k-algebra homomorphism�WkŒT;T �1�!

kŒT;T �1�˝kŒT;T �1� such that
�.T /D T ˝T:

39
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2.3. Let F be a finite group. The constant algebraic group Fk has underlying scheme a
disjoint union of copies of Spm.k/ indexed by the elements of F , i.e.,

Fk D
G

a2F
Sa; Sa D Spm.k/.

Then
Fk �Fk D

G
.a;b/2F�F

S.a;b/; S.a;b/ D Sa�Sb D Spmk,

and the multiplication map m sends S.a;b/ to Sab . For a k-algebra R,

Fk.R/D Hom.�0.spm.R//;F / (maps of sets).

In particular, Fk.R/D F if R has no nontrivial idempotents. The coordinate ring of Fk is a
product of copies of k indexed by the elements of F ,

O.Fk/D
Y

a2F
ka; ka D k;

and the comultiplication map sends ka˝kb to kab .
If F is the trivial group e, then Fk is the trivial algebraic group �, which has coordinate

ring O.�/D k and comultiplication map the unique k-algebra homomorphism k! k˝k.
We often write e for the trivial algebraic group.

2.4. For an integer n � 1, �n is the functor R fr 2 R j rn D 1g. It is represented by
O.�n/D kŒT �=.T n�1/, and the comultiplication map is induced by that of Gm.

2.5. When k has characteristic p¤ 0, p̨m is the functor R fr 2R j rpm D 0g. To show
that this set is a subgroup of .R;C/, use that .xCy/p D xpCyp in characteristic p. The
functor is represented by O. p̨m/D kŒT �=.T p

m

/, and the comultiplication map is induced
by that of Ga. Note that

kŒT �=.T p
m

/D kŒT �=..T C1/p
m

�1/D kŒU �=.U p
m

�1/; U D T C1,

and so p̨m and �pm are isomorphic as schemes (but not as algebraic groups).

2.6. For a k-vector space V , Va denotes the functor R R˝V .1 Assume now that V is
finite dimensional, and let V _ be the dual vector space. Then2

R˝V ' Hom.V _;R/ (homomorphisms of k-vector spaces)

' Hom.Sym.V _/;R/ (homomorphisms of k-algebras).

Therefore Va is an algebraic group. The choice of a basis for V determines an isomorphism
Va! GdimV

a .

2.7. For integers m;n � 1, Mm;n is the functor R Mm;n.R/ (additive group of m�n
matrices with entries in R). It is represented by kŒT11;T12; : : : ;Tmn�. For a vector space V
over k, we define EndV to be the functor

R End.VR/ (R-linear endomorphisms).

When V has finite dimension n, the choice of a basis for V determines an isomorphism
EndV �Mn;n, and so EndV is an algebraic group in this case.

1Our notation Va is that of DG, II, �1, 2.1, p.147. Many other notations are used, for example, W.V / (SGA
3, I, 4.6.1, p. 24), or Va (Jantzen 1987, 2.2.)

2Recall that, for a finite-dimensional k-vector space V , the symmetric algebra Sym.V / on V has the
following universal property: every k-linear map V ! A from V to a k-algebra A extends uniquely to a
k-algebra homomorphism Sym.V /! A.
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2.8. The general linear group GLn is the functor R GLn.R/ (multiplicative group of
invertible n�n matrices with entries in R). It is represented by

O.GLn/D
kŒT11;T12; : : : ;Tnn;T �

.det.Tij /T �1/
D kŒT11;T12; : : : ;Tnn;1=det�;

and the universal element in GLn.kŒT11; : : :�/ is the matrix .Tij /1�i;j�n:
for every .aij /1�i;j�n 2GLn.R/, there is a unique homomorphism kŒT11; : : :�!R

such that the map GLn.kŒT11; : : :�/! GLn.R/ sends .Tij / to .aij /.
The comultiplication map is the k-algebra homomorphism

�WkŒT11; : : :�! kŒT11; : : :�˝kŒT11; : : :�

such that
�Tij D

X
1�l�n

Til˝Tlj : (8)

Symbolically,
.�Tij /i;j D .Til/i;l˝ .Tlj /l;j :

More generally, for any vector space V over k, we define GLV to be the functor

R Aut.VR/ (R-linear automorphisms).

When V is has finite dimension n, the choice of a basis for V determines an isomorphism
GLV � GLn, and so GLV is an algebraic group in this case.

2.9. The following are algebraic subgroups of GLn:

TnWR f.aij / j aij D 0 for i > j g (upper triangular matrices)

UnWR f.aij / j aij D 0 for i > j , aij D 1 for i D j g

DnWR f.aij / j aij D 0 for i ¤ j g (diagonal matrices),

TnD

0BBBBBB@
� � � � � � �

� � �

: : :
: : :

0 � �

�

1CCCCCCA ; UnD

0BBBBBB@
1 � � � � � �

1 � �

: : :
: : :

0 1 �

1

1CCCCCCA ; DnD

0BBBBBB@

�

� 0
: : :

0 �

�

1CCCCCCA :

For example, Un is represented by the quotient of kŒT11;T12; : : : ;Tnn� by the ideal generated
by the polynomials

Tij .i > j /; Ti i �1 (all i ):

2.10. An algebraic group G over k is a torus if it becomes isomorphic to a product of
copies of Gm over a finite separable extension of k. See Chapter 14.

2.11. An algebraic group G over k is a vector group if is isomorphic to a product of copies
of Ga. For example, the algebraic group Va attached to a finite-dimensional vector space V
over k is a vector group. In characteristic zero, a vector group U is canonically isomorphic
to Lie.U /a; in particular, it has an action of k. See Chapter 15.
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2.12. A k-algebra A is finite if it is finitely generated as a k-vector space. An algebraic
k-scheme X is finite over k if OX .U / is a finite k-algebra for every open affine U in X . An
algebraic group G over k is finite if it is finite as a scheme over k.

The following conditions on an algebraic scheme over k are equivalent: (a) X is finite
over k; (b) X is affine and OX .X/ is a finite k-algebra; (c) jX j is finite and discrete. In
particular, we see that every finite algebraic group is affine. The dimension of O.G/ as a
k-vector space is called the order o.G/ of G. See Chapter 13.

2.13. A k-algebra A is étale if it is a finite product of separable field extensions of k. A
finite algebraic scheme X over k is étale if O.X/ is an étale k-algebra. An algebraic group
G over k is étale if it is étale as a scheme over k.

The following conditions on a scheme X finite over k are equivalent: (a) X is étale over
k; (b) X is smooth over k; (c) X is geometrically reduced; (d) X is an algebraic variety.
Thus, the étale algebraic groups over k are exactly the finite group varieties over k.

Let � D Gal.ksep=k/. The functor X X.ksep/ is an equivalence from the category
of étale algebraic schemes over k to the category of finite sets endowed with a continuous
action of � (discrete topology on X.ksep/; Krull topology on � ) (see my Field Theory notes,
Chapter 8). Correspondingly, the functor G G.ksep/ is an equivalence from the category
of étale algebraic groups over k to the category of finite groups endowed with a continuous
action of � by group homomorphisms. See Chapter 13.

b. Anti-affine algebraic groups

Later (10.34) we shall show that every anti-affine algebraic group is both connected and
smooth. In particular, we need only consider anti-affine group varieties.

Clearly, a complete connected group variety G has O.G/D k. Such a group variety is
called an abelian variety. Abelian varieties are commutative and projective. The abelian
varieties of dimension 1 are exactly the elliptic curves, i.e., curves of genus 1 equipped
k-point. When equipped with a polarization of fixed degree (roughly, a distinguished class
of projective embeddings), the abelian varieties of dimension d form a family of dimension
d.d C1/=2. Their study is an important part of mathematics, which we shall largely ignore
here. See, for example, Milne 1986 and Mumford 2008.

In the remainder of this section, we describe the classification of anti-affine algebraic
groups in terms of abelian varieties — it can be skipped.

Consider an extension
e! T !G! A! e (9)

of an abelian variety A by a torus T . The group of characters X�.T / of T is defined to be
Hom.Tksep ;Gm/. By definition, the torus T becomes isomorphic to Grm (r D dimT ) over
ksep, and so

X�.T /� End.Gm/r ' Zr .

From a character � of T , we obtain by extension of scalars and pushout from (9), an extension

e!Gm!G�! Aksep ! e

over ksep, and hence an element

c.�/ 2 Ext1.Aksep ;Gm/.



c. Homomorphisms of algebraic groups 43

Let A_ D PicVar.A/ be the dual abelian variety to A. Then

Ext1.Aksep ;Gm/' A_.ksep/

(e.g., Milne 1986, 11.3), and so the extension (9) gives rise to a homomorphism cWX�.T /!

A_.ksep/.

PROPOSITION 2.14. The algebraic group G is anti-affine if and only if the homomorphism
c is injective.

PROOF. See Brion 2009, 2.1. 2

In nonzero characteristic p, all anti-affine algebraic groups are of this form, but in
characteristic zero, extensions of an abelian variety by a vector group may also be anti-affine.

Let A be an abelian variety over a field k of characteristic zero. In this case, there is a
“universal vector extension” E.A/ of A such that every extension G of A by a vector group
U fits into a unique diagram

e H 1.A;OA/_a E.A/ A e

e U G A e



with  a k-linear map. The algebraic group E.A/ is anti-affine, and G is anti-affine if
and only if  is surjective. Therefore, the anti-affine extensions of A by vector groups
are classified by the quotient spaces of H 1.A;OA/_, or, equivalently, by the subspaces of
H 1.A;OA/.

More generally, we need to consider extensions

e! U �T !G! A! e

of A by the product of a vector group U with a torus T . Such a G is anti-affine if and only if
both G=U and G=T are anti-affine, and every anti-affine group over A arises in this way.
Thus we arrive at the following statement.

THEOREM 2.15. Let A be an abelian variety over a field k:

(a) If k has nonzero characteristic, then the isomorphism classes of anti-affine groups over
A are in one-to-one correspondence with the free abelian subgroups � of A_.ksep/ of
finite rank stable under the action of Gal.ksep=k/.

(b) If k has characteristic zero, then the isomorphism classes of anti-affine groups over A
are in one-to-one correspondence with the pairs .�;V / where � is as in (a) and V is
a subspace of the k-vector space H 1.A;OA/.

PROOF. See Brion 2009, 2.7; also Sancho de Salas 2001; Sancho de Salas and Sancho de
Salas 2009. 2

c. Homomorphisms of algebraic groups

2.16. Let k be a field of characteristic p ¤ 0. For a k-algebra R, we let fR denote the
homomorphism a 7! apWR! R. When R D k, we omit the subscript on f . For a k-

algebra k
i
�!R, we letfR denote the ring R regarded as a k-algebra by means of the map
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k
f
�! k

i
�! R. Let G be an algebraic group over k (not necessarily affine), and let G.p/

denote the functor R G.fR/. When G is affine, this is represented by O.G/˝k;f k
(tensor product of O.G/ with k relative to the map f Wk! k),

R

O.G/ O.G/˝k;f k

k k
f

i

b
a

a 2G.fR/

b 2 Homk-algebra.O.G/˝k;f k;R/

and so it is again an affine algebraic group. In the general case, we can cover G with open
affines, and again deduce that G.p/ is an algebraic group. The k-algebra homomorphism
fRWR!fR defines a homomorphism G.R/! G.p/.R/, which is natural in R, and so
arises from a homomorphism F WG!G.p/ of algebraic groups, called the Frobenius map.
When G is affine, it corresponds to the homomorphism of Hopf algebras

c˝a 7! capWO.G.p//!O.G/:

Similarly we define F nWG!G.p
n/ by replacing p with pn. Then F n is the composite

G
F
�!G.p/

F
�! �� �

F
�!G.p

n/:

The kernel of F n is a characteristic subgroup of G: if R is a k-algebra and ˛ is an automor-
phism of GR, then there is a commutative diagram

Ker.F n/ GR .G.p
n//R

Ker.F n/ GR .G.p
n//R:

˛

F n

˛.p
n/

F n

If F n D 0, then the algebraic group G is said to have height � n.

2.17. A homomorphism ˛WG ! H of connected group varieties is an isogeny if it is
surjective and its kernel is finite. An isogeny is separable if its kernel it is étale (equivalently,
.d˛/eWTeG! TeH is an isomorphism). An isogeny is central if its kernel is contained in
the centre of G.

d. Products

2.18. Let G1; : : : ;Gn be algebraic groups over k. Then G1�� � ��Gn is an algebraic group,
called the product of the Gi . It represents the functor

R G1.R/� � � ��Gn.R/.

When the Gi are affine, G1� � � ��Gn is affine, and

O.G1� � � ��Gn/'O.G1/˝�� �˝O.Gn/.
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2.19. Let G1!H  G2 be homomorphisms of algebraic groups. Then G1�H G2 is an
algebraic group, called the fibred product of G1 and G2 over H . It represents the functor

R G1.R/�H.R/G2.R/:

When G1, G2, and H are affine, G1�H G2 is affine, and

O.G1�H G2/'O.G1/˝O.H/O.G2/.

Directly from the definition, one sees that the formation of fibred products of algebraic
groups commutes with extension of the base field:

.G1�H G2/k0 'G1k0 �Hk0 G2k0 :

For example, ifG1 andG2 are algebraic subgroups of an algebraic groupH , thenG1�H G2
equals their intersection G1\G2 in H .

e. Semidirect products

DEFINITION 2.20. An algebraic group G is said to be a semidirect product of its algebraic
subgroups N and Q, denoted G D N ÌQ, if N is normal in G and the map .n;q/ 7!
nqWN.R/�Q.R/!G.R/ is a bijection of sets for all k-algebras R.

In other words, G is a semidirect product of N and Q if G.R/ is a semidirect product of
its subgroups N.R/ and Q.R/ for all k-algebras R.

For example, the algebraic group of upper triangular n�n matrices Tn is the semidirect
product,

Tn D UnÌDn;

of its (normal) subgroup Un (defined by ai i D 1/ and its subgroup Dn (defined by aij D 0
for i < j ) (see 2.9).

PROPOSITION 2.21. Let N and Q be algebraic subgroups of an algebraic group G. Then
G is the semidirect product of N andQ if and only if there exists a homomorphism G!Q0

whose restriction to Q is an isomorphism and whose kernel is N .

PROOF. )W By assumption, the product map is a bijection of functors N �Q! G. The
composite of the inverse of this map with the projection N �Q! Q has the required
properties.
(W Let 'WG!Q0 be the given homomorphism. Then N is certainly normal, and for

every k-algebra R, '.R/ realizes G.R/ as a semidirect product G.R/DN.R/ÌQ.R/ of
its subgroups N.R/ and Q.R/. 2

Recall that an action of an algebraic group G on a functor X from k-algebras to sets
is a natural transformation � WG �X ! X such that each map G.R/�X.R/! X.R/ is
an action of the group G.R/ on the set X.R/. Now let N and Q be algebraic groups, and
suppose that there is given an action of Q on N

.q;n/ 7! �R.q;n/WQ.R/�N.R/!N.R/

such that, for every q, the map n 7! �R.q;n/ is a group homomorphism. Then the functor

R N.R/Ì�RQ.R/WAlg0k! Grp
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is an algebraic group because its underlying functor to sets is N �Q, which is represented
by O.N /˝O.G/. We denote this algebraic group by N Ì� Q, and call it the semidirect
product of N and Q defined by � . For n;n0 2N.R/ and q;q0 2Q.R/, we have

.n;q/ � .n0;q0/D .n ��.q/n0;qq0/:

EXAMPLE 2.22. In contrast to abstract groups, a finite algebraic group of order p may act
nontrivially on another such group, and so there are noncommutative finite algebraic groups
of order p2. For example, there is an action of �p on p̨,

.u; t/ 7! ut W�p.R/� p̨.R/! p̨.R/;

and the corresponding semidirect productG D p̨Ì�p is a noncommutative finite connected
algebraic group of order p2. We have O.G/D kŒt; s� with

tp D 1; sp D 0; �.t/D t˝ t; �.s/D t˝ sC s˝1I

the normal subgroup scheme p̨ corresponds to the quotient of O.G/ obtained by putting
t D 1, and the subgroup scheme �p corresponds to the quotient with s D 0.

EXAMPLE 2.23. As promised (1.45), here are two examples of algebraic groups G over a
perfect field such that Gred is not normal.

(a) Let G D �3Ì .Z=2Z/k with the obvious action of .Z=2Z/k on �3 and k perfect of
characteristic 3. Then Gred D .Z=2Z/k is not normal.

(b) Let G D p̨ ÌGm with the obvious action of Gm on p̨ and k perfect of characteristic
p. Then Gred DGm is not normal. See Exercise 2-6 (or SGA 3, VIA, 0.2, p.296).

f. The algebraic subgroup generated by a map

Let f WX !G be a regular map from an algebraic scheme X over k to an algebraic group
G. We shall show that there exists a smallest algebraic subgroup H of G such that f factors
through H in the following two cases: X is geometrically reduced (2.25); X and G are
affine (2.27).

GEOMETRICALLY REDUCED CASE

Recall that invWG!G is the map g 7! g�1.

PROPOSITION 2.24. Let f WX !G be a regular map from a geometrically reduced alge-
braic scheme X over k to an algebraic group G. Assume that inv.f .X//� f .X/, and let
f n denote the map

.x1; : : : ;xn/ 7! f .x1/ � � �f .xn/WX
n
!G:

The reduced algebraic subscheme of G with underlying set the closure of
S
n Im.f n/ is a

smooth algebraic subgroup of G.

PROOF. Because X is geometrically reduced, so also is Xn (A.39). The map f nWXn!H

is schematically dominant for n large because it is dominant and H is reduced (A.70). It
follows that H is geometrically reduced and that its formation commutes with extension of
the base field. Therefore, in proving that H is an algebraic subgroup of G, we may suppose
that k is algebraically closed. Let Z be the closure of m.H �H/ in G. The intersection of
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m�1.ZXH/ with H �H is an open subset of H �H , which is nonempty if m.H �H/ is
not contained in H . In that case, there exist x1; : : : ;xn;y1; : : : ;yn 2X.k/ such that

.f .x1/ � � �f .xn/;f .y1/ � � �f .yn// 2m
�1.ZXH/

(because Im.f n/� Im.f n/ is constructible, and therefore contains an open subset of its
closure; A.68). But this is absurd, because

m.f .x1/ � � �f .xn/;f .y1/ � � �f .yn//D f .x1/ � � �f .xn/f .y1/ � � �f .yn/ 2H.k/:

The condition inv.f .X// � f .X/ implies that inv maps H into H , and so H is an
algebraic subgroup of G. It is smooth because it is geometrically reduced. 2

PROPOSITION 2.25. Let .fi WXi !G/i2I be a finite family of regular maps from geomet-
rically reduced algebraic schemes Xi over k to an algebraic group G. There exists a smallest
algebraic group H of G such that all fi factor through H . Moreover, H is smooth.

PROOF. Let X D
F
i2I Xi tXi , and let f WX!G be the map whose restriction to Xi tXi

is fi on the first component and invıfi on the second component. Then inv.f .X//� f .X/,
and the algebraic subgroup H attached to f in (2.24) has the required properties. 2

We call H the algebraic subgroup of G generated by the fi (or Xi ). Its formation
commutes with extension of the base field (A.70).

PROPOSITION 2.26. Let f WX!G be a regular map from a geometrically reduced scheme
X over k to an algebraic group G. If X is geometrically connected and f .X/ contains e,
then the algebraic subgroup of G generated by f is connected.

PROOF. Let f 0 be the mapX 0 def
DX tX!G acting as f on the first component and invıf

on the second. The hypotheses imply that
S

Im.f 0n/ is connected, and so its closure H is
connected. 2

AFFINE CASE

Let f WX !G be a regular map from an affine algebraic scheme X to an affine algebraic
group G. Assume that the image of f contains e, say f .o/D e. Let In be the kernel of the
homomorphism O.G/!O.Xn/ of k-algebras defined by the regular map

.x1; : : : ;xn/ 7! f .x1/ � � � � �f .xn/WX
n
!G:

From the regular maps

X !X2! �� � !Xn! �� � !G;

.x/ 7! .x;o/ 7! � � �

we get inclusions
I1 � I2 � �� � � In � �� � ;

and we let I D
T
In.

PROPOSITION 2.27. Assume that inv.f .X.R//� f .X.R// for all R. Then the subscheme
H of G defined by I is an algebraic subgroup of G. It is the smallest algebraic subgroup
H of G such that H.R/ contains f .X.R// for all k-algebras R. In other words, it is the
smallest algebraic subgroup such that f WX !G factors through H .
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PROOF. From the diagram of algebraic schemes

Xn � Xn X2n

G � G G,
mult

we get a diagram of k-algebras

O.Xn/ ˝ O.Xn/ O.X2n/

O.G/ ˝ O.G/ O.G/.�

The image of O.G/ in O.Xn/ is O.G/=In and its image in O.X2n/ is O.G/=I2n, and so
the diagram shows that

�WO.G/!O.G/=In˝O.G/=In

factors through O.G/!O.G/=I2n. It follows that

�WO.G/!O.G/=I ˝O.G/=I

factors through O.G/! O.G/=I , and defines a multiplication map mH WH �H ! H .
The triple .H;mH ; e/ is the smallest algebraic submonoid of G such that H.R/ contains
f .X.R// for all k-algebras R.

The hypothesis inv.f .X.R// � f .X.R// implies that inv.H/ has the same property,
and so equals H . Therefore .H;mH / is an algebraic subgroup of G. It clearly has the
required properties. 2

We write hX;f i for the algebraic subgroupH in the proposition, and call it the algebraic
subgroup generated by f (or X/. If f .X/ is not stable under inv, we define hX;f i to be
the algebraic subgroup generated by f t invıf WX tX !G.

PROPOSITION 2.28. Let K be a field containing k. Then hX;f iK D hXK ;fKi.

PROOF. The definition of I commutes with extension of the base field. 2

PROPOSITION 2.29. If X is geometrically connected (resp. geometrically reduced), then
hX;f i is connected (resp. geometrically reduced).

PROOF. We may suppose that k is algebraically closed. An affine scheme Y is connected if
and only if O.Y / has no nontrivial idempotent (CA 14.2). Assume that X is connected. If
O.G/=I had a nontrivial idempotent, then so would O.G/=In for some n, but (by definition)
the homomorphism of k-algebras O.G/=In!O.Xn/ is injective. As X is connected and
k is algebraically closed, Xn is connected, and so this is a contradiction. The proof of the
remaining statement is similar. 2

NOTES. The first approach follows that in SGA 3, VIB , �7, p.384. The second approach is based on
the construction of the derived group in Waterhouse 1979.
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g. Forms of algebraic groups

Details to be added (see Chapter 25).

2.30. Let G be an algebraic group over k. A form of G over k is an algebraic group
G0 over k that becomes isomorphic to G over kal. When G is smooth, G0 then becomes
isomorphic to G over ksep.

2.31. Let G be a smooth quasi-projective algebraic group3 over a field k, and let � D
Gal.ksep=k/. Let G0 be a form of G over k, and choose an isomorphism aWGksep !G0

ksep .
Then � 7! c� D a

�1 ı �a is a continuous 1-cocycle for � with values in Aut.Gksep/ whose
cohomology class does not depend on the choice of a. In this way, the isomorphism classes
of forms of G over k are classified by H 1.�;Aut.Gksep//. When G is not smooth, the
k-foms are classified by the flat cohomology group H 1.k;Aut.G//.

2.32. Let G be an algebraic group over a field k. There exists an exact sequence

e!Z.G/!G!Gad
! e

(see later). The algebraic group Gad is called the adjoint group of G. The action of G on
itself by inner automorphisms defines an action of Gad on G. An inner automorphism of G
is an automorphism defined by an element of Gad.k/. Such an automorphism need not be of
the form inn.g/ with g 2G.k/, but it becomes of this form over kal.

2.33. Let G be a smooth quasi-projective algebraic group over a field k. An inner form
of G is a pair .G0;˛/ consisting of an algebraic group G0 over k and a G.ksep/-conjugacy
class of isomorphisms aWGksep ! G0ksep such that a�1 ı �a is an inner automorphism of
Gksep for all � 2 � . An isomorphism .G0;˛/! .G00;˛

0/ of inner forms is an isomorphism
of algebraic groups 'WG0!G00 (over k) such that

a 2 ˛ H) ' ıa 2 ˛0:

Any two isomorphisms .G0;˛/! .G00;˛
0/ differ by an inner automorphism of G0 (or G00).

If .G0;˛/ is an inner form of G, and a 2 ˛, then � 7! c�
def
D a�1 ı �a is a 1-cocycle for �

with values in Gad.ksep/ whose cohomology class does not depend on the choice of a in ˛.
In this way, we obtain a one-to-one correspondence between the isomorphism classes of
inner forms of G and the elements of H 1.k;Gad/.

�2.34. Let G be a smooth algebraic group over a field k. Corresponding to the exact
sequence

e!Gad
! Aut.G/! U ! e

we obtain maps
H 1.k;Gad/

a
�!H 1.k;Aut.G//!H 1.k;U /:

Sometimes (e.g., Voskresenskiı̆ 1998, 3.10), a form ofG is said to be inner or outer according
as its class in H 1.k;Aut.G// lies in the image of a or not. It is important to note that, with
this definition, the inner forms are classified by the image of a, not H 1.k;Gad/.

3In fact, all algebraic groups over a field are quasi-projective.
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h. Restriction of scalars

Throughout this section, A is a finite k-algebra.

2.35. Let X be a quasi-projective scheme over A. The Weil restriction of X to k is an
algebraic scheme XA=k over k such that

XA=k.R/DX.A˝R/

for all k-algebras R. In other words, XA=k represents the functor

.F /A=k WAlgk! Set; R X.A˝R/:

For a closed subscheme X of An or Pn, the existence of XA=k follows from (1.80). See
A.125 and A.126 in general.

2.36. For a quasi-projective algebraic group G over A, the functor .G/A=k ,

R G.A˝R/WAlgk! Set

takes values in the category of groups and is representable (2.35), and so it is an algebraic
group. The algebraic group .G/A=k is said to have been obtained from G by (Weil) restric-
tion of scalars (or by restriction of the base ring), and .G/A=k is called the Weil restriction
of G. Thus

.G/A=k.R/'G.R/

all k-algebras R. The functor G .G/A=k from quasi-projective algebraic A-groups to
algebraic k-groups is denoted by ResA=k or ˘A=k .

From now on, all algebraic groups are quasi-projective.

2.37. Let G be an algebraic group over k. For a k-algebra R, the map r 7! 1˝ r WR!

A˝R is a homomorphism of k-algebras, and so it induces a homomorphism

G.R/!G.A˝R/
def
D
�
˘A=kGA

�
.R/:

This is natural in R, and so it arises from a homomorphism

iG WG!˘A=kGA

of algebraic k-groups. The homomorphism iG has the following universal property:
for every algebraic group H over A and ho-
momorphism ˛WG! .H/A=k , there exists a
unique homomorphism ˇWGA!H such that
.ˇ/A=k ı iG D ˛.

G .GA/A=k GA

.H/A=k H

iG

˛ ˘A=kˇ 9Š ˇ

Indeed, for an A-algebra R, ˇ.R/ must be the map

GA.R/
def
DG.R0/ H.k0˝kR0/ H.R/

˛.R0/ 

ˇ.R/

where R0 denotes R regarded as a k-algebra, and  is induced by the homomorphism of
A-algebras c˝ r 7! cr WA˝kR0!R.
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2.38. According to (2.37), for every algebraic k-group G and algebraic A-group H ,

Hom.G;˘A=kH/' Hom.GA;H/:

In other words, ˘A=k is right adjoint to the functor “change of base ring k! A”. Being a
right adjoint, ˘A=k preserves inverse limits (MacLane 1971, V, �5). In particular, it takes
products to products, fibred products to fibred products, equalizers to equalizers, and kernels
to kernels. This can also be checked directly from the definition of ˘A=k .

2.39. For any sequence of finite homomorphisms k! k0! A with k0 a field,

˘k0=k ı˘A=k0 '˘A=k .

Indeed, for an algebraic group G over A and k-algebra R,��
˘k0=k ı˘A=k0

�
.G/

�
.R/D

�
˘k0=k.˘A=k0.G//

�
.R/

D .˘A=k0G//.k
0
˝kR/

DG.A˝k0 k
0
˝kR/

'G.A˝kR/

D
�
˘A=kG

�
.R/

because A˝k0 k0˝kR'A˝kR. Alternatively, observe that˘k0=k ı˘A=k0 is right adjoint
to H  HA.

2.40. For any field K containing k and algebraic group G over A,�
˘A=kG

�
K
'˘A˝kK=K.GK/I (10)

in other words, Weil restriction commutes with extension of scalars. Indeed, for a K-algebra
R, �

˘A=kG
�
K
.R/D

�
˘A=kG

�
.R/

DG.A˝kR/

'G.A˝kK˝K R/

D˘A˝kK=K.GK/.R/

because A˝kR' A˝kK˝K R.

2.41. Let A be a product of finite k-algebras, AD k1�� � ��kn. To give an algebraic group
G over A is the same as giving an algebraic group Gi over each ki . In this case,

.G/A=k ' .G1/k1=k � � � �� .Gn/kn=k . (11)

Indeed, for any k-algebra R,

.G/A=k.R/DG.A˝R/

DG1.k1˝R/� � � ��Gn.kn˝R/

D .G1/k1=k .R/� � � �� .Gn/kn=k .R/

D
�
.G1/k1=k � � � �� .Gn/kn=k

�
.R/:
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2.42. Let A be an étale k-algebra, and let K be a field containing all k-conjugates of A.
Then �

˘A=kG
�
K
'

Y
˛WA!K

G˛

where G˛ is the algebraic group over K obtained by extension of scalars with respect to
˛WA!K. Indeed �

˘A=kG
�
K

(10)
' ˘A˝K=KGK

(11)
'

Y
˛WA!K

G˛

because A˝K 'KHomk.A;K/.

2.43. Let A D kŒ"� where "2 D 0, and let G be an algebraic group over k. For each
P 2G.k/, the fibre of G.kŒ"�/!G.k/ over P is the tangent space to G at P (A.47). There
is an exact sequence

0! Va! .GA/A=k!G! 0

where V is the tangent space to G at e. For a more general statement, see 12.29.

2.44. We saw in (2.42) that, when A is étale, .G/A=k becomes isomorphic to a product
of copies of G over some field containing A. This is far from being true when A=k is an
inseparable field extension. For example, let k be a nonperfect field of characteristic 2, and
let AD kŒ

p
a� where a 2 kXk2. Then

A˝k A' AŒ"�; "D a˝1�1˝a; "2 D 0:

For an algebraic group G over k,�
˘A=kGA

�
A

2.40
' ˘A˝A=AGA˝A '˘AŒ"�=AGAŒ"�;

which is an extension of GA by a vector group (2.43). However, .G/A=k is smooth if G is
smooth — this follows from the criterion (A.53).

ASIDE 2.45. When F is represented by an algebraic scheme X , it is not always true that .F /A=k is
represented by a scheme. Let X D

S
i Ui be an open affine covering of X . Then X 0 D

S
i .Ui /A=k is

a scheme, and QX 0 is a subfunctor of .F /A=k , but it need not equal .F /A=k . If ŒAWk�D d and every
d -tuple of points of X lies in some Ui , then QX 0 D .F /A=k , and so .F /A=k is representable. See the
proof of Theorem 4, p.194, of Bosch et al. 1990.

ASIDE 2.46. Let F be a functor from k-algebras (not necessarily finitely generated) to sets and let
AD Nat.F;A1/. Then F.R/' Homk-algebra.A;R/ for all k-algebras R. It is tempting to conclude
that F is representable, but, in general, A will not be a set, and hence not a k-algebra.

Exercises

EXERCISE 2-1. For a homomorphism G!H of abstract groups with kernel N , show that
the map

.g;n/ 7! .g;gn/WG�N !G�H G (12)

is a bijection. Deduce that, for every homomorphism G!H of algebraic k-groups with
kernel N , there is a unique isomorphism of algebraic k-schemes

G�N !G�H G (13)

that becomes the map (12) when we take points with coordinates in a k-algebra R.
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EXERCISE 2-2. Show that for any diagram of abstract groups

H

N G G0;

ˇ (14)

with N the kernel of G!G0, the map

.n;h/ 7! .n �ˇ.h/;h/WN �H !G�G0H (15)

is an isomorphism. Deduce that, for every diagram (14) of algebraic groups, there is a unique
isomorphism

M �H 'G�G0H

that becomes (15) when we take points with coordinates in a k-algebra R.

EXERCISE 2-3. Let G be an algebraic over a field k, and let k0 D kŒ"� where "m D 0. Show
that .G/k0=k has a filtration whose quotients are G or vector groups.

EXERCISE 2-4. Let G be a finite (hence affine) algebraic group. Show that the following
conditions are equivalent:

(a) the k-algebra O.Gred/ is étale;

(b) O.Gred/˝O.Gred/ is reduced;

(c) Gred is an algebraic subgroup of GI

(d) G is isomorphic to the semidirect product of Gı and �0G.

EXERCISE 2-5. Let k be a nonperfect field of characteristic p, and let a 2 kXkp. Show
that the functor

R G.R/
def
D fx 2R j xp

2

D axpg

becomes a finite commutative algebraic group under addition. Show that G.k/ has only one
element but �0.G/ has p. Deduce that G is not isomorphic to the semidirect product of Gı

and �0.G/. (Hence Exercise 2-4 shows that O.G/=N is not a Hopf algebra.)

EXERCISE 2-6. Let k be a field of characteristic p. Show that the extensions

0! �p!G! Z=pZ! 0

with G a finite commutative algebraic group are classified by the elements of k�=k�p (the
split extension G D �p �Z=pZ corresponds to the trivial element in k�=k�p). Show that
Gred is not a subgroup of G unless the extension splits.

EXERCISE 2-7. Over a field k of characteristic 3, let G D �3Ì .Z=2Z/k for the (unique)
nontrivial action of .Z=2Z/k on �3; then Gred D .Z=2Z/k , which is not normal in G.4

Similarly, over a field of characteristic p, let G D p̨ ÌGm for the obvious nontrivial action
of Gm on p̨; then G is a connected algebraic group such that Gred DGm is an algebraic
subgroup of G which is not normal.

4Let R be a k-algebra with no nontrivial idempotents but containing a primitive cube root � of 1. Let �
denote the nonneutral element of .Z=2Z/k.R/D Z=2Z. By definition ��� D ��1 D �2. Therefore �� D ��2,
and ����1 D ���2 D ��4 D �� … .Z=2Z/k .R/.
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EXERCISE 2-8. Let ˛WG!H be an isogeny of affine group varieties over k, and let k0 be
a finite field extension of k. Prove the following (Pink 2004, 1.6):

(a) if k0=k is separable, then .˛/k0=k W.G/k0=k! .H/k0=k is an isogeny if and only if ˛
is an isogeny;

(b) if k0=k is inseparable, then .˛/k0=k W.G/k0=k! .H/k0=k is an isogeny if and only if
˛ is a separable isogeny.



CHAPTER 3
Affine algebraic groups and Hopf

algebras

We explain the relation between affine algebraic groups and Hopf algebras.

a. The comultiplication map

Let A be a k-algebra, and let �WA! A˝A be a homomorphism. Because

Spm.A˝A/' Spm.A/�Spm.A/

(A.34), we can regard Spm.�/ as a map Spm.A/�Spm.A/! Spm.A/.
From a pair of homomorphisms of k-algebras f1;f2WA!R we get a homomorphism

.f1;f2/WA˝A!R; .a1;a2/ 7! f1.a1/f2.a2/;

and we set
f1 �f2 D .f1;f2/ı�: (16)

This defines a binary operation on hA.R/D Hom.A;R/.

PROPOSITION 3.1. The pair .Spm.A/;Spm.�// is an algebraic group over k if and only if
(16) makes Hom.A;R/ into a group for all k-algebras R.

PROOF. Let .G;m/D .SpmA;Spm�/. From .A;�/ we get a functor hAWR Hom.A;R/
from k-algebras to the category of sets equipped with a binary operation (i.e., to magmas).

If hA takes values in the subcategory of groups, then there are natural transformations
eW� ! hA, and invWhA! hA making the diagrams (2, 3), p.17, commute. According to
the Yoneda lemma (A.27), these natural transformations arise from regular maps eW� !G,
invWG!G making the same diagrams commute, and so .G;m/ is an algebraic group.

Conversely, the existence of the regular maps e and inv implies that .hA;h�/ takes
values in the subcategory of groups. 2

REMARK 3.2. Let G be an affine algebraic group, and let O.G/ be its coordinate ring.
Then

G.R/' Homk-algebra.O.G/;R/;
and so an f 2O.G/ defines an evaluation map

fRWG.R/!R; g 7! g.f /I (17)

55
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i.e.,
fR.g/D g.f /; f 2O.G/; g 2G.R/.

In this way, we get an isomorphism

O.G/' Nat.G;A1/ (18)

where A1 is the functor sending a k-algebra R to its underlying set. Similarly,

O.G�G/' Nat.G�G;A1/

With this interpretation

.�f /R.g1;g2/D fR.g1 �g2/; f 2O.G/; g1;g2 2G.R/: (19)

b. Hopf algebras

Let .G;m/ be an affine algebraic group over k, and let ADO.G/. We saw in the preceding
chapter that m corresponds to a homomorphism �WA! A˝A. The maps e and inv
correspond to homomorphisms of k-algebras �WA! k and S WA! A, and the diagrams (2)
and (3), p.17, correspond to diagrams

A˝A˝A A˝A

A˝A A

id˝�

�˝id �

�

k˝A A˝A A˝k

A

�˝id id˝�

' � '
(20)

A A˝A A

k A k

.id;S/.S;id/

�

�

�

(21)

DEFINITION 3.3. A pair .A;�/ consisting of a k-algebraA and a k-algebra homomorphism
�WA! A˝A is a Hopf algebra1 if there exist k-algebra homomorphisms

�WA! k; S WA! A

such that the diagrams (20), (21) commute:

.id˝�/ı�D .�˝ id/ı�

.id; �/ı�D idD .�; id/ı�

.id;S/ı�D � D .S; id/ı�:

The maps�, �, S are called respectively the comultiplication map, the co-identity map, and
the inversion or antipode. A homomorphism of Hopf algebras f W.A;�A/! .B;�B/ is a
homomorphism f WA! B of k-algebras such that .f ˝f /ı�A D�B ıf .

1Recall that we require k-algebras to be commutative and finitely generated. The general definition of a
Hopf algebra allows A to be an arbitrary ring. Thus, we are considering only a special class of Hopf algebras,
and not all statements for our Hopf algebras generalize.
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3.4. The pair .�;S/ in the definition of a Hopf algebra is uniquely determined by .A;�/.
Moreover, for every homomorphism f W.A;�A/! .B;�B/ of Hopf algebras,�

�B ıf D �A
f ıSA D SB ıf .

(22)

These statements can be proved in the same way as the similar statements for algebraic
groups using the Yoneda lemma (see 1.11), or deduced from them. We sometimes regard a
Hopf algebra as a quadruple .A;�;S;�/:

3.5. Let f 2O.G/, and regard it as a natural transformation G! A1 (3.2). Then

.�f /R.g1;g2/D fR.g1 �g2/;

.�f /R.g/D f .e/

.Sf /R.g/D f .g
�1/

for g;g1;g2 2G.R/.

EXERCISE 3.6. For a set X , let R.X/ denote the k-algebra of maps X ! k. For a second
set Y , let R.X/˝R.Y / act on X �Y according to the rule (f ˝g/.x;y/D f .x/g.y/.

(a) Show that the map R.X/˝R.Y /!R.X �Y / just defined is injective. (Hint: choose
a basis fi for R.X/ as a k-vector space, and consider an element

P
fi ˝gi .)

(b) Let � be a group and define maps

�WR.� / ! R.� �� /; .�f /.g;g0/ D f .gg0/

�WR.� / ! k; �f D f .1/

S WR.� / ! R.� /; .Sf /.g/ D f .g�1/:

Show that if � maps R.� / into the subring R.� /˝R.� / of R.� �� /, then �, �,
and S define on R.� / the structure of a Hopf algebra.

(c) If � is finite, show that � always maps R.� / into R.� /˝R.� /.

c. Hopf algebras and algebraic groups

The next proposition shows that to give a structure � of a Hopf algebra on A is the same as
giving a structure m of an algebraic group on SpmA.

PROPOSITION 3.7. Let A be a k-algebra, and let �WA! A˝A be a homomorphism. The
pair .A;�/ is a Hopf algebra if and only only if Spm.A;�/ is an algebraic group.

PROOF. The diagrams (20, 21) are the same as the diagrams (2, 3) except that the arrows
have been reversed. As Spm is a contravariant equivalence from the category of finitely
generated k-algebras to that of affine algebraic schemes over k, it is clear that one pair of
diagrams commutes if and only if the other does. 2

COROLLARY 3.8. The functor Spm is an equivalence from the category of Hopf algebras
over k to the category of affine algebraic groups, with quasi-inverse .G;m/ .O.G/;O.m//.
ASIDE 3.9. For an algebraic scheme X , the k-algebra O.X/ need not be finitely generated, even for
quasi-affine varieties. However, it is when X is an algebraic group (10.33 below). Therefore, we get
a functor G .O.G/;O.m// from algebraic groups over k (not necessarily affine) to Hopf algebras
over k (in our sense). Let Gaff D Spm.O.G/;O.m//. The canonical homomorphism G! Gaff is
universal among the homomorphisms from G to an affine algebraic group (ibid.).
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d. Hopf subalgebras

DEFINITION 3.10. A k-subalgebra B of a Hopf algebra .A;�;S;�/ is a Hopf subalgebra
if �.B/� B˝B and S.B/� B .

Then .B;�AjB/ is itself a Hopf algebra with �B D �AjB and SB D SAjB .

PROPOSITION 3.11. The image of a homomorphism f WA! B of Hopf algebras is a Hopf
subalgebra of B .

PROOF. Immediate from (3.4). 2

DEFINITION 3.12. A Hopf ideal in a Hopf algebra .A;�/ is an ideal a in A such that

�.a/� A˝aCa˝A; �.a/D 0; S.a/� a:

PROPOSITION 3.13. The kernel of a homomorphism of Hopf k-algebras is a Hopf ideal.

PROOF. The proof uses the following elementary fact: for a linear map f WV ! V 0 of
k-vector spaces, the kernel of f ˝ f is V ˝Ker.f /CKer.f /˝V . To see this, write
V D Ker.f /˚W , and note that the restriction of f ˝f to W ˝W is injective.

Let a be the kernel of a homomorphism f WA! B of Hopf algebras. Then8<:
�A.a/� Ker.f ˝f /D A˝aCa˝A
�A.a/D 0 by (22)
SA.a/� a by (22)

and so a is a Hopf ideal. 2

The next result shows that the Hopf ideals are exactly the kernels of homomorphisms of
Hopf algebras.

PROPOSITION 3.14. Let a be a Hopf ideal in a Hopf k-algebra A. The quotient vector
space A=a has a unique Hopf k-algebra structure for which A! A=a is a homomorphism.
Every homomorphism of Hopf k-algebras A! B whose kernel contains a factors uniquely
through A! A=a.

PROOF. Routine verification. 2

PROPOSITION 3.15. A homomorphism f WA! B of Hopf k-algebras induces an isomor-
phism of Hopf k-algebras

A=Ker.f /! Im.f /:

PROOF. Routine verification. 2

PROPOSITION 3.16. Every homomorphism f WA! B factors as

A
q
�! C

i
�! B

with q (resp. i ) a surjective (resp. injective) homomorphism of Hopf algebras. The factoriza-
tion is unique up to a unique isomorphism.

PROOF. Immediate from (3.15). 2
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e. Hopf subalgebras of O.G/ versus algebraic subgroups of G

PROPOSITION 3.17. Let G be an affine algebraic group. In the one-to-one correspondence
between closed subschemes of G and ideals in O.G/, algebraic subgroups correspond to
Hopf ideals.

PROOF. Let H be the closed subscheme of G defined by an ideal a � O.G/. If H is
an algebraic subgroup of G, then a is the kernel of a homomorphism of Hopf algebras
O.G/! O.H/, and so is a Hopf ideal (3.13). Conversely, if a is a Hopf ideal, then
O.H/ D O.G/=a has a unique Hopf algebra structure for which O.G/! O.H/ is a
homomorphism of Hopf algebras (3.14). This means that there is a unique algebraic group
structure on H for which the inclusion H ,! G is a homomorphism of algebraic groups
(3.8). 2

f. Subgroups of G.k/ versus algebraic subgroups of G

In this section, we reprove (1.31) for affine algebraic groups.
Recall that we identifyG.k/with the set of points x in jGj such that �.x/D k. Let S be a

subgroup ofG.k/. If S DH.k/ for some algebraic subgroupH ofG, then S D jH j\G.k/,
and so it is closed in G.k/ for the induced topology (1.27). We prove a converse.

PROPOSITION 3.18. Let G be an affine algebraic group. Let S be a closed subgroup of
G.k/. Then S DH.k/ for a unique reduced algebraic subgroup H of G. The algebraic
subgroups H of G that arise in this way are exactly those for which H.k/ is dense in H
(i.e., H is reduced and H.k/ is dense in jH j; 1.9c).

PROOF. Each f 2O.G/ defines a function h.f /WS! k, and, for x;y 2 S , .�Gf /.x;y/D
f .x �y/ (see (19), p. 56). Therefore, when we let R.S/ denote the k-algebra of maps S! k

and define �S WR.S/!R.S �S/ as in Exercise 3.6, we obtain a commutative diagram

O.G/ O.G�G/

R.S/ R.S �S/:

�G

h

�S

The vertical map at right factors into

O.G�G/'O.G/˝O.G/ h˝h�!R.S/˝R.S/!R.S �S/:

Therefore the kernel a of h satisfies

�G.a/� Ker.h˝h/DO.G/˝aCa˝O.G/

(cf. the proof of 3.13). Similarly �G.a/D 0 and SG.a/� a, and so a is a Hopf ideal. Because
S is closed in G.k/, the algebraic subgroup H of G with O.H/DO.G/=a has H.k/D S .
Clearly, H is the unique reduced algebraic subgroup of G with this property.

Obviously, the algebraic subgroups H arising in this way have the property that H.k/ is
dense in H . Conversely, if H.k/ is dense in H , then the group attached to S DH.k/ is H
itself. 2
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ASIDE 3.19. When k is finite, only the finite subgroup varieties of G arise as the Zariski closure of
a subgroup of G.k/. Nori (1987) has found a more useful way of defining the “closure” of a subgroup
S of GLn.Fp/. Let X D fx 2 S j xp D 1g, and let SC be the subgroup of S generated by X (it is
normal). For each x 2X , we get a one-parameter subgroup variety

t 7! xt D exp.t logx/WA1! GLn;

where

exp.z/D
p�1X
iD0

zi

i Š
and log.z/D�

p�1X
iD1

.1� z/i

i
.

Let G be the smallest subgroup variety of GLn containing these subgroups for x 2X . Nori shows
that if p is greater than some constant depending only on n, then SC DG.Fp/C. If G is semisimple
and simply connected, then G.Fp/C D G.Fp/, and so SC is realized as the group of Fp-points of
the connected algebraic group G. The map S 7! G sets up a one-to-one correspondence between
the subgroups S of GLn.Fp/ such that S D SC and the subgroup varieties of GLnFp generated by
one-parameter subgroups t 7! exp.ty/ defined by elements y 2Mn.Fp/ with yp D 0.

ASIDE 3.20. We have seen that the study of affine algebraic groups is equivalent to the study of
Hopf algebras. Of course, the “affine” is essential. However, for a general algebraic group G, the
local ring Oe at e equipped with the structure provided by m captures some of the structure of G. For
example, the connected algebraic subgroups of G are in one-to-one correspondence with the ideals a
in Oe such that �.a/� A˝aCa˝A and S.a/D a. [Add discussion of hyperalgebras; references.]

g. Affine algebraic groups G such that G.k/ is dense in G: a
survey

Clearly, the algebraic groups G over k such that G.k/ is dense in G are of particular interest.
In this subsection, we list the known results concerning them. Many of these results will be
proved later in the book. [Citations, both internal and external, will be added.]

Recall the equivalent conditions:

(a) G.k/ is dense in G (see 1.9);

(b) G.k/ is schematically dense in G (see 1.8);

(c) G is reduced and G.k/ is dense in jGj.

For a group variety, the conditions are equivalent to:

(d) G.k/ is dense in G.kal/ (for the Zariski topology).

As G.k/ can only be dense in G if G is a group variety, from now on G is an group
variety over k.

3.21. G.k/ is dense in G if k is separably closed.

3.22. If G is finite, then G.k/ is dense in G if and only if G is constant. For example,
�n.k/ is dense in �n if and only if k contains n distinct nth roots of 1.

3.23. In general, there is an exact sequence

e!Gı!G! �0.G/! e

with �0.G/ a finite group variety (5.48). The group G.k/ is dense in G if and only if �0.G/
is constant and Gı.k/ is dense in Gı.

3.24. Let k be finite. Then G.k/ is dense in G if and only if G is a finite constant group.
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From now on, G is a connected affine group variety over k.

3.25. Let k be infinite. Then G.k/ is dense in G when G DGa, Gm, GLn, or SLn. For a
direct proof, see Waterhouse 1979, 4.5.

3.26. Let k be infinite. If k is perfect, then G is unirational over k and so G.k/ is dense in
G. See Borel 1991, 18.2, or Springer 1998, 13.3.9.

3.27. There exist forms G of Ga over infinite fields such that G.k/ is finite, and hence not
dense in G (1.42).

3.28. A group variety G is said to be unipotent if is isomorphic to a subgroup variety of
Un for some n (see Chapter 15). A unipotent group variety G is said to be split if it admits
a subnormal series whose quotients are all isomorphic to Ga (8.17). Let G be a unipotent
group variety. If G is split, then it is isomorphic as a variety to An, and so G.k/ is dense in
G when k is infinite. Otherwise, the examples of Rosenlicht (1.42, 3.27) show that G.k/
need not be dense in G.

3.29. A connected group variety G is said to be reductive if Gkal contains no connected
normal unipotent subgroup variety except e. For example, tori are reductive. A reductive
group variety G is unirational, and so G.k/ is dense in G if k is infinite. See (19.21); also
Borel 1991, 18.2, or Springer 1998, 13.3.10.

3.30. If G contains a connected normal split-unipotent subgroup U such that G=U is
reductive, then G � U �G=U as an algebraic variety (Rosenlicht), and so G.k/ is dense in
G when k is infinite.

3.31. Suppose that G is the Weil restriction .G/k0=k of a group variety G0 over a finite
extension k0 of k. If G0 is reductive and k is infinite, then G.k/ dense in G (Pink 2004, 1.7).

3.32. If a connected group variety G is unirational, then G.k/ is dense in G when k is
infinite. So which group varieties are unirational? A connected group variety G over a field
k is unirational if k is perfect or G is reductive (3.26, 3.29). On the other hand, Rosenlicht’s
forms of Ga (3.27) are not unirational, and many tori, even in characteristic zero, are not
rational. Every connected group variety over an algebraically closed field is unirational
(3.30).

3.33. One can ask when G.k/ is dense in G also for nonaffine algebraic groups, but there
doesn’t seem to be much that one can say. They are never unirational and for an elliptic
curve E over Q, the group E.Q/ may be infinite (hence dense in E) or finite (hence not
dense).

3.34. A matrix group is an affine algebraic group G such that G.k/ is schematically dense
in G. Every matrix is group is isomorphic to a subgroup of GLn for some n (see Section
6.d), and the matrix subgroups H of GLn are exactly the subgroup varieties such that H.k/
is dense in jH j. Every affine algebraic group G has an associated matrix group G0 such that
G0.k/DG.k/. In good cases, G0 DGred. In bad cases, dimG0 < dimG.
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h. Affine algebraic groups in characteristic zero are smooth

In this section we prove a theorem of Cartier stating that all affine algebraic groups over a
field of characteristic zero are smooth.

LEMMA 3.35. An algebraic group G over an algebraically closed field k is smooth if every
nilpotent element of O.G/ is contained in m2e , where me is the maximal ideal in O.G/ at e.

PROOF. Let Te.G/ denote the tangent space at the neutral element of G. Recall (1.23) that
dimG � dimTe.G/, with equality if and only ifG is smooth. As Te.G/'Hom.me=m2e ;k/,
(A.47), the hypothesis implies that Te.G/' Te.Gred/. Hence

dimG � dimTe.G/D dimTe.Gred/
1.22
D dimGred:

As dimG D dimGred, this shows that dimG D dimTe.G/ and G is smooth. 2

LEMMA 3.36. Let V and V 0 be vector spaces over a field. Let W be a subspace of V , and
let y be a nonzero element of V 0. Then an element x of V lies in W if and only if x˝y lies
in W ˝V 0.

PROOF. Write V DW ˚W 0, and note that V ˝V 0 ' .W ˝V 0/˚ .W 0˝V 0/. 2

LEMMA 3.37. Let .A;�/ be a Hopf algebra over k, and let I denote the kernel of the
co-identity map �.

(a) As a k-vector space, AD k˚I .

(b) For all a 2 I ,
�.a/D a˝1C1˝a mod I ˝I .

PROOF. (a) The maps k �! A
�
�! k are k-linear, and compose to the identity.

(b) Let a 2 I . Using the second diagram in (20), p.56, we find that

.id˝�/.�.a/�a˝1�1˝a/D a˝1�a˝1�1˝0D 0

.�˝ id/.�.a/�a˝1�1˝a/D 1˝a�0˝1�1˝aD 0:

Hence

�.a/�a˝1�1˝a 2 Ker.id˝�/\Ker.�˝ id/

D .A˝I /\ .I ˝A/:

That
.A˝I /\ .I ˝A/D I ˝I

follows from comparing

A˝AD .k˝k/˚ .k˝I /˚ .I ˝k/˚ .I ˝I /

A˝I D .k˝I /˚ .I ˝I /

I ˝AD .I ˝k/˚ .I ˝I / . 2

THEOREM 3.38 (CARTIER 1962). Every affine algebraic group over a field of characteris-
tic zero is smooth.
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PROOF. We may replace k with its algebraic closure. Thus, let G be an algebraic group
over an algebraically closed field k of characteristic zero, and let ADO.G/. Let mDme D
Ker.�/. Let a be a nilpotent element of A; according to (3.35), it suffices to show that a lies
in m2.

If a maps to zero in Am, then it maps to zero in Am=.mAm/
2, and therefore in A=m2 by

(CA 5.8), and so a 2m2. Thus, we may suppose that there exists an n� 2 such that an D 0
in Am but an�1 ¤ 0 in Am. Now san D 0 in A for some s …m. On replacing a with sa, we
find that an D 0 in A but an�1 ¤ 0 in Am.

Now a 2m (because A=mD k has no nilpotents), and so (see 3.37)

�.a/D a˝1C1˝aCy with y 2m˝m.

Because � is a homomorphism of k-algebras,

0D�.an/D .�a/n D .a˝1C1˝aCy/n. (23)

When expanded, the right hand side becomes a sum of terms

an˝1; n.an�1˝1/ � .1˝aCy/; .a˝1/h.1˝a/iyj .hC iCj D n, iCj � 2/:

As an D 0 and the terms with iCj � 2 lie in A˝m2, equation (23) shows that

nan�1˝aCn.an�1˝1/y 2 A˝m2,

and so
nan�1˝a 2 an�1m˝ACA˝m2 (inside A˝A).

In the quotient A˝
�
A=m2

�
this becomes

nan�1˝ Na 2 an�1m˝A=m2 (inside A˝
�
A=m2

�
). (24)

Note that an�1 … an�1m, because if an�1 D an�1m with m 2 m, then .1�m/an�1 D 0
and, as 1�m is a unit in Am, this would imply an�1 D 0 in Am, which is a contradiction.
Moreover n is a unit in A because it is a nonzero element of k (here we use that k has
characteristic 0). We conclude that nan�1 … an�1m, and so (see 3.36) NaD 0. In other words,
a 2m2, as required. 2

COROLLARY 3.39. In characteristic zero, all finite algebraic groups are étale.

PROOF. They are finite and smooth, and hence étale. 2

COROLLARY 3.40. All surjective homomorphisms of affine algebraic groups in character-
istic zero are smooth.

PROOF. Apply (1.49). 2

COROLLARY 3.41. Let H and H 0 be affine algebraic subgroups of an algebraic group G
over a field k of characteristic zero. If H.kal/DH 0.kal/, then H DH 0.

PROOF. The condition implies that H.kal/D .H \H 0/.kal/DH 0.kal/, and so H DH \
H 0 DH 0 (1.9). 2

COROLLARY 3.42. Let G be an affine algebraic group over an algebraically closed field k
of characteristic zero. Every closed subgroup S of G.k/ is of the form H.k/ for a unique
algebraic subgroup H of G.
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PROOF. This follows from (3.18) and the theorem. 2

ASIDE 3.43. Theorem 3.38 fails for algebraic monoids. The algebraic schemeM DSpm.kŒT �=.T n//
admits a trivial monoid structure (e is the unique map �!M and m factors through �), but it is not
reduced if n > 1.

ASIDE 3.44. We sketch a second proof of the theorem. Let m be the maximal ideal at e inADO.G/.
It suffices to show that the graded ring B D

L
nm

n=mnC1 has no nonzero nilpotents.2 This ring
inherits a Hopf algebra structure from A, and �.a/ D a˝ 1C 1˝ a for a 2 m (by 3.37). Let
x1; : : : ;xm be a basis for m=m2. We shall show that the xi are algebraically independent in B (and so
B is a polynomial ring over k). Suppose not, and let f be a nonzero homogeneous polynomial of
least degree h such that f .x1; : : : ;xm/D 0 (in B) . Then

0D�.f .x1; : : : ;xm//D f .�x1; : : : ;�xm/D f .x1˝1C1˝x1; : : : ;xm˝1C1˝xm/:

On expanding the last expression as an element of
Ph
iD0Bh�i˝Bi , we find that the term of bidegree

.h�1;1/ is

Th�1;1 D
Xm

jD1

@f

@Xj
.x1; : : : ;xm/˝xj .

As the xj are linearly independent, the condition Th�1;1 D 0 implies that @f
@Xj

.x1; : : : ;xm/D 0 for
j D 1; : : : ;m. Because we are in characteristic zero, at least one of these equations gives a nontrivial
dependence relation (of degree h�1) between xi , which contradicts the minimality of f .

For more details, see Procesi 2007, Chapter 8, 7.3, p.235 or Waterhouse 1979, 11.4.

ASIDE 3.45. Cartier announced his theorem in footnote 14 of Cartier 1962:

Un raisonnment tout semblable prouve qu’un schéma en groupes de type fini sur un
corps de caractéristique nulle est réduit.

The proof hinted at by Cartier is sketched in (3.44). The above proof follows Oort 1966. Theorem
3.38 is true for all algebraic groups, not necessarily affine (see 10.36 below). See also DG II, �6, 1.1,
p.255; Mumford 2008, �11; SGA 3, VIA, 6.9, p.332, and VIB ;1.6.1, p.342.

i. Smoothness in characteristic p ¤ 0

Let G be an affine algebraic group over a field k of characteristic p ¤ 0.

PROPOSITION 3.46. Assume that k is perfect. For all r � 1, the image of the homomor-
phism of k-algebras

a 7! ap
r

WO.G/!O.G/
is a Hopf subalgebra of O.G/. For all sufficiently large r , it is geometrically reduced.

PROOF. Recall (2.16) that there is a homomorphism F r WG!G.p
r /, which corresponds to

the homomorphism of Hopf k-algebras

c˝a 7! cap
r

Wk f̋ r ;kO.G/!O.G/:

When k is perfect, this has image O.G/pr , which is therefore a Hopf subalgebra of O.G/
(3.11).

In proving the second part, we may assume that k is algebraically closed. As the
nilradical N of O.G/ is finitely generated, there exists an exponent n such that an D 0 for
all a 2N. Let r be such that pr � n; then ap

r

D 0 for all a 2N. With this r , O.G/pr is
reduced. 2

2In fact, Spm.B/ is the tangent cone at e.
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j. Faithful flatness for Hopf algebras

In this section, we prove an important technical result.

THEOREM 3.47. Let A� B be finitely generated Hopf algebras over a field k. Then B is
faithfully flat over A.

STEP 0. Assume that A is reduced.

The homomorphism A! B of Hopf algebras corresponds to a homomorphism of
affine algebraic groups H !G. Because A! B is injective, the map H.kal/!G.kal/ is
surjective. Therefore (1.52a) implies that the map H !G is faithfully flat if G is reduced.
This proves the theorem when A is reduced.

STEP 1. Assume that the augmentation ideal of A is nilpotent

Recall (Exercise 2-1) that, for any homomorphism H ! G of algebraic groups with
kernel N , there is a canonical isomorphism .h;n/ 7! .hn;h/WH �N !H �GH . Because
of the correspondence between algebraic groups and Hopf algebras, this implies that, for
every homomorphism A! B of Hopf algebras, the map

b1˝b2 7! b1˝ Nb2WB˝AB! B˝k .B=IAB/ (25)

is an isomorphism of left B-modules. Here IA is the augmentation ideal Ker.A
�
�! k) of A.

Let I D IA, and assume that I is nilpotent, say In D 0. Choose a family .ej /j2J of
elements in B whose image in B=IB is a k-basis and consider the map

.aj /j2J 7!
P
j aj ej WA

.J /! B (26)

where A.J / is a direct sum of copies of A indexed by J . We shall show that (26) is an
isomorphism (hence B is even free as an A-module).

Let C be the cokernel of (26). A diagram chase in

A.J / B C 0

.A=I /.J / B=IB
onto

shows that every element of C is the image of an element ofB mapping to zero in B=IB , i.e.,
lying in IB . Hence C D IC , and so C D IC D I 2C D �� � D InC D 0. Hence A.J /! B

is surjective.
For the injectivity, consider the diagrams

A.J / B

M B.J / B˝AB

onto

onto

k.J / B=IB

.B=IB/.J / .B=IB/˝k .B=IB/

'

'

in which the lower arrows are obtained from the upper arrows by tensoring on the left
with B and B=IB respectively, and M is the kernel. If b 2 B.J / maps to zero in B˝AB ,
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then it maps to zero in B=IB˝k B=IB , which implies that it maps to zero in .B=IB/.J /.
Therefore M is contained in .IB/.J / D I �B.J /.

Recall (25) that
B˝AB ' B˝k B=IB

as left B-modules. As B=IB is free as a k-module (k is a field), B˝k B=IB is free as a
left B-module, and so B˝AB is free (hence projective) as a left B-module. Therefore B.J /

is a direct sum of B-submodules,

B.J / DM ˚N .

We know that
M � I �B.J / D IM ˚IN;

and soM � IM . HenceM � IM � I 2M D �� � D 0. We have shown that B.J /!B˝AB

is injective, and this implies that A.J /! B is injective because A.J / � B.J /.

STEP 2. General case

Recall (Exercise 2-2) that for any diagram of algebraic groups

H

M G G0;

ˇ

with M the kernel of G!G0, there is a canonical isomorphism

.m;h/ 7! .mh;h/WM �H 'G�G0H: (27)

After Theorem 3.38, we may suppose that k has characteristic p ¤ 0. According to
(3.46), there exists an n such that O.G/pn is a reduced Hopf subalgebra of O.G/. Let G0 be
the algebraic group such that O.G0/DO.G/pn , and consider the diagrams

N H G0 O.N / O.H/ O.G0/

M G G0 O.M/ O.G/ O.G0/

flat

faithfully

injective

where N and M are the kernels of the homomorphisms H !G0 and G!G0 respectively.
Because O.G0/ is reduced, the homomorphism O.G0/! O.H/ is faithfully flat, and so
O.G/!O.H/ remains injective after it has been tensored with O.H/:

O.G/˝O.G0/O.H/ O.H/˝O.G0/O.H/

O.M/˝O.H/ O.N /˝O.H/:

injective

(27) ' (25) '

Because k!O.H/ is faithfully flat (k is a field), the injectivity of the dashed arrow implies
that O.M/!O.N / is injective, and hence it is faithfully flat (because the augmentation
ideal of O.M/ is nilpotent). Now the dashed arrow’s being faithfully flat, implies that the
top arrow is faithfully flat, which, because O.G0/!O.H/ is faithfully flat, implies that
O.G/!O.H/ is faithfully flat (CA 11.7).
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CONSEQUENCES

3.48. Theorem 3.47 holds for all Hopf algebras (not necessarily finitely generated).

3.49. Let A�B be Hopf algebras. If A and B are integral domains with fields of fractions
K and L, then B \K D A.

3.50. Let A� B be Hopf algebras. If A and B are integral domains with the same field of
fractions, then AD B .

3.51. A Hopf algebra A is finitely generated if it is an integral domain and its field of
fractions is a finitely generated field extension.

3.52. Let G be a smooth affine algebraic group. Every Hopf subalgebra of O.G/ is finitely
generated (and so corresponds to a quotient of G).

ASIDE 3.53. See Waterhouse 1979, Chapter 14, and Takeuchi, Mitsuhiro. A correspondence
between Hopf ideals and sub-Hopf algebras. Manuscripta Math. 7 (1972), 251–270.

Exercises

EXERCISE 3-1. We use the notations of Exercise 3.6, p.57. Let � be an arbitrary group.
From a homomorphism �W� ! GLn.k/, we obtain a family of functions g 7! �.g/i;j ,
1� i;j � n, on G. Let R0.� / be the k-subspace of R.� / spanned by the functions arising
in this way for varying n. (The elements of R0.� / are called the representative functions
on � .)

(a) Show that R0.� / is a k-subalgebra of R.� /.
(b) Show that � maps R0.� / into R0.� /˝R0.� /.
(c) Deduce that �, �, and S define on R0.� / the structure of a Hopf algebra.

EXERCISE 3-2. Let A be a Hopf algebra. Prove the following statements by interpreting
them as statements about algebraic groups.

(a) S ıS D idA.

(b) �ıS D t ı .S˝S/ı� where t .a˝b/D b˝a.

(c) � ıS D �.

(d) The map a˝b 7! .a˝1/�.b/WA˝A! A˝A is a homomorphism of k-algebras.

Hints: .a�1/�1 D a; .ab/�1 D b�1a�1; e�1 D e.

EXERCISE 3-3. Verify directly that O.Ga/ and O.GLn/ satisfy the axioms to be a Hopf
algebra.

EXERCISE 3-4. Let A be a product of copies of k indexed by the elements of a finite set S .
Show that the k-bialgebra structures on A are in natural one-to-one correspondence with the
group structures on S .

EXERCISE 3-5. Let G be an affine algebraic group over a nonperfect field k. Show that
Gred is an algebraic subgroup of G if G.k/ is dense in G.





CHAPTER 4
Linear representations of algebraic

groups

Throughout this chapter, G is an affine algebraic group over k. We shall see later (10.33) that
every algebraic group G over k has a greatest affine algebraic quotient Gaff. As every linear
representation of G factors through Gaff, no extra generality would result from allowing G
to be nonaffine.

a. Representations and comodules

Let V be a vector space over k. We let GLV denote the functor of k-algebras,

R Aut.VR/ (R-linear automorphisms).

When V is finite dimensional, GLV is an algebraic group.
A linear representation of G is a homomorphism r WG! GLV of group-valued func-

tors. When V is finite dimensional, r is a homomorphism of algebraic groups. A linear
representation � is faithful if �.R/ is injective for all k-algebras R. For finite-dimensional
linear representations, this is equivalent to � being a closed immersion (see 5.18 below).
From now on we write “representation” for “linear representation”.

To give a representation .V;r/ of G on V is the same as giving an action

G�Va! Va

of G on the functor Va such that, for all small k-algebras G.R/ acts on Va.R/
def
D R˝V

through R-linear maps. When viewed in this way, we call .V;r/ a G-module.
A (right) O.G/-comodule is a k-linear map �WV ! V ˝O.G/ such that�

.idV ˝�/ı� D .�˝ idO.G//ı�

.idV ˝�/ı� D idV :
(28)

Let .V;�/ be an O.G/-comodule. An O.G/-subcomodule of V is a k-subspace W such
that �.W /�W ˝O.G/. Then .W;�jW / is again an O.G/-comodule.

4.1. Let r WG! GLV � EndV be a representation. Then r maps the universal element a
in G.O.G// to an O.G/-linear endomorphism r.a/ of End.V ˝O.G//, which is uniquely
determined by its restriction to a k-linear homomorphism �WV ! V ˝O.G/. The map �

69
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is an O.G/-comodule structure on V , and in this way we get a one-to-one correspondence
r$ � between the representations of G on V and the O.G/-comodule structures on V . The
map � is called the co-action corresponding to r .

More explicitly, let .ei /i2I be a basis for V and let .rij /i;j2I be a family of elements of
O.G/. The map

�WV ! V ˝O.G/; ej 7!
X
i2I

ei ˝ rij (finite sum),

is a comodule structure on V if and only if

�.rij / D
P
l2I ril˝ rlj

�.rij / D ıij

�
all i;j 2 I . (29)

A family .rij / satisfying these conditions1 defines a representation r of G on V , namely,
that sending g 2G.R/ to the automorphism of VR with matrix .rij .g//i;j2I . Assume that
I is finite, and let Tij denote the regular function on EndV sending an endomorphism of V
to its .i;j /th coordinate; then O.EndV / is a polynomial ring in the symbols Tij , and the
homomorphism O.EndV /!O.G/ defined by r sends Tij to rij .

EXAMPLE 4.2. Let G D GLn and let r be the standard representation of G on V D kn.
Then O.G/D kŒT11;T12; : : : ;Tnn;1=det� and, relative to the standard basis .ei /1�i�n for
V , the map r WG.R/! GLn.R/ is (tautologically) g 7! .Tij .g//1�i;j�n. Correspondingly,
the co-action is

�WV ! V ˝O.G/; ej 7!
X
1�i�n

ei ˝Tij :

Since �.Tij /D
P
1�l�nTil˝Tlj and �.Tij /D ıij , this does define a comodule structure

on V .

b. Stabilizers

PROPOSITION 4.3. Let r WG! GLV be a finite-dimensional representation of G, and let
W be a subspace of V . The functor

R GW .R/D f˛ 2G.R/ j ˛.WR/DWRg

is represented by an algebraic subgroup GW of G.

PROOF. Let �WO.G/! V ˝O.G/ be the corresponding co-action. Let .ei /i2J be a basis
for W , and extend it to a basis .ei /JtI for V . Write

�.ej /D
P
i2JtI ei ˝aij ; aij 2O.G/:

Let g 2G.R/D Homk-alg.O.G/;R/. Then

gej D
P
i2JtI ei ˝g.aij /:

Thus, g.W ˝R/�W ˝R if and only if g.aij /D 0 for j 2 J , i 2 I . As g.aij /D .aij /R.g/,
this shows that the functor is represented by the quotient of O.G/ by the ideal generated by
faij j j 2 J; i 2 I g. 2

1When I is infinite, it is necessary to require that, for all j , the element rij D 0 for almost all i .
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The subgroup GW of G is called the stabilizer of W in V , and is sometimes denoted
StabG.W /. We say that an algebraic subgroup H of G stabilizes a subspace W of V if
H �GW .

COROLLARY 4.4. Let H be an algebraic subgroup of G such that H.k/ is dense in H . If
hW DW for all h 2H.k/, then H stabilizes W .

PROOF. The condition implies that .H \GW /.k/DH.k/, and so H \GW DH . 2

PROPOSITION 4.5. Let G act on V and V 0, and let W and W 0 be nonzero subspaces of V
and V 0. Then the stabilizer of W ˝W 0 in V ˝V 0 is GW \GW 0 .

PROOF. Choose a basis for W (resp. W 0) and extend it to a basis for V (resp. V 0). From
these bases, we get a basis for W ˝W 0 and an extension of it to V ˝V 0. The proof of (4.3)
now gives explicit generators for the ideals a.W /, a.W 0/, and a.W ˝W 0/ defining O.GW /,
O.GW 0/, and O.GW˚W 0/, from which one can deduce that

a.W ˝W 0/D a.W /Ca.W 0/. 2

c. Every representation is a union of finite-dimensional
representations

PROPOSITION 4.6. Every O.G/-comodule .V;�/ is a filtered union of its finite-dimensional
sub-comodules.

PROOF. As a finite sum of finite-dimensional sub-comodules is a finite-dimensional sub-
comodule, it suffices to show that each element v of V is contained in a finite-dimensional
sub-comodule. Let .ei /i2I be a basis for O.G/ as a k-vector space, and let

�.v/D
X

i
vi ˝ ei ; vi 2 V;

(finite sum, i.e., only finitely many vi are nonzero). Write

�.ei /D
X

j;k
rijk.ej ˝ ek/; rijk 2 k.

We shall show that
�.vk/D

X
i;j
rijk

�
vi ˝ ej

�
(30)

from which it follows that the k-subspace of V spanned by v and the vi is a subcomodule
containing v. Recall from (28) that

.idV ˝�/ı�D .�˝ idO.G//ı�:

On applying each side of this equation to v, we find thatX
i;j;k

rijk.vi ˝ ej ˝ ek/D
X

k
�.vk/˝ ek (inside V ˝O.G/˝O.G//:

On comparing the coefficients of 1˝1˝ ek in these two expressions, we obtain (30). 2

COROLLARY 4.7. Every representation of G is a filtered union of its finite-dimensional
subrepresentations.

PROOF. Let r WG! GLV be representation of G, and let �WV ! V ˝O.G/ be the corre-
sponding co-action. A subspace W of V is stable under G if and only if it is an O.G/-sub-
comodule of V , and so this follows from the proposition. 2
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d. Affine algebraic groups are linear

A right action of an algebraic groupG on an algebraic schemeX is a regular mapX�G!X

such that, for all k-algebras R, the map X.R/�G.R/!X.R/ is a right action of the group
G.R/ on the set X.R/. Such an action defines a map

O.X/!O.X/˝O.G/;

which makes O.X/ into an O.G/-comodule. In this way, we get a representation of G on
O.X/:

.gf /.x/D f .xg/; g 2G.k/, f 2O.X/, x 2X.k/:
The representation of G on O.G/ arising from mWG�G!G is called the regular repre-
sentation. The corresponding co-action is �WO.G/!O.G/˝O.G/.

THEOREM 4.8. The regular representation has a faithful finite-dimensional subrepresenta-
tion. In particular, the regular representation itself is faithful.

PROOF. Let ADO.G/, and let V be a finite-dimensional subcomodule of A containing a
set of generators for A as a k-algebra. Let .ei /1�i�n be a basis for V , and write �.ej /DP
i ei ˝aij . According to (4.1), the image of O.GLV /! A contains the aij . But, because

�WA! k is a co-identity (21),

ej D .�˝ idA/�.ej /D
X
i

�.ei /aij ;

and so the image contains V ; it therefore equals A. We have shown that O.GLV /! A is
surjective, which means that G! GLV is a closed immersion. 2

An algebraic group G is said to be linear if it admits a faithful finite-dimensional
representation. Such a representation is an isomorphism of G onto a (closed) algebraic
subgroup of GLV , and so an algebraic group is linear if and only if it can be realized as
an algebraic subgroup of GLV for some finite-dimensional vector space V . Every linear
algebraic group is affine (1.29), and the theorem shows that the converse is true. Therefore,
the linear algebraic groups over k are exactly the affine algebraic groups.

e. Constructing all finite-dimensional representations

Let G be an algebraic group over k, and let V be a finite-dimensional k-vector space. The
k-vector space V ˝O.G/ equipped with the k-linear map

idV ˝�WV ˝O.G/! V ˝O.G/˝O.G/

is an O.G/-comodule, called the free comodule on V (compare the definitions). The choice
of a basis for V realizes .V ˝O.G/; idV ˝�/ as a direct sum of copies of .O.G/;�/:

V ˝O.G/ V ˝O.G/˝O.G/

O.G/n .O.G/˝O.G//n:

V˝�

� �

�n
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PROPOSITION 4.9. Let .V;�/ be an O.G/-comodule. Let V0 denote V regarded as a k-
vector space, and let .V0˝O.G/; idV0˝�/ be the free comodule on V0. Then

�WV ! V0˝O.G/

is an injective homomorphism of O.G/-comodules.

PROOF. The commutative diagram (see (28), p.69)

V V0˝O.G/

V ˝O.G/ V0˝O.G/˝O.G/

�

� idV0˝�

�˝idO.G/

says exactly that the map �WV ! V0˝O.G/ is a homomorphism of O.G/-comodules. It is
injective because its composite with idV ˝� is idV (ibid.). 2

COROLLARY 4.10. A finite-dimensional O.G/-comodule .V;�/ arises as a subcomodule
of .O.G/;�/n for nD dimV .

PROOF. Immediate consequence of the proposition and preceding remarks. 2

COROLLARY 4.11. Every finite-dimensional representation of G arises as a subrepresenta-
tion of a direct sum of copies of the regular representation.

PROOF. Restatement of (4.10). 2

THEOREM 4.12. Let .V;r/ be a faithful finite-dimensional representation of G. Then every
finite-dimensional representation W of G is isomorphic to a subquotient of a direct sum of
representations

Nm
.V ˚V _/.

PROOF. After (4.9), we may assume that W � O.G/n for some n. Let Wi be the image
of W under the i th projection O.G/n! O.G/; then W ,!

L
iWi , and so we may even

assume that W �O.G/.
We choose a basis for V , and use it to identify G with a subgroup of GLn. Then there is

a surjective homomorphism

O.GLn/D kŒT11;T12; : : : ;Tnn;1=det��O.G/D kŒt11; t12; : : : ; tnn;1=det�.

As W is finite dimensional, it is contained in a subspace

ff .tij / j degf � sg �det�s
0

of O.G/ for some s;s0 2 N.
Let .ei /1�i�n denote the standard basis for kn. The natural representation of GLn on

V has co-action �.ej /D
P
ei ˝Tij (see 4.2), and so the representation r of G on V has

co-action �.ej /D
P
ei ˝ tij . For each i , the map

ej 7! Tij W.V;�/! .O.GLn/;�/

is a homomorphism of O.GLn/-comodules (see (8), p.41). Thus the homogeneous polyno-
mials of degree 1 in the Tij form an O.GLn/-comodule isomorphic to the direct sum of n
copies of .V;r/. We can construct the O.GLn/-comodule

ff 2 kŒT11;T12; : : :� j f homogeneous of degree sg
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as a quotient of the s-fold tensor product of

ff 2 kŒT11;T12; : : :� j f homogeneous of degree 1g:

For s D n, this space contains the one-dimensional representation g 7! det.g/, and its dual
contains the dual one-dimensional representation g 7! 1=det.g/. By summing various of
these spaces, we get the space ff j degf � sg, and by tensoring this r-times with 1=det
we get ff .Tij / j degf � sg � det�s . Now W is a subrepresentation of a quotient of this
representation. 2

The dual was only used to construct the representation 1=det, and so it is not needed for
subgroups of SLn.

4.13. Here is a more abstract statement of the proof. Let .V;r/ be a faithful representation
of G of dimension n, and let W be a second representation. We may realize W as a
submodule of O.G/m for some m. From r we get a surjective homomorphism O.GLV /!
O.G/. But

O.GLV /D Sym.EndV /Œ1=det�,

and EndV ' V _˝V . The choice of a basis for V _ determines an isomorphism EndV ' nV
of GLV -modules (cf. the above proof). Hence

Sym.nV /m �O.GLV /m�O.G/m:

For some s, W �dets is contained in the image of Sym.nV /m in O.G/m. This means that
W �dets is contained in a quotient of some finite direct sum of tensor powers of V . We can
now use that .V _/˝n contains the representation g 7! deg.g/�1 to complete the proof.

f. Semisimple representations

A representation of an algebraic group is simple if it is¤ 0 and its only subrepresentations
are 0 and itself. It is semisimple if it is a sum of simple subrepresentations.2

PROPOSITION 4.14. Let G be an algebraic group over k, and let .V;r/ be a representation
of G. If V is a sum of simple subrepresentations, say V D

P
i2I Si (the sum need not be

direct), then for every subrepresentation W of V , there is a subset J of I such that

V DW ˚
M

i2J
Si :

In particular, V is a direct sum of simple subrepresentations, and W is a direct summand of
V .

PROOF. Let J be maximal among the subsets of I such the sum SJ
def
D
P
j2J Sj is direct

and W \SJ D 0. I claim that W CSJ D V (hence V is the direct sum of W and the Sj
with j 2 J ). For this, it suffices to show that each Si is contained in W CSJ . Because Si
is simple, Si \ .W CSJ / equals Si or 0. In the first case, Si �W CSJ , and in the second
SJ \Si D 0 and W \ .SJ CSi /D 0, contradicting the definition of I . 2

2Traditionally, simple (resp. semisimple) representations of G are said to irreducible (resp. completely
reducible) when regarded as representations of G, and simple (resp. semisimple) when regarded as G-modules.
I find this terminology clumsy and confusing, and so I follow DG in using “simple” and “semisimple” in both
situations.
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We have seen that if V is semisimple, then every subrepresentation W is a direct
summand. The converse of this is also true. Let V be a representation such that every
subrepresentation has a complement. Let v be a nonzero element of V , and let W be
maximal among the subrepresentations not containing v (exists by Zorn’s lemma). Then
V=W is simple, and so V DW ˚S with S simple. Using this, one shows that V is a sum
of simple modules (Jacobson, Basic Algebra II, p.120).

g. Characters and eigenspaces

A character of an algebraic groupG is a homomorphismG!Gm. As O.Gm/D kŒX;X�1�
and �.X/DX˝X , to give a character � of G is the same as giving an invertible element
aD a.�/ of O.G/ such that �.a/D a˝a; such an element is said to be group-like.

A character � of G defines a representation r of G on a vector space V by the rule

r.g/v D �.g/v; g 2G.R/, v 2 VR:

In this case, we say that G acts on V through the character�. In other words, G acts on V
through the character � if r factors through the centre Gm of GLV as

G
�
�!Gm ,! GLV : (31)

For example, in

g 7!

0B@�.g/ 0
: : :

0 �.g/

1CA ; g 2G.R/;

G acts on kn through the character �. When V is one-dimensional, GLV DGm, and so G
always acts on V through some character.

Let r WG!GLV be a representation of G, and let �WV ! V ˝O.G/ be the correspond-
ing co-action. Let � be a character of G, and let a.�/ be the corresponding group-like
element of O.G/. Then (see (31)), G acts on V through � if and only if � factors as

V
v 7!v˝X
������! V ˝O.Gm/

v˝X 7!v˝a.�/
����������! V ˝O.G/,

i.e., if and only if
�.v/D v˝a.�/; all v 2 V: (32)

More generally, we say that G acts on a subspace W of V through a character � if
W is stable under G and G acts on W through �. Note that this means, in particular, that
the elements of W are common eigenvectors for the g 2 G.k/: if w 2W , then for every
g 2 G.k/, r.g/w is a scalar multiple of w. If G acts on subspaces W and W 0 through a
character �, then it acts on W CW 0 through �. Therefore, there is a greatest subspace V� of
V on which G acts through �, called the eigenspace for G with character �.

PROPOSITION 4.15. Let .V;r/ be a representation of G, and let �WV ! V ˝O.G/ be the
corresponding co-action. For a character � of G,

V� D fv 2 V j �.v/D v˝a.�/g.

PROOF. The set fv 2 V j �.v/D v˝a.�/g is a subspace of V . on which G acts through �
(by (32)), and it clearly contains every such subspace. 2
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Let A be a Hopf algebra, and let a be a group-like element of A. Then, from the second
diagram in (20), p.56, we see that

aD ..�; idA/ı�/.a/D �.a/a;

and so �.a/D 1.

LEMMA 4.16. The group-like elements in A are linearly independent.

PROOF. If not, it will be possible to express one group-like element e as a linear combination
of group-like elements ei ¤ e:

e D
P
i ciei , ci 2 k: (33)

We may even suppose that the ei occurring in the sum are linearly independent. Now

�.e/D e˝ e D
P
i;j cicj ei ˝ ej

�.e/D
P
i ci�.ei /D

P
i ciei ˝ ei :

The ei ˝ ej are also linearly independent, and so this implies that�
cici D ci all i
cicj D 0 if i ¤ j:

We also know that
1D �.e/D

P
ci�.ei /D

P
ci :

On combining these statements, we see that the ci form a complete set of orthogonal
idempotents in the field k, and so one of them equals 1 and the remainder are zero, which
contradicts our assumption that e is not equal to any of the ei . 2

THEOREM 4.17. Let r WG! GL.V / be a representation of an algebraic group on a vector
space V . If V is a sum of eigenspaces, say V D

P
�2� V� with � a set of characters of G,

then it is a direct sum of the eigenspaces

V D
M

�2�
V�:

PROOF. We shall make use of Lemma 4.16. If the sum is not direct, then there exists a finite
set f�1; : : : ;�mg, m� 2, and a relation

v1C�� �Cvm D 0; vi 2 V�i ; vi ¤ 0:

On applying � to this relation, we find that

0D �.v1/C�� �C�.vm/D v1˝a.�1/C�� �Cvm˝a.�m/.

For every linear map f WV ! k,

0D f .v1/ �a.�1/C�� �Cf .vm/ �a.�m/;

which contradicts the linear independence of the a.�i /. 2
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As one-dimensional representations are simple, (4.14) shows that V in (4.17) is a direct
sum of one-dimensional eigenspaces, but this is a weaker statement than the theorem.

Later (14.12) we shall show that if G is a product of copies of Gm, then every represen-
tation is a sum of the eigenspaces.

Let H be an algebraic subgroup of an algebraic group G, and let � be a character of H .
We say that � occurs in a representation .V;r/ of G if H acts on some nonzero subspace
of V through �.

PROPOSITION 4.18. Let H , G, and � be as above. If � occurs in some representation of
G, then it occurs in the regular representation.

PROOF. After (4.11), � occurs in O.G/n for some n, i.e., there exists a nonzero subspace
W of O.G/n such that H acts on W through �. Under some projection O.G/n!O.G/,
W maps to a nonzero subspace of O.G/, which shows that � occurs in O.G/. 2

h. Chevalley’s theorem

THEOREM 4.19 (CHEVALLEY). Let G be an algebraic group. Every algebraic subgroup
H of G arises as the stabilizer of a one-dimensional subspace L in a finite-dimensional
representation .V;r/ of G.

PROOF. Let a be the kernel of O.G/! O.H/. According to (4.6), there exists a finite-
dimensional k-subspace V of O.G/ containing a generating set of a as an ideal and such
that

�.V /� V ˝O.G/:
Let W D a\V in V . Let .ei /i2J be a basis for W , and extend it to a basis .ei /JtI for V .
Let

�ej D
P
i2JtI ei ˝aij ; aij 2O.G/:

As in the proof of (4.3), O.GW /DO.G/=a0 where a0 is the ideal generated by faij j j 2
J; i 2 I g. Because O.G/!O.H/ is a homomorphism of Hopf algebras

�.a/�O.G/˝aCa˝O.G/;
�.a/D 0

(see 3.13). The first of these applied to ej , j 2 J , shows that a0 � a, and the second shows
that

ej D .�; id/�.ej /D
P
i2I �.ei /aij :

As the ej , j 2 J , generate a (as an ideal), so do the aij , j 2 J , and so a0D a. ThusH DGW .
The next (elementary) lemma allows us to replace W with the one-dimensional subspaceVd

W of
Vd

V . 2

LEMMA 4.20. Let W be a subspace of dimension d in a vector space V , and let D denote
the one-dimensional subspace

Vd
W of

Vd
V . Let ˛ be an automorphism of VR for some

k-algebra R. Then ˛WR DWR if and only if .
Vd

˛/DR DDR.

PROOF. Let .ej /1�i�d be a basis for W , and extend it to a basis .ei /1�i�n of V . Let
w D e1^ : : :^ ed . For all k-algebras R,

WR D fv 2 VR j w^v D 0 (in
VdC1

VR)g.
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To see this, let v 2 VR and write v D
Pn
iD1aiei , ai 2R. Then

w^w D
P
dC1�i�naie1^� � �^ ed ^ ei .

As the elements e1^� � �^ ed ^ ei , d C1� i � n, are linearly independent in
VdC1

V , we
see that

w^v D 0 ” ai D 0 for all d C1� i � n:

Let ˛ 2 GL.VR/. If ˛WR D WR, then obviously .
Vd

˛/.DR/ D DR. Conversely,
suppose that .

Vd
˛/.DR/DDR, so that .

Vd
˛/w D cw for some c 2R�. If v 2WR, then

w^v D 0, and so

0D .
VdC1

˛/.w^v/D .
Vd

˛/w^˛v D c .w^ .˛v// ;

which implies that ˛v 2WR. 2

REMARK 4.21. Theorem 4.19 is stronger than the usual form of the theorem (Borel 1991,
Springer 1998) even when G andH are both group varieties because it implies that V and L
can be chosen so thatH is the stabilizer of L in the sense of schemes. This means thatH.R/
is the stabilizer of LR in VR for all k-algebras R (see the definition p.70). On applying this
with RD kŒ"�, "2 D 0, we find that the Lie algebra of H is the stabilizer of L in Lie.G/ —
see (12.26) below.

i. The subspace fixed by a group

Let G be an algebraic group (not necessarily affine), and let .V;r/ be a representation of G.
We let V G denote the subspace of V fixed by G:

V G
def
D fv 2 V j g �vR D vR (in VR) for all k-algebras R and all g 2G.R/g:

PROPOSITION 4.22. LetR be a k-algebra. TheR-module V G˝R consists of the elements
of V ˝R fixed by all elements of G.R0/ with R0 an R-algebra.

PROOF. Let v 2 V ˝R be fixed (in V ˝R0) by all elements of G.R0/ with R0 an R-algebra.
Let .ei / be a basis for R as a k-vector space, and write v D

P
i vi ˝ ei . It suffices to show

that each vi 2 V G . Let g 2 G.S/ for some k-algebra S , and let g0 be the image of g in
G.S˝R/ under the map defined by s 7! s˝1RWS! S˝R. By hypothesis,

P
vi˝1S˝ei

is fixed by g0:
g0 � .

P
vi ˝1S ˝ ei /D

P
vi ˝1S ˝ ei .

But,
g0 � .

P
vi ˝1S ˝ ei /D

P
g.vi ˝1S /˝ ei

and so g.vi ˝1S /D vi ˝1S for all i . We have shown that the vi satisfy the condition to lie
in V G . 2

COMPLEMENTS

4.23. If G.k0/ is dense in G, then

V G D V \V.k0/G.k
0/
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(because the stabilizer GW of W def
D V \V.k0/G.k

0/ has the property that GW .k0/DG.k0/).
For example, if G is a connected group variety over a perfect infinite field (3.26), or a group
variety over a separably closed field (1.9d), then

V G D V.k/G.k/:

4.24. Let � be the co-action of .V;r/. The subspace V G of V is the kernel of the linear
map

v 7! �.v/�v˝1WV ! V ˝O.G/
(because this is the subspace fixed by the universal element id 2G.O.G//). It follows that

.V ˝k0/Gk0 ' V G˝k0;

for every field k0 containing k.

4.25. We can regard the action of G on the vector space V as an action of G on the
algebraic scheme Va (notation as in 2.6). Then (4.22) shows that

.V G/a D .Va/
G .





CHAPTER 5
Group theory; the isomorphism

theorems

In this chapter, we develop some basic group theory. In particular, we show that the Noether
isomorphism theorems hold for affine algebraic groups over a field k.

a. Terminology on functors

All functors are from Alg0
k

to Set.

DEFINITION 5.1. A flat sheaf (better, sheaf for the flat (fpqc) topology) is a functor
F WAlg0

k
! Set such that

(a) (local) for all small k-algebras R1; : : : ;Rm

F.R1� � � ��Rn/' F.R1/� � � ��F.Rm/I

(b) (descent) for all faithfully flat maps R!R0 of small k-algebras, the sequence

F.R/! F.R0/� F.R0˝RR
0/

is exact, i.e., the first arrow is the equalizer of the pair of arrows. The maps in the pair
are defined by the homomorphisms R0!R0˝RR

0 sending r to r˝1 or 1˝ r .

A morphism of flat sheaves is a natural transformation (map of functors).

EXAMPLE 5.2. Let F D hA def
D Hom.A;�/ for some k-algebra A. Then F is a sheaf.

Condition (a) is obvious, and condition (b) follows from the exactness of

R!R0�R0˝RR
0

for any faithfully flat homomorphism R! R0 (CA 11.9). Similarly, for every algebraic
scheme X , the functor hX is a flat sheaf.

DEFINITION 5.3. A subfunctorD of a functor F is fat1 if, for every small R and x 2 F.R/,
there exists a finite faithfully flat family2 of R-algebras .Ri /i2I such that the image xi of x
in F.Ri / lies in D.Ri / for all i .

1In DG III, �1, 1.4, p.285, a fat subfunctor is said to be “dodu” (Larousse: dodu adj. Se dit d’un animal gras,
bien en chair).

2This means that the map R!
Q
Ri is faithfully flat.

81
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LEMMA 5.4. Let D be a fat subfunctor of a sheaf S . Every morphism D! S 0 from D to
a sheaf S 0 extends uniquely to S .

PROOF. Obvious. 2

REMARK 5.5. A subfunctor D of a functor F is fat if it satisfies the following condition:
(*) for every small k-algebra R and x 2 F.R/, there exists a faithfully flat
R-algebra R0 such that the image of x in F.R0/ belongs to D.R0/.

Conversely, if F is a sheaf and D is a fat subfunctor such that D.
Q
Ri /!

Q
D.Ri / is

surjective for all finite families .Ri / of k-algebras, then D satisfies (*).

In fact, our fat subsheaves will usually satisfy (*).

LEMMA 5.6. Let 'WY !X be a faithfully flat morphism of algebraic schemes over k. The
functor R '.Y.R// is a fat subfunctor of QX .

PROOF. We check the condition (5.5(*)). Let R be a k-algebra, and let x 2 X.R/. Write
Y �X Spm.R/ as a finite union of open affines Ui . Let Ri DO.Ui /, and let R0 D

Q
i Ri :

Y Y �X Spm.R/
F
i Ui D Spm.R0/

X Spm.R/;

' faithfully flat

x

Then R0 is a faithfully flat R-algebra, and the image of x in X.R0/ lifts to Y (i.e., the map
Spm.R0/! Spm.R/

x
�!X factors through Y

'
�!X ). 2

b. Definitions

DEFINITION 5.7. A homomorphism G!Q of algebraic groups is a quotient map if it is
faithfully flat.

In other words, “quotient map” of algebraic groups means “faithfully flat homomor-
phism”. For affine algebraic groups, the condition means that the map of k-algebras
O.Q/!O.G/ is faithfully flat. A quotient map remains a quotient map after extension of
the base field.

PROPOSITION 5.8. Quotients of smooth algebraic groups are smooth.

PROOF. Let qWG!Q be a quotient map. Then OQ! q�OG is injective, and remains
injective after extension of the base field. Therefore OQ is geometrically reduced (hence
smooth 1.22), if G is. 2

A quotient map 'WG!Q is surjective as a map of schemes (i.e., j'j is surjective), but
a surjective homomorphism need not be flat. For example, let G be a nonreduced algebraic
group over a perfect field; then Gred is an algebraic subgroup of G and the inclusion map
Gred ! G is surjective without being a quotient map. As another example, the trivial
homomorphism Gm! p̨ is surjective without being a quotient map.

DEFINITION 5.9. A homomorphism G!H of algebraic groups is an embedding if it is a
closed immersion.
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In other words, “embedding” of algebraic groups means “morphism that is both a
homomorphism and a closed immersion”. For affine algebraic groups, the condition means
that the map O.H/! O.G/ is surjective. An embedding remains an embedding after
extension of the base field.

An embedding 'WG!H is injective as a map of schemes (i.e., j'j is injective), but an
injective homomorphism need not be an embedding. For example, the trivial homomorphism
p̨! e is injective but not an embedding.

PROPOSITION 5.10. The following conditions on a homomorphism 'WG!H of algebraic
groups over k are equivalent:

(a) '.R/WG.R/!H.R/ is injective for all (small) k-algebras R;

(b) Ker.'/D e;

(c) ' is a monomorphism in the category of algebraic groups over k;

(d) ' is a monomorphism in the category of algebraic schemes over k.

PROOF. (b),(a): The sequence

e! Ker.'/.R/!G.R/!H.R/

is exact for all R.
(c))(b): There are two homomorphisms Ker.'/!G whose composite with ' is the

trivial homomorphism, namely, the given inclusion and the trivial homomorphism. The two
must be equal, and so Ker.'/ is trivial.

(d))(c): This is obvious.
(a))(d): Let '1;'2WX ! G be morphisms such that ' ı'1 D ' ı'2. Then '.R/ ı

'1.R/D '.R/ı'2.R/ for all R, which implies that '1.R/D '2.R/ for all R. This implies
that '1 D '2 (Yoneda lemma). 2

DEFINITION 5.11. A homomorphism 'WG!H of algebraic groups is a monomorphism
if it satisfies the equivalent conditions of the proposition.

PROPOSITION 5.12. If a homomorphism of algebraic groups is both a monomorphism and
a quotient map, then it is an isomorphism.

PROOF. Let 'WG!H be such a homomorphism. We have to show that '.R/ is surjective
for all k-algebras R. Let h 2H.R/. Because ' is faithfully flat, there exists a faithfully flat
R-algebra R0 and a g 2G.R0/ mapping to h in H.R0/ (5.6). In the commutative diagram
below, the rows are exact and the vertical maps are injective.

G.R/ G.R0/ G.R0˝RR
0/

H.R/ H.R0/ H.R0˝RR
0/

'.R/ '.R0/ '.R0˝RR
0/

A diagram chase shows that g 2G.R/, and maps to h in H.R/. 2

COROLLARY 5.13. If a homomorphism of algebraic groups is both an embedding and a
quotient map, then it is an isomorphism.

PROOF. A closed immersion is certainly a monomorphism. 2
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c. The homomorphism theorem

The next theorem is of fundamental importance.

THEOREM 5.14 (HOMOMORPHISM THEOREM). Every homomorphism of affine algebraic
groups 'WG!H factors as

G I H
q i

with q a quotient map and i an embedding.

PROOF. AsG andH are affine, the factorizationsG
q
�! I

i
�!H of ' with i an embedding

correspond to the factorizations

O.H/ a
�!O.I / b

�!O.G/

of the homomorphism O.'/ of Hopf algebras (see 3.9) with a surjective. According to
(3.16), there exists such a factorization with b injective. Now (3.47) shows that b is faithfully
flat, which proves the theorem. 2

PROPOSITION 5.15. The following conditions on a homomorphism 'WG!Q of affine
algebraic groups are equivalent:

(a) ' is faithfully flat;

(b) R '.G.R// is a fat subfunctor of QQ;

(c) the homomorphism of k-algebras O.Q/!O.G/ is injective.

PROOF. (a))(b): Special case of (5.6).
(b))(c): Consider the universal element aD idO.Q/ 2G.O.Q//. By assumption, there

exists a g 2 G.R0/ with R0 faithfully flat over O.Q/ such that a and g map to the same
element of Q.R0/, i.e., such that the diagram

O.G/ R0

O.Q/ O.Q/

g

aDid

faithfully flat

commutes. Being faithfully flat, the map O.Q/!R is injective (A.85d), and so O.Q/!
O.G/ is injective.

(c))(a): Factor ' as in Theorem 5.14, ' D i ıq. The composite of the maps

O.Q/!O.I /!O.G/;

is injective, and so O.Q/!O.I / is injective, but it is also surjective because i is a closed
immersion. Therefore, i is an isomorphism, and ' is a quotient map. 2

COROLLARY 5.16. Let G and Q be reduced connected affine algebraic groups, and let
G!Q be a quotient map. Then

O.Q/DO.G/\k.Q/

where k.Q/ is the field of fractions of O.Q/. In particular, G!Q is an isomorphism if
k.Q/D k.G/.
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PROOF. Let O.Q/ D A and O.G/ D B , so that A � B and B is faithfully flat over A.
Because B is faithfully flat over A, cB \AD cA for all c 2 A. If a;c are elements of A
such that a=c 2 B , then a 2 cB \AD cA, and so a=c 2 A. 2

COROLLARY 5.17. Let 'WG!H be a homomorphism of affine algebraic groups with H
reduced. The following are equivalent:

(a) ' is surjective (i.e., j'j is surjective);

(b) ' is dominant;

(c) ' is faithfully flat.

PROOF. A surjective map is certainly dominant. If ' is dominant, then, because H is
reduced, the map O.H/!O.G/ is injective, and so ' is a faithfully flat by (5.15). Finally,
if ' is faithfully flat, then it is surjective (by definition A.86). 2

The statement fails for nonreduced H — see the discussion following (5.8).

PROPOSITION 5.18. A homomorphism of affine algebraic groups is a monomorphism if
and only if it is a closed immersion.

PROOF. Obviously, a closed immersion is a monomorphism. Conversely, if ' is a monomor-
phism, then in the factorization ' D i ıq of (5.14), the map q is an isomorphism (5.12). 2

5.19. We define the image of a homomorphism 'WG!H of algebraic groups to be the
algebraic group I in (5.14) regarded as a subgroup of H , and we denote it by '.G/. Note
that '.G/ is the smallest algebraic subgroup of H through which ' factors. Moreover
'WG! '.G/ is surjective, and its fibres are cosets of Ker.'/ in G, and so

dim.G/D dim.'.G//Cdim.Ker.'//:

The theorem shows that an embedding 'WG!H is an isomorphism of G onto an algebraic
subgroup of H (because the map q in the factorization of ' is an isomorphism).

ASIDE 5.20. An epimorphism of algebraic groups need not be faithfully flat — consider

T2 D f.� �0 �/g ,! SL2 :

However, a homomorphism 'WG!H of algebraic groups is faithfully flat if it is an epimorphism in
the category of algebraic schemes. To see this, factor ' as in (5.14), and use that the quotient H=I
exists (see Chapter 7).

d. Existence of quotients by normal subgroups

THEOREM 5.21. Let N be a normal algebraic subgroup of an affine algebraic group G.
There exists a quotient map qWG ! Q with kernel N . Moreover, q is universal among
homomorphisms containing N in their kernel: for every homomorphism 'WG!H such
that '.N /D e, there exists a unique homomorphism Q!H making

G Q

H

q

'

commute. The algebraic group Q is affine.
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We write G=N for the algebraic group Q in the theorem. More precisely, the quotient of
G by N is any quotient map qWG!G=N with kernel N .

Let 'WG!H be a homomorphism, and let ' D i ıq be the factorization in (5.14). By
the universality, q factors through G! G=N , and one see immediately that the resulting
homomorphism G=N ! I is an isomorphism. Therefore, we obtain the homomorphism
theorem in its usual form.

COROLLARY 5.22 (HOMOMORPHISM THEOREM). The image of a homomorphism 'WG!

G0 of affine algebraic groups is an algebraic subgroup '.G/ of G0, and ' defines an iso-
morphism of G=N onto '.G/ where N D Ker.'/; in particular, every homomorphism of
algebraic groups factors as follows:

G G0

G=N '.G/:

'

quotient map

isomorphism

embedding

(quotient map=faithfully flat homomorphism; embedding=homomorphism that is a closed
immersion).

The following is a preliminary to proving Theorem 5.21.

PROPOSITION 5.23. Let G be an affine algebraic group over a field k, and let H be an
algebraic subgroup ofG. Among the quotient mapsG!Q trivial onH , there is a universal
one.

PROOF. Given a finite family .G
qi
�!Qi /i2I of quotient maps of algebraic groups trivial on

H , we let HI D
T
i2I Ker.qi /. According to (1.28), there exists a family for which HI is

minimal. For such a family, I claim that the map from G to the image of .qi /WG!
Q
i2IQi

is universal. If it isn’t, then there exists a homomorphism qWG!Q containing H in its
kernel but not HI . But then HI[fqg DHI \Ker.q/ is properly contained in HI . 2

In order to prove Theorem 5.21, it remains to show that, when H is normal, it equals the
kernel of the universal map in (5.23). For this, it suffices to show that it arises as the kernel
of some homomorphism.

PROOF OF THEOREM 5.21.

LEMMA 5.24. Let .V;r/ be a representation of an affine algebraic group G. If N is a
normal algebraic subgroup of G, then V N is stable under G.

PROOF. Let w 2 V N .R/ and let g 2G.R/ for some k-algebra R. For an R-algebra R0 and
n 2N.R0/

r.n/.r.g/w/D r.ng/w D r.gn0/w D r.g/r.n0/w D r.g/w;

because n0 def
D g�1ng 2N.R0/. Therefore, r.g/w 2 V N .R/ (see 4.22), as required. 2

LEMMA 5.25. Let k be algebraically closed. When H is normal in G, it is possible to
choose the pair .V;L/ in (4.19) so that H acts on L through the trivial character.
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PROOF. Let .V;L/ be as in (4.19), and let � be the character of G on L. It suffices to show
that there exists a representation .W;r/ of G and a one-dimensional subspace L1 in W such
that (a) H acts on L1 through � and (b) L1 is a direct summand of W as an H -module,
because then H is the stabilizer of L˝L_1 in V ˝W _ (see 4.5) and H acts trivially on
L˝L_1 .

Suppose first that G.k/ is dense in G. Let W be the sum of the one-dimensional
subspaces in V stable under H . If a one-dimensional subspace D is stable under H , then
gD is stable under gHg�1 DH for all g 2G.k/. Therefore W is stable under G.k/, and
hence under G (4.4). As W is a sum of simple representations of H , (4.14) shows that L is
a direct summand of W as an H -module.

In the general case, we choose n so large that G.p
n/ is smooth (see 3.46). Because H is

the stabilizer of L in V , it is the stabilizer of L˝p
n

in V ˝p
n

(by 4.5), and so we can replace
.V;L/ with .V ˝p

n

;L˝p
n

/. Consider the exact sequence (2.16)

e!N !G
F n

�!G.p
n/
! e:

Clearly L˝p
n

�
�
V ˝p

n�N
, which is stable under G (5.24). The action of G on

�
V ˝p

n�N
factors through G.p

n/, and the argument in the last paragraph completes the proof. 2

LEMMA 5.26. LetG be an affine algebraic group over an algebraically closed field k. Every
normal algebraic subgroup N of G arises as the kernel of a representation of G.

PROOF. According to (5.25), there exists a representation .V;r/ ofG and a one-dimensional
subspace L of V such that N is the stabilizer of L and L� V N . Because N is normal, G
stabilizes V N , and the kernel N 0 of the representation of G on V N obviously contains N .
As N 0 stabilizes L, it is contained in N , and so equals it. 2

THEOREM 5.27. Every normal algebraic subgroup N of an affine algebraic group G arises
as the kernel of a homomorphism G!H with H affine.

PROOF. Proposition 5.26 shows that Nk0 is the kernel of a homomorphism ˛WGk0 !Hk0

for some extension k0 of k, which we may take to be finite. Let ˇ be the composite of the
homomorphisms

G
iG
�! .G/k0=k

.˛/k0=k
�! .H/k0=k

(see 2.37). On a k-algebra R, these homomorphisms become

G.R/
iG.R/
�! G.R0/

˛.R0/
�! H.R0/; R0 D k0˝R,

where iG.R/ is induced by the natural inclusion R!R0. Therefore

Ker.ˇ.R//DG.R/\N.R0/DN.R/;

and so N D Ker.ˇ/. 2

COROLLARY 5.28. Every normal algebraic subgroup N of an affine algebraic group G
arises as the kernel of a representation of G.

PROOF. Let N be the kernel of G!H , and choose a faithful representation of H (which
exists by 4.8). 2
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e. Properties of quotients

LEMMA 5.29. Let X and Y be algebraic schemes over k, and let D be a fat subfunctor of
QX . Every map of functors D! QY extends uniquely to a map of functors QX ! QY (hence to

a map of schemes X ! Y by the Yoneda lemma).

PROOF. As QX and QY are flat sheaves, we can apply (5.4). 2

PROPOSITION 5.30. Let 'WG!Q be a homomorphism of affine algebraic groups with
kernel N . Then Q is the quotient of G by N if and only if the functor

R G.R/=N.R/

is a fat subfunctor of Q.

PROOF. Because N is the kernel of G!Q, the sequence

1!N.R/!G.R/!Q.R/

is exact for all R, and so G.R/=N.R/�Q.R/. Hence G.R/=N.R/' '.G.R//, and so the
statement follows from (5.15). 2

PROPOSITION 5.31. Let I be the image of a homomorphism 'WG!H of affine algebraic
groups. Then G ! I is a quotient map, and, for all k-algebras R, I.R/ consists of the
elements of H.R/ that lift to G.R0/ for some faithfully flat R-algebra R0.

PROOF. Immediate from the above. 2

PROPOSITION 5.32. Let 'WG!H be a homomorphism of affine algebraic groups. If '
is a quotient map, then G.K/!H.K/ is surjective for every algebraically closed field K
containing k. Conversely, if G.K/!H.K/ is surjective for some separably closed field K
containing k and H is smooth, then ' is a quotient map.

PROOF. If ' is a quotient map, then so also is 'K . Let h 2 H.K/. For some finitely
generated K-algebra R, the image h0 of h in H.R/ lifts to an element g of G.R/. Zariski’s
lemma (CA 13.1) applied to R modulo a maximal ideal shows that there exists a K-algebra
homomorphism R!K. Under the map H.R/!H.K/, h0 maps to h, and under the map
G.R/!G.K/, g maps to an element lifting h.

For the converse statement, let I be the image of '. Then I.K/�H.K/, and so I DH
(A.61). 2

COROLLARY 5.33. If the sequence of affine algebraic groups

e!N !G!Q! e

is exact and K is an algebraically closed field containing k, then

e!N.K/!G.K/!Q.K/! e

is exact.

PROOF. The sequence e!N.R/!G.R/!Q.R/ is always exact, and (5.32) shows that
G.K/!Q.K/ is surjective. 2
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f. The isomorphism theorem

Let H and N be subgroups of an abstract group G. Recall that H is said to normalize N if
hNh�1 DN for all h 2H , and then the isomorphism theorem says that HN is a subgroup
of G, and that

h �H \N ! h �N WH=H \N !HN=N

is an isomorphism.

5.34. Let H and N be algebraic subgroups of an affine algebraic group G. We say that
H normalizes N if H.R/ normalizes N.R/ in G.R/ for all k-algebras R. The actions of
H.R/ on N.R/ define an action � ofH on N by group homomorphisms, and multiplication
on G defines a homomorphism

N Ì� H !G.

We define NH DHN to be the image of this homomorphism. Then

N Ì� H !NH

is a quotient map (see 5.31), and so an element of G.R/ lies in .HN/.R/ if and only if it
lies in H.R0/N.R0/ for some faithfully flat R-algebra R0. It follows that HN is the unique
algebraic subgroup of G containing R H.R/N.R/ as a fat subfunctor (5.29). If H and
N are smooth, then HN is smooth (see 5.8); if H \N is also smooth, then

.HN/.ksep/DH.ksep/ �N.ksep/

and HN is the unique smooth algebraic subgroup of G with this property.

PROPOSITION 5.35. Let H and N be algebraic subgroups of an affine algebraic group G
with N normal. The canonical map

N Ì� H !G (34)

is an isomorphism if and only if N \H D feg and NH DG.

PROOF. There is an exact sequence

e!N \H !N Ì� H !NH ! e:

Therefore (34) is an embedding if and only if N \H D feg, and it is surjective if and only if
NH DG. 2

EXAMPLE 5.36. Consider the algebraic subgroups SLn and Gm (nonzero scalar matrices)
of GLn. Then Gm �SLn D GLn, but Gm.k/ �SLn.k/ ¤ GLn.k/ in general (an invertible
matrix A is the product of a scalar matrix with a matrix of determinant 1 if and only if det.A/
is an nth power in k). The functor R Gm.R/ �SLn.R/ is fat in GLn.

THEOREM 5.37. Let H and N be algebraic subgroups of an affine algebraic group G such
thatH normalizes N . ThenH \N is a normal algebraic subroup ofH , and the natural map

H=H \N !HN=N

is an isomorphism.
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PROOF. For each k-algebra R, H.R/ and N.R/ are subgroups of G.R/, and H.R/ normal-
izes N.R/. Moreover H.R/\N.R/D .H \N/.R/, and so the isomorphism theorem in
abstract group theory gives us an isomorphism

H.R/=.H \N/.R/'H.R/ �N.R/=N.R/, (35)

natural in R. Now R H.R/=.H \N/.R/ is a fat subfunctor of H=H \N and R 
H.R/ �N.R/=N.R/ is fat subfunctor of HN=N , and so the isomorphism (35) extends
uniquely to an isomorphism H=H \N !HN=N (see 5.29). 2

In other words, there is a diagram

e N HN HN=N e

H=H \N

' (36)

in which the row is exact.

g. The correspondence theorem

PROPOSITION 5.38. Let H and N be algebraic subgroups of an affine algebraic group G,
with N normal. The image of H in G=N is an algebraic subgroup of G=N whose inverse
image in G is HN .

PROOF. Let NH be the image of H in G=N . It is the algebraic subgroup of G=N containing
R H.R/N.R/=N.R/ as a fat subfunctor. The inverse image H 0 of NH in G is the fibred
product G�G=N NH regarded as an algebraic subgroup of G. Recall that�

G�G=N NH
�
.R/DG.R/�.G=N/.R/ NH.R/:

Now R G.R/�.G=N/.R/ NH.R/ contains R H.R/N.R/ as a fat subfunctor, and so
H 0 is the (unique) algebraic subgroup of G containing R H.R/N.R/ as a fat subfunctor.
In other words, H 0 DHN (5.34). 2

THEOREM 5.39. Let N be a normal algebraic subgroup of an affine algebraic group G.
The map H 7! H=N defines a one-to-one correspondence between the set of algebraic
subgroups of G containing N and the set of algebraic subgroups of G=N . An algebraic
subgroup H of G containing N is normal if and only if H=N is normal in G=N , in which
case the map

G=H ! .G=N/=.H=N/ (37)

defined by the quotient map G!G=N is an isomorphism.

PROOF. The first statement follows from Proposition 5.38. For the second statement, note
that the map

G.R/=H.R/! .G.R/=N.R//=.H.R/=N.R//

defined by the quotient map G.R/! G.R/=N.R/ is an isomorphism, natural in R. The
algebraic group G=H (resp. .G=N/=.H=N/) contains the left (resp. right) functor as a fat
subfunctor, and so we can apply (5.29). 2
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� ASIDE 5.40. The Noether isomorphism theorems fail for group varieties. Consider, for example,
the algebraic group GLp and its normal subgroups SLp and D (group of scalar matrices), where p is
the characteristic of ground field. Then SLp\D D f1g in the category of group varieties, but

SLp =.SLp\D/! SLp �D=D

is the quotient map SLp ! PGLp , which is not an isomorphism of group varieties (it is purely
inseparable of degree p). This failure, of course, causes endless problems, but when Borel, Chevalley,
and others introduced algebraic geometry into the study of algebraic groups they based it on the
algebraic geometry of that period, which didn’t allow nilpotents, and almost all authors have followed
them. My own expository work in this field is predicated on the believe that, in order to learn the
modern theory of algebraic groups, one should not have to learn it first in the language of 1950s
algebraic geometry, nor should one have to first read EGA.3

h. The category of commutative algebraic groups

THEOREM 5.41. The commutative algebraic groups over a field form an abelian category.

PROOF. The Hom sets are commutative groups, and composition of morphisms is bilinear.
Moreover, the product G1�G2 of two commutative algebraic groups is both a product and a
sum ofG1 andG2. Thus the category of commutative algebraic groups over a field is additive.
Every morphism in the category has both a kernel and cokernel, and the canonical morphism
from the coimage of the morphism to its image is an isomorphism (homomorphism theorem,
5.14). Therefore the category is abelian. 2

COROLLARY 5.42. The finitely generated commutative co-commutative Hopf algebras
over a field form an abelian category.

PROOF. This category is contravariantly equivalent to that in the theorem. 2

ASIDE 5.43. Theorem 5.41 is generally credited to Grothendieck. As we have seen, it is a fairly
direct consequence of allowing the coordinate rings to have nilpotent elements. See SGA 3, VIA,
5.4.3, p.327; DG III �3, 7.4, p. 355.

Corollary 5.42 is proved purely in the context of Hopf algebras in Sweedler 1969, Chapter XVI,
for finite-dimensional commutative co-commutative Hopf algebras, and in Takeuchi 1972, 4.16, for
finitely generated commutative co-commutative Hopf algebras.

i. The group of connected components of an algebraic group

Recall that an étale k-algebra is a finite product of separable field extensions of k. A finite
product of étale k-algebras is again étale, and any quotient of an étale k-algebra is an étale
k-algebra. If A1; : : : ;Am are étale subalgebras of a k-algebra A (not necessarily finitely
generated), then their compositeA1 � � �Am is an étale subalgebra ofA (because it is a quotient
of A1� � � ��Am/.

Let X be an algebraic scheme over k. Then O.X/ is a k-algebra (not necessarily finitely
generated).

PROPOSITION 5.44. There exists a greatest étale k-subalgebra �.X/ in O.X/.
3SGA 3 and Conrad et al. 2010 require both.
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PROOF. Let A be an étale subalgebra of O.X/. Then kal˝A' kn for some n, and so

1D e1C�� �C en

with the ei a complete set of orthogonal idempotents in O.Gkal/. The ei decompose jGkal j

into a disjoint union of n open-closed subsets, and so n is at most the number of connected
components of jGkal j. Thus the number ŒAWk� D Œkal˝AWk� is bounded. It follows that
the composite of all étale k-subalgebras of O.X/ is an étale k-subalgebra, which clearly
contains all others. 2

Define
�0.X/D Spm.�.X//:

Recall that
Homk-algebra.R;O.X//' Homk-scheme.X;Spm.R//

for all k-algebras R (A.13). It follows that the morphism X ! �0.X/ corresponding to the
inclusion �.X/ ,!O.X/ is universal among morphisms from X to étale k-schemes.

PROPOSITION 5.45. Let X be an algebraic scheme over k.

(a) For all fields k0 containing k,

�0.Xk0/' �0.X/k0 .

(b) Let Y be a second algebraic scheme over k. Then

�0.X �Y /' �0.X/��0.Y /:

PROOF. For affine schemes, these statements are proved in Waterhouse 1979, but the proofs
their extend without difficulty to all algebraic schemes (AG, Chap. 10). 2

For example, if k is algebraically closed in O.X/, then �.X/D k and �.Xksep/D ksep.
It follows that there are no nontrivial idempotents in O.Xksep/, and so Xksep is connected.
Using this, we obtain (b) of the following proposition.

PROPOSITION 5.46. Let X be an algebraic scheme over k.

(a) The fibres of the morphism 'WX ! �0.X/ are the connected components X .

(b) For all x 2 j�0.X/j, the fibre '�1.x/ is a geometrically connected scheme over �.x/.

PROOF. Statement (a) is obvious, and (b) was noted above. 2

REMARK 5.47. Let X be an algebraic scheme over k.

(a) The connected components of Xksep form a finite set on which Gal.ksep=k/ acts
continuously, and �0.X/ is the étale scheme over k corresponding to this set under
the equivalence Z Z.ksep/ (see 2.13).

(b) The morphism '�1.x/! Spm.�.x// is flat because �.x/ is a field. Therefore, 'WX!
�0.X/ is faithfully flat.
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Let G be an algebraic group (not necessarily affine) over k. In this case, the k-algebra
O.G/ is finitely generated (see 10.33 below), but we don’t need that here.

Because Gı is a normal subgroup of G, the set �0.Xksep/ of connected components of
Xksep has a (unique) group structure for which

G.ksep/! �0.Xksep/ (38)

is a homomorphism. This group structure is respected by the action of Gal.ksep=k/, and so
it arises from an étale group �0.X/ over k. In this way, we get a homomorphism

G! �0.G/

of algebraic groups over k which, on ksep-points, becomes (38).4

PROPOSITION 5.48. Let G be an algebraic group (not necessarily affine) over a field k.
(a) The homomorphism G! �0.G/ is universal among homomorphisms from G to an

étale algebraic group.

(b) The kernel of the homomorphism in (a) is Gı; there is an exact sequence

e!Gı!G! �0.G/! e:

(c) The formation of the exact sequence in (b) commutes with extension of the base field.
For every field extension k0 � k,

�0.Gk0/' �0.G/k0

.Gk0/
ı
' .Gı/k0 :

(d) The fibres of jGj ! j�0.G/j are the connected components of jGj. The order of the
finite algebraic group �0.G/ is the number of connected components of Gkal .

(e) For algebraic groups G and G0,

.G�G0/ı 'Gı�G0ı

�0.G�G
0/' �0.G/��0.G

0/:

PROOF. Immediate from the above. 2

DEFINITION 5.49. Let G be an algebraic group over a field k. The quotient G! �0.G/

of G is the component group or group of connected components of G.

REMARK 5.50. (a) An algebraic group G is connected if and only if �0.G/D e, i.e., G
has no nontrivial étale quotient.

(b) Every homomorphism from a connected algebraic group to G factors through Gı!
G (because its composite with G! �0.G/ is trivial).

(c) The set j�0.G/j can be identified with the set of Gal.ksep=k/-orbits in the group
�0.G/.k

sep/, and need not itself be a group. For example, �0.�n/D �n0 where n0 is the
largest factor of n not divisible by the characteristic exponent of k, and j�n0 j need not be a
group.

4Alternatively, we can argue as follows. Let ADO.G/. The multiplication map mWG�G!G defines a
comultiplication map �WA! A˝A, which makes A into a Hopf algebra. As � is a k-algebra homomorphism,
it sends �.A/ into

�.A˝A/' �.A/˝�.A/:

Similarly, S WA! A sends �.A/ into �.A/, and we can define � on �.A/ to be the restriction of � on A.

Therefore �.A/ is a Hopf subalgebra of A. Hence �0.G/
def
D Spm.�.A// is an étale algebraic group over k, and

G! �0.G/ is a homomorphism of algebraic groups.
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PROPOSITION 5.51. Let G be an affine algebraic group over k. Then Gı is the unique
connected normal algebraic subgroup of G admitting an étale quotient G=Gı.

PROOF. Let N be a normal algebraic subgroup of G such that G=N exists and is étale.
According to (5.48a), the homomorphism G!G=N factors through G! �0.G/, and so
we get a commutative diagram

e Gı G �0G e

e N G G=N e

with exact rows. On applying the snake lemma (Exercise 6-4) to the diagram, we obtain an
exact sequence of algebraic groups:

1!Gı!N ! �0G:

If N is connected, then the homomorphism N ! �0G is trivial, and so Gı 'N . 2

Let G be an affine algebraic group. Proposition 5.51 says that there is a unique exact
sequence

e!Gı!G! �0.G/! e

with Gı connected and �0.G/ étale. This is sometimes called the connected-étale exact
sequence.

PROPOSITION 5.52. Let
e!N !G!Q! e

be an exact sequence of algebraic groups. IfN andQ are connected, then so isG; conversely,
if G is connected, then so is Q (but not necessarily N ).

PROOF. If N is connected, then it maps to e in �0.G/, and so G! �0.G/ factors through
Q, and hence through �0.Q/, which is trivial if Q is connected.

The surjective homomorphism G!Q! �0.Q/ factors through �0.G/, and so �0.Q/
is trivial if �0.G/ is. 2

For the parenthetical statement, note that Gm is connected, but �n D Ker.Gm
n
�!Gm/

is not connected unless n is a power of the characteristic exponent of k.

EXAMPLES

5.53. Let G be finite. When k has characteristic zero, G is étale, and so G D �0.G/ and
Gı D 1. Otherwise, there is an exact sequence

e!Gı!G! �0.G/! e:

When k is perfect, the homomorphism G! �0.G/ has a section, and so G is a semidirect
product

G DGıÌ�0.G/:
To see this, note that the homomorphism Gred! �0.G/ is an isomorphism because both
groups are étale and the homomorphism becomes an isomorphism on kal-points:

Gred.k
al/DG.kal/

'
�! �0.G/.k

al/:

Now we can apply (2.21).
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5.54. The groups Ga, GLn, Tn, Un, Dn (see 2.1, 2.8, 2.9) are connected because in each
case O.G/ is an integral domain. For example,

kŒTn�D kŒGLn�=.Tij j i > j /;

which is isomorphic to the polynomial ring in the symbols Tij , 1 � i � j � n, with the
product T11T22 � � �Tnn inverted.

5.55. A monomial matrix over R is an element of GLn.R/ with exactly one nonzero
element in each row and each column. The functor sending R to the group of monomial
matrices over R is representable by an algebraic subgroup M of GLn. Let I.�/ denote
the (permutation) matrix obtained by applying a permutation � to the rows of the identity
n�n matrix. The matrices I.�/ form a (constant) algebraic subgroup .Sn/k of GLn, and
M D Dn � .Sn/k . For a diagonal matrix diag.a1; : : : ;an/,

I.�/ �diag.a1; : : : ;an/ �I.�/�1 D diag.a�.1/; : : : ;a�.n//. (39)

This shows that Dn is normal in M . Clearly D\ .Sn/k D e, and so M is the semidirect
product

M D DnÌ� .Sn/k
where � WSn! Aut.Dn/ sends � to the automorphism in (39). In this case, �0G D .Sn/k
and Gı D Dn.

5.56. The group SLn is connected. The natural isomorphism of set-valued functors

A;r 7! A �diag.r;1; : : : ;1/WSLn.R/�Gm.R/! GLn.R/

defines an isomorphism of k-algebras

O.GLn/'O.SLn/˝O.Gm/;

and the algebra on the right contains O.SLn/. In particular, O.SLn/ is a subring of O.GLn/,
and so it is an integral domain.

5.57. Assume char.k/¤ 2. For every nondegenerate quadratic space .V;q/, the algebraic
group SO.q/ is connected. It suffices to prove this after replacing k with kal, and so we
may suppose that q is the standard quadratic form X21 C�� �CX

2
n , in which case we write

SO.q/D SOn. The latter is shown to be connected in Exercise 5-5 below.
The determinant defines a quotient map O.q/! f˙1g with kernel SO.q/. Therefore

O.q/ı D SO.q/ and �0.O.q//D f˙1g (constant algebraic group).

5.58. The symplectic group Sp2n is connected (for some hints on how to prove this, see
Springer 1998, 2.2.9).

ASIDE 5.59. (a) An algebraic variety over C is connected for the Zariski topology if and only if it
is connected for the complex topology. Therefore an algebraic group G over C is connected if and
only if G.C/ is connected for the complex topology. We could for example deduce that GLn over C
is a connected algebraic group from knowing that GLn.C/ is connected for the complex topology.
However, it is easier to deduce that GLn.C/ is connected from knowing that GLn is connected.

(b) An algebraic group G over R may be connected without G.R/ being connected for the real
topology, and conversely. For example, GL2 is connected as an algebraic group, but GL2.R/ is not
connected, whereas �3 is not connected as an algebraic group, but �3.R/D f1g is connected.
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j. Torsors and extensions

This section will be expanded. In particular, we shall define H 1.R0;G/ and Ext1.G;H/
etc.

5.60. Let R0 be a k-algebra, and let G be an algebraic group over R0. A right G-torsor
over R0 is a scheme X faithfully flat over R0 together with an action X �G!X of G on
X such that the map

.x;g/ 7! .x;xg/WX �G!X �S X

is an isomorphism of R0-schemes. If G is affine (resp. finite, smooth) over k, then the
morphism X ! Spm.R0/ is affine (resp. finite, smooth) (because it becomes so after the
faithfully flat base extension X ! Spm.R0/, and we can apply (A.90)).

5.61. Let
e!N !G!Q! e;

be an exact sequence of algebraic groups over k with Q affine. Then G is an N -torsor over
Q (Exercise 2-1). Therefore, if N and Q are affine (resp. finite, smooth) then G is affine
(resp. finite, smooth).

Exercises

EXERCISE 5-1. Let A and B be algebraic subgroups of an affine algebraic group G, and
let AB be the sheaf associated with the subfunctor R A.R/ �B.R/ of G.

(a) Show that AB is representable by O.G/=a where a is the kernel of homomorphism
O.G/! O.A/˝O.B/ defined by the map a;b 7! abWA�B ! G (of set-valued
functors).

(b) Show that, for any k-algebra R, an element G.R/ lies in .AB/.R/ if and only if its
image in G.R0/ lies in A.R0/ �B.R0/ for some faithfully flat R-algebra R0, i.e.,

.AB/.R/D
\

R0
G.R/\

�
A.R0/ �B.R0/

�
.

EXERCISE 5-2. Show that if e!N !G!Q! e is exact, so also is �0.N /!�0.G/!

�0.Q/! e. Give an example to show that �0.N /! �0.G/ need not be a closed immersion.

EXERCISE 5-3. What is the map O.SLn/!O.GLn/ defined in example 5.56?

EXERCISE 5-4. Prove directly that �.O.On//D k�k.

EXERCISE 5-5. (Springer 1998, 2.2.2). Let k be a field of characteristic ¤ 2. For each
k-algebra R, let V.R/ denote the set of skew-symmetric matrices, i.e., the matrices A such
that At D�A.

(a) Show that the functor R 7! V.R/ is represented by a finitely generated k-algebra A,
and that A is an integral domain.

(b) Show that A 7! .InCA/
�1.In�A/ defines a bijection from a nonempty open subset

of SOn.kal/ onto an open subset of V.kal/.

(c) Deduce that SOn is connected.

(d) Deduce that SOn is rational.



CHAPTER 6
The isomorphism theorems using

sheaves.

In this chapter, we use sheaves to express some of the material in the previous chapter
more efficiently, and we explain how to extend the results to general algebraic groups (not
necessarily affine).

a. Some sheaf theory

All functors are from Alg0
k

to Set.

PROPOSITION 6.1. Let F be a functor. Among the morphisms from F to a flat sheaf there
exists a universal one ˛WF ! aF .

The universal property means that, for every homomorphism ˇWF ! S from F to a
sheaf S , there is a unique morphism  WaF ! S rendering

F aF

S

˛

ˇ


commutative. The pair .aF;˛/ is called the sheaf associated with F (or the sheafification
of F ). It is unique up to a unique isomorphism.

We prove the proposition in two steps. A functor is separated if F.R/!
Q
F.Ri / is

injective whenever .Ri /i2I is a finite family of small R-algebras such that R!
Q
i2I Ri is

faithfully flat.

LEMMA 6.2. Let F be a functor. Among the morphisms from F to a separated functor,
there exists a universal one ˛WF ! F 0.

PROOF. For a;b 2 F.R/, write a � b if a and b have the same image in
Q
F.Ri / for some

faithfully flat family .Ri /i2I of R-algebras. Define

F 0.R/D F.R/=� :

One checks easily that this is a separated functor, and that the morphism F ! F 0 is univer-
sal. 2

97
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LEMMA 6.3. Let F be a separated functor. Among the morphisms from F to a flat sheaf
there exists a universal one ˛WF ! aF .

PROOF. Let

.aF /.R/D lim
�!

Eq.
Y

i2I
F.Ri /�

Y
.i;j /2I�I

F.Ri ˝RRj //

where the limit is over finite families .Ri /i2I of small R-algebras such that the homomor-
phism R!

Q
i2I Ri is faithfully flat. One checks easily that this is a sheaf, and that the

morphism F ! aF is universal. 2

If F is local (i.e., satisfies (a) of 5.1), then

.aF /.R/D lim
�!

Eq.F.R0/� F.R0˝RR
0//

where the limit is over the small faithfully flat R-algebras R0.
Now, for a functor F , the composite of the morphisms

F ! F 0! aF 0

is the required universal morphism from F to a sheaf.
Proposition says that, for a functor F and a sheaf S ,Let P denote the category of functors

and S the category of sheaves. Then S is a full subcategory of P , and (6.1) says that the
functor aWP! S is left adjoint to the inclusion functor i WS! P:

HomP.F; iS/' HomS.aF;S/: (40)

Therefore a is left adjoint to i , and so it preserves direct limits.

6.4. Let S be a sheaf. For any fat subfunctor D of S , .S;D ,! S/ is the sheaf associated
with D.

6.5. Let F be a flat sheaf. We say that F is representable if there exists an algebraic
k-scheme X such that QX � F . If there exists a nonzero k-algebra R, an algebraic R-
scheme X , and bijections X.R0/! F.R0/, natural in R0, for every R-algebra R0, then F is
representable (descent).

6.6. Let F be a separated functor Alg0
k
! Set. We say that an algebraic scheme X over k

together with a natural transformation

˛.R/WF.R/!X.R/

represents the sheaf associated with F if

(a) for all small k-algebras R, ˛.R/WF.R/!X.R/ is injective, and

(b) for all x 2 V.R/, there exists a faithfully flat R-algebra R0 and a y 2 F.R0/ such that
˛.R0/.y/D x.

Of course, this just means that . QX;˛/ is the sheaf associated with F . If .X;˛/ and .X 0;˛0/
both represent the sheaf associated with F , then there exists exists a unique isomorphism
'WX !X 0 such that h' ı˛ D ˛0.
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b. The isomorphism theorems for abstract groups

First we recall the statements for abstract groups.

6.7. (Existence of quotients). The kernel of a homomorphism G ! G0 of groups is a
normal subgroup, and every normal subgroup N of G arises as the kernel of a quotient map
G!G=N .

6.8. (Homomorphism theorem). The image of a homomorphism 'WG!G0 of groups is a
subgroup '.G/ of G0, and ' defines an isomorphism of G=Ker.'/ onto '.G/; in particular,
every homomorphism of groups is the composite of a quotient map with an embedding:

G G0

G=N I

'

quotient map

isomorphism

embedding

6.9. (Isomorphism theorem). Let H and N be subgroups of G with N normal in G. Then
HN is a subgroup of G, H \N is a normal subgroup of H , and the map

xH \N 7! xN WH=H \N ! .HN/=N

is an isomorphism.

6.10. (Correspondence theorem). Let N be a normal subgroup of a group G. The map
H 7!H=N is a bijection from the set of subgroups ofG containingN to the set of subgroups
of G=N . A subgroup H containing N is normal if and only if H=N is normal in G=N , in
which case the natural map

G=H ! .G=N/=.H=N/

is an isomorphism.

In fact, H 7!H=N is an isomorphism from the lattice of subgroups of G containing N
to the lattice of subgroups of G=N . With this addendum, (6.10) is often called the lattice
theorem.

c. The isomorphism theorems for group functors

By a group functor we mean a functor GWAlg0
k
! Grp. A homomorphism 'WG! G0 of

group functors is a natural transformation. A subgroup functor of a group functor G is a
subfunctor G0 such that G0.R/ is a subgroup of G.R/ for all k-algebras R; it is normal if
G0.R/ is normal in G.R/ for all R. When N is a normal subgroup functor of G, we define
G=N to be the group functor R G.R/=N.R/. For subgroup functors H and N of G, we
define HN to be the subfunctor R H.R/N.R/ of G.

Let 'WG! G0 be a homomorphism of group functors. The kernel of ' is the group
functor R Ker.'.R//, and the image 'G of ' is the subfunctor R '.G.R// of G. We
say that ' is a quotient map if '.R/ is surjective for all R.

With these definitions, the isomorphism theorems hold with “group” replaced by “group
functor”. Each statement can be checked for one k-algebra R at a time, when it becomes the
statement for abstract groups.
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d. The isomorphism theorems for sheaves of groups

The sheaves of groups form a full subcategory S of the category P of group functors. The
sheaf associated with a group functor is again a group functor, and so the inclusion functor
i WS! P has a left adjoint a,

HomP.F; iG/' HomS.aF;G/:

As i and a are adjoint functors, the first preserves finite direct limits and the second finite
inverse limits. Using this, one can show that the isomorphism theorems hold for sheaves of
groups, as we now explain.

6.11. (Existence of quotients). Let 'WG!G0 be a homomorphism of sheaves of groups.
The kernel of ' is automatically a sheaf (hence a sheaf of normal subgroups of G). We say
that ' is a quotient map if the image 'G of ' is fat in G0, i.e., if G0 is the sheaf associated
with the functor R '.G.R//. Let N be a sheaf of normal subgroups of G. We define
G Q=N to be a.G=N/. Then G!G Q=N is a quotient map of sheaves of groups with kernel
N . Let ' be a homomorphism from G to a sheaf of groups H whose kernel contains N ;
then ' factors uniquely through G! G=N (obviously), and then G=N ! G Q=N factors
uniquely through G=N !G Q=N because H is a sheaf.

6.12. (Homomorphism theorem). Let 'WG!G0 be a homomorphism of sheaves of groups.
We define the image Im.'/ of ' to be the sheaf associated with the group functor 'G. It is
the smallest sheaf of subgroups of G0 through which ' factors, and '.G/ is a fat subfunctor
of Im.'/. The map ' defines an isomorphism of functors of groups

G=Ker.'/! '.G/

(see Section d). On passing to the associated sheaves, we obtain an isomorphism of sheaves

G Q=Ker.'/! Im.'/;

and hence a factorization

G�G Q=Ker.'/
'
�! Im.'/ ,!G0

of '.

Let G be a sheaf of groups.

6.13. (Isomorphism theorem). Let H and N be sheaves of subgroups of G with N normal
in G. We define HN to be the sheaf associated with the group functor R H.R/N.R/.
Then HN is a sheaf of subgroups of G, H \N is a normal subgroup of H , and the map

xH \N 7! xN WH Q=H \N ! .HN/Q=N

is an isomorphism (because it is obtained from an isomorphism of group functors by passing
to the associated sheaves).

6.14. (Correspondence theorem). Let N be a sheaf of normal subgroups of G. The map
H 7!H Q=N is a bijection from the set of sheaves of subgroups of G containing N to the set
of sheaves of subgroups of G Q=N . A sheaf of subgroups H containing N is normal if and
only if H Q=N is normal in G Q=N , in which case the natural map

G Q=H ! .G Q=N/=.H Q=N/

is an isomorphism. Again, all these statements can be derived easily from the corresponding
statements for group functors.
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e. The isomorphism theorems for affine algebraic groups

Let G be an affine algebraic group. Then QGWR G.R/ is a sheaf of groups, and the functor
G QG is fully faithful. Therefore, we may identify category of affine algebraic groups over
k with the category of sheaves of groups whose underlying sheaf of sets is representable
by an object of Alg0

k
. In order to prove (6.11, 6.12, 6.13, 6.14) for affine algebraic groups,

it suffices to show that each of the constructions in these statements takes affine algebraic
groups to affine algebraic groups. This is straightforward, and accomplished in a more
general setting in the next section.

f. The isomorphism theorems for algebraic groups

We write QG, or just G, for the flat sheaf defined by an algebraic group G. Recall that the
functor G QG is fully faithful, and so identifies the category of algebraic groups over k
with the category of group functors whose underlying functor is representable by an algebraic
k-scheme.

We shall need to use two consequences of the general existence theorem on quotients
proved in the next chapter.

6.15. Every monomorphism of algebraic groups is a closed immersion (7.37).

6.16. Let N be a normal algebraic subgroup of an algebraic group G. The homomorphism
of sheaves G ! G Q=N is represented by a faithfully flat homomorphism G ! G=N of
algebraic groups (7.38).

THEOREM 6.17 (EXISTENCE OF QUOTIENTS). The kernel of a homomorphism G!G0

of algebraic groups is a normal algebraic subgroup, and every normal algebraic subgroup N
of G arises as the kernel of a quotient map G!G=N .

PROOF. Restatement of previous results (Section 1.e, 6.16). 2

We define the image of a homomorphism 'WG ! G0 to be the smallest algebraic
subgroup '.G/ of G0 through which ' factors (cf. 1.36).

THEOREM 6.18 (HOMOMORPHISM THEOREM). The image of a homomorphism 'WG!

G0 of algebraic groups is an algebraic subgroup '.G/ of G0, and ' defines an isomorphism
of G=Ker.'/ onto '.G/; in particular, every homomorphism of groups is the composite of a
quotient map with an embedding:

G G0

G=N I

'

quotient map

isomorphism

embedding .N D Ker.'//:

PROOF. First consider the diagram of functors:

QG QG0

QG= QN I

'

isomorphism
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as in Section c. Now pass to the associated sheaves:

G G0

G Q=N aI

'

isomorphism

The arrow G!G Q=N is the quotient map G!G=N in (6.16) regarded as a map of sheaves.
The arrow G Q=N ! aI is an isomorphism of sheaves. Therefore aI is representable by an
algebraic group J . The homomorphism of sheaves aI !G0 is injective, which means that
the homomorphism J !G0 of algebraic groups is a monomorphism. According to (6.15), it
is a closed immersion. 2

THEOREM 6.19 (ISOMORPHISM THEOREM). Let H and N be algebraic subgroups of G
with N normal in G. Then HN is an algebraic subgroup of G, H \N is a normal algebraic
subgroup of H , and the map

xH \N 7! xN WH=H \N ! .HN/=N

is an isomorphism.

PROOF. As before, we define HN to be the image of the homomorphism H Ì� N ! G

of algebraic groups. It is the sheaf associated with the subfunctor R H.R/N.R/ of QG.
Clearly, H \N is a normal algebraic subgroup of H . The map of functors

xH \N 7! xN W QH=BH \N ! QH QN= QN

is an isomorphism (Section c). On passing to the associated sheaves, we obtain the required
isomorphism. 2

THEOREM 6.20 (CORRESPONDENCE THEOREM). LetN be a normal subgroup of a group
G. The map H 7!H=N is a bijection from the set of subgroups of G containing N to the
set of subgroups of G=N . A subgroup H containing N is normal if and only if H=N is
normal in G=N , in which case the natural map

G=H ! .G=N/=.H=N/

is an isomorphism. In fact, H 7!H=N is an isomorphism from the lattice of subgroups of
G containing N to the lattice of subgroups of G=N .

PROOF. The same as that of (5.39). 2

PROPOSITION 6.21. The following conditions on a homomorphism 'WG!Q of affine
algebraic groups are equivalent:

(a) ' is faithfully flat;

(b) R '.G.R// is a fat subfunctor of QQ;

(c) the map OQ! '�OG of sheaves on Q is injective.
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PROOF. (a))(b): Special case of (5.6).
(b))(c): Let U be an open affine subset of Q, and let R DOQ.U /. On applying (b)

to the element Spm.R/D U ,! G of G.R/, we see that there exists a faithfully flat map
R!R0 and a commutative diagram

G Spm.R0/

Q Spm.R/:

'

From this, we get a commutative diagram

OG.'�1U/ R0

OQ.U / R:

As R!R0 is injective (A.85d), so also is OQ.U /!OG.'�1U/.
(c))(a): Factor ' as in Theorem 5.14, ' D i ıq. The composite of the maps

OQ! i�OI ! '�G;

is injective, and so OQ! i�OI is injective, but it is also surjective because i is a closed
immersion. Therefore, i is an isomorphism, and ' is faithfully flat. 2

PROPOSITION 6.22. Let
e!N !G!Q! e

be an exact sequence of algebraic groups. If G is affine, then so also are N and Q; if N and
Q are affine, so also is G.

PROOF. Every algebraic subgroup H of an algebraic group G is closed (1.27), and hence
affine if G is affine.

By definition,G=N represents the functorG Q=N , and we know thatG Q=N is representable
by an affine algebraic group when G is affine (5.21).

If N and Q are affine, then so also is G because it is a torsor under N over Q (see
5.61). 2

All the results proved in Chapter 5 for affine algebraic groups now hold mutatis mutandis
for general algebraic groups. For reference, we state some of these.

6.23. Let 'WG ! H be a homomorphism of algebraic groups with H reduced. The
following are equivalent:

(a) ' is surjective (i.e., j'j is surjective);

(b) ' is dominant;

(c) ' is faithfully flat.

6.24. Every normal algebraic subgroup N of an algebraic group G such that G=N is affine
arises as the kernel of a linear representation of G.
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6.25. Let 'WG!H be a homomorphism of algebraic groups. If ' is a quotient map, then
G.K/!H.K/ is surjective for every algebraically closed fieldK containing k. Conversely,
if G.K/!H.K/ is surjective for some separably closed field K containing k and H is
smooth, then ' is a quotient map.

6.26. If the sequence of algebraic groups

e!N !G!Q! e

is exact and K is an algebraically closed field containing k, then

e!N.K/!G.K/!Q.K/! e

is exact.

6.27. The category of commutative algebraic group schemes over a field is abelian, and
the subcategory of affine commutative algebraic group schemes is thick (6.22).

NOTES. That the Noether isomorphism theorems hold for algebraic groups over a field is implicit in
DG and SGA 3, and explicit in SHS Exposé 7, �3, p.242.

g. Some category theory

Let A be a category. A morphism ˛WA! B in A is a monomorphism if ˛ ıf D ˛ ıg
implies f D g, and an epimorphism if f ı˛ D g ı˛ implies f D g. If ˛WA! B is a
monomorphism (resp. epimorphism) then we call A a subobject of B (resp. we call B a
quotient object of A).

Let ˛WA! B a morphism. The subobjects of B through which ˛ factors form partially
ordered set. A least object in this set (if it exists) is called the image of ˛. The coimage of ˛
is defined similarly.

A null object of A is an object e such that, for all objects A of A, each set Hom.A;e/
and Hom.e;A/ have exactly one element. A morphism is trivial if it factors through e.

Assume that A has a null object. Let ˛WA! B be a morphism. We call a morphism
uWK!A a kernel of ˛ if ˛ ıu is trivial and every other morphism with this property factors
uniquely through u. Similarly, we define the notion of a cokernel.

A subobject uWA0!A is normal if it is the kernel of some morphismA!B . The notion
of a conormal quotient object is defined similarly. A category if normal (resp. conormal) if
every subobject is normal (resp. every quotient object is conormal). A normal and conormal
category with kernels and cokernels is exact if every morphism ˛WA! B can be written as
a composite A

q
�! I

v
�! B with q an epimorphism and v a monomorphism.

Now let A denote the category of algebraic groups over a field k. A morphism in A
is a monomorphism if and only if it is a closed immersion. Thus, the subobjects of G are
essentially the algebraic subgroups of G. A quotient map is an epimorphism, but not every
epimorphism is a quotient map. The image of a homomorphism ˛WG!H as we defined it
is an image in the sense of categories.

The trivial group e is a null object in A. The kernel of a homomorphism as we defined it
is a kernel in the sense of categories, but not every subobject is normal. Every homomorphism
˛WA! B can be written as a composite of an epimorphism and a monomorphism.

Clearly, A is not an exact category, but some of the results for exact categories hold for
A. It is not possible to make A into an exact category by restricting the homomorphisms to
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be normal, because a composite of normal homomorphisms need not be normal (a normal
subgroup of a normal group need not be normal). However, when we replace A with the
category of commutative algebraic groups, then we do get an exact category (even an abelian
category).

Exercises

EXERCISE 6-1. Let A, B , C be algebraic subgroups of an algebraic group G such that A is
a normal subgroup of B and B normalizes C . Show:

(a) C \A is a normal subgroup of C \B;

(b) CA is a normal subgroup of CB .

EXERCISE 6-2. (Dedekind’s modular laws). Let A, B , C be algebraic subgroups of an
algebraic group G such that A is a subgroup of B . Show:

(a) B \AC D A.B \C/I

(b) if G D AC , then B D A.B \C/.

EXERCISE 6-3. Let N and Q be algebraic subgroups of G with N normal. Show that G is
the semidirect product of N and Q if and only if (a) G DNQ, (b) N \QD 1, and (c) the
restriction to Q of the canonical map G!G=N is an isomorphism.

EXERCISE 6-4. A homomorphism uWG!G0 of algebraic groups is said to be normal if
its image is a normal subgroup of G0. For a normal homomorphism uWG!G0, the quotient
map G0!G0=u.G/ is the cokernel of u in the category of algebraic groups over k. Show
that the extended snake lemma holds for algebraic groups: if in the following commutative
diagram, the blue sequences are exact and the homomorphisms a;b;c are normal, then the
red sequence exists and is exact:

e Ker f Ker a Ker b Ker c

A B C e

A′e B′ C ′

Coker a Coker b Coker c Coker g′ e.

d

f g

a b c

f ′ g′

EXERCISE 6-5. Show that a pair of normal homomorphisms

G
f
�!G0

g
�!G00

of algebraic groups whose composite is normal gives rise to an exact (kernel-cokernel)
sequence

0! Kerf �! Kerg ıf
f
�! Kerg �! Cokerf

g
�! Cokerg ıf �! Cokerg! 0:

Hint: use the extended snake lemma.
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EXERCISE 6-6. Let G and H be algebraic groups over k, and let QG and QH denote the
sheaves they define. Show that the canonical map

Ext1.G;H/! Ext1. QG; QH/

is a bijection. Here Ext1.G;H/ (resp. Ext1. QG; QH/) denotes the set of equivalence classes of
extensions of G by H in the category of algebraic groups over k (resp. of QG by QH in the
category of sheaves of groups over k). Same statement for affine algebraic groups.



CHAPTER 7
Existence of quotients of algebraic

groups

Let H be an algebraic subgroup of an algebraic group G over a field k. In this section, we
prove that G=H exists as a separated algebraic scheme over k.1

Because of the additional flexibility it gives us, we consider the problem of quotients in
the more general setting of equivalence relations on algebraic schemes. First we prove the
existence of a quotient when the equivalence classes are finite (7.18, 7.24). This implies the
existence of a quotient whenever there exists a “quasi-section” (i.e., a one-to-finite section)
(see 7.29). In general, there will exist a quasi-section for an equivalence relation over a dense
open subset (7.33). Using this, we deduce the existence of G=H (7.35).

In this section, we work over a noetherian base ring R0, and we ignore set-theoretic
questions. All R0-algebras are finitely generated. An algebraic scheme over R0 is a scheme
of finite type over Spec.R0/. Throughout, “functor” means “functor from R0-algebras
to sets representable by an algebraic scheme over R0”. An algebraic scheme X over R0
defines such a functor, R X.R/, which we denote by QX or hX . The functor X QX is an
equivalence of categories.

a. Equivalence relations

DEFINITION 7.1. A pair of morphisms u0;u1WF1 � F0 of functors is an equivalence
relation if, for all k-algebras R, the map

F1.R/
.u0;u1/
�����! F0.R/�F0.R/

is a bijection from F1.R/ onto the graph of an equivalence relation on F0.R/.

Explicitly, the condition means the following: let R be an R0-algebra; for x;x0 2 F0.R/,
write x � x0 if there exists a y 2 F1.R/ such that u0.y/D x and u1.y/D x0; then � is an
equivalence relation on the set F0.R/ in the usual sense and the y, if it exists, is unique.

Note that the equivalence class of x 2F0.R/ is u1.u�10 .x//. We say that a subfunctor F 0

of F0 is saturated with respect to an equivalence relation if F 0.R/ is a union of equivalence
classes for all R (i.e., u1.u�10 .F 0//� F 0).

1This result is not proved in DG; it was planned for “Tome II” — see DG, Tome I, p.342.
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EXAMPLE 7.2. Recall that an (abstract) group acts freely on a set if no element of the group
except e has a fixed element. An action of a group functor G on a functor F is said to be
free if G.R/ acts freely on F.R/ for all R0-algebras R. Let G�F ! F be a free action.
Then

G�F F
.g;x/ 7! gx

.g;x/ 7! x

is an equivalence relation. The graph of the equivalence relation on F.R/ is

f.gx;x/ j g 2G.R/; x 2 F.R/g:

The action being free means that the map

.g;x/ 7! .gx;x/WG.R/�F.R/! F.R/�F.R/

is injective: .gx;x/D .g0x0;x0/ ” x D x0 and g�1g0x D x ” x D x0 and g D g0.

EXAMPLE 7.3. For any map of functors uWF0! F , the pair

F1 D F0�u;F;uF0 F0
p1

p2

is an equivalence relation (two elements of F0.R/ are equivalent if and only if they have the
same image in F.R/).

DEFINITION 7.4. Let u0;u1WF1� F0 be an equivalence relation on F0, and let f WF 00!
F0 be a morphism. Form the fibred product

F 01 F 00�F
0
0

F1�F1 F0�F0:

.u00;u
0
1/

f �f

u0�u1

Then u00 and u01 define an equivalence relation on F 00, called the inverse image of .u0;u1/
with respect to f . Note that x0;x1 2 F 00.R/ are equivalent with respect to the inverse image
relation if and only if f .x0/;f .x1/ are equivalent with respect to .u0;u1/.

EXAMPLE 7.5. Let u0;u1WF1� F0 be an equivalence relation. Then the inverse images
of .u0;u1/ with respect to u0 and u1 coincide (as subfunctors of F1�F1). (Identify F1.R/
with the set of pairs .x0;x1/ 2 F0.R/ such that x0 � x1. Then .x0;x1/ � .x00;x

0
1/ with

respect to the inverse image by u0 (resp. u1/ if and only if x0 � x00 (resp. x1 � x01). These
conditions are the same.)

DEFINITION 7.6. Suppose given a diagram

F1 F0 F
u0

u1

u

in which .u0;u1/ is an equivalence relation. We say that u (or by an abuse of language F ) is
a quotient of .u0;u1/ if
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(a) uıu0 D uıu1;
(b) the map .u0;u1/WF1! F0�F F0 is an isomorphism;
(c) for all functors T , the sequence

Hom.F;T / Hom.F0;T / Hom.F1;T /
ıu0

ıu1

is exact.

REMARK 7.7. Condition (a) says that .u0;u1/ maps into the fibred product, so that (b)
makes sense. Condition (c) implies (a), but (b) and (c) are completely independent. Condition
(c) implies that the quotient, if it exists, is unique (up to a unique isomorphism).

REMARK 7.8. Let u0;u1WX1�X0 be morphisms in some category C with fibred products.
A morphism uWX0!X is a cokernel of .u0;u1/ in C if uıu0 D uıu1 and u is universal
with this property:

X1 X0 X

T:

u0

u1

u

v
v ıu0 D v ıu1

In other words, u is the cokernel of .u0;u1/ if

Hom.X;T /! Hom.X0;T /� Hom.X1;T /

is exact for all objects T in C. A morphism uWX0!X is an effective epimorphism if it is a
cokernel of the projection maps X0�X X0�X . Conditions (a) and (c) in (7.6) say that u
is a cokernel of (u0;u1/ in the category of functors, and (b) then says that u is an effective
epimorphism.

PROPOSITION 7.9. A pair u0;u1WF1� F0 is an equivalence relation if and only if

(a) F1.R/
.u0;u1/
�! .F0�F0/.R/ is a injective for all R;

(b) there exists a map sWF0! F1 such that u0 ı s D idF0 D u1 ı s (i.e., there exists a
common section to u0 and u1);

(c) there exist maps v0;v1;v2WF2! F1 (of functors) such that

F2

F1

F1

F0

F0
v0

v1

u0

u0

u1

v2 u1

commutes (i.e., u0 ıv0 D u0 ıv1, u1 ıv0 D u0 ıv2; u1 ıv1 D u1 ıv2) and the two
squares

F2

F1

F1

F0

v0

u0

v2 u1

F2

F1

F1

F0

v1

u1

v2 u1
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are cartesian.

PROOF. H) :
(a) is part of the definition of equivalence relation.
(b) Let S denote the image of .u0;u1/ in F0 �F0. It contains the diagonal, and we

define s to be the composite of the maps

F0
.id;id/
�! S

.u0;u1/
�1

�! F1:

In other words, let x 2 F0.R/; then x � x, and so there is a unique y 2 F1.R/ such that
u0.y/D x D u1.y/; set s.x/D y. Clearly this has the required properties.

(c) Set
F2.R/D f.x;y;z/ 2 .F0�F0�F0/.R/ j x � y; y � zg

and

v0 W .x;y;z/ 7! .y;z/

v1 W .x;y;z/ 7! .x;z/

v2 W .x;y;z/ 7! .x;y/

9=; 2 F1.R/D f.z;w/ 2 .F0�F0/.R/ j z � wg:
With the last identification,

u0.z;w/D w

u1.z;w/D z:

Now

u0 ıv0 and u0 ıv1 both map .x;y;z/ to z

u1 ıv0 and u0 ıv2 both map .x;y;z/ to y

u1 ıv1 and u1 ıv2 both map .x;y;z/ to x:

This proves the commutativity, and the first square is cartesian because

F1�F0 F1 D f.x;y/; .x
0;y0/ j x � y; x0 � y0; y D x0g

D f.x;y;y0/ j x � y; y � y0g:

Similarly, the second square is cartesian.
(H: For x 2 F0.R/,

x D u0.s.x//D u1.s.x//D x;

and so
x � x:

Suppose that x � y and x � z in F0.R/; then�
x D u1.x

0/

y D u0.x
0/

some x0 2 F1.R/
�
x D u1.x

00/

z D u0.x
00/

some x00 2 F1.R/:

Now u1.x
0/D u1.x

00/, and so there exists an x000 2 F2.R/ such that

v1.x
000/D x0 and v2.x000/D x00
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(second square is cartesian). Consider v0.x000/. Firstly,

u0.v0.x
000//D u0.v1.x

000//D y:

Secondly,
u1.v0.x

000//D u0.v2.x
000//D z;

and so y � z. This shows that � is an equivalence relation (if x � y then y � x because
x � x). 2

REMARK 7.10. Let u0;u1WF1� F0 be an equivalence relation. From the symmetry of
the equivalence relation, we obtain an automorphism s0WF0! F0 such that u0 ı s0 D u1
and u1 ı s0 D u0. [Let y 2 F1.R/; then u0.y/� u1.y/ and so u1.y/� u0.y/; this means
that there exists a (unique) y0 2 F1.R/ such that u0.y0/D u1.y/ and u1.y0/D u0.y/; set
s0.y/D y0.] Thus, if F1 and F0 are schemes and the morphism u0 has some property, then
the morphism u1 will have the same property.

b. Existence of quotients in the finite affine case

PRELIMINARIES

7.11. Let M be an A-module. We say that M is locally free of finite rank if there exists a
finite family .fi /i2I of elements of A generating the unit ideal A and such that, for all i 2 I ,
the Afi -module Mfi is free of finite rank. Recall that this is equivalent to M being finitely
generated and projective (CA 12.5). We say that an A-algebra uWA! B is locally free of
finite rank if it is so as an A-module.

7.12. Let B be a locally free A-algebra of finite rank r , and let b 2 B . If B is free over A,
then we define the characteristic polynomial of b over A in the usual way. Now let .fi /i2I
be a family of elements as in the last paragraph such that Bfi is free over Afi . Then we have
a well-defined characteristic polynomial in Afi ŒT � for each i . These agree in Afifj ŒT � for
all i;j 2 I . Using the exact sequence2

A
Y
i2I

Afi

Y
.i;j /2I�I

Afifj

we obtain a well-defined characteristic polynomial of b in AŒT �.

7.13. Let A be a subring of B such that B is a faithfully flat A-module. Then an A-module
M is locally free of finite rank if and only if the B-module B˝AM is locally free of finite
rank (Bourbaki AC I, 3.6, Pptn 12).

7.14. Let A be a ring and uWM !N a homomorphism of A-modules. Then u is injective
(resp. surjective, bijective, zero) if and only if umWMm!Nm is injective (resp. surjective,
bijective, zero) for all maximal ideals m in A (Bourbaki AC, II, 3.3, Thm 1).

7.15. Let A be a ring. An A-module M is flat (resp. faithfully flat) if and only if the
Am-module Mm is flat (resp. faithfully flat) for all maximal ideals m in A (Bourbaki AC, II,
3.4, Cor. to Pptn 15).

2Because there exists a sheaf O on spec.A/ with O.D.f //D Af for all f 2 A, or use that A!
Q
i Afi is

faithfully flat.



112 7. Existence of quotients of algebraic groups

7.16. A locally free module of constant rank over a semilocal ring is free (Bourbaki, AC II,
5.3, Pptn 5).

7.17. If B faithfully flat over A and M ˝AB faithfully flat over B , then M faithfully flat
over A,

B M ˝AB

A M:

faithfully flat

faithfully flat

To prove this statement, test with

.N / W N 0!N !N 00:

Then

.N / exact ” .N /˝AB exact ” ..N /˝AB/˝B .M ˝AB/ exact.

But this last is isomorphic to ..N /˝AM/˝AB , which is exact if and only if .N /˝AM is
exact.

THE THEOREM

Let A0 and A1 be R0-algebras. We say that the pair of maps u0;u1WA0 � A1 is an
equivalence relation if ıu0;ıu1WhA1� hA0 is an equivalence relation.

THEOREM 7.18. Given an equivalence relation u0;u1WA0� A1 with u0 locally free of
constant rank r , then a quotient uWA! A0 exists; moreover, A0 is locally free of rank r as
an A-module.

The proof will occupy the remainder of this subsection. Consider the diagram

A2

A1

A1

A0

A0

A:

v0

v1

u0

u0

u1

v2 u1 u

u

Condition (c) for a quotient says that, for all R0-algebras R,

Hom.R;A/ Hom.R;A0/ Hom.R;A1/
u0

u1

is exact. With R D R0, this says that AD Ker.u0;u1/ and u equals the inclusion map —
define them so. Then we know,

(a) hA1.R/!
�
hA0 �hA0

�
.R/D hA0˝RA0.R/ is injective for all R (because .u0;u1/

is an equivalence relation);

(b) there exists an s such that s ıu0 D s ıu1 (see the remark);

(c) the undashed part of the diagram is commutative, and the two left hand squares are
cocartesian (see the proposition);
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(d) u1 is locally free of rank r (hypothesis and remark);

(e) uD Ker.u0;u1/ (construction);

and we have to show

(f) the right hand square is cocartesian (H) u is a quotient)

(g) u is locally free of rank r .

STEP 0. Statement (a) is equivalent to (a0): A0˝AA0! A1 is surjective.

PROOF. First note that we have a factorization

A0˝R0 A0 A0˝AA0 A1

hA0 �hA0 hA0 �hA h
A0 hA1

So (a) is equivalent to: (a*) hA1 ! hA0˝AA0 is injective. Certainly, (a0) implies (a*). The
converse follows from the general statement:�

R a finite C -algebra
hR! hC injective

H) R is a quotient of C , i.e., C
onto
�!R:

Note that hR! hC is injective if and only if hR�hC h
R ' hR, i.e., the map b 7! b˝1�

1˝bWR!R˝C R is an isomorphism.
To show that C !R is surjective, it suffices to show that Cm!Rm is surjective for all

maximal ideals m of C . Note that we still have�
Rm a finite Cm-algebra
Rm 'Rm˝Cm Rm:

Thus, we may assume that C is local (with maximal ideal m). Then, by Nakayama’s lemma,
it suffices to prove that

C=mC !R=mR

is surjective. Let k D C=mC (a field) and K D R=mR. The hypotheses implies that
K 'K˝kK, but this implies that dimk.K/D 1, and so k 'K. 2

Note now that R0 has dropped out of all the hypotheses, and so we may forget about it.

STEP 1. It suffices to prove (f) and (g0): u is faithfully flat.

PROOF. These conditions imply that u is locally free (of rank r), because after a faithfully
flat base change it is and so we can apply (7.13). 2

STEP 2. We may assume that A is local.

PROOF. Note that tensoring the diagram with Ap (over A) preserves all the hypotheses
(because Ap is flat over A). Suppose that the theorem has been proved for Ap (arbitrary p/.
Then (f) follows from (7.14) and (g0/ follows from (7.15). 2

STEP 3. We may assume that A is local with infinite residue field.
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PROOF. Suppose that A is local with maximal ideal m; then pDmAŒT � is prime in AŒT �
because AŒT �=pD .A=m/ŒT �. Moreover, A! .AŒT �/p is flat (because A!AŒT � is) and is
local, therefore faithfully flat.

All the hypotheses are preserved by a faithfully flat base change, and also the conclusions.
For (g0) this follows from (7.17). 2

STEP 4. The ring A0 is integral over A.

PROOF. Let x 2 A0 and let y D u0.x/ 2 A1. We shall show that the characteristic polyno-
mial

F.T /D T r ��1T
r�1
C�� �C .�/r�r

of y over A0 (via u1/ has coefficients in A and that F.x/D 0.
Let zD v0.y/D v1.y/ 2A2. The characteristic polynomial is preserved by base change,

and so u0.F / and u1.F / both equal the characteristic polynomial of z (over A1 via v2).

A2

A1

A1

A0

A0

A:

v0

v1

u0

u0

u1

v2 u1 u

u

z

*

y

*

x
v0

v1

u

u0

u1

u0.F /;u1.F / v2 F u1

Therefore, u0.F / D u1.F /, and so F D u.F0/ with F0 2 AŒT �. But F.y/ D 0, i.e.,
.uF0/.u0x/D 0, and so u0.F0.x//D 0. Now apply s to get F0.x/D 0. 2

STEP 5. The ring A0 is semilocal.

PROOF. Because A0 is integral over A, every maximal ideal of A0 lies over the maximal
ideal of A. Let m1; : : : ;mN be distinct maximal ideals of A0, and let a1; : : : ;aN 2 A be
distinct modulo m (recall that the residue field is infinite). Take x 2 A0 such that x � ai
mod mi (exists by the Chinese remainder theorem). Then the characteristic polynomial of x,
modulo m, has N distinct roots, namely, a1; : : : ;aN , and so N � r . 2

STEP 6. Completion of the proof.

Now apply (7.16):

A1 locally free of rank r over A0 (via u1)
A0 semilocal

�
H) A1 free over A0 (via u1)

Note that the set u0.A0/ generates A1 as a .u1;A0/-module (because A0˝A A0 ! A1
is surjective). Therefore Lemma 7.19 below shows that there x1; : : : ;xr 2 A0, such that
u0.x1/; : : : ;u0.xr/ form a basis for A1 over A0 (via u1).

We shall complete the proof by showing that A0 is free over A with basis fx1; : : : ;xrg
and that A1 D A0˝AA0. Let yi D u0.xi /.

If
P
aixi D 0, ai 2 A, then

P
aiyi D 0, and so ai D 0 all i . Therefore the xi are

linearly independent.
Let x 2 A0, and let y D u0.x/. By assumption, there exist bi 2 A0 such that

y D
X

u1.bi /yi D
X

biyi .
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In the last expression, we regard A1 as an A0-module via u1. Let

z D v0.y/D v1.y/

zi D v0.yi /D v1.yi /:

Then the zi form a basis A2 over A1 (via v2/, and so

z D
X

u0.bi /zi D
X

u1.bi /zi H) u0.bi /D u1.bi / all i H) bi 2 A, all i:

On applying s to y D
P
biyi , we find that

x D
X

bixi ;

and so the xi generate.

LEMMA 7.19. Let uWA! B be a homomorphism with A local and B semilocal. Assume
that u maps the maximal ideal m of A into the radical r of B . Let N be a free B-module of
rank r , and let M be an A-submodule of N such that N D BM . If the residue field of A is
infinite, then M contains a B-basis for N .

PROOF. Elements n1; : : : ;nr of N form a B-basis for N if (and only if) their images in
N=rN form a B=r-basis — by Nakayama’s lemma, they will generate N , and there are r of
them. Thus we may replace N with N=rN , M with M=M \ rN , and so on. Then A is a
field, and B is a finite product of finite field extensions B D

Q
j kj of k. Correspondingly,

N D
Q
j Nj with Nj a kj -vector space of dimension r . To complete the proof, we use

induction on r , the case r D 0 being trivial.
I claim that there exists an m 2M whose image in Nj is zero for no j . By hypothesis

there exists an mj 2M whose image in Nj is not zero. Consider

mD
X

cjmj ; cj 2 k:

The set of families .cj / such that mD 0 in Nj is a proper subspace of kr , and a finite union
of proper subspaces of a finite dimensional vector space over an infinite field cannot equal
the whole space3 — hence we can find an appropriate family .cj /.

The B-module N=BmD
Q
j Nj =kjmj is free of rank r �1, and the k-subspace M=kn

still generates it. By induction, there exist elements m1; : : : ;mr�1 in M forming a B-basis
for N=Bm. Now m1; : : : ;mr�1;m form a B-basis for N . 2

REMARK 7.20. Let uWA! A0 be faithfully flat. Then uD Ker.u0;u1/, and so the maps

x 7! x˝1; 1˝xWA0� A0˝AA0

are an equivalence relation on A0 with quotient uWA! A0. The theorem says that every
equivalence relation with A1 locally free of constant rank over A0 is of this form.

REMARK 7.21. (a) The situation

A A0 A0˝AA0
u u0

u1

�
u faithfully flat
uD Ker.u0;u1/

3Suppose V D
Sn
iD1Vi with Vi ¤ V . Let fi WV ! k be a nonzero linear map zero on Vi . Then

Q
fj is a

nonzero polynomial function on V vanishing identically, which is impossible because k is infinite.



116 7. Existence of quotients of algebraic groups

is stable under base change (because u stays faithfully flat).
(b) The above situation is stable under products, i.e.,

A A0 A0˝AA0

B B0 B0˝B B0

˝R0 ˝R0 ˝R0

is of the same form.
(c) A map 'WA0!B0 defines a mapA!B if '˝' satisfies the obvious commutativity

condition:

A

B

A0

B

A1

B1:

u

'

In other words, we have a map

Hom..A0;A1/; .B0;B1//! Hom.A;B/:

c. Existence of quotients in the finite case

PRELIMINARIES

7.22. Let Z be a closed subset of X D Spec.A/ and let S be a finite set of points of X XZ;
then there exists an f 2 A such that f is zero on Z but is not zero at any point in S .

PROOF. This is the prime avoidance lemma (CA 2.8) 2

7.23. Let A! B be a locally free A-algebra of rank r . Let p be a prime ideal in A, and let
q1; : : : ;qn be the prime ideals of B lying over it. An element b of B lies in q1[ : : :[qn if
and only if its norm Nm.b/ 2 p.

PROOF. After replacing A and B with Ap and Bp, we may suppose that A is local with
maximal ideal p and that B is semilocal with maximal ideals q1; : : : ;qn. Then B is free of
rank r (7.16), and Nm.b/ is the determinant of A-linear map `bWB! B , x 7! bx. Now

Nm.b/ … p ” Nm.b/ invertible (p is the only maximal ideal of A)

” `b invertible (linear algebra)

” b is invertible in B

” b … q1[� � �[qn: (q1; : : : ;qn are the only maximal ideals of B). 2

THE THEOREM

Let X be an algebraic scheme over R0, i.e., a scheme of finite type over Spec.R0/. Then X
defines a functor QX , and X QX is an equivalence of categories. By an equivalence relation
on X , we mean an equivalence relation on QX .

THEOREM 7.24. Let .u0;u1/WX1�X0 be an equivalence relation on the algebraic scheme
X0 over R0. Assume
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(a) u0WX1!X0 is locally free of constant rank r ;

(b) for all x 2X0, the set u0.u�11 .x// is contained in an open affine of X0.

Then a quotient uWX0!X exists; moreover, u is locally free of rank r .

The proof will occupy the rest of this subsection.

STEP 1. Every x 2X0 has a saturated open affine neighbourhood.

PROOF. By hypothesis, there exists an open affine neighbourhood U of x containing its
equivalence class u1u�10 .x/. Let U 0 denote the union of the equivalence classes contained
in U , i.e., U 0 is the complement in U of u1u�10 .X0XU/. This last set is closed because u1
is finite, and so U 0 is open. Moreover U 0 is saturated by construction. It contains x and is
contained in U , but it need not be affine.

As U is affine and the set u1u�10 .x/ is finite and contained in U 0, there exists an
f 2OX0.U / that is zero on U XU 0 but is not zero at any of the points of u1u�10 .x/ (7.22).
In other words, the principal open subset D.f / of U is contained in U 0 and contains
u1u
�1
0 .x/. Let U 00 be the union of the equivalence classes contained in D.f /, i.e.,

U 00 DD.f /Xu1u
�1
0 .U 0XD.f //:

As before, this is a saturated open set. It contains x and is contained in D.f /. It remains to
show that it is affine.

Let Z.f /D U 0XD.f /. It is the zero set of f in U 0, and so u�10 .Z.f // is the zero set
of u�0.f / in u�10 .U 0/. Therefore u1u�10 .Z.f // is the zero set of Nm.u�0.f // in U 0 (7.23).
By construction, its complement in D.f / is exactly U 00, and so U 00 is the set of points of
D.f / where Nm.u�0.f // is not zero, which is an open affine subset of D.f /. 2

STEP 2. Let u0;u1WX1�X0 be a pair of morphisms of R0-ringed spaces.

(a) There exists a cokernel uWX0!X in the category of R0-ringed spaces.

(b) If u0, u1, and u are morphisms of schemes, and then uWX0!X is a cokernel in the
category of R0-schemes.

PROOF. (a) Let jX j be the topological space obtained from jX0j by identifying u0.x/ and
u1.x/ for all x 2 jX1j, and let u be the quotient map. For an open subset U of X , define
OX .U / so that

OX .U /!OX0.u�1.U //�OX1..u0 ıu/�1U/
is exact. Then OX is a sheaf of R0-algebas on X , and uWX0!X is a cokernel of .u0;u1/
in the category of ringed spaces.

(b) Let vWX0! T be a morphism of schemes such that v ıu0 D v ıu1. By hypothesis,
there exists a unique morphism of ringed spaces r WX ! T such that r ıuD v. It remains
to show that, for all x 2 X , the homomorphism Or.x/! Ox induced by r is local. But
x D u.x0/ for some x0 2X0, and Ox!Ox0 and the composite

Or.x/!Ox!Ox0

are local, which implies the statement. 2

STEP 3. Completion of the proof



118 7. Existence of quotients of algebraic groups

PROOF. Let .u0;u1/ be as in the statement of the theorem. As in the affine case, we
first construct the cokernel uWX0! X of .u0;u1/ in the category of ringed spaces. Let
U0 be a saturated open affine subset of X0, and let U1 D u�10 .U0/ D u

�1
1 .U0/. Then

.u0;u1/WU1 � U0 is an equivalence relation, and V D u.U0/ � X is the cokernel of

.u0;u1/jU1 in the category of ringed spaces. From the affine case (7.18), we see that
V is an affine scheme. As finitely many V cover X (Step 1), we deduce that X is an
algebraic scheme over R0 and that u is a morphism of R0-schemes. It follows that u is the
cokernel of .u0;u1/ in the category of schemes overR0 (Step 2); moreover, X1'X0�X X0
because this condition is local on X . 2

REMARK 7.25. It is possible to weaken the hypothesis (a) to
u0WX1!X0 is locally free of finite rank,

because such an equivalence relation decomposes into a finite disjoint union of equivalence
relations of constant rank.

APPLICATION

PROPOSITION 7.26. Let G be an algebraic group over R0, and let H be an algebraic
subgroup of G. Assume that H is locally free of rank r over R0. Then the quotient sheaf
G Q=H is representable by an algebraic scheme G=H over R0, and the morphism G!G=H

is locally free of rank r ; moreover, G�H 'G�G=H G.

PROOF. Apply the theorem to the equivalence relation

G�H G:
.g;h/ 7! gh

.g;h/ 7! g

on G. 2

d. Existence of quotients in the presence of quasi-sections

PRELIMINARIES

We shall need the following technical lemma.

LEMMA 7.27. Let

Y1

X1

Y0

X0

v0

v1

u0

u1

f1 f0

be a commutative diagram in some category C with fibred products. Assume that f0 and
f1 are effective epimorphisms, and that there exists a morphism �WY0�X0 Y0! Y1 such
that v0 ı�D p1 and v1 ı�D p2. Then the cokernel of .u0;u1/ exists if and only if the
cokernel of .v0;v1/ exists, in which case f0 induces an isomorphism

Coker.v0;v1/! Coker.u0;u1/
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PROOF. Let T be an object of C, and consider the diagram

C.u0;u1/.T /

C.v0;v1/.T /

Hom.X0;T /

Hom.Y0;T /

Hom.X1;T /

Hom.Y1;T /:

u

v

T.f0/ T .f1/f .T /

in which the left hand terms are defined to make the rows exact. Here T .fi / is the map
defined by fi WYi ! Xi . The cokernel of .u0;u1/ exists if and only if the functor T  
C.u0;u1/.T /WC! Set is representable, in which case it represents the functor.

The map T .f0/ is injective because f0 is an epimorphism. As f .T / is induced by
T .f0/, it also is injective. We shall show that f .T / is surjective for all T , and so f is an
isomorphism of functors on C. Thus the C.u0;u1/ is representable by an object of C if and
only if C.v0;v1/ is. This will complete the proof of the lemma because the second part of
the statement is obvious.

Let g 2 C.v0;v1/.T /. Thus g is a map Y0! T such that g ıv0 D g ıv1:

Y1

X1

Y0�X0 Y0

Y0

X0

T

v0

v1

u0

u1

� p1 p2

f1 f0

g

h

Then g ıv0 ı�D g ıv1 ı�; and so g ıp1 D g ıp2. As f0 is an effective epimorphism,
g D hıf0 for some hWX0! T , i.e., g D T .f0/.h/. It remains to show that hıu0 D hıu1.
But

hıu0 ıf1 D hıf0 ıv0 D g ıv0 D g ıv1 D hıf0 ıv1 D hıu1 ıf1;

which implies that hıu0 D hıu1 because f1 an epimorphism. 2

Recall that “functor” means “set-valued functor on finitely generated R0-algebras repre-
sentable by a scheme of finite type over Spec.R0/”. Thus it makes sense to say that a map of
functors is faithfully flat. Moreover, a faithfully flat morphism is an effective epimorphism.
The pull-back of a faithfully flat morphism is faithfully flat, and so is also an effective
epimorphism.

We shall apply the lemma in the following situation: .u0;u1/ is an equivalence relation,
and .v0;v1/ is the inverse image of .u0;u1/ with respect to a faithfully flat map f0WY0!X0.
Then f1 is a pull-back of f0 , and so f0 and f1 are both faithfully flat, and hence effective
epimorphisms. There exists a morphism sWX0!X1 such that u0 ı s D idX0 D u1 ı s (7.9)
and we can take � to be the section of Y1! Y0�X0 Y0 defined by the morphism

Y0�X0 Y0
p1
�! Y0

f0
�!X0

s
�!X1:

It is possible to replace the condition “f0 is faithfully flat” with the condition “f0 admits a
section”.
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THE THEOREM

DEFINITION 7.28. Let u0;u1WX1�X0 be an equivalence relation on an algebraic scheme
X0 over R0. A quasi-section of .u0;u1/ is a subscheme Y0 of X0 such that

(a) the restriction of u1 to u�10 .Y0/ is a finite locally free surjective morphism f Wu�10 .Y0/!

X0I

(b) every subset of Y0 consisting of points that are equivalent in pairs is contained in an
open affine of Y0.

Condition (a) says, in particular, that Y0 meets every equivalence class in a finite
nonempty set. Therefore, the subsets in (b) are finite. Condition (b) says that, for all
x 2 Y0, the finite set u1u�10 .x/\Y0 is contained in an open affine of Y0.

THEOREM 7.29. Let u0;u1WX1�X0 be an equivalence relation on an algebraic scheme
X0 over R0. If .u0;u1/ admits a quasi-section, then a quotient uWX0!X exists; moreover,
u is surjective, and if u0 is open (resp. universally closed, flat) then u is also.

PROOF. Let Y0 be a quasi-section. Let i WY0 ,!X0 be the inclusion map, and let .v0;v1/WY1�
Y0 be the inverse image of .u0;u1/with respect to i . By definition (7.4), Y1 is the intersection
u�10 .Y0/\u

�1
1 .Y0/, and so we have a cartesian square:

Y1 u�10 .Y0/

Y0 X0:

v1 fDu1j

i

f D u1ju
�1
0 .Y0/

v1 D u1jY1

It follows that v1 is finite locally free and surjective. Therefore, the equivalence relation
Y1 � Y0 on Y0 satisfies the hypotheses of Theorem 7.24, and so it admits a quotient
vWY1! Y .

LetZ0Du�10 .Y0/. Let u00WZ0!Y0 be the restriction of u0 toZ0; and let .w0;w1/WZ1�
Z0 be the inverse image of .v0;v1/ with respect to u00. The morphism u00WZ0! Y0 ad-
mits a section (because u0 does 7.9b), and so Lemma 7.27 et seq. shows that the pair of
maps .w0;w1/WZ1�Z0 admits a cokernel wWZ0!Z (equal to v ıu00WZ0! Y ). More-
over, Z1 ! Z0 �Z Z0 is an isomorphism because it is a pull-back of the isomorphism
Y1! Y0�Y Y0. Thus w is a quotient of .w0;w1/.

We now have a diagram

Y1

Z1

X1

Y0

Z0

X0:

Z

v0

v1

w0

w1

u0

u1

u00

v

w

f u

Here v and w are the cokernels of .v0;v1/ and .w0;w1/ respectively. Note that .w0;w1/ is
the inverse image of .u0;u1/ with respect to i ıu00, which equals the mapZ0 ,!X1

u0
�!X0.

Therefore, according to Example 7.5, it is also the inverse image of .u0;u1/ with respect
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to the map Z0 ,!X1
u1
�!X0. But this last map equals f , which is finite and locally free,

and so it is faithfully flat. Lemma 7.27 et seq. now shows that there exists a morphism
uWX0!Z such that uıf D w and u is the cokernel of .u0;u1/.

The morphism X1!X0�Y X0 is an isomorphism because the morphism Z1!Z0�Z
Z0 obtained from it by a faithfully flat base change f �f is an isomorphism. We have
shown that uWX0!X is a quotient of .u0;u1/.

Finally, u is obviously surjective. The morphism v is finite and locally free (7.24), and it
now follows easily from the above diagram that u is open (resp. universally closed, flat) if
u0 is. 2

REMARK 7.30. The map uWX0!X is the cokernel of .u0;u1/ in the category of ringed
spaces.

e. Existence generically of a quotient

We now work over a base field k.

PRELIMINARIES

7.31. Let X and Y be algebraic schemes over field k. Let x be a closed point of X and let
y be a point of Y . There exist only finitely many points of X �Y mapping to both x and y.

PROOF. The fibre of X �Y over fx;yg is equal to the fibre of Spec.�.x//�Y ! Y over y.
But, because x is closed, �.x/ is a finite extension of k, and so this fibre is obviously finite.2

7.32. Let A! B be a local homomorphism of local noetherian rings, and let uWM 0!M

be a homorphism of finitely generated B-modules. If M is flat over A and u˝A .A=mA/ is
injective, then u is injective and Coker.u/ is flat over A. (SGA 1, IV, 5.7).

THE THEOREM

THEOREM 7.33. Let u0;u1WX1�X0 be an equivalence relation on an algebraic scheme
X over k. Suppose that u0 is flat and that X0 is quasi-projective over k. Then there exists a
saturated dense open subscheme W of X such that the induced equivalence relation on W
admits a quotient.

After (7.29) it suffices to show that we can choose W so that the equivalence relation
induced on it has a quasi-section.

STEP 1. For every closed point z of X0, there exists a closed subset Z of X0 such that (a)
Z\u1u

�1
0 .z/ is finite and nonempty; (b) u�10 .Z/

u1
�!X is flat at the points of u�11 .z/.

PROOF. We construct a Z satisfying (a), and then show that the Z we have constructed also
satisfies (b).

To obtainZ, we construct a strictly decreasing sequenceZ0 �Z1 � �� � of closed subsets
of X0 such that Z\u1u�10 .z/ is nonempty. Let Z0 D X0, and suppose that Zn has been
constructed. If Zn\u1u�10 .z/ is finite, then Zn satisfies (a). Otherwise we construct ZnC1
as follows. The set u�10 .Zn/\u

�1
1 .z/ is closed in X1, and we let y1; : : : ;yr denote the

generic points of its irreducible components. The image Zn\u0u�11 .z/ of u�10 .Zn/\

u�11 .z/ in X0 is infinite by hypothesis; it is also constructible, and so it contains infinitely
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many closed points. We can therefore choose a closed point x of Zn\u0u�11 .z/ distinct
from the points u0.y1/; : : : ;u0.yr/. By hypothesis,X0 can be realized as a subscheme of Pm
for somem. As x is closed inX0, its closure in Pm does not contain any point u0.yi /, and so
there exists a homogeneous polynomial f 2 kŒX0; : : : ;Xm� which is zero at x but not at any
point u0.yi / (homogeneous avoidance lemma; cf. 7.22). We put ZnC1 DZn\VC.f /. It is
a closed subset of X , strictly contained in Zn, and ZnC1\u1u�10 .z/ is nonempty because
it contains x.

Eventually, ZnC1\u1u�10 .z/ will be finite, and it remains to show (inductively) that
the restriction of u1 to u�10 .ZnC1/ is flat at the points of u�11 .z/. Let y be such a point.
Let Oz (resp. Oy , O0y/ be the local ring of z in X (resp. of y in u�10 .Zn/, of y in
u�10 .ZnC1//. By induction Oy is flat over Oz . The local ring O0y of y in u�10 .ZnC1/ can
be described as follows. Let g be a homogeneous polynomial of degree 1 such thatDC.g/ is
a neighbourhood of u0.y/ in Pm. In a neighbourhood of u0.y/ (in Zn), ZnC1 has equation
f=gd D 0 for some homogeneous polynomial f of degree d . Therefore in a neighbourhood
of y (in u�10 .Zn/), u�10 .ZnC1/ has equation hD 0 where h is the image f=gd in Oy , and
so O0y DOy=hOy . By construction, h is not a zero-divisor on Oy , and so (7.32) implies
that O0y is flat over Oz . 2

STEP 2. Let z be a closed point of X0. There exists a saturated open subset Wz of X0
admitting a quasi-section and meeting all the irreducible components of X passing through
z.

PROOF. Let Z be as in Step 1, and let u01Wu
�1
0 .Z/!X0 be the restriction of u1. The fibre

u0�11 .z/ is finite (7.31). Let U be the open subset of u�10 .Z/ formed of the points where u01
is both flat and quasi-finite. Let Wz denote the greatest open subset of u01.U / above which
u01 is finite and flat. Then Wz contains the generic points of the irreducible components
passing through z. By using the associativity of the equivalence relation, one shows that
Wz is saturated, and that u0�11 .Wz/ D u

0�1
0 .U / for some open subset U of Z. Note that

Wz contains U because it is saturated. It follows from the construction of Wz that U is a
quasi-section for the induced equivalence relation on Wz (see SGA 3, V, �8, p.281 for more
details). 2

STEP 3. There exists a saturated dense open subscheme W of X such that the equivalence
relation induced on W has a quasi-section.

PROOF. Let z be a closed point of X , and let Wz be as in Step 2. Its exterior u�10 .X0X NWz/

is then saturated (because u1.u�10 .X0X NWz// is open and doesn’t meet Wz). If this exterior
is nonempty, then it contains a closed point z0, and we have a set Wz0 , which we may
suppose to be contained in X0X NWz . Then Wz and Wz0 are disjoint, and the equivalence
relation induced on Wz [Wz0 admits a quasi-section. Continuing in this way, we arrive at
the required W in finitely many steps because X0 has only finitely many components. 2

As noted earlier, this completes the proof of the theorem.

f. Existence of quotients of algebraic groups

PRELIMINARIES

LEMMA 7.34. Let X be an algebraic scheme over a field k. Suppose that, for every finite
extension k0 of k, we have an open subscheme U Œk0� of Xk0 containing X.k0/, and that
U Œk0�k00 � U Œk

00� if k0 � k00. Then U Œk0�DXk0 for some finite extension k0 of k.
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PROOF. LetZŒk0� denote the complement of U Œk0� in Xk0 . Choose a closed point xi in each
irreducible component of ZŒk�, and let K=k be a finite normal extension of k such that the
residue field �.xi / embeds into K for all i . Every point of XK above an xi is K-rational
and so lies in U ŒK�, and so dimZŒK� < dimZŒk�. On repeating the argument with K for k,
we obtain a finite extension L=K such that

dimZŒL� < dimZŒK� < dimZŒk�:

Eventually this process stops with ZŒk0� empty. 2

THE THEOREM

THEOREM 7.35. Let H be an algebraic subgroup of a quasi-projective algebraic group G
over k. Then G admits a quotient G=H for the equivalence relation defined by H (7.2); in
particular, the sheaf G Q=H is represented by an algebraic scheme G=H over k. The quotient
map uWG!G=H is faithfully flat.

The proof will occupy the remainder of this subsection.

STEP 1. The theorem becomes true after a finite extension of the base field.

PROOF. For a finite extension k0 of k, we let U Œk0� denote the union of the open subsets
W �Gk0 stable under the right action ofHk0 and such that the quotientW=Hk0 exists. Then
U Œk0� is the greatest open subset of Gk0 with these properties. The left translate of U Œk0� by
an element ofG.k0/ also has these properties, and so equals U Œk0�; thus U Œk0� is stable under
the left action of G.k0/. Theorem 7.33 implies that U Œk� is dense in G, and, in particular,
contains a closed point. After possibly replacing k by a finite extension, we may suppose
that U Œk� contains a k-point. Then, for every finite extension k0=k, the set U Œk0� contains
G.k0/. Now Lemma 7.34 shows that U Œk0�DXk0 for some k0. 2

STEP 2. Suppose that the quotient sheaf G Q=H is representable by an algebraic scheme X
over k. Then every finite set of closed points of X is contained in an open affine.

PROOF. Let uWG!X denote the quotient map. Let U be a dense open affine subset of X ,
and let x1; : : : ;xn be closed points of X .

Suppose initially that each xi equals u.gi / for some gi 2G.k/, and that the open subset\n

iD1
gi .u

�1.U //�1

of G, which is automatically dense, contains a k-rational point g. Then, for all i ,

g 2 gi � .u
�1.U //�1

and so gi 2 g �u�1.U / and xi 2 g �U . Therefore the open affine g �U has the required
properties.

We know that xi D u.gi / for some closed point gi of G. Let K be a finite extension of
k such that all the points g0j of GK mapping to some gi are K-rational (take K to be any
normal extension of k such that every field �.gi / embeds into it). Then\

j
g0j .u

�1.UK//
�1

is a dense open subset of GK , and therefore contains a closed point g . After possibly
extending K, we may suppose that g is K-rational. The previous case now shows that
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there exists an open affine U 0 of XK containing the images x0j of the g0j . As the x0j are all
the points of XK mapping to an xi , they form a union of orbits for the finite locally free
equivalence relation on XK defined by the projection XK !X . By arguing as in (7.18), we
obtain a saturated open affine W 0 � U 0 containing all the x0j . Its image W in X contains all
the xi , and it is open and affine because it is the quotient of the affine W 0 by a finite locally
free equivalence relation (see the affine case 7.18). 2

STEP 3. Conclusion (descent)

PROOF. Let K be a finite extension of k such that the quotient GK !GK=HK exists. The
inverse image of the equivalence relation

Spec.K˝kK/ Spec.K/
p1

p2

(see 7.3) with respect to GK=HK ! Spec.K/ is an equivalence relation on GK=HK satisfy-
ing the conditions of Theorem 7.24. Its quotient is the required quotient of G by H . 2

REMARK 7.36. The hypothesis that G be quasi-projective in (7.35) can be removed in two
different ways: (a) by removing the hypothesis from (7.33); (b) by using that every algebraic
group over a field is quasi-projective.

APPLICATIONS

PROPOSITION 7.37. Every monomorphism of algebraic groups is a closed immersion.

PROOF. Let H !G be a monomorphism of algebraic groups. Then H is isomorphic (as
a sheaf, and hence as a scheme) to the fibre of the map G!G=H over the distinguished
point of G=H . Therefore H !G is a closed immersion. 2

PROPOSITION 7.38. Let N be a normal algebraic subgroup of an algebraic group G. The
homomorphism of sheaves G!G Q=N is represented by an faithfully flat homomorphism
G!G=N of algebraic groups

PROOF. We know G Q=N is a functor to groups whose underlying functor to sets is repre-
sentable by an algebraic scheme G=N . Therefore G=N is an algebraic group. 2

NOTES. The elementary proof of (7.18) follows lectures of Tate from 1967. For the rest, we have
followed the original source, SGA 3, V, and Brochard 2014.

g. Complements

Groupoids. List the known results (and explain how the above proofs generalize)..



CHAPTER 8
Subnormal series; solvable and

nilpotent algebraic groups

Once the isomorphism theorems have been proved, much of the basic theory of abstract
groups carries over to algebraic groups.

a. Subnormal series

Let G be an algebraic group over k. A subnormal series1 of G is a finite sequence
.Gi /iD0;:::;s of algebraic subgroups of G such that G0 D G, Gs D e, and Gi is a normal
subgroup of Gi�1 for i D 1; : : : ; s:

G DG0 BG1 B � � �BGs D e: (41)

A subnormal series .Gi /i is a normal series (resp. characteristic series) if eachGi is normal
(resp. characteristic) in G. A subnormal series is central if it is a normal series such that
Gi=GiC1 is contained in the centre of G=GiC1 for all i .

PROPOSITION 8.1. Let H be an algebraic subgroup of an algebraic group G. If

G DG0 �G1 � �� � �Gs D e

is a subnormal series for G, then

H DH \G0 �H \G1 � �� � �H \Gs D e

is a subnormal series for H , and

H \Gi=H \GiC1 ,!Gi=GiC1:

PROOF. Consider the algebraic subgroup H \Gi of Gi . According to the isomorphism
theorem (5.37, 6.19), the algebraic subgroup .H \Gi /\GiC1DH \GiC1 ofGi is normal,
and

H \Gi=H \GiC1 ' .H \Gi / �Gi=GiC1 ,!Gi=GiC1. 2

1Demazure and Gabriel (1970, IV, p.471) and some other authors call this a composition series (suite
de composition), but this conflicts with the usual terminology in English and German, which requires that
the quotients in a composition series (Compositionsreihe) be simple, i.e., a composition series is a maximal
subnormal series (Albert, Modern Higher Algebra; Burnside, Theory of Groups of Finite Order; Dummit and
Foote, Abstract Algebra; Hungerford, Algebra; Jacobson, Basic Algebra; van der Waerden, Modern Algebra;
Weber, Lehrbuch der Algebra (1899, II, p.23); Wikipedia; Zariski and Samuel, Commutative Algebra).

125
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Two subnormal sequences

G DG0 �G1 � �� � �Gs D e

G DH0 �H1 � �� � �Ht D e
(42)

are said to be equivalent if s D t and there is a permutation � of f1;2; : : : ; sg such that
Gi=GiC1 �H�.i/=H�.i/C1.

THEOREM 8.2. Any two subnormal series (42) in an algebraic group have equivalent
refinements.

PROOF. Let Gi;j DGiC1.Hj \Gi / and Hj;i DHjC1.Gi \Hj /, and consider the refine-
ments

� � � �Gi DGi;0 �Gi;1 � �� � �Gi;t DGiC1 � �� �

� � � �Hj DHj;0 �Hj;1 � �� � �Hj;s DHjC1 � �� �

of the original series. According to the next lemma,

Gi;j =Gi;jC1 'Hj;i=Hj;iC1,

and so the refinement .Gi;j / of .Gi / is equivalent to the refinement .Hj;i / of .Hi /. 2

LEMMA 8.3 (BUTTERFLY LEMMA). Let H1 �N1 and H2 �N2 be algebraic subgroups
of an algebraic group G with N1 and N2 normal in H1 and H2. Then N1.H1\N2/ and
N2.N1\H2/ are normal algebraic subgroups of the algebraic groups N1.H1\H2/ and
N2.H2\H1/ respectively, and there is a canonical isomorphism of algebraic groups

N1.H1\H2/

N1.H1\N2/
'
N2.H1\H2/

N2.N1\H2/

PROOF. The algebraic groupH1\N2 is normal inH1\H2 and soN1.H1\H2/ is normal
in N1.H1\N2/ (see Exercise 6-1). Similarly, N2.H2\N1/ is normal in N2.H2\H1/.

The subgroupH1\H2 ofG normalizesN1.H1\N2/, and so the isomorphism Theorem
5.37 shows that

H1\H2

.H1\H2/\N1.H1\N2/
'
.H1\H2/ �N1.H1\N2/

N1.H1\N2/
: (43)

As H1\N2 �H1\H2, we have that H1\H2 D .H1\H2/.H1\N2/, and so

N1 � .H1\H2/DN1 � .H1\H2/ � .H1\N2/.

The first of Dedekind’s modular laws (Exercise 6-2a) with ADH1\N2, B DH1\H2,
and C DN1 becomes

.H1\H2/\N1 .H1\N2/D .H1\N2/.H1\H2\N1/

D .H1\N2/.N1\H2/.

Therefore (43) is an isomorphism

H1\H2

.H1\N2/.N1\H2/
'
N1.H1\H2/

N1.H1\N2/
:
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A symmetric argument shows that

H1\H2

.H1\N2/.N1\H2/
'
N2.H1\H2/

N2.H2\N1/
;

and so
N1.H1\H2/

N1.H1\N2/
'
N2.H1\H2/

N2.H2\N1/
:

2

b. Isogenies

DEFINITION 8.4. An isogeny of algebraic groups is a normal homomorphism whose kernel
and cokernel are both finite.2

For connected group varieties, this agrees with the definition in (2.17). For commutative
algebraic groups, it agrees with the definition in DG V, �3, 1.6, p.577; specifically, they
define an isogeny of commutative affine group schemes (not necessarily of finite type) over
a field k to be a morphism with profinite kernel and cokernel.

It follows from Exercise 6-5 that a composite of isogenies is an isogeny if it is normal.

DEFINITION 8.5. Two algebraic groups G and H are isogenous, denoted G �H , if there
exist algebraic groupsG1; : : : ;Gn such thatG DG1,H DGn, and, for each i D 1; : : : ;n�1,
either there exists an isogeny Gi !GiC1 or there exists an isogeny GiC1!Gi .

In other words, “isogeny” is the equivalence relation generated by the binary relation
“there exists an isogeny from G to H”.

c. Composition series for algebraic groups

Let G be an algebraic group over k. A subnormal series

G DG0 �G1 � �� � �Gs D e

is a composition series if

dimG0 > dimG1 > � � �> dimGs

and the series can not be refined, i.e., for no i does there exist a normal algebraic subgroup
N of Gi containing GiC1 and such that

dimGi > dimN > dimGiC1:

In other words, a composition series is a subnormal series whose terms have strictly
decreasing dimensions and which is maximal among subnormal series with this property.
This disagrees with the usual definition that a composition series is a maximal subnormal

2Is this the correct definition for nonconnected algebraic groups? I can’t find a definition in the literature. For
example, CGP don’t define it, and SGA 3 only defines an isogeny of reductive (hence connected) groups (XXII,
4.2.9). An isogeny is defined to be a surjective homomorphism with finite kernel by authors who (implicitly)
assume that all algebraic groups are smooth and connected. Do they mean Gred!G to be an isogeny? (over a
perfect field say). It is always surjective with trivial kernel. The Encyclopedia of Math defines an isogeny of
group schemes to be an epimorphism with finite flat kernel (epimorphism in what category? not group schemes).
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series, but it appears to be the correct definition for algebraic groups as few algebraic groups
have maximal subnormal series — for example, the infinite chain

�l � �l2 � �l3 � �� � �Gm

shows that Gm does not.

LEMMA 8.6. Let
G DG0 �G1 � �� � �Gs D e

be a subnormal series for G. If dimG D dimGi=GiC1 for some i , then G �Gi=GiC1.

PROOF. The maps

Gi=GiC1 Gi !Gi�1! �� � !G0 DG

are isogenies. 2

THEOREM 8.7. Let G be an algebraic group over a field k. Then G admits a composition
series. If

G DG0 �G1 � �� � �Gs D e

and
G DH0 �H1 � �� � �Ht D e

are both composition series, then s D t and there is a permutation � of f1;2; : : : ; sg such that
Gi=GiC1 is isogenous to H�.i/=H�.i/C1 for all i .

PROOF. The existence of a composition series is obvious. For the proof of the second
statement, we use the notations of the proof of (8.2):

Gi;j
def
DGiC1.Hj \Gi /

Hj;i
def
DHjC1.Gi \Hj /.

Note that, for a fixed i , only one of the quotients Gi;j =Gi;jC1 has dimension > 0, say, that
with j D �.i/. Now

Gi=GiC1 � Gi;�.i/=Gi;�.i/C1 (8.6)
� H�.i/;i=H�.i/;iC1 (butterfly lemma)
� H�.i/=H�.i/C1 (8.6).

As i 7! �.i/ is a bijection, this completes the proof. 2

EXAMPLE 8.8. The algebraic group GLn has composition series

GLn � SLn � e

GLn �Gm � e

with quotients fGm;SLng and fPGLn;Gmg respectively.
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REMARKS

8.9. IfG is connected, then it admits a composition series in which all theGi are connected.
Indeed, given a composition series .Gi /i , we may replace each Gi with Gıi . Then Gıi �
Gıi�1, and Gıi is normal in Gi�1 because it is characteristic in Gi (1.39). Therefore .Gıi /i is
still a composition series.

8.10. An algebraic group is connected if and only if it has no nontrivial finite étale quotient
(see Chapter 7). An algebraic group is said to be strongly connected if it has no nontrivial
finite quotient (étale or not). A strongly connected algebraic group is connected, and a
smooth connected algebraic group is strongly connected (because all of its quotients are
smooth 5.8).

We define the strong identity component Gso of G to be the intersection of the kernels
of the homomorphisms from G to a finite algebraic group. It is the smallest normal algebraic
subgroup having the same dimension as G. If G is smooth, then Gso DGı. If k is perfect
and Gred is normal in G, then Gso D .Gred/

ı (because Gred is smooth, and the .Gred/
ı is a

characteristic subgroup of Gred).
One may hope that every algebraic group has a composition series whose terms are

strongly connected, but this seems unlikely — the argument in (8.9) fails because we do not
know that N so is characteristic in N .3

d. Solvable and nilpotent algebraic groups

An algebraic group is solvable if it can be constructed from commutative algebraic groups by
successive extensions, and it is nilpotent if it can be constructed from commutative algebraic
groups by successive central extensions. More formally:

DEFINITION 8.11. An algebraic group G is solvable if it admits a subnormal series

G DG0 �G1 � �� � �Gt D e

such that each quotient Gi=GiC1 is commutative (such a series is called a solvable series).

DEFINITION 8.12. An algebraic groupG is nilpotent if it admits a central subnormal series
(see p.125), i.e., a normal series

G DG0 �G1 � �� � �Gt D e

such that each quotient Gi=GiC1 is contained in the centre of G=GiC1 (such a series is
called a nilpotent or central series).

PROPOSITION 8.13. Algebraic subgroups, quotients, and extensions of solvable algebraic
groups are solvable.

PROOF. An intersection of a solvable series inG with an algebraic subgroupH is a solvable
series in H (apply 8.1); the image in a quotient Q of a solvable series in G is a solvable
series in Q (correspondence theorem 5.39); and a solvable series in a normal algebraic
subgroup N of G can be combined with a solvable series in G=N to give a solvable series
in G. 2

3I thank Michael Wibmer for pointing this out to me.
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EXAMPLE 8.14. The group Tn of upper triangular matrices is solvable, and the group Un
is nilpotent (see 8.46).

EXAMPLE 8.15. A finite (abstract) group is solvable if and only if it is solvable when
regarded as a constant algebraic group. Thus, the theory of solvable algebraic groups includes
that of solvable finite groups, which is already rather extensive. A constant algebraic group
G is solvable if G.k/ does not contain an element of order 2 (Feit-Thompson theorem).

PROPOSITION 8.16. Algebraic subgroups and quotients (but not necessarily extensions) of
nilpotent algebraic groups are nilpotent.

PROOF. An intersection of a nilpotent series in G with an algebraic subgroup H is a
nilpotent series in H (apply 8.1). The image in a quotient Q of a nilpotent series in G is a
nilpotent series in Q. 2

DEFINITION 8.17. A solvable algebraic group G over k is split if it admits a subnormal
series G DG0 �G1 � �� � �Gn D e such that each quotient Gi=GiC1 is isomorphic to Ga
or Gm).

Every term Gi in such a subnormal series is smooth, connected, and affine (10.1 below);
in particular, every split solvable algebraic group G is smooth, connected, and affine.

NOTES. In the literature, a split solvable algebraic group over k is usually called a k-solvable
algebraic group or a k-split solvable algebraic group. We can omit the “k” because of our convention
that statements concerning an algebraic group G over k are intrinsic to G over k. Here are a few of
the definitions in the literature.

DG IV, �4, 3.1, p.530: The k-group G is said to be k-résoluble [k-solvable] if it is affine and
admits a subnormal series whose quotients are isomorphic to Ga or Gm [note that the “affine” is
automatic].

SGA3, XVII, 5.1.0: Let k be a field and G an algebraic k-group. Following the terminology
introduced by Rosenlicht (Questions of rationality for solvable algebraic groups over nonperfect
fields. Ann. Mat. Pura Appl. (4) 61 1963 97–120), we say that G is “k-résoluble” if it has a
composition series [i.e., subnormal series] whose successive quotients are isomorphic to Ga.

Conrad et al. 2010, A.1, p.392: A smooth connected solvable group G over a field k is k-split
if it admits a composition series [presumably meaning subnormal series] over k whose successive
quotients are k-isomorphic to Gm or Ga [note that the “smooth” and “connected” are automatic; in
the modern world, the “k” seems superfluous].

Borel 1991, 15.1: Let G be connected solvable [it is affine group variety over k]. G splits over k,
or is k-split, if it has a composition series [presumably meaning subnormal series] G DG0 �G1 �
�� � � Gn D feg consisting of connected k-subgroups such that Gi=GiC1 is k-isomorphic to Ga or
Gm (0� i < n).

Springer 1998, 12.3.5, p.218: A connected solvable k-group [meaning affine group variety] is
called k-split if there exists a sequence G DG0 �G1 � �� � �Gn D feg of closed, connected, normal
k-subgroups such that the quotients Gi=GiC1 are k-isomorphic to either Ga or Gm.

e. The derived group of an algebraic group

Let G be an algebraic group over a field k.

DEFINITION 8.18. The derived group of G is the intersection of the normal algebraic
subgroups N of G such that G=N is commutative. The derived group of G is denoted DG
(or G0 or Gder or ŒG;G�).
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PROPOSITION 8.19. The quotientG=DG is commutative (hence DG is the smallest normal
subgroup with this property).

PROOF. Because the affine subgroups of G satisfy the descending chain condition (1.28),
DG D N1 \ : : :\Nr for certain normal affine subgroups N1; : : : ;Nr such that G=Ni is
commutative. The canonical homomorphism

G!G=N1� � � ��G=Nr

has kernel N1\ : : :\Nr , and so realizes G=DG as an algebraic subgroup of a commutative
algebraic group. 2

We shall need another description of DG, which is analogous to the description of the
derived group as the subgroup generated by commutators.

PROPOSITION 8.20. The derived group DG is the algebraic subgroup of G generated by
the commutator map

.g1;g2/ 7! Œg1;g2�
def
D g1g2g

�1
1 g�12 WG�G!G

in each of the two cases (a) G is affine; (b) G is smooth.

PROOF. Let H be the algebraic subgroup of G generated by G2 and the map .g1;g2/ 7!
Œg1;g2� (2.24, 2.27 et seq.). This means that H is the smallest algebraic subgroup of G
containing the image of the commutator map. It follows from this description that it is
normal. As H.R/ contains all commutators in G.R/ (see 2.27), the group G.R/=H.R/ is
commutative; but the functor R G.R/=H.R/ is fat in G=H , and so this implies that the
algebraic group G=H is commutative. On the other hand, if N is a normal subgroup of G
such that G=N is commutative, then N contains the image of the commutator map and so
N �H . We conclude that H DDG. 2

COROLLARY 8.21. Assume that G is affine or smooth.

(a) For every field K � k, DGK D .DG/K .

(b) If G is connected (resp. smooth), then DG is connected (resp. smooth).

(c) For each k-algebra R, the group .DG/.R/ consists of the elements of G.R/ that lie
in D.G.R0// for some faithfully flat R-algebra R0.

(d) DG is a characteristic subgroup of G.

PROOF. (a) Immediate consequence of the proposition.
(b) Apply (2.25; 2.26; 2.29).
(c) Immediate consequence of the proposition.
(d) Clearly .DG/.R/ is preserved by the automorphisms of G. 2

When G is affine, we can make this explicit. Let In be the kernel of the homomorphism
O.G/!O.G2n/ of k-algebras defined by the regular map (not a homomorphism)

.g1;g2; : : : ;g2n/ 7! Œg1;g2� � Œg3;g4� � � � � WG
2n
!G

where Œgi ;gj �D gigjg�1i g�1j . From the regular maps

G2!G4! �� � !G2n! �� � ;

.g1;g2/ 7! .g1;g2;1;1/ 7! � � �
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we get inclusions
I1 � I2 � �� � � In � �� � ;

and we let I D
T
In. Then the coordinate ring of DG is O.G/=I (this is a restatement of

(8.20) in the affine case).

PROPOSITION 8.22. Let G be an affine group variety. Then O.DG/DO.G/=In for some
n, and .DG/.k0/DD.G.k0// for every separably closed field k0 containing k.

PROOF. We may suppose that G is connected. As G is smooth and connected, so also is
G2n (3.13). Therefore, each ideal In is prime, and a descending sequence of prime ideals in
a noetherian ring terminates (CA 21.6). This proves the first part of the statement.

Let Vn be the image of G2n.k0/ in G.k0/. Its closure in G.k0/ is the zero set of In.
Being the image of a regular map, Vn contains a dense open subset U of its closure (CA
15.8). Choose n as in the first part, so that the zero set of In is DG.k0/. Then

U �U�1 � Vn �Vn � V2n �D.G.k0//D
[

m
Vm �DG.k0/:

It remains to show that U �U�1 DDG.k0/. Let g 2DG.k0/. Because U is open and dense
in DG.k0/, so is gU�1, which must therefore meet U , forcing g to lie in U �U�1. 2

COROLLARY 8.23. The derived group DG of a connected affine group variety G is the
unique connected subgroup variety such that .DG/.ksep/DD.G.ksep//.

PROOF. The derived group has these properties by (8.21) and (8.22), and it is the only
algebraic subgroup with these properties because .DG/.ksep/ is dense in DG. 2

EXAMPLE 8.24. Let G D GLn. Then DG D SLn. Certainly, DG � SLn. Conversely,
every element of SLn.k/ is a commutator (SLn.k/ is generated by elementary matrices, and
every elementary matrix is a commutator if jkj> 3).

ASIDE 8.25. For an algebraic group G, the group G.k/ may have commutative quotients without G
having commutative quotients, i.e., we may have G DDG but G.k/¤D.G.k//. This is the case for
G D PGLn over nonperfect separably closed field of characteristic p dividing n.

COMMUTATOR GROUPS

For subgroups H1 and H2 of an abstract group G, we let .H1;H2/ denote the subgroup of
G generated by the commutators Œh1;h2�D h1h2h�11 h�12 with h1 2H1 and h2 2H2.

PROPOSITION 8.26. Let H1 and H2 be connected group subvarieties of a connected affine
group variety G. Then there is a (unique) connected subgroup variety .H1;H2/ of G such
that .H1;H2/.kal/D .H1.k

al/;H2.k
al//.

PROOF. Consider the regular map

.h1;h2; : : : Ih
0
1;h
0
2; : : :/ 7! Œh1;h

0
1�Œh2;h

0
2� � � � WH

n
1 �H

n
2 !G:

Let In be the kernel of the homomorphism O.G/!O.Hn
1 �H

n
2 / of k-algebras defined

by the map, and let I D
T
In. As before, the subscheme H of G defined by I is a smooth

connected algebraic subgroup of G, and H.kal/D .H1.k
al/;H2.k

al//. 2
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REMARK 8.27. Let G be an algebraic group over k which is either affine or smooth.
(a) For each k-algebra R, the group .H1;H2/.R/ consists of the elements of G.R/ that

lie in .H1.R0/;H2.R0// for some faithfully flat R-algebra R0.
(b) A central series in G (see 8.12) is a chain of algebraic subgroups

G DG0 �G1 � �� � �Gs D e

such that .G;Gi /�GiC1.

SOLVABLE ALGEBRAIC GROUPS

Let G be an algebraic group. Write D2G for the second derived group D.DG/, D3G for
the third derived group D.D2G/ and so on. The derived series for G is the normal series

G �DG �D2G � �� � :

If G is smooth, then each group DnG is smooth and characteristic in G, connected if G is
connected, and DnG=DnC1G is commutative.

PROPOSITION 8.28. An algebraic group G is solvable if and only if its derived series
terminates with e.

PROOF. If the derived series terminates with e, then it is a solvable series for G. Conversely,
if G �G1 � �� � is a solvable series for G, then G1 �DG, G2 �D2G, and so on. 2

COROLLARY 8.29. Assume that G is affine or smooth, and let k0 be a field containing k.
Then G is solvable if and only if Gk0 is solvable.

PROOF. The derived series of Gk0 is obtained from that of G by extension of scalars (8.21a).
Hence one series terminates with e if and only if the other does. 2

COROLLARY 8.30. Let G be a solvable algebraic group, and assume that G is affine or
smooth. If G is connected (resp. smooth, resp. smooth and connected), then it admits a
solvable series whose terms are connected (resp. smooth, resp. smooth and connected).

PROOF. The derived series has this property (8.21). 2

In particular, a group variety is solvable if and only if it admits a solvable series of group
subvarieties.

f. Nilpotent algebraic groups

Let G be a connected group variety. The descending central series for G is the subnormal
series

G0 DG �G1 D .G;G/� �� � �Gi D .G;Gi�1/� �� � :

PROPOSITION 8.31. A connected group variety G is nilpotent if and only if its descending
central series terminates with e.

PROOF. If the descending central series terminates with e, then it is a nilpotent series for G.
Conversely, if G �G1 � �� � is a nilpotent series for G, the G1 �G1, G2 �G2, and so on.2
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COROLLARY 8.32. A connected group variety G is nilpotent if and only if it admits a
nilpotent series whose terms are connected group varieties.

PROOF. The descending central series has this property (8.21). 2

In particular, a group variety is nilpotent if and only if it admits a nilpotent series of
group subvarieties.

COROLLARY 8.33. Let G be a nilpotent connected group variety. If G ¤ e, then it contains
a nontrivial connected group variety in its centre.

PROOF. AsG¤ e, its descending central series has length at least one, and the last nontrivial
term has the required properties. 2

g. Existence of a greatest algebraic subgroup with a given property

Let P be a property of algebraic groups. We assume the following:
(a) every quotient of a group with property P has property P ;

(b) every extension of groups with property P has property P .
For example, the property of being connected satisfies (a) and (b) (see 5.52).

LEMMA 8.34. LetH andN be algebraic subgroups of an algebraic groupG withN normal.
If H and N have property P , then so also does HN .

PROOF. Consider the diagram (5.37)

e N HN HN=N e

H=H \N:

'

BecauseH has property P , so also does its quotientH=H \N . HenceHN=N has property
P , and it follows that the same is true of HN . 2

LEMMA 8.35. An algebraic group G has at most one maximal normal algebraic subgroup
with property P .

PROOF. Suppose that H and N are both maximal among the normal algebraic subgroups of
G with property P . Then HN is also a normal algebraic subgroup with property P (8.34),
and so H DHN DN . 2

An algebraic group G need not contain a maximal normal algebraic subgroup with
property P . For example, quotients and extensions of finite algebraic groups are finite, but
the infinite chain of algebraic subgroups

e � �` � �`2 � �� � �Gm

shows that Gm has no greatest finite algebraic subgroup (note that the algebraic groups �`n
are connected if `D char.k/ and smooth if `¤ char.k/).

Recall (8.9) that an algebraic group G is strongly connected if it has no nontrivial
finite quotient. Clearly quotients and extensions of strongly connected algebraic groups
are strongly connected (same argument as in 5.52). Moreover, if H is a normal algebraic
subgroup of a strongly connected algebraic group G and H ¤G, then dimH < dimG.
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PROPOSITION 8.36. Every algebraic groupG contains a greatest strongly connected normal
algebraic subgroup H with property P . The quotient G=H contains no strongly connected
normal algebraic subgroup with property P except e.

PROOF. The trivial algebraic subgroup e is strongly connected, normal, and has property P .
Any strongly connected normal algebraic subgroup H of greatest dimension among those
with property P is maximal. According to (8.35) H contains all other strongly connected
algebraic subgroups with property P . IfG=H contained strongly connected normal algebraic
subgroupH 0¤ e with property P , then the inverse image ofH 0 inG would properly contain
H and would violate the maximality of H . 2

For example, every algebraic group contains a greatest strongly connected finite algebraic
subgroup, namely e.

Caution: it is not clear that being strongly connected is preserved by extension of the
base field.

COROLLARY 8.37. Every algebraic group G contains a greatest smooth connected normal
algebraic subgroup H with property P . The quotient G=H contains no connected normal
group subvariety with property P except e.

PROOF. Apply (8.36) with “P ” replaced by “P and smooth”, and note that connected
smooth algebraic groups are strongly connected. Alternatively, prove it by the same argument
as (8.36). 2

SUMMARY 8.38. Let P be a property of algebraic groups over k such that quotients and
extensions of algebraic groups with property P have property P . Let G be an algebraic
group over k. Among the smooth connected normal algebraic subgroups of G with property
P there is a greatest one H ; the quotient G=H contains no smooth connected normal
algebraic subgroups with property P except e.

Let P be a property of group varieties over k such that quotients and extensions of
algebraic groups with property P have property P . Let G be a group variety over k. Among
the connected normal subgroup varieties of G with property P , there is a greatest one H ;
the quotient G=H contains no connected normal subgroup variety with property P except e.

h. Semisimple and reductive groups

8.39. Let G be a connected group variety over k. Extensions and quotients of solvable
algebraic groups are solvable (8.13), and so G contains a greatest connected solvable normal
subgroup variety. This is called the radicalR.G/ ofG. A connected group varietyG over an
algebraically closed field is said to be semisimple if R.G/D e. A connected group variety
over a field k is semisimple if Gkal is semisimple, i.e., if its geometric radical R.Gkal/ is
trivial. If k is algebraically closed, then G=R.G/ is semisimple. If G over k is semisimple,
then Gk0 over k0 is reductive for k0 a field containing k.

8.40. An algebraic groupG is said to be unipotent if every nonzero representation ofG has
a nonzero fixed vector. Let Q be a quotient of unipotent group G. A nonzero representation
of Q can be regarded a representation of G, and so has a nonzero fixed vector. Therefore Q
is unipotent. Let G be an extension of unipotent groups Q and N ,

e!N !G!Q! e;
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and let V be a representation of G. The subspace V N of V is stable under G because N is
normal (5.24), and G acts on it through the quotient Q. Now

V ¤ 0 H) V N ¤ 0 H) V G D .V N /Q ¤ 0:

This shows that G is unipotent. Thus “unipotent” satisfies the conditions (a) and (b) of the
preceding section.

8.41. It follows from (8.40) that every connected group variety contains a greatest con-
nected unipotent normal subgroup variety. This is called the unipotent radical Ru.G/ of
G. A connected group variety G over an algebraically closed field is said to be reductive
if Ru.G/D e. A connected group variety over a field k is said to be reductive if Gkal is
reductive, i.e., if its geometric unipotent radical Ru.Gkal/ is trivial. If k is algebraically
closed, then G=Ru.G/ is reductive. If G over k is reductive, then Gk0 over k0 is reductive
for all fields k0 containing k.

8.42. A connected group variety G is k-reductive (or pseudo-reductive) if Ru.G/ D e.
Every reductive group is k-reductive, but a k-reductive group need not be reductive (see the
next example). In particular, a group variety G over k may be k-reductive without Gk0 being
k0-reductive for k0 a field containing k.

EXAMPLE 8.43. Let k be a field of characteristic p, and let a 2 k X kp. Let G be the
algebraic group over k

R f.x;y/ 2R2 j xp�ayp 2R�g

with the multiplication

.x;y/.x0;y0/D .xx0Cayy0;xy0Cx0y/:

Then O.G/ D kŒX;Y;Z�=..Xp � aY p/Z � 1/, and G is a connected group variety (the
polynomial .Xp�aY p/Z�1 is irreducible). Let 'WG!Gm be the homomorphism

.x;y/ 7! xp�ayp.

The kernel N of ' is the algebraic group defined by Xp�aY p D 0, which is not reduced.
We have Ru.G/D e, but Ru.Gkal/DNred 'Ga. Thus G is not reductive.

ASIDE 8.44. According to our principle that everything concerning an algebraic group G over
a field k should be intrinsic to G over k, “k-reductive” and “reductive” should be “reductive”
and “geometrically reductive”, but we have chosen to follow tradition. Reductive groups form a
very important class over any field. However, questions concerning general algebraic groups over
nonperfect fields, often can be reduced only to questions concerning pseudo-reductive (not reductive)
groups, because in general G=Ru.G/ is only pseudo-reductive. Therefore pseudo-reductive groups
also form an important class. Their study leads to significant problems that have only recently been
resolved (Conrad et al. 2010). Happily, over perfect fields, the two notions coincide.

ASIDE 8.45. For (8.43), see Springer 1998, 12.1.6. Springer defines the unipotent radical of G to be
that of Gkal , and notes that in this example it is “not defined over the ground field” (ibid. p.222). For
a group variety G over a field k, he calls R.G/ and Ru.G/ the “k-radical” and “unipotent k-radical”
of G. His notions of “reductive” and “k-reductive” coincide with ours (ibid. p.251).
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i. A standard example

The next example will play a fundamental role in the rest of the text.

8.46. Fix an n 2 N. We number the pairs .i;j /, 1� i < j � n, as follows:

.1;2/ .2;3/ � � � .n�1;n/ .1;3/ � � � .n�2;n/ � � � .1;n/

C1 C2 Cn�1 Cn C2n�3 Cn.n�1/
2

:

For r D 0; : : : ;mD n.n�1/
2

, let U .r/n and P .r/n denote the algebraic subgroups of Un such
that

U .r/n .R/D f.aij / 2 Un.R/ j aij D 0 for .i;j /D Cl , l � rg

P .r/n .R/D f.aij / 2 Un.R/ j aij D 0 for .i;j /D Cl , l ¤ rg

for all k-algebras R. In particular, U .0/n D Un. For example, when nD 3,

C1 D .1;2/; U
.1/
3 D

8<:
0@1 0 �

0 1 �

0 0 1

1A9=; ; P
.1/
3 D

8<:
0@1 � 0

0 1 0

0 0 1

1A9=;' U .0/3 =U
.1/
3

C2 D .2;3/; U
.2/
3 D

8<:
0@1 0 �

0 1 0

0 0 1

1A9=; ; P
.2/
3 D

8<:
0@1 0 0

0 1 �

0 0 1

1A9=;' U .1/3 =U
.2/
3

C3 D .1;3/; U
.3/
3 D

8<:
0@1 0 0

0 1 0

0 0 1

1A9=; ; P
.3/
3 D

8<:
0@1 0 �

0 1 0

0 0 1

1A9=;' U .2/3 =U
.3/
3 :

Then:
(a) Each U .r/n is a normal algebraic subgroup of Tn, and

Un D U .0/n � �� � � U .r/n � U
.rC1/
n � �� � � U .m/n D e: (44)

(b) For r > 0, the maps

Ga
pr
�! P

.r/
n �! U

.r�1/
n =U

.r/
n

c 7! 1C cEi0j0 7!
�
1C cEi0;j0

�
�U

.r/
n ;

are isomorphisms of algebraic groups. Here .i0;j0/D Cr and Ei0j0 is the matrix with
1 in the .i0;j0/th position and zeros elsewhere.

(c) For r > 0,

A � .1C cEi0j0/ �A
�1
� 1C

�
ai i

ajj
c

�
Ei0j0 .mod U rn .R//

where AD .aij / 2 Tn.R/, c 2Ga.R/DR, and .i0;j0/D Cr .
Therefore

Tn � U .0/n � �� � � U .r/n � U
.rC1/
n � �� � � U .m/n D e (45)

is a normal series in Tn, with quotients Tn=U .0/n 'Gnm and U .r/n =U
.rC1/
n 'Ga. Moreover,

the action of Tn on each quotient Ga is linear (i.e., factors through the natural action of Gm
on Ga), and Un acts trivially on each quotient Ga. Hence, (45) is a solvable series for Tn
and (44) is a central series for Un, which is therefore nilpotent.

The proofs of (a), (b), and (c) are straightforward, and are left as an exercise to the reader.





CHAPTER 9
Algebraic groups acting on schemes

All schemes are algebraic over k. Algebraic groups are not required to be affine. By a
functor (resp. group functor) we mean a functor from Alg0

k
to Set (resp. Grp/. The Yoneda

lemma (A.28) allows us to identify an algebraic scheme X with the functor QX it defines.
For a functor X and k-algebra R, we let XR denote the functor of small R-algebras defined
by X . For functors X;Y , we let Hom.X;Y / denote the functor R Hom.XR;YR/. For a
closed subset Z of an algebraic scheme X , we let Zred denote the reduced subscheme of X
with jZredj DZ; for a locally closed subset Z, we let Zred denote the open subscheme of
. NZ/red with jZredj DZ.

a. Group actions

Recall (�1f) that an action of a group functor G on a functor X is a natural transformation
�WG�X !X such that �.R/ is an action of G.R/ on X.R/ for all k-algebras R, and that
an action of an algebraic group G on an algebraic scheme X is a regular map

�WG�X !X

such that certain diagrams commute. Because of the Yoneda lemma, to give an action of G
on X is the same as giving an action of QG on QX . We often write gx or g �x for �.g;x/.

Let �WG�X !X be an action of an algebraic group G on an algebraic scheme X . The
following diagram commutes

G�X G�X

X X;

.g;x/ 7!.g;gx/

.g;x/7!gx� .g;x/ 7!xp2

x 7!x

and both horizontal maps are isomorphisms. It suffices to check this on the R-points (R
a small k-algebra), where it is obvious (the inverse of the top map is .g;x/ 7! .g;g�1x/).
Therefore, the map �WG�X !X is isomorphic to the projection map p2. It follows that �
is faithfully flat, and that it is smooth (resp. finite) if G is smooth (resp. finite).

139
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b. The fixed subscheme

THEOREM 9.1. Let �WG �X ! X be an action of a group functor G on an algebraic
scheme X . If X is separated, then the functor XG ,

R fx 2X.R/ j �.g;xR0/D xR0 for all g 2G.R0/ and all R-algebras R0g

is represented by a closed subscheme of X .

PROOF. We regard G and X as functors. An x 2X.R/ defines maps

g 7! gxR0 WG.R
0/!X.R0/

g 7! xR0 WG.R
0/!X.R0/;

natural in the R-algebra R0. Thus, we get two maps

X.R/! Hom.GR;XR/;

natural in R. These are the components of the map  in the following diagram:

X Hom.G;X/�Hom.G;X/ Hom.G;X �X/

XG Hom.G;X/ Hom.G;X/:



'

˛ 7!.˛;˛/

id
'

˛ 7!�Xı˛

The remaining maps are obvious. The diagram is commutative, and each square is cartesian,
because it becomes so when each functor is evaluated at a k-algebra R. As X is separated,
�X is a closed immersion, and so Hom.G;X/ is a closed subfunctor of Hom.G;X �X/
(1.82). Therefore XG is a closed subfunctor of X (1.78), which implies that the functor XG

is represented by a closed subscheme of X (1.77). 2

It is obvious from its definition that the formation of XG commutes with extension of
the base field.

9.2. Let �WG�X !X be an action of a group variety G on an algebraic variety X over a
field k. When k is algebraically closed,

.XG/red D
\

g2G.k/
Xg ,

where Xg is the closed subvariety of X on which the regular map x 7! �.g;x/ agrees with
the identity map. When k is perfect, .XG/red is the unique closed subvariety of X such that

.XG/red.k
al/D x 2X.kal/ j gx D x for all g 2G.kal/g:

PROPOSITION 9.3. Let �WG�X !X be an action of an algebraic group G on a separated
scheme X . For every k-algebra R, XG.R/ consists of the elements x of X.R/ such that

�.gS˝R;xS˝R/D xS˝R (46)

for all k-algebras S and g 2G.S/.

In other words, it is not necessary to require that �.g;xR0/D xR0 hold for all R-algebras
R0 and g 2G.R0/, but only that it hold for R-algebras of the form S˝R and g of the form
gS˝R, g 2G.S/.
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PROOF. Let x 2X.R/ satisfy the condition in the proposition, and let g 2G.R0/ for some
R-algebra R0. Let S be the k-algebra underlying R0. We have a commutative diagram

S R˝S R

R0

'

id  

�

where
'.s/D 1˝ s �.r/D r˝1  .r˝ s/D rs:

Therefore,

g DG. /G.'/.g/DG. /.gR˝S /

xR0 DX. /X.�/.x/DX. /.xR˝S /

and so
�.g;xR0/DX. /.�.gS˝R;xS˝R//.

But
X. /.�.gS˝R;xS˝R//

(46)
D X. /.xR˝S /D xR0 ,

and so g �xR0 D xR0 , as required. 2

c. Orbits and isotropy groups

Let k be algebraically closed. In the action,

SL2�A2! A2;
�
a b

c d

��
x

y

�
D

�
axCby

cxCdy

�
,

there are two orbits, namely, f.0;0/g and its complement. The smaller of these is closed, but
the larger isn’t even affine. Now consider a group variety G acting on a variety X . The orbit
O of x 2 X is the image of the regular map g 7! gxWG! X , and so it contains a dense
open subset U of its closure NO (A.59). But O is a union of the sets gU , g 2 G, and so is
itself open in NO . Therefore NO XO is closed of dimension < dim NO , and so it is a union of
orbits of dimension < dimO . It follows that every orbit of lowest dimension in X is closed.

We extend this discussion to algebraic groups acting on schemes.
Let �WG�X !X be an action of an algebraic group G on an algebraic scheme X , and

let x 2X.k/. The orbit map

�x WG!X; g 7! gx;

is defined to be the restriction of � to G�fxg ' G. We say that G acts transitively on X
if G.kal/ acts transitively on X.kal/. Then the orbit map �x is surjective for all x 2 X.k/
(because it is on kal-points).

We repeat Proposition 1.52 for reference.

PROPOSITION 9.4. Let G be an algebraic group. Let X and Y be nonempty algebraic
schemes on which G acts, and let f WX ! Y be an equivariant map.

(a) If Y is reduced and G.kal/ acts transitively on Y.kal/, then f is faithfully flat.

(b) If G.kal/ acts transitively on X.kal/, then f .X/ is a locally closed subset of Y .
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(c) If X is reduced and G.kal/ acts transitively on X.kal/, then f factors into

X
faithfully
�����!

flat
f .X/red

immersion
������! Y ;

moreover, f .X/red is stable under the action of G.

DEFINITION 9.5. Let �WG �X ! X be an action of an algebraic group on a nonempty
algebraic scheme X over k, and let x 2X.k/. Then (9.4b) applied to the orbit map �x WG!
X shows that the set �x.G/ is locally closed in X . The orbit Ox of x is defined to be
�x.G/red.

EXAMPLE 9.6. Let G be an algebraic group over an algebraically closed field k. The orbits
of Gı acting on G are the connected components of G.

PROPOSITION 9.7. Let �WG�X !X be an action of a algebraic group G on an algebraic
scheme X , and let x 2X.k/. If G is reduced, then Ox is stable under G and the orbit map
�x WG!Ox is faithfully flat; hence Ox is smooth if G is smooth.

PROOF. The first statement follows from (9.4c) applied to f D �x . As �k is faithfully
flat, the map OOx ! �x�.OG/ is injective, and remains so after extension of the base field.
Therefore Ox is geometrically reduced, and so it has nonempty smooth locus (A.52). By
homogeneity (over kal/, it equals Ox . 2

PROPOSITION 9.8. Let �WG�X !X be an action of a smooth algebraic group G on an
algebraic scheme X .

(a) A reduced closed subscheme Y of X is stable under G if and only if Y.kal/ is stable
under G.kal/.

(b) Let Y be a subscheme of X . If Y is stable under G, then
ˇ̌
NY
ˇ̌
red and .

ˇ̌
NY
ˇ̌
XjY j/red are

stable under G.

PROOF. (a) As G is geometrically reduced and Y is reduced, G�Y is reduced (A.39). It
follows that �WG�Y !X factors through Y if and only if �.kal/ factors through Y.kal/.

(b) When we identify X.kal/ with jXkal j, the set
ˇ̌
NY
ˇ̌
red .k

al/ becomes identified with the
closure of Y.kal/ in X.kal/. As G.kal/ acts continuously on X.kal/ and stabilizes Y.kal/, it
stabilizes the closure of Y.kal/. Now (a) shows that

ˇ̌
NY
ˇ̌
red is stable under the action of G. A

similar argument applies to .
ˇ̌
NY
ˇ̌
XjY j/red. 2

Now assume that X is separated. For x 2X.k/, we define Gx to be the fibred product:

Gx X

G X �X

�X

g 7!.x;gx/

It is a closed subscheme of G, and, for all k-algebras R,

Gx.R/D fg 2G.R/ j gxR D xRg,

which is a subgroup of G.R/. Therefore Gx is an algebraic subgroup of G — it is called the
isotropy group at x.
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PROPOSITION 9.9. Let G be a smooth algebraic group acting on an algebraic scheme X ,
and let Y have the smallest dimension among the nonempty subschemes of X stable under
G. Then Y is closed.

PROOF. Let Y be a nonempty stable subscheme of X . Then .
ˇ̌
NY
ˇ̌
XjY j/red is stable under

G (9.8), and
dim.Y / > dim.

ˇ̌
NY
ˇ̌
XjY j/red.

If Y has smallest possible dimension, then
ˇ̌
NY
ˇ̌
D jY j. 2

COROLLARY 9.10. Let G be a smooth algebraic group acting on a nonempty algebraic
scheme X over an algebraically closed field k. Then there exists an x 2X such that Ox is
closed.

PROOF. Let Y be a nonempty stable subscheme of X of smallest dimension. Let x 2 Y .
Then Ox is a stable subscheme of Y , and so Ox D Yred. 2

ASIDE 9.11. The algebraicity in (9.10) is essential: a complex Lie group acting on a complex variety
need not have closed orbits (Springer 1998, p.41).

DEFINITION 9.12. A nonempty algebraic schemeX with an action ofG is a homogeneous
scheme for G if G.kal/ acts transitively on X.kal/ and the orbit map �x WGkal ! Xkal for
some x 2X.kal/. (The orbit map �x is then faithfully flat for all x 2X.kal/.)

One can ask whether every algebraic G-scheme X over k is a union of homogeneous
subschemes. A necessary condition for this is that the kal-points of X over a single point of
X lie in a single orbit of Gkal . Under this hypothesis, the answer is yes if G is smooth and
connected and the field k is perfect, but not in general otherwise. See Exercise 9-1.

NOTES. This section follows DG, II, �5, no. 3, p.242.

d. The functor defined by projective space

9.13. Let R be a k-algebra. A submodule M of an R-module N is said to be a direct
summand of N if there exists another submodule M 0 of M (a complement of M ) such that
N DM ˚M 0. Let M be a direct summand of a finitely generated projective R-module N .
Then M is also finitely generated and projective, and so Mm is a free Rm-module of finite
rank for every maximal ideal m in R (CA 12.5). If Mm is of constant rank r , then we say
that M has rank r .

Note that if M is locally a direct summand of RnC1 (for the Zariski topology), then
the quotient module RnC1=M is also locally a direct summand of RnC1, hence projective
(ibid.), and so M is (globally) a direct summand of RnC1.

9.14. Let
P n.R/D fdirect summands of rank 1 of RnC1g.

Then P n is a functor Algk! Set. One can show that the functor P n is local in the sense of
(A.29).

9.15. Let Hi be the hyperplane Ti D 0 in knC1, and let

P ni .R/D fL 2 P
n.R/ j L˚HiR DR

nC1
g:

The P ni form an open affine cover of P n, and so P n is an algebraic scheme over k (A.29).
We denote it by Pn.
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9.16. When K is a field, every K-subspace of KnC1 is a direct summand, and so Pn.K/
consists of the lines through the origin in KnC1.

e. Quotients: definition and properties

DEFINITION 9.17. Let G be an algebraic group (not necessarily affine) over k, and let
H be an algebraic subgroup of G. A separated algebraic scheme X equipped with an
action �WG �X ! X of G and a point o 2 X.k/ is called the quotient of G by H if the
map g 7! goWG.R/! X.R/ realizes QG= QH as a fat subfunctor of QX , i.e., if QX D G Q=H .
Explicitly, this means that, for every (small) k-algebra R,

(a) the nonempty fibres of the map g 7! goWG.R/!X.R/ are cosets of H.R/ in G.R/;

(b) each element of X.R/ lifts to an element of G.R0/ for some faithfully flat R-algebra
R0.

In Chapter 7 we proved that quotients always exist, but we won’t assume that here.

PROPOSITION 9.18. Let .X;o/ be a quotient of G by H (assumed to exist). For every G-
scheme X 0 and point o0 2X 0.k/ fixed by H , there is a unique G-equivariant map X !X 0

sending o to o0.

PROOF. There is a unique G-equivariant map of functors QG= QH ! QX 0 sending the coset of
H to o0. Because QX 0 is a sheaf, this extends uniquely to a map of sheaves QX ! QX 0 (5.4).
According to the Yoneda lemma, this map arises from a unique map X ! X 0 having the
required properties. 2

Thus, a quotient of G by H (if it exists) is uniquely determined up to a unique isomor-
phism. We write G=H for the quotient of G by H (if it exists). Note that .G=H/.kal/D

G.kal/=H.kal/.

LEMMA 9.19. Let H be an algebraic subgroup of an algebraic group G, and assume that
G=H exists. Then

.g;h/ 7! .g;gh/WG�H !G�G=H G

is an isomorphism.

PROOF. For all k-algebras R, the map

.g;h/ 7! .g;gh/WG.R/�H.R/!G.R/�G.R/=H.R/G.R/

is a bijection. As G.R/=H.R/ injects into .G=H/.R/, this remains true with the first set
replaced by the second; hence G�H 'G�G=H G. 2

PROPOSITION 9.20. Let H be an algebraic subgroup of an algebraic group G, and assume
that the quotient G=H exists. Then the canonical map qWG!G=H is faithfully flat (hence
open). It follows that G=H is smooth if G is.

PROOF. According to (9.19), the projection map p1WG�G=H G!G differs by an isomor-
phism from the projection map G�H !G, and so is faithfully flat. This implies that the
map G!G=H is faithfully flat (A.89), and hence open (A.87).

Because q is faithfully flat, the map OG=H ! q�OG is injective, and remains injective
after extension of the base field. Therefore, if G is smooth, then G=H is geometrically
reduced, which implies that it is smooth (because it becomes homogeneous over kal). 2
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REMARK 9.21. LetG be an algebraic group over k. A (right)G-torsor over k is a nonempty
algebraic scheme X over k together with an action X �G! X of G on X such that the
map .x;g/ 7! .x;xg/WX �G!X �X is an isomorphism. Then, for each k-algebra R, the
set X.R/ is either empty or a principal homogeneous space for G.R/. More generally, a G-
torsor over an algebraic k-scheme S is a faithfully flat map X ! S together with an action1

X �G!X of G on X over S such that the map .x;g/ 7! .x;xg/WX �G!X �S X is an
isomorphism. Lemma 9.19 and Proposition 9.20 show that G is an H -torsor over G=H .

PROPOSITION 9.22. Let G �X ! X be an action of an algebraic group on a separated
algebraic scheme X , and let o 2X.k/. Then .X;o/ is the quotient of G by Go if and only if
the orbit map �oWG!X is faithfully flat.

PROOF. If .X;o/ is the quotient of G by Go, then �o is faithfully flat by (9.20). Conversely,
from the definition of Go, we see that Go.R/ is the stabilizer in G.R/ of o 2X.R/, and so
the condition (9.17a) is satisfied. If �o is faithfully flat, then (5.6) shows that the condition
(9.17b) is satisfied. 2

PROPOSITION 9.23. Let G �X ! X be an action of a reduced algebraic group G on a
separated algebraic scheme X , and let o 2 X.k/. Assume that the quotient G=Go exists.
Then the orbit map induces an isomorphism G=Go!Oo.

PROOF. Because G is reduced, the orbit map �0 is faithfully flat (9.7). Hence we can apply
(9.22). 2

COROLLARY 9.24. Let G �X ! X be an action of a group variety G on an algebraic
variety X , and let o 2 X.k/. Assume that the quotient G=Go exists. Then the orbit map
induces an isomorphism G=Go!Oo.

PROOF. Special case of the proposition. 2

REMARK 9.25. The algebraic subgroup Go in (9.24) need not be smooth — consider, for
example, the action in characteristic p of SLp on PGLp by left translation. If k is perfect,
then .Go/red is an group subvariety of G, and G=.Go/red!Oo is a finite purely inseparable
map. This is the best that one can do in the world of algebraic varieties.

PROPOSITION 9.26. Let H 0 be an algebraic subgroup of G containing H :

G �H 0 �H:

If G=H 0 and G=H exist, then the canonical map NqWG=H ! G=H 0 is faithfully flat. If the
scheme H 0=H is smooth (resp. finite) over k, then the morphism G=H 0!G=H is smooth
(resp. finite and flat). In particular, the map G!G=H is smooth (resp. finite and flat) if H
is smooth (resp. finite).

PROOF. We have a cartesian square of functors

QG� . QH 0= QH/ QG= QH

QG QG= QH 0:

.g;x/ 7!gx

.g;x/ 7!g

q0

1By this we mean an action X �G 'X �S GS !X of GS on X over S .
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On passing to the associated sheaves and applying the Yoneda lemma, we get a cartesian
square of algebraic schemes

G� .H 0=H/ G=H

G G=H 0:

�

p1 Nq

q0

Because q0 is faithfully flat, whatever properties p1 has, so will Nq (see A.90). 2

f. Quotients: construction in the affine case

In Chapter 7 we proved the existence of G=H in the general case. Here we give a direct
explicit construction of G=H when G is affine (and smooth).

LEMMA 9.27. Let G�X ! X be the action of a smooth algebraic group on a separated
algebraic scheme X . For every o 2X.k/, the quotient G=Go exists and the canonical map
G=Go!X is an immersion.

PROOF. As G is smooth, the map �oWG!Oo is faithfully flat and Oo is stable under G
(9.7, 9.5), and so the pair .Oo;o/ is a quotient of G by Go by (9.22).

That G=Go!X is an immersion follows from (9.4c). 2

THEOREM 9.28. The quotientG=H exists as a separated algebraic scheme for every smooth
affine algebraic group G and algebraic subgroup H .

PROOF. According to Chevalley’s theorem (4.19), there exists a representation of G on a
vector space knC1 such that H is the stabilizer of a one-dimensional subspace L of knC1.
Recall that Pn represents the functor

R fdirect summands of rank 1 of RnC1g.

The representation of G on knC1 defines a natural action of G.R/ on the set Pn.R/, and
hence an action of G on Pn (Yoneda lemma). For this action of G on Pn, H DGL where L
is considered as a point of Pn.k/. Now Lemma 9.27 completes the proof . 2

EXAMPLE 9.29. The proof of Theorem 9.28 shows that, for every representation .V;r/ of
G and line L, the orbit of L in P.V / is a quotient of G by the stabilizer of L in G. For
example, let G D GL2 and let H D T2 D f.� �0 �/g. Then H is the subgroup fixing the line
LD f.�0 /g in the natural action of G on k2. Hence G=H is isomorphic to the orbit of L,
but G acts transitively on the set of lines, and so G=H ' P1. In particular, the quotient is a
complete variety.2

PROOF IN THE NONSMOOTH CASE

[This is not of much interest — the important case for the rest of the book is the smooth
affine case, and the general case is proved in Chapter 7. However, it may be possible to
give an easy deduction of the general affine case from the smooth affine case using only the
elementary result (7.18).]

To remove the “smooth” from Theorem 9.28, it suffices to remove the “smooth” from
Lemma 9.27.

2In Chapter 18, we shall study the subgroups H such that G=H is complete (they are the parabolic
subgroups).



f. Quotients: construction in the affine case 147

LEMMA 9.30. Let G�X!X be the action of an algebraic group on a separated algebraic
schemeX . For every o 2X.k/, the quotientG=Go exists and the canonical mapG=Go!X

is an immersion.

PROOF. When G is smooth, this was proved above. Otherwise, there exists a finite purely
inseparable extension k0 of k and a smooth algebraic subgroup G0 of Gk0 such that G0

kal D

.Gkal/red (see 1.46). Let H D Go and let H 0 D G0o DHk0 \G
0. Then G0=H 0 exists as an

algebraic scheme over k0 because G0 is smooth. Now Gk0=Hk0 exists because this is true for
the algebraic subgroups G0 and H 0, which are defined by nilpotent ideals, and we can apply
(9.34) below. Therefore G=H exists because .G=H/k0 'Gk0=Hk0 exists and we can apply
(9.31) below.

In proving that i WG=Go!X is an immersion, we may suppose that k is algebraically
closed. As i is a monomorphism, there exists an open subset U of X such that i�1U ¤ ;
and U ! X is an immersion (A.31). Now the open sets i�1.gU /D gi�1.U /, g 2 G.k/,
cover G=Go. 2

Proofs of the following results will (probably not) be added.

LEMMA 9.31. Let K=k be a finite purely inseparable extension of fields, and let F be a
sheaf on Algk . If the restriction of F to AlgK is representable by an algebraic scheme over
K, then F is representable by an algebraic scheme over k.

PROOF. DG III, 2, 7.4, p321. In the affine case, which is all we need, this follows from the
elementary result (7.18). 2

LEMMA 9.32. Let S be an algebraic scheme and let R� S be an equivalence relation on
S such that the first projection R! S is faithfully flat of finite presentation. Let S0 be a
subscheme of S defined by a nilpotent ideal that is saturated for the relation R, and let R0
be the induced relation on S0. If S0=R0 exists as a scheme, so also does S=R.

PROOF. DG III, 2, 7.1, 7.2, p.318. 2

LEMMA 9.33. Let R0 and R be equivalence relations on a scheme S . Assume: R and S
are algebraic; R0 is the subscheme of R defined by a nilpotent ideal; and the canonical
projections R0! S and R! S are flat. If S=R0 is an algebraic scheme over k, then so
also is G=R.

PROOF. DG III, 2, 7.3, p320. 2

LEMMA 9.34. Let G be an algebraic group, and let G0,H , andH0 be subgroups of G with
H0 �G0. Assume that G0 (resp. H0/ is the subgroup of G (resp. H ) defined by a nilpotent
ideal. Then G=H exists if G0=H0 exists.

PROOF. If G0=H0 exists, then so also does G=H0 (by 9.32). Hence G=H exists by (9.33)
applied to the equivalence schemes G �G=H G ' G �H and G �G=H0 G ' G �H0. In
particular, as H0=H0 is trivial, we see that H=H0 is an algebraic scheme with only a singly
point, which is therefore affine. 2
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g. Linear actions

DEFINITION 9.35. An actionG�X!X of an algebraic groupG on an algebraic varietyX
is said to be linear if there exists a representation r WG!GLV of G on a finite-dimensional
vector space V and a G-equivariant immersion X ,! P.V /.

PROPOSITION 9.36. If G is affine, X is an algebraic variety, and the action is transitive,
then the action is linear.

PROOF. Let o 2 X . Then the orbit map �oWG=Go! X is an immersion (9.27). As X is
reduced and the action is transitive, the orbit map is an isomorphism. The proof of (9.28)
shows that the action of G on G=Go is linear. 2

REMARK 9.37. In the situation of (9.36), we can choose the representation .V;r/ so that
the G-equivariant immersion X ,! P.V / does not factor through P.W / for any subrepre-
sentation W of V . We then say that the embedding X ,! P.V / is nondegenerate:

ASIDE 9.38. There is the following theorem of Sumihiro (1974, 1975): Let G �X ! X be an
action of a connected affine group variety G on a normal algebraic variety X an algebraically closed
field, and let O be an orbit of G in X . Then there exists an open neighbourhood U of O on which G
acts linearly. The hypothesis of normality is essential. (See also Slodowy, LNM 815, I, 1.3.)

h. Complements

In this section, G is an algebraic group and H is an algebraic group. We assume that G=H
exists.

9.39. When G is affine, the algebraic scheme G=H is quasiprojective. This follows from
its construction. (In fact, homogeneous spaces of group varieties are always quasi-projective;
Chow 1957. More generally, let G a group scheme smooth over a normal scheme S with
connected fibres. Then every homogeneous space under G is locally quasi-projective on S .
(Raynaud 1970, LNM 119).)

9.40. We have,
dimG D dimH CdimG=H:

It suffices to prove this with k algebraically closed. Then we may pass to the associated
reduced algebraic varieties, and apply a little algebraic geometry (specifically A.99).

9.41. Let H 0 be an algebraic subgroup of G containing H . Then H 0 Q=H is a closed
subscheme of G=H , and is the quotient of H 0 by H .

9.42. Let H 0 be an algebraic subgroup of G containing H and such that dimH 0 D dimH .
Then dim.H 0=H/D 0 (9.40), and so H 0=H is finite (2.12). Therefore the canonical map
G=H !G=H 0 is finite and flat (9.26). In particular, it is proper.

9.43. Consider an algebraic group G acting on an algebraic variety X . Assume that G.kal/

acts transitively on X.kal/. By homogeneity, X is smooth, and, for any o 2X.k/, the map
g 7! goWG ! X defines an isomorphism G=Go ! X . When k is perfect, .Go/red is a
smooth algebraic subgroup of G (1.25), and G=.Go/red!X is finite and purely inseparable
(9.42).
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9.44. Let G �H be group varieties, and let o be the canonical point in .G=H/.k/. Then
G=H is an algebraic variety (9.20), and the map G ! G=H has the following universal
property: for any algebraic variety X with an action of G and point o0 of X.k/ fixed by
H , there is a unique regular map G=H ! X , go 7! go0 making the following diagram
commute:

G G=H

X 0:

g 7! go

g 7! go0

9.45. When G is affine and H is normal, the quotient G=H constructed in (5.21) satisfies
the definition (9.17) — see (5.30). Therefore G=H is affine in this case.

ASIDE 9.46. The quotient G=H may be affine without H being normal. When G is reductive,
Matsushima’s criterion says that G=H is affine if and only if H ı is reductive (Matsushima 1960 in
characteristic zero; Richardson 1977, Borel 1985 in all characteristics). For more general G, see
Cline et al. 1977, Koitabashi 1989, etc.

ASIDE 9.47. For a discussion of what happens to the orbits when you change the algebraically
closed base field and the group is semisimple, see mo49885.

i. Flag varieties

A flag F in finite-dimensional vector space V is a sequence of distinct subspaces 0D V0 �
V1 � �� � � Vr D V of V . If r D dimV , then dimVi D i for all i and F is a maximal flag.

Let F be a flag in V , and let B.F / be the functor sending a k-algebra R to the set of
sequences of R-modules

0D F0 � F1 � �� � � Fr DR˝V

with Fi a direct factor of R˝V of rank dim.Vi /.

PROPOSITION 9.48. Let F be a flag in a finite-dimensional vector space V , and let B.F /
be the algebraic subgroup of GLV fixing F . Then GLV =B.F / represents the functor B.F /.

PROOF. The functor R GLV .R/=B.F /.R/ is a fat subfunctor of both B.F / and R 
.GLV =B.F //.R/. 2

A variety of the form GLV =B.F / is called a flag variety. They are complete varieties
(see 18.21 below, or prove directly).

j. Exercises

EXERCISE 9-1. Let G be a smooth connected algebraic group acting on algebraic variety
X .

(a) Show that a point of x of X lies in a homogeneous subscheme of X if �.x/ is
separable over k and the kal-points of X over x lie in a single Gkal-orbit.

(b) Show that (a) fails if the kal-points of X over x don’t lie in a single orbit (e.g., if G
is the trivial group).

http://mathoverflow.net/questions/49885
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(c) Show that (a) fails if G is not connected. (Consider the natural action of �n on
X DGm, and let x be such that Œ�.x/Wk� does not divide n.)

(d) Show that (a) fails without the separability condition. (Let G D f.u;v/ j vp D u�
tupg, t 2 kXkp . Then G is a smooth algebraic group, which acts on P2 by .u;v/.aWbWc/D
.aCucWbCvcWc/. The Zariski closure X of G in P2 has a unique point x on the line at
infinity, and �.x/D k.t/. Then X Xfxg D G with G acting by translation, and so it is a
homogeneous space for G, but the complement fxg of X Xfxg in X is not a homogeneous
space — it is not even smooth.)

See mo150207 (user76758).

EXERCISE 9-2. Let G be a group variety acting transitively on irreducible varieties X and
Y , and let f WX ! Y be an equivariant quasi-finite regular dominant map. Then f is finite
(hence proper). (AG, Exercise 9-4.)

http://mathoverflow.net/questions/150207


CHAPTER 10
The structure of general algebraic

groups

In this chapter, we explain the position that affine algebraic groups occupy within the category
of all algebraic groups.

a. Summary

Every smooth connected algebraic group G over a field k contains a greatest smooth
connected affine normal algebraic subgroup N (10.3). When k is perfect, the quotient
G=N is an abelian variety (Barsotti-Chevalley theorem 10.25); otherwise G=N may be an
extension of a unipotent algebraic group by an abelian variety (10.29).

On the other hand, every smooth connected algebraic group G contains a smallest
connected affine normal algebraic subgroup N (not necessarily smooth) such that G=N is
an abelian variety (10.26). When k is perfect, N is smooth, and it agrees with the group in
the preceding paragraph.

smooth �

j unipotent

�

j abelian variety

�

j smooth affine

e �

smooth �

j abelian variety

�

j smooth affine

e �

base field perfect

smooth �

j abelian variety

�

j affine

e �

Finally, every algebraic group G has a greatest affine
algebraic quotient G!Gaff (10.33). The algebraic groups
arising as the kernel N of such a quotient map are char-
acterized by the condition O.N /D k, and are said to be
“anti-affine”. They are smooth, connected, and commuta-
tive. In nonzero characteristic, they are all semi-abelian
varieties, i.e., extensions of abelian varieties by tori, but
in characteristic zero they may also be an extension of a
semi-abelian variety by a vector group (�2b).

algebraic. group �

j affine

�

j anti-affine

f1g �
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b. Generalities

Let N andH be algebraic subgroups of an algebraic group G, and suppose that N is normal.
There is an action � of H on N by conjugation, and so we can form the semidirect product
N Ì� H (�2e). The homomorphism

.n;h/ 7! nhWN Ì� H !G

has kernel N \H and image the algebraic subgroup NH of G whose R-points are the
elements of G.R/ that lie in N.R0/H.R0/ for some faithfully flat R-algebra R0. The natural
map of functors H !NH=N determines an isomorphism

H=N \H !NH=N

of algebraic groups (5.37, 6.19).

LEMMA 10.1. Let
e!N !G!Q! e

be an exact sequence of algebraic groups.

(a) If N and Q are affine (resp. smooth, resp. connected), then G is affine (resp. smooth,
resp. connected).

(b) If G is affine (resp. smooth, resp. connected), then so also is Q.

PROOF. (a) Assume that N and Q are affine. The morphism G!Q is faithfully flat with
affine fibres. Now G�QG 'G�N (9.19), and so the morphism G�QG!G is affine.
By faithfully flat descent, the morphism G!Q is affine. As Q is affine, so also is G.

Assume that N and Q are smooth. The morphism G!Q has smooth fibres of constant
dimension, and so it is smooth. As Q is smooth, this implies that G.

Let �0.G/ be the group of connected components ofG; it is an étale algebraic group, and
the natural map G! �0.G/ is universal among homomorphisms from G to étale algebraic
groups (5.48). If N is connected, then G� �0.G/ factors through Q, and hence through
�0.Q/, which is trivial if Q is also connected.

(b) We have Q'G=N , which is affine if G is (9.45).
BecauseG!Q is faithfully flat, the map OQ! q�OG is injective. HenceQ is reduced

if G is reduced. The map G!Q stays faithfully flat under extension of the base field, and
so Q is geometrically reduced (hence smooth) if G is geometrically reduced.

The faithfully flat homomorphism G !Q! �0.Q/ factors through �0.G/, and so
�0.Q/ is trivial if �0.G/ is. 2

In particular, an extension of connected affine group varieties is again a connected affine
group variety, and a quotient of a connected group variety by a normal algebraic subgroup is
a connected group variety.

LEMMA 10.2. LetH andN be algebraic subgroups of an algebraic groupG withN normal.
If H and N are affine (resp. connected, resp. smooth), then HN is affine (resp. connected,
resp. smooth).

PROOF. Apply (10.1) and (8.34). 2

PROPOSITION 10.3. Every algebraic group contains a greatest smooth connected affine
normal algebraic subgroup (i.e., a greatest connected affine normal subgroup variety).
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PROOF. Let G be an algebraic group over k. Certainly, G contains maximal connected
affine normal subgroup varieties (e.g., any such variety of greatest dimension). Let H and
N be two such maximal subgroup varieties. Then HN has the same properties by (10.2),
and so H DHN DN . 2

DEFINITION 10.4. A pseudo-abelian variety is a connected group variety such that every
connected affine normal subgroup variety is trivial.

PROPOSITION 10.5. Every connected group variety G can be written as an extension

e!N !G!Q! e

of a pseudo-abelian variety Q by a connected affine normal subgroup variety N in exactly
one way.

PROOF. Let N be the greatest connected affine normal subgroup variety of G (see 10.3),
and let QDG=N . If Q is not pseudo-abelian, then it contains a nontrivial connected affine
normal subgroup variety H . Let H 0 be the inverse image of H in G. From the exact
sequence

e!N !H 0!H ! e

and (10.1) we see that H 0 is an affine subgroup variety of G. Because H is normal in Q,
H 0 is normal in G (cf. 5.39), and so this contradicts the definition of N . Hence Q is a
pseudo-abelian variety.

In order for G=N to be pseudo-abelian, N must be maximal among the normal affine
subgroup varieties of G; therefore it is unique (10.3). 2

c. Local actions

PROPOSITION 10.6. LetG�X!X be an algebraic group acting faithfully on a connected
separable algebraic scheme X over k. If there is a fixed point P , then G is affine.

PROOF. Because G fixes P , it acts on the local ring OP at P . For n 2 N, the formation
of OP =mnC1P commutes with extension of the base, and so the action of G defines a
homomorphisms G.R/! Aut.R˝k

�
OP =mnC1P

�
/ for all k-algebras R. These are natural

in R, and so arise from a homomorphism �nWG! GLOP =mnC1P

of algebraic groups. Let
Hn D Ker.�n/, and let H denote the intersection of the descending sequence of algebraic
subgroups � � � �Hn �HnC1 � �� � . Because G is noetherian, there exists an n0 such that
H DHn for all n� n0.

Let I be the sheaf of ideals in OX corresponding to the closed algebraic subscheme
XH of X . Then IOP �mnP for all n� n0, and so IOP �

T
nm

n
P D 0 (Krull intersection

theorem, CA 3.15). It follows that XH contains an open neighbourhood of P . As XH

is closed and X is connected, XH equals X . Therefore H D e, and the representation
of G on OP =mnC1P is faithful for all n � n0. This means that �nWG! GLOP =mnC1P

is a
monomorphism, hence a closed immersion (5.18, 7.37), and so G is affine. 2

COROLLARY 10.7. Let G be a connected algebraic group, and let Oe be the local ring at
the neutral element e. The action of G on itself by conjugation defines a representation of G
on the k-vector space Oe=mnC1e . For all sufficiently large n, the kernel of this representation
is the centre of G.
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PROOF. Apply the above proof to the faithful action G=Z�G!G. 2

COROLLARY 10.8. Let G be an algebraic group. If G is connected, then G=Z.G/ is affine.

PROOF. The action of G=Z on G by conjugation is faithful and has a fixed point, namely,
e. 2

d. Anti-affine algebraic groups and abelian varieties

DEFINITION 10.9. An algebraic group G over k is anti-affine if O.G/D k.

For example, a complete connected algebraic group is anti-affine. Every homomorphism
from an anti-affine algebraic group to an affine algebraic group is trivial. In particular, an
algebraic group that is both affine and anti-affine is trivial.

PROPOSITION 10.10. Every homomorphism from an anti-affine algebraic group G to a
connected algebraic group H factors through the centre of H .

PROOF. From the homomorphism G!H and the action of H on itself by conjugation,
we obtain a representation G on the k-vector space OH;e=mnC1e (n 2 N). Because G is
anti-affine, this is trivial, which implies that G!H factors through Z.H/ ,!H (10.7).2

COROLLARY 10.11. Let G be a connected algebraic group. Every anti-affine algebraic
subgroup H of G is contained in the centre of G.

PROOF. Apply (10.10) to the inclusion map. 2

COROLLARY 10.12. Every anti-affine algebraic G is commutative and connected.

PROOF. The last corollary shows that it is commutative, and �0.G/ is affine, and so G!
�0.G/ is both trivial and surjective. 2

DEFINITION 10.13. An abelian variety is a complete connected group variety. An abelian
subvariety of an algebraic group is a complete connected subgroup variety.

e. Rosenlicht’s decomposition theorem.

Recall that a rational map �WXÜ Y of algebraic varieties is an equivalence class of pairs
.U;�U / with U a dense open subset of X and �U a morphism U ! Y ; in the equivalence
class, there is a pair with U greatest (and U is called “the open subvariety on which � is
defined.”) We shall need to use the following results, which can be found, for example, in
Milne 1986.

10.14. Every rational map from a normal variety to a complete variety is defined on an
open set whose complement has codimension � 2 (ibid. 3.2).

10.15. A rational map from a smooth variety to a connected group variety is defined on an
open set whose complement is either empty or has pure codimension 1 (ibid. 3.3).

10.16. Every rational map from a smooth variety V to an abelian variety A is defined on
the whole of V (combine 10.14 and 10.15).
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10.17. Every regular map from a connected group variety to an abelian variety is the
composite of a homomorphism with a translation (ibid. 3.6).

10.18. Every abelian variety is commutative (10.12, or apply (10.17) to the map x 7! x�1).

10.19. Multiplication by a nonzero integer on an abelian variety is faithfully flat with finite
kernel (ibid. 8.2).

LEMMA 10.20. Let G be a commutative connected group variety over k, and let

.v;g/ 7! vCgWV �G! V

be a G-torsor. There exists a morphism �WV ! G and an integer n such that �.vCg/D
�.v/Cng for all v 2 V , g 2G.

PROOF. Suppose first that V.k/ contains a point P . Then

g 7! gCP WG! V

is an isomorphism. Its inverse
�WV !G

sends a point v of V to the unique point .v�P / of G such that P C .v�P /D v. In this
case �.vCg/D �.v/Cng with nD 1.

In the general case, because V is an algebraic variety, there exists a P 2 V whose residue
field K def

D �.P / is a finite separable extension of k (of degree n, say). Let P1; : : : ;Pn be the
kal-points of V lying over P , and let QK denote the Galois closure (over k) of K in kal. Then
the Pi lie in V. QK/. Let � D Gal. QK=k/.

For each i , we have a morphism

�i WV QK !G QK v 7! .v�Pi /

defined over QK. The sum
P
�i is � -equivariant, and so arises from a morphism �WV !G

over k. For g 2G,

�.vCg/D
Xn

iD1
�i .vCg/D

Xn

iD1
.�i .v/Cg/D �.v/Cng:

2

PROPOSITION 10.21. LetA be an abelian subvariety of a connected group varietyG. There
exists a regular map �WG ! A and an integer n such that �.gCa/ D �.g/Cna for all
g 2G and a 2 A.

PROOF. Because A is a normal subgroup of G (even central, see 10.11), there exists a
faithfully flat homomorphism � WG!Q with kernel A. Because A is smooth, the map �
has smooth fibres of constant dimension and so is smooth. Let K be the field of rational
functions on Q, and let V ! Spm.K/ be the map obtained by pullback with respect to
Spm.K/!Q. Then V is an AK-torsor over K (see 9.21). The morphism �WV ! AK over
K given by the lemma extends to a rational map GÜQ�A over k. On projecting to A,
we get a rational map GÜ A. This extends to a morphism (see 10.16)

�WG! A

satisfying
�.gCa/D �.g/Cna

on a dense open subset of G, and hence on the whole of G. 2
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The next theorem says that every abelian subvariety of an algebraic group has an almost-
complement. It is a key ingredient in Rosenlicht’s proof of the Barsotti-Chevalley theorem.

THEOREM 10.22 (ROSENLICHT DECOMPOSITION THEOREM). Let A be an abelian sub-
variety of a connected group variety G. There exists a normal algebraic subgroup N of G
such that the map

.a;n/ 7! anWA�N !G (47)

is a faithfully flat homomorphism with finite kernel. When k is perfect, N can be chosen to
be smooth.

PROOF. Let �WG! A be the map given by (10.21). After we apply a translation, this will
be a homomorphism (10.17) whose restriction to A is multiplication by n .

The kernel of � is a normal algebraic subgroup N of G. Because A is contained in the
centre of G (see 10.11), the map (47) is a homomorphism. It is surjective (hence faithfully
flat 5.17) because the homomorphism A!G=N ' A is multiplication by n, and its kernel
is N \A, which is the finite group scheme An (apply 10.19).

When k is perfect, we can replace N with Nred, which is a smooth algebraic subgroup
of N . 2

f. Rosenlicht’s dichotomy

The next result is the second key ingredient in Rosenlicht’s proof of the Barsotti-Chevalley
theorem.

PROPOSITION 10.23. Let G be a connected group variety over an algebraically closed field
k. Either G is complete or it contains an affine algebraic subgroup of dimension > 0.

Suppose that G is not complete (so dimG > 0), and let X denote G regarded as a left
homogeneous space forG. We may hope thatX can be embedded as a dense open subvariety
of a complete variety NX in such a way that the action of G on X extends to NX . The action of
G on NX then preserves E def

D NX XX . Let P 2E, and let H be the isotropy group at P . Then
H is an algebraic subgroup of G and

dim.G/�dim.H/D dim.G=H/� dimE � dimG�1,

and so dim.H/� 1. As it fixes P and acts faithfully on NX , it is affine (10.6).
The above sketch is essentially Rosenlicht’s original proof of the proposition, except

that, lacking an equivariant completion of X , he works with an “action” of G on NX given by
a rational map G� NXÜ NX (Rosenlicht 1956, Lemma 1, p.437). We refer to Milne 2013,
4.1, for the details; see also Brion et al. 2013, 2.3.

g. The Barsotti-Chevalley theorem

THEOREM 10.24. Every pseudo-abelian variety over a perfect field is complete (hence an
abelian variety).

PROOF. Let G be a pseudo-abelian variety over perfect field k. Let N be the greatest
connected affine normal subgroup variety of Gkal (10.3). Because N is unique, it is stable
under Gal.kal=k/, and hence defined over k (1.41). It is therefore trivial. We have shown
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that Gkal is pseudo-abelian. It suffices to show that it is complete, and so we may assume
that k is algebraically closed. We use induction on the dimension of G.

Let Z be the centre of G. If dim.Z/D 0, then the representation of G on the k-vector
space Oe=mnC1e has finite (hence affine) kernel for n sufficiently large (see 10.7), which
implies that G itself is affine (10.1a), and hence trivial. Therefore, we may assume that
dim.Z/ > 0.

If Zred is complete, then there exists an almost-complement N to Zred (10.22), which
we may assume to be smooth. A connected affine normal subgroup variety of N is normal
in G, and hence trivial. Therefore N is pseudo-abelian, and so, by induction, it is complete.
As G is a quotient of Zred�N , it also is complete (A.114d).

If Zred is not complete, then it contains a connected affine subgroup variety N of
dimension > 0 (see 10.23). Because it is contained in the centre, N is normal in G, which is
a contradiction, and so this case doesn’t occur. 2

THEOREM 10.25 (BARSOTTI 1955; CHEVALLEY 1960). Every connected group variety
G over a perfect field can be written as an extension

e!N !G! A! e

of an abelian variety A by a connected affine normal subgroup variety N in exactly one way.
The formation of the extension commutes with extension of the base field.

PROOF. According to (10.5), G is (uniquely) an extension of pseudo-abelian variety by a
connected affine normal subgroup variety, but, because the base field is perfect, the pseudo-
abelian variety is abelian (10.24). This proves the first statement. As abelian varieties remain
abelian varieties under extension of the base field and connected affine normal subgroup
varieties remain connected affine normal subgroup varieties, the second statement follows
from the uniqueness. 2

THEOREM 10.26. LetG be a connected group variety over a field k. There exists a smallest
connected affine normal algebraic subgroup N of G such that G=N is an abelian variety.

PROOF. Let N1 and N2 be connected affine normal algebraic subgroups of G such that
G=N1 and G=N2 are abelian varieties. There is a closed immersion G=N1\N2 ,!G=N1�

G=N2, and so G=N1\N2 is also complete (hence an abelian variety). This shows that,
if there exists a connected affine normal algebraic subgroup N of G such that G=N is an
abelian variety, then there exists a smallest such subgroup.

We know that for some finite purely inseparable extension k0 of k, G0 def
DGk0 contains a

connected affine normal algebraic subgroup N 0 such that G0=N 0 is an abelian variety. By
induction on the degree of k0 over k, we may suppose that k0p � k. Consider the Frobenius
map

F WG0!G0.p/
def
DG0˝k0 k

0.1=p/:

Let N be the pull-back under F of the algebraic subgroup N 0.p/ of G0.p/. If I 0 �OG0 is
the sheaf of ideals defining N 0, then the sheaf of ideals I defining N is generated by the pth
powers of the local sections of I 0. As k0p � k, we see that I is generated by local sections
of OG , and, hence, that N is defined over k. Now N is connected, normal, and affine, and
G=N is an abelian variety (because Nk0 �N 0 and so .G=N/k0 is a quotient of Gk0=N 0). 2

COROLLARY 10.27. Every pseudo-abelian variety is commutative.
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PROOF. Let G be a pseudo-abelian variety. Because G is smooth and connected, so also is
its commutator subgroup G0 (8.21). Let N be as in Theorem 10.26. As G=N is commutative
(10.16), G0 � N . Therefore G0 is affine. As it is smooth, connected, and normal, it is
trivial. 2

EXAMPLE 10.28. Let R be a complete discrete valuation ring with field of fractions K
and perfect residue field k. Let A be an abelian variety over K. According to an important
theorem of Néron, there there exists smooth group scheme A over R with generic fibre A
such that the canonical map A.S/! A.SK/ is an isomorphism for all smooth R-schemes
S . Let A0 denote the special fibre of A=R — it is an algebraic group over k. If A0 is an
abelian variety over k, then A is said to have good reduction. Otherwise there is a filtration
A0 �A

ı
0 �N � e with A0=Aı0 finite, Aı0=N an abelian variety, and N a commutative affine

algebraic group. It is an important theorem that, after K has been replaced by a suitable
finite extension, Aı0 will be a semi-abelian variety.

ASIDE 10.29. Over an arbitrary base field, Totaro (2013) shows that every pseudo-abelian variety
G is an extension of a connected unipotent group variety U by an abelian variety A,

e! A!G! U ! e;

in a unique way.

ASIDE 10.30. The map G! A in (10.25) is universal among maps from G to an abelian variety
sending e to e. Therefore A is the Albanese variety of G and G! A is the Albanese map. In his
proof of (10.25), Chevalley (1960) begins with the Albanese map G! A of G, and proves that its
kernel is affine. The above proof follows Rosenlicht 1956. The first published proof of the theorem is
in Barsotti 1955.

ASIDE 10.31. Over a base ring other than a field, the Barsotti-Chevalley theorem (and much else
in this chapter) becomes false. For example, the Nèron model over a discrete valuation ring of an
elliptic curve with bad reduction cannot be written as an extension of a proper group scheme by
an affine group scheme. As another example, consider the constant group scheme .Z=2Z/S over a
scheme S . As a scheme .Z=2Z/S D S tS , and for any open subscheme U of S , it has G D S tU
as a subgroup scheme. If S D A2 and U D A2Xf.0;0/g, then G is neither affine nor proper over S ,
and it cannot be written as an extension of such group schemes.

h. Anti-affine groups

Let G be an algebraic scheme over k, and let A be a k-algebra. To give a regular map
SpmA!G of k-schemes is the same as giving a homomorphism of k-algebras O.G/!A:

Hom.SpmA;G/' Hom.O.G/;A/ (48)

(A.13). Now assume that G has the structure mWG�G!G of an algebraic group, and that
A has the structure �WA! A˝A of a Hopf algebra. Then O.m/WO.G/!O.G/˝O.G/
defines a Hopf algebra structure on O.G/, and, under (48), homomorphisms of algebraic
groups correspond to homomorphisms of Hopf algebras. Once we have proved that O.G/ is
finitely generated as a k-algebra, this will show that the G!Gaff def

D Spm.O.G/;O.m// is
universal among homomorphisms from G to an affine algebraic group.

PROPOSITION 10.32. Every Hopf algebra over field k is a directed union of finitely gener-
ated sub-Hopf subalgebras over k.
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PROOF. Let A be a k-algebra (not necessarily finitely generated) and �WA! A˝A a
k-algebra homomorphism such that there exist k-algebra homomorphisms

�WA! k; S WA! A;

for which the diagrams (20), (21) commute. By (4.6), every finite subset of A is contained in
a finite-dimensional k-subspace V such that �.V /� V ˝A. Let .ei / be a basis for V , and
write�.ej /D

P
i ei˝aij . Then�.aij /D

P
k aik˝akj (see (29), p.70), and the subspace

L of A spanned by the ei and aij satisfies �.L/� L˝L. The k-subalgebra A0 generated
by L satisfies �.A0/� A0˝A0. It follows that A is a directed union AD

S
A0 of finitely

generated subalgebras A0 such that �.A0/� A0˝A0.
Let a 2A. If�.a/D

P
bi˝ci , then�.Sa/D

P
Sci˝Sbi (Exercise 3-2b). Therefore,

the k-subalgebra A0 generated by L and SL satisfies S.A0/ � A0, and so it is a finitely
generated Hopf subalgebra of A. It follows that A is the directed union of its finitely
generated Hopf subalgebras. 2

PROPOSITION 10.33. Let G be an algebraic group over k.

(a) The k-algebra O.G/ is finitely generated; therefore Gaff def
D Spm.O.G/;O.m// is an

algebraic group over k.

(b) The natural map �WG ! Gaff is universal for homomorphisms from G to affine
algebraic groups; it is faithfully flat.

(c) The kernel N of � is anti-affine.

PROOF. (a) We saw in (10.32), that O.G/ is a filtered union O.G/ D S
iOi of Hopf

algebras with each Oi finitely generated as a k-algebra. Correspondingly, we obtain a family
of homomorphisms fi WG!Gi of algebraic groups over k with Gi D Spm.Oi /. Let N DT
i Ker.fi /. Then N DKer.fi0/ for some i0 (1.28), and G=N !Gi0 is a closed immersion

(7.37). Therefore G=N is affine. Let i1 be such that Oi0 � Oi1 . The homomorphism
G!Gi0 factors through Gi1 . Thus, we have morphisms

Gi1
a
�!G=N

b
�!Gi0

with b ı a faithfully flat (3.47) and b a closed immersion. Correspondingly, we have
homomorphisms

O.Gi1/
a0

 �O.G=N/ b0

 �O.Gi0/
with a0 surjective a0 ı b0 faithfully flat (hence injective). Therefore O.Gi0/ ' O.G=N/.
Similarly, O.Gi1/'O.G=N/, and so O.Gi0/DO.Gi1/ as a subalgebra of O.G/. As this
is true for all i1 with Oi0 � Oi1 we see that O.G/ D O.Gi0/;which is therefore finitely
generated.

(b) We proved this above.
(c) This follows from the definition of N . 2

Thus every algebraic group is an extension of an affine algebraic group by an anti-affine
algebraic group

1!Gant!G!Gaff
! 1;

in a unique way; in fact, it is a central extension (10.11).

PROPOSITION 10.34. Every anti-affine algebraic group is smooth and connected.
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PROOF. Let G be an anti-affine algebraic group over a field k. Then Gkal is anti-affine,
and so we may suppose that k is algebraically closed. The Gıred is an algebraic subgroup
of G (1.25). As G!G=Gıred is faithfully flat, the homomorphism O.G=Gıred/!O.G/ is
injective. Therefore O.G=Gıred/D k. As G=Gıred is finite, it is trivial, and so G DGıred. 2

COROLLARY 10.35. An algebraic group G is affine if Z.Gı/ is affine.

PROOF. LetN DKer.G!Gaff/. BecauseN is anti-affine, it is contained inGı, and hence
in Z.Gı/ (10.11). In particular, it is affine. The square

G�N G

G G=N

affine
faithfully flat

is cartesian (9.19), and so the morphism G! G=N is affine (A.90). As G=N ' Gaff is
affine, this implies that G is affine. 2

COROLLARY 10.36. Every algebraic group over a field of characteristic zero is smooth.

PROOF. As extensions of smooth algebraic groups are smooth (10.1), this follows from
(10.33, 10.34). 2

NOTES. The proof of 10.33 (resp. 10.34; 10.35) follows DG III, �3, 8.1, 8.2, p.357 (resp. DG, III,
�3, 8.3, p.358; DG, III, �3, 8.4, p.359).

i. Extensions of abelian varieties by affine algebraic groups
(survey)

After the Barsotti-Chevalley theorem, the study of algebraic groups comes down to the study
of (a) abelian varieties, (b) affine algebraic groups, and (c) the extensions of one by the other.
Topic (a) is beyond the scope of this book while topic (b) occupies the rest of it. Here we
discuss (c). For simplicity, we take k to be algebraically closed.

Let A and H be algebraic groups over k. An extension of A by H is an exact sequence

e H G A e
i p

(49)

of algebraic groups. Two extensions .G; i;p/ and .G0; i 0;p0/ of A by H are equivalent if
there exists an isomorphism f WG!G0 such that the following diagram commutes

e H G A e

e H G0 A e:

i p

f

i 0 p0

We let Ext.A;H/ denote the set of equivalence classes of extensions of A by H .
For an exact sequence (49), the sequence

e Z.H/ Z.G/ A e
Z.i/ f

(50)
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is exact, and the map .49/ 7! .50/ defines a bijection

Ext.A;H/! Ext.A;Z.H//

where Ext.A;Z.H// denotes the set of equivalence classes of extensions of A by Z.H/ in
the (abelian) category of commutative algebraic groups. Hence Ext.A;H/ has the structure
of a commutative group, and every extension of A by H splits if Z.H/D e. See Wu 1986.

It remains to compute Ext.A;Z/whereZ is a commutative affine algebraic group. Every
connected commutative group varietyG over k is a product of copies of Gm with a unipotent
group variety U ; when k has characteristic zero, U is vector group Va (product of copies of
Ga/ (see 17.19 below). There are the following results:

(a) Ext.A;Gm/'H 1.A;O�A/, which is canonically isomorphic to the group of divisor
classes on A algebraically equivalent to zero (equal to the group of k-points of the
dual abelian variety of A) (Weil, Barsotti; Serre 1959, VII.16).

(b) It remains to compute Ext.A;U / where U is unipotent. In characteristic 0, we have

Ext1.A;Va/'H 1.A;OA˝V /' V dim.A/

(Barsotti; Serre 1959, VII.18). In characteristic p, the computation is more compli-
cated, and involves Ext.N;Zı/, where N is the factor of Apm which, together with its
Cartier dual, is local, and pm is large enough to kill Z. However, when A is ordinary,
it is still true that Ext.A;U /' U.k/dimA. See Wu 1986.

Exercises

EXERCISE 10-1. Let G be an algebraic group (not necessarily connected). Show that
G=Z.G/ is affine if DG is affine.

We now concentrate on affine algebraic groups. By “algebraic group” we shall
mean “affine algebraic group” and by “group variety” we shall mean “affine
group variety”. Also, we shall write O.G/ for the coordinate ring of G.





CHAPTER 11
Tannaka duality; Jordan

decompositions

A character of a topological group is a continuous homomorphism from the group to the
circle group fz 2 C j z Nz D 1g. A locally compact commutative topological group G can be
recovered from its character group G_ because the canonical homomorphism G! G__

is an isomorphism of topological groups (Pontryagin duality). Moreover, the dual of a
compact commutative group is a discrete commutative group, and so, the study of compact
commutative topological groups is equivalent to that of discrete commutative groups.

Clearly, “commutative” is required in the above statements, because every character
is trivial on the derived group. However, Tannaka showed that it is possible to recover a
compact noncommutative group from the category of its unitary representations.

In this chapter, we prove the analogue of this for algebraic groups. Recall that all
algebraic groups are affine.

The tannakian perspective is that an algebraic group G and its category Rep.G/ of
finite-dimensional representations should be considered equal partners.

a. Recovering a group from its representations

Let k be a ring (for the moment) and let A be an k-algebra (not necessarily finitely generated)
equipped with k-homomorphisms �WA!A˝A and �WA! k for which the diagrams (20),
p.20, commute. Then the functor

GWR Homk-algebra.A;R/

is an affine monoid over k. There is a regular representation rA of G on A in which an
element g of G.R/ acts on f 2 A according to the rule:

.rA.g/fR/.x/D fR.x �g/ all x 2G.R/: (51)

LEMMA 11.1. With the above notations, let u be a k-algebra endomorphism of A. If the
diagram

A A˝A

A A˝A

�

u 1˝u

�

(52)

commutes, then there exists a g 2G.k/ such that uD rA.g/.

163
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PROOF. Let �WG!G be the morphism corresponding to u, so that

.uf /R.x/D fR.�Rx/ all f 2 A, x 2G.R/: (53)

We shall prove that the lemma holds with g D �.e/.
From (52), we obtain a commutative diagram

G G�G

G G�G:

�

m

1��

m

Thus
�R.x �y/D x ��R.y/; all x;y 2G.R/:

On setting y D e in the last equation, we find that �R.x/ D x � gR with gR D �R.e/.
Therefore, for f 2 A and x 2G.R/,

.uf /R .x/
.53/
D fR.x �gR/

.51)
D .rA.g/f /R.x/;

and so uD rA.g/. 2

Let G be an algebraic monoid over a field k. Let R be a k-algebra, and let g 2 G.R/.
For every finite-dimensional representation .V;rV / of G over k, we have an R-linear map
�V

def
D rV .g/WVR! VR. These maps satisfy the following conditions:

(a) for all representations V;W ,

�V˝W D �V ˝�W ;

(b) �11 is the identity map (here 11D k with the trivial action)

(c) for all G-equivariant maps uWV !W ,

�W ıuR D uR ı�V ,

THEOREM 11.2. Let G be an algebraic monoid over k, and let R be a k-algebra. Suppose
that, for every finite-dimensional representation .V;rV / of G, we are given an R-linear map
�V WVR! VR. If the family .�V / satisfies the conditions (a,b,c), then there exists a unique
g 2G.R/ such that �V D rV .g/ for all V .

PROOF. Let V be a (possibly infinite dimensional) representation of G. Recall (4.6) that V
is a union of its finite-dimensional subrepresentations, V D

S
i2I Vi . It follows from (c) that

�Vi jVi \Vj D �Vi\Vj D �Vj jVi \Vj

for all i;j 2 I . Therefore, there is a unique R-linear endomorphism �V of VR such that
�V jW D �W for every finite-dimensional subrepresentation W � V . The conditions (a,b,c)
will continue to hold for the enlarged family.

In particular, we have an R-linear map �AWA! A, A D O.G/R, corresponding to
the regular representation rA of G on A. The map mWA˝A! A is equivariant1 for

1Here are the details. For x 2G.R/,

.r.g/ım/.f ˝f 0/.x/D .r.g/.ff 0//.x/D .ff 0/.xg/D f .xg/ �f 0.xg/

.mı r.g/˝ r.g//.f ˝f 0/.x/D ..r.g/f / � .r.g/f 0/.x/D f .xg/ �f 0.xg/:
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the representations rA˝ rA and rA, which means that �A is a k-algebra homomorphism.
Similarly, the map �WA! A˝A is equivariant for the representations rA on A and 1˝ rA
on A˝A, and so the diagram in (11.1) commutes with u replaced by �A. Now Lemma 11.1,
applied to the affine monoid GR over R, shows that there exists a g 2G.R/ such �A D r.g/.

Let .V;rV / be a finitely generated representation of G, and let V0 denote the underlying
k-module. There is an injective homomorphism of representations

�WV ! V0˝O.G/

(4.9). By definition � and r.g/ agree on O.G/, and they agree on V0 by condition (b).
Therefore they agree on V0˝O.G/ by (a), and so they agree on V by (c).

This proves the existence of g. It is uniquely determined by �V for any faithful represen-
tation .V;rV /. 2

COMPLEMENTS

Let V be a finitely generated module over a k-algebra R. By a representation of G on
V , we mean a homomorphism r WGR ! GLV of group-valued functors. To give such a
homomorphism is the same as giving an R-linear map �WV ! V ˝O.G/ satisfying the
conditions (28), p.69. We let RepR.G/ denote the category of representations of G on
finitely generated R-modules. We omit the subscript when RD k.

11.3. Each g 2G.R/ defines a family as in the theorem. Thus, from the category Rep.G/,
its tensor structure, and the forgetful functor, we can recover the functor R G.R/, and
hence the group G itself. For this reason, Theorem 11.2 is often called the reconstruction
theorem.

11.4. Let .�V / be a family as in Theorem 11.2. If G is an algebraic group, then each �V
is an isomorphism and �V _ D .�V /_, because this true of the maps rV .g/.

11.5. For a k-algebra R, let !R be the forgetful functor RepR.G/! ModR, and let
End˝.!R/ denote the set of natural transformations �W!R! !R commuting with tensor
products — the last condition means that � satisfies conditions (a) and (b) of the theorem.
The theorem says that the canonical map G.R/! End˝.!R/ is an isomorphism. Now let
End˝.!/ denote the functor R End˝.!R/. Then G ' End˝.!/. Because of (11.4), this
can be written G ' Aut˝.!/.

11.6. Suppose that k is an algebraically closed field, and that G is smooth, so that O.G/
can be identified with a ring of k-valued functions on G.k/. For each representation .V;rV /
of G (over k/ and u 2 V _, we have a function �u on G.k/,

�u.g/D hu;rV .g/i 2 k:

Then �u 2O.G/, and every element of O.G/ arises in this way (cf. Springer 1998, p.39,
and Exercise 3-1). In this way, we can recover O.G/ directly as the ring of “representative
functions” on G.

11.7. In (11.2), instead of all representations of G, it suffices to choose a faithful represen-
tation V and take all quotients of subrepresentations of a direct sum of representations of the
form˝n.V ˚V _/ or V ˝n˝det�s (apply 4.12). Here det�1 is the dual of the representation
of G on

VdimV
V . Then (11.2) can be interpreted as saying that G is the subgroup of GLV

fixing all tensors in subquotients of representations V ˝n˝det�s fixed by G.
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11.8. In general, we can’t omit “quotients of” from (11.7).2 However, we can omit it if V is
semisimple or if some nonzero multiple of every character H !Gm extends to a character
G!Gm of G.

b. Application to Jordan decompositions

THE JORDAN DECOMPOSITION OF A LINEAR MAP

In this subsection, we review some linear algebra.
Recall that an endomorphism ˛ of a vector space V is diagonalizable if V has a basis of

eigenvectors for ˛, and that it is semisimple if it becomes diagonalizable after an extension
of the base field k. For example, the linear map x 7! AxWkn! kn defined by an n�n
matrix A is diagonalizable if and only if there exists an invertible matrix P with entries in k
such that PAP�1 is diagonal, and it is semisimple if and only if there exists such a matrix
P with entries in some field containing k.

From linear algebra, we know that ˛ is semisimple if and only if its minimum polynomial
m˛.T / has distinct roots; in other words, if and only if the subring kŒ˛�' kŒT �=.m˛.T //
of Endk.V / generated by ˛ is étale.

Recall that an endomorphism ˛ of a vector space V is nilpotent if ˛m D 0 for some
m > 0, and that it is unipotent if idV �˛ is nilpotent. Clearly, if ˛ is nilpotent, then its
minimum polynomial divides Tm for somem, and so the eigenvalues3 of ˛ are all zero, even
in kal. From linear algebra, we know that the converse is also true, and so ˛ is unipotent if
and only if its eigenvalues in kal all equal 1.

Let ˛ be an endomorphism of a finite-dimensional vector space V over k. We say that ˛
has all of its eigenvalues in k if the characteristic polynomial P˛.T / of ˛ splits in kŒX�:

P˛.T /D .T �a1/
n1 � � �.T �ar/

nr ; ai 2 k:

For each eigenvalue a of ˛ in k, the primary space4 is defined to be:

V a D fv 2 V j .˛�a/N v D 0; N sufficiently divisible5
g:

PROPOSITION 11.9. If ˛ has all of its eigenvalues in k, then V is a direct sum of its primary
spaces:

V D
M

i
V ai .

PROOF. Let P.T / be a polynomial in kŒT � such that P.˛/D 0, and suppose that P.T /D
Q.T /R.T / with Q and R relatively prime. Then there exist polynomials a.T / and b.T /
such that

a.T /Q.T /Cb.T /R.T /D 1:

2Consider for example, the subgroup B D
˚�
� �
0 �

�	
of GL2 acting on V D k�k and suppose that a vector

v 2 .V ˚V _/˝n is fixed by B . Then g 7! gv is a regular map GL2 =B! .V ˚V _/˝n of algebraic varieties.
But GL2 =B ' P1 and .V ˚V _/˝n is affine, and so the map is trivial. Therefore, v is fixed by GL2, and so
B 0 D B .

3We define the eigenvalues of an endomorphism of a vector space to be the family of roots of its characteristic
polynomial in some algebraically closed field.

4This is Bourbaki’s terminology (LIE VII, �1); “generalized eigenspace” is also used.
4By this I mean that there exists an N0 such that the statement holds for all positive integers divisible by

N0, i.e., that N is sufficiently large for the partial ordering

M �N ” M divides N:
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For any v 2 V ,
a.˛/Q.˛/vCb.˛/R.˛/v D v, (54)

which implies immediately that Ker.Q.˛//\Ker.R.˛//D 0. Moreover, because

Q.˛/R.˛/D 0DR.˛/Q.˛/;

(54) expresses v as the sum of an element of Ker.R.˛// and an element of Ker.Q.˛//. Thus,
V is the direct sum of Ker.Q.˛// and Ker.P.˛//.

On applying this remark repeatedly to the characteristic polynomial

.T �a1/
n1 � � �.T �ar/

nr

of ˛ and its factors, we find that

V D
M

i
Ker.˛�ai /ni ;

as claimed. 2

COROLLARY 11.10. An endomorphism ˛ of a finite-dimensional k-vector space V has all
of its eigenvalues in k if and only if, for some choice of basis for V , the matrix of ˛ is upper
triagonal.

PROOF. The sufficiency is obvious, and the necessity follows from proposition. 2

An endomorphism satisfying the equivalent conditions of the corollary is said to be
trigonalizable.

THEOREM 11.11. Let V be a finite-dimensional vector space over a perfect field, and let ˛
be an automorphism of V . There exist unique automorphisms ˛s and ˛u of V such that

(a) ˛ D ˛s ı˛u D ˛u ı˛s , and

(b) ˛s is semisimple and ˛u is unipotent.

Moreover, each of ˛s and ˛u is a polynomial in ˛.

For example,0@1 0 0

0 2 4

0 0 2

1AD
0@1 0 0

0 2 0

0 0 2

1A0@1 0 0

0 1 2

0 0 1

1A :D
0@1 0 0

0 1 2

0 0 1

1A0@1 0 0

0 2 0

0 0 2

1A
PROOF. Assume first that ˛ has all of its eigenvalues in k, so that V is a direct sum of the
primary spaces of ˛, say, V D

L
1�i�mV

ai where the ai are the distinct roots of P˛ . Define
˛s to be the automorphism of V that acts as ai on V ai for each i . Then ˛s is a semisimple
automorphism of V , and ˛u

def
D ˛ ı˛�1s commutes with ˛s (because it does on each V ai ) and

is unipotent (because its eigenvalues are 1). Thus ˛s and ˛u satisfy (a) and (b).
Let ni denote the multiplicity of ai . Because the polynomials .T �ai /ni are relatively

prime, the Chinese remainder theorem shows that there exists a Q.T / 2 kŒT � such that

Q.T /� ai mod .T �ai /ni ; i D 1; : : : ;m:

Then Q.˛/ acts as ai on V ai for each i , and so ˛s DQ.˛/, which is a polynomial in ˛.
Similarly, ˛�1s 2 kŒ˛�, and so ˛u

def
D ˛ ı˛�1s 2 kŒ˛�.
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It remains to prove the uniqueness of ˛s and ˛u. Let ˛ D ˇs ıˇu be a second decompo-
sition satisfying (a) and (b). Then ˇs and ˇu commute with ˛, and therefore also with ˛s
and ˛u (because they are polynomials in ˛). It follows that ˇ�1s ˛s is semisimple and that
˛uˇ

�1
u is unipotent. Since they are equal, both must equal 1. This completes the proof in

this case.
In the general case, because k is perfect, there exists a finite Galois extension k0 of k

such that ˛ has all of its eigenvalues in k0. Choose a basis for V , and use it to attach matrices
to endomorphisms of V and k0˝k V . Let A be the matrix of ˛. The first part of the proof
allows us to write A D AsAu D AuAs with As a semisimple matrix and Au a unipotent
matrix with entries in k0; moreover, this decomposition is unique.

Let � 2 Gal.k0=k/, and for a matrix B D .bij /, define �B to be .�bij /. Because A has
entries in k, �AD A. Now

AD .�As/.�Au/

is again a decomposition of A into commuting semisimple and unipotent matrices. By
the uniqueness of the decomposition, �As D As and �Au D Au. Since this is true for all
� 2 Gal.k0=k/, the matrices As and Au have entries in k. Now ˛ D ˛s ı˛u, where ˛s and
˛u are the endomorphisms with matrices As and Au, is a decomposition of ˛ satisfying (a)
and (b).

Finally, the first part of the proof shows that there exist ci 2 k0 such that

As D c0C c1AC�� �C cn�1A
n�1 .nD dimV /:

The ci are unique, and so, on applying � , we find that they lie in k. Therefore,

˛s D c0C c1˛C�� �C cn�1˛
n�1
2 kŒ˛�:

Similarly, ˛u 2 kŒ˛�. 2

The automorphisms ˛s and ˛u are called the semisimple and unipotent parts of ˛, and

˛ D ˛s ı˛u D ˛u ı˛s

is the (multiplicative) Jordan decomposition of ˛.

PROPOSITION 11.12. Let V and W be vector spaces over a perfect field k. Let ˛ and ˇ be
automorphisms of V andW respectively, and let 'WV !W be a linear map. If ' ı˛D ˇ ı',
then ' ı˛s D ˇs ı' and ' ı˛u D ˇu ı'.

PROOF. It suffices to prove this after an extension of scalars, and so we may suppose
that both ˛ and ˇ have all of their eigenvalues in k. Recall that ˛s acts on each primary
space V a, a 2 k, as multiplication by a. As ' obviously maps V a into W a, it follows that
' ı˛s D ˇs ı'. Similarly, ' ı˛�1s D ˇ

�1
s ı', and so ' ı˛u D ˇu ı'. 2

PROPOSITION 11.13. Let V be a vector space over a perfect field. Every subspace W
of V stable under ˛ is stable under ˛s and ˛u, and ˛jW D ˛sjW ı ˛ujW is the Jordan
decomposition of ˛jW .

PROOF. The subspace W is stable under ˛s and ˛u because each is a polynomial in ˛.
Clearly the decomposition ˛jW D ˛sjW ı˛ujW has the properties (a) and (b) of (11.11),
and so is the Jordan decomposition ˛jW . 2
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PROPOSITION 11.14. For any automorphisms ˛ and ˇ of vector spaces V and W over a
perfect field,

.˛˝ˇ/s D ˛s˝ˇs

.˛˝ˇ/u D ˛u˝ˇu:

PROOF. It suffices to prove this after an extension of scalars, and so we may suppose that
both ˛ and ˇ have all of their eigenvalues in k. For any a;b 2 k, V a˝W b � .V ˝W /ab ,
and so ˛s˝ˇs and .˛˝ˇ/s both act on Va˝Wb as multiplication by ab. This shows that
.˛˝ˇ/s D ˛s˝ˇs . Similarly, .˛�1s ˝ˇ

�1
s /D .˛˝ˇ/�1s , and so .˛˝ˇ/u D ˛u˝ˇu. 2

�EXAMPLE 11.15. Let k be a nonperfect field of characteristic 2, so that there exists an
a 2 kXk2, and letM D

�
0 1
a 0

�
. In the algebraic closure of k,M has the Jordan decomposition

M D

�p
a 0

0
p
a

��
0 1=

p
a

p
a 0

�
(the matrix at right has eigenvalues 1;�1, and �1D 1). These matrices do not have coeffi-
cients in k, and so, if M had a Jordan decomposition in M2.k/, it would have two distinct
Jordan decompositions in M2.k

al/, contradicting the uniqueness of the decomposition.

INFINITE-DIMENSIONAL VECTOR SPACES

Let V be a vector space, possibly infinite dimensional, over a perfect field k. An endomor-
phism ˛ of V is locally finite if V is a union of finite-dimensional subspaces stable under
˛. A locally finite endomorphism is semisimple (resp. locally nilpotent, locally unipotent)
if its restriction to every stable finite-dimensional subspace is semisimple (resp. nilpotent,
unipotent).

Let ˛ be a locally finite automorphism of V . By assumption, every v 2 V is contained
in a finite-dimensional subspace W stable under ˛, and we define ˛s.v/ D .˛jW /s.v/.
According to (11.11), this is independent of the choice of W , and so in this way we get a
semisimple automorphism of V . Similarly, we can define ˛u. Thus:

THEOREM 11.16. Let ˛ be a locally finite automorphism of a vector space V . There exist
unique automorphisms ˛s and ˛u such that

(a) ˛ D ˛s ı˛u D ˛u ı˛s , and

(b) ˛s is semisimple and ˛u is locally unipotent.

For any finite-dimensional subspace W of V stable under ˛,

˛jW D .˛sjW /ı .˛ujW /D .˛ujW /ı .˛sjW /

is the Jordan decomposition of ˛jW .

JORDAN DECOMPOSITIONS IN ALGEBRAIC GROUPS

Finally, we are able to prove the following important theorem.

THEOREM 11.17. Let G be an algebraic group over a perfect field k. For every g 2G.k/,
there exist unique elements gs;gu 2 G.k) such that, for all representations .V;rV / of G,
rV .gs/D rV .g/s and rV .gu/D rV .g/u. Furthermore,

g D gsgu D gugs: (55)
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PROOF. In view of (11.12) and (11.14), the first assertion follows immediately from (11.2)
applied to the families .rV .g/s/V and .rV .g/u/V . Now choose a faithful representation rV .
Because

rV .g/D

�
rV .g/srV .g/u D rV .gs/rV .gu/D rV .gsgu/

rV .g/urV .g/s D rV .gu/rV .gs/D rV .gugs/

(55) follows. 2

The elements gs and gu are called the semisimple and unipotent parts of g, and g D
gsgu is the Jordan decomposition (or Jordan-Chevalley decomposition) of g.

11.18. Let G be an algebraic group over a perfect field k. An element g of G.k/ is said
to be semisimple (resp. unipotent) if g D gs (resp. g D gu). Thus, g is semisimple (resp.
unipotent) if r.g/ is semisimple (resp. unipotent) for one faithful representation .V;r/ of G,
in which case r.g/ is semisimple (resp. unipotent) for all representations r of G.

11.19. To check that a decomposition g D gsgu is the Jordan decomposition, it suffices
to check that r.g/D r.gs/r.gu/ is the Jordan decomposition of r.g/ for a single faithful
representation of G.

11.20. Homomorphisms of algebraic groups preserve Jordan decompositions. To see this,
let uWG!G0 be a homomorphism and let g D gsgu be a Jordan decomposition in G.k/. If
'WG0! GLV is a representation of G0, then ' ıu is a representation of G, and so

.' ıu/.g/D ..' ıu/.gs// � ..' ıu/.gu//

is the Jordan decomposition in GL.V /. When we choose ' to be faithful, this implies that
u.g/D u.gs/ �u.gu/ is the Jordan decomposition of u.g/.

11.21. Let G be a group variety over an algebraically closed field. In general, the set
G.k/s of semisimple elements in G.k/ will not be closed for the Zariski topology. However,
the set G.k/u of unipotent elements is closed. To see this, embed G in GLn for some n.
A matrix A is unipotent if and only if its characteristic polynomial is .T � 1/n. But the
coefficients of the characteristic polynomial of A are polynomials in the entries of A, and so
this is a polynomial condition on A.

ASIDE 11.22. We have defined Jordan decompositions for algebraic groups G which are not nec-
essarily smooth. However, as we require the base field to be perfect, Gred is a smooth algebraic
subgroup of G such that Gred.k/DG.k/. Therefore everything comes down to smooth groups.

ASIDE 11.23. Our proof of the existence of Jordan decompositions (Theorem 11.17) is the standard
one, except that we have made Lemma 11.1 explicit. As Borel has noted (1991, p. 88; 2001, VIII 4.2,
p. 169), the result essentially goes back to Kolchin 1948b, 4.7.

ASIDE 11.24. “. . . there is a largely separate line of work on linear algebraic groups, which owes
even more to Chevalley and certainly merits the label ‘Jordan-Chevalley decomposition’. Actually, a
couple of papers by Kolchin in 1948 started in this direction, but Chevalley’s 1951 book and his famous
1956-58 classification seminar made the results basic to all further work. The striking fact is that the
semisimple and unipotent parts in the multiplicative Jordan decomposition are intrinsically defined in
any connected linear algebraic group (over any algebraically closed field, though Chevalley’s early
work started out over arbitrary fields). Adaptations to fields of definition then follow.” (Humphreys
mo152239.)

http://mathoverflow.net/questions/152239
http://mathoverflow.net/questions/152239
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c. Characterizations of categories of representations

Pontryagin duality identifies the topological groups that arise as the dual of a locally compact
commutative group — they are exactly the locally compact commutative groups.

Similarly, Tannakian theory identifies the tensor categories that arise as the category of
representations of an algebraic group. We briefly explain the answer.

In this section, k-algebras are not required to be finitely generated, and we ignore set-
theoretic questions. An abelian category together with a k-vector space structure on every
Hom group said to be k-linear if the composition maps are k-bilinear.

By an affine group over k we mean a functor G from k-algebras to groups whose
underlying functor to sets is representable by a k-algebra O.G/:

G.R/D Homk-algebra.O.G/;R/.

When O.G/ is finitely generated, G is an affine algebraic group.
Let !WA! B be a faithful functor of categories. We say that a morphism !X ! !Y

lives in A if it lies in Hom.X;Y /� Hom.!X;!Y /.
For k-vector spaces U;V;W , there are canonical isomorphisms

�U;V;W WU ˝ .V ˝W /! .U ˝V /˝W; u˝ .v˝w/ 7! .u˝v/˝w

 U;V WU ˝V ! V ˝U; u˝v 7! v˝u.
(56)

THEOREM 11.25. Let C be a k-linear abelian category and let˝WC�C!C be a k-bilinear
functor. The pair .C;˝/ is the category of representations of an affine group G over k if and
only if there exists a k-linear exact faithful functor !WC! Vecksuch that

(a) !.X˝Y /D !.X/˝!.Y / for all X;Y ;

(b) the isomorphisms �!X;!Y;!Z and  !X;!Y live in C for all X;Y;Z;

(c) there exists an (identity) object 11 in C such that !.11/D k and the canonical isomor-
phisms

!.11/˝!.X/' !.X/' !.X/˝!.11/

live in C;

(d) for every object X such that !.X/ has dimension 1, there exists an object X�1 in C
such that X˝X�1 � 11.

PROOF. If .C;˝/D .Rep.G/;˝/ for some affine group schemeG over k, then the forgetful
functor has the required properties, which proves the necessity of the condition. We defer
the proof of the sufficiency to the final section of this chapter (Section e). 2

NOTES

11.26. The group scheme G depends on the choice of !. Once ! has been chosen, G has
the same description as in (11.2), namely, for a k-algebra R, the group G.R/ consists of
families .�X /X2ob.C/, �X 2 End.X/˝R, such that

(a) for all X;Y in C,
�X˝Y D �X ˝�Y ;

(b) �11 is the identity map;

(c) for all morphisms uWX ! Y ,

�Y ıuR D uR ı�X .
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In other words, G D Aut˝.!/. Therefore (11.2) shows that, when we start with .C;˝/D
.Rep.G/;˝/, we get back the group G.

11.27. Let C be a k-linear abelian category equipped with a k-bilinear functor˝WC�C!
C. The dual of an object X of C is an object X_ equipped with an “evaluation map”
evWX_˝X ! 11 having the property that the map

˛ 7! evı.˛˝ idX / WHom.T;X_/! Hom.T ˝X;11/

is an isomorphism for all objects T of C. If there exists a functor ! as in (11.25), then duals
always exist, and the affine group G attached to ! is algebraic if and only if there exists
an X such that every object of C is isomorphic to a subquotient of a direct sum of objectsNm

.X˚X_/. The necessity of this condition follows from (4.12).

EXAMPLES

11.28. Let M be a commutative group. An M -gradation on a finite-dimensional k-vector
space V is a family .V m/m2M of subspaces of V such that V D

L
m2M V m. If V is graded

by a family of subspaces .V m/m and W is graded by .W m/m, then V ˝W is graded by the
family of subspaces

.V ˝W /m D
M

m1Cm2Dm
V m1˝W m2 :

For the category of finite-dimensionalM -graded vector spaces, the forgetful functor satisfies
the conditions of (11.25), and so the category is the category of representations of an affine
group. When M is finitely generated, this is the algebraic group D.M/ defined in (14.3)
below.

11.29. LetK be a topological group. The category RepR.K/ of continuous representations
of K on finite-dimensional real vector spaces has a natural tensor product. The forgetful
functor satisfies the conditions of (11.25), and so there is an affine algebraic group QK over
R, called the real algebraic envelope of K, for which there exists a natural equivalence

RepR.K/! RepR. QK/:

This equivalence is induced by a homomorphism K ! QK.R/, which is an isomorphism
when K is compact (Serre 1993, 5.2).

11.30. Let G be a connected complex Lie group, and let C be the category of complex-
analytic representations of G on finite-dimensional complex vector spaces. With the obvious
functors˝WC�C!C and !WC! VecC, this satisfies the hypotheses of Theorem 11.25, and
so it is the category of representations of an affine group A.G/. Almost by definition, there
exists a homomorphism P WG! A.G/.C/ with the property that, for each complex-analytic
representation .V;�/ of G, there exists a unique representation .V; O�/ of A.G/ such that
O�D � ıP .

The group A.G/ is sometimes called the Hochschild-Mostow group (for a brief exposi-
tion of this work of Hochschild and Mostow (1957–69), see Magid, Andy, Notices AMS,
Sept. 2011, p.1089). Hochschild and Mostow also studied A.G/ for G a finitely generated
(abstract) group.
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d. Tannakian categories

In this subsubsection, we review a little of the abstract theory of Tannakian categories. See
Saavedra Rivano 1972 or Deligne and Milne 1982 for the details.

A k-linear tensor category is a system .C;˝;�; / in which C is a k-linear category,
˝WC�C! C is a k-bilinear functor, and � and  are functorial isomorphisms

�X;Y;Z WX˝ .Y ˝Z/! .X˝Y /˝Z

 X;Y WX˝Y ! Y ˝X

satisfying certain natural conditions which ensure that the tensor product of every (unordered)
finite family of objects of C is well-defined up to a well-defined isomorphism. In particular,
there is an identity object 11 (tensor product of the empty family) such that X 11˝X WC!
C is an equivalence of categories.

For example, the category of representations of an affine monoid G over k on finite-
dimensional k-vector spaces becomes a k-linear tensor category when equipped with the
usual tensor product and the isomorphisms (56).

A k-linear tensor category is rigid if every object has a dual (in the sense of 11.27). For
example, category if rigid if G is an affine group. A rigid abelian k-linear tensor category
(C;˝/ is a Tannakian category over k if End.11/D k and there exists a k-algebra R and an
exact faithful k-linear functor !W.C;˝/! .VecR;˝/ preserving the tensor structure. Such
a functor is said to be a R-valued fibre functor for C.

A Tannakian category over k is said to be neutral if there exists a k-valued fibre functor.
The first main theorem in the theory of neutral Tannakian categories is the following (Deligne
and Milne 1982 Theorem 2.11).

THEOREM 11.31. Let .C;˝/ be a neutral Tannakian category over k, and let ! be a k-
valued fibre functor. Then,

(a) the functor Aut˝.!/ (see 11.5) of k-algebras is represented by an affine group scheme
G;

(b) the functor C! Rep.G/ defined by ! is an equivalence of tensor categories.

(c) For an affine group scheme G over k, the obvious morphism of functors G !
Aut˝.!forget/ is an isomorphism.

PROOF. The functor ! satisfies the conditions of Theorem 11.25. For (a), (b), and (c), this is
obvious; for (d) one has to note that if !.X/ has dimension 1, then the map evWX_˝X! 11

is an isomorphism. 2

The theorem gives a dictionary between the neutralized Tannakian categories over k and
the affine group schemes over k. To complete the theory in the neutral case, it remains to
describe the fibre functors for C with values in a k-algebra R.

THEOREM 11.32. Let C,˝, !, G be as in Theorem 11.31, and let R be a k-algebra.

(a) For every R-valued fibre functor � on C, the functor

R Isom˝.!˝R;�/

is represented by an affine scheme Isom˝.!R;�/ over R which, when endowed with
the obvious right action of GR, becomes a GR-torsor for the flat (fpqc) topology.
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(b) The functor � Isom˝.!R;�/ establishes an equivalence between the category of
R-valued fibre functors on C and the category of right GR-torsors on Spec.R/ for the
flat (fpqc) topology.

PROOF. The proof is an extension of that of Theorems 11.25 and 11.31 — see Deligne and
Milne 1982, Theorem 3.2. 2

e. Proof of Theorem 11.25

CATEGORIES OF COMODULES OVER A COALGEBRA

A coalgebra6 over k is a k-vector space C equipped with a pair of k-linear maps

�WC ! C ˝C; �WC ! k

such that the diagrams (20), p.56, commute. The linear dual C_ of C becomes an associative
algebra over k with the multiplication

C_˝C_
can.
,! .C ˝C/_

�_

�! C_; (57)

and the structure map

k ' k_
�_

�! C_. (58)

We say that C is cocommutative if C_ is commutative (resp. étale).
Let .C;�;�/ be a coalgebra over k. A C -comodule is a k-linear map �WV ! V ˝C

satisfying the conditions (28), p.69. In terms of a basis .ei /i2I for V , these conditions
become

�.cij / D
P
k2I cik˝ ckj

�.cij / D ıij

�
all i;j 2 I: (59)

These equations show that the k-subspace spanned by the cij is a subcoalgebra of C , which
we denote CV . Clearly, CV is the smallest subspace of C such that �.V /� V ˝CV , and so
it is independent of the choice of the basis. When V is finite dimensional over k, so also is
CV . If .V;�/ is a sub-comodule of the C -comodule .C;�/, then V � CV .

An additive category C is said to be k-linear if the Hom sets are k-vector spaces and
composition is k-bilinear. Functors of k-linear categories are required to be k-linear, i.e., the
maps Hom.a;b/! Hom.Fa;F b/ defined by F are required to be k-linear.

For example, if C is k-coalgebra, then Comod.C / is a k-linear category. In fact,
Comod.C / is a k-linear abelian category, and the forgetful functor !WComod.C /! Veck
is exact, faithful, and k-linear. The next theorem provides a converse to this statement.

THEOREM 11.33. Let C be an essentially small7 k-linear abelian category, and let !WC!
Veck be an exact faithful k-linear functor. Then there exists a coalgebra C such that C is
equivalent to the category of C -comodules of finite dimension.

6Sometimes this is called a co-associative coalgebra over k with co-identity.
7This hypothesis is essential. Let S be a proper class, and let C be the category of finite-dimensional vector

spaces over k equipped with an S -gradation. The coalgebra C has an idempotent for each element of S , and so
its underlying “set” is a proper class.
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The proof will occupy the rest of this subsection.
Because ! is faithful, !.idX /D !.0/ if and only if idX D 0, and so !.X/ is the zero

object if and only ifX is the zero object. It follows that, if !.u/ is a monomorphism (resp. an
epimorphism, resp. an isomorphism), then so also is u. For objects X , Y of C, Hom.X;Y /
is a subspace of Hom.!X;!Y /, and hence has finite dimension over k.

For monomorphisms X
x
�! Y and X 0

x0

�! Y with the same target, we write x � x0 if
there exists a morphism X !X 0 (necessarily unique) giving a commutative triangle. The
lattice of subobjects of Y is obtained from the collection of monomorphisms by identifying
two monomorphisms x and x0 if x � x0 and x0 � x. The functor ! maps the lattice of
subobjects of Y injectively8 to the lattice of subspaces of !Y . Hence X has finite length.

Similarly ! maps the lattice of quotient objects of Y injectively to the lattice of quotient
spaces of !Y .

For X in C, we let hXi denote the full subcategory of C whose objects are the quotients
of subobjects of direct sums of copies of X . For example, if C is the category of finite-
dimensional comodules over a coalgebra C , then hXi is the category of finite-dimensional
comodules over CX (see above).

LetX be an object of C, and let S be a subset of !.X/. The intersection of the subobjects
Y of X such that !.Y / � S is the smallest subobject with this property — we call it the
subobject of X generated by S .

An object Y is monogenic if it is generated by a single element, i.e., there exists a
y 2 !.Y / such that

Y 0 � Y , y 2 !.Y 0/ H) Y 0 D Y:

PROOF OF (11.33) IN THE CASE THAT C IS GENERATED BY A SINGLE OBJECT

In the next three lemmas, we assume that CD hXi for some X .

LEMMA 11.34. For every monogenic object Y of C,

dimk!.Y /� .dimk!.X//
2 :

PROOF. By hypothesis, there are maps Y
onto
 �� Y1 ,!Xm. Let y1 be an element of !.Y1/

whose image y in !.Y / generates Y , and let Z be the subobject of Y1 generated by y1. The
image of Z in Y contains y and so equals Y . Hence it suffices to prove the lemma for Z,
i.e., we may suppose that Y �Xm for some m. We shall deduce that Y ,!Xm

0

for some
m0 � dimk!.X/, from which the lemma follows.

Suppose that m> dimk!.X/. The generator y of Y lies in !.Y /� !.Xm/D !.X/m.
Let y D .y1; : : : ;ym/ in !.X/m. Since m > dimk!.X/, there exist ai 2 k, not all zero,
such that

P
aiyi D 0. The ai define a surjective morphism Xm ! X whose kernel N

is isomorphic to Xm�1.9 As y 2 !.N/, we have Y � N , and so Y embeds into Xm�1.
Continue in this fashion until Y �Xm

0

with m0 � dimk!.X/. 2

8If !.X/D !.X 0/, then the kernel of �x
x0
�
WX �X 0! Y

projects isomorphically onto each of X and X 0 (because it does after ! has been applied).
9Extend .a1; : : : ;am/ to an invertible matrix

�
a1; : : : ;am

A

�
; then AWXm!Xm�1 defines an isomorphism

of N onto Xm�1, because !.A/ is an isomorphism !.N/! !.X/m�1.
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As dimk!.Y / can take only finitely many values when Y is monogenic, there exists a
monogenic P for which dimk!.P / has its largest possible value. Let p 2 !.P / generate
P .

LEMMA 11.35. (a) The pair .P;p/ represents the functor !.

(b) The object P is a projective generator for C, i.e., the functor Hom.P;�/ is exact and
faithful.

PROOF. (a) Let X be an object of C, and let x 2 !.X/; we have to prove that there exists a
unique morphism f WP !X such that !.f / sends p to x. The uniqueness follows from the
fact p generates P (the equalizer E of two f is a subobject of P such that !.E/ contains p).
To prove the existence, let Q be the smallest subobject of P �X such that !.Q/ contains
.p;x/. The morphism Q! P defined by the projection map is surjective because P is
generated by p. Therefore,

dimk!.Q/� dimk!.P /;

but because dimk.!.P // is maximal, equality must hold, and so Q! P is an isomorphism.
The composite of its inverse with the second projection Q! X is a morphism P ! X

sending p to x.
(b) The object P is projective because ! is exact, and it is a generator because ! is

faithful. 2

Let A D End.P / — it is a k-algebra of finite dimension as a k-vector space (not
necessarily commutative) — and let hP be the functor X Hom.P;X/.

LEMMA 11.36. The functor hP is an equivalence from C to the category of rightA-modules
of finite dimension over k. Its composite with the forgetful functor is canonically isomorphic
to !.

PROOF. Because P is a projective generator, hP is exact and faithful. It remains to prove
that it is essentially surjective and full.

Let M be a right A-module of finite dimension over k, and choose a finite presentation
for M ,

Am
u
�! An!M ! 0

where u is anm�nmatrix with coefficients inA. This matrix defines a morphism Pm!P n

whose cokernel X has the property that hP .X/'M . Therefore hP is essentially surjective.
We have just shown that every object X in C occurs in an exact sequence

Pm
u
�! P n!X ! 0.

Let Y be a second object of C. Then

Hom.Pm;Y /' hP .Y /m ' Hom.Am;hP .Y //' Hom.hP .Pm/;hP .Y //;

and the composite of these maps is that defined by hP . From the diagram

0 Hom.X;Y / Hom.P n;Y / Hom.Pm;Y /

0 Hom.hP .X/;hP .Y // Hom.An;hP .Y // Hom.Am;hP .Y //

' '
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we see that Hom.X;Y /! Hom.hP .X/;hP .Y // is an isomorphism, and so hP is full.
For the second statement,

!.X/' Hom.P;X/' Hom.hP .P /;hP .X//D Hom.A;hP .X//' hP .X/: 2

As A is a finite k-algebra, its linear dual C D A_ is a k-coalgebra, and to give a right
A-module structure on a k-vector space is the same as giving a left C -comodule structure.
Together with (11.36), this completes the proof in the case that CD hXi. Note that

A
def
D End.P /' End.hP /' End.!/;

and so
C ' End.!/_,

i.e., the coalgebra C is the k-linear dual of the algebra End.!/.

EXAMPLE 11.37. Let A be a finite k-algebra (not necessarily commutative). Because A
is finite, its dual A_ is a coalgebra, and the left A-module structures on k-vector space
correspond to right A_-comodule structures. If we take C to be Mod.A/, ! to the forgetful
functor, and X to be A regarded as a left A-module, then

End.!jhXi/_ ' A_,

and the equivalence of categories C! Comod.A_/ in (11.38 below) simply sends an A-
module V to V with its canonical A_-comodule structure. This is explained in detail in
(11.42) and (11.43).

PROOF OF (11.33) IN THE GENERAL CASE

We now consider the general case. For an object X of C, let AX D End.!jhXi/, and
let CX D A_X . For each Y in hXi, AX acts on !.Y / on the left, and so !.Y / is a right
CX -comodule; moreover, Y  !.Y / is an equivalence of categories

hXi ! Comod.CX /:

Define a partial ordering on the set of isomorphism classes of objects in C by the rule:

ŒX�� ŒY � if hXi � hY i.

Note that ŒX�; ŒY �� ŒX˚Y �, so that we get a directed set, and that if ŒX�� ŒY �, then restric-
tion defines a homomorphism AY ! AX . When we pass to the limit over the isomorphism
classes, we obtain the following more precise form of the theorem.

THEOREM 11.38. Let C be an essentially small k-linear abelian category and let !WC!
Veck be a k-linear exact faithful functor. Let C.!/ be the k-coalgebra lim

�!ŒX�
End.!jhXi/_.

For each object Y in C, the vector space !.Y / has a natural structure of a right C.!/-
comodule, and the functor Y  !.Y / is an equivalence of categories C! Comod.C.!//.

ASIDE 11.39. It is essential in Theorems 11.25 and 11.38 that C be essentially small, because
otherwise the underlying “set” of C.!/ may be a proper class. For example, let S be a proper class
and let C be the category of finite dimensional vector spaces graded by S . In this case C.!/ contains
an idempotent for each element of S , and so cannot be a set.
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BIALGEBRAS

DEFINITION 11.40. A bi-algebra over k is a k-module with compatible structures of an
associative algebra with identity and of a co-associative coalgebra with co-identity. In detail,
a bi-algebra over k is a quintuple .A;m;e;�;�/ where

(a) .A;m;e/ is an associative algebra over k with identity e;

(b) .A;�;�/ is a co-associative coalgebra over k with co-identity �;

(c) �WA! A˝A is a homomorphism of algebras;

(d) �WA! k is a homomorphism of algebras.

A homomorphism of bi-algebras .A;m; : : :/! .A0;m0; : : :/ is a k-linear map A! A0 that
is both a homomorphism of k-algebras and a homomorphism of k-coalgebras.

The next proposition shows that the notion of a bi-algebra is self dual.

PROPOSITION 11.41. For a quintuple .A;m;e;�;�/ satisfying (a) and (b) of (1.7), the
following conditions are equivalent:

(a) � and � are algebra homomorphisms;

(b) m and e are coalgebra homomorphisms.

PROOF. Consider the diagrams:

A˝A A A˝A

A˝A˝A˝A A˝A˝A˝A

m

�˝�

�

A˝ t˝A

m˝m

A˝A A A˝A A

k˝k k k˝k k

� m

e˝e e �˝� �

' '

A

k k

e

id

�

The first and second diagrams commute if and only if� is an algebra homomorphism, and the
third and fourth diagrams commute if and only if � is an algebra homomorphism. On the other
hand, the first and third diagrams commute if and only if m is a coalgebra homomorphism,
and the second and fourth commute if and only if e is a coalgebra homomorphism. Therefore,
each of (a) and (b) is equivalent to the commutativity of all four diagrams. 2

CATEGORIES OF COMODULES OVER A BIALGEBRA

11.42. Let A be a finite k-algebra (not necessarily commutative), and let R be a commuta-
tive k-algebra. Consider the functors

Mod.A/ Vec.k/ Mod.R/:!

forget

�R

V R˝kV

ForM 2 ob.Mod.A//, letM0D!.M/. An element � of End.�R ı!/ is a family ofR-linear
maps

�M WR˝kM0!R˝kM0,
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functorial in M . An element of R˝k A defines such a family, and so we have a map

uWR˝k A! End.�R ı!/;

which we shall show to be an isomorphism by defining an inverse ˇ. Let ˇ.�/D �A.1˝1/.
Clearly ˇ ıuD id, and so we only have to show uıˇ D id. The A-module A˝kM0 is a
direct sum of copies of A, and the additivity of � implies that �A˝M0 D �A˝ idM0 . The
map a˝m 7! amWA˝kM0!M is A-linear, and hence

R˝k A˝kM0 R˝kM

R˝k A˝kM0 R˝kM

�A˝idM0 �M

commutes. Therefore

�M .1˝m/D �A.1/˝mD .uıˇ.�//M .1˝m/ for 1˝m 2R˝M;

i.e., uıˇ D id.

11.43. Let C be a k-coalgebra, and let ! be the forgetful functor on Comod.C /. When C
is finite over k, to give an object of Comod.C / is essentially the same as giving a finitely
generated module over the k-algebra AD C_, and so (11.42) shows that

C ' End.!/_:

In the general case,
C ' lim

�!
ŒX�

CX ' lim
�!
ŒX�

End.!C jhXi/_: (60)

Let uWC ! C 0 be a homomorphism of k-coalgebras. A coaction V ! V ˝C of C on
V defines a coaction V ! V ˝C 0 of C 0 on V by composition with idV ˝u. Thus, u defines
a functor F WComod.C /! Comod.C 0/ such that

!C 0 ıF D !C . (61)

LEMMA 11.44. Every functorF WComod.C /!Comod.C 0/ satisfying (61) arises, as above,
from a unique homomorphism of k-coalgebras C ! C 0.

PROOF. The functor F defines a homomorphism

lim
�!
ŒX�

End.!C 0 jhFXi/! lim
�!
ŒX�

End.!C jhXi/;

and lim
�!ŒX�

End.!C 0 jhFXi/ is a quotient of lim
�!ŒY �

End.!C 0 jhY i/. On passing to the duals,
we get a homomorphism

lim
�!

End.!C jhXi/_! lim
�!

End.!C 0 jhY i/_

and hence a homomorphism C ! C 0. This has the required property. 2
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Let C be a coalgebra over k. Then .C ˝C;�C ˝�C ; �C ˝ �C / is again a coalgebra
over k, and a coalgebra homomorphism mWC ˝C ! C defines a functor

�mWComod.C /�Comod.C /! Comod.C /

sending .V;W / to V ˝W with the coaction

V ˝W
�V˝�W
�! V ˝C ˝W ˝C ' V ˝W ˝C ˝C

V˝W˝m
�! V ˝W ˝C .

PROPOSITION 11.45. The map m 7! �m defines a one-to-one correspondence between the
set of k-coalgebra homomorphisms mWC ˝C ! C and the set of k-bilinear functors

�WComod.C /�Comod.C /! Comod.C /

such that �.V;W /D V ˝W as k-vector spaces.

(a) The homomorphism m is associative if and only if the canonical isomorphisms of
vector spaces

u˝ .v˝w/ 7! .u˝v/˝wWU ˝ .V ˝W /! .U ˝V /˝W

are isomorphisms of C -comodules for all C -comodules U , V , W .

(b) The homomorphismm is commutative (i.e., m.a;b/Dm.b;a/ for all a;b 2 C ) if and
only if the canonical isomorphisms of vector spaces

v˝w 7! w˝vWV ˝W !W ˝V

are isomorphisms of C -comodules for all C -comodules W;V .

(c) There is an identity map eWk! C if and only if there exists a C -comodule U with
underlying vector space k such that the canonical isomorphisms of vector spaces

U ˝V ' V ' V ˝U

are isomorphisms of C -comodules for all C -comodules V .

PROOF. The pair .Comod.C /�Comod.C /;!˝!/, with .!˝!/.X;Y /D !.X/˝!.Y /
(as a k-vector space), satisfies the conditions of (11.38), and lim

�!
End.!˝!jh.X;Y /i/_ D

C ˝C . Thus

.Comod.C /�Comod.C /;!C ˝!C /' .Comod.C ˝C/;!C˝C /;

and so the first statement of the proposition follows from (11.44). The remaining statements
involve only routine checking. 2

THEOREM 11.46. Let C be an essentially small k-linear abelian category, and let ˝WC�
C! C be a k-bilinear functor. Let !WC! Veck be a k-linear exact faithful functor such
that

(a) !.X˝Y /D !.X/˝!.Y / for all X;Y ;

(b) the isomorphisms �!X;!Y;!Z and  !X;!Y live in C for all X;Y;Z;

(c) there exists an (identity) object 11 in C such that !.11/D k and the canonical isomor-
phisms

!.11/˝!.X/' !.X/' !.X/˝!.11/

live in C.
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LetC.!/D lim
�!

End.!jhXi/_, so that! defines an equivalence of categories C!Comod.C.!//
(Theorem 11.38). Then C.!/ has a unique structure .m;e/ of a commutative k-bialgebra
such that˝D �m and !.11/D .k

e
�! C.!/' k˝C.!//.

PROOF. To give a bialgebra structure on a coalgebra .A;�;�/, one has to give coalgebra
homomorphisms .m;e/ such that m is commutative and associative and e is an identity map.
Thus, the statement is an immediate consequence of Proposition 11.45. 2

CATEGORIES OF REPRESENTATIONS OF AFFINE GROUPS

THEOREM 11.47. Let C be an essentially small k-linear abelian category, let˝WC�C! C
be a k-bilinear functor. Let ! be an exact faithful k-linear functor C! Veck satisfying the
conditions (a), (b), and (c) of (11.46). For each k-algebra R, let G.R/ be the set of families

.�V /V 2ob.C/; �V 2 EndR-linear.!.V /R/;

such that

˘ �V˝W D �V ˝�W for all V;W 2 ob.C/,

˘ �11 D id!.11/ for every identity object of 11 of C, and

˘ �W ı!.u/R D !.u/R ı�V for all arrows u in C.

Then G is an affine monoid over k, and ! defines an equivalence of tensor categories,

C! Rep.G/:

When ! satisfies the following condition, G is an affine group:

(d) for any object X such that !.X/ has dimension 1, there exists an object X�1 in C
such that X˝X�1 � 11.

PROOF. Theorem 11.46 allows us to assume that CD Comod.C / for C a k-bialgebra, and
that ˝ and ! are the natural tensor product structure and forgetful functor. Let G be the
affine monoid corresponding to C . Using (11.42) we find that, for any k-algebra R,

End.!/.R/ def
D End.�R ı!/D lim

 �
Homk-lin.CX ;R/D Homk-lin.C;R/.

An element � 2 Homk-lin.CX ;R/ corresponds to an element of End.!/.R/ commuting with
the tensor structure if and only if � is a k-algebra homomorphism; thus

End˝.!/.R/D Homk-alg.C;R/DG.R/:

We have shown that End˝.!/ is representable by the affine monoid G D SpecC and that !
defines an equivalence of tensor categories

C! Comod.C /! Repk.G/.

On applying (d) to the highest exterior power of an object of C, we find that End˝.!/D
Aut˝.!/, which completes the proof. 2
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f. Properties of G versus those of Repk.G/: a summary

11.48. An algebraic group G is finite if and only if there exists a representation .V;r/ such
that every representation of G is a subquotient of V n for some n� 0 .

If G is finite, then the regular representation X of G is finite-dimensional, and has the
required property. Conversely if Repk.G/D hXi, then G D Spec.B/ where B is the linear
dual of the finite k-algebra AX D End.!/. See Section e.

11.49. An algebraic group G is strongly connected if and only if, for every representation
V on whichG acts nontrivially, the full subcategory of Rep.G/ of subquotients of V n, n� 0,
is not stable under˝. In characteristic zero, a group is strongly connected if and only if it is
connected.

This follows from (11.48).

11.50. An algebraic group G is unipotent (i.e., isomorphic to an algebraic subgroup of Un
for some n) if and only if every simple representation is trivial (15.5).

11.51. An algebraic group G is trigonalizable (i.e., isomorphic to an algebraic subgroup of
Tn for some n) if and only if every simple representation has dimension 1 (17.2).

This is the definition (17.1).

11.52. A connected group variety G over an algebraically closed field is solvable if and
only if it is trigonalizable (Lie-Kolchin theorem (17.33)).

11.53. Let G be a connected group variety. If Rep.G/ is semisimple, then G is pseudore-
ductive (22.19). In characteristic zero, Rep.G/ is semisimple if and only if G is reductive
(22.138).



CHAPTER 12
The Lie algebra of an algebraic

group

Recall that all algebraic groups are affine. In this chapter, a k-algebra is (as in Bourbaki)
a k-vector space A equipped with a bilinear map A�A! A (not necessarily associative,
commutative, or finitely generated unless it is denoted by R).

a. Definition

DEFINITION 12.1. A Lie algebra over a field k is a vector space g over k together with a
k-bilinear map

Œ ; �Wg�g! g

(called the bracket) such that

(a) Œx;x�D 0 for all x 2 g, and

(b) Œx; Œy;z��C Œy; Œz;x��C Œz; Œx;y��D 0 for all x;y;z 2 g.

A homomorphism of Lie algebras is a k-linear map uWg! g0 such that

u.Œx;y�/D Œu.x/;u.y/� for all x;y 2 g:

A Lie subalgebra of a Lie algebra g is a k-subspace s such that Œx;y� 2 s whenever x;y 2 s
(i.e., such that Œs;s�� s).

Condition (b) is called the Jacobi identity. Note that (a) applied to ŒxCy;xCy� shows
that the Lie bracket is skew-symmetric,

Œx;y�D�Œy;x�, for all x;y 2 g; (62)

and that (62) allows us to rewrite the Jacobi identity as

Œx; Œy;z��D ŒŒx;y�;z�C Œy; Œx;z�� (63)

or
ŒŒx;y�;z�D Œx; Œy;z��� Œy; Œx;z�� (64)

We shall be mainly concerned with finite-dimensional Lie algebras.

183
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EXAMPLE 12.2. Let A be an associative k-algebra. The bracket Œa;b� D ab � ba is k-
bilinear, and it makes A into a Lie algebra because Œa;a� is obviously 0 and the Jacobi
identity can be proved by a direct calculation. In fact, on expanding out the left side of the
Jacobi identity for a;b;c one obtains a sum of 12 terms, 6 with plus signs and 6 with minus
signs; by symmetry, each permutation of a;b;c must occur exactly once with a plus sign
and exactly once with a minus sign. When A is the endomorphism ring Endk-linear.V / of a
k-vector space V , this Lie algebra is denoted glV , and when ADMn.k/, it is denoted gln.
Let eij denote the matrix with 1 in the ij th position and 0 elsewhere. These matrices form a
basis for gln, and

Œeij ; ei 0j 0 �D ıj i 0eij 0 � ıj 0iei 0j (ıij D Kronecker delta).

EXAMPLE 12.3. Let A be a k-algebra (not necessarily associative or commutative). A
derivation of A is a k-linear map DWA! A such that

D.ab/DD.a/bCaD.b/ for all a;b 2 A:

The composite of two derivations need not be a derivation, but their bracket

ŒD;E�DD ıE�E ıD

is, and so the set of k-derivations A! A is a Lie subalgebra Derk.A/ of glA.

DEFINITION 12.4. Let g be a Lie algebra. For a fixed x in g, the linear map

y 7! Œx;y�Wg! g

is called the adjoint map of x, and is denoted adg.x/ or ad.x/. The Jacobi identity (specifi-
cally (63)) implies that adg.x/ is a derivation of g:

ad.x/.Œy;z�/D Œad.x/.y/;z�C Œy;ad.x/.z/�:

Directly from the definitions, one sees that

.Œad.x/;ad.y/�/.z/D ad.Œx;y�/.z/;

and so
adgWg! Derk.g/

is a homomorphism of Lie algebras. It is called the adjoint representation.

b. The Lie algebra of an algebraic group

12.5. The Lie algebra of an algebraic group G can be defined to be the tangent space of G
at the neutral element e (A.47):

L.G/D Ker.G.kŒ"�/!G.k//; "2 D 0: (65)

Thus, an element of L.G/ is a homomorphism 'WO.G/! kŒ"� whose composite with " 7!
0WkŒ"�! k is the co-identity map �WO.G/! k. In particular, ' maps the augmentation ideal
I

def
DKer.�/ into ."/. As "2 D 0, ' factors through O.G/=I 2. Now O.G/=I 2 ' k˚

�
I=I 2

�
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(3.37), and ' sends .a;b/ 2 k˚ I=I 2 to aCD.b/" with D.b/ 2 k. The map ' 7!D is a
bijection, and so

L.G/' Hom.I=I 2;k/ (k-linear maps). (66)

For definiteness, we define the Lie algebra of G to be

Lie.G/D Homk-linear.I=I
2;k/. (67)

Note that Lie.G/ is a k-vector space.
Following a standard convention, we write g for Lie.G/, h for Lie.H/, and so on.

12.6. For example,
L.GLn/D fI CA" j A 2Mn.k/g.

On the other hand, O.G/ is the k-algebra of polynomials in the symbols X11, X12, : : :, Xnn
with det.Xij / inverted, and the ideal I consists of the polynomials without constant term; it
follows that the k-vector space I=I 2 has basis

X11CI
2;X12CI

2; : : : ;XnnCI
2:

Therefore
Homk-linear.I=I

2;k/'Mn.k/:

The isomorphism Lie.GLn/! L.GLn/ is A 7! I CA".
We define the bracket on Lie.GLn/ to be

ŒA;B�D AB �BA: (68)

Thus Lie.GLn/ ' gln. Regard I CA" and I CB" as elements of G.kŒ"�/ where now
kŒ"�D kŒX�=.X3/; then the commutator of I CA" and I CB" in G.kŒ"�/ is

.I CA"/.I CB"/.I CA"/�1.I CB"/�1

D .I CA"/.I CB"/.I �A"CA2"2/.I �B"CB2"2/

D I C .AB �BA/"2

and so the bracket measures the failure of commutativity in GLn.kŒ"�/ modulo "3. Shortly,
we shall see that there is a unique functorial way of defining a bracket on the Lie algebras of
all algebraic groups that gives (68) in the case of GLn.

12.7. For example,

L.Un/D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

0BBBBB@
1 "c12 � � � "c1n�1 "c1n
0 1 � � � "c2n�1 "c2 n
:::

:::
: : :

:::
:::

0 0 � � � 1 "cn�1n
0 0 � � � 0 1

1CCCCCA

9>>>>>=>>>>>;
;

and

Lie.Un/' nn
def
D f.cij / j cij D 0 if i � j g (strictly upper triangular matrices).

12.8. Let V be a finite-dimensional k-vector space. The Lie algebra of the algebraic group
Va is V itself:

Lie.Va/D V:
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12.9. We write e"X for the element of L.G/�G.kŒ"�/ corresponding to an element X of
Lie.G/ under the isomorphism (66):

L.G/' Lie.G/:

For example, if G D GLn, so Lie.G/D gln, then

e"X D I C "X .X 2Mn.k/ , e"X 2 GLn.kŒ"�//:

We have

e".XCX
0/
D e"X � e"X

0

; X;X 0 2 Lie.G/;

e".cX/ D e.c"/X ; c 2 k; X 2 Lie.G/:

The first equality expresses that X 7! e"X WLie.G/! L.G/ is a homomorphism of abelian
groups, and the second that multiplication by c on Lie.G/ corresponds to the multiplication
of c on L.G/ induced by the action aCb" 7! aCbc" of c on kŒ"� (Exercise 12-1).

DEFINITION 12.10. Let G be an algebraic group over k, and let U be a vector group over
k (2.11). An action of G on U defines an action of G on Lie.U /. The action is said to be
linear if there exists a G-equivariant isomorphism of algebraic groups U ' Lie.U /.

Let V be a finite-dimensional vector space. An action of G on Va is linear if and only if
it arises from a linear representation of G on V .

ASIDE 12.11. In characteristic zero, all actions are linear. Let G be a smooth algebraic group over a
field k of characteristic p ¤ 0, and let U be a vector group on which G acts. If the unipotent radical
k is defined over k and the representation of Gı on Lie.U / is simple, then the action of G on U is
linear. Without these conditions, there may be nonlinear representations McNinch 2014.

c. Basic properties of the Lie algebra

12.12. The functor Lie maps finite inverse limits to finite inverse limits. For example, if

e!G0!G!G00

is exact, then so also is

0! Lie.G0/! Lie.G/! Lie.G00/:

Indeed, with Lie replaced by L, the required sequence is the sequence of kernels in the exact
commutative diagram

e G0.kŒ"�/ G.kŒ"�/ G00.kŒ"�/

e G0.k/ G.k/ G00.k/:

Similarly, if G0 ,! G, then Lie.G0/ ,! Lie.G/. Moreover, Lie commutes with fibred
products:

Lie.H1�GH2/' Lie.H1/�Lie.G/ Lie.H2/:

For example, if H1 and H2 are algebraic subgroups of an algebraic group G, then Lie.H1/
and Lie.H2/ are subspaces of Lie.G/ and

Lie.H1\H2/D Lie.H1/\Lie.H2/:
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PROPOSITION 12.13. Let H � G be algebraic groups such that Lie.H/D Lie.G/. If H
is smooth and G is connected, then H DG.

PROOF. Recall that dim.g/� dim.G/, with equality if and only if G is smooth (1.23). We
have

dim.H/D dim.h/D dim.g/� dim.G/� dim.H/:

Because H is smooth, there is equality throughout. Now G is smooth because dim.g/D
dim.G/, and it equals H because dim.G/D dim.H/ and G is smooth and connected. 2

12.14. As Lie.G/D Lie.Gı/, we need G to be connected in (12.13). In characteristic p,
Lie. p̨/D Lie.Ga/, and so we need H to be smooth in (12.13).

12.15. Let H1 and H2 be algebraic subgroups of an algebraic group G. We say that H1
and H2 cross tranversally in G if their Lie algebras cross transversally in the Lie algebra of
G, i.e., if

dim.Lie.H1/\Lie.H2//D dim.Lie.H1//Cdim.Lie.H2//�dim.Lie.G// :

PROPOSITION 12.16. LetH1 andH2 be smooth algebraic subgroups of an algebraic group
G. If H1 and H2 cross transversally in G, then H1\H2 is smooth.

PROOF. We have

dim.H1/Cdim.H2/�dim.G/� dim.H1\H2/ .AG 5.36)

� dimLie.H1\H2/ (1.23)

D dimLie.H1/\Lie.H2/ (12.12)

D dimLie.H1/CdimLie.H2/�dimLie.G/ (hypothesis).

As H1 and H2 are smooth,

dim.H1/Cdim.H2/�dim.G/� dimLie.H1/CdimLie.H2/�dimLie.G/;

and so equality holds throughout. In particular, dim.H1\H2/D dimLie.H1\H2/, and so
H1\H2 is smooth. 2

d. The adjoint representation; definition of the bracket

12.17. Let G be an algebraic group over k, and let R be a k-algebra. Define g.R/ by the
exact sequence

1! g.R/!G.RŒ"�/
"7!0
�! G.R/! 1: (69)

Thus g.k/ D L.G/. For example, let V be a k-vector space, and let G D GLV . Let
V."/DRŒ"�˝V . Then V."/D VR˚ "VR as an R-module, and

g.R/D fidC"˛ j ˛ 2 End.VR/g

where idC"˛ acts on V."/ by

.idC"˛/.xC "y/D xC "yC "˛.x/: (70)
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12.18. Recall (3.37) that we have a split-exact sequence of k-vector spaces

0! I !O.G/ �
�! k! 0

where I is the augmentation ideal (maximal ideal at e in O.G/). On tensoring this with R,
we get an exact sequence of R-modules

0! IR!O.G/R
�R
�!R! 0:

By definition, an element of g.R/ is a homomorphism 'WO.G/R!RŒ"� whose composite

with RŒ"�
"7!0
�! R is �R. As in (12.5), ' factors through O.G/R=I 2R ' R˚ IR=I 2R, and

corresponds to an R-linear homomorphism IR=I
2
R. Hence

g.R/' HomR-linear.IR=I
2
R;R/' Homk-linear.I=I

2;k/˝R' g.k/˝R:

As in (12.9), we write X 7! e"X for the isomorphism g˝R! g.R/. For a homomorphism
f WG!H ,

f .e"X /D e"Lie.f /.X/; for X 2 g˝R: (71)

This expresses that the isomorphism g˝R' g.R/ is functorial in g.

12.19. The group G.RŒ"�/ acts on g.R/ by inner automorphisms. As G.R/ is a subgroup
of G.RŒ"�/, it also acts. In this way, we get a homomorphism

G.R/! Autk-linear.g.R//,

which is natural in R, and so defines a representation

AdWG! GLg . (72)

This is called the adjoint representation (or action) of G.
By definition,

x � e"X �x�1 D e"Ad.x/X for x 2G.R/, X 2 g˝R. (73)

For a homomorphism f WG!H ,

G�g g

H �h h:

.x;X/7!Ad.x/X

f �Lie.f / Lie.f /

.y;Y /7!Ad.y/Y

(74)

commutes, i.e.,

Lie.f /.Ad.x/X/D Ad.f .x//Lie.f /.X/ for x 2G.R/, X 2 g˝R.

Indeed,
e"LHS (71)

D f .e"Ad.x/X /
(73)
D f .x � e"X �x�1/

and
e"RHS (73)

D f .x/ � e"Lie.f /.X/
�f .x/�1,

which agree because of (71).
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12.20. On applying the functor Lie to Ad, we get a homomorphism of k-vector spaces

adWg! End.g/.

For x;y 2 g, define
Œx;y�D ad.x/.y/: (75)

This is the promised bracket.

THEOREM 12.21. There is a unique functor Lie from the category of algebraic groups over
k to the category of Lie algebras such that:

(a) Lie.G/D Homk-linear.IG=I
2
G ;k/ as a k-vector space;

(b) the bracket on Lie.GLn/D gln is ŒX;Y �DXY �YX .
The action of G on itself by conjugation defines a representation AdWG! GLg of G on g
(as a k-vector space), whose differential is the adjoint representation adgWg! Der.g/ of g.

PROOF. The uniqueness follows from the fact that every algebraic group admits a faithful
representation G! GLn (4.8), which induces an injection g! gln (12.12). We have to
show that the bracket (75) has the property (b). An element I C "A 2 Lie.GLn/ acts on
Mn.kŒ"�/ as

XC "Y 7! .I C "A/.XC "Y /.I � "A/DXC "Y C ".AX �XA/: (76)

On taking V to be Mn.k/ in (12.17), and comparing (76) with (70), we see that ad.A/
acts as idC"u with u.X/D AX �XA, as required. That Lie is a functor follows from the
commutativity of (74). This completes the proof of the first statement.

The second statement is immediate from our definition of the bracket. 2

e. Description of the Lie algebra in terms of derivations

DEFINITION 12.22. Let A be a k-algebra andM an A-module. A k-linear mapDWA!M

is a k-derivation of A into M if

D.fg/D f �D.g/Cg �D.f / (Leibniz rule).

For example, D.1/ D D.1� 1/ D D.1/CD.1/, and so D.1/ D 0. By linearity, this
implies that

D.c/D 0 for all c 2 k:

Conversely, every additive map A!M satisfying the Leibniz rule and zero on k is a
k-derivation.

Let uWA! kŒ"� be a k-linear map, and write

u.f /D u0.f /C "u1.f /:

Then

u.fg/D u.f /u.g/ ”

�
u0.fg/D u0.f /u0.g/

u1.fg/D u0.f /u1.g/Cu0.g/u1.f /:

The first condition says that u0 is a homomorphism A! k and, when we use u0 to make k
into an A-module, the second condition says that u1 is a k-derivation A! k.

Recall that O.G/ has a co-algebra structure .�;�/. By definition, the elements of
L.G/ are the k-algebra homomorphisms uWO.G/! kŒ"� such that the composite of u with
" 7! 0WkŒ"� 7! 0 is �, i.e., such that u0 D �. Thus, we have proved the following statement.
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PROPOSITION 12.23. There is a natural one-to-one correspondence between the elements
of L.G/ and k-derivations O.G/! k (where O.G/ acts on k through �), i.e.,

L.G/' Derk;�.O.G/;k/:

The correspondence is �C "D$D, and the Leibniz condition is

D.fg/D �.f / �D.g/C �.g/ �D.f /:

Let ADO.G/, and consider the space Derk.A;A/ of k-derivations of A into A. The
bracket

ŒD;D0�DD ıD0�D0 ıD

of two derivations is again a derivation. In this way, Derk.A;A/ becomes a Lie algebra.
A derivation DWA! A is left invariant if

�ıD D .id˝D/ı�:

If D and D0 are left invariant, then

�ı ŒD;D0�D�ı .D ıD0�D0 ıD/

D .id˝D/ı�ıD0� .id˝D0/ı�ıD

D .id˝.D ıD0//ı�� .id˝.D0 ıD//ı�

D .id˝ŒD;D0�/ı�

and so ŒD;D0] is left invariant.

PROPOSITION 12.24. The map

D 7! � ıDWDerk.A;A/! Derk;�.A;k/

defines an isomorphism from the subspace of left invariant derivations onto Derk;�.A;k/.

PROOF. If D is a left invariant derivation A! A, then

D D .id˝�/ı�ıD D .id˝�/ı .id˝D/ı�D .id˝.� ıD//ı�;

and soD is determined by � ıD. Conversely, if d WA! k is a derivation, theD D .id˝d/ı
� is a left invariant derivation A! A. 2

Thus L.G/ is isomorphic (as a k-vector space) to the space of left invariant derivations
A! A, which is a Lie subalgebra of Derk.A;A/. In this way, L.G/ acquires a Lie algebra
structure, which is clearly natural in G. We leave it as an exercise to the reader to check that
this agrees with the previously defined Lie algebra structure for G D GLn, and hence for all
G.

f. Stabilizers

Let .V;r/ be a representation of an algebraic group G, and let W be a subspace of V . Recall
(4.3) that there exists an (unique) algebraic subgroup GW of G such that

GW .R/D f˛ 2G.R/ j ˛.WR/DWRg

for all k-algebras R.



f. Stabilizers 191

PROPOSITION 12.25. With the above notations,

Lie.GW /D fx 2 Lie.G/ j Lie.r/.x/W �W g:

PROOF. It suffices to prove this withG DGLV . Let idC˛" 2 glV . Then idC˛" 2 Lie.GW /
if and only idC˛" 2GW .kŒ"�/, i.e.,

.idC˛"/W Œ"��W Œ"�:

But
.idC˛"/.w0Cw1"/D w0C .w1C˛w0/",

which lies in W Œ"� if and only if ˛w0 2W . 2

REMARK 12.26. Let g! gl.V / be a representation of the Lie algebra g, and let W be a
subspace of V . Define

Stabg.W /D fx 2 g j xW �W g:

A representation r WG! GLV defines a representation dr Wg! gl.V /, and (12.25) says that

Lie.StabG.W //D Stabg.W /:

For example, in the situation of Chevalley’s Theorem 4.19, on applying Lie to

H D StabG.L/

we find that
hD Stabg.L/:

PROPOSITION 12.27. Let G be an algebraic group over k, let S be a k-algebra, and let J
be an ideal in S such that J 2 D 0. The kernel of

G.S/!G.S=J /

is canonically isomorphic to g˝J:

PROOF. When S D kŒ"� and J D ."/, this is the isomorphism (66)

Ker.G.kŒ"�/!G.k//' Hom.I=I 2;k/:

In the general case, an element of the kernel is a homomorphism 'WO.G/! S making the
diagram

O.G/ S

k S=J

'

�

commute. Because J 2 D 0, such a homomorphism factors uniquely through O.G/=I 2 '
k˚ I=I 2. Thus, to give an element of the kernel is the same as giving a homomorphism
'0Wk˚I=I 2! S making the diagram

k˚I=I 2 S

k S=J

'0

�
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commute. This condition means that '0.c;x/D cCD.x/ with D 2 Homk-linear.I=I
2;J /.

The map ' 7!D is an isomorphism of the kernel onto

Hom.I=I 2;J /' Hom.I=I 2;k/˝J D g˝J: 2

COROLLARY 12.28. Let G be an algebraic group over k, let S be a k-algebra, and let J be
an ideal in S with J 2 D 0. There is an exact sequence

0! J ˝g˝R!G.S˝R/
can.
�!G.S˝R=J ˝R/

natural in the k-algebra R.

PROOF. Apply (12.27) to the ideal J ˝R in S˝R. 2

COROLLARY 12.29. Let G=k, S , and J be as in the statement of the proposition. If G is
smooth or there exists a section to S ! S=J , then there is a canonical exact sequence

0! .g˝J /a!˘S=kGS !˘.S=J /=kGS=J ! 0:

PROOF. Let R be a k-algebra. If G is smooth or there exists a section to S ! S=J , then
the canonical map G.S˝R/!G.S˝R=J ˝R/ is surjective. Thus the statement follows
from (12.28). 2

g. Centres

The centre z.g/ of a Lie algebra is the kernel of the adjoint map:

z.g/D fx 2 g j Œx;g�D 0g:

PROPOSITION 12.30. Let G be a smooth connected algebraic group. Then

dimz.g/� dimZ.G/.

If equality holds then Z.G/ is smooth and Lie.Z.G//D z.g/.

PROOF. There are maps

AdWG! Aut.g/; Ker.Ad/�Z.G/ (77)

adWg! Der.g/; Ker.ad/D z.g/: (78)

The second map is obtained by applying Lie to the first (see 12.21), and so (see 12.12)

Ker.ad/D Lie.Ker.Ad//:

Therefore

dimz.g/D dimKer.ad/D dimLie.Ker.Ad//
.1.23)
� dimKer.Ad/

(77)
� dimZ.G/; (79)

which proves the first part of the statement.
If dimz.g/D dimZ.G/, then

dimKer.ad/D dimKer.Ad/D dimZ.G/.

The first equality implies that KerAd is smooth (1.23), and the second equality implies that
Z.G/ı D .KerAd/ı. Hence Z.G/ı is smooth, which implies that Z.G/ is smooth. Finally,
Lie.Z.G//� z.g/, and so they are equal if they have the same dimension. 2
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h. Normalizers and centralizers

PROPOSITION 12.31. Let G be an algebraic group, and let H be an algebraic subgroup of
G. The action of H on G by conjugation defines an action of H on Lie.G/, and

Lie.CG.H//D Lie.G/H

Lie.NG.H//=Lie.H/D .Lie.G/=Lie.H//H .

PROOF. We prove the first statement. Let C D CG.H/ and cD Lie.C /. Clearly,

cD fX 2 g j e"X 2 C.kŒ"�/g:

Let X 2 g. The condition that X 2 c is that

x � .e"X /S �x
�1
D .e"X /S for all kŒ"�-algebras S and x 2H.S/; (80)

where .e"X /S is the image of e"X in C.S/. On the other hand, the condition that X 2 gH is
that

y � e"
0XR �y�1 D e"

0XR for all k-algebras R and y 2H.R/; (81)

where XR is the image of X in g˝R.
We show that (80)H) (81). Let y 2H.R/ for some k-algebra R. Take S DRŒ"�. Then

y 2H.R/�H.S/, and (80) for y 2H.S/ implies (81) for y 2H.R/.
We show that (81) H) (80). Let x 2 H.S/ for some kŒ"�-algebra S ; there is a kŒ"�-

homomorphism 'WSŒ"0�! S acting as the identity on S and sending "0 to "1S . On taking
RD S in (81), and applying ', we obtain (80).

The proof of the second statement uses similar arguments (SHS, Exposé 4, 3.4, p.185).2

COROLLARY 12.32. IfH is commutative and gH! .g=h/H is surjective, then Lie.CG.H//D
Lie.NG.H//.

PROOF. Because H is commutative, (81) holds for all X 2 h, and so hD hH � gH . From
the exact sequence

0! h! g! g=h! 0;

we get an exact sequence
0! hH ! gH ! .g=h/H :

Using (12.31), we can rewrite this as

0! h! Lie.CG.H//! Lie.NG.H//=h:

Therefore the surjectivity of gH ! .g=h/H implies that of Lie.CG.H//! Lie.NG.H//:2

COROLLARY 12.33. Let H be a commutative algebraic subgroup of an algebraic group G.
If gH ! .g=h/H is surjective and CG.H/ is smooth, then CG.H/ is open in NG.H/.

PROOF. The hypothesis implies that Lie.CG.H//D Lie.NG.H// (12.32), and therefore
CG.H/

ı DNG.H/
ı (12.13). 2
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i. An example of Chevalley

The following example of Chevalley shows that the Lie algebra of a noncommutative
algebraic group may be commutative. It also shows that the centre of a smooth algebraic
group need not be smooth, and that AdWG! GLg need not be smooth.

12.34. Let k be an algebraically closed field of characteristic p ¤ 0, and let G be the
algebraic group over k such that G.R/ consists of the matrices

A.a;b/D

0@a 0 0

0 ap b

0 0 1

1A ; a;b 2R; a 2R�:

Define regular functions on G by

X WA.a;b/ 7! a�1

Y WA.a;b/ 7! b.

Then O.G/D kŒX;Y;.XC1/�1�, which is an integral domain, and so G is connected and
smooth. Note that0@a 0 0

0 ap b

0 0 1

1A0@a0 0 0

0 a0p b0

0 0 1

1A0@a 0 0

0 ap b

0 0 1

1A�1 D
0@a0 0 0

0 a0p b�a0pbCapb0

0 0 1

1A ;
and so the centre of G consists of the elements A.a;b/ with ap D 1 and b D 0. Therefore

O.Z.G//DO.G/=.Xp�1;Y /' kŒX�=.Xp�1/;

which is not reduced (it equals �p). In particular, G is not commutative. However Lie.G/
is commutative. The kernel of AdWG! GLg consists of the elements A.a;b/ with ap D 1,
and so equals Spm.kŒG�=.Xp�1//, which is not reduced; therefore Ad is not smooth. In
this case,

dimz.g/D 2 > dim.Ker.Ad//D 1 > dim.Z.G//D 0

— all of the inequalities in (79) are strict.

j. The universal enveloping algebra

Recall (12.2) that an associative k-algebra A becomes a Lie algebra ŒA� with the bracket
Œa;b� D ab� ba. Let g be a Lie algebra. Among the pairs consisting of an associative
k-algebra A and a Lie algebra homomorphism g! ŒA�, there is one, .U.g/; g

�
�! ŒU.g/�/,

that is universal:

g U.g/

A

Lie

�

Lie 9Š associative

�
Hom.g; ŒA�/ ' Hom.U.g/;A/:

˛ ı� $ ˛

In other words, every Lie algebra homomorphism g! ŒA� extends uniquely to a homo-
morphism of associative algebras U.g/! A. The pair .U.g/;�/ is called the universal
enveloping algebra of g. The functor g U.g/ is a left adjoint to A ŒA�.
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The algebra U.g/ can be constructed as follows. The tensor algebra T .V / of a k-vector
space V is

T .V /D k˚V ˚V ˝2˚V ˝3˚�� � ; V ˝n D V ˝�� �˝V (n copies),

with the k-algebra structure defined by

.x1˝�� �˝xr/ � .y1˝�� �˝ys/D x1˝�� �˝xr˝y1˝�� �˝ys:

It has the property that every k-linear map V ! A from V to an associative k-algebra
extends uniquely to a k-algebra homomorphism T .V /! A. We define U.g/ to be the
quotient of T .g/ by the two-sided ideal generated by the tensors

x˝y�y˝x� Œx;y�; x;y 2 g: (82)

The extension of a k-linear map ˛Wg! A to a k-algebra homomorphism T .g/! A factors
through U.g/ if and only if ˛ is a Lie algebra homomorphism g! ŒA�. Therefore U.g/ and
the map g! ŒU.g/� have the required universal property.

When g is commutative, (82) becomes x˝y �y˝x, and so U.g/ is the symmetric
algebra on g; in particular, U.g/ is commutative.

The k-algebra U.g/ is generated by the image of any k-vector space basis for g (because
this is true for T .g/). In particular, U.g/ is finitely generated if g is finite-dimensional.

THEOREM 12.35 (POINCARÉ, BIRKHOFF, WITT). Let .ei /i2I be an ordered basis for g
as a k-vector space, and let "i D �.ei /. Then the ordered monomials

"i1"i2 � � �"in ; i1 � i2 � � � � � in, (83)

form a basis for U.g/ as a k-vector space.

For example, if g is finite-dimensional with basis fe1; : : : ; erg as a k-vector space, then
the monomials

"
m1
1 "

m2
2 � � �"

mr
r ; m1; : : : ;mr 2 N;

form a basis for U.g/ as a k-vector space. If g is commutative, then U.g/ is the polynomial
algebra in the symbols "1; : : : ; "r .

As U.g/ is generated as a k-algebra by ."i /, it is generated as a k-vector space by the
monomials "i1"i2 � � �"im , m 2 N. The relations implied by (82),

xy D yxC Œx;y�

allow one to “reorder” the factors in such a term, and deduce that the ordered monomials
(83) span U.g/; the import of the theorem is that the set is linearly independent. The proof
of this can’t be too easy — for example, it must use the Jacobi identity.

PROOF OF THE PBW THEOREM

Choose a basis B for g and a total ordering of B. The monomials

x1˝x2˝�� �˝xm; xi 2 B; m 2 N; (84)

form a basis for T .g/ as a k-vector space. We say that such a monomial is ordered if
x1 � x2 � � � � � xm. We have to show that the images of the ordered monomials in U.g/
form a basis for U.g/ regarded as a k-vector space.
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From now on “monomial” means a monomial S D x1˝�� �˝xm with the xi 2 B. The
degree of S is m. An inversion in S is a pair .i;j / with i < j but xi > xj . We say that a
monomial “occurs” in a tensor if it occurs with nonzero coefficient.

By definition, U.g/ is the quotient of T .g/ by the two-sided ideal I.g/ generated the
elements (82). As a k-vector space, I.g/ is spanned by elements

A˝x˝y˝B �A˝y˝x˝B �A˝ Œx;y�˝B

with x;y 2 B and A;B monomials. In fact, because Œx;y� D �Œy;x�, the elements with
x < y already span I.g/.

Let T 2 T .g/. We say that T is reduced if all the monomials occurring in it are ordered.
We define a partial ordering on the elements of T .g/ by requiring that T < T 0 if

(a) the greatest degree of an unordered monomial occurring in T is less than the similar
number for T 0, or

(b) both T and T 0 contain unordered monomials of the same largest degree n, but the
total number of inversions in monomials of degree n occurring in T is less than the
similar number for T 0:

For example, if x < y < z, then

y˝xCz˝xCz˝y < y˝x˝zCx˝z˝y < z˝y˝x:

The ordering measures how nonreduced a tensor is.
For r;s � 0, we define a k-linear map �r;sWT .g/! T .g/ by requiring that �r;s fix all

monomials except those of the form

A˝x˝y˝B; deg.A/D r; deg.B/D s; x > y;

and that it maps this monomial to

A˝y˝x˝BCA˝ Œx;y�˝B:

Note that �r;s fixes all reduced tensors.
Let T;T 0 2 T .g/. We write T ! T 0 if T 0 is obtained from T by a single map �r;s , and

T
�
�! T 0 if T 0 is obtained from T by zero of more such maps: In the first case, we call T 0 a

simple reduction of T , and in the second case, a reduction of T . Note that if T
�
�! T 0 and

T is reduced, then T D T 0.
After these preliminaries, we are ready to prove the theorem.

STEP 1. Let T 2 T .g/:Then �r;s.T /�T 2 I.g/ and �r;s.T /� T for all r;s 2 N; moreover,
T < �r;s.T / for some r;s unless T is reduced.

PROOF. The first part of the assertion is obvious from the definitions. Let T be nonreduced,
and let S be a nonreduced monomial of highest degree occurring in T . Then �r;s.S/ < S
for some r;s 2 N. As �r;s.S 0/ � S 0 for all monomials S 0 ¤ S occurring in T , we have
�r;s.T / < T . 2

STEP 2. Let T 2 T .g/. Then there exists a reduction T
�
�! T 0 with T 0 reduced. Therefore

the images of the ordered monomials span U.g/.
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PROOF. Let T 2 T .g/. According to Step 1, there exists a sequence of simple reductions
T ! T1! T2! �� � with T > T1 >T2 � � � . Clearly, the sequence stops with a reduced tensor
T 0 after a finite number of steps. Moreover, T � T1 � T2 � �� � � T 0 modulo I.g/, and so
T 0 represents the image of T in U.g/. 2

STEP 3. No nonzero element of I.g/ is reduced.

PROOF. The elements

x˝y�y˝x� Œx;y�; x;y 2 B; x > y

of T .g/ are linearly independent over k. Let T be a nonzero element of I.g/. Then T is a
linear combination of distinct terms

A˝x˝y˝B�A˝y˝x˝B�A˝ Œx;y�˝B; x;y 2 B; x > y; A;B monomials.

By considering the terms with deg.A/ a maximum, one sees that T cannot be reduced. 2

STEP 4. (PBW confluence) Let A
�
�! B1 and A

�
�! B2 be reductions of a monomial A.

Then there exist reductions B1
�
�! C1 and B2

�
�! C2 with C1�C2 2 I.g/.

PROOF. First suppose that the reductions A
�
�! B1 and A

�
�! B2 are simple. If the pairs

x˝y and x0˝y0 involved in the reductions to B1 and B2 don’t overlap, the statement is
obvious, because

�r;s ı�r 0;s0 D �r 0;s0 ı�r;s

if r 0 ¤ r �1, rC1. Otherwise, A has the form

AD A0˝x˝y˝z˝B 0; x > y > z,

and the reductions A! B1 and A! B2 have the form

x˝y˝z! y˝x˝zC Œx;y�˝z

x˝y˝z! x˝z˝yCx˝ Œy;z�:

But,

y˝x˝zC Œx;y�˝z! y˝z˝xCy˝ Œx;z�C Œx;y�˝z

! z˝y˝xC Œy;z�˝xCy˝ Œx;z�C Œx;y�˝z

and

x˝z˝yCx˝ Œy;z�! z˝x˝yC Œx;z�˝yCx˝ Œy;z�

! z˝y˝xCz˝ Œx;y�C Œx;z�˝yCx˝ Œy;z�:

The terms on the right differ by

ŒŒy;z�;x�C Œy; Œx;z��C ŒŒx;y�;z�;

which, because of the Jacobi identity (12.1b), lies in I.g/.
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Next suppose only that A
�
�! B1 is simple. This case can be proved by repeatedly

applying the simple case:

A B1 � �

B2 B3

The deduction of the general case is similar. 2

Let T 2 T .g/. In Step 2 we showed that there exists a reduction T
�
�! T 0 with T 0

reduced. If T 0 is unique, then we say that T is uniquely reducible, and we set red.T /D T 0:

STEP 5. Every monomial A is uniquely reducible.

PROOF. Suppose A
�
�! B1 and A

�
�! B2 with B1 and B2 reduced. According to Step 4,

B1�B2 2 I.g/, and hence is zero (Step 3). 2

STEP 6. If S and T are uniquely reducible, so also is SCT , and red.SCT /D red.S/C
red.T /.

PROOF. Let W D �.SCT / be a reduced reduction of SCT . It suffices to show that

W D red.S/C red.T /.

There exists a reduction � 0 such that � 0.�.S//D red.S/. Now

� 0.�.SCT //D � 0.W /DW

because W is reduced, and

� 0.�.SCT //D � 0.�.S//C� 0.�.T //D red.S/C .� 0�/.T /:

Let � 00 be such that � 00.� 0�/.T /D red.T /. Then

W D � 00.W /D � 00.red.S//C� 00.� 0�.T //D red.S/C red.T /: 2

An induction argument now shows that every T in T .g/ is uniquely reducible.

STEP 7. The map T 7! red.T /WT .g/! T .g/ is k-linear and has the following properties:

(a) T � red.T / 2 I.g/I

(b) red.T /D T if T is reduced;

(c) red.T /D 0 if T 2 I.g/.

PROOF. The map is additive by definition, and it obviously commutes with multiplication
by elements of k; hence it is k-linear. Both (a) and (b) follow from the fact that red.T / is a
reduction of T (see Step 1). For (c), if T 2 I.g/ then red.T / is reduced and lies in I.g/, and
so is zero (Step 3). 2

STEP 8. Completion of the proof.
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PROOF. Let T .g/red denote the k-subspace of T .g/ consisting of reduced tensors. The map
red is a k-linear projection onto T .g/red with kernel I.g/:

T .g/' I.g/˚T .g/red (as k-vector spaces). 2

REMARK 12.36. The proof shows that the universal enveloping algebra U.g/ of g can be
identified with the k-vector subspace T .g/red equipped with the multiplication

T �T 0 D red.T ˝T 0/:

ASIDE 12.37. From Bergman 1978:

[This proof] is quite close to Birkhoff’s original proof ... Birkhoff 1937. Witt’s proof
looks rather different. He considers a certain action of the permutation group Sn upon
the space spanned by monomials of degree � n. The Jacobi identity turns out to
correspond to the defining relations ..i; iC1/.iC1; iC2//3 D 1 in a presentation of
Sn in terms of generators .i; iC1/. Poincaré’s 1899 proof is more or less by “brute
force”, and appears to have a serious gap, but it is a surprisingly early example of the
idea of constructing a ring as the [quotient] algebra of a free associative algebra by (in
effect) the ideal generated by a system of relations.

ASIDE 12.38. It is an open question whether U.g/� U.g0/ implies g� g0 (Bergman 1978).

NOTES. The above proof of the PBW theorem follows notes of Casselman (Introduction to Lie
Algebras, www.math.ubc.ca/�cass/) and Bergman 1978.

k. The universal enveloping p-algebra

Throughout this section, char.k/D p ¤ 0. Let x0 and x1 be elements of a Lie algebra g.
For 0 < r < p, let

sr.x0;x1/D�
1

r

X
u

adxu.1/adxu.2/ � � �adxu.p�1/.x1/

where u runs over the maps f1;2; : : : ;p�1g! f0;1g taking the value 0 exactly r times. For
example, s1.x0;x1/ equals Œx0;x1� for p D 2 and Œx1; Œx1;x0�� for p D 3.

PROPOSITION 12.39. Let A be an associative k-algebra (not necessarily commutative). For
a;b 2 A, write

ad.a/b D Œa;b�D ab�ba:

Then the Jacobson formulas hold for a;b 2 A:

(a) ad.a/p D ad.ap/

(b) .aCb/p D apCbpC
P
0<r<p sr.a;b/.

PROOF. When we put
La.b/D ab DRb.a/;

we find that

ad.ap/.b/D .Lpa �R
p
a /.b/D .La�Ra/

p.b/D ad.a/p.b/;

which proves (a).
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We claim that, for a1; : : : ;ap 2 A,X
s2Sp

as.1/ � � �as.p/ D
X

t2Sp�1

ad.at.1// � � �ad.at.p�1//.ap/: (85)

The right hand side equalsX
i;j

X
t2Sp�1

.�1/p�1�rat.i1/ � � �at.ir /apat.jp�1�r/ � � �at.j1/;

where .i1; : : : ; ir/ runs over the strictly increasing sequences of integers in the interval
Œ1;p�1�, and where .j1; : : : ;jp�1�r/ denotes the strictly increasing sequence whose values
are integers in Œ1;p�1� distinct from i1; : : : ; ir . This sum equalsX

r

.�1/p�1�r
�

p�1

p�1� r

� X
v2Sp�1

av.1/ � � �av.r/apav.rC1/ � � �av.p�1/:

But the identity

.T �1/p�1 D
T p�1

T �1
D T p�1CT p�2C�� �C1

in kŒT �, shows that

.�1/p�1�r
�

p�1

p�1� r

�
D 1;

which proves (85).
We now prove (b). If x0;x1 2 A, then

.x0Cx1/
p
D x

p
0 Cx

p
1 C

X
0<r<p

X
w2F.r/

xw.1/ � � �xw.p/;

where F.r/ is the set of maps from Œ1;p� into f0;1g taking the value 0 exactly r times.
For s 2 Sp, let ws 2 F.r/ denote the map such that w�1s .0/D fs�1.1/; : : : ; s�1.r/g. Then
s 7! ws is a surjective map such that the inverse image of each w 2 F.r/ contains of
rŠ.p� r/Š elements. Putting

a1 D �� � D ar D x0

arC1 D �� � D ap D x1

we therefore have
xws.1/ � � �xws.p/ D as.1/ � � �as.p/

and X
w2F.r/

xw.1/ � � �xw.p/ D
1

rŠ.p� r/Š

X
s2Sp

as.1/ � � �as.p/:

By the same method, we obtain

sr.x0;x1/D

�
�
1

r

�
1

rŠ.p� r �1/Š

X
t2Sp�1

ad.at.1// � � �ad.at.p�1//.ap/:

The required formula now follows from (85). 2
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DEFINITION 12.40. A p-Lie algebra is a Lie algebra g equipped with a map

x 7! xŒp�Wg! g

such that

(a) .cx/Œp� D cpxŒp�, all c 2 k, x 2 g;

(b) ad.xŒp�/D .ad.x//p, all x 2 gI

(c) .xCy/Œp� D xŒp�CyŒp�C
Pp�1
rD1 sr.x;y/.

The term r � sr.x;y/ is the coefficient of cr in ad.cxCy/p�1.y/. Note that (12.39) says
that ŒA� becomes a p-Lie algebra with aŒp� D ap.

Let g be a p-Lie algebra, and let 'Wg! U.g/ be the universal map. The elements
'.x/Œp��'.xŒp�/ lie in the centre of U.g/, and we define U Œp�.g/ to be the quotient of
U.g/ by the ideal they generate. Regard U Œp�.g/ as a p-Lie algebra, and let j denote the
composite g!U.g/!U Œp�.g/. Then j is a homomorphism of p-Lie algebras, and the pair
.U Œp�.g/;j / is universal: every k-linear map ˛Wg! A with A associative extends uniquely
to a k-algebra homomorphism T .g/! A, which factors through U Œp�.g/ if and only if it is
a p-Lie algebra homomorphism,

g U Œp�.g/

A

p-Lie

j

p-Lie 9Š associative

�
Hom.g; ŒA�/ ' Hom.U Œp�.g/;A/:

˛ ıj $ ˛

The functor g U Œp�.g/ is left adjoint to the functor sending an associative k-algebra to its
associated p-Lie algebra.

THEOREM 12.41. Let .ei /i2I be an ordered basis for g as a k-vector space, and let "i D
j.ei /. Then the set consisting of 1 and the monomials

"
ni1
i1
� � �"

nir
ir
; i1 < � � �< ir ; 0 < nij < p

forms a basis for U Œp�.g/ as a k-vector space.

PROOF. Identify g with its image in U.g/, and let ci D e
p
i � e

Œp�
i . The ci lie in the centre of

U.g/, and generate the kernel of the map U.g/! U Œp�.g/. Let Up�1 denote the subspace
of U.g/ generated by the monomials

Q
e
mi
i with

P
mi � r . As ci � e

p
i modulo Up�1, the

PBW theorem (12.35) implies that the monomialsY
e
ni
i

Y
c
mi
i ; 0� ni < p; mi � 0

form a basis for U.g/, from which the statement follows. 2

COROLLARY 12.42. If g is finite-dimensional as a k-vector space, so also if U Œp�.g/, and
the map j Wg! U Œp�.g/ is injective.

PROOF. Obvious from the theorem. 2

NOTES. The exposition in this section follows that in DG II, �7, especially 3.2, p.275; 3.5, p.277.
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Exercises

EXERCISE 12-1. A nonzero element c of k defines an endomorphism of kŒ"� sending 1 to
1 and " to c", and hence an endomorphism of L.G/ for any algebraic group G. Show that
this agrees with the action of c on Lie.G/ def

D Hom.I=I 2;k/' L.G/.

EXERCISE 12-2. Let G be the orthogonal group, so that

G.R/D fX 2Mn.R/ jX
t
�X D I g:

Show that the Lie algebra of G is

gD fI C "Y 2Mn.k/ j Y
t
CY D 0g

and that the adjoint representation is given by

Ad.g/.Y /D gYg�1.

Show that
X 7! .I �X/.I CX/�1

defines a birational isomorphism �WGÜ g and that it is equivariant for the action of G on
G by conjugation and the adjoint action of G on g, i.e.,

�.gXg�1/D Ad.g/.�.X//

for all g and X such that both sides are defined. (Assume k has characteristic zero. The
partial inverse is Y 7! .I �Y /.I CY /�1.)

ASIDE 12.43. Let G be a connected group variety with Lie algebra g over a field k of characteristic
zero. A rational map �WGÜ g is called a Cayley map if it is birational and equivariant for the action
of G on G by conjugation and the adjoint action of G on g. The Cayley map for the orthogonal group
(12-2) was found by Cayley (J. Reine. Angew. Math. 32 (1846), 119-123). It is known that Cayley
maps exist for SL2, SL3, SOn, Spn, and PGLn, and that they do not exist for SLn, n� 4, or G2. See
Lemire, Popov, Reichstein, J. Amer. Math. Soc. 19 (2006), no. 4, 921–967 (also mo101322). The
Cayley map, when it exists, gives an explicit realization of the group as a rational variety. See also:
Borovoi, Mikhail; Kunyavskiı̆, Boris; Lemire, Nicole; Reichstein, Zinovy Stably Cayley groups in
characteristic zero. Int. Math. Res. Not. IMRN 2014, no. 19, 5340–5397.

http://mathoverflow.net/questions/101322


CHAPTER 13
Finite group schemes

In this chapter we study finite algebraic groups. As a finite algebraic group is étale unless
the base field has characteristic p ¤ 0 and p divides the order of the group, this is largely a
study of p-phenomena in characteristic p. Those not interested in such things can skip the
chapter.

Recall that “algebraic group” is short for “algebraic group scheme”. Thus “finite
algebraic group” is short for “finite algebraic group scheme”; but finite implies algebraic,
and so we prefer to write this as “finite group scheme”.

a. Generalities

PROPOSITION 13.1. The following conditions on a finitely generated k-algebra A are
equivalent: (a) A is artinian; (b) A has Krull dimension zero; (c) A is finite; (d) spm.A/ is
discrete (in which case it is finite).

PROOF. (a),(b). A noetherian ring is artinian if and only if it has dimension zero (CA
16.6).

(b),(c). According to the Noether normalization theorem, there exist algebraically
independent elements x1; : : : ;xr in A such that A is finite over kŒx1; : : : ;xr �. Clearly

A is finite over k ” r D 0 ” A has Krull dimension 0:

(d))(b). Let m be such that fmg is open in spm.A/. There exists an f 2 A such that
spm.Af /D fmg. Now Af is again a finitely generated k-algebra, and so every prime ideal
in Af is an intersection of maximal ideals (CA 13.10). But Af has only one maximal ideal
m, and so Af has no prime ideals except m. It follows that no prime ideal of A is properly
contained in m. Since this is true of all maximal ideals in A, it follows that A has dimension
zero.

(a))(d). Because A is artinian, it has only finitely many maximal ideals m1; : : : ;mr ,
and some product mn11 � � �m

nr
r D 0 (CA �16). Now the Chinese remainder theorem shows

that
A' A=mn11 � � � ��A=m

nr
r

and so

spm.A/D
G

spm.A=mnii /D
G
fmig (disjoint union of open one-point sets).

Therefore, spm.A/ is discrete. 2

203
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PROPOSITION 13.2. The following conditions on an algebraic group G over k are equiv-
alent: (a) G is affine and O.G/ is artinian; (b) G has dimension zero; (c) the morphism
G! Spmk is finite; (d) jGj is discrete (in which case it is finite).

PROOF. The implications (a))(b))(c))(d) follow immediately from (13.1). It remains
to prove (d))(a). Assume that jGj is discrete, and write G as a finite union of open affines,
G D

S
i Ui . Then Ui is discrete, and so Ui D Spm.Ai / with Ai artinian. It follows that jGj

is a finite of open-closed one-point subsets ui , and that OG.ui / is a local artinian ring Ai .
Now G D Spm.

Q
Ai /, which is affine with coordinate ring the artinian ring

Q
Ai . 2

DEFINITION 13.3. An algebraic group G over k is finite if G is finite as a scheme over k.
This means that G is affine and O.G/ is a finite k-algebra. The dimension of O.G/ as a
k-vector space is called the order o.G/ of G.

PROPOSITION 13.4. Let G be a finite group scheme over k. There is a unique exact
sequence

e!Gı!G! �0.G/! e

with Gı connected and �0.G/ étale. If k is perfect, then this sequence splits, and realizes G
is a semidirect product GıÌ�0.G/.

PROOF. For the connected-étale exact sequence, see Proposition 5.51. If k is perfect, then
Gred is a subgroup scheme of G (1.25), and the map G! �0.G/ induces an isomorphism
Gred! �0.G/ (5.53). 2

EXAMPLE 13.5. Let k be a nonperfect field of characteristic p, and let c 2 kXkp. Let

G D
Gp�1

iD0
Gi ; Gi D Spm.kŒT �=.T p� ci //:

For a 2Gi .R/ and b 2Gj .R/, define

ab D

�
ab 2GiCj .R/ if iCj < p
ab=c 2GiCj�p.R/ if iCj � p:

This makes G.R/ into a group, and G into a finite algebraic group. Its identity component is
G0 D �p, and there is an exact sequence

0! �p!G! .Z=pZ/k! 0:

This is nonsplit, because Gi ' Spm.kŒc1=p�/ if i ¤ 0 and G0 ' Spm.k/.

EXAMPLE 13.6. Let k and c be as in (13.5). Let

G D
Gp�1

iD0
Gi ; Gi D Spm.kŒT �=.T p� ic//:

For a 2Gi .R/ and b 2Gj .R/, define

ab D

�
aCb 2GiCj .R/ if iCj < p
aCb� c 2GiCj�p.R/ if iCj � p:

This makes G.R/ into a group, and G into a finite algebraic group. Its identity component is
G0 D p̨, and there is a nonsplit exact sequence

0! p̨!G! .Z=pZ/k! 0:
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PROPOSITION 13.7. A finite group scheme G over k is étale if k has characteristic zero, or
if it has characteristic p ¤ 0 and p does not divide o.G/.

PROOF. When k has characteristic zero, Cartier’s theorem (3.38) shows that G is smooth,
and hence étale. Let k have characteristic p ¤ 0. If p does not divide o.G/, then the
Frobenius map F rG WG ! G.p

r / is injective, and its image G.p
r / is smooth for r large

(3.46). 2

In other words, a finite group scheme G over k is étale if o.G/ is invertible in k.

LOCALLY FREE FINITE GROUP SCHEMES OVER A BASE SCHEME

The most important finite group schemes over a ring (or base scheme) are those that are
locally free, whose definition we now review.

13.8. Let R0 be a commutative ring, and let M be an R0-module. Recall (7.12) that we
say that M is locally free of finite rank if there exists a finite family .fi /i2I of elements of
R0 generating the unit ideal R0 and such that, for all i 2 I , the R0fi -module Mfi is free of
finite rank. This is equivalent to M being finitely presented and flat (CA 12.5). Therefore,
when R0 is noetherian, an R0-module is locally free of finite rank if and only if it is finite
and flat.

We say that an R0-algebra is locally free of finite rank if it is so an R0-module. A finite
R0-algebra A is locally free of finite rank if and only if it is locally free (equivalently, flat
when R0 is noetherian).

13.9. Let S be a scheme. Recall that a morphism of schemes 'WX ! S is finite if, for all
open affines U of S , '�1.U / is an open affine of X and OX .'�1.U // is a finite OS .U /-
algebra. It suffices to check the condition for enough U to cover S . A group scheme G over
S is finite (resp. locally free and finite) if it is finite (resp. locally free and finite) as a scheme
over S .

13.10. Let G be a finite group scheme over S . If S is locally noetherian, then G is locally
free if and only if it is flat. We say that G is locally free of finite order r over S if G is of the
form Spec.A/ where A is a sheaf of OS -algebras that is locally free of constant rank r . If
S is locally noetherian and connected, then G is of finite order over S (for some r) if and
only if it is finite and flat.

13.11. Let R0 be a noetherian ring. To give a locally free finite group scheme over
R0 is the same as giving a flat finite R0-algebra A together with an R0-homomorphism
�WA! A˝R0 A such that .A;�/ is a Hopf algebra over R0.

b. Etale group schemes

13.12. Recall that a k-algebra A is diagonalizable if it is isomorphic to the product algebra
kn for some n 2 N, and it is étale if k0˝A is diagonalizable for some field k0 containing k.
In particular, an étale k-algebra is finite.

13.13. The following conditions on a finite k-algebra A are equivalent: (a) A is étale;
(b) A is a product of separable field extensions of k; (c) k0˝A is reduced for all fields k0

containing k; (d) ksep˝A is diagonalizable. See Chapter 8 of my notes Fields and Galois
Theory.
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13.14. The quotient kŒT �=.f .T // of kŒT � by the ideal generated by a polynomial f is
étale if and only if f is separable, i.e., has only simple roots in kal. Every étale k-algebra is
a finite product of such quotients.

13.15. The following conditions on a scheme X finite over Spm.k/ are equivalent: (a) the
k-algebra O.X/ is étale (recall that X is affine); (b) X is smooth; (c) X is geometrically
reduced; (d) X is an algebraic variety. This is an immediate consequence of (13.13).

13.16. A scheme finite over Spm.k/ satisfying the equivalent conditions of (13.15) is said
to be étale.

13.17. Choose a separable closure ksep of k, and let � D Gal.ksep=k). The functor
X X.ksep/ is an equivalence from the category of étale schemes over k to the category
of finite discrete � -sets. By a discrete � -set we mean a set X equipped with an action
� �X ! X of � that is continuous relative to the Krull topology on � and the discrete
topology on X . An action of � on a finite discrete set is continuous if and only if it factors
through Gal.K=k/ for some finite Galois extension K of k contained in ksep. See Chapter 8
of my notes Fields and Galois Theory.

13.18. A group scheme .G;m/ over k is said to be étale if the scheme G is étale over k.
Thus, an étale group scheme over k is just a group variety of dimension zero.

13.19. A group in the category of finite discrete � -sets is a finite group together with a
continuous action of � by group homomorphisms (i.e., for each  2 � , the map x 7! x is
a group homomorphism). Thus (13.17) implies the following statement.

The functor G G.ksep/ is an equivalence from the category of étale group
schemes over k to the category of (discrete) finite groups endowed with a
continuous action of � by group homomorphisms.

EXAMPLES

13.20. Let X be a group of order 1 or 2. Then Aut.X/D 1, and so there is exactly one
étale group scheme of order 1 and one of order 2 over any field k (up to isomorphism).

13.21. LetX be a group of order 3. Such a group is cyclic and Aut.X/DZ=2Z. Therefore
the étale group schemes of order 3 over k correspond to homomorphisms � ! Z=2Z
factoring through Gal.K=k/ for some finite Galois extension K of k. A separable quadratic
extension K of k defines such a homomorphism, namely,

� 7! � jKW� ! Gal.K=k/' Z=2Z

and all nontrivial such homomorphisms arise in this way. Thus, up to isomorphism, there is
exactly one étale group scheme GK of order 3 over k for each separable quadratic extension
K of k, plus the constant group G0. For G0, G0.k/ has order 3. For GK , GK.k/ has order
1 but GK.K/ has order 3. There are infinitely many distinct quadratic extensions of Q, for
example, QŒ

p
�1�, QŒ

p
2�, QŒ

p
3�, : : :, QŒpp�, : : :. As �3.Q/D 1 but �3.QŒ 3

p
1�/D 3, �3

must be the group corresponding to QŒ 3
p
1�.
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REMARKS

13.22. For an étale group scheme G, the order of G is the order of the (abstract) group
G.ksep/.

13.23. Let K be a subfield of ksep containing k. Then K D .ksep/Gal.K=k/, and it follows
that

G.K/DG.ksep/Gal.K=k/:

13.24. Not every zero-dimensional algebraic variety X over a field k can be made into an
group scheme. For example, it must have a k-point. Beyond that, it must be possible to endow
the set X.ksep/ with a group structure for which Gal.ksep=k/ acts by group homomorphisms.
In such an action, an orbit consists of elements of the same order.

Consider the scheme X D Spm.k�k0/ with k0=k a field extension of degree 5. The
action of Gal.k0=k/ on X.ksep/ has only two orbits, but a group of order 6 has elements of
order 1, 2, and 3, and so there must be at least three orbits for in any group action by group
homomorphisms.

c. Finite group schemes of order n are killed by n

Let G be a finite (abstract) group of order n. Lagrange’s theorem says that every subgroup
of G has order dividing n. When applied to the subgroup generated by an element x of G, it
implies that xn D e. Both statements extend to finite group schemes.

PROPOSITION 13.25. Let G be a locally free finite group scheme of rank o.G/ over a ring
R0, and let H be a locally free finite subgroup scheme of G of rank o.H/. Then

o.G/D o.H/ � rank.G=H/:

In particular, the order of H divides the order of G. If H is normal, then

o.G/D o.H/ �o.G=H/:

PROOF. The morphism G ! G=H is locally free of rank o.H/ (7.26), and the ranks in
G!G=H ! Spm.R0/ multiply. 2

Consider the algebraic group G D GLn over a field k, and let

O.GLn/D kŒT11; : : : ;Tnn;1=det�:

Let U D .Tij / (n�n matrix with coefficients in O.G/). The augmentation ideal IG of G is
generated by the entries of the matrix

U �In D .Tij � ıij /.

Let Œp�WO.G/! O.G/ denote the homomorphism corresponding to the pth power map
x 7! xpWG!G. Then Œp�U D U p, and so

Œp�.U �In/D U
p
�In D .U �In/

p

— this matrix has .i;j /th entry .Tij � ıij /p. Therefore

Œp�IGLn � I
p
GLn . (86)
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PROPOSITION 13.26. Let G be a finite group scheme over k of order n. Then, for all
k-algebras R, the order of every element of G.R/ divides n. In other words, the nth power
map nG WG!G is trivial: nG D 1G .

PROOF. If G is étale, the statement is obvious (13.22). Also, if the statement is true for N
and Q, then it is true for any every extension G of Q by N , because o.G/D o.N / �o.Q/
and the sequence

0!N.R/!G.R/!Q.R/

is exact. Thus, we may suppose that G is connected, and hence that nD pm for some m
(13.4, 13.25).

The regular representation realizes G as a closed subgroup scheme of GLn (4.8). There-
fore we have a surjective homomorphism of Hopf algebras, O.GLn/!O.G/. This maps
the augmentation ideal of GLn onto that of O.G/, and we can deduce from (86) that

Œp�IG � I
p
G

where Œp� now denotes the homomorphism O.G/!O.G/ corresponding to pG WG!G.
On iterating, we find that

Œpm�IG � I
pm

G :

But in an artinian local ring of length pm with maximal ideal I , one has Ip
m

D 0. Hence
Œpm�IG D 0, and so Œpm�f D f .1/D Œ1�f , all f 2O.G/, as claimed. 2

COROLLARY 13.27. Let G be a locally free finite group scheme of order n over a reduced
ring R0. Then nG D 1G .

PROOF. The equalizer of the homomorphisms nG ; 1G WG� G is a closed subscheme Z
of G. As R0 is reduced, R0p is reduced (hence a field) if p is minimal; moreover, the map
R0!

Q
p minimalR0p is injective (because R0!

Q
p minimalR0=p is injective). Consider the

diagram

O.G/
Y

p
O.G/p

O.Z/
Y

p
O.Z/p

a

b (p runs over the minimal primes of R0).

The map a is injective because O.G/ is flat over R0, and Proposition 13.26 applied to
GR0p shows that b is an isomorphism. It follows that O.G/!O.Z/ is injective, hence an
isomorphism. 2

ASIDE 13.28. Proposition 13.26 holds for locally free finite group schemes over reduced schemes
S (13.27), and for commutative locally free finite group schemes over arbitrary base schemes (Tate
and Oort 1970, p.4).

NOTES. The proof of (13.26) follows that in Tate 1997, p.142. See also SGA 3, VIIA, 8.5.1, p.503;
8.5.2, p.505.
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d. Cartier duality

For a k-vector space V , we let V 0 denote the dual vector space. If V and W are finite-
dimensional, then the natural homomorphisms V ! V 00 and V 0˝W 0 ! .V ˝W /0 are
isomorphisms. Moreover, k0 D k.

Let G be a finite algebraic group, and let ADO.G/. We have k-linear maps�
mWA˝A! A

eWk! A

�
�WA! A˝A

�WA! k

defining the algebra and co-algebra structures respectively. On passing to the linear duals,
we obtain k-linear maps�

m0WA0! A0˝A0

e0WA0! k

�
�0WA0˝A0! A0

�0Wk! A0

The duals of the diagrams (20) show that .�0; �0/ defines an algebra structure on A0 (not
necessarily commutative), and one sees that (dually) .m0; e0/ defines a co-algebra structure
on A0. The algebra .A0;�0; �0/ is commutative if and only if G is commutative.

LEMMA 13.29. If G is commutative, then the system .A0;�0; �0;m0; e0/ is a Hopf algebra.

PROOF. More precisely, we show that if S is an inversion for O.G/, then S 0 is an inversion
for O.G/. We have to show that S 0 is an algebra homomorphism, and for this we have to
check that �0 ı .S 0˝S 0/ D S 0 ı�0, or, equivalently, that � ıS D .S ˝S/ ı�. In other
words, we have to check that the diagram at left below commutes. This corresponds (under
a category equivalence) to the diagram at right, which commutes precisely because G is
commutative (the inverse of a product of two elements is the product of the inverses of the
elements):

O.G/ O.G/˝O.G/ G G�G

O.G/ O.G/˝O.G/ G G�G:

S

�

S˝S

m

�

inv

m

inv�inv

2

Thus, the category of commutative finite group schemes has an autoduality:

O.G/D .A;m;e;�;�/$ .A0;�0; �0;m0; e0/DO.G0/:

The algebraic group G0 is called the Cartier dual of G. The functor G G0 is a contravari-
ant equivalence from the category of commutative algebraic groups over k to itself, and
.G0/0 'G.

We now describe the functorR G0.R/. For a k-algebraR, letGR denote the functor of
R-algebras R0 G.R0/, and let Hom.G;Gm/.R/ denote the set of natural transformations
uWGR!GmR of group-valued functors. This becomes a group under the multiplication

.u1 �u2/.g/D u1.g/ �u2.g/; g 2G.R0/; R0 an R-algebra.

In this way,
R Hom.G;Gm/.R/

becomes a functor from k-algebras to groups.
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THEOREM 13.30. There is a canonical isomorphism

G0 ' Hom.G;Gm/

of functors from k-algebras to groups.

PROOF. Let R be a k-algebra. We have

G.R/D HomR-algebra.O.G/;R/ ,! HomR-linear.O.G/;R/DO.G0/R: (87)

The multiplication in O.G/ corresponds to comultiplication in O.G0/, from which it follows
that the image of (87) consists of the group-like elements in O.G0/R. On the other hand, we
know that Hom.G0R;Gm/ also consists of the group-like elements in O.G0/R (p.75). Thus,

G.R/' Hom.G0;Gm/.R/:

This isomorphism is natural in R, and so we have shown that G ' Hom.G0;Gm/. To obtain
the required isomorphism, replace G with G0 and use that .G0/0 'G. 2

From Theorem 13.30 we obtain a natural bimultiplicative morphism of schemes

G�G0!Gm

that induces isomorphisms �
G! Hom.G0;Gm/
G0! Hom.G;Gm/:

This is called the Cartier pairing.

EXAMPLE 13.31. The action

.i;�/ 7! �i WZ=nZ��n!Gm

defines a isomorphisms of algebraic groups .�
Z=nZ! Hom.�n;Gm/
�n! Hom.Z=nZ;Gm/:

EXAMPLE 13.32. Let G D p̨ , so that O.G/D kŒX�=.Xp/D kŒx�. Let 1;y;y2; : : : ;yp�1
be the basis of O.G0/DO.G/0 dual to 1;x; : : : ;xp�1. Then yi D i Šyi ; in particular, yp D 0.
In fact, G0 ' p̨, and the pairing p̨ � p̨!Gm is

a;b 7! exp.ab/W p̨.R/� p̨.R/!R�

where

exp.ab/D 1C
ab

1Š
C
.ab/2

2Š
C�� �C

.ab/p�1

.p�1/Š
.

ASIDE 13.33. LetG commutative algebraic group that is either finite or of multiplicative type. Then

H 1.k;G/' Ext1.G0;Gm/

where G0 is the Cartier dual of G if G is finite and .� /k if G DD.� /. (Waterhouse 1971).

ASIDE 13.34. Everything in this section holds without change for locally free finite group schemes
over a ring (or scheme).
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e. Finite group schemes of order p

LEMMA 13.35. Let .A;�/ be a finite cocommutative Hopf algebra over k, and let .A0;�0/
be its Cartier dual. Let d WA! k be a derivation, and regard d as an element of A0. Then

�0.d/D d ˝1C1˝d:

PROOF. By definition, �0.d/D d ım, and so, for x;y 2 A,

�0.d/.x˝y/D d.xy/D xd.y/Cyd.x/D .d ˝1C1˝d/.x˝y/: 2

PROPOSITION 13.36. Let G be a finite group scheme of order p over an algebraically
closed field k. Either G is the constant group scheme .Z=pZ/k , or k has characteristic p
and G D �p or p̨ . In particular, G is commutative and the k-algebra O.G/ is generated by
a single element.

PROOF. Recall (13.4, 13.25) that we have an exact sequence

e!Gı!G! �0.G/! e

with Gı connected and �0.G/ étale, and that o.G/D o.Gı/ �o.�0.G//. As o.G/ is prime,
Gı is either e or all of G and, accordingly, G is either étale or connected. If G is étale,
then it is constant because k is algebraically closed, hence it is isomorphic to .Z=pZ/k ,
and O.G/, the k-algebra consisting of all k-valued functions on Z=pZ, is generated by any
function that takes distinct values at the points of Z=pZ.

Suppose that G D Spm.A/ is connected, i.e., the k-algebra A is a local artin ring. Its
augmentation ideal I � A is nilpotent. By Nakayama’s lemma I ¤ I 2, hence there exists a
non-zero k-derivation d WA! k. This means that the element d 2 I 0 � A0 has the property
�A0.d/D d˝1C1˝d (13.35). Thus kŒd ��A0 is a k-subbialgebra of A0, and as kŒd � is a
commutative ring, we obtain a surjective k-bialgebra homomorphism A00'A� .kŒd �/0; as
the order p of G is prime, this implies that the rank of kŒd � equals p, and hence kŒd �D A0.
As before we conclude that G0 D Spm.A0/ is either étale or connected. If G0 is étale this
means that G0 � .Z=pZ/k , and thus G � �p. As G was supposed to be connected this
implies char.k/D p. If G0 is connected, d is nilpotent, and, as kŒd � is of rank p, we must
have dp�1 ¤ 0 and dp D 0; as �A0 is a ring homomorphism this implies that p D 0 in
k, hence char.k/ D p; moreover we already know that �A0.d/ D d ˝ 1C 1˝ d , hence
G0 � p̨ , and thus G � p̨ , which proves the result. Note that the last part of the proof could
have been given using p-Lie algebras (cf. SGA 3, VIIA, 7). 2

REMARK 13.37. There exist noncommutative finite algebraic group of order p2 (see 2.22,
13.5, 13.6).

NOTES. The proposition and proof are copied almost verbatim from Tate and Oort 1970.

f. Derivations of Hopf algebras

Let R0 be a commutative ring.

13.38. Let A be an R0-algebra, and let M be an A-module. Recall (12.22) that an R0-
derivation DWA!M is an R0-linear map such that

D.ab/D aD.b/CbD.a/:
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We say that an R0-derivation d WA!˝ is universal if every R0-derivation DWA!M is
of the form �ıd for a unique A-linear map �W˝!M :

�$ �ıd WHomA-linear.˝;M/' DerR0.A;M/:

Such a pair .˝;d/ is uniquely determined up to a unique isomorphism.

13.39. Let B be an R0-algebra, and let N be a B-module. We can make the direct sum
B˚N into a commutative B-algebra with N 2 D 0 by setting

.b;n/.b0;n0/D .bb0;bn0Cb0n/:

Let A be an R0-algebra. A homomorphism A! B˚N is a pair .';D/ with ' a homo-
morphism A! B and D an R0-derivation for the A-module structure on N defined by
'.

13.40. More generally, consider a diagram

C

A BD C=J



'

of R0-algebras with J an ideal in C such that J 2 D 0. The action of C on J factors through
B . Write J' for J regarded as an A-module by means of '. Suppose that there exists an
R0-algebra homomorphism 0WA! C making the diagram commute. Let  be another
R0-linear map A! C lifting '. Then  D 0CD with D an R0-linear map A! J , and 
is an R0-algebra homomorphism if and only if D is an R0-derivation A! J' . Thus, the set
of liftings of ' is either empty of a principal homogeneous space under DerR0.A;J'/.

13.41. Let A be an R0-algebra and let �WA!R0 be an R0-algebra homomorphism with
kernel I (so that A' R0˚ I ). Let M be an R0-module, and let M� denote M endowed
with the A-module structure defined by �. Every derivation DWA!M� is zero on R0 and
I 2, and hence defines an R0-linear map I=I 2!M . Every R0-linear map I=I 2!M

arises from a unique derivation, and so

DerR0.A;M�/' HomR0-linear.I=I
2;M/:

Let .A;�/ be a Hopf algebra over R0. Thus, A ' R0˚ I , and we let � WA! I=I 2

denote the map aD .a0;b/ 7! b mod I 2.

THEOREM 13.42. Let .A;�/ be a Hopf algebra over R0. Then

.1˝�/ı�WA! A˝I=I 2

is the universal derivation for A=R0.

We shall deduce this from a more explicit statement. Let M be an A-module. For an
R0-linear map �WI=I 2!M , we define D� D .id;�ı�/ı�:

A
�
�! A˝A

id˝�
���! A˝I=I 2

id˝�
���! A˝M

a˝m7!am
�������!M:

Explicitly, if �.a/D
P
ai ˝a

0
i , then D�.a/D

P
ai ���.a

0
i /.
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PROPOSITION 13.43. The map � 7!D� is an R0-linear isomorphism

HomR0-linear.A;M/! DerR0.A;M/:

PROOF. Let B be an R0-algebra and N an R0-module. Make B˚N into a B-algebra with
N 2 D 0 (see 13.39). Then G.B˚N/ def

D Hom.A;B˚N/ acquires a group structure from
the Hopf algebra structure on A. This can be described as follows:

.';D/.'0;D0/D .' �'0;' �D0C'0 �D/

with 8̂̂<̂
:̂
' �'0 D .';'0/ı� (product in G.B/D Hom.A;B//

' �D0 D .';D0/ı�D

�
A

�
�! A˝A

a˝a0 7!'.a/�D0.a0/
�������������!N

�
'0 �D D .'0;D/ı�:

Let j WB ˚N ! B be the projection map. Then j�WG.B ˚N/! G.B/ projects
G.B˚N/ onto its subgroup G.B/, and so

G.B˚N/DH ÌG.B/; H D Ker.j�/:

Let 'WA! B be an element of G.B/, and write N' for N regarded as an A-module by
means of '. According to (13.39), the fibre j�1� .'/ over ' consists of the pairs .';D/ with
D an R0-derivation A!N' :

j�1� .'/D f.';D/ 2G.B˚N/g ' DerR0.A;N'/:

Let �B WA
�
�!R0! B be the neutral element in G.B/. Then

x 7! .';0/ �xWj�1� .�B/! j�1� .'/

is a bijection. Explicitly, this is the map .�B ;D/ 7! .';' �D/, and so we have a bijection

D 7! .';D/ı�WDerR0.A;N�B /! Der'.A;N'/:

On the other hand (13.41), we have a bijection

� 7! �ı� WHomR-linear.I=I
2;N /! DerR0.A;N�B /:

On composing these maps, and taking B DA, N DM , and ' D idA, we obtain the required
isomorphism. 2

For an A-module M ,

DerR0.A;M/' HomR0-linear.I=I
2;M/' HomA-linear.A˝I=I

2;M/;

which implies (13.42).
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g. Structure of the underlying scheme of a finite group scheme

LEMMA 13.44. Let .A;�/ be a finitely generated Hopf algebra over k, and let I be its
augmentation ideal. Let n� 0 be an integer which is less than the characteristic of k if this is
nonzero. Let x1; : : : ;xr be elements of I forming a basis for the k-vector space I=I 2. Then
the monomials

x
m1
1 � � �x

mr
r ; m1C�� �Cmr D n

form a basis for the k-vector space In=InC1.

The assumption on n is that nŠ¤ 0 in k.

PROOF. Clearly the monomials generate In=InC1, and so it remains to prove that they are
linearly independent modulo InC1.

Let � be the projection AD k˚I ! I=I 2 killing k. Let di WI=I 2! k be the k-linear
map such that di .xj /D ıij (Kronecker delta). According to (13.42), there exists a (unique)
derivation Di WA! k such that

Di .a/D
X
j

aj �di .�.bj //

if �.a/D
P
aj ˝bj . Then Di .xi /D ıij . More generally,

Dmrr D
mr�1
r�1 � � �D

m1
1 .x

m1
1 � � �x

mr
r /Dm1Šm2Š � � �mr Š;

while Dmrr D
mr�1
r�1 � � �D

m1
1 applied to any other monomial of total degree m1C�� �Cmr D n

is zero. According to the assumption on n, the integer on the right is not zero in k. Therefore,
on applying the operators Dmrr D

mr�1
r�1 � � �D

m1
1 to a linear relation among the monomials of

total degree n, we find that the relation is trivial. 2

Recall (2.16) that an algebraic group G is said to have height � 1 if the Frobenius map
FG WG!G.p/ is trivial. This means that ap D 0 for all a 2 I .

PROPOSITION 13.45. Let G be a connected finite group scheme of height 1 over a field k
of characteristic p. Then

O.G/� kŒT1; : : : ;Tn�=.T p1 ; : : : ;T pn / (88)

for some n� 1:

PROOF. Immediate consequence of the lemma. 2

THEOREM 13.46. Let G be a connected finite group scheme over a perfect field k of
characteristic p. Then

O.G/� kŒT1; : : : ;Tn�=.T p
e1

1 ; : : : ;T p
en

n / (89)

for some integers e1; : : : ; en � 1:

PROOF. Let A D O.G/, and let I D IA denote its augmentation ideal. Because G is
connected, I is nilpotent. If xp D 0 for all x 2 I , then G has height 1, and we just proved
the statement (13.45). In the general case, we argue by induction. Because k is perfect,

B
def
D Ap D fap j a 2 Ag
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is a Hopf subalgebra of A (see 3.46). By induction,

B D kŒt1; : : : ; tn�' kŒT1; : : : ;Tn�=.T
q1
1 ; : : : ;T qnn /; qi D power of p:

For each i , choose a yi 2 A with ypi D ti , and choose a set fzj g in A that is maximal with
respect to the requirement that zpj D 0 and that the zj be linearly independent in I=I 2. We
shall complete the proof by showing that the homomorphism�

Yi 7! yi
Zj 7! zj

WC
def
D kŒY1; : : : ;Z1; : : :�=.Y

pq1
1 ; : : : ;Z

p
1 ; : : :/! A

is an isomorphism.
Embed B in C by ti 7! Y

p
i . Then C is a free B-module. By Theorem 3.47, A is

faithfully flat (hence free) over the local ring B . As in (3.47, Step 2), it suffices to show that
the map C=IBC ! A=IBA is an isomorphism. Clearly,

C=IBC ' kŒY1; : : : ;Z1; : : :�=.Y
p
1 ; : : : ;Z

p
1 ; : : :/:

The quotientA=IBA is the Hopf algebra representing the kernel of Spm.A;�/!Spm.Ap;�/
(Section 1.e); which has height 1, and so it also is of the form (88). If a homomorphism
between two algebras of this form is an isomorphism modulo the squares of the maximal
ideals, then it is surjective (Nakayama), and then, by counting dimensions, an isomorphism.
As IBA� I 2A , it remains to show that the elements yj and zj form a basis for IA=I 2A .

Let a be any element of IA, and write ap in IB as a polynomial in the ti . As k is
perfect, we can take the pth root of this to get a polynomial u in the yi with up D ap . Then
.a�u/p D 0, and by maximality of the fzj g, we can express a�umodulo I 2A in terms of the
zj . We have shown that the elements yj and zj span IA=I 2A . Suppose that

P
˛iyiC

P
ǰ zj

lies in I 2A . On raising this to the pth power, we find that the element
P
˛
p
i y

p
i D

P
˛
p
i ti

is in I 2B . But the ti form a basis for IB=I 2B , and so this implies that all ˛i are zero. NowP
ǰ zj is in I 2A , which by definition of the zj implies that all ǰ D 0. This completes the

proof that the elements yj and zj form a basis for IA=I 2A . 2

These results allow us to reprove Cartier’s theorem (3.38) and (13.7).

COROLLARY 13.47. Let G be an algebraic group over a field k.

(a) If k has characteristic zero, then G is smooth.

(b) If k has characteristic p¤ 0 and G is finite of order not divisible by p, then G is étale.

PROOF. (a) We may suppose that k is algebraically closed. Let x be a nilpotent element
of ADO.G/. Certainly x 2 I . Suppose x … I 2. Then x is part of a basis for the k-vector
space I=I 2, and so, for all n � 0, xn is nonzero modulo InC1 (13.44). Hence x is not
nilpotent. Therefore x 2 I 2. Now Lemma 3.35 shows that G is smooth (3.35).

Alternatively, Lemma 13.44 shows that the graded ring grI .A/ is isomorphic to kŒT1; : : : ;Tr �
for r D dimk.I=I 2/. Recall that I is the maximal ideal in A at the neutral element e. When
we localize we get

grI .A/' grme .Ae/� kŒT1; : : : ;Tr �:

This implies that Ae is a regular local ring (Atiyah and Macdonald 1969, 11.22).
(b) If G is connected and finite, then (13.46) shows that its order is a power of p. The

statement now follows from connected-étale exact sequence (13.4) . 2
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�EXAMPLE 13.48. Let k be a nonperfect field of characteristic p, and let c 2 kXkp. The
finite subgroup scheme G of Ga�Ga with

G.R/D f.x;y/ j xp
2

D 0; yp D cxpg

is connected, but O.G/ is not of the form (89) (Waterhouse 1979, p.113).

h. Finite group schemes of height at most one

Let g be a p-Lie algebra over k. Recall that the universal enveloping p-Lie algebra j Wg!
U Œp�.g/ has the following property: every p-Lie algebra homomorphism g! ŒA� with A an
associative k-algebra extends uniquely to a k-algebra homomorphism U Œp�.g/! A. From
this universality we deduce that there is:

(a) a unique homomorphism of k-algebras

�WU Œp�.g/! U Œp�.g/�U Œp�.g/

such that �.j.x//D 1˝j.x/Cj.x/˝1 for x 2 g;

(b) a unique homomorphism of k-algebras �WU Œp�.g/! k such that � ıj D 0I

(c) a unique homomorphism S WU Œp�.g/!U Œp�.g/ such that S.j.x//D�j.x/ for x 2 g.

Let u 2 U Œp�.g/, and write �uD
P
ui ˝vi . ThenX

ui ˝vi D
X

vi ˝ui ;
X

ui ˝�vi D
X

�ui ˝vi ;X
�.ui /vi D u;

X
S.ui /vi D ".u/:

It suffices indeed to check these equalities when uD 1 or j.x/, x 2 g, in which case they
are obvious.

PROPOSITION 13.49. When g is commutative, the pair (U Œp�.g/;�/ is a Hopf algebra with
� and S as co-identity and inversion.

PROOF. This is exactly what the above identities say. 2

We now consider a general finite-dimensional p-Lie algebra g over k. Let U D U Œp�.g/.
For a k-algebra R, we let �R and � denote the maps

U ˝R
�˝R
�! U ˝U ˝R

'
�! .U ˝R/˝R .U ˝R/

U ˝R
�˝R
�! k˝R'R:

PROPOSITION 13.50. Let g be a p-Lie algebra. The functor

R G.g/.R/
def
D

n
x 2

�
U Œp�.g/˝R

��
j�Rx D x˝x; �Rx D 1

o
is a finite group scheme of height � 1.
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PROOF. By definition, G.g/.R/ is a monoid; it is a group because x 2G.g/.R/ implies that
S.x/x D �.x/D 1. Let

AD Homk-linear.U
Œp�.g/;k/:

When equipped with the multiplication

A˝A' .U ˝U/_
�_

�! U_ D A;

it becomes an associative commutative k-algebra with � as its identity element. Moreover,
as U Œp�.g/ is finite dimensional (12.41), there is a canonical isomorphism

i WU Œp�.g/˝R' Homk-linear.A;R/:

For x 2 U Œp�.g/˝R, one checks that i.x/ is a homomorphism of k-algebras if and only if
x 2G.g/.R/. Consequently, i induces an isomorphism G.g/! Spm.A/, and so G.g/ is a
finite scheme over k. Finally, the coproduct �AWA! A˝A defined by the group structure
on G.g/ is the dual of the multiplication map U ˝U ! U (apply (19), p.56). See DG II, �7,
3.8, p.279, for more details. 2

PROPOSITION 13.51. The functor g G.g/ is an equivalence from the category of finite-
dimensional p-Lie algebras over k to the category of algebraic groups over k of height
� 1.

PROOF. Omitted for the moment (DG II, �7, 4.2, p.282). 2

In particular, every algebraic group G of height � 1 is isomorphic to G.g/ for some
p-Lie algebra g.

i. The Frobenius and Verschiebung morphisms

Let X be a scheme over Fp. The absolute Frobenius morphism �X WX ! X acts as the
identity map on jX j and as the map f 7! f pWOX .U /!OX .U / on the sections over every
open subset U of X . For all morphisms 'WX ! Y of schemes over Fp,

�Y ı' D ' ı�X

commutes, i.e., � is an endomorphism of the identity functor.
Now let k be a field of characteristic p. The morphism �Spm.k/WSpm.k/! Spm.k/

corresponds to the homomorphism a 7! apWk! k. We write X  X .p/, ' '.p/ for
base change with respect to �Spm.k/. If .G;m/ is an algebraic group over k, then so also is
.G.p/;m.p//.

For a scheme X over k, the relative Frobenius morphism FX WX !X .p/ is defined by
the diagram

X

X X .p/

Spm.k/ Spm.k/
�Spm.k/

�X
FX

in which the square is cartesian (cf. 2.16). The assignment X 7! FX has the following
properties.
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(a) Functoriality: for all morphisms 'WX ! Y of schemes over k,

FY ı' D '
.p/
ıFX :

(b) Compatibility with products: FX�Y is the composite of FX �FY with the canonical
isomorphism X .p/�Y .p/ ' .X �Y /.p/.

(c) Base change: the formation of FX commutes with extension of the base field.
In particular, if .G;m/ is an algebraic group over k, then

G�G G

G.p/�G.p/ G.p/

m

FG�G FG

m.p/

commutes, and so FG WG!G.p/ is a homomorphism.
For example, if X is a closed subvariety of An defined by polynomials fi .T1; : : : ;Tn/DP
a.i/T

.i/, then X .p/ is the closed subvariety of An defined by the polynomials f .p/i DP
a
p

.i/
T .i/ and �X WX !X .p/ sends a point .c1; : : : ; cn/ to .cp1 ; : : : ; c

p
n /.

PROPOSITION 13.52. An algebraic group G is smooth if and only if the Frobenius map
FG WG!G.p/ is faithfully flat.

PROOF. In general, a reduced finitely generated k-algebra A is geometrically reduced if
and only if A˝k1=p is reduced. On the other hand, FG is faithfully flat if and only if the
corresponding map A.p/! A is injective. To complete the proof, compare A˝k1=p with
A.p/. 2

Let G be a commutative finite group scheme over k. Then FG WG! G.p/ induces a
homomorphism VG W.G

.p//0 ' .G0/.p/!G
0

on the Cartier dual. This is the Verschiebung
(shift) morphism. We shall need another description of VG , but first we give another
description of FG .

Let V be a vector space over k. The symmetric group Sp acts on
Np

V by

�.v1˝�� �˝vp/D v�.1/˝�� �˝v�.p/;

and the Symp V is the greatest quotient of
Np

V on which Sp acts trivially: Symp V D
.V ˝p/Sp . Now let G be an algebraic group over k, and let ADO.G/. The action of FG
on A is the composite of the k-linear maps on the top row of the following diagram:

x �ap Œx.a˝�� �˝a/� a˝x

A Symp.A/ A˝k;f k

A˝p

quotientmultiplication

.f .a/D ap/

If A is finite, then we can form the above diagram for the dual A0 of A, and take its dual, to
get a diagram:

A .A˝p/Sp A˝k;f k

A˝p

�A

inclusioncomultiplication
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Here �A is the unique k-linear map sending x � .a˝�� �˝a/ to a˝x. In fact, it is easy to
see that this diagram exists for any A.

DEFINITION 13.53. For an algebraic group G over a field k, the Verschiebung morphism1

is the morphism VG WG
.p/!G corresponding to the homomorphism A˝k;f k! A in the

above diagram.

The assignment G 7! VG has the following properties.

(a) Functoriality: for all homomorphisms 'WG!H of schemes over k,

VH ı'
.p/
D ' ıVG :

(b) Compatibility with products: VG�H is the composite of VG �VH with the canonical
isomorphism G.p/�H .p/ ' .G�H/.p/.

(c) Base change: the formation of VG commutes with extension of the base field.

PROPOSITION 13.54. Let G be a commutative group scheme over k. Then:

(a) VG ıFG D p � idG ,

(b) FG ıVG D p � idG.p/ :

PROOF. (a) Let ADO.G/. By construction, FG and VG correspond to the maps fA and
vA in the following diagram:

A .A˝p/Sp A˝k;� k

A˝p A

�A

inclusion fA

multiplication

comultiplication

vA

The square at right commutes. In terms of the group schemes, the diagram becomes

G G.p/

G� � � ��G G

FG

diagonal

multiplication

VG

Hence
VG ıFG D .multiplication/ı .diagonal/D p � idG

(b) Because of the functoriality of FG ;

FG ıVG D .VG/
.p/
ıFG.p/ :

But .VG/.p/ D VG.p/ because VG commutes with base change, and so the right hand side
equals VG.p/ ıFG.p/ , which (a) shows to p � idG.p/ : 2

1“Verschiebung” means “shift”. Its name is perhaps explained by (90). The French usually translate it to
“décalage”. The notation VG is universal.
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COROLLARY 13.55. A smooth commutative group scheme G has exponent p if and only
if VG D 0.

PROOF. If VG D 0, then p � idG D 0 because p � idG D VG ıFG . Conversely, if G is smooth
and p � idG D 0, then VG D 0 because FG is faithfully flat (13.52). 2

j. The Witt schemes Wn

Fix a prime number p. Let T0;T1; : : :be a sequence of symbols, and define (Witt) polynomials

w0 D T0

w1 D T
p
0 CpT1

� � �

wn D T
pn

0 CpT
p�1
1 C�� �CpnTn

� � �

These are polynomials with coefficients in Z. If we invert p, then we can express that Ti as
polynomials in the wi ,

T0 D w0; T1 D p
�1.w1�w

p
0 /; : : :

Let U0;U1; : : : be a second sequence of symbols.

PROPOSITION 13.56. There exist unique polyonomials Si ;Pi 2 ZŒT0;T1; : : : ;U0;U1; : : :�,
i D 0;1; : : : , such that

wn.S0; : : : ;Sn; : : :/D wn.T0; : : :/Cwn.U0; : : :/

wn.P0; : : : ;Pn; : : :/D wn.T0; : : :/ �wn.U0; : : :/

for all n� 0.

PROOF. Serre 1962, II, �6, Thm 5. 2

For example,

S0.a;b/D a0Cb0 S1.a;b/D a1Cb1C
a
p
0 Cb

p
0 � .a0Cb0/

p

p

P0.a;b/D a0 �b0 P1.a;b/D b
p
0 a1Cb1a

p
0 Cpa1b1:

PROPOSITION 13.57. Let R be a commutative ring. For n� 0, the rules

aCb D .S0.a;b/; : : : ;Sn.a;b//

a �b D .P0.a;b/; : : : ;Pn.a;b//:

define the structure of a commutative ring on RnC1 (we denote this ring by Wn.R/).

PROOF. From the definition of the polynomials Si and Pi , one sees that the map

a 7! .w0.a/; : : : ;wn.a//WWn.R/!RnC1
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is a homomorphism. If p is invertible in R, then the map is a bijection, which proves the
proposition for such R.

BecauseWn is a functor, it suffices to prove the proposition forRDZŒT0; : : :�, and hence
for any ring containing ZŒT0; : : :�. But ZŒT0; : : :� can be embedded into C, and we know the
proposition for RD C. 2

The ring Wn.R/ is called the ring of Witt vectors of length n with coefficients in R. For
example,

Wn.Fp/' Z=pnC1Z.

Clearly, R .Wn.R/;C/ is an algebraic group scheme over Z. For example, W0 DGa.
We now fix a base field k of characteristic p, and regard Wn as an algebraic group over

k. The map
V WWn.R/!WnC1.R/; .a0; : : : ;an/ 7! .0;a0; : : : ;an/ (90)

is additive. This can be proved by the same argument as Proposition 13.57. Thus, we obtain
a homomorphism of algebraic groups

V WWn!WnC1.

PROPOSITION 13.58. For all n;r � 0, the sequence

0!Wn
V r

�!WnCr
truncate
�! Wr ! 0

is exact.

PROOF. In fact, for all k-algebras R, the sequence

0!Wn.R/
V r

�!WnCr.R/
truncate
�! Wr.R/! 0

is obviously exact. 2

As Wn is defined over Fp � k, we have W .p/
n 'Wn. The Frobenius morphism Wn!

W
.p/
n 'Wn acts on Wn.R/ as .a0; : : : ;an/ 7! .a

p
0 ; : : : ;a

p
n / and the Verschiebung morphism

is the composite of the morphisms

Wn
V
�!WnC1

truncate
�! Wn.

In this case, it is easy to verify directly that VF D p D FV . In particular, VGa D 0.

k. Commutative group schemes over a perfect field

Let k be a perfect field of characteristic p. Finite group schemes over k of order prime to
p are étale (13.7), and so are classified in terms of the Galois group of k (13.19). In this
section, we explain the classification of commutative finite group schemes over k of order a
power of p (which we call finite algebraic p-groups).

Let W DW.k/ be the ring of Witt vectors with entries in k,

W.k/
def
D lim
 �

Wn.k/:

Then W is a complete discrete valuation ring with maximal ideal generated by p D p1W
and residue field k. For example, if k D Fp, then W D Zp. The Frobenius automorphism
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� of W is the unique automorphism such that �a � ap .mod p/. The Dieudonné ring
D DW� ŒF;V � is defined to be the W -algebra of noncommutative polynomials in F and V
over W , subject to the relations (c 2W ):

F � c D �c �F I

�c �V D V � cI

FV D p D VF:

Thus, to give a D-module amounts to giving a W -module M together with endomorphisms
F and V of M satisfying the following conditions (c 2W , m 2M ):

F.c �m/D �c �Fm

V.�c �m/D c �Vm

FV D p � idM D VF:

Such a module is called a Dieudonné module. We say that M is finitely generated (resp.
finite) if it is finitely generated as a W -module.

For an algebraic group G over k, we define

M.G/D lim
�!
n

Hom.G;Wn/:

THEOREM 13.59. The functor M is a contravariant equivalence from the category of com-
mutative unipotent algebraic groups over k to the category of finitely generated Dieudonné
modules killed by a power of V . Such an algebraic group G is finite if and only if M.G/ is
of finite length, in which case the order of G is the length of M.G/.

PROOF. For algebraic groups killed by V , this is a special case of (13.51). See DG V, �1,
4.3, p.552 for the proof. 2

THEOREM 13.60. Let G be a commutative finite group scheme of p-power order over k.
Then G has a unique decomposition

G DGec �Gcc �Gce

where Gec (resp. Gcc; Gce) is étale with connected dual (resp. connected with connected
dual; connected with etale dual).

PROOF. We know (13.4) thatG can be written uniquely asG DGc�Ge withGc connected
and Ge étale. Now .Gc/

0 D .Gc/
0
c � .Gc/

0
e , and so Gc D .Gc/00 DGccCGce . On the other

hand, .Ge/0 is connected, and so .Ge/0 DGec : 2

We want to extend the functor M to all finite group schemes over k killed by a power of
p. For G DGce, we define

M.G/DM.G0/0

where the inner prime denotes the Cartier dual, and the outer 0 denotes dual as a Dieudonné
module (i.e., .M;F;V /0 D .M 0;F 0;V 0/ with M 0 D HomW -linear.M;W / and F 0 and V 0 the
maps induced by V and F ).
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THEOREM 13.61. There is a contravariant equivalence G M.G/ from the category of
commutative finite algebraic p-groups to the category of triples Dieudonné modules of
finite length. The order of G is plength.M.G//. For any perfect field k0 containing k, there is
functorial isomorphism

M.Gk0/'W.k
0/˝W.k/M.G/:

PROOF. Immediate consequence of the preceding two theorems. 2

For example:

M.Z=pZ/DW=pW; F D �; V D 0I

M.�p/DW=pW; F D 0; V D ��1I

M. p̨/DW=pW; F D 0; V D 0:

The theorem is very important since it reduces the study of commutative algebraic
p-groups over perfect fields to semi-linear algebra. There are important generalizations of
the theorem to Dedekind domains, and other rings.

ASIDE 13.62. For an extension of Theorem 13.59 (resp. Theorem 13.61) to nonperfect base fields,
see Schoeller 1972 (resp. Takeuchi 1975).

ASIDE 13.63. For more on finite group schemes, see Demazure 1972 and Tate 1997.





CHAPTER 14
Tori; groups of multiplicative type;

linearly reductive groups

Recall that algebraic groups are affine.

a. The characters of an algebraic group

Recall (p.75) that a character of an algebraic group G is a homomorphism �WG ! Gm.
Thus, to give a character � of G is the same as giving a homomorphism of k-algebras
O.Gm/! O.G/ respecting the comultiplications. As O.Gm/D kŒT;T �1� and �.T /D
T ˝T , to give a character � of G is the same as giving a unit a D a.�/ of O.G/ such
that �.a/D a˝a. Such elements are said to be group-like, and so there is a one-to-one
correspondence �$ a.�/ between the characters ofG and the group-like elements of O.G/.

For characters �;�0, define

�C�0WG.R/!R�

by
.�C�0/.g/D �.g/ ��0.g/:

Then �C�0 is again a character, and the set of characters is a commutative group, denoted
X.G/. The correspondence �$ a.�/ between characters and group-like elements has the
property that

a.�C�0/D a.�/ �a.�0/:

b. The algebraic group D.M/

Let M be a finitely generated commutative group (written multiplicatively), and let kŒM� be
the k-vector space with basis M . Thus, the elements of kŒM� are finite sumsP

i aimi ; ai 2 k; mi 2M:

When we endow kŒM� with the multiplication extending that on M ,�P
i aimi

��P
j bjnj

�
D
P
i;j aibjminj ;

225
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then kŒM� becomes a k-algebra, called the group algebra of M . It becomes a Hopf algebra
when we set

�.m/Dm˝m; �.m/D 1; S.m/Dm�1 .m 2M/

because, for m an element of the basis M ,

.id˝�/.�.m//Dm˝ .m˝m/D .m˝m/˝mD .�˝ id/.�.m//,

.�˝ id/.�.m//D 1˝m; .id˝�/.�.m//Dm˝1;

.S; id/.m˝m/D �.m/D .id;S/.m˝m/;

as required ((20), (21), p.56). Note that kŒM� is generated as a k-algebra by any set of
generators for M as an abelian group, and so it is finitely generated.

EXAMPLE 14.1. Let M be a cyclic group, generated by e.

(a) Case e has infinite order. Then the elements of kŒM� are the finite sums
P
i2Zaie

i

with the obvious addition and multiplication, and�.e/D e˝e, �.e/D 1, S.e/D e�1.
Therefore, kŒM�'O.Gm/ as a Hopf algebra.

(b) Case e is of order n. Then the elements of kŒM� are sums a0Ca1eC�� �Can�1en�1

with the obvious addition and multiplication (using en D 1), and �.e/ D e˝ e,
�.e/D 1, and S.e/D en�1. Therefore, kŒM�'O.�n/ as a Hopf algebra.

EXAMPLE 14.2. Recall that if W and V are vector spaces with bases .ei /i2I and .fj /j2J ,
then W ˝V has basis .ei ˝fj /.i;j /2I�J . It follows that, if M1 and M2 are commutative
groups, then

.m1;m2/$m1˝m2WkŒM1�M2�$ kŒM1�˝kŒM2�

is an isomorphism of k-vector spaces, which respects the Hopf k-algebra structures.

PROPOSITION 14.3. For every finitely generated commutative groupM , the functorD.M/

R Hom.M;R�/ (homomorphisms of groups)

is represented by the algebraic group Spm.kŒM�/. The choice of a basis for M determines
an isomorphism of D.M/ with a finite product of copies of Gm and various �n.

PROOF. To give a k-linear map kŒM�!R is the same as giving a map of setsM !R. The
map kŒM�!R is a k-algebra homomorphism if and only if M !R is a homomorphism
from M into R�. This shows that D.M/ is represented by kŒM�, and is therefore an
algebraic group.

A decomposition of commutative groups

M � Z˚�� �˚Z˚Z=n1Z˚�� �˚Z=nrZ;

defines a decomposition of k-bialgebras

kŒM��O.Gm/˝�� �˝O.Gm/˝O.�n1/˝�� �˝O.�nr /

(14.1, 14.2). Since every finitely generated commutative group M has such a decomposition,
this proves the second statement. 2

LEMMA 14.4. The group-like elements of kŒM� are exactly the elements of M .
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PROOF. Let e 2 kŒM� be group-like. Then

e D
P
ciei for some ci 2 k, ei 2M:

The argument in the proof of Lemma 4.16 shows that, if the ei are chosen to be linearly
independent, then the ci form a complete set of orthogonal idempotents in k, and so one of
them equals 1 and the remainder are zero. Therefore e D ei for some i . 2

Thus
X.D.M//'M:

The character of D.M/ corresponding to m 2M is

D.M/.R/
def
D Hom.M;R�/

f 7!f .m/
������!R�

def
DGm.R/:

14.5. Let p be the characteristic exponent of k. Then:

D.M/ is connected ” the only torsion in M is p-torsion
D.M/ is smooth ” M has no p-torsion
D.M/ is smooth and connected ” M is free.

To see this, note thatD.Z/DGm, which is connected and smooth, and thatD.Z=nZ/D�n,
which is connected and nonsmooth if n is a power of p, and is étale and nonconnected if
gcd.n;p/D 1 (n > 1).

Note that

D.M=fprime-to-p torsiong/DD.M/ı (identity component of D.M/)

D.M=fp-torsiong/DD.M/red (reduced algebraic subgroup)

D.M=ftorsiong/DD.M/ıred (reduced connected algebraic subgroup).

ASIDE 14.6. When the binary operation on M is denoted byC, it is more natural to define kŒM�

to be the vector space with basis the set of symbols fem j m 2M g. The multiplication is then
em � en D emCn and the comultiplication is �.em/D em˝ em.

c. Diagonalizable groups

DEFINITION 14.7. An algebraic group G is diagonalizable if the group-like elements in
O.G/ span it as a k-vector space.

THEOREM 14.8. An algebraic group G is diagonalizable if and only if it is isomorphic to
D.M/ for some commutative group M .

PROOF. The group-like elements of kŒM� span it by definition. Conversely, suppose that
the group-like elements M span O.G/. Lemma 4.16 shows that they form a k-linear basis
for O.G/, and so the inclusion M ,!O.G/ extends to an isomorphism kŒM�!O.G/ of
vector spaces. This isomorphism is compatible with the comultiplications, because it is on
the basis elements m 2M (obviously). 2

THEOREM 14.9. (a) The functor M  D.M/ is a contravariant equivalence from the
category of finitely generated commutative groups to the category of diagonalizable algebraic
groups (with quasi-inverse G X.G/).
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(b) The functor M  D.M/ is exact: if

1!M 0!M !M 00! 1

is an exact sequence of commutative groups, then

1!D.M 00/!D.M/!D.M 0/! 1

is an exact sequence of algebraic groups.
(c) Algebraic subgroups and quotient groups (but not necessarily extensions) of diagonaliz-
able algebraic groups are diagonalizable.

PROOF. (a) Certainly, we have a contravariant functor

DW ff.g. commutative groupsg fdiagonalizable groupsg:

We first show that D is fully faithful, i.e., that

Hom.M;M 0/! Hom.D.M 0/;D.M// (91)

is an isomorphism for all M;M 0. The functor sends finite direct limits to inverse limits and
finite direct sums to products, and so it suffices to prove that (91) is an isomorphism when
M and M 0 are cyclic. If, for example, M and M 0 are both infinite cyclic groups, then we
may suppose that M D ZDM 0, and

Hom.M;M 0/D Hom.Z;Z/' Z;
Hom.D.M 0/;D.M//D Hom.Gm;Gm/D fX i j i 2 Zg ' ZI

now (91) is i 7!X i , which is an isomorphism. The remaining cases are similarly easy.
Theorem 14.8 shows that the functor is essentially surjective, and so it is an equivalence.
(b) The map kŒM 0�! kŒM� is injective, and so D.M/! D.M 0/ is a quotient map

(5.15). Its kernel is represented by kŒM�=IkŒM 0�, where IkŒM 0� is the augmentation ideal of
kŒM 0�. But IkŒM 0� is the ideal generated the elementsm�1 form2M 0, and so kŒM�=IkŒM 0�
is the quotient ring obtained by setting mD 1 for all m 2M 0. Therefore M !M 00 defines
an isomorphism kŒM�=IkŒM 0�! kŒM 00�.

(c) If H is a subgroup of G, then the map O.G/!O.H/ is surjective. Because it is
a homomorphism of Hopf algebras, it maps group-like elements to group-like elements.
Therefore, if the group-like elements of O.G/ span it, then the same is true of O.H/.

Let D.M/!Q be a quotient map, and let H be its kernel. Then H D D.M 00/ for
some quotient M 00 of M . Let M 0 be the kernel of M !M 00. Then D.M/!D.M 0/ and
D.M/!Q are quotient maps with the same kernel, and so are isomorphic. 2

EXAMPLE 14.10. Let G be the algebraic group of monomial 2�2 matrices (5.54). Then
G is an extension

e! D2!G! S2! e

of diagonalizable groups, but it is not commutative, hence not diagonalizable. Later (14.27,
16.46) we shall see that an extension G of a diagonalizable group Q by a diagonalizable
group is diagonalizable if G is commutative, which is always the case if Q is connected.
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d. Diagonalizable representations

DEFINITION 14.11. A representation of an algebraic group is diagonalizable if it is a
sum of one-dimensional representations (according to (4.17), it is then a direct sum of
one-dimensional representations).

Recall that Dn is the group of invertible diagonal n�n matrices; thus

Dn 'Gm� � � ��Gm„ ƒ‚ …
n copies

'D.Zn/:

A finite-dimensional representation .V;r/ of an algebraic group G is diagonalizable if and
only if there exists a basis for V such that r.G/ � Dn. In more down-to-earth terms, the
representation defined by an inclusion G � GLn is diagonalizable if and only if there exists
an invertible matrix P in Mn.k/ such that, for all k-algebras R and all g 2G.R/,

PgP�1 2

8̂<̂
:
0B@� 0

: : :

0 �

1CA
9>=>; :

THEOREM 14.12. The following conditions on an algebraic group G are equivalent:

(a) G is diagonalizable;

(b) every finite-dimensional representation of G is diagonalizable;

(c) every representation of G is diagonalizable;

(d) for every representation .V;r/ of G,

V D
M

�2X.T /
V�

(V� is the eigenspace with character �, p.75).

PROOF. (a))(c): Let �WV ! V ˝O.G/ be the comodule corresponding to a representation
of G. We have to show that V is a sum of one-dimensional representations or, equivalently,
that V is spanned by vectors u such that �.u/ 2 hui˝O.G/.

Let v 2 V . As the group-like elements form a basis .ei /i2I for O.G/, we can write

�.v/D
P
i2I ui ˝ ei ; ui 2 V:

On applying the identities (28), p. 69,�
.idV ˝�/ı� D .�˝ idO.G//ı�
.idV ˝�/ı� D idV :

to v, we find that X
i
ui ˝ ei ˝ ei D

X
i
�.ui /˝ ei

v D
P
ui :

The first equality shows that

�.ui /D ui ˝ ei 2 hui i˝kO.G/;
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and the second shows that the set of ui arising in this way span V .
(c))(a): In particular, the regular representation of G is diagonalizable, and so O.G/ is

spanned by its eigenvectors. Let f 2O.G/ be an eigenvector for the regular representation,
and let � be the corresponding character. Then

f .hg/D f .h/�.g/ for h;g 2G.R/, R a k-algebra.

In particular, f .g/D f .e/�.g/, and so f is a scalar multiple of �. Hence O.G/ is spanned
by its characters.

(b))(c): As every representation is a union of finite-dimensional subrepresentations
(4.7), (b) implies that every representation is a sum (not necessarily direct) of one-dimensional
subrepresentations.

(c))(b): Trivial.
(c))(d): Certainly, (c) implies that V D

P
�2X.G/V�, and Theorem 4.17 implies that

the sum is direct.
(d))(c): Clearly each space V� is a sum of one-dimensional representations. 2

ASIDE 14.13. Let M be a finitely generated abelian group, and let V be a finite-dimensional k-
vector space. An M -gradation of V is a family of subspaces .Vm/m2M such that V D

L
m2M Vm.

To give a representation of D.M/ on V is the same as giving an M -gradation of V . This follows
from (d) of the theorem. See also (11.28).

e. Tori

DEFINITION 14.14. An algebraic group G is a split torus if it is isomorphic to a finite
product of copies of Gm, and it is a torus if Tksep is a split torus.

Equivalently, a split torus is a connected diagonalizable algebraic group. Under the
equivalence of categories M  D.M/ (see 14.9a), the split tori correspond to free com-
mutative groups M of finite rank. A quotient of a split torus is again a split torus (because
it corresponds to a subgroup of a free commutative group of finite rank), but an algebraic
subgroup of a split torus need not be a split torus. For example, �n is a subgroup of Gm (the
map �n!Gm corresponds to Z! Z=nZ).

EXAMPLE 14.15. Let T be the split torus Gm�Gm. ThenX.T /'Z˚Z, and the character
corresponding to .m1;m2/ 2 Z˚Z is

.t1; t2/ 7! t
m1
1 t

m2
2 WT .R/!Gm.R/.

Every representation V of T decomposes into a direct sum

V D
M

.m1;m2/2Z�Z
V.m1;m2/,

where V.m1;m2/ is the subspace of V on which .t1; t2/ 2 T .k/ acts on as tm11 t
m2
2 [not quite].

In this way, the category Rep.T / acquires a gradation by the group Z�Z.

f. Groups of multiplicative type

DEFINITION 14.16. An algebraic group G is of multiplicative type if Gksep is diagonaliz-
able.
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A connected algebraic group of multiplicative type is a torus. Subgroups and quotient
groups (but not necessarily extensions) of groups of multiplicative type are of multiplicative
type because this is true of diagonalizable groups (14.9).

The terminology “of multiplicative type” is clumsy. Following DG IV, �1, 2.1, p.474,
we sometimes say that such a group is multiplicative (so the multiplicative group Gm is a
multiplicative group).

Let � D Gal.ksep=k/ endowed with the Krull topology. An action of � on a commuta-
tive group M is continuous for the discrete topology on M if every element of M is fixed by
an open subgroup of � , i.e.,

M D
[

K
MGal.ksep=K/

where K runs through the finite extensions of k contained in ksep.
For an algebraic group G, we define X�.G/DX.Gksep/; in other words,

X�.G/D Hom.Gksep ; .Gm/ksep/:

The group � acts on X�.G/, and because every homomorphism Gksep !Gmksep is defined
over a finite extension of K, the action is continuous. Now G X�.G/ is a contravariant
functor from algebraic groups over k to finitely-generated Z-modules equipped with a
continuous action of � . Note that

X�.G1�G2/'X
�.G1/˚X

�.G2/:

The tori are the groups G of multiplicative type such that X�.T / is torsion free.

THEOREM 14.17. The functor X� is a contravariant equivalence from the category of alge-
braic groups of multiplicative type over k to the category of finitely generated commutative
groups equipped with a continuous action of � . Under the equivalence, short exact sequences
correspond to short exact sequences.

PROOF. To give a continuous semilinear action of � on ksepŒM � is the same as giving a
continuous action of � on M by group homomorphisms: every action of G on ksepŒM �

preserves M because it is the set of group-like elements in ksepŒM �; conversely, an action of
� on M extends semilinearly to an action of � on ksepŒM �. Thus, the theorem follows from
Theorem 14.9 and Galois descent (A.55, A.56). 2

COROLLARY 14.18. For every algebraic group D of multiplicative type, there is an exact
seqence

e!G0!G!G00! e

with G0 a torus and G00 finite (of multiplicative type).

PROOF. Let D DD.M/; then the sequence corresponds to

0!Mtors!M !M=Mtors! 0: 2

Let G be a group of multiplicative type over k. For every K � ksep,

G.K/D Hom.X�.G/;ksep�/�K

where �K is the subgroup of � of elements fixing K, and the notation means the G.K/
equals the group of homomorphisms X�.G/! ksep� commuting with the actions of �K .
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EXAMPLE 14.19. Take k D R, so that � is cyclic of order 2, and let X�.G/D Z. Then
Aut.Z/D Z� D f˙1g, and so there are two possible actions of � on X�.G/.

(a) Trivial action. Then G.R/D R�, and G 'Gm.

(b) The generator � of � acts on Z as m 7! �m. Then G.R/D Hom.Z;C�/� consists of
the elements of C� fixed under the following action of �,

�z D Nz�1:

Thus G.R/D fz 2 C� j z Nz D 1g, which is compact.

EXAMPLE 14.20. Let K be a finite separable extension of k, and let T be the functor
R .R˝kK/

�. Then T is the group of multiplicative type corresponding to the � -module
ZHomk.K;ksep/ (families of elements of Z indexed by the k-homomorphisms K! ksep). See
14.39 below.

EXAMPLE 14.21. The algebraic group �n is of multiplicative type for all n. The constant
algebraic group Z=nZ is of multiplicative type if n is not divisible by the characteristic (in
nonzero characteristic p, the algebraic group Z=pZ is unipotent and not of multiplicative
type).

g. Representations of a group of multiplicative type

When G is a diagonalizable algebraic group, Rep.G/ is a semisimple abelian category1

whose simple objects are in canonical one-to-one correspondence with the characters of G
(14.12). When G is of multiplicative type, the description of Rep.G/ is only a little more
complicated.

Let ksep be a separable closure of k, and let � D Gal.ksep=k/.

THEOREM 14.22. Let G be an algebraic group of multiplicative type over k. Then Rep.G/
is a semisimple abelian category whose simple objects are in canonical one-to-one corre-
spondence with the orbits of � acting on X�.G/.

PROOF. The group G is split by a finite Galois extension ˝ of k — let N� D Gal.˝=k/.
Then N� act on O.G˝/'˝˝O.G/ through its action on ˝. Let .V;r/ be a representation
of G˝ , and let � be the corresponding co-action. By a semilinear action of N� on .V;r/, we
mean a semilinear action of N� on V fixing �. It follows from descent theory (A.54, A.55,
A.56) that the functor V  V˝ from Repk.G/ to the category of objects of Rep˝.G˝/
equipped with a semilinear action of N� is an equivalence of categories.

Let V be a finite-dimensional representation of G˝ equipped with a semilinear action of
N� . Then

V D
M

�2X.G˝/
V�:

An element  of N� acts on V by mapping V� isomorphically onto V�. Therefore, as a
representation of G˝ equipped with a semilinear action of N� , V decomposes into a direct
sum of simple objects corresponding to the orbits of N� acting on X.G˝/. As these are also
the orbits of � acting on X�.G/'X.G˝/, the statement follows. 2

ASIDE 14.23. Should add a description of the endomorphism algebra of each simple object, thereby
completing the determination of the category up to equivalence.

1An abelian category is semisimple if every object is semisimple, i.e., a finite direct sum of simple objects.
To describe a semisimple abelian category up to equivalence, it suffices to list the isomorphism classes of simple
objects and their endomorphism rings.
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h. Criteria for an algebraic group to be of multiplicative type

Recall that a coalgebra over k to be a k-vector space C together with a pair of k-linear maps

�WC ! C ˝C; �WC ! k

such that the diagrams (20), p.56, commute. The linear dual C_ of C becomes an associative
algebra over k with the multiplication

C_˝C_
can.
,! .C ˝C/_

�_

�! C_; (92)

and the structure map

k ' k_
�_

�! C_. (93)

We say that C is cocommutative (resp. coétale) if C_ is commutative (resp. étale). More
generally, we say that a cocommutative coalgebra over k is coétale if every finite-dimensional
subcoalgebra is coétale.

Let .C;�;�/ be a coalgebra over k. A C -comodule is a k-linear map �WV ! V ˝C

satisfying the conditions (28), p.69. In terms of a basis .ei /i2I for V , these conditions
become

�.cij / D
P
k2I cik˝ ckj

�.cij / D ıij

�
all i;j 2 I: (94)

These equations show that the k-subspace spanned by the cij is a subcoalgebra of C , which
we denote CV . Clearly, CV is the smallest subspace of C such that �.V /� V ˝CV , and so
it is independent of the choice of the basis. When V is finite dimensional over k, so also is
CV . If .V;�/ is a sub-comodule of the C -comodule .C;�/, then V � CV .

THEOREM 14.24. The following conditions on an algebraic group G over k are equivalent:

(a) G is of multiplicative type (14.16);

(b) G becomes diagonalizable over some field K � k;

(c) G is commutative and Hom.G;Ga/D 0;

(d) G is commutative and O.G/ is coétale.

PROOF. (a))(b): Trivial — by definition, G becomes diagonalizable over ksep.
(b))(c): Clearly

Hom.G;Ga/' ff 2O.G/ j�.f /D f ˝1C1˝f g: (95)

The condition on f is linear, and so, for any field K � k,

Hom.GK ;GaK/' Hom.G;Ga/˝K:

Thus, we may extend k and suppose that G is diagonalizable. If uWG!Ga is a nontrivial
homomorphism, then

g 7!

�
1 u.g/

0 1

�
is a nonsemisimple representation of G, which contradicts (14.12). (Alternatively, applying
14.22 avoids extending the base field.)

(c))(d): We may assume that k is algebraically closed. Let C be finite-dimensional
subcoalgebra of O.G/, i.e., a finite-dimensional k-subspace such that �.C/� C ˝C . Let
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ADC_. Then A is a finite product of local Artin rings with residue field k (CA 16.7). If one
of these local rings is not a field, then there exists a surjective homomorphism of k-algebras

A! kŒ"�; "2 D 0:

This can be written x 7! hx;aiChx;bi" for some a;b 2 C with b ¤ 0. For x;y 2 A,

hxy;aiChxy;bi"D hx˝y;�aiChx˝y;�bi"

(definition (92) of the product in A) and

.hx;aiChx;bi"/.hy;aiChy;bi"D hx;aihy;aiC .hx;aihy;biChx;bihy;ai/"

D hx˝y;a˝aiChx˝y;a˝bCb˝ai":

On equating these expressions, we find that

�aD a˝a

�b D a˝bCb˝a.

On the other hand, the structure map k! A is .�jC/_, and so �.a/D 1. Now

1D .e ı �/.a/D ..S; idA/ı�/.a/D S.a/a

and so a is a unit in A. Finally,

�.ba�1/D�b ��a�1 D .a˝bCb˝a/.a�1˝a�1/

D 1˝ba�1Cba�1˝1;

and so Hom.G;Ga/¤ 0 (see (95)), which contradicts (c). Therefore A is a product of fields.
(d))(a): We may suppose that k is separably closed. Let C be a finite-dimensional

subcoalgebra of O.G/, and let AD C_. By assumption, A is a product of copies of k. Let
a1; : : : ;an be elements of C such that

x 7! .hx;a1i; : : : ;hx;ani/WA! kn

is an isomorphism. Then the set fa1; : : : ;ang spans C and, on using that the map is a
homomorphism, one finds as in the above step that each ai is a group-like element of C .
This implies that O.G/ is spanned by its group-like elements, because O.G/ is a union
of finite-dimensional subcoalgebras (specifically, of the coalgebras CV where V runs over
the finite-dimensional subcomodules of O.G/; see (4.6) and the discussion preceding the
statement of the theorem). 2

In particular, if an algebraic group over k becomes diagonalizable over an algebraic
closure of k, then it becomes diagonalizable over a finite separable extension of k.2

2Here is Tate’s short direct proof of this (from Borel and Tits 1965, 1.5): Let kal be an algebraic closure of
k. As X�.T / is finitely generated, it suffices to show that every element a2X�.T / is defined over ksep. But T
is diagonalizable over kal, and so a is defined over kal. Replacing k with ksep, we see that it suffices to prove
that, if a is defined over a purely inseparable extension of k, then it is defined over k.

There is nothing to prove if p D 0. Otherwise, let q D ps (s 2 Z, s > 0) be a power of p sufficiently large
that a is defined over k1=q . We have a.tq/D aq.t/ 2 k.t/ for t 2 T .K/, and so

a.tq/ 2 k.t/\k1=q.tq/:

But if t is generic over k (i.e., k.t/ ' k.T /), then the field k.t/ is linearly disjoint from kal, and so k.t/\
k1=q.tq/D k.tq/ and a.tq/ 2 k.tq/. The element tq is also generic over k as x 7! xq is a bijective morphism
from T onto itself; the inclusion a.tq/ 2 k.tq/ shows that a is defined over k.
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COROLLARY 14.25. If a torus splits over a purely inseparable extension of k, then it is
already split over k. In particular, every torus over a separably closed field is split.

PROOF. The k-algebra O.G/ is co-étale, and so O.G/_ is a union of étale subalgebras.
An étale algebra over k is diagonalizable over k if it becomes diagonalizable over a purely
inseparable extension of k. (In proving this, we may suppose that the étale algebra is a finite
separable field extension K of k. If K˝k0 is diagonalizable for some purely inseparable
extension k0 of k, then there exists a k-algebra homomorphismK ,! k0, and so the extension
K=k is both separable and purely inseparable, hence trivial.) 2

COROLLARY 14.26. A smooth commutative algebraic group G is of multiplicative type if
and only if G.kal/ consists of semisimple elements.

PROOF. We may suppose that k is algebraically closed. Choose a faithful finite-dimensional
representation .V;r/ of G, and identify G with r.G/.

IfG is of multiplicative type, then there exists a basis of V for whichG�Dn, from which
it follows that the elements of G.k/ are diagonalizable (hence semisimple). Conversely,
if the elements of G.k/ are semisimple, they form a commuting set of diagonalizable
endomorphisms of V , and we know from linear algebra that there exists a basis for V such
that G.k/� Dn.k/. Because G is smooth, this implies that G � Dn. 2

Later (18.29), we shall show that “commutative” can be replaced by “connected”: every
smooth connected algebraic group such that G.kal/ consists of semisimple elements is a
torus.

COROLLARY 14.27. An extension

e!G0!G!G00! e (96)

of algebraic groups of multiplicative type is of multiplicative type if and only if it is commu-
tative.

PROOF. The condition is certainly necessary. On the other hand, the exact sequence (96)
gives rise to an exact sequence

0! Hom.G00;Ga/! Hom.G;Ga/! Hom.G0;Ga/

of abelian groups, and we can apply the criterion (14.24c). 2

i. Rigidity

For algebraic groups G;G0 and a k-algebra R, we let Hom.G;G0/.R/ denote the set of
homomorphisms of R-algebras O.G0/R!O.G/R compatible with the comultiplications.
Then Hom.G;G0/ is a functor from k-algebras to sets. Because of the Yoneda lemma, this
agrees with the similar terminology for functors p.38, p.210, p.139. Note that

Hom.G;G0/.k/D Hom.G;G0/:

When G and G0 are commutative, Hom.G;G0/ is a functor to commutative groups.
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LEMMA 14.28. Let V be a k-vector space, and let M be a finitely generated commutative
group. Then the family of quotient maps

V ˝kŒM�! V ˝kŒM=nM�; n� 2;

is injective.

PROOF. An element f of V ˝kŒM� can be written uniquely in the form

f D
P
x2M fx˝x; fx 2 V .

Assume f ¤ 0, and let I D fx 2M j fx ¤ 0g. As I is finite, for some n, the elements
of I will remain distinct in M=nM , and for this n, the image of f in V ˝k kŒM=nM� is
nonzero. 2

THEOREM 14.29. Every action of a connected algebraic group G on an algebraic group H
of multiplicative type is trivial.

PROOF. We may suppose that k is algebraically closed. We first prove the theorem in the
case that H is finite. An action of G on H D �n is a homomorphism

G! Aut.�n/� Hom.�n;�n/' Hom.�n;Gm/
(13.31)
' Z=nZ;

which is trivial because G is connected. Every finite algebraic group H of multiplicative
type is a finite product of groups of the form �n (14.3). Therefore Hom.H;H/ is an étale
scheme, and G! Aut.H/� Hom.H;H/ is trivial.

We now prove the general case. As k is algebraically closed, the group H is diagonaliz-
able. We saw above, that G acts trivially on Hn for all n. Let H DD.M/ with M a finitely
generated commutative group. Then O.H/D kŒM� and O.Hn/D kŒM=nM�. Let

�WkŒM�!O.G/˝kŒM�

be the homomorphism of k-algebras corresponding to the action G�D.M/!D.M/. We
have to show that �.x/D 1˝x for each x 2 kŒM�, but this follows from the fact that G acts
trivially on Hn for all n� 2, and the family of maps

O.G/˝k kŒM�!O.G/˝k kŒM=nM�; n� 2;

is injective (14.28). 2

COROLLARY 14.30. Every normal multiplicative subgroup N of a connected algebraic
group G is contained in the centre of G.

PROOF. The action G on N by inner automorphisms is trivial; hence N �Z.G/. 2

COROLLARY 14.31. Let T be a subtorus of an algebraic group G. Then NG.T /ı D
CG.T /

ı.

PROOF. Apply (14.30) to T �NG.T /ı. 2

Hence, NG.T /=CG.T / is finite.
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COROLLARY 14.32. Let H be an extension of algebraic groups H 0 and H 00 of multiplica-
tive type:

e!H 0!H !H 00! e:

Every action of a connected algebraic group G on H preserving H 0 is trivial.

PROOF. The action of G on H is given by a map G! Hom.H;H/, which (14.29) shows
takes values in the subfunctor Hom.H 00;H 0/. It therefore defines an action ofG onH 0�H 00,
which is trivial by (14.29) again. 2

When H is smooth, Lemma 14.28 can be replaced in the proof of Theorem 14.29 by the
following result (which we shall use in the proof of 16.3).

PROPOSITION 14.33. Let H be a smooth algebraic group of multiplicative type. The
family subschemes Hn is schematically dense in H . In particular,

S
nHn.k/ is dense in

jH j. Here n runs over the integers n� 1 prime to the characteristic of k.

PROOF. Let X be a closed subvariety of H containing
S
Hn.k/. Then X contains every

étale algebraic subgroup of H . Moreover, X contains an infinite subset of every copy of Gm
contained in H , and therefore contains Gm. As H is a product of an étale algebraic group
with some copies of Gm (14.5), this proves the statement. 2

REMARK 14.34. In (16.46) below, we prove that extensions of connected multiplicative
groups by multiplicative groups are multiplicative.

EXERCISE 14.35. Let R be a k-algebra with no idempotents except 0 and 1. Show that

Hom.Gm;Gm/.R/' Z:

(Hint: let ei D T i , and argue as in the proof of 4.16.) Deduce that, for all finitely generated
Z-modules � , � 0,

Hom.D.� /;D.� 0//' Hom.� 0;� /k

(sheaf associated with the constant presheaf R Hom.� 0;� /).

ASIDE 14.36. Let M be a finitely generated Z-module. Define Mk to be the affine group scheme
(not necessarily algebraic) over k such that Mk.T /D Hom.�0.T /;M/ for all algebraic schemes T .
For finitely generated Z-modules M , M 0

Hom.D.M/;D.M 0//' Hom.M 0;M/k .

See Exercise 14.35. Hence,

Hom.T;Hom.D.M/;D.M 0//' Hom.�0.T /;Hom.M 0;M//:

Explanation to be added.

j. Unirationality

14.37. For an irreducible variety X over k, we let k.X/ denote the field of rational
functions on X . Recall that an irreducible variety X said to be rational (resp. unirational)
if k.X/ is a purely transcendental extension of k (resp. contained in a purely transcendental
extension of k). Equivalently, X is rational (resp. unirational) if there exists an isomorphism
(resp. a surjective regular map) from an open subset of some affine space An to an open
subset of X . If X is unirational and k is infinite, then X.k/ is dense in X (because this is
true of an open subset of An).
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LEMMA 14.38. Let k0 be a finite extension of k. The Weil restriction .Gm/k0=k of Gm is
rational.

PROOF. Let
�
A1
�
�

denote the Weil restriction of A1, so
�
A1
�
�
.R/ D k0˝R for all k-

algebras R. Let .ei /1�i�n be a basis for k0 as a k-vector space, and let R be a k-algebra.
Then

R0
def
D k0˝RDRe1˚�� �˚Ren:

Let ˛ 2R0, and write ˛ D a1e1C�� �Canen. Then

˛ 7! .a1; : : : ;an/W
�
A1
�
�
.R/! An.R/

gives an isomorphism of functors
�
A1
�
�
!An, and hence of algebraic varieties. There exists

a polynomial P 2 kŒX1; : : : ;Xn� such that NmR0=R.˛/D P.a1; : : : ;an/. The isomorphism�
A1
�
�
! An of algebraic varieties identifies .Gm/k0=k with the complement of the zero set

of P in An. 2

LEMMA 14.39. Let k0 be a finite separable extension of k. Then

X�..Gm/k0=k/' ZHomk.k0;ksep/

(as Gal.ksep=k/-modules).

PROOF. Here ZHomk.k0;ksep/ is the free abelian group on the set of k-homomorphisms
k0! ksep. Under the isomorphism, an element of the right hand side corresponds to the
character � of

�
.Gm/k0=k

�
ksep such that, for each ksep-algebra R, �.R/ is the map

c˝ r 7! .
Y
�.c/n� /r W

�
k0˝R

��
!R�.

2

LEMMA 14.40. Every torus T is a quotient of a product of tori of the form .Gm/k0=k for
varying k0.

PROOF. Let � D Gal.ksep=k/, and let M be a continuous � -module that is finitely gener-
ated (as a Z-module). The stabilizer � of an element e of M is an open subgroup of � , and
there is a homomorphism ZŒ� =��!M sending 1 to e. On applying this remark to the ele-
ments of a finite generating set forM , we get a surjective homomorphism

Q
i ZŒ� =�i �!M

of continuous � -modules (finite product; each �i open). On applying this remark to the
dual of X�.T /, and using that the dual of ZŒ� =�� has the same form, we obtain an injective
homomorphism

X�.T /!
M

i
ZŒ� =�i � (97)

of � -modules. Let ki D .ksep/�i . Then ZŒ� =�i �'X�..Gm/ki=k/ (14.39), and so the map
(97) arises from a surjective homomorphismY

i
.Gm/ki=k! T

of tori (14.17). 2

PROPOSITION 14.41. Every torus is unirational.

PROOF. Combine (14.38) with (14.40). 2
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COROLLARY 14.42. For every torus T over a infinite field k, T .k/ is dense in T .

PROOF. Combine (14.41) with (14.37). 2

ASIDE 14.43. Let G be a group variety over an infinite field k. Later (in the final version) we shall
use (14.41) to show that G is unirational (hence G.k/ is dense in G/ if either G is reductive or k is
perfect.

ASIDE 14.44. A birational homomorphism of connected affine group varieties is an isomorphism
(5.15).

k. Actions of Gm on affine and projective space

Let R� act continuously on Rn, and let a 2 Rn. If limt!0 ta exists, then it is a fixed point of
the action because t 0.limt!0 ta/D limt!0 t 0ta D limt!0 ta. Similarly, if limt!1 ta exists,
then it is fixed by the action. We prove similar statements in the algebraic setting.

Let f WGm!X be a regular map from Gm to a variety X . If f extends to a regular map
Qf WA1!X , then the extension is unique (becauseX is separated), and we let limt!0f .t/D
Qf .0/. Similarly, if f extends to Qf WP1Xf0g !X , we let limt!1f .g/D Qf .1/.

14.45. Let Gm act on An according to the rule

t .x1; : : : ;xn/D .t
m1x1; : : : ; t

mnxn/; t 2Gm.k/; xi 2 k; mi 2 Z:

Assume that the mi are not all 0. Let v D .a1; : : : ;an/ 2 An.k/, and let

bi D

�
ai if mi D 0
0 otherwise.

The orbit map
�vWGm! An; t 7! .tm1a1; : : : ; t

mnan/

corresponds to the homomorphism of k-algebras

kŒT1; : : : ;Tn�! kŒT;T �1�; Ti 7! aiT
mi : (98)

Suppose first that mi � 0 for all i . Because the mi lie in N, this homomorphism takes
values in kŒT �, and so �v extends uniquely to a regular map Q�vWA1! An, namely, to

t 7! .a1t
m1 ; : : : ;ant

mn/WA1! An:

Note that
lim
t!0

�v.t/
def
D Q�v.0/D .b1; : : : ;bn/,

which is fixed by the action of Gm on An.
On the other hand, if mi � 0 for all i , then the homomorphism (98) maps into kŒT �1�,

and so Q�v extends uniquely to a regular map Q�vWP1Xf0g ! An; moreover

lim
t!1

�v.t/
def
D Q�v.1/D .b1; : : : ;bn/;

which is a fixed by the action of Gm on An.
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Let .V;r/ be a finite-dimensional representation of Gm, and let V D
L
i2ZVi be the de-

composition of V into its eigenspaces. Note that V0 D V Gm , and that the vector .b1; : : : ;bn/
in the above example is the component of .a1; : : : ;an/ in V0. The i for which Vi ¤ 0 are
called the weights of Gm on V .

PROPOSITION 14.46. Let v 2 V , and let v D
P
i vi , vi 2 Vi . If the weights of Gm on V

are nonnegative, then the orbit map �v extends uniquely to a regular map Q�vWA1! V , and

lim
t!0

�v.t/
def
D Q�v.0/D v0.

If the weights of Gm on V are nonpositive, then the orbit map �v extends uniquely to a
regular map Q�vWP1Xf0g ! V , and

lim
t!1

�v.t/
def
D Q�v.1/D v0.

PROOF. Choose a basis of eigenvectors for V , and apply (14.45). 2

A finite-dimensional representation .V;r/ of Gm defines an action

Gm�P.V /! P.V /; t; Œv� 7! Œr.t/.v/�;

of Gm on P.V /. Here Œv� denotes the image in P.V / of an element v of V .

PROPOSITION 14.47. Let .V;r/ be a finite-dimensional representation of Gm, and let
v 2 V .

(a) The point Œv� is a fixed point for the action of Gm on P.V / if and only if v is an
eigenvector for Gm in V .

(b) The orbit map �Œv�W t 7! t Œv�WGm! P.V / extends to a regular map Q�Œv�WP1! P.V /;
either Œv� is a fixed point, or the closure of the orbit of Œv� in P.V / has exactly two
fixed points, namely, limt!0�Œv�.t/

def
D Q�Œv�.0/ and limt!1�Œv�.t/

def
D Q�Œv�.1/.

PROOF. The statement (a) is obvious.
Write V as a sum of eigenspaces, V D

L
i2ZVi . Let

v D vrCvrC1C�� �Cvs vi 2 Vi :

The statement (b) is obvious if Œv� is fixed, and so we assume that it isn’t. Then r < s.
Let e be an eigenvector in Vr . Extend e to a basis fe D e0; : : : ; eng of eigenvectors for V ,

and let fe_ D e_0 ; : : : ; e
_
n g be the dual basis. Then Gm acts on the affine space

D.e_/
def
D fŒv� 2 P.V / j e_.v/¤ 0g � An

with nonnegative weights 0; : : : ; s� r . Therefore (14.46) the orbit map �Œv� extends to a
regular map Q�WA1! Ar , and Q�.0/D Œvr � is a fixed point of Gm acting on Ar .

Let es be an eigenvector in Vs . Then Gm acts on the affine space As D fŒv� 2 P.V / j
e_s .v/¤ 0g with nonpositive weights, and so �Œv� extends uniquely to a regular map Q�WP1X
f0g ! As , and Q�.1/D Œvs� is a fixed point of Gm acting on As (14.46).

It is now obvious that the closure of the orbit of Œv� has exactly two boundary points,
namely, Œvr � and Œvs�, and that these are exactly the fixed points in the closure of the orbit.2
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l. Linearly reductive groups

DEFINITION 14.48. An algebraic group is linearly reductive if every finite-dimensional
representation is semisimple, i.e., a sum (hence a direct sum 4.14) of simple subrepresenta-
tions.

REMARK 14.49. If G is linearly reductive, then every representation of G (not necessarily
finite-dimensional) is a direct sum of simple representations. To prove this, it suffices to
show that the representation is a sum of simple representations (4.14), but as it is a union of
its finite-dimensional subrepresentations (4.7), this is obvious.

PROPOSITION 14.50. A commutative algebraic group is linearly reductive if and only if it
is of multiplicative type.

PROOF. We saw in (14.22) that Rep.G/ is semisimple if G is of multiplicative type. Con-
versely, if Rep.G/ is semisimple, then Hom.G;U2/ D 0. But U2 ' Ga, and so G is of
multiplicative type by (14.24). 2

EXAMPLE 14.51. Over a field of characteristic 2, the representation�
a b

c d

�
7!

0@1 ac bd

0 a2 b2

0 c2 d2

1A WSL2! GL3

is not semisimple because ac and bd are not linear polynomials in a2, b2, c2, d2.

ASIDE 14.52. An algebraic group G over a field of characteristic zero is linearly reductive if
and only if Gı is reductive. We deduce this later from Weyl’s theorem on the semisimplicity of
representations of semisimple Lie algebras. Alternatively, over C, the reductive algebraic groups
are precisely those of the form GC with G a compact algebraic group over R (i.e., G.R/ is compact
and each connected component of G contains an R-point); the representations of G are obviously
semisimple, and they essentially coincide with those of GC.

An algebraic group G over a field of characteristic p ¤ 0 is linearly reductive if and only if Gı

is a torus and p does not divide the index .GWGı/. This was proved by Nagata (1962) for group
varieties, and is often referred to as Nagata’s theorem. See DG IV, �3, 3.6, p.509, or Kohls 2011.

Let G be a linearly reductive group, and let .V;r/ be a representation of G. Then
V has a unique decomposition V D V G ˚ V 0 with V 0 equal to the sum of all simple
subrepresentations on which G acts nontrivially. The Reynolds operator is the unique linear
map �WV ! V G with �jV G D id and �.V 0/D 0:

The group GLn.k/ acts linearly on kŒT1; : : : ;Tn� as follows: let gD .aij / 2GLn.k/ and
let f 2 kŒT1; : : : ;Tn�; then .gf /.T1; : : : ;Tn/D f .T 01; : : : ;T

0
n/ with T 0j D

P
i aijTj :

THEOREM 14.53 (HILBERT 1890). Let G be a linearly reductive subgroup of GLn, and
let AD kŒT1; : : : ;Tn�. Then AG is a finitely generated k-algebra.

PROOF. Let a be the ideal of AG generated by the invariant polynomials of degree > 0.
According to the Hilbert basis theorem, the ideal aA is finitely generated, say,

aAD .g1; : : : ;gm/,

and we may choose the gi to be homogeneous elements of a. Let f 2 AG be homogeneous
of degree d > 0: We shall prove by induction on d that f 2 kŒg1; : : : ;gm�. Let

f D a1g1C�� �Camgm; ai 2 A:
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On applying �, we find that

f D �.f /D �.r1/g1C�� �C�.rm/gm.

By induction, the �.ri / lie in kŒg1; : : : ;gm�, and so f 2 kŒg1; : : : ;gm�. 2

ASIDE 14.54. Discuss the history of the finite generation of AG , and the applications of these results
to geometric quotients and geometric invariant theory.

m. The smoothness of fixed subschemes

THEOREM 14.55. Let G be a linearly reductive group variety acting on a smooth variety
X . Then the fixed-point scheme XG is smooth.

We shall need to use some basic results on regular local rings. This section can be
skipped as we give a different proof of Theorem 14.55 later.

14.56. Let A be a local ring with maximal ideal m and residue field � D A=m. Let d
denote the Krull dimension of A. Every set of generators for m has at least d elements. If
there exists a set with d elements, then A is said to be regular, and a set of generators with
d elements is called a regular system of parameters for A.

(a) A local ring A is regular if and only if the canonical map

Sym�.m=m
2/! gr.A/ def

D

M
n�0

mn=mnC1

is an isomorphism (Atiyah and Macdonald 1969, 11.22).

(b) Assume that A is regular. Let t1; : : : ; td be a regular system of parameters for A, and
let a D .t1; : : : ; ts/ for some s � d . Then A=a is local of dimension d � s, and its
maximal ideal m=a is generated by ftsC1Cb; : : : ; td Cbg, and so A=b is regular (CA
22.2). Every regular quotient of A is of this form.

We require several lemmas.

LEMMA 14.57. Let A be a regular local ring of dimension d , and let m be the maximal
ideal in A. Let a be an ideal in A, and let s 2 N. If, for every n 2 N, there exists a regular
system of parameters t1; : : : ; td for A such that

a� .t1; : : : ; ts/ mod mnC1, (99)

then A=a is regular (of dimension d � s).

PROOF. Let B D A=a, and let n denote the maximal ideal m=a of B . In order to show that
B is regular, we have to show that, for every n� 1, the canonical map

Symn�.n=n
2/! nn=nnC1

is an isomorphism (14.56a). Fix an n. Let t1; : : : ; td be a regular system of parameters for A
such that (99) holds for n, and let bD .t1; : : : ; ts/. Then

aCmiC1 D bCmiC1
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for all i � n, and so�
bCmn

�
=
�
bCmnC1

�
'
�
aCmn

�
=
�
aCmnC1

�
' nn=nnC1

.bCm/=
�
bCm2

�
' n=n2.

The quotient ring A=b is regular (14.56b), and so the canonical map

SymnB=n..bCm/=
�
bCm2

�
/!

�
bCmn

�
=
�
bCmnC1

�
is an isomorphism (14.56a). The same is therefore true with a for b. As n was arbitrary, this
completes the proof. 2

Let S be a set of automorphisms of a separated algebraic scheme X over k. The functor

R fx 2X.R/ j sx D x for all s 2 Sg

is represented by the closed subscheme

XS
def
D

\
s2S

Equalizer(s; idWX�X )

of X . When S is a subgroup of Aut.X/, this is the fixed subscheme of the constant group
functor R S (see 9.1).

LEMMA 14.58. Let S be a set of automorphisms of a smooth variety X , and let x 2X.k/
be a fixed point of S . Then OXS ;x DOX;x=a where

aD ff �f ı s j f 2m, s 2 Sg:

PROOF. Let R be a local k-algebra. Obviously, a local homomorphism OX;x!R is fixed
by the automorphisms in S if and only if it factors through OX;x=a, i.e.,

Hom.OX;x;R/S D Hom.OX;x=a;R/� Hom.OX;x;R/:

From this the statement follows. 2

LEMMA 14.59. Let G be a group variety acting on an algebraic variety X . Let S �G.k/
be dense in jGj. If XS is smooth, then XG is smooth, and equals XS .

PROOF. It suffices to prove that XS DXG . Clearly, XG �XS , and so it remains to show
that G fixes XS . Let �WG �X ! X denote the action of G on X . We have to show that
� and p2 agree on G�XS . Certainly, they agree on the kal-points of G�XS because S
is Zariski-dense in G.kal/, but this implies that they agree on G�XS because G�XS is
reduced. 2

LEMMA 14.60. Let G be a linearly reductive group variety acting on a smooth variety X ,
and let S �G.k/ be dense in jGj. Then XS is smooth.

PROOF. We may suppose that k is algebraically closed. Let x 2 X.k/S , and let m be the
maximal ideal in OX;x . AsG.k/ fixes x, it acts on OX;x by k-algebra automorphisms leaving
m invariant. For all n� 0, the action of G.k/ on OX;x=mn arises from a representation of
G on the k-vector space OX;x=mn (cf. the proof of 10.6).

Decompose V def
D m=m2 into a direct sum V D V0˚ V1˚ �� � ˚ Vr with V0 a trivial

representation of G and Vi , i � 1, a nontrivial simple representation of G (here we use that
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G is linearly reductive). Because Vi (i � 1) is simple, the subset fv� sv j v 2 Vi , s 2 Sg of
Vi spans it, and so this subset contains a basis .vij /j for Vi . Choose any basis .v0j /j for V0.
We shall apply Lemma 14.57 to the ideal

aD ff �f ı s j f 2m; s 2G.k/g

in OX;x . Let n > 0. For i D 0;1; : : : ; r , choose a G-stable subspace Wi �m=mn mapping
isomorphically onto Vi . Let wij 2Wi map to vij , and choose uij 2m such that uij � wij
mod mnC1. Now fuij j i � 0, j arbitraryg is a regular system of parameters for A, and
fuij j i > 0, j arbitraryg generates a modulo mnC1. Therefore OX;x=a is regular, and we
know (14.58) that

OXS ;x DOX;x=a: 2

On combining the last two lemmas, we obtain the following variant of (14.55).

THEOREM 14.61. Let G be a linearly reductive group variety acting on a smooth variety
X , and let S �G.k/ be dense in jGj. Then XS is smooth and equals XG .

This implies (14.55) because we can take k to be separably closed, and then S DG.k/
is dense in jGj.

THEOREM 14.62 (SMOOTHNESS OF CENTRALIZERS). LetH be a linearly reductive group
acting on a smooth algebraic group G. Then GH is smooth.

PROOF. Special case of Theorem 14.55. 2

COROLLARY 14.63. Let G be a smooth algebraic group, and let H be an algebraic sub-
group of G of multiplicative type. Then CG.H/ and NG.H/ are smooth, and CG.H/ is
open in NG.H/.

PROOF. Recall (14.22) that an algebraic group of multiplicative type is linearly reductive.
Let H act on G be inner automorphisms. Then GH D CG.H/, and so CG.H/ is smooth.
As an H -module, h is a direct factor of g, and so the quotient map g! g=h induces a
surjection gH ! .g=h/H . Therefore CG.H/ is open in NG.H/ (12.33). Hence NG.H/ is
also smooth. 2

COROLLARY 14.64. Let G be a smooth algebraic group, and let H be a multiplicative
algebraic subgroup of G.

(a) NG.H/ is the unique smooth algebraic subgroup of G such NG.H/.ksep/ is the
normalizer of H.ksep/ in G.ksep/.

(b) CG.H/ is the unique smooth algebraic subgroup of G such CG.H/.ksep/ is the
centralizer of H.ksep/ in G.ksep/.

PROOF. As NG.H/ is smooth, NG.H/.ksep/ is dense in NG.H/ and so (1.60) implies that

NG.H/.k
sep/DNG.ksep/.H.k

sep//I

if N is a second smooth algebraic subgroup of G with this property, then

N.ksep/D .N \NG.H//.k
sep/DNG.H/.k

sep/;

and so
N DN \NG.H/DNG.H/:

Similarly, CG.H/.ksep/ is dense in CG.H/ and we can apply (1.69). 2
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ASIDE 14.65. Let H be a subgroup variety of a group variety G over an algebraically closed field
k. Then CG.H/ is smooth if and only if h is separable in g, i.e., dimCG.k/.h/D dimcg.h/ (Herpel
2013, Lemma 3.1).

ASIDE 14.66. Let G be a connected algebraic group over a field k. If k has characteristic zero, then
every algebraic group is smooth (3.38); in particular, the centralizers of all algebraic subgroups of G
are smooth. If k has characteristic p ¤ 0 and G is reductive, then this is still true provided p is not in
a specific small set of primes depending only on the root datum of G (Bate et al. 2010, Herpel 2013).
For example, it is true for GLV and all p, and it is true for SLV and all p not dividing the dimension
of V .

NOTES. The proof of (14.55) follows Iversen 1972.

n. Maps to tori

LEMMA 14.67. Let X and Y be connected algebraic varieties over an algebraically closed
field k. Every regular map uWX �Y !Gm is of the form uD u1 �u2 with u1 (resp. u2) a
regular map X !Gm (resp. Y !Gm/.

PROOF. Let x0 and y0 be smooth points on X and Y . We shall, in fact, show that

u.x;y/D u.x;y0/ �u.x0;y/ �u.x0;y0/
�1; x;y 2X;Y: (100)

It suffices to prove this on an open neighbourhood of .x0;y0/, and so we may assume that
X is normal, and that Y is a dense open subset of a normal projective variety QY . We regard
u as a rational function Qu on X � QY , and let D denote its (Weil) divisor. Then D D p�2E
for some divisor E on QY (if Z is a prime divisor in supp.D/, then p2�Z is not equal to QY
because .Z\X/\Y is empty, and so it is a divisor on QY ). Consider the rational function

y 7! Qu.x;y/ � Qu.x0;y/
�1

on QY ; its divisor is E�E D 0. As QY is complete, this function is constant, and so

Qu.x;y/D Qu.x0;y/ �v.x/

with v a nowhere vanishing function on X . On putting y D y0, we see that v.x/D u.x;y0/ �
u.x0;y0/

�1: 2

PROPOSITION 14.68. Let G be a connected group variety, and let T be a torus. Every
regular map 'WG! T such that '.e/D e is a homomorphism of algebraic groups.

PROOF. We may suppose, first that k is algebraically closed, and then that T DGm. Ac-
cording to the lemma, there exist regular maps '1;'2WG!Gm such that ' ımD '1 �'2,
i.e.,

'.g1g2/D '1.g1/'2.g2/, all g1;g2 2G:

Then '1.e/'2.e/D e, and so we can normalize the 'i to have 'i .e/D eD '2.e/. On taking
g1 (resp. g2) to be e in the equation, we find that ' D '2 (resp. ' D '1), and so

'.g1g2/D '.g1/'.g2/, all g1;g2 2G: 2

NOTES. The above proof of (14.67) is due to Oort (see Fossum and Iversen 1973, 2.1).
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ASIDE 14.69. For a variety X over a field k, let U.X/D � .X;O�X /=k�. Lemma 14.67 shows that

U.X/˚U.Y /' U.X �Y /

when k is algebraically closed. In fact, this is true over arbitrary fields (cf. SGA 7, VIII, 4.1): let
.x0;y0/ 2X.k/�Y.k/; it suffices to prove that the identity (100) holds, and, for this, we may extend
the base field and then normalize.

ASIDE 14.70. Note the similarity of (14.68) and (10.17). Rosenlicht 1961 defines a connected group
variety G (not necessarily affine) over an algebraically closed field k to be toroidal if it satisfies the
following equivalent conditions:

(a) the maximal connected affine group subvariety of G is a torus;

(b) G contains no algebraic subgroup isomorphic to Ga;

(c) for every connected group subvariety H of G, the torsion points of H.k/ of order prime to
char.k/ are dense in H .

Tori and abelian varieties are toroidal; connected subgroup varieties, quotients, and extensions of
toroidal groups are toroidal; all toroidal groups are commutative. Rosenlicht (ibid. Thm 2, Thm
3) proves Lemma 14.67 for all toroidal algebraic groups, and deduces Proposition 14.68 for such
groups.

o. Central tori as almost-factors

DEFINITION 14.71. An algebraic group G is perfect if it equals its derived group, i.e., has
no nontrivial commutative quotient.

For example, a noncommutative algebraic group having no proper normal subgroup is
perfect. A smooth connected algebraic group is perfect if it has no commutative quotient of
dimension � 1.

PROPOSITION 14.72. Let T be a central torus in a connected group variety G.

(a) The algebraic subgroup T \D.G/ is finite.

(b) If G=T is perfect, then there is an exact sequence

e! T \D.G/! T �D.G/!G! e: (101)

In particular, G=D.G/ is a torus.

Note that T is central if it is normal (14.30).

PROOF. (a) To show that an algebraic group N is finite, it suffices to show that N.kal/ is
finite. Note that

.T \DG/.kal/D T .kal/\ .DG/.kal/.

Choose a faithful representation Gkal ! GLV of Gkal (which exists by 4.8), and regard Gkal

as an algebraic subgroup of GLV . Because Tkal is diagonalizable, V is a direct sum

V D V�1˚�� �˚V�r ; �i ¤ �j ; �i 2X
�.T /;

of eigenspaces for the action of T (see 14.12). When we choose bases for the V�i , the group
T .kal/ consists of the matrices 0B@A1 0 0

0
: : : 0

0 0 Ar

1CA
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with Ai of the form diag.�i .t/; : : : ;�i .t//, t 2 kal. As �i ¤ �j for i ¤ j , we see that the
centralizer of T .kal/ in GL.V / consists of the matrices of this shape but with the Ai arbitrary.
Because .DG/.kal/ is generated by commutators, its elements have determinant 1 on each
summand V�i . But SL.V�i / contains only finitely many scalar matrices diag.ai ; : : : ;ai /, and
so T .kal/\ .DG/.kal/ is finite.

(b) Note that T �DG is a normal subgroup of G. The algebraic group G=.T �DG/ is a
quotient both of G=DG and of G=T , and so it is both commutative and perfect, hence trivial.
Therefore,

G D T �DG;
and there exists an exact sequence

e! T \D.G/!D.G/Ì� T !G! e

(5.34). Because T is central, � is trivial, and D.G/Ì� T DD.G/�T . 2

EXAMPLE 14.73. The centre of GLn equals Gm (nonzero scalar matrices). As GLn =GmD
PGLn is simple and noncommutative, it is perfect. The derived group of GLn is SLn, and
the sequence (101) is

1! �n!Gm�SLn! GLn! 1:

ASIDE 14.74. We shall see in Chapter 22 that G DDG and X.G/D 0 if G is semisimple. If G is
reductive, then its radical RG is a torus and G=RG is semisimple, and so ZG\DG is finite and
there is an exact sequence

1!RG\DG!RG�DG!G! 1

Therefore the composite DG!G!G=RG is an isogeny of semisimple groups, and the composite
RG!G!G=DG is an isogeny of tori.

p. Etale slices; Luna’s theorem

Throughout this section, k is algebraically closed.
The Zariski topology is too coarse for many purposes: for example, the implicit function

theorem fails, and smooth varieties of the same dimension need not be locally isomorphic.
However, these statements become true when the Zariski topology is replaced by the étale
topology (see my notes Algebraic Geometry, Chapter 5).

Let Y and X be smooth varieties over k. A regular map 'WY !X is étale at P 2 Y if
the map .d'/P WTP .Y /! T'.P /.X/ on tangent spaces is an isomorphism. If ' is étale at
P , then it is étale in an open neighbourhood of P .

LEMMA 14.75. Let x be a smooth point of an affine algebraic variety X of dimension d .
Then there exists a regular map 'WX ! Ad étale at x.

PROOF. Let m � O.X/ be the maximal ideal corresponding to x. Because x is smooth,
there exist regular functions f1; : : : ;fd 2 m whose images in m=m2

def
D Tx.V /

_ span it
as a k-vector space. This means that .df1/x; : : : ; .dfd /x form a basis for Tx.V /_. The
map .f1; : : : ;fd /WU ! Ad is étale at x because Tx.U /! T.0;:::;0/.Ad / is dual to the map
.dTi /.0;:::;0/ 7! .dfi /x . 2
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The proof of (14.75) can be stated more abstractly as follows: let W be a finite-
dimensional k-subspace of m mapping isomorphically onto m=m2 D Tx.X/

_, and let
˛W.TxX/

_ ! W be the inverse isomorphism; the inclusion of W into O.X/ extends
uniquely to a homomorphism of k-algebras Sym.W /!O.X/, and the composite of this
with Sym.˛/ is a homomorphism of k-algebras

Sym..TxX/_/!O.X/;

which defines a regular map 'WX ! .TxX/a (see 2.6). This is étale at x.

LEMMA 14.76 (LUNA 1972, LEMMA 1). Let G �X ! X be an action of an algebraic
group G on an affine algebraic scheme X over k. Let x 2 X.k/G be a smooth point of
X such that the isotropy group Gx is linearly reductive. Then there exists a regular map
'WX ! .TxX/a such that

(a) ' commutes with the actions of Gx ,

(b) ' is étale at x, and

(c) '.x/D 0.

PROOF. Let m�O.X/ be the maximal ideal corresponding to x. The quotient map m!
m=m2 commutes with the action of Gx . Because Gx is linearly reductive, it has a section.
This means that there exists a k-subspace W of m, stable under Gx , mapping isomorphically
onto m=m2. The map 'WX! .TxX/a defined byW (as above) has the required properties.2

An étale slice at x is a pair .N;'/ where ' is regular map as in the lemma and N is a
complement to TxGx in TxX stable under Gx . If Gx is linearly reductive, then there always
exists an N , and hence an étale slice at x. The Luna slice theorem says that, under some
hypotheses, it is possible to “integrate” an étale slice.

THE LUNA SLICE THEOREM

LetH be an algebraic subgroup of an algebraic groupG. LetH �W !W be an action ofH
on an algebraic varietyW with fixed point o. LetH act onG�W by h.g;w/D .gh�1;hw/,
and let

G^H W DHnG�W:

Then G acts on X DG^H W by g � Œg0;w�D Œgg0;w� and H is contained in the isotropy
group of Œe;o�. The Luna slice theorem says, that under some hypotheses on G and X , every
algebraic G-scheme X is étale-locally of this form near a point x (and H DGx).

LEMMA 14.77. Let G�X !X be an action of a reductive algebraic group G on an affine
algebraic variety X over a field k of characteristic zero. Let x be a point of X whose orbit is
closed. Then the isotropy group Gx at x is reductive.

PROOF. Matsushima 1960; Luna 1973, p.84. 2

THEOREM 14.78 (LUNA SLICE THEOREM). Let G�X ! X be an action of a reductive
algebraic group G on an affine algebraic variety X over a field k of characteristic zero. Let
x 2X.k/ be a smooth point of X whose orbit Ox is closed. Then there exists a Gx-stable
smooth affine subvariety Y of X containing x such that

(a) Tx.X/D Tx.Y /˚Tx.Ox/I
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(b) the G-equivariant map

Œg;y� 7! �.g;y/WG^Gx Y
 
�!X;

is étale and its image U is open in X ;

(c) the map

GxnY 'Gn
�
G^Gx Y

�
Gn 
�! GnU

is étale at Œx�;

(d) the maps  and G^Gx Y !Gn.G^Gx Y /'GxnY induce an isomorphism

G^Gx Y ' U �GnU .GxnY / .

PROOF. The isotropy group Gx is reductive (14.77), hence linearly reductive (14.50), and
so we can apply (14.76) to obtain a Gx-equivariant morphism 'WX ! .TxX/a étale at
x and such that '.x/ D 0. Choose a Gx-stable subspace N of TxX such that Tx.X/ D
Tx.Ox/˚N . Let Y D '�1.N /: it is closed subvariety of X , containing x, smooth at x,
and stable under Gx . Moreover, the map  WG^Gx Y !X is étale at Œe;x�. On replacing Y
with a suitable open neighbourhood of x we obtain a map with the required properties (see
Luna 1973 for the details). 2

The subvariety Y of X is also called the étale slice at x.

COROLLARY 14.79. Let G be a group variety, and let H be an algebraic subgroup of
multiplicative type. Then CG.H/ is smooth.

PROOF. Let H act on G by conjugation, H �G! G. According to (14.78) there exists
an H -equivariant map f WG ! .Te.G//a such that f .e/ D 0 and f is etale at e. It fol-
lows that dimGH D dimgH . But GH D CG.H/ and gH D Lie.CG.H// (12.31), and so
dimCG.H/D dimLie.CG.H//. Hence CG.H/ is smooth. 2

ASIDE 14.80. The Luna slice theorem is the analogue in algebraic geometry of the slice theorem
in differential geometry (Wikipedia “Slice theorem (differential geometry)”). It is very important
for understanding the local structure of quotients GnX , especially moduli varieties. Theorem 14.78
is the original statement of the theorem, except that Luna doesn’t assume x to be smooth. For
extensions and applications of the theorem, see Bardsley and Richardson 1985; Mehta 2002; Alper
2010, Theorem 2. See also Aside 12.43.

Exercises

EXERCISE 14-1. Show that an extension of linearly reductive algebraic groups is linearly
reductive.

EXERCISE 14-2. Verify that the map in (14.51) is a representation of SL2, and that the
representation is not semisimple.





CHAPTER 15
Unipotent algebraic groups

As always, we fix a field k, and all algebraic groups and homomorphisms are over k unless
indicated otherwise.

a. Preliminaries from linear algebra

Recall that an element r of a ring is unipotent if r �1 is nilpotent. An endomorphism of a
finite-dimensional vector space V is unipotent if and only if its characteristic polynomial
is .T �1/dimV . These are exactly the endomorphisms of V whose matrix relative to some
basis of V lies in

Un.k/
def
D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

0BBBBB@
1 � � : : : �

0 1 � : : : �

0 0 1 : : : �
:::

:::
: : :

:::

0 0 0 � � � 1

1CCCCCA

9>>>>>=>>>>>;
:

PROPOSITION 15.1. Let V be a finite-dimensional vector space, and let G be a subgroup of
GL.V /. If G consists of unipotent endomorphisms, then there exists a basis of V for which
G is contained in Un.

PROOF. We shall use the double centralizer theorem (see, for example, my notes Class Field
Theory, IV, 1.13.):

Let M be a left module over a ring A (not necessarily commutative), and let
C D EndA.M/. If M is semisimple as an A-module and finitely generated as a
C -module, then the canonical map A! EndC .M/ is surjective.

We now prove (15.1). It suffices to show that V G ¤ 0, because then we can apply induction
on the dimension of V to obtain a basis of V with the required property (see the proof of
15.3 below). Being fixed by G is a linear condition, and so we may replace k by with its
algebraic closure.1 We may also replace V with a simple submodule. We now have to show
that V D V G . Let A be the k-subalgebra of Endk.V / generated by G. As V is simple as
an A-module and k is algebraically closed, EndA.V /D k � idV (Schur’s lemma). Therefore,
AD Endk.V / (double centralizer theorem). The k-subspace J ofA spanned by the elements
g� idV , g 2 G, is a two-sided ideal in A. Because A is a simple k-algebra, either J D 0,

1For any representation .V;r/ of an abstract group G, the subspace V G of V is the intersection of the
kernels of the linear maps v 7! gv � vWV ! V (g 2 G). It follows that .V ˝ Nk/G Nk ' V G ˝ Nk, and so
.V ˝ Nk/G Nk ¤ 0) V G ¤ 0:

251
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and the proposition is proved, or J D A. But every element of J has trace zero (because the
elements of G are unipotent), and so J ¤ A. 2

b. Unipotent algebraic groups

DEFINITION 15.2. An algebraic group G is unipotent if every nonzero representation of
G has a nonzero fixed vector, i.e.,

.V;r/ a representation of G; V ¤ 0 H) V G ¤ 0:

Equivalently, G is unipotent if it has no nontrivial simple representations (i.e., the only
simple representations are the one-dimensional spaces V with the trivial action V D V G).
In terms of the associated comodule .V;�/, the condition V G ¤ 0 means that there exists a
nonzero vector v 2 V such that �.v/D v˝1 (4.24).

Traditionally, a group varietyG over an algebraically closed field k is said to be unipotent
if every element of G.k/ is unipotent (Springer 1998, p.36). Our definition agrees with this
(15.12).

As every representation is a union of finite-dimensional representations (4.7), it suffices
to check the condition in (15.2) for finite-dimensional representations.

A finite-dimensional representation .V;r/ of an algebraic groupG is said to be unipotent
if there exists a basis of V for which r.G/ � Un. Equivalently, .V;r/ is unipotent if it
contains a flag V D Vm � �� � � V1 � 0 stable under G and such that G acts trivially on each
quotient ViC1=Vi .

PROPOSITION 15.3. An algebraic groupG is unipotent if and only if every finite-dimensional
representation .V;r/ of G is unipotent.

PROOF. ): We use induction on the dimension of V . We may suppose that V ¤ 0; then
there exists a nonzero e1 in V fixed by G. The induction hypothesis applied to the action of
G on V=he1i shows that there exist elements e2; : : : ; en of V forming a basis for V=he1i and
such that, relative to this basis, G acts on V=he1i through Un�1. Now fe1; e2; ; : : : ; eng is a
basis for V with the required property.
(: If e1; : : : ; en is such a basis, then the subspace spanned by e1 is fixed by G. 2

We now prove that every algebraic subgroup of Un is unipotent. In particular, Ga is
unipotent and, in characteristic p, its subgroups p̨ and Z=pZ are unipotent.

DEFINITION 15.4. A Hopf algebra A is said to be coconnected if there exists a filtration
C0 � C1 � C2 � �� � of A by subspaces Ci such that28̂̂<̂

:̂
C0 D k,S
r�0Cr D A,

�.Cr/�
Xr

iD0
Ci ˝Cr�i :

(102)

THEOREM 15.5. The following conditions on an algebraic group G are equivalent:

2This definition is probably as mysterious to the reader as it is to the author. Basically, it is the condition
that you arrive at when looking at Hopf algebras with only one group-like element (so the corresponding affine
group has only the trivial character). See Sweedler, Moss Eisenberg. Hopf algebras with one grouplike element.
Trans. Amer. Math. Soc. 127 1967 515–526.
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(a) G is unipotent;

(b) G is isomorphic to an algebraic subgroup of Un for some n;

(c) the Hopf algebra O.G/ is coconnected.

PROOF. (following Waterhouse 1979, 8.3).
(a))(b). Apply Proposition 15.3 to a faithful finite-dimensional representation of G

(which exists by 4.8).
(b))(c). Every quotient of a coconnected Hopf algebra is coconnected because the

image of a filtration satisfying (102) will still satisfy (102), and so it suffices to show that
O.Un/ is coconnected. Recall that O.Un/' kŒXij j i < j �, and that

�.Xij /DXij ˝1C1˝Xij C
X
i<l<j

Xil˝Xlj : (103)

Assign a weight of j � i to Xij , so that a monomial
Q
X
nij
ij has weight

P
nij .j � i/,

and let Cr be the subspace spanned by the monomials of weight � r . Clearly, C0 D k,S
r�0Cr D A, and CiCj � CiCj . It remains to check the third condition in (102), and it

suffices to do this for the monomials in Cr . For the Xij the condition can be read off from
(103). We proceed by induction on the weight of a monomial. If the condition holds for
monomials P , Q of weights r , s, then �.PQ/D�.P /�.Q/ lies in�X

i
Ci ˝Cr�i

��X
j
Cj ˝Cs�j

�
�

X
i;j

�
CiCj ˝Cr�iCs�j

�
�

X
i;j
CiCj ˝CrCs�i�j ,

as required.
(c))(a). Now assume that ADO.G/ is a coconnected Hopf algebra, and let �WV !

V ˝A be an A-comodule. Then V is a union of the subspaces

Vr
def
D fv 2 V j �.v/ 2 V ˝Crg.

If V0 contains a nonzero vector v, then �.v/D v0˝1 for some vector v0; on applying �, we
find that v D v0, and so v is a fixed vector. To complete the proof, it suffices to show that

Vr D 0 H) VrC1 D 0;

because then V0 D 0 H) V D 0. By definition, �.VrC1/� V ˝CrC1, and so

..id˝�/ı�/.VrC1/� V ˝
X

i
Ci ˝Cr�i :

Hence .id˝�/ı� maps VrCi to zero in V ˝A=Cr˝A=Cr . We now use that .id˝�/ı�D
.�˝ id/ı�. If Vr D 0, then the map V ! V ˝A=Cr defined by � is injective, and also the
map V ! .V ˝A=Cr/˝A=Cr defined by .�˝ id/ı� is injective; hence VrC1 D 0. 2

COROLLARY 15.6. An algebraic group is unipotent if and only if it admits a faithful
unipotent representation.

PROOF. Restatement of the equivalence of (a) and (b). 2

COROLLARY 15.7. Subgroups, quotients, and extensions of unipotent algebraic groups are
unipotent.
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PROOF. Let G be a unipotent algebraic group. Then G admits a faithful unipotent repre-
sentation, and so every algebraic subgroup H of G does also; hence H is unipotent. Every
nonzero representation of a quotient Q of G can be regarded as a representation of G, and
so it has a nonzero fixed vector; hence Q is unipotent.

Suppose that G contains a normal subgroup N such that both N and G=N are unipotent.
Let .V;r/ be a nonzero representation of G. The subspace V N is stable under G (5.24), and
the representation of G on it factors through G=N . As V is nonzero, V N is nonzero, and
V G D .V N /G=N is nonzero. Hence G is unipotent. 2

COROLLARY 15.8. Every algebraic group contains a greatest strongly connected unipotent
normal algebraic subgroup and a greatest smooth connected unipotent normal algebraic
subgroup.

PROOF. After (15.7), we can apply (8.36) and (8.37). 2

COROLLARY 15.9. Let k0 be a field containing k. An algebraic groupG over k is unipotent
if and only if Gk0 is unipotent.

PROOF. If G is unipotent, then O.G/ is coconnected (15.9). But then k0˝O.G/ is obvi-
ously coconnected, and so Gk0 unipotent. Conversely, suppose that Gk0 is unipotent, and let
.V;r/ be a representation of G. Then

.V ˝k0/Gk0 ' V G˝k0;

(4.24), and so
.V ˝k0/Gk0 ¤ 0 H) V G ¤ 0: 2

COROLLARY 15.10. Let G be an algebraic group over a perfect field k. If G is unipotent,
then all elements of G.k/ are unipotent, and the converse is true when G.k/ is dense in G.

PROOF. Let .V;r/ be a faithful finite-dimensional representation G (which exists by 4.8).
If G is unipotent, then r.G/� Un for some basis of V (15.3), and so r.g/ is unipotent for
every g 2G.k/; this implies that g is unipotent (11.19). Conversely, if the elements of G.k/
are unipotent, then they act unipotently on V , and so there exists a basis of V for which
r.G.k//� Un.k/ (15.1). Because G.k/ is dense in G, this implies that r.G/� Un. 2

COROLLARY 15.11. An algebraic subgroup G.k/ of GLV over a perfect field is unipotent
if G.k/ contains a dense (abstract) subgroup H consisting of unipotent endomorphisms.

PROOF. There exists a basis of V for which H � Un.k/ (15.1). Because H is dense in G,
this implies that G � Un. 2

COROLLARY 15.12. A smooth algebraic groupG is unipotent if and only ifG.kal/ consists
of unipotent elements.

PROOF. If G.kal/ consists of unipotent elements, then Gkal is unipotent (15.10), and so G
is unipotent (15.9). Conversely, if G is unipotent, so is Gkal (15.9), and so the elements of
G.kal/ are unipotent (15.10). 2

COROLLARY 15.13. A finite étale algebraic group G is unipotent if and only if its order is
a power of the characteristic exponent of k.
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PROOF. We may suppose that k is algebraically closed (15.9), and hence that G is constant.
Let p be the characteristic exponent of k. If G is not a p-group, then it contains a nontrivial
subgroup H of order prime to p. According to Maschke’s theorem (GT 7.4), every nonzero
finite-dimensional representation of H is semisimple, and so it contains a simple representa-
tion. Hence H is not unipotent, and it follows that G is not unipotent (15.7). Conversely, a
finite p-group over a field of characteristic p has no simple representations,3 and so such a
group is unipotent. 2

COROLLARY 15.14. Let G be an algebraic group over k. If G is unipotent, then �0.G/
has order a power of the characteristic exponent of k; in particular, G is connected if k has
characteristic zero.

PROOF. As �0.G/ is a quotient of G, it is unipotent, and so we can apply (15.13). 2

PROPOSITION 15.15. An algebraic group that is both multiplicative and unipotent is trivial.

PROOF. Let G be such an algebraic group, and let .V;r/ be a nonzero finite-dimensional
representation of G. Because G is multiplicative, V is semisimple, say, V D

L
i Vi with Vi

simple (14.22), which is impossible because G is unipotent. Therefore, there are no nonzero
representations, and so G D e. 2

COROLLARY 15.16. The intersection of a unipotent algebraic subgroup of an algebraic
group with an algebraic subgroup of multiplicative type is trivial.

PROOF. It is both unipotent and multiplicative, because these properties are inherited by
subgroups (14.9, 15.7). 2

COROLLARY 15.17. Every homomorphism from a unipotent algebraic group to an alge-
braic group of multiplicative type is trivial.

PROOF. The image is both unipotent and multiplicative (14.9, 15.7). 2

COROLLARY 15.18. Every homomorphism from an algebraic group of multiplicative type
to a unipotent algebraic group is trivial.

PROOF. The image is both multiplicative and unipotent. 2

In (16.18) below, we shall show that (15.18) remains true over a k-algebra R.

�REMARK 15.19. For an algebraic group G, even over an algebraically closed field k, it is
possible for all elements of G.k/ to be unipotent without G being unipotent. For example,
the algebraic group �p is not unipotent (it is of multiplicative type), but �p.k/D 1 if k has
characteristic p.

EXAMPLE 15.20. The map a 7!
�
1 a
0 1

�
realizes Ga as an algebraic subgroup of U2, and so

Ga is unipotent. Therefore all algebraic subgroups of Ga are unipotent; for example, in
characteristic p ¤ 0, the groups p̨ and .Z=pZ/k are unipotent. These examples show that
a unipotent algebraic group need not be smooth or connected in nonzero characteristic.

3Standard result — see, for example, Dummit and Foote, Exercise 23, p.820.
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EXAMPLE 15.21. Let k be a nonperfect field of characteristic p ¤ 0, and let a 2 kXkp.
The algebraic subgroup G of Ga�Ga defined by the equation

Y p DX �aXp

becomes isomorphic to Ga over kŒa
1
p �, but it is not isomorphic to Ga over k. To see this, we

use that G is canonically an open subscheme of the complete regular curve C with function
field the field of fractions of O.G/. The complement of G in C consists of a single point
with residue field kŒa

1
p �. For G DGa, the same construction realizes G as an open subset

of P1 whose complement consists of a single point with residue field k.

ASIDE 15.22. An algebraic group G over k is a form of Ga if and only if its underlying scheme is a
form of A1. Let U be a form of A1 and let C be a complete regular curve containing U as an open
subscheme; then C XU consists of a single point P purely inseparable over k. See Russell 1970, 1.1,
1.2.

PROPOSITION 15.23. Every unipotent algebraic group admits a central normal series whose
quotients are isomorphic to algebraic subgroups of Ga. In particular, every unipotent
algebraic group is nilpotent (a fortiori solvable).

PROOF. Embed the unipotent algebraic group G in Un. Recall (8.46) that Un has a central
series

Un D U .0/n � �� � � U .r/n � U
.rC1/
n � �� � � U .m/n D e; mD

n.n�1/

2
;

whose quotients are canonically isomorphic to Ga. The intersection of such a series with G
has the required properties (cf. 8.1). 2

For example, every form of Ga is an extension of Ga by a finite subgroup of Ga (15.54).

PROPOSITION 15.24. An algebraic group G is unipotent if and only if every nontrivial
algebraic subgroup of it admits a nontrivial homomorphism to Ga.

PROOF. Let G be a unipotent algebraic group. Every algebraic subgroup G is unipotent
(15.7), and (15.23) shows that every nontrivial unipotent algebraic group admits a nontrivial
homomorphism to Ga.

Conversely, suppose that the algebraic subgroups of G admit homomorphisms to Ga. In
particular, G admits a nontrivial homomorphism to Ga, whose kernel we denote by G1. If
G1 ¤ 1, then (by hypothesis) it admits a nontrivial homomorphism to Ga, whose kernel we
denote by G2. Continuing in this fashion, we obtain a subnormal series whose quotients are
algebraic subgroups of Ga. The series terminates in 1 because G is noetherian. Now (15.7)
shows that G is unipotent. 2

PROPOSITION 15.25. Let G be a connected algebraic group, and let N be the kernel of the
adjoint representation AdWG! GLg (see 12.21). Then N=Z.G/ is unipotent.

PROOF. It suffices to prove this with k algebraically closed (15.9). Let Oe DO.G/e (the
local ring at the identity element), and let me be its maximal ideal. The action of G on
itself by conjugation defines a representation of G on the k-vector space Oe=mnC1e for all
n (10.7). The representation on me=m

2
e is the contragredient of the adjoint representation

(12.19), and so N acts trivially on me=m
2
e . It follows that N acts trivially on each of the
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quotients mie=m
iC1
e . For n sufficiently large, the representation rn ofN=Z.G/ on Oe=mnC1

is faithful (10.7). As N=Z.G/ acts trivially on the quotients mie=m
iC1
e of the flag

Oe=mnC1 �me=m
nC1
�m2e=m

nC1
� �� � ;

it is unipotent (15.6). 2

REMARK 15.26. (a) In characteristic zero, the only algebraic subgroups of Ga are e and
Ga itself. To see this, note that a proper algebraic subgroup must have dimension 0; hence it
is étale, and hence is trivial (15.13).

(b) We saw in (15.23) that every unipotent algebraic group is nilpotent. Conversely, every
connected nilpotent algebraic group G contains a greatest subgroup Gs of multiplicative
type; the group Gs is characteristic and central, and the quotient G=Gs is unipotent (17.55
below).

PROPOSITION 15.27. Every connected group variety of dimension one is commutative.

PROOF. We may assume that k is algebraically closed. Let G be a connected group variety
of dimension one. If G.k/�Z.G/.k/, then G �Z.G/, as required. Otherwise, there exists
a g 2G.k/XZ.G/.k/, and we consider the homomorphism

˛WG!G; x 7! xgx�1:

Because ˛ is not constant, the closure of its image must be G. Therefore ˛.G/ contains
an open subset of G (A.68), and so the complement of ˛.G/.k/ in G.k/ is finite. For a
faithful representation .V;r/ of G, the characteristic polynomial det.T � r.y// of y 2G.k/
is constant on the image of ˛.k/, and so it takes only finitely many values as y runs overG.k/.
The connectedness of G now implies that these characteristic polynomials are constant, and
equal det.T � r.e//D .T �1/dimV . Hence G is unipotent (15.12) and is therefore solvable
(15.23). In particular the derived group DG of G is a proper subgroup of G. As DG is a
connected group variety (8.21), this implies that DG D e. 2

PROPOSITION 15.28. Let U be a unipotent subgroup (not necessarily normal) of an alge-
braic group G. Then G=U is isomorphic to a subscheme of an affine scheme (i.e., it is
quasi-affine).

PROOF. According to Chevalley’s theorem 4.19, there exists a representation .V;r/ of G
such that U is the stabilizer of a one-dimensional subspace L of V . As U is unipotent, it
acts trivially on L, and so V U D L. When we regard r as an action of G on Va, the isotropy
group at any nonzero x 2 L is U , and so the map g 7! gx is an immersion G=U ! Va
(9.27). 2

ASIDE 15.29. (a) Traditionally, a group variety G is said to be unipotent if its elements in some
(large) algebraically closed field are unipotent (Borel 1991, 4.8, p.87; Springer 1998, p.36). For group
varieties, this is agrees with our definition (15.12).

(b) Demazure and Gabriel (IV, �2, 2.1, p.485) define a group scheme G over k to be unipotent
if it is affine and if, for all closed subgroups H ¤ e of G, there exists a nonzero homomorphism
H !Ga. For affine algebraic group schemes, this agrees with our definition (15.24).
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c. Unipotent algebraic groups in characteristic zero

We describe the structure of unipotent algebraic groups in characteristic zero. Throughout
this section, k is a field of characteristic zero.

Recall (2.6) that, for a finite-dimensional vector space V , Va denotes the algebraic group
R R˝V . Recall also that Lie.GLV /D glV , that Lie.GLn/D gln, and that Lie.Un/ is
the Lie subalgebra

nn
def
D f.cij / j cij D 0 if i � j g

of gln (Chapter 12).

LEMMA 15.30. Let G be a unipotent algebraic subgroup of GLV (V a finite-dimensional
k-vector space V ). For a suitable basis of V , Lie.G/ � nn. In particular, the elements of
Lie.G/ are nilpotent endomorphisms of V .

PROOF. Because, G is unipotent, there exists a basis of V for which G � Un (15.3). Then

Lie.G/� Lie.Un/D nn � Lie.GLn/DMn.k/;

and the elements of nn are nilpotent matrices. 2

Let V be a finite-dimensional vector space over k. For a nilpotent endomorphism u of
the R-module VR,

exp.u/ def
D I CuCu2=2ŠCu3=3ŠC�� �

is a well defined automorphism of VR (with inverse exp.�u/).
Let G be a unipotent algebraic group, and let .V;rV / be a finite-dimensional represen-

tation of G. Then rV defines a representation drV Wg! glV of g on V whose image, for
a suitable choice of basis for V , is contained in nn (15.30). Therefore, for all k-algebras
R and X 2 gR, there is a well-defined endomorphism exp..drV /.X// of VR . As .V;rV /
varies, these elements satisfy the conditions of (11.2), and so there exists a (unique) element
exp.X/ 2G.R/ such that

rV .exp.X//D exp..drV /.X//

for all .V;rV /. In this way, we get a homomorphism expWgR! G.R/, natural in R, and
hence (by the Yoneda lemma) a morphism of schemes

expWga!G.

One checks directly that, for X 2 gR and g 2G.R/;

g � exp.X/ �g�1 D exp.Ad.g/.X//

Ad.exp.X//D 1C ad.X/C ad.X/2=2ŠC ad.X/3=3ŠC�� � :

Moreover, if X;Y 2 gR are such that ŒX;Y �D 0, then

exp.XCY /D exp.X/ � exp.Y /. (104)

PROPOSITION 15.31. For all unipotent algebraic groups G, the exponential map

expWLie.G/a!G

is an isomorphism of schemes. When G is commutative, it is an isomorphism of algebraic
groups.
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PROOF. For G DGa, both statements can be checked directly from the definitions.
In general, G admits a central normal series whose quotients are subgroups of Ga

(15.23), and hence equal Ga (15.26). In particular G contains a copy of Ga in its centre
if dimG > 0. We assume (inductively) that the first statement of the proposition holds for
G=Ga, and deduce it for G.

Consider the diagram

Lie.G/a G

.Lie.G/=Lie.Ga//a G=Ga:

exp

exp

The vertical maps are faithfully flat. Moreover, Lie.G/a is a Lie.Ga/a-torsor over the
base, and G is a Ga-torsor over G=Ga. As the bottom horizontal arrow is an isomorphism
(induction) and the top arrow is equivariant for the isomorphism expWLie.Ga/a!Ga, this
shows that the top arrow is an isomorphism.

For the second statement, if G is commutative, then so also is g, and (104) shows that
exp is an isomorphism. 2

COROLLARY 15.32. The functor G  Lie.G/ is an equivalence from the category of
commutative unipotent algebraic groups to that of finite-dimensional k-vector spaces, with
quasi-inverse V  Va:

PROOF. The two functors are quasi-inverse because, for each commutative unipotent al-
gebraic group G, Lie.G/a ' G (15.31), and for each finite-dimensional vector space V ,
Lie.Va/' V (12.8). 2

It remains to describe the group structure on ga 'G when G is not commutative. For
this, we shall need some preliminaries.

15.33. A finite-dimensional Lie algebra g is said to be nilpotent if it admits a filtration

gD ar � ar�1 � �� � � a1 � a0 D 0

by ideals such that Œg;ai �� aiC1 for all i . Note that then

Œx1; Œx2; : : : Œxr ;y� : : :�D 0

for all x1; : : : ;xr ;y 2 g; in other words,

ad.x1/ı � � � ı ad.xr/D 0

for all x1; : : : ;xr 2 g. We shall need the following two statements:

(a) a Lie subalgbra of glV (V a finite-dimensional vector space over k) is nilpotent if it
consists of nilpotent endomorphisms (Engel’s theorem, LAG I, 2.8);

(b) every nilpotent Lie algebra g admits a faithful representation .V;�/ such that �.g/
consists of nilpotent endomorphisms (Ado’s theorem, LAG I, 6.27).

15.34. Let
exp.U /D 1CU CU 2=2CU 3=3ŠC�� � 2QŒŒU ��:
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The Campbell-Hausdorff series4 is a formal power series H.U;V / in the noncommuting
symbols U and V with coefficients in Q such that

exp.U / � exp.V /D exp.H.U;V //:

It can be defined as
log.exp.U / � exp.V //;

where

log.T /D log.1� .1�T //D�
�
1�T

1
C
.1�T /2

2
C
.1�T /3

3
C�� �

�
.

Write
H.U;V /D

X
m�0

Hm.U;V /

with Hm.U;V / a homogeneous polynomial of degree m. Then

H 0.U;V /D 0

H 1.U;V /D U CV

H 2.U;V /D
1

2
ŒU;V �D

1

2
.adU/.V /

and Hm.U;V /, m� 3, is a sum of terms each of which is a scalar multiple of

ad.U /rad.V /s.V /; rC s Dm;

or
ad.U /rad.V /s.U /; rC s Dm�1;

(Bourbaki LIE, II, �6, no.4, Thm 2.).

For a nilpotent matrix X in Mn.k/,

exp.X/ def
D 1CXCX2=2CX3=3ŠC�� �

is a well-defined element of GLn.k/. If X;Y 2 nn, then ad.X/n D 0 D ad.Y /n, and so
Hm.X;Y /D 0 for all m sufficiently large; therefore H.X;Y / is a well-defined element of
nn, and

exp.X/ � exp.Y /D exp.H.X;Y //:

PROPOSITION 15.35. Let G be a unipotent algebraic group. Then

exp.x/ � exp.y/D exp.H.x;y// (105)

for all k-algebras R and x;y 2 gR.

PROOF. We may identify G with an algebraic subgroup of GLV (V a finite-dimensional
k-vector space). Then g� nn for a suitable basis for V (15.30), and so, for x;y 2 gR,

H.x;y/
def
D

X
Hm.x;y/

is defined and nilpotent, and (105) holds because it holds in nn. 2

4Bourbaki writes “Hausdorff”, Demazure and Gabriel write “Campbell-Hausdorff”, and others write “Baker-
Campbell-Hausdorff”.
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THEOREM 15.36. (a) Let g be a finite-dimensional nilpotent Lie algebra g over k. The
maps

.x;y/ 7!H.x;y/Wg.R/�g.R/! g.R/ (R a k-algebra)

make ga into a unipotent algebraic group over k.
(b) The functor g ga defined in (a) is an equivalence from the category of finite-

dimensional nilpotent Lie algebras over k to the category of unipotent algebraic groups, with
quasi-inverse G Lie.G/.

PROOF. (a) For the Lie algebra nn, (15.35) shows that the maps make .nn/a into the algebraic
group Un. Now we can apply Ado’s theorem to deduce the statement for any nilpotent Lie
algebra g.

(b) The two functors are inverse because Lie.ga/' g and Lie.G/a 'G. 2

COROLLARY 15.37. Every Lie subalgebra g of glV formed of nilpotent endomorphisms is
the Lie algebra of an algebraic group.

PROOF. According to Engel’s theorem, g is nilpotent, and so gD Lie.ga/. 2

ASIDE 15.38. Theorem 15.36 reduces the problem of classifying unipotent algebraic groups in
characteristic zero to that of classifying nilpotent Lie algebras which, alas, is complicated. Except
in low dimension, there are infinitely many isomorphism classes of a given dimension, and so the
classification becomes a question of studying their moduli schemes. In low dimensions, there are
complete lists. See mo21114.

ASIDE 15.39. For more details on this section, see DG IV, �2, 4, p.497. See also Hochschild 1971,
Chapter 10.

d. Unipotent algebraic groups in nonzero characteristic

Throughout this section, k is a field of characteristic p ¤ 0. We let � denote the endomor-
phism x 7! xp of k, and we let k� ŒF � denote the ring of polynomials

c0C c1F C�� �C cmF
m; ci 2 k;

with multiplication defined by
Fc D c�F; c 2 k:

With xŒp� D Fx, a k� ŒF �-module becomes a p-Lie algebra with trivial bracket (see 12.40).
Recall (2.1) that O.Ga/ D kŒT � with �.T / D T ˝ 1C 1˝ T . Therefore, to give a

homomorphism G!Ga amounts to giving an element f 2O.G/ such that

�G.f /D f ˝1C1˝f: (106)

Such an f is said to be primitive, and we write P.G/ for the set of primitive elements in G;
thus

Hom.G;Ga/' P.G/: (107)

EXAMPLE 15.40. Let f D
P
ciT

i 2O.Ga/. The condition (106) becomes

ci .T ˝1C1˝T /
i
D ci .T

i
˝1C1˝T i /

for all i . Let T1 D T ˝1 and T2 D 1˝T ; then the condition becomes that

ci .T1CT2/
i
D ci .T

i
1 CT

i
2 / .equality in kŒT1;T2�/:

http://mathoverflow.net/questions/21114
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In particular, c0 D 0. For i � 1, write i Dmpj with m prime to p; then

.T1CT2/
i
D .T

pj

1 CT
pj

2 /m,

which equals Tmp
j

1 CT
mpj

2 if and only if mD 1. Thus ci D 0 unless mD 1, and so the
primitive elements in O.Ga/ are the polynomialsX

j�0

bjT
pj
D b0T Cb1T

p
C�� �CbnT

pn ; bj 2 k:

For c 2 k, let c (resp. F ) denote the endomorphism of Ga acting on R-points as x 7! cx

(resp. x 7! xp). Then Fc D c�F , and so we have a homomorphism

k� ŒF �! End.Ga/' P.Ga/:

This sends
P
bjF

j to the primitive element
P
bjT

pj , and so it is an isomorphism:

k� ŒF �' End.Ga/' P.Ga/: (108)

Note that
P
bjF

j acts on Ga.R/D R as c 7!
P
bj c

pj , and that this is an isomorphism
Ga!Ga if and only if b0 ¤ 0 and bj D 0 for j ¤ 0.

Let G be an algebraic group. From the isomorphism k� ŒF � ' End.Ga/, we get an
action of k� ŒF � on P.G/' Hom.G;Ga/. Explicitly, for f 2O.G/ and c 2 k, cf D c ıf
and Ff D f p. The reader should check directly that these actions preserve the primitive
elements. Now P is a contravariant functor from algebraic groups to k� ŒF �-modules.

PROPOSITION 15.41. Let M be a finitely generated k� ŒF �-module. Among the pairs
consisting of an algebraic group G and a k� ŒF �-module homomorphism uWM ! P.G/

there is one .U.M/;uM / that is universal: for each pair .G;u/, there exists a unique
homomorphism ˛WG! U.M/ such that P.˛/ıuM D u:

U.M/

G

9Š˛

M P.U.M//

P.G/:

uM

u P.˛/

PROOF. Let M be a finitely generated k� ŒF �-module. Regard M as a p-Lie algebra with
trivial bracket. The universal enveloping p-algebra U Œp�.M/ is a Hopf algebra, and we
define

U.M/D Spm.U Œp�.M/;�/:

Let uM WM!P.U.M// denote the map defined by j WM!U Œp�.M/. The pair .U.M/;uM /

is universal, because

Hom.G;U.M//' Hom..U Œp�.M/;�/;.O.G/;�G//
' Homk� ŒF �.M;P.G//:

The second isomorphism states the universal property of j WM ! U Œp�.M/ (see p.201). 2

The proposition says that the functor P has an adjoint functor U :

Homk� ŒF �.M;P.G//' Hom.G;U.M//: (109)

Hence P and U map direct limits to inverse limits (in particular, they map right exact
sequences to left exact sequences).
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REMARK 15.42. From the bijections

Hom.G;U.k� ŒF �// ' Homk� ŒF �.k� ŒF �;P.G// (see (109))
' P.G/ (obvious)
' Hom.G;Ga/ (see (107))

we see that U.k� ŒF �/'Ga. Every finitely generated k� ŒF �-module M is a quotient of a
free k� ŒF �-module of finite rank, and so U.M/ is an algebraic subgroup of Gra for some r .
In particular, it is algebraic, unipotent, and commutative.

LEMMA 15.43. For a finitely generated k� ŒF �-module M , the canonical map uM WM !
P.U.M// is bijective.

PROOF. We have to show that the canonical map j WM ! U Œp�.M/ induces a bijection
from M onto the set of primitive elements of U Œp�.M/. Let .ei /i2I be a basis for M as a
k-vector space. The PBW Theorem 12.35 shows that the elements

un D
Y
i2I

j.ei /
ni

ni Š
; nD .ni /i2I ; 0� ni < p; (finite product),

form a basis for U Œp�.M/ as a k-vector space (see 12.41). As the j.ei / are primitive,

�un D
X
rCsDn

ur˝us ,

which shows that the only primitive elements of U Œp�.M/ are the linear combinations of the
un with

P
ni D 1. 2

For a commutative algebraic group G, let vG WG ! U.P.G// denote the adjunction
map; by definition, P.vG/ıuP.G/ D idP.G/. As uP.G/ is bijective, so also is P.vG/.

LEMMA 15.44. For a commutative algebraic groupG, the homomorphism vG WG!U.P.G//

is a quotient map.

PROOF. On applying P to the right exact sequence

G
vG
�! U.P.G//!Q! 0; Q

def
D Coker.vG/;

we get a left exact sequence

0! P.Q/! P.U.P.G//
P.vG/
�! P.G/.

As P.v/ is bijective, P.Q/D 0, and soQ is multiplicative (14.24). As it is also the quotient
of a unipotent algebraic group, it is trivial (15.17). 2

DEFINITION 15.45. An algebraic group is elementary unipotent5 if it is isomorphic to an
algebraic subgroup of Gra for some r .

With this definition, an algebraic group is unipotent if and only if it has a subnormal
series whose quotients are elementary unipotent algebraic groups (15.23).

5Springer 1998, 3.4.1, 3.4.8, and others use this terminology for group varieties. For Demazure and Gabriel,
they are the “groupes annulés par décalage”, i.e., killed by the Verschiebung (DG IV �3, 6.6, p.521).
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THEOREM 15.46. The functor G P.G/ defines a contravariant equivalence from the
category of elementary unipotent algebraic groups to the category of finitely generated
k� ŒF �-modules, with quasi-inverse M  U.M/.

PROOF. Because of (15.43), the adjoint functors P and U define an equivalence of the
essential image of U with the category of finitely generated k� ŒM �-modules. We have
seen (15.42) that every algebraic group in the essential image of U is elementary unipotent.
Conversely, let i WG!Gra be an algebraic subgroup of Gra. In the commutative diagram

G Gra

U.P.G// U.P.Gra//;

i

vG v

the map i is an embedding and v is an isomorphism. Therefore vG is an embedding. As it is
also a quotient map (15.44), it must be an isomorphism (5.13), and so G is in the essential
image of the functor U . 2

REMARK 15.47. Let G be an algebraic group over k. If G is elementary unipotent, then
VG D 0 (see 13.55). We sketch a proof of the converse statement: if VG D 0 then G is
elementary unipotent.

To show that G is elementary unipotent, it suffices to show that the homomorphism
vG WG ! U.P.G// is an isomorphism, and it suffices to do this after an extension of k.
Therefore, we may suppose that k is perfect. We shall need to use that, for an algebraic
subgroup Q of Ga, every nontrivial extension of Q by Ga comes by pullback from the
extension (13.58)

0!Ga!W2!Ga! 0: (110)

Now consider an algebraic groupG such that VG D 0. Arguing by induction on the length of a
subnormal series for G, we may suppose that G contains a subgroup N such that QDG=N
embeds into Ga and N embeds into Gra. If we extend each of canonical projections
N ,!Gra!Ga to G, then we will get an embedding of G into Gra�Ga, as required. Let
'WN !Ga be a homomorphism, and form the diagram

0 N G Q 0

0 Ga G0 Q 0

'

with the bottom row the pushout of the top row. If the extension in the lower row splits,
then ' extends to G. Otherwise, the lower row comes by pullback from (110). But VG0 D 0
because G0 is a quotient of G�Ga, and so the homomorphism G0!W2 factors through
Ga �W2, and so again ' extends to G. For more details, see DG IV, �3, 6.6, p.521.

The ring k� ŒF � behaves somewhat like the usual polynomial ring kŒT �. In particular,
the right division algorithm holds: given f and g in k� ŒF � with g ¤ 0, there exist unique
elements q;r with r D 0 or deg.r/ < deg.g/ such that

f D qgC r:

The proof is the same as for the usual division algorithm.
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PROPOSITION 15.48. The left ideals in k� ŒF � are principal. Every submodule of a free
finitely generated left k� ŒF �-module is free.

PROOF. The proof is the same as for kŒT �. 2

When k is perfect, the map � Wk! k is an automorphism, and the left division algorithm
also holds: given f and g in k� ŒF � with g ¤ 0, there exist unique elements q;r with r D 0
or deg.r/ < deg.g/ such that

f D gqC r:

PROPOSITION 15.49. Let k be a perfect field of characteristic p > 0. Every finitely gener-
ated left k� ŒF �-module M is a direct sum of cyclic modules; if, moreover, M has no torsion,
then it is free.

PROOF. The proof is the same as for kŒT �. See Berrick and Keating 2000, Chapter 3, or
Jacobson 1943, Chapter 3. 2

PROPOSITION 15.50. Over a perfect field k of characteristic p, every elementary unipotent
algebraic group G is a product of algebraic groups of the form Ga, p̨r for some r , or an
étale group of order a power of p.

PROOF. LetAD k� ŒG�. According to (15.49), P.G/ is a finite direct sum of cyclic modules
A=Ag, g 2 A. Correspondingly, G is a product of algebraic groups G0 such that P.G0/
is cyclic. Let G0 be the algebraic group with P.G/D A=Ag. If g D 0, then G � Ga; if
g D F r , then G � p̨r ; and if g is not divisible by F , then G is étale. 2

COROLLARY 15.51. The only one-dimensional unipotent connected group variety over a
perfect field is Ga.

PROOF. Immediate consequence of (15.50). 2

PROPOSITION 15.52. Every smooth connected commutative commutative group G of
exponent p over a perfect field k is isomorphic to Gra.

PROOF. Because G is smooth of exponent p, we have VG D 0 (13.55), and so G is an
elementary unipotent group (15.47). Therefore it corresponds in (15.46) to the k� ŒF �-
module P.G/' Hom.G;Ga/, which is torsion-free because G is connected and smooth.
Because k is perfect, this implies that P.G/ is free, of rank r say, and so G is isomorphic to
Gra (15.46). 2

COROLLARY 15.53. Every smooth connected commutative algebraic group of exponent p
is a form of Gra for some r .

PROOF. It becomes isomorphic to Gra over a perfect closure of the base field. 2

EXAMPLE 15.54. Let k be a nonperfect field of characteristic p. For every finite sequence
a0; : : : ;am of elements of k with a0 ¤ 0 and m� 1, the algebraic subgroup G of Ga�Ga
defined by the equation

Y p
n

D a0XCa1X
p
C�� �CamX

pm
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is a form of Ga, and every form of Ga arises in this way (Russell 1970, 2.1). Rosenlicht’s
group (1.43) is of this form. Note that G is the fibred product

G Ga

Ga Ga:
a0FC���CamF

pm

F n

In particular, G is an extension of Ga by a finite subgroup of Ga (so it does satisfy 15.23).
There is a criterion for when two forms are isomorphic (ibid. 2.3). In the case a0 D 1, G
becomes isomorphic to Ga over an extension K of k if and only if K contains a pnth root
of each ai .

For a classification of the forms of Gra, in which the elements ai are replaced by matrices,
see Kambayashi et al. 1974, 2.6.

NOTES. For the classification of elementary unipotent algebraic groups, we have followed DG IV,
�3. See also Springer 1998, 3.3, 3.4.

e. Split and wound unipotent groups: a survey

Recall the following definition (8.17, 15.23).

DEFINITION 15.55. A unipotent algebraic group G is split if it admits a subnormal series
whose quotients are isomorphic to Ga.

Note that a split unipotent algebraic group is automatically smooth and connected (10.1).

15.56. Recall (15.23) that every unipotent algebraic group admits a subnormal series whose
quotients are subgroups of Ga. In characteristic zero, Ga has no proper subgroups (15.26),
and so all unipotent algebraic groups are split.

15.57. Every smooth connected unipotent algebraic group over a perfect field is split. In
characteristic p ¤ 0, this follows easily (15.52). Hence every smooth connected unipotent
algebraic group splits over a finite purely inseparable extension.

15.58. A form of Gra is split if and only if it is the trivial form. Therefore, every split
smooth connected commutative algebraic group of exponent p is isomorphic to Gra for some
r (15.53). (See also Tits 1968, 3.3.9: let G be a commutative smooth algebraic group of
exponent p; every algebraic subgroup of G isomorphic to Ga is a direct factor of G.)

15.59. The algebraic group Un is split (8.46). More generally, the unipotent radicals of the
parabolic subgroups of a reductive algebraic group are split.

15.60. A Weil restriction of a split unipotent algebraic group is split.

DEFINITION 15.61. A unipotent group variety G is wound if every morphism from the
affine line to G is constant (i.e., has image a point).

15.62. If k is perfect, then the wound unipotent group varieties are those that are finite.

15.63. A unipotent group variety G is wound if and only if G does not contain a subgroup
variety isomorphic to Ga. For example, a form of Ga is wound if and only if it is nontrivial.
In particular, Rosenlicht’s group Y p�Y D tXp is wound.



e. Split and wound unipotent groups: a survey 267

15.64. If G is wound, then it admits a subnormal series formed of wound characteristic
subgroups whose quotients are wound commutative and killed by p (proof by induction on
the dimension of G).

15.65. Subgroups and extensions of wound group varieties are wound (but not necessarily
quotients).

15.66. Every unipotent group variety G is isomorphic to a subgroup variety of a split
unipotent group variety H (15.3). If G is commutative, H can be chosen commutative. If G
is commutative of exponent p, then it is elementary unipotent (15.47; see also Tits 1968,
3.3.1). In general, it is not possible to choose H so that G is a normal subgroup.

15.67. (Structure theorem). Let G be a connected unipotent group variety G. Then G
contains a unique normal connected split subgroup variety Gsplit such that W DG=Gsplit is
wound:

e!Gsplit!G!W ! e:

The subgroup variety Gsplit contains all connected split subgroup varieties of G, and its
formation commutes with separable (not necessarily algebraic) extensions (Tits 1968, 4.2;
Conrad et al. 2010 B.3.4).

NOTES. In the literature, one usually finds “k-split” and “k-wound” for “split” and “wound” (e.g.,
Tits 1968, 4.1). We can omit the “k” because of our convention that statements concerning an
algebraic group G over k are intrinsic to G over k. Oesterlé (1984, 3.1) writes “totalement ployé”
(totally folded or bent) for “wound”.

NOTES. To paraphrase Oesterlé (1984), the paternity of these results is not always easy to attribute.
Most of the questions treated in this section were considered for the first time by Rosenlicht (1963),
reconsidered and developed in detail by Tits (1968), and extended to schemes in DG.

NOTES. Some references for unipotent groups: Tits 1968; Schoeller 1972; Kambayashi et al. 1974;
Takeuchi 1975; Oesterlé 1984, Chapter V; Conrad et al. 2010, Appendix B.

Exercises

EXERCISE 15-1. Show that every group variety G contains a greatest unipotent normal
algebraic subgroup.

EXERCISE 15-2. Use Theorem 15.46 to prove Russell’s theorem, 15.54.

EXERCISE 15-3. (SHS, Exposé 12, 1.4; DG IV, �2, 1.1, p.483). Let H be an algebraic
subgroup of Ga (k algebraically closed). Prove:

(a) H has a subnormal series whose terms are characteristic subgroups and whose quo-
tients are Ga, p̨, or .Z=pZ/m

k
.

(b) Either Ga=H 'Ga or Ga=H D e:





CHAPTER 16
Cohomology and extensions

As usual, we fix a field k, and all algebraic schemes and morphisms are over k unless
indicated otherwise. By a functor (resp. group functor) we mean a functor Alg0

k
! Set (resp.

Alg0
k
! Grp).

a. Crossed homomomorphisms

Let G �M ! M be an action of a group functor G on a group functor M by group
homomorphisms. Such an action corresponds to a homomorphism G! Aut.M/. A map of
functors f WG!M is a crossed homomorphism if

f .gg0/D f .g/ �gf .g0/

for all small k-algebras R and g;g0 2G.R/. When G is smooth algebraic group it suffices
to check the condition for g;g0 2G.ksep/ (1.9d, 1.12). For m 2M.k/, the map

g 7!m�1 �gmWG!M

is a crossed homomorphism. The crossed homomorphisms of this form are said to be
principal.

EXAMPLE 16.1. Let G �M !M be an action of a group functor G on a group functor
M , and let � WG! Aut.M/ be the corresponding homomorphism. As in Chapter 5, we can
define a semidirect product M Ì� G. Specifically .M Ì� G/.R/DM.R/�G.R/ for all
small k-algebras R, and if m;m0 2M.R/ and g;g0 2G.R/, then

.m;g/ � .m0;g0/D .m ��.g/m0;gg0/:

There is an exact sequence

e!M !M Ì� G!G! e:

The group sections to the homomorphism M Ì� G ! G are the maps g 7! .f .g/;g/

with f a crossed homomorphism. For example, there is always a group section g 7!
.e;g/. The sections of the form g 7! .m;e/�1 � .e;g/ � .m;e/ correspond to principal crossed
homomorphisms.

LEMMA 16.2. Let U be a unipotent algebraic group, and let e be an integer not divisible
by the characteristic of k. Then the map x 7! xeWU.kal/! U.kal/ is bijective.

269
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PROOF. This is obviously true for Ga. A proper algebraic subgroup N of Ga is finite, and
the map on N.kal/ is injective, and so it is bijective. As every unipotent group admits a
filtration whose quotients are subgroups of Ga (15.23), and the functor U  U.kal/ is exact
(5.33), the general case follows. 2

PROPOSITION 16.3. Let G be a diagonalizable group variety over an algebraically closed
field k, and let M be a commutative unipotent group variety over k on which G acts. Then
every crossed homomorphism f WG!M is a principal.

PROOF. Let n > 1 be an integer not divisible by the characteristic of k, and let Gn denote
the kernel of multiplication by n on G. Then Gn.k/ is finite, of order en not divisible by the
characteristic of k. Moreover,

S
Gn.k/ is dense in jGj (see 14.33).

Let f WG!M be a crossed homomorphism, so that

f .x/D f .xy/�x �f .y/

for all x;y 2G.k/. When we sum this identity over all y 2Gn.k/, we find that

enf .x/D s�x � s; s D
X

f .y/.

Since we can divide by en in M , this shows that the restriction of f to Gn is principal. In
other words, the set

M.n/
def
D fm 2M.k/ j f .x/D x �m�m for all x 2Gn.k/g

is nonempty. The set M.n/ is closed in M DM.k/, and so the descending sequence

� � � �M.n/�M.nC1/� �� �

eventually becomes constant (and nonempty). This implies that there exists an m 2M.k/
such that

f .x/D x �m�m

for all x 2
S
Gn.k/. It follows that f agrees with the principal crossed homomorphism

x 7! x �m�m on G. 2

b. Hochschild cohomology

Let G be a group functor. A G-module is a commutative group functor M equipped with an
action of G by group homomorphisms. Thus M.R/ is a G.R/-module in the usual sense for
all k-algebras R. Much of the basic formalism of group cohomology (e.g., Chapter II of my
Class Field Theory notes) carries over to this setting. We first define the standard complex.

Let M be a G-module. Define

C n.G;M/DMap.Gn;M/

(maps of set-valued functors). By definition, G0 D e, and so C 0.G;M/DM.k/. The set
C n.G;M/ acquires a commutative group structure from that on M . If G is an algebraic
group with coordinate ring A, then C n.G;M/DM.A˝n/.

An element f of C n.G;M/ defines an n-cochain f .R/ for G.R/ with values in M.R/
for each k-algebra R. The coboundary map

@nWC n.G;M/! C nC1.G;M/
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is defined by the usual formula: let g1; : : : ;gnC1 2G.R/; then
.@nf /.g1; � � � ;gnC1/D

g1f .g2; : : : ;gnC1/C

nX
jD1

.�1/jf .g1; : : : ;gjgjC1; : : : ;gnC1/C .�1/
nC1f .g1; : : : ;gn/:

Define

Zn.G;M/ D Ker.@n/ (group of n-cocycles)
Bn.G;M/ D Im.@n�1/ (group of n-coboundaries)
Hn
0 .G;M/ D Zn.G;M/=Bn.G;M/:

For example,

H 0
0 .G;M/DM.k/G

H 1
0 .G;M/D

crossed homomorphisms G!M

principal crossed homomorphisms
:

If G acts trivially on M , then

H 0
0 .G;M/DM.k/

H 1
0 .G;M/D Hom.G;M/ (homomorphisms of group functors).

The group H r
0 .G;M/ is called the r th Hochschild cohomology group of G in M .

Let
0!M 0!M !M 00! 0

be an exact sequence of G-modules. By this we mean that

0!M 0.R/!M.R/!M 00.R/! 0 (111)

is exact for all small k-algebras R. Then

0! C �.G;M 0/! C �.G;M/! C �.G;M 00/! 0 (112)

is an exact sequence of complexes. For example, if G is an algebraic group, then (112) is
obtained from (111) by replacing R with O.G/. By a standard argument (112), gives rise to
a long exact sequence of cohomology groups

0!H 0
0 .G;M

0/!H 0
0 .G;M/!�� �!Hn

0 .G;M
00/!HnC1

0 .G;M 0/!HnC1
0 .G;M/!�� � :

Let M be a commutative group functor, and let Hom.G;M/ denote the functor R 
Hom.GR;MR/. Then Hom.G;M/ becomes a G-module by the usual rule, .gf /.g0/ D
g.f .g�1g0/.

PROPOSITION 16.4 (SHAPIRO’S LEMMA). Let M be a commutative group functor. For
all n > 0,

Hn
0 .G;Hom.G;M//D 0:

PROOF. Note that

C n.G;Hom.G;M//' Hom.G�Gn;M/D C nC1.G;M/.
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Define
snWHom.GnC2;M/! Hom.GnC1;M/

by
.snf /.g;g1; : : : ;gn/D f .e;g;g1; : : : ;gn/:

When we regard sn as a map C nC1.G;Hom.G;M//! C n.G;Hom.G;M//, we find (by
direct calculation), that

sn@nC@n�1sn�1 D id

for n > 0. Therefore .sn/n is a homotopy operator, and the cohomology groups vanish. 2

REMARK 16.5. In the above discussion, we did not use that k is a field. Let R0 be a
k-algebra. From an algebraic group G over R0 and a G-module M over R0 we obtain, as
above, cohomology groups H i

0.G;M/.
Now let G be an algebraic group over k with coordinate ring A, and let M be the

G-module defined by a linear representation .V;r/ of G over k. From the description
C n.G;M/DM.A˝n/D V ˝A˝n, we see that

C �.GR0 ;MR0/'R0˝C
�.G;M/:

As k!R0 is flat, it follows that

Hn.GR0 ;MR0/'R0˝H
n.G;M/:

EXAMPLES.

PROPOSITION 16.6. Let �k be the constant algebraic group defined by a finite abstract
group � . For all �k-modules M ,

Hn
0 .�k;M/'Hn.�;M.k// (usual group cohomology).

PROOF. The standard complexes C �.�k;M/ and C �.�;M.k// are equal. 2

PROPOSITION 16.7. Every action of Ga on Gm is trivial, and

Hn
0 .Ga;Gm/D

(
k� if nD 0
0 if n > 0:

PROOF. The first assertion follows from (14.29). We have

C n.Ga;Gm/
def
DMap.Gna;Gm/'Gm.kŒT �˝n/' kŒT1; : : : ;Tn�� D k�

and

@n D

(
id if n is odd
0 if n is even.

from which the statement follows. 2

PROPOSITION 16.8. Let r be an integer � 0. Every action of Grm on Gm is trivial, and

H i
0.G

r
m;Gm/D 0 for i � 2.
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PROOF. The first assertion follows from (14.29). The Hochschild complex C �.Grm;Gm/
has

C n.Grm;Gm/D kŒT11;T11; : : : ;T1n;T
�1
1;n ; : : : ;Trn;T

�1
rn �
�
' k��Znr

and boundary maps that can be made explicit. A direct calculation gives the statement (DG
III, �6, p.453). 2

PROPOSITION 16.9. Let �WG �H !H be an action of an algebraic group G of height
� n on a commutative algebraic group H , and let Hn denote the kernel of F nH WH !H .pn/.
Then the induced action of G on H=Hn is trivial, and the canonical map

H i
0.G;Hn/!H i

0.G;H/

is bijective for all i � 2:

PROOF. From the functoriality of the Frobenius map, we get a commutative diagram

G�H H

G.p
n/�H .pn/ H .pn/

F nG�F
n
H

�

F nH

�.p
n/

As F nG is the trivial homomorphism, this shows that the induced action of G on H .pn/,
hence on H=Hn, is trivial.

For the second assertion, we define a functor X  X.n/ of schemes as follows. The
underlying set of the schemeX.n/ isX.k/ endowed with its discrete topology. For x 2X.k/,
set OX.n/;x D OX;x=mp

n

x . Then X.n/ is a subfunctor of X ; moreover, .X � Y /.n/ '
X.n/�Y.n/ and G.n/DG. It follows that H.n/ is stable under G. As Map.Gi ;H.n//'
Map.Gi ;H/ (maps of schemes) for all i we deduce that H i

0.G;H.n//'H
i
0.G;H/ for all

i � 0. Now note that there is a canonical exact sequence of G-modules

0!Hn!H.n/!H.k/k! 0: (113)

Here H.k/k is the constant group scheme associated with the group H.k/ and the trivial
G-action. As Map.Gi ;H.k/k/DH.k/ for all i , we see that H i

0.G;H.k/k/D 0 for i � 1,
and so the required statement follows from the cohomology sequence of (113). 2

For example,
H i
0. p̨;�p/'H

i
0. p̨;Gm/

for all i � 2.

NOTES. For more details, see DG II, �3, nı1, pp.185–188.

c. Hochschild extensions

Let G be a group functor. Let M be a commutative group functor, and let

0!M
i
�!E

�
�!G (114)

be an exact sequence of group functors, i.e.,

0!M.R/
i.R/
�!E.R/

�.R/
�! G.R/
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is exact for all (small) k-algebras R. A sequence (114) is a Hochschild extension if there
exists a map of set-valued functors sWG ! E such that � ı s D idG . For a Hochschild
extension, the sequence

0!M.R/
i.R/
�!E.R/

�.R/
�! G.R/! 0

is exact for all k-algebras R. Conversely, if �.R/ is surjective with RDO.G/, then (114)
is a Hochschild extension. A Hochschild extension .E; i;�/ is trivial if there exists a
homomorphism of group functors sWG! E such that � ı s D idG . This means that E is
a semidirect product M Ì� G for the action � of G on M defined by the extension. Two
Hochschild extensions .E; i;�/ and .E 0; i 0;� 0/ of G by M are equivalent if there exists a
homomorphism f WE!E 0 making the diagram

0 M E G 0

0 M E 0 G 0

i �

f

i 0 � 0

commute.
Let .E; i;�/ be a Hochschild extension of G by M . In the action of E on M by

conjugation,M acts trivially, and so .E; i;�/ defines aG-module structure onM . Equivalent
extensions define the same G-module structure on M . For a G-module M , we define
E.G;M/ to be the set of equivalence classes of Hochschild extensions of G by M inducing
the given action of G on M .

PROPOSITION 16.10. Let M be a G-module. There is a canonical bijection

E.G;M/'H 2
0 .G;M/. (115)

PROOF. Let .E; i;�/ be a Hochschild extension of G by M , and let sWG!E be a section
to � . Define f WG2!M by the formula

s.g/s.g0/D i.f .g;g0// � s.gg0/; g;g0 2G.R/:

Then f is a 2-cocycle, whose cohomology class is independent of the choice of s. In this way,
we get a map from the set of equivalence classes of Hochschild extensions to H 2

0 .G;M/.
On the other hand, a 2-cocycle defines an extension, as for abstract groups. One checks
without difficulty that the two maps obtained are inverse. 2

A Hochschild extension .E; i;�/ ofG byM is central if i.M/ is contained in the centre
of E, or, in other words, if the action of G on M is trivial.

Let G act trivially on M . A 2-cocycle f is symmetric if f .g;g0/ D f .g0;g/ for all
g;g0 2G.R/. Let Z2s .G;M/ denote the group of symmetric 2-cocycles, and define

H 2
s .G;M/DZ2s .G;M/=B2.G;M/:

COROLLARY 16.11. Let M be a commutative group functor. Assume that G is commu-
tative. There is a canonical one-to-one correspondence between the equivalence classes of
Hochschild extensions .E; i;�/ with E commutative and the elements of H 2

s .G;M/.

PROOF. Follows without difficulty from (16.10). 2
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HIGHER HOCHSCHILD EXTENSIONS

We wish to define a sequence of functors E0.G;�/; E1.G;�/; . . . such that E1.G;�/D
E.G;�/. We examine this question first for an abstract group G. Consider the group ring

ZŒG� of G and its augmentation ideal J D Ker.ZŒG�
g 7!g�1
�����! Z/; thus ZŒG�' Z˚J . The

map
ıWG! J; ı.g/D g�1

is a crossed homomorphism, and it is universal, i.e.,

'$ ' ı ıWHomG-module.J;M/'Z1.G;M/ (crossed homomorphisms)

for all G-modules M .
From an exact sequence of G-modules,

E W 0!M
i
�!E

�
�! J ! 0;

we can construct a diagram

0 M E.E/ G e

0 M M ÌG J ÌG 0

g 7!.g�1;g/

m7!.i.m/;0/ ��id

with E.E/ is the fibred product. Let F.E/ denote the top row. Then the map E 7! F.E/
defines a bijection from Ext1G-module.J;M/ onto the set of equivalence classes of extensions
of G by M . This allows us to define

Ei .G;M/D ExtiG-module.G;M/:

In particular, E0.G;M/DZ1.G;M/.
Similar arguments work for a group functor G. Thus, we obtain a sequence of functors

E0.G;�/; E1.G;�/; E2.G;�/; : : : of G-modules such that�
E0.G;M/'Z1.G;M/ set of crossed homomorphisms
E1.G;M/'E.G;M/ set of Hochschild extensions.

(116)

NOTES. For more details, see DG II, �3, nı2, p.189; ibid. III, �6, nı1, p.431.

d. The cohomology of linear representations

Let G be an algebraic group over k, and let .V;r/ be a linear representation of G. Then r
defines an action of G on the group functor VaWR V ˝R, and we set

H i .G;V /
def
DH i

0.G;Va/:

Let ADO.G/, and let �WV ! V ˝A be the corresponding co-action. Then

C n.G;Va/
def
D Hom.Gn;V /' V.A˝n/D V ˝A˝n.

Thus, C �.G;Va/ is a complex

0! V ! V ˝A! �� � ! V ˝A˝n
@n

�! V ˝A˝nC1! �� � :
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The map @n has the following description (DG II, �3, 3.1, p.191): let v 2 V and a1; : : : ;an 2
A; then

@n.v˝a1˝�� �˝an/D �.v/˝a1˝�� �˝anC

nX
jD1

.�1/j v˝a1˝�� �˝�ai ˝�� �˝an

C .�1/nC1v˝a1˝�� �˝an˝1:

If
0! V 0! V ! V 00! 0

is an exact sequence of representations, then

0! V 0˝R! V ˝R! V 00˝R! 0

is exact for all k-algebras R, and so there is a long exact sequence of cohomology groups

0!H 0.G;V 0/!H 0.G;V /!�� �!Hn.G;V 00/!HnC1.G;V 0/!HnC1.G;V /!�� � :

PROPOSITION 16.12. Let V be a k-vector space, and let V ˝A be the free comodule on V
(Section 4.e). Then

Hn.G;V ˝A/D 0 for n > 0:

PROOF. For a (small) k-algebra R,

.V ˝A/a.R/ D V ˝A˝R (definition)
' .V ˝R/˝R .A˝R/ (linear algebra)
D .Va/R.AR/ (change of notation)
' Nat.hAR ; .Va/R/ (Yoneda lemma A.27)
D Hom.GR; .Va/R/: (change of notation).

As these isomorphisms are natural in R, they form an isomorphism of functors

.V ˝A/a ' Hom.G;Va/:

Therefore the statement follows from Shapiro’s lemma (16.4). 2

REMARK 16.13. The functors Hn.G; �/ are the derived functors of the functor H 0.G; �/

on the category of all linear representations of G (not necessarily finite-dimensional). To
prove this, it remains to show that the functors Hn.G; �/ are effaceable, i.e., for each V ,
there exists an injective homomorphism V !W such that Hn.G;W /D 0 for n > 0, but
the homomorphism V ! V0˝A in (4.9) has this property because of (16.12).

As the category of representations of G is isomorphic to the category of A-comodules,
and H 0.G;V /D HomA.k;V / (homomorphisms of A-comodules), we see that

Hn.G;V /' ExtnA.k;V /; all n;

(Exts in the category of A-comodules).
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e. Linearly reductive groups

Let G be an algebraic group over k, and let .V;r/ be a linear representation of G on a
k-vector space V . According to (4.7), .V;r/ is a directed union of its finite-dimensional
subrepresentations,

.V;r/D
[

dim.W /<1

.W;r jW /:

Correspondingly,
H i .G;V /D lim

�!
H i .G;W / (117)

(because direct limits are exact in the category of abelian groups).

LEMMA 16.14. Let x 2 H i .G;V /. Then x maps to zero in H i .G;W / for some finite-
dimensional representation W containing V .

PROOF. Recall (4.9) that the co-action �WV ! V0˝A is an injective homomorphism of
A-comodules. According to (16.12), the element x maps to zero in H i .G;V0˝A/, and
it follows from (117) that x maps to zero in H i .G;W / for some finite-dimensional G-
submodule W of V0˝A containing �.V /. 2

PROPOSITION 16.15. An algebraic groupG is linearly reductive if and only ifH 1.G;V /D

0 for all finite-dimensional representations .V;r/ of G.

PROOF. H): Let x 2H 1.G;V /. According to (16.14), x maps to zero in H i .G;W / for
some finite-dimensional representation W of G containing V . Hence x lifts to an element of
.W=V /G in the cohomology sequence

0! V G!W G
! .W=V /G!H 1.G;V /!H 1.G;W /:

But, because G is linearly reductive, the sequence 0! V !W !W=V ! 0 splits as a
sequence of G-modules, and so W G! .W=V /G is surjective. Therefore x D 0.
(H: When .V;r/ and .W;s/ are finite-dimensional representations of G, we let

Hom.V;W / denote the space of k-linear maps V !W equipped with the G-action given
by the rule

.gf /.v/D g.f .g�1v//:

We have to show that every exact sequence

0! V 0! V ! V 00! 0 (118)

of finite-dimensional representations of G splits. From (118), we get an exact sequence of
G-modules

0! Hom.V 00;V 0/! Hom.V 00;V /! Hom.V 00;V 00/! 0;

and hence an exact cohomology sequence of vector spaces

0! Hom.V 00;V 0/G! Hom.V 00;V /G! Hom.V 00;V 00/G!H 1.G;Hom.V 00;V 0//.

By assumption, the last group is zero, and so idV 00 lifts to an element of Hom.V 00;V /G . This
element splits the original sequence (118). 2

PROPOSITION 16.16. If G is linearly reductive, then Hn.G;V /D 0 for all n > 0 and all
representations V of G.
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PROOF. Because of (117), it suffices to prove this for finite-dimensional representations.
We use induction on n. We know the statement for n D 1, and so we may suppose that
n > 1 and that H i .G;W /D 0 for 1 � i < n and all finite-dimensional representations W .
Let x 2 Hn.G;V /. Then x maps to zero in Hn.G;W / for some finite-dimensional W
containing V (16.14), and so x lifts to an element of Hn�1.G;V=W / in the cohomology
sequence

Hn�1.G;V=W /!Hn.G;V /!Hn.G;W /:

But Hn�1.G;V=W /D 0 (induction), and so x D 0. 2

REMARK 16.17. In particular, Hn.G;V /D 0 (n > 0) for groups G of multiplicative type
(14.22). It is possible to deduce this directly from (16.12) by showing that the homomorphism
of G-modules �WV ! V0˝A (see 4.9) has a section. See DG II, �3, 4.2, p.195.

f. Applications to homomorphisms

We can now prove a stronger form of (15.18).

PROPOSITION 16.18. Let T and U be algebraic groups over k with T of multiplicative
type and U unipotent, and let R be a k-algebra. Every homomorphism TR! UR is trivial.

PROOF. Let ˛ be such a homomorphism, and let H be minimal among the algebraic sub-
groups of U such that ˛.TR/�HR. If H ¤ e, then there exists a nontrivial homomorphism
ˇWH !Ga (15.24), and the composite ˇR ı˛WTR! .Ga/R is nontrivial because otherwise
˛.TR/ would be contained in the kernel of ˇ and H wouldn’t be minimal. But when we
endow GaR with the trivial action of TR, we find that

HomR.TR;GaR/DH 1
0 .TR;GaR/

(16.5)
' R˝H 1

0 .T;Ga/
(16.16)
D 0;

giving a contradiction. Therefore H D e and ˛ is trivial. 2

� REMARK 16.19. There may exist nontrivial homomorphisms UR! TR. For example,

Hom..Z=pZ/k;Gm/' �p

(13.31), and so Hom..Z=pZ/R;GmR/¤ 0 if R contains an element¤ 1 whose pth power
is 1. Similarly,

Hom. p̨;Gm/' p̨

(13.32), and so Hom. p̨R;GmR/¤ 0 if R contains an element¤ 0 whose pth power is 0.

g. Applications to centralizers

We present two more proofs that the centralizer of a multiplicative subgroup is smooth
(14.62, 14.79). This section will be deleted from the final version.
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TRADITIONAL APPROACH (SHS)

An action of an algebraic group H on an algebraic group G defines a representation of H
on the Lie algebra g of G, and hence cohomology groups Hn.G;g/.

THEOREM 16.20 (SMOOTHNESS OF CENTRALIZERS). LetG be a smooth algebraic group,
and let H be an algebraic group acting on G. If H 1.H;g/D 0, then GH is smooth.

PROOF. In order to show that GH is smooth, it suffices to show that, for all k-algebras S
and ideals I in S such that I 2 D 0, the map

GH .S/!GH .S=I /

is surjective (see 1.22). Define group functors

GWR G.S˝R/

NGWR image of G.S˝R/ in G..S=I /˝R/

After (12.28), there is an exact sequence of group functors

0! .I ˝g/a! G! NG! 0:

Now H acts on this sequence, and so we get an exact cohomology sequence:

0!H 0.H;I ˝g/!H 0.H;G/!H 0.H; NG/!H 1.H;I ˝g/: (119)

From (9.3),

GH .S/D fg 2G.S/ j hS˝RgS˝R D gS˝R 8h 2H.R/, all Rg:

It follows that
H 0.H;G/ def

D GH .k/DGH .S/:
Similarly,

H 0.H; NG/D fg 2GH .S=I / lifting to G.S/g.

As G is smooth, G.S/!G.S=I / is surjective, and so the last equality becomes

H 0.H; NG/DGH .S=I /:

Finally,
H i .H;I ˝g/D I ˝H i .H;g/

(as a representation of H , I ˝ g is a direct sum of copies of g). Therefore, the sequence
(119) becomes an exact sequence

0!H 0.H;g/˝I !GH .S/!GH .S=I /!H 1.H;g/˝I;

Hence GH .S/!GH .S=I / is surjective if H 1.H;g/D 0. 2

COROLLARY 16.21. Let H be a linearly reductive algebraic group acting on a smooth
algebraic group G. Then GH is smooth.

PROOF. As H is linearly reductive, H 1.H;g/D 0 (16.15). 2
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COROLLARY 16.22. Let H be a commutative algebraic subgroup of a smooth algebraic
group G. If

H 1.H;h/D 0DH 1.H;g/;

then CG.H/ and NG.H/ are smooth, and CG.H/ is open in NG.H/.

PROOF. Let H act on G be inner automorphisms. Then GH D CG.H/. If H 1.H;g/D 0,
then CG.H/ is smooth (16.20). If H 1.H;h/D 0, then gH ! .g=h/H is surjective, and so
CG.H/ is open in NG.H/ (12.33). Hence NG.H/ is also smooth. 2

COROLLARY 16.23. Let H be a multiplicative algebraic subgroup of a smooth algebraic
group G. Then CG.H/ and NG.H/ are smooth, and CG.H/ is open in NG.H/.

PROOF. The hypotheses of (16.22) hold (see 14.22, 16.15). 2

ABSTRACT APPROACH

We sketch a more abstract version of the proof of the smoothness of CG.H/.

LEMMA 16.24. Let G and H be algebraic groups over k. Let R be a k-algebra, let
R0 D R=I with I 2 D 0, and let � �0 denote base change R! R0. The obstruction to
lifting a homomorphism u0WH0!G0 to R is a class in H 2.H0;Lie.G0/˝I ); if the class
is zero, then the set of lifts modulo the action of Ker.G.R/!G.R0// by conjugation is a
principal homogeneous space for the group H 1.H0;Lie.G0/˝I /.

PROOF. Omitted. 2

LEMMA 16.25. Let H and G be algebraic groups over a ring R, and let R0 D R=I with
I 2 D 0. If H is of multiplicative type, then every homomorphism u0WHR0 ! GR0 lifts
to a homomorphism uWH ! G; if u0 is a second lift, then u0 D inn.g/ ıu for some g 2
Ker.G.R/!G.R0//.

PROOF. The cohomology groups H 1.H0;Lie.G0/˝I / and H 2.H0;Lie.G0/˝I / vanish
(16.17), and so this follows from (16.24). 2

PROPOSITION 16.26. Let G be an algebraic group over a field k, acting on itself by conju-
gation, and let H and H 0 be subgroups of G. If G is smooth and H is of multiplicative type,
then the transporter TG.H;H 0/ is smooth.

PROOF. We use the following criterion (A.53):
An algebraic scheme X over a field k is smooth if and only if, for all k-algebras
R and ideals I in R such that I 2 D 0, the map X.R/!X.R=I / is surjective.

We may replace k with its algebraic closure. Let g0 2 TG.H;H 0/.R0/. Because G is
smooth, g0 lifts to an element g 2G.R/. On the other hand, because H is of multiplicative
type, the homomorphism

inn.g0/WH0!H 00

lifts to a homomorphism uWH !H 0 (see 16.25). The homomorphisms

inn.g/WH !G

uWH !H 0 ,!G

both lift inn.g0/WH0!G0, and so uD inn.g0/ı inn.g/ for some g0 2G.R/ mapping to e
in G.R0/ (see 16.25). Now g0g is an element of TG.H;H 0/.R/ lifting g0. 2
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COROLLARY 16.27. Let H be a multiplicative algebraic subgroup of an algebraic group
G. Then CG.H/ and NG.H/ are smooth.

PROOF. This follows from the proposition because

NG.H/D TG.H;H/

CG.H/D TG.H;H/:

See 1.59 and 1.67. 2

LEMMA 16.28. Let G and H be diagonalizable group varieties and let X be a connected
algebraic variety (over an algebraically closed field for simplicity); let �WG�X !H be a
regular map such that �x WG!H is a homomorphism for all x 2X.k/; then � is constant
on X , i.e., � factors through the map G�X !G.

PROOF. Omitted. 2

PROPOSITION 16.29. Let H be a diagonalizable subgroup of a group variety G; then
NG.H/

ı D CG.H/
ı.

PROOF. Apply (16.28) to

'WH �NG.H/
ı
!H; '.h;g/D ghg�1I

as this is constant onNG.H/ı, we have '.h;g/D'.h;e/D h, and soNG.H/ı�CG.H/ı.2

h. Calculation of some extensions

We compute (following DG III, �6) some extension groups. Throughout, p denotes the
characteristic exponent of k.

PRELIMINARIES

Let G be an algebraic group over k. Recall that a G-module is a commutative group functor
M on which G acts by group homomorphisms. A G-module sheaf is a G-module whose
underlying functor is a sheaf for the flat topology.

Let M be a sheaf of commutative groups. A sheaf extension of G by M is a sequence

0!M
i
�!E

�
�!G! 0 (120)

that is exact as a sequence of sheaves of groups. The means that the sequence

0!M.R/!E.R/!G.R/

is exact for all small k-algebras, and � is a quotient map of sheaves, i.e., �.E/ is fat
subfunctor of G. Equivalence of sheaf extensions is defined as for Hochschild extensions.
An extension of G by M defines an action of G on M , and equivalent extensions define the
same action.

DEFINITION 16.30. For a G-module sheaf M , Ext.G;M/ denotes the set of equivalence
classes of sheaf extensions of G by M inducing the given action of G on M .
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When M is an algebraic group, Ext.G;M/ is equal the set of equivalence classes of
extensions (120) with E an algebraic group (Exercise 6-6).

Let M be a G-module sheaf, and let .E; i:�/ be a Hochschild extension of G by M .
Then E is a sheaf, and .E; i;�/ is a sheaf extension of G by M . In this way, we get an
injective map

E.G;M/! Ext.G;M/

whose image consists of the classes of extensions (120) such that � has a section (as a map
of functors). One strategy for computing Ext.G;M/ is to show that every extension is a
Hochschild extension, and then use the description of E.G;M/ in terms of Hochschild
cohomology in (16.10). Let

0!N !E!G! 0 (121)

be an extension of algebraic groups. ThenE is anN -torsor overG, and (121) is a Hochschild
extension if this torsor is trivial.

More generally, we define Exti .G;�/ to be the i th right derived functor of

M  Z1.G;M/ .functor of G-module sheaves/

(cf. the definition of Ei in Section 16.c). For i D 1, this agrees with the previous definition
(ibid. 1.4, p.434). Thus�

Ext0.G;M/DZ1.G;M/ set of crossed homomorphisms
Ext1.G;M/' Ext.G;M/ set of sheaf extensions.

(122)

NOTES. DG III, �6, 2, p.438, write Exi and EQxi where we write Ei and Exti .

EXTENSIONS WITH ÉTALE QUOTIENT

PROPOSITION 16.31. Suppose that k is algebraically closed. Let �k be the constant alge-
braic group over k defined by a finite group � , and let M be a �k-module sheaf. Then

Exti .�k;M/'H iC1.�;M.k// all i � 1:

Here H iC1.�;M.k// denotes the usual group cohomology of � acting on M.k/.

PROOF. Because k is algebraically closed, the functor M  M.k/ is exact. Hence the
functor M  C �.�;M.k// is exact, and so an exact sequence

0!M 0!M !M 00! 0

of sheaves of commutative groups gives rise to an exact sequence

0!Z1.�;M 0.k//!Z1.�;M.k//!Z1.�;M 00.k//!H 2.�;M 0.k//!H 2.�;M.k/!�� �

of commutative groups. By definition

Ext0.�k;M/DZ1.�k;M/'Z1.�;M.k//,

and so it remains to show that
H iC1.�;M.k//D 0

for i > 0 when M is injective. But the functor M  M.k/ is right adjoint to the functor
N  Nk ,

Hom.N;M.k//' Hom.Nk;M/:

If M is injective, then N  Hom.Nk;M/ ' Hom.N;M.k// is exact, and so M.k/ is
injective. 2
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COROLLARY 16.32. Let k, � , and M be as in (16.31). If � is of finite order n, and
x 7! nxWM.k/!M.k/ is an isomorphism, then

Exti .�k;M/D 0 for all i � 0:

PROOF. Let N be a � -module. If � has order n, then the cohomology group H i .�;N /

is killed by n for all i > 0 (see, for example, my Class Field Theory notes, II, 1.31).
If x 7! nxWN ! N is bijective, then n acts bijectively on H i .�;N /. If both are true,
H i .�;N /D 0, i > 0, and so the statement follows from (16.31). 2

COROLLARY 16.33. LetD be a diagonalizable algebraic group. If k is algebraically closed,
then Exti .Z=pZ;D/D 0 for all i > 0.

PROOF. This follows from (16.32) because pWD.k/!D.k/ is an isomorphism (recall that
every diagonalizable algebraic group is a product of the following groups: Gm; �n with
gcd.p;n/D 1; �pr ; 14.3). 2

EXTENSIONS WITH ADDITIVE QUOTIENT

PROPOSITION 16.34. Let D be a diagonalizable group. Every action of Ga on D is trivial,
and

Ext0.Ga;D/D 0D Ext1.Ga;D/:

PROOF. The first assertion follows from (14.29). For the second assertion, we first consider
the case D DD.Z/DGm. Because the action is trivial, Ext0.Ga;Gm/D Hom.Ga;Gm/,
which is 0 (15.17). Consider an extension

0!Gm!E!Ga! 0:

Then E is a Gm-torsor over A1 (5.61), and hence corresponds to an element of Pic.A1/,
which is zero. Therefore this is a Hochschild extension, and we can apply (16.10):

E.Ga;Gm/'H 2
0 .Ga;Gm/.

But the second group is zero (16.7).
Now let D DD.M/. There exists an exact sequence

0! Zs! Zr !M ! 0

for some r;s 2 N, which gives an exact sequence of algebraic groups

0!D.M/!Grm!Gsm! 0

(14.9b). This is exact as a sequence of sheaves of commutative groups, and so there is a long
exact sequence

0! Ext0.Ga;D.M//! Ext0.Ga;Gm/r ! Ext0.Ga;Gm/s! Ext1.Ga;D.M//! �� � :

Thus the statement follows from the case D DGm. 2
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EXTENSIONS WITH MULTIPLICATIVE QUOTIENT

PROPOSITION 16.35. Let D DD.M/ be a diagonalizable algebraic group. Every action
of Grm on D.M/ is trivial, and the functor D induces isomorphisms

Exti .M;Zr/' Exti .Grm;D.M//

for i D 0;1:

PROOF. The first assertion follows from (14.29). It follows from (14.9) that the functor D
gives isomorphisms

HomZ-modules.M;Zr/' Hom.Grm;D.M//

Ext1Z-modules.M;Z
r/' Ex1.Grm;D.M//.

where Ex1.Grm;D.M// denotes extensions in the category of commutative algebraic groups
(equivalently commutative group functors). Because the action of Grm on D.M/ is trivial,

Ext0.Grm;D.M//D Hom.Grm;D.M//:

It remains to show that the map

Ext1Z-modules.M;Z
r/' Ex1.Grm;D.M//! Ext1.Grm;D.M//

is surjective. By a five-lemma argument, it suffices to prove this with M D Z (so D.M/D

Gm).
Consider an extension

0!Gm!E!Grm! 0:

Then E is a Gm-torsor over Grm, and hence corresponds to an element of Pic.Grm/, which is
zero. Therefore, the extension is a Hochschild extension, and so

Ext1.Grm;Gm/DE.G
r
m;Gm/

(16.10)
D H 2

0 .G
r
m;Gm/

(16.8)
D 0;

as required. 2

Recall (12.10) that an action of an algebraic group G on Ga is said to be linear if it arises
from a linear representation of G on a one-dimensional vector space.

PROPOSITION 16.36. Let G of multiplicative type, and let N be an algebraic subgroup of
Ga such that G acts on N through a linear action on Ga. Then

H 1
0 .G;N /D 0DH

2
0 .G;N /.

PROOF. Let Ga D Va. Then H i
0.G;Ga/

def
DH i .G;V /D 0 for i > 0 (16.16). Consider the

exact sequence
e!N !Ga!Ga=N ! e: (123)

Either Ga=N D 0 or it is isomorphic to Ga (Exercise 15-3). In the first case, N 'Ga and
so H i

0.G;N /D 0 for i > 0. In the second case, (123) becomes an exact sequence

e!N !Ga!Ga! e;

whose exact cohomology sequence gives the result. 2
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COROLLARY 16.37. Let G be of multiplicative type. Then H i
0.G; p̨/D 0 for i > 0.

PROOF. The automorphism group of p̨ is Gm, and so every action of G on p̨ extends to a
linear action on Ga. Thus, we can regard

0! p̨!Ga
F
�!Ga! 0

as an exact sequence of G-modules. Its cohomology sequence gives the result. 2

PROPOSITION 16.38. Let G be an algebraic group of multiplicative type, and let .V;r/ be
a finite-dimensional representation of G. Then Ext0.G;Va/' V=V G and Exti .G;Va/D 0
all i > 0:

PROOF. By assumption, U D Va as a G-module for some representation .V;r/ of G. Now

H i
0.G;U /

def
DH i .G;V /D 0

for i > 0 (16.17). 2

PROPOSITION 16.39. Let G be an algebraic group of multiplicative type, acting trivially
on a commutative unipotent group U . Then Exti .G;U /D 0 for all i � 0.

PROOF. For U D Ga, this follows from (16.38). Every algebraic subgroup of Ga is the
kernel of an epimorphism Ga!Ga (Exercise 15-3), and so the statement is true for such
groups. Now use that U has a filtration whose quotients are of these types (15.23). 2

COROLLARY 16.40. Let G be of multiplicative type, and let 'WG! Aut. p̨/'Gm be a
nontrivial homomorphism. Then Exti .G; p̨/D 0 for i � 2. If ' factors through �p �Gm,
then �

Ext0.G; p̨/' k
Ext1.G; p̨/D 0

I otherwise
�

Ext0.G; p̨/D 0
Ext1.G; p̨/' k=kp:

PROOF. As Aut. p̨/'Gm, every action of D on p̨ extends to a linear action of D on Ga.
We have an exact sequence

0! p̨!G0a
F
�!G00a! 0

in which G0a DGa DG00a as algebraic groups but may have different G-module structures.
In the corresponding long exact sequence,

Exti .G;G0a/D 0D Exti .G;G00a/; i � 1;

and
Hom.D;Ga/! Ext1.D; p̨/! Ext1.D;Ga/

and (16.38) prove the statement show that Ext1.D; p̨/D 0. 2

THEOREM 16.41. Let U be an algebraic subgroup of Ga, and let G be an algebraic group
of multiplicative type acting on U by group homomorphisms. Then Ext1.G;U /D 0 in each
of the following cases:

(a) U DGa and the action of G on U is linear or trivial.

(b) k is perfect and U D p̨r ;
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(c) U is étale and G is connected;

(d) k is algebraically closed and the action of G on U is the restriction of a linear action
on Ga;

(e) G acts trivially on U .

PROOF. (a) This was proved in (16.38).
(b) This follows from (16.39) using the exact sequences

0! p̨! p̨r ! p̨r�1 ! 0:

(c) The action of G on U is trivial, and so we have an exact sequence of G-modules
with trivial action,

0! U !Ga!Ga! 0

(see Exercise 15-3). In the exact sequence

Ext0.G;Ga/! Ext1.G;U /! Ext1.G;Ga/;

the two end terms are zero (16.36).
(d,e) The statement follows from (a) if U DGa. Otherwise, there is an exact sequence

0! U !Ga
˛
�!Ga! 0;

(see Exercise 15-3), and hence an exact sequence

Ext0.G;Ga/! Ext0.G;Ga/! Ext1.G;U /! Ext1.G;Ga/:

But Ext1.G;Ga/D 0, and Hom.G;Ga/ equals 0 if the action is trivial (14.24) and k other-
wise. Therefore Ext1.G;U /D 0 or Ext1.G;U /D k=kp , from which the statements (d) and
(e) follow. 2

EXTENSIONS OF UNIPOTENT GROUPS BY DIAGONALIZABLE GROUPS

PROPOSITION 16.42. We have

H 2
0 . p̨;�p/'H

2
0 . p̨;Gm/' Ext1. p̨;Gm/:

PROOF. The first isomorphism is a special case of (16.9). For the second isomorphism, it
suffices (after 16.10) to show that every extension

0!Gm
i
�!E

�
�! p̨! 0

is a Hochschild extension, i.e., there exists a map sW p̨!E of schemes such that � ı s D id.
But E is a Gm-torsor over p̨, and hence corresponds to an element of Pic. p̨/, which is
zero because p̨ is the spectrum of a local ring. 2

PROPOSITION 16.43. Every action of p̨ on a diagonalizable group D is trivial, and

Ext1. p̨;�p/' Ext1. p̨;Gm/' k=kp:

If k is perfect, then Ext1. p̨;D/D 0.
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PROOF. For the first assertion, we have Aut.D.M//'Aut.M/k , which is a constant group
scheme (not necessarily of finite type) — see Exercise 14.35. As p̨ is connected, every
homomorphism p̨! Aut.D/ is trivial.

We now prove the second assertion. As Hom. p̨;Gm/D 0, from the Ext-sequence of

0! �p!Gm
x 7!xp

�! Gm! 0;

we find that
Ext1. p̨;�p/! Ext1. p̨;Gm/

is injective. From (16.42), we find that

Ext1. p̨;�p/' Ext1. p̨;Gm/'H 2
0 . p̨;�p/' Ext1.Lie. p̨/;Lie.�p/:

The p-Lie algebra of p̨ is kf with f Œp� D 0, and the p-Lie algebra of �p D ke with
eŒp� D e. Every extension of Lie. p̨/ by Lie(�p/ splits as an extension of vector spaces, and
so it is equivalent to an extension

L�W 0! ke
j
�! ke˚kf�

q
�! kf ! 0

where j.e/D e, q.e/D 0, q.f�/D f and ke˚kf� is a p-Lie algebra with eŒp� D e and
f
Œp�

�
D �f�. A homomorphism of extensions of p-Lie algebras

L�W 0 ke ke˚kf� kf 0

L�W 0 ke ke˚kf� kf 0

j

u

q

j q

maps e to e and f� onto ˛eCf� with ˛ 2 k. The equality

�e D u.f
Œp�

�
/D .˛eCf�/

Œp�
D ˛peC�e

shows that the extensions L� and L� are equivalent if and only if ��� 2 kp.
Finally, let � 0 be the quotient of � by the prime-to-p torsion in � . Then D.� /ı D

D.� 0/. As � 0 has a normal series whose quotients are isomorphic to Z or Z=pZ, the final
assertion follows from the second. 2

NOTES. See DG III, �6, 7.2, p.455; ibid. 8.6, p.463; ibid. 8.7, p.464 for more details.

THEOREM 16.44. Let D and U be algebraic groups over an algebraically closed field k
with D diagonalizable and U unipotent. Then Ext1.U;D/D 0.

PROOF. Consider an exact sequence

e!D
i
�!G

�
�! U ! e

where D is diagonalizable and U is unipotent. We shall show that i admits a retraction r .
This assertion is trivial if U D e. Otherwise, U contains a normal algebraic subgroup U1
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such that U=U1 is isomorphic to Ga (p D 1) or Ga, p̨ , or .Z=pZ/k (p ¤ 1/ (15.24, 15.50).
Consider the commutative diagram

e e

e D ��1.U1/ U1 e

e D G U e

H U=U1

e e:

i1 �1

i �

'

Arguing by induction on the length of a subnormal series for U , we may suppose that i1
admits a retraction r1W��1.U1/!D. We form the pushout of the middle column of the
diagram by r1:

e ��1.U1/ G H e

e D K H e:

r1 u

i2

After (16.33, 16.34, 16.43) we have Ext1.H;D/D 0 and so i2 admits a retraction r2. Now
r D r2 ıuWG!D is a retraction of i , which completes the proof. 2

EXTENSIONS OF MULTIPLICATIVE GROUPS BY MULTIPLICATIVE GROUPS

PROPOSITION 16.45. Every action of �p on Gm or �p is trivial, and

Ext1.�p;Gm/' k=}.k/; where }.x/D xp�x

Ext1.�p;�p/' Z=pZ˚k=}.k/:

PROOF. The proof is similar to that of (16.43). 2

THEOREM 16.46. Every extension of a connected algebraic group of multiplicative type
by an algebraic group of multiplicative type is of multiplicative type.

PROOF. We may assume that k is algebraically closed. Let A.G00;G0/ denote the statement:
for every exact sequence

e!G0!G!G00! e; (124)

the algebraic group G is diagonalizable. We prove A.G00;G0/ by an induction argument on
the dimension of G00. We may suppose G00 ¤ e.

Consider an extension (124) with G0 of multiplicative type. To show that G is diag-
onalizable, it suffices to show that every finite-dimensional representation .V;r/ of G is
diagonalizable (14.12). As G0 is diagonalizable,

.V;r jG0/D
M

�2X�.G0/

V�:



h. Calculation of some extensions 289

Moreover, G0 is contained in the centre of G (14.30), and so each V� is stable under G.
Therefore, we may replace V with V� and assume that G0 acts through �. We now have a
diagram

e G0 G G00 e

e Gm GLV GLV =Gm e;

� r Nr

q

and it suffices to show that the representation of q�1. Nr.G00// on V is diagonalizable. This
will be true if q�1. Nr.G00// is diagonalizable. But q�1. Nr.G00// is an extension of Nr.G00/ by
Gm. Therefore, in order to prove A.G00;G0/, it suffices to prove A.H;Gm/ where H runs
over the quotients of G00.

For the case G00 D Gm or �p (p the characteristic exponent of k) it suffices to prove
A.Gm;Gm/ and A.�p;Gm/. In (16.35) (resp. 16.45) we prove that every extension of Gm
by Gm (resp. �p by Gm) is commutative, and hence of multiplicative type .14.12).

If G00 is neither Gm or �p , then it contains one or the other as a proper normal algebraic
subgroup N (this is obvious from 14.9). Let G1 denote the inverse image of N in G, and
consider the diagram

e e

e G0 G1 N e

e G0 G G00 e

G=G1 G00=N

e e:

'

The group G1 is diagonalizable by the last case, and so G, being an extension of G00=N by
G1, is diagonalizable by induction. 2

COROLLARY 16.47. Let G and G0 be algebraic groups of multiplicative type with G
connected. The map

Ext1.G;G0/! Ext1Z� -modules.X
�.G0/;X�.G//; � D Gal.ksep=k/;

defined by the functor X� is a bijection.

EXERCISE 16-1. Show that there are no noncommutative extensions of p̨ by Gm without
using p-Lie algebras (see mo183139).

http://mathoverflow.net/questions/183139




CHAPTER 17
The structure of solvable algebraic

groups

This chapter will be extensively revised for the final version.

a. Trigonalizable algebraic groups

DEFINITION 17.1. An algebraic group G is trigonalizable if every nonzero representation
of G contains a one-dimensional subrepresentation (equivalently, if every simple representa-
tion is one-dimensional).

In other words, G is trigonalizable if every nonzero representation of G contains an
eigenvector. In terms of the associated comodule .V;�/, the condition means that there exists
a nonzero vector v 2 V such that �.v/D v˝a, some a 2O.G/.

For example, diagonalizable groups and unipotent algebraic groups are trigonalizable
(14.12, 15.2). We now show that the trigonalizable groups are exactly the extensions of
diagonalizable groups by unipotent algebraic groups. They are also the algebraic groups that
arise as algebraic subgroups of Tn for some n.

PROPOSITION 17.2. The following conditions on an algebraic group G are equivalent:

(a) G is trigonalizable;

(b) for every representation .V;r/ of G, there exists a basis of V for which r.G/� Tn,
nD dimV ;

(c) G is isomorphic to an algebraic subgroup of Tn for some n;

(d) there exists a normal unipotent algebraic subgroup U of G such that G=U is diagonal-
izable.

PROOF. (a))(b). We use induction on the dimension of V . We may suppose that V ¤ 0;
then there exists a nonzero e1 in V such that he1i is stable underG. The induction hypothesis
applied to the representation of G on V=he1i shows that there exist elements e2; : : : ; en of V
forming a basis for V=he1i and such that, relative to this basis, G acts on V=he1i through
Tn�1. Now fe1; e2; ; : : : ; eng is a basis for V with the required property.

(b))(c). Apply (b) to a faithful finite-dimensional representation of G (which exists by
4.8).

(c))(d). Embed G into Tn, and let U D Un\G. Then U is normal because Un is
normal in Tn, and it is unipotent because it is an algebraic subgroup of a unipotent group

291
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(15.5). Moreover, G=U ,! Tn=Un ' Gnm, and so G=U is an algebraic subgroup of a
diagonalizable group; hence it is diagonalizable (14.9c).

(d))(a). Let U be as in (d), and let .V;r/ be a representation of G on a nonzero vector
space. Because U is unipotent, V U ¤ 0, and because U is normal in G, V U is stable under
G (5.24). Hence G=U acts on V U , and because G=U is diagonalizable, V U is a sum of
one-dimensional subrepresentations (14.12). In particular, it contains a one-dimensional
subrepresentation. 2

COROLLARY 17.3. Subgroups and quotients (but not necessarily extensions) of trigonaliz-
able algebraic groups are trigonalizable.

PROOF. Let H be an algebraic subgroup of a trigonalizable group G. As G is isomorphic
to an algebraic subgroup of Tn, so also is H . Let Q be a quotient of G. A nonzero
representation ofQ can be regarded as a representation ofG, and so it has a one-dimensional
subrepresentation. 2

The group of 2�2 monomial matrices is an extension of trigonalizable algebraic groups
without itself being trigonalizable (17.8).

COROLLARY 17.4. Let G be an algebraic group over k, and let k0 be a field containing k.
If G is trigonalizable, then so also is Gk0 .

PROOF. An embeddingG ,!Tn gives an embeddingGk0 ,!Tnk0 by extension of scalars.2

PROPOSITION 17.5. Let G be an algebraic group that becomes trigonalizable over a sepa-
rable field extension of k. Then G contains a unique normal unipotent algebraic subgroup
Gu such that G=Gu is of multiplicative type; moreover, Gu contains all unipotent algebraic
subgroups of G.

PROOF. Let G be an algebraic group over k. A normal unipotent subgroup U of G such
that G=U is multiplicative contains every unipotent algebraic subgroup V of G, because the
composite V !G!G=U is trivial (15.17); in particular, there exists at most one such U .

Now suppose that there exists a finite Galois extension k0 of k such that Gk0 is trigo-
nalizable. According to (17.2d), Gk0 contains a U as above, which, being unique, is stable
under Gal.k0=k/, and therefore arises from an algebraic subgroup Gu of G (1.41). Now Gu
is unipotent because .Gu/k0 is unipotent (15.9), and G=Gu is of multiplicative type because
.G=Gu/k0 is diagonalizable (see the definition 14.16). 2

COROLLARY 17.6. An algebraic group G becomes trigonalizable over a separable field
extension of k if and only if it is an extension of a group of multiplicative type by a unipotent
group.

PROOF. Let G be an extension of a multiplicative group D by a unipotent group U . Then
Gksep is an extension of Dksep by Uksep , and Dksep is diagonalizable (14.16) and Uksep is
unipotent (15.9). Therefore Gksep is trigonalizable (17.2d). The converse is proved in the
proposition. 2
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COMPLEMENTS

17.7. The algebraic group Gu of G in (17.5) is characterized by each of the following
properties: (a) it is the greatest unipotent algebraic subgroup of G; (b) it is the smallest
normal algebraic subgroup H such that G=H is multiplicative type; (c) it is the unique
normal unipotent algebraic subgroup H of G such that G=H is of multiplicative type. It
follows from (c) that the formation of Gu commutes with extension of the base field.

17.8. Over an algebraically closed field, every commutative group variety is trigonalizable
(see 17.16 below), but not every solvable group variety is trigonalizable. In particular,
extensions of trigonalizable groups need not be trigonalizable. For example, the algebraic
group of monomial n�nmatrices is solvable if n� 4 (see 5.55), but it is not trigonalizable if
n� 2. Indeed, let G be the group of monomial 2�2 matrices. The eigenvectors of D2.k/�
G.k/ in k2 are e1 D

�
1
0

�
and e2 D

�
0
1

�
(and their multiples), but the monomial matrix

�
0 1
1 0

�
interchanges e1 and e2, and so the elements of G.k/ have no common eigenvector in k2.

17.9. Let G be as in (17.5) with k perfect. Let .V;r/ be a faithful representation of G. By
assumption, there exists a basis of Vkal for which r.G/kal � Tn, and then (by definition)

r .Gu/kal D Un\ r.G/kal .

As Un.kal/ consists of the unipotent elements of Tn.kal/, it follows that Gu(kal/ consists of
the unipotent elements of G.kal/:

Gu.k
al/DG.kal/u:

17.10. Let G be as in (17.5). Later (17.26 et seq.) we shall give various conditions under
which the exact sequence

1!Gu!G!G=Gu! 1 (125)

splits.

17.11. Let G be a smooth algebraic group as in (17.5). Because the sequence (125) splits
over kal (see 17.27 below), G becomes isomorphic to Gu�G=Gu (as a scheme) over kal,
and so Gu is smooth. When k is perfect, Gu is the unique smooth algebraic subgroup of G
such that

Gu.k
al/DG.kal/u.

A smooth algebraic group G over a field k is trigonalizable if and only if its geometric
unipotent radical U (8.40) is defined over k and G=U is a split torus.

ASIDE 17.12. The term “trigonalizable” is used in Borel 1991, p. 203, and Springer 1998, p.237. In
French “trigonalisable” is standard (e.g., DG IV, �2, 3.1, p.491). Other names used: “triangulable”;
“triagonalizable” (Waterhouse 1979, p.72).

ASIDE 17.13. In DG IV, �2, 3.1, p. 491, a group schemeG over a field is defined to be trigonalizable
if it is affine and has a normal unipotent algebraic subgroup U such that G=U is diagonalizable. This
agrees with our definition (see 17.2).

In Springer 1998, 14.1, a group variety over k is defined to be trigonalizable over k if it is
isomorphic to a group subvariety of Tn for some n. This agrees with our definition (see 17.2).



294 17. The structure of solvable algebraic groups

b. Commutative algebraic groups

Let u be an endomorphism of a finite-dimensional vector space V over k. If the eigenvalues
of u all lie in k, then there exists a basis for V relative to which the matrix of u lies in

Tn.k/D

8̂̂̂<̂
ˆ̂:
0BBB@
� � : : : �

0 � : : : �
:::

:::
: : :

:::

0 0 � � � �

1CCCA
9>>>=>>>;

(11.10). We extend this elementary statement to sets of commuting endomorphisms, and
then to solvable group varieties over algebraically closed fields.

LEMMA 17.14. Let V be a finite-dimensional vector space over an algebraically closed
field k, and let S be a set of commuting endomorphisms of V . Then there exists a basis of
V for which S is contained in the group of upper triangular matrices, i.e., a basis e1; : : : ; en
such that

u.he1; : : : ; ei i/� he1; : : : ; ei i for all i: (126)

In more down-to-earth terms, for any commuting set S of n�n matrices, there exists an
invertible matrix P such that PAP�1 is upper triangular for all A 2 S .

PROOF. We prove this by induction on the dimension of V . If every u 2 S is a scalar
multiple of the identity map, then there is nothing to prove. Otherwise, there exists a u 2 S
and an eigenvalue a for u such that the eigenspace Va ¤ V . Because every element of S
commutes with u, Va is stable under the action of the elements of S : for s 2 S and x 2 Va,

u.sx/D s.ux/D s.ax/D a.sx/:

The induction hypothesis applied to S acting on Va and V=Va shows that there exist bases
e1; : : : ; em for Va and NemC1; : : : ; Nen for V=Va such that

u.he1; : : : ; ei i/� he1; : : : ; ei i for all i �m

u.h NemC1; : : : ; NemCi i/� hNemC1; : : : ; NemCi i for all i � n�m:

Let NemCi D emCi CVa with emCi 2 V . Then e1; : : : ; en is a basis for V satisfying (17). 2

PROPOSITION 17.15. Let V be a finite-dimensional vector space over an algebraically
closed field k, and let G be a smooth commutative algebraic subgroup of GLV . Then there
exists a basis of V for which G is contained in Tn.

PROOF. According to the lemma, there exists a basis of V for which G.k/� Tn.k/. Now
G\Tn is an algebraic subgroup of G such that .G\Tn/.k/DG.k/. As G.k/ is dense in
G (see 1.9), this implies that G\Tn DG, and so G � Tn. 2

COROLLARY 17.16. Every smooth commutative algebraic group G over an algebraically
closed field is trigonalizable.

PROOF. Let r WG! GLV be a representation of G. Then r.G/ is a smooth commutative
algebraic group (5.8), and so it is contained in Tn for some choice of a basis fe1; : : : ; eng.
Now he1i is a one-dimensional subrepresentation of V . 2
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Let G be an algebraic group over a perfect field k, and let G.k/s (resp. G.k/u) denote
the set of semisimple (resp. unipotent) elements of G.k/. Theorem 11.17 shows that

G.k/DG.k/s �G.k/u (product of sets). (127)

This is not usually a decomposition of groups because products do not generally respect
Jordan decompositions. When G is commutative, the product map mWG �G ! G is a
homomorphism of algebraic groups, and so it does respect the Jordan decompositions
(11.20):

.gg0/s D gsg
0
s .gg0/u D gug

0
u

(this can also be proved directly). Thus, in this case (127) realizes G.k/ as a product of
abstract subgroups. We can do better.

THEOREM 17.17. Let G be a commutative algebraic group over a field k.

(a) There exists a greatest algebraic subgroup Gs of G of multiplicative type; this is a
characteristic subgroup of G, and the quotient G=Gs is unipotent.

(b) If k is perfect, then G also contains a greatest unipotent algebraic subgroup Gu, and

G DGs �Gu

(unique decomposition of G into a product of a multiplicative algebraic subgroup and
a unipotent subgroup); when G is connected (resp. smooth) then Gs and Gu are both
connected (resp. smooth).

PROOF. (a) Let Gs denote the intersection of the algebraic subgroups H of G such that
G=H is unipotent. Then G=Gs !

Q
G=H is an embedding, and so G=Gs is unipotent

(15.7).
A nontrivial homomorphism Gs ! Ga would have a kernel H such that G=H is an

extension of unipotent groups,

0!Gs=H !G=H !G=Gs! 0

(here we use that G is commutative), and hence is unipotent (15.7), but this contradicts
the definition of Gs . Therefore no such homomorphism exists and G is of multiplicative
type (14.24c). If H is a second algebraic subgroup of G of multiplicative type, then the
homomorphism H !G=Gs is trivial (15.18), and so H �Gs . Therefore Gs is the greatest
algebraic subgroup of G of multiplicative type.

Let ˛ be an endomorphism of GR for some k-algebra R. The composite

.Gs/R!GR
˛
�!GR! .G=Gs/R

is trivial (16.18), and so ˛.GsR/�GsR. Hence Gs is characteristic (1.40).
(b) Assume that k is perfect. It suffices to prove that there exists a greatest unipotent

subgroup when k algebraically closed (1.41b, 15.9). We have an exact sequence

1!Gs!G!G=Gs! 1

with G=Gs unipotent, and (16.44) shows that the sequence splits. Therefore, G DGs �U
with U unipotent. For any other unipotent affine subgroup U 0 of G, the homomorphism
U 0! G=U ' T is zero (15.17), and so U 0 � U . Therefore U is the greatest unipotent
algebraic subgroup of G. It follows that the decomposition is unique.

The last statement follows from the fact that Gs and Gu are quotients of G. 2
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COROLLARY 17.18. Let G be a smooth connected algebraic group of dimension 1 over a
perfect field. Either G DGa or it becomes isomorphic to Gm over kal.

PROOF. We know that G is commutative (15.27), and hence a product G D Gs �Gu of
algebraic groups. Because G is smooth and connected, so also are Gs and Gu (they are
quotients of G). Either G DGu, in which case it is isomorphic to Ga (15.51), or G DGs ,
in which case it is a one-dimensional torus. 2

COROLLARY 17.19. A smooth connected commutative algebraic group G over a perfect
field k is a product of a torus with a smooth connected commutative unipotent algebraic
group. When k has characteristic zero, every smooth commutative unipotent algebraic group
is a vector group (product of copies of Ga).

PROOF. Write G DGs �Gu (as in 17.17). Both Gs and Gu are smooth connected commu-
tative algebraic groups (becauseG is). A smooth connected algebraic group of multiplicative
type is a torus, and a connected commutative unipotent algebraic group in characteristic zero
is a product of copies of Ga (15.32). 2

NOTES. The first published proof that the only connected algebraic groups of dimension 1 are Ga
and Gm is that given by Grothendieck in Chevalley 1956-58 (Section 7.4).

COMPLEMENTS

17.20. The algebraic subgroupGs ofG in (17.17) is characterized by each of the following
properties: (a) it is the greatest algebraic subgroup of G of multiplicative type; (b) it is
the smallest algebraic subgroup H of G such that G=H is unipotent; (c) it is the unique
algebraic subgroup H of G of multiplicative type such that G=H is unipotent. It follows
from (c) that the formation of Gs commutes with extension of the base field. Therefore Gs
is connected (resp. smooth) if G is connected (resp. smooth) because it becomes so over kal

(17.17b).

17.21. Let G be a commutative group variety over a perfect field k. Then G DGs �Gu
where Gs and Gu are the unique subgroup varieties of G such that Gs.kal/DG.kal/s and
Gu.k

al/ D G.kal/u. Indeed, the groups Gs and Gu in (17.17b) satisfy these conditions.
Thus, we have realized the decomposition (127) on the level of group varieties.

17.22. In general,Gu is not a characteristic subgroup. The argument in the proof of (17.17)
for Gs fails because there may exist nontrivial homomorphisms GuR!GsR (16.19).

17.23. It is necessary that k be perfect in (b) of Theorem 17.17. Let k be a separably
closed field of characteristic p, and let k0 be a (purely inseparable) extension of k of degree
p. Let G D .Gm/k0=k be the algebraic group over k obtained from Gmk0 by restriction of
scalars. Then G is a smooth connected commutative algebraic group over k. The canonical
embedding i WGm! G (2.37) has unipotent cokernel, and so realizes Gm as the greatest
algebraic subgroup of G of multiplicative type. However, G contains no complementary
unipotent algebraic subgroup because G.k/D .k0/� has no p-torsion. (See Chapter 22 for
more details. The group G is a basic example of a pseudoreductive algebraic group.)
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c. Structure of trigonalizable algebraic groups

Recall that a trigonalizable algebraic group G has a greatest unipotent algebraic subgroup
Gu; moreover, Gu is normal, and G=Gu is diagonalizable (17.10).

THEOREM 17.24. Let G be a trigonalizable algebraic group over a field k. There exists a
normal series,

G �G0 �G1 � �� � �Gr D e

such that

(a) G0 DGu, and

(b) for each i � 0, the action of G on Gi=GiC1 by inner automorphisms factors through
G=Gu, and there exists an embedding

Gi=GiC1 ,!Ga

which is equivariant for some linear action of G=Gu on Ga.

PROOF. Choose an embedding of G in Tn. From

e! Un! Tn
q
�! Dn! e

we obtain an exact sequence

e!G\Un!G! q.G/! e:

Let U be a unipotent subgroup of G. Then q.U / is unipotent and diagonalizable, hence
trivial. Therefore U �G\Un, and so Gu

def
DG\Un is the greatest unipotent subgroup of

G.
The group Un has a normal series

Un D U .0/ � �� � � U .i/ � U .iC1/ � �� � � U .
n.n�1/
2

/
D 0

such that each quotient U .i/=U .iC1/ is canonically isomorphic to Ga; moreover, Tn acts
linearly on U .i/=U .iC1/ through the quotient Tn=Un (see 8.46).

Let G.i/ D U .i/\G. Then G.i/ is a normal subgroup of G and G.i/=G.iC1/ is an alge-
braic subgroup of U .i/=U .iC1/ 'Ga. Therefore, we obtain an embedding of G.i/=G.iC1/

into Ga, the group G acts on it through an action that extends to a linear action on Ga, and
the action of Gu �G is trivial. 2

COROLLARY 17.25. Let G be a trigonalizable algebraic group over an algebraically closed
field k. There exists a normal series of G,

G �Gu DG0 �G1 � �� � �Gs D e

such that, for each i � 0,

(a) each quotient Gi=GiC1 is isomorphic to Ga, p̨, or .Z=pZ/m
k

, and

(b) the action by inner automorphisms of G (resp. Gu) on each quotient is linear (resp.
trivial).

PROOF. Immediate consequence of the theorem and Exercise 15-3. 2
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THEOREM 17.26. Let G be a trigonalizable algebraic group over k. The sequence

e!Gu!G!D! e

splits in each of the following cases;

(a) k is algebraically closed;

(b) Gu is split (15.55);

(c) k is perfect and G=Gu is connected.

PROOF. If G D D, there is nothing to prove, and so we may suppose that Gu ¤ e. Let
N DG.i/ be the last nontrivial group in the normal series for Gu defined in (17.24). Then
G=N is trigonalizable (17.3), and we have an exact sequence

e!Gu=N !G=N !D! e (128)

with .Gu=N/D .G=N/u. By induction on the length of the normal series, we may suppose
that the theorem holds for G=N .

With the notations of the proof of (17.24), we know thatN is a subgroup ofU .i/=U .iC1/'
Ga, and that D acts linearly on Ga. We therefore have an exact sequence

e!N !Ga!Ga=N ! e

on which D acts linearly. The quotient Ga=N is either trivial or isomorphic to Ga (Exercise
15-3).

We now prove the theorem. Let NsWD!G=N be a section to (128), and form the exact
commutative diagram

e N G0 D e

e N G G=N e

h Ns

p

In each case, the top extension splits: (a) see (16.41d); (b) see (16.41a); (c) apply (16.41b)
and (16.41c) to the end terms of

e!Gıu!Gu! �0.Gu/! e.

Let s00WD!G0 be a section to G0!D; then s def
D hı s00 is a section of G!D. 2

THEOREM 17.27. Let
e! U !G!D! e

be an extension of a diagonalizable group D by a unipotent group U over an algebraically
closed field k. If s1; s2WD!G are two sections toG!D (as a homomorphism of algebraic
groups), then there exists a u 2 U.k/ such that s2 D inn.u/ı s1.

PROOF. We begin with an observation. Let sWD! G be a section to G!D. When we
use s to write G as a semidirect product G D U ÌD, the remaining sections to G!D are
of the form d 7! .f .d/;d/ with f WD! U a crossed homomorphism. Such a section is of
the form inn.u/ı s if and only if the crossed homomorphism f is principal (see 16.1).
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Let s and s1 be two sections to G!D. Let N be the last nontrivial term in the normal
series (17.24) for G. Let Ns D p ı s and form the commutative diagram

e N G0 D e

e N G G=N e:

h Ns

p

Now Ns and p ı s1 are two sections of

e! U=N !G=N !D! e:

By induction on the length of the normal series of G, there exists a Nu 2 .U=N/.k/ such that
inn. Nu/ıp ı s1 D Ns. Let u 2 U.k/ lift Nu; then

p ı inn.u/ı s1 D Ns;

and, by replacing s1 with inn.u/ı s1, we may suppose that p ı s1D Ns. From the construction
ofG0 as a pull-back, we see that there exists a sections �;�1WD!G0 such that sD hı� and
s1 D hı�1. As H 1.D;N /D 0 (16.3), there exists a u 2 N.k/ such that inn.u/ı� D �1,
and therefore inn.u/ı s D s1, which completes the proof. 2

THEOREM 17.28. Let G be a trigonalizable algebraic group over an algebraically closed
field. The sequence

e!Gu!G!D! e

splits. Every diagonalizable subgroup of G is contained in a maximal diagonalizable
subgroup, the maximal diagonalizable subgroups are those of the form s.D/ with s a section
to G!D, and any two maximal diagonalizable subgroups are conjugate by an element of
Gu.k/.

PROOF. The first statement follows directly from (17.26). For the second statement, let s be
a section of qWG!D and let S be a diagonalizable subgroup of G. We have S \Gu D e,
and so q induces an isomorphism of S onto q.S/. Let G0 D q�1.q.S// and q0 D qjG0. The
sequence

e!Gu!G0
q0

�! q.S/! e

is split by s0 D sjq.S/. As S is a section of q0, there exists by (17.26) a u 2 Gu.k/ such
that S D inn.u/s0q.S/. We deduce that S � inn.u/s.G=Gu/. This shows that s.G=Gu/ is
a maximal diagonalizable subgroup of G, and that such subgroups are conjugate, which
completes the proof. 2

COROLLARY 17.29. Let G be a smooth connected trigonalizable algebraic group over an
algebraically closed field. Then Gu and G=Gu are smooth and connected, and there exists a
sequence

Gu DG0 �G1 � �� � �Gn D e

of smooth connected normal unipotent subgroups of G such that each quotient Gi=GiC1 is
isomorphic to Ga with G acting linearly and Gu acting trivially.
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PROOF. We know (17.27) that G �Gu�G=Gu as algebraic schemes. It follows that Gu
and G=Gu are smooth and connected. With the notations of the proof of (17.24), consider
the groups .G.i//ıred — these are smooth connected unipotent subgroups of Gu. Moreover,
each g 2G.k/ normalizes G.i/, hence .G.i//ı, and hence .G.i//ı.k/D .G.i//ıred.k/. As G
and .G.i//ıred are smooth and k is algebraically closed, this implies that .G.i//ıred is normal
in G (1.62). Finally, .G.i//ıred=.G

.iC1//ıred is a smooth connected algebraic subgroup of
U .i/=U .iC1/, which is isomorphic to Ga. It is therefore either e or U .i/=U .iC1/. Therefore,
the groups .G.i//ıred, with duplicates omitted, form a sequence with the required properties.2

COROLLARY 17.30. Let G be a smooth connected unipotent algebraic group over an
algebraically closed field. There exists a sequence

Gu DG0 �G1 � �� � �Gn D e

of smooth connected normal unipotent subgroups of G such that each quotient is isomorphic
to Ga with G acting trivially.

PROOF. Special case of 17.29. 2

COROLLARY 17.31. Let
e!D!G! U ! e

be an exact sequence of algebraic groups over an algebraically closed field with D diagonal-
izable and U smooth connected and unipotent. The sequence has a unique splitting:

G 'D�U:

PROOF. Because U is connected, it acts trivially on D (14.29). If sWU ! G is a section,
then s.U /DGu, and s is uniquely determined. We prove that a section s exists by induction
on the dimension of U . If dim.U / > 0, then G contains a central subgroup isomorphic to
Ga. Arguing as in the proof of (17.26), we find that it suffices to prove that there exists a
section in the case U DGa, but this follows from (16.7). 2

COROLLARY 17.32. Assume that k is algebraically closed. If U is smooth connected and
unipotent and D is diagonalizable, then

H 1.U;D/D 0DH 2.U;D/:

NOTES. Many of the results in this section hold for extensions of algebraic groups of multiplicative
type by unipotent groups — see SGA 3, XVii, 5.6.1, p.351. It will be rewritten for the final version.

d. Solvable algebraic groups

Recall that an algebraic group is unipotent if it admits a faithful unipotent representation, in
which case every representation is unipotent (15.3, 15.5). Therefore, an algebraic subgroup
U of an algebraic group G is unipotent if and only if the restriction to U of every finite-
dimensional representation of G is unipotent.

THEOREM 17.33 (LIE-KOLCHIN). Let G be a solvable algebraic group over k. If G is
smooth and connected and k is algebraically closed, then G is trigonalizable.
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PROOF. Assume the hypotheses, and let .V;r/ be a simple representation of G. We shall
use induction on the dimension of G to show that dim.V /D 1. We already know this when
G is commutative (17.16).

Let N be the derived group of G. Then N is a smooth connected normal algebraic
subgroup of G (8.21) and, because G is solvable, dim.N / < dim.G/. By induction, for
some character � of N , the eigenspace V� for N is nonzero. Let W denote the sum of the
nonzero eigenspaces for N in V . According to (4.17), the sum is direct, W D

L
V�, and so

the set S of characters � of N such that V� ¤ 0 is finite.
Let x be a nonzero element of V� for some �, and let g 2G.k/. For n 2N.k/,

ngx D g.g�1ng/x D g ��.g�1ng/x D �.g�1ng/ �gx

The middle equality used that N is normal in G. Thus, gx lies in the eigenspace for the
character �g def

D .n 7! �.g�1ng// of N . This shows that G.k/ permutes the finite set S .
Choose a � such that V�¤ 0, and letH �G.k/ be the stabilizer of V�. ThenH consists

of the g 2G.k/ such that �g D �, i.e., such that

�.n/D �.g�1ng/ for all n 2N.k/: (129)

Clearly H is a subgroup of finite index in G.k/, and it is closed for the Zariski topology on
G.k/ because (129) is a polynomial condition on g for each n. ThereforeH DG.k/ because
otherwise its cosets would disconnect G.k/. This shows that G.k/ (hence G) stabilizes V�.

As V is simple, V D V�, and so each n 2N.k/ acts on V as a homothety x 7! �.n/x,
�.n/ 2 k. But each element n of N.k/ is a product of commutators Œx;y� of elements of
G.k/ (see 8.22), and so n acts on V as an automorphism of determinant 1. The determinant
of x 7! �.n/x is �.n/d , d D dim.V /, and so the image of �WN !Gm is contained in �d .
As N is smooth and connected, this implies that �.N/ D e (8.10), and so G acts on V
through the quotient G=N . Now V is a simple representation of the commutative algebraic
group G=N , and so it has dimension 1 (17.16). 2

COROLLARY 17.34. A solvable algebraic group G becomes trigonalizable over a separable
extension of k if and only if .Gkal/u is defined over k.

PROOF. Suppose .Gkal/uD .Gu/kal withGu an algebraic subgroup ofG. ThenGu is unipo-
tent, and G=Gu is of multiplicative type, and so G becomes trigonalizable over a separable
extension of k by (17.6). Conversly, if G becomes trigonalizable over a separable extension
of k, then it contains a normal unipotent subgroup U such that G=U is of multiplicative
type. Clearly Ukal D .Gkal/u. 2

COROLLARY 17.35. Let G be a solvable algebraic group over an algebraically closed field
k, and let .V;r/ be a finite-dimensional representation of G. Then there exists a basis of V
for which r.Gı.k//� Tn.k/.

PROOF. Apply the theorem to Gıred, and note that Gıred.k/DG
ı.k/. 2

17.36. All the hypotheses in the theorem are needed.

CONNECTED: The algebraic group G of monomial 2� 2 matrices is solvable but not
trigonalizable (17.8).
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SMOOTH: Let k have characteristic 2, and let G be the algebraic subgroup of SL2 of
matrices

�
a b
c d

�
such that a2 D 1D d2 and b2 D 0D c2. Then G is nonsmooth and

connected, and the exact sequence

e ����! �2

a 7!
�
a 0
0 a

�
�������!G

�
a b
c d

�
7!.ab;cd/

�����������! ˛2�˛2 ����! e

shows that it is solvable, but no line is fixed in the natural action ofG on k2. Therefore
G is not trigonalizable. See Exercise 17-1. Note that G.k/D feg.

SOLVABLE: This condition is necessary because every algebraic subgroup of Tn is solvable.

k ALGEBRAICALLY CLOSED: If G.k/ � Tn.k/, then the elements of G.k/ have a com-
mon eigenvector, namely, e1 D .10 : : : 0/t . If k is not algebraically closed, then an
endomorphism of kn need not have an eigenvector. For example,˚�

a b
�b a

� ˇ̌
a;b 2 R; a2Cb2 D 1

	
is a connected commutative algebraic group over R that is not trigonalizable over R.

THEOREM 17.37. Let G be a smooth connected solvable algebraic group over a perfect
field k.

(a) There exists a unique connected normal algebraic subgroup Gu of G such that Gu is
unipotent and G=Gu is of multiplicative type.

(b) The subgroup Gu in (a) contains all unipotent algebraic subgroups of G (it is the
greatest unipotent algebraic subgroup of G), and its formation commutes with extension of
the base field.

(c) The subgroup Gu in (a) is smooth and G=Gu is a torus; moreover, Gu is the unique
smooth algebraic subgroup of G such that

Gu.k
al/DG.kal/u:

(d) Assume that k is algebraically closed, and let T be a maximal torus in G. Then

G DGuÌT ,

and every algebraic subgroup of multiplicative type in G is conjugate (by an element of
Gu.k/) to a subgroup of T .

PROOF. Theorem 17.33 shows that G becomes trigonalizable over a finite (separable)
extension of k, and so this summarizes earlier results (17.5, 17.7, 17.9, 17.28). As a scheme,
G is isomorphic to Gu�T , which shows that Gu is smooth. 2

PROPOSITION 17.38. LetG be an algebraic group over an algebraically closed field k. The
following conditions are equivalent:

(a) G is smooth, connected, and trigonalizable;

(b) G admits a normal series with quotients Ga or Gm (i.e., G is a split solvable algebraic
group);

(c) G is smooth and connected, and the abstract group G.k/ is solvable.

(d) G is smooth, connected, and solvable.
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PROOF. (a))(b). 17.29
(b))(c). By induction, each term in the normal series G � G1 � �� � is smooth and

connected. Moreover, G.k/� G1.k/� � � � is a normal series for G.k/ with commutative
quotients, and so G.k/ is solvable.

(c))(d). Recall (p.133) that the derived series for G is the normal series

G �DG �D2G � �� � :

Each group DiG is smooth and connected (8.21), and DiC1.G/.k/ is the derived group of
Di .G/.k/ (8.22). Therefore Di .G/.k/D e for i large, which implies that Di .G/D e of i
large. Hence the derived series terminates with e, and so G is solvable.

(d))(a). This is the Lie-Kolchin theorem (17.33). 2

ASIDE 17.39. The above proof of Theorem 17.33 is essentially Kolchin’s original proof (Kolchin
1948a, �7, Theorem 1, p. 19). Lie proved the analogous result for Lie algebras in 1876.

ASIDE 17.40. The implication (c))(a) in (17.38) is sometimes called the Lie-Kolchin theorem.

e. Solvable algebraic groups (variant)

For group varieties over an algebraically closed field, D̄oković 1988 gave a simpler approach
to the main theorems of this chapter. In the final version, this will be incorporated into the
rest of the chapter (see aside 18.46).

Throughout, G is a connected group variety and k is algebraically closed.
Let N be a normal algebraic subgroup of G, and let s 2 G.k/. Then CN .s/ is the

subscheme of N on which n 7! sns�1 agrees with the identity map.

PROPOSITION 17.41. Let s be a semisimple element of G.k/, and let S be the closure of
the subgroup of G.k/ generated by s. Then CG.s/ is smooth, and CG.S/D CG.s/.

PROOF. The algebraic group S is linearly reductive, and s 2 S.k/ is dense in S . Therefore
the statement is a special case of (14.61). 2

LEMMA 17.42. Let N be a connected normal subgroup variety of G, and let s 2G.k/. If
N is commutative and unipotent, and s is semisimple, then CN .s/ is connected; moreover,
the map N �CN .s/!N , u;v 7! Œs;u� �v is surjective.

PROOF. As N is commutative, the regular map

N !N; u 7! Œs;u�;

is a homomorphism of algebraic groups. Its kernel is CN .s/, and we let M denote its image;
thus

dimN D dimM CdimCN .s/ (130)

If x 2 .M \CN .s//.k/, then x D sus�1u�1 for some u 2N , and sx�1 D x�1s D usu�1.
As usu�1 is semisimple and x is unipotent, the uniqueness of Jordan decompositions implies
that x D 1. Hence the multiplication map

�WM �CN .s/!N

has finite connected kernel. Now (130) implies that it is surjective. As N is connected, so is
CN .s/. 2
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THEOREM 17.43. Let G be a connected solvable group variety, and let s be a semisimple
element of G.k/. Then CG.s/ is connected and G D U �CG.s/ with U unipotent.

PROOF. We use induction on dimG. If G is commutative, then there is nothing to prove.
Otherwise, we let N denote the last nontrivial term in the derived series of G. The Lie-
Kolchin theorem implies that the derived group of G is unipotent, and so N is unipotent; it
is also connected, normal and commutative.

Write x 7! Nx for the quotient map G! G=N . Let z 2 G.k/ be such that Nz 2 C NG.Ns/.
Then Œs;z� 2 N , and so Œs;z�D Œs;u� �v for some u 2 N and v 2 CN .s/ (17.42). In other
words,

szs�1z�1 D sus�1u�1 �v,

and so
zs�1z�1 D us�1u�1 �v.

As v is unipotent and commutes with u and s, this implies that v D 1 because of the
uniqueness of the Jordan decomposition. Thus u�1z 2 CG.s/. We have shown that
CG.s/.k/! C NG.Ns/.k/ is surjective, which implies that CG.s/! C NG.Ns/ is surjective, be-
cause C NG.Ns/ is smooth. Therefore, the sequence

e! CN .s/! CG.s/! C NG.Ns/! e

is exact. By induction, C NG.Ns/ are connected; as CN .s/ is connected, so also is CG.s/ (5.52).
By induction, NG D U �C NG.Ns/ with U unipotent. Let QU denote the inverse image of U in

G. Then G D QU �CG.s/, and QU is unipotent because it is the extension of a unipotent group
U by a unipotent group N . 2

LEMMA 17.44. Let S � Tn.k/ be a commuting set of semisimple elements. Then there
exists a b 2 Tn.k/ such that b�1Sb � Dn.

PROOF. From elementary linear algebra, we know that there exists an a 2GLn.k/ such that
aSa�1 �Dn.k/. Hence, the subalgebra A of Mn.k/ generated by the elements of S is étale
over k. Let it act on kn by left multiplication. For each i , 1� i � n, Vi�1

def
D he1; : : : ; ei�1i is

an A-submodule of Vi
def
D he1; : : : ; ei i. Because A is semisimple, there exists a vi 2 Vi XVi�1

such that Avi D hvi i. Let b be the matrix whose i th column in vi . Then b 2 Tn.k/ and
b�1Sb � Dn. 2

LEMMA 17.45. Let G be a connected solvable group variety. Let T be a subgroup variety
of G such that T .k/ consists of semisimple elements. If G D U �T with U a unipotent
subgroup variety of G, then T is a torus and G D U ÌT .

PROOF. By the Lie-Kolchin theorem, we may assume that G is an algebraic subgroup of
some Tn. From the quotient map Tn! Dn we get a short exact sequence

e! U 0!G
p
�!D! e

with U 0 D Un \G a unipotent group and D a subtorus of Dn. As p.U / D e, we have
U � U 0, and so G D U 0 �T . Now

D D p.G/D p.U 0 �T /D p.T /

and so D DDı D p.T ı/. Hence G D U 0 �T ı. From the finiteness of U 0\T ı we conclude
that T D T ı. In particular T is commutative, by Lemma 17.44 allows us to assume that
T � Dn, i.e., T DD. As Tn D UnÌDn and U � U 0 � Un, T DD � Dn, and G D U �T ,
we conclude that G D U ÌT . 2
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THEOREM 17.46. Let G be a connected solvable group variety. Then there is a connected
subgroup variety Gu such that Gu.k/DG.k/u, and G DGuÌT with T a maximal torus
in G.

PROOF. We use induction on dimG. Assume first that G.k/s �Z.G/.k/. Then G.k/s D
Z.G/s.k/ is a closed subgroup of G, and G D Gu �Gs . The assertion then follows from
Lemma 17.45. Now assume that there exists a semisimple element s ofG.k/ not inZ.G/.k/.
Then CG.s/ is proper smooth algebraic subgroup of G (14.55). By Theorem 17.43, it is
connected and G DGu �CG.s/. By the induction hypothesis, there exists a torus T such that
CG.s/D CG.s/u �T . Now G DGu �CG.s/DGu �T , and G DGuÌT (17.45). 2

THEOREM 17.47. Let G D Gu ÌT be a connected solvable group variety. Then every
semisimple element s of G.k/ is conjugate to an element of T .k/.

PROOF. We use induction on dimG. Let s D ut with u unipotent and t 2 T .k/. If G is
commutative, then u D 1 and s D t . Otherwise, let N denote the last nontrivial term in
the derived series of G. The Lie-Kolchin theorem implies that the derived group of G is
unipotent, and so N is unipotent; it is also connected, normal and commutative. By the
induction hypothesis, there exists an x 2G.k/ such that xsx�1D tv with v 2N . By Lemma
17.42, v D Œt�1;u� �z for some u 2N and z 2 CN .t/. Hence

xsx�1 D tv D utu�1z:

As xsxD1 and utu�1 are semisimple and z commutes with u and t , it follows that z D 1,
and so

xsx�1 D utu�1: 2

THEOREM 17.48. Let G be a connected solvable group variety, let T be a maximal torus of
G, and let S be a commuting set of semisimple elements of G.k/. Then CG.S/ is connected,
and aSa�1 � T for some a 2G. In particular, all maximal tori in G are conjugate.

PROOF. We use induction on dimG. The assertions are obvious if S �Z.G/.k/: Otherwise,
choose s 2 S XZ.G/.k/. By Theorem 17.47 we may assume that s 2 T . Then CG.s/ is a
proper subgroup variety of G containing T and S . By Theorem 17.43, CG.s/ is connected.
As it is solvable (8.13) and dimCG.s/ < dimG, we can apply induction to conclude the
proof. 2

We finally describe the nilpotent group varieties.

THEOREM 17.49. A connected solvable group variety G is nilpotent if and only if one
(hence every) maximal torus in G is contained in Z.G/.

PROOF. Assume that G is nilpotent. We prove that Gs D T � Z.G/ by induction on G.
We may assume that G is not commutative. Let N be the last nontrivial term in the lower
central series of G. Let f be the quotient map x 7! NxWG!G=N . Then NG D f .GuT /D
. NG/u �f .T /. By the induction hypothesis, we have f .T /D . NG/s �Z. NG/. Consequently, if
t 2 T and x 2G, then u def

D txt�1x�1 2N . AsN �Z.G/\Gu and xtx�1D u�1t D tu�1,
we must have uD 1. Thus T � Z.G/, and, by Theorem 17.47, Gs D T . The converse is
obvious. 2

COROLLARY 17.50. The connected nilpotent group varieties are those of the form U �T

with U a unipotent group variety and T a torus.
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f. Nilpotent algebraic groups

We extend the earlier results for commutative algebraic groups to nilpotent algebraic groups.
Recall (8.12) that an algebraic group is nilpotent if it admits central subnormal series.

The last nontrivial term in such a series is contained in the centre of the group. Therefore,
every nontrivial nilpotent algebraic group has nontrivial centre (and the centre of a nilpotent
group variety of dimension > 0 has dimension > 0).

LEMMA 17.51. LetH 0 �H be normal algebraic subgroups of a connected algebraic group
G. If H 0 and H=H 0 are both of multiplicative type, then H is central and of multiplicative
type.

PROOF. It follows (14.32) that the action of G on H by inner automorphisms is trivial.
Therefore H is central, in particular, commutative, and so it is multiplicative (14.27). 2

LEMMA 17.52. Let G be an algebraic group, and let T and U be normal algebraic sub-
groups of G. If T is of multiplicative type and G=T is unipotent, while U is unipotent and
G=U is of multiplicative type, then the map

.t;u/ 7! t uWT �U !G; (131)

is an isomorphism

PROOF. Note that T \U D e (15.16). Elements t 2 T .R/ and u 2 U.R/ commute because
tut�1u�1 2 .T \U /.R/D e, and so (131) is a homomorphism. Its kernel is T \U D e,
and its cokernel is a quotient of bothG=T andG=U , hence both unipotent and multiplicative,
and hence trivial (15.16). 2

LEMMA 17.53. Let G be a connected nilpotent algebraic group, and let Z.G/s be the
greatest multiplicative subgroup of its centre (17.17). The centre of G=Z.G/s is unipotent.

PROOF. Let G0 D G=Z.G/s , and let N be the inverse image of Z.G0/s in G. Then N
and Z.G/s are normal subgroups of G (recall that Z.G/s is characteristic in Z.G/), and
N=Z.G/s 'Z.G

0/s is of multiplicative type, and so N is central and of multiplicative type
(17.51). Therefore N �Z.G/s , and so Z.G0/s D e. 2

LEMMA 17.54. A connected nilpotent algebraic group is unipotent if its centre is.

PROOF. Let G be a connected nilpotent algebraic group over k with unipotent centre
Z.G/. It suffices to show that Gkal is unipotent (15.9). This allows us to assume that k is
algebraically closed. We prove that G is unipotent by induction on its dimension.

Because G is nilpotent, Z.G/ ¤ e, and we may suppose that Z.G/ ¤ G. Let G0 D
G=Z.G/, and let N be the inverse image of Z.G0/s in G. It suffices so show that (a) G=N
is unipotent, and (b) N is unipotent.

(a) The group G=N 'G0=Z.G0/s , which has unipotent centre (17.53), and so is unipo-
tent by induction.

(b) In the exact sequences

e!Z.N/s!N !N=Z.N/s! e

e!Z.G/!N !Z.G0/s! e;
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the groups Z.N/s and Z.G0/s are of multiplicative type and Z.G/ and N=Z.N/s are
unipotent. Therefore N ' Z.N/s �Z.G/ (17.52), which is commutative. As Z.N/s is
characteristic in N (17.17), it is normal in G, and hence central in G (14.29). But Z.G/ is
unipotent, and so Z.N/s D 0. We have shown that Z.N/ is unipotent, and soN is unipotent
(by induction). 2

THEOREM 17.55. Let G be a connected nilpotent algebraic group. Then Z.G/s is the
greatest algebraic subgroup of G of multiplicative type; it is characteristic and central, and
the quotient G=Z.G/s is unipotent.

PROOF. The quotient G=Z.G/s has unipotent centre (17.53), and so it is unipotent (17.54).
Therefore, every multiplicative algebraic subgroup of G maps to e in the quotient G=Z.G/s
(15.18), and so is contained in Z.G/s . Therefore Z.G/s is the greatest algebraic subgroup
of G of multiplicative type. It is obviously central. The same argument as in the proof of
(17.17) shows that it is characteristic. 2

COROLLARY 17.56. Let G be a connected nilpotent algebraic group that becomes trigonal-
izable over ksep. Then G has a unique decomposition into a product G DGu�Gs with Gu
unipotent and Gs of multiplicative type.

PROOF. Because G becomes trigonalizable over ksep, it contains a normal unipotent sub-
group Gu such that G=Gu is of multiplicative type (17.5). Therefore the statement follows
from (17.52) applied to Gu and Gs

def
DZ.G/s . 2

COROLLARY 17.57. Every smooth connected nilpotent algebraic group over a perfect field
k has a unique decomposition into a product of a torus and a connected unipotent group
variety.

PROOF. Such an algebraic group becomes trigonalizable over kal by the Lie-Kolchin theo-
rem, and so we can apply (17.56). 2

ASIDE 17.58. Corollary 17.56 fails for nonsmooth groups, even over algebraically closed fields —
see Exercise 17-1.

PROPOSITION 17.59. LetG be an algebraic group over an algebraically closed field k. The
following conditions are equivalent:

(a) G is a direct product of a smooth connected unipotent group with a torus;

(b) G admits a normal series with quotients Ga or Gm on which G acts trivially.

(c) G is smooth and connected, and the abstract group G.k/ is nilpotent.

PROOF. To be added (SHS, Exposé 12, 5.3, p.345). 2

NILPOTENT GROUP VARIETIES (CLASSICAL APPROACH)

This subsection will be omitted in the final version.

THEOREM 17.60. LetG be a connected nilpotent group variety over an algebraically closed
field k, and let Z DZ.G/red.

(a) Every semisimple element of G.k/ is contained in Z.k/.
(b) Let Gs be the greatest algebraic subgroup of Z of multiplicative type (see 17.17).

Then Gs is a torus containing every algebraic subgroup of G of multiplicative type, and

G DGu�Gs:
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PROOF. We prove (a) by induction on dimG. We may assume that G ¤ e. Then Z ¤ e
(because G is nilpotent), and we can apply induction to G=Z.

Let x be a semisimple element of G.k/, and let y 2 G.k/. The image of x in G=Z is
semisimple, and so (by induction) yxy�1 D zx with z 2Z.k/. Note that z D zszu with zs ,
zu 2Z.G/ (11.17 et seq.); hence zx D zszuxs D .zsxs/ � zu is the Jordan decomposition of
zx. On taking unipotent parts, we find that

zu D .zx/u (because x is semisimple and z is central),

D .yxy�1/u

D e (because x is semisimple).

Therefore z is a semisimple element ofG.k/. On the other hand, z belongs to the commutator
subgroup of G, which is contained in Gu (by the Lie-Kolchin theorem). Therefore z D e.
As y was arbitrary, this shows that x lies in the centre of G.k/.

We now prove (b). By definition, Gs is a subgroup variety of multiplicative type such
that Gs.k/DZ.k/s DG.k/s . On the other hand, Gu is a normal unipotent subgroup variety
ofG such thatGu.k/DG.k/u (17.37). NowGu\Gs D e (15.16) andG DGuGs (because
G.k/DGu.k/Gs.k//. It follows that G DGuÌ� Gs (5.35). But Gs �Z.G/, and so � D 1:
we have G DGu�Gs . As G is connected, so are Gu and Gs . In particular, Gs is a torus.

Finally, let S be an algebraic subgroup of G of multiplicative type. Because Gu is
unipotent (17.37), the image of S under the projection map G!Gu is trivial (15.18), and
so S �Gs . 2

g. Split solvable groups

Recall (8.17) that a solvable algebraic group is said to be split if it admits a subnormal series
with quotients isomorphic to Ga or Gm. Clearly, a split solvable algebraic group is smooth
and connected. Quotients and extensions of split solvable algebraic groups are split solvable.

THEOREM 17.61 (FIXED POINT THEOREM). Let G be split solvable algebraic group act-
ing on a complete algebraic scheme X . If X.k/¤ ;, then XG.k/¤ ;.

PROOF. Suppose first that G D Ga or Gm. Let x 2 X.k/. If x is not fixed by G, then
limt!0 t � x is a fixed point (Section 14.k). In the general case G has a filtration G �
G1 � G2 � �� � � Gn � 0 with quotients Ga or Gm. Now X.k/ ¤ ;) XGn.k/ ¤ ;)

XGn�1.k/¤ ;) �� � : 2

PROPOSITION 17.62. Every split solvable algebraic group is trigonalizable.

PROOF. Choose a faithful representation of G, and let G act on the algebraic scheme of
maximal flag. Then G fixes a flag, and so it is trigonalizable. 2

PROPOSITION 17.63. LetG be an algebraic group over k. Each of the following conditions
implies that G is a split solvable group.

(a) k is perfect and G is trigonalizable, smooth, and connected.

(b) k is algebraically closed and G is solvable, smooth, and connected.

PROOF. (a) This follows from (15.56).
(b) By using the derived series, we can reduce to the case that G is commutative. Then

G is a product of a smooth connected diagonalizable algebraic group D with a smooth
connected unipotent algebraic group U . Now D is a split torus, and U is split by (a). 2
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THEOREM 17.64 (ROSENLICHT). A reduced solvable algebraic group G is split if and
only if there exists a dominant map of schemes GNm !G for some integer N .

PROOF. DG IV, �4, 3.9. 2

Concretely, the theorem says that G is split if and only if there exists an injective
homomorphism of k-algebras

O.G/! kŒT1; : : : ;TN ;T
�1
1 ; : : : ;T �1N �:

h. Complements on unipotent algebraic groups

PROPOSITION 17.65. Let G be a connected group variety over an algebraically closed field
k. If G contains no subgroup isomorphic to Gm, then it is unipotent.

PROOF. Let .V;r/ be a faithful representation of G, and let F be the variety of maximal
flags in V (9.48). Then G acts on F , and there exists a closed orbit, say O ' G=U . The
group U is solvable, and so, by the Lie-Kolchin theorem U ıred � Tn for some choice of basis.
Moreover, U ıred\Dn D e, because otherwise U ıred would contain a copy of Gm, and so U ıred
is unipotent. Now G=U ıred is affine and connected, and so its image in F is a point. Hence
G D U ıred. 2

COROLLARY 17.66. Let G be a connected group variety. The following conditions are
equivalent:

(a) G is unipotent;

(b) The centre of G is unipotent and Lie.G/ is nilpotent;

(c) For every representation .V;r/ of G, Lie.r/ maps the elements of Lie.G/ to nilpotent
endomorphisms of V ;

(d) Condition (c) holds for one faithful representation .V;r/.

PROOF. (a))(c). There exists a basis for V such that G maps into Un (see 15.3).
(c))(d). Trivial.
(a))(b). Every algebraic subgroup, in particular, the centre, of a unipotent algebraic

group is unipotent (15.7). Apply Lie to a subnormal series in G whose quotients are
isomorphic to subgroups of Ga (15.23).

(d))(a). We may assume that k is algebraically closed (15.9). If G contains a subgroup
H isomorphic to Gm, then V D

L
n2ZVn where h 2 H.k/ acts on Vn as hn. Then x 2

Lie.H/ acts on Vn as nx, which contradicts the hypothesis.
(b))(a). If the centre of G is unipotent, then the kernel of the adjoint representation is

an extension of unipotent algebraic groups (15.25), and so it is unipotent (15.7). Suppose that
G contains a subgroup H isomorphic to Gm. Then H acts faithfully on g, and its elements
act semisimply, contradicting the nilpotence of g. 2

i. The canonical filtration on an algebraic group

THEOREM 17.67. Let G be an algebraic group over a field k.

(a) G contains a unique connected normal algebraic subgroup Gı such that G=Gı is an
étale algebraic group.
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Now assume that k is perfect.

(b) G contains a greatest subgroup variety Gred (which is connected if G is).

(c) Let G be a connected group variety; then G contains a unique connected normal
solvable subgroup variety N such that G=N is a semisimple algebraic group.

(d) Let G be a connected solvable group variety; then G contains a unique normal
unipotent subgroup N such that G=N is of multiplicative type.

PROOF. (a) See (5.51).
(b) Because k is perfect,Gred is a subgroup variety ofG (1.25). It is the greatest subgroup

variety, because O.Gred/ is the greatest reduced quotient of O.G/.
(c) The radical RG of G has these properties. Any other connected normal solvable

subgroup variety N of G is contained in RG (by the definition of RG), and if N ¤ RG
then G=N is not semisimple.

(d) See (17.59). 2

j. Summary

A commutative algebraic group G over a field k contains an algebraic subgroup Gs of
multiplicative type such that G=Gs is unipotent. If k is perfect, then G also contains a
greatest unipotent subgroup Gu, and G 'Gu�Gs (unique decomposition).

An algebraic group G over k is trigonalizable if it satisfies any one of the following
equivalent conditions (a) every nonzero representation of G contains an eigenvector; (b)
every representation of G is trigonalizable; (c) G can be realized as an algebraic subgroup
of Tn for some n.

An algebraic group G over k becomes trigonalizable over a separable extension of k
if and only if it contains a normal unipotent algebraic subgroup Gu such that D DG=Gu
is of multiplicative type; then Gu is unique with this property, and contains all unipotent
subgroups of G. The extension e!Gu!G!D! e splits if k is algebraically closed,

Every smooth connected solvable algebraic group over an algebraically closed field is
trigonalizable (Lie-Kolchin).

LetG be a connected nilpotent algebraic group over a field k. ThenZ.G/s is the greatest
algebraic subgroup of G of multplicative type; it is characteristic, and the quotient G=Z.G/s
is unipotent. If k is perfect and G is smooth, then G also contains a greatest unipotent
subgroup Gu, and G 'Z.G/s �Gu (unique decomposition).

Exercises

EXERCISE 17-1. (Waterhouse 1979, 10, Exercise 3, p. 79.) Let k have characteristic 2,
and let G be the algebraic subgroup of SL2 of matrices

�
a b
c d

�
such that a2 D 1D d2 and

b2 D 0D c2.

(a) Show that G is a finite connected algebraic group.

(b) Show that the sequence

e ����! �2

a 7!
�
a 0
0 a

�
�������!G

�
a b
c d

�
7!.ab;cd/

�����������! ˛2�˛2 ����! e

is exact and that �2 �ZG.
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(c) Show that G is nilpotent, but not commutative; in particular, G ¤ �2� .˛2�˛2/.

(d) Show that the natural action of G on k2 has no eigenvector. Therefore G is not
trigonalizable.

EXERCISE 17-2. Show that an algebraic group G is trigonalizable if and only if there exists
a filtration C0 � C1 � C2 � �� � of O.G/ by subspaces Ci such that8<:

C0 is spanned by the group-like elements of O.G/,S
r�0Cr DO.G/,

�.Cr/�
P
0�i�r Ci ˝Cr�i :

(Waterhouse 1979, Chapter 10, Exercise 5, p.72).

EXERCISE 17-3. Let G be an algebraic group over a field k, and let k0 be a finite field
extension of k. Show that ˘k0=kGk0 is solvable if G is solvable. Hint: Use Exercise 2-3 and
(8.29) with k0 D kal.





CHAPTER 18
Borel subgroups; Cartan subgroups

a. Borel fixed point theorem

Throughout this section, G is a smooth connected solvable algebraic group over the field k.

THEOREM 18.1. Let H be an algebraic subgroup of G. Then G=H does not contain a
complete subscheme of dimension > 0.

PROOF. We may suppose that k is algebraically closed, and then that H is smooth because
the map G=Hred ! G=H is finite (9.26). We prove the statement by induction on the
dimension of G. We may suppose that dim.G=H/ > 0.

The derived group G0 of G is a smooth connected algebraic subgroup of G (8.21),
distinct from G because G is solvable. If G D G0 �H , then G=H ' G0=.G0\H/ (5.37),
and so the statement follows from the induction hypothesis.

In the contrary case, G ¤ G0 �H and the image NH of H in G=G0 is a proper normal
subgroup. Its inverse image N D G0 �H in G is a normal algebraic subgroup of G such
that G=N ' .G=G0/= NH (5.39). Moreover, N is smooth and connected because it is an
extension of such groups (5.52, 10.1).

Let Z be a complete subscheme of G=H — we have to show that dim.Z/D 0. We may
suppose that Z is connected. Consider the quotient map qWG=H ! G=N . Because N is
normal, G=N is affine (9.45), and so the image of Z in G=N is a point (A.114). Therefore
Z is contained in one of the fibres of the map q, but these are all isomorphic to N=H , and so
we can conclude again by induction. 2

COROLLARY 18.2. Let H be an algebraic subgroup of G. If G=H is complete, then
H DG.

PROOF. The theorem implies that dim.G=H/D 0. 2

Let �WG�X!X be an action ofG on an algebraic schemeX over k, and let x 2X.k/.
Recall (Section 9.c) that the image of the orbit map �x WG!X , g 7! gx, is locally closed,
and that we define the orbit Ox through x to be �x.G/red.

COROLLARY 18.3 (ALLCOCK 2009, THEOREM 2). No orbit of G acting on a separated
algebraic scheme X contains a complete subscheme of dimension > 0.

313
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PROOF. Let x 2X.k/. Because G is reduced, the orbit map �x WG!X factors as

G
faithfully
�����!

flat
Ox

immersion
������!X ,

and Ox is stable under G (9.4c). The pair .Ox;x/ is the quotient of G by Gx (9.22), and so
we can apply the theorem. 2

COROLLARY 18.4 (BOREL FIXED POINT THEOREM). Every action of G on a complete
algebraic scheme X has a fixed point in X.kal/.

PROOF. We may replace k with its algebraic closure. Every orbit of minimum dimension is
closed (9.10), hence complete (A.120(a)), and hence consists of a single fixed point. 2

COROLLARY 18.5. Let G act on a complete algebraic scheme X ; then the fixed scheme
XG is nonempty.

PROOF. The formation of XG commutes with extension of the base field — this is obvious
from its definition (9.1) — and XG.kal/¤ ; (18.4). 2

The Borel fixed point theorem provides an alternative proof the Lie-Kolchin theorem.

COROLLARY 18.6. If k is algebraically closed, then G is trigonalizable.

PROOF. Choose a faithful representation G ,! GLV of V , and let X denote the collection
of maximal flags in V . This has a natural structure of a projective variety (9.48), and G acts
on it by a regular map

g;F 7! gF WG�X !X

where
g.Vn � Vn�1 � �� �/D gVn � gVn�1 � �� � :

According to Corollary 18.4, there is a fixed point, i.e., a maximal flag such that gF D F for
all g 2G.k/. Relative to a basis e1; : : : ; en of V adapted to the flag, i.e., such that e1; : : : ; ei
is a basis of Vi for each i , we have G � Tn. 2

NOTES

18.7. Those tempted to drop the smoothness condition on G should note that there exists a
connected nilpotent (nonreduced) algebraic group acting on P1 without fixed points (Exercise
17-1).

18.8. Corollary (18.4) is Borel’s original theorem (Borel 1956, 15.5, 16.4), and (18.3) is
the correct generalization of it to the case that X is not necessarily complete. Here is Borel’s
original proof of (18.4): We use induction on the dimension of G, which we may suppose
to be nonzero. Because G is solvable, the derived group G0 of G is a connected normal
subgroup variety G0 with dim.G0/ < dim.G/ (8.21). By induction, the closed subvariety
XG

0

red of X is nonempty. Because G0 is normal, XG
0

red is stable under G. According to (9.10),
there exists an x 2XG

0

.k/ whose G-orbit Ox is closed. Let Gx denote the isotropy group
at x; then G=Gx 'Ox (9.5, 9.22). Because Gx �G0, it is normal in G, and so the quotient
G=Gx is affine (9.45). It is connected (5.52), and Ox is complete, and so Ox must be a
one-point scheme (A.114g).

18.9. Steinberg (1977, Oeuvres p.467) adapted Kolchin’s proof of the Lie-Kolchin theorem
to give a more elementary proof of the Borel fixed point theorem. In particular, his approach
avoids using quotient varieties. See v1.00 of these notes.
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b. Borel subgroups

Throughout this section, k is algebraically closed.

DEFINITION 18.10. Let G be a connected group variety over k (algebraically closed). A
Borel subgroup of G is a maximal connected solvable subgroup variety of G.

For example, every connected solvable subgroup variety of maximum dimension is a
Borel subgroup.

EXAMPLE 18.11. Let B be a Borel subgroup in GLV (V a finite-dimensional k-vector
space). Because B is solvable, there exists a basis of V for which B � Tn (17.33), and
because B is maximal, B D Tn. Thus, we see that the Borel subgroups of GLV are exactly
the subgroup varieties B such that B D Tn relative to some basis of V . As GLV .k/ acts
transitively on the set of bases for V , any two Borel subgroups of GLV are conjugate by
an element of GLV .k). More canonically, the Borel subgroups of GLV (and SLV ) are the
stabilizers of maximal flags in V .

Let � be a nondegenerate bilinear form on V . The Borel subgroups of SO.�/ are the
stabilizers of flags that are maximal with respect to the property that � is trivial on each
subspace in the flag (they have length Œdim.V /=2�). The Borel subgroups of the symplectic
group have a similar description. See later.

THEOREM 18.12. Let G be a connected group variety over k (algebraically closed).

(a) If B is a Borel subgroup of G, then G=B is complete (hence projective 9.39).

(b) Any two Borel subgroups of G are conjugate by an element of G.k/.

PROOF. We first prove that G=B is complete when B is a Borel subgroup of maximum
dimension. Apply (4.19) to obtain a representation G ! GLV and a one-dimensional
subspace L such that B is the algebraic subgroup of G stabilizing L. Then B acts on V=L,
and the Lie-Kolchin theorem gives us a maximal flag in V=L stabilized by B . On pulling
this back to V , we get a maximal flag,

F WV D Vn � Vn�1 � �� � � V1 D L� 0

in V . Not only does B stabilize F , but (because of our choice of V1) it is the isotropy group
at F , and so G=B ' B �F (9.5, 9.43). This shows that, when we let G act on the variety
of maximal flags, G �F is the orbit of smallest dimension (the dimension of G �F is the
codimension of GF , which is a solvable subgroup of G). Therefore G �F is a closed (9.5),
and hence complete, subvariety of the variety of maximal flags in V . As G=B 'G �F , G=B
is complete (A.114).

To complete the proof of the theorem, it remains to show that for any Borel subgroups
B and B 0 with B of maximum dimension, B 0 � gBg�1 for some g 2 G.k/ (because the
maximality ofB 0 will then imply thatB 0DgBg�1). LetB 0 act onG=B by left multiplication
.b0;gB/ 7! b0gB . The Borel fixed point theorem shows that there is a fixed point, i.e., for
some g 2G.k/, B 0gB � gB . Then B 0g � gB , and so B 0 � gBg�1 as required. 2

COROLLARY 18.13. Every unipotent group variety G is solvable.

PROOF. Let B be a Borel subgroup of G; we have to show that G DB . According to (4.19),
there exists a representation .V;r/ of G such that B is the stabilizer of a one-dimensional
subspace L in V . As B is unipotent, LB ¤ 0 and so LB D L. For a nonzero x 2 L, the
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regular map g 7! gxWG=B! Va is an immersion (1.52). AsG=B is complete and connected
and Va is affine, the image of the map is a single point (A.114). Hence G=B is a single point,
and so G D B . (For a more explicit proof of the corollary, see 15.23.) 2

THEOREM 18.14. Let G be a group variety (not necessarily connected). Any two maximal
tori in G are conjugate by an element of Gı.k/.

PROOF. Let T and T 0 be maximal tori. Being connected, they are both contained in Gı,
and so we may suppose that G is connected. Being smooth, connected, and solvable, they
are contained in Borel subgroups, say T � B , T 0 � B 0. For some g 2G.k/, gB 0g�1 D B
(see 18.12), and so gT 0g�1 � B . Now T and gT 0g�1 are maximal tori in the B , and we
can apply the statement for connected solvable group varieties (17.37). 2

COROLLARY 18.15. Let G be a connected group variety. Let T be a maximal torus in G,
and let H be an algebraic subgroup of G containing T . Then NG.T /.k/ acts transitively on
the set of conjugates of H containing T , and the number of such conjugates is

.NG.T /.k/WNG.T /.k/\H.k//

.NG.H/.k/WH.k//
.

PROOF. Let gHg�1, g 2 G.k/, be a conjugate of H containing T . Then gTg�1 and T
are maximal tori in gHg�1, and so there exists an h 2 gH.k/g�1such that hgTg�1h�1 D
T (18.14). Now hg 2 NG.T /.k/ and gHg�1 D hgHg�1h�1, and so this shows that
NG.T /.k/ acts transitively on the set of conjugates of H containing T .

We now write N.�/ for NG.�/.k/. The number of conjugates of H containing T is

.N.T /W.N.T /\N.H///D
.N.T /W.N.T /\H.k///

.N.T /\N.H/WN.T /\H.k//
:

Let g 2N.H/; then T and gTg�1 are maximal tori in H , and so there exists an h 2H.k/
such that hgTg�1h�1 D T ((18.14)), i.e., such that hg 2N.T /. As hg 2N.H/, this shows
that N.H/DH.k/ � .N.T /\N.H//, and so the canonical injection

N.T /\N.H/

N.T /\H
!
N.H/

H

is a bijection. Therefore

.N.T /\N.H/WN.T /\H/D .N.H/WH/ ,

which completes the proof of the formula. 2

DEFINITION 18.16. Let G be a connected group variety. A pair .B;T / with B a Borel
subgroup of G and T a maximal torus of G contained in B is called a Borel pair.

Every maximal torus T , being solvable, is contained in a Borel subgroup B . As any two
Borel subgroups are conjugate, it follows that every Borel subgroup contains a maximal
torus. This shows that every maximal torus and every Borel subgroup is part of a Borel pair
.B;T /

PROPOSITION 18.17. Let G be a connected group variety. Any two Borel pairs are conju-
gate by an element of G.k/.
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PROOF. Let .B;T / and .B 0;T 0/ be Borel pairs inG. Then B 0D gBg�1 for some g 2G.k/
(18.12). Now T 0 and gTg�1 are both maximal tori in B 0, and so T 0 D bgTg�1b�1 for
some b 2 B.k/ (17.37). Hence .B 0;T 0/D bg � .B;T / � .bg/�1. 2

Recall (17.37) that every connected solvable group variety H (over a perfect field)
contains a greatest unipotent algebraic subgroup Hu; it is a connected normal subgroup
variety of H .

PROPOSITION 18.18. Let G be a connected group variety. The maximal connected unipo-
tent subgroup varieties of G are those of the form Bu with B a Borel subgroup of G. Any
two are conjugate by an element of G.k/.

PROOF. Let U be a maximal connected unipotent subgroup variety of G. It is solvable
(15.23), and so it is contained in a Borel subgroup B . By maximality, it equals Bu. Let U 0 D
B 0u be a second such subgroup. Then B 0 D gBg�1 for some g 2 G.k/, and .gBg�1/u D
gBug

�1. 2

DEFINITION 18.19. Let G be a connected group variety. A subgroup variety P of G is
parabolic if G=P is complete (hence projective 9.39).

EXAMPLE 18.20. Borel subgroups are parabolic (18.12). Let V be a finite-dimensional
k-vector space, and let F be a flag in V , not necessarily maximal. The stabilizer P of F in
GLV is a parabolic subgroup of GLV . For example,

P D

8̂̂<̂
:̂
0BB@
� � � �

� � � �

0 0 � �

0 0 � �

1CCA
9>>=>>;

is a parabolic subgroup of GL4.

THEOREM 18.21. Let G be a connected group variety. A subgroup variety P of G is
parabolic if and only if it contains a Borel subgroup.

PROOF. Suppose that P contains a Borel subgroup B . There is a regular map G=B!G=P

(9.44). Because G=B is complete and the map is surjective, G=P is complete (A.114d).
Conversely, suppose that G=P is complete, and let B be a Borel subgroup of G. Accord-

ing to (18.5), B fixes a point xP in G=P . In other words, BxP D xP , and so P contains
the Borel subgroup x�1Bx of G. 2

COROLLARY 18.22. A connected group variety contains a proper parabolic subgroup if
and only if it is not solvable.

PROOF. If G is not solvable, then every Borel subgroup is a proper parabolic subgroup. If
G is solvable, then a proper parabolic subgroup would contradict (18.1). 2

COROLLARY 18.23. Let G be a connected group variety. The following conditions on a
connected subgroup variety H of G are equivalent:

(a) H is maximal solvable (hence Borel);

(b) H is solvable and G=H is complete;

(c) H is minimal parabolic.
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PROOF. (a))(b). Assume H satisfies (a). Because H is Borel, G=H is complete (18.12),
and so H satisfies (b).

(b))(c). Assume H satisfies (b). Certainly it is parabolic. Let P be a parabolic
subgroup of G contained in H . Then P contains a Borel subgroup B of G (18.21) which,
being maximal connected solvable, must equal H . Hence P DH , and H is minimal.

(c))(a). Assume H satisfies (c). As H is parabolic, it contains a Borel subgroup B
(18.21), which being parabolic, must equal H . 2

PROPOSITION 18.24. Let qWG!Q be a quotient map of connected group varieties, and
let H be an algebraic subgroup of G. If H is parabolic (resp. Borel, resp. a maximal
unipotent subgroup variety, resp. a maximal torus), then so also is q.H/; moreover, every
such subgroup of Q arises in this way.

PROOF. From the universal property of quotients, the map G!Q=q.H/ factors through
G=H , and so we get a surjective map G=H !Q=q.H/:

IfH is parabolic, thenG=H is complete. AsG=H !Q=q.H/ is surjective, this implies
that Q=q.H/ is complete (A.114d), and so q.H/ is parabolic.

If H is a Borel subgroup, then q.H/ is connected (5.52), solvable (8.13), and Q=q.H/
is complete, and so H is a Borel subgroup (18.23).

If H is a maximal unipotent subgroup variety, then H D Bu for some Borel subgroup
B (18.18), and q.H/ D q.Bu/ � q.B/u. Let g 2 q.B/u.k/. Then g D q.b/ for some
b 2 B.k/. If b D bsbu is the Jordan decomposition of b, then g D q.bs/ � q.bu/ is the
Jordan decomposition of g (11.20), and so q.bs/ D e and g D q.bu/ 2 q.Bu/. Hence
q.H/D q.B/u, which is a maximal unipotent subgroup variety of G (18.18).

If H is a maximal torus, then H is contained in a Borel subgroup B and B D Bu �H
(17.37). Now

q.B/D q.Bu/ �q.H/D q.B/u �q.H/,

which implies that q.H/ is a maximal torus in the Borel subgroup q.B/, and hence in Q.
Let B 0 be a Borel subgroup of Q, and let B be a Borel subgroup of G. Then q.B/ is a

Borel subgroup of Q, and so (18.12) there exists a g 2G.k/ such that

B 0 D q.g/q.B/q.g/�1 D q.gBg�1/;

which exhibits B 0 as the image of a Borel subgroup of G. The same argument applies to
maximal unipotent subgroup varieties and maximal tori of Q.

Let H 0 be a parabolic subgroup of Q. Then H 0 contains a Borel subgroup B 0, which we
can write B 0 D q.B/ with B a Borel subgroup of G. Now H

def
D q�1.H 0/ contains B , and

so it is parabolic, but q.H/DH 0. 2

PROPOSITION 18.25. Let B be a Borel subgroup of a connected group variety G, and let R
be a k-algebra. An automorphism of GR that acts as the identity map on BR is the identity
map.

PROOF. We prove this first in the case R D k. Let ˛ be an automorphism of G such that
˛.x/D x for all x 2 B.k/, and consider the regular map

ıWG!G; x 7! ˛.x/ �x�1.

Then ı is constant on each coset of B , and so it defines a regular map ıB WG=B!G (9.44).
As G=B is complete, ıB is constant (A.114), with value e. This shows that ˛ agrees with
the identity map on G.
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In proving the general case, we use that, for an algebraic scheme X over k and a
k-algebra R,

OXR.XR/'R˝OX .X/:
This is obvious if X is affine, and the general case can be proved by covering X with open
affines and applying the sheaf condition.

Let ˛ be an automorphism of GR such that ˛jBR D id, and let ıWGR ! GR be the
morphism such that, for every R-algebra R0, ı.R0/WG.R0/!G.R0/ sends x to ˛.x/ �x�1.
Then ı is constant on each coset of BR, and so it defines a regular map

.G=B/R 'GR=BR
ıB

�!GR:

Because G is affine, we can embed it in An for some n. The composite of the maps

.G=B/R
ıB

�!GR �! AnR
pi
�! AR (pi the i th projection),

is an element of O.G=B/R..G=B/R/ ' R˝OG=B.G=B/. Because G=B is complete,
OG=B.G=B/D k, and so this map is constant. Hence ıB is constant, with value e. This
shows that ˛ agrees with the identity map on G.R0/ for all R-algebras R0, and hence on GR
(Yoneda lemma A.28). 2

PROPOSITION 18.26. Let B be a Borel subgroup of a connected group variety G. Then

Z.G/ı �Z.B/� CG.B/DZ.G/:

PROOF. As Z.G/ı is connected and commutative, it lies in some Borel subgroup. Because
all Borel subgroups are conjugate (18.12), it lies in our particular Borel subgroup B , and
hence in Z.B/.

The inclusionsZ.B/�CG.B/ andZ.G/�CG.B/ are obvious. Thus, let g 2CG.B/.R/
for some k-algebra R. Then inn.g/ acts as the identity map on BR, and so it is the identity
map on GR (18.25). Thus CG.B/.R/ � Z.G/.R/. As this is true for all k-algebras R,
CG.B/�Z.G/: 2

PROPOSITION 18.27. Let G be a connected group variety. The following conditions are
equivalent:

(a) G has only one maximal torus;

(b) any (one or every) Borel subgroup B of G is nilpotent;

(c) G is nilpotent (hence G D B);

(d) any (one or every) maximal torus T of G is contained in the centre of G.

PROOF. (a))(b). Let B be a Borel subgroup ofG, and let T be a maximal torus in B . Then
T is normal in B , because otherwise some conjugate of it by an element of B.k/ would be
a second maximal torus in G (1.61). Because T is maximal, the quotient B=T contains
no copy of Gm (16.46), and so it is unipotent (17.65). It follows that B ' T �U with U
unipotent (17.31), and both T and U are nilpotent (15.23).

(b))(c). We use induction on the dimension of B . If dim.B/ D 0, then G D G=B
is both affine and complete, hence trivial. Thus, we may suppose that dim.B/ > 0, and
hence that dim.Z.B// > 0 (8.33). But Z.B/�Z.G/ (18.26), and so Z.B/ is normal in G.
The quotient B=Z.B/ is a Borel subgroup of G=Z.B/ (18.24). By induction G=Z.B/D
B=Z.B/, and so G D B .
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(c))(d). The centre of a connected nilpotent group contains every subgroup of multi-
plicative type (17.55).

(d))(a). Any two would be conjugate by an element of G.k/ (18.14). 2

EXAMPLE 18.28. In particular, a connected solvable group variety is nilpotent if and only
it has exactly one maximal torus. For n > 1, the group Tn is solvable but not nilpotent
because its maximal torus of diagonal matrices is not normal:�

1 1

0 1

��
a 0

0 b

��
1 �1

0 1

�
D

�
a �aC c

0 c

�
:

COROLLARY 18.29. Let G be a connected group variety. If all elements of G.k/ are
semisimple, then G is a torus.

PROOF. Let .B;T / be a Borel pair in G. Then B D Bu �T (17.37), and the hypothesis
implies that Bu D e. Hence B is nilpotent, and so G D B D T . 2

COROLLARY 18.30. Let G be a connected group variety.
(a) A maximal torus of G is contained in only finitely many Borel subgroups.
(b) For a Borel subgroup B of G, B DNG.B/ı.

PROOF. (a) Let T be a maximal torus in G, and let B be Borel subgroup containing T .
After (18.15) it suffices to show that

.NG.T /.k/WNG.T /.k/\B.k// <1:

Recall (16.23) that NG.T / is smooth and that NG.T /ı D CG.T /ı. As NG.T /ı contains a
maximal torus T in its centre, it is nilpotent (18.27), and so it lies in some Borel subgroup B 0

containing T . But NG.T /.k/ acts transitively on the Borel subgroups containing T (18.15),
and so NG.T /ı lies in B . Hence

.NG.T /.k/WNG.T /.k/\B.k//� .NG.T /.k/WNG.T /
ı.k// <1:

(b) Let B be a Borel subgroup of G, and let T be a maximal torus of G contained in
B . We saw in the proof of (18.15) that .NG.B/.k/WB.k// divides .NG.T /.k/WNG.T /.k/\
B.k//, and so it is finite. 2

COROLLARY 18.31. Let G be a connected group variety. If dimG � 2, then G is solvable.

PROOF. Let B be a Borel subgroup of G — we have to show that G D B . If dimB D 0,
then B is nilpotent, and so G D B D e. If dimB D 1, then we write B D Bu �T with T a
maximal torus in G (17.37). Either B D Bu or B D T . In each case, B is nilpotent, and so
G D B . Finally, if dimB D 2, then certainly G D B . 2

The bound in (18.31) is sharp — SL2 is not solvable.

PROPOSITION 18.32. Let T be a maximal torus in a group variety G, and let C DCG.T /ı.
Then C is nilpotent, and equals NG.C /ı.

PROOF. Recall (16.23) that C is smooth. The maximal torus T is contained in the centre of
C , and so C is nilpotent (18.27).

Now C has a unique decomposition, C D U � T with U unipotent (17.57). Every
automorphism of C preserves the decomposition. In particular, the action of NG.C /ı on
C by inner automorphisms preserves T . By rigidity (14.29), the action of NG.C /ı on T is
trivial, and so NG.C /ı � CG.T /. Hence C �NG.C /ı � CG.T /ı

def
D C . 2
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COROLLARY 18.33. Let T be a maximal torus of a connected group variety G. Then
CG.T /

ı is contained in every Borel subgroup of G containing T .

PROOF. Let B be a Borel subgroup containing T . As CG.T /ı is connected and nilpotent, it
is contained in some Borel subgroup B 0 of G. According to (18.14), B D xB 0x�1 for some
x 2NG.T /, and so

CG.T /
ı
D CG.xT x

�1/ı D x.CG.T /
ı/x�1 � B: 2

REMARK 18.34. Let I denote the reduced identity component of the intersection of the
Borel subgroups of G: I D

�T
B�G BorelB

�ı
red. By definition, this is a connected subgroup

variety of G. It is also solvable and normal (because Borel subgroups are solvable, and the
set of Borel subgroups is closed under conjugation). Every connected solvable subgroup
variety is contained in a Borel subgroup, and, if it is normal, then it is contained in all Borel
subgroups (21.32), and so it is contained in I . Therefore I is the greatest connected solvable
normal subgroup variety of G, i.e.,

RG D
�\

B�G Borel
B
�ı

red
:

This is sometimes adopted as the definition of RG (e.g., in SHS, Vortrag 15, p.386):

c. The density theorem

Throughout this section, k is algebraically closed. Recall that we often write G for jGj
(underlying topological space of G) and that, because k is algebraically closed, we can
identify jGj with G.k/.

LEMMA 18.35. Let G be a connected group variety, and let H be a connected subgroup
variety of G.

(a) If G=H is complete, then
S
g2G.k/gHg

�1 is a closed subset of G.

(b) If there exists an element of H.k/ fixing only finitely many elements of jG=H j, thenS
g2G.k/gHg

�1 contains a nonempty open subset of G.

PROOF. Consider the composite of the maps

G�G
�
�! G�G

q�id
�! G=H �G

.x;y/ 7! .x;xyx�1/

where q is the quotient map. We claim that the image S of G�H in G=H �G is closed.
As q� id is open (9.20), it suffices to show that .q� id/�1.S/ is closed in G�G. But this
set coincides with �.G�H/, which is closed because � is an automorphism of G�G and
H is closed in G (1.27).

(a) Now assume that G=H is complete. Then (by definition) the projection map G=H �
G! G is closed. In particular, the image of S under this map is closed, but the image is
exactly

S
g2G.k/gHg

�1.
(b) Now suppose that there exists an h 2H.k/ whose set of fixed points in jG=H j is

finite. This means that the pre-image of h in S with respect to the projection from S to G is
finite. This implies that the dimension of S is the same as the dimension of the closure of its
image in G (A.99), and so the regular map S !G is dominant, which implies the second
statement (A.68). 2
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PROPOSITION 18.36. Let G be a connected group variety, and let T be a torus in G. There
exists a t 2 T .k/ such that every element ofG.k/ that commutes with t belongs to CG.T /.k/
(i.e., the centralizer of T in G is equal to the centralizer of t ).

PROOF. Choose a finite-dimensional faithful representation .V;r/ of G, and write V as a
sum of eigenspaces V D

L
V�i of T (14.12). For each pair .i;j / with i ¤ j , let Tij D ft 2

T .k/ j �i .t/D �j .t/g. Then Tij is a proper closed subset of of T .k/, and so there exists a
t 2 T .k/X

S
i¤j Tij . If an element x of G.k/ commutes with t , then it stabilizes each V�i ,

and so it commutes with T . 2

THEOREM 18.37. Let G be a connected group variety.

(a) Let T be a maximal torus inG, and let C DCG.T /ı. Then
S
g2G.k/gCg

�1 contains
a nonempty open subset of G.

(b) Let B be a Borel subgroup of G. Then G D
S
g2G.k/gBg

�1:

PROOF. (a) As C is nilpotent (18.32) and T is a maximal torus in C , we have C D Cu�Cs
with Cs D T (see 17.60). Let t 2 T .k/ be as in (18.36). We shall show that t fixes only
finitely many elements of G=C , and so (a) follows from (18.35).

Let x be an element of G.k/ such that txC D xC . As x�1tx is a semisimple element
of C , it lies in T . Hence, every element of T commutes with x�1tx or, equivalently, every
element of xT x�1commutes with t . By the choice of t , this implies that xT x�1 � C ,
whence xT x�1 D T . As conjugation by x on G stabilizes T , it also stabilizes C , and so
x 2NG.C /. From (16.23), we know that NG.C /ı D C . Therefore xC 7! xNG.C /

ı is an
injection from the fixed point set for t in G=C to the finite set NG.C /=NG.C /ı.

(b) Let T be a maximal torus of G contained in B , and let C D CG.T /ı. Then C � B
(18.33), and so

S
g2G.k/gBg

�1 contains a nonempty open subset ofG. AsG=B is complete,S
g2G.k/gBg

�1 is closed in G (18.35), and so it equals G. 2

COROLLARY 18.38. Let B be a Borel subgroup of G. Then

B DNG.B/
ı
red:

PROOF. Clearly, B is a Borel subgroup of NG.B/ıred. As it is normal in NG.B/ıred, (b) of
the theorem shows that it equals NG.B/ıred. 2

COROLLARY 18.39. Let B be a Borel subgroup of G. Then B is the only Borel subgroup
of G contained in NG.B/.

PROOF. Suppose B 0 �NG.B/. Then B 0 �NG.B/ıred D B , and so B 0 D B . 2

d. Centralizers of tori are connected

In this section we prove that the centralizer of a torus in a connected group variety is
connected (hence smooth and connected, 16.23). Since it suffices to prove this after an
extension of the base field, we suppose throughout that k is algebraically closed.

In the final version, Lemma 18.42 will be deduced more simply from Theorem 17.43
and Proposition 18.36.

LEMMA 18.40. Let G be a connected group variety, and let U be a commutative connected
unipotent subgroup variety of G. Let s be a semisimple element of G that normalizes U .
Then the centralizer of s in U is connected.
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PROOF. Let S be the closure of the subgroup of G.k/ generated by s. As s is semisimple,
the algebraic group S is diagonalizable (14.26), and hence its centralizer U S D U s in U is
smooth (16.21).

Let Us.k/ be the subgroup of U.k/ consisting of the elements Œs;u� def
D sus�1u�1 with

u 2 U.k/. We claim that U s.k/\Us.k/D feg. To see this, let u 2 U.k/ be such that Œs;u�
lies in the intersection, say, Œs;u�D v 2 U s.k/. Then sus�1 D vu, and so smus�m D vmu
for all m 2 Z. Therefore Œsm;u� 2 U s.k/ for all m 2 Z. Consider the map

x 7! Œx;u�WS ! U s:

It is a homomorphism of group varieties. As S is diagonalizable and U s is unipotent, it is
trivial (15.18). In particular, Œs;u�D e , and so U s.k/\Us.k/D feg.

Now consider the map
u 7! Œs;u�WU ! Us:

This is a surjective homomorphism of group varieties, and so Us is connected. Its kernel is
U s , and so (5.19)

dim.U /D dim.U s/Cdim.Us/: (132)

The homomorphism
.u;v/ 7! uvWU s �Us! U

has kernel U s \Us , which is finite, and so

dim.
�
U s
�ı
�Us/D dim.

�
U s
�ı
�Us/

(132)
D dim.U /:

It follows that �
U s
�ı
�Us! U

is a surjective homomorphism of group varieties, and so�
U s
�ı
.k/ �Us.k/D U.k/.

Let u 2 U s.k/. Then uD us �us with us 2 .U s/ı .k/ and us 2 Us.k/. But us 2 U s.k/\
Us.k/D feg, and so u 2 .U s/ı .k/. Hence U s.k/D .U s/ı .k/, i.e., jU sj D

ˇ̌
.U s/ı

ˇ̌
, and so

U s is connected. 2

LEMMA 18.41. Let S be a torus acting on a connected unipotent group variety U . The
centralizer U S of S in U is connected.

PROOF. Let G D U ÌS and let s 2 S generate a dense subgroup of S (see 18.36). Then
U S D U s , and so (18.40) proves the statement when U is commutative.

We prove the general statement by induction on the dimension of U . Because U is
unipotent, it is nilpotent (15.23), and so it contains a nontrivial connected subgroup variety
Z in its centre (8.33). By induction, .U=Z/s is connected. Consider the exact sequence

1!Zs! U s! .U=Z/s:

We shall show that the last map is surjective. As Zs and .U=Z/s are connected, this will
show that U s is connected (5.52).

Let u 2 U.k/ be such that uZ 2 .U=Z/s.k/. Then sus�1u�1 2Z.k/. As s is dense in
S , this implies that xux�1u�1 2Z.k/ for every x 2 S.k/. The regular map

ıWS !Z; x 7! xux�1u�1;
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is a crossed homomorphism, and so it is a coboundary (16.3), i.e., there exists a z 2Z.k/
such that

xux�1u�1 D xzx�1z�1

for all x 2 S . Now z�1u 2 U s.k/. 2

LEMMA 18.42. Let S be a torus in a connected solvable group variety G. Then CG.S/ is
connected.

PROOF. Let T be a maximal torus in G containing S . Then G DGuÌT with Gu unipotent
(17.37), and so

CG.S/DG
S
u ÌT:

By Lemma 18.41, GSu is connected, and so CG.S/ is connected. 2

LEMMA 18.43. Let T be a torus in a connected group variety G. Then

CG.T /�
[

T�B
B

(union over the Borel subgroups of G containing T ).

PROOF. Let c 2 CG.T /.k/, and let B be a Borel subgroup of G. Let

X D fgB 2G=B j cgB D gBg D .G=B/c :

As c is contained in a connected solvable subgroup of G (18.37), the Borel fixed point
theorem (18.5) shows that X is nonemtpy. It is also closed, being the subset where the
regular maps gB 7! cgB and gB 7! gB agree. As T commutes with c, it stabilizes X , and
the Borel fixed point theorem shows that it has a fixed point in X . This means that there
exists a g 2G such that

cgB D gB (hence cg 2 gB)

TgB D gB (hence Tg � gB).

Thus, both c and T lie in gBg�1, as required. 2

THEOREM 18.44. Let T be a torus in a connected group variety G. Then CG.T / is
connected.

PROOF. From (18.43) we know that

CG.T /D
[

T�B
CB.T /.

As each CB.T / is connected, and
T
CB.T /¤ ;, this implies that CG.T / is connected. 2

COROLLARY 18.45. Let T be a maximal torus in G. Then CG.T / is contained in every
Borel subgroup containing T .

PROOF. If T � B , then CG.T /ı � B by (18.33). But CG.T /D CG.T /ı. 2

ASIDE 18.46. Theorem 18.44 is true for tori in algebraic groups (not necessarily smooth). For an
argument deducing this from the smooth case, see SHS Exposé 13, �4, p.358.

DEFINITION 18.47. Let G be a connected group variety. A Cartan subgroup in G is the
centralizer of a maximal torus.
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PROPOSITION 18.48. Let G be a group variety. Every Cartan subgroup in G is smooth,
connected, and nilpotent; any two are conjugate by an element of G.k/; the union of the
Cartan subgroups of G contains a dense open subset of G.

PROOF. Let C D CG.T / be a Cartan subgroup. Then C is smooth (16.23), connected
(18.44), and nilpotent (18.32).

Let C and C 0 be Cartan subgroups, say, C D CG.T / and C 0 D CG.T 0/ with T and T 0

maximal tori. Then T 0 D gTg�1 for some g 2G.k/ (18.14), and so

C 0 D CG.gTg
�1/D g �CG.T / �g

�1
D g �C �g�1:

Let C be a Cartan subgroup of G. Every conjugate of C is a Cartan subgroup of G, and
we know (18.37) that

S
g2G.k/gCg

�1 contains a nonempty open subset of G. 2

COROLLARY 18.49. Let C D CG.T / be a Cartan subgroup. Then C D Cu�T with Cu
unipotent.

PROOF. As C is nilpotent, we can apply (17.56). 2

PROPOSITION 18.50. Let G be a connected group variety, and let B be a Borel subgroup
of G. Then Z.G/DZ.B/.

PROOF. As Z.G/ D CG.B/ (18.26) and Z.B/ D CG.B/\B , it suffices to show that
Z.G/� B . Let T be a maximal torus in G. Then Z.G/� CG.T /. As CG.T / is connected
nilpotent subgroup variety of G (18.48), it is contained in some Borel subgroup B 0. Now
B D gB 0g�1 for some g 2G.k/, and gB 0g�1 � gZ.G/g�1 DZ.G/. 2

APPLICATIONS

THEOREM 18.51. Let G be a connected group variety. Let S be a torus in G, and let B be
a Borel subgroup containing S . Then CG.S/\B is a Borel subgroup of CG.S/, and every
Borel subgroup of CG.S/ is of this form.

PROOF. Let C D CG.S/, and let � WG! G=B be the quotient map. To show that C \B
is a Borel subgroup of C , it suffices to show that �.C / is closed, hence complete, because
C=C \B ' �.C / and we can apply (18.23).

As � is open, it suffices to show that CB is closed (meaning, that the set jC jjBj is closed
in jGj). Let CB be the closure of CB in G — it has the structure of a group subvariety
of G (see 1.31). Note that CB is connected because CB is the image of C �B under the
multiplication map.

For y D cb 2 CB with c 2 C and b 2 B , we have

y�1Sy D b�1c�1Scb D b�1Sb � B

because S � B . Therefore,

y 2 CB H) y�1Sy � B:

Let 'WB! B=Bu denote the quotient map, and consider the regular map

 WCB �S ! B=Bu; .y;s/ 7! '.y�1sy/:
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As CB is a connected (affine) group variety and S and B=Bu are of multiplicative type, the
rigidity theorem (14.29) shows that '.y�1sy/ is independent of y, i.e., '.y�1sy/D '.s/
for all y and s.

Let T be a maximal torus of B containing S . The map ' induces an isomorphism from
T onto B=Bu. Let y 2 CB . Then y�1Sy is a torus in B , and so there exists a u 2 Bu
such that u�1y�1Syu� T (17.37). As CB �B � CB , we have CB �B � CB by continuity.
Therefore yu 2 CB , and so

'.u�1y�1syu/D '..yu/�1 s.yu//D '.s/

for all s 2 S . But u�1y�1syu and s both lie in T and ' is injective on T , and so

u�1y�1syuD s.

As this holds for all s 2 S , the element yu 2 C , and so y 2 CB . We have shown that CB is
closed.

For the second part of the statement, let B0 be a Borel subgroup of C , and let B be a
Borel subgroup of G containing S . Because B \C is a Borel subgroup of C , there exists
c 2C.k/ such thatB0D c.B\C/c�1. But c.B\C/c�1D cBc�1\cCc�1D cBc�1\C ,
which prove the statement. 2

e. The normalizer of a Borel subgroup

Throughout this section, k is algebraically closed.

LEMMA 18.52. Let H be a subgroup variety of a group variety G. If H contains a Cartan
subgroup of G, then NG.H/ı DH ı (and so NG.H/ is smooth).

PROOF. Let N DNG.H/. As N �H , it suffices to show that dimN D dimH . Now

dimhD dimH � dimN � dimn;

and so it suffices to show that nD h.
Assume that H contains the Cartan subgroup C D CG.T /. Recall (12.31) that cD gT

and n=hD .g=h/H . Because H � C , its Lie algebra h� cD gT , and so there is an exact
sequence

0! h=gT ! g=gT ! g=h! 0:

Because T is diagonalizable, its representations are semisimple (14.12), and so
�
g=gT

�T
!

.g=h/T is surjective and .g=gT /T D 0. Therefore .g=h/T D 0. But

.g=h/T � .g=h/H D n=h;

and so nD h. 2

THEOREM 18.53. Let B be a Borel subgroup of a connected group variety G. Then

B DNG.B/:
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PROOF. Every Borel subgroup contains a maximal torus (p.316), hence the centralizer of
such a torus (18.45), and so (18.52) shows that NG.B/ is smooth. Therefore it suffices to
show that NG.B/.k/� B.k/. We prove this by induction on dim.G/. If G is solvable, for
example, if dim.G/� 2 (18.31), then B DG, and the statement is obvious.

Let x 2 NG.B/.k/. Let T be a maximal torus in B . Then xT x�1 is also a maximal
torus in B and hence is conjugate to T by an element of B.k/ (18.12); thus we may suppose
that T D xT x�1. Consider the homomorphism

'WT ! T; t 7! Œx; t �D xtx�1t�1:

If '.T /¤ T , then S def
D Ker.'/ı is a nontrivial torus. Moreover, x lies in C def

D CG.S/,
and normalizes C \B , which is a Borel subgroup of C (18.51). If C ¤G, then x 2 B.k/
by induction. If C DG, then S �Z.G/, and we can apply the induction hypothesis to G=S
to deduce that x 2 B.k/.

It remains to consider the case '.T /D T . According to (4.19), there exists a representa-
tion r WG!GLV such that NG.B/ is the stabilizer of one-dimensional subspace LD hvi in
V . Then Bu fixes v because Bu is unipotent, and T fixes v because T �DG. Therefore
B D Bu �T fixes v, and the map

g 7! r.g/ �vWG! V

factors through G=B . Because G=B is complete, this implies that the map has image fvg,
and so G fixes v. Hence G DNG.B/, and so B is normal in G. Hence B DG (18.37), and
the statement is obvious. 2

COROLLARY 18.54. Every subgroup variety P of G containing a Borel subgroup is con-
nected, and P DNG.P /.

PROOF. As P contains a Borel subgroup of G, it contains a Cartan subgroup (18.45), and
so NG.P / is smooth (18.52). As P ı � P � NG.P /, it suffices to show that P ı.k/ D
NG.P /.k/.

Let x 2NG.P /.k/, and let B � P be a Borel subgroup of G. Then B and xBx�1 are
Borel subgroups of P ı, and so there exists a p 2 P ı.k/ such that

xBx�1 D p.xBx�1/p�1 D .px/B.px/�1

(18.14). As px normalizes B , it lies in B.k/ (18.53), and so

x D p�1 �px 2 P ı.k/ �B.k/D P ı.k/;

as required. 2

REMARK 18.55. It follows from the corollary that the Borel subgroups of G are maximal
among the solvable subgroup varieties (not necessarily connected) of G. However, not every
maximal solvable subgroup variety of a connected algebraic group G is Borel. For example,
the diagonal in SOn is a commutative subgroup variety not contained in any Borel subgroup
(we assume that n > 2 and that the characteristic¤ 2). It is a product of copies of .Z=2Z/k ,
and equals it own centralizer. If it were contained in a Borel subgroup of G, it would be
contained in a torus (17.37), which would centralize it.

COROLLARY 18.56. For every Borel subgroup B of G, B DNG.Bu/.
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PROOF. Let P DNG.Bu/. As P contains B , it is connected. From the conjugacy of Borel
subgroups, it follows that Bu is maximal in the family of connected unipotent subgroups
of G. Hence P=Bu has no non-trivial connected unipotent subgroups. Therefore, if C is
a Borel subgroup of P=Bu, then C is a torus, in particular nilpotent, and so P=Bu D C
(18.27). As P=Bu is commutative, P is solvable, and so P D B . 2

Let B be a Borel subgroup of G, and let B be the set of all Borel subgroups of G. We
define a map

 W.G=B/.k/! B; xB 7! xBx�1:

By (18.12) and (18.53),  is bijective. Let L be a subset of G.k/, and let .G=B/L be the
fixed point set for L. Then  maps .G=B/L bijectively onto the set B.L/ of Borel subgroups
of G containing L.

COROLLARY 18.57. Let T be a maximal torus in G, and let B be a Borel subgroup of G
containing T . Then NG.T / acts transitively .G=B/T .

PROOF. Clearly, .G=B/T is stable under the action of NG.T /. By the above, to say that
NG.T / acts transitively on .G=B/T is equivalent to saying that NG.T / acts transitively on
B.T / by conjugation. Let X;Y 2 B.T /. There exists a g 2G such that gXg�1 D Y . Now
T and gTg�1 are maximal tori in Y . Therefore, there exists a y 2 Y such that yg 2NG.T /.
Since .yg/X.yg/�1 D Y , this proves the transitivity. 2

It follows that the action of NG.T / on .G=B/T factors through the finite group

NG.T /=NG.T /
ı
DNG.T /=CG.T /:

In particular, B.T / is finite. Finally, suppose that x is an element of NG.T / such that
xBx�1 D B . Then x 2 B by (18.53). Thus x 2NB.T /. Hence, for every t 2 T , we have

xtx�1t�1 2 T \ ŒB;B�� T \Bu D feg;

so that x 2 CG.T /.

DEFINITION 18.58. Let T be a maximal torus in G. The Weyl group of G with respect to
T is

W.G;T /DNG.T /=CG.T /:

Since all maximal tori are conjugate, the isomorphism class of the Weyl group is
determined by G. We have proved the following statement:

COROLLARY 18.59. Let T be a maximal torus in G. The Weyl group acts simply transi-
tively on the finite set of Borel subgroups of G containing T .

COROLLARY 18.60. The map sending x 2 .G=B/.k/ to its isotropy groupGx is a bijection
from .G=B/.k/ onto the set of Borel subgroups of G.

PROOF. Immediate from the above. 2

COROLLARY 18.61. B.k/ is a maximal solvable subgroup of G.k/.
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f. Borel and parabolic subgroups over an arbitrary base field

Throughout this section, G is a connected group variety over an arbitrary base field k.

DEFINITION 18.62. A Borel subgroup of G is a connected solvable subgroup variety B
of G such that G=B is complete.

According to (18.23), this agrees with the earlier definition (18.10) when k is alge-
braically closed. Let k0 be a field containing k; then an algebraic subgroup B of G is a
Borel subgroup if and only if Bk0 is a Borel subgroup of Gk0 (1.14, 8.29). Thus the Borel
subgroups of G are exactly those that become Borel subgroups in the sense of (18.10) over
the algebraic closure of k.

A connected group variety need not contain a Borel subgroup (see 18.55). A reductive
group that does is said to be quasi-split.

If B is a Borel subgroup of G, then NG.B/D B — this follows from (18.53) because
the formation of normalizers commutes with extension of the base field. Similarly

Z.G/ı �Z.B/� CG.B/DZ.G/

follows from (18.26).
Connected group varieties of dimension at most 2 are all solvable (18.31).

DEFINITION 18.63. A parabolic subgroup of G is a subgroup variety such that G=P is
complete.

Let k0 be a field containing k; then an algebraic subgroup P of G is parabolic if and only
if Pk0 is parabolic in Gk0 . Every parabolic subgroup P of G is connected, and P DNG.P /
(18.54).

A parabolic subgroup of G need not contain a Borel subgroup. For smooth algebraic
groups without Borel subgroups, the minimal parabolic subgroups play a role similar to that
of Borel subgroups in the quasi-split case.

g. Maximal tori and Cartan subgroups over an arbitrary base field

Throughout this section, G is a connected group variety over an arbitrary base field k.

PROPOSITION 18.64. Let S be a torus in G. Then CG.S/ is a smooth connected algebraic
subgroup of G.

PROOF. As the formation of centralizers commutes with extension of the base field, this
follows from (16.23) and (18.42). 2

THEOREM 18.65. There exists a torus T in G such that Tkal is maximal in Gkal .

PROOF. For nilpotent G, this follows from (17.55). The general case is deduced by an
induction argument. To be included in the final version. See Springer 1998, 13.3.6. 2

PROPOSITION 18.66. Let T be a torus in G, and let k0 be a field containing k; then T is
maximal in G if and only if Tk0 is maximal in Gk0 .
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PROOF. Clearly a torus in G is maximal if and only if it is maximal in its centralizer, and so
(18.64) allows us to replace G with CG.T / and assume that T is central (hence normal) in
G.

If T is maximal and central in G, then G=T contains no nontrivial torus (16.46), and
so .G=T /kal contains no nontrivial torus (18.65). Hence .G=T /kal is unipotent (17.65),
which implies that G=T is unipotent (15.9), and it follows that .G=T /k0 is unipotent. As
.G=T /k0 'Gk0=Tk0 , the latter contains no nontrivial torus (15.16), and so Tk0 is maximal.

The converse is trivial. 2

Let T be a torus in G. Then T is maximal in G if and only if it is maximal in Gkal .

THEOREM 18.67. If k is separably closed, then any two maximal tori in G are conjugate
by an element of G.k/.

PROOF. Let T and T 0 be maximal tori in G, and consider the functor

X WR fg 2G.R/ j gTRg�1 D T 0Rg:

When we let G act on itself by inner automorphisms, X is the transporter of T into T 0, and
so it is represented by a closed subscheme of G (1.58). According to (18.14), there exists
a g 2X.kal/. Then X D g �NG.T / (inside G), and so X is smooth and nonempty; as k is
separably closed, X.k/¤ ; (A.61). 2

Even when k is not separably closed, any two split maximal tori are conjugate.

THEOREM 18.68. Any two split maximal tori in G are conjugate by an element of G.k/.

PROOF. It is possible to deduce this from (18.67). See Borel and Tits 1965, 4.21, 11.6;
Conrad et al. 2010, Appendix C, 2.3, p. 506. The proof will be included in the final version
(probably in a later chapter). 2

In general, the maximal tori in G fall into many conjugacy classes.

EXAMPLE 18.69. The torus Dn is maximal in GLn because Dn.ksep/ is its own centralizer
in GLn.ksep/. In fact, let A 2Mn.R/ for some k-algebra R. If

.I CEi i /AD A.I CEi i /

then aij D 0 D aj i for all j ¤ i , and so A must be diagonal if it commutes with all the
matrices I CEi i .

The conjugacy classes of maximal tori in GLn are in natural one-to-one correspondence
with the isomorphism classes of étale k-algebras of degree n (see below). The (unique)
conjugacy class of split maximal tori corresponds to the étale k-algebra k�� � ��k (n-copies).

Let V be a vector space of dimension n. The split maximal tori in GLV are in natural
one-to-one correspondence with the decompositions V D V1˚�� �˚Vn of V into a direct
sum of one-dimensional subspaces. From this it follows that they are all conjugate.

Let A D
Q
i ki be an étale k-algebra of degree n over k. Let V D

L
i Vi with Vi a

one-dimensional ki -vector space. Then V has dimension n, and GLV contains a maximal
torus with T .k/ D A� D

Q
i k
�
i : On the other hand, let T be a maximal torus in GLV .

As a T -module, V decomposes into a direct sum of simple T -modules, V D
L
i Vi . The

endomorphism ring of Vi (as a T -module) is a field ki such that dimki Vi D 1, and GLV
contains a maximal torus T with T .k/D

Q
i k
�
i .
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DEFINITION 18.70. A Cartan subgroup of G is the centralizer of some maximal torus.

Thus, every Cartan subgroup is a nilpotent connected subgroup variety of G (18.64,
18.32).

THEOREM 18.71. Let G be connected group variety over k. If k is infinite, then G is
generated by the Cartan subgroups of its maximal tori.

PROOF. See Springer 1998, 13.3.6. The proof will be included in the final version. 2

COROLLARY 18.72. Let G be a connected group variety over an infinite field. If the Cartan
subgroups of the maximal tori in G are unirational over k, then G is unirational (and G.k/
is dense in G).

PROOF. The hypothesis implies that there exists a surjective morphism C1� � � ��Cm!G

with the Ci unirational, and so G is unirational. 2

ASIDE 18.73. Let k be an algebraically closed field, and let F be a subfield. Let G be a linear
algebraic group overF in the classical sense (e.g., Springer 1998, 2.1), and letG0 be the corresponding
group variety over F in our sense. A Borel subgroup of G in the classical sense is a Borel subgroup
of G0

k
.

Exercises

EXERCISE 18-1. Let G D B Ì T be a solvable group with T a split torus, and write
gD g0˚

L
˛2R g˛ with R a set of nonzero characters of T . Assume that g0 D t and that

each g˛ has dimension 1. Show that a homomorphism G!G must be the identity map if it
acts as the identity map on T and on R.





CHAPTER 19
The variety of Borel subgroups

Throughout this chapter, k is algebraically closed.

a. The variety of Borel subgroups

Throughout this section, G is a connected group variety. Let B denote the set of Borel
subgroups in G. Then G acts transitively on B by conjugation,

.g;B/ 7! gBg�1WG�B! B (133)

(see 18.12).
Let B be a Borel subgroup of G. As B DNG.B/ (18.51), the orbit map g 7! gBg�1

induces a bijection
�B WG=B! B.

We endow the set B with the structure of an algebraic variety for which �B is an isomorphism.
Then the action (133) of G on B is regular and B is a smooth connected projective variety.

Let B 0 D gBg�1 be a second Borel subgroup of G. The map G
inn.g/
�! G �! G=B 0

factors through G=B , and gives a commutative diagram

G=B G=B 0

B B,

inn.g/

�B �B0

g �

in which all maps except possibly �B 0 are regular isomorphisms, and so �B 0 is also a regular
isomorphism. In particular, the structure of an algebraic variety on B does not depend on the
choice of B .

The variety B, equipped with its G-action, is called the flag variety of G.

LEMMA 19.1. Let S be a subset of G.k/, and let BS D fB 2 B j s �B D B for all s 2 Sg.
Then BS is a closed subset of B, equal to fB 2 B j B � Sg.

PROOF. We have BS DTsBs where Bs is the subset of B on which the maps x 7! x

and x 7! sx agree. As Bs is closed, so also is BS . By definition, s �B D sBs�1. Hence
s �B D B ” s 2NG.B/

18.53
D B , from which the second part of the statement follows.2

333
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For example, if T is a torus in G, then BT consists of the Borel subgroups of G
containing T .

Recall (18.58) that the Weyl group ofG with respect to a maximal torus T isW.G;T /D
NG.T /=CG.T /. By rigidity, NG.T / acts on T through the finite quotient �0.NG.T //, and
as CG.T / is connected, it equals NG.T /ı, and so W.G;T /D �0.NG.T //.

PROPOSITION 19.2. Let T be a maximal torus inG. ThenW.G;T / acts simply transitively
on BT . Hence BT is finite.

PROOF. See 18.59. 2

Thus, for any B 2 BT , the orbit map n 7! n �BWW.G;T /! BT is bijective.

PROPOSITION 19.3. Let �WG ! G0 be a surjective homomorphism of connected group
varieties.

(a) The map B 7! �.B/ is a surjective regular map

�BWB �! B0

of flag varieties. If Ker.�/ is contained in some Borel subgroup of G, then �B is bijective.
(b) Let T be a maximal torus of G, and let T 0 D �.T /. Then � induces a surjective ho-

momorphismW.�/WW.G;T /!W.G0;T 0/. If Ker.�/ is contained in some Borel subgroup
of G, then W.�/ is an isomorphism.

PROOF. (a) That � induces a surjective map of sets is proved in (18.24). The regularity
of �B follows from the definition of the algebraic structure on the flag varieties. If Ker.�/
is contained in a Borel subgroup, then, since it is normal, it is contained in every Borel
subgroup, and so B D ��1.�.B// for every B 2 B. This proves the injectivity.

(b) Recall (18.24) that T 0 def
D �.T / is a maximal torus in G0. Let n 2NG.T /. Then

�.n/�.T /�.n/�1 D �.nT n�1/D �.T /

and so �.n/ 2 NG0.T 0/. If n 2 CG.T /, then a similar computation shows that �.n/ 2
CG0.T

0/, and so the map n 7! �.n/ induces a homomorphism W.G;T /!W.G0;T 0/.
If B � T , then �.B/� �.T / def

D T 0, and so �B maps BT into B0T 0 . For any B 2 BT , we
get a commutative diagram

W.G;T / W.G0;T 0/

BT B0T 0
n7!n�B1W1

W.�/

n7!n��.B/1W1

�B

ThereforeW.�/WW.G;T /!W.G0;T 0/ is surjective (resp. bijective) if and only if �BWBT !
B0T 0 is surjective (resp. bijective).

Let B 00 2 B0T
0

. There exists a B0 2 B such that �.B0/ 2 B0T
0

. Then �.T / 2 �.B0/, and
so T 2 ��1.�.B0//D P , which is a parabolic subgroup of G containing B0. Now T is a
maximal torus of P , and so it is contained in a Borel subgroup B of P . But B0 is also a
Borel subgroup of P , and so B and B0 are conjugate in P , which implies that B is a Borel
subgroup of G. This proves the surjectivity.

Finally, if Ker.�/ is contained in Borel subgroup, then �BWB! B0 is injective, which
implies that its restriction to BT ! B0T 0 is injective. 2
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NOTES

19.4. In the course of proving (19.3), we showed that, if P is a parabolic subgroup of G
and B a Borel subgroup of P , then B is also a Borel subgroup of G.

19.5. Let G be a connected group variety, and let X be a projective variety of maximum
dimension on which G acts transitively. Let o 2 X , and let Go be the isotropy group at o.
Then G=Go 'X . As X is projective of maximum dimension, Go is parabolic of minimum
dimension, and hence a Borel subgroup of G (18.23). The map x 7!Gx is a G-equivariant
isomorphism of algebraic varieties X ! B.

If X is not of maximum dimension, then its points correspond to the elements of a
conjugacy class of parabolic subgroups of G (see 18.54).

b. Decomposition of a projective variety under the action of a torus
(Białynicki-Birula)

Our goal is to study the decomposition of B under the action of various tori in G, but first
we obtain some general results.

When G acts on an affine algebraic scheme X , we let g 2 G.k/ act on f 2O.X/ by
gf D f ıg�1.

LUNA MAPS

19.6. Let �WGm�X !X be a linear action of Gm on a projective variety X (9.35), and
let x 2X.k/. Then either x is fixed by Gm, or its orbit Ox in X is a curve with exactly two
boundary points, namely, limt!0�x.t/ and limt!1�x.t/, and these are exactly the fixed
points of the action of Gm on Ox . This statement is an immediate consequence of (14.47).

19.7. Let X be an affine algebraic scheme over k equipped with an action of a torus T , and
let x 2X.k/T . Let mx �O.X/ be the maximal ideal at x. Because the representations of T
are semisimple (14.22), there exists a T -stable complement to m2x in mx , i.e., a k-subspace
W of mx , stable under T , mapping isomorphically onto mx=m

2
x . The inclusionW !O.X/

extends uniquely to a k-algebra homomorphism Symk.W /!O.X/, which defines a regular
map 'WX ! .TxX/a (cf. 14.76). The map ' is T -equivariant and sends x to 0; it is étale if
and only if x is smooth. A map

'WX ! .TxX/a

arising in this way is called a Luna map.

Let X be an algebraic scheme equipped with an action of Gm, and let x 2X.k/. If x is
fixed by Gm, then Gm acts on the tangent space TxX , which therefore decomposes into a
direct sum

TxX D
M
i2Z

Tx.X/i

of eigenspaces (so t 2 T .k/ acts on Tx.X/i as multiplication by t i ). We call i the weight of
.TxX/i . Let

TCx X D
M
i>0

.TxX/i (contracting subspace)

T �x X D
M
i<0

.TxX/i .
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Let mx denote the maximal ideal at x; then

Tx.X/D Hom.mx=m2x;k/,

and so the weights of Gm on Tx.X/ are the negatives of those on mx=m
2
x .

EXAMPLE 19.8. Let Gm act on X D An according to the rule

t .x1; : : : ;xn/D .t
m1x1; : : : ; t

mnxn/; mi > 0.

The only fixed point is o D .0; : : : ;0/. The maximal ideal at o in O.X/ D kŒT1; : : : ;Tn�
is m D .T1; : : : ;Tn/, and the weights of Gm acting on m=m2 are �m1, . . . , �mn. The
k-vector space W spanned by the symbols Ti is a Gm-stable complement to m2 in m, and
the corresponding Luna map X ! Sym.W / is the identity map An! An. Note that the
weights of Gm on To.X/ are m1; : : : ;mn.

PROPOSITION 19.9. Let X be a connected affine algebraic variety over k equipped with
an action of Gm, and let x 2 X.k/ be fixed by Gm. If the weights of Gm on TxX are
nonzero and all of the same sign, then every Luna map 'WX ! TxX is a closed immersion
(isomorphism if x is smooth), and x is the only fixed point of T in X.k/.

PROOF. After possibly composing the action with t 7! t�1, we may suppose that TxX D
T �x X . Let ADO.X/ and let mx � A be the maximal ideal at x. Then AD

L
i2ZAi and

mx D
L
i2Zmi where t 2Gm.k/ acts on Ai and mi as multiplication by t i . As A=mx D k,

we have Ai Dmi for all i ¤ 0. Let ' be the Luna map defined by a Gm-stable complement
W to m2 in m (19.7). As the weights of Gm on TxX are strictly negative, its weights on W
are strictly positive: W D

L
i>0Wi . The canonical map

Symj .W /!mjx=m
jC1
x

is surjective, and so .mjx=m
jC1
x /i D 0 for i � 0.

We now prove the proposition in the case that X is irreducible. In this case A is an
integral domain; hence it embeds into Amx , and the Krull intersection theorem (for Amx )
implies that

T
j�0m

j
x D 0. Therefore a nonzero element of mx of weight i gives a nonzero

element of weight i in m
j
x=m

jC1
x for some j . It follows that mi D 0 for i � 0. Now

A0 D k; Ai D 0 for i < 0, mx D
M
i>0

Ai ;

and so the graded Nakayama lemma (19.10 below) shows that the canonical map Symk.W /!
A is surjective, which means that the Luna map 'WX ! Symk.W / is a closed immersion.

Because the weights of Gm on TxX are strictly negative, limt!1 tzD 0 for all z 2 TxX
(14.46). It follows that limt!1 tz D x for all z 2X , and so x is the unique fixed point in X
(by 19.6). This completes the proof in the irreducible case.

Now assume only that X is connected. Because Gm is connected, every irreducible
component of X is stable under Gm. Let X1 be an irreducible component of X containing x.
Then x D limt!1 tz for all z 2X1 (see above). Let X 0 be a second irreducible component
of X . Then X1\X 0 is a nonempty closed subset of X1 stable under Gm. Let z 2X1\X 0;
then x D limt!1 tz 2 X1 \X

0. Therefore x lies in X 0, and in every other irreducible
component of X .

Let X1; : : : ;Xn be the irreducible components of X . Then Xi corresponds to a (minimal)
prime ideal pi �mx inA, and

T
i pi D 0 (becauseX is reduced). From the Krull intersection
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theorem applied to the rings A=pi , we find that
T
j�0m

j
x � pi for all i , and so

T
j�0m

j
x D 0.

Now the same argument as in the irreducible case applies.
Finally, if x is smooth, then it is irreducible and dim.X/D dimTx.X/, and so the closed

immersion X ,! .TxX/a is an isomorphism. 2

LEMMA 19.10 (NAKAYAMA’S LEMMA FOR A GRADED RING). Let A D
L
n�0An be a

graded commutative k-algebra with A0 D k. Let M def
D
L
n>0An be the irrelevant ideal,

and let E be a graded k-subspace of A such that MD E˚M2. Then the canonical map
Symk.E/! A is surjective.

PROOF. The image of Symk.E/!A is the k-subalgebra kŒE� generated by E. Let a 2An.
We prove by induction on n that an 2 kŒE�. Certainly this is true if nD 0, and so we may
suppose that a 2M. There exists an e 2 E such that a� e 2M2, and so we may suppose
that a 2M2. Write an D

P
i bici with bi and ci homogeneous elements of M. The equality

remains true when we omit any terms bici with deg.bi /Cdeg.ci /¤ n. For the remaining
terms, deg.bi / < n and deg.ci / < n, and so bi , ci 2 kŒE�. 2

BIAŁYNICKI-BIRULA DECOMPOSITION

LEMMA 19.11. Let .V;r/ be a finite-dimensional representation of a torus T . Then P.V /
admits a covering by T -stable open affine subsets.

PROOF. Let fe1; : : : ; eng be a basis of eigenvectors for the action of T on V , and let
fe_1 ; : : : ; e

_
n g be the dual basis. Then the sets D.e_i /

def
D fŒv� 2 P.V / j e_i .v/ ¤ 0g form

a covering with the require properties. 2

THEOREM 19.12. (Białynicki-Birula decomposition) Let .V;r/ be a finite-dimensional
representation of Gm, and let X be a smooth closed connected subvariety of P.V / stable
under Gm. For x 2XGm , let

X.x/D fy 2 jX j j lim
t!0

t �y D xg:

(a) The set X.x/ is locally closed in jX j, X.x/red � An.x/ with n.x/D dimTCx .X/, and

X D
G
x2XG

X.x/:

(b) If X.k/Gm is finite, then there is a unique fixed point x� (called the attracting point)
such that X.x�/ is open (and dense) in X , and a unique fixed point xC (called the
repelling point) such that X.xC/D fxCg.

EXAMPLE 19.13. Let Gm act on X D Pn according to the rule

t .x0W � � � Wxi W � � � Wxn/D .t
0x0W � � � W t

ixi W � � � W t
nxn/.

The fixed points are P0; : : : ;Pn with Pi D .0W � � � W0W
i

1W0W � � � W0/. On the open affine neigh-
bourhood

Ui D f.x0W � � � Wxi W � � � Wxn/ j xi ¤ 0g

of Pi , the action is

t .x0W � � � W1W � � � Wxn/D .t
�ix0W � � � W1W � � � W t

n�ixn/.
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It follows that
X.Pi /D f.0W � � � W0W1WxiC1W � � � Wxn/g ' An�i :

Certainly,
Pn DX.P0/t : : :tX.Pn/;

and P0 is the attracting point and Pn is the repelling point.

PROOF. (a) Let x 2 X.k/ be a fixed point of Gm. Let U D Spm.A/ be an open affine
containing x and invariant under Gm (19.11), and let mx �A be the maximal ideal at x. Let
'WU ! .TxX/a be the Luna map at x defined by a Gm-stable complement W to m2x in mx .
Let Y be the connected component of '�1.TCx X/ containing x; it is a closed Gm-stable
subset of U , which we regard as a subvariety of U :

U .TxX/a

Y .TCx X/a:

'

'jY

closed closed

We shall show that 'jY is a Luna map.
Write

W DW �˚W �0; W � D
M
i<0

Wi ; W �0 D
M
i�0

Wi :

By definition, Y is the zero-set in U of the subset W �0 of A. Hence

dimX �dimY � dimW �0

(A.41). As X is smooth, dimX D dimTx.X/D dimW , and so this implies that

dimY � dimW �dimW �0 D dimW �. (134)

The ring O.Y / is the quotient of A by the radical a of the ideal in A generated by the
elements of W �0, and so the cotangent space to Y at x is

Tx.Y /
_
D .mx=a/=.m

2
Ca=a/'mx=.m

2
xCW

�0/'W �. (135)

From (134) and (135) we find that dimY � dimTx.Y /, hence

dimY D dimTx.Y /D dimW �.

It follows that Y is smooth at x, that Tx.Y /D TCx .X/, and that 'jY is the Luna map defined
by W �. Hence 'jY is an isomorphism (19.9).

We next show that Y D X.x/. Let y 2 X.x/, so that limt!0 t �y D x. The orbit Oy
contains x in its closure, and so meets U . But U is Gm-invariant, and so Oy � U . On
applying ' to limt!0 t � y D x, we find that limt!0 t � '.y/ D 0, and so '.y/ 2 TCx X .
Hence y 2 Y . Conversely, let y 2 Y . Then '.y/ 2 TCx X , and so limt!0 t �'.y/D 0. Hence
y 2X.x/.

As X.x/ D Y , it is closed in U . Hence it is locally closed in X , and so X.x/red '

TCx .X/a.
Finally, let z 2 X . Then either z is fixed by Gm, or its orbit Oz in X is a curve with

exactly two boundary points limt!0 tz and limt!1 tz, and these are exactly the fixed points
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of Gm acting on Oz (see 19.6). Let x D limt!0 tz; then x is fixed by Gm and z 2 X.x/.
This completes the proof of (a).

(b) Assume that X.k/Gm is finite, so there are only finitely many sets X.x/. Each set
X.x/ is open in its closure, and so there is unique point x� such that X.x�/ is dense in X .
Note that, for x 2X ,

X.x/ is dense in X ” X.x/ is open in X

” Tx.X/D T
C
x .X/

” dim.X.x//D dim.X/:

By considering the reciprocal action (i.e., composing with t 7! t�1), we see that there is
a unique point xC such that TxC.X/D T

�
x .X/. Note that, for x 2X ,

Tx.X/D T
�
x .X/ ” dim.X.xC//D 0 ” X.xC/D fxCg: 2

Let .V;r/ be a finite-dimensional representation of a torus T . Let X be a closed
irreducible subvariety of P.V / stable under T . Recall (21.19) that there exists a cocharacter
�WGm! T such that P.V /Gm D P.V /T . On applying (19.12) to the action of �.Gm/ on X ,
we obtain a decomposition

X D
G
x2XT

X.x;�/; X.x;�/D fy 2X j lim
t!0

�.t/y D xg;

where X.x;�/ is an affine space, isomorphic to the contracting subspace of �.Gm/ on the
tangent space TxX . If XT is finite, then there exists a unique attracting fixed point x� and a
unique repelling point xC.

LEMMA 19.14. For every x 2XT , the set

U.x/D fy 2X j x 2 T �yg

is an open affine in X .

PROOF. Let � be as in (21.19), so P.V /�.Gm/ D P.V /T . On applying (19.12), we see
that there exists a unique point x� 2 XT such that X.x�;�/ is open in X ; moreover,
Tx�.X/D T

C
x .X/. We shall show that U.x�/DX.x�;�/:

If limt!0�.t/y D x�, then x� 2 T �y, and so X.x�;�/ � U.x�/. Conversely, let
y 2 U.x�/:The intersection X.x�;�/\T �y is then a nonempty open subset of T �y. We
deduce that X.x�;�/\ Ty ¤ ;. As �.Gm/ commutes with T , the action of T leaves
X.x�;�/ stable, and so Ty �X.x�;�/. Therefore y 2X.x�;�/. 2

Recall (9.37) that a closed immersion X ,! P.V / is nondegenerate if X is not contained
in P.W / for any subrepresentation W of V .

PROPOSITION 19.15. Let .V;r/ be a finite-dimensional representation of a torus T , and let
X be a closed irreducible subvariety of P.V / stable under T . Assume that the embedding
X ! P.V / is nondegenerate and that X.k/T is finite. Let � be the set of characters of T
occurring in V . Let � be a cocharacter of T such the the integers h�;�i, � 2� , are distinct.

(a) Let �� 2 � be such that h��;�i is minimum. Then V�� has dimension 1, and the
line V�� belongs to X . It is the unique attracting point of �.Gm/ in X .
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(b) Let �C 2� be such that h�C;�i is maximum. Then V�C has dimension 1, and the
line V�C belongs to X . It is the unique repelling point of �.Gm/ in X .

PROOF. (a) Since the projective embedding X ! P.V / is nondegenerate, there exists a line
Œv� 2X with v D

P
�2� v�, v� 2 V�, v�� ¤ 0. Then

lim
t!0

Œ�.t/v�D Œv�� �I

in particular, x� D Œv�� � is a fixed point of X . The action of �.Gm/ on the tangent space
Tx�.P.V // has no dilating vectors. We deduce that x� is an attracting fixed point of X
because we know that X has only isolated fixed points. Moreover, as X is irreducible, it is
the unique attracting fixed point in X . We deduce that, if Œv0�, v D

P
v0�, lies in X , then

v0� 2 Œv��. Again, becauseX! P.V / is nondegenerate, dim.V��/D 2. We have also shown
that the line V�� belongs to X , and that it is the unique attracting fixed point of �.Gm/ in X .

(b) Apply (a) to ��. 2

c. Chevalley’s theorem on the Borel subgroups containing a
maximal torus

Let G be a connected group variety. Recall (18.34) that

R.G/D
�\

B�G Borel
B
�ı

red
.

The following is a more precise statement.

THEOREM 19.16. (Chevalley’s theorem). Let G be a connected group variety, and let T be
a maximal torus in G. Then

Ru.G/ �T D
�\

B�T Borel
B
�ı

red

Ru.G/D
�\

B�T Borel
Bu

�ı
red

.

In other words, jRu.G/ �T j is the identity component of
T
B�T Borel jBj, and jRu.G/j

is the identity component of
T
B�T Borel jRu.B/j.

Before proving the theorem, we list some consequences.

COROLLARY 19.17. Let S be a subtorus of a connected group variety G. Then

Ru.CG.S//DRu.G/\CG.S/:

In particular, CG.S/ is reductive if G is reductive.

PROOF. Let S act on G by conjugation. Then CG.S/D GS , and so Ru.G/\CG.S/D
Ru.G/

S . This shows that Ru.G/\CG.S/ is smooth and connected (16.21, 18.41). As it is
unipotent (15.7) and normal in CG.S/, it is contained in Ru.CG.S//.

For the reverse inclusion, it suffices to prove that Ru.CG.S// � Ru.G/. Let T be a
maximal torus containing S . For any Borel subgroup B of G containing T , B \CG.S/ is a
Borel subgroup of CG.S/ (18.51), and so B �Ru.CG.S//. Therefore

Ru.CG.S//�
�\

B2BT
B
�ı

red

19.16
D Ru.G/ �T;

and so
Ru.CG.S//� .Ru.G/ �T /u DRu.G/: 2
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COROLLARY 19.18. Let S be a torus acting on a connected group variety G. Then

Ru.G
S /DRu.G/

S :

PROOF. Let G0 DGÌS . Then CG0.S/DGS and Ru.G0/DRu.G/, and so

Ru.G
S /DRu.CG0.S//

19.17
D Ru.G

0/\CG0.S/DRu.G/
S : 2

COROLLARY 19.19. LetG be a reductive group over a field k (not necessarily algebraically
closed).

(a) If T is a maximal torus, then CG.T /D T .

(b) We have Z.G/�
T
T maximalT ; if k is algebraically closed, then

Z.G/red D

 \
T maximal

T

!
red

:

(c) If S is a torus in G, then CG.S/ is reductive and connected.

PROOF. (a) The torus T remains maximal over kal (19.19), and so we may suppose that k
is algebraically closed. Every Borel subgroup containing T contains CG.T / (18.45), and
CG.T / is smooth and connected (16.21, 18.41), and so

CG.T /�
�\

B2BT
B
�ı

red

19.16
D Ru.G/ �T D T:

(b) Certainly, Z.G/ �
T
T maximalCG.T /D

T
T maximalT . Conversely, if g lies in the

intersection of all maximal tori, then it commutes with all elements of all Cartan subgroups,
but these elements contain a dense open subset of G (18.48), and so g 2Z.G/.k/.

(c) The algebraic group CG.S/ is smooth and connected (16.21, 18.41), and

Ru.CG.S/kal/
19.17
D Ru.Gkal/\CGkal .Skal/D e:

2

Recall that for an algebraic group D DD.M/ of multiplicative type, the greatest torus
in D is Dt DD.M=Mtors/.

COROLLARY 19.20. LetG be a reductive group over a field k (not necessarily algebraically
closed).

(a) The centre Z.G/ of G is of multiplicative type.

(b) R.G/DZ.G/t .

(c) The formation of R.G/ commutes with extension of the base field.

(d) The quotient G=R.G/ is semisimple.

PROOF. (a) Let T be a maximal torus in G; then Z.G/� CG.T /D T , and so Z.G/ is of
multiplicative type.

(b) The subgroup variety Z.G/t is normal in G (1.63). It is also connected and com-
mutative (by definition), and so Z.G/t � R.G/. Conversely, R.G/kal � R.Gkal/, which
is a torus because Ru.Gkal/D e. Therefore R.G/ is a torus. Rigidity (14.29) implies that
the action of G on R.G/ by inner automorphisms is trivial, and so R.G/�Z.G/. Hence
RG �Z.G/t :
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(c) The formation of the centre, and the greatest subtorus, commute with extension of
the base field, and so this follows from (b).

(d) We have

.G=R.G//kal 'Gkal=R.G/kal
(c)
'Gkal=R.Gkal/;

which is semisimple (8.39). By definition, this means that G=R.G/ is semisimple. 2

COROLLARY 19.21. Let G be a reductive group over an infinite field k. Then G is unira-
tional, and so G.k/ is dense in G.

PROOF. Let T be a maximal torus in G. Then CG.T /D T , which is unirational (14.41),
and so the statement follows from (18.72). 2

COROLLARY 19.22. Let G be a connected group variety over a perfect infinite field. Then
G is unirational, and so G.k/ is dense in G.

PROOF. Study the exact sequence

e!RuG!G!G=RuG! e

using that G=RuG is reductive (because k is perfect). 2

ASIDE 19.23. Let S be a torus in a reductive group G. The classical proof (e.g., Borel 1991, 13.17)
of (19.19c) only shows that CG.S/red is reductive. However, together with (16.21), this proves that
CG.S/ itself is reductive.

ASIDE 19.24. Let G be a connected group variety. The formation of Ru.G/ does not commute
with inseparable extensions of the base field. See Example 8.43.

d. Proof of Chevalley’s theorem (Luna)

THEOREM 19.25 (KOSTANT-ROSENLICHT). Let G be a unipotent algebraic group acting
on an affine algebraic variety X . Then every orbit in X is closed.

PROOF. Let O be an orbit of G in X . After replacing X with the closure of O , we may
suppose that O is dense in X . Let Z D X XO . As Z ¤ X , the ideal I.Z/ in O.X/ is
nonzero. Because Z is stable under G, the ideal I.Z/ is stable under G, and because G is
unipotent, there exists a nonzero f 2 I.Z/G (15.2). Because f is fixed by G, it is constant
on O , and hence also on X . Hence I.Z/ contains a nonzero scalar, and so Z is empty. 2

For example, the orbits of U2 acting on k2 are the horizontal lines, which are closed.

THEOREM 19.26 (LUNA). Let G be a connected group variety, and let T be a maximal
torus in G. For all Borel subgroups B of G containing T ,

B.B/ def
D fB 0 2 B j B 2 T �B 0g

is an open affine subset of B, and it is stable under Iu.T /.
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PROOF. Let r WG ! GLV be such that B is the stabilizer of a line Œv� and such that the
projective embedding G=B! P.V / is nondegenerate. Let X denote the image of B in P.V /
— it is a closed irreducible subvariety of P.V / stable under G. A Borel subgroup B of G
corresponds to a point x 2X fixed by T , and B.B/ corresponds to the set

Ux
def
D fy 2X j x 2 T �yg:

Thus, we have to show that Ux is an open affine subset of X stable under I def
D Iu.T /.

That Ux is an open affine subset of X is proved in (19.14).
Let V D

L
�2� V� be the decomposition of V into eigenspaces for the action of T , and

let �WGm! T be a cocharacter of T such that the integers h�;�i, � 2� , are distinct.
Let �� 2� be such that h�;��i is minimal. Then V�� has dimension 1 and V� is the

unique attracting point x� of X . We have seen (19.15) that the Ux� is the open cell Xx�.�/.
It is the set of Œv� 2X such that v D

P
v� with V�� ¤ 0.

Let r_WG ! GL.V _/ be the contragredient of r . Let V ?� be the hyperplane in V _

orthogonal to v� 2 V . If there exists a vector v_ such that the orbit Gv_ is entirely
contained in this hyperplane, then hgv�;v_i D 0 for all g, which implies that v_ D 0
because the vectors gv� generated V . It follows that every orbit GŒv_� in P.V _/ meets the
affine complement P.V _/XV ?� . But the action of ��1.z/, z 2 Gm, contracts this affine
space to Œv_��, which shows that the orbit GŒv_�� is closed. Let P denote the stabilizer of
v_�. It is a parabolic subgroup of G containing T . It contains a Borel subgroup B such that
T � B � P . Therefore I � P . Therefore, it fixes the line Œv_� and dually it leaves invariant
the open Xx�.�/.

For another fixed point x of XT , there exists an n 2 N.T / such that n.x�/ D x. It
suffices to replace � with n.�/. 2

PROOF OF CHEVALLEY’S THEOREM 19.16

It suffices to show that Iu.T / acts trivially on B, i.e., that B D BIu.T /, because then Iu.T /
is contained in all Borel subgroups of G, and so

Iu.T /�
�\

B�G Borel
B
�ı

red

18.34
D R.G/I

as Iu.T / is unipotent, this implies that

Iu.T /�R.G/u DRu.G/:

We now show that Iu.T / acts trivially on B. Any nonempty closed orbit of T acting on
B is complete, and so contains a fixed point (18.5), and so the orbit itself is a fixed point.

Note that the (open affine) varieties B.B/, B 2 BT , cover B . Indeed, for any B 0 2 B,
the closure of its T -orbit T �B 0 contains a closed T -orbit and hence T -fixed point; i.e., there
exists a B 2 BT such that B 2 T �B 0. This means that B 0 2 B.B/.

Let B 0 2 B; we have to show that the orbit Iu.T / �B 0 consists of a single point. Because
Iu.T / is solvable and connected, there is a Iu.T /-fixed point B 00 in Iu.T / �B 0 (18.5). This
point is contained in some B.B/ for B 2 BT . The set BXB.B/ is closed and Iu.T /-stable
and so, if it meets the orbit Iu.T / �B 0, then it has to contain Iu.T / �B 0 and hence also B 00,
which is a contradiction. Thus Iu.T / �B 0 is contained in B.B/. As Iu.T / is unipotent and
B.B/ is affine, the Kostant-Rosenlicht theorem shows that Iu.T / �B 0 is closed in B.B/. But
B 00 lies in the closure of Iu.T / �B 0 and in B.B/, and so B 00 lies in the Iu.T / �B 0. As it was
a fixed point, the orbit Iu.T / �B 0 is trivial.
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e. Proof of Chevalley’s theorem (following SHS)

This is a free translation of part of SHS, Exposé 16, La Grosse Cellule. It will be omitted in
favour of Luna’s proof. Recall that k is algebraically closed.

COMPLEMENTS ON CONNECTED UNIPOTENT ALGEBRAIC GROUPS

LEMMA 19.27. Let U be a connected unipotent group variety, and let V be a proper
connected subgroup variety. Then

jV j ¤
ˇ̌
NG.V /

ı
ˇ̌
:

In particular, if V is of codimension 1 in U , then it is normal in U , and U=V is isomorphic
to Ga.

PROOF. We argue by induction on dim.U /. The statement being trivial if dim.U /D 1, we
may suppose that dim.U / > 1. Then U contains a subgroup Z in its centre isomorphic to
Ga (15.23). If Z � V , we apply the induction hypothesis to V=Z � U=Z. Otherwise, VZ
is a connected subgroup variety of U normalizing V and properly containing it. 2

LEMMA 19.28. Let U be a connected unipotent group variety, and let V be a connected
subgroup variety of U . Let T be a torus acting on U and normalizing V . Suppose that for
exactly one subtorus S of T of codimension 1, V S has codimension 1 in U S , and for every
other such subtorus S 0, U S

0

� V . Then V has codimension 1 in U .

PROOF. Let
uD

M
m2X�.T /

um and vD
M

m2X�.T /

vm

and be the decompositions of the Lie algebras of U and V with respect to the action of T .
For m 2X�.T /, let

Qm D .Kerm/ıredI

it is a subtorus of T of codimension 0 or 1. One sees immediately that

Lie.UQm/D uQm D
M

n2mQ
un,

and similarly for v. The hypothesis implies immediately that v has codimension 1 in u, and
therefore V has codimension 1 in U . 2

PROPOSITION 19.29. Let U be a connected unipotent algebraic group with an action by a
torus T . All algebraic subgroups of U containing U T and stable under T are connected.

PROOF. Let V be such a subgroup of U . As T is smooth, it acts on Ured and Vred; as .Ured/
T

is smooth (16.21),
Ured � Vred � .Ured/

T .

Therefore , we may suppose that U is smooth. We argue by induction on the dimension of
U . We may suppose that dimU > 0. Let H be a central subgroup of U , normalized by T ,
and isomorphic to Ga. As H 1.T;H/D 0 (16.3), the canonical morphism U T ! .U=H/T

is faithfully flat, and the induction hypothesis applied to U=H shows that V=H \ V is
connected. It remains to prove that H \ V is connected. But T acts on H through a
character �. If � D 1, then H � U T � V , and so H \V D H is connected. If � ¤ 1,
H \V is isomorphic to a subgroup of Ga stable by homotheties, and is therefore Ga or p̨n ,
which are connected. 2
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COROLLARY 19.30. LetQ be a subgroup of a torus T acting on a connected trigonalizable
group G; then GQ is connected.

PROOF. The unipotent part Gu of G is stable under all automorphisms of G (17.7). Conse-
quently, the normalizer of Gu in T contains T .k/, and therefore coincides with T . Hence
Gu is normal in the semidirect product H D G ÌT . The quotient H=Gu is an extension
of a connected diagonalizable group by a diagonalizable group (I hope), and therefore is
diagonalizable (14.27). This shows that H is trigonalizable. Let S be a maximal diago-
nalizable subgroup of H containing T . We have Hu DGu, and therefore H DGu �S and
HQ D .Gu/

Q �S DGQ �T . As S is connected, it suffices to prove that .Gu/Q is connected,
and so we may suppose that G is unipotent. But then GQ is a subgroup of G stable by T
and containing GT , and so we can apply (19.29).

PROPOSITION 19.31. Let U be a connected unipotent group variety, and let T be a torus
acting on U . Then U.k/ is generated by the subgroups UQ.k/ where Q runs over the set of
subtori of T of codimension 1.

PROOF. Arguing as usual by induction on the dimension of U , we consider a central
subgroup H of U , stable under T , and isomorphic to Ga. For any subtorus Q of T , we have
an exact sequence

1!HQ.k/! UQ.k/! .U=H/Q.k/! 1

(16.3). It follows immediately that U.k/ is generated by the UQ.k/ and H.k/. But T acts
on H through a character �. If Q0 is a subtorus of codimension 1 of T in the kernel of �,
then UQ

0

.k/�H.k/, and therefore U.k/ is certainly generated by the UQ.k/. 2

INTERSECTION OF THE BOREL GROUPS CONTAINING A MAXIMAL TORUS

In this subsection, G denotes a connected group variety and T is a maximal torus in G.

LEMMA 19.32. The groupG.k/ is generated by T .k/ and the subgroups .Bu\CG.Q//.k/,
where B runs over the set of Borel subgroups of G containing T and Q runs over the set of
subtori of T of codimension 1.

PROOF. In virtue of (19.31), it suffices to prove the G.k/ is generated by the B.k/. In virtue
of (1.31), there exists a smooth connected subgroup H of G such that H.k/ is the subgroup
ofG.k/ generated by theB.k/. AsH contains a Borel subgroup ofB , it is its own normalizer
(18.54); as NG.T / obviously normalizes H , it follows that NG.T /�H ; on the other hand,
if G ¤H , G=H is a complete connected scheme over k of dimension > 0. In virtue of
(21.20), .G=H/.k/ contains at least two points fixed by T . Therefore, let x 2G.k/ be such
that the image of x�1 in .G=H/.k/ is fixed by T ; we have inn.x/T �H , and so there exists
an h 2H.k/ such that inn.x/T D inn.h/T , and therefore x�1h 2NG.T /.k/�H.k/; then
x 2H.k/, and the image of x�1 in .G=H/.k/ is the marked point; .G=H/T .k/ is therefore
a single point, and so G DH . 2

LEMMA 19.33. Let B be a Borel subgroup of G containing T , and let Q and S be singular
subtori of codimension 1 in T . If Q ¤ S , there exists a Borel subgroup B 0 containing T
such that B 0S D BS and B 0Q ¤ BQ.
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PROOF. Let ˛ (resp. ˇ) be the root of G relative to T attached to B and Q (resp. B and
S). Let  be a regular cocharacter of T such that h;˛i< 0 and h;ˇi > 0. We know that
there exists an open subset U of G=B and a point b0 2 U.k/ such that, for all x 2 U.k/,
.1/x D b0. We shall show that the stabilizer B 0 of b0 is the required Borel subgroup. It is
certainly a Borel subgroup of G containing T , and the statement follows from SHS, Exp15
(Reductive groups of semisimple rank 1). 2

LEMMA 19.34. Let B be a Borel subgroup containing T , and let S be a singular subtorus
of T of codimension 1 (so BS is a Borel subgroup of CG.S/, after SHS, Exp14, Singular
Tori). For each subgroup H of B , write I.H/ for the reduced intersection of the Borel
subgroups of G containing H . Then I.T / is a normal subgroup of I.BS /, and the quotient
is isomorphic to Ga.

PROOF. Let I.T /D T �I.T /u and I.BS /D T �I.BS /u. It suffices to show that V D I.T /u
is a normal subgroup of codimension 1 in U . On the other hand, because U and V contain
CB.T /D B

T , they are connected (19.29). We check that the hypotheses of (19.28) hold.
Therefore, let Q be a subtorus of T of codimension 1 distinct from S . If Q is regular, C.Q/
is contained in all Borel subgroups containing T (Exp. 14), therefore in I.T /, and V Q � U .
IfQ is singular, there exists a Borel subgroup B 0 ofG containing T and such that B

0S DBS

and B 0Q ¤ BQ (19.28). We therefore have

UQ � B \B 0\C.Q/D BQ\BQ
0

:

But as BQ and B 0Q are distinct Borel subgroups of C.Q/ containing T , we know that
BQ\B 0Q is the intersection of C.Q/with the intersection of all Borel subgroups containing
T . We therefore have UQ � V . It remains to calculate U S and V S . But .T �U/S D T �U S

is a connected trigonalizable subgroup of C.S/ containing BS , and so U S D .BS /u; on the
other hand, U S 6� V S , because there exist Borel subgroups of G containing T cutting C.S/,
for example, the opposite Borel subgroup to BS . Finally, Ru.C.S//, which is contained in
all Borel subgroups of C.S/, is contained in V S and is of codimension 1 in .BS /u (Exp. 15).
It follows that V S has codimension 1 in U S . The hypotheses of (19.28) are now satisfied,
and therefore V is a normal subgroup of codimension 1 in U and V=U �Ga. 2

PROPOSITION 19.35. The reduced intersection of the Borel subgroups containing T is
T �Ru.G/.

PROOF. With the notation of (19.34), we have to show that Vred is the unipotent radical of G.
As obviously Ru.G/� Vred, and as Vred is connected, smooth, and unipotent, it suffices to
show thatG.k/ normalizes Vred. After (19.32), it suffices to prove that for all Borel groups B
containing T and all subtori Q of T of codimension 1, .BQ/u normalizes Vred, or that BQ

normalizes V . If Q is regular, C.Q/ is contained in all Borel subgroups of G containing T ,
and therefore in V , and BQ normalizes V . If Q is singular, Lemma 19.34 shows that BQ

normalizes V (because BQ � I.BQ/, and I.BQ/ normalizes V ). 2

f. Summary

Let G be a group variety over an algebraically closed field k. A Borel subgroup G is a
maximal connected solvable subgroup variety of G. For example, the group of invertible
upper-triangular matrices is a Borel subgroup in GLn. Borel (1956) was the first to carry out
a systematic study of such subgroups.
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Borel subgroups are characterized by being minimal among the parabolic subgroups of
G (those subgroups such that G=H is projective). All Borel subgroups of G are conjugate
and if G and its Borel subgroups B1, B2 are defined over a subfield k0 of k, then B1 and B2
are conjugate by an element of G.k0/.

The intersection of any two Borel subgroups of a group G contains a maximal torus
of G; if the intersection equals the maximal torus, then the Borel subgroups are said to be
opposite. Opposite Borel subgroups exist in G if and only if G is a reductive group.

If G is connected, then it is the union of all its Borel subgroups, and every parabolic
subgroup coincides with its normalizer in G. In this case a Borel subgroup is maximal
among all (and not only algebraic and connected) solvable subgroups of G.k/. Nevertheless,
maximal solvable subgroups in G.k/ that are not Borel subgroups usually exist.

The commutator subgroup of a Borel subgroup B is equal to its unipotent part Bu, and
the normalizer of Bu in G equals B .

When k has characteristic 0, the subalgebra b in the Lie algebra g of G defined by a
Borel subgroup B of G is often referred to as a Borel subalgebra in g. The Borel subalgebras
in g are its maximal solvable subalgebras.

When G is a group variety over an arbitrary field k, the minimal parabolic subgroups
in G play a role in the theory of algebraic groups over k similar to that of the Borel groups
when k is algebraically closed. For example, two such parabolic subgroups are conjugate by
an element of G.k/ (Borel and Tits 1965).

(Adapted from the entry for “Borel subgroup” in the Encyclopedia of Mathematics; V.
Platonov)





CHAPTER 20
The geometry of reductive algebraic

groups

In this chapter, following Iversen 1976, we study the geometry of algebraic groups, especially
reductive algebraic groups. The proofs assume more algebraic geometry than usual, but most
statements will be given more conventional proofs later, and so the proofs can be skipped.

a. Definitions

Let G0 and G be connected group varieties. Recall (2.17, 8.4) that an isogeny 'WG0! G

is a surjective homomorphism with finite kernel. If the order of the kernel is prime to
the characteristic, then Ker.'/ is étale (13.7), hence of multiplicative type, and hence
contained in the centre of G0 (rigidity 14.30). In nonzero characteristic, there exist isogenies
with noncentral kernel, for example, the Frobenius map (2.16). The isogenies in nonzero
characteristic that behave as the isogenies in characteristic zero are those whose kernel is of
multiplicative type.

DEFINITION 20.1. A multiplicative (resp. central) isogeny1 'WG0!G is surjective homo-
morphism of connected group varieties whose kernel is finite of multiplicative type (resp.
finite and contained in the centre of G).

If ' is multiplicative, then it is central (rigidity 14.30). Conversely, if G0 is reductive
and ' is central, then it is multiplicative (because the centre of a reductive group is of
multiplicative type 19.20).

PROPOSITION 20.2. A composite of multiplicative isogenies is a multiplicative isogeny.

PROOF. Let '1 and '2 be composable multiplicative isogenies. Then

e! Ker.'1/! Ker.'2 ı'1/
'1
�! Ker.'2/! e

is exact (Exercise 6-5), and Ker.'2 ı'1/ is central (14.32), hence of multiplicative type
(14.27). 2

1Iversen (1976) defines a central isogeny to be an isogeny whose kernel is of multiplicative type. I find this
confusing, and so changed the terminology.

349
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b. The universal covering

DEFINITION 20.3. A connected group varietyG is simply connected if every multiplicative
isogeny G0!G of connected group varieties is an isomorphism.

For semisimple groups, this agrees with the usual terminology.2

REMARK 20.4. Let be G a connected group variety, and let 'WG0 ! G be a surjective
homomorphism with finite kernel of multiplicative type (G0 not necessarily smooth or
connected). Assume that k is perfect and that G is simply connected. Then .G0/ıred is

a connected group variety, and .G0/ıred
'
�! G is a multiplicative isogeny, and hence an

isomorphism. Therefore ' induces an isomorphism .G0/
ı
red!G, and soG0'Ker.'/ÌGD

Ker.'/�G (2.21).

DEFINITION 20.5. A multiplicative isogeny QG!G of connected group varieties is called
a universal covering of G when QG is simply connected. Its kernel is denoted �1.G/, and is
called the fundamental group of G. If G is semisimple, then QG is also semisimple. In this
case QG!G is sometimes called a simply connected central cover of G.

Later (20.21) we shall see that a universal covering exists if Hom.G;Gm/D 0. Here we
prove that, if it exists, it is unique up to a unique isomorphism.

PROPOSITION 20.6. Let G be connected group variety over a perfect field k, and let
� W QG ! G be a universal covering of G. For every multiplicative isogeny 'WG0 ! G

of connected group varieties, there exists a unique homomorphism QG ! G making the
following diagram commute

QG

G0 G:

�

'

In particular, � W QG!G is uniquely determined up to a unique isomorphism.

PROOF. The map G0�G QG! QG is surjective with finite kernel of multiplicative type. Its
restriction

�
G0�G QG

�ı
red!

QG is a multiplicative isogeny, and hence is an isomorphism. The
composite of the inverse of this map with the homomorphism

�
G0�G QG

�ı
red!G0

If ˇW QG! G0 is a second homomorphism such that ' ıˇ D � , then g 7! ˛.g/=ˇ.g/

maps QG to Ker.'/, and is therefore trivial (because QG is connected and smooth). Hence
˛ D ˇ. 2

ASIDE 20.7. We shall see later that a split semisimple groups .G;T / is simply connected if and
only if the coroots generate X�.T /.

ASIDE 20.8. Let g be a Lie semisimple Lie algebra over a field k of characteristic zero. The group
attached by Tannakian theory (Chapter 11) to the tensor category Rep.g/ is the universal covering
of G. This observation makes it possible to deduce the theory of reductive algebraic groups in
characteristic zero from the similar theory for reductive Lie algebras. See my notes Lie Algebras,
Algebraic Groups, and Lie Groups.

2For example, Conrad et al. 2010, p.419, say that a connected semisimple group is simply connected if
every central isogeny G0!G with G0 a connected semisimple group is an isomorphism.
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c. Line bundles and characters

In this section, following Iversen 1976, we assume that k is algebraically closed. Let
X.G/D Hom.G;Gm/.

20.9. We assume (for the moment) that the reader is familiar with the notion of a vector
bundle (for the Zariski topology or, equivalently, for the flat topology). Let G be an algebraic
group acting on a variety X over k. Then there is a notion of a G-vector bundle on X (ibid.
p.59, where it called a G-homogeneous vector bundle on X ).

20.10. Let V be a vector space over k. The projective space P.V / has a universal line
bundle Luniv on P.V / (ibid. 1.2).

20.11. Let .V;r/ be a representation of G. Then G acts on Luniv if and only if r factors
through PGLV . More precisely, given f WG ! PGLV , the actions of G on Luniv are in
one-to-one correspondence with the liftings of f to GLV (ibid. 1.3).

Now let G be a connected group variety and let B be a Borel subgroup of G. Let � be a
character of B , and let B act on G�A1 according to the rule

.g;x/b D .gb;�.b�1/x/; g 2G; x 2 A1; b 2 B:

This is a B-line bundle on G, and we let L.�/ denote the corresponding vector bundle on
G=B .3

PROPOSITION 20.12. The map � 7! L.�/ gives a bijection from X.B/ to the set of iso-
morphism classes of B-line bundles on G=B .

PROOF. Let L be a B-line bundle on G=B . Then p.e/ def
D eB is a fixed point for the action

of B on G=B , and so B acts on the fibre of L at p.e/. This action gives a character �L of
B , which depends only on the isomorphism class of L. The map L 7! �L gives an inverse
to the map sending � to the isomorphism class of L.�/. 2

Let T be a maximal torus of G contained in B . Every character of T extends uniquely
to a character of B (17.31), and so we get a linear map

� 7! L.�/WX.T /! Pic.G=B/:

This is called the characteristic map for G.
The basic fact we need is the following.

THEOREM 20.13. Let G be connected group variety, and let .B;T / be a Borel pair in G.
Then the following sequence is exact:

0!X.G/!X.T /! Pic.G=B/! Pic.G/! 0: (136)

The proof, being mainly algebraically geometry, is deferred (at least) to the end of the
chapter.

3The proof that L.�/ is locally trivial for the Zariski topology uses that pWG!G=B has a section locally
for the Zariski topology (cf. 22.78). Alternatively, use that G!G=B has a section locally for the flat topology
(because it is faithfully flat), and then use that a vector bundle is locally trivial for the Zariski topology if it is for
the flat topology.
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EXAMPLE 20.14. Let T be the diagonal maximal torus in G D SL2, and let B be the
standard (upper triangular) Borel subgroup. Consider the natural action of G on A2. Then
G acts on P1 and B is the stabilizer of the point .0 W 1/. The canonical line bundle Luniv on
SL2 =B ' P1 is equipped with an SL2-action, and B acts on the fibre over .0 W 1/ through
the character �

z x

0 z�1

�
7! z�1:

In this case the characteristic map

X.T /! Pic.SL2 =B/

is an isomorphism. Therefore, X.SL2/ D 0 D Pic.SL2/. (See (21.49) and the proof of
(21.53) for direct proofs that X.SL2/D 0 and Pic.SL2/D 0.)

LEMMA 20.15. Let G!Q be a surjective homomorphism of connected group varieties.
The inverse image of a Borel pair in Q is a Borel pair in G.

PROOF. See (18.24). 2

PROPOSITION 20.16. Let 'WG0!G be a surjective homomorphism of connected group
varieties whose kernel is of multiplicative type. Then there is an exact sequence

0!X.G/!X.G0/!X.Ker.'//! Pic.G/! Pic.G0/! 0: (137)

PROOF. Let .B;T / be a Borel pair in G, and let .B 0;T 0/ be its inverse image in G0 (so
G=B 'G0=B 0). The columns in the following commutative diagram are the exact sequences
(136) for .G;B/ and .G0;B 0/:

0 0

X.G/ X.G0/

0 X.T / X.T 0/ X.Ker'/ 0

0 Pic.G=B/ Pic.G0=B 0/ 0 0

Pic.G/ Pic.G0/

0 0

'

Now the snake lemma gives the required exact sequence. 2

PROPOSITION 20.17. Let G be a connected group variety. If X.G/D 0 and Pic.G/D 0,
then G is simply connected.
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PROOF. Let 'WG0! G be a multiplicative isogeny of connected group varieties. In the
exact sequence (137)

X.G/!X.G0/!X.Ker'/! Pic.G/;

the groups X.G/ and Pic.G/ are zero, the group X.Ker'/ is finite, and the group X.G0/ is
torsion free (because G0 is smooth and connected). Therefore X.Ker'/D 0, which implies
that Ker.'/D e. 2

EXAMPLE 20.18. The algebraic group SL2 is simply connected because X.SL2/D 0D
Pic.SL2/ (see 20.14).

d. Existence of a universal covering

The existence of a universal covering QG!G for a semisimple group G is usually deduced
from the classification theorems (including the existence and isogeny theorems) for reductive
groups, see, for example, Conrad et al. 2010 A.4.11. But the proof of such a basic fact,
shouldn’t require knowing the whole theory. In the rest of this section we sketch the proof in
Iversen 1976. Throughout k is algebraically closed.

LEMMA 20.19. Let G be a connected group variety, and let B be a Borel subgroup of G.
The group Pic.G=B/ is finitely generated, and its generators can be chosen to be line bundles
L with � .G=B;L/¤ 0.

PROOF. This follows from the fact that G=B is a rational variety (Bruhat decomposition; cf.
22.78). 2

PROPOSITION 20.20. LetG be a connected group variety. Then there exists a multiplicative
isogeny QG!G with QG a connected group variety such that Pic. QG/D 0.

PROOF. Let B be a Borel subgroup of G. Note that, because of (20.16, 20.17), it suffices
to prove that there exists a multiplicative isogeny 'WG0!G such that the map Pic.G/!
Pic.G0/ is zero. After (20.19, 20.12, 20.13), it suffices to prove the following statement:

Let L be a line bundle on G=B with � .G=B;L/ ¤ 0; then there exists a
multiplicative isogeny 'WG0!G such that the pull back of L to G0='�1.B/ is
a '�1.B/-line bundle.

Let B 0 D '�1.B/, so that G0=B 0 ' G=B . Let V D � .G=B;L/. We have canonical
maps sWG! PGL.V / and t WG=B! P.V / such that t�Luniv D L. Let 'WG0! G denote
the pull back of the multiplicative isogeny SLV ! PGLV along s. Because Luniv is a
SLV -vector bundle, its pull back to G0=B 0 is a G0-vector bundle (hence also a B 0-vector
bundle). 2

COROLLARY 20.21. Every connected group variety G such that X.G/D 0 admits a uni-
versal covering.

PROOF. Let 'W QG ! G be as in (20.20). Because QG is smooth and connected, X. QG/ is
torsion free. Now the exact sequence (137) shows that

X. QG/D 0D Pic. QG/

and so QG is simply connected (20.17). 2
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COROLLARY 20.22. Let G be a connected group variety. Then Pic.G/ is finite.

PROOF. Let 'W QG!G be as in (20.20). Then the exact sequence (20.16),

X.Ker.'//! Pic.G/! Pic. QG/D 0

shows that Pic.G/ is finite. 2

COROLLARY 20.23. Let G be a connected group variety. If G is simply connected, then
Pic.G/D 0.

PROOF. If G is simply connected, then the multiplicative isogeny in (20.20) is an isomor-
phism, and so Pic.G/' Pic. QG/D 0. 2

COROLLARY 20.24. Let G be a connected group variety such that X.G/D 0. Then

Pic.G/'X.�1G/:

PROOF. For the universal covering QG!G, the exact sequence (137) becomes

0!X.�1G/! Pic.G/! 0: 2

e. Applications

The base field k is arbitrary.

PROPOSITION 20.25. Let
e!D!G0!G! e

be an extension of algebraic groups with G smooth, connected, simply connected, and
perfect. The extension splits in each of the following cases.

(a) D is a torus;

(b) k is perfect.

PROOF. (a) From (20.16), we have an exact sequence

X�.G/!X�.G0/!X�.D/! Pic.Gkal/:

As G is simply connected, Pic.Gkal/ D 0 (see 20.23), and as G is perfect, X�.G/ D 0.
Therefore the restriction map X�.G0/! X�.D/ is an isomorphism. On the other hand,
T

def
DG0=DG0 is a torus (14.72). Consider the maps

D!G0! T:

The maps on the character groups are isomorphisms

X�.T /!X.G0/!X.D/

and so the homomorphism D! T is an isomorphism. This shows that the complex splits.
(b) There is an exact sequence

e!D0!D!D00! e

with D0 a torus and D00 finite (14.18). This gives an exact sequence

Ext1.G;D00/! Ext1.G;D/! Ext1.G;D0/;

and so it suffices to prove the proposition in the two cases (a)D is finite, and (b)D is a torus.
The first case was proved in (20.4) and the second was proved in (a). 2
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REMARK 20.26. (a) Every simply connected semisimple algebraic group G satisfies the
hypotheses of the proposition (22.123).

(b) Is the proposition true with k nonperfect? For example, does there exist an algebraic
groupG with a normal finite subgroupN of multiplicative type such thatG=N is semisimple
and simply connected but for which the quotient map G!G=N has no section. A variant
of (1.43) or (1.44) may be such an example.

PROPOSITION 20.27. Let G be a reductive algebraic group. Assume that the semisimple
algebraic group G=RG admits a universal covering H ! G=RG with H perfect. Then
there exists a multiplicative isogeny T �H !G with T the torus RG.

PROOF. On pulling back the extension

e!RG!G!G=RG! e

by the universal covering map H !G=RG, we get an exact sequence

e!RG!G0!H ! e

and a multiplicative isogeny G0!G. According to (20.25), this extension splits:

G0 �RG�H: 2

PROPOSITION 20.28. Let G be a semisimple algebraic group. Assume that G admits a
universal covering QG!G with QG perfect. For any torus D,

Hom.�1.G/;D/' Ext1.G;D/:

PROOF. Let f W�1.G/!D be a homomorphism. Define E.f / to be the cokernel of the
homomorphism

x 7! .x;f .x�1/W�1.G/! QG�D.

Then E.f / is an extension of G by D.
For the converse, let hWG0! G be an extension of G by D. Then � W QG! G factors

through h, say,
QG

f
�!G0

h
�!G,

and the factorization is unique (cf. 20.5). The restriction of f to �1.G/ maps into D.
These operations are inverse. 2

f. Proof of theorem 20.13

Throughout this section, k is algebraically closed. For an algebraic variety X over k, we let
U.X/D � .X;O�X /=k�. Recall (14.69) that for all algebraic varieties X and Y , the map

.u;v/ 7! p�u �q�vWU.X/˚U.Y /! U.X �Y /

is an isomorphism.

THEOREM 20.29. Let H be a smooth connected algebraic group, let V be a smooth alge-
braic variety, and let f WE! V be a right H -torsor over V . Then the following sequence is
exact

0! U.V /
U.f /
�! U.E/

U.ie/
�! X.H/

� 7!L.�/
�! Pic.V /

Pic.f /
�! Pic.E/

Pic.ie/
�! Pic.H/! 0:
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Here e is a fixed point of E and ieWH !E is the map h 7! he. The vector bundle L.�/
is as in (20.12).

The proof will be included in the final version if I can make it reasonably concise (see
Fossum and Iversen 1973).

Let H be a connected solvable group variety. Then the flat torsors for H are locally
trivial for the Zariski topology (DG IV, �4, 3.7, p.532). Moreover Pic.H/D 0.

Let G be a connected group variety, and let P be a parabolic subgroup. The G-torsor
G ! G=P is locally trivial for the Zariski topology. When G is reductive, Fossum and
Iversen 1973 refers to Borel and Tits 1965, 4.13.

Now for P and the map G!G=P , the sequence in (20.29) becomes

0!X.G/!X.P /! Pic.G=P /! Pic.G/! Pic.P /! 0:



CHAPTER 21
Algebraic groups of semisimple

rank at most one

A semisimple group is said to have rank 1 if its maximal tori have dimension 1, and a
reductive group is said to have semisimple rank 1 if its semisimple quotient has rank 1.
In a sense, all reductive groups are built up of reductive groups of semisimple rank 1. In
preparation for the general case, we study such groups in this chapter. For example, we show
that every split reductive group of semisimple rank 1 is isomorphic to exactly one of the
following groups

Grm�SL2; Grm�GL2; Grm�PGL2; r 2 N:

This chapter also includes many preliminaries that will be needed for the general case.
Unless we say otherwise, the field k is arbitrary. Usually in this chapter R is a set of

roots; if it is a k-algebra we say so.

a. Brief review of reductive groups

Let G be a reductive group over k. Recall that this means that G is a connected group
variety containing no nontrivial connected unipotent normal subgroup variety, even over
the algebraic closure of k. The centre Z.G/ of G is of multiplicative type, and its largest
subtorus Z.G/t is equal to the radical R.G/ of G (greatest connected solvable normal
subgroup variety); the formation of R.G/ commutes with extension of the base field, and
G=R.G/ is semisimple (8.41, 19.20).

DEFINITION 21.1. The rank of a group variety G over a field k is the dimension of a
maximal torus. Since any two maximal tori in G remain maximal in Gkal and become
conjugate there (18.66, 18.67), the rank depends only on G and is invariant under extension
of the base field. The semisimple rank of a group variety over a field k is the rank of
Gkal=R.Gkal/.

Thus the semisimple rank of a reductive group the rank of its semisimple quotient G=RG.

PROPOSITION 21.2. Let G be a reductive group.

(a) The semisimple rank of G is rank.G/�dimZ.G/.

(b) The algebraic group Z.G/\D.G/ is finite.

357
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(c) The algebraic group D.G/ is semisimple, and its rank is at most the semisimple rank
of G.

PROOF. (a) A maximal torus T of G contains Z.G/t , and

rank.G/ def
D dim.T /D dim.T=Z.G/t /Cdim.Z.G//D rank.G=R.G//Cdim.Z.G//:

(b) For any connected group variety G and central torus T , the group T \D.G/ is finite.
Therefore Z.G/t \D.G/ is finite, and this implies that Z.G/\D.G/ is finite.

(c) We may suppose that k is algebraically closed. Let RDR.D.G//. Then R is weakly
characteristic in D.G/, and so it is normal in R (1.65); hence R � R.G/DZ.G/t . From
(b) we see that it is finite, hence trivial (being smooth and connected). Therefore D.G/ is
semisimple, and the restriction of the quotient map G!G=R.G/ to D.G/ has finite kernel,
and so rank.D.G//� rank.G=R.G//. 2

b. Group varieties of semisimple rank 0

We first dispose of the easy case.

THEOREM 21.3. Let G be a connected group variety over a field k.

(a) G has rank 0 if and only if it is unipotent.

(b) G has semisimple rank 0 if and only if it is solvable.

(c) G is reductive of semisimple rank 0 if and only if it is a torus.

PROOF. We may suppose in the proof that k is algebraically closed.
(a) To say that G has rank 0 means that it does not contain a copy of Gm, but this is

equivalent to it being unipotent (17.65).
(b) If G is solvable, then RG DG , and so G has semisimple rank 0. Conversely, if G

has semisimple rank 0, then G=RG is unipotent, which contradicts its semisimplicity unless
it equals e (15.23). Thus G DRG is solvable.

(c) A torus is certainly reductive of semisimple rank 0. Conversely, if G is reductive of
semisimple rank 0, then it is solvable with Gu D e; this implies that G is a torus (17.37d).2

c. Limits in algebraic varieties

Cf. Section 19.b.

21.4. Let T be a split torus over k. Because T is split,

X�.T /D Hom.T;Gm/ (group of characters of T )

X�.T /D Hom.Gm;T / (group of cocharacters of T ).

There is a perfect pairing

h ; iWX�.T /�X�.T /
ı
�! End.Gm/' Z.

For � 2X�.T / and � 2X�.T /, we have

�.�.t//D t h�;�i (138)

for all t 2 T .k/.
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21.5. Let 'WA1Xf0g!X be a regular map of algebraic varieties. If ' extends to a regular
map Q'WA1! X , then the extension Q' is unique, and we say that limt!0'.t/ exists and
set it equal to Q'.0/. Similarly, we set limt!1'.t/D limt!0'.t

�1/ when it exists. (See
Section 14.k.)

When X is affine, ' corresponds to a homomorphism of k-algebras

f 7! f ı'WO.X/! kŒT;T �1�;

and limt!0' exists if and only if f ı' 2 kŒT � for all f 2 O.X/. Similarly, limt!1'

exists if and only if f ı' 2 kŒT �1� for all f 2O.X/.

21.6. An action �WGm �X ! X of Gm on an affine algebraic variety X defines a Z-
gradation

O.X/D
M

n2Z
O.X/n

on the coordinate ring O.X/, with O.X/n the subspace of O.X/ on which Gm acts through
the character t 7! tn (see 14.13).1 Note that

O.X/m �O.X/n �O.X/mCn;

and so this is a gradation of O.X/ as a k-algebra. For x 2X.k/, the orbit map

�x WGm!X; t 7! tx;

corresponds to the homomorphism of coordinate rings

f D
X

n
fn 7�!

X
n
fn.x/T

n
WO.X/! kŒT;T �1�;

and so limt!0 tx exists if and only if fn.x/D 0 for all n < 0. Similarly, limt!1 tx exists
if and only if fn.x/D 0 for all n > 0. Thus, x is fixed by the action of Gm if and only if
limt!0 tx and limt!1 tx both exist.

LetX.1/ be the closed subscheme ofX determined by the ideal generated by
L
n<0O.X/n.

Then
X.1/.k/D fx 2X.k/ j lim

t!0
tx D 0g:

More generally, an element x 2 X.R/ D Homk-alg.O.X/;R/ defines an orbit map in
X.RŒT;T �1�/D Homk-alg.O.X/;RŒT;T �1�/, namely,

f D
X

n
fn 7�!

X
n
x.fn/T

n
WO.X/!RŒT;T �1�:

The element x lies in X.1/.R/ if and only if the orbit map lies in the image of X.RŒT �/!
X.RŒT;T �1�/.

21.7. More generally, an action �WT �X ! X of a split torus T on an affine algebraic
variety X defines a X�.T /-gradation on O.X/,

O.X/D
M

�2X�.T /
O.X/�;

with O.X/� the subspace on which T acts through the character �.

1We are letting Gm act on O.X/ “on the right”, i.e., .tf /.x/D f .tx/ for t 2Gm.k/, f 2O.X/, x 2X.k/.
Thus f .tx/D tn.f .x// for f 2O.X/n.
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For � 2X�.T / and x 2X.k/, the map

�x ı�WGm!X; t 7! �.t/ �x

corresponds to the homomorphism of coordinate rings

f D
X

�
f� 7�!

X
�
f�.x/T

h�;�i
WO.X/! kŒT;T �1�;

and so limt!0�.t/ �x exists if and only if f�.x/D 0 for all � with h�;�i< 0. Thus

X.k/.�/
def
D fx 2X.k/ j lim

t!0
�.t/ �x existsg

is the zero set of M
h�;�i<0

O.X/�

inX.k/; in particular, it is closed inX.k/. Similarly,X.k/.��/ is the zero set of
L
h�;�i>0O.X/�.

We define X.�/ to be the closed subscheme of X determined by the ideal generated
by
L
h�;�i<0O.X/�. The formation of X.�/ commutes with extension of the base field.

Moreover,
X.�/\X.��/DX�.Gm/, (139)

and \
�2X�.T /

X.�/\X.��/DXT .

Note that XT is smooth if X is smooth (14.55).
The above discussion extends without difficulty to show that X.�/ represents the functor

sending a k-algebraR to the set of points x 2X.R/ such that the morphism�x ı�RWGmR!
XR extends to anR-morphism A1R!XR. In other words, the following diagram is cartesian

X.�/.R/ X.R/

X.RŒT �/ X.RŒT;T �1�/:

b

a

(140)

The map a is defined by the inclusion RŒT � ,!RŒT;T �1� and the map b is defined by the
pairing Gm�X !X .

d. Limits in algebraic groups

By a cocharacter of an algebraic group G we mean a homomorphism Gm! G (in the
literature, this is often called a one-parameter subgroup of G).

Let G be an algebraic group, and let �WGm!G be a cocharacter of G. Then � defines
an action of Gm on G:

.t;g/ 7! �.t/ �g ��.t/�1WGm�G!G:

We define P.�/ to be the closed subscheme G.�/ of G attached to �, as in (21.7). Thus
P.�/.R/ consists of the g 2G.R/ such that t 7! tgt�1WGmR!GR extends to a morphism
A1R!GR. We let Z.�/D CG.�Gm/. Note that Z.�/ is smooth (resp. connected) if G is
smooth (resp. connected) (14.55, 18.44).
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PROPOSITION 21.8. Let G be an algebraic group over k, and let � be a cocharacter of G.
Then P.�/ is an algebraic subgroup of G, and

P.�/\P.��/DZ.�/:

PROOF. For the first assertion it suffices to show that P.�/.R/ is a subgroup of G.R/ for
all R, but the maps a and b in (140) are group homomorphisms, and so this is obvious.

The second statement is a special case of (21.7). 2

PROPOSITION 21.9. The subfunctor

R fg 2G.R/ j lim
t!0

t �g D 1g

of G is represented by a normal algebraic subgroup U.�/ of P.�/.

PROOF. Clearly, U.�/.R/ is the kernel of

P.�/.R/!G.RŒT �/
T 7!0
�! G.R/: 2

EXAMPLE 21.10. Let G D GL2, and let � be the homomorphism t 7! diag.t; t�1/. Then�
t 0

0 t�1

��
a b

c d

��
t 0

0 t�1

��1
D

�
a bt2

c
t2

d

�
,

and lim
t!0

�
a bt2

c
t2

d

�
exists if and only if c D 0; in which case the limit equals

�
a 0

0 d

�
.

Therefore,

P.�/D

��
� �

0 �

��
; U.�/D

��
1 �

0 1

��
; Z.�/D

��
� 0

0 �

��
I

P.��/D

��
� 0

� �

��
; U.��/D

��
1 0

� 1

��
; Z.��/DZ.�/:

In more detail, O.GL2/ D kŒT11;T12;T21;T22� with T12 of weight 2, T21 of weight �2,
and T11 and T22 of weight 0. Thus P.�/ is defined by the ideal .T21/ and U.�/ by the ideal
.T11�1;T22�1;T21/.

EXAMPLE 21.11. Let G D SL2, and let � be the homomorphism t 7! diag.t; t�1/. Then

P.�/D

��
a c

0 a�1

��
; U.�/D

��
1 c

0 1

��
; Z.�/D

��
a 0

0 a�1

��
:

EXAMPLE 21.12. Let G D GL3, and let � be the homomorphism t 7! diag.tm1 ; tm2 ; tm3/
with m1 �m2 �m3. Then0@tm1 0 0

0 tm2 0

0 0 tm3

1A0@a b c

d e f

g h i

1A0@t�m1 0 0

0 t�m2 0

0 0 t�m3

1AD
0@ a tm1�m2b tm1�m3c

tm2�m1d e tm2�m3f

tm3�m1g tm3�m2h i

1A :
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If m1 >m2 >m3, then

P.�/D

8<:
0@� � �0 � �

0 0 �

1A9=; ; U.�/D

8<:
0@1 � �0 1 �

0 0 1

1A9=; ; Z.�/D

8<:
0@� 0 0

0 � 0

0 0 �

1A9=; I
P.��/D

8<:
0@� 0 0

� � 0

� � �

1A9=; ; U.��/D

8<:
0@1 0 0

� 1 0

� � 1

1A9=; ; Z.��/DZ.�/:

If m1 Dm2 >m3, then

P.�/D

8<:
0@� � �� � �

0 0 �

1A9=; ; U.�/D

8<:
0@1 0 �

0 1 �

0 0 1

1A9=; ; Z.�/D

8<:
0@� � 0

� � 0

0 0 �

1A9=;
P.��/D

8<:
0@� � 0

� � 0

� � �

1A9=; ; U.��/D

8<:
0@1 0 0

0 1 0

� � 1

1A9=; ; Z.��/DZ.�/:

Let G be an algebraic group over k, and let �WGm! G be a cocharacter of G. Then
Gm acts on the Lie algebra g of G through Adı�. We let gn.�/ denote the subspace of g on
which Gm acts through the character t 7! tn, and we let

g�.�/D
M
n<0

gn; gC.�/D
M
n>0

gn.

Thus
gD g�.�/˚g0.�/˚gC.�/:

THEOREM 21.13. Let G be a smooth algebraic group over k, and let �WGm! G be a
cocharacter of G.

(a) P.�/, Z.�/, and U.�/ are smooth algebraic subgroups of G, and U.�/ is a unipotent
normal subgroup of P.�/.

(b) The multiplication map U.�/ÌZ.�/! P.�/ is an isomorphism of algebraic groups.

(c) Lie.U.��//D g�; Lie.Z.�//D g0; Lie.U.�//D gC.

(d) The multiplication map U.��/�P.�/!G is an open immersion.

(e) If G is connected, then so also are P.�/, Z.�/, and U.�/.

PROOF. For the proof, we may replace k with its algebraic closure.
We first prove the theorem for G D GLV . According to (14.12), there exists a basis for

V such that �.Gm/� Dn, say,

�.t/D diag.tm1 ; : : : ; tmn/; m1 �m2 � � � � �mn:

Then P.�/ is defined as a subscheme of GLn by the vanishing of the coordinate functions
Tij for which mi �mj < 0. Obviously, it is smooth and connected. It is similarly obvious
that U.�/ is smooth, connected, and unipotent, and we already know that Z.�/ is smooth
and connected. For (b) it suffices to prove that the map is an isomorphism of algebraic
varieties, which is obvious. Statement (c) can be proved by a direct calculation. From (c)
we deduce that the multiplication map U.��/�P.�/! G induces an isomorphism on
the tangent spaces at the identity elements; in particular it is dominant. It is also injective
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because U.��/\P.�/D e (intersection as functors, and hence also as schemes). Finally,
U.��/�P.�/! U.��/ �P.�/ is an orbit map for an action of U.��/�P.�/ on G, and
hence it is an isomorphism from U.��/�P.�/ onto an open subset of the closure G of its
image (1.52).

We now consider the general case. Embed G in H D GLV for some V . Then � is also a
cocharacter of H , and, with the obvious notations,

PG.�/D PH .�/\G; UG.�/D UH .�/\G; ZG.�/DZH .�/\G

because this is true for the functors they define. We let PG.�/0 D PG.�/red and UG.�/0 D
UG.�/red, and we first prove (c) for these groups. We have

Lie.PG.�/0/� Lie.PH .�//\gD g0.�/CgC.�/; (141)

as we already know (c) for H . Similarly,

Lie.UG.˙�/0/� g˙.�/: (142)

From (d) for H , we deduce that

U
def
D UH .��/ �PH .�/\G

is an open subset of G containing e.
Apply 4.19 to obtain a representation r WH ! GLV and a line LD kv in V such that

G is the algebraic subgroup of H stabilizing L. Let g 2 U.k/. Using that we know (b)
and (d) for H , we write g D xyz with x 2 UH .��/, y 2 UH .�/, and z 2ZH .�/. We have
r.g/v D cv for some c 2 k�; moreover, v is an eigenvector for Gm acting on V via r ı�
because Im.�/�G. It follows that for t 2 k�;

c�r.�.t/ �x�1 ��.t/�1/v D r.�.t/ �y ��.t/�1z/v: (143)

By an easy computation in H , with a basis as at the beginning of the proof, we see that the
coefficient of v on the right is a polynomial function of t and on the left is a polynomial
function of t�1. These polynomial functions must be constant. It follows that the left hand
side equals cv and the right hand side r.z/v, and so z 2 G.k/. Also r.x/v D r.y/v D v,
and so x;y 2G.k/. We have shown that UG.��/0 �PG.�/0 contains the open subset U of
G, and so

dimUG.��/0CdimPG.�/0 D dimG D dim.g�.�//C .dimg0.�/CdimgC.�//:

We conclude that equality holds in (141) and (142), and so (c) holds for G and the groups
PG.�/

0 and UG.�/0.
It follows that

Lie.PG.�/0/D Lie.PH .�//\g; (144)

but this also equals Lie.PG.�/ (see 12.12). Therefore

dimLie.PG.�//D dimLie.PG.�/red/D dimPG.�/red D dimPG.�/;

and so PG.�/ is smooth. Similarly, UG.�/ is smooth. Now statement (c) implies (d) as in the
case of GLn, and statement (d) obviously implies (e). Finally, UG.�/ is a unipotent normal
algebraic subgroup of G, because it is the intersection with G of such a group, namely,
UH .�/. 2
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REMARK 21.14. In the situation of the theorem:

(a) P.�/ is the unique smooth algebraic subgroup of G such that

P.�/.kal/D fg 2G.kal/ j lim
t!0

t �g exists (in G.kal/)g. (145)

(b) U.�/ is the unique smooth algebraic subgroup of P.�/ such that

U.�/.kal/D fg 2 P.�/.kal/ j lim
t!0

t �g D 1g: (146)

PROPOSITION 21.15. The subgroup variety U.�/ is unipotent, and the weights of Gm on
Lie.U.�// are strictly positive integers. If G is connected and solvable, then Lie.U.�//
contains all the strictly positive weight spaces for Gm on Lie.G/.

PROOF. Choose a faithful representation .V;r/ of G. There exists a basis for V such that
r.�.Gm// � Dn (14.12), say, � ı r.t/ D diag.tm1 ; : : : ; tmn/, m1 � m2 � � � � � mn. Then
U.�/� Un, from which the first statement follows.

Now assume that G is connected and solvable. Then there is a unique connected normal
unipotent subgroup variety Gu of G such that G=Gu is a torus (17.37). We argue by
induction on dimGu. If dimGu D 0, then G is a torus, and there are no nonzero weight
spaces.

Thus, we may assume that dimGu > 0. Then there exists a surjective homomorphism
'WGu!Ga (15.23) and

'.�.t/ �g ��.t/�1/D tn �'.g/; g 2Gu.k/; t 2Gm.k/;

for some n 2 Z.
If n� 0, then the map

t 7! '.�.t/ �g ��.t/�1/WGm!Ga

doesn’t extend to A1 unless '.g/D 0. Hence U.�/� Ker. '/, and we can apply induction.
If n > 0, then '.U.�//DGa, and we can again apply induction to Ker. '/. 2

COROLLARY 21.16. If G is connected and solvable, then G is generated by its subgroups
U.�/, Z.�/, and U.��/ (as a connected group variety).

PROOF. Their Lie algebras span g, and so we can apply (12.13). 2

PROPOSITION 21.17. Let 'WG! G0 be a separable surjective homomorphism of group
varieties. Let � be a cocharacter of G, and let �0 D ' ı�. Then

'.PG.�//D PG0.�
0/; '.UG.�//D UG0.�

0/:

PROOF. See Springer p.235. 2

NOTES. Modulo nilpotents, Theorem 21.13 was announced in Borel and Tits 1978. Our proof is
adapted from that in Springer 1998, 13.4.2. Specifically, Springer defines P.�/ as a subgroup variety
of Gkal by describing its kal-points, and then deduces from (144) that P.�/ is defined over k. We
define P.�/ directly as an algebraic subgroup of G by describing its points in every k-algebra R,
and then deduce from (144) that it is smooth.

For a generalization of the theorem to nonsmooth algebraic groups G, see Conrad et al. 2010,
2.1.8.
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e. Actions of tori on a projective space

LEMMA 21.18. Let X be an irreducible closed subvariety of Pn of dimension � 1, and let
H be a hyperplane in Pn. Then X \H is nonempty, and either X �H or the irreducible
components of X \H all have dimension dim.X/�1.

PROOF. If X \H were empty, then X would be a complete subvariety of the affine variety
X XH , and hence of dimension 0, contradicting the hypothesis. The rest of the statement is
a special case of Krull’s principal ideal theorem (see, for example, AG 6.43). 2

LEMMA 21.19. Let T be a split torus, and let .V;r/ be a finite-dimensional representation
of T . There exists a cocharacter �WGm! T such that P.V /�.Gm/ D P.V /T .

PROOF. Write V as a sum of eigenspaces, V D
Lm
iD1V�i with the �i distinct. Choose

� so that the integers h�i ;�i, i D 1; : : : ;m, are distinct (there exists such a � in X�.T /Q
because we only have to avoid the finitely many hyperplanes h�i ��j i?, i ¤ j , and then
some multiple of � lies in X�.T /). Now �.Gm/ and T have the same eigenvectors in V , and
hence the same fixed points in P.V /. 2

PROPOSITION 21.20. Let T be a torus, and let .V;r/ be a finite-dimensional representation
of T . Let X be a closed subvariety of P.V / stable under the action of T on P.V / defined by
r . In X.kal/ there are at least dim.X/C1 points fixed by T .

PROOF. We may suppose that k is algebraically closed. As T is connected, it leaves stable
each irreducible component of X , and so we may suppose that X is irreducible. Lemma
21.19 allows us to replace T with Gm. We prove the statement by induction on d Cn where
d D dimX and nC1D dimV . We may suppose that d > 0.

Let fe0; : : : ; eng be a basis of V consisting of eigenvectors for Gm, say,

�.t/ei D t
mi ei ; mi 2 Z; t 2Gm.k/;

numbered so that m0 D mini .mi /. Let W D he1; : : : ; eni. By induction, we may suppose
that X 6� P.W /. By induction again, Gm has at least d fixed points in X \P.W /. Let
Œv� 2X XP.W /, and write

v D e0Ca1e1C�� �Canen; a0 ¤ 0:

If Œv� is fixed by the action of Gm, we have at least d C1 fixed points. Otherwise, as Gm
acts on the affine space D.e_0 /D P.V /XP.W / with nonnegative weights 0; : : : ;mn�m0,
there exists a fixed point limt!0 t Œv� in D.e_0 /\X (14.46), and so again we have at least
d C1 fixed points. 2

COROLLARY 21.21. Let P be a parabolic subgroup of a smooth connected algebraic group
G and let T be a torus in G. In .G=P /.kal/ there are at least 1Cdim.G=P / points fixed by
T .

PROOF. There exists a representation G! GLV of V and an o 2 P.V / such that the map
g 7! goWG! P.V / defines a G-equivariant isomorphism of G=P onto the orbit G �o (see
the proof of 9.28). Now G �o is a complete subvariety of P.V / to which we can apply the
proposition. 2
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EXAMPLE 21.22. When Gm acts on Pn according to the rule

t .x0W � � � Wxi W � � � Wxn/D .x0W � � � W t
ixi W � � � W t

nxn/,

the fixed points are P0; : : : ;Pn with Pi D .0W � � � W0W
i

1W0W � � � W0/.

ASIDE 21.23. There is an alternative explanation of the proposition using étale cohomology. Con-
sider a torus T acting linearly on a projective variety X over an algebraically closed field. We may
suppose that the action has only isolated fixed points (otherwise XT is infinite). For some t 2 T .k/,
XT is the set of fixed points of t (cf. 18.36), and so

#XT D
2dimXX
iD0

.�1/i Tr.t jH i .X//

(Lefschetz trace formula). On letting t ! 1, we see that Tr.t jH i .X//D dimH i .X/. The cohomol-
ogy groups of X can be expressed in terms of the cohomology groups of the connected components
of XT with an even shift in degree (Carrell 2002, 4.2.1). Therefore, the odd-degree groups vanish
when XT is finite. On the other hand dimH 2i .X/� 1 for all i because the class of an intersection
of hyperplane sections gives a nonzero element of the group. Therefore,

#XT D
X

0�i�dim.X/

dimH 2i .X/� dim.X/C1:

f. Homogeneous curves

21.24. Let C be a smooth complete curve over k. The local ring OP at a point P 2 jC j
is a discrete valuation ring with field of fractions k.C / such that k �OP , and every such
discrete valuation ring arises from a unique P . Therefore, we can identify jC j with the set
of such discrete valuation rings in k.C / endowed with the topology for which the proper
closed subsets are the finite sets. For an open subset U , we have OC .U /D

T
P2U OP .

Thus, we can recover C from its function field k.C /. In particular, two smooth complete
connected curves over k are isomorphic if they have isomorphic function fields.

21.25. According to the preceding remark, a smooth complete curveC over k is isomorphic
to P1 if and only if k.C / is the field k.T / of rational functions in a single symbol T . Lüroth’s
theorem states that every subfield of k.T / properly containing k is of the form k.u/ for some
u 2 k.T / transcendental over k (see, for example, my notes Fields and Galois Theory).

21.26. Let C be an curve (i.e., algebraic variety of dimension one) over k. If Ckal � P1
and C.k/¤ ;, then C � P1 (the hypothesis implies that C is a smooth complete curve over
k of genus 0; projecting from a point P 2 C.k/ defines an isomorphism from C onto P1).

PROPOSITION 21.27. Let C be a smooth complete algebraic curve over an algebraically
closed field. If C admits a nontrivial action by a connected group variety G, then it is
isomorphic to P1.

PROOF. Suppose first that C admits a nontrivial action by a connected solvable group
variety G. Then it admits a nontrivial action by a connected commutative group variety, and
hence by Ga or Gm (17.38).

If Ga acts nontrivially on C , then, for some x 2 C.k/, the orbit map �x WGa! C is
nonconstant, and hence dominant. Now

k.C / ,! k.Ga/D k.T /;
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and so k.C / � k.P1/ by Lüroth’s theorem (21.25). Hence C � P1 (21.24). The same
argument applies with Gm for Ga.

We now prove the general case. If all Borel subgroups B of G act trivially on C , then
G.k/

18.37
D

S
B.k/ acts trivially on C . As G is reduced, this implies that G acts trivially on

C , contrary to the hypothesis. Therefore some Borel subgroup acts nontrivially on C , and
we have seen that this implies that C is isomorphic to P1. 2

21.28. There are alternative proofs of the proposition. If the genus of C is nonzero, then
a nontrivial action of G on C defines a nontrivial action of G on the jacobian variety of C
fixing 0, but abelian varieties are “rigid” (Borel 1991, 10.7). In fact, the automorphism group
of a curve of genus g > 1 is finite (and even of order � 84.g�1/ in characteristic zero).

g. The automorphism group of the projective line

Recall that

P1.R/D fP �R2 j P is a direct summand of R2 of rank 1g

for any k-algebra R (AG p.144). Moreover,

GL2.R/D GL.2;R/

PGL2 D GL2 =Gm
Aut.P1/.R/D AutR.P1R/:

For each k-algebra R, the natural action of GL2.R/ on R2 defines an action of GL2.R/ on
P1.R/, and hence a homomorphism GL2! Aut.P1/. This factors through PGL2.

PROPOSITION 21.29. The homomorphism PGL2 ! Aut.P1/ just defined is an isomor-
phism.

This follows from the next two lemmas.

LEMMA 21.30. Let ˛ 2 Aut.P1/.R/D Aut.P1R/. If

˛.0R/D 0R; ˛.1R/D 1R; ˛.1R/D1R;

then ˛ D id :

PROOF. Recall that P1R D U0 [U1 with U0 D SpecRŒT � and U1 D SpecRŒT �1�. The
diagram

U0 - U0\U1 ,! U1

corresponds to
RŒT � ,!RŒT;T �1� - RŒT �1�:

The automorphism ˛ preserves U0 and U1, and its restrictions to U0 and U1 correspond
to R-algebra homomorphisms

T 7! P.T /D a0Ca1T C QP .T /T
2

T �1 7!Q.T �1/D b0Cb1T
�1
C QQ.T �1/T �2
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such that
P.T /Q.T �1/D 1 (equality in RŒT;T �1�). (147)

As ˛.0R/D 0R, the coefficient a0 D 0, and as ˛.1R/D1R, the coefficient b0 D 0. The
equality (147) implies that

QP .T /D 0D QQ.T /:

Finally, a1 D 1 and P.T /D T because ˛.1R/D 1R. 2

LEMMA 21.31. Let P0; P1; P2 be points on P1 with coordinates in R that remain distinct
in P1.�.x// for all x 2 spm.R/; then there exists an ˛ 2 PGL2.R/ such that ˛ � 0R D P0,
˛ �1R D P1, and ˛ �1R D P2.

PROOF. Let S be a faithfully flat extension of R; then each element of GL2.B/, fixing the
points 0S , 1S , 1S 2 P1.S/, already lies in Gm.B/. Therefore there exists at most one
g 2 PGL2.S/ with g �0R D P0, g �1R D P1, and g �1R D x1. The direct summands P0,
P1, P1 of R2 are projective, hence locally free. Therefore, we can find an open covering
spm.R/D

Sn
iD1 spm.Rfi / such that .P0/fi , .P1/fi , .P1/fi are free for i D 1; : : : ;n. Thus

.P0/fi DRfi

�
y0i
x0i

�
; .P1/fi DRfi

�
y1i
x1i

�
; .P2/fi DRfi

�
y2i
x2i

�
:

For each ˛ 2 spm.Afi /, by assumption,

.yoix1i �y1ix0i /.˛/¤ 0:

Therefore, .yoix1i �y1ix0i / is invertible, and it follows that

Hi
def
D

�
y0i y1i
x0i y1i

�
2 GL2.Afi /:

2

h. Review of Borel subgroups

In this section, k is algebraically closed.
We list the properties of Borel subgroups that we shall need to use in the next section.

In the following G is a connected group variety, B is a Borel subgroup of G, and T is a
maximal torus in G.

21.32. All Borel subgroups in G are conjugate by an element of G.k/ (see 18.12).

21.33. All maximal tori in G are conjugate by an element of G.k/ (18.14).

21.34. If B is nilpotent, then G D B (18.27).

21.35. The only Borel subgroup of G normalized by B is B itself (18.39).

21.36. The connected centralizer CG.T /ı of T is contained in every Borel subgroup
containing T (18.33).

21.37. The group NG.T /.k/ acts transitively on the Borel subgroups containing T (18.15).

21.38. The reduced normalizer NG.B/red of B contains B as a subgroup of finite index
and is equal to its own normalizer. See (18.53) for a stronger result.

21.39. The centralizer of a torus S in G is smooth (16.23); therefore

dimCG.S/
1.22
D dimLie.CG.S//

12.31
D dimLie.G/S .
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i. Criteria for a group variety to have semisimple rank 1.

Throughout this section, k is algebraically closed.

THEOREM 21.40. The following conditions on a connected group variety G over k and a
Borel pair .B;T / are equivalent:

(a) the semisimple rank of G is 1;

(b) T lies in exactly two Borel subgroups;

(c) dim.G=B/D 1;

(d) there exists an isogeny G=RG! PGL2.

The proof of this will occupy the rest of this section. Throughout, G is a connected
group variety over k (algebraically closed). In proving the theorem, we may replace G with
G=RG, and so assume that RG D e.

(a))(b): A MAXIMAL TORUS IN A GROUP OF SEMISIMPLE RANK 1 LIES IN

EXACTLY TWO BOREL SUBGROUPS

Let G be connected group variety of semisimple rank 1. Let T be a split maximal torus in
G, and fix an isomorphism �WGm! T . Call a Borel subgroup positive if it contains U.�/
and negative if it contains U.��/.

LEMMA 21.41. The following hold:

(a) T lies in at least two Borel subgroups, one positive and one negative.

(b) If B (resp. B 0) is a positive (resp. negative) Borel subgroup containing T , then every
Borel subgroup containing T lies in the subgroup generated by B and B 0.

(c) No Borel subgroup containing T is both positive and negative.

(d) The normalizer of T in G contains an element acting on T as t 7! t�1.

PROOF. (a) The subgroup variety U.�/ is connected, unipotent, and normalized by T .
Therefore T U.�/ is a connected solvable subgroup variety of G, and so lies in a Borel
subgroup, which is is positive (by definition). A similar argument applies to U.��/.

(b) Apply Corollary 21.16 with G equal to a Borel subgroup containing T .
(c) Otherwise (b) would imply that every Borel subgroup containing T is contained in a

single Borel subgroup, which contradicts (a).
(d) The normalizer of T in G acts transitively on the set of Borel subgroups containing

T (21.37). Any element taking a negative Borel subgroup to a positive Borel subgroup acts
as t 7! t�1 on T . 2

LEMMA 21.42. Each maximal torus of G lies in exactly two Borel subgroups, one positive
and one negative.

PROOF. Let T be a maximal torus, and choose an identification of it with Gm. We use
induction on the common dimension d of the Borel subgroups of G (21.32).

If d D 1, then the Borel subgroups are commutative, and so G is solvable (21.34),
contradicting the hypothesis.

Next suppose that d D 2. We already know that T lies in a positive and in a negative
Borel subgroup. Suppose that T lies in two positive Borel subgroups B and B 0. If Bu ¤ B 0u,
then they are distinct subgroups of U.�/, and therefore generate a unipotent subgroup of



370 21. Algebraic groups of semisimple rank at most one

dimension > 1. This implies that the Borel subgroups of G are unipotent, hence nilpotent,
hence equal G, which contradicts the hypothesis. Therefore Bu D B 0u, and so

B
17.37
D Bu �T D B

0
u �T

17.37
D B 0:

Now suppose that d � 3. Let B be a positive Borel subgroup containing T . Let
N DNG.B/red, and consider the action of B on G=N . Because of (21.35), B has a unique
fixed point in G=N . Let O be an orbit of B in G=N of minimum nonzero dimension.
The closure of O in G=N is a union of orbits of lower dimension, and so O is either a
projective variety or a projective variety with one point omitted. This forces O to be a curve,
because otherwise it would contain a complete curve, in contradiction with Theorem 21.28.
Therefore, there exists a Borel subgroup B 0 such that B \NG.B 0/ has codimension 1 in B .

ThusH def
D .B\B 0/ı has codimension 1 in each of B and B 0. EitherH DBuDB 0u or it

contains a torus. In the first case, hB;B 0i normalizesH , and a Borel subgroup in hB;B 0i=H
has no unipotent part, and so hB;B 0i is solvable, which is impossible.

Therefore H contains a torus. We conclude that B and B 0 are the only Borel subgroups
of hB;B 0i containing T , and one is positive and one negative. Then Lemma 21.41(d) shows
that B and B 0 are interchanged by an element of NhB;B 0i.T / that acts a t 7! t�1 on T . This
implies that B 0 is negative as a Borel subgroup of G. Finally Lemma 21.41(b) implies that
every Borel subgroup of G containing T lies in hB;B 0i, hence equals B or B 0 2

(b))(c): IF T LIES IN EXACTLY TWO BOREL SUBGROUPS, THEN dim.G=B/D 1

Let .B;T / be a Borel pair in G, and let N D NG.B/red. Then G=B ! G=N is a finite
covering (21.38). As N contains B , the quotient G=N is complete, and as N is its own
normalizer (21.38), it fixes only one point in B=N , and so the stabilizers of distinct points
of G=N are the normalizers of distinct Borel subgroups. The fixed points of T in G=N
correspond to the Borel subgroups that T normalizes, and hence contain T . Therefore T has
exactly 2 fixed points in G=N . As G is nonsolvable, G=B (hence also G=N ) has dimension
� 1. In fact, G=N has dimension 1, because otherwise Corollary 21.21 would show that T
has more than 2 fixed points.

(c))(d): IF dim.G=B/D 1, THEN THERE EXISTS AN ISOGENY G=RG! PGL2

If dim.G=B/D 1, then G=B is a smooth complete curve. Because G acts nontrivially on
G=B , it is isomorphic to P1 (21.27). On choosing an isomorphism G=B! P1, we get an
action of G on P1, and hence a homomorphism G! Aut.P1/. On combining this with the
canonical isomorphism Aut.P1/! PGL2, we get a surjective homomorphism G! PGL2
whose kernel is the intersection of the Borel subgroups containing T . This gives the required
isogeny.

(d))(a) IF THERE EXISTS AN ISOGENY G=RG! PGL2, THEN G HAS

SEMISIMPLE RANK 1

This is obvious.

NOTES. This section follows Allcock 2009.
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j. Split reductive groups of semisimple rank 1.

In this section, k is arbitrary.

LEMMA 21.43. Let .G;T / be a split reductive group of semisimple rank 1 over k. Then
there exists a Borel subgroup B of G containing T .

PROOF. First let .G;T / be a split semisimple group of rank 1. Then R.Gkal/D e, and so
there exists an isogenyGkal! PGL2. HenceG has dimension 3 and any Borel subgroup has
dimension 2. Choose an isomorphism �WGm! T . Then P.�/D T �U.�/ is a connected
solvable algebraic subgroup of G of maximum dimension, and hence is a Borel subgroup
containing T (and P.��/ is the only other Borel subgroup of G containing T ).

Now let .G;T / be a split reductive group of semisimple rank 1. The derived group G0

of G has semisimple of rank � 1 (21.2). If G0 had rank 0, then it would be commutative,
and G would be solvable, contradicting the hypotheses. Thus, G0 is a split semisimple group
of rank 1. Let T 0 be a maximal torus of G0 contained in T , and choose an isomorphism
�WGm! T 0. Then T �U.�/ and T �U.��/ are Borel subgroups of G containing T . 2

THEOREM 21.44. Let G be a split reductive group over k of semisimple rank 1, and let B
be a Borel subgroup of G. Then G=B is isomorphic to P1, and the homomorphism

G! Aut.G=B/' PGL2

is surjective with kernel Z.G/.

The algebraic group Gkal is reductive of semisimple rank 1, and Bkal is a Borel subgroup
of Gkal . Moreover, .G=B/kal ' Gkal=Bkal � P1, and so G=B � P1 (21.26). The map
G! Aut.G=B/ is surjective because this is true after a base change to kal. It remains to
prove that the kernel ofG!Aut.G=B/ isZ.G/. It suffices to prove this with k algebraically
closed, and so for the remainder of the proof, k is algebraically closed.

Let T be a maximal torus in G, and write BC and B� for the two Borel subgroups
containing T (see 21.29). We choose the isomorphism G=BC! P1 so that BC fixes 0
and B� fixes1. The action of G on G=BC ' P1 determines a homomorphism 'WG!

Aut.P1/' PGL2. Let B0 denote the Borel subgroup of PGL2 fixing 0.
As G is not solvable, the unipotent part BCu of BC is nonzero (18.27). As Ru.G/D 0,

the homomorphism BCu ! B0u has finite kernel. Now BCu is a smooth connected unipotent
group of dimension 1, and hence is isomorphic to Ga (17.18). Choose an isomorphism
iCWGa ! BCu ; then the action of T on BCu by inner automorphisms corresponds to the
action of T on Ga defined by a character ˛CWT !Gm of T :

iC.˛C.t/ �x/D t � iC.x/ � t�1; t 2 T .R/; x 2Ga.R/DR: (148)

This character does not depend on iC and is called the root of G with respect to .BC;T /.
Similarly, there is a root ˛� of G with respect to .B�;T / defined by the same equation (14)
but with � forC:

i�.˛�.t/ �x/D t � i�.x/ � t�1; t 2 T .R/; x 2Ga.R/DR: (149)

PROPOSITION 21.45. Let n be an element ofG.k/ that normalizes T , but doesn’t centralize
it. Then

nBCn�1 D B�

˛C ı .inn.n/jT /D ˛� D�˛C:
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PROOF. The first equality was proved in (21.41d). The second equality can be proved by a
direct calculation: let i� denote the isomorphism

inn.n/ı iCWGa! B�u I

for x 2 BCu .R/ and t 2 T .R/,

iC.˛C.ntn�1/ �x/ D ntn�1 � iC.x/ �nt�1n�1 apply (148)
D nt � i�.x/ � t�1n�1 definition of i�

D n � i�.˛�.t/ �x/ �n�1 apply (149)
D iC.˛�.t/ �x/;

and so
˛C.ntn�1/D ˛�.t/.

On the other hand, because BC is not nilpotent (18.27), ˛C ¤ 0. Because Ker˛C is
equal to the centre of BC D iC.Ga/ �T , it is also equal to the centre of G (18.50). On the
other hand, inn.n/ induces the identity map on Ker.˛C/, and gives a commutative diagram:

e Ker.˛C/ T Gm e

e Ker.˛�/ T Gm e

id'

˛C

inn.n/' �'

˛�

where � is induced by inn.n/. If � D id, then inn.n/D idC� with � a homomorphism (of
algebraic groups) T !Ker.˛�/. But then idD .inn.n//2D idC2�. As Hom.T;Ker.˛�// is
torsion free, this implies that inn.n/D id, which contradicts our assumption that n 62 CG.T /.
Thus � is an automorphism, equal to � id, as required. 2

COROLLARY 21.46. We have
BCu \B

�
u D e:

PROOF. Note that T acts by inner automorphisms on BCu \B
�
u . We use iC to identify BCu

with Ga. Then T acts on BCu through ˛C, and as ˛C is an epimorphism, BCu \B
�
u is a

Gm-submodule of Ga. Therefore it equals p̨r for some r � 1 or e. In the first case, T acts
on p̨ � p̨r via the map ˛C, but because ˛� D�˛C, this is impossible. 2

COROLLARY 21.47. We have
BC\B� D T:

PROOF. Clearly,

BC\B� D
�
BCu \B

�
�
�T D

�
BCu \B

�
u

�
�T D T: 2

COROLLARY 21.48. We have

Ker.˛C/DZ.G/D Ker.'/:

PROOF. The first equality was proved above. For the second, the kernel of ' is contained in
BC\B� D T , and is therefore a diagonalizable normal subgroup of a connected group G.
Hence Ker.'/ lies in the centre of G (14.30). But Z.G/� Ker.'/ because ' is surjective
and Z.PGL2/D e: 2

NOTES. This section follows SHS, Exposé 15, �3, p.395–397.

The remaining sections will be rearranged in the final version. Probably “Roots”
will be inserted here.
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k. Properties of SL2

PROPOSITION 21.49. The algebraic group SL2 is perfect, i.e., it is equal to its derived
group.

PROOF. As SL2 is smooth, it suffices to show that the abstract group SL2.kal/ is perfect. In
fact, we shall show that SL2.k/ is perfect if k has at least three elements. For a 2 k�, let

t1;2.a/D

�
1 a

0 1

�
; t2;1.a/D

�
1 0

a 1

�
:

An algorithm in elementary linear algebra shows that SL2.k/ is generated by these matrices.
On the other hand, the commutator��

b 0

0 b�1

�
;

�
1 c

0 1

��
D

�
1 .b2�1/c

0 1

�
.

Choose b ¤˙1, and then c can be chosen so that .b2�1/c D a. Thus t1;2.a/ is a commu-
tator. On taking transposes, we find that t2;1.a/ is also a commutator. 2

The group SL2 acts on itself by inner automorphisms, and so we have a homomorphism
of algebraic groups SL2! Aut.SL2/, which factors through PGL2.

PROPOSITION 21.50. The homomorphism PGL2! Aut.SL2/ is an isomorphism of alge-
braic groups.

PROOF. It suffices to show that every automorphism of SL2 becomes inner over the algebraic
closure of the base field. Thus, assume k to be algebraically closed, and let  be an
automorphism of SL2. Let T be the diagonal maximal torus in SL2, and let U D U2. After
(possibly) composing  with an inner automorphism of SL2, we may suppose that .T /D T ,
and after (possibly) composing it with inn.s/, we may suppose that  acts as the identity map
on T . Then U


�! .U / is a T -isomorphism, and so .U /D U (as .U / satisfies (152)).

Hence  stabilizes U , and therefore T . After composing  with an inner automorphism by
an element of T , we may suppose that  jB D idB (here we may have to take a square root).
Now x 7! .x/x�1 factors through SL2 =B , and so is constant (18.25). 2

REMARK 21.51. The proposition says that every automorphism of SL2 is inner in the sense
that it becomes inner after a field extension. For t 2 k,�p

t 0

0
p
t�1

��
a b

c d

��p
t�1 0

0
p
t

�
D

�
a tb

t�1c d

�
; (150)

and so conjugation by diag.
p
t ;
p
t�1/ is an inner automorphism of SL2 over k. However,

it is not of the form inn.A/ with A 2 SL2.k/ but only for A 2 SL2.kŒ
p
t �). This reflects the

fact that SL2.k/! PGL2.k/ is not surjective.

PROPOSITION 21.52. The algebraic group SL2 is simply connected.

In other words, every multiplicative isogeny G! SL2 of connected group varieties is
an isomorphism. It suffices to prove this over an algebraically closed field. There are several
different proofs of this, which we now describe.
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PROOF BY ELEMENTARY GROUP THEORY

See Springer 1998, 7.2.4.

PROOF BY ALGEBRAIC GEOMETRY

It satisfies the criterion X.G/D 0D Pic.G/ — see (20.18).

PROOF USING ROOTS

It satisfies the criterion: a split semisimple group .G;T / is semisimple if X�.T / is generated
by the coroots. See (22.104) et seq. This will be explained in the final version.

PROOF USING EXTENSIONS.

Recall (14.29) that the only action of a connected algebraic group on a group of multiplicative
type is the trivial action.

PROPOSITION 21.53. Let D be an algebraic group of multiplicative type. Then

Z1.SL2;D/D 0DH 2.SL2;D/; i.e.,

Ext0.SL2;D/D 0D Ext1.SL2;D/:

PROOF. Recall that GL2 D SL2ÌGm. Therefore a (nontrivial) Gm-torsor over SL2 extends
to a (nontrivial) Gm-torsor over GL2. But GL2 is a the spectrum of a unique factorization
domain, which implies that Pic.GL2/D Pic.SL2/D 0, and we can calculate the cohomology
of SL2 acting on Gm by means of the Hochschild complex. In order to describe this complex,
we must first determine the group Mor.SLi2;Gm/ of invertible functions on SLi2. According
to (14.68), every regular map SLi2!Gm sending e to e is a homomorphism. But there are
no nontrivial homomorphism SL2!Gm because SL2 is perfect. Therefore,

C i .SL2;Gm/D k�;

and as in the computation of H i .Ga;Gm/,

H 0
0 .SL2;Gm/D k�

H i
0.SL2;Gm/D 0; i > 0. 2

l. Classification of the split reductive groups of semisimple rank 1

PROPOSITION 21.54. For every multiplicative isogeny G ! PGL2 of connected group
varieties, there exists a unique homomorphism SL2! G making the following diagram
commute

SL2

G PGL2 :

�

PROOF. The homomorphism G0 DG�PGL2 SL2! SL2 is surjective with finite multiplica-
tive kernel. If k has odd characteristic, thenG0 is smooth, and the restriction of the morphism
to G0ı has a section. If k is perfect, the restriction to G0ıred! SL2 has a section. We omit the
proof of the remaining case (k nonperfect of characteristic 2). Let ';'0 be two such maps;
then g 7! '.g/='0.g/ is trivial because SL2 has no finite quotients. 2
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THEOREM 21.55. Every split reductive group G of semisimple rank 1 is isomorphic to
exactly one of the groups

Grm�SL2; Grm�GL2; Grm�PGL2; r 2 N:

FIRST PROOF

In the exact sequence
e!RG!G!G=RG! e (151)

RG is a torus and G=RG is a split semisimple group of rank 1. According to (21.44), there
is a surjective homomorphism G=RG! PGL2 with kernel the centre Z of G=RG. Now
the composed map G! PGL2 realizes G as an extension of PGL2 by an extension of Z by
RG. Thus, we see that G arises as extension of PGL2 by a split group of multiplicative type,
and so it remains to classify such extensions.

PROPOSITION 21.56. Let D be an algebraic group of multiplicative type. Then

Hom.�2;D/' Ext1.PGL2;D/:

PROOF. We use the exact sequence

e! �2! SL2! PGL2! e

to deduce this from (21.53). See SHS, Exp. 10, 1.5.1, p.290-2. The idea is to use

Hom.PGL2;D/! Hom.SL2;D/! Hom.�2;D/! Ext1.PGL2;D/! 0:

In fact, defines
Hom.�2;D/! Ext1.PGL2;D/

explicitly, and then defines an inverse.
Alternatively, we can argue directly as in (20.28). Let f W�2!D be a homomorphism.

Define E.f / to be the cokernel of the homomorphism

x 7! .x;f .x�1/W�2! SL2�D.

Then E.f / is a central extension of PGL2 by D.
On the other hand, let hWG0! PGL2 be a central extension of G by D. Then � W QG!G

factors through h,
QG

f
�!G0!G,

and the factorization is unique (cf. 20.5). The restriction of f to �1.G/ maps into D.
These operations are inverse. 2

Thus, the extensions of PGL2 are classified by the elements of

Hom.�2;D/
14.9
' Hom.X.D/;Z=2Z/.

Let � be a homomorphism X.D/! Z=2Z:There are three cases to consider.
In the first case �D 0. This corresponds to the trivial extension

e!D!D�PGL2
q
�! PGL2! e
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In the second case, there exists a decomposition X.D/DN ˚Z such that �jN D 0 and
�jZ is the quotient map Z! Z=2Z. This corresponds to the extension

e!D.N/!D.N/�GL2
q
�! PGL2! e

with q the obvious projection onto PGL2.
In the final case, there exists a decomposition X.D/DN ˚Z=2Z such that �jN D 0

and �jZ=2ZD id . This corresponds to the extension

e!D.N/!D.N/�SL2
q
�! PGL2! e

with q the obvious projection onto PGL2.

SECOND PROOF (USING 20.13)

Let G be a split reductive group of semisimple rank 1. Then G=RG admits a universal
covering SL2!G=RG, which can be used to pull (151) back to an exact sequence

e!RG!G0! SL2! e:

Because SL2 is perfect, this extension splits, and so we have

RG�SL2 'G0!G

with RG a torus and G0!G a central isogeny with kernel e or �2. From this it is easy to
deduce the theorem.

THIRD PROOF

We use that SL2 is simply connected. Let T2 be the standard (diagonal) maximal torus in
SL2, and let ˛2 be the root diag.t; t�1/ 7! t2.

PROPOSITION 21.57. Let .G;T / be a split reductive group of semisimple rank 1. There
exists a homomorphism � W.SL2;T2/! .G;T / whose kernel is central and ˛ ı� D ˛2.
Moreover, � is unique up to an inner automorphism by an element of T2, and �.s/ normalizes
T .

By “an inner automorphism by an element of T2” we allow (150).

PROOF. Let RDRG D .ZG/t . We know that D.PGL2/D PGL2, and so there is an exact
sequence (14.72)

e!R\DG!R�DG!G! e

with R\DG finite. On dividing by R, we get a central isogeny DG!G=R, and hence a
central isogeny DG! PGL2 (21.5). As SL2 is simply connected, the canonical homomor-
phism SL2! PGL2 lifts to a homomorphism SL2!DG. 2

PROPOSITION 21.58. Every split reductive group G of semisimple rank 1 is isomorphic to
exactly one of the following:

T �SL2; T �GL2; T �PGL2 :

Here T is an arbitrary split torus.

PROOF. It follows from (21.57) that G is a quotient of T �SL2 by a finite central subgroup
schemeN . IfN � T �1, we get T 0�SL2 as the quotient; ifN � 1�SL2, we get T �PGL2
as the quotient; otherwise, we get T �GL2. 2
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m. Roots

THEOREM 21.59. Let .G;T / be a split reductive group of rank 1, and assume that G is not
solvable.

(a) There exists an ˛ 2X�.T / such that

gD t˚g˛˚g�˛

with dimg˛ D 1D dimg�˛.

(b) There exists a connected unipotent subgroup variety U˛ (resp. U�˛) with Lie algebra
g˛ (resp. g�˛).

(c) There exists an isomorphism uWGa! U˛, and for every such isomorphism

t �u.a/ � t�1 D u.˛.t/a/; all t 2 T .R/, a 2Ga.R/ (R a k-algebra).

(d) The Borel subgroups of G containing T are B D T U˛ and B� D T U�˛; their Lie
algebras are t˚g˛ and t˚g�˛.

(e) The Weyl group W.G;T /.k/ has order 2; its nontrivial element s is represented by an
n 2NG.T /.k/, and for any such n, the orbit map

U˛!G=B; u 7! unB

is an isomorphism onto its image.

(f) The flag manifold B � P1 and G is semisimple and perfect of dimension 3.

PROOF. This has largely been proved (see especially the proofs of 21.43 and 21.44). For
example, U˛ is the group U.�/ where � is any isomorphism Gm! T . For statement (c),
U˛ �Ga because it is smooth, unipotent, and of dimension 1 (15.52). Let uWGa! U˛ be
an isomorphism. There is an action of T on Ga such that u.t �x/D tu.x/t�1. This action is
linear because conjugation respects the group structure. Therefore t �x D �.t/x for some
character � of Gm, and tu.x/t�1 D u.�.t/x/. On applying Lie, we see that T acts on g˛
through the character �. But we know that T acts on g˛ through ˛, and so �D ˛. 2

EXAMPLE 21.60. Let T be the standard (diagonal) torus in G D SL2. The Lie algebra g of
SL2 is

sl2 D

��
a b

c d

�
2M2.k/

ˇ̌̌̌
aCd D 0

�
;

and T acts on g by conjugation,�
t 0

0 t�1

��
a b

c �a

��
t�1 0

0 t

�
D

�
a t2b

t�2c �a

�
:

Therefore
sl2 D t˚g˛˚g�˛

with ˛ the character diag.t; t�1/ 7! t2 and

g˛ D

��
0 �

0 0

��
g�˛ D

��
0 0

� 0

��
:
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Let U˛ D
��
1 �

0 1

��
. Then Lie.U˛/D g˛ , and B D T U is a Borel subgroup of SL2. Note

that �
t 0

0 t�1

��
1 a

0 1

��
t�1 0

0 t

�
D

�
1 t2b

0 1

�
;

and so the map a 7!
�
1 a

0 1

�
is an isomorphism of algebraic groups uWGa! U with the

property that

t �u.a/ � t�1 D u.˛.t/a/; all t 2 T .R/; a 2Ga.R/: (152)

The Weyl group W.G;T /.k/D f1;sg where s is represented by the matrix nD
�
0 1

�1 0

�
.

LEMMA 21.61. Let .G;T / be a split reductive group of semisimple rank 1, and let H be a
smooth algebraic subgroup of G normalized by T . If g˛ � Lie.H/ for some root ˛, then
U˛ �H .

PROOF. Because T normalizes H , TH is a smooth algebraic subgroup of G. Suppose that
U˛ � TH ; then the image of U˛ in TH=H ' T=T \H is trivial, and so U˛ �H . Thus we
may replace H with TH and assume T �H .

Note that dimG D dimT C2. As Lie.H/� t˚g˛ , the dimension of H is dimT C1 or
dimT C2. In the second case, H DG and so H � U˛. In the first case, we let B denote a
Borel subgroup of H containing T . If B D T , then B is nilpotent, and H D B D T , which
contradicts the hypothesis. Thus H D B , and so H is a connected solvable subgroup variety
of G of maximum dimension dim.G/�1. Therefore it is a Borel subgroup of G, and so it
contains U˛ because its Lie algebra contains g˛. 2

THEOREM 21.62. Let .G;T / be a split reductive group of semisimple rank 1.

(a) The derived group G0 of G has semisimple rank 1, and the map G0! G=RG is an
isogeny with kernel RG\G0.

(b) There exists an ˛ 2X�.T / such that

gD t˚g˛˚g�˛

with dimg˛ D 1D dimg�˛.

(c) There is a unique homomorphism u˛W.g˛/a ! G such that Lie.u˛/ is the given
inclusion g˛! g.

(d) LetU˛D Im.u˛/. ThenU˛ is the unique subgroup ofG isomorphic to Ga, normalized
by T , and such that, for every homomorphism uWGa! U˛;

t �u.a/ � t�1 D u.˛.t/a/; all t 2 T .R/, a 2Ga.R/ .R a k-algebra/:

(e) The Borel subgroups of G containing T are B˛ D T U˛ and B�˛ D T U�˛ . Their Lie
algebras are b˛ D t˚g˛ and b�˛ D t˚g�˛.

(f) Let T 0 be the unique maximal torus in G0 contained in T . There exists a unique
˛_ 2X�.T

0/�X�.T / such that h˛;˛_i D 2.
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(g) The Weyl group W.G;T /.k/ contains exactly one nontrivial element s˛, and

s˛.�/D ��h�;˛
_
i˛

s˛.�/D ��h˛;�i˛
_;

for all � 2X�.T / and � 2X�.T /.

(h) The algebraic group G is generated by T , U˛, and U�˛.

PROOF. The algebraic subgroup RG\G0 is finite, and the sequence

e!RG\G0!RG�G0!G! e

is exact because G=RG ' PGL2 is perfect (14.72). From this the statement (a) follows. The
remaining statements follow from (21.59) applied to .G0;T 0/, except for the uniqueness of
U˛, which follows from the lemma.

Alternatively, the unscrupulous can prove it case-by-case using the classification (21.58).
(Readers should check this; in particular, they should find the coroot ˛_ in each case.) 2

n. Forms of GL2

Let G be a reductive group of semisimple rank 1, and let T be a maximal torus in G. Then
T splits over ksep, and so G is a ksep=k-form of one of the groups in (21.55). Thus, to
determine all reductive groups of semisimple rank 1 over k, it remains to determine the
k-forms of these groups. For GL2, this is easy.

FORMS OF M2.k/: QUATERNION ALGEBRAS

The k-forms of M2.k/ are the quaternion algebras over k. Every quaternion algebra splits
over a separable extension of k. Every automorphism of of M2.k/ is inner, and so its
automorphism group is PGL2.k/. The isomorphism classes of the forms of M2.k/ are
classified by H 1.k;PGL2/ (Galois cohomology).

FORMS OF GL2

Because Aut.GL2/D PGL2, the isomorphism classes of the forms of GL2 are also classified
by H 1.k;PGL2/. For each quaternion algebra A over k,

GAWR .A˝R/�

is a k-form of GL2, and the cohomology classes of A and GA agree. Therefore this functor
induces a bijection from the set of isomorphism classes of quaternion algebras over k to the
set of isomorphism classes of k-forms of GL2.





CHAPTER 22
Reductive groups

In this chapter, we reap the benefit of our hard work in the earlier chapters to give a complete
description of the structure of split reductive groups.

Usually in this chapter R is a set of roots; if it is a k-algebra we say so.

a. Semisimple groups

THE RADICAL

22.1. Let G be a connected group variety over k. Recall (8.39) that, among the connected
normal solvable subgroup varieties of G there is a greatest one, containing all other such
subgroup varieties. This is the radical R.G/ of G.

22.2. For example, if G is the group variety of invertible matrices
�
A B
0 C

�
with A of size

m�m and C of size n�n, then R.G/ is the subgroup of matrices of the form
�
aIm B
0 cIn

�
with aIm and cIn nonzero scalar matrices. The quotient G=RG is the semisimple group
SLm�SLn.

22.3. The formation of R.G/ commutes with separable field extensions k0=k (not nec-
essarily finite). It suffices to prove this for a finite extension. We may suppose that k0 is a
finite Galois extension of k with Galois group � . By uniqueness, R.Gk0/ is stable under the
action of � , and therefore arises from a subgroup variety H of G (1.41). Clearly,

R.G/k0 �R.Gk0/DHk0 ;

and so R.G/�H . As Hk0 is connected normal and solvable, so also is H (5.48, 8.29), and
so R.G/DH by maximality.

SEMISIMPLE ALGEBRAIC GROUPS

22.4. Recall (8.39) that a connected group variety G over an algebraically closed field is
semisimple if R.G/D e, and a connected group variety G over a field k is semisimple if
Gkal is semisimple.

22.5. Let G be a group variety over k. If G is semisimple, then Gk0 is semisimple for all
fields k0 containing k; conversely, if Gk0 is semisimple for some field k0 containing k, then
G is semisimple. This is obvious from the definition [actually, not quite; should prove (22.3)
for not necessarily algebraic field extensions].

381
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PROPOSITION 22.6. Let G be a group variety over a perfect field k.
(a) The group G is semisimple if and only if RG D e.

(b) The quotient G=RG is semisimple.

PROOF. (a) This follows from (22.3).
(b) Let N be the inverse image of R.G=RG/ in G. Then N is a normal algebraic

subgroup of G, and it is an extension

e!RG!N !R.G=RG/! e:

of smooth connected solvable algebraic groups. Therefore it is smooth connected and
solvable, and so RG DN . Hence R.G=RG/D e. 2

PROPOSITION 22.7. Let G be a connected group variety over k. If G is semisimple, then
every smooth connected normal commutative algebraic subgroup is trivial; the converse is
true if k is perfect.

PROOF. Suppose that G is semisimple, and let H be a connected normal commutative
subgroup variety of G. Then Hkal �RGkal D e, and so H D e.

For the converse, suppose that k is perfect and that G is not semisimple. Then RG ¤ e
(22.6), and there is a chain of distinct subgroup varieties

RG �D1.RG/�D2.RG/� �� � �Dr.RG/D e

of G with r � 1. As RG is smooth and connected, each group Dn.RG/ is smooth and
connected; moreover Dn.RG/ is characteristic in RG (8.21), hence normal in G, and each
quotient DnG=DnC1G is commutative (8.21). The last nontrivial term in the chain is a
connected normal commutative subgroup variety of G. 2

22.8. If one of the conditions in (22.7) is dropped, then a semisimple group may have such
an algebraic subgroup. Let p D char.k/.

(a) The subgroup Z=2ZD f˙I g of SL2 (p ¤ 2/ is normal, commutative, and smooth,
but not connected.

(b) The subgroup �2 of SL2 (p D 2) is connected, normal, and commutative, but not
smooth.

(c) The subgroup U2 D
˚�
1 �
0 1

�	
of SL2 is connected, commutative, and smooth, but not

normal.

(d) The subgroup feg � SL2 of SL2�SL2 is connected, normal, and smooth, but not
commutative.

22.9. Let G D SLn. Let p be the characteristic exponent of k, and set n D mpr with
gcd.m;p/D 1. Then Z.G/D �n; Z.G/ı D �pr ; Z.G/red D �m, and R.G/DZ.G/ıred D

1.

b. Reductive groups

THE UNIPOTENT RADICAL

22.10. Let G be a connected group variety over k. Recall (8.41) that, among the connected
normal unipotent subgroup varieties of G there is a greatest one, containing all other such
subgroup varieties. This is the unipotent radical Ru.G/ of G.
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22.11. For example, if G is the group variety of invertible matrices
�
A B
0 C

�
with A of size

m�m and C of size n�n, then RuG is the subgroup of matrices of the form
�
Im B
0 In

�
. The

quotient G=RuG is isomorphic to the reductive group GLm�GLn.

22.12. The formation of Ru.G/ commutes with separable field extensions. The proof of
this is the same as for R.G/ (22.3).

REDUCTIVE ALGEBRAIC GROUPS

22.13. Recall (8.41) that a connected group variety G over an algebraically closed field is
reductive if Ru.G/D e, and a connected group variety G over a field k is reductive if Gkal

is reductive.

Sometimes a group variety G is said to be reductive if Gı is reductive in the above sense.
For us, reductive group varieties are always connected.

22.14. Let G be a group variety over k. If G is reductive, then Gk0 is reductive for all
fields k0 containing k; conversely, if Gk0 is reductive for some field k0 containing k, then G
is reductive. This is obvious from the definition.

22.15. Let G be a connected group variety over a perfect field k.

(a) The group G is reductive if and only if RuG D e.

(b) The quotient G=RuG is reductive.

The proof of this is the same as that of (22.6).

22.16. Let G be a reductive group. The centre Z.G/ of G is of multiplicative type, and
R.G/ is the greatest subtorus ofZ.G/. The formation ofR.G/ commutes with all extensions
of the base field. This is proved in (19.20).

The centre of a reductive group need not be connected (e.g., SL2, p¤ 2/ or smooth (e.g.,
SL2, p D 2).

22.17. Let G be a connected group variety over a field k. If G is reductive, then every
connected normal commutative subgroup variety is a torus; the converse is true if k is perfect.
The proof of this is the same as that of (22.7).

PROPOSITION 22.18. A normal unipotent algebraic subgroup U of an algebraic group G
acts trivially on every semisimple representation of G.

PROOF. Let V be a semisimple representation ofG, and letW be a simple subrepresentation
of V . Because U is normal,W U is stable under G, and because U is unipotent, it is nonzero.
Therefore W U DW . As V is a sum of its simple subrepresentations, it follows that U acts
trivially on V . 2

COROLLARY 22.19. If a connected group variety G admits a faithful semisimple represen-
tation, then its unipotent radical is trivial.

PROOF. The unipotent radical acts trivially on the faithful representation, and hence is
trivial. 2

COROLLARY 22.20. A connected group variety G is reductive if it admits a faithful
semisimple representation that remains semisimple over kal.
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PROOF. The hypothesis implies that the unipotent radical of Gkal is trivial. 2

Proposition 22.18 shows that, for a connected group variety G,

RuG �
\

.V;r/ simple

Ker.r/:

If k has characteristic zero, then all representations of a reductive group are semisimple
(22.138), and so equality holds. In the general case, let .V;r/ be a faithful representation of
G, and let V D V0 � V1 � �� �Vs�1 � Vs D 0 be a filtration of V by stable subspaces such
that .Vi=ViC1; ri / is simple for all i . Then

T
Ker.ri / is a normal unipotent subgroup of G,

and so it is contained in RuG if it is smooth and connected.

EXAMPLE 22.21. The group varieties GLn, SLn, SOn, and Sp2n are reductive, because
they are connected and their standard representations are simple and faithful.

MAXIMAL TORI IN REDUCTIVE GROUPS

22.22. Let G be a reductive algebraic group. The centralizer of a torus in G is reductive;
in particular, it is smooth and connected (19.19). A torus T in G is maximal if and only if
CG.T /D T (19.19). As the formation of centralizers commutes with extension of the base
field, we see that maximal tori in reductive groups remain maximal after extension of the
base field.

22.23. Every connected group variety contains a maximal torus (18.65). Any two split
maximal tori in a reductive group G are conjugate by an element of G.k/ (18.68).

22.24. Let T be a maximal torus in a reductive groupG. The Weyl group ofG with respect
to T is

W.G;T /DNG.T /=CG.T /:

As NG.T /ı centralizes T (by rigidity), we see that W.G;T / is the finite étale group
�0.NG.T //.

EXAMPLE 22.25. The torus Dn is maximal in GLn because Dn.ksep/ is its own centralizer
in GLn.ksep/. In fact, let A 2Mn.R/ for some k-algebra R. If

.I CEi i /AD A.I CEi i /

then aij D 0 D aj i for all j ¤ i , and so A must be diagonal if it commutes with all the
matrices I CEi i .

The conjugacy classes of maximal tori in GLn are in natural one-to-one correspondence
with the isomorphism classes of étale k-algebras of degree n. The (unique) conjugacy class
of split maximal tori corresponds to the étale k-algebra k� � � ��k (n-copies). See (18.69).

NOTES

22.26. In SGA 3, XIX, it is recalled that the unipotent radical of a smooth connected affine
group scheme over an algebraically closed field is the greatest smooth connected normal
unipotent subgroup of G (ibid. 1.2). A smooth connected affine group scheme over an
algebraically closed field is defined to be reductive if its unipotent radical is trivial (ibid. 1.6).
A group scheme G over a scheme S is defined to be reductive if it is smooth and affine over
S and each geometric fibre of G over S is a connected reductive group (ibid. 2.7). When S
is the spectrum of field, this definition coincides with our definition.
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22.27. In SHS (Exp. 5, p.188), a reductive algebraic group is defined as follows:
Let k be an algebraically closed field, and let G be an algebraic group over k.
We say that G is reductive if it is affine and smooth over k and if it contains no
normal subgroup isomorphic to Gna with n > 0.

LetG be a connected group varietyG over an algebraically closed field. IfG is not reductive
(in our sense), then it contains a normal algebraic subgroup of the form Gra, r > 0. To see
this, note that if Ru.G/¤ e, then it has a centre Z of dimension � 1. Let H be the kernel
of the Verschiebung on Z (SHS Exp 11). Then H ıred is stable under all automorphisms of Z,
or RuG, or G. Therefore H ıred is normal in G. After SHS Exp 11, H ıred is isomorphic to Gra.
(See also 15.51, 15.) Thus our definition of a reductive group coincides with that in SHS
except that SHS doesn’t require the group to be connected.

22.28. Borel and Tits (1965) define the unipotent radical Ru.G/ of a k-algebraic group
G to be the greatest connected unipotent closed normal subgroup of G, and they say that
G is reductive if Ru.Gı/ D e. By the first definition, I think they mean that Ru.G/ is
the abstract subgroup of Gı.˝/, where ˝ is a universal field, with these properties. If so,
their definitions agree with our definitions. Since they decline to say what they mean by an
“algebraic group over k”, instead offering the reader a choice of three possibilities including
an “affine algebraic group scheme geometrically reduced over k”, it is difficult to interprete
many of their statements.

22.29. Let G be a semisimple group over an algebraically closed field k, and let g;g0 2
G.k/. If g and g0 are conjugate in G.k/, then r.g/ and r.g0/ are conjugate in GL.V / for
every simple representation .V;r/ of G. Is the converse true? The answer is yes if the
characteristic of k is zero or “big” (depending on G), but the answer is (perhaps) not known
in general (Steinberg 1978).

c. The roots of a split reductive group

In the theory of reductive groups, there are only two possibilities: either one proves every-
thing case-by-case or one uses roots. The second is usually much more efficient.

SPLIT REDUCTIVE GROUPS

A reductive group is split1 if it contains a split maximal torus.2 Every reductive group over a
separably closed field is split because it contains a maximal torus (22.23) and every torus
over a separably closed field is split (14.25)).

We show later that, for every reductive group G over an algebraically closed field k and
subfield k0 of k, there exists a split reductive group G0 over k0, unique up to isomorphism,
that becomes isomorphic to G over k.

DEFINITION 22.30. A split reductive group over k is a pair .G;T / consisting of a reductive
group G and a split maximal torus T in G.

1Strictly, one should say that it is “splittable” (Bourbaki).
2Don’t confuse “split maximal torus” with “maximal split torus”. Every algebraic group contains a maximal

split torus. The maximal split tori in a connected group variety G are conjugate and their common dimension is
called the k-rank of G. The rank of G is the kal-rank of Gkal . A reductive group is split if its k-rank equals its
rank. Every maximal split torus in a split reductive group is a maximal torus.
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THE ROOTS OF A SPLIT REDUCTIVE GROUP

Let .G;T / be a split reductive group. Let

AdWG! GLg; gD Lie.G/;

be the adjoint representation (12.19). Then T acts on g, and because T is a split torus, g
decomposes into a direct sum of eigenspaces for T (14.12)

gD g0˚
M

˛
g˛

where g0 is the subspace on which T acts trivially, and g˛ is the subspace on which T
acts through a nontrivial character ˛. The nontrivial characters ˛ of T occurring in this
decomposition are called the roots of .G;T /. They form a finite subset R.G;T / of X�.T /.3

By definition
g0 D gT D Lie.GT /

As Lie.G/T D Lie.GT / (12.31) and GT D CG.T /D T (19.19), we find that g0 D t where
tD Lie.T /,4 and so

gD t˚
M

˛
g˛.

LEMMA 22.31. Let .G;T / be a split reductive group. The action of W.G;T / on X�.T /
stabilizes R.G;T /.

PROOF. Let s 2W.G;T /.kal/, and let n 2 G.kal/ represent s. Then s acts on X�.T / (on
the left) by

.s�/.t/D �.n�1tn/; t 2 T .kal/:

Let ˛ be a root. Then, for x 2 .g˛/kal and t 2 T .kal/,

t .nx/D n.n�1tn/x D s.˛.s�1ts/x/D ˛.s�1ts/sx;

and so T acts on sg˛ through the character s˛, which must therefore be a root. 2

EXAMPLE: GL2

22.32. We take T be the split maximal torus

T D

��
t1 0

0 t2

� ˇ̌̌̌
t1t2 ¤ 0

�
:

Then
X�.T /D Z�1˚Z�2

where a�1Cb�2 is the character

diag.t1; t2/ 7! diag.t1; t2/a�1Cb�2 D ta1 t
b
2 :

3There are several different notations used for the roots, R.G;T /, ˚.G;T /, and 	.G;T / all seem to
be used, often by the same author. Conrad et al. 2010 write R D ˚.G;T / in 3.2.2, p. 94, and R.G;T / D
.X.T /;˚.G;T /;X�.T /;˚.G;T /

_/ in 3.2.5, p. 96.
4Usually, the Lie algebra of T is denoted by h.
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The Lie algebra g of GL2 is gl2 DM2.k/ with ŒA;B� D AB �BA, and T acts on g by
conjugation, �

t1 0

0 t2

��
a b

c d

��
t�11 0

0 t�12

�
D

 
a t1

t2
b

t2
t1
c d

!
:

Write Eij for the matrix with a 1 in the ij th-position, and zeros elsewhere. Then T acts
trivially on g0 D kE11C kE22, through the character ˛ D �1 ��2 on g˛ D kE12, and
through the character �˛ D �2��1 on g�˛ D kE21.

Thus, R.G;T /D f˛;�˛g with ˛D �1��2. When we use �1 and �2 to identifyX�.T /
with Z˚Z, the set R becomes identified with f˙.e1� e2/g:

EXAMPLE: SL2

22.33. We take T to be the split torus

T D

��
t 0

0 t�1

��
:

Then
X�.T /D Z�

where � is the character diag.t; t�1/ 7! t . The Lie algebra g of SL2 is

sl2 D

��
a b

c d

�
2M2.k/

ˇ̌̌̌
aCd D 0

�
;

and T acts on g by conjugation,�
t 0

0 t�1

��
a b

c �a

��
t�1 0

0 t

�
D

�
a t2b

t�2c �a

�
Therefore, the roots are ˛ D 2� and �˛ D�2�. When we use � to identify X�.T / with Z,
the set R.G;T / becomes identified with f2;�2g:

EXAMPLE: PGL2

22.34. Recall that this is the quotient of GL2 by its centre, PGL2 D GL2 =Gm. For all
local k-algebras R, PGL2.R/D GL2.R/=R�. We take T to be the torus

T D

��
t1 0

0 t2

� ˇ̌̌̌
t1t2 ¤ 0

����
t 0

0 t

�ˇ̌̌̌
t ¤ 0

�
:

Then
X�.T /D Z�

where � is the character diag.t1; t2/ 7! t1=t2. The Lie algebra g of PGL2 is

gD pgl2 D gl2=fscalar matricesg;

and T acts on g by conjugation:�
t1 0

0 t2

��
a b

c d

��
t�11 0

0 t�12

�
D

 
a t1

t2
b

t2
t1
c d

!
:

Therefore, the roots are ˛ D � and �˛ D ��. When we use � to identify X�.T / with Z,
R.G;T / becomes identified with f1;�1g.
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EXAMPLE: GLn

22.35. We take T to be the torus

T D Dn D

( 
t1 0

:::
0 tn

! ˇ̌̌̌
ˇ t1 � � � tn ¤ 0

)
:

Then
X�.T /D

M
1�i�n

Z�i

where �i is the character diag.t1; : : : ; tn/ 7! ti . The Lie algebra g of gln is

gln DMn.k/ with ŒA;B�D AB �BA;

and T acts on g by conjugation:

 
t1 0

:::
0 tn

!0B@
a11 ��� ��� a1n
::: aij

:::
:::

:::
an1 ��� ��� ann

1CA
0@ t�11 0

:::
0 t�1n

1AD
0BBBB@

a11 ��� ���
t1
tn
a1n

::: ti
tj
aij

:::

:::
:::

tn
t1
an1 ��� ��� ann

1CCCCA :
Write Eij for the matrix with a 1 in the ij th-position, and zeros elsewhere. Then T acts

trivially on g0D kE11C�� �CkEnn and through the character ˛ij
def
D �i ��j on g˛ij D kEij .

Therefore
R.G;T /D f˛ij j 1� i;j � n; i ¤ j g:

When we use the �i to identify X�.T / with Zn, then R.G;T / becomes identified with

fei � ej j 1� i;j � n; i ¤ j g

where e1; : : : ; en is the standard basis for Zn.

d. The centre of a reductive group

We explain how to compute the centre of a reductive group from its roots.

PROPOSITION 22.36. Let G be a reductive algebraic group.

(a) Every maximal torus T in G contains its centre Z.G/.

(b) Let T be a maximal torus in G. The kernel of AdWT ! GLg is Z.G/.

PROOF. (a) Clearly Z.G/� CG.T /, but CG.T /D T (see 22.22).
(b) Clearly,Z.G/�Ker.Ad/, and soZ.G/�Ker.Ad jT /. The quotient Ker.Ad/=Z.G/

is a unipotent algebraic group (15.25). Therefore the image of Ker.Ad jT / in Ker.Ad/=Z.G/
is trivial (15.15), which implies that Ker.Ad jT /�Z.G/. 2

From the proposition,

Z.G/D Ker.Ad jT /D
\

˛2R.G;T /
Ker.˛/:
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For example,

Z.GL2/D Ker.�1��2/D fdiag.t1; t2/ j t1t2 ¤ 0; t1 D t2g

'GmI
Z.SL2/D Ker.2�/D

˚
diag.t; t�1/ j t2 D 1

	
' �2I

Z.PGL2/D Ker.�/

D 1I

Z.GLn/D
\

i¤j
Ker.�i ��j /

D fdiag.t1; : : : ; tng j t1 � � � tn ¤ 0; ti D tj if i ¤ j g

'Gm:

On applying X� to the exact sequence

0!Z.G/! T
t 7!.˛.t//˛
�������!

Y
˛2R.G;T /

Gm (153)

we get an exact sequenceM
˛2R

Z
.m˛/˛ 7!

P
m˛˛

�����������!X�.T /!X�.Z.G//! 0

(see 14.17), and so

X�.Z.G//D
X�.T /

fsubgroup generated by R.G;T /g
(154)

For example,

X�.Z.GL2//' Z2=Z.e1� e2/' Z by .a1;a2/ 7! a1Ca2I

X�.Z.SL2//' Z=.2/I
X�.Z.PGL2//' Z=ZD 0I

X�.Z.GLn//' Zn
.X

i¤j
Z.ei � ej / ' Z by .ai / 7!

P
ai .

e. Root data and root systems

We briefly introduce the notions of a root datum and of a root system. These are explained
in more detail in Chapter 23, which is logically independent of the rest of the book.

Let X be a free Z-module of finite rank. We let X_ denote the linear dual Hom.X;Z/
of X and h ; iWX �X_! Z the perfect pairing hx;f i D f .x/.

DEFINITION 22.37. A root datum is a triple R D .X;R;˛ 7! ˛_/ in which X is a free
abelian group of finite rank, R is a finite subset of X , and ˛ 7! ˛_ is an injective map from
R into the dual X_ of X , satisfying

(rd1) h˛;˛_i D 2 for all ˛ 2R;

(rd2) s˛.R/�R for all ˛ 2R, where s˛ is the homomorphism X !X defined by

s˛.x/D x�hx;˛
_
i˛; x 2X , ˛ 2R;
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(rd3) the group generated by the automorphisms s˛ of X is finite (it is denoted W.R/ and
called the Weyl group of R).

Note that (rd1) implies that
s˛.˛/D�˛;

and that the converse holds if ˛ ¤ 0. If, for every ˛ 2 R, the only multiples of ˛ in R are
˙˛, then the root datum is said to be reduced. Because s˛.˛/D�˛,

s˛.s˛.x//D s˛.x�hx;˛
_
i˛/D .x�hx;˛_i˛/�hx;˛_is˛.˛/D x;

i.e.,
s2˛ D 1:

Clearly, also s˛.x/D x if hx;˛_i D 0. Thus, s˛ should be considered an “abstract reflection
in the hyperplane orthogonal to ˛_”. We let R_ denote f˛_ j ˛ 2 Rg. The elements of R
and R_ are called the roots and coroots of the root datum (and ˛_ is the coroot of ˛).

DEFINITION 22.38. Let V be a finite-dimensional vector space over Q. A subset R of V is
a root system in V if

(rs1) R is finite, spans V , and does not contain 0.

(rs2) for each ˛ 2R, there exists a vector ˛_ 2 V _ such that

˘ h˛;˛_i D 2,
˘ s˛.R/�R, where s˛ is the homomorphism V ! V be defined by

s˛Wx 7! x�hx;˛_i˛,

˘ hˇ;˛_i 2 Z for all ˇ 2R.

The map s˛ , and hence the vector ˛_, are uniquely determined by ˛ (23.4). The map s˛
is the reflection with vector ˛.

DEFINITION 22.39. Let R be a root system in V .

(a) The root lattice Q.R/ is the Z-submodule of V spanned by R, Q.R/D ZR;

(b) The weight lattice P.R/ is the Z-submodule of V defined by

P.R/D fv 2 V j hv;˛_i 2 Z for all ˛ 2Rg:

Both Q.R/ and P.R/ are full lattices in V , and the last condition in (rs2) says that

Q.R/� P.R/:

BecauseP.R/ andQ.R/ are full lattices in the same Q-vector space, the quotientP.R/=Q.R/
is finite.

A root datum .X;R;˛ 7! ˛_/ is semisimple if R spans the Q-vector space XQ.

PROPOSITION 22.40. If .X;R;˛ 7! ˛_/ is a semisimple root datum, then .XQ;R/ is a root
system. Conversely, if .V;R/ is a root system, then, for any choice of a lattice X in V such
that

Q.R/�X � P.R/;

.X;R;˛ 7! ˛_/ is a semisimple root datum.
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PROOF. Let .X;R;˛ 7!˛_/ be a semisimple root datum. Certainly 0…R because h˛;˛_iD
2, and hˇ;˛_i 2 Z because ˛_ 2X_. Therefore .Q˝ZX;R/ is a root system.

Let .V;R/ be a root system, and let X be a lattice between Q and P . As noted above,
˛_ is uniquely determined by ˛, and so there is a well-defined map ˛ 7! ˛_. The group of
automorphisms of V (hence of X ) generated by the s˛ acts faithfully on R, and so it is finite.
Therefore .X;R;˛ 7! ˛_/ is a root datum (obviously semisimple). 2

DEFINITION 22.41. A diagram is a root system .V;R/ together with a lattice X ,

Q.R/�X � P.R/:

Thus, to give a semisimple root datum is the same as giving a diagram.
Let .X;R;˛ 7! ˛_/ be a root datum, not necessarily semisimple. Then R is a root

system in the Q-subspace V of X ˝Q spanned by R. To recover the map ˛ 7! ˛_ from
.V;R/, we need a section to .X˝Q/_! V _.

f. The root datum of a split reductive group

LEMMA 22.42. Let T be a split torus. If � is a nonzero character of T then S DKer.�/ı is a
subtorus of T of codimension one; moreover S DKer.m�/ı for allm¤ 0, and S DKer.m�/
for some m. Every subtorus S of codimension is the kernel of a character of T , and if
S D Ker.�/ı D Ker.�0/ı, then m�D n�0 for some nonzero integers m;n.

PROOF. Easy exercise using the duality between diagonalizable algebraic groups and Z-
modules (14.9). 2

THEOREM 22.43. Let .G;T / be a split reductive group, and let ˛ be a root of .G;T /. Let
T˛ D Ker.˛/ıred, and let G˛ D CG.T˛/.

(a) The pair .G˛;T˛/ is a split reductive group of semisimple rank 1;

Lie.G˛/D t˚g˛˚g�˛

and dimg˛ D 1D dimg�˛.

(b) There is a unique homomorphism u˛W.g˛/a ! G such that Lie.u˛/ is the given
inclusion g˛! g.

(c) Let U˛ D Im.u˛/. Then U˛ is the unique subgroup U˛ of G isomorphic to Ga,
normalized by T , and such that, for every isomorphism uWGa! U˛,

t �u.a/ � t�1 D u.˛.t/a/, all t 2 T .R/, a 2Ga.R/: (155)

(d) The algebraic group G˛ is generated by T , U˛, and U�˛.

(e) The group W.G˛;T /.k/ contains exactly one nontrivial element s˛, and there is a
unique ˛_ 2X�.T / such that

s˛.x/D x�hx;˛
_
i˛; for all x 2X�.T /:

Moreover, h˛;˛_i D 2.
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PROOF. Our assumption that there exists a root implies that G ¤ T .
(a) That G˛ is a (connected) reductive group is a particular case of (19.19c). Moreover,

Lie.G˛/D Lie.GS˛ / 12.31
D gS˛ D t˚g˛˚g�˛: (156)

Clearly T˛ � Z.G˛/ and so T˛ � R.G˛/. It follows that T=R.G˛/ is a maximal torus in
G˛=R.G˛/ of dimension 0 or 1. If the dimension were 0, then T would be central in G˛,
i.e., G˛ � CG.T /D T , and so G˛ D T ; then Lie.G˛/D t contradicting (156). Therefore
.G˛;T / has semisimple rank 1, and we have proved (a).

(b) This follows from (a) and (21.62).
(c) That U˛ has this property follows from (a) and (21.62). Let H be a second algebraic

subgroup of G with this property. It suffices to show that H � U˛ , and for this we may pass
to the algebraic closure of k. Then .H \G˛/ıred � U˛ because it is normalized by T and its
Lie algebra contains g˛, and so we can apply (21.61).

(d,e) These statements follow from (a) and (21.62). 2

The cocharacter ˛_ is called the coroot of ˛, and the group U˛ in (a) is called the root
group of ˛. Thus the root group U˛ of ˛ is the unique copy of Ga in G normalized by T
and such that T acts on it through ˛.

THEOREM 22.44. Let .G;T / be a reductive group. For each ˛ 2 R.G;T /, let ˛_ be the
element of X�.T / defined by 22.43(e). Then .X�.T /;R.G;T /;˛ 7! ˛_/ is a reduced root
datum.

PROOF. Condition (rd1) holds by (b). The s˛ attached to ˛ lies in W.G˛;T /.k/ �
W.G;T /.k/, and so stablizes R by Lemma 22.31. Finally, all s˛ lie in the Weyl group
W.G;T /.k/, and so they generate a finite group. 2

EXAMPLE 22.45. Let G D GLn, and let ˛ D ˛12 D �1��2. Then

T˛ D fdiag.x;x;x3; : : : ;xn/ j xxx3 : : :xn ¤ 1g

and G˛ consists of the invertible matrices of the form0BBBBB@
� � 0 0

� � 0 0

0 0 � 0
: : :

:::

0 0 0 � � � �

1CCCCCA :

Clearly

n˛ D

0BBBBB@
0 1 0 0

1 0 0 0

0 0 1 0
: : :

:::

0 0 0 � � � 1

1CCCCCA ;
represents the unique nontrivial element s˛ of W.G˛;T /. It acts on T by

diag.x1;x2;x3; : : : ;xn/ 7�! diag.x2;x1;x3; : : : ;xn/:
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For x Dm1�1C�� �Cmn�n,

s˛x Dm2�1Cm1�2Cm3�3C�� �Cmn�n

D x�hx;�1��2i.�1��2/:

Thus (155), p.391, holds if and only if ˛_ is taken to be �1��2.
In general, the coroot ˛_ij of ˛ij is

t 7! diag.1; : : : ;1;
i
t ;1; : : : ;1;

j

t�1;1; : : : ;1/:

Clearly h˛ij ;˛_ij i D ˛ij ı˛
_
ij D 2.

SEMISIMPLE AND TORAL ROOT DATA

It is possible to determine whether a reductive group is semisimple or a torus from its
root datum. Recall that a root datum .X;R;˛ 7! ˛_/ is semisimple if the subgroup of X
generated by R is of finite index. The root datum is toral if R is empty.

PROPOSITION 22.46. A split reductive group is semisimple if and only if its root datum is
semisimple.

PROOF. A reductive group is semisimple if and only if its centre is finite, and so this follows
from (154), p. 389. 2

PROPOSITION 22.47. A split reductive group is a torus if and only if its root datum is toral.

PROOF. If the root datum is toral, then (154) shows that ZG D T . Hence G has semisimple
rank 0, and so it is a torus (21.3). Conversely, if G is a torus, then the adjoint representation
is trivial and so gD g0. 2

THE MAIN THEOREMS CONCERNING SPLIT REDUCTIVE GROUPS AND ROOT

DATA

22.48. Let .G;T / be a split reductive group over a field k, with root datum R.G;T /. If
T 0 is a second split maximal torus, then T 0 is conjugate to T by an element g of G.k/.
Conjugation by g induces an isomorphism of root data R.G;T /!R.G;T 0/. Thus, to some
extend, the root datum depends only on G. See (18.68).

22.49. (Isomorphism theorem) Let .G;T / and .G0;T 0/ be split reductive groups. An
isomorphism T ! T 0 extends to an isomorphism G ! G0 if and only if it induces an
isomorphism R.G;T /! R.G0;T 0/ of the root data. Thus .G;T / is determined up to
isomorphism by its root datum. In fact, with the appropriate definitions, every isogeny of
root data (or even epimorphism of root data) arises from an isogeny (or epimorphism) of
reductive groups .G;T /! .G0;T 0/. See Section 22.l.

22.50. (Existence theorem) Let k be a field. Every reduced root datum arises from a split
reductive group .G;T / over k. Thus, the isomorphism classes of split reductive groups are
completely classified by their root data. See Chapter 25.
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ASIDE 22.51. (Deligne and Lusztig 1976, 1.1). “Suppose that in some category we are given a
family .Xi /i2I of objects and a compatible system of isomorphisms 'j i WXi �! Xj . This is as
good as giving a single object X, the “common value” or “projective limit” of the family. This
projective limit is provided with isomorphisms �i WX ! Xi such that 'j i ı �i D �j . We will use
such a construction to define the maximal torus T and the Weyl group W of a connected reductive
algebraic group G over k (algebraically closed).

As index set I , we take the set of pairs .B;T / consisting of a maximal torus T and a Borel
subgroup B containing T . For i 2 I , i D .B;T /, we take Ti D T , Wi DN.T /=T . The isomorphism
'j i is the isomorphism induced by adg where g is any element of G.k/ conjugating i into j ; these
elements g form a single right Ti -coset, so that 'j i is independent of the choice of g.

One similarly defines the root system of T , its set of simple roots, the action of W on T and the
fundamental reflections in W .”

g. The root data of the classical semisimple groups

We compute the root system attached to each of the classical almost-simple groups. In each
case the strategy is the same. We work with a convenient form of the group G in GLn.
We first compute the weights of the maximal torus of G on gln, and then check that each
nonzero weight occurs in g (in fact, with multiplicity 1). Then for each ˛ we find the group
G˛ centralizing T˛, and use it to find the coroot ˛_.

EXAMPLE (An): SLnC1.

Take T to be the maximal torus of diagonal matrices

diag.t1; : : : ; tnC1/; t1 � � � tnC1 ¤ 0:

Then

X�.T /D
L
i Z�i

ı
Z�;

�
�i Wdiag.t1; : : : ; tnC1/ 7! ti
�D

P
�i

X�.T /D
˚P

ai�i 2
L
i Z�i j

P
ai D 0

	
;

X
ai�i W t 7! diag.ta1 ; : : : ; tan/;

with the pairing such that
h�j ;

P
i ai�i i D aj :

Write N�i for the class of �i inX�.T /. Then T acts trivially on the set g0 of diagonal matrices
in g, and it acts through the character ˛ij

def
D N�i � N�j on kEij , i ¤ j . Therefore

R.G;T /D f˛ij j 1� i;j � nC1; i ¤ j g:

It remains to compute the coroots. Consider, for example, the root ˛ D ˛12. Then G˛ in
(22.43) consists of the matrices of the form0BBBBB@

� � 0 0

� � 0 0

0 0 � 0
: : :

:::

0 0 0 � � � �

1CCCCCA



g. The root data of the classical semisimple groups 395

with determinant 1. As in (22.45), W.G˛;T /D f1;s˛g where s˛ acts on T by interchanging
the first two coordinates — it is represented by

n˛ D

0BBBBB@
0 1 0 0

�1 0 0 0

0 0 1 0
: : :

:::

0 0 0 � � � 1

1CCCCCA 2NG.T /.k/:

Let �D
PnC1
iD1 ai N�i 2X

�.T /. Then

s˛.�/D a2 N�1Ca1 N�2C
PnC1
iD3 ai N�i

D ��h�;�1��2i. N�1� N�2/:

In other words,
s˛12.�/D ��h�;˛

_
12i˛12

with ˛_12 D �1��2, which proves that �1��2 is the coroot of ˛12.
When the ordered index set f1;2; : : : ;nC1g is replaced with an unordered set, we find

that everything is symmetric between the roots, and so the coroot of ˛ij is

˛_ij D �i ��j

for all i ¤ j .

EXAMPLE (Bn): SO2nC1.

Consider the symmetric bilinear form � on k2nC1,

�.Ex; Ey/D 2x0y0Cx1ynC1CxnC1y1C�� �Cxny2nCx2nyn

Then SO2nC1
def
D SO.�/ consists of the 2nC1�2nC1 matrices A of determinant 1 such

that
�.AEx;A Ey/D �.Ex; Ey/;

i.e., such that

At

0@1 0 0

0 0 I

0 I 0

1AAD
0@1 0 0

0 0 I

0 I 0

1A :
The Lie algebra of SO2nC1 consists of the 2nC1�2nC1 matrices A of trace 0 such that

�.AEx; Ey/C�.Ex;A Ey/D 0;

i.e., such that

At

0@1 0 0

0 0 I

0 I 0

1AC
0@1 0 0

0 0 I

0 I 0

1AAD 0:
Take T to be the maximal torus of diagonal matrices

diag.1; t1; : : : ; tn; t�11 ; : : : ; t�1n /
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Then

X�.T /D
M

1�i�n
Z�i ; �i Wdiag.1; t1; : : : ; tn; t�11 ; : : : ; t�1n / 7! ti

X�.T /D
M

1�i�n
Z�i ; �i W t 7! diag.1; : : : ;

iC1
t ; : : : ;1/

with the pairing h ; i such that
h�i ;�j i D ıij :

All the characters
˙�i ; ˙�i ˙�j ; i ¤ j

occur as roots, and their coroots are, respectively,

˙2�i ; ˙�i ˙�j ; i ¤ j:

EXAMPLE (Cn): Sp2n.

Consider the skew symmetric bilinear form k2n�k2n! k,

�.Ex; Ey/D x1ynC1�xnC1y1C�� �Cxny2n�x2nyn:

Then Sp2n consists of the 2n�2n matrices A such that

�.AEx;A Ey/D �.Ex; Ey/;

i.e., such that

At
�

0 I

�I 0

�
AD

�
0 I

�I 0

�
:

The Lie algebra of Spn consists of the 2n�2n matrices A such that

�.AEx; Ey/C�.Ex;A Ey/D 0;

i.e., such that

At
�

0 I

�I 0

�
C

�
0 I

�I 0

�
AD 0:

Take T to be the maximal torus of diagonal matrices

diag.t1; : : : ; tn; t�11 ; : : : ; t�1n /:

Then

X�.T /D
M

1�i�n
Z�i ; �i Wdiag.t1; : : : ; tn; t�11 ; : : : ; t�1n / 7! ti

X�.T /D
M

1�i�n
Z�i ; �i W t 7! diag.1; : : : ;

i
t ; : : : ;1/

with the obvious pairing h ; i. All the characters

˙2�i ; ˙�i ˙�j ; i ¤ j

occur as roots, and their coroots are, respectively,

˙�i ; ˙�i ˙�j ; i ¤ j:
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EXAMPLE (Dn): SO2n.

Consider the symmetric bilinear form k2n�k2n! k,

�.Ex; Ey/D x1ynC1CxnC1y1C�� �Cxny2nCx2ny2n:

Then SOn D SO.�/ consists of the n�n matrices A of determinant 1 such that

�.AEx;A Ey/D �.Ex; Ey/;

i.e., such that

At
�
0 I

I 0

�
AD

�
0 I

I 0

�
:

The Lie algebra of SOn consists of the n�n matrices A of trace 0 such that

�.AEx; Ey/C�.Ex;A Ey/D 0;

i.e., such that

At
�
0 I

I 0

�
C

�
0 I

I 0

�
AD 0:

When we write the matrix as
�
A B

C D

�
, then this last condition becomes

ACDt D 0; C CC t D 0; BCB t D 0:

Take T to be the maximal torus of diagonal matrices

diag.t1; : : : ; tn; t�11 ; : : : ; t�1n /

and let �i , 1� i � r , be the character

diag.t1; : : : ; tn; t�11 ; : : : ; t�1n / 7! ti :

All the characters
˙�i ˙�j ; i ¤ j

occur, and their coroots are, respectively,

˙�i ˙�j ; i ¤ j:

REMARK 22.52. The subscript on An, Bn, Cn, Dn denotes the rank of the group, i.e., the
dimension of a maximal torus.

h. The Weyl groups and Borel subgroups

Let .G;T / be a split reductive group over k. The Weyl group of .G;T / is

W.G;T /DNG.T /=CG.T /D �0.NG.T //:

Thus,W.G;T / is an étale group scheme over k. It acts faithfully on T , and hence on X�.T /.
For each root ˛ 2R.G;T /, W.G;T /.k/ contains the reflection s˛ . In this section, we show
that W.G;T / is generated by the s˛. In particular, this means W.G;T / is a constant finite
group scheme.
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Let RD .X�.T /;R;˛ 7! ˛0/ be the root datum of .G;T /. Let V D X�.T /˝ZR and
V _ DX�.T /˝ZR. For a root ˛ 2R, we let

H˛ D ff 2 V
_
j h˛;f i D 0g:

It is a hyperplane in V _. The Weyl chambers of the root datum R are the connected
components of

V _X
[

˛2R
H˛:

DEFINITION 22.53. An cocharacter � in X�.T / is regular if, for all ˛ 2R, h˛;�i ¤ 0, i.e.,
� is contained in a Weyl chamber.

LEMMA 22.54. If the cocharacter � is regular, then BT D B�.Gm/.

PROOF. We may replace k with its algebraic closure. Let X be a connected component of
B�.Gm/. Then X is complete and it is stable under T , and so it contains a fixed point B
(18.4). We have an isomorphism G=B ! B mapping eB to B . In particular, the tangent
space of B at B is isomorphic to g=b. Now t� b, and so

TBB ' g=bD
M

˛2R.B/
g˛

for some subset R.B/ of R. The weights of Gm on this space are the integers h˛;�i for
˛ 2R.B/, which are nonzero by assumption. On the other hand Gm acts trivially on X and
TBX ; therefore TBX D 0 and X has dimension 0. Thus B�.Gm/ is finite and stable under T ,
and hence contained in BT . 2

LEMMA 22.55. Let B 2 BT , and let ˛ 2R.G;T /. Then B contains exactly one of U˛ or
U�˛.

PROOF. Define T˛ and G˛ as in (22.43). Then G˛ contains exactly two Borel subgroups
containing T , namely, T �U˛ and T �U�˛ . As B\G˛ is a Borel subgroup of G˛ containing
T , the statement follows. 2

LEMMA 22.56. Let � be a regular cocharacter of T . There is a unique Borel subgroup
B.�/ 2 BT such that

Lie.B.�//D t˚
M
h˛;�i>0

g˛:

The group B.�/ depends only on the Weyl chamber containing �.

PROOF. In fact, P.�/ has this property (21.15). Any Borel subgroup B with bD t˚L
h˛;�i>0 g˛ is generated by the subgroups T and U˛ , h˛;�i> 0, and so equals P.�/. If �0

lies in the same Weyl chamber as �, then

h˛;�i> 0 ” h˛;�0i> 0;

and so B.�/D B.�0/. 2

NOTATION 22.57. (a) Let C be a Weyl chamber; we set B.C/D B.�/ for any � 2 C . It is
a Borel subgroup containing T , which is independent of � (22.56).

(b) For B 2 BT , let RC.B/D f˛ 2R j U˛ 2 Bg D f˛ 2R j g˛ 2 bg:
(c) For B 2 BT , let

C.B/D ff 2 V _ j h˛;f i> 0 for all ˛ 2RC.B/g:
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THEOREM 22.58. The map C 7! B.C/ is bijective, with inverse B 7! C.B/:

PROOF. Let B 2 BT , let C be a Weyl chamber, and let � 2 C . There exists an n 2
NG.T /.k

al/ such that B D nB.�/n�1. Let w D Pn be the class of n in W.G;T /.kal/.

bD Lie.B/D Lie.nB.�/n�1/

D h˚
M
h˛;�i>0

gw.˛/

D h˚
M
hˇ;w�1.�/i>0

gˇ

D bw�1.�/:

Thus B D B.w�1.�// and the map C 7! B.C/ is surjective. Furthermore, we have that
C.B/ is the chamber w�1.C / proving that the map is injective. 2

THEOREM 22.59. The group scheme W.G;T / is generated by the s˛, ˛ 2 R, i.e., the
abstract group W.G;T /.kal/ is generated by the s˛.

PROOF. Let RD .X�.T /;R;˛ 7! ˛_/ be the root datum of .G;T /. By definition, its Weyl
groupW.R/ is the group of automorphisms ofX�.T / generated by the reflections s˛ , ˛ 2R.
The Weyl group W.R/ of R acts simply transitively on the set of Weyl chambers — this is
an elementary statement about sets of hyperplanes in real vector spaces and groups generated
by symmetries (see 23.16 or Bourbaki LIE V, �3). On the other hand, W.G;T /.kal/ acts
simply transitively on the set of Borel subgroups of Gkal containing Tkal (18.59). Thus, it
suffices to construct a bijection from the set of Weyl chambers of the root datum R.G;T / to
the set of Borel subgroup of Gkal containing Tkal compatible with the actions of the Weyl
groups. This Theorem 22.58 does. 2

COROLLARY 22.60. Regard W.R/ as a constant finite group scheme. Then the canonical
map W.R/! �0.NG.T // is an isomorphism. Moreover, the homomorphism NG.T /!

�0.NG.T // has a section, and so

NG.T /DNG.T /
ıÌ�0.NG.T //:

PROOF. The first statement restates the theorem. For the second, we have to show that
every element w of W.G;T /.k/ is represented by an element nw of NG.T /.k/. It suffices
to check this for s˛, but s˛ is represented by an element of NG˛ .T˛/.k/ (21.59). 2

We can rewrite the displayed equation as

NG.T /D CG.T /ÌW.G;T /:

EXAMPLE 22.61. LetGD SL2 with T the standard (diagonal) torus. In this case, CG.T /D
T and

NG.T /D

��
a 0

0 a�1

��
[

��
0 a�1

�a 0

��
:

Therefore W.G;T /D f1;sg where s is represented by the matrix nD
�
0 1

�1 0

�
. Note that

n

�
a 0

0 a�1

�
n�1 D

�
0 1

�1 0

��
a 0

0 a�1

��
0 �1

1 0

�
D

�
a�1 0

0 a

�
,

and so s interchanges diag.a;a�1/ and diag.a�1;a/.
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EXAMPLE 22.62. LetGDGLn and T DDn. In this case, CG.T /DT butNG.T / contains
the permutation matrices (those obtained from the identity matrix I by permuting the rows).
For example, let E.ij / be the matrix obtained from I by interchanging the i th and j th rows.
Then

E.ij / �diag.� � �ai � � �aj � � �/ �E.ij /�1 D diag.� � �aj � � �ai � � �/:

More generally, let � be a permutation of f1; : : : ;ng, and let E.�/ be the matrix obtained
by using � to permute the rows. Then � 7! E.�/ is an isomorphism from Sn onto the set
of permutation matrices, and conjugating a diagonal matrix by E.�/ simply permutes the
diagonal entries. The E.�/ form a set of representatives for CG.T /.k/ in NG.T /.k/, and
so W.G;T /' Sn.

i. Subgroups normalized by T

LEMMA 22.63. Let .G;T / be a split reductive group, and let H be a connected subgroup
variety of G normalized by T . If g˛ � Lie.H/ for some root ˛, then U˛ �H .

PROOF. We may suppose that k is algebraically closed. Then .H \G˛/ıred is a connected
subgroup variety of G˛, which contains U˛ because its Lie algebra contains g˛ (21.61).
Therefore H contains U˛. [Cf. 21.61.] 2

THEOREM 22.64. Let .G;T / be a split reductive group. Let B be a Borel subgroup con-
taining T , and let RC.B/D f˛1; : : : ;˛rg be the corresponding set of positive roots (22.57).

(a) The multiplication morphism

˚ WU˛1 � � � ��U˛r ! Bu

is an isomorphism of algebraic varieties with an action of T .

(b) The morphism BuÌT ! B is an isomorphism.

(c) Let U be a subgroup variety of Bu normalized by T , and let fˇ1; : : :ˇsg be the weights
of T on Lie.U /. Then U is connected, and the multiplication morphism

Uˇ1 � � � ��Uˇs ! U

is an isomorphism of algebraic varieties with an action of T .

PROOF. (a) Let V D U˛1 �� � ��U˛r . There are natural actions of T on V and Bu for which
the map ˚ is equivariant. Note that ˚ induces an isomorphism de˚ on the tangent spaces
TeV ! TeBu. Let � lie in the Weyl chamber of B; then the weights of �.Gm/ on V and
Bu are positive. Now (19.9) shows that the Luna maps V ! TeV and Bu! TeBu are
isomorphisms, and so ˚ is an isomorphism.

(b) We saw in the proof of Lemma 22.56 that every Borel subgroup B containing T is of
the form P.�/ for some regular character �. Then Bu D U.�/ and T D Z.�/, and so the
required isomorphism is the isomorphism U.�/ÌZ.�/! P.�/ of (21.13).

(c) IfU is connected, then, because of (22.63), the same proof applies as in (a). Therefore,
it remains to show that U is connected. From (a) and (b) we obtain an isomorphism

U ı�W ! Bu

with W D
Q
fU˛ j ˛ 2R

C; U˛ … U
ıg. On restricting to U , we get an isomorphism

U ı�U \W ! U;
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and on dividing by U ı, we get an isomorphism U \W ! U=U ı. This last group is finite
and stable under T (because U and W are). As T is connected, all the points of U \W are
fixed by T , and so lie in CG.T /D T . Hence U \W � Bu\T D feg, and it follows that U
is connected. 2

j. Big cells and the Bruhat decomposition

Let G D GLn with T the diagonal torus and B the standard Borel subgroup. The Weyl
group W is the group of permutation matrices, and every matrix can be written uniquely as a
produce U1PU2 with U1, U2 upper triangular and P in W , i.e.,

G D
a
w2W

B.k/wB.k/:

In this section, we show that every split reductive group has such a (Bruhat) decomposition.
Let .G;T / be a split reductive group, and let B 2 BT . Let RC DRC.B/ denote the set

of positive roots defined by B (22.57). For w 2W , the coset PwB is independent of Pw, and
we let ew denote the point wB=B in G=B — it fixed by T .

DEFINITION 22.65. The dominant Weyl chamber for B is

CC D f� 2X�.T /˝ZR j h˛;�i> 0 for all ˛ 2RCg:

Choose a representation .V;r/ of G such that B is the stabilizer of a line in B , so that
G=B ,! P.V /. Fix a � 2 CC. When k is algebraically closed, we have a Białynicki-Birula
decomposition (19.12):

G=B D
G
w2W

C.w/; C.w/D fx 2G=B j lim
t!0

�.t/ �x D ewg:

Here C.w/ is a locally closed subset of jX j; for a unique (attracting) point, C.w/ is open
and dense in G=B , and for unique (repelling) point, C.w/ is a single point.

PROPOSITION 22.66. Suppose that k is algebraically closed. The cell C.w/ is the Bu-orbit
Uew in G=B .

PROOF. Let Gm act on G and G=B via the character �, and let x 2C.w/. As the weights of
Gm on uD Lie.Bu/ are> 0, for all u2Bu and t 2Gm, we have limt!0�.t/ �u ��.t/

�1D 1.
This implies that

lim
t!0

�.t/ux D lim
t!0

�.t/u�.t/�1 ��.t/uD ew :

This proves that C.w/ is stable under the action of U . Therefore Buew � C.w/:
Conversely, ifBux is a nonempty openBu-orbit inC.w/, then, by the Kostant-Rosenlicht

theorem (19.25), this orbit is closed, and therefore ew 2Bux and Bux DBuew . This proves
that C.e/D Buew . 2

As the Weyl group acts simply transitively on the Weyl chambers, there exists a unique
w0 2W such that w0.CC/D�CC. Moreover, w0 is an involution as w20.C

C/D CC. We
choose a representative n0 for w0 in NG.T /.k/.
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THEOREM 22.67 (BRUHAT DECOMPOSITION). (a) We have the cellular Bruhat decompo-
sitions

G=B D
G
w2W

BunwB=B

G D
G
w2W

BunwB:

(b) The open orbit for the action of Bu on G=B is Bun0B=B and the open orbit for the
action of Bu�B on G is Bun0B .

PROOF. (a) The first equality is the Białynicki-Birula decomposition (19.12), and the second
follows from it.

(c) Recall that the tangent space Tew0 .G=B/ can be identified with

g=n0.b/'
M
˛2RC

g˛:

Therefore, all the weights are positive in the tangent space, and so, by Theorem 19.12, this is
a dense open orbit. 2

THE SUBGROUPS Uw AND Uw .

Let U D Bu. Let R� D �RC and U� D n0.U /. Then U� is a subgroup variety of G
normalized by T , and hence equal to the product of the groups U˛ such that g˛ � U�. Note
that �

U˛ � U ” ˛ 2RC

U˛ � U
� ” ˛ 2R�.

(157)

DEFINITION 22.68. For w 2W , define

Uw D U \nw.U /

Uw D U \nw.U
�/:

LEMMA 22.69. The algebraic subgroups Uw and Uw of G are smooth and normalized by
T (hence equal to the product of the groups U˛ they contain).

PROOF. We may suppose that k is algebraically closed. Then .Uw/red is smooth and
normalized by T , and so is equal toY

fU˛ j ˛ 2R
C
\w.R/Cg.

From the exact sequence

0! Lie.Uw/! Lie.U /�Lie.nw.U //! Lie.G/

we see that the Lie algebra of Uw isM
fLie.U˛/ j ˛ 2RC\w.R/Cg.

Hence dim.Uw/D dim.Lie.Uw//, and so Uw is smooth. The proof for Uw is similar. 2

LEMMA 22.70. (a) For all w 2W , Uw \Uw D e:
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(b) Multiplication induces an isomorphism

Uw �U
w
! U:

PROOF. We may suppose k to be algebraically closed.
(a) The subgroup variety .Uw\Uw/red is normalized by T , and so is equal to the product

of the U˛ that it contains. But

U˛ � Uw ” ˛ 2RC\w.RC/

U˛ � U
w
” ˛ 2RC\w.R�/:

These conditions are exclusive, which proves that .Uw \Uw/red D e. On the other hand,
Lie.Uw \Uw/D 0, and so Uw \Uw is smooth, and hence trivial.

(b) Every root ˛ satisfies one of the above conditions and U is smooth. Therefore the
homomorphism Uw �U

w ! U is surjective which, together with (a), proves (b). 2

PROPOSITION 22.71. (a) For w 2W , the stabilizer of ew inG (resp. U ) is nw.B/ (resp.
Uw ); hence the stabilizer of ew in g (resp. u) is nw.b/ (resp. u\nw.b/D Lie.Uw/).

(b) There is an equality Uew D Uwew and the orbit map Uw ! Uwew D Uew is an
isomorphism. In particular, dimUew D n.w/ with n.w/D

ˇ̌
RC\w.R�/

ˇ̌
:

PROOF. (a) Let � WG ! G=B be the quotient map. The stabilizer of ew D nwB=B is
obviously nw.B/ since the stabilizer of eB=B D e is B . Translating � by nw , we get
�w WG!G=B defined by �w.g/D gnwB=B . The stabilizer of eG=B is now nw.B/. The
statement for the Lie algebras follows from the statement for groups by considering the
kŒ"�-points.

The stabilizer of ew in U is U \nw.B/ D U \nw.U / D Uw , and the kernel of the
restriction of .d�w/e\uD nw.b/\uD Lie.Uw/. Since Uw �Uw!U is an isomorphism,
the morphism Uw ! Uwew is bijective and the kernel of the differential is Lie.Uw/\
Lie.Uw/D 0; therefore it is separable and an isomorphism. 2

THEOREM 22.72 (BRUHAT DECOMPOSITION). Let G be a reductive algebraic group.

(a) There are decompositions

G D
G

w2W
UwnwB

G=B D
G

w2W
UwnwB=B

and for every w 2W , the morphism

Uw �B! UwnwB; .u;b/ 7! unwb

is an isomorphism. In particular, every element g 2G.kal/ can be written uniquely as

g D unw tu
0; u 2 Uw ; t 2 T; u0 2 U:

(b) There are open coverings

G D
[
w2W

nwU
�B

G=B D
[
w2W

nwU
�B=B .
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PROOF. (a) This summarizes what was proved above.
(b) We have shown that U�B and U�B=B are open subsets containing e. Therefore,

their translates by nw are open subsets containing nw . Their unions are all of G or G=B
because nwU�B D .nwU�n�1w /nwB � U

wnwB and the decomposition in (a). 2

DEFINITION 22.73. For w 2W , let

N.w/D f˛ 2RC j w�1.˛/ 2R�g DRC\w.R�/;

and let n.w/D jN.w/j.

22.74. For w 2W ,

(a) dimC.w/D dimUw D n.w/.

(b) n.w/D n.w�1/ and n.w0w/D n.ww0/D
ˇ̌
RC

ˇ̌
�n.w/.

COROLLARY 22.75. We have

dimG D dimT CjRj:

PROOF. Count dimensions in

G D V T U D
Y

˛2RC
U�˛ �T �

Y
˛2RC

U˛:
2

EXAMPLE 22.76. Let .G;T / be GLn with its diagonal torus. The roots are

˛ij Wdiag.t1; : : : ; tn/ 7! ti t
�1
j ; i;j D 1;2; : : : ;n; i ¤ j:

The corresponding root groups are Uij D fI CaEij j a 2 kg. Let RC D f˛ij j i < j g. Then
U and V are, respectively, the groups of superdiagonal and subdiagonal unipotent matrices
and C is the set of matrices for which the i � i minor in the upper left hand corner is nonzero
for all i .

THE BIG CELL (FOLLOWING SHS)

THEOREM 22.77. Let .B;T / be a Borel pair in a connected group variety G. Then there
exists a unique Borel subgroup B 0 of G containing T and such that

B \B 0 D T �Ru.G/:

Moreover, B 0 �B is an open subscheme of G.

For example, let B be the group of upper triangular matrices in GLn, and let T be the
diagonal torus. Then B 0 is the group of lower triangular matrices. Borel subgroups B and
B 0 of G such that B \B 0 is a maximal torus are said to be opposite. Thus Borel subgroups
are opposite if their intersection is as small as possible.

Before proving the theorem, we list some consequences.

COROLLARY 22.78. Let .B;T / be a Borel pair in a reductive group G. Then there exists a
unique Borel subgroup B 0 of G such that B \B 0 D T ; the map

.b0; t;b/ 7! b0tbWB 0u�T �Bu!G

is an open immersion.
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PROOF. As RuG D e, there exists a unique B 0 such that B \B 0 D T . Let B 0u�B act on
B by left and right translations, and let H be the isotropy group at e. The canonical map�
B 0u�B

�
=H !G is an immersion (9.27). But B 0u\B D e, and so H D e and

.b0;b/ 7! b0ebWB 0u�B!G

is an immersion. It is an open immersion because bCb0 D g (see 22.80). 2

COROLLARY 22.79. Let G be a connected group variety. The field of rational functions of
G is a pure transcendental extension of k.

PROOF. If G is reductive, the open subscheme B 0u �T �Bu of G is isomorphic to an open
subscheme of affine space, which proves the statement in this case.

Let S be an algebraic scheme. Then H 1.S;Ga/DH 1.S;OS /, which equals 0 if S is
affine. It follows that H 1.S;U /D 0 if U has a filtration whose quotients are isomorphic to
Ga. The exact sequence

1!Ru.G/!G!G=RuG! 1

realizes G as a torsor under Ru.G/ over G=RuG. It is the trivial torsor, and so G is
isomorphic as a scheme to

Ru.G/� .G=Ru.G//: 2

PROOF OF THEOREM 22.77

Because of the one-to-one correspondence between Borel subgroups of G containing T and
Borel subgroups of G=Ru.G/ containing the image of T (18.24), we may suppose that G is
reductive.

Let � be a regular cocharacter of T such that B D P.�/, and let B 0 D P.��/. We prove
that B \B 0 D T and B �B 0 is an open subscheme of G. For this, we may suppose that k is
algebraically closed.

Let
gD g0˚

M
˛2R

g˛

be the decomposition of g def
D Lie.G/ under the action of T . As B and B 0 contain T , and as

g0 D Lie.CG.T //D Lie.T /

(19.19), we have

bD g0˚
M

˛2R
g˛\b

b0 D g0˚
M

˛2R
g˛\b

0.

LEMMA 22.80. We have

b\b0 D g0

bCb0 D g
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PROOF. If this were false, then there would exist an ˛ 2R with

g˛\
�
b\b0

�
¤ 0

or
g˛ 6� bCb0:

Consider T˛ D .Ker˛/
ı

red and G˛ D CG.T˛/. Then

Lie.G˛/D gT˛ � g˛;

and therefore G˛ ¤ T and T˛ is a singular torus. But G˛ is a reductive group of semisimple
rank 1, and B \G˛ and B 0\G˛ are the two Borel subgroups of G˛ containing T . But

.B \G˛/\ .B
0
\G˛/D T

(21.47), and
Lie.B 0\G˛/D Lie.G˛/:

Therefore
g˛\b\b

0
D 0

and
g˛ � bCb0:

Therefore
Lie.B \B 0/D Lie.T /;

and so Lie.Bu\B 0u/D 0. As Bu\B 0u is connected (19.29, which applies because BTu D e),
we certainly have Bu\B 0u D e, and so B\B 0 D T . Make the group B 0u�B act by left and
right translation on G:

.b;b0/x D b0xb�1:

Then .B 0;B/.k/D .B 0u �B/.k/ and the orbit of e is therefore a locally closed subset ofG.k/.
As B 0u\B D e, its dimension is

dim.B/Cdim.B 0u/D dim.B/Cdim.B 0/�dim.T /

D dim.b/Cdim.b0/�dim.g0/

D dim.g/

D dim.G/:

It follows that .B 0 �B/.k/DG.k/, hence .B 0 �B/.k/ is open in G.k/, and B 0 �B is certainly
an open subscheme of G.

Finally, we prove the uniqueness. Let B1 be a Borel subgroup of G containing T and
such that B1\B D T . For any torus S of codimension 1 in T , we have BS1 \B

S D T ,
hence necessarily BS1 D B

0S , which proves that B1 D B 0 by 19.31. 2

COROLLARY 22.81. The intersection of the Borel subgroups of G is the product of the
diagonalizable part of Z.G/ with Ru.G/.

PROOF. It is the product of Ru.G/ with the intersection of the maximal tori of G. 2

COROLLARY 22.82. Let B be a Borel subgroup of G, and let T be a maximal torus. Then

dim.G/D dim.T /C2dim.Bu/�dim.Ru.G//:
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k. The parabolic subgroups

Let .G;T / be a split reductive group.

THEOREM 22.83. Let � be a cocharacter of G. Then P.�/ is a parabolic subgroup of G,
and every parabolic subgroup of G is of this form.

If P � T , then P D P.�/ for any cocharacter �of T such that the set of weights of T
acting on Lie.P / consists of the roots ˛ of .G;T / with h˛;�i � 0.

We now fix a Borel subgroup B ofG containing T , and describe the parabolic subgroups
of G containing B . Fix a base S for RC.B/, and let I be a subset of S . Let RI D ZI \R,
let SI D

�T
˛2I Ker.˛/

�ı
red, and let LI D CG.SI ).

LEMMA 22.84. (a) The pair .LI ;T / is a split reductive group with root datum .X�.T /;RI ;˛ 7!

˛_); its Weyl group WI is the subgroup of W generated by the s˛ with ˛ 2 I .
(b) The intersection B\LI is a Borel subgroup BI of LI , and RC.BI /DRI \RC.B/

has base I .

PROOF. Omitted for the moment (Perrin p.110, Springer p147). 2

Recall that, for w 2W.G;T /,

C.w/D fx 2G=B j lim
t!0

�.t/ �x D wB=Bg

for any (one or all) � in the dominant Weyl chamber for B , and that C.w/ is the Bu-orbit of
wB=B .

THEOREM 22.85. For each subset I of S , there is a unique parabolic subgroup PI of G
containing B such that

PI D
[

w2WI
C.w/:

The unipotent radical of PI is generated by the U˛ with ˛ 2RCXRI , and the map

Ru.PI /ÌLI ! PI

is an isomorphism. Every parabolic subgroup P of G containing B is of the form PI for a
unique subset I of S .

We prove these theorems in several steps.

STEP 1. THEOREM 22.83 IS TRUE OVER k IF IT IS TRUE OVER kal.

Let � be a cocharacter of G. Then P.�/ is parabolic because P.�/kal DP.�kal/ is parabolic.
For the converse, let P be a parabolic subgroup of G, and let T be a maximal torus in P .
Let R �X�.T / be the set of roots of .Gk;Tk/. The nonzero weights of T on Lie.P / form
a subset R0 of R stable under � def

D Gal.ksep=k/. Let

�D f� 2X�.T / j h˛;�i> 0 ” ˛ 2R0g:

By hypothesis, Pkal D P.�/ for some � 2 X�.T /, and such a � 2 �. Therefore � is
nonempty. Because R0 is stable under � , so also is �. The group � acts on X�.T / through
a finite quotient � 0, and we let

�0 D
X

2� 0
�:
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Then P D P.�0/.
The remaining steps are omitted for the moment. See Springer 1998, 8.4.3, p.147, and

15.1.2, p.252.

22.86. Let G be a connected group variety over k. The subgroups of G of the form P.�/

with � are cocharacter ofG are said to be pseudo-parabolic. They are smooth and connected
(21.13). When G is reductive or k is perfect, the pseudo-parabolic subgroups are exactly the
parabolic subgroups (22.83). In general, G contains a proper pseudo-parabolic subgroup if
and only if G=Ru.G/ contains a split noncentral torus. If k is infinite, the unipotent group
U.�/ is split. Let P be a pseudo-parabolic subgroup of G. If k is infinite, the quotient
map G! G=P has local sections for the Zariski topology, and so G.k/! .G=P /.k/ is
surjective. See Springer 1998, 15.1 (to be included).

l. The isogeny theorem: statements

All root data are reduced. The field k has characteristic exponent p (possibly 1).
Let .G;T / be a split reductive group, and let R �X�.T / be the root system of .G;T /.

For each ˛ 2 R, let U˛ be the corresponding root group. Recall that U˛ is the unique
algebraic subgroup of G isomorphic to Ga, normalized by T , and such that, for every
isomorphism u˛WGa! Ua,

t �u˛.a/ � t
�1
D u˛.˛.t/a/; t 2 T .R/, a 2R: (158)

Recall that a root datum is a triple .X;R;˛ 7! ˛_/ with X a free Z-module of finite
rank, R a subset of X , and ˛ 7! ˛_ an injective homomorphism R! X_ satisfying the
conditions (rd1–3), p. 389. Here X_ is the Z-linear dual of X . We sometimes write f for
the map ˛ 7! ˛_.

DEFINITION 22.87. An isogeny of root data .X;R;˛ 7! ˛_/! .X 0;R0;˛0 7! ˛0_/ is a
homomorphism 'WX 0!X such that

(a) ' is injective with finite cokernel (equivalently, both ' and its Z-linear dual '_ are
injective);

(b) there exists a bijection ˛ 7! ˛0 from R to R0 and a map qWR! pN such that

'.˛0/D q.˛/˛

'_.˛_/D q.˛/˛0_

for all ˛ 2R.

The isogeny is said to central if q.˛/D 1 for all ˛ 2R. It is an isomorphism if it is central
and ' is an isomorphism.

Because we are requiring root data to be reduced, given ˛, there exists a most one ˛0

such that '.˛0/ is a positive multiple of ˛. Therefore, given 'WX 0!X , there exists at most
one bijection ˛ 7! ˛0 and one map qWR! pN such that the equations hold.

EXAMPLE 22.88. Let R D .X;R;˛ 7! ˛_/ be a root datum, and let q be a power of p.
The map x 7! qx is an isogeny R!R, called the Frobenius isogeny (the bijection ˛ 7! ˛0

is the identity, and q.˛/D q for all ˛).



l. The isogeny theorem: statements 409

ASIDE 22.89. Our terminology is that of Steinberg 1999.
Springer 1998, p.172, defines a p-morphism to be a homomorphism 'WX 0!X equipped with a

bijection ˛ 7! ˛0 and a map qWR! fpn j n > 0g satisfying the conditions of (22.87). Conrad et al.
2010, follow Springer, except that they allow q.˛/ to be p0.

SGA 3, XXI, 6.8.1, p.100, define a p-morphism of root data to be a homomorphism 'WX 0!X

such that there exists a bijection ˛ 7! ˛WR!R0 and a map qWR! pN satisfying (b) of (22.87). This
agrees with (22.87) except that they don’t require 'Q to be an isomorphism.

PROPOSITION 22.90. Let f W.G;T /! .G0;T 0/ be an isogeny of split reductive groups.
Then ' DX�.f /WX�.T 0/!X�.T / is an isogeny of root data. Moreover, roots ˛ 2R and
˛0 2R0 correspond if and only if f .U˛/D U˛0 , in which case

f .u˛.a//D u˛0.c˛a
q.˛//; all a 2 k; (159)

where c˛ 2 k� and q.˛/ is such that '.˛0/D q.˛/˛.

PROOF. By definition,

'.�0/D �0 ıf jT for all �0 2X�.T 0/:

Applying f to (158), we see that f .U˛/ is a one-dimensional unipotent subgroup of G0

normalized by T 0, and so equals U˛0 for some ˛0 2R0. From (15.40), we find that

f .u˛.a//D u˛0.g.a// (160)

with g.a/ a polynomial
P
cja

pj in a having coefficients in k. On applying f to (158), we
find that

f .t/ �f .u˛.a// �f .t/
�1
D f .u˛.˛.t/a/:

Using that (160), we can rewrite this as

f .t/ �u˛0.g.a// �f .t/
�1
D u˛0.g.˛.t/a//;

and using (158) in the group G0, we find that

u˛0.˛
0.f .t//g.a//D u˛0.g.˛.t/a/:

As ˛0 ıf D '.˛0/, this implies that

'.˛0/.t/ �g.a/D g.˛.t/ �a//: (161)

It follows that g.a/ is a monomial, say,

g.a/D caq.˛/; c 2 k; q.˛/ 2 pN;

and
'.˛0/.t/D ˛.t/q.˛/;

i.e., '.˛0/D q.˛/˛. Note that f .w˛/ normalizes T 0 in G˛0 and acts nontrivially on it, and
so we can take w˛0 D f .w˛/. Therefore

' ı .1�w˛0/D .1�w˛/ı':

On applying this to �0 2X�.T 0/ and using that w˛0�0 D �0�h�0;˛0_i˛, we find that

h�0;˛0_i'.˛0/D h'.�0/;˛_i˛;

which equals h�0;'_.˛_/i˛. As this holds for all �0 2 X�.T 0/, it follows from '.˛0/ D

q.˛/˛ that '_.˛_/D q.˛/˛0_, and so condition (b) of (22.87) holds. Finally, f jT is an
isogeny, and so (a) holds. 2
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Thus, an isogeny .G;T /! .G0;T 0/ defines an isogeny of root data. The isogeny of
root data does not determine f , because an inner automorphism of .G;T / defined by an
element of .T=Z/.k/ induces the identity map on the root datum of .G;T /. However, the
next lemma shows that this is the only indeterminacy.

LEMMA 22.91. If two isogenies .G;T /! .G0;T 0/ induce the same map on the root data,
then they differ by an inner automorphism by an element of T .5

PROOF. We may suppose that k is algebraically closed (because if f and g differ by an
automorphism over kal, their kernels are equal, and so they differ by an automorphism over
k, and we are only claiming that the automorphism is of the form inn.t/ with t 2 T .kal/).

Let f and g be such isogenies. Then they agree on T obviously. Let S be a base for R.
For each ˛ 2 S , it follows from '.˛0/D q.˛/˛ that f .u˛.a//D u˛0.c˛aq.˛//, and similarly
for g with c˛ replaced by d˛. As S is linearly independent, there exists a t 2 T .k/ such
a.t/q.˛/ D d˛c

�1
˛ for all ˛ 2 S (here we use k is algebraically closed). Let hD f ı inn.t/.

Then g and h agree on every U˛, ˛ 2 S , as well as on T , and hence also on the Borel
subgroup B that these groups generate. It follows that they agree on G because the regular
map x 7! h.x/g.x/�1WG!G0 is constant on each coset, hence factors throughG=B (9.44),
and the resulting map G=B!G0 is constant because G=B is complete and G0 is affine (cf.
18.25). As h.e/g.e/�1 D 1, we see that h.x/D g.x/ for all x. 2

THEOREM 22.92. Let .G;T / and .G0;T 0/ be split reductive algebraic groups over k, and
let f WT ! T 0 be an isogeny of tori. If X�.f /WX.T 0/! X.T / is an isogeny of root data,
then f extends to an isogeny G!G0.

This will be proved in the next section.

THEOREM 22.93 (ISOGENY THEOREM). Let .G;T / and .G0;T 0/ be split reductive alge-
braic groups over k. An isogeny f W.G;T /! .G0;T 0/ defines an isogeny of root data
'WR.G;T /!R.T 0;T 0/, and every isogeny of root data ' arises from an isogeny f ; more-
over, f is uniquely determined by ' up to an inner automorphism by an element of T .

PROOF. Combine (22.90), (22.91), and (22.92). 2

THEOREM 22.94 (ISOMORPHISM THEOREM). Let .G;T / and .G0;T 0/ be split reductive
algebraic groups over a field k. An isomorphism f W.G;T /! .G0;T 0/ defines an isomor-
phism ' of root data, and every isomorphism of root data ' arises from an isomorphism f ;
moreover, f is uniquely determined by ' up to an inner automorphism by an element of T .

PROOF. This is an immediate consequence of the isogeny theorem. If 'WX 0! X is an
isomorphism of root data, then the isomorphisms fT WT ! T 0 and f �1T WT

0! T extend to
isomorphisms f W.G;T /! .G0;T 0/ and gW.G0;T 0/! .G;T /. The composite gıf induces
the identity map on the root datum of .G;T / and hence equals inn.t/ for some t 2 T .k/.
Let g0 D inn.t�1/ıg. Then g0 ıf D id, and f ıg0 ıf D f , which implies that f ıg0 D id
because f is surjective. Hence f is an isomorphism with g0 as its inverse. 2

NOTES. The isogeny theorem was first proved by Chevalley in his famous 1956-58 seminar for
semisimple groups (the extension to reductive groups is easy — see 22.103 below). Chevalley’s proof
works through semisimple groups of rank 2, and is long and complicated. The proofs in Humphreys

5By this, I mean that they differ by an automorphism of .G;T / that becomes of the form inn.t/, t 2 T .kal/,
over kal. In fact, they differ by an automorphism inn.t/ with t 2 .T=Z/.k/:
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1975, Springer 1998, SGA 3, and elsewhere follow Chevalley (Borel 1991 doesn’t prove the isogeny
theorem). Takeuchi (1983) gave a proof of the isogeny theorem in terms of “hyperalgebras” that
avoided using systems of rank 2, which inspired Steinberg to find his simple proof (Steinberg 1999).
Our proof follows Steinberg except that we have rewritten it in the language of group schemes (rather
than group varieties) and we have extended it to split reductive groups over arbitrary fields (instead of
algebraically closed fields).6

GENERALIZATIONS

The next statement can be can be proved by similar methods (k algebraically closed for the
moment).

THEOREM 22.95. Let H be a group variety, let T be a maximal torus in H , and let S be
a finite linearly independent subset of X�.T /. Suppose that for each ˛ 2 S we are given a
reductive subgroup .G˛;T / of G of semisimple rank 1 with roots˙˛. Let U˛ be the root
group of ˛ in G˛ . If U�˛ and Uˇ commute for all ˛;ˇ 2 S , ˛ ¤ ˇ, then the algebraic group
G generated by the G˛ is reductive; moreover, T is a maximal torus in G, and S is a base
for R.G;T /.

PROOF. Steinberg 1999, 5.4. 2

THEOREM 22.96. Let H , T , and .G˛/˛2S be as in 22.95. Let RD .X;R;˛ 7! ˛_/ be a
root datum such that X DX�.T / and S is a base for R. Then RDR.G;T /.

PROOF. The Weyl groups of R and .G;T / are the same because their generators w˛ , ˛ 2 S ,
satisfy the same formulas. Hence, so are the root systems and coroot systems, given by
RDWS and R_ DWS_. Thus (22.95) implies (22.96). 2

THEOREM 22.97. Let .G;T / be a split reductive group, let S be a base for the root system,
and let .G˛/˛2S be the corresponding family of reductive subgroups of semisimple rank
1. Let f W

S
˛2S G˛ ! H be a map such that f jG˛ is a homomorphism for each ˛. If

f˛.U�˛/ and fˇ .Uˇ / commute for all ˛;ˇ 2 S , ˛¤ ˇ, then f extends to a homomorphism
f WG!H .

PROOF. The graphs G0˛ D f.x;f .x/ j x 2G˛g, ˛ 2 S , in G�H satisfy the hypotheses of
(22.95), and hence generate a reductive group L in G�H with R.G;T / as its root datum.
The projection p1WL!G is an isomorphism (isomorphism theorem 22.94), and p2 ıp�11
is the required extension of f . 2

6Steinberg 1999, p.368:

These theorems were first proved by Chevalley in his famous 1956-58 seminar, with slightly
different formulation since he considered only semisimple groups. . . That is certainly the main
case, and further the step from semisimple groups to reductive groups is a simple one. . . Cheval-
ley’s proofs are quite long, occupying the last five Exposés of his seminar. Other proofs and
expositions have been given by Humphreys (1967, 1975), Demazure and Grothendieck (see SGA
3 and the guide Demazure 1965 to it), Springer (1998) (who, following Tits 1966, also considers
the isomorphism theorem over an arbitrary base field), and Takeuchi (1983). In SGA 3 and
Takeuchi 1983 the theorems are proved for group schemes. Our own proof, at least in broad
outline, is patterned after that of Takeuchi.
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m. The isogeny theorem: proofs

PRELIMINARY REDUCTIONS

LEMMA 22.98. Let f W.G;T /! .G0;T 0/ be a homomorphism of split reductive groups
over k. If X�.fT /WX�.T 0/! X�.T / is an isogeny of root data R.G;T /! R.G0;T 0/,
then f is an isogeny.

PROOF. Certainly f is surjective, because it maps each U˛ onto U˛0 and T onto T 0, and
the subgroups U˛0 and T 0 generate G0. As

dimG D dimT CjRj D dimT 0C
ˇ̌
R0
ˇ̌
D dimG0

(22.75), this shows that f is an isogeny. 2

22.99. Every normal étale finite subgroup scheme of a connected algebraic group G is
central. However, a normal (nonétale) finite subgroup scheme of even a reductive algebraic
group need not be central (e.g., the kernel of a Frobenius isogeny).

LEMMA 22.100 (CHEVALLEY). Let f1W.G;T /! .G1;T1/ and f2W.G;T /! .G2;T2/ be
isogenies of split reductive groups, and let fT WT1! T2 be a homomorphism such that fT ı
f1jT D f2jT . If X�.fT / is an isogeny of root data, then fT extends to a homomorphism
f WG1!G2 such that f ıf1 D f2.

PROOF. We have to show that the homomorphism f2 factors through f1, which will be true
if and only if Ker.f1/ � Ker.f2/. If f1 and f2 are central isogenies (for example, k has
characteristic zero), then the kernels are contained in T (because T D CG.T /), and so this
follows from the fact that f1jT factors through f2jT .

Clearly the statement Ker.f1/� Ker.f2/ is true if and only if it becomes true after an
extension of the base field, and so we may suppose that k is algebraically closed. The kernels
of f1.k/ and f2.k/ are central in G.k/, and so f1.k/WG.k/!G1.k/ factors through f2.k/,
say, g ıf1.k/D f2.k/. It remains to show that gWG1.k/!G2.k/ is a regular map.

Let ˛, ˛1, and ˛2 be roots of .G;T /, .G;T1/, and .G;T2/ related in pairs by the
maps '1 D X�.f1jT /, '2 D X�.f2jT /, and ' D X�.f /. Then f1.U˛.k//D U˛1.k/ and
f2.U˛.k//D U˛2.k/, so that g.U˛1.k//D U˛2 . Moreover, gWU˛1 ! U˛2 is a morphism
because, for some c 2 k, it has the form

g.u˛1.a//D u˛2.ca
q.˛1//; a 2 U˛1.k/

(cf. (159). It follows that g is a morphism on the big cell of G1, and hence on the union of
its translates, which is G1 itself. Thus g is an isogeny of algebraic groups. 2

LEMMA 22.101 (CHEVALLEY). Let f1W.G1;T1/! .G;T / and f2W.G2;T2/! .G;T / be
isogenies of reductive algebraic groups, and let fT WT1! T2 be a homomorphism such that
f2jT ıfT D f1jT . If X�.fT / is an isogeny of root data, then fT extends to a homomor-
phism f WG1!G2 such that f2 ıf D f1.

PROOF. Let G3 be the identity component of G1�G G2:

G3 G2

G1 G:

p2

p1 f2

f1

f
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It suffices to show that p2 factors through p1, say f ıp1 D p2, because then

f2 ıf ıp1 D f2 ıp2 D f1 ıp1;

and the surjectivity of p1 implies that f2 ıf D f1 as required.
Now p2 factors through p1 if and only if Ker.p1/� Ker.p2/, and it suffices to check

this after an extension of the base field. Thus, we may suppose that k is algebraically closed,
and we may replace G3 with its reduced algebraic subgroup. The projections p1 and p2
of G3 onto G1 and G2 are isogenies, and so G3 is reductive. Let T3 be the inverse image
torus of T in G3 (under f2 ıp2 or f1 ıp1). Then fT ıp1jT3 D p2jT3, and so (22.100)
applied to p1W.G3;T3/! .G1;T1/ and p2W.G3;T3/! .G2;T2/ shows that fT extends to
a homomorphism f WG1!G2 such that f ıp1 D p2, as required. 2

LEMMA 22.102. Let .G;T / and .G0;T 0/ be split reductive groups over a field k. An
isogeny fT WT ! T 0 extends to an isogeny G ! G0 if the restriction of fT to a homo-
morphism of finite group schemes T \DG ! T 0 \DG0 extends to a homomorphism
DG!DG0.

PROOF. Use the diagram

e T \DG T �DG G e

e T 0\DG0 T 0�DG0 G0 e: 2

PROPOSITION 22.103. If Theorem 22.92 holds for split semisimple groups then it holds
for split reductive groups.

PROOF. Omitted for the moment. 2

PROOF OF THEOREM 22.92 FOR GROUPS OF SEMISIMPLE RANK AT MOST 1

If .G;T / and .G0;T 0/ have semisimple rank 0, then G D T and G0 D T 0, and so there is
nothing to prove.

LEMMA 22.104. Let .G;T / and .G0;T 0/ be split reductive algebraic groups over k of
semisimple rank 1, and let fT WT ! T 0 be an isogeny of tori. If ' DX�.fT / is an isogeny
of root data, then f extends to a homomorphism f WG!G0.

PROOF. It suffices to prove this for semisimple groups (22.103) .
Let .G;T / be a split semisimple group of rank 1. For such a group, the root datum is

.X;f˙˛g;˛ 7! ˛_/ with X � Z and ˛_ the unique element of X_ with h˛;˛_i D 2. Let B
be a Borel subgroup in G. Then G=B � P1, and we obtain an isogeny

f WG! Aut.G=B/� PGL2;

and hence an isogeny ' of root data. We claim that the integers q.˛/D q.�˛/ 2 pN arising
from ' equal 1. To see this, let B D T U˛ and V D U�˛ . For v 2 V , we can recover v from
f .v/ by applying the following sequence of morphisms: first restrict the action of f .v/
from G=B to VB=B , then evaluate at B=B to get vB=B , and finally apply the isomorphism
VB=B! V which comes from the fact that VB D V˛T U˛ is a direct product of its factors.
It follows that f WV ! f .V / is an isomorphism, and hence that q.�˛/D 1.
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We now prove the lemma when G and G0 are semisimple of rank 1. Assume first that
G0 D PGL2. Let f1W.G;T /! .PGL2;D2/ be the isogeny of the previous paragraph and let
'1 DR.f1/. We have '1.˛0/D ˛ and '.˛/D q.˛/˛, so that ' D q.˛/'1. Therefore the
composite Fq.˛/ıf1 of f1 with the Frobenius map raising coordinates to their q.˛/th powers
is an isogeny that realizing '. We now consider the case G0 ¤ PGL2. Let gWG0! PGL2 be
an isogeny and let  DR.g/. By the previous case, there exists an isogeny hWG! PGL2
with R.h/D ' ı . Then (22.101) applied to the isogenies hWG! PGL2 and gWG0! PGL2
yields an isogeny f WG!G0 with R.f /D '. 2

A consequence of Lemma 22.104 is that every split semisimple group of rank 1 is
isomorphic to SL2 or PGL2.

PROOF OF THEOREM 22.92 IN THE GENERAL CASE.

Let .G;T / and .G0;T 0/ be split reductive groups over k, with root data .X�.T /;R;˛ 7!
˛_/ and .X�.T 0/;R0;˛0 7! ˛0_/. Let fT WT ! T 0 be a homomorphism such that ' D
X�.fT /WX

�.T 0/!X�.T / is an isogeny of root data. It remains to show that fT extends
to a homomorphism f WG!G0 (22.98).

22.105. The set S 0 def
D f˛0 j ˛ 2 Sg is a base for R0.

PROOF. Because ' is an isogeny of root data, each element R0 has a unique expression
as a linear combination of elements of S 0 in which the coefficients are rational numbers
all of the same sign. Clearly those elements of R0 for which the signs are positive from a
positive subsystem R0C of R0. From this and the fact that R0 is reduced, it follows that a
decomposition

˛0 D ˇ0C 0; ˛0 2 S 0; ˇ0; 0 2R0C

is impossible, and so S 0 is a base for R0. 2

For each ˛ 2 S , let G˛ be the subgroup defined in (22.43) (generated by T , U˛, and
U�˛). Similarly, let G˛0 be the subgroup attached to ˛0 2 S 0.

22.106. For each ˛ 2 S , the isogeny fT extends to an isogeny f˛WG˛!G˛0 .

PROOF. As G˛ and G˛0 are both of semisimple rank 1, this was proved in (22.104). 2

It suffices to prove the following statement.

22.107. The family of maps f˛WG˛!G0 extends to a homomorphism f WG!G0.

See (22.97) for a more general result. We construct f by constructing its graph. Let G00

be the subgroup variety of G�G0 generated by the family of maps x 7! .x;f˛.x//WG˛!

G�G0 (see Section 2.f). It is connected because each G˛ is connected. It suffices to prove
the following statement (because then p0 ıp�1 will be the map sought).

22.108. The projection pWG�G0!G maps G00 isomorphically onto G.

We prove this (also) in several steps. We may suppose that k is algebraically closed.

22.109. The projections of G00 to G and G0 are both surjective.

PROOF. The image of p contains
S
˛2S G˛, which generates G because S is a base for R.

Similarly for p0 because of (22.105). 2
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22.110. The group G00 is reductive.

PROOF. As G and G0 are reductive, their radicals are tori, and it follows from (22.109) that
the radical of G00is also a torus. 2

For each ˛ 2 S , let U 00˛ denote the graph of f˛jU˛,

U 00˛ D f.x;f .x// j x 2 U˛g:

Define U 00�˛, T 00, and G00˛ similarly, and let U 00 and V 00 be the group varieties generated by
all U 00˛ and all U 00�˛ respectively. The groups U 00˛ , U 00, U 00�˛ , and V 00 are connected unipotent
subgroup varieties of G00, and they are all normalized by T 00, which is a torus isomorphic to
T via p.

22.111. The groups U 00�˛ and U 00
ˇ

commute (elementwise) for all ˛;ˇ 2 S , ˛ ¤ ˇ.

PROOF. This follows from the corresponding results in G and G0, which hold because S
and S 0 are bases for R and R0. 2

22.112. The subset C D V 00 �T 00 �U 00 of G00 is open and dense.

PROOF. First C is dense and open in its closure because it is an orbit in the left�right
action of V 00�T 00U 00 on G00. For the proof that this closure is G00, we use (22.111) and the
definition of C . We first show by induction on n that

U 00˛U
00
�˛1

U 00�˛2 � � �U
00
�˛n
� NC (162)

for any elements ˛;˛1; : : : ;˛n of S . If nD 0, this is obvious. Assume that n > 0. If ˛ ¤ ˛1,
then

U 00˛U
00
�˛1
D U 00�˛1U

00
˛

by (22.111), and if ˛ D ˛1, then

U 00˛U
00
�˛1
�G00˛ D U

00

�˛T
00U 00˛ .

Thus in both cases (162) follows from the induction assumption. We have U 00˛V
00 � NC by

(162) since V 00 D V 00˛1V
00
˛2
� � � for some elements ˛1;˛2; : : : of S . It follows that U 00˛ NC � NC

and clearly U 00�˛ NC � NC and T 00 NC � NC . Since the subgroups U 00˛ , U 00�˛, ˛ 2 S , and T 00

generate G00, the set NC equals G00, as required. 2

22.113. The torus T 00 in G00 equals its centralizer, and so is maximal.

PROOF. The centralizer of T 00 in C is T 00 because the corresponding result is true in G and
G0. It follows from (22.112) that the centralizer of T 00 in G00, which is connected (18.44),
contains T 00 as a dense open subset and hence equals it. 2

22.114. The projection pWG00.k/! G.k/ is bijective and the induced map of maximal
tori T 00! T is an isomorphism.

PROOF. The last point was noted earlier, and the surjectivity of p holds by (22.109). For
the injectivity, we note first that since .Kerp/ı.k/ is normal and disjoint from the maximal
torus T 00, it consists of unipotent elements and therefore is solvable and equal to its own
radical (Lie-Kolchin 17.38). On the other hand, this radical consists of semisimple elements
since Ker.p/ıred is a connected normal subgroup of the reductive group G00, and hence is
itself reductive. Thus Ker.p/ı.k/ is trivial. Then Ker.p/.k/ is also trivial since it is finite
and normal, hence also central and therefore contained in T 00. 2
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We can now complete the proof of (22.108), which is all that remains to be done.
The properties in (22.114) are not quite enough to make p an isomorphism, as shown by
the examples following (22.116) below. However, in the present case, p also induces an
isomorphism between all corresponding pairs of root subgroups of G00 and G, since this is
true for the root subgroups U 00˛ and U˛ (˛ 2 S ) by construction and the others are conjugate
to these under the Weyl groups. It therefore induces an isomorphism between the big cells
of G00 and of G. Since the translates of the big cell form an open covering, it follows that p
itself is an isomorphism. Thus (22.108) is proved, and with it the isogeny theorem.

COMPLEMENTS

PROPOSITION 22.115. The following conditions on an isogeny f WG! G0 of reductive
groups over an algebraically closed field are equivalent:

(a) f is central, i.e., Ker.f /�Z.G/;

(b) Ker.df / is central;

(c) the map X�.f jT / on root data is central.

PROOF. Omitted for the moment. 2

The rest of this subsection is quoted from Steinberg 1999.
The central isogenies are the familiar ones from the theory of Lie groups, Spinn! SOn,

SLn! PGLn, G!Gad , . . . If char.k/D 0, these are the only isogenies, but if char.k/D
p ¤ 0 there are others and those enter into another important classification, that of the
finite simple groups, a substantial subset of which (the finite Chevalley groups, twisted and
untwisted — see Steinberg 1968 and the references given there) can be constructed in terms
of fixed-point-subgroups of isogenies that are endomorphisms of simple algebraic groups.
We have already mentioned the simplest of these, the Frobenius Fq (qDpn, n� 0) which, in
terms of a suitable matrix realization, simply replaces each coordinate of the given group by
its qth power. Accordingly the isogeny of root data is multiplication by q, or its composition
with an automorphism, and the fixed-point-subgroup is finite since its coordinates are all
in the finite field Fq . More exotic examples occur when there are two root lengths whose
ratio squared is just p D char.k/. Then, with ˛_ identified with .2=.˛;˛//˛, multiplication
by pn.˛0;˛0/=2 (˛0 any long root n � 0) effects an isogeny between D D .X;R/ and its
dual D_ D .X_;R_/ which sends ˛_ 2R_ to pn˛ or pnC1˛ according as ˛ is a long root
or a short root. In case R_ is isomorphic to R, this leads us back to D, and hence to an
endomorphism of the given algebraic group and yet other finite simple groups (the Suzuki
groups and the Ree groups). There remains only the case p D 2, D of type Bn, and D_ of
type Cn (n� 3), which enters into other interesting phenomenon.

PROPOSITION 22.116. An isogeny .G;T /! .G0;T 0/ of simple algebraic groups is an
isomorphism if it restricts to an isomorphism T ! T 0, except for the isogenies SO2nC1!
Sp2n, n� 1, in characteristic 2 described below.

PROOF. Exercise (Steinberg 1999, 4.11). 2

LetG D SO2nC1 be the group variety attached to the quadratic form x20C
Pn
iD1xixnCi

on k2nC1, andG0DSp2n the group variety attached to the skew-symmetric form
Pn
iD1.xix

0
nCi�

xnCix
0
i / on k2n. Then G fixes the basis vector e0 (only because the characteristic is 2) and

hence acts on k2nC1=ke0 ' k2n. From this isomorphism, we get an isogeny from G to G0

inducing an isomorphism on the diagonal maximal tori.
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n. The structure of semisimple groups

SPLIT SEMISIMPLE ALGEBRAIC GROUPS AND THEIR ROOTS

By a split semisimple group we mean a pair .G;T / consisting of a semisimple algebraic
group G and a split maximal torus T .

PROPOSITION 22.117. Let .G;T / be a split semisimple algebraic group, and let V D
Q˝X�.T /. Let RDR.G;T /� V . Then,

(a) R is finite, spans V , and does not contain 0;

(b) for each ˛, there exists an ˛_ 2 V _ such that h˛;˛_i D 2, hR;˛_i � Z, and the
reflection s˛Wx 7! x�hx;˛_i˛ maps R into R.

PROOF. (a) Certainly R is finite and does not contain 0. That it spans V follows from
(22.46).

(b) See (22.43, 22.44). 2

The proposition says exactly that R.G;T / is a root system in V (see 23.10). The coroot
˛_ attached to ˛ in (b) is unique. An elementary argument (23.18) shows that R admits a
base: this is a linearly independent subset S of R such that each root ˇ 2R can be written
uniquely in the form ˇ D

P
˛2Sm˛˛ with the m˛ integers all of the same sign. If all the

m˛ are positive (resp. negative) then ˇ is said to be positive for S .
Let B be a Borel subgroup of G containing T . Then the set of roots ˛ whose root group

U˛ is contained in B is the set of positive roots for a (unique) base for R. In this way, we
get a one-to-one correspondence between the Borel subgroups of G containing T and the
bases for R (cf. 22.57, 22.58).

AUTOMORPHISMS OF A SEMISIMPLE ALGEBRAIC GROUP

The results in this section also follow directly from the isogeny theorem (22.93).

PROPOSITION 22.118. Let G be a semisimple algebraic group over an algebraically closed
field. The group of inner automorphisms of G has finite index in the full group of automor-
phisms of G.

PROOF. Choose a Borel pair .B;T / in G, and let D denote the group of automorphisms
of .G;B;T /. Let  be an automorphism of G. According to (18.17), there exists an
inner automorphism a such that .B/D a.B/ and .T /D a.T /. Now a�1 2D. Thus
Aut.G/D Inn.G/ �D, and so

Aut.G/
Inn.G/

D
Inn.G/ �D

Inn.G/
'

D

D\ Inn.G/
:

The next lemma shows that D=.D\ Inn.G// acts faithfully on the set of roots of .G;T /,
and hence is finite. 2

LEMMA 22.119. Let  2 Aut.G;B;T /. If  acts trivially on R.G;T /, then  D inn.t/ for
some t 2 T .k/.

PROOF. Let S be the base corresponding to B . Let ˛ 2 S , and let u˛WGa ! U˛ be an
isomorphism. As  acts trivially on S , .U˛/D U˛ and so .u˛.a//D u˛.c˛a/ for some
c˛ 2 k. The set S is linearly independent, and so there exists a t 2 T .k/ such a.t/D c�1˛
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for all ˛ 2 S . Now  ı inn.t/ is the identity map on U˛ for all ˛ 2 S . It is also the identity
map on T . As T and the U˛ with ˛ 2 S generate B ,  ı inn.t/ is the identity map on B , and
hence on G (18.25). Thus  D inn

�
t�1

�
. 2

COROLLARY 22.120. Let G be a semisimple algebraic group over k. Then Aut.G/ is an
algebraic group over k with Aut.G/ı 'G=Z.G/. If G is split with split maximal torus T;
then �0.Aut.G// acts faithfully on the Dynkin diagram of the root system of .G;T /.

THE DECOMPOSITION OF A SEMISIMPLE ALGEBRAIC GROUP

An algebraic group is simple (resp. almost-simple) if it is semisimple, noncommutative,
and every proper normal subgroup is trivial (resp. finite). In particular, it is smooth and
connected. For example, SLn is almost-simple for n > 1, and PSLn D SLn =�n is simple.

Let N be an algebraic subvariety of a semisimple algebraic group G. If N is minimal
among the nonfinite normal subgroups of G, then it is almost-simple.

An algebraic group G is said to be the almost-direct product of its algebraic subgroups
G1; : : : ;Gr if the multiplication map

.g1; : : : ;gr/ 7! g1 � � �gr WG1� � � ��Gr !G

is a surjective homomorphism with finite kernel. In particular, this means that the Gi
commute and each Gi is normal in G. For example,

G D .SL2�SL2/=N; N D f.I;I /; .�I;�I /g;

is the almost-direct product of SL2 and SL2, but it is not a direct product of two almost-simple
algebraic groups.

THEOREM 22.121. A semisimple algebraic group G has only finitely many almost-simple
normal subgroup varieties G1; : : : ;Gr , and the map

.g1; : : : ;gr/ 7! g1 � � �gr WG1� � � ��Gr !G (163)

is surjective with finite kernel. Each connected normal algebraic subgroup of G is a product
of those Gi that it contains, and is centralized by the remaining ones.

In particular, an algebraic group is semisimple if and only if it is an almost-direct product
of almost-simple algebraic groups. The algebraic groups Gi are called the almost-simple
factors of G.

PROOF. Let G1;G2; : : : ;Gr be distinct smooth subgroups of G, each of which is minimal
among the nonfinite normal subgroup varieties of G.

For i ¤ j , .Gi ;Gj / is the algebraic subgroup generated by the map

Gi �Gj !G; .a;b/ 7! aba�1b�1:

Then .Gi ;Gj / is a connected normal subgroup variety of G (8.26) contained in Gi and so it
is trivial because Gi is minimal. Thus, the map

uWG1� � � ��Gr !G

is a homomorphism of algebraic groups, and H def
DG1 � � �Gr is a connected normal subgroup

variety of G. The kernel of u is finite, and so

dimG �
Xr

iD1
dimGi :
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This shows that r is bounded, and we may assume that our family contains them all. It then
remains to show that H DG. For this we may assume that k D kal. Let H 0 D CG.H/. The
action of G on itself by inner automorphisms defines a homomorphism

G.k/! Aut.H/

whose image contains Inn.H/ and whose kernel is H 0.k/ (which equals H 0red.k/). As
Inn.H/ has finite index in Aut.H/ (see 20.1), this shows that .G=H �H 0red/.k/ is finite,
and so the quotient G=

�
H �H 0red

�
is finite. As G is connected and smooth, it is strongly

connected, and so G DH �H 0red; in fact, G DH �H 0ıred.
Let N be a smooth subgroup ofH 0ıred, and assume that N is minimal among the nonfinite

normal subgroups of H 0ıred. Then N is normal in G (because G DH �H 0 and H centralizes
H 0), and so it equals one of the Gi . This contradicts the definition of H , and we conclude
that H 0ıred D 1. 2

COROLLARY 22.122. All nontrivial quotients and all connected normal subgroup varieties
of a semisimple algebraic group are semisimple.

PROOF. Every such group is an almost-product of almost-simple algebraic groups. 2

COROLLARY 22.123. If G is semisimple, then DG DG, i.e., a semisimple group has no
commutative quotients. In particular, X�.G/D 0.

PROOF. This is obvious for almost-simple algebraic groups, and hence for an almost-product
of such algebraic groups. 2

ASIDE 22.124. When k has characteristic zero, (22.121) is most easily proved using Lie algebras
(see LAG).

COMPLEMENTS ON REDUCTIVE GROUPS

Let G be an almost-simple group. Then G has a faithful representation .V;r/, which has a
simple subrepresentation .W;rW / on which G acts nontrivially. The kernel of rW is finite.

THEOREM 22.125. LetG be a connected group variety over a perfect field k. The following
conditions are equivalent:

(a) G is reductive;

(b) R.G/ is a torus;

(c) G is an almost direct product of a torus and its derived group DG, which is semisimple.

(d) G admits a semisimple representation with finite kernel.

PROOF. (a)” (b). See (20.7).
(c))(d): The group G is an almost direct product of almost simple groups G1; : : : ;Gn.

It suffices to take a direct sum of nontrivial simple representations of the quotients

G=.G1 : : :Gi�1GiC1 : : :Gn/:

(d))(b): Let .V;r/ be a semisimple representation, and let V0 be a simple factor of V .
Let U DRu.G/. Then V U0 is a nonzero subspace of V0 stable under G, and hence equals
V0. Therefore V U D V , which implies that U is finite, hence trivial.

(b))(c): Let S DR.G/. It is normal subtorus of G, hence central. The group G=S is
semisimple, therefore equal to its commutator subgroup, which implies that G D S �DG. It
remains to show that S \DG is finite, which is a consequence of the next lemma. 2
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LEMMA 22.126. Let H be a connected group variety, and let S be a central torus in H .
Then S \DH is finite. (Duplicates 14.72.)

PROOF. Embed H into GLV for some V . Then V is a direct sum of subspaces Vi stable
under G on which S acts by homotheties. The lemma follows from the fact that every
homomorphism H ! GLm maps DH into SLm. 2

REMARK 22.127. Let G be a connected group variety over a field k (not necessarily
perfect). The following conditions are equivalent:

(a) G is reductive;

(b) R.Gkal/ is a torus;

(c) G is an almost direct product of a torus and its derived group DG, which is semisimple;

(d) G admits an absolutely semisimple representation with finite kernel.

REMARK 22.128. From a reductive group G, we obtain a semisimple group G0 (its derived
group), a group Z of multiplicative type (its centre), and a homomorphism 'WZG0! Z.
Moreover, G can be recovered from .G0;Z;'/: the map

z 7! .'.z/�1;z/WZG0!Z�G0

is an isomorphism from ZG0 onto a central subgroup of Z �G0, and the quotient is G.
Clearly, every reductive group arises from such a triple .G0;Z;'/ (and G0 can even be
chosen to be simply connected).

SIMPLY CONNECTED SEMISIMPLE ALGEBRAIC GROUPS

A semisimple algebraic group G is simply connected if every central isogeny G0! G of
connected group varieties is an isomorphism — this agrees with (20.3). In characteristic
zero, all isogenies of connected group varieties are central, and so this just says that the only
isogenies G0!G are the isomorphisms.

For every semisimple algebraic group G over k, there is an initial object in the category
of central isogenies G0!G (20.21, or deduce it from the isogeny theorem).

Let G be a simply connected semisimple group over a field k, and let � D Gal.ksep=k/.
Then Gksep decomposes into a product

Gksep DG1� � � ��Gr (164)

of its almost-simple subgroups Gi . The set fG1; : : : ;Grg contains all the almost-simple
subgroups of Gksep . When we apply � 2 � to (164), it becomes

Gksep D �Gksep D �G1� � � ���Gr

with f�G1; : : : ;�Grg a permutation of fG1; : : : ;Grg. Let H1; : : : ;Hs denote the products of
Gi in the different orbits of � . Then �Hi DHi , and so Hi is defined over k (1.41), and

G DH1� � � ��Hs

is a decomposition of G into a product of its almost-simple subgroups.
Now suppose that G itself is almost-simple, so that � acts transitively on the Gi in (164).

Let
�D f� 2 � j �G1 DG1g;

and let K D .ksep/�.
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PROPOSITION 22.129. We have G ' .G1/K=k (restriction of base field).

PROOF. We can rewrite (164) as

Gksep D

Y
�G1ksep

where � runs over a set of cosets for � in � . On comparing this with the decomposition of�
.G1/K=k

�
ksep , we see that there is a canonical isomorphism

Gksep '
�
.G1/K=k

�
ksep

over ksep. In particular, the isomorphism commutes with the action of � , and so is defined
over k (A.41). 2

The group G1 over K is geometrically almost-simple, i.e., it is almost-simple and
remains almost-simple overKal (often “absolutely almost-simple” is used for “geometrically
almost-simple”).

CLASSIFICATION OF SPLIT ALMOST-SIMPLE ALGEBRAIC GROUPS

It remains to classify the geometrically almost-simple algebraic groups over a field, and their
centres. We do this here only for the split groups.

Let .V;R/ be a reduced root system over Q. For each ˛ 2 R, let ˛_ 2 V _ be the dual
root. The root lattice Q.R/ in V is the Z-submodule of V generated by the roots, and the
weight lattice P.R/ is

fv 2 V j hv;˛_i 2 Z for all ˛ 2Rg.

If S D f˛1; : : : ;˛rg is a base for R (in particular, a basis for the Q-vector space V ), then
Q.R/ is the free Z-module on B — in particular, it is visibly a lattice in V . Moreover,

P.R/D fv 2 V j hv;˛i i 2 Z for i D 1; : : : ; rg.

In terms of a W -invariant inner product on V ,

P.R/D

�
v 2 V

ˇ̌̌̌
2.r;˛/

.˛;˛/
2 Z, all ˛ 2R

�
:

PROPOSITION 22.130. The set of roots of .G;T / is a reduced root system R in V def
D

X�.T /˝Q; moreover,
Q.R/�X�.T /� P.R/: (165)

By a diagram .V;R;X/, we mean a reduced root system .V;R/ over Q and a lattice X
in V that is contained between Q.R/ and P.R/.

THEOREM 22.131 (EXISTENCE). Every diagram arises from a split semisimple algebraic
group over k.

THEOREM 22.132 (ISOGENY). Let .G;T / and .G0;T 0/ be split semisimple algebraic
groups over k, and let .V;R;X/ and .V;R0;X 0/ be their associated diagrams. An isogeny
.G;T /! .G0;T 0/ defines an isomorphism V ! V 0 sending R onto R0 and X into X 0, and
every such isomorphism arises from an isogeny.

In characteristic zero, these statements can be deduced from the similar statements for
Lie algebras (see my notes LAG). In the general case, the isogeny theorem for semisimple
groups follows from the isogeny theorem for reductive groups (22.93); the existence theorem
will be proved in proved in Chapter 25.
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o. Reductive groups in characteristic zero

Through out this section, k is a field of characteristic zero.

THE CASIMIR OPERATOR

A Lie algebra is said to be semisimple if its only commutative ideal is f0g. The Killing form
�g of a Lie algebra g is the trace form for the adjoint representation adWg! glg, i.e.,

�g.x;y/D Tr.ad.x/ı ad.y/jg/; x;y 2 g:

Cartan’s criterion says that a nonzero Lie algebra g is semisimple if and only if its Killing
form is nondegenerate (LAG, I, 4.13).

Let g be a semisimple Lie algebra, and let g_ D Homk-linear.g;k/. Then �g defines an
isomorphism g_! g and hence an isomorphism ˇWg˝g_! g˝g. The image of idg under
the homomorphisms

Endk-linear.g/' g˝g_
ˇ
' g˝g� T .g/! U.g/ (166)

is called the Casimir element. It lies in the centre of U.g/ because idg is invariant under
the natural action of g on End.g/ and the maps in (166) commute with the action of g. Let
e1; : : : ; en be a basis for g, and let e01; : : : ; e

0
n be the dual basis with respect to �g. Then

c D
Xn

iD1
ei � e

0
i :

For a representation .V;�/ of g,

cV
def
D �.c/D

Xn

iD1
eiV � e

0
iV

is called the Casimir operator. Because c lies in the centre of U.g/, cV is a g-homomorphism
V ! V . If .V;�/ is a faithful representation of g, then

Tr.cV jV /D
Xn

iD1
Tr.ei ˝ e0i jV /D

Xn

iD1
ıi i D nD dim.g/

(cf. Humphreys 1972, 6.2).
Now letG be a semisimple algebraic group over k. The Lie algebra g ofG is semisimple

(LGA, II, 4.1). Let .V;r/ be a representation of G. The Casimir operator cV for .V;dr/ is a
g-homomorphism V ! V . Thus, cV is fixed under the natural action of g on End.V /, and
hence the subspace hcV i is stable under G (12.25). As X.G/D 0 (22.121), this implies that
cV is fixed by G.

SUMMARY 22.133. Let G be a semisimple algebraic group. For every nonzero represen-
tation .V;r/ of G there is a canonical G-equivariant linear map cV WV ! V whose trace is
nonzero.

SEMISIMPLICITY.

LEMMA 22.134 (SCHUR’S). Let .V;r/ be a representation of an algebraic group G. If
.V;r/ is simple and k is algebraically closed, then End.V;r/D k.

PROOF. Let ˛WV ! V be a G-homomorphism of V . Because k is algebraically closed, ˛
has an eigenvector, say, ˛.v/D av, a 2 k. Now ˛�aWV ! V is a G-homomorphism with
nonzero kernel. Because V is simple, the kernel must equal V . Hence ˛ D a: 2
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LEMMA 22.135. Let G be an algebraic group over k. A representation of G is semisimple
if it becomes semisimple after an extension of scalars to kal.

PROOF. Let .V;r/ be a representation of G. If .V;r/kal is semisimple, then End..V;r/kal/

is a matrix algebra over kal (22.134). Now

End..V;r/kal/' End.V;r/˝kal;

and so this implies that End.V;r/ is a semisimple k-algebra, which in turn implies that .V;r/
is semisimple. (References to be added.) 2

LEMMA 22.136. Let G be an algebraic group such that X.G/D 0: The following condi-
tions on G are equivalent.

(a) Every finite-dimensional G-module is semisimple.

(b) Every submodule W of codimension 1 in a finite-dimensional G-module V is a direct
summand: V DW ˚W 0 (direct sum of G-modules).

(c) Every simple submodule W of codimension 1 in a finite-dimensional G-module V is
a direct summand: V DW ˚W 0 (direct sum of G-modules).

PROOF. The implications (a)H) (b)H) (c) are trivial.
(c)H) (b). Let W � V have dimension dimV �1. If W is simple, we know that it has

a G-complement, and so we may suppose that there is a nonzero G-submodule W 0 of W
with W=W 0 simple. Then the G-submodule W=W 0 of V=W 0 has a G-complement, which
we can write in the form V 0=W 0 with V 0 a G-submodule of V containing W 0; thus

V=W 0 DW=W 0˚V 0=W 0.

As .V=W 0/=.W=W 0/' V=W , theG-module V 0=W 0 has dimension 1, and so V 0DW 0˚L
for some line L. Now L is a G-submodule of V , which intersects W trivially and has
complementary dimension, and so is a G-complement for W .

(b) H) (a). Let W be a G-submodule of a finite-dimensional G-module V ; we have
to show that it is a direct summand. The space Homk-linear.V;W / of k-linear maps has a
natural G-module structure:

.gf /.v/D g �f .g�1v/.

Let

V1 D ff 2 Homk-linear.V;W / j f jW D a idW for some a 2 kg

W1 D ff 2 Homk-linear.V;W / j f jW D 0g:

They are both G-submodules of Homk-linear.V;W /. As V1=W1 has dimension 1,

V1 DW1˚L

for some one-dimensional G-submodule L of V1. Let L D hf i. As X.G/ D 0, G acts
trivially on L; and so f is a G-homomorphism V !W . As f jW D a idW with a¤ 0, the
kernel of f is a G-complement to W . 2

PROPOSITION 22.137. Let G be a semisimple algebraic group over a field k of character-
istic zero. Every finite-dimensional representation of G is semisimple.
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PROOF. After (22.135), we may suppose that k is algebraically closed. Let V be a nontrivial
representation of G, and let W be a subrepresentation of V . We have to show that W has
a G-complement. By (22.136) we may suppose that W is simple of codimension 1. As
X.G/ D 0 (22.123) and V=W is one-dimensional, G acts trivially on V=W , and so the
Casimir operator cV=W D 0. On the other hand, cV acts on W as scalar by Schur’s lemma
(22.134). This scalar is nonzero because otherwise TrV cV D 0, which contradicts the
nontriviality of the representation. Therefore the kernel of cV is one-dimensional. It is a
G-submodule of V which intersects W trivially, and so it is a G-complement for W . 2

THEOREM 22.138. The following conditions on a connected algebraic groupG over a field
of characteristic zero are equivalent:

(a) G is reductive;

(b) every finite-dimensional representation of G is semisimple;

(c) some faithful finite-dimensional representation of G is semisimple.

PROOF. (a) H) (b): If G is reductive, then G D Z �G0 where Z is the centre of G (a
group of multiplicative type) and G0 is the derived group of G (a semisimple group). Let
G!GLV be a representation ofG. When regarded as a representation ofZ, V decomposes
into a direct sum V D

L
i Vi of simple representations (14.50). Because Z and G0 commute,

each subspace Vi is stable under G0. As a G0-module, Vi decomposes into a direct sum
Vi D

L
j Vij with each Vij simple as a G0-module (22.137). Now V D

L
i;j Vij is a

decomposition of V into a direct sum of simple G-modules.
(b)H) (c): Obvious, because every algebraic group has a faithful finite-dimensional

representation (4.8).
(c)H) (a): This is true over any field (see 20.14). 2

COROLLARY 22.139. Over a field of characteristic zero, all finite-dimensional representa-
tions of an algebraic group G are semisimple if and only if the identity component Gı of G
is reductive.

PROOF. To be added (easy). 2

p. Roots of nonsplit reductive groups: a survey

This section will be completely rewritten. The present text has been extracted from Springer’s
Corvallis talk.

22.140. Let G be a reductive group over k, and let S be a maximal split torus in G, i.e., a
subtorus of G that is maximal among the split tori in G. Any two such tori are conjugate by
an element of G.k/. Their common dimension is called the k-rank of G.

22.141. The root system ofG with respect to S is called the relative root system of .G;S/,
and denoted kR.G;S/. This is a root system (not necessarily reduced) in the subspace V of
X�.S/˝Q spanned by kR. Its Weyl group is called the relative Weyl group of G (notation
kW or kW.G/). The quotient NG.S/=CG.S/ acts on kR in V . In fact, it can be identified
with kW . Every coset of NG.S/=CG.S/ can be represented by an element of NG.S/.k/.

22.142. The centralizer CG.S/ of S in G is a connected reductive group over k (19.17).
Its derived group C.S/0 is an anisotropic semisimple group, i.e., its k-rank is 0 . To a certain
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extent, G can be recovered from C.S/0 and the relative root system kR (see Tits 1966 and
Chapter 26 below). There is a decomposition of the Lie algebra g of G:

gD g0C
X
˛2kR

g˛; g˛
def
D fX 2 g j Ad.s/X D ˛.s/X; s 2 Sg:

Here g0 is the Lie algebra of Z.S/. For each ˛ 2 kR there is a unique unipotent subgroup
U˛ of G normalized by S and with Lie algebra g˛.

22.143. If G is split over k, then S is a maximal torus, and kR coincides with the root
system of .G;S/. In the general case, kR need not be reduced, and the dimension of g˛
need not be 1.

PARABOLIC SUBGROUPS

22.144. Recall that a parabolic subgroup P of an algebraic group Gan is a subgroup
variety such that G=P is a projective variety. Over an algebraically closed field, they are the
subgroup varieties containing a Borel subgroup.

22.145. In the general case, any two minimal parabolic subgroups of G are conjugate
by an element of G.k/. If P is one, then there is a maximal split torus S of G such that
P DRu.P /ÌCG.S/. There is an ordering of kR such that P is generated by CG.S/ and
the U˛ with ˛ > 0. The minimal parabolic subgroups containing a given S correspond to the
Weyl chambers of kR. They are permuted simply transitively by the relative Weyl group.

22.146. Fix an ordering of kR and let k� be the basis of kR defined by it. For any other
subset � � k�, denote by P� the subgroup generated by CG.S/ and the U corresponding to
the ˛ 2 kR that are linear combinations of the roots of k� in which all roots not in � occur
with a nonnegative coefficient. Then

P
k� DG; P; D P; P� � P:

22.147. TheP� are the standard parabolic subgroups ofG containingP . Every parabolic
subgroup is conjugate by an element of G.k/ to a unique P� . The identity component S� ofT
˛2� .Ker�/ is a k-split torus of G, and we have P� DRu.P� /ÌCG.S� /. The unipotent

radical Ru.P� / is generated by the U˛ where ˛ runs over the positive roots that are not
linear combinations of elements of � .

22.148. Let Q be a parabolic subgroup of G with unipotent radical V . A Levi subgroup
of Q is a subgroup L such that Q is the semidirect product QD V ÌL. It follows from the
above that such L exist. Any two Levi subgroups of Q are conjugate by an element of G.k/.
If A is a maximal split subtorus of G, then there is a parabolic subgroup Q of G with Levi
subgroup L. Two such Q are not necessarily conjugate by an element of G.k/ (as they are
when A is a maximal split torus). Two parabolic subgroups Q1 and Q2 are associated if
they have Levi subgroups that are k-conjugate. This defines an equivalence relation on the
set of parabolic subgroups.

22.149. If Q1 and Q2 are two parabolic subgroups, then .Q1\Q2/ �Ru.Q1/ is also a
parabolic subgroup, which is contained in Q1. It equals Q1 if and only if there is a Levi
subgroup of Q1 containing a Levi subgroup of Q2. The parabolic subgroups Q1 and Q2
are called opposite if Q1\Q2 is a Levi subgroup of Q1 and Q2.
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BRUHAT DECOMPOSITION OF G.k/

22.150. Let P and S be as before, and let U DRu.P /. For w 2 kW , let nw represent w
in N.S/.k/. The Bruhat decomposition of G.k/ states that G.k/ is the disjoint union of
the double cosets U.k/nwP.k/:

G.k/D
G

w2kW

U.k/nwP.k/:

We can rephrase this in a more precise way. For w 2 kW there exist two subgroup varieties
U 0w and U 00w of U such that the map

.x;y/ 7! xnwyWU
0
w �P ! UnwP

is an isomorphism. We then have

.G=P /.k/DG.k/=P.k/D
[

w2kW

�.U 0w.k//;

where � is the projection G!G=P .
When k is algebraically closed, this gives a cellular decomposition of the projective

variety G=P .

22.151. For � 2 k�, let W� denote the subgroup of kW generated by the reflections s˛,
˛ 2 k�. For �;� 0 2 k�, there is a bijection of double cosets

P� .k/nG.k/=P� 0.k/'W.�/nkW=W.�
0/:

Let ˙ be the set of generators of kW defined by k�. The above assertions (on the level of
sets) all follow from the fact that .G.k/;P.k/;Z.S/.k/;˙/ is a Tits system in the sense of
Bourbaki.

q. Pseudo-reductive groups: a survey

We briefly summarize Conrad, Gabber, and Prasad 2010, which completes earlier work of
Borel and Tits (Borel and Tits 1978; Tits 1992, 1993; Springer 1998, Chapters 13–15).

DEFINITION 22.152. An algebraic group G is pseudo-reductive if it is smooth and con-
nected, and Ru.G/D e.

A connected group variety is pseudo-reductive it admits a faithful semisimple represen-
tation (22.19).

22.153. Let k be a separably closed field of characteristic p, and let G D .Gm/k0=k where
k0 is an extension of k of degree p (necessarily purely inseparable). ThenG is a commutative
smooth connected algebraic group over k. The canonical map Gm!G realizes Gm as the
greatest subgroup of G of multiplicative type, and the quotient G=Gm is unipotent. Over kal,
G decomposes into .Gm/kal � .G=Gm/kal (see 17.31), and so G is not reductive. However,
G contains no smooth unipotent subgroup because G.k/D k0�, which has no p-torsion.
Therefore G is pseudo-reductive. (Recall 3.29 that if G is reductive, then .G/k0=k.k/ is
dense in .G/k0=k if k is infinite.)
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22.154. Let k0 be a finite field extension of k, and let G be a reductive group over k0. If k0

is separable over k, then .G/k0=k is reductive, but otherwise it is only pseudoreductive.

22.155. Let C be a commutative connected algebraic group over k. If C is reductive,
then it is a torus, and the tori are classified by the continuous actions of Gal.ksep=k/ on
free commutative groups of finite rank. By contrast, “it seems to be an impossible task to
describe general commutative pseudo-reductive groups over imperfect fields” (Conrad et al.
2010, p. xv).

22.156. Let k1; : : : ;kn be finite field extensions of k. For each i , let Gi be a reductive
group over ki , and let Ti be a maximal torus in Gi . Define algebraic groups

G - T � NT

by

G D
Y

i
.Gi /ki=k

T D
Y

i
.Ti /ki=k

NT D
Y

i
.Ti=Z.Gi //ki=k .

Let �WT ! C be a homomorphism of commutative pseudoreductive groups that factors
through the quotient map T ! NT :

T
�
�! C

 
�! NT .

Then  defines an action of C on G by conjugation, and so we can form the semidirect
product

GÌC:
The map

t 7! .t�1;�.t//WT !GÌC
is an isomorphism from T onto a central subgroup of GÌC , and the quotient .GÌC/=T is
a pseudoreductive group over k. The main theorem (5.1.1) of Conrad et al. 2010 says that,
except possibly when k has characteristic 2 or 3, every pseudoreductive group over k arises
by such a construction (the theorem also treats the exceptional cases).

22.157. The maximal tori in reductive groups are their own centralizers. Any pseudore-
ductive group with this property is reductive (except possibly in characteristic 2; Conrad
et al. 2010, 11.1.1).

22.158. If G is reductive, then G DDG � .ZG/ı where DG is the derived group of G and
.ZG/ı is the greatest central connected reductive subgroup of G. This statement becomes
false with “pseudoreductive” for “reductive” (Conrad et al. 2010, 11.2.1).

22.159. For a reductive group G, the map

RG D .ZG/ı!G=DG

is an isogeny, and G is semisimple if and only if one (hence both) groups are trivial. For
a pseudoreductive group, the condition RG D 1 does not imply that G D DG. Conrad
et al. 2010, 11.2.2, instead adopt the definition: an algebraic group G is pseudo-semisimple
if it is pseudoreductive and G D DG. The derived group of a pseudoreductive group is
pseudo-semisimple (ibid. 1.2.6, 11.2.3).
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22.160. A reductive group G over any field k is unirational, and so G.k/ is dense in G if
k is infinite. This fails for pseudoreductive groups: over every nonperfect field k there exists
a commutative pseudoreductive group that it not unirational; when k is a nonperfect rational
function field k0.T /, such a group G can be chosen so that G.k/ is not dense in G (Conrad
et al. 2010, 11.3.1).

r. Levi subgroups: a survey

We have studied reductive groups in this chapter. Every connected group variety G over a
field k is an extension

e!Ru.G/!G!G=Ru.G/! e

of a pseudo-reductive group by a unipotent group. If k is perfect, then G=Ru.G/ is reductive
and the unipotent group Ru.G/ is split. In good cases, the extension splits.

DEFINITION 22.161. Let G be a connected group variety over k. A Levi subgroup of G is
a connected subgroup variety L such that the quotient map Gkal !Gkal=RuGkal restricts to
an isomorphism Lkal !Gkal=RuGkal . In other words, Gkal is the semidirect product

Gkal DRuGkal ÌLkal

of a reductive group Lkal with a unipotent group RuGkal .

22.162. Suppose that there exists a unipotent subgroup R of G such that Rkal DRu.Gkal/

(so G=R is reductive). Then a Levi subgroup of G is a connected subgroup variety L such
the quotient map G! G=R restricts to an isomorphism L! G=R. In this case, G is the
semidirect product

G DRÌL

of a reductive group L with a unipotent group R.

22.163. When k is perfect, a subgroup R as in (22.162) always exists. In characteristic
zero, Levi subgroups always exists (Theorem of Mostow; Hochschild 1981, VIII, Theorem
4.3).

22.164. In nonzero characteristic, a connected group variety G need not have a Levi
subgroup.

22.165. Every pseudo-reductive group with a split maximal torus has a Levi subgroup
(Conrad et al. 2010, 3.4.1).

This section will be expanded somewhat. For the present, here are some references.
mo133249.
Humphreys, J. E. Existence of Levi factors in certain algebraic groups. Pacific J. Math.

23 1967 543–546.
McNinch, George J. Levi decompositions of a linear algebraic group. Transform. Groups

15 (2010), no. 4, 937–964.
McNinch, George On the descent of Levi factors. Arch. Math. (Basel) 100 (2013), no.

1, 7–24.
McNinch, George J. Levi factors of the special fiber of a parahoric group scheme and

tame ramification. Algebr. Represent. Theory 17 (2014), no. 2, 469–479.

http://mathoverflow.net/questions/133249/
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s. Exercises

EXERCISE 22-1. Show that a linearly reductive algebraic group has only finitely many
simple representations (up to isomorphism) if and only if it is finite. Deduce that an algebraic
group (not necessarily affine) has only finitely many simple represenations if and only if its
identity component is an extension of unipotent algebraic group by an anti-affine algebraic
group.[Let G be an affine linearly reductive group scheme over a field. Suppose that there
are only finitely many simple representations (up to isomorphism) and let X be the direct
sum of them. Then every representation of G is isomorphic to a subquotient (in fact, direct
factor) of Xn for some n. This implies that is finite (see, for example, Deligne and Milne,
Tannakian Categories, 2.20).]

EXERCISE 22-2. Let G be a reductive group.

(a) Show that the kernel of the adjoint representation of G on LieG is the centre of G.

(b) Show that Z.G=Z.G//D 1.

EXERCISE 22-3. A semisimple algebraic group G over a field of characteristic zero has a
faithful simple representation if and only if X�.ZG/ is cyclic (mo29813). (Spin groups in
even dimensions have center a non-cyclic group (of order 4) and so have no faithful simple
representations. )





CHAPTER 23
Root data and their classification

This chapter will be revised but not expanded (perhaps I’ll include a direct proof that the
Weyl group acts simply transitively on the Weyl chambers, 23.16).

Throughout, F is a field of characteristic zero, for example, Q or R.

a. Equivalent definitions of a root datum

The following is the standard definition (SGA 3, XXI, 1.1.1).

DEFINITION 23.1. A root datum is an ordered quadruple RD .X;R;X_;R_/ where

˘ X;X_ are free Z-modules of finite rank in duality by a pairing h ; iWX �X_! Z,

˘ R;R_ are finite subsets of X and X_ in bijection by a correspondence ˛$ ˛_,

satisfying the following conditions

RD1 h˛;˛_i D 2,

RD2 s˛.R/�R, s_˛ .R
_/�R_, where

s˛.x/D x�hx;˛
_
i˛; for x 2X , ˛ 2R;

s_˛ .y/D y�h˛;yi˛
_; for y 2X_;˛ 2R:

Recall that RD1 implies that s˛.˛/D�˛ and s2˛ D 1.
Thus in (23.1), the condition s_˛ .R

_/�R_ replaces the condition that W.R/ is finite in
(22.37). Definition 23.1 has the merit of being self-dual, but (22.37) is usually easier to work
with.

Set1
QD ZR �X Q_ D ZR_ �X_
V DQ˝ZQ V _ DQ˝ZQ

_:

X0 D fx 2X j hx;R
_i D 0g

By ZR we mean the Z-submodule of X generated by the ˛ 2R.

LEMMA 23.2. For ˛ 2R, x 2X , and y 2X_,

hs˛.x/;yi D hx;s
_
˛ .y/i; (167)

and so
hs˛.x/;s

_
˛ .y/i D hx;yi: (168)

1The notation Q_ is a bit confusing, because Q_ is not in fact the dual of Q.

431
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PROOF. We have

hs˛.x/;yi D hx�hx;˛
_
i˛;yi D hx;yi�hx;˛_ih˛;yi

hx;s_˛ .y/i D hx;y�h˛;yi˛
_
i D hx;yi�hx;˛_ih˛;yi;

which gives the first formula, and the second is obtained from the first by replacing y with
s_˛ .y/. 2

In other words, as the notation suggests, s_˛ (which is sometimes denoted s˛_) is the
transpose of s˛.

THEOREM 23.3. Let .X;R;X_;R_/ be a root system, and let f WR!R_ be the bijection
˛ 7! ˛_. Then .X;R;f / satisfies the conditions (rd1), (rd2), and (rd3) of (22.37). Con-
versely, let .X;R;f / be a system satisfying these conditions; let X_ D Hom.X;Z/ and let
R_D f .R/; then the system .X;R;X_;R_/ together with the natural pairingX �X_!Z
and the bijection ˛$ f .˛/ form a root system in the sense of (23.2).

PROOF. For the first statement, we only have to check (rd3): the group of automorphisms
of X generated by the s˛ is finite.

For the second statement, we have to show that

s_˛ .R
_/�R_ where s_˛ .y/D y�h˛;yi˛

_:

As in Lemma 23.2, hs˛.x/;s_˛ .y/i D hx;yi.
Let ˛;ˇ 2R, and let t D ss˛.ˇ/s˛sˇ s˛. An easy calculation2 shows that

t .x/D xC .hx;s_˛ .ˇ
_/i�hx;s˛.ˇ/

_
i/s˛.ˇ/; all x 2X:

Since

hs˛.ˇ/;s
_
˛ .ˇ
_/i�hs˛.ˇ/;s˛.ˇ/

_
i D hˇ;ˇ_i�hs˛.ˇ/;s˛.ˇ/

_
i D 2�2D 0;

we see that t .sa.ˇ//D s˛.ˇ/. Thus,

.t �1/2 D 0;

and so the minimum polynomial of t acting on Q˝ZX divides .T �1/2. On the other hand,
since t lies in a finite group, it has finite order, say tm D 1. Thus, the minimum polynomial
also divides Tm�1, and so it divides

gcd.Tm�1;.T �1/2/D T �1:

This shows that t D 1, and so

hx;s_˛ .ˇ
_/i�hx;s˛.ˇ/

_
i D 0 for all x 2X:

Hence
s_˛ .ˇ

_/D s˛.ˇ/
_
2R_: 2

Thus, to give a root system in the sense of (23.1) amounts to giving a system .X;R;f /

satisfying (22.37).

2Or so it is stated in Springer 1979, 1.4; details to be added.
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b. Deconstructing root data

Explain how they are built up from semisimple root data and toral root data

c. Semisimple root data and root systems

An inner product on a real vector space is a positive-definite symmetric bilinear form.

GENERALITIES ON SYMMETRIES

A reflection of a vector space V is an endomorphism of V that fixes the vectors in a
hyperplane and acts as �1 on a complementary line. Let ˛ be a nonzero element of V . A
reflection with vector ˛ is an endomorphism s of V such that s.˛/ D �˛ and the set of
vectors fixed by s is a hyperplane H . Then V DH ˚h˛i with s acting as 1˚�1, and so
s2 D�1. Let V _ be the dual vector space to V , and write h ; i for the tautological pairing
V �V _! k. If ˛_ is an element of V _ such that h˛;˛_i D 2, then

s˛Wx 7! x�hx;˛_i˛ (169)

is a reflection with vector ˛, and every reflection with vector ˛ is of this form (for a unique
˛_)3.

LEMMA 23.4. Let R be a finite spanning set for V . For any nonzero vector ˛ in V , there
exists at most one reflection s with vector ˛ such that s.R/�R.

PROOF. Let s and s0 be such reflections, and let t D ss0. Then t acts as the identity map on
both F˛ and V=F˛, and so

.t �1/2V � .t �1/F˛ D 0:

Thus the minimum polynomial of t divides .T �1/2. On the other hand, because R is finite,
there exists an integer m � 1 such that tm.x/D x for all x 2 R, and hence for all x 2 V .
Therefore the minimum polynomial of t divides Tm� 1. As .T � 1/2 and Tm� 1 have
greatestt common divisor T �1, this shows that t D 1. 2

LEMMA 23.5. Let . ; / be an inner product on a real vector space V . Then, for any nonzero
vector ˛ in V , there exists a unique symmetry s with vector ˛ that is orthogonal for . ; /, i.e.,
such that .sx;sy/D .x;y/ for all x;y 2 V , namely

s.x/D x�2
.x;˛/

.˛;˛/
˛: (170)

PROOF. Certainly, (170) does define an orthogonal symmetry with vector ˛. Suppose
s0 is a second such symmetry, and let H D h˛i?. Then H is stable under s0, and maps
isomorphically on V=h˛i. Therefore s0 acts as 1 on H . As V DH ˚h˛i and s0 acts as �1
on h˛i, it must coincide with s. 2

3The composite of the quotient map V ! V=H with the linear map V=H ! F sending ˛CH to 2 is the
unique element ˛_ of V _ such that ˛.H/D 0 and h˛;˛_i D 2.
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GENERALITIES ON LATTICES

In this subsection V is a finite-dimensional vector space over F .

DEFINITION 23.6. A subgroup of V is a lattice in V if it can be generated (as a Z-module)
by a basis for V . Equivalently, a subgroup X is a lattice if the natural map F ˝ZX ! V is
an isomorphism.

REMARK 23.7. (a) When F DQ, every finitely generated subgroup of V that spans V is a
lattice, but this is not true for F D R or C. For example, Z1CZ

p
2 is not a lattice in R.

(b) When F D R, the discrete subgroups of V are the partial lattices, i.e., Z-modules
generated by an R-linearly independent set of vectors for V (see my notes on algebraic
number theory 4.13).

DEFINITION 23.8. A perfect pairing of free Z-modules of finite rank is one that realizes
each as the dual of the other. Equivalently, it is a pairing into Z with discriminant˙1.

PROPOSITION 23.9. Let
h ; iWV �V _! k

be a nondegenerate bilinear pairing, and let X be a lattice in V . Then

Y D fy 2 V _ j hX;yi � Zg

is the unique lattice in V _ such that h ; i restricts to a perfect pairing

X �Y ! Z:

PROOF. Let e1; : : : ; en be a basis for V generating X , and let e01; : : : ; e
0
n be the dual basis.

Then
Y D Ze01C�� �CZe0n;

and so it is a lattice, and it is clear that h ; i restricts to a perfect pairing X �Y ! Z.
Let Y 0 be a second lattice in V _ such that hx;yi 2Z for all x 2X , y 2 Y 0. Then Y 0 � Y ,

and an easy argument shows that the discriminant of the pairing X �Y 0! Z is˙.Y WY 0/,
and so the pairing on X �Y 0 is perfect if and only if Y 0 D Y . 2

d. Root systems

In this section, we briefly explain the classification of root systems in terms of Dynkin
diagrams. Omitted proofs can be found in LAG I, �8 or Serre 1966, for example.

Let V be a finite-dimensional vector space over F .

DEFINITION 23.10. A subset R of V over F is a root system in V if

RS1 R is finite, spans V , and does not contain 0;

RS2 for each ˛ 2R, there exists a (unique) reflection s˛ with vector ˛ such that s˛.R/�R;

RS3 for all ˛;ˇ 2R, s˛.ˇ/�ˇ is an integer multiple of ˛.

In other words,R is a root system if it satisfies RS1 and, for each ˛ 2R, there exists a (unique)
vector ˛_ 2 V _ such that h˛;˛_i D 2, hR;˛_i 2 Z, and the reflection s˛Wx 7! x�hx;˛_i˛

maps R in R.



d. Root systems 435

We sometimes refer to the pair .V;R/ as a root system over F . The elements of R are
called the roots of the root system. If ˛ is a root, then s˛.˛/D�˛ is also a root. The unique
˛_ attached to ˛ is called its coroot. The dimension of V is called the rank of the root
system.

By root system, we shall mean reduced root system.

EXAMPLE 23.11. Let V be the hyperplane in F nC1 of nC1-tuples .xi /1�i�nC1 such thatP
xi D 0, and let

RD f˛ij
def
D ei � ej j i ¤ j; 1� i;j � nC1g

where .ei /1�i�nC1 is the standard basis for F nC1. For each i ¤ j , let s˛ij be the linear
map V ! V that switches the i th and j th entries of an nC 1-tuple in V . Then s˛ij is a
reflection with vector ˛ij such that s˛ij .R/� R and s˛ij .ˇ/�ˇ 2 Z˛ij for all ˇ 2 R. As
R obviously spans V , this shows that R is a root system in V .

23.12. Let . ; / be an inner product on a real vector space V . Then, for any nonzero vector
˛ in V , there exists a unique symmetry s with vector ˛ that is orthogonal for . ; /, i.e., such
that .sx;sy/D .x;y/ for all x;y 2 V , namely

s.x/D x�2
.x;˛/

.˛;˛/
˛: (171)

23.13. Let .V;R/ be a root system over F , and let V0 be the Q-vector space generated by
R. Then c˝v 7! cvWF ˝Q V0! V is an isomorphism, and R is a root system in V0.

Thus, to give a root system over F is the same as giving a root system over Q (or R or
C). In the following, we assume that F � R (and sometimes that F D R).

23.14. If .Vi ;Ri /i2I is a finite family of root systems, thenL
i2I .Vi ;Ri /

def
D .

L
i2I Vi ;

F
Ri /

is a root system (called the direct sum of the .Vi ;Ri /).

A root system is indecomposable (or irreducible) if it can not be written as a direct sum
of nonempty root systems.

23.15. Let .V;R/ be a root system. There exists a unique partition R D
F
i2I Ri of R

such that
.V;R/D

M
i2I
.Vi ;Ri /; Vi D span of Ri ;

and each .Vi ;Ri / is an indecomposable root system.

THE WEYL GROUP

Let .V;R/ be a root system. The Weyl group W D W.R/ of .V;R/ is the subgroup of
GL.V / generated by the reflections s˛ for ˛ 2 R. Because R spans V , the group W acts
faithfully on R, and so is finite.

For ˛ 2R, we let H˛ denote the hyperplane of vectors fixed by s˛ . A Weyl chamber is
a connected component of V X

S
˛2RH˛.

23.16. The group W.R/ acts simply transitively on the set of Weyl chambers (Bourbaki
LIE, VI, �1, 5).
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EXISTENCE OF AN INNER PRODUCT

23.17. For any root system .V;R/, there exists an inner product . ; / on V such the w 2R,
act as orthogonal transformations, i.e., such that

.wx;wy/D .x;y/ for all w 2W , x;y 2 V:

Let . ; /0 be any inner product V �V ! R, and define

.x;y/D
X

w2W
.wx;wy/0:

Then . ; / is again an inner product, and

.w0x;w0y/D
X

w2W
.ww0x;ww0y/

0
D .x;y/

for any w0 2W , because as w runs through W , so also does ww0.
When we equip V with an inner product . ; / as in (23.17),

s˛.x/D x�2
.x;˛/

.˛;˛/
˛ for all x 2 V:

Therefore the hyperplane of vectors fixed by ˛ is orthogonal to ˛, and the ratio .x;˛/=.˛;˛/
is independent of the choice of the inner product:

2
.x;˛/

.˛;˛/
D hx;˛_i:

BASES

Let .V;R/ be a root system. A subset S of R is a base for R if it is a basis for V and if each
root can be written ˇ D

P
˛2Sm˛˛ with the m˛ integers of the same sign (i.e., either all

m˛ � 0 or all m˛ � 0). The elements of a (fixed) base are called the simple roots (for the
base).

23.18. There exists a base S for R.

More precisely, let t lie in a Weyl chamber, so t is an element of V such that ht;˛_i ¤ 0
if ˛ 2 R, and let RC D f˛ 2 R j .˛; t/ > 0g. Say that ˛ 2 RC is indecomposable if it can
not be written as a sum of two elements of RC. The indecomposable elements form a base,
which depends only on the Weyl chamber of t . Every base arises in this way from a unique
Weyl chamber, and so (23.16) shows that W acts simply transitively on the set of bases for
R.

23.19. Let S be a base for R. Then W is generated by the fs˛ j ˛ 2 Sg, and W �S DR.

23.20. Let S be a base for R. If S is indecomposable, there exists a root Q̨ D
P
˛2S n˛˛

such that, for any other root
P
˛2Sm˛˛, we have that n˛ �m˛ for all ˛.

Obviously Q̨ is uniquely determined by the base S . It is called the highest root (for the
base). The simple roots ˛ with n˛ D 1 are said to be special.
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23.21. Let .V;R/ be the root system in (23.11), and endow V with the usual inner product
(assume F � R). When we choose

t D ne1C�� �C en�
n

2
.e1C�� �C enC1/;

then
RC

def
D f˛ j .˛; t/ > 0g D fei � ej j i > j g:

For i > j C1,
ei � ej D .ei � eiC1/C�� �C .ejC1� ej /;

and so ei � ej is decomposable. The indecomposable elements are e1� e2; : : : ; en� enC1.
Obviously, they do form a base S for R. The Weyl group has a natural identification
with SnC1, and it certainly is generated by the elements s˛1 ; : : : ; s˛n where ˛i D ei � eiC1;
moreover, W �S DR. The highest root is

Q̨ D e1� enC1 D ˛1C�� �C˛n:

ROOT SYSTEMS OF RANK 2

The root systems of rank 1 are the subsets f˛;�˛g, ˛ ¤ 0, of a vector space V of dimension
1, and so the first interesting case is rank 2. Assume F D R, and choose an invariant inner
product. For roots ˛;ˇ, we let

n.ˇ;˛/D 2
.ˇ;˛/

.˛;˛/
D hˇ;˛_i 2 Z.

Write

n.ˇ;˛/D 2
jˇj

j˛j
cos�

where j � j denotes the length of a vector and � is the angle between ˛ and ˇ. Then

n.ˇ;˛/ �n.˛;ˇ/D 4cos2� 2 Z:

When we exclude the possibility that ˇ is a multiple of ˛, there are only the following
possibilities (in the table, we have chosen ˇ to be the longer root):

n.ˇ;˛/ �n.˛;ˇ/ n.˛;ˇ/ n.ˇ;˛/ � jˇj=j˛j

0 0 0 �=2

1
1

�1

1

�1

�=3

2�=3
1

2
1

�1

2

�2

�=4

3�=4

p
2

3
1

�1

3

�3

�=6

5�=6

p
3

If ˛ and ˇ are simple roots and n.˛;ˇ/ and n.ˇ;˛/ are strictly positive (i.e., the angle
between ˛ and ˇ is acute), then (from the table) one, say, n.ˇ;˛/, equals 1. Then

s˛.ˇ/D ˇ�n.ˇ;˛/˛ D ˇ�˛;



438 23. Root data and their classification

and so ˙.˛�ˇ/ are roots, and one, say ˛�ˇ, will be in RC. But then ˛ D .˛�ˇ/Cˇ,
contradicting the simplicity of ˛. We conclude that n.˛;ˇ/ and n.ˇ;˛/ are both negative.
From this it follows that there are exactly the four nonisomorphic root systems of rank 2
displayed below. The set f˛;ˇg is the base determined by the shaded Weyl chamber.

α = (2, 0)−α

β = (0, 2)

−β

A1 ×A1

α = (2, 0)

β = (−1,
√
3)

α+ β

−α

−α− β −β

A2

α = (2, 0)

β = (−2, 2)
α+ β

−α

−α− β −β

2α+ β

−2α− β

B2

α = (2, 0)

β = (−3,
√
3) α+ β

3α+ 2β

α+ β 2α+ βα+ β 3α+ β

−α

−β−α− β

−3α− 2β

−2α− β−3α− β

G2

Note that each set of vectors does satisfy (RS1–3). The root system A1�A1 is decom-
posable and the remainder are indecomposable.

We have

A1�A1 A2 B2 G2

s˛.ˇ/�ˇ 0˛ 1˛ 2˛ 3˛

� �=2 2�=3 3�=4 5�=6

W.R/ D2 D3 D4 D6

.Aut.R/WW.R// 2 2 1 1

where Dn denotes the dihedral group of order 2n.
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CARTAN MATRICES

Let .V;R/ be a root system. As before, for ˛;ˇ 2R, we let

n.˛;ˇ/D h˛;ˇ_i 2 Z;

so that

n.˛;ˇ/D 2
.˛;ˇ/

.ˇ;ˇ/

for any inner form satisfying (23.17). From the second expression, we see that n.w˛;wˇ/D
n.˛;ˇ/ for all w 2W .

Let S be a base forR. The Cartan matrix ofR (relative to S ) is the matrix .n.˛;ˇ//˛;ˇ2S .
Its diagonal entries n.˛;˛/ equal 2, and the remaining entries are negative or zero.

For example, the Cartan matrices of the root systems of rank 2 are, 
2 0

0 2

!  
2 �1

�1 2

!  
2 �1

�2 2

!  
2 �1

�3 2

!
A1�A1 A2 B2 G2

and the Cartan matrix for the root system in (23.11) is0BBBBBBBBB@

2 �1 0 0 0

�1 2 �1 0 0

0 �1 2 0 0

: : :

0 0 0 2 �1

0 0 0 �1 2

1CCCCCCCCCA
because

2
.ei � eiC1; eiC1� eiC2/

.ei � eiC1; ei � eiC1/
D�1, etc..

PROPOSITION 23.22. The Cartan matrix of .V;R/ is independent of S , and determines
.V;R/ up to isomorphism.

In fact, if S 0 is a second base for R, then we know that S 0 D wS for a unique w 2W and
that n.w˛;wˇ/D n.˛;ˇ/. Thus S and S 0 give the same Cartan matrices up to re-indexing
the columns and rows. Let .V 0;R0/ be a second root system with the same Cartan matrix.
This means that there exists a base S 0 for R0 and a bijection ˛ 7! ˛0WS ! S 0 such that

n.˛;ˇ/D n.˛0;ˇ0/ for all ˛;ˇ 2 S: (172)

The bijection extends uniquely to an isomorphism of vector spaces V ! V 0, which sends
s˛ to s˛0 for all ˛ 2 S because of (172). But the s˛ generate the Weyl groups (23.19), and
so the isomorphism maps W onto W 0, and hence it maps R D W �S onto R0 D W 0 �S 0

(see 23.19). We have shown that the bijection S ! S 0 extends uniquely to an isomorphism
.V;R/! .V 0;R0/ of root systems.
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CLASSIFICATION OF ROOT SYSTEMS BY DYNKIN DIAGRAMS

Let .V;R/ be a root system, and let S be a base for R.

PROPOSITION 23.23. Let ˛ and ˇ be distinct simple roots. Up to interchanging ˛ and ˇ,
the only possibilities for n.˛;ˇ/ are

n.˛;ˇ/ n.ˇ;˛/ n.˛;ˇ/n.ˇ;˛/

0 0 0

�1 �1 1

�2 �1 2

�3 �1 3

If W is the subspace of V spanned by ˛ and ˇ, then W \R is a root system of rank 2 in W ,
and so (23.23) can be read off from the Cartan matrices of the rank 2 systems.

Choose a base S for R. Then the Coxeter graph of .V;R/ is the graph whose nodes are
indexed by the elements of S ; two distinct nodes are joined by n.˛;ˇ/ �n.ˇ;˛/ edges. Up to
the indexing of the nodes, it is independent of the choice of S .

PROPOSITION 23.24. The Coxeter graph is connected if and only if the root system is
indecomposable.

In other words, the decomposition of the Coxeter graph of .V;R/ into its connected com-
ponents corresponds to the decomposition of .V;R/ into a direct sum of its indecomposable
summands.

PROOF. A root system is decomposable if and only if R can be written as a disjoint union
R D R1 tR2 with each root in R1 orthogonal to each root in R2. Since roots ˛;ˇ are
orthogonal if and only n.˛;ˇ/ �n.ˇ;˛/ D 4cos2� D 0, this is equivalent to the Coxeter
graph being disconnected. 2

The Coxeter graph doesn’t determine the Cartan matrix because it only gives the number
n.˛;ˇ/ �n.ˇ;˛/. However, for each value of n.˛;ˇ/ �n.ˇ;˛/ there is only one possibility
for the unordered pair

fn.˛;ˇ/;n.ˇ;˛/g D

�
2
j˛j

jˇj
cos�;2

jˇj

j˛j
cos�

�
:

Thus, if we know in addition which is the longer root, then we know the ordered pair. To
remedy this, we put an arrowhead on the lines joining the nodes indexed by ˛ and ˇ pointing
towards the shorter root. The resulting diagram is called the Dynkin diagram of the root
system. It determines the Cartan matrix and hence the root system.

For example, the Dynkin diagrams of the root systems of rank 2 are:

˛ ˇ ˛ ˇ ˛ ˇ ˛ ˇ

A1�A1 A2 B2 G2

THEOREM 23.25. The Dynkin diagrams arising from indecomposable root systems are
exactly the diagrams An (n� 1), Bn (n� 2), Cn (n� 3), Dn (n� 4), E6, E7, E8, F4, G2
listed below — we have used the conventional (Bourbaki) numbering for the simple roots.
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For example, the Dynkin diagram of the root system in (23.11) is An. Note that Coxeter
graphs do not distinguish Bn from Cn.

An (n ≥ 1)

α1 α2 α3 αn−2 αn−1 αn

Bn (n ≥ 2)

α1 α2 α3 αn−2 αn−1 αn

Cn (n ≥ 3)

α1 α2 α3 αn−2 αn−1 αn

Dn (n ≥ 4)

α1 α2 α3 αn−3 αn−2

αn−1

αn

E6

α1 α3 α4

α2

α5 α6

E7

α1 α3 α4

α2

α5 α6 α7

E8

α1 α3 α4

α2

α5 α6 α7 α8

F4

α1 α2 α3 α4

G2

α1 α2





CHAPTER 24
Representations of reductive groups

This chapter will include proofs for the classification of semisimple representations and a
brief survey of the field, which is vast. See Jantzen 1987.

We begin by classifying the semisimple representations of a split reductive group over a
field k. When k has characteristic zero, this is all of them (22.138).

CLASSIFICATION IN TERMS OF ROOTS AND WEIGHTS

THE DOMINANT WEIGHTS OF A ROOT DATUM

Let .X;R;X_;R_/ be a root datum. We make the following definitions:
˘ QD ZR (root lattice) is the Z-submodule of X generated by the roots;

˘ X0 D fx 2X j hx;˛
_i D 0 for all ˛ 2Rg;

˘ V D R˝ZQ � R˝ZX ;

˘ P D f� 2 V j h�;˛_i 2 Z for all ˛ 2Rg (weight lattice).
Now choose a base S D f˛1; : : : ;˛ng for R, so that:
˘ RDRCtR� where RC D f

P
mi˛i jmi � 0g and R� D f

P
mi˛i jmi � 0gI

˘ QD Z˛1˚�� �˚Z˛n � V D R˛1˚�� �˚R˛n,

˘ P D Z�1˚�� �˚Z�n where �i is defined by h�i ;˛_j i D ıij .
The �i are called the fundamental (dominant) weights. Define
˘ PC D f� 2 P j h�;˛_i � 0 all ˛ 2R_g.

An element � of X is dominant if h�;˛_i � 0 for all ˛ 2RC. Such a � can be written
uniquely

�D
X

1�i�n
mi�i C�0 (173)

with mi 2 N,
P
mi�i 2X , and �0 2X0.

THE DOMINANT WEIGHTS OF A SEMISIMPLE ROOT DATUM

To give a semisimple root datum amounts to giving a root system .V;R/ and a lattice X ,

P �X �Q

(see 22.40). Choose an inner product . ; / on V for which the s˛ act as orthogonal transfor-
mations. Then, for � 2 V

h�;˛_i D 2
.�;˛/

.˛;˛/
:
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Since in this case X0 D 0, the above definitions become:

˘ QD ZRD Z˛1˚�� �˚Z˛n,

˘ P D f� 2 V j 2 .�;˛/
.˛;˛/

2 Z all ˛ 2Rg D Z�1˚�� �˚Z�n where �i is defined by

2
.�i ;˛/

.˛;˛/
D ıij :

˘ PC D f�D
P
imi�i jmi � 0g D fdominant weightsg.

THE CLASSIFICATION OF SIMPLE REPRESENTATIONS

LetG be a reductive group. We choose a maximal torus T and a Borel subgroupB containing
T (hence, we get a root datum .X;R;X_;R_/ and a base S for R). As every representation
of G is (uniquely) a sum of simple representations, we only need to classify them.

THEOREM 24.1. Let r WG! GLW be a simple representation of G.

(a) There exists a unique one-dimensional subspace L of W stabilized by B .

(b) The L in (a) is a weight space for T , say, LDW�r .

(c) The �r in (b) is dominant.

(d) If � is also a weight for T in W , then �D �r �
P
mi˛i with mi 2 N.

PROOF. Omitted. 2

Note that the Lie-Kolchin theorem implies that there does exist a one-dimensional
eigenspace for B — the content of (a) is that when W is simple (as a representation of G),
the space is unique. Since L is mapped into itself by B , it is also mapped into itself by T ,
and so lies in a weight space. The content of (b) is that it is the whole weight space. Because
of (d), �r is called the highest weight of the simple representation r .

THEOREM 24.2. The map .W;r/ 7! �r defines a bijection from the set of isomorphism
classes of simple representations of G onto the set of dominant weights in X DX�.T /.

PROOF. Omitted. 2

In the examples, k has characteristic zero (for the moment).

EXAMPLE: SL2

Here the root datum is isomorphic to fZ;f˙2g;Z;f˙1gg. Hence Q D 2Z, P D Z, and
PC DN. Therefore, there is (up to isomorphism) exactly one simple representation for each
m� 0. There is a natural action of SL2.k/ on the ring kŒX;Y �, namely, let 

a b

c d

! 
X

Y

!
D

 
aXCbY

cXCdY

!
:

In other words,
f A.X;Y /D f .aXCbY;cXCdY /:

This is a right action, i.e., .f A/B D f AB . We turn it into a left action by settingAf D f A
�1

.
One can show that the representation of SL2 on the homogeneous polynomials of degree m
is simple, and every simple representation is isomorphic to exactly one of these.
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EXAMPLE: GLn

As usual, let T be Dn, and let B be the standard Borel subgroup. The characters of T are
�1; : : : ;�n. Note that GLn has representations

GLn
det
�!Gm

t 7!tm

�! GL1 DGm

for eachm, and that any representation can be tensored with this one. Thus, given any simple
representation of GLnwe can shift its weights by any integer multiple of �1C�� �C�n. In
this case, the simple roots are �1��2; : : : ;�n�1��n, and the root datum is isomorphic to

.Zn;fei � ej j i ¤ j g;Zn;fei � ej j i ¤ j g/:

In this notation the simple roots are e1� e2; : : : ; en�1� en, and the fundamental dominant
weights are �1; : : : ;�n�1with

�i D e1C�� �C ei �n
�1i .e1C�� �C en/ :

The dominant weights are the expressions

a1�1C�� �Can�1�n�1Cm.e1C�� �C en/; ai 2 N; m 2 Z:

These are the expressions
m1e1C�� �Cmnen

where themiare integers withm1 � � � � �mn. The simple representation with highest weight
e1is the representation of GLn on kn(obviously), and the simple representation with highest
weight e1C�� �C ei is the representation on

Vi
.kn/ (Springer 1998, 4.6.2).

EXAMPLE: SLn

Let T1be the diagonal in SLn. Then X�.T1/DX�.T /=Z.�1C�� �C�n/with T D Dn. The
root datum for SLnis isomorphic to .Zn=Z.e1C�� �C en/;f"i � "j j i ¤ j g; : : :/ where "i is
the image of ei in Zn=Z.e1C�� �C en/. It follows from the GLncase that the fundamental
dominant weights are �1; : : : ;�n�1with

�i D "1C�� �C "i :

Again, the simple representation with highest weight "1is the representation of SLnon kn,
and the simple representation with highest weight "1C�� �C "i is the representation SLnonVi
.kn/(ibid.).

GROTHENDIECK GROUPS

Let T be a split torus, say T D D.M/. Then Rep.T / is a semisimple category whose
simple objects are classified by the elements of M . It follows that the Grothendieck group
of Rep.T / is the group algebra ZŒM �. Now let .G;T / be a split reductive group, and let W
be the Weyl group of .G;T /. Then W acts on T , and hence on M D X�.T /. There is a
functor Rep.G/! Rep.T / that sends a representation of G to its restriction to T .

THEOREM 24.3. The homomorphism from the Grothendieck group of Rep.G/ to that of
Rep.T / defined by the restriction functor is injective with image ZŒM �W (elements of ZŒM �

invariant under W ).

PROOF. Serre 1968, Thm 4. 2
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SEMISIMPLICITY

Perhaps move results on the semisimplicity of Rep.G/ to here.

THEOREM 24.4 (SERRE-DELIGNE). LetG be an algebraic group over a field k of nonzero
characteristic p. Let .Vi /i2I be a finite family of representations of G. If the Vi are
semisimple and X

i2I
.dim.Vi /�1/ < p

then
N
i2I Vi is semisimple.

Serre, Jean-Pierre, Sur la semi-simplicité des produits tensoriels de représentations de
groupes. Invent. Math. 116 (1994), no. 1-3, 513–530.

Deligne, Pierre. Semi-simplicité de produits tensoriels en caractéristique p. Invent. Math.
197 (2014), no. 3, 587–611.



CHAPTER 25
The existence theorem

This chapter will be completely rewritten, but not expanded.
Recall the statement:

Let k be a field. Every reduced root datum arises from a split reductive group
.G;T / over k.

In fact, it suffices to prove the following statement:

Let k be a field. Every diagram .V;R;X/ arises from a split semisimple group
.G;T / over k.

There are four approaches to proving the existence theorem:

(a) Characteristic zero: (original) classical approach.

(b) Characteristic zero: Tannakian approach.

(c) All characteristics: Chevalley’s (original) approach.

(d) All characteristics: explicit construction.

Of these approaches, (a) is only of historical significance (at least to algebraists), while
(b) is developed in detail in my notes LAG. Thus, we shall concentrate on (c) and (d).

a. Characteristic zero: classical approach

Recall the classical statement. A diagram is reduced root system R over Q and a lattice X
contained between the root lattice Q.R/ of R and its weight lattice P.R/:

Q.R/�X � P.R/:

Let k be an algebraically closed field. A (connected) semisimple algebraic group G over
k and the choice of a maximal torus T in G define a diagram .R.G;T /;X.T // whose
isomorphism class depends only on G.

25.1. (Existence theorem) The map ıWG;T 7! .R.G;T /;X.T // induces a bijection be-
tween isomorphism classes of semisimple algebraic groups over k and isomorphism classes
of diagrams.

Concerning the origins of this theorem in characteristic zero, I quote Borel 1975, 1.5.
“Over C, 25.1 goes back to results of Killing, Weyl, Cartan, proved however in a different
context. Briefly, it may be viewed as the conjunction of the following:

447
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(a) Classification of complex semisimple Lie algebras by reduced root systems.

(b) Classification of connected complex semisimple Lie groups with a given Lie algebra
g with root system R by means of lattices between Q.R/ and P.R/.

(c) A complex connected semisimple Lie group has one and only one structure of affine
algebraic group compatible with its complex analytic structure.

Statement (a) is in essence due to Killing and Cartan, although the connection with root
systems emerged gradually only later. It is now standard (cf. e.g. Serre 1966, Humphreys
1972).

It is more difficult to give a direct reference for (b). Results of H. Weyl and E. Cartan,
as reformulated later by E. Stiefel (1942; see also Adams 1969) show that diagrams also
classify compact semisimple Lie groups. One then uses the fact that the assignment,

connected Lie group 7!maximal compact subgroup, (174)

induces a bijection between isomorphism classes of connected complex semisimple Lie
groups and of connected semisimple Lie groups (see e.g., Hochschild 1965). In the course
of proving this, one also sees that a complex connected semisimple Lie group always has a
faithful finite dimensional representation (ibid. p. 200).

Finally, in view of this last fact, (c) amounts to showing that the C-algebra of holomor-
phic functions on G whose translates span a finite dimensional space (the ‘representative
functions’) is finitely generated. It is then the coordinate ring for the desired structure of
algebraic group (Hochschild and Mostow 1961).”

b. Characteristic zero: Tannakian approach.

In this approach, the existence theorem for algebraic groups over a field of characteristic
zero is derived from the similar theorem for Lie algebras by using Tannakian theory. Let g
be a semisimple Lie algebra over a field k of characteristic zero. Then Rep.g/ is a neutral
Tannakian category, and the group attached to it is the simply connected semisimple algebraic
group G with Lie algebra g. The other connected semisimple algebraic groups with Lie
algebra g correspond to certain subcategories of Rep.g/. This approach was suggested by
Cartier in a Comptes Rendus note (Cartier 1956), and worked out in detail by the author
(Milne 2007). We sketch the argument.

Let g be a finite-dimensional Lie algebra over a field k of characteristic zero. A ring
of representations of g is a collection of finite-dimensional representations of g that is
closed under the formation of direct sums, subquotients, tensor products, and duals. An
endomorphism of such a ring R is a family

˛ D .˛V /V 2R; ˛V 2 Endk-linear.V /;

such that

˘ ˛V˝W D ˛V ˝ idW C idV ˝˛W for all V;W 2R,

˘ ˛V D 0 if g acts trivially on V , and

˘ for all homomorphisms ˇWV !W of representations in R,

˛W ıˇ D ˇ ı˛V :
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The set gR of all endomorphisms of R becomes a Lie algebra over k (possibly infinite
dimensional) with the bracket

Œ˛;ˇ�V D Œ˛V ;ˇV �:

Let R be a ring of representations of a Lie algebra g. For x 2 g, the family .rV .x//V 2R
is an endomorphism of R, and x 7! .rV .x// is a homomorphism of Lie algebras g! gR.

LEMMA 25.2. If R contains a faithful representation of g, then g! gR is injective.

PROOF. Let .V;r/ be a representation of g; then the composite

g
x 7!.r.x//
������! gR

˛ 7!˛V
�����! gl.V /;

is r . Hence g! gR is injective if r is injective. 2

Let G be an affine group scheme over k, and let gD Lie.G/. A representation .V;r/ of
G defines a representation .V;dr/ of g.

LEMMA 25.3. Let G be an affine group scheme over k with Lie algebra g, and let R be the
ring of representations of g arising from a representation of G. Then g' gR.

PROOF. By definition, g is the kernel of G.kŒ"�/!G.k/. Therefore, to give an element of
g is the same as giving a family of kŒ"�-linear maps

idV C˛V "WV Œ"�! V Œ"�

indexed by V 2R satisfying the three conditions of (11.2). The first of these conditions says
that

idV˝W C˛V˝W "D .idV C˛V "/˝ .idW C˛W "/;

i.e., that
˛V˝W D idV ˝˛W C˛V ˝ idW :

The second condition says that
˛11 D 0;

and the third says that the ˛V commute with all G-morphisms (D g-morphisms). Therefore,
to give such a family is the same as giving an element .˛V /V 2R of gR. 2

Let g be a Lie algebra over k, and let Rep.g/ be the category of all finite-dimensional
representations of g. It has a tensor product, and the forgetful functor satisfies the conditions
of Theorem 11.25, which provides us with an affine group scheme G.g/ such that

Rep.G.g//' Rep.g/:

As R def
D ob.Rep.g// contains a faithful representation of g (Ado’s theorem), we have (25.2,

25.3) an injective homomorphism

g ,! gR ' Lie.G.g//;

which we denote by �.

THEOREM 25.4. Let g be a semisimple Lie algebra over a field k of characteristic zero.

(a) The homomorphism �Wg! Lie.G.g// is an isomorphism.
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(b) The affine group scheme G.g/ is a connected semisimple algebraic group.

(c) LetH be algebraic group, and aWg!Lie.H/ a homomorphism of Lie algebras. There
exists a unique homomorphism bWG.g/!H such that aD Lie.b/ı�; hence

Hom.G.g/;H/' Hom.g;Lie.H//:

(d) Let R be the root system of g and Q.R/ and P.R/ the corresponding root and weight
lattices; then

X�.Z.G.g//' P.R/=Q.R/:

PROOF. (a) Because Rep.G.g// is semisimple, G.g/ı is reductive (20.13). Therefore its
Lie algebra Lie.G.g// is reductive, and so Lie.G.g//D �.g/˚a˚ c with a semisimple and
c commutative. If a or c is nonzero, then there exists a nontrivial representation r of G.g/
such that Lie.r/ is trivial on g. But this is impossible because � defines an equivalence
Rep.G.g//! Rep.g/.

(b) The group scheme G.g/ is algebraic because its Lie algebra is finite-dimensional.
To show that it is connected, we have to show that if a representation .V;�/ of g has the
property that the category of subquotients of direct sums of copies of V is stable under
tensor products, then V is the trivial representations (11.49). This follows directly from the
standard description of the representations of a semisimple Lie algebra. Finally, G.g/ is
semisimple because its Lie algebra is semisimple.

(c) From a we get a tensor functor

Rep.H/! Rep.h/
a_

�! Rep.g/' Rep.G.g//;

and hence a homomorphism bWG.g/!H , which acts as a on the Lie algebras.
(d) Omitted — see Milne 2007. 2

For a detailed exposition of the theory of algebraic groups over fields of characteristic
zero using this approach, see my notes Lie Algebras, Algebraic Groups, and Lie Groups
(LAG).

c. All characteristics: Chevalley’s approach

Again I quote Borel 1975, 1.5. “In positive characteristics, (25.1) is due to Chevalley. There
are two parts to the proof.

25.5. Surjectivity of the map ı. More precisely, Chevalley associates with each diagram
.˚;� / a smooth group scheme G0 over Z such that G0˝Z k is the k-group with diagram
.˚;� / for every k. This construction is given first in Chevalley 1955; see also Borel 1970,
and, for a more general existence theorem over schemes (Demazure 1965; SGA 3, Tome III).

25.6. Injectivity of the map ı. This is proved in Chevalley 6 58; see also (Demazure 1965;
SGA 3, Tome III).

See Borel 1975, �5, for a sketch of (a). Also Borel 1970.
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d. All characteristics: explicit construction

Here one shows that every diagram arises from a simply connected algebraic group by
exhibiting the group. This amounts to constructing the spin groups and the five exceptional
groups. Note that, since we’ve proved the existence of simply connected covers, we know
the spin groups exist.

We shall prove this by exhibiting simple algebraic group k for each simple reduced
system. This will occupy the rest of the chapter.

e. Spin groups

Let � be a nondegenerate bilinear form on a k-vector space V . The special orthogonal
group SO.�/ is connected and almost-simple, and it has a 2-fold covering Spin.�/ which we
now construct. Throughout this section, k is a field not of characteristic 2 and “k-algebra”
means “associative (not necessarily commutative) k-algebra containing k in its centre”. For
example, the n�n matrices with entries in k become such a k-algebra Mn.k/ once we
identify an element c of k with the scalar matrix cIn.

QUADRATIC SPACES

Let k be a field not of characteristic 2, and let V be a finite-dimensional k-vector space. A
quadratic form on V is a mapping

qWV ! k

such that q.x/D �q.x;x/ for some symmetric bilinear form �qWV �V ! k. Note that

q.xCy/D q.x/Cq.y/C2�q.x;y/, (175)

and so �q is uniquely determined by q. A quadratic space is a pair .V;q/ consisting of
a finite-dimensional vector space and a quadratic form q. Often I’ll write � (rather than
�q) for the associated symmetric bilinear form and denote .V;q/ by .V;�q/ or .V;�/. A
nonzero vector x in V is isotropic if q.x/D 0 and anisotropic if q.x/¤ 0. Note that q is
zero (i.e., q.V /D 0) if and only if � is zero (i.e., �.V;V /D 0). The discriminant of .V;q/
is the determinant of the matrix .�.ei ; ej // where e1; : : : ; en is a basis of V . The choice
of a different basis multiplies det.�.ei ; ej // by a nonzero square, and so the discriminant
is an element of k=k�2. Let .V1;q1/ and .V2;q2/ be quadratic spaces. An isometry is an
injective k-linear map � WV1! V2 such that q2.�x/D q1.x/ for all x 2 V (equivalently,
�.�x;�y/D �.x;y/ for all x;y 2 V ). By .V1;q1/˚ .V2;q2/ we mean the quadratic space
.V;q/ with

V D V1˚V2

q.x1Cx2/D q.x1/Cq.x2/; x1 2 V1, x2 2 V2:

Let .V;q/ be quadratic space. A basis e1; : : : ; en for V is said to be orthogonal if �.ei ; ej /D
0 for all i ¤ j .

PROPOSITION 25.7. Every quadratic space has an orthogonal basis (and so is an orthogonal
sum of quadratic spaces of dimension 1).
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PROOF. If q.V / D 0, then every basis is orthogonal. Otherwise, let e 2 V be such that
q.e/¤ 0, and extend it to a basis e;e2; : : : ; en for V . Then

e;e2�
�.e;e2/

q.e/
e; : : : ; en�

�.e;en/

q.e/
e

is again a basis for V , and the last n�1 vectors span a subspace W for which �.e;W /D 0.
Apply induction to W . 2

An orthogonal basis defines an isometry .V;q/
�
�! .kn;q0/, where

q0.x1; : : : ;xn/D c1x
2
1C�� �C cnx

2
n; ci D q.ei / 2 k:

If every element of k is a square, for example, if k is algebraically closed, we can even scale
the ei so that each ci is 0 or 1.

THEOREMS OF WITT AND CARTAN-DIEUDONNÉ

A quadratic space .V;q/ is said to be regular1 (or nondegenerate,. . . ) if for all x ¤ 0 in V ,
there exists a y such that �.x;y/¤ 0. Otherwise, it is singular. Also, .V;q/ is

˘ isotropic if it contains an isotropic vector, i.e., if q.x/D 0 for some x ¤ 0,

˘ totally isotropic if every nonzero vector is isotropic, i.e., if q.x/D 0 for all x, and

˘ anisotropic if it is not isotropic, i.e., if q.x/D 0 implies x D 0.

Let .V;q/ be a regular quadratic space. Then for any nonzero a 2 V ,

hai?
def
D fx 2 V j �.a;x/D 0g

is a hyperplane in V (i.e., a subspace of dimension dimV �1). For an anisotropic a 2 V ,
the reflection in the hyperplane orthogonal to a is defined to be

Ra.x/D x�
2�.a;x/

q.a/
a.

Then Ra sends a to �a and fixes the elements of W def
D hai?. Moreover,

q.Ra.x//D q.x/�2
2�.a;x/

q.a/
�.a;x/C

4�.a;x/2

q.a/2
q.a/D q.x/;

and so Ra is an isometry. Finally, relative to a basis a;e2; : : : ; en with e2; : : : ; en a basis for
W , its matrix is diag.�1;1; : : : ;1/, and so det.Ra/D�1.

THEOREM 25.8. Let .V;q/ be a regular quadratic space, and let � be an isometry from a
subspace W of V into V . Then there exists a composite of reflections V ! V extending � .

PROOF. Suppose first that W D hxi with x anisotropic, and let �x D y. Geometry in the
plane suggests that we should reflect in the line xCy. In the plane this is the line orthogonal
to x�y, and, if x�y is anisotropic, then

Rx�y.x/D y

1With the notations of the last paragraph, .V;q/ is regular if c1 : : : cn ¤ 0.
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as required. To see this, note that

�.x�y;x/D��.x�y;y/

because q.x/D q.y/, and so

�.x�y;xCy/D 0

�.x�y;x�y/D 2�.x�y;x/I

hence

Rx�y.x/D x�
2�.x�y;x/

�.x�y;x�y/
.x�y/D x� .x�y/D y.

If x�y is isotropic, then

4q.x/D q.xCy/Cq.x�y/D q.xCy/

and so xCy is anisotropic. In this case,

RxCy ıRx.x/DRx�.�y/.�x/D y:

We now proceed2 by induction on

m.W /D dimW C2dim.W \W ?/:

CASE W NOT TOTALLY ISOTROPIC: In this case, the argument in the proof of (25.7)
shows that there exists an anisotropic vector x 2 W , and we let W 0 D hxi?\W . Then,
for w 2 W , w� �.w;x/

q.x/
x 2 W 0, and so W D hxi˚W 0 (orthogonal decomposition). As

m.W 0/Dm.W /�1, we can apply induction to obtain a composite ˙ 0 of reflections such
that ˙ 0jW 0 D � jW 0. From the definition of W 0, we see that x 2W 0?; moreover, for any
w0 2W 0,

�.˙ 0�1�x;w0/D �.x;��1˙ 0w0/D �.x;w0/D 0;

and so y def
D ˙ 0�1�x 2W 0?. By the argument in the first paragraph, there exist reflections

(one or two) of the form Rz , z 2W 0?, whose composite ˙ 00 maps x to y. Because ˙ 00 acts
as the identity on W 0, ˙ 0 ı˙ 00 is the map sought:

.˙ 0 ı˙ 00/.cxCw0/D˙ 0.cyCw0/D c�xC�w0:

CASE W TOTALLY ISOTROPIC: Let V _ D Homk-lin.V;k/ be the dual vector space, and
consider the surjective map

˛WV
x 7!�.x;�/
�������! V _

f 7!f jW
������!W _

(so x 2 V is sent to the map y 7! �.x;y/ on W ). Let W 0 be a subspace of V mapped
isomorphically onto W _. Then W \W 0 D f0g and we claim that W CW 0 is a regular
subspace of V . Indeed, if xCx0 2W CW 0 with x0 ¤ 0, then there exists a y 2W such that

0¤ �.x0;y/D �.xCx0;y/;

if x ¤ 0, there exists a y 2W 0 such that �.x;y/¤ 0. Endow W ˚W _ with the symmetric
bilinear form

.x;f /; .x0;f 0/ 7! f .x0/Cf 0.x/.
2Following Scharlau 1985, Chapter 1, 5.5.
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Relative to this bilinear form, the map

xCx0 7! .x;˛.x0//WW CW 0!W ˚W _ (176)

is an isometry. The same argument applied to �W gives a subspace W 00 and an isometry

xCx00 7! .x; : : :/W�W CW 00! �W ˚ .�W /_: (177)

Now the map

W CW 0
(176)
�!W ˚W _

�˚�_�1

������! �W ˚ .�W /_
(177)
�! �W CW 00 � V

is an isometry extending � . As

m.W ˚W 0/D 2dimW < 3dimW Dm.W /

we can apply induction to complete the proof. 2

COROLLARY 25.9. Every isometry of .V;q/ is a composite of reflections.

PROOF. This is the special case of the theorem in which W D V . 2

COROLLARY 25.10 (WITT CANCELLATION). Suppose .V;q/ has orthogonal decomposi-
tions

.V;q/D .V1;q1/˚ .V2;q2/D .V
0
1;q
0
1/˚ .V

0
2;q
0
2/

with .V1;q1/ and .V 01;q
0
1/ regular and isometric. Then .V2;q2/ and .V 02;q

0
2/ are isometric.

PROOF. Extend an isometry V1 ! V 01 � V to an isometry of V . It will map V2 D V ?1
isometrically onto V 02 D V

0?
1 . 2

COROLLARY 25.11. All maximal totally isotropic subspace of .V;q/ have the same dimen-
sion.

PROOF. Let W1 and W2 be maximal totally isotropic subspaces of V , and suppose that
dimW1 � dimW2. Then there exists an injective linear map � WW1! W2 � V , which is
automatically an isometry. Therefore, by Theorem 25.8 it extends to an isometry � WV ! V .
Now ��1W2 is a totally isotropic subspace of V containing W1. Because W1 is maximal,
W1 D �

�1W2, and so dimW1 D dim��1W2 D dimW2. 2

REMARK 25.12. In the situation of Theorem 25.8, Witt’s theorem says simply that there
exists an isometry extending � to V (not necessarily a composite of reflections), and
the Cartan-Dieudonné theorem says that every isometry is a composite of at most dimV
reflections. When V is anisotropic, the proof of Theorem 25.8 shows this, but the general
case is considerably more difficult — see Artin 1957.

DEFINITION 25.13. The (Witt) index of a regular quadratic space .V;q/ is the maximum
dimension of a totally isotropic subspace of V .

DEFINITION 25.14. A quadratic space .V;q/ is a hyperbolic plane if it satisfies one of the
following equivalent conditions:

(a) .V;q/ is regular and isotropic of dimension 2I

(b) for some basis of V , the matrix of the form is
�
0 1
1 0

�
;
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(c) V has dimension 2 and the discriminant of q is �1 (modulo squares).

THEOREM 25.15 (WITT DECOMPOSITION). A regular quadratic space .V;q/ with Witt
index m has an orthogonal decomposition

V DH1˚�� �˚Hm˚Va (178)

with the Hi hyperbolic planes and Va anisotropic; moreover, Va is uniquely determined up
to isometry.

PROOF. Let W be a maximal isotropic subspace of V , and let e1; : : : ; em be a basis for W .
One easily extends the basis to a linearly independent set e1; : : : ; em; emC1; : : : ; e2m such that
�.ei ; emCj /D ıij (Kronecker delta) and q.emCi /D 0 for i �m. Then V decomposes as
(178) with3 Hi D hei ; emCi i and Va D he1; : : : ; e2mi?. The uniqueness of Va follows from
the Witt cancellation theorem (25.10). 2

THE ORTHOGONAL GROUP

Let .V;q/ be a regular quadratic space. Define O.q/ to be the group of isometries of .V;q/.
Relative to a basis for V , O.q/ consists of the automorphs of the matrix M D .�.ei ; ej //,
i.e., the matrices T such that

T t �M �T DM:

Thus, O.q/ is an algebraic subgroup of GLV , called the orthogonal group of q (it is
also called the orthogonal group of �, and denoted O.�/). Let T 2 O.q/. As detM ¤ 0,
det.T /2D 1, and so det.T /D˙1. The subgroup of isometries with detDC1 is an algebraic
subgroup of SLV , called the special orthogonal group SO.q/.

SUPER ALGEBRAS

A superalgebra (or Z=2Z-graded algebra) over k is k-algebra C together with a decompo-
sition C D C0˚C1 of C as a k-vector space such that

k � C0; C0C0 � C0; C0C1 � C1; C1C0 � C1; C1C1 � C0:

Note that C0 is a k-subalgebra of C . A homomorphism of super k-algebras is a homomor-
phism 'WC !D of algebras such that '.Ci /�Di for i D 0;1.

EXAMPLE 25.16. Let c1; : : : ; cn 2 k. Define C.c1; : : : ; cn/ to be the k-algebra with genera-
tors e1; : : : ; en and relations

e2i D ci ; ej ei D�eiej (i ¤ j ).

As a k-vector space, C.c1; : : : ; cn/ has basis fei11 : : : e
in
n j ij 2 f0;1gg, and so has dimension

2n. When we set C0 and C1 equal to the subspaces

C0 D he
i1
1 : : : e

in
n j i1C�� �C in eveni

C1 D he
i1
1 : : : e

in
n j i1C�� �C in oddi;

of C.c1; : : : ; cn/, then it becomes a superalgebra.

3We often write hSi for the k-space spanned by a subset S of a vector space V .
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Let C D C0˚C1 and D D D0˚D1 be two super k-algebras. The super tensor
product of C and D, C ŐD, is defined to be the k-vector space C ˝kD endowed with the
superalgebra structure�

C ŐD
�
0
D .C0˝D0/˚ .C1˝D1/�

C ŐD
�
1
D .C0˝D1/˚ .C1˝D0/

.ci ˝dj /.c
0
k˝d

0
l /D .�1/

jk.cic
0
k˝djd

0
l / ci 2 Ci , dj 2Dj etc..

The maps

iC WC ! C ŐD; c 7! c˝1

iDWD! C ŐD; d 7! 1˝d

have the following universal property: for any homomorphisms of k-superalgebras

f WC ! T; gWD! T

whose images anticommute in the sense that

f .ci /g.dj /D .�1/
ijg.dj /f .ci /; ci 2 Ci ;dj 2Dj ;

there is a unique superalgebra homomorphism hWC ŐD! T such that f D h ı iC , g D
hı iD .

EXAMPLE 25.17. As a k-vector space, C.c1/ Ő C.c2/ has basis 1˝1, e˝1, 1˝ e, e˝ e,
and

.e˝1/2 D e2˝1D c1 �1˝1

.1˝ e/2 D 1˝ e2 D c2 �1˝1

.e˝1/.1˝ e/D e˝ e D�.1˝ e/.e˝1/:

Therefore,

C.c1/ Ő C.c2/' C.c1; c2/

e˝1$ e1

1˝ e$ e2:

Similarly,
C.c1; : : : ; ci�1/ Ő C.ci /' C.c1; : : : ; ci /,

and so, by induction,
C.c1/ Ő � � � Ő C.cn/' C.c1; : : : ; cn/:

EXAMPLE 25.18. Every k-algebraA can be regarded as a k-superalgebra by settingA0DA
and A1 D 0. If A;B are both k-algebras, then A˝k B D A Ő kB .

EXAMPLE 25.19. Let X be a manifold. Then H.X/ def
D
L
iH

i .X;R/ becomes an R-
algebra under cup-product, and even a superalgebra with H.X/0 D

L
iH

2i .X;R/ and
H.X/1 D

L
iH

2iC1.X;R/. If Y is a second manifold, the Künneth formula says that

H.X �Y /DH.X/ ŐH.Y /

(super tensor product).
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BRIEF REVIEW OF THE TENSOR ALGEBRA

Let V be a k-vector space. The tensor algebra of V is T .V /D
L
n�0V

˝n, where

V ˝0 D k;

V ˝1 D V;

V ˝n D V ˝�� �˝V .n copies of V /

with the algebra structure defined by juxtaposition, i.e.,

.v1˝�� �˝vm/ � .vmC1˝�� �˝vmCn/D v1˝�� �˝vmCn:

It is a k-algebra. If V has a basis e1; : : : ; em, then T .V / is the k-algebra of noncommuting
polynomials in e1; : : : ; em. There is a k-linear map V ! T .V /, namely, V D V ˝1 ,!L
n�0V

˝n, and any other k-linear map from V to a k-algebra R extends uniquely to a
k-algebra homomorphism T .V /!R.

THE CLIFFORD ALGEBRA

Let .V;q/ be a quadratic space, and let � be the corresponding bilinear form on V .

DEFINITION 25.20. The Clifford algebra C.V;q/ is the quotient of the tensor algebra
T .V / of V by the two-sided ideal I.q/ generated by the elements x˝x�q.x/ .x 2 V /.

Let �WV ! C.V;q/ be the composite of the canonical map V ! T .V / and the quotient
map T .V /! C.V;q/. Then � is k-linear, and4

�.x/2 D q.x/, all x 2 V: (179)

Note that if x is anisotropic in V , then �.x/ is invertible in C.V;q/, because (179) shows
that

�.x/ �
�.x/

q.x/
D 1.

EXAMPLE 25.21. If V is one-dimensional with basis e and q.e/D c, then T .V / is a polyno-
mial algebra in one symbol e, T .V /D kŒe�, and I.q/D .e2�c/. Therefore, C.V;q/�C.c/.

EXAMPLE 25.22. If q D 0, then C.V;q/ is the exterior algebra on V , i.e., C.V;q/ is the
quotient of T .V / by the ideal generated by all squares x2, x 2 V . In C.V;q/,

0D .�.x/C�.y//2 D �.x/2C�.x/�.y/C�.y/�.x/C�.y/2 D �.x/�.y/C�.y/�.x/

and so �.x/�.y/D��.y/�.x/.

4For a k-algebra R, we are regarding k as a subfield of R. When one regards a k-algebra R as a ring with a
k!R, it is necessary to write (179) as

�.x/2 D q.x/ �1C.V;q/:
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PROPOSITION 25.23. Let r be a k-linear map from V to a k-algebra D such that r.x/2 D
q.x/. Then there exists a unique homomorphism of k-algebras Nr WC.V;q/!D such that
Nr ı�D r :

V C.V;q/

D:

�

r Nr

PROOF. According to the universal property of the tensor algebra, r extends uniquely to a
homomorphism of k-algebras r 0WT .V /!D, namely,

r 0.x1˝�� �˝xn/D r.x1/ � � �r.xn/.

As
r 0.x˝x�q.x//D r.x/2�q.x/D 0;

r 0 factors uniquely through C.V;q/. 2

As usual, .C.V;q/;�/ is uniquely determined up to a unique isomorphism by the univer-
sal property in the proposition.

THE MAP C.c1; : : : ; cn/! C.V;q/

Because � is linear,

�.xCy/2 D .�.x/C�.y//2 D �.x/2C�.x/�.y/C�.y/�.x/C�.y/2:

On comparing this with

�.xCy/2
(179)
D q.xCy/D q.x/Cq.y/C2�.x;y/;

we find that
�.x/�.y/C�.y/�.x/D 2�.x;y/: (180)

In particular, if f1; : : : ;fn is an orthogonal basis for V , then

�.fi /
2
D q.fi /; �.fj /�.fi /D��.fi /�.fj / .i ¤ j /:

Let ci D q.fi /. Then there exists a surjective homomorphism

ei 7! �.fi /WC.c1; : : : ; cn/! C.V;�/: (181)

THE GRADATION (SUPERSTRUCTURE) ON THE CLIFFORD ALGEBRA

Decompose

T .V /D T .V /0˚T .V /1

T .V /0 D
M
m even

V ˝m

T .V /1 D
M
m odd

V ˝m:
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As I.q/ is generated by elements of T .V /0,

I.q/D .I.q/\T .V /0/˚ .I.q/\T .V /1/ ;

and so
C.V;q/D C0˚C1 with Ci D T .V /i=I.q/\T .V /i :

Clearly this decomposition makes C.V;q/ into a super algebra. In more down-to-earth terms,
C0 is spanned by products of an even number of vectors from V , and C1 is spanned by
products of an odd number of vectors.

THE BEHAVIOUR OF THE CLIFFORD ALGEBRA WITH RESPECT TO DIRECT SUMS

Suppose
.V;q/D .V1;q1/˚ .V2;q2/:

Then the k-linear map

V D V1˚V2
r
�! C.V1;q1/ Ő C.V2;q2/

x D .x1;x2/ 7! �1.x1/˝1C1˝�2.x2/:

has the property that

r.x/2 D .�1.x1/˝1C1˝�2.x2//
2

D .q.x1/Cq.x2//.1˝1/

D q.x/;

because

.�1.x1/˝1/.1˝�2.x2//D �1.x1/˝�2.x2/D�.1˝�2.x2//.�1.x1/˝1//:

Therefore, it factors uniquely through C.V;q/:

C.V;q/! C.V1;q1/ Ő C.V2;q2/. (182)

EXPLICIT DESCRIPTION OF THE CLIFFORD ALGEBRA

THEOREM 25.24. Let .V;q/ a quadratic space of dimension n.

(a) For every orthogonal basis for .V;q/, the homomorphism (181)

C.c1; : : : ; cn/! C.V;q/

is an isomorphism.

(b) For every orthogonal decomposition .V;q/D .V1;q1/˚ .V2;q2/, the homomorphism
(182)

C.V;q/! C.V1;q1/ Ő C.V2;q2/

is an isomorphism.

(c) The dimension of C.V;q/ as a k-vector space is 2n.
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PROOF. If nD 1, all three statements are clear from (25.21). Assume inductively that they
are true for dim.V / < n. Certainly, we can decompose .V;q/D .V1;q1/˚ .V2;q2/ in such
a way that dim.Vi / < n. The homomorphism (182) is surjective because its image contains
�1.V1/˝1 and 1˝�2.V2/ which generate C.V1;q1/ Ő C.V2;q2/, and so

dim.C.V;q//� 2dim.V1/2dim.V2/ D 2n:

From an orthogonal basis for .V;q/, we get a surjective homomorphism (181). Therefore,

dim.C.V;q//� 2n:

It follows that dim.C.V;q//D 2n. By comparing dimensions, we deduce that the homomor-
phisms (181) and (182) are isomorphisms. 2

COROLLARY 25.25. The map �WV ! C.V;q/ is injective.

From now on, we shall regard V as a subset of C.V;q/ (i.e., we shall omit �).

REMARK 25.26. Let L be a field containing k. Then � extends uniquely to an L-bilinear
form

�0WV 0�V 0! L; V 0 D L˝k V;

and
C.V 0;q0/' L˝k C.V;q/

where q0 is quadratic form defined by �0.

THE CENTRE OF THE CLIFFORD ALGEBRA

Assume that .V;q/ is regular, and that nD dimV > 0. Let e1; : : : ; en be an orthogonal basis
for .V;q/, and let q.ei /D ci . Let

�D .�1/
n.n�1/
2 c1 � � �cn D .�1/

n.n�1/
2 det.�.ei ; ej //.

We saw in (25.24) that
C.c1; : : : ; cn/' C.V;q/:

Note that, in C.c1; : : : ; cn/, .e1 � � �en/2 D�. Moreover,

ei � .e1 � � �en/D .�1/
i�1ci .e1 � � �ei�1eiC1 � � �en/

.e1 � � �en/ � ei D .�1/
n�ici .e1 � � �ei�1eiC1 � � �en/.

Therefore, e1 � � �en lies in the centre of C.V;q/ if and only if n is odd.

PROPOSITION 25.27. (a) If n is even, the centre of C.V;q/ is k; if n is odd, it is of degree
2 over k, generated by e1 � � �en. In particular, C0\Centre.C.V;q//D k.

(b) No nonzero element of C1 centralizes C0.

PROOF. First show that a linear combination of reduced monomials is in the centre (or
centralizesC0) if and only if each monomial does, and then find the monomials that centralize
the ei (or the eiej ). 2

In Scharlau 1985, Chapter 9, 2.10, there is the following description of the complete
structure of C.V;q/:

If n is even, C.V;q/ is a central simple algebra over k, isomorphic to a tensor
product of quaternion algebras. If n is odd, the centre of C.V;q/ is generated
over k by the element e1 � � �en whose square is �, and, if � is not a square in k,
then C.V;q/ is a central simple algebra over the field kŒ

p
��.
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THE INVOLUTION �

An involution of a k-algebra D is a k-linear map �WD!D such that .ab/� D b�a� and
a�� D 1. For example, M 7!M t (transpose) is an involution of Mn.k/.

Let C.V;q/opp be the opposite k-algebra to C.V;q/, i.e., C.V;q/opp D C.V;q/ as a
k-vector space but

ab in C.V;q/opp
D ba in C.V;q/.

The map �WV ! C.V;q/opp is k-linear and has the property that �.x/2 D q.x/. Thus, there
exists an isomorphism �WC.V;q/! C.V;q/opp inducing the identity map on V , and which
therefore has the property that

.x1 � � �xr/
�
D xr � � �x1

for x1; : : : ;xr 2 V . We regard � as an involution of A. Note that, for x 2 V , x�x D q.x/.

THE SPIN GROUP

Initially we define the spin group as an abstract group.

DEFINITION 25.28. The group Spin.q/ consists of the elements t of C0.V;q/ such that

(a) t�t D 1,

(b) tV t�1 D V ,

(c) the map x 7! txt�1WV ! V has determinant 1.

REMARK 25.29. (a) The condition (a) implies that t is invertible in C0.V;q/, and so (b)
makes sense.

(b) We shall see in (25.33) below that the condition (c) is implied by (a) and (b).

THE MAP Spin.q/! SO.q/

Let t be an invertible element of C.V;q/ such that tV t�1 D V . Then the mapping x 7!
txt�1WV ! V is an isometry, because

q.txt�1/D .txt�1/2 D tx2t�1 D tq.x/t�1 D q.x/.

Therefore, an element t 2 Spin.q/ defines an element x 7! txt�1of SO.q/.

THEOREM 25.30. The homomorphism

Spin.q/! SO.q/

just defined has kernel of order 2, and it is surjective if k is algebraically closed.

PROOF. The kernel consists of those t 2 Spin.q/ such that txt�1 D x for all x 2 V . As V
generates C.V;q/, such a t must lie in the centre of C.V;q/. Since it is also in C0, it must
lie in k. Now the condition t�t D 1 implies that t D˙1.

For an anisotropic a 2 V , let Ra be the reflection in the hyperplane orthogonal to a.
According to Theorem 25.8, each element � of SO.q/ can be expressed � DRa1 � � �Ram for
some ai . As det.Ra1 � � �Ram/D .�1/

m, we see that m is even, and so SO.q/ is generated
by elements RaRb with a;b anisotropic elements of V . If k is algebraically closed, we can
even scale a and b so that q.a/D 1D q.b/.
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Now

axa�1 D .�xaC2�.a;x//a�1 as .axCxaD 2�.a;x/, see (180))

D�

�
x�

2�.a;x/

q.a/
a

�
as a2 D q.a/

D�Ra.x/:

Moreover,
.ab/�ab D baab D q.a/q.b/:

Therefore, if q.a/q.b/D 1, then RaRb is in the image of Spin.q/! SO.q/. As we noted
above, such elements generate SO.q/ when k is algebraically closed. 2

In general, the homomorphism is not surjective. For example, if k D R, then Spin.q/ is
connected but SO.q/ will have two connected components when � is indefinite. In this case,
the image is the identity component of SO.q/.

THE CLIFFORD GROUP

Write  for the automorphism of C.V;q/ that acts as 1 on C0.V;q/ and as �1 on C1.V;q/.

DEFINITION 25.31. The Clifford group is

� .q/D ft 2 C.V;q/ j t invertible and .t/V t�1 D V g:

For t 2 � .q/, let ˛.t/ denote the homomorphism x 7! .t/xt�1WV ! V .

PROPOSITION 25.32. For all t 2 � .q/, ˛.t/ is an isometry of V , and the sequence

1! k�! � .q/
˛
�! O.q/! 1

is exact (no condition on k).

PROOF. Let t 2 � .q/. On applying  and � to .t/V D V t , we find that .t�/V D V t�,
and so t� 2 � .q/. Now, because � and  act as 1 and �1 on V ,

.t/ �x � t�1 D�..t/ �x � t�1/� D�.t��1x.t�//D .t��1/xt�;

and so
.t�/.t/x D xt�t: (183)

We use this to prove that ˛.t/ is an isometry:

q.˛.t/.x//D .˛.t/.x//� � .˛.t/.x//D t��1x.t/� �.t/xt�1
.183/
D t��1xxt�t t�1 D q.x/:

As k is in the centre of � .q/, k� is in the kernel of ˛. Conversely, let t D t0C t1 be an
invertible element of C.V;q/ such that .t/xt�1 D x for all x 2 V , i.e., such that

t0x D xt0; t1x D�xt1

for all x 2 V . As V generates C.V;q/ these equations imply that t0 lies in the centre of
C.V;q/, and hence in k (25.27a), and that t1 centralizes C0, and hence is zero (25.27b). We
have shown that

Ker.˛/D k�:

It remains to show that ˛ is surjective. For t 2 V , ˛.t/.y/D �tyt�1 and so (see the
proof of (25.30)), ˛.t/DRt . Therefore the surjectivity follows from Theorem 25.8. 2
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COROLLARY 25.33. For an invertible element t of C0.V;q/ such that tV t�1 D V , the
determinant of x 7! txt�1WV ! V is one.

PROOF. According to the proposition, every element t 2 � .q/ can be expressed in the form

t D ca1 � � �am

with c 2 k� and the ai anisotropic elements of V . Such an element acts as Ra1 � � �Ram on
V , and has determinant .�1/m. If t 2 C0.V;q/, then m is even, and so det.t/D 1. 2

Hence, the condition (c) in the definition of Spin.q/ is superfluous.

ACTION OF O.q/ ON Spin.q/

25.34. An element � of O.q/ defines an automorphism of C.V;q/ as follows. Consider
� ı� WV ! C.V;q/. Then .�.�.x//2 D �.�.x// �1D �.x/ �1 for every x 2 V . Hence, by
the universal property, there is a unique homomorphism Q� WC.V;q/! C.V;q/ rendering

V C.V;q/

V C.V;q/

�

� Q�

�

commutative. Clearly B�1 ı�2 D e�1 ı e�2 and eid D id, and so e��1 D Q��1, and so Q� is an
automorphism. If � 2 SO.�/, it is known that Q� is an inner automorphism of C.V;q/ by an
invertible element of CC.V;q/.

RESTATEMENT IN TERMS OF ALGEBRAIC GROUPS

Let .V;q/ be quadratic space over k, and let qK be the unique extension of q to a quadratic
form on K˝k V . As we noted in (25.26), C.V;qK/DK˝k C.V;q/.

THEOREM 25.35. There exists a naturally defined algebraic group Spin.q/ over k such that

Spin.q/.K/' Spin.qK/

for all fields K containing k. Moreover, there is a homomorphism of algebraic groups

Spin.q/! SO.q/

giving the homomorphism in (25.30) for each field K containing k. Finally, the action of
O.q/ on C.V;q/ described in (25.30) defines an action of O.q/ on Spin.q/.

PROOF. Show that, when k is infinite, the algebraic group attached to the subgroup Spin.q/
of GL.V / has these properties. Alternatively, define a functor R Spin.qR/ that coincides
with the previous functor when R is a field. 2

In future, we shall write Spin.q/ for the algebraic group Spin.q/.

ASIDE 25.36. A representation of a semisimple algebraic group G gives rise to a representation
of its Lie algebra g, and all representations of g arise from G only if G has the greatest possible
centre. “When E. Cartan classified the simple representations of all simple Lie algebras, he discovered
a new representation of the orthogonal Lie algebra [not arising from the orthogonal group]. But
he did not give a specific name to it, and much later, he called the elements on which this new
representation operates spinors, generalizing the terminology adopted by physicists in a special case
for the rotation group of the three dimensional space” (C. Chevalley, The Construction and Study of
Certain Important Algebras, 1955, III 6). This explains the origin and name of the Spin group.
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f. Groups of types A;B;C;D

List a split almost-simple group of each type.

g. Groups of type E6

See Springer...

h. Groups of type E7

Wilson, Robert A. A quaternionic construction of E7. Proc. Amer. Math. Soc. 142 (2014),
no. 3, 867–880. In this paper the author gives a construction of the Lie group of type E7
by 28�28-matrices over the quaternions. This then leads to a simply-connected split real
form, acting on a 56-dimensional vector space and then to the finite quasi-simple groups of
type E7. This approach simplifies those given by M. G. Aschbacher, R. B. Brown, and B. N.
Cooperstein

i. Groups of type E8

j. Groups of type F4

k. Groups of type G2



CHAPTER 26
Nonsplit algebraic groups: a survey.

This chapter will contain a careful statement of the classification results of Satake-Selbach-
Tits, but no proofs.

Relative root systems and the anistropic kernel; classification of (nonsplit) reductive
groups (Satake-Selbach-Tits). Everything from Springer Corvallis.

a. General classification (Satake-Tits)

Statements only.
In this chapter, we study algebraic groups, especially nonsplit reductive groups, over

arbitrary fields.
Root data are also important in the nonsplit case. For a reductive group G, one chooses a

torus that is maximal among those that are split, and defines the root datum much as before —
in this case it is not necessarily reduced. This is an important approach to describing arbitrary
algebraic groups, but clearly it yields no information about anisotropic groups (those with
no split torus). We explain this approach this chapter following Satake 1963, 1971, 2001;
Selbach 1976; Tits 1966, 1971.

b. Relative root systems and the anisotropic kernel.

The aim of this section is to explain the Satake-Tits strategy for classifying nonsplit groups
and their representations. Here is a brief overview.

The isomorphism classes of split semisimple algebraic groups are classified over any
field. Given a semisimple algebraic group G over a field k, one knows that G splits over
the separable algebraic closure K of k, and so the problem is to determine the isomorphism
classes of semisimple algebraic groups over k corresponding to a given isomorphism class
over K. Tits (1966) sketches a program for doing this. Let T0 be a maximal split subtorus
of G, and let T be a maximal torus containing T0. The derived group of the centralizer of
T0 is called the anisotropic kernel of G — it is a semisimple algebraic group over k whose
split subtori are trivial. Let S be a simple set of roots for .GK ;TK/, and let S0 be the subset
vanishing on T0. The Galois group of K=k acts on S , and the triple consisting of S , S0, and
this action is called the index of G. Tits sketches a proof (corrected in the MR review of the
article) that the isomorphism class of G is determined by the isomorphism class of GK , its
anisotropic kernel, and its index. It remains therefore to determine for each isomorphism
class of semisimple algebraic groups over k (a) the possible indices, and (b) for each possible
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index, the possible anisotropic kernels. Tits (ibid.) announces some partial results on (a) and
(b).

Problem (b) is related to the problem of determining the central division algebras over a
field, and so it is only plausible to expect a solution to it for fields k for which the Brauer
group is known.

Tits’s work was continued by his student Selbach. To quote the MR review of Selbach
1976 (slightly edited):

This booklet treats the classification of quasisimple algebraic groups over arbi-
trary fields along the lines of Tits 1966. Tits had shown that each such group
is described by three data: the index, the anisotropic kernel and the connect-
edness type. For his general results Tits had given or sketched proofs, but not
for the enumeration of possible indices, whereas the classification of possible
anisotropic kernels was not dealt with at all. The booklet under review starts
with an exposition with complete proofs of the necessary general theory. Some
proofs are simplified using results on representation theory over arbitrary fields
from another paper by Tits (Crelle 1971), and a different proof is given for the
main result, viz., that a simply connected group is determined by its index and
anisotropic kernel, because Tits’s original proof contained a mistake, as was
indicated in the review of that paper. Then it presents the detailed classifications
with proofs of all possible indices, and of the anisotropic kernels of exceptional
type. Questions of existence over special fields (finite, reals, p-adic, number)
are dealt with only in cases which fit easily in the context (Veldkamp).

It is interesting to note that, while Tits’s article has been cited 123 times, Selbach’s has been
cited only twice (MR April 2010) — for example, it is not cited in Conrad and Prasad 2015 —
despite being reviewed in the main reviewing journals and being available in many libraries.1

Here is the MR review of Tits 1971 (my translation).

The author proposes to study the linear irreducible k-representations of a reduc-
tive algebraic group G over k, where k is any field. When k is algebraically
closed, Chevalley showed that the irreducible representations of G are charac-
terized, as in the classical case, by the weights of G (characters of a maximal
torus of G), every weight “dominant relative to a Borel subgroup” being the
dominant weight of an irreducible representation. The author first shows that
this correspondence continues when G is split over k. In the general case, it is
necessary to start with a maximal k-torus T in G and a Borel subgroup B of
G containing T in order to define the weights (forming a group �) and the set
�C of dominant weights with respect to B; let �0 denote the subgroup of �
generated by the roots and by the weights zero on the intersection T \D.G/;
the quotient C � D�=�0 is the dual of the centre of G. The Galois group �
of the separable closure ksep of k over k acts canonically on �, �0, and �C;
the central result attaches to each dominant weight � 2�C invariant under �
an absolutely irreducible representation of G in a linear group GL.m;D/, well
determined up to equivalence, D being a skew field with centre k, well deter-
mined up to isomorphism; moreover, if � 2�0 or if G is quasi-split (in which
case the Borel group B is defined over k), thenD D k. One attaches in this way
to any weight � of �C invariant by � an element ŒD�D ˛G;k.�/ of the Brauer
group Br.k/, and one shows that ˛G;k extends to a homomorphism of the group

1Including those of the Univeristy of Michigan and Stanford University.
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�� of weights invariant under � into Br.k/; moreover, the kernel of ˛G;k con-
tains �0, and so there is a fundamental homomorphism ˇG;k WC

�� ! Br.k/
(where C �� is the subgroup of C � formed of the elements invariant under � ).
The author shows that this homomorphism can be defined cohomologically,
in relation with the “Brauer-Witt invariant” of the group G. A good part of
the memoir is concerned with the study of the homomorphism ˇ, notably the
relations between ˇG;k and ˇG1;k , where G1 is a reductive subgroup of G, as
well as with majorizing the degree of ˇ.c/ in Br.k/ when G is an almost-simple
group and c is the class of the minuscule dominant weight. He examines also
a certain number of examples, notably the groups of type E6 and E7. Finally,
he shows how starting from a knowledge of ˛, one obtains all the irreducible
k-representations of G: start with a dominant weight � 2�C, and denote by k�
the field of invariants of the stabilizer of � in � ; then if ˛G;k�.�/D ŒD��, one
obtains a k�-representation G! GL.m;D�/, whence one deduces canonically
a k-representation k��, which is irreducible; every irreducible k-representation
is equivalent to a k��, and k�� and k��0 are k-equivalent if and only if � and
�0 are transformed into one another by an element of � (Dieudonné).





CHAPTER 27
Cohomology: a survey

This chapter will be revised and slightly expanded to about 30 pages. Complete references
will be added.

This chapter contains precise statements and references, but only sketches of proofs on
the following topics: classification of the forms of an algebraic group; description of the
classical algebraic groups in terms of algebras with involution; the Galois cohomology of
algebraic groups.

We shall make frequent use of the following remark. Let X and Y be sets, and let �
be an equivalence relation on Y . If there is given a surjection Y !X whose fibres are the
equivalence classes, then we say that X classifies the elements of Y modulo � or that it
classifies the �-classes of elements of Y . If .Y;�/ and .Y 0;�0/ are both classified by X ,
then a map .Y;�/! .Y 0;�0/ compatible with the surjections Y !X and Y 0!X induces
a bijection from the set of equivalence classes in Y to the set of equivalence classes in Y 0.

a. Definition of nonabelian cohomology; examples

We begin by reviewing the basic definitions and properties of the nonabelian cohomology
sets (following Serre 1964, I, �5). Let � be a group. A � -set is a set A with an action

.�;a/ 7! �aW� �A! A

of � on A (so .��/aD �.�a/ and 1aD a). If, in addition, A has the structure of a group and
the action of � respects this structure (i.e., �.aa0/D �a ��a0), then we call A a � -group.

DEFINITION OF H 0.�;A/

Let A be a � -set A. Then H 0.� ;A/ is defined to be the set A� of elements left fixed by
the operation of � on A, i.e.,

H 0.� ;A/D A� D fa 2 A j �aD a for all � 2 � g:

If A is a � -group, then H 0.�;A/ is a group.

DEFINITION OF H 1.� ;A/

Let A be a � -group. A map � 7! a� of � into A is said to be a 1-cocycle of � in A if
a�� D a� ��a� for all �;� 2 � . Two 1-cocycles .a� / and .b� / are said to be equivalent if
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there exists a c 2 A such that

b� D c
�1
�a� ��c for all � 2 � .

This is an equivalence relation on the set of 1-cocycles of � in A, and H 1.� ;A/ is defined
to be the set of equivalence classes of 1-cocycles.

In general H 1.� ;A/ is not a group unless A is commutative, but it has a distinguished
element, namely, the class of 1-cocycles of the form � 7! b�1 ��b, b 2 A (the principal
1-cocycles).

When A is commutative, H i .�;A/ coincides with the usual cohomology groups for
i D 0;1.

COMPATIBLE HOMOMORPHISMS

Let � be a second group. Let A be � -group and B an �-group. Two homomorphisms
f WA! B and gW�! � are said to be compatible if

f .g.�/a/D �.f .a// for all � 2�, a 2 A.

If .a� / is a 1-cocycle for A, then
b� D f .ag.�//

is a 1-cocycle of � in B , and this defines a mapping H 1.�;A/!H 1.�;B/, which is a
homomorphism if A and B are commutative.

When �D � , a homomorphism f WA! B compatible with the identity map on � , i.e.,
such that

f .�a/D �.f .a// for all � 2 � , a 2 A,

f is said to be a � -homomorphism (or be � -equivariant).

EXACT SEQUENCES

PROPOSITION 27.1. An exact sequence

1! A
u
�! B

v
�! C ! 1 (184)

of � -groups gives rise to an exact sequence of pointed sets

1!H 0.�;A/
u0

�!H 0.�;B/
v0

�!H 0.�;C /
ı
�!H 1.�;A/

u1

�!H 1.�;B/
v1

�!H 1.�;C /:

More precisely:

(a) The sequence 1!H 0.�;A/
u0

�!H 0.�;B/
v0

�!H 0.�;C / is exact as a sequence of
groups.

(b) There is a natural right action of C� on H 1.�;A/ and

i) the map ı sends c 2 C� to 1 � c, where 1 is the distinguished element of
H 1.�;A/;

ii) the nonempty fibres of u1WH 1.�;A/! H 1.�;B/ are the orbits of C� in
H 1.�;A/;

iii) the kernel of v1 is the quotient of H 1.�;A/ by the action of C� .
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We now define ı and the action of C� on H 1.�;A/. Let c 2 C� , and choose a b 2 B
mapping to it. Then �b D b �a� for some a� 2 A, and the family .a� / is a 1-cocycle whose
class inH 1.�;A/ is ı.c/. Let ˛ be a class inH 1.�;A/ represented by a 1-cocyle .a0� /; then
� 7! b�1a0�ba� D b

�1 �a0� ��b is a 1-cocycle, whose class in H 1.�;A/ is ˛ � c.

PROPOSITION 27.2. When A is contained in the centre of B , the above sequence extends
to an exact sequence

� � � !H 1.�;B/
v1

�!H 1.�;C /
ı
�!H 2.�;A/:

Let c D .c� / be a 1-cocycle of C , and choose a b� 2 B mapping to c� for each � .
Then b� ��b� D b�� �a�;� for some a�;� 2 A, and aD .a�;� / is a 2-cocycle whose class in
H 2.�;A/ is ı.c/.

EXAMPLE 27.3. Let B D AÌC . The composite C ! B! B=A' C is the identity map.
Therefore, the mapsH 0.�;B/!H 0.�;C / andH 1.�;B/!H 1.�;C / are surjective, and
H 1.�;A/!H 1.�;B/ is injective with image the kernel of H 1.�;B/!H 1.�;C /.

TWISTS

Proposition describes only the fibre of v1 containing the neutral element. To describe the
other fibres we need to twist. Let A be a G-group, and let S be a G-set with a left action of
A compatible with the action of G. Let aD .a� / 2Z1.G;A/, and let aS denote the set S
on which G acts by

� � s D a� ��s:

We say that aS is obtained from S by twisting by the 1-cocycle a.
Now consider an exact sequence (184), and let b 2Z1.�;B/. The group B acts on itself

by inner automorphisms leaving A stable, and so we can twist (184) by b to obtain an exact
sequence

1! bA! bB! bC ! 1:

The next proposition describes the fibre of v1 containing the class of b.

PROPOSITION 27.4. There is a commutative diagram

H 0.�;bC/ H 1.�;bA/ H 1.�;bB/ H 1.�;bC/

H 0.�;C / H 1.�;A/ H 1.�;B/ H 1.�;C /

' '

u1 v1

in which the vertical arrows map the distinguished elements in H 1.�;bB/ and H 1.�;bC/

to the classes of b and v1.b/.

In more detail, the underlying group of bB is just B , but � acts by the formula

� �b D b� ��b �b
�1
� :

For any .b0� / 2Z
1.�;bB/, the map � 7! b0� �b� is a 1-cocycle for B , and the first vertical

map sends the class of .b0� / to its class. The second vertical map has a similar description.
The omission of an arrow from H 1.�;bA/ to H 1.�;A/ in the above diagram is inten-

tional: there is in general no relation between the two groups. If A0 is an inner form of
A, then H 1.�;A0/�H 1.�;A/, but for an outer form A0 of A, there need be no relation
between H 1.�;A0/ and H 1.�;A/.
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PROFINITE GROUPS

Recall that a topological group � is profinite if it is an inverse (i.e., projective) limit of
discrete finite groups. Such a group is compact, and the open normal subgroups form a base
for the neighbourhoods of 1. In particular, every open subgroup contains an open normal
subgroup, and � D lim

 �
�=U where U runs over the open normal subgroups.

Let � be a profinite group. We say that A is a discrete � -module if the map � �A!A

is continuous for the given topology on � and the discrete topology on A. Equivalently,

AD
[
AU (185)

— every element of A is fixed by an open (normal) subgroup U of � . When � is a profinite
group, we require the 1-cocycles to be continuous. Then

H 1.�;A/D lim
�!

H 1.� =U;AU /

(limit over the open normal subgroups of � ).
We are interested in the case that � is a Galois group of a Galois extension K=k

equipped with the Krull topology. In this case, the open (resp. open normal) subgroups of
G are the groups Gal.K=k0/ with k0 finite (resp. finite and Galois) over k. Let G be an
algebraic group over k. Each K-point of G has coordinates in a subfield of K finite over k,
and so

G.K/D
[

Œk0Wk�<1

G.k0/:

As G.k0/DG.K/Gal.K=k0/, we see that G.K/ is a discrete � -module. We set

H 1.K=k;G/DH 1.Gal.K=k/;G.K//

and

H 1.k;G/DH 1.Gal.ksep=k/;G.ksep//

D lim
�!

Œk0Wk�<1; k0�K

H 1.k0=k;G/:

Let
e!N !G!Q! e

be an exact sequence of algebraic groups. If N is smooth1 or k is perfect, the sequence

e!N.ksep/!G.ksep/!Q.ksep/! e

is exact, and so we have an exact sequence of pointed sets

e!N.k/!G.k/!Q.k/!H 1.k;N /!H 1.k;G/!H 1.k;Q/:

When N is commutative, the sequence continues to an exact sequence

� � � !H 1.k;G/!H 1.k;Q/!H 2.k;N /:

1For nonsmooth groups, we should be using flat cohomology groups.
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EXAMPLES

Let K be a Galois extension of k with Galois group � , and let V be a K-vector space. A
semi-linear action of � on V is a homomorphism � ! Autk-linear.V / such that

�.cv/D �c ��v all � 2 � , c 2K, v 2 V:

If V DK˝k V0, then there is a unique semi-linear action of � on V for which V � D 1˝V0,
namely,

�.c˝v/D �c˝v � 2 � , c 2K, v 2 V:

LEMMA 27.5. Let � �V ! V be a semi-linear action of � on V . Then the map

c˝v 7! cvWK˝k V
�
! V

is an isomorphism.

PROOF. See 16.15 of my Algebraic Geometry notes. 2

PROPOSITION 27.6. The functor V 7!K˝k V from k-vector spaces to K-vector spaces
endowed with a continuous semi-linear action of � is an equivalence of categories with
quasi-inverse V 7! V � .

PROOF. Follows easily from (27.5). 2

PROPOSITION 27.7. Let �0WV0�V0! V0 be bilinear form on a finite-dimensional vector
space over k, and let G.�0/ denote the group of automorphisms of .V;�0/. The cohomology
set H 1.�;G.�0// classifies the isomorphism classes of pairs .V;�/ over k that become
isomorphic to .V0;�0/ over K.

PROOF. Let .V;�/ be such a pair over k, and choose an isomorphism

f W.V0;�0/K ! .V;�/K :

Let
a� .f /D f

�1
ı�f:

Then
a� ��a� D .f

�1
ı�f /ı .�f �1 ı��f /D a�� ;

and so a� .f / is a 1-cocycle. Moreover, any other isomorphism f 0W.V0;�0/K ! .V;�/K
differs from f by a g 2A.K/, and

a� .f ıg/D g
�1
�a� .f / ��g:

Therefore, the cohomology class of a� .f / depends only on .V;�/. It is easy to see that, in
fact, it depends only on the isomorphism class of .V;�/, and that two pairs .V;�/ and .V 0;�0/
giving rise to the same class are isomorphic. It remains to show that every cohomology class
arises from a pair .V;�/. Let .a� /�2� be a 1-cocycle, and use it to define a new action of �
on VK DK˝k V :

�x D a� ��x; � 2 �; x 2 VK :

Then
� .cv/D �c � �v, for � 2 � , c 2K, v 2 V;
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and
� .�v/D � .a��v/D a� ��a� ���v D

��v;

and so this is a semi-linear action. Therefore,

V1
def
D fx 2 VK j

�x D xg

is a subspace of VK such that K˝k V1 ' VK (by 27.5). Because �0K arises from a pairing
over k,

�0K.�x;�y/D ��.x;y/; all x;y 2 VK :

Therefore (because a� 2A.K/),

�0K.
�x;�y/D �0K.�x;�y/D ��0K.x;y/:

If x;y 2 V1, then �0K.�x;�y/D �0K.x;y/, and so �0K.x;y/D ��0K.x;y/. By Galois
theory, this implies that �0K.x;y/ 2 k, and so �0K induces a k-bilinear pairing on V1. 2

COROLLARY 27.8. For all n, H 1.�;GLn.K//D 1.

PROOF. Apply Proposition 27.7 with V0D kn and �0 the zero form. It shows thatH 1.�;GLn.K//
classifies the isomorphism classes of k-vector spaces V such that K˝k V �Kn. But such
a k-vector space has dimension n, and all k-vector spaces of dimension n are isomorphic.2

COROLLARY 27.9. For all n, H 1.�;SLn.K//D 1

PROOF. Because the determinant map detWGLn.K/!K� is surjective,

1! SLn.K/! GLn.K/
det
�!K�! 1

is an exact sequence of � -groups. It gives rise to an exact sequence

GLn.k/
det
�! k�!H 1.�;SLn/!H 1.�;GLn/

from which the statement follows. 2

COROLLARY 27.10. Let �0 be a nondegenerate alternating bilinear form on V0, and let Sp
be the associated symplectic group. Then H 1.�;Sp.K//D 1.

PROOF. According to Proposition 27.7, H 1.�;Sp.K// classifies isomorphism classes of
pairs .V;�/ over k that become isomorphic to .V0;�0/ over K. But this condition implies
that � is a nondegenerate alternating form and that dimV D dimV0. All such pairs .V;�/
are isomorphic. 2

COROLLARY 27.11. Let � be a nondegenerate bilinear symmetric form on V , and let O.�/
be the associated orthogonal group. Then H 1.�;O.�/.K// classifies the isomorphism
classes of quadratic spaces over k that become isomorphic to .V;�/ over K.

PROOF. Special case of the proposition. 2

COROLLARY 27.12. Assume char.k/ ¤ 2. The set H 1.k;O.�// classifies the isomor-
phism classes of quadratic spaces over k with the same dimension as V .
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PROOF. Over ksep, all nondegenerate quadratic spaces of the same dimension are isomor-
phic. 2

The set H 1.k;O.�// can be very large; for example, when k DQ it is infinite.

EXAMPLE 27.13. From the exact sequence

1!Gm.ksep/! GLn.ksep/! PGLn.ksep/! 1

we get an exact sequence

H 1.k;GLn/!H 1.k;PGLn/
ı
�!H 2.k;Gm/:

The group H 2.k;Gm/ can be identified with the Brauer group of k, and the image of ı
consists of the elements of Br.k/ that can be represented by a central simple algebra of
degree n2; in particular, it is not necessarily a subgroup of Br.k/.

b. Generalities on forms

DEFINITION 27.14. Let K be an extension of k, and let G be an algebraic group over k. A
K=k-form of G is an algebraic group G0 over k such that G0K �GK . Two K=k-forms are
isomorphic if they are isomorphic as algebraic groups over k. When K D ksep, we omit it
from the notation.

LetK be a Galois extension of k with Galois group � . Let G be an algebraic group over
k, and let A.K/ be the group of automorphisms of GK . Then � acts on A.K/ according to
the rule:

�˛ D � ı˛ ı��1:

PROPOSITION 27.15. The cohomology setH 1.�;A.K// classifies the isomorphism classes
of algebraic groups G over k that become isomorphic to G0 over K.

PROOF. Let G be such an algebraic group over k, and choose an isomorphism

f WG0K !GK .

Let
a� D f

�1
ı�f:

As in the proof of Proposition 27.7, .a� /�2� is a 1-cocycle, and the map

G 7! class of .a� /�2� in H 1.�;A.K//

is well-defined and its fibres are the isomorphism classes over k.
In proving that the map is surjective, it is useful to identify A.K/ with the automorphism

group of the Hopf algebra O.G0K/DK˝kO.G0/. Let A0 DO.G0/ and ADK˝k A0.
As in the proof of Proposition 27.7, we use a 1-cocycle .a� /�2� to twist the action of � on
A; specifically, we define

�aD a� ı�a; � 2 �; a 2 A.

From Lemma 27.5 the k-subspace

B D fa 2 A j �aD ag
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of A has the property that
K˝k B ' A:

It remains to show that the Hopf algebra structure on A induces a Hopf algebra structure on
B . Consider for example the comultiplication. The k-linear map

�0WA0! A0˝k A0

has a unique extension to a K-linear map

�WA! A˝K A:

This map commutes with the action of � :

�.�a/D �.�.a//; all � 2 � , a 2 A.

Because a� is a Hopf algebra homomorphism,

�.a�a/D a��.a/; all � 2 � , a 2 A.

Therefore,
�.�a/D � .�.a//; all � 2 � , a 2 A.

In particular, we see that � maps B into .A˝K A/� , which equals B˝k B because the
functor in (27.6) preserves tensor products. Similarly, all the maps defining the Hopf algebra
structure on A preserve B , and therefore define a Hopf algebra structure on B . Finally, one
checks that the 1-cocycle attached to B and the given isomorphism K˝k B! A is .a� /.2

COROLLARY 27.16. Let G be an algebraic group over k. The isomorphism classes
of algebraic groups over k that become isomorphic to Gksep over ksep are classified by
H 1.�;A.ksep//. Here � D Gal.ksep=k/ and A.ksep/ is the automorphism group of Gksep .

PROOF. Special case of the proposition. 2

EXAMPLE: THE FORMS OF GL2.

What are the k-forms of groups GL2? For any a;b 2 k�, define H.a;b/ to be the algebra
over k with basis 1; i;j; ij as a k-vector space, and with the multiplication given by

i2 D a; j 2 D b; ij D�j i:

This is a k-algebra with centre k, and it is either a division algebra or is isomorphic toM2.k/.
For example, H.1;1/�M2.k/ and H.�1;�1/ is the usual quaternion algebra when k D R.

Each algebra H.a;b/ defines an algebraic group G D G.a;b/ with G.R/ D .R˝

H.a;b//�. These are exactly the algebraic groups over k becoming isomorphic to GL2 over
ksep, and

G.a;b/�G.a0;b0/ ” H.a;b/�H.a0;b0/:

Over R, every H is isomorphic to H.�1;�1/ or M2.R/, and so there are exactly two
forms of GL2 over R.

Over Q, the isomorphism classes of quaternion algebras are classified by the subsets of

f2;3;5;7;11;13; : : : ;1g

having a finite even number of elements. The proof of this uses the quadratic reciprocity law
in number theory. In particular, there are infinitely many forms of GL2 over Q, exactly one
of which, GL2, is split.
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EXAMPLE: THE FORMS OF GLn

Classifying the k-forms of GLn turns out to be the same as classifying the k-forms of the
k-algebra Mn.k/, and so we do that first. Proofs of 27.18–27.23 can be found, for example,
in Chapter IV of my notes Class Field Theory.

DEFINITION 27.17. A k-algebra A is central if its centre is k, and it is simple if it has no
2-sided ideals (except 0 and A). If all nonzero elements have inverses, it is called a division
algebra (or skew field).

For example, Mn.k/ and the quaternion algebra H.a;b/ are central simple algebras.

THEOREM 27.18 (WEDDERBURN). For any division algebraD over k,Mn.D/ is a simple
k-algebra, and every simple k-algebra is of this form; moreover, Mn.D/ is central if and
only if D is central.

PROPOSITION 27.19. Let D be a central division algebra of degree n2 over k. Then D
contains a field k0 separable of degree n over k.

COROLLARY 27.20. If k is separably closed, then the only central simple algebras over k
are the matrix algebras Mn.k/.

PROOF. Combine the last two statements. 2

PROPOSITION 27.21. The k-forms of Mn.k/ are the central simple algebras over k of
degree n2.

PROOF. Let A be a central simple algebra over k of degree n2. Then ksep˝k A is again
central simple, and so it is isomorphic to Mn.k/ by (27.20). Conversely, if A is a k-algebra
that becomes isomorphic to Mn.k

sep/ over ksep, then it is certainly central and simple, and
has degree n2. 2

PROPOSITION 27.22. All automorphisms of the k-algebra Mn.k/ are inner, i.e., of the
form X 7! YXY �1 for some Y .

PROOF. Let S be kn regarded as an Mn.k/-module. It is simple, and every simple Mn.k/-
module is isomorphic to it. Let ˛ be an automorphism of Mn.k/, and let S 0 denote S , but
with X 2Mn.k/ acting as ˛.X/. Then S 0 is a simple Mn.k/-module, and so there exists an
isomorphism of Mn.k/-modules f WS ! S 0. Then

˛.X/f Ex D fX Ex; all X 2Mn.k/, Ex 2 S:

Therefore,
˛.X/f D fX; all X 2Mn.k/:

As f is k-linear, it is multiplication by an invertible matrix Y , and so this equation shows
that

˛.X/D YXY �1:
2

COROLLARY 27.23. The isomorphism classes of k-algebras becoming isomorphic to
Mn.k/ over ksep are classified by H 1.k;PGLn/.
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PROOF. The proposition shows that

Autksep-algebra.Mn.k
sep//D PGLn.ksep/:

Let A be a k-algebra for which there exists an isomorphism f WMn.k
sep/! ksep˝k A, and

let
a� D f

�1
ı�f:

Then a� is a 1-cocycle, depending only on the k-isomorphism class of A.
Conversely, given a 1-cocycle, define

�X D a� ��X; � 2 � , X 2Mn.k
sep/:

This defines a semi-linear action of � on Mn.k
sep/ and Mn.k

sep/� is a k-algebra becoming
isomorphic to Mn.k/ over ksep (27.5; see also the proof of 27.15). 2

For a central simple algebra A over k, we let GA denote the algebraic group over k such
that G.R/D .A˝R/�.

THEOREM 27.24. The k-forms of GLn are the groups GA; two k-forms GA and GA0 are
isomorphic if and only if A and A0 are isomorphic k-algebras.

PROOF. We have map A 7! GA from k-forms of Mn.k/ to k-forms of GLn. As the iso-
morphism classes of both sets are classified by H 1.k;PGLn/ and the map is obviously
compatible with the cohomology classes, we see that the map defines a bijection from the
set isomorphism classes of k-forms of Mn.k/ to the set of isomorphism classes of k-forms
of GLn. 2

COROLLARY 27.25. The k-forms of GLn are the algebraic groups GLD;m withD a central
division algebra over k of dimension .n=m/2.

REMARK 27.26. Let A be a central simple algebra over k. For some n, there exists an
isomorphism f Wksep˝k A!Mn.k

sep/, unique up to an inner automorphism (27.21). Let
a 2 A, and let Nm.a/ D det.f .a//. Then Nm.a/ does not depend on the choice of f .
Moreover, it is fixed by � , and so lies in k. It is called the reduced norm of a.

c. Forms of semisimple algebraic groups

We sometimes abbreviate “semisimple algebraic group” to “semisimple group”. [References
will be added.]

27.27. Recall that Gad D G=Z.G/. The action of G on itself by inner automorphisms
factors through Gad. A automorphism of G over k is said to be inner if it is defined by an
element of Gad.k/. When Z.G/ is smooth, Gad.ksep/DG.ksep/=Z.ksep/.

27.28. A semisimple group G over a field k is said to be split if it contains a split maximal
torus. Since every semisimple group contains a maximal torus, and every torus over k splits
over ksep, we see that every semisimple group splits over ksep.

27.29. Every semisimple group G over a separably closed field k determines a certain
graph called its Dynkin diagram. Almost-simple group correspond to connected graphs. The
connected Dynkin diagrams are exactly those in the following list: An (n� 1/, Bn (n� 2),
Cn (n � 3), Dn (n � 4), E6, E7, E8, F4, G2. An almost-simple algebraic group over a
separably closed field whose Dynkin diagram is Xy is said to have type Xy .
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27.30. Two simply connected almost-simple groups over a separably closed field are
isomorphic if and only if they have isomorphic Dynkin diagrams. Over an arbitrary field
k, for each connected Dynkin diagram, there is a split almost-simple algebraic group over
k of that type; it is unique up to isomorphism (over k) and is called the simply connected
Chevalley group of that type.

27.31. The group of automorphisms of a simply connected semisimple group over a
separably closed field can be read off from its Dynkin diagram: it contains the group of inner
automorphisms as a normal subgroup, and the quotient is the group of symmetries Sym.D/
of its Dynkin diagram. Thus, for a simply connected semisimple group G over an arbitrary
field k, there is an exact sequence

1!G.ksep/! Aut.Gksep/! Sym.D/! 1 (186)

of � DGal.ksep=k/-modules. The connected Dynkin diagram do not have many symmetries:
forD4 the symmetry group is S3 (symmetric group on 3 letters), forAn (n¤ 1/,Dn (n¤ 4/,
and E6 it has order 2, and otherwise it is trivial.

We set A.G/D Aut.Gksep/.

27.32. Let G be a split semisimple group over k. Then � acts trivially on Sym.D/, and
the sequence (186) splits, i.e., there is subgroup of A.G/ on which � acts trivially and
which maps isomorphically onto Sym.D/. Thus, the map

H 1.�;Gad.ksep//!H 1.�;A.G//

is injective, with image the kernel of

H 1.�;A.G//!H 1.�;Sym.D//:

27.33. Let G be a split semisimple group over k. The forms of G are classified by
H 1.�;A.G//. We say that a form of G is inner2 if its class lies in the subset H 1.k;Gad/ of
H 1.�;A.G//; thus the inner forms of G are classified by H 1.k;Gad/.

27.34. Let G be a split simply connected geometrically almost-simple group over k of
type Xy . A k-form G0 defines a class in H 1.�;A.G//, which maps to an element a of
H 1.�;Sym.D//. As � acts trivially on Sym.D/,

H 1.�;Sym.D//' Hom.�;Sym.D// (continuous homomorphisms),

and so a is a continuous homomorphism � ! Sym.D/. Let L be the fixed field of the
kernel of a. It is finite over k, of degree z say. We then say that G0 is of type zXy .

Thus, G0 is of type zXy if it becomes an inner form of a split group of type Xy over an
extension of k of degree z (but not of a smaller degree).

27.35. Let G be a simply connected geometrically almost-simple group over k. If G is
split, then

X�.Z.G//D P.D/=Q.D/

2This definition of inner forms is correct only for split groups — see 2.33. In general, we call a k-form G0

of G an inner twist of G if its class in H1.k;A.G// lies in the image of H1.k;Gad/!H1.k;A.G//. When
this map is injective, “inner twist” coincides with “inner form”.
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with � acting trivially; thus Z.G/ is a product of groups of the form �n. For the form G0 of
G defined by a 1-cocycle aD .a� /, we have Z.G0/DZ.G/ but with � acting through a� :

�z D a� ��z; z 2Z.ksep/:

More precisely, let f WGksep ! G0
ksep be an isomorphism, and let �f D f ı a� ; then f

restricts to an isomorphism Zksep !Z0
ksep , and �.f jZ/D .f jZ/ıa� jZ.

For example, SLn is the split group over k of type An�1, and its centre is �n.

d. Classical groups

In this section, char.k/¤ 2.

DEFINITION 27.36. Recall that every semisimple algebraic group G over k has a finite
étale covering by a simply connected semisimple group QG; moreover, QG can be written as a
product

QG D
Y
.Gi /ki=k

with each Gi geometrically almost-simple over ki . The semisimple group G is said to be
classical if each Gi is of type An, Bn, Cn, or Dn, but not 3D4 or 6D4. In other words, we
exclude only factors of exceptional type and 3D4 and 6D4.

INVOLUTIONS OF k-ALGEBRAS

DEFINITION 27.37. Let A be a k-algebra. An involution of k is a k-linear map a 7!
a�WA! A such that

.ab/� D b�a� all a;b 2 A;

a�� D a:

The involution is said to be of the first or second kind according as it acts trivially on the
elements of the centre of A or not.

EXAMPLE 27.38. (a) On Mn.k/ there is the standard involution X 7! X t (transpose) of
the first kind.

(b) On a quaternion algebra H.a;b/, there is the standard involution i 7! �i , j 7! �j
of the first kind.

(c) On a quadratic field extension K of k, there is a unique nontrivial involution (of the
second kind).

LEMMA 27.39. Let .A;�/ be an k-algebra with involution. An inner automorphism x 7!

axa�1 commutes with � if and only if a�a lies in the centre of A.

PROOF. To say that inn.a/ commutes with � means that the two maps

x 7! axa�1 7! .a�/�1x�a�

x 7! x� 7! ax�a�1

coincide, i.e., that
x� D .a�a/x�.a�a/�1

for all x 2 A. As x 7! x� is bijective, this holds if and only if a�a lies in the centre of A.2

REMARK 27.40. Let A have centre k. We can replace a with ca, c 2 k�, without changing
inn.a/. This replaces a�a with c�c �a�a. When � is of the first kind, c�c D c2. Therefore,
when k is separably closed, we can choose c to make a�aD 1.
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THE INNER FORMS OF SLn (GROUPS OF TYPE 1An�1)

Let A be a central simple algebra over k of degree n2. Then

R fa 2 A˝R j Nm.a/D 1g

is an algebraic group, which we denote SLA. Here Nm.a/ denotes the reduced norm of a.
Recall that A'Mn=m.D/ for some central division algebra D of degree m2 over k. Thus,
SLA can also be described as the group

R fa 2Mn=m.D˝R/ j Nm.a/D 1g:

We know that A is a k-form of the k-algebra Mn.k/, and all k-forms of Mn.k/ of this
shape. Moreover, the k-forms of Mn.k/ are classified by H 1.k;PGLn/. As the k-forms
of SLn are also classified by H 1.k;PGLn/ and the map A 7! SLA preserves cohomology
classes, we see that the map induces a bijection on isomorphism classes.

THEOREM 27.41. The inner forms of SLn over k are the algebraic groups SLA with A a
central simple algebra of degree n2 over k. Two groups SLA and SLA0 are isomorphic if and
only if A and A0 are isomorphic as k-algebras.

THE OUTER FORMS OF SLn (GROUPS OF TYPE 2An).

The Dynkin diagram of SLn has a unique nontrivial automorphism, which is induced by
the outer automorphism X 7! .X�1/t D .X t /�1 of SLn. Thus, the sequence (186), p.479,
becomes

1! PGLn!A.SLn/! f˙1g ! 1:

Now consider the k-algebra with involution of the second kind

Mn.k/�Mn.k/; .X;Y /� D .Y t ;X t /:

Every automorphism of Mn.k/�Mn.k/ is either inner, or is the composite of an inner
automorphism with .X;Y / 7! .Y;X/. This follows from the fact that the two copies of
Mn.k/ are the only simple subalgebras of Mn.k/�Mn.k/. According to (27.39), the inner
automorphism by a 2A commutes with � if and only if a�a 2 k�k. But .a�a/�D a�a, and
so a�a 2 k. When we work over ksep, we can scale a so that a�aD 1 (27.40): if aD .X;Y /,
then

1D a�aD .Y tX;X tY /;

and so a D .X;.X t /�1/. Thus, the automorphisms of .Mn.k
sep/�Mn.k

sep/;�/ are the
inner automorphisms by elements .X;.X t /�1/ and composites of such automorphisms with
.X;Y / 7! .Y;X/. When we embed

X 7! .X;.X t /�1/WSLn.ksep/ ,!Mn.k
sep/�Mn.k

sep/; (187)

the image it is stable under the automorphisms of .Mn.k
sep/�Mn.k

sep/;�/, and this induces
an isomorphism

Aut.Mn.k
sep/�Mn.k

sep/;�/' Aut.SLnksep/:

Thus, the forms of SLn correspond to the forms of .Mn.k/�Mn.k/;�/. Such a form is a
simple algebra A over k with centre K of degree 2 over k and an involution � of the second
kind.
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The map (187) identifies SLn.ksep/ with the subgroup of Mn.k
sep/�Mn.k

sep/ of ele-
ments such that

a�aD 1; Nm.a/D 1:

Therefore, the form of SLn attached to the form .A;�/ is the group G such that G.R/
consists of the a 2R˝k A such that

a�aD 1; Nm.a/D 1:

There is a commutative diagram

Aut.SLnksep/ Sym.D/

Aut.Mn.k
sep/�Mn.k

sep/;�/ Autk-algebra.k
sep�ksep/:

The centre K of A is the form of ksep�ksep corresponding to the image of the cohomology
class of G in Sym.D/. Therefore, we see that G is an outer form if and only if K is a field.

Let A be a simple algebra with centre a quadratic extension K of k, and let � be an
involution of the second kind on A. Then

R fa 2 .A˝R/ j a� �aD 1g

is an algebraic group, which we denote SL.A;�/. It is a form of SLn where nD ŒAWK�1=2:

THEOREM 27.42. The outer forms of SLn are the algebraic groups SL.A;�/ with A a simple
k-algebra whose centre is a quadratic field extension of k and with � an involution of A of
the second kind. Two groups SL.A;�/ and SL.A0;�0/ are isomorphic if and only if .A;�/ and
.A0;�0/ are isomorphic as k-algebras with involution.

THE FORMS OF Sp2n (GROUPS OF TYPE Cn)

The k-algebra M2n.k/ has an involution of the first kind:

X� D SX tS�1; S D

 
0 I

�I 0

!
:

The inner automorphism defined by an invertible matrix U commutes with � if and only if
U �U 2 k (see 27.39). When we pass to ksep, we may suppose U �U D I , i.e., that

SU tS�1U D I .

Because S�1 D�S , this says that
U tSU D S

i.e., that U 2 Sp2n.k
sep/. Since there are no symmetries of the Dynkin diagram Cn, we see

that the inclusion
X 7!X WSp2n.k

sep/ ,!M2n.k
sep/ (188)

induces an isomorphism

Aut.Sp2nksep/' Aut.M2n.k
sep/;�/:
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Therefore, the forms of Sp2ncorrespond to the forms of .M2n.k/;�/. Such a form is a
central simple algebra A over k with an involution � of the first kind.

The map (188) identifies Sp2n.k
sep/ with the subgroup of M2n.k

sep/ of elements such
that

a�aD 1:

Therefore, the form of Sp2n attached to .A;�/ is the group G D G.A;�/ such that G.R/
consists of the a 2R˝k A for which

a�aD 1:

THEOREM 27.43. The forms of Sp2n are the algebraic groups SL.A;�/ with .A;�/ a form
of .M2n.k/;�/. Two groups SL.A;�/ and SL.A0;�0/ are isomorphic if and only if .A;�/ and
.A0;�0/ are isomorphic as k-algebras with involution.

THE FORMS OF Spin.�/ (GROUPS OF TYPE B AND D)

Let .V;�/ be a nondegenerate quadratic space over k with greatest possible Witt index
(dimension of a totally isotropic subspace). The action of O.�/ on itself preserves SO.�/,
and there is also an action ofO.�/ on Spin.�/: These actions are compatible with the natural
homomorphism

Spin.�/! SO.�/

and realizeO.�/ modulo its centre as the automorphism group of each. Therefore, the forms
of Spin.�/ are exactly the double covers of the forms of SO.�/.

The determination of the forms of SO.�/ is very similar to the last case. Let M be the
matrix of � relative to some basis for V . We use the k-algebra with involution of the first
kind

Mn.k/; X� DMX tM�1:

The automorphism group of .Mn.k/;�/ is O.�/ modulo its centre, and so the forms of
SO.�/ correspond to the forms of .M2n.k/;�/. Such a form is a central simple algebra A
over k with an involution � of the first kind, and the form of SO.�/ attached to .A;�/ is the
group G such that G.R/ consists of the a 2R˝k A for which

a�aD 1:

The symmetry group of a Dynkin diagram of type D4 is S3. It is not possible to realize
the automorphism group of a split group of type D4 as the automorphism group of a central
simple algebra, and so it is not possible to realize the groups of type 3D4 and 6D4 in terms
of algebras with involution. For this reason, the groups are not said to be classical. In other
words, the geometrically almost-simple classical algebraic groups are exactly those that can
be described in terms for algebras with involution.

SPECIAL FIELDS

To continue, we need a description of the algebras with involution over a field k. For an
arbitrary field, there is not much one can say, but for one important class of fields there is a
great deal.

PROPOSITION 27.44. If a central simple algebra A over k admits an involution of the first
kind, then

A˝k A�Mn2.k/; n2 D ŒAWk�: (189)
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PROOF. Recall that the opposite algebra Aopp of A equals A as a k-vector space but has its
multiplication reversed:

aoppbopp
D .ba/opp.

Let A0 denote A regarded as a k-vector space. There are commuting left actions of A and
Aopp on A0, namely, A acts by left multiplication and Aopp by right multiplication, and hence
a homomorphism

A˝k A
opp
! Endk-lin .A0/ :

This is injective, and the source and target have the same dimension as k-vector spaces, and
so the map is an isomorphism. Since an involution on A is an isomorphism A! Aopp, the
proposition follows from this. 2

Over any field, matrix algebras and quaternion algebras are central simple algebras
admitting involutions. For many important fields, these are essentially the only such algebras.
Consider the following condition on a field k:

27.45. The only central division algebras over k or a finite extension of k satisfying (189)
are the quaternion algebras and the field itself (i.e., they have degree 4 or 1).

THEOREM 27.46. The following fields satisfy (27.45): separably closed fields, finite fields,
R, Qp and its finite extensions, and Q and its finite extensions.

PROOF. The proofs become successively more difficult: for separably closed fields there
is nothing to prove (27.20); for Q it requires class field theory (see, for example, my notes
Class Field Theory). 2

ASIDE 27.47. According to a theorem of Merkujev, the subgroup of elements of order 2 in the
Brauer group of k is generated by the classes of quaternion algebras. An example of Brauer (1929)
shows that not every such element is the class of a quaternion algebra. A theorem of Albert states
that the tensor product of two quaternion algebras is a division algebra if and only if they do not have
a common quadratic splitting field. Let F be a field not of characteristic 2, and let k be the purely
transcendental extension F.x;y;z;w/ of F ; over this field, the tensor product of quaternion algebras

H.x;y/˝kH.z;w/

is a division algebras by Albert’s criteria, and hence has index 4. It has order 2 because each
quaternion algebra does. See mo110441.

THE INVOLUTIONS ON AN ALGEBRA

Given a central simple algebra admitting an involution, we next need to understand the set of
all involutions of it.

THEOREM 27.48 (NOETHER-SKOLEM). Let A be a central simple algebra overK, and let
� and � be involutions of A that agree on K; then there exists an a 2 A such that

x� D ax�a�1; all x 2 A: (190)

PROOF. Omitted — it is similar to the proof of (27.22). 2

Let A be a central simple algebra over K, and let � be an involution A, either of the first
kind, and so fixing the elements of K, or of the second kind, and so fixing the elements of
a subfield k of K such that ŒKWk�D 2. For which invertible a in A does (190) define an
involution?

http://mathoverflow.net/questions/110441/
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Note that
x�� D .a�a�1/�1x.a�a�1/

and so a�a�1 2K, say
a� D ca; c 2K:

Now,
a�� D c.c�a�/D cc� �a

and so
cc� D 1:

If � is of the first kind, this implies that c2 D 1, and so c D˙1.
If � is of the second kind, this implies that c D d=d� for some d 2K (Hilbert’s theorem

90). Since � is unchanged when we replace a with a=d , we see that in this case (189) holds
with a satisfying a� D a.

HERMITIAN AND SKEW-HERMITIAN FORMS

We need some definitions. Let

˘ .D;�/ be a division algebra with an involution �,

˘ V be a left vector space over D, and

˘ �WV �V !D a form on V that is semilinear in the first variable and linear in the
second (so

�.ax;by/D a��.x;y/b; a;b 2D/:

Then � is said to hermitian if

�.x;y/D �.y;x/�; x;y 2 V;

and skew hermitian if
�.x;y/D��.y;x/�; x;y 2 V:

EXAMPLE 27.49. (a) Let D D k with � D idk . In this case, the hermitian and skew
hermitian forms are, respectively, symmetric and skew symmetric forms.

(b) Let D D C with � Dcomplex conjugation. In this case, the hermitian and skew
hermitian forms are the usual objects.

To each hermitian or skew-hermitian form, we attach the group of automorphisms of
.V;�/, and the special group of automorphisms of � (the automorphisms with determinant
1, if this is not automatic).

THE GROUPS ATTACHED TO ALGEBRAS WITH INVOLUTION

In this subsection, we assume that the ground field k satisfies the condition (27.45), and
compute the groups attached to the various possible algebras with involution.
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CASE ADMn.k/; INVOLUTION OF THE FIRST KIND.

In this case, the involution � is of the form

X� D aX ta�1

where at D ca with c D˙1. Recall that the group attached to .Mn.k/;�/ consists of the
matrices X satisfying

X�X D I; det.X/D 1;

i.e.,
aX ta�1X D I; det.X/D 1;

or,
X ta�1X D a�1; det.X/D 1:

Thus, when c DC1, we get the special orthogonal group for the symmetric bilinear form
attached to a�1, and when c D �1, we get the symplectic group attached to the skew
symmetric bilinear form attached to a�1.

CASE ADMn.K/; INVOLUTION OF THE SECOND KIND

Omitted for the present.

CASE ADMn.D/; D A QUATERNION DIVISION ALGEBRA.

Omitted for the present.

CONCLUSION.

Let k be a field satisfying the condition (27.45). Then the geometrically almost-simple,
simply connected, classical groups over k are the following:

(A) The groups SLm.D/ for D a central division algebra over k (the inner forms of SLn);
the groups attached to a hermitian form for a quadratic field extension K of k (the
outer forms of SLn).

(BD) The spin groups of quadratic forms, and the spin groups of skew hermitian forms over
quaternion division algebras.

(C) The symplectic groups, and unitary groups of hermitian forms over quaternion division
algebras.

It remains to classify the quaternion algebras and the various hermitian and skew her-
mitian forms. For the algebraically closed fields, the finite fields, R, Qp, Q and their finite
extensions, this has been done, but for Q and its extensions it is an application of class field
theory.

ASIDE 27.50. The term “classical group” is much used, but rarely defined — see the discussion
mo50610. Our definition follows Kneser 1969.

e. The Galois cohomology of algebraic groups; applications

Having persuaded the reader of the usefulness of Galois cohomology groups, we now study
them in their own right.

http://mathoverflow.net/questions/50610
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GENERALITIES

PROPOSITION 27.51. Let G be an algebraic group over a finite extension k0 of k; then

H i .k; .G/k0=k/'H
i .k0;G/

for i D 0, 1 (and for all i if G is commutative).

PROOF. Shapiro’s lemma. 2

A torus T over a field k is said to be quasi-trivial if it is a product of tori of the form
.Gm/k0=k with k0 a finite field extension of k. If T D

Q
i .Gm/ki=k , then

H 1.k;T /'
Y

i
H 1.ki ;Gm/D 0:

If T is quasi-trivial over k, then Tk0 is quasi-trivial over k0 for all fields k0 � k, and so
H 1.k0;Tk0/D 0. There is a converse to this.

THEOREM 27.52. A torus T over k has the property that H 1.k0;Tk0/D 0 for all fields k0

containing k if and only if T is a direct factor of a quasi-trivial torus.

PROOF. Omitted for the present. 2

FINITE FIELDS

Let X be an affine scheme over Fq . The Fq-algebra homomorphism f 7! f qWO.X/!
O.X/ defines a Frobenius morphism � WX ! X . If X � An, then � acts on X.F/ by
.a1; : : :/ 7! .a

q
1 ; : : :/:

DEFINITION 27.53. Let G be a connected group variety over F (an algebraic closure of
Fp). A Steinberg endomorphism of G is an endomorphism F such that some power of F
is equal to the Frobenius endomorphism of G defined by a model of G over a finite subfield
of F.

In other words, relative to some modelG0 ofG over Fq � F and embeddingG0 ,!GLn,
a power Fm of F acts as .a1; : : :/ 7! .a

q
1 ; : : :/.

Let F be a Steinberg endomorphism ofG. Then the setGF of fixed points of F acting on
G.F/ is finite, and G.F/D

S
m�1G

Fm (because this is true of a Frobenius endomorphism).

PROPOSITION 27.54. Let F WG!G be a Steinberg endomorphism of a connected group
variety G over F. Then the morphism g 7! g �F.g�1/WG!G is surjective.

PROOF. Let G act on itself (on the right) by .x;g/ 7! g�1 � x �F.g/. There exists an
x 2G.F/ such that the orbit Ox through x is closed (9.10). If we can show that dim.Ox/D
dim.G/, then Ox DG (because G is smooth and connected); then e 2Ox , and so G DOe ,
which is the required statement.

For this, it suffices to show that the fibre of the orbit map �x WG!Ox over x is finite
(A.99), and even that the equation g�1xF.g/D x has only finitely many solutions with g
in G.F/. Rewrite this equation as f .g/ D g, where f .g/ D xF.g/x�1. Because F is a
Steinberg endomorphism, some multiple Fm of it is a Frobenius endomorphism fixing x. A
direct calculation shows that f m.g/D yFm.g/y�1with y D xF.x/ � � �Fm�1.x/, and then
that f mm

0

.g/D ym
0

Fmm
0

.g/y�m
0

for every m0 2 N. Take m0 to be the order of y in G.F/.
Then f mm

0

.g/D Fmm
0

.g/, and so f mm
0

.g/D g has only finitely many solutions in G.F/;
a fortiori, f .g/D g has only finitely many solutions in G.F/. 2
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COROLLARY 27.55. Let G be a connected group variety over a finite field k, and let
F WG!G be the Frobenius map relative to k. Then the morphism g 7! g �F.g�1/WG!G

is surjective.

PROOF. The proposition shows that the morphism becomes surjective after passage to F,
and hence is surjective. 2

COROLLARY 27.56. LetG be a connected group variety over a finite field k; thenH 1.k;G/D

1.

PROOF. Let f W� ! G.F/ be a 1-cocycle. Let � be the canonical generator of � . Then
� acts on G.F/ as F , and so there exists a g 2 G.F/ such that g�1 ��g D f .�/. Thus f
agrees on � with the principal cocycle defined by g. It follows that the two cocycles agree
on all powers of � , and hence on � (by continuity). 2

For nonconnected group varieties, the proposition fails already for G D Z=2Z.

ASIDE 27.57. Let F WG!G be a Steinberg endomorphism of a connected group variety G over F.
Then the set GF of fixed points of F acting on G.F/ is a finite group. A group arising in this way
from a semisimple G is called a finite group of Lie type. If the group variety G is simple and simply
connected, then the finite group GF is simple modulo its centre except in exactly eight cases (Malle
and Testerman 2011, 24.17). Apart from quotients of finite groups of Lie type, every nonabelian
finite simple group is an alternating group, the Tits group, or one of the 26 sporadic groups.

NOTES. Corollary 27.55 was first proved in Lang (1956). Each of the three statements (27.55–27.56)
is referred to as Lang’s theorem. The above proof of (27.54) is from Müller 2003. Steinberg (1977)
proves the stronger statement: let � be an endomorphism of a smooth connected algebraic group
G over an algebraically closed k fixing only finitely many elements of G.k/; then the morphism
g 7! g�1�.g/WG!G is surjective.

THE FIELD OF REAL NUMBERS

THEOREM 27.58 (CARTAN 1927). Let G be a simply connected semisimple algebraic
group over R. Then G.R/ is connected.

COROLLARY 27.59. Let G be a reductive algebraic group over R. Then G.R/ has only
finitely many components (for the real topology).

THEOREM 27.60. Let G be a reductive algebraic group over R, and let T0 be a maximal
compact torus in G. Then T D CG.T0/ is a torus, and W0 D NG.T0/=CG.T0/ is a finite
group acting on H 1.R;T /. The map

H 1.R;T /=W0.R/!H 1.R;G/

induced by the map H 1.R;T /!H 1.R;G/ is an isomorphism.

PROOF. Borovoi 2014 (arXiv:1401.5913). 2

COROLLARY 27.61 (BOREL AND SERRE 1964). If G is compact, then

T .R/2=W 'H 1.R;G/

where W is the Weyl group with its usual action.

ASIDE 27.62. Galois cohomology of real semisimple groups. Mikhail Borovoi, Dmitry A. Timashev.
arXiv: 1506.06252. Let G be a connected, compact, semisimple algebraic group over R. Using Kac
diagrams, they describe combinatorially the cohomology sets H 1.R;H/ for all inner forms H of G.
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LOCAL FIELDS

THEOREM 27.63. Let G be a semisimple algebraic group over a local field k.

(a) Let QG!G be the simply connected covering of G; then the boundary map ı in

H 1.k; QG/!H 1.k;G/
ı
�!H 2.k;Z. QG//

is surjective (hence bijective).

(b) If k is nonarchimedean and G is simply connected, then H 1.k;G/D 1.

When k has nonzero characteristic, H 2.k;Z. QG// should be taken to be the flat coho-
mology group (Thǎńg 2008).

THEOREM 27.64. Let G be a group variety over a local field k; then H 1.k;G/ is finite.

THEOREM 27.65. Let D be a finite-dimensional division algebra over a local field k. Then
SL1.D/ is a simply connected simple anisotropic group over k, and every such algebraic
group over k is of this form.

GLOBAL FIELDS

THEOREM 27.66. Let G be a semisimple algebraic group over a global field k, and let
QG!G be the simply connected covering of G. Then the boundary map ı in

H 1.k; QG/!H 1.k;G/
ı
�!H 2.k;Z. QG//

is surjective.

In the number field case, this was proved in Harder 1975. In the function field case, it is
necessary to interpret H 2.k;Z. QG// as a flat cohomology group (Thǎńg 2008).

THEOREM 27.67. Let G be a semisimple algebraic group over a number field k. The
canonical map

H 1.k;G/!
Y

v
H 1.kv;G/

is injective in each of the following cases:

(a) G is simply connected;

(b) G has trivial centre;

(c) G DO.�/ for some nondegenerate quadratic space .V;�/.

PROOF. For (a), see Harder 1966 except for the case E8, which was proved in Chernousov
1989. Once the case (a) has been proved, (b) and (c) can be proved by writing some exact
sequences. 2

Note that (c) implies that two quadratic spaces over Q are isomorphic if and only if they
become isomorphic over Qp for all p (including p D1, for which we set Qp D R). This is
a very important, and deep result, in number theory.

THEOREM 27.68. Let G be a simply connected semisimple algebraic group over a number
field k. Then

H 1.k;G/'
Y

v real
H 1.kv;G/:
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PROOF. Combine (27.63) and (27.67). 2

THEOREM 27.69. Let G be a semisimple algebraic group over a number field k. For any
nonarchimedean prime v0, the canonical map

H 1.k;G/!
Y

v¤v0
H 1.kv;G/

is surjective.

PROOF. This is proved in Borel and Harder 1978, 1.7. 2

Applied to the adjoint group of G, the theorem implies the following statement: suppose
given for each v ¤ v0 an inner form G.v/ of Gkv over kv; then there exists an inner form of
G0 of G over k such that G0

kv
�G.v/ for all v ¤ v0.

THEOREM 27.70. Let G be an geometrically almost-simple algebraic group over a number
field, and let S be a finite set of primes for k. If G is simply connected or has trivial centre,
then the canonical map

H 1.k;A.G//!
Y

v2S
H 1.kv;A.G//

is surjective.

PROOF. Borel and Harder 1978, Theorem B. See also Prasad and Rapinchuk 2006 and
Thǎńg 2012. 2

In other words, given a kv-form Gv of Gkv for each v 2 S , there exists a form of G0 of
G over k such that G0

kv
�Gv for all v 2 S .

THEOREM 27.71. Let G be a reductive group over a number field k. If the derived group
G0 of G is simply connected and the torus T DG=G0 satisfies the Hasse principal for H 1,
then so also does G.

PROOF. Diagram chase in

T .k/ H 1.k;G0/ H 1.k;G/ H 1.T /

G.R/ T .R/ H 1.R;G0/
Q
vH

1.kv;G/
Q
vH

1.kv;T /

using that T .Q/ is dense in T .R/. 2

ASIDE 27.72. Every reductive group G over a local field k comes from a reductive group over a
number field k0 � k. See mo199050.

NOTES. For more on the cohomology of algebraic groups, see Kneser 1969 and Platonov and
Rapinchuk 1994.

To be continued.

http://mathoverflow.net/questions/199050


APPENDIX A
Review of algebraic geometry

This is a list of the definitions and results from algebraic geometry used in the text. For the
final version, irrelevant items will be deleted. I intend (eventually) to rewrite “Chapter 10”
of my notes Algebraic Geometry to include proofs of all the statements here.

Throughout this appendix, everything takes place over a fixed field k, and “k-algebra”
means “finitely generated k-algebra”.

a. Affine algebraic schemes

Let A be k-algebra.

A.1. Let X be the set of maximal ideals in A, and, for an ideal a in A, let

Z.a/D fm jm� ag:

Then
˘ Z.0/DX , Z.A/D ;,

˘ Z.ab/DZ.a\b/DZ.a/[Z.b/ for every pair of ideals a;b, and

˘ Z.
P
i2I ai /D

T
i2I ai for every family of ideals .ai /i2I .

For example, if m … Z.a/[Z.b/, then there exist f 2 aXm and g 2 bXm; but then
fg … abXm, and so m …Z.ab/.

These statements show that the sets Z.a/ are the closed sets for a topology on X , called
the Zariski topology. We write spm.A/ for X endowed with this topology.

For example, An def
D spm.kŒT1; : : : ;Tn�/ is affine n-space over k. If k is algebraically

closed, then the maximal ideals in A are exactly the ideals .T1�a1; : : : ;Tn�an/, and An
can be identified with kn endowed with its usual Zariski topology.

A.2. For a subset S of spm.A/, let

I.S/D
\
fm jm 2 Sg:

The Nullstellensatz says that, for an ideal a in A,

I.Z.a//
def
D

\
fm jm� ag

is the radical of a. Using this, one sees that Z and I define inverse bijections between the
radical ideals of A and the closed subsets of X . Under this bijection, prime ideals correspond
to irreducible sets (nonempty sets not the union of two proper closed subsets), and maximal
ideals correspond to points.

491
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A.3. For f 2 A, let D.f /D fm j f …mg. It is open in spm.A/ because its complement is
the closed set Z..f //. The sets of this form are called the basic open subsets of spm.A/.
Let Z DZ.a/ be a closed subset of spm.A/. According to the Hilbert basis theorem, A is
noetherian, and so aD .f1; : : : ;fm/ for some fi 2 A, and

X XZ DD.f1/[ : : :[D.fm/.

This shows that every open subset of spm.A/ is a finite union of basic open subsets. In
particular, the basic open subsets form a base for the Zariski topology on spm.A/.

A.4. Let ˛WA! B be a homomorphism of k-algebras, and let m be a maximal ideal in B .
As B is finitely generated as a k-algebra, so also is B=m, which implies that it is a finite field
extension of k (Zariski’s lemma). Therefore the image of A in B=mB is an integral domain
of finite dimension over k, and hence is a field. This image is isomorphic to A=˛�1.m/, and
so the ideal ˛�1.m/ is maximal in A. Hence ˛ defines a map

˛�Wspm.B/! spm.A/; m 7! ˛�1.m/;

which is continuous because .˛�/�1.D.f // D D.˛.f //. In this way, spm becomes a
functor from k-algebras to topological spaces.

A.5. For a multiplicative subset S of A, we let S�1A denote the ring of fractions having
the elements of S as denominators. For example, Sf

def
D f1;f;f 2; : : :g, and

Af
def
D S�1f A' AŒT �=.1�f T / .

Let D be a basic open subset of X . Then

SD
def
D AX

[
fm jm 2Dg

is a multiplicative subset of A. If D DD.f /, then the map S�1
f
A! S�1D A defined by the

inclusion Sf � SD is an isomorphism. If D0 and D are both basic open subsets of X and
D0 �D, then SD0 � SD , and so there is a canonical map

S�1D A! S�1D0 A: (191)

A.6. There is a unique sheaf OX of k-algebras on X D Spm.A/ such that (a)

OX .D/D S�1D A

for every basic open subset D of X , and (b) the restriction map

OX .D/!OX .D0/

is the map (191) for every pair D0 �D of basic open subsets. Note that, for every f 2 A,

Af
def
D S�1f A' S�1D.f /.A/

def
DOX .D.f //.

We write Spm.A/ for spm.A/ endowed with this sheaf of k-algebras.

A.7. By a k-ringed space we mean a topological space equipped with a sheaf of k-algebras.
An affine algebraic scheme over k is a k-ringed space isomorphic to Spm.A/ for some k-
algebra A. A morphism (or regular map) of affine algebraic schemes over k is a morphism
of k-ringed spaces (it is automatically a morphism of locally ringed spaces).
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A.8. The functor A Spm.A/ is a contravariant equivalence from the category of k-
algebras to the category of affine algebraic schemes over k, with quasi-inverse .X;OX / 
OX .X/. In particular

Hom.A;B/' Hom.Spm.B/;Spm.A//

for all k-algebras A and B .

A.9. Let M be an A-module. There is a unique sheaf M of OX -modules on X D Spm.A/
such that (a) M.D/ D S�1D M for every basic open open subset D of X , and (b) the
restriction map M.D/!M.D0/ is the canonical map S�1D M ! S�1D0M for every pair
D0 �D of basic open subsets. A sheaf of OX -modules on X is said to be coherent if it
is isomorphic to M for some finitely generated A-module M . The functor M  M is an
equivalence from the category of finitely generated A-modules to the category of coherent
OX -modules, which has quasi-inverse M M.X/. In this equivalence, finitely generated
projective A-modules correspond to locally free OX -modules of finite rank (CA 12.5).

A.10. For fields K � k, the Zariski topology on Kn induces that on kn. In order to prove
this, we have to show (a) that every closed subset S of kn is of the form T \kn for some
closed subset T of Kn, and (b) that T \kn is closed for every closed subset of Kn.

(a) Let S DZ.f1; : : : ;fm/ with the fi 2 kŒX1; : : : ;Xn�. Then

S D kn\fzero set of f1; : : : ;fm in Kng.

(b) Let T DZ.f1; : : : ;fm/ with the fi 2KŒX1; : : : ;Xn�. Choose a basis .ej /j2J for K
as a k-vector space, and write fi D

P
ejfij (finite sum) with fij 2 kŒX1; : : : ;Xn�.

Then
Z.fi /\k

n
D fzero set of the family .fij /j2J in kng

for each i , and so T \kn is the zero set in kn of the family .fij /.

b. Algebraic schemes

A.11. Let .X;OX / be a k-ringed space. An open subset U of X is said to be affine if
.U;OX jU/ is an affine algebraic scheme over k. An algebraic scheme over k is a k-ringed
space .X;OX / that admits a finite covering by open affines. A morphism of algebraic
schemes (also called a regular map) over k is a morphism of k-ringed spaces. We often
let X denote the algebraic scheme .X;OX / and jX j the underlying topological space of X .
When the base field k is understood, we write “algebraic scheme” for “algebraic scheme
over k”.

The local ring at a point x of X is denoted by OX;x or just Ox , and the residue field at x
is denoted by �.x/.

A.12. A regular map 'WY !X is algebraic schemes is said to be surjective (resp. injective,
open, closed) if the map of topological spaces j'jW jY j ! jX j is surjective (resp. injective,
open, closed) (EGA I, 2.3.3).

A.13. Let X be an algebraic scheme over k, and let A be a k-algebra. By definition,
a morphism 'WX ! Spm.A/ gives a homomorphism '\WA!OX .X/ of k-algebras (but
OX .X/ need not be finitely generated!). In this way, we get an isomorphism

'$ '\WHomk.X;SpmA/' Homk.A;OX .X//: (192)
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A.14. Let X be an algebraic scheme over k. Then jX j is a noetherian topological space
(i.e., the open subsets of jX j satisfy the ascending chain condition; equivalently, the closed
subsets of jX j satisfy the descending chain condition). It follows that jX j can be written as a
finite union of closed irreducible subsets, jX j DW1[ � � �[Wr . When we discard any Wi
contained in another, the collection fW1; : : : ;Wrg is uniqely determined, and its elements are
called the irreducible components of X .

A noetherian topological space has only finitely many connected components, each open
and closed, and it is a disjoint union of them.

A.15. (Extension of the base field; extension of scalars). Let K be a field containing k.
There is a functor X XK from algebraic schemes over k to algebraic schemes over K.
For example, if X D Spm.A/, then XK D Spm.K˝A/.

A.16. For an algebraic scheme X over k, we let X.R/ denote the set of points of X with
coordinates in a k-algebra R,

X.R/
def
D Hom.Spm.R/;X/:

For example, if X D Spm.A/, then X.R/D Hom.A;R/ (homomorphisms of k-algebras).
For a ring R containing k, we define

X.R/D lim
�!

X.Ri /

where Ri runs over the (finitely generated) k-subalgebras of R. Again X.R/DHomk.A;R/
if X D Spm.A/. Then R X.R/ is functor from k-algebras (not necessarily finitely
generated) to sets.

A.17. Let X be an algebraic scheme. An OX -module M is said to be coherent if, for
every open affine subset U of X , the restriction of M to U is coherent (A.9). It suffices
to check this condition for the sets in an open affine covering of X . Similarly, a sheaf I of
ideals in OX is coherent if its restriction to every open affine subset U is the subsheaf of
OX jU defined by an ideal in the ring OX .U /.

c. Subschemes

A.18. LetX be an algebraic scheme over k. An open subscheme ofX is a pair .U;OX jU/
with U open in X . It is again an algebraic scheme over k.

A.19. Let X D Spm.A/ be an affine algebraic scheme over k, and let a be an ideal in A.
Then Spm.A=a/ is an affine algebraic scheme with underlying topological space Z.a/.

Let X be an algebraic scheme over k, and let I be a coherent sheaf of ideals in OX . The
support of the sheaf OX=I is a closed subset Z of X , and .Z;.OX=I/jZ/ is an algebraic
scheme, called the closed subscheme of X defined by the sheaf of ideals I . Note that Z\U
is affine for every open affine subscheme U of X .

The closed subschemes of an algebraic scheme satisfy the descending chain condition.
To see this, consider a chain of closed subschemes

Z �Z1 �Z2 � �� �

of an algebraic scheme X . Because jX j is noetherian (A.14), the chain jZj � jZ1j � jZ2j �
� � � becomes constant, and so we may suppose that jZj D jZ1j D � � � . Write Z as a finite
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union of open affines, Z D
S
Ui . For each i , the chain Z\Ui �Z1\Ui � �� � of closed

subschemes of Ui corresponds to an ascending chain of ideals in the noetherian ring OZ.Ui /,
and therefore becomes constant.

A.20. A subscheme of an algebraic schemeX is a closed subscheme of an open subscheme
of X . Its underlying set is locally closed in X (i.e., open in its closure; equivalently, it is the
intersection of an open subset with a closed subset).

A.21. A regular map 'WY !X is said to be an immersion if it induces an isomorphism
from Y onto a subscheme Z of X . If Z is open (resp. closed), then ' is called an open
(resp. closed) immersion. An immersion can be written as a closed immersion into an open
subscheme (and as an open immersion into a closed subscheme).

A.22. Recall that a ring A is reduced if it has no nonzero nilpotent elements. If A is
reduced, then S�1A is reduced for every multiplicative subset S of A; conversely, if Am is
reduced for all maximal ideals m in A, then A is reduced.

An algebraic scheme X is said to be reduced if OX;P is reduced for all P 2 X . For
example, Spm.A/ is reduced if and only if A is reduced. If OX is reduced, then OX .U / is
reduced for all open affine subsets U of X .

A.23. A finitely generated k-algebra A is reduced if and only if the intersection of the
maximal ideals in A is zero (CA 13.10). Let X be an algebraic scheme over k. For a
section f of OX over some open subset U of X and u 2 U , let f .u/ denote the image of
f in �.u/DOX;u=mu (a finite extension of k). Let X be a reduced algebraic scheme; an
f 2OX .U / is 0 if f .u/D 0 for all u 2 jU j; when k is algebraically closed, �.x/D k for
all x 2 jX j, and so OX can be identified with a sheaf of functions on X .

A.24. An algebraic scheme X is said to be integral if it is reduced and irreducible. For
example, Spm.A/ is integral if and only if A is an integral domain. If X is integral, then
OX .U / is an integral domain for all open affine subsets U of X .

A.25. LetX be an algebraic scheme over k. There is a unique reduced algebraic subscheme
Xred of X with the same underlying topological space as X . For example, if X D Spm.A/,
then Xred D Spm.A=N/ where N is the nilradical of A.

Every regular map Y !X from a reduced scheme Y to X factors uniquely through the
inclusion map i WXred!X . In particular,

Xred.R/'X.R/ (193)

if R is a reduced k-algebra, for example, a field.
More generally, every locally closed subset Y of jX j carries a unique structure of a

reduced subscheme of X ; we write Yred for Y equipped this structure.
Passage to the associated reduced scheme does not commute with extension of the base

field. For example, an algebraic scheme X over k may be reduced without Xkal being
reduced.

d. Algebraic schemes as functors

A.26. Recall that Algk is the category of finitely generated k-algebras. For a k-algebra A,
let hA denote the functorR Hom.A;R/ from k-algebras to sets. A functor F WAlgk! Set
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is said to be representable if it is isomorphic to hA for some k-algebra A. A pair .A;a/,
a 2 F.A/, is said to represent F if the natural transformation

TaWh
A
! F; .Ta/R.f /D F.f /.a/;

is an isomorphism. This means that, for each x 2 F.R/, there is a unique homomorphism
A! R such that F.A/! F.R/ sends a to x. The element a is said to be universal. For
example, .A; idA/ represents hA. If .A;a/ and .A0;a0/ both represent F , then there is a
unique isomorphism A! A0 sending a to a0.

A.27. (Yoneda lemma) Let B be a k-algebra and let F be a functor Algk ! Set. An
element x 2 F.B/ defines a homomorphism

Hom.B;R/! F.R/

sending an f to the image of x under F.f /. This homomorphism is natural in R, and so we
have a map of sets

F.B/! Nat.hB ;F /.

The Yoneda lemma says that this is a bijection, natural in both B and F . For F D hA, this
says that

Hom.A;B/' Nat.hB ;hA/:

In other words, the contravariant functorA hA is fully faithful. Its essential image consists
of the representable functors.

A.28. Let hX denote the functor Hom.�;X/ from algebraic schemes over k to sets. The
Yoneda lemma in this situation says that, for algebraic schemes X;Y ,

Hom.X;Y /' Nat.hX ;hY /.

Let haff
X denote the functor R X.R/WAlgk ! Set. Then haff

X D hX ı Spm, and can be
regarded as the restriction of hX to affine algebraic schemes.

Let X and Y be algebraic schemes over k. Every natural transformation haff
X ! haff

Y

extends uniquely to a natural transformation hX ! hY ,

Nat.haff
X ;h

aff
Y /' Nat.hX ;hY /,

and so
Hom.X;Y /' Nat.haff

X ;h
aff
Y /:

In other words, the functor X haff
X is fully faithful. We shall also refer to this statement

as the Yoneda lemma. It allows us to identify an algebraic scheme over k with its “points-
functor” Algk! Set.

Fix a family .Ti /i2N of symbols indexed by the elements of N, and let Alg0
k

denote the
full subcategory of Algk of objects of the form kŒT0; : : : ;Tn�=a for some n 2N and ideal a in
kŒT0; : : : ;Tn�. The inclusion Alg0

k
,! Algk is an equivalence of categories, but the objects of

Alg0
k

form a set, and so the set-valued functors on Alg0
k

form a category. We call the objects
of Alg0

k
small k-algebras. We let QX denote the functor Alg0

k
! Set defined by an algebraic

scheme. Then X QX is fully faithful. We shall also refer to this statement as the Yoneda
lemma.

Let F be a functor Alg0
k
! Set. If F is representable by an algebraic scheme X , then

X is uniquely determined up to a unique isomorphism, and X extends F to a functor
Algk! Set.
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A.29. By a functor in this paragraph we mean a functor Alg0
k
! Set. A subfunctor U of

a functor X is open if, for all maps 'WhA! X , the subfunctor '�1.U / of hA is defined
by an open subscheme of Spm.A/. A family .Ui /i2I of open subfunctors of X is an open
covering of X if each Ui is open in X and X D

S
Ui .K/ for every field K. A functor X

is local if, for all k-algebras R and all finite families .fi /i of elements of A generating the
ideal A, the sequence of sets

X.R/!
Y

i
X.Rfi /�

Y
i;j
X.Rfifj /

is exact.
Let A1 denote the functor sending a k-algebra R to its underlying set. For a functor

U , let O.U /D Hom.U;A1/ — it is a k-algebra.1 A functor U is affine if O.U / is finitely
generated and the canonical map U ! hO.U / is an isomorphism. A local functor admitting
a finite covering by open affines is representable by an algebraic scheme (i.e., it is of the
form QX for an algebraic scheme X ).2

A.30. Let
P n.R/D fdirect summands of rank 1 of RnC1g.

Then P n is a functor Alg0
k
! Set. One can show that the functor P n is local in the sense of

(A.29). Let Hi be the hyperplane Ti D 0 in knC1, and let

P ni .R/D fL 2 P
n.R/ j L˚HiR DR

nC1
g:

The P ni form an open affine cover of P n, and so P n is an algebraic scheme over k (A.29).
We denote it by Pn. WhenK is a field, everyK-subspace ofKnC1 is a direct summand, and
so Pn.K/ consists of the lines through the origin in KnC1.

A.31. A morphism 'WX ! Y of functors is a monomorphism if '.R/ is injective for all
R. A morphism ' is an open immersion if it is open and a monomorphism (DG I, �1, 3.6,
p10). Let 'WX ! Y be a regular map of algebraic schemes. If QX ! QY is a monomorphism,
then it is injective (ibid. 5.1, p.24). If X is irreducible and QX ! QY is a monomorphism, then
there exists a dense open subset U of X such that 'jU is an immersion.

A.32. Let R be a k-algebra (finitely generated as always). An algebraic R-scheme is a
pair .X;'/ consisting of an algebraic k-scheme X and a morphism 'WX ! Spm.R/. For
example, if f WR!R0 is a finitely generatedR-algebra, then Spm.f /WSpm.R0/! Spm.R/
is an algebraic R-scheme. The algebraic R-schemes form a category in an obvious way.
Moreover, the Yoneda lemma still holds: for an algebraic R-scheme X , let hX denote the
functor sending a small R-algebra R0 to HomR.Spm.R0/;X/; then X hX is fully faithful.

ASIDE A.33. Originally algebraic geometers considered algebraic varieties X over algebraically
closed fields k. Here it sufficed to consider the set X.k/ of k-points. Later algebraic geometers
considered algebraic varieties X over arbitrary fields k. Here X.k/ doesn’t tell you much about X (it
is often empty), and so people worked with X.K/ where K is some (large) algebraically closed field
containing k. For algebraic schemes, even X.K/ is inadequate because it doesn’t detect nilpotents.
This suggests that we consider X.R/ for all k-algebras, i.e., we consider the functor QX WR X.R/

defined by X . This certainly determines X but leads to set-theoretic difficulties — putting a condition
on QX involves quantifying over a proper class, and, in general, the natural transformations from one
functor on k-algebras to a second functor form a proper class. These difficulties vanish when we
consider the functor of small k-algebras defined by X . From our point-of-view, an algebraic scheme
over k is determined by the functor it defines on small k-algebras, and it defines a functor on all
k-algebras.

1Here it is important that we consider functors on Alg0
k

(not Algk) in order to know that O.U / is a set.
2This is the definition of a scheme in DG I, �1, 3.11, p.12.
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e. Fibred products of algebraic schemes

A.34. Let 'WX !Z and  WY !Z be regular maps of algebraic schemes over k. Then
the functor

R X.R/�Z.R/ Y.R/
def
D f.x;y/ 2X.R/�Y.R/ j '.x/D  .y/g

is representable by an algebraic scheme X �Z Y over k, and X �Z Y is the fibred product
of .'; / in the category of algebraic k-schemes, i.e., the diagram

X �Z Y Y

X Z:

 

'

is cartesian. For example, if R! A and R! B are homomorphisms of k-algebras, then
A˝RB is a finitely generated k-algebra, and

Spm.A/�Spm.R/ Spm.B/D Spm.A˝RB/:

When ' and  are the structure mapsX! Spm.k/ and Y ! Spm.k/, the fibred product
becomes the product, denoted X �Y , and

Hom.T;X �Y /' Hom.T;X/�Hom.T;Y /:

The diagonal map�X WX!X �X is the regular map whose composites with the projection
maps equal the identity map of X .

The fibre '�1.x/ over x of a regular map 'WY !X of algebraic schemes is defined to
be the fibred product:

Y Y �X x
def
D '�1.x/

X xD Spm.�.x//:

'

Thus, it is an algebraic scheme over the field �.x/, which need not be reduced even if both
X and Y are reduced.

A.35. For a pair of regular maps '1;'2WX ! Y , the functor

R fx 2X.R/ j '1.x/D '2.x/g

is represented by the fibred product:The subscheme X �Y�Y X of X is called the equalizer
Eq.'1;'2/ of '1 and '2. Its underlying set is fx 2X j '1.x/D '2.x/g.

A.36. The intersection of two closed subschemes Z1 and Z2 of an algebraic scheme
X is defined to be Z1 �X Z2 regarded as a closed subscheme of X with underlying set
jZ1j\ jZ2j. For example, if X D Spm.A/, Z1 D Spm.A=a1/, and Z1 D Spm.A=a2/, then
Z1\Z2 D Spm.A=a1Ca2/. This definition extends in an obvious way to finite, or even
infinite, sets of closed subschemes. Because X has the descending chain condition on closed
subschemes (A.19), every infinite intersection is equal to a finite intersection.
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f. Algebraic varieties

A.37. An algebraic scheme X over k is said to be separated if it satisfies the following
equivalent conditions:

(a) the diagonal in X �X is closed (so �X is a closed immersion);

(b) for every pair of regular maps '1;'2WY !X , the subset of jY j on which '1 and '2
agree is closed (so Eq.'1;'2/ is a closed subscheme of Y );

(c) for every pair of open affine subsets U;U 0 in X , the intersection U \U 0 is an open
affine subset of X , and the map

f ˝g 7! f jU\U 0 �gjU\U 0 WOX .U /˝OX .U /!OX .U \U 0/

is surjective.

A.38. An affine k-algebra3 is a k-algebra A such that kal˝A is reduced. If A is an affine
k-algebra and B is a reduced ring containing k, then A˝B is reduced; in particular A˝K
is reduced for every field K containing k. The tensor product of two affine k-algebras is
affine. When k is a perfect field, every reduced k-algebra is affine.

A.39. An algebraic scheme X is said to be geometrically reduced if Xkal is reduced.
For example, Spm.A/ is geometrically reduced if and only if A is an affine k-algebra. If
X is geometrically reduced, then XK is reduced for every field K containing k. If X is
geometrically reduced and Y is reduced (resp. geometrically reduced), thenX �Y is reduced
(resp. geometrically reduced). If k is perfect, then every reduced algebraic scheme over k is
geometrically reduced. These statements all follow from the affine case (A.38).

A.40. An algebraic variety over k is an algebraic scheme over k that is both separated and
geometrically reduced. Algebraic varieties remain algebraic varieties under extension of
the base field, and products of algebraic varieties are again algebraic varieties, but a fibred
product of algebraic varieties need not be an algebraic variety. Consider, for example,

A1 A1�A1 fagD Spm.kŒT �=.T p�a//

A1 fag:

x 7!xp

This is one reason for working with algebraic schemes.

g. The dimension of an algebraic scheme

A.41. Let A be a noetherian ring (not necessarily a k-algebra). The height of a prime ideal
p is the greatest length d of a chain of distinct prime ideals

pD pd � �� � � p1 � p0.

Let p be minimal among the prime ideals containing an ideal .a1; : : : ;am/; then

height.p/�m:
3Sometimes an affine k-algebra is defined to be a reduced finitely generated k-algebra because these are

exactly the ring of functions on an algebraic subset of kn (e.g., Eisenbud 1995, p.35). However, this class of
rings is not closed under the formation of tensor products or extension of the base field.
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Conversely, if height.p/Dm, then there exist a1; : : : ;am 2 p such that p is minimal among
the prime ideals containing .a1; : : : ;am/.

The (Krull) dimension of A is supfheight.p/g where p runs over the prime ideals of A
(or just the maximal ideals — the two are obviously the same). Clearly, the dimension of a
local ring with maximal ideal m is the height of m, and for a general noetherian ring A,

dim.A/D sup.dim.Am//:

Since all prime ideals of A contain the nilradical N of A, we have

dim.A/D dim.A=N/:

A.42. Let A be a finitely generated k-algebra, and assume that A=N is an integral domain.
According to the Noether normalization theorem, A contains a polynomial ring kŒt1; : : : ; tr �
such that A is a finitely generated kŒt1; : : : ; tr �-module. We call r the transcendence degree
of A over k — it is equal to the transcendence degree of the field of fractions of A=N over k.
The length of every maximal chain of distinct prime ideals in A is tr degk.A/. In particular,
every maximal ideal in A has height tr degk.A/, and so A has dimension tr degk.A/.

A.43. Let X be an irreducible algebraic scheme over k. The dimension of X is the length
of a maximal chain of irreducible closed subschemes

Z DZd � �� � �Z1 �Z0:

It is equal to the Krull dimension of OX;x for every x 2 jX j, and to the Krull dimension of
OX .U / for every open affine subset U of X . We have dim.X/D dim.Xred/, and if X is
reduced, then dim.X/ is equal to the transcendence degree of k.X/ over k.

The dimension of a general algebraic scheme is defined to be the maximum dimension
of an irreducible component. When the irreducible components all have the same dimenions,
the scheme is said to be equidimensional.

A.44. Let X an irreducible algebraic variety. Then there exists a transcendence basis
t1; : : : ; td for k.X/ over k such that k.X/ is separable over k.t1; : : : ; td / (such a basis is
called a separating transcendence basis, and k.X/ is said to be separably generated over k).
This means that X is birationally equivalent to a hypersurface f .T1; : : : ;TdC1/, d D dimX ,
such that @f=@TdC1 ¤ 0. It follows that the points x in X such that �.x/ is separable over
k form a dense subset of jX j. In particular, X.k/ is dense in jX j when k is separably closed.

h. Tangent spaces; smooth points; regular points

A.45. Let A be a noetherian local ring with maximal ideal m (not necessarily a k-algebra).
Then the dimension of A is the height of m, and so (A.42),

dimA�minimum number of generators for m.

When equality holds, A is said to be regular. The Nakayama lemma shows that a set of
elements of m generates m if and only if it spans the k-vector space m=m2, where k DA=m.
Therefore

dim.A/� dimk.m=m
2/

with equality if and only if A is regular. Every regular noetherian local ring is a unique
factorization domain; in particular, it is an integrally closed integral domain.
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A.46. Let X be an algebraic scheme over k. A point x 2 jX j is regular if OX;x is a regular
local ring. The scheme X is regular if every point of jX j is regular. A connected regular
algebraic scheme is integral (i.e., reduced and irreducible), but not necessarily geometrically
reduced.

A.47. Let kŒ"� be the k-algebra generated by an element " with "2 D 0, and let X be an
algebraic scheme over k. From the map " 7! 0WkŒ"�! k, we get a map

X.kŒ"�/!X.k/.

The fibre of this over a point x 2X.k/ is the tangent space Tx.X/ of X at x. Thus Tx.X/
is defined for all x 2 jX j with �.x/D k. To give a tangent vector at x amounts to giving a
local homomorphism ˛WOX;x! kŒ"� of k-algebras. Such a homomorphism can be written

˛.f /D f .x/CD˛.f /"; f 2Ox; f .x/; D˛.f / 2 k:

Then D˛ is a k-derivation Ox! k, which induces a k-linear map m=m2! k. In this way,
we get canonical isomorphisms

Tx.X/' Derk.Ox;k/' Homk-linear.m=m
2;k/: (194)

The formation of the tangent space commutes with extension of the base field:

Tx.Xk0/' Tx.X/k0 .

A.48. Let X be an irreducible algebraic scheme over k, and let x be a point on X such that
�.x/D k. Then

dimTx.X/� dimX

with equality if and only if x is regular. This follows from (4.17).

A.49. Let X be a closed subscheme of An, say

X D SpmA; AD kŒT1; : : : ;Tn�=a; aD aD .f1; :::;fr/.

Consider the Jacobian matrix

Jac.f1;f2; : : : ;fr/D

0BBBB@
@f1
@t1

@f1
@t2

� � �
@f1
@tn

@f2
@t1
:::
@fr
@t1

@fr
@tn

1CCCCA 2Mr;n.A/:

Let d D dimX . The singular locus Xsing of X is the closed subscheme of X defined by the
.n�d/� .n�d/ minors of this matrix.

For example, if X is the hypersurface defined by a polynomial f .T1; : : : ;TdC1/, then

Jac.f /D
�

@f
@t1

@f
@t2

� � �
@f

@tdC1

�
2M1;dC1.A/;

and Xsing is the closed subscheme of X defined by the equations

@f

@T1
D 0; : : : ;

@f

@TdC1
D 0:

For a general algebraic scheme X over k, the singular locus Xsing is the closed sub-
scheme such that Xsing\U has this description for every open affine U of X and affine
embedding of U .

From its definition, one sees that the formation of the singular locus commutes with
extension of the base field.
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A.50. Let˝X=k be the sheaf of differentials on an algebraic scheme X over k. Then˝X=k
is locally free of rank dim.X/ (exactly) over an open subset U of X . The complement of U
is Xsing.

A.51. Let X be an algebraic scheme over k. A point x of X is singular or nonsingular
according as x lies in the singular locus or not, and X is nonsingular (=smooth) or singular
according as Xsing is empty or not. If x is such that �.x/D k, then x is nonsingular if and
only if it is regular. A smooth variety is regular, and a regular variety is smooth if k is perfect.

A.52. Let X be geometrically reduced and irreducible. Then X is birationally equivalent
to a hypersurface f .T1; : : : ;TdC1/D 0 with @f=@TdC1 ¤ 0 (see A37). It follows that the
singular locus of X is not the whole of X (A.49).

A.53. An algebraic scheme X over a field k is smooth if and only if, for all k-algebras R
and ideals I in R such that I 2 D 0, the map X.R/!X.R=I / is surjective (DG I, �4, 4.6,
p.111).

i. Galois descent for closed subschemes

A.54. Let ˝ � k be an extension of fields, and let � D Aut.˝=k/. Assume that ˝� D k.
This is true, for example, if ˝ is a Galois extension of k. Then the functor V  ˝˝k V

from vector spaces over k to vector spaces over ˝ equipped with a continuous action of �
is an equivalence of categories.

A.55. Let X be an algebraic scheme over a field k, and let X 0 D Xk0 for some field
k0 containing k. Let Y 0 be a closed subscheme of X 0. There exists at most one closed
subscheme Y of X such that Yk0 D Y 0 (as a subscheme of X 0/.

Let � D Aut.k0=k/, and assume that k0� D k. Then Y 0 arises from an algebraic
subscheme of X if and only if it is stable under the action of � on X 0. When X and Y 0 are
affine, say, X D Spm.A/ and Y 0 D Spm.Ak0=a/, to say that Y 0 is stable under the action of
� means that a is stable under the action of � on Ak0

def
D A˝k0. More generally, it means

that the ideal defining Y 0 in OX 0 is stable under the action of � on OX 0 .
Let k0 D ksep. An algebraic subvariety Y 0 of X 0 is stable under the action of � on X 0 if

and only if the set Y 0.k0/ is stable under the action of � on X.k0/.

A.56. Let X and Y be algebraic schemes over k with Y separated, and let X 0 DXk0 and
Y 0 D Yk0 for some field k0 containing k. Let '0WX 0! Y 0 be a regular map. Because Y 0

is separated, the graph �'0 of '0 is closed in X �Y , and so we can apply (A.55) to it. We
deduce:

˘ There exists at most one regular map 'WX ! Y such that '0 D 'k0 .

˘ Let � DAut.k0=k/, and assume that k0� D k. Then '0WX 0! Y 0 arises from a regular
map over k if and only if its graph is stable under the action of � on X 0�Y 0.

˘ Let k0 D ksep, and assume that X and Y are algebraic varieties. Then '0 arises from a
regular map over k if and only if the map

'0.k0/WX.k0/! Y.k0/

commutes with the actions of � on X.k0/ and Y.k0/.
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j. On the density of points

A.57. Let X be an algebraic scheme over a field k, and let k0 be a field containing k. We
say that X.k0/ is dense in X if the only closed subscheme Z of X such that Z.k0/DX.k0/
is X itself. In other words, X.k0/ is dense in X if, for Z a closed subscheme of X ,

Z.k0/DX.k0/ H) Z DX (hence Z.R/DX.R/ for all R).

A.58. If X.k0/ is dense in X , then a regular map from X to a separated algebraic scheme is
determined by its action on X.k0/. Indeed, let '1;'2 be regular maps from X to a separated
scheme Z. If '1 and '2 agree on X.k0/, then their equalizer E is a closed subscheme of X
with the property that E.k0/DX.k0/, and so E DX . This means that '1 D '2.

A.59. If X.k0/ is dense in X , then X is reduced. Indeed, Xred is a closed subscheme of X
such that Xred.k

0/DX.k0/.

A.60. Assume that X is geometrically reduced. Then X.k0/ is dense in X if the set X.k0/
is dense in jXk0 j. Indeed, let Z be a closed subscheme of X such that Z.k0/ D X.k0/.
Because X.k0/ is dense in jXk0 j, we have that jZk0 j D jXk0 j and, because Xk0 is reduced,
we have that Zk0 DXk0 . This implies that Z DX (A.55).

A.61. If X is geometrically reduced, then X.ksep/ is dense in X (see A.44).

SCHEMATICALLY DENSE SETS OF POINTS

Throughout, X is an algebraic scheme over a field k. Recall that we identify X.k/ with the
set of x 2 jX j such that �.x/D k. For a section f of OX over an open subset U of X and
an x 2 U , we write f .x/ for the image of f in �.x/.

DEFINITION A.62. Let S be a subset of X.k/ � jX j. Then S is schematically dense4 in
X if the family of homomorphisms

f 7! f .s/WOX ! �.s/; s 2 S;

is injective.

Concretely, the condition means that, for every open subset U of X , the family of maps

f 7! f .s/WO.U /! �.s/D k; s 2 S \U.k/;

is injective. Clearly, this last condition is local: let X D
S
i Ui be an open covering of X ; a

subset S of X.k/ is schematically dense if and only if S \Ui .k/ is schematically dense in
Ui for each i .

EXAMPLE A.63. A subset S of A1.k/D k is schematically dense if and only if it is infinite
(because a nonzero polynomial f .T / has only finitely many roots).

PROPOSITION A.64. Let S be a schematically dense subset of X.k/.

(a) If Z is a closed subscheme of X such that Z.k/ contains S , then Z DX ; in particular,
X is reduced.

4This says that the family of subschemes s � X , s 2 S , is schematically dense in the sense of EGA IV,
11.10.2.
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(b) If u;vWX� Y is a pair of regular maps from X to a separated algebraic scheme Y
over k such that u.s/D v.s/ for all s 2 S , then uD v.

PROOF. (a). Because Z is a closed subscheme of X , the canonical homomorphism OX !
OZ is surjective. Because S �Z.k/, the maps f 7! f .s/WOX! �.s/, s 2 S , factor through
OZ , and so the map OX !OZ is also injective. Hence Z D X . In particular, Xred D X ,
and so X is reduced.

(b) Because Y is separated, the equalizer E of u and v is a closed subscheme of X . The
condition u.s/D v.s/ for s 2 S implies that E.k/� S , and so jEj D jX j. As X is reduced,
this implies that E DX . 2

PROPOSITION A.65. A subset S of X.k/ is schematically dense if and only if X is reduced
and S is dense in jX j.

PROOF. ): Let Z denote the (unique) reduced closed subscheme of X such that jZj is the
closure of S . Then Z DX by (A.64a), and so X is reduced and jZj D jX j.
(: Let U be an open affine in X , and let ADOX .U /. Let f 2A be such that f .s/D 0

for all s 2 S \jU j. Then f .u/D 0 for all u 2 jU j because S \jU j is dense in jU j. This
means that f lies in all maximal ideals of A, and therefore lies in the radical of A, which is
zero because X is reduced. 2

PROPOSITION A.66. A schematically dense subset remains schematically dense under
extension of the base field.

PROOF. Let k0 be a field containing k, and use a prime to denote base change k ! k0.
For x 2 X.k/, the map OX 0 ! �.x0/ is obtained from OX ! �.x/ by tensoring with k0.
Therefore, the family obtained by letting x run over schematically dense subset S of X.k/ is
injective (because k! k0 is flat). 2

COROLLARY A.67. If X admits a schematically dense subset S � X.k/, then it is geomet-
rically reduced.

PROOF. The set S remains schematically dense in X.kal/, and so Xkal is reduced. 2

k. Schematically dominant maps

A.68. The image of a regular map Y !X of algebraic schemes is constructible; therefore
it contains a dense open subset of its closure. The image of a dominant map Y ! X of
algebraic schemes contains a dense open subset of X .

A.69. A regular map 'WY !X of algebraic schemes is said to be dominant if '.jY j/ is
dense in jX j, and schematically dominant if the canonical map OX ! '�OY is injective.
Similarly, a family 'i WYi ! X , i 2 I , of regular maps is schematically dominant if the
family of homomorphisms OX ! 'i�.OYi / is injective.

For example, a subset S of X.k/ is schematically dense in X if and only if the family
of maps s! X , s 2 S , is schematically dominant. The statements (A.64–A.67) and their
proofs extend without difficulty to the situation of (A.69).
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A.70. If the family of maps 'i WYi !X , i 2 I , is schematically dominant, then
S
i 'i .jYi j/

is dense in jX j; conversely if this union is dense in jX j and X is reduced, then the family
.'i / is schematically dominant. A schematically dominant family of regular maps remains
schematically dominant under extension of the base field. If the family 'i WYi ! X is
schematically dominant, and the Yi are geometrically reduced, then so also is X .

l. Separated maps; affine maps

A.71. For a regular map 'WX ! S of algebraic schemes over k, the subscheme �X=S of
X �S X is defined to be the equalizer of the two projection maps �X � S . The map ' is
said to be separated if �X=S is a closed subscheme of X �S X . For example, let X be an
algebraic scheme over k; then �X=Spm.k/ D�X , and so the structure map X ! Spm.k/ is
separated if and only if X is separated.

A.72. A regular map 'WX ! S is separated if there exists an open covering S D
S
Si of

S such that '�1.Si /
'
�! Si is separated for all i .

A.73. A regular map 'WX ! S is separated if X and S are separated. (As X is separated,
the diagonal �X in X �X is closed; as S is separated, the equalizer of the projections
�X � S is closed).

A.74. A regular map 'WX ! S is said to be affine if, for all open affines U in S , '�1.U /
is an open affine in X .

A.75. Every affine map is separated. (A map of affines is separated (A.73), and so this
follows from (A.72).)

m. Finite schemes

A.76. A k-algebra is finite if and only if it has Krull dimension zero, i.e., every prime ideal
is maximal.

A.77. Let A be a finite k-algebra. For any finite set S of maximal ideals in A, the Chinese
remainder theorem shows that the map A!

Q
m2S A=m is surjective with kernel

T
m2Sm.

In particular, jS j � ŒAWk�, and so A has only finitely many maximal ideals. If S is the set
of all maximal ideals in A, then

T
m2Sm is the nilradical N of A (A.76), and so A=N is a

finite product of fields.

A.78. An algebraic scheme X over k is finite if it satisfies the following equivalent condi-
tions:

˘ X is affine and OX .X/ is a finite k-algebra;

˘ X has dimension zero;

˘ jX j is finite and discrete.
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n. Finite algebraic varieties (étale schemes)

A.79. A k-algebra A is diagonalizable if it is isomorphic to the product algebra kn for
some n 2 N, and it is étale if k0˝A is diagonalizable for some field k0 containing k. In
particular, an étale k-algebra is finite.

A.80. The following conditions on a finite k-algebra A are equivalent:

(a) A is étale;

(b) A is a product of separable field extensions of k;

(c) k0˝A is reduced for all fields k0 containing k (i.e., A is an affine k-algebra);

(d) ksep˝A is diagonalizable.

A.81. Finite products, tensor products, and quotients of diagonalizable (resp. étale) k-
algebras are diagonalizable (resp. étale). The composite of any finite set of étale subalgebras
of a k-algebra is étale. If A is étale over k, then k0˝A is étale over k0 for every field k0

containing k.

A.82. Let A be an étale k-algebra. Then Spm.A/ is an algebraic variety over k of dimen-
sion zero, and every algebraic variety of dimension zero is of this form.

A.83. Let ksep be a separable closure of k, and let � D Gal.ksep=k/. We say that a � -set
S is discrete if the action � �S ! S is continuous relative to the Krull topology on � and
the discrete topology on S . If X is a zero-dimensional variety over k, then X.ksep/ is a finite
discrete � -set, and the functor

X X.ksep/

is an equivalence from the category of zero-dimensional algebraic varieties over k to the
category of finite discrete � -sets.

o. The algebraic variety of connected components of an algebraic
scheme

A.84. Let X be an algebraic scheme over k. Among the regular maps from X to a zero-
dimensional algebraic variety there is one X ! �0.X/ that is universal. The fibres of the
map X ! �0.X/ are the connected components of X . The map X ! �0.X/ commutes
with extension of the base field, and �0.X �Y /' �0.X/��0.Y /. The variety �0.X/ is
called the variety of connected components of X .

p. Flat maps

A flat morphism is the algebraic analogue of a map whose fibres form a continuously varying family.
For example, a surjective morphism of smooth varieties is flat if and only if all fibres have the
same dimension. A finite morphism to a reduced algebraic scheme is flat if and only if, over every
connected component, all fibres have the same number of points (counting multiplicities). A flat
morphism of finite type of algebraic schemes is open, and surjective flat morphisms are epimorphisms
in a very strong sense.
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A.85. A homomorphismA!B of rings is flat if the functorM B˝AM ofA-modules
is exact. It is faithfully flat if, in addition,

B˝AM D 0 H) M D 0:

(a) If f WA!B is flat, then so also is S�1f WS�1A!S�1B for all multiplicative subsets
S of A.

(b) A homomorphism f WA!B is flat if and only if Af �1.n/!Bn is flat for all maximal
ideals n in B .

(c) Let A! A0 be a homomorphism of rings. If A! B is flat (resp. faithfully flat), then
A0! A0˝B is flat (resp. faithfully flat).

(d) Faithfully flat homomorphisms are injective.

A.86. A regular map 'WY ! X of algebraic schemes over k is said to be flat if, for all
y 2 jY j, the map OX;'y!OY;y is flat. A flat map ' is said to be faithfully flat if it is flat
and j'j is surjective. For example, the map Spm.B/! Spm.A/ defined by a homomorphism
of k-algebras A! B is flat (resp. faithfully flat) if and only if A! B is flat (resp. faithfully
flat).

A.87. A flat map 'WY !X of algebraic schemes is open, and hence universally open.

A.88 (GENERIC FLATNESS). Let 'WY !X be a regular map of algebraic schemes. If X
is integral, there exists a dense open subset U of X such that '�1.U /

'
�! U is faithfully

flat.

A.89. Let 'WY ! X be a regular map of algebraic schemes. If p1WY �X Y ! Y is
faithfully flat, then so also is ' (DG III, �1, 2.10, 2.11).

q. Flat descent

A.90. Let 'WY !X be a regular map, and let X 0!X be faithfully flat. If '0WY �X X 0!
X 0 is affine (resp. finite, flat, smooth), then ' is affine (resp. finite, flat, smooth).

A.91. Let f WA! B be faithfully flat. Then the sequence

0! A
f
�! B

e0�e1
�! B˝AB

is exact, where e0.b/D 1˝b and e1.b/D b˝1. On tensoring this sequence with M , we
get an exact sequence

0!M !M ˝AB!M ˝AB
˝2:

A.92. Let f WA!B be a faithfully flat homomorphism, and letM be an A-module. Write
M 0 for the B-module f�M D B˝AM . The module e0�M 0 D .B˝AB/˝BM 0 may be
identified with B˝AM 0 where B˝AB acts by .b1˝b2/.b˝m/D b1b˝b2m, and e1�M 0

may be identified with M 0˝AB where B˝AB acts by .b1˝ b2/.m˝ b/D b1m˝ b2b.
There is a canonical isomorphism �We1�M

0! e0�M
0 arising from

e1�M
0
D .e1f /�M D .e0f /�M D e0�M

0;
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explicitly it is the map

M 0˝AB ! B˝AM
0

.b˝m/˝b0 7! b˝ .b0˝m/; m 2M:

Moreover, M can be recovered from the pair .M 0;�/ because

M D fm 2M 0 j 1˝mD �.m˝1/g

according to (A.91).
Conversely, every pair .M 0;�/ satisfying certain conditions does arise in this way from

an A-module. Given �WM 0˝AB! B˝AM
0 define

�1WB˝AM
0
˝AB! B˝AB˝AM

0;

�2 WM
0
˝AB˝AB! B˝AB˝AM

0;

�3WM
0
˝AB˝AB! B˝AM

0
˝AB

by tensoring � with idB in the first, second, and third positions respectively. Then a pair
.M 0;�/ arises from an A-module M as above if and only if �2 D �1�3. The necessity is
easy to check. For the sufficiency, define

M D fm 2M 0 j 1˝mD �.m˝1/g:

There is a canonical map b˝m 7! bmWB˝AM !M 0, and it suffices to show that this is
an isomorphism (and that the map arising from M is �). Consider the diagram

M 0˝AB B˝AM
0˝AB

B˝AM
0 B˝AB˝AM

0

˛˝1

ˇ˝1

e0˝1

e1˝1

� �1

in which ˛.m/D 1˝m and ˇ.m/D �.m˝1/. As the diagram commutes with either the
upper or the lower horizontal maps (for the lower maps, this uses the relation �2 D �1�3),
� induces an isomorphism on the kernels. But, by definition of M , the kernel of the pair
.˛˝1;ˇ˝1/ is M ˝AB , and, according to (A.91), the kernel of the pair .e0˝1;e1˝1/ is
M 0. This essentially completes the proof.

r. Finite maps and quasi-finite maps

A.93. A regular map 'WY ! X of algebraic schemes over k is finite if, for every open
affine U �X , '�1.U / is affine and OY .'�1.U // is a finite OX .U /-algebra. For example,
the map Spm.B/! Spm.A/ defined by a homomorphism of k-algebras A! B is finite if
and only if A! B is finite.

A.94. A regular map 'WY !X of algebraic schemes over k is quasi-finite if, for all x 2X ,
the fibre '�1.x/ is a finite scheme over k.x/ . We let degx.'/D dimk.O'�1.x/.'�1.x//. A
finite map 'WY !X is quasi-finite. For example, if ' is the map of affine algebraic schemes
defined by a homomorphism A! B , then degx.'/D dimk.B˝AA=mx/:
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A.95. A regular map 'WY !X of algebraic schemes with X integral is flat if and only if
degx.'/ is independent of x 2X .

A.96. Let 'WY ! X be a finite map of integral schemes. The degree of ' is the degree
of k.Y / over k.X/, and the separable degree of ' is the degree of the greatest separable
subextension of k.Y / over k.X/.

(a) For all x 2X ,
degx.'/� deg.'/;

and the points x for which equality holds form a dense open subset of X .

(b) Assume that k is algebraically closed. For all x 2X ,

#
ˇ̌
'�1.x/

ˇ̌
� sep deg.'/;

and the points x for which equality holds form a dense open subset of X .

A.97. (Zariski’s main theorem). Every separated map 'WY !X factors into the composite

Y
�
�! Y 0

'0

�!X

of an open immersion � and a finite map '0.

A.98. Let 'WY !X be a quasi-finite map of integral algebraic schemes. If ' is birational
(i.e., of degree 1) and X is normal, then ' is an open immersion.

s. The fibres of regular maps

A.99. Let 'WY !X be a dominant map of integral schemes. Let P 2 '.X/. Then

dim.'�1.P //� dim.Y /�dim.X/:

The image of ' contains a dense open subset U of X , and U may be chosen so that equality
holds for all P 2 U . Equality holds for all P if ' is flat.

A.100. Let 'WY ! X be a dominant map of integral schemes. Let S be an irreducible
closed subset of X , and let T be an irreducible component of '�1.S/ such that '.T / is
dense in S . Then

dim.T /� dim.S/Cdim.Y /�dim.X/:

There exists a dense open subset U of Y such that '.U / is open, U D '�1.'.U //, and
U

'
�! '.U / is flat. If S meets '.U / and T meets U , then

dim.T /D dim.S/Cdim.Y /�dim.X/:

A.101. A surjective morphism of smooth algebraic k-schemes is flat (hence faithfully flat)
if its fibres all have the same dimension.
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t. Étale maps

A.102. Let 'WY ! X be a map of algebraic schemes over k, and let y be a nonsingular
point of Y such that x def

D '.y/ is nonsingular. We say that ' is étale at y if .d'/y WTy.Y /!
Tx.X/ is bijective. When X and Y are nonsingular varieties, we say that ' is étale if it is
étale at all points of Y .

A.103. If ' is étale at a point, then it is étale in an open neighbourhood of the point.

A.104. Let x be a point on an algebraic variety of dimension d . A local system of
parameters at x is a family ff1; : : : ;fd g of germs of functions at x generating the maximal
ideal mx in Ox . Given such a system, there exists a nonsingular open neighbourhood U of
x and representatives . Qf1;U /; : : : ; . Qfd ;U / of f1; : : : ;fd such that ( Qf1; : : : ; Qfd /WU ! Ad is
étale.

A.105. An étale neighbourhood of a point x on a nonsingular variety X is a pair .'WU !
X;u/ with ' an étale map from a nonsingular variety U to X and u a point of U such that
'.u/D x.

A.106. (Inverse function theorem). Let 'WY !X be a regular map of nonsingular varieties.
If ' is étale at a point y of Y , then there exists an open neighbourhood V of y such that
.V;y/ is an étale neighbourhood of x.

u. Smooth maps

A.107. A regular map 'WY !X of algebraic schemes is said to be smooth if it is flat and
the fibres '�1.x/ are smooth for all x 2X . Equivalently, a regular map ' is smooth if and
only if, locally, it factors into

Y
étale
�! AnX !X:

A dominant map 'WY !X of smooth algebraic varieties is smooth if and only if .d'/y WTy.Y /!
T'.x/.X/ is surjective for all y 2 Y .

A.108. (Rank theorem) Let 'WY !X be a regular map of irreducible algebraic schemes
of dimensions n and m respectively. Let Q be a nonsingular point of Y such that P def

D 'Q

is nonsingular. If .d'/QWTQ.Y /! TP .X/ is surjective, then there exists a commutative
diagram

.UQ;Q/ .UP ;P /

.An;o/ .Am;o/

étale

'jUQ

étale

.x1;:::;xn/ 7!.x1;:::;xm/

in which .UQ;Q/ and .UP ;P / are open neighbourhoods of Q and P and étale neighbour-
hoods of the origin An and Am.

A.109. A dominant map 'WY !X of integral algebraic schemes is separable if k.Y / is a
separably generated field extension of k.X/.

A.110. Let 'WY !X be a dominant map of integral algebraic schemes.
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(a) If there exists a nonsingular point Q 2 Y such that '.Q/ is nonsingular and .d'/Q is
surjective, then ' is separable.

(a) If ' is separable, then the set of points Q 2 Y satisfying the condition in (a) is a dense
open subset of W .

A.111. The pull-back of a separable map of irreducible algebraic varieties is separable.

A.112. Let Z1 and Z2 be closed subschemes of an algebraic scheme X . Then Z1\Z2
def
D

Z1�X Z2 is a closed algebraic subscheme of X . If X , Z1, and Z2 are algebraic varieties,
then Z1\Z2 is an algebraic variety if TP .Z1/ and TP .Z2/ cross transversally (in TP .X/)
for all P in an open subset of X .

v. Complete algebraic schemes

A.113. An algebraic scheme X is said to be complete if it is separated and if, for all
algebraic schemes T , the projection map qWX �T ! T is closed. (It suffices to check this
with T D An.)

A.114. (a) Closed subschemes of complete schemes are complete.

(b) An algebraic scheme is complete if and only if its irreducible components are complete.

(c) Products of complete schemes are complete.

(d) Let 'WX ! S be a regular map of algebraic varieties. If X is complete, then '.X/ is
a complete closed subvariety of S . In particular,

i) if 'WX ! S is dominant and X is complete, then ' is surjective and S is
complete;

ii) complete subvarieties of algebraic varieties are closed.

(e) A regular map X ! P1 from a complete connected algebraic variety X is either
constant or surjective.

(f) The only regular functions on a complete connected algebraic variety are the constant
functions.

(g) The image of a regular map from a complete connected algebraic scheme to an affine
algebraic scheme is a point. The only complete affine algebraic schemes are the finite
schemes.

A.115. Projective algebraic schemes are complete.

A.116. Every quasi-finite map Y !X with Y complete is finite.

w. Proper maps

A.117. A regular map 'WX ! S of algebraic schemes is proper if it is separated and
universally closed (i.e., for all regular maps T ! S , the projection map qWX �S T ! T is
closed).

A.118. A finite map is proper.
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A.119. An algebraic scheme X is complete if and only if the map X ! Spm.k/ is proper.
The base change of a proper map is proper. In particular, if � WX! S is proper, then ��1.P /
is a complete subscheme of X for all P 2 S .

A.120. If X ! S is proper and S is complete, then X is complete.

A.121. The inverse image of a complete algebraic scheme under a proper map is complete.

A.122. Let 'WX ! S be a proper map. The image 'Z of any complete algebraic sub-
scheme Z of X is a complete algebraic subscheme of S .

A.123. Let AD
L
d�0Ad be a graded ring such that

(a) as an A0-algebra, A is generated by A1, and

(b) for every d � 0, Ad is finitely generated as an A0-module.

A map � WProj.A/! Spm.A0/ is defined (to be added).

A.124. The map � Wproj.A/! spm.A0/ is closed.

x. Algebraic schemes as flat sheaves (will be moved to Chapter V)

y. Restriction of the base field (Weil restriction of scalars)

Let A be a finite k-algebra. A functor F from A-algebras to sets defines a functor

.F /A=k WAlgk! Set; R F.A˝R/:

If F is representable, is .F /A=k also representable?

A.125. If F WAlgA! Set is represented by a finitely generated A-algebra, then .F /A=k is
represented by a finitely generated k-algebra.

PROOF. Let
AD ke1˚�� �˚ked ; ei 2 A:

Consider first the case that F D An, so that F.R/ D Rn for all A-algebras R. For a
k-algebra R,

R0
def
D A˝R'Re1˚�� �˚Red ;

and so there is a bijection

.ai /1�i�n 7! .bij / 1�i�n
1�j�d

WR0n!Rnd

which sends .ai / to the family .bij / defined by the equations

ai D
Pd
jD1 bij ej ; i D 1; : : : ;n. (195)

The bijection is natural in R, and shows that .F /A=k � And (the isomorphism depends only
on the choice of the basis e1; : : : ; ed ).

If F is represented by a finitely generated A-algebra, then F is a closed subfunctor of
An for some n. Therefore .F /A=k is a closed subfunctor of .An/A=k � Adn (1.80), and so
.F /A=k is represented by a quotient of kŒT1; : : : ;Tdn� (1.76).
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Alternatively, suppose thatF is the subfunctor of An defined by a polynomial f .X1; : : : ;Xn/
in AŒX1; : : : ;Xn�. On substituting

Xi D
Pd
jD1Yij ej

into f , we obtain a polynomial g.Y11;Y12; : : : ;Ynd / with the property that

f .a1; : : : ;an/D 0 ” g.b11;b12; : : : ;bnd /D 0

when the as and bs are related by (195). The polynomial g has coefficients in A, but we can
write it (uniquely) as a sum

g D g1e1C�� �Cgded ; gi 2 kŒY11;Y12; : : : ;Ynd �:

Clearly,

g.b11;b12; : : : ;bnd /D 0 ” gi .b11;b12; : : : ;bnd /D 0 for i D 1; : : : ;d ,

and so .F /A=k is isomorphic to the subfunctor of And defined by the polynomials g1; : : : ;gd .
This argument extends in an obvious way to the case that F is the subfunctor of An defined
by a finite set of polynomials. 2

A.126. Let X be an algebraic scheme over A such that every finite subset of jX j is
contained in an open affine subscheme (e.g., X quasi-projective). Then .X/A=k is an
algebraic scheme over k.

PROOF. We use two obvious facts: (a) if U is an open subfunctor of F , then .U /A=k is an
open subfunctor of .F /A=k; (b) if F is local (see A.29), then .F /A=k is local. Let U be
an open affine subscheme of X . Then .U /A=k is an open subfunctor of .X/A=k and it is
an affine scheme over k by (A.125. It remains to show that a finite number of the functors
.U /A=k cover .X/A=k (A.29).

Let d D ŒAWk�, and let jX jd be the topological product of d copies jX j. By assumption,
the sets U d with U open affine in jX j cover jX jd . As jX jd is quasi-compact, a finite
collection U1; : : : ;Un cover jX jd .

Let U be the union of the subfunctors .Ui /A=k of .X/A=k . It is an open subfunctor
of .X/A=k , and so if U ¤ .X/A=k , then U.K/¤ .X/A=k.K/ for some field K containing
k. A point Q 2 .X/A=K .K/ is an A-morphism Spm.A˝K/! X . The image of jQj is
contained in a subset of jX j with at most d elements, and so Q factors through some Ui .
Therefore .X/A=k D

S
.Ui /A=k . 2





APPENDIX B
Dictionary

We explain the relation between the language used in this work and in some other standard
works.

a. Demazure and Gabriel 1970

They work more generally, so let k be a ring. DG define a scheme X over k to be a functor
that is representable by a scheme over k in the sense of EGA. Thus, attached to every
DG-scheme X there is a locally ringed space jX j D .jX je ;OjX j/. They often write X for
jX j, which is sometimes confusing. For example, the statement (DG I, �1, 5.3, p.24),

If f WX ! Y is a monomorphism of schemes, f is injective.
means the following. Here X and Y are functors representable by EGA-schemes and f is a
monomorphism in the category of functors (equivalently, f .R/ is injective for all R). By f
being injective, they mean that the morphism jf jW jX j ! jY j of schemes is injective, i.e.,
that the map jf jeW jX je! jY je on the underlying topological spaces is injective. Thus the
statement means:

Let f WX ! Y be a morphism of schemes; if f .R/ is injective for all (small)
k-algebras R, then jf jeW jX je! jY je is injective.

Their notions of an algebraic scheme and an algebraic group over a field k agree with our
notions except that, whereas we regard them as EGA-schemes first and as functors second,
they do the opposite. Unlike us, they don’t ignore the nonclosed points.

One problem they face is that the set-valued functors on the category of k-algebras (k a
ring) is not a category because the morphisms from one object to a second do not generally
form a set. To get around this problem, they fix two universes U and V such that N 2 U
and U 2 V. A ring whose underlying set lies in U is called a “model”. Let k be a model.
A k-model is defined to be a k-algebra whose underlying set lies U. The k-models form
a category Mk , and the functors from Mk to Set form a category MEk . When k D Z, it is
omitted from the notation.

We avoid assuming the existence of universes by working with functors on Alg0
k

, which
is a small category.

b. Borel 1969/1991; Springer 1981/1998

Throughout Springer’s books, k is an algebraically closed field and F is a subfield of k
(Borel denotes the fields by K and k respectively).
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Springer’s notions of an algebraic variety over k and an algebraic group over k essentially
agree with our notions of an algebraic variety over k and a group variety over k. In other
words, an algebraic group over k in Springer’s book is a smooth algebraic group over k in
this work.

When a construction in the category of smooth algebraic group schemes over k takes
one outside the category of smooth objects, Springer replaces the nonsmooth object with its
reduced subobject. For example, for us x 7! xpWGa!Ga is a homomorphism of degree p
with nontrivial kernel p̨; for Springer, it is a homomorphism of degree p with trivial kernel.

For Springer, an F -variety is an algebraic variety X over k together with an “F -
structure”. This is an open affine covering U of X together with, for each U 2 U , an
F -structure on the k-algebra OX .U /, satisfying certain conditions. The notion of an F -
variety essentially agrees with our notion of a variety over F . However, there are important
differences in terminology. For Springer, a morphism �WX ! Y of F -varieties is not re-
quired to preserve the F -structures, i.e., it is a morphism of k-varieties. If it is preserves
the F -structures, then it is called an F -morphism and is said to be defined over F . For
Springer, the kernel of an F -homomorphism �WG!H is an algebraic group (i.e., smooth
group subscheme) of G, i.e., it is an algebraic group over k. It may, or may not, admit an
F -structure. (From our perspective, � is a homomorphism of group varieties G and H over
F ; Springer’s kernel is Ker.�k/red ; this may, or may not, arise from a subgroup variety of
G — the problem is that Ker.�/red may fail to be a group variety. Cf. the statement Borel
(1991, p.98) that the kernel of an F -homomorphism of F -groups is defined over F if the
homomorphism is separable).

The terminology of Borel, and much of the literature on linear algebraic groups, agrees
with that of Springer.

As noted earlier, a statement here may be stronger than a statement in Borel 1991
or Springer 1998 even when the two are word for word the same. Worse, a statement
loc. cit. may become false when interpreted in the language of modern (i.e., post 1960)
algebraic geometry. Here are two: the kernel of SLp! PGLp is trivial in characteristic p;
every nonzero F -torus admits a homorphism to Gm (when read in the language of modern
algebraic geometry, this is false unless F is separably closed).

In fact, much of Springer 1998 adapts easily to the scheme-theoretic situation. For
example, given an group variety G over a field k, he typically defines a subgroup H of
G by describing its group of kal-points in G.kal/ and then proving (in good cases) that H
is defined over k. We define H as an algebraic subgroup of G (over k) by describing its
R-points for all small k-algebras R, and then adapt his arguments to show that H is smooth.
See, for example, the definition of P.�/ (p. 364).

c. Waterhouse 1979

Let k be an infinite field. Waterhouse (1979), p.29 defines an affine algebraic group to be an
algebraic group scheme G such that G.k/ is dense in G and G.k/ is a closed subset of kn

for some n. He defines a matrix group to be an algebraic group scheme G such that G.k/ is
dense in G and G.k/ is a closed subgroup of SLn.k/ for some n.



APPENDIX C
Solutions to the exercises

22-2 We may assume that k is algebraically closed.
(a) Let G be a connected algebraic group scheme, and let N be the kernel of the

adjoint representation of G on Lie.G/. According to (15.25) N=Z.G/ is unipotent. Hence
N DNuÌZ.G/ (17.37). If G is reductive, it follows that N DZ.G/.

(b) Let G be a reductive group and let G0 DG=Z.G/. There is an exact sequence of Lie
algebras:

0! Lie.Z.G//! Lie.G/! Lie.G0/:

The subspace Lie.Z.G// is stable under the adjoint action of G on Lie.G/, and G acts
trivially on it. Let N be the kernel of the action of G on Lie.G0/. Then N is a normal
subgroup of G, and N=Z.G/ maps injectively into the group of automorphisms ˛ of Lie.G/
with the property that .1�˛/.Lie.G// is contained in Lie.Z.G//. Therefore N=Z.G/ is
unipotent, hence trivial. This implies that the kernel of the adjoint action of G0 on Lie.G0/ is
trivial, and so Z.G0/D 1. See also 16.46.

15-1 Because of the uniqueness, we may suppose that k is separably closed. It suffices to
show that G contains a maximal unipotent normal algebraic subgroup (8.35). For this we
use Zorn’s lemma. Let

U1 � U2 � U3 � �� � (196)

be a chain of unipotent normal algebraic subgroups of G. Let H be the intersection of all
algebraic subgroups of G containing all Ui , and let .V;r/ be a representation of H . Then
W D

T
i V

Ui is a nonempty subspace W . Let H 0 be the algebraic subgroup of H fixing W .
Then H 0 contains all Ui and so H 0 DH . Therefore H fixes W , and so it is unipotent. It is
also normal because it is obviously stable under inn.g/ for all g 2G.k/, and we can apply
(1.61). Now H is an upper bound for the chain.

6-4 The simplest proof uses that the flat site has enough “points”. The means that there is
a family of functors sx from sheaves of groups to Grp with the property that a sequence
1! A! B ! C ! 1 of sheaves is exact if and only if the sequences 1! sx.A/!

sx.B/! sx.C /! 1 are exact for all x. Now (6-4) follows from the usual extended snake
lemma.
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CHEVALLEY, C. C. 1956-58. Classification des groupes de Lie algébriques, Seminaire ENS, Paris.
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SANCHO DE SALAS, C. AND SANCHO DE SALAS, F. 2009. Principal bundles, quasi-abelian varieties and
structure of algebraic groups. J. Algebra 322:2751–2772.

SATAKE, I. 1963. On the theory of reductive algebraic groups over a perfect field. J. Math. Soc. Japan
15:210–235.



Bibliography 523

SATAKE, I. 1971. Classification theory of semi-simple algebraic groups. Marcel Dekker Inc., New York. With
an appendix by M. Sugiura, Notes prepared by Doris Schattschneider, Lecture Notes in Pure and Applied
Mathematics, 3. Originally available from the University of Chicago as mimeographed notes.

SATAKE, I. 2001. On classification of semisimple algebraic groups, pp. 197–216. In Class field theory—its
centenary and prospect (Tokyo, 1998), volume 30 of Adv. Stud. Pure Math. Math. Soc. Japan, Tokyo.

SCHARLAU, W. 1985. Quadratic and Hermitian forms, volume 270 of Grundlehren der Mathematischen
Wissenschaften. Springer-Verlag, Berlin.

SCHOELLER, C. 1972. Groupes affines, commutatifs, unipotents sur un corps non parfait. Bull. Soc. Math.
France 100:241–300.

SELBACH, M. 1976. Klassifikationstheorie halbeinfacher algebraischer Gruppen. Mathematisches Institut der
Universität Bonn, Bonn. Diplomarbeit, Univ. Bonn, Bonn, 1973, Bonner Mathematische Schriften, Nr. 83.
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l’université de Nancago, VII. Hermann, Paris.

SERRE, J.-P. 1962. Corps locaux. Publications de l’Institut de Mathématique de l’Université de Nancago, VIII.
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