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Introduction

It is easy to define modular functions and forms, but less easy to say why they are important,
especially to number theorists. Thus I shall begin with a rather long overview of the subject.

Riemann surfaces

Let X be a connected Hausdorff topological space. A coordinate neighbourhood for X is
a pair .U;z/ with U an open subset of X and z a homeomorphism from U onto an open
subset of the complex plane. A compatible family of coordinate neighbourhoods covering X
defines a complex structure onX . A Riemann surface is a connected Hausdorff topological
space together with a complex structure.

For example, every connected open subset X of C is a Riemann surface, and the unit
sphere can be given a complex structure with two coordinate neighbourhoods, namely the
complements of the north and south poles mapped onto the complex plane in the standard
way. With this complex structure it is called the Riemann sphere. We shall see that a torus
R2=Z2 can be given infinitely many different complex structures.

Let X be a Riemann surface and V an open subset of X . A function f WV ! C is said
to be holomorphic if, for all coordinate neighbourhoods .U;z/ of X ,

f ız�1Wz.V \U/! C

is a holomorphic function on z.V \U/. Similarly, one can define the notion of a meromor-
phic function on a Riemann surface.

The general problem

We can now state the grandiose problem: study all holomorphic functions on all Riemann
surfaces. In order to do this, we would first have to find all Riemann surfaces. This problem
is easier than it looks.

Let X be a Riemann surface. From topology, we know that there is a simply connected
topological space zX (the universal covering space of X/ and a map pW zX ! X which is a
local homeomorphism. There is a unique complex structure on zX for which pW zX !X is a
local isomorphism of Riemann surfaces. If � is the group of covering transformations of
pW zX !X , then X D � n zX:
THEOREM 0.1 Every simply connected Riemann surface is isomorphic to exactly one of
the following three:

(a) the Riemann sphere;

(b) CI
(c) the open unit disk D defD fz 2 C j jzj< 1g.

PROOF. Of these, only the Riemann sphere is compact. In particular, it is not homeomorphic
to C or D. There is no isomorphism f WC!D because any such f would be a bounded
holomorphic function on C, and hence constant. Thus, the three are distinct. A special
case of the theorem says that every simply connected open subset of C different from C is
isomorphic to D. This is proved in Cartan 1963, VI, �3. The general statement is the famous
Uniformization Theorem, which was proved independently by Koebe and Poincaré in 1907.
See mo10516 for a discussion of the various proofs. 2
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The main focus of this course will be on Riemann surfaces with D as their universal
covering space, but we shall also need to look at those with C as their universal covering
space.

Riemann surfaces that are quotients of D

In fact, rather than working with D, it will be more convenient to work with the complex
upper half plane:

HD fz 2 C j =.z/ > 0g:
The map z 7! z�i

zCi
is an isomorphism of H onto D (in the language of complex analysis, H

and D are conformally equivalent). We want to study Riemann surfaces of the form � nH,
where � is a discrete group acting on H. How do we find such � ? There is an obvious big
group acting on H, namely, SL2.R/. For ˛ D �a b

c d

� 2 SL2.R/ and z 2H, let

˛.z/D azCb
czCd :

Then

=.˛.z//D=
�
azCb
czCd

�
D=

�
.azCb/.cxzCd/
jczCd j2

�
D =.adzCbcxz/jczCd j2 :

But =.adzCbcxz/D .ad �bc/ � =.z/, which equals =.z/ because det.˛/D 1. Hence

=.˛.z//D=.z/=jczCd j2

for ˛ 2 SL2.R/. In particular,

z 2H H) ˛.z/ 2H:

The matrix �I acts trivially on H, and later we shall see that SL2.R/=f˙I g is the full
group Aut.H/ of bi-holomorphic automorphisms of H (see 2.1). The most obvious discrete
subgroup of SL2.R/ is � D SL2.Z/. This is called the full modular group. For an integer
N > 0, we define

� .N/D
��
a b

c d

� ˇ̌̌̌
a� 1; b � 0; c � 0; d � 1mod N

�
:

It is the principal congruence subgroup of level N . There are lots of other discrete sub-
groups of SL2.R/, but the main ones of interest to number theorists are the subgroups of
SL2.Z/ containing a principal congruence subgroup.

Let Y.N /D� .N/nH and endow it with the quotient topology. Let pWH! Y.N / denote
the quotient map. There is a unique complex structure on Y.N / such that a function f on
an open subset U of Y.N / is holomorphic if and only if f ıp is holomorphic on p�1.U /.
Thus f 7! f ıp defines a one-to-one correspondence between holomorphic functions on
U � Y.N / and holomorphic functions on p�1.U / invariant under � .N/, i.e., such that
g.z/D g.z/ for all  2 � .N/:

The Riemann surface Y.N / is not compact, but there is a natural way of compactifying
it by adding a finite number of points. For example, Y.1/ is compactified by adding a single
point. The compact Riemann surface obtained is denoted by X.N/.
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Modular functions.

A modular function f .z/ of level N is a meromorphic function on H invariant under � .N/
and “meromorphic at the cusps”. Because it is invariant under � .N/, it can be regarded as a
meromorphic function on Y.N /, and the second condition means that it is meromorphic when
considered as a function on X.N/, i.e., it has at worst a pole at each point of X.N/XY.N /:

For the full modular group, it is easy to make explicit the condition “meromorphic at the
cusps” (in this case, cusp). To be invariant under the full modular group means that

f

�
azCb
czCd

�
D f .z/ for all

�
a b

c d

�
2 SL2.Z/:

Since
�
1 1
0 1

� 2 SL2.Z/, we have that f .zC1/D f .z/, i.e., f is invariant under the action
.z;n/ 7! zCn of Z on C. The function z 7! e2�iz is an isomorphism C=Z! CX f0g,
and so every f satisfying f .zC 1/ D f .z/ can be written in the form f .z/ D f �.q/,
q D e2�iz . As z ranges over the upper half plane, q.z/ ranges over CXf0g. To say that
f .z/ is meromorphic at the cusp means that f �.q/ is meromorphic at 0, which means that
f has an expansion

f .z/D
X

n��N0

anq
n; q D e2�iz;

in some neighbourhood of q D 0.

Modular forms.

To construct a modular function, we have to construct a meromorphic function on H that is
invariant under the action of � .N/. This is difficult. It is easier to construct functions that
transform in a certain way under the action of � .N/; the quotient of two such functions of
same type will then be a modular function.

This is analogous to the following situation. Let

P1.k/D .k�kXorigin/=k�

and assume that k is infinite. Let k.X;Y / be the field of fractions of kŒX;Y �. An f 2 k.X;Y /
defines a function .a;b/ 7! f .a;b/ on the subset of k�k where its denominator doesn’t
vanish. This function will pass to the quotient P1.k/ if and only if

f .aX;aY /D f .X;Y / for all a 2 k�:

Recall that a homogeneous form of degree d is a polynomial h.X;Y / 2 kŒX;Y � such that
h.aX;aY /D adh.X;Y / for all a 2 k�. Thus, to get an f satisfying the condition, we need
only take the quotient g=h of two homogeneous forms of the same degree with h¤ 0.

The relation of homogeneous forms to rational functions on P1 is exactly the same as
the relation of modular forms to modular functions.

DEFINITION 0.2 A modular form of level N and weight 2k is a holomorphic function
f .z/ on H such that

(a) f .˛z/D .czCd/2k �f .z/ for all ˛ D �a b
c d

� 2 � .N/I
(b) f .z/ is “holomorphic at the cusps”.
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For the full modular group, (a) again implies that f .zC 1/D f .z/, and so f can be
written as a function of q D e2�iz ; condition .b/ then says that this function is holomorphic
at 0, so that

f .z/D
X
n�0

anq
n; q D e2�iz :

The quotient of two modular forms of level N and the same weight is a modular function
of level N .

Affine plane algebraic curves

Let k be a field. An affine plane algebraic curve C over k is defined by a nonzero polyno-
mial f .X;Y / 2 kŒX;Y �. The points of C with coordinates in a field K � k are the zeros
of f .X;Y / in K�K; we denote this set by C.K/. We let kŒC �D kŒX;Y �=.f .X;Y // and
call it the ring of regular functions on C . When f .X;Y / is irreducible (for us this is the
most interesting case), we let k.C / denote the field of fractions of kŒC � and call it the field
of rational functions on C .

We say that C Wf .X;Y / is nonsingular if f , @f
@X

, @f
@Y

have no common zero in the
algebraic closure of k. A point where all three vanish is called a singular point on the curve.

EXAMPLE 0.3 Let C be the curve defined by Y 2 D 4X3�aX �b, i.e., by the polynomial

f .X;Y /D Y 2�4X3CaXCb:

Assume char k ¤ 2. The partial derivatives of f are 2Y and �12X2CaD d
dX
.�4X3Ca/.

Thus a singular point on C is a pair .x;y/ such that y D 0 and x is a repeated root of
4X3�aX �b. We see that C is nonsingular if and only if the roots of 4X3�aX �b are all
simple, which is true if and only if its discriminant � defD a3�27b2 is nonzero:

PROPOSITION 0.4 Let C be a nonsingular affine plane algebraic curve over C; then C.C/
has a natural structure as a Riemann surface.

PROOF. Let P be a point in C.C/. If .@f=@Y /.P /¤ 0, then the implicit function theorem
shows that the projection .x;y/ 7! xWC.C/! C defines a homeomorphism of an open
neighbourhood of P onto an open neighbourhood of x.P / in C. This we take to be a
coordinate neighbourhood of P . If .@f=@Y /.P /D 0, then .@f=@X/.P /¤ 0, and we use
the projection .x;y/ 7! y to define a coordinate neighbourhood of P . The coordinate
neighbourhoods arising in this way are compatible as so define a complex structure on
C.C/. 2

Projective plane curves.

A projective plane curve C over k is defined by a nonconstant homogeneous polynomial
F.X;Y;Z/. Let

P2.k/D .k3Xorigin/=k�;

and write .a W b W c/ for the equivalence class of .a;b;c/ in P2.k/. As F.X;Y;Z/ is homoge-
neous, F.cx;cy;cz/D cm �F.x;y;z/ for every c 2 k�, where mD deg.F.X;Y;Z//. Thus
it makes sense to say F.x;y;z/ is zero or nonzero for .x W y W z/ 2 P2.k/. The points of C
with coordinates in a fieldK � k are the zeros of F.X;Y;Z/ in P2.K/. We denote this set
by C.K/. We let

kŒC �D kŒX;Y;Z�=.F.X;Y;Z//
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and call it the homogeneous coordinate ring of C . When F.X;Y;Z/ is irreducible, kŒC �
is an integral domain, and we denote by k.C / the subfield of the field of fractions of kŒC � of
elements of degree zero (i.e., quotients of homogeneous polynomials of the same degree).
We call k.C / the field of rational functions on C:

A plane projective curve C is the union of three affine curves CX , CY , CZ defined
by the polynomials F.1;Y;Z/, F.X;1;Z/, F.X;Y;1/ respectively, and we say that C is
nonsingular if all three affine curves are nonsingular. This is equivalent to the polynomials

F;
@F

@X
;

@F

@Y
;

@F

@Z

having no common zero in the algebraic closure of k. When C is nonsingular, there is a
natural complex structure on C.C/, and the Riemann surface C.C/ is compact.

THEOREM 0.5 Every compact Riemann surface S is of the form C.C/ for some nonsingular
projective algebraic curve C , and C is uniquely determined up to isomorphism. Moreover,
C.C / is the field of meromorphic functions on S:

Unfortunately, C may not be a plane projective curve. The statement is far from being
true for noncompact Riemann surfaces, for example, H is not of the form C.C/ for C an
algebraic curve. See p. 23.

Arithmetic of Modular Curves.

The theorem shows that we can regard X.N/ as an algebraic curve, defined by some
homogeneous polynomial(s) with coefficients in C. The central fact underlying the arithmetic
of the modular curves (and hence of modular functions and modular forms) is that this
algebraic curve is defined, in a natural way, over QŒ�N �, where �N D exp.2�i=N /, i.e.,
the polynomials defining X.N/ (as an algebraic curve) can be taken to have coefficients in
QŒ�N �, and there is a natural way of doing this.

This statement has as a consequence that it makes sense to speak of the set X.N/.L/ of
points of X.N/ with coordinates in any field containing QŒ�N �. However, the polynomials
defining X.N/ as an algebraic curve are difficult to write down, and so it is difficult to
describe directly the set X.N/.L/. Fortunately, there is another description of X.N/.L/
(hence of Y.N /.L/) which is much more useful. In the remainder of the introduction, I
describe the set of points of Y.1/ with coordinates in any field containing Q:

Elliptic curves.

An elliptic curve E over a field k (of characteristic¤ 2;3) is a plane projective curve given
by an equation:

Y 2Z D 4X3�aXZ2�bZ3; �
defD a3�27b2 ¤ 0:

When we replace X with X=c2 and Y with Y=c3, some c 2 k�, and multiply through by c6,
the equation becomes

Y 2Z D 4X3�ac4XZ2�bc6Z3;
and so we should not distinguish the curve defined by this equation from that defined by the
first equation. Note that

j.E/
defD 1728a3=�
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is invariant under this change. In fact one can show (with a suitable definition of isomorphism)
that two elliptic curves E and E 0 over an algebraically closed field are isomorphic if and
only if j.E/D j.E 0/.

Elliptic functions.

What are the quotients of C? A lattice in C is a subset of the form

�D Z!1CZ!2

with !1 and !2 complex numbers that are linearly independent over R. The quotient C=� is
(topologically) a torus. Let pWC! C=� be the quotient map. The space C=� has a unique
complex structure such that a function f on an open subset U of C=� is holomorphic if and
only if f ıp is holomorphic on p�1.U /:

To give a meromorphic function on C=� we have to give a meromorphic function f on
C invariant under the action of �, i.e., such that f .zC�/D f .z/ for all � 2�. Define

}.z/D 1

z2
C

X
�2�;�¤0

�
1

.z��/2 �
1

�2

�
This is a meromorphic function on C, invariant under �, and the map

Œz� 7! .}.z/ W }0.z/ W 1/WC=�! P2.C/

is an isomorphism of the Riemann surface C=� onto the Riemann surface E.C/, where E
is the elliptic curve

Y 2Z D 4X3�g2XZ2�g3Z3

with
g2 D 60

X
�2�;�¤0

1

�4
; g3 D 140

X
�2�;�¤0

1

�6
.

This explained in �3 of Chapter I.

Elliptic curves and modular curves.

We have a map� 7!E.�/DC=� from lattices to elliptic curves. When isE.�/ isomorphic
to E.�0/? If �0 D c� for some c 2 C, then

Œz� 7! Œcz�WC=�! C=�0

is an isomorphism, In fact one can show

E.�/�E.�0/ ” �0 D c�, some c 2 C�:
Such lattices � and �0 are said to be homothetic. By scaling with an element of C�, we can
normalize our lattices so that they are of the form

�.�/
defD Z �1CZ � �;some � 2H:

Two lattices �.�/ and �.� 0/ are homothetic if and only if there is a matrix
�
a b
c d

� 2 SL2.Z/
such that � 0 D a�Cb

c�Cd
. We have a map

� 7!E.�/WH! felliptic curves over Cg=�;
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and the above remarks show that it gives an injection

� .1/nH ,! felliptic curves over Cg=� :

One shows that the function � 7! j.E.�//WH! C is holomorphic and has only a simple
pole at the cusp; in fact

j.�/D q�1C744C196884qC21493760q2C�� � ; q D e2�i� :

It is therefore a modular function for the full modular group. One shows further that it
defines an isomorphism j WY.1/! C. The surjectivity of j implies that every elliptic curve
over C is isomorphic to one of the form E.�/, some � 2H. Therefore

� .1/nH felliptic curves over Cg=� :1W1

There is a unique algebraic curve Y.1/Q over Q that becomes equal to Y.1/ over C and has
the property that its points with coordinates in any subfield L of C are given by

Y.1/Q.L/D felliptic curves over Lg=�

where E � E 0 if E and E 0 become isomorphic over the algebraic closure of L. More
precisely, for all subfields L of C, there is a commutative diagram:

Y.1/.C/ felliptic curves over Cg=�

Y.1/Q.L/ felliptic curves over Lg=�

1W1

1W1

in which the vertical arrows are the natural inclusions.
From this, one sees that arithmetic facts about elliptic curves correspond to arithmetic

facts about special values of modular functions and modular forms. For example, let � 2H
be such that the elliptic curve E.�/ is defined by an equation with coefficients in an algebraic
number field L. Then

j.�/D j.E.�// 2 LI
the value of the transcendental function j at � is algebraic! Moreover, the point Œ� � on
Y.1/.C/ is in the image of Y.1/Q.L/! Y.1/.C/.

If ZCZ� is the ring of integers in an imaginary quadratic field K, one can prove by
using the theory of elliptic curves that, not only is j.�/ algebraic, but it generates the Hilbert
class field of K (largest abelian extension of K unramified over K at all primes of K).
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CHAPTER I
The Analytic Theory

In this chapter, we develop the theory of modular functions and modular forms, and the
Riemann surfaces on which they live.

1 Preliminaries

In this section we review some definitions and results concerning continuous group actions
and Riemann surfaces. Following Bourbaki, we require (locally) compact spaces to be
Hausdorff. Recall that a topological space X is locally compact if each point in X has a
compact neighbourhood. Then the closed compact neighbourhoods of each point form a
base for the system of neighbourhoods of the point, and every compact subset of X has a
compact neighbourhood.1 We often use Œx� to denote the equivalence class containing x and
e to denote the identity (neutral) element of a group.

Continuous group actions.

Recall that a group G with a topology is a topological group if the maps

.g;g0/ 7! gg0WG�G!G; g 7! g�1WG!G

are continuous. Let G be a topological group and let X be a topological space. An action of
G on X;

.g;x/ 7! gxWG�X !X;

is continuous if this map is continuous. Then, for each g 2 G, x 7! gxWX ! X is a
homeomorphism (with inverse x 7! g�1x/. An orbit under the action is the set Gx of
translates of an x 2X . The stabilizer of x 2X (or the isotropy group at x) is

Stab.x/D fg 2G j gx D xg:

If X is Hausdorff, then Stab.x/ is closed because it is the inverse image of x under the
continuous map g 7! gxWG!X . There is a bijection

G= Stab.x/!Gx , g � Stab.x/ 7! gxI
1Let A be a compact subset of X . For each a 2 A, there is an open neighbourhood Ua of a in X whose

closure is compact. Because A is compact, it is covered by a finite family of sets Ua, and the union of the
closures of the Ua in the family will be a compact neighbourhood of A.
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14 I. The Analytic Theory

in particular, when G acts transitively on X , there is a bijection

G= Stab.x/!X:

Let GnX be the set of orbits for the action of G on X , and endow GnX with the quo-
tient topology. This is the finest topology for which the map pWX ! GnX , x 7! Gx, is
continuous, and so a subset U of GnX is open if and only if the union of the orbits in U
is an open subset of X . Note that p is an open map: if U is an open subset of X , then
p�1.p.U //DSg2G gU , which is clearly open.

Let H be a subgroup of G. Then H acts on G on the left and on the right, and HnG
and G=H are the spaces of right and left cosets.

LEMMA 1.1 The space G=H is Hausdorff if and only if H is closed in G:
PROOF. Write p for the map G ! G=H , g 7! gH . If G=H is Hausdorff, then eH is a
closed point of G=H , and so H D p�1.eH/ is closed.

Conversely, suppose thatH is a closed subgroup, and let aH and bH be distinct elements
of G=H . Since G is a topological group, the map

f WG�G!G , .g;g0/ 7! g�1g0;

is continuous, and so f �1.H/ is closed. As aH ¤ bH , .a;b/ … f �1.H/, and so there is
an open neighbourhood of .a;b/, which we can take to be of the form U �V , that is disjoint
from f �1.H/. Now the images of U and V in G=H are disjoint open neighbourhoods of
aH and bH . 2

As we noted above, when G acts transitively on X , there is a bijection G= Stab.x/!X

for any x 2X . Under some mild hypotheses, this will be a homeomorphism.

PROPOSITION 1.2 Suppose that G acts continuously and transitively on X . If G and X are
locally compact and there is a countable base for the topology of G, then the map

Œg� 7! gxWG= Stab.x/!X

is a homeomorphism for all x 2X .
PROOF. We know the map is a bijection, and it is obvious from the definitions that it is
continuous, and so we only have to show that it is open. Let U be an open subset of G, and
let g 2 U ; we have to show that gx is an interior point of Ux.

Consider the map G�G!G, .h;h0/ 7! ghh0. It is continuous and maps .e;e/ into U ,
and so there is a neighbourhood V of e, which we can take to be compact, such that V �V is
mapped into U ; thus gV 2 � U . After replacing V with V \V �1, we can assume V �1 D V .
(Here V �1 D fh�1 j h 2 V g; V 2 D fhh0 j h;h0 2 V g.)

As e 2 V , G is a union of the interiors of the sets gV , g 2G. Fix a countable base for
the topology on G. The sets from the countable base contained in the interior of some gV
form a countable cover of G. There exists a countable set of elements g1;g2; : : : 2G such
that each set in the countable cover is contained in at least one set giV . Now G DSgnV .

As gnV is compact, its image gnVx inX is compact, and asX is Hausdorff, this implies
that gnVx is closed. The following lemma shows that at least one of the sets gnVx has an
interior point. But y 7! gnyWX !X is a homeomorphism mapping Vx onto gnVx, and so
Vx has interior point, i.e., there is a point hx 2 Vx and an open subset W of X such that
hx 2W � Vx. Now

gx D gh�1 �hx 2 gh�1W � gV 2x � Ux
which shows that gx is an interior point of Ux. 2
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LEMMA 1.3 (BAIRE’S THEOREM) If a nonempty locally compact space X is a countable
union X DSn2NVn of closed subsets Vn, then at least one of the Vn has an interior point.

PROOF. Suppose no Vn has an interior point. Take U1 to be any nonempty open subset
of X whose closure xU1 is compact. As V1 has empty interior, U1 is not contained in V1,
and so U1\V1 ¤ U1. As U1 is locally compact and U1\V1 is closed in U1, there exists a
nonempty open subset U2 of U1 such that xU2 �U1XU1\V1. Similarly, U2 is not contained
in V2, and so there exists a nonempty open subset U3 of U2 such that xU3 � U2XU2\V2.
Continuing in this fashion,2 we obtain a sequence of nonempty open sets U1, U2, U3, ...
such that xUnC1 � UnXUn\Vn. The xUn form a decreasing sequence of nonempty compact
sets, and so

T xUn ¤¿, which contradicts X DSVn. 2

Riemann surfaces: classical approach

Let X be a connected Hausdorff topological space. A coordinate neighbourhood for X is
pair .U;z/ with U an open subset of X and z a homeomorphism of U onto an open subset of
the complex plane C. Two coordinate neighbourhoods .Ui ;zi / and .Uj ;zj / are compatible
if the function

zi ız�1j Wzj .Ui \Uj /! zi .Ui \Uj /
is holomorphic with nowhere vanishing derivative (the condition is vacuous if Ui \Uj D ;).
A family of coordinate neighbourhoods .Ui ;zi /i2I is a coordinate covering ifX DSUi and
.Ui ;zi / is compatible with .Uj ;zj / for all pairs .i;j / 2 I �I . Two coordinate coverings are
said to be equivalent if their union is also a coordinate covering. This defines an equivalence
relation on the set of coordinate coverings, and we call an equivalence class of coordinate
coverings a complex structure on X . A space X together with a complex structure is a
Riemann surface.

Let U D .Ui ;zi /i2I be a coordinate covering of X . A function f WU ! C on an open
subset U of X is said to be holomorphic relative to U if

f ı z�1i Wzi .U \Ui /! C

is holomorphic for all i 2 I . When U 0 is an equivalent coordinate covering, f is holomorphic
relative to U if and only if it is holomorphic relative to U 0, and so it makes sense to say that
f is holomorphic relative to a complex structure on X : a function f WU ! C on an open
subset U of a Riemann surface X is holomorphic if it is holomorphic relative to one (hence
every) coordinate covering defining the complex structure on X:

Recall that a meromorphic function on an open subset U of C is a holomorphic function
f on the complement U X� of some discrete subset � of U that has at worst a pole at each
point of � (i.e., for each a 2� , there exists an m such that .z�a/mf .z/ is holomorphic in
some neighbourhood of a). A meromorphic function on an open subset U of a Riemann
surface is defined in exactly the same way.

EXAMPLE 1.4 Every open subset U of C is a Riemann surface with a single coordinate
neighbourhood (U itself, with the inclusion zWU ,! C). The holomorphic and meromorphic
functions on U with this structure of a Riemann surface are just the usual holomorphic and
meromorphic functions.

EXAMPLE 1.5 Let X be the unit sphere

X W x2Cy2Cz2 D 1
2More precisely, applying the axiom of dependent choice. . .
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in R3. Stereographic projection from the north pole P D .0;0;1/ gives a map

.x;y;z/ 7! xC iy
1�z WX XP ! C:

Take this to be a coordinate neighbourhood for X . Similarly, stereographic projection
from the south pole S gives a second coordinate neighbourhood. These two coordinate
neighbourhoods define a complex structure onX , andX together with this complex structure
is called the Riemann sphere.

EXAMPLE 1.6 Let X be the torus R2=Z2. We shall see that there are infinitely many
nonisomorphic complex structures on X:

A map f WX ! X 0 from one Riemann surface to a second is holomorphic if for each
point P of X , there are coordinate neighbourhoods .U;z/ of P and .U 0;z0/ of f .P / such
that z0 ıf ız�1Wz.U /! z.U 0/ is holomorphic. An isomorphism of Riemann surfaces is a
bijective holomorphic map whose inverse is also holomorphic.

Riemann surfaces as ringed spaces

Fix a field k. Let X be a topological space, and suppose that for each open subset U of X ,
we are given a set O.U / of functions U ! k. Then O is called a sheaf of k-algebras on X
if it satisfies the following conditions:

(a) f;g 2O.U / H) f ˙g, fg 2O.U /; the function x 7! 1 is in O.U / if U ¤ ;;
(b) f 2O.U /, V � U H) f jV 2O.V /I
(c) let U DSUi be an open covering of an open subset U of X , and for each i , let

fi 2O.Ui /; if fi jUi \Uj D fj jUi \Uj for all i;j , then there exists an f 2O.U /
such that f jUi D fi for all i .

When Y is an open subset of X , we obtain a sheaf of k-algebras OjY on Y by re-
stricting the map U 7!O.U / to the open subsets of Y , i.e., for all open U � Y , we define
.OjY /.U /DO.U /:

From now on, by a ringed space we shall mean a pair .X;OX / with X a topological
space and OX a sheaf of C-algebras—we often omit the subscript on O. A morphism
'W.X;OX /! .X 0;OX 0/ of ringed spaces is a continuous map 'WX !X 0 such that, for all
open subsets U 0 of X 0,

f 2OX 0.U 0/ H) f ı' 2OX .'�1.U 0//:
An isomorphism 'W.X;OX /! .X 0;OX 0/ of ringed spaces is a homeomorphism such that
' and '�1 are morphisms. Thus a homeomorphism 'WX !X 0 is an isomorphism of ringed
spaces if, for every U open in X with image U 0 in X 0, the map

f 7! f ı'WOX 0.U 0/!OX .U /

is bijective.
For example, on any open subset V of the complex plane C, there is a sheaf OV with

OV .U /D f holomorphic functions f WU ! Cg
for all open U � V . We call such a pair .V;OV / a standard ringed space.

The following statements (concerning a connected Hausdorff topological space X) are
all easy to prove.
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1.7 Let U D .Ui ;zi / be a coordinate covering of X , and, for every open subset U of X , let
O.U / be the set of functions f WU !C that are holomorphic relative to U . Then U 7!O.U /
is a sheaf of C-algebras on X .

1.8 Let U and U 0 be coordinate coverings of X ; then U and U 0 are equivalent if and only if
they define the same sheaves of holomorphic functions.

Thus, a complex structure on X defines a sheaf of C-algebras on X , and the sheaf
uniquely determines the complex structure.

1.9 A sheaf OX of C-algebras on X arises from a complex structure if and only if it
satisfies the following condition:

.�/ there exists an open covering X DSUi of X such that every ringed space

.Ui ;OX jUi / is isomorphic to a standard ringed space.

Thus to give a complex structure on X is the same as giving a sheaf of C-algebras satisfying
.�/.
EXAMPLE 1.10 Let n 2 Z act on C as z 7! zCn. Topologically, C=Z is cylinder. We
can give it a complex structure as follows: let pWC! C=Z be the quotient map; for any
point P 2 C=Z, choose a Q 2 f �1.P /; there exist neighbourhoods U of P and V of Q
such that p is a homeomorphism V ! U ; take every such pair .U;p�1WU ! V / to be
a coordinate neighbourhood. The corresponding sheaf of holomorphic functions has the
following description: for every open subset U of C=Z, a function f WU !C is holomorphic
if and only if f ıp is holomorphic (check!). Thus the holomorphic functions f on U �C=Z
can be identified with the holomorphic functions on p�1.U / invariant under the action of Z,
i.e., such that f .zCn/D f .z/ for all n 2 Z (it suffices to check that f .zC1/D f .z/, as 1
generates Z as an abelian group).

For example, q.z/D e2�iz defines a holomorphic function on C=Z. It gives an isomor-
phism C=Z!C� (complex plane with the origin removed)—in fact, this is an isomorphism
both of Riemann surfaces and of topological groups. The inverse function C�! C=Z is (by
definition) .2�i/�1 � log :

Before Riemann (and, unfortunately, also after), mathematicians considered functions
only on open subsets of the complex plane C. Thus they were forced to talk about “multi-
valued functions” and functions “holomorphic at points at infinity”. This works reasonably
well for functions of one variable, but collapses into total confusion in several variables.
Riemann recognized that the functions are defined in a natural way on spaces that are only
locally isomorphic to open subsets of C, that is, on Riemann surfaces, and emphasized the
importance of studying these spaces. In this course we follow Riemann – it may have been
more natural to call the course “Elliptic Modular Curves” rather than “Modular Functions
and Modular Forms”.

Differential forms.

We adopt a naive approach to differential forms on Riemann surfaces.
A differential form on an open subset U of C is an expression of the form f .z/dz

where f is a meromorphic function on U . With every meromorphic function f .z/ on U , we
associate the differential form df

defD df
dz
dz. Let wWU ! U 0 be a mapping from U to another

open subset U 0 of C; we can write it z0 D w.z/. Let ! D f .z0/dz0 be a differential form on
U 0. Then w�.!/ is the differential form f .w.z//dw.z/

dz
dz on U:
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Let X be a Riemann surface, and let .Ui ;zi / be a coordinate covering of X . To give
a differential form on X is to give differential forms !i D f .zi /dzi on zi .Ui / for each i
that agree on overlaps in the following sense: let zi D wij .zj /, so that wij is the conformal
mapping zi ız�1j Wzj .Ui \Uj /! zi .Ui \Uj /; then w�ij .!i /D !j , i.e.,

fj .zj /dzj D fi .wij .zj // �w0ij .zj /dzj :
Contrast this with functions: to give a meromorphic function f on X is to give meromorphic
functions fi .zi / on zi .Ui / for each i that agree on overlaps in the sense that

fj .zj /D fi .wij .zj // on zj .Ui \Uj /:
A differential form is said to be of the first kind (or holomorphic) if it has no poles on

X , of the second kind if it has residue 0 at each point of X where it has a pole, and of the
third kind if it is not of the second kind.

EXAMPLE 1.11 The Riemann sphere S can be thought of as the set of lines through the
origin in C2. Thus a point on S is determined by a point (other than the origin) on the line.
In this way, the Riemann sphere is identified with

P1.C/D .C�CXf.0;0/g/=C�:
We write .x0Wx1/ for the equivalence class of .x0;x1/; thus .x0Wx1/D .cx0Wcx1/ for c ¤ 0:

Let U0 be the subset where x0 ¤ 0; then z0W.x0 W x1/ 7! x1=x0 is a homeomorphism
U0!C. Similarly, if U1 is the set where x1¤ 0, then z1W.x0 W x1/ 7! x0=x1 is a homeomor-
phism U1!C. The pair f.U0;z0/, .U1;z1/g is a coordinate covering of S . Note that z0 and
z1 are both defined onU0\U1, and z1D z�10 ; in fact, z0.U0\U1/DCXf0gD z1.U0\U1/
and the map w01Wz1.U0\U1/! z0.U0\U1/ is z 7! z�1:

A meromorphic function on S is defined by a meromorphic function f0.z0/ of z0 2 C
and a meromorphic function f1.z1/ of z1 2C such that for z0z1 ¤ 0, f1.z1/D f0.z�11 /. In
other words, it is defined by a meromorphic function f .z/.D f1.z1// such that f .z�1/ is
also meromorphic on C. (It is automatically meromorphic on CXf0g.) The meromorphic
functions on S are exactly the rational functions of z, i.e., the functions P.z/=Q.z/, P;Q 2
CŒX�, Q¤ 0 (see 1.14 below).

A meromorphic differential form on S is defined by a differential form f0.z0/dz0 on C
and a differential form f1.z1/dz1 on C, such that

f1.z1/D f0.z�11 / � �1
z21

for z1 ¤ 0:

Analysis on compact Riemann surfaces.

We merely sketch what we need. For details, see for example Gunning 1966.3 Note that
a Riemann surface X (considered as a topological space) is orientable: each open subset
of the complex plane has a natural orientation; hence each coordinate neighbourhood of X
has a natural orientation, and these agree on overlaps because conformal mappings preserve
orientation. Also note that a holomorphic mapping f WX ! S (the Riemann sphere) can be
regarded as a meromorphic function on X , and that all meromorphic functions are of this
form. The only functions holomorphic on the whole of a compact Riemann surface are the
constant functions.

3Gunning, R. C., Lectures on Riemann surfaces. Princeton Mathematical Notes Princeton University Press,
Princeton, N.J. 1966.
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PROPOSITION 1.12 (a) A meromorphic function f on a compact Riemann surface has
the same number of poles as it has zeros (counting multiplicities).

(b) Let ! be a differential form on a compact Riemann surface; then the sum of the
residues of ! at its poles is zero.

SKETCH OF PROOF. We first prove (b). Recall that if ! D fdz is a differential form on an
open subset of C and C is any closed path in C not passing through any poles of f , thenZ

C

! D 2�i
0@X

poles

Resp!

1A
(sum over the poles p enclosed by C ). Fix a finite coordinate covering .Ui ;zi /iD1;:::;n of the
Riemann surface, and choose a triangulation of the Riemann surface such that each triangle
is completely enclosed in some Ui ; then 2�i.

P
Resp!/ is the sum of the integrals of !

over the various paths, but these cancel out.
Statement (a) is just the special case of (b) in which ! D df=f . 2

When we apply (a) to f � c, c some fixed number, we obtain the following result.

COROLLARY 1.13 Let f be a nonconstant meromorphic function on a compact Riemann
surface X . Then there is an integer n > 0 such that f takes each value exactly n times
(counting multiplicities).

PROOF. The number n is equal to the number of poles of f (counting multiplicities). 2

The integer n is called the valence of f . A constant function is said to have valence
0. If f has valence n, then it defines a function X ! S (Riemann sphere) which is n to 1
(counting multiplicities). In fact, there will be only finitely many ramification points, i.e.,
point P such that f �1.P / has fewer than n distinct points.

PROPOSITION 1.14 Let S be the Riemann sphere. The meromorphic functions are precisely
the rational functions of z, i.e., the field of meromorphic functions on S is C.z/:
PROOF. Let g.z/ be a meromorphic function on S . After possibly replacing g.z/ with
g.z � c/, we may suppose that g.z/ has neither a zero nor a pole at 1 .D north pole).
Suppose that g.z/ has a pole of order mi at pi , i D 1; : : : ; r , a zero of order ni at qi ,
i D 1; : : : ; s, and no other poles or zero. The function

g.z/

Q
.z�pi /miQ
.z�qi /ni

has no zeros or poles at a point P ¤1, and it has no zero or pole at1 because (see 1.12)P
mi D

P
ni . It is therefore constant, and so

g.z/D constant�
Q
.z�qi /niQ
.z�pi /mi

:
2

REMARK 1.15 The proposition shows that the meromorphic functions on S are all algebraic:
they are just quotients of polynomials. Thus the field M.S/ of meromorphic functions on
S is equal to the field of rational functions on P1 as defined by algebraic geometry. This is
dramatically different from what is true for meromorphic functions on the complex plane.
In fact, there exists a vast array of holomorphic functions on C—see Ahlfors, Complex
Analysis, 1953, IV 3.3 for a classification of them.
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PROPOSITION 1.16 Let f be a nonconstant meromorphic function with valence n on a
compact Riemann surface X . Then every meromorphic function g on X is a root of a
polynomial of degree � n with coefficients in C.f /:

SKETCH OF PROOF. Regard f as a mapping X ! S (Riemann sphere) and let c be a point
of S such that f �1.c/ has exactly n elements fP1.c/; :::;Pn.c/g. Let z 2 X be such that
f .z/D c; then

0D
Y
i

.g.z/�g.Pi .c///D gn.z/C r1.c/gn�1.z/C�� �C rn.c/

where the ri .c/ are symmetric polynomials in the g.Pi .c//. When we let c vary (avoiding
the c for which f .z/� c has multiple zeros), each ri .c/ becomes a meromorphic function
on S , and hence is a rational function of c D f .z/: 2

THEOREM 1.17 Let X be a compact Riemann surface. There exists a nonconstant mero-
morphic function f on X , and the set of such functions forms a finitely generated field
M.X/ of transcendence degree 1 over C:

The first statement is the fundamental existence theorem (Gunning 1966, p. 107). Its
proof is not easy (it is implied by the Riemann-Roch Theorem), but for all the Riemann
surfaces in this course, we shall be able to write down a nonconstant meromorphic function.

It is obvious that the meromorphic functions on X form a field M.X/. Let f be a
nonconstant such function, and let n be its valence. Then 1.16 shows that every other
function is algebraic over C.f /, and in fact satisfies a polynomial of degree � n. Therefore
M.X/ has degree � n over C.f /, because if it had degree > n then it would contain a
subfield L of finite degree n0 > n over C.f /, and the Primitive Element Theorem (FT 5.1)
tells us that then LD C.f /.g/ for some g whose minimum polynomial has degree n0:

EXAMPLE 1.18 Let S be the Riemann sphere. For every meromorphic function f on S
with valence 1, M.S/D C.f /:

REMARK 1.19 The meromorphic functions on a compact complex manifoldX of dimension
m>1 again form a field that is finitely generated over C, but its transcendence degree may be
<m. For example, there are compact complex manifolds of dimension 2with no nonconstant
meromorphic functions.

Riemann-Roch Theorem.

The Riemann-Roch theorem describes how many functions there are on a compact Riemann
surface with given poles and zeros.

Let X be a compact Riemann surface. The group of divisors Div.X/ on X is the free
(additive) abelian group generated by the points on X ; thus an element of Div.X/ is a finite
sum

P
niPi , ni 2 Z. A divisor D DP niPi is positive (or effective) if every ni � 0; we

then write D � 0:
Let f be a nonzero meromorphic function on X . For a point P 2X , let ordP .f /Dm,

�m, or 0 according as f has a zero of order m at P , a pole of order m at P , or neither a
pole nor a zero at P . The divisor of f is

div.f /D
X

ordp.f / �P:
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This is a finite sum because the zeros and poles of f form discrete sets, and we are assuming
X to be compact.

The map f 7! div.f /WM.X/�! Div.X/ is a homomorphism, and its image is called
the group of principal divisors. Two divisors are said to be linearly equivalent if their
difference is principal. The degree of a divisor

P
niPi is

P
ni . The map D 7! deg.D/ is a

homomorphism Div.X/! Z whose kernel contains the principal divisors. Thus it makes
sense to speak of the degree of a linear equivalence class of divisors.

It is possible to attach a divisor to a differential form !: let P 2X , and let .Ui ;zi / be a
coordinate neighbourhood containing P ; the differential form ! is described by a differential
fidzi on Ui , and we set ordp.!/D ordp.fi /. Then ordp.!/ is independent of the choice
of the coordinate neighbourhood Ui (because the derivative of every transition function !ij
has no zeros or poles), and we define

div.!/D
X

ordp.!/ �P:

Again, this is a finite sum. Note that, for every meromorphic function f;

div.f!/D div.f /Cdiv.!/:

If ! is one nonzero differential form, then any other is of the form f! for some f 2M.X/,
and so the linear equivalence class of div.!/ is independent of !; we write K for div.!/,
and k for its linear equivalence class.

For a divisor D, let

L.D/D ff 2M.X/ j div.f /CD � 0g

if this set is nonempty, and let L.D/D f0g if it is empty. Then L.D/ is a vector space over
C, and if D0 D DC .g/, then f 7! fg�1 is an isomorphism L.D/! L.D0/. Thus the
dimension `.D/ of L.D/ depends only on the linear equivalence class of D:

THEOREM 1.20 (RIEMANN-ROCH) Let X be a compact Riemann surface. Then there is
an integer g � 0 such that, for every divisor D;

`.D/D deg.D/C1�gC`.K�D/: (1)

PROOF. See Gunning 1962, �7, for a proof in the context of Riemann surfaces, and Fulton
1969,4 Chapter 8, for a proof in the context of algebraic curves. One approach to proving it
is to verify it first for the Riemann sphere S (see below), and then to regard X as a finite
covering of S . 2

Note that in the statement of the Riemann-Roch Theorem, we could replace the divisors
with equivalence classes of divisors.

COROLLARY 1.21 A canonical divisor K has degree 2g�2, and `.K/D g:
PROOF. Put D D 0 in (1). The only functions with div.f /� 0 are the constant functions,
and so the equation becomes 1D 0C1�gC`.K/. Hence `.K/D g. Put D DK; then the
equation becomes g D deg.K/C1�gC1, which gives deg.K/D 2g�2: 2

4Fulton, William. Algebraic curves. W. A. Benjamin, Inc., New York-Amsterdam, 1969; available at
www.math.lsa.umich.edu/~wfulton/CurveBook.pdf.

www.math.lsa.umich.edu/~wfulton/CurveBook.pdf
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Let K D div.!/. Then f 7! f! is an isomorphism from L.K/ to the space of holomor-
phic differential forms on X , which therefore has dimension g.

The term in the Riemann-Roch formula that is difficult to evaluate is `.K�D/. Thus it
is useful to note that if deg.D/ > 2g�2, then L.K�D/D 0 (because, for f 2M.X/�,
deg.D/ > 2g�2) deg.div.f /CK�D/ < 0, and so div.f /CK�D can’t be a positive
divisor). Hence:

COROLLARY 1.22 If deg.D/ > 2g�2, then `.D/D deg.D/C1�g:
EXAMPLE 1.23 Let X be the Riemann sphere, and let D DmP1, where P1 is the “point
at infinity” andm� 0. Then L.D/ is the space of meromorphic functions on C with at worst
a pole of order m at infinity and no poles elsewhere. These functions are the polynomials of
degree �m, and they form a vector space of dimension mC1, in other words,

`.D/D deg.D/C1;
and so the Riemann-Roch theorem shows that g D 0. Consider the differential dz on C, and
let z0 D 1=z. The dz D�1=z02dz0, and so dz extends to a meromorphic differential on X
with a pole of order 2 at1. Thus deg.div.!//D�2, in agreement with the above formulas.

EXERCISE 1.24 Prove the Riemann-Roch theorem (1.20) for the Riemann sphere,
(a) by using partial fractions, and

(b) by using Example 1.23 and the fact that `.D/D `.D0/ for linearly equivalent divisors.

The genus of X

Let X be a compact Riemann surface. It can be regarded as a topological space, and so we
can define homology groups H0.X;Q/, H1.X;Q/, H2.X;Q/. It is known that H0 and H2
each have dimension 1, and H1 has dimension 2g. It is a theorem that this g is the same as
that occurring in the Riemann-Roch theorem (see below). Hence g depends only on X as a
topological space, and not on its complex structure. The Euler-Poincaré characteristic of X
is

�.X/
defD dimH0�dimH1CdimH2 D 2�2g:

Since X is oriented, it can be triangulated. When one chooses a triangulation, then one finds
(easily) that

2�2g D V �ECF;
where V is the number of vertices, E is the number of edges, and F is the number of faces.

EXAMPLE 1.25 The sphere can be triangulated by projecting out from the centre of a
regular tetrahedron whose vertices are on the sphere. In this case V D 4, E D 6, F D 4,
which gives g D 0 as expected.

EXAMPLE 1.26 Consider the map z 7! zeWD!D, e � 1, where D is the unit open disk.
This map is exactly e W 1 except at the origin, which is a ramification point of order e.
Consider the differential dz0 on D. The map is z0 D w.z/D ze , and so the inverse image of
the differential dz0 is dz0 D dw.z/D eze�1dz. Thus w�.dz0/ has a zero of order e�1 at 0.

THEOREM 1.27 (RIEMANN-HURWITZ FORMULA) Let f WY !X be a holomorphic map-
ping of compact Riemann surfaces that is m W 1 (except over finitely many points). For each
point P of X , let eP be the multiplicity of P in the fibre of f ; then

2g.Y /�2Dm.2g.X/�2/C
X

.eP �1/:
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PROOF. Choose a differential ! on X such that ! has no pole or zero at a ramification point
of X . Then f �! has a pole and a zero above each pole and zero of ! (of the same order
as that of !/; in addition it has a zero of order e�1 at each ramification point in Y (cf. the
above example 1.26). Thus

deg.f �!/Dmdeg.!/C
X

.eP �1/;

and we can apply (1.21). 2

REMARK 1.28 One can also prove this formula topologically. Triangulate X in such a way
that each ramification point is a vertex for the triangulation, and pull the triangulation back
to Y . There are the following formulas for the numbers of faces, edges, and vertices for the
triangulations of Y and X W

F.Y /Dm �F.X/; E.Y /Dm �E.X/;
V .Y /Dm �V.X/�

X
.eP �1/:

Thus
2�2g.Y /Dm.2�2g.X//�

X
.eP �1/;

in agreement with (1.27).

We have verified that the two notions of genus agree for the Riemann sphere S (they
both give 0). But for any Riemann surface X , there is a nonconstant function f WX ! S (by
1.17) and we have just observed that the formulas relating the genus of X to that of S is the
same for the two notions of genus, and so we have shown that the two notions give the same
value for X:

Riemann surfaces as algebraic curves.

Let X be a compact Riemann surface. Then (see 1.17) M.X/ is a finitely generated field
of transcendence degree 1 over C, and so there exist meromorphic functions f and g on X
such that M.X/D C.f;g/. There is a nonzero irreducible polynomial ˚.X;Y / such that

˚.f;g/D 0:

Then z 7! .f .z/;g.z//WX ! C2 maps an open subset of X onto an open subset of the
algebraic curve defined by the equation:

˚.X;Y /D 0:

Unfortunately, this algebraic curve will in general have singularities. A better approach
is the following. Assume initially that the Riemann surface X has genus � 2 and is not
hyperelliptic, and choose a basis !0; :::;!n; .n D g � 1/ for the space of holomorphic
differential forms on X . For P 2X , we can represent each !i in the form fi �dz in some
neighbourhood of P . After possibly replacing each !i with f!i , f a meromorphic function
defined near P , the functions fi will all be defined at P , and at least one will be nonzero at
P . Thus .f0.P / W : : : W fn.P // is a well-defined point of Pn.C/, independent of the choice
of f . It is known that the map '

P 7! .f0.P / W ::: W fn.P // WX ! Pn.C/
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is a homeomorphism of X onto a closed subset of Pn.C/, and that there is a finite set of
homogeneous polynomials in nC1 variables whose zero set is precisely '.X/: Moreover,
the image is a nonsingular curve in Pn.C/ (Griffiths 1989,5 IV 3). If X has genus < 2, or
is hyperelliptic, a modification of this method again realizes X as a nonsingular algebraic
curve in Pn for some n:

Every nonsingular algebraic curve is obtained from a complete nonsingular algebraic
curve by removing a finite set of points. It follows that a Riemann surface arises from an
algebraic curve if and only if it is obtained from a compact Riemann surface by removing
a finite set of points. On such a Riemann surface, every bounded holomorphic function
extends to a holomorphic function on the compact surface, and so is constant. As z�i

zCi
is a

nonconstant bounded holomorphic function on H, we see that H is not the Riemann surface
attached to an algebraic curve.

5Griffiths, Phillip A., Introduction to algebraic curves. AMS 1989.
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2 Elliptic Modular Curves as Riemann Surfaces

In this section, we define the Riemann surfaces Y.N /D � .N/nH and their natural com-
pactifications, X.N/. Recall that H is the complex upper half plane

HD fz 2 C j =.z/ > 0g:

The upper-half plane as a quotient of SL2.R/

We saw in the Introduction that there is an action of SL2.R/ on H as follows:

SL2.R/�H!H; .˛;z/ 7! ˛.z/D azCb
czCd ; ˛ D

�
a b

c d

�
:

Because =.˛z/D =.z/=jczCd j2, =.z/ > 0)=.˛z/ > 0. When we give SL2.R/ and H
their natural topologies, this action is continuous.

The special orthogonal group (or “circle group”) is defined to be

SO2.R/D
��

cos� sin�
�sin� cos�

� ˇ̌̌̌
� 2 R

�
:

Note that SO2.R/ is a closed subgroup of SL2.R/, and so SL2.R/=SO2.R/ is a Hausdorff
topological space (by 1.1).

PROPOSITION 2.1 (a) The group SL2.R/ acts transitively on H, i:e:, for every pair of
elements z;z0 2H, there exists an ˛ 2 SL2.R/ such that ˛z D z0:

(b) The action of SL2.R/ on H induces an isomorphism

SL2.R/=f˙I g ! Aut.H/ (biholomorphic automorphisms of H/

(c) The stabilizer of i is SO2.R/.
(d) The map

SL2.R/=SO2.R/!H; ˛ �SO2.R/ 7! ˛.i/

is a homeomorphism.

PROOF. (a) It suffices to show that, for every z 2 H, there exists an element of SL2.R/
mapping i to z. Write z D xC iy; then

�p
y
��1 �y x

0 1

� 2 SL2.R/ and maps i to z.
(b) If

�
a b
c d

� �z D z then cz2C .d �a/z�b D 0. If this is true for all z 2H (any three z
would do), then the polynomial must have zero coefficients, and so c D 0, d D a, and b D 0.
Thus

�
a b
c d

�D �a 00 a �, and this has determinant 1 if and only if aD˙1. Thus only I and �I
act trivially on H:

Let  be an automorphism of H. We know from (a) that there is an ˛ 2 SL2.R/ such
that ˛.i/D .i/. After replacing  with ˛�1 ı , we can assume that .i/D i: Recall that
the map �WH!D, z 7! z�i

zCi
is an isomorphism from H onto the open unit disk, and it maps

i to 0. Use � to transfer  into an automorphism  0 of D fixing 0. Lemma 2.2 below tells us
that there is a � 2 R such that � ı ı��1.z/D e2�i � z for all z, and Exercise 2.3(c) shows
that .z/D � cos� sin�

�sin� cos�

� � z. Thus  2 SO2.R/� SL2.R/:
(c) We have already proved this, but it is easy to give a direct proof. We have

aiCb
ciCd D i ” aiCb D�cCdi ” aD d; b D�c:

Therefore the matrix is of the form
�
a �b
b a

�
with a2Cb2 D 1, and so is in SO2.R/:

(d) This is a consequence of the general result Proposition 1.2. 2
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LEMMA 2.2 The automorphisms of D fixing 0 are the maps of the form z 7! �z, j�j D 1:
PROOF. Recall that the Schwarz Lemma (Cartan 1963, III 3) says the following:

Let f .z/ be a holomorphic function on the disk jzj< 1 such that f .0/D 0 and
jf .z/j< 1 for jzj< 1. Then

(i) jf .z/j � jzj for jzj< 1I
(ii) if jf .z0/j D jz0j for some z0 ¤ 0, then there is a � such that f .z/D �z

(and j�j D 1/.
Let  be an automorphism of D fixing 0. When we apply (i) to  and �1, we find that
j.z/j D jzj for all z in the disk, and so we can apply (ii) to find that f is of the required
form. 2

EXERCISE 2.3 Let  WC2�C2! C be the Hermitian form�
z1
z2

�
;

�
w1
w2

�
7! xz1w1�xz2w2:

and let SU.1;1/ (special unitary group) be the subgroup of elements ˛ 2 SL2. C/ such that
 .˛.z/;˛.w//D  .z;w/.

(a) Show that

SU.1;1/D
��
u v

xv xu
� ˇ̌̌̌

u;v 2 C; juj2�jvj2 D 1
�
:

(b) Define an action of SU.1;1/ on the unit disk as follows:�
u v

xv xu
�
� z D uzCv

xvzCxu:

Show that this defines an isomorphism SU.1;1/=f˙I g ! Aut.D/:

(c) Show that, under the standard isomorphism �WH! D, the action of the element�
cos� sin�
�sin� cos�

�
of SL2.R/ on H corresponds to the action of

�
ei� 0
0 e�i�

�
on D:

Quotients of H

Let � be a group acting continuously on a topological space X . If � nX is Hausdorff, then
the orbits are closed, but this condition is not sufficient to ensure that the quotient space is
Hausdorff.

PROPOSITION 2.4 Let G be a locally compact group acting on a topological space X
such that for one (hence every) point x0 2 X , the stabilizer K of x0 in G is compact and
gK 7! gx0WG=K!X is a homeomorphism. The following conditions on a subgroup � of
G are equivalent:6

(a) for all compact subsets A and B of X , f 2 � j A\B ¤ ;g is finite;

(b) � is a discrete subgroup of G:

6In an unfortunate terminology (Lee, Introduction to Topological Manifolds, p. 268), these conditions are
also equivalent to: (c) � acts discontinuously on X ; (d) � acts properly discontinuously on X . A continuous
action � �X !X is said to be discontinuous if for every x 2X and infinite sequence .i / of distinct elements
of � , the set fixg has no cluster point; it is said to be properly discontinuous if, for every pair of points x and
y of X , there exist neighbourhoods Ux and Uy of x and y such that the set f 2 � j Ux \Uy ¤ ;g is finite.
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PROOF. (b) ) (a) (This is the only implication we shall use.) Write p for the map,
g 7! gx0WG!X . Let A be a compact subset of X . I claim that p�1.A/ is compact. Write
G DSVi where the Vi are open with compact closures xVi . Then A �Sp.Vi /, and in
fact we need only finitely many p.Vi / to cover A. Then p�1.A/�SViK �S xViK (finite
union), and each xViK is compact (it is the image of xVi �K under the multiplication map
G�G!G/. Thus p�1.A/ is a closed subset of a compact set, and so is compact. Similarly,
p�1.B/ is compact.

Suppose A\B ¤; and  2 � . Then .p�1A/\p�1B ¤;, and so  2 � \ .p�1B/ �
.p�1A/�1. But this last set is the intersection of a discrete set with a compact set and so is
finite.

For (a)) (b), let V be any neighbourhood of 1 in G whose closure xV is compact. For
any x 2 X , � \V � f 2 � j x 2 xV �xg, which is finite, because both fxg and xV �x are
compact. Thus � \V is discrete, which shows that e is an isolated point of � . 2

The next result makes statement (a) more precise.

PROPOSITION 2.5 Let G, K, X be as in 2.4, and let � be a discrete subgroup of G:

(a) For every x 2X , fg 2 � j gx D xg is finite.

(b) For any x 2X , there is a neighbourhood U of x with the following property: if  2 �
and U \U ¤ ;, then x D x:

(c) For any points x and y 2X that are not in the same � -orbit, there exist neighbourhoods
U of x and V of y such that U \V D ; for all  2 �:

PROOF. (a) We saw in the proof of Proposition 2.4 that p�1.compact) is compact, where
p.g/D gx. Therefore p�1.x/ is compact, and the set we are interested in is p�1.x/\�:

(b) Let V be a compact neighbourhood of x. Because 2.4(a) holds, there is a finite set
f1; :::;ng of elements of � such that V \iV ¤ ;. Let 1; :::;s be the i fixing x. For
each i > s, choose disjoint neighbourhoods Vi of x and Wi of ix, and put

U D V \
 \
i>s

Vi \�1i Wi

!
:

For i > s, iU �Wi which is disjoint from Vi , which contains U:
(c) Choose compact neighbourhoodsA of x and B of y, and let 1; :::;n be the elements

of � such that iA\B ¤;. We know ix ¤ y, and so we can find disjoint neighbourhoods
Ui and Vi of ix and y. Take

U D A\�11 U1\ :::\�1n Un; V D B \V1\ :::\Vn: 2

COROLLARY 2.6 Under the hypotheses of 2.5, the space � nX is Hausdorff.

PROOF. Let x and y be points of X not in the same � -orbit, and choose neighbourhoods U
and V as in Proposition 2.5. Then the images of U and V in � nX are disjoint neighbour-
hoods of � x and �y: 2

A group � is said to act freely on a set X if Stab.x/D e for all x 2X:
PROPOSITION 2.7 Let � be a discrete subgroup of SL2.R/ such that � (or �=f˙I g if
�I 2 � ) acts freely on H. Then there is a unique complex structure on � nH with the
following property: a function f on an open subset U of � nH is holomorphic if and only if
f ıp is holomorphic.
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PROOF. The uniqueness follows from the fact (see 1.8) that the sheaf of holomorphic
functions on a Riemann surface determines the complex structure. Let z 2 � nH, and choose
an x 2 p�1.z/. According to 2.5(b), there is a neighbourhood U of x such that U is
disjoint from U for all  2 � ,  ¤ e. The map pjU WU ! p.U / is a homeomorphism, and
we take all pairs of the form .p.U /;.pjU/�1/ to be coordinate neighbourhoods. It is easy
to check that they are all compatible, and that the holomorphic functions are as described.
(Alternatively, one can define O.U/ as in the statement of the proposition, and verify that
U 7!O.U/ is a sheaf of C-algebras satisfying 1.9(*).) 2

Unfortunately SL2.Z/=f˙I g doesn’t act freely.

Discrete subgroups of SL2.R/

To check that a subgroup � of SL2.R/ is discrete, it suffices to check that e is isolated in � .
A discrete subgroup of PSL2.R/ is called a Fuchsian group. Discrete subgroups of SL2.R/
abound, but those of interest to number theorists are rather special.

CONGRUENCE SUBGROUPS OF THE ELLIPTIC MODULAR GROUP

Clearly SL2.Z/ is discrete, and a fortiori, � .N/ is discrete. A congruence subgroup of
SL2.Z/ is a subgroup containing � .N/ for some N . For example,

�0.N /
defD
��
a b

c d

�
2 SL2.Z/

ˇ̌̌̌
c � 0 modN/

�
is a congruence subgroup of SL2.Z/. By definition, the sequence

1! � .N/! SL2.Z/! SL2.Z=NZ/

is exact.7 I claim that the map SL2.Z/! SL2.Z=NZ/ is surjective. To prove this, we have
to show that if A 2M2.Z/ and det.A/� 1 mod N , then there is a B 2M2.Z/ such that
B � A mod N and det.B/D 1. Let AD �a b

c d

�
; the condition on A is that

ad �bc�NmD 1

for some m 2 Z. Hence gcd.c;d;N /D 1, and we can find an integer n such that gcd.c;d C
nN/D 1 (apply the Chinese Remainder Theorem to find an n such that dCnN � 1 mod p
for every prime p dividing c but not dividing N and n � 0 mod p for every prime p
dividing both c and N ). We can replace d with d CnN , and so assume that gcd.c;d/D 1.
Consider the matrix

B D
�
aC eN bCfN
c d

�
for some integers e, f . Its determinant is ad �bcCN.ed �fc/D 1C .mC ed �fc/N .
Since gcd.c;d/D 1, there exist integers e, f such that mD fcC ed , and with this choice,
B is the required matrix.

Note that the surjectivity of SL2.Z/! SL2.Z=NZ/ implies that SL2.Z/ is dense in
SL2.yZ/, where yZ is the completion of Z for the topology of subgroups of finite index (hence
yZ' lim �N Z=NZ 'QZ`).

7For a commutative ring A, M2.A/ is the ring of 2�2 matrices with entries in A, and SL2.A/ is the group
of 2�2 matrices with entries in A having determinant 1.
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DISCRETE GROUPS COMING FROM QUATERNION ALGEBRAS.

For nonzero rational numbers a;b, let B D Ba;b be the Q-algebra with basis f1; i;j;kg and
multiplication given by

i2 D a , j 2 D b , ij D k D�j i:
Then B˝R is an algebra over R with the same basis and multiplication table, and it is
isomorphic either to M2.R/ or the usual (Hamiltonian) quaternion algebra—we suppose the
former.

For ˛ D wCx iCyj Czk 2 B , let x̨ D w�x i �yj �zk, and define

Nm.˛/D ˛ x̨ D w2�ax2�by2Cabz2 2Q:

Under the isomorphism B˝R!M2.R/, the norm corresponds to the determinant, and so
the isomorphism induces an isomorphism

f˛ 2 B˝R j Nm.˛/D 1g �! SL2.R/:

An order in B is a subring O that is finitely generated over Z (hence free of rank 4). Define

�a;b D f˛ 2O j Nm.˛/D 1g:

Under the above isomorphism this is mapped to a discrete subgroup of SL2.R/, and we can
define congruence subgroups of �a;b as for SL2.Z/:

For a suitable choice of .a;b/, B DM2.Q/ (ring of 2�2 matrices with coefficients in
Q/, and if we choose O to be M2.Z/, then we recover the elliptic modular groups.

If B is not isomorphic to M2.Q/, then the families of discrete groups that we get are
quite different from the congruence subgroups of SL2.Z/: they have the property that � nH
is compact.

There are infinitely many nonisomorphic quaternion algebras over Q, and so the congru-
ence subgroups of SL2.Z/ form just one among an infinite sequence of families of discrete
subgroups of SL2.R/:

[These groups were found by Poincaré in the 1880s, but he regarded them as automor-
phism groups of the quadratic forms ˚a;b D �aX2� bY 2CabZ2. For a description of
how he found them, see p. 52, of his book, Science and Method.]

EXERCISE 2.8 Two subgroups � and � 0 of a group are said to be commensurable if
� \� 0 is of finite index in both � and � 0:

(a) Commensurability is an equivalence relation (only transitivity is nonobvious).

(b) If � and � 0 are commensurable subgroups of a topological groupG, and � is discrete,
then so also is � 0:

(c) If � and � 0 are commensurable subgroups of SL2.R/ and � nH is compact, so also
is � 0nH:

ARITHMETIC SUBGROUPS OF THE ELLIPTIC MODULAR GROUP

A subgroup of SL2.Q/ is arithmetic if it is commensurable with SL2.Z/. For example,
every subgroup of finite index in SL2.Z/, hence every congruence subgroup, is arithmetic.
The congruence subgroups are sparse among the arithmetic subgroups: if we let N.m/ be
the number of congruence subgroups of SL2.Z/ of index <m, and let N 0.m/ be the number
of subgroups of index <m, then N.m/=N 0.m/! 0 as m!1:
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REMARK 2.9 This course will be concerned with quotients of H by congruence groups in
the elliptic modular group SL2.Z/, although the congruence groups arising from quaternion
algebras are of equal interest to number theorists. There is some tantalizing evidence that
modular forms relative to other arithmetic groups may also have interesting arithmetic
properties, but we shall ignore this.

There are many nonarithmetic discrete subgroups of SL2.R/. The ones of most interest
(to analysts) are those of the “first kind”—they are “large” in the sense that � nSL2.R/
(hence � nH/ has finite volume relative to a Haar measure:

Among matrix groups, SL2 is anomalous in having so many discrete subgroups. For
other groups there is a wonderful theorem of Margulis (for which he was awarded the Fields
medal), which says that, under some mild hypotheses (which exclude SL2/, every discrete
subgroup � of G.R/ such that � nG.R/ has finite measure is arithmetic. For many groups
one even knows that all arithmetic subgroups are congruence (see Prasad 19918).

Classification of linear fractional transformations

The group SL2.C/ acts on C2, and hence on the set P1.C / of lines through the origin in C2.
When we identify a line with its slope, P1.C/ becomes identified with C[f1g, and we get
an action of GL2.C/ on C[f1g:�

a b

c d

�
z D azCb

czCd ;
�
a b

c d

�
1D a

c
:

These mappings are called the linear fractional transformations of P1.C/DC[f1g. They

map circles and lines in C into circles or lines in C. The scalar matrices
�
a 0

0 a

�
act as

the identity transformation. By the theory of Jordan canonical forms, every nonscalar ˛ is
conjugate to a matrix of the following type,

(i)
�
� 1

0 �

�
(ii)

�
� 0

0 �

�
; �¤ �;

according as it has repeated eigenvalues or distinct eigenvalues. In the first case, ˛ is
conjugate to a transformation z 7! zC��1, and in the second to z 7! cz, c ¤ 1. In case (i),
˛ is called parabolic, and case (ii), it is called elliptic if jcj D 1, hyperbolic if c is real and
positive, and loxodromic otherwise.

When ˛ 2 SL2.C/, the four cases can be distinguished by the trace of ˛ W
˛ is parabolic ” Tr.˛/D˙2I
˛ is elliptic ” Tr.˛/ is real and jTr.˛/j< 2I

˛ is hyperbolic ” Tr.˛/ is real and jTr.˛/j> 2I
˛ is loxodromic ” Tr.˛/ is not real.

We now investigate the elements of these types in SL2.R/:

Parabolic transformations Suppose ˛ 2 SL2.R/, ˛ ¤˙I , is parabolic. Then it has exactly
one eigenvector, and that eigenvector is real. Suppose that the eigenvector is

� e
f

�
; if f ¤ 0,

then ˛ has a fixed point in R; if f D 0, then1 is a fixed point (the transformation is then of
the form z 7! zC c/. Thus ˛ has exactly one fixed point in R[f1g:

8Prasad, Gopal. Semi-simple groups and arithmetic subgroups. Proceedings of the International Congress
of Mathematicians, Vol. I, II (Kyoto, 1990), 821–832, Math. Soc. Japan, Tokyo, 1991.
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Elliptic transformations Suppose ˛ 2 SL2.R/, ˛ ¤˙I , is elliptic. Its characteristic poly-
nomial is X2C bX C 1 with jbj < 2; hence � D b2� 4 < 0, and so ˛ has two complex
conjugate eigenvectors. Thus ˛ has exactly one fixed point z in H and a second fixed point,
namely, xz, in the lower half plane.

Hyperbolic transformations Suppose ˛ 2 SL2.R/ and ˛ is hyperbolic. Its characteristic
polynomial is X2CbXC1 with jbj> 2; hence �D b2�4 > 0, and so ˛ has two distinct
real eigenvectors. Thus ˛ has two distinct fixed points in R[f1g:

Let � be a discrete subgroup of SL2.R/. A point z 2H is called an elliptic point if it is
the fixed point of an elliptic element  of � ; a point s 2 R[f1g is called a cusp if there
exists a parabolic element  2 � with s as its fixed point.

PROPOSITION 2.10 If z is an elliptic point of � , then f 2 � j z D zg is a finite cyclic
group.

PROOF. There exists an ˛ 2 SL2.R/ such that ˛.i/D z, and  7! ˛�1˛ defines an iso-
morphism

f 2 � j z D zg � SO2.R/\ .˛�1� ˛/:
This last group is finite because it is both compact and discrete. There are isomorphisms

R=Z ' fz 2 C j jzj D 1g ' SO2.R/

� $ e2�i� $ �
cos� �sin�
sin� cos�

�
and so

SO2.R/ tors ' .R=Z/tors DQ=Z:

Every finite subgroup of Q=Z is cyclic (each is of the form n�1Z=Z where n is the least
common denominator of the elements of the group). 2

REMARK 2.11 Let � .1/ be the full modular group SL2.Z/. I claim the cusps of � .1/ are
exactly the points of Q[f1g, and each is � .1/-equivalent to1. Certainly1 is the fixed
point of the parabolic matrix T D �1 10 1�. Suppose m=n 2Q; we can assume m and n to be
relatively prime, and so there are integers r and s such that rm� snD 1; let  D .m s

n r /;
then .1/Dm=n, and m=n is fixed by the parabolic element T �1. Conversely, every
parabolic element ˛ of � .1/ is conjugate to˙T , say ˛D˙T �1,  2GL2.Q/. The point
fixed by ˛ is 1, which belongs to Q[f1g:

We now find the elliptic points of � .1/. Let  be an elliptic element in � .1/. The
characteristic polynomial of  is of degree 2, and its roots are roots of 1 (because  has finite
order). The only roots of 1 lying in a quadratic field have order dividing 4 or 6. From this, it
easy to see that every elliptic point of H relative to � .1/ is � .1/-equivalent to exactly one
of i or �D .1C ip3/=2. (See also 2.12 below.)

Now let � be a subgroup of � .1/ of finite index. The cusps of � are the cusps of � .1/,
namely, the elements of Q[f1g D P1.Q/, but in general they will fall into more than one
� -orbit. Every elliptic point of � is an elliptic point of � .1/; conversely, an elliptic point of
� .1/ is an elliptic point of � if an only if it is fixed by an element of � other than˙I .
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Fundamental domains

Let � be a discrete subgroup of SL2.R/. A fundamental domain for � is a connected open
subset D of H such that no two points of D are equivalent under � and HDS xD, where
xD is the closure of D . These conditions are equivalent respectively, to the statements: the

map D! � nH is injective; the map xD! � nH is surjective. Every � has a fundamental
domain, but we shall prove this only for the subgroups of finite index in � .1/:

Let S D �0 �11 0

�
and T D �1 10 1�. Thus

Sz D �1
z
; T z D zC1

S2 � 1 mod ˙I; .ST /3 � 1 mod ˙I:
To apply S to a z with jzj D 1, first reflect in the x-axis, and then reflect through the origin
(because S.ei� /D�.e�i� /).
THEOREM 2.12 Let D D fz 2H j jzj> 1, j<.z/j< 1=2g:

(a) D is a fundamental domain for � .1/D SL2.Z/; moreover,
two elements z and z0 of xD are equivalent under � .1/ if and
only if

i) <.z/D˙1=2 and z0 D z˙ 1, (then z0 D T z or z D
T z0/, or

ii) jzj D 1 and z0 D�1=z D Sz:
(b) Let z 2 xD; if the stabilizer of z ¤ f˙I g, then

i) z D i , and Stab.i/ D hSi, which has order 2 in
� .1/=f˙I g/, or

ii) z D �D exp.2�i=6/, and Stab.�/D hTSi, which has
order 3 in � .1/=f˙I g/, or

iii) z D �2, and Stab.�2/ D hST i, which has order 3 in
� .1/=f˙I g/:

(c) The group � .1/=f˙I g is generated by S and T .

i

i
�

D

PROOF. Let � 0 be the subgroup of � .1/ generated by S and T . We shall show that
� 0 � xD DH. Recall that, if  D �a b

c d

�
, then =.z/D=.z/=jczCd j2. Fix a z 2H. Lemma

2.13 below implies that there exists a  D �a b
c d

� 2 � 0 such that jczCd j is a minimum. Then
=.z/ is a maximum among elements in the orbit of z.

For some n, z0 defD T n.z/ will have

�1=2�<.z0/� 1=2:
I claim that jz0j � 1. If not, then

=.Sz0/D=.�1=z0/D=
��x0C iy0
jz0j2

�
D =.z

0/

jz0j2 > =.z
0/D=.z/;

which contradicts our choice of z. We have shown that � 0 � xD DH:
Suppose z, z0 2 xD are � -conjugate. Then either =.z/� =.z0/ or =.z/� =.z0/, and we

shall assume the latter. Suppose z0 D z with  D �a b
c d

�
, and let z D xC iy. Then our

assumption implies that

.cxCd/2C .cy/2 D jczCd j2 � 1:
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This is impossible if c � 2 (because y2 � 3=4/, and so we need only consider the cases
c D 0;1;�1:

c D 0: Then d D˙1,  D˙�1 b0 1 �, and  is translation by b. Because z and z 2 xD,
this implies that b D˙1, and we are in case (a(i)).

c D 1: As jzCd j � 1 we must have d D 0, unless z D � D 1
2
C i
p
3
2

, in which case
d D 0 or �1, or z D �2, in which case d D 0 or 1. If d D 0, then  D ˙�a �11 0

�
, and

z D a� 1
z

. If aD 0, then we are in case (a(ii)). If a¤ 0, then aD 1 and z D �2, or aD�1
and z D �.

c D�1: This case can be treated similarly (or simply change the signs of a;b;c;d in
the last case).

This completes the proof of (a) and (b) of the theorem.
We now prove (c). Let  2 � . Choose a point z0 2 D. Because � 0 � xD D H, there

is an element  0 2 � 0 and a point z 2 xD such that  0z D z0 2 xD. Then z0 is � .1/-
equivalent to . 0�1/z0 2 xD; because z0 2D, part (a) shows that z0 D . 0�1/z0. Hence
 0�1 2 Stab.z0/\� .1/D f˙I g, and so  0 and  are equal in � .1/=f˙1g: 2

LEMMA 2.13 For a fixed z 2H and N 2 N, there are only finitely many pairs of integers
.c;d/ such that

jczCd j �N:
PROOF. Write z D xC iy. If .c;d/ is such a pair, then

jczCd j2 D .cxCd/2C c2y2 ,

so that
c2y2 � .cxCd/2C c2y2 �N:

As z 2H, y > 0, and so jcj �N=y, which implies that there are only finitely many possibil-
ities for c. For any such c, the equation

.cxCd/2C c2y2 �N
shows that there are only finitely many possible values of d . 2

REMARK 2.14 We showed that the group � .1/=f˙I g has generators S and T with relations
S2D 1 and .ST /3D 1. One can show that this is a full set of relations, and that � .1/=f˙I g
is the free product of the cyclic group of order 2 generated by S and the cyclic group of
order 3 generated by ST .

Most finite simple groups of Lie type are generated by an element of order 2 and an
element of order 3, and all but three of the sporadic simple groups are. The simple groups
with such generators are quotients of � .1/ by an arithmetic subgroup, most of which are
not congruence subgroups (because the only simple quotients of SL2.Z=NZ/ are the groups
PSL2.Z=pZ/ with p a prime dividing N ).

ASIDE 2.15 Our computation of the fundamental domain has applications for quadratic forms and
sphere packings.

Consider a binary quadratic form:

q.x;y/D ax2CbxyC cy2; a;b;c 2 R:
Assume q is definite, i.e., its discriminant �D b2�4ac < 0. Two forms q and q0 are equivalent if
there is a matrix A 2 SL2.Z/ taking q into q0 by the change of variables,�

x0

y0

�
D A

�
x

y

�
:
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In other words, the forms

q.x;y/D .x;y/ �Q �
�
x

y

�
; q0.x;y/D .x;y/ �Q0 �

�
x

y

�
are equivalent if QD Atr �Q0 �A.

Every definite binary quadratic form can be written q.x;y/D a.x�!y/.x� x!y/ with ! 2H.
The association q$ ! is a one-to-one correspondence between the definite binary quadratic forms
with a fixed discriminant� and the points of H. Moreover, two forms are equivalent if and only if the
points lie in the same SL2.Z/-orbit. A definite binary quadratic form is said to be reduced if ! is in

fz 2H j �1
2
�<.z/ < 1 and jzj> 1; or jzj D 1 and � 1

2
�<.z/� 0g:

More explicitly, q.x;y/D ax2CbxyC cy2 is reduced if and only if either

�a < b � a < c or 0� b � aD c:

Theorem 2.12 implies:

Every definite binary quadratic form is equivalent to a reduced form; two reduced forms
are equivalent if and only if they are equal.

We say that a quadratic form is integral if it has integral coefficients. There are only finitely
many equivalence classes of integral definite binary quadratic forms with a given discriminant. Each
equivalence class contains exactly one reduced form ax2CbxyC cy2. Since

4a2 � 4ac D b2��� a2��

we see that there are only finitely many values of a for a fixed �. Since jbj � a, the same is true of b,
and for each pair .a;b/ there is at most one integer c such that b2�4ac D�. For more details, see
Chapter 1 of W. LeVeque, Topics in Number Theory, II, Addison-Wesley, 1956.

We can apply this to lattice sphere packings in R2. Such a packing is determined by the lattice of
centres of the spheres (here disks). The object, of course, is to make the packing as dense as possible.
To a lattice � in R2 and a choice of a basis ff1;f2g for �, we attach the quadratic form

q.x1;x2/D kf1x1Cf2x2k2:

The problem of finding dense sphere packings then becomes that of finding quadratic forms q with

.q/
defD minfq.x/ j x 2 Z2; x ¤ 0gp

disc.q/

as large as possible. Changing the choice of basis for � corresponds to acting on q with an element
of SL2.Z/, and so we can confine our attention to reduced quadratic forms. It is then easy to show
that the quadratic form with .q/ minimum is that corresponding to �. The corresponding lattice has
basis

�
2
0

�
and

�
1p
3

�
(just as you would expect), and the quadratic form is 4.x2CxyCy2/.

Fundamental domains for congruence subgroups

First we have the following general result.

PROPOSITION 2.16 Let � be a discrete subgroup of SL2.R/, and let D be a fundamental
domain for � . Let � 0 be a subgroup of � of finite index, and choose elements 1; : : : ;m in
� such that

x� D x� 0x1[ : : :[ x� 0xm (disjoint union)

where a bar denotes the image in Aut.H/. Then D0 defDSiD is a fundamental domain for
� 0 (possibly nonconnected).
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PROOF. Let z 2H. Then zD z0 for some z0 2 xD,  2 � , and  D˙ 0i for some  0 2 � 0.
Thus z D  0iz0 2 � 0 � .i xD/:

If D0\D0 ¤ ;, then it would contain a transform of D. But then iD D jD for
some i ¤ j , which would imply that i D˙j , and this is a contradiction. 2

PROPOSITION 2.17 It is possible to choose the i so that the closure of D0 is connected;
the interior of the closure of D0 is then a connected fundamental domain for �:

PROOF. Omitted. 2

REMARK 2.18 Once one has obtained a fundamental domain for � , as in Proposition 2.16,
it is possible to read off a system of generators and relations for �:

In a future version, there will be many diagrams of fundamental domains. H. Verrill has
written a fundamental domain drawer which can sometimes be found on the web (see the
title page).

Defining complex structures on quotients

Before defining H� and the complex structure on the quotient � nH� we discuss two simple
examples.

EXAMPLE 2.19 Let D be the open unit disk, and let � be a finite group acting on D and
fixing 0. The Schwarz lemma (see p. 26) implies that Aut.D;0/D fz 2 C j jzj D 1g � R=Z,
and it follows that � is a finite cyclic group. Let z 7! �z be its generator and suppose
that �m D 1. Then zm is invariant under �, and so defines a function on �nD. It is a
homeomorphism from �nD onto D, and therefore defines a complex structure on �nD:

Let p be the quotient map D! �nD. The map f 7! f ıp is a bijection from the
holomorphic functions on U ��nD to the holomorphic functions of zm on p�1.U /�D;
but these are precisely the holomorphic functions on p�1.U / invariant under the action of
�.

EXAMPLE 2.20 Let X D fz 2 C j =.z/ > cg (some c/. Fix an integer h, and let n 2 Z act
on X as z 7! zCnh. Add a point “1” and define a topology on X� DX [f1g as follows:
a fundamental system of neighbourhoods of a point in X is as before; a fundamental system
of neighbourhoods for1 is formed of sets of the form fz 2 C j =.z/ > N g. We can extend
the action of Z on X to a continuous action on X� by requiring1CnhD1 for all n 2 Z.
Consider the quotient space � nX�. The function

q.z/D
�
e2�iz=h z ¤1;
0 z D1;

is a homeomorphism � nX�!D from � nX� onto the open disk of radius e�2�c=h and
centre 0. It therefore defines a complex structure on � nX�.

The complex structure on � .1/nH�
We first define the complex structure on � .1/nH. Write p for the quotient map H!� .1/nH.
Let P be a point of � .1/nH, and let Q be a point of H mapping to it.

If Q is not an elliptic point, we can choose a neighbourhood U of Q such that p is a
homeomorphism U ! p.U /. We define .p.U /;p�1/ to be a coordinate neighbourhood of
P:
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If Q is equivalent to i , we may as well take it to equal i . The map z 7! z�i
zCi

defines an
isomorphism of some open neighbourhood D of i stable under S onto an open disk D0 with
centre 0, and the action of S on D is transformed into the automorphism � Wz 7! �z of D0

(because it fixes i and has order 2). Thus hSinD is homeomorphic to h�inD0, and we give
hSinD the complex structure making this a bi-holomorphic isomorphism. More explicitly,
z�i
zCi

is a holomorphic function defined in a neighbourhood of i , and S D �0 �11 0

�
maps it to

�z�1� i
�z�1C i D

�1� iz
�1C iz D

�iCz
�i �z D�

z� i
zC i .

Thus z 7!
�
z�i
zCi

�2
is a holomorphic function defined in a neighbourhood of i which is in-

variant under the action of S ; it therefore defines a holomorphic function in a neighbourhood
of p.i/, and we take this to be the coordinate function near p.i/:

The point Q D �2 can be treated similarly. Apply a linear fractional transformation
that maps Q to zero, and then take the cube of the map. Explicitly, �2 is fixed by ST ,
which has order 3 (as a transformation). The function z 7! z��2

z�x�2
defines an isomorphism

from a disk with centre �2 onto a disk with centre 0, and .z��
2

z�x�2
/3 is invariant under ST .

It therefore defines a function on a neighbourhood of p.�2/, and we take this to be the
coordinate function near p.�2/:

The Riemann surface � .1/nH we obtain is not compact—to compactify it, we need
to add a point. The simplest way to do this is to add a point1 to H, as in 2.20, and use
the function q.z/D exp.2�iz/ to map some neighbourhood U D fz 2 H j =.z/ > N g of
1 onto an open disk V with centre 0. The function q is invariant under the action of the
stabilizer of hT i of1, and so defines a holomorphic function qW hT inU ! V , which we
take to be the coordinate function near p.1/:

Alternatively, we can consider H� D H[P1.Q/, i.e., H� is the union of H with the
set of cusps for � .1/. Each cusp other than9 1 is a rational point on the real axis, and
is of the form �1 for some � 2 � .1/ (see 2.11). Give �1 the fundamental system of
neighbourhoods for which � is a homeomorphism. Then � .1/ acts continuously on H�, and
we can consider the quotient space � .1/nH�. Clearly, � .1/nH� D .� .1/nH/[f1g, and
we can endow it with the same complex structure as before.

PROPOSITION 2.21 The Riemann surface � .1/nH� is compact and of genus zero; it is
therefore isomorphic to the Riemann sphere.

PROOF. It is compact because xD[f1g is compact. We sketch four proofs that it has genus
0. First, by examining carefully how the points of xD are identified, one can see that it
must be homeomorphic to a sphere. Second, show that it is simply connected (loops can be
contracted), and the Riemann sphere is the only simply connected compact Riemann surface
(Uniformization Theorem 0.1). Third, triangulate it by taking �, i , and1 as the vertices of
the obvious triangle, add a fourth vertex not on any side of the triangle, and join it to the
first three vertices; then 2�2g D 4�6C4D 2. Finally, there is a direct proof that there is a
function j holomorphic on � nH and having a simple pole at1—it is therefore of valence
one, and so defines an isomorphism of � nH� onto the Riemann sphere. 2

9We sometimes denote1 by i1 and imagine it to be at the end of the imaginary axis.
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The complex structure on � nH�
Let � � � .1/ of finite index. We can define a compact Riemann surface � nH� in much the
same way as for � .1/. The complement of � nH in � nH� is the set of equivalence classes
of cusps for � .10

First � nH is given a complex structure in exactly the same way as in the case � D � .1/.
The point1 will always be a cusp .� must contain T h for some h, and T h is a parabolic
element fixing1/. If h is the smallest power of T in � , then the function qD exp.2�iz=h/
is a coordinate function near1. Any other cusp for � is of the form �1 for � 2 � .1/, and
z 7! q.��1.z// is a coordinate function near �1:

We write Y.� /D� nH andX.� /D� nH�. We abbreviate Y.� .N // to Y.N /,X.� .N //
to X.N/, Y.�0.N // to Y0.N /, X.�0.N // to X0.N / and so on.

The genus of X.� /

We now compute the genus of X.� / by considering it as a covering of X.� .1//. According
to the Riemann-Hurwitz formula (1.27)

2g�2D�2mC
X

.eP �1/
or

g D 1�mC
X

.eP �1/=2:
where m is the degree of the covering X.� /!X.� .1// and eP is the ramification index at
the point P . The ramification points are the images of elliptic points on H� and the cusps.

THEOREM 2.22 Let � be a subgroup of � .1/ of finite index, and let �2 Dthe number of
inequivalent elliptic points of order 2; �3 Dthe number of inequivalent elliptic points of
order 3; �1 D the number of inequivalent cusps. Then the genus of X.� / is

g D 1Cm=12��2=4��3=3��1=2:
PROOF. Let p be the quotient map H� ! � .1/nH�, and let ' be the map � nH� !
� .1/nH�. If Q is a point of H� and P 0 and P are its images in � nH� and � .1/nH� then
the ramification indices multiply:

e.Q=P /D e.Q=P 0/ � e.P 0=P /:
If Q is a cusp, then this formula is not useful, as e.Q=P /D1D e.Q=P 0/ (the map p is
1 W 1 on every neighbourhood of1/. For Q 2H and not an elliptic point it tells us P 0 is
not ramified.

Suppose that P D p.i/, so that Q is � .1/-equivalent to i . Then either e.Q=P 0/D 2
or e.P 0=P /D 2. In the first case, Q is an elliptic point for � and P 0 is unramified over
P ; in the second, Q is not an elliptic point for � , and the ramification index of P 0 over P
is 2. There are �2 points P 0 of the first type, and .m��2/=2 points of the second. HenceP
.eP 0 �1/D .m��2/=2:
Suppose that P D p.�/, so that Q is � .1/-equivalent to �. Then either e.Q=P 0/D 3

or e.P 0=P /D 3. In the first case, Q is an elliptic point for � and P 0 is unramified over
P ; in the second, Q is not an elliptic point for � , and the ramification index of P 0 over P
is 3. There are �3 points P 0 of the first type, and .m��3/=3 points of the second. HenceP
.eP 0 �1/D 2.m��3/=3:
10Exercise: check that � nH� is Hausdorff.
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Suppose that P D p.1/, so that Q is a cusp for � . There are �1 points P 0 andP
ei Dm; hence

P
ei �1Dm��1:

We conclude: X
.eP 0 �1/D .m��2/=2 .P 0 lying over '.i//X
.eP 0 �1/D 2.m��3/=3 .P 0 lying over '.�//X
.eP 0 �1/D .m��1/ .P 0 lying over '.1//:

Therefore

g D 1�mC
X

.eP �1/=2D 1Cm=12��2=4��3=3��1=2: 2

EXAMPLE 2.23 Consider the principal congruence subgroup � .N/. We have to compute
the index of � .N/ in � , i.e., the order of SL2.Z=NZ/. One sees easily that:

(a) GL2.Z=NZ/�QGL2.Z=prii Z/ if N DQprii (because Z=NZ�QZ=prii Z).

(b) The order of GL2.Fp/ D .p2 � 1/.p2 � p/ (because the top row of a matrix in
GL2.Fp/ can be any nonzero element of k2, and the second row can then be any
element of k2 not on the line spanned by the first row).

(c) The kernel of GL2.Z=prZ/! GL2.Fp/ consists of all matrices of the form I C
p
�
a b
c d

�
with a;b;c;d 2 Z=pr�1Z, and so the order of GL2.Z=prZ/ is .pr�1/4 �

.p2�1/.p2�p/:
(d) #GL2.Z=prZ/D '.pr/ �#SL2.Z=prZ/, where '.pr/D #.Z=prZ/�D .p�1/pr�1.

On putting these statements together, one finds that

.� .1/ W � .N//DN 3 �
Y
pjN

.1�p�2/:

Write x� .N/ for the image of � .N/ in � .1/=f˙I g. Then

. x� .1/ W x� .N//D .� .1/ W � .N//=2;

unless N D 2, in which case itD 6.
What are �2, �3, and �1‹ Assume N > 1. Then � .N/ has no elliptic points—the

only torsion elements in x� .1/ are S D �0 �11 0

�
, ST D �0 �11 1

�
, .ST /2, and their conjugates;

none of these three elements is in � .N/ for any N > 1, and because � .N/ is a normal
subgroup, their conjugates can’t be either. The number of inequivalent cusps is �N =N
where �N D . x� .1/ W x� .N/ (see 2.24). We conclude that the genus of � .N/nH� is

g.N /D 1C�N � .N �6/=12N .N > 1/:

For example,

N D 2 3 4 5 6 7 8 9 10 11

� D 6 12 24 60 72 168 192 324 360 660

g D 0 0 0 0 1 3 5 10 13 26:

Note that X.2/ has genus zero and three cusps. There are similarly explicit formulas for the
genus of X0.N /—see Shimura 1971, p. 25.
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EXERCISE 2.24 Let G be a group (possibly infinite) acting transitively on a set X , and
let H be a normal11 subgroup of finite index in G. Fix a point x0 in X and let G0 be the
stabilizer of x0 in G, and let H0 be the stabilizer of x0 in H . Prove that the number of orbits
of H acting on X is

.G WH/=.G0 WH0/:
Deduce that the number of inequivalent cusps for � .N/ is �N =N:

REMARK 2.25 Recall that Liouville’s theorem states that the image of a nonconstant entire
function (holomorphic function on the entire complex plane C) is unbounded. The Little
Picard Theorem states that the image of such a function is either C or C with one point
omitted. We prove this.

In Example 2.23, we showed that X.2/ has genus zero and three cusps, and so Y.2/ is
isomorphic to CXftwo pointsg. Therefore an entire function f that omits at least two values
can be regarded as a holomorphic function f WC! Y.2/. Because C is simply connected, f
will lift to a function to the universal covering of Y.2/, which is isomorphic to the open unit
disk. The lifted function is constant by Liouville’s theorem.

REMARK 2.26 The Taniyama-Weil conjecture says that, for every elliptic curve E over Q,
there exists a surjective map X0.N /!E, where N is the conductor of E (the conductor of
E is divisible only by the primes whereE has bad reduction). The conjecture is suggested by
studying zeta functions (see later). For any particularN , it is possible to verify the conjecture
by listing all elliptic curves over Q with conductor N , and checking that there is a map
X0.N /!E. It is known (Frey, Ribet) that the Taniyama-Weil conjecture implies Fermat’s
last theorem. Wiles (and Taylor) proved the Taniyama-Weil conjecture for sufficiently many
elliptic curves to be able to deduce Fermat’s last theorem, and the proof of the Taniyama-Weil
conjecture was completed for all elliptic curves over Q by Breuil, Conrad, Diamond, and
Taylor. See: Darmon, Henri, A proof of the full Shimura-Taniyama-Weil conjecture is
announced. Notices Amer. Math. Soc. 46 (1999), no. 11, 1397–1401.

An elliptic curve for which there is a nonconstant map X0.N /!E for someN is called
a modular elliptic curve. Contrast elliptic modular curves which are the curves of the form
� nH� for � a congruence subgroup of � .1/:

ASIDE 2.27 A domain is a connected open subset of some space Cn. A bounded symmetric domain
X is a bounded domain that is symmetric in the sense that each point of X is an isolated fixed point
of an involution of X (holomorphic automorphism of X of order 2). A complex manifold isomorphic
to a bounded symmetric domain is called a hermitian symmetric domain (or, loosely, a bounded
symmetric domain).

For example, the unit diskD is a bounded symmetric domain—the origin is the fixed point of the
involution z 7! �z, and, since Aut.D/ acts transitively on D, this shows that every other point must
also be the fixed point of an involution. As H is isomorphic to D, it is a hermitian symmetric domain.
Every hermitian symmetric domain is simply connected, and so (by the Uniformization Theorem)
every hermitian symmetric domain of dimension one is isomorphic to the complex upper half plane.

The hermitian symmetric domains of all dimensions were classified by Elie Cartan, except for
the exceptional ones. Just as for H, the group of automorphisms Aut.X/ of a hermitian symmetric
domain X is a Lie group, which is simple if X is indecomposable (i.e., not equal to a product of
hermitian symmetric domains). There are hermitian symmetric domains attached to groups of type
An (n� 1), Bn (n� 2), Cn (n� 3), Dn (n� 4), E6, E7:

11The exercise becomes false without this condition. For example, take H D �0.p/ and x0 D1; then
ŒGWH�DpC1 and ŒG1WH1�D 1, and the formula in the exercise gives us pC1 for the number of inequivalent
cusps for �0.p/. However, we know that �0.p/ has only 2 cusps.
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Let X be a hermitian symmetric domain. There exist many semisimple algebraic groups G
over Q and surjective homomorphisms G.R/C! Aut.X/C with compact kernel—the C denotes the
identity component for the real topology. For example, we saw above that every quaternion algebra
over Q that splits over R gives rise to such a group for H. Given such a G, one defines congruence
subgroups � �G.Z/ just as for SL2.Z/, and studies the quotients.

In 1964, Baily and Borel showed that each quotient � nX has a canonical structure as an algebraic
variety; in fact, they proved that � nX could be realized in a natural way as a Zariski-open subvariety
of a projective algebraic variety � nX�.

Various examples of these varieties were studied by Poincaré, Hilbert, Siegel, and many others,
but Shimura began an intensive study of their arithmetic properties in the 1960s, and they are now
called Shimura varieties.

Given a Shimura variety � nX , one can attach a number field E to it, and prove that the Shimura
variety is defined, in a natural way, over E. Thus one obtains a vast array of algebraic varieties
defined over number fields, all with very interesting arithmetic properties. In this course, we study
only the simplest case.
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3 Elliptic Functions

In this section, we review some of the theory of elliptic functions. For more details, see
Cartan 1963, V 2.5, VI 5.3, or Milne 2006, III 1,2.

Lattices and bases

Let !1 and !2 be two nonzero complex numbers such that � D !1=!2 is imaginary. By
interchanging !1 and !2 if necessary, we can ensure that � D !1=!2 lies in the upper half
plane. Write

�D Z!1CZ!2;

so that � is the lattice generated by !1 and !2. We are interested in � rather than the basis
f!1;!2g. A second pair of elements of �,

!01 D a!1Cb!2; !02 D c!1Cd!2; a;b;c;d 2 Z,

is a basis for � if and only if det
�
a b
c d

�D˙1. The calculation on p. 6 shows that the ratio

� 0
defD !01=!02 has imaginary part

=.� 0/D=
�
a�Cb
c�Cd

�
D det

�
a b
c d

� � =.�/jczCd j2 :

Therefore, the ordered bases .!01;!
0
2/ of � with =.!01=!02/ > 0 are those of the form�

!01
!02

�
D
�
a b

c d

��
!1
!2

�
with

�
a b

c d

�
2 SL2.Z/:

Any parallelogram with vertices z0, z0C!1, z0C!1C!2, z0C!2, where f!1;!2g is a
basis for �, is called a fundamental parallelogram for �:

Quotients of C by lattices

Let� be a lattice in C (by which I always mean a full lattice, i.e., a set of the form Z!1CZ!2
with !1 and !2 linearly independent over R). We can make the quotient space C=� into a
Riemann surface as follows: let Q be a point in C and let P be its image C=�; then there
exist neighbourhoods V of Q and U of P such that the quotient map pWC! C=� defines
a homeomorphism V ! U ; we take every such pair .U;p�1WV ! U/ to be a coordinate
neighbourhood. In this way we get a complex structure on C=� having the following
property: the map pWC! C=� is holomorphic, and for every open subset U of C=�, a
function f WU ! C is holomorphic if and only if f ıp is holomorphic on p�1.U /:

Topologically, C=� � .R=Z/2, which is a single-holed torus. Thus C=� has genus
1. All spaces C=� are homeomorphic, but, as we shall see, they are not all isomorphic as
Riemann surfaces.

Doubly periodic functions

Let � be a lattice in C. A meromorphic function f .z/ on the complex plane is said to be
doubly periodic with respect to � if it satisfies the functional equation:

f .zC!/D f .z/ for every ! 2�:
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Equivalently, �
f .zC!1/ D f .z/

f .zC!2/ D f .z/

for some basis f!1;!2g for �.

PROPOSITION 3.1 Let f .z/ be a doubly periodic function for �, not identically zero, and
let D be a fundamental parallelogram for � such that f has no zeros or poles on the
boundary of D. Then

(a)
P
P2D ordP .f /D 0I

(b)
P
P2DResP .f /D 0I

(c)
P
P2D ordP .f / �P � 0 (mod �/:

The second sum is over the points of D where f has a pole, and the other sums are over the
points where it has a zero or pole. Each sum is finite.

PROOF. Regard f as a function on C=�. Then (a) and (b) are special cases of (a) and (b)
of Proposition 1.12, and (c) is obtained by applying 1.12(b) to z �f 0.z/=f .z/. 2

COROLLARY 3.2 A nonconstant doubly periodic function has at least two poles.

PROOF. A doubly periodic function that is holomorphic is bounded in a closed period
parallelogram (by compactness), and hence on the entire plane (by periodicity); so it is
constant, by Liouville’s theorem. A doubly periodic function with a simple pole in a period
parallelogram is impossible, because, by 3.1(a), the residue at the pole would be zero, and so
the function would be holomorphic. 2

Endomorphisms of C=�

Note that � is a subgroup of the additive group C, and so C=� has a natural group structure.

PROPOSITION 3.3 Let� and�0 be two lattices in C. An element ˛ 2C such that ˛���0
defines a holomorphic map

'˛WC=�! C=�0; Œz� 7! Œ˛z�;

sending Œ0� to Œ0�, and every such map is of this form (for a unique ˛/. In particular,

Z� End.C=�/:

PROOF. It is obvious that ˛ defines such a map. Conversely, let 'WC=�! C=�0 be a
holomorphic map such that '.Œ0�/D Œ0�. Then C is the universal covering space of both
C=� and C=�0, and a standard result in topology shows that ' lifts to a continuous map
z'WC! C such that z'.0/D 0:

C C

C=� C=�0:

z'

'

Because the vertical maps are local isomorphisms, z' is automatically holomorphic. For any
! 2�, the map z 7! z'.zC!/� z'.z/ takes values in �0 � C. It is a continuous map from
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connected space C to a discrete space �0, and so it must be constant. Therefore z'0 defD d z'
dz

is
doubly periodic function, and so defines a holomorphic function C=�! C, which must be
constant (because C=� is compact), say z'0.z/D ˛. Then z'.z/D ˛zCˇ, and the fact that
z'.0/D 0 implies that ˇ D 0: 2

COROLLARY 3.4 Every holomorphic map 'WC=�! C=�0 such that '.0/D 0 is a homo-
morphism.

PROOF. Clearly Œz� 7! Œ˛z� is a homomorphism. 2

Compare this with the result (AG, 7.14): every regular map 'WA! A0 from an abelian
variety A to an abelian variety A0 such that '.0/D 0 is a homomorphism.

COROLLARY 3.5 The Riemann surfaces C=� and C=�0 are isomorphic if and only if
�0 D ˛� for some ˛ 2 C�:
COROLLARY 3.6 Either End.C=�/D Z or there is an imaginary quadratic field K such
that End.C=�/ is a subring of OK of rank 2 over Z.

PROOF. Write � D Z!1CZ!2 with � defD !1=!2 2 H, and suppose that there exists an
˛ 2 C, ˛ … Z, such that ˛���. Then

˛!1 D a!1Cb!2
˛!2 D c!1Cd!2;

with a;b;c;d 2 Z. On dividing through by !2 we obtain the equations

˛� D a�Cb
˛ D c�Cd:

Note that c is nonzero because ˛ … Z. On eliminating ˛ from between the two equations, we
find that

c�2C .d �a/� �b D 0:
Therefore QŒ� � is of degree 2 over Q. On eliminating � from between the two equations, we
find that

˛2� .aCd/˛Cad �bc D 0:
Therefore ˛ is integral over Z, and hence is contained in the ring of integers of QŒ� �. 2

The Weierstrass }-function

We want to construct some doubly periodic functions. Note that when G is a finite group
acting on a set S , then it is easy to construct functions invariant under the action of G: for
any function hWS ! C, the function f .s/ DPg2G h.gs/ is invariant under G, because
f .g0s/ DPg2G h.g

0gs/ D f .s/, and all invariant functions are of this form, obviously.
When G is not finite, one has to verify that the series converges—in fact, in order to be able
to change the order of summation, one needs absolute convergence. Moreover, when S is a
Riemann surface and h is holomorphic, to ensure that f is holomorphic, one needs that the
series converges absolutely uniformly on compact sets.

Now let '.z/ be a holomorphic function C and write

˚.z/D
X
!2�

'.zC!/:
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Assume that as jzj !1, '.z/! 0 so fast that the series for ˚.z/ is absolutely convergent
for all z for which none of the terms in the series has a pole. Then ˚.z/ is doubly periodic
with respect to �; for replacing z by zC!0 for some !0 2� merely rearranges the terms
in the sum. This is the most obvious way to construct doubly periodic functions; similar
methods can be used to construct functions on other quotients of domains.

To prove the absolute uniform convergence on compact subsets of such series, the
following test is useful.

LEMMA 3.7 Let D be a bounded open set in the complex plane and let c > 1 be constant.
Suppose that  .z;!/, ! 2�, is a function that is meromorphic in z for each ! and which
satisfies the condition12

 .z;m!1Cn!2/DO..m2Cn2/�c/ as m2Cn2!1 (2)

uniformly in z for z in D. Then the series
P
!2� .z;!/, with finitely many terms which

have poles in D deleted, is uniformly absolutely convergent in D:

PROOF. That only finitely many terms can have poles in D follows from (2). This condition
on  means that there are constants A and B such that

j .z;m!1Cn!2/j< B.m2Cn2/�c

whenever m2Cn2 > A. To prove the lemma it suffices to show that, given any " > 0, there
is an integer N such that S < " for every finite sum S DP j .z;m!1Cn!2/j in which all
the terms are distinct and each one of them has m2Cn2 � 2N 2. Now S consists of eight
subsums, a typical member of which consists of the terms for which m� n� 0. (There is
some overlap between these sums, but that is harmless.) In this subsum we have m � N
and  < Bm�2c , assuming as we may that 2N 2 > A; and there are at most mC1 possible
values of n for a given m. Thus

S �
1X

mDN

Bm�2c.mC1/ < B1N 2�2c

for a suitable constant B1, and this proves the lemma. 2

We know from (3.1) that the simplest possible nonconstant doubly periodic function
is one with a double pole at each point of � and no other poles. Suppose f .z/ is such a
function. Then f .z/�f .�z/ is a doubly periodic function with no poles except perhaps
simple ones at the points of �. Hence by the argument above, it must be constant, and since
it is an odd function it must vanish. Thus f .z/ is even,13 and we can make it unique by
imposing the normalization condition f .z/D z�2CO.z2/ near z D 0—it turns out to be
convenient to force the constant term in this expansion to vanish rather than to assign the
zeros of f .z/. There is such an f .z/—indeed it is the Weierstrass function }.z/—but we
can’t define it by the method at the start of this subsection because if '.z/D z�2, the series
˚.z/ is not absolutely convergent. However, if '.z/D�2z�3, we can apply this method,
and it gives }0, the derivative of the Weierstrass }-function. Define

}0.zI�/D }0.zI!1;!2/D�2
X
!2�

1

.z�!/3 :

12The expression f .z/DO.'.z// means that jf .z/j< C'.z/ for some constant C (independent of z/ for
all values of z in question.

13Recall that a function f .x/ is even if f .�x/D f .x/ and odd if f .�x/D�f .x/.
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Hence

}.z/D 1

z2
C

X
!2�;!¤0

�
1

.z�!/2 �
1

!2

�
:

THEOREM 3.8 Let P1; :::;Pn and Q1; :::;Qn be two sets of n � 2 points in the complex
plane, possibly with repetitions, but such that no Pi is congruent to a Qj modulo �. IfP
Pi �

P
Qj mod �, then there exists a doubly periodic function f .z/ whose poles are

the Pi and whose zeros are the Qj with correct multiplicity, and f .z/ is unique up to
multiplication by a nonzero constant.

PROOF. There is an elementary constructive proof. Alternatively, it follows from the
Riemann-Roch theorem applied to C=�. 2

The addition formula

PROPOSITION 3.9 There is the following formula:

}.zCz0/D 1

4

�
}0.z/�}0.z0/
}.z/�}.z0/

�2
�}.z/�}.z0/:

PROOF. Let f .z/ denote the difference between the left and the right sides. Its only possible
poles (in D/ are at 0, or ˙z0, and by examining the Laurent expansion of f .z/ near these
points one sees that it has no pole at 0 or z, and at worst a simple pole at z0. Since it is
doubly periodic, it must be constant, and since f .0/D 0, it must be identically zero. 2

In particular, }.zC z0/, when regarded as a function of z, is a rational function of }.z/
and }0.z/. In Proposition 3.11 below, we show that this is true of every doubly periodic
function of z.

Eisenstein series

Write
Gk.�/D

X
!2�;!¤0

!�2k

and define Gk.z/DGk.zZCZ/:

PROPOSITION 3.10 The Eisenstein series Gk.z/, k > 1, converges to a holomorphic func-
tion on H; it takes the value 2�.2k/ at infinity. (Here �.s/DPn�s , the usual zeta function.)

PROOF. Apply Lemma 3.7 to see that Gk.z/ is a holomorphic function on H. It re-
mains to consider Gk.z/ as z! i1 (remaining in D, the fundamental domain for � .1//.
Because the series for Gk.z/ converges uniformly absolutely on D, limz!i1Gk.z/ DP

limz!i1 1=.mzCn/2k . But limz!i1 1=.mzCn/2k D 0 unless mD 0, and so

lim
z!i1

Gk.z/D
X

n2Z;n¤0

1=n2k D 2
X
n�1

1=n2k D 2�.2k/:
2
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The field of doubly periodic functions

PROPOSITION 3.11 The field of doubly periodic functions is just C.}.z/;}0.z//, and

}0.z/2 D 4}.z/3�g2}.z/�g3
where g2 D 60G2 and g3 D 140G3:
PROOF. To prove the second statement, define f .z/ to be the difference of the left and the
right hand sides, and show (from its Laurent expansion) that it is holomorphic near 0 and
take the value 0 there. Since it is doubly periodic and holomorphic elsewhere, this implies
that it is zero.

For the first statement, we begin by showing that every even doubly periodic function f
lies in C.}/. Observe that, because f .z/D f .�z/, the kth derivative of f ,

f .k/.z/D .�1/kf .k/.�z/:
Therefore, if f has a zero of orderm at z0, then it has a zero of orderm at �z0. On applying
this remark to 1=f , we obtain the same statement with “zero” replaced by “pole”. Similarly,
because f .2kC1/.z0/ D �f .2kC1/.�z0/, if z0 � �z0 mod �, then the order of zero (or
pole) of f at z0 is even. Choose a set of representatives mod � for the zeros and poles of f
not in � and number them z1; : : : ; zm, �z1; : : : ;�zm, zmC1; : : : ; zn so that (modulo �)

zi 6� �zi ; 1� i �m
zi ��zi 6� 0; m < i � n.

Let mi be the order of f at zi ; according to the second observation, mi is even for i > m.
Now }.z/�}.zi / is also an even doubly periodic function. Since it has exactly two poles
in a fundamental domain, it must have exactly two zeros there. When i �m, it has simple
zeros at˙zi ; when i > m, it has a double zero at zi (by the second observation). Define

g.z/DQm
iD1.}.z/�}.zi //mi �

Qn
iDmC1.}.z/�}.zi //mi=2:

Then f .z/ and g.z/ have exactly the same zeros and poles at points z not on �. We deduce
from (3.1a) that they also have the same order at z D 0, and so f=g, being holomorphic and
doubly periodic, is constant: f D cg 2 C.}/. Now consider an arbitrary doubly periodic
function f . Such an f decomposes into the sum of an even and of an odd doubly periodic
function:

f .z/D f .z/Cf .�z/
2

C f .z/�f .�z/
2

:

We know that the even doubly periodic functions lie in C.}/, and clearly the odd doubly
periodic functions lie in }0 �C.}/. 2

Elliptic curves

Let k be a field of characteristic ¤ 2;3. By an elliptic curve over k, I mean a pair .E;0/
consisting of a nonsingular projective curve E of genus one and with a point 0 2E.k/. From
the Riemann-Roch theorem, we obtain regular functions x and y on E such that x has a
double pole at 0 and y a triple pole at 0, and neither has any other poles. Again from the
Riemann-Roch theorem applied to the divisor 6 �0, we find that there is a relation between 1,
x, x2, x3, y, y2, xy, which can be put in the form

y2 D 4x3�ax�b:
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The fact that E is nonsingular implies that � defD a3�27b2 ¤ 0. Thus E is isomorphic to the
projective curve defined by the equation,

Y 2Z D 4X3�aXZ2�bZ3;

and every equation of this form (with �¤ 0/ defines an elliptic curve. Define

j.E/D 1728a3=�:

If the elliptic curves E and E 0 are isomorphic then j.E/D j.E 0/, and the converse is true
when k is algebraically closed. If E is an elliptic curve over C, then E.C/ has a natural
complex structure—it is a Riemann surface. (See Milne 2006 for proofs of these, and other
statements, about elliptic curves.)

An elliptic curve has a unique group structure (defined by regular maps) having 0 as its
zero.

The elliptic curve E.�/

Let � be a lattice in C. We have seen that

}0.z/2 D 4}.z/3�g2}.z/�g3:

Let E.�/ be the projective curve defined by the equation:

Y 2Z D 4X3�g2XZ2�g3Z3:

PROPOSITION 3.12 The curve E.�/ is an elliptic curve (i.e., �¤ 0/, and the map

C=�!E.�/;

�
z 7! .}.z/ W }0.z/ W 1/; z ¤ 0
0 7! .0 W 1 W 0/

is an isomorphism of Riemann surfaces. Every elliptic curve E is isomorphic to E.�/ for
some �:

PROOF. The first statement is obvious. There are direct proofs of the second statement, but
we shall see in the next section that z 7! �.zZCZ/ is a modular function for � .1/ with
weight 12 having no zeros in H, and that z 7! j.zZCZ/ is a modular function and defines a
bijection � .1/nH! C (therefore every j equals j.�/ for some lattice ZzCZ, z 2H/. 2

The addition formula shows that the map in the proposition is a homomorphism.

PROPOSITION 3.13 There are natural equivalences between the following categories:

(a) Objects: Elliptic curves E over C:
Morphisms: Regular maps E!E 0 that are homomorphisms.

(b) Objects: Riemann surfaces E of genus 1 together with a point 0.
Morphisms: Holomorphic maps E!E 0 sending 0 to 00:

(c) Objects: Lattices �� C:
Morphisms: Hom.�;�0/D f˛ 2 C j ˛���0g:

PROOF. The functor c ! b is � C=�. The functor a ! b is .E;0/ .E.C/;0/,
regarded as a pointed Riemann surface. 2
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4 Modular Functions and Modular Forms

Modular functions

Let � be a subgroup of finite index in � .1/. A modular function for � is a meromorphic
function on the compact Riemann surface � nH�. We often regard it as a meromorphic
function on H� invariant under � . Thus, from this point of view, a modular function f for
� is a function on H satisfying the following conditions:

(a) f .z/ is invariant under � , i.e., f .z/D f .z/ for all  2 � I
(b) f .z/ is meromorphic in HI
(c) f .z/ is meromorphic at the cusps.

For the cusp i1, the last condition means the following: the subgroup of � .1/ fixing
i1 is generated by T D �1 10 1�—it is free abelian group of rank 1; the subgroup of � fixing
i1 is a subgroup of finite index in hT i, and it therefore is generated by

�
1 h
0 1

�
for some

h 2N, .h is called the width of the cusp); as f .z/ is invariant under
�
1 h
0 1

�
, f .zCh/D f .z/,

and so f .z/ can be expressed as a function f �.q/ of the variable q D exp.2�iz=h/; this
function f �.q/ is defined on a punctured disk, 0 < jqj< ", and for f to be meromorphic at
i1 means f � is meromorphic at q D 0:

For a cusp � ¤ i1, the condition means the following: we know there is an element
� 2 � .1/ such that � D �.i1/; the function z 7! f .�z/ is invariant under �� ��1, and
f .�z/ is required to be meromorphic at i1 in the above sense.

Of course (c) has to be checked only for a finite set of representatives of the � -
equivalence classes of cusps.

Recall that a function f .z/ that is holomorphic in a neighbourhood of a point a 2 C
(except possibly at a) is holomorphic at a if and only if f .z/ is bounded in a neighbourhood
of a. It follows that f .z/ has a pole at a, and therefore defines a meromorphic function
in a neighbourhood of a, if and only if .z�a/nf .z/ is bounded near a for some n, i.e., if
f .z/D O..z�a/�n/ near a. When we apply this remark to a modular function, we see
that f .z/ is meromorphic at i1 if and only if f �.q/DO.q�n/ for some n as q! 0, i.e.,
if and only if, for some A > 0, eAiz �f .z/ is bounded as z! i1:
EXAMPLE 4.1 As � .1/ is generated by S and T , to check condition (a) it suffices to verify
that

f .�1=z/D f .z/; f .zC1/D f .z/:
The second equation implies that f D f �.q/, q D exp.2�iz/, and condition (c) says that

f �.q/D
X

n��N0

aiq
i :

EXAMPLE 4.2 The group � .2/ is of index 6 in � .1/. It is possible to find a set of generators
for � .2/ just as we found a set of generators for � .1/, and again it suffices to check
condition (a) for the generators. There are three inequivalent cusps, namely, i1, S.i1/D�
0 �1
1 0

��
1
0

�D �01�D 0, and TS.i1/D 1. Note that S.0/D i1. The stabilizer of i1 in
� .2/ is generated by

�
1 2
0 1

�
, and so f .z/D f �.q/, q D exp.2�iz=2/, and for f .z/ to be

meromorphic at i1means f � is meromorphic at 0. For f .z/ to be meromorphic at 0means
that f .Sz/D f .�1=z/ is meromorphic at i1, and for f .z/ to be meromorphic at 1 means
that f .1� 1

z
/ is meromorphic at i1:
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PROPOSITION 4.3 There exists a unique modular function J for � .1/which is holomorphic
except at i1, where it has a simple pole, and which takes the values

J.i/D 1 , J.�/D 0:
PROOF. From Proposition 2.21 we know there is an isomorphism of Riemann surfaces
f W� .1/nH�! S (Riemann sphere). Write a, b, c for the images of �, i ,1. Then there
exists a (unique) linear fractional transformation14 S ! S sending a, b, c to 0, 1,1, and on
composing f with it we obtain a function J satisfying the correct conditions.

If g is a second function satisfying the same conditions, then gıf �1 is an automorphism
of the Riemann sphere, and so it is a linear fractional transformation. Since it fixes 0, 1,1 it
must be the identity map. 2

REMARK 4.4 Let j.z/D 1728g32=�, as in Section 3. Then j.z/ is invariant under � .1/
because g32 and � are both modular forms of weight 12 (we give all the details for this
example later). It is holomorphic on H because both of g32 and � are holomorphic on H,
and � has no zeros on H. Because � has a simple zero at1, j has a simple pole at1.
Therefore j.z/ has valence one, and it defines an isomorphism from � nH� onto S (the
Riemann sphere). In fact, j.z/D 1728J.z/:

Modular forms

Let � be a subgroup of finite index in � .1/.

DEFINITION 4.5 A modular form for � of weight 2k is a function on H such that:
(a) f .z/D .czCd/2k �f .z/, all z 2H and all  D �a b

c d

� 2 � I
(b) f .z/ is holomorphic in HI
(c) f .z/ is holomorphic at the cusps of �:

A modular form is a cusp form if it is zero at the cusps.

For example, for the cusp i1, this last condition means the following: let h be the width
of i1 as a cusp for � ; then (a) implies that f .zCh/D f .z/, and so f .z/D f �.q/ for
some function f � on a punctured disk; f � is required to be holomorphic at q D 0:

Occasionally we shall refer to a function satisfying only 4.5(a) as being weakly modular
of weight 2k, and a function satisfying 4.5(a,b,c) with “holomorphic” replaced by “meromor-
phic” as being a meromorphic modular form of weight 2k. Thus a meromorphic modular
form of weight 0 is a modular function.

As our first examples of modular forms, we have the Eisenstein series. Let L be the set
of lattices in C, and write �.!1;!2/ for the lattice Z!1CZ!2 generated by independent
elements !1, !2 with =.!1=!2/ > 0. Recall that �.!01;!

0
2/D�.!1;!2/ if and only if�

!01
!02

�
D
�
a b

c d

��
!1
!2

�
, some

�
a b

c d

�
2 SL2.Z/D � .1/:

LEMMA 4.6 Let F WL!C be a function of weight 2k, i.e., such that F.��/D ��2k �F.�/
for � 2 C�. Then f .z/ defD F.�.z;1// is a weakly modular form on H of weight 2k and
F 7! f is a bijection from the functions of weight 2k on L to the weakly modular forms of
weight 2k on H:

14Recall (p. 30) that the linear fractional transformations of P1.C/ are the maps z 7! azCb
czCd

with a;b;c;d 2Z,
ad �bc ¤ 0. For any distinct triples .z1;z2;z3/ and .z01;z

0
2;z
0
3/ of distinct points in P1.C/, there is a unique

linear fractional transformation sending z1 to z01, z2 to z02, and z3 to z03 (see the Wikipedia).
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PROOF. Write F.!1;!2/ for the value of F at the lattice �.!1;!2/. Then because F is of
weight 2k, we have

F.�!1;�!2/D ��2k �F.!1;!2/ , � 2 C� ,

and, because F.!1;!2/ depends only on �.!1;!2/, it is invariant under the action of
SL2.Z/ W

F.a!1Cb!2; c!1Cd!2/D F.!1;!2/, all
�
a b

c d

�
2 SL2.Z/: (3)

The first equation shows that !2k2 �F.!1;!2/ is invariant under .!1;!2/ 7! .�!1;�!2/,
� 2 C�, and so depends only on the ratio !1=!2; thus there is a function f .z/ such that

F.!1;!2/D !�2k2 �f .!1=!2/: (4)

When expressed in terms of f , (3) becomes

.c!1Cd!2/�2k �f .a!1Cb!2=c!1Cd!2/D !�2k2 �f .!1=!2/;

or
.czCd/�2k �f .azCb=czCd/D f .z/:

This shows that f is weakly modular. Conversely, given a weakly modular f , define F by
the formula (4). 2

PROPOSITION 4.7 The Eisenstein series Gk.z/, k > 1, is a modular form of weight 2k for
� .1/ which takes the value 2�.2k/ at infinity.

PROOF. Recall that we definedGk.�/D
P
!2�;!¤0 1=!

2k . Clearly,Gk.��/D��2kGk.�/,
and therefore

Gk.z/
defD Gk.�.z;1//D

X
.m;n/¤.0;0/

1=.mzCn/2k

is weakly modular. That it is holomorphic on H and takes the value 2�.2k/ at i1 is proved
in Proposition 3.10. 2

Modular forms as k-fold differentials

The definition of modular form may seem strange, but we have seen that such functions
arise naturally in the theory of elliptic functions. Here we give another explanation of the
definition. For the experts, we shall show later that the modular forms of a fixed weight 2k
are the sections of a line bundle on � nH�.
REMARK 4.8 Consider a differential ! D f .z/ �dz on H, where f .z/ is a meromorphic
function. Under what conditions on f is ! invariant under the action of � ‹ Let .z/D azCb

czCd
;

then

�! D f .z/ �d azCb
czCd

D f .z/ � .a.czCd/� c.azCb//
.czCd/2 �dz

D f .z/ � .czCd/�2 �dz:
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Thus ! is invariant if and only if f .z/ is a meromorphic modular form of weight 2. We have
one-to-one correspondences between the following sets:
fmeromorphic modular forms of weight 2 on H for � g
fmeromorphic differential forms on H� invariant under the action of � g
fmeromorphic differential forms on � nH�g:
There is a notion of a k-fold differential form on a Riemann surface. Locally it can be

written ! D f .z/ � .dz/k , and if w D w.z/, then

w�! D f .w.z// � .dw.z//k D f .w.z// �w0.z/k � .dz/k :

Then modular forms of weight 2k correspond to � -invariant k-fold differential forms on H�,
and hence to meromorphic k-fold differential forms on � nH�. Warning: these statements
don’t (quite) hold with meromorphic replaced with holomorphic (see Lemma 4.11 below).

We say that ! D f .z/ � .dz/k has a zero or pole of order m at z D 0 according as f .z/
has a zero or pole of order m at z D 0. This definition is independent of the choice of the
local coordinate near the point in question on the Riemann surface.

The dimension of the space of modular forms

For a subgroup � of finite index in � .1/, we write Mk.� / for the space of modular forms
of weight 2k for � , and Sk.� / for the subspace of cusp forms of weight 2k. They are vector
spaces over C, and we shall use the Riemann-Roch theorem to compute their dimensions.

Note that M0.� / consists of modular functions that are holomorphic on H and at the
cusps, and therefore define holomorphic functions on � nH�. Because � nH� is compact,
such a function is constant, and so M0.� /D C. The product of a modular form of weight
k with a modular form of weight ` is a modular form of weight kC`. Therefore,

M.� /
defD
M

k�0
Mk.� /

is a graded ring. The next theorem gives us the dimensions of the homogeneous pieces.

THEOREM 4.9 The dimension of Mk.� / is given by:

dim.Mk.� //D
8<:
0 if k � �1
1 if k D 0
.2k�1/.g�1/C�1kC

P
P Œk.1� 1

eP
/� if k � 1

where g is the genus of X.� / .defD � nH�/;
�1 is the number of inequivalent cusps;
the last sum is over a set of representatives for the the elliptic points P of � I
eP is the order of the stabilizer of P in the image x� of � in � .1/=f˙I g;
Œk.1�1=eP /� is the integer part of k.1�1=eP /:

We prove the result by applying the Riemann-Roch theorem to the compact Riemann
surface � nH�, but first we need to examine the relation between the zeros and poles of a
� -invariant k-fold differential form on H� and the zeros and poles of the corresponding
modular form on � nH�. It will be helpful to consider first a simple example.
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EXAMPLE 4.10 Let D be the unit disk, and consider the map wWD! D, z 7! ze. Let
Q 7! P . If Q¤ 0, then the map is a local isomorphism, and so there is no difficulty. Thus
we suppose that P and Q are both zero.

First suppose that f is a function on D (the target disk), and let f � D f ıw. If f
has a zero of order m (regarded as function of w/, then f � has a zero of order em, for
if f .w/ D awmC terms of higher degree, then f .ze/ D azemC terms of higher degree:
Thus

ordQ.f �/D e �ordP .f /:

Now consider a k-fold differential form! onD, and let!�Dw�.!/. Then!D f .z/ �.dz/k
for some f .z/, and

!� D f .ze/ � .dze/k D f .ze/ � .eze�1 �dz/k D ek �f .ze/ � zk.e�1/ � .dz/k :

Thus
ordQ.!�/D e ordP .!/Ck.e�1/:

LEMMA 4.11 Let f be a (meromorphic) modular form of weight 2k, and let ! be the
corresponding k-fold differential form on � nH�. Let Q 2H� map to P 2 � nH�.

(a) If Q is an elliptic point with multiplicity e, then

ordQ.f /D e ordP .!/Ck.e�1/:

(b) If Q is a cusp, then
ordQ.f /D ordP .!/Ck:

(c) For the remaining points,
ordQ.f /D ordP .!/:

PROOF. Let p be the quotient map H! � nH:
(a) We defined the complex structure near P so that, for appropriate neighbourhoods V

of Q and U of P , there is a commutative diagram:

V D

U D:

Q 7! 0

�

p z 7! ze

P 7! 0

�

Thus this case is isomorphic to that considered in the example.
(b) Consider the map qWH! .punctured disk), q.z/ D exp.2�iz=h/, and let !� D

g.q/ � .dq/k be a k-fold differential form on the punctured disk. Then dq D .2�i=h/ �q �dz,
and so the inverse image of !� on H is

! D . cnst/ �g.q.z// �q.z/k � .dz/k;

and so !� corresponds to the modular form f .z/D .cnst/ �g.q.z// �q.z/k . Thus f �.q/D
g.q/ �qk , which gives our formula.

(c) In this case, p is a local isomorphism near Q and P , and so there is nothing to
prove. 2
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We now prove the theorem. Let f 2Mk.� /, and let ! be the corresponding k-fold
differential on � nH�. Because f is holomorphic, we must have

e ordP .!/Ck.e�1/ D ordQ.f /� 0 at the image of an elliptic point;
ordP .!/Ck D ordQ.f /� 0 at the image of a cuspI

ordP .!/ D ordQ.f /� 0 at the remaining points:

Fix a k-fold differential !0, and write ! D h �!0. Then

ordP .h/CordP .!0/Ck.1�1=e/ � 0 at the image of an elliptic point;
ordP .h/CordP .!0/Ck � 0 at the image of a cusp;

ordP .h/CordP .!0/ � 0 at the remaining points.

On combining these inequalities, we find that

div.h/CD � 0;
where

D D div.!0/C
X

k �Pi C
X

Œk.1�1=ei /� �Pi
(the first sum is over the images of the cusps, and the second sum is over the images of
the elliptic points). As we noted in Corollary 1.21, the degree of the divisor of a 1-fold
differential form is 2g�2; hence that of a k-fold differential form is k.2g�2/. Thus the
degree of D is

k.2g�2/C�1 �kC
X
P

Œk.1�1=eP /�:

Now the Riemann-Roch Theorem (1.22) tells us that the space of such h has dimension

1�gCk.2g�2/C�1 �kC
X
P

Œk.1�1=eP /�

for k � 1. As the functions h are in one-to-one correspondence with the holomorphic
modular forms of weight 2k, this proves the theorem in this case. For kD 0, we have already
noted that modular forms are constant, and for k < 0 it is easy to see that there can be no
modular forms.

Zeros of modular forms

Lemma 4.11 allows us to count the number of zero and poles of a meromorphic differential
form.

PROPOSITION 4.12 Let f be a (meromorphic) modular form of weight 2k; thenX
.ordQ.f /=eQ�k.1�1=eQ//D k.2g�2/Ck ��1

where the sum is over a set of representatives for the points in � nH�, �1 is the number of
inequivalent cusps, and eQ is the ramification index of Q over p.Q/ if Q 2H and it is 1 if
Q is a cusp.
PROOF. Let ! be the associated k-fold differential form on � nH�. We showed above
that: ordQ.f /=eQ D ordP .!/C k.1� 1=eQ/ for Q an elliptic point for � I ordQ.f / D
ordP .!/Ck forQ a cusp; ordQ.f /D ordP .!/ at the remaining points. On summing these
equations, we find thatX

ordQ.f /=eQ�k.1�1=eQ/D deg.div.!//Ck ��1;
and we noted above that deg.div.!//D k.2g�2/: 2
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EXAMPLE 4.13 When � D � .1/, this becomes

ordi1.f /C 1
2

ordi .f /C 1
3

ord�.f /C
X

ordQ.f /D�2kCkC
1

2
kC 2

3
k D k

6
:

Here i1, i , � are points in H�, and the sum
P

is over the remaining points in a fundamental
domain.

Modular forms for � .1/

We now describe all the modular forms for � .1/:

EXAMPLE 4.14 On applying Theorem 4.9 to the full modular group � .1/, we obtain the
following result: Mk D 0 for k < 0, dim M0 D 1, and

dim Mk D 1�kC Œk=2�C Œ2k=3�; k > 1:

Thus
k D 1 2 3 4 5 6 7 : : : I

dimMk D 0 1 1 1 1 2 1 : : : :

In fact, when k is increased by 6, the dimension increases by 1. Thus we have

(a) Mk D 0 for k < 0I
(b) dim.Mk/D Œk=6� if k � 1 mod 6; Œk=6�C1 otherwise; k � 0:

EXAMPLE 4.15 On applying the formula in 4.13 to the Eisenstein series Gk , k > 1, we
obtain the following result:

k D 2: G2 has a simple zero at z D �, and no other zeros.
k D 3: G3 has a simple zero at z D i , and no other zeros.
k D 6: because � has no zeros in H, it has a simple zero at1:
There is a geometric explanation for these statements. Let �D�.i;1/. Then i���,

and so multiplication by i defines an endomorphism of the torus C=�. Therefore the elliptic
curve

Y 2 D 4X3�g2.�/X �g3.�/
has complex multiplication by i ; clearly the curve

Y 2 DX3CX

has complex multiplication by i (and up to isogeny, it is the only such curve); this suggests
that g3.�/D 0. Similarly, G2.�/D 0 “because” Y 2 DX3C1 has complex multiplication
by 3
p
1. Finally, if � had no zero at1, the family of elliptic curves

Y 2 D 4X3�g2.�/X �g3.�/

over � .1/nH would extend to a smooth family over � .1/nH�, and this is not possible
for topological reasons (its cohomology groups would give a nonconstant local system on
� .1/nH�, but the Riemann sphere is simply connected, and so admits no such system).

PROPOSITION 4.16 (a) For k < 0, and k D 1, Mk D 0:
(b) For k D 0;2;3;4;5, Mk is a space of dimension 1, admitting as basis 1, G2, G3, G4,

G5 respectively; moreover Sk.� /D 0 for 0� k � 5.

(c) Multiplication by � defines an isomorphism of Mk�6 onto Sk :
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(d) The graded k-algebra
L

Mk D CŒG2;G3� with G2 and G3 of weights 2 and 3
respectively.

PROOF. (a) See 4.14.
(b) Since the spaces are one-dimensional, and no Gk is identically zero, this is obvious.
(c) Certainly f 7! f� is a homomorphism Mk�6! Sk . But if f 2 Sk , then f=� 2

Mk�6 because � has only a simple zero at i1 and f has a zero there. Now f 7! f=� is
inverse to f 7! f�:

(d) We have to show that fGm2 �Gn3 j 2mC3nD k, m 2N, n 2Ng forms a basis for Mk .
We first show, by induction on k, that this set generates Mk . For k � 3, we have already
noted it. Choose a pair m� 0 and n� 0 such that 2mC3nD k (this is always possible for
k � 2/. The modular form g DGm2 �Gn3 is not zero at infinity. If f 2Mk , then f � f .1/

g.1/
g

is zero at infinity, and so is a cusp form. Therefore, it can be written � �h with h 2Mk�6,
and we can apply the induction hypothesis.

Thus CŒG2;G3�!˚Mk is surjective, and we want to show that it is injective. If not,
the modular function G32=G

2
3 satisfies an algebraic equation over C, and so is constant. But

G2.�/D 0¤G3.�/ whereas G2.i/¤ 0DG3.i/: 2

REMARK 4.17 We have verified all the assertions in (4.3).

The Fourier coefficients of the Eisenstein series for � .1/

For future use, we compute the coefficients in the expansion Gk.z/D
P
anq

n.

THE BERNOULLI NUMBERS Bk

They are defined by the formal power series expansion:

x

ex �1 D 1�
x

2
C
1X
kD1

.�1/kC1Bk
x2k

.2k/Š
:

Thus B1D 1=6; B2D 1=30; ... ; B14D 23749461029=870; ... Note that they are all rational
numbers.

PROPOSITION 4.18 For all integers k � 1,

�.2k/D 22k�1

.2k/Š
Bk�

2k :

PROOF. Recall that (by definition)

cos.z/D eizC e�iz
2

; sin.z/D eiz � e�iz
2i

:

Therefore,

cot.z/D i e
izC e�iz
eiz � e�iz D i

e2izC1
e2iz �1 D iC

2i

e2iz �1:
On replacing x with 2iz in the definition of the Bernoulli numbers, we find that

z cot.z/D 1�
1X
kD1

Bk
22kz2k

.2k/Š
(5)
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There is a standard formula

sin.z/D z
1Y
nD1

�
1� z2

n2�2

�
(see Cartan 1963, V 3.3). On forming the logarithmic derivative of this (i.e., forming
d log.f /D f 0=f ) and multiplying by z, we find that

z cotz D 1�
1X
nD1

2z2=n2�2

1�z2=n2�2

D 1�2
1X
nD1

.z2=n2�2/

1� .z2=n2�2/

D 1�2
1X
nD1

1X
kD1

z2k

n2k�2k

D 1�2
1X
kD1

 
1X
nD1

n�2k

!
z2k

�2k
:

On comparing this formula with (5), we obtain the result. 2

For example, �.2/D �2

2�3
, �.4/D �4

2�32�5
, �.6/D �6

33�5�7
, ....

REMARK 4.19 Until 1978, when Apéry showed that �.3/ is irrational, almost nothing was
known about the values of � at the odd positive integers.

THE FOURIER COEFFICIENTS OF Gk

For any integer n and number k, we write

�k.n/D
X
d jn

dk :

PROPOSITION 4.20 For every integer k � 2,

Gk.z/D 2�.2k/C2
.2�i/2k

.2k�1/Š
1X
nD1

�2k�1.n/q
n:

PROOF. In the above proof, we showed above that

z cot.z/D 1C2
1X
nD1

z2

z2�n2�2 ;

and so (replace z with �z and divide by z)

� cot.�z/D 1

z
C2

1X
nD1

z

z2�n2 D
1

z
C
1X
nD1

�
1

zCnC
1

z�n
�
:

Moreover, we showed that

cot.z/D iC 2i

e2iz �1;
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and so

� cot.�z/D �i � 2�i

1�q

D �i �2�i
1X
nD1

qn

where q D e2�iz . Therefore,

1

z
C
1X
nD1

�
1

zCnC
1

z�n
�
D �i �2�i

1X
nD1

qn:

The .k�1/th derivative of this .k � 2/ is

X
n2Z

1

.nCz/k D
1

.k�1/Š.�2�i/
k
1X
nD1

nk�1qn:

Now

Gk.z/
defD

X
.n;m/¤.0;0/

1

.nzCm/2k

D 2�.2k/C2
1X
nD1

X
m2Z

1

.nzCm/2k

D 2�.2k/C 2.�2�i/
2k

.2k�1/Š
1X
nD1

1X
aD1

a2k�1 �qan

D 2�.2k/C 2.2�i/
2k

.2k�1/Š
1X
nD1

�2k�1.n/ �qn: 2

The expansion of � and j

Recall that
�

defD g32 �27g23:
From the above expansions of G2 and G3, one finds that

�D .2�/12 � .q�24q2C252q3�1472q4C�� �/

THEOREM 4.21 (JACOBI) �D .2�/12qQ1nD1.1�qn/24, q D e2�iz :
PROOF. Let f .q/D qQ1nD1.1�qn/24. The space of cusp forms of weight 12 has dimen-
sion 1. Therefore, if we show that f .�1=z/D z12f .z/, then f will be a multiple of �. It is
possible to prove by an elementary argument (due to Hurwitz), that f .�1=z/ and z12f .z/
have the same logarithmic derivative; therefore

f .�1=z/D Cz12 �f .z/;

some C . Put z D i to see C D 1. See Serre 1970, VII.4.4, for the details. 2
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Write q
Q
.1� qn/24 DP1nD1 �.n/ � qn. The function n 7! �.n/ was studied by Ra-

manujan, and is called the Ramanujan � -function. We have

�.1/D 1 , �.2/D�24 , ..., �.12/D�370944 ,...:

Evidently each �.n/ 2 Z. Ramanujan made a number of interesting conjectures about �.n/,
some of which, as we shall see, have been proved.

Recall that j.z/D 1728g32
�

, �D g32 �27g23 , g2 D 60G2, g3 D 140G3.

THEOREM 4.22 The function

j.z/D 1

q
C744C196884qC21493760q2C c.3/q3C c.4/q4C�� � ; q D e2�iz;

where c.n/ 2 Z for all n.

PROOF. Immediate consequence of the definition and the above calculations. 2

The size of the coefficients of a cusp form

Let f .z/ DPanq
n be a cusp form of weight 2k � 2 for some congruence subgroup of

SL2.Z/. For various reasons, for example, in order to obtain estimates of the number of
times an integer can be represented by a quadratic form, one is interested in janj:

Hecke showed that an DO.nk/—the proof is quite easy (see Serre 1970, VII.4.3, for
the case of � .1//. Various authors improved on this—for example, Selberg showed in 1965
that an DO.nk�1=4C"/ for all " > 0. It was conjectured that an DO.nk�1=2 ��0.n// (for
the � -function, this goes back to Ramanujan). The usual story with such conjectures is that
they prompt an infinite sequence of papers proving results converging to the conjecture,
but (happily) in this case Deligne proved in 1969 that the conjecture follows from the Weil
conjectures for varieties over finite fields, and he proved the Weil conjectures in 1973. See
11.16 below.

Modular forms as sections of line bundles

Let X be a topological manifold. A line bundle on X is a map of topological spaces
� WL!X such that, for some open covering X DSUi of X , ��1.Ui /�Ui �R. Similarly,
a line bundle on a Riemann surface is a map of complex manifolds � WL! X such that
locally L is isomorphic to U �C, and a line bundle on an algebraic variety is a map of
algebraic varieties � WL!X such that locally for the Zariski topology on X , L� U �A1:

If L is a line bundle on X (say a Riemann surface), then for any open subset U of
X , � .U;L/ denotes the group of sections of L over U , i.e., the set of holomorphic maps
f WU ! L such that � ıf D identity map. Note that if LD U �C, then � .U;L/ can be
identified with the set of holomorphic functions on U . (The � in � .U;L/ should not be
confused with a congruence group � .)

Now consider the following situation: � is a group acting freely and properly discon-
tinuously on a Riemann surface H , and X D � nH . Write p for the quotient map H !X .
Let � WL!X be a line bundle on X ; then

p�.L/
defD f.h; l/�H �L j p.h/D �.l/g

is a line bundle on H (for example, p�.X �L/DH �L/, and � acts on p�.L/ through
its action on H . Suppose we are given an isomorphism i WH �C! p�.L/. Then we can
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transfer the action of � on p�.L/ to an action of � on H �C over H . For  2 � and
.�;z/ 2H �C, write

.�;z/D .�;j .�/z/ , j .�/ 2 C�:
Then

 0.�;z/D . 0�;j 0.�/z/D . 0�;j . 0�/ �j 0.�/ � z/:
Hence:

j 0.�/D j . 0�/ �j 0.�/:
DEFINITION 4.23 An automorphy factor is a map j W� �H ! C� such that

(a) for each  2 � , � 7! j .�/ is a holomorphic function on H I
(b) j 0.�/D j . 0�/ �j 0.�/:

Condition (b) should be thought of as a cocycle condition (in fact, that’s what it is). Note
that if j is an automorphy factor, so also is j k for every integer k:

EXAMPLE 4.24 For every open subsetH of C with a group � acting on it, there is canonical
automorphy factor j .�/, namely,

� �H ! C , .;�/ 7! .d/� :

By .d/� I mean the following: each  defines a map H !H , and .d/� is the map on the
tangent space at � defined by  . AsH �C, the tangent spaces at � and at � are canonically
isomorphic to C, and so .d/� can be regarded as a complex number.

Suppose we have maps

M
˛�!N

ˇ�! P

of (complex) manifolds, then for any point m 2M , .d.ˇ ı˛//m D .dˇ/˛.m/ ı .d˛/m (maps
on tangent spaces). Therefore,

j 0.�/
defD .d 0/� D .d/ 0� � .d 0/� D j . 0�/ �j 0.�/:

Thus j .�/
defD .d/� is an automorphy factor.

For example, consider � .1/ acting on H. If  D .z 7! azCb
czCd

/, then

d D 1

.czCd/2dz;

and so j .�/D .czCd/�2, and j .�/k D .czCd/�2k :

PROPOSITION 4.25 There is a one-to-one correspondence between the set of pairs .L; i/
where L is a line bundle on � nH and i is an isomorphism H �C� p�.L/ and the set of
automorphy factors.

PROOF. We have seen how to go .L; i/ 7! j .�/. For the converse, use i and j to define an
action of � on H �C, and define L to be � nH �C: 2

REMARK 4.26 Every line bundle on H is trivial (i.e., isomorphic to H�C/, and so Proposi-
tion 4.25 gives us a classification of the line bundles on � nH:
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Let L be a line bundle on X . Then

� .X;L/D fF 2 � .H;p�L/ j F commutes with the actions of � g:

Suppose we are given an isomorphism p�L�H �C. We use it to identify the two line
bundles on H . Then � acts on H �C by the rule:

.�;z/D .�;j .�/z/:

A holomorphic section F WH !H �C can be written F.�/D .�;f .�// with f .�/ a holo-
morphic map H ! C. What does it mean for F to commute with the action of � ? We must
have

F.�/D F.�/ , i.e. , .�;f .�//D .�;j .�/f .�//:
Hence

f .�/D j .�/ �f .�/:
Thus, if Lk is the line bundle on � nH corresponding to j .�/�k , where j .�/ is the
canonical automorphy factor (4.24), then the condition becomes

f .�/D .czCd/2k �f .�/;

i.e., condition 4.5(a). Therefore the sections of Lk are in natural one-to-one correspon-
dence with the functions on H satisfying 4.5(a),(b). The line bundle Lk extends to a line
bundle L�

k
on the compactification � nH�, and the sections of L�

k
are in natural one-to-one

correspondence with the modular forms of weight 2k.

Poincaré series

We want to construct modular forms for subgroups � of finite index in � .1/: Throughout,
we write � 0 for the image of � in � .1/=f˙I g.

Recall the standard way of constructing invariant functions: if h is a function on H, then

f .z/
defD
X
2� 0

h.z/

is invariant under � , provided the series converges absolutely (which it rarely will). Poincaré
found a similar argument for constructing modular forms.

Let
� �H! C , .;z/ 7! j .z/

be an automorphy factor for � ; thus

j 0.z/D j . 0z/ �j 0.z/:

Of course, we shall be particularly interested in the case

j .z/D .czCd/2k ,  D �a b
c d

�
:

We wish to construct a function f such that f .z/D j .z/ �f .z/:
Try

f .z/D
X
2� 0

h.z/

j .z/
:
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If this series converges absolutely uniformly on compact sets, then

f . 0z/D
X
2� 0

h. 0z/

j . 0z/
D
X
2� 0

h. 0z/

j 0.z/
j 0.z/D j 0.z/ �f .z/

as wished.
Unfortunately, there is little hope of convergence, for the following (main) reason: there

may be infinitely many  for which j .z/D 1 identically, and so the sum contains infinitely
many redundant terms. Let

�0 D f 2 � 0 j j .z/D 1 identicallyg:

For example, if j .z/D .czCd/�2k , then

�0 D
�
˙
�
a b

c d

�
2 �

ˇ̌̌̌
c D 0 , d D 1

�
D
�
˙
�
1 b

0 1

�
2 �

�
D
��

1 h

0 1

��
where h is the smallest positive integer such that

�
1 h
0 1

� 2 � (thus h is the width of the cusp
i1 for � /. In particular, �0 is an infinite cyclic group.

If  ,  0 2 �0, then

j 0.z/D j . 0z/ �j 0.z/D 1 (all z/;

and so �0 is closed under multiplication—in fact, it is a subgroup of � 0.
Let h be a holomorphic function on H invariant under �0, i.e., such that h.0z/D h.z/

for all 0 2 �0. Let  2 � 0 and 0 2 �0; then

h.0z/

j0 .z/
D h.z/

j0.z/ �j .z/
D h.z/

j .z/
;

i.e., h.z/=j .z/ is constant on the coset �0 . Thus we can consider the series

f .z/D
X

2�0n� 0

h.z/

j .z/

If the series converges absolutely uniformly on compact sets, then the previous argument
shows that we obtain a holomorphic function f such that f .z/D j .z/ �f .z/:

Apply this with j .z/D .czCd/2k ,  D �a b
c d

�
, and � a subgroup of finite index in

� .1/. As we noted above, �0 is generated by z 7! zCh for some h, and a typical function
invariant under z 7! zCh is exp.2�inz=h/, nD 0;1;2; : : :
DEFINITION 4.27 The Poincaré series of weight 2k and character n for � is the series

'n.z/D
X
�0n� 0

exp.2�in�.z/
h

/

.czCd/2k

where � 0 is the image of � in � .1/=f˙I g:



62 I. The Analytic Theory

We need a set of representatives for �0n� 0. Note that�
1 m

0 1

�
�
�
a b

c d

�
D
�
aCmc bCmd
c d

�
:

Using this, it is easily checked that
�
a b
c d

�
and

�
a0 b0

c0 d 0

�
are in the same coset of �0 if and only

if .c;d/D˙.c0;d 0/ and .a;b/�˙.a0;b0/ mod h: Thus a set of representatives for �0n� 0
can be obtained by taking one element of � 0 for each pair .c;d/, c > 0, which is the second
row of a matrix in � 0:

THEOREM 4.28 The Poincaré series 'n.z/ for 2k � 2, n � 0, converges absolutely uni-
formly on compact subsets of H; it converges absolutely uniformly on every fundamental
domain D for � , and hence is a modular form of weight 2k for � . Moreover,

(a) '0.z/ is zero at all finite cusps, and '0.i1/D 1I
(b) for all n� 1, 'n.z/ is a cusp form.

PROOF. To see convergence, compare the Poincaré series withX
m;n2Z;.m;n/¤.0;0/

1

jmzCnj2k

which converges uniformly on compact subsets of H when 2k > 2. For the details of the
proof, which is not difficult, see Gunning 1962, III.9. 2

THEOREM 4.29 The Poincaré series 'n.z/, n� 1, of weight 2k span Mk.� /:

Before we can prove this, we shall need some preliminaries.

The geometry of H

As Beltrami and Poincaré pointed out, H can serve as a model for non-Euclidean hyperbolic
plane geometry.

Recall that the axioms for hyperbolic geometry are the same as for Euclidean geometry,
except that the axiom of parallels is replaced with the following axiom: suppose we are
given a straight line and a point in the plane; if the line does not contain the point, then there
exist at least two lines passing through the point and not intersecting the line.

The points of our non-Euclidean plane are the points of H. A non-Euclidean “line” is
a half-circle in H orthogonal to the real axis, or a vertical half-line. The angle between
two lines is the usual angle. To obtain the distance ı.z1;z2/ between two points, draw the
non-Euclidean line through z1 and z2, let11 and12 be the points on the real axis (or i1/
on the “line” labeled in such a way that11;z1;z2;12 follow one another cyclically around
the circle, and define

ı.z1;z2/D log D.z1;z2;11;12/

where D.z1;z2;z3;z4/ is the cross-ratio .z1�z3/.z2�z4/
.z2�z3/.z1�z4/

.

The group PSL2.R/
defD SL2.R/=f˙I g plays the same role as the group of orientation

preserving affine transformations in the Euclidean plane, namely, it is the group of transfor-
mations preserving distance and orientation.

The measure �.U /D’U dxdy

y2
plays the same role as the usual measure dxdy on R2—

it is invariant under translation by elements of PSL2.R/. This follows from the invariance of
the differential y�2dxdy. (We prove something more general below.)
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Thus we can consider
’
D
dxdy

y2
for any fundamental domain D of �—the invariance

of the differential shows that this doesn’t depend on the choice of D. One shows that the
integral does converge, and in fact thatZ

D

dx �dy=y2 D 2�.2g�2C�1C
X

.1�1=eP //:

See Shimura, 2.5. (There is a detailed discussion of the geometry of H— equivalently, the
open unit disk—in C. Siegel, Topics in Complex Functions II, Wiley, 1971, Chapter 3.)

Petersson inner product

Let f and g be two modular forms of weight 2k > 0 for a subgroup � of finite index in
� .1/:

LEMMA 4.30 The differential f .z/ � g.z/ � y2k�2dxdy is invariant under the action of
SL2.R/. (Here z D xC iy, so the notation is mixed.)

PROOF. Let  D �a b
c d

�
. Then

f .z/D .czCd/2k �f .z/ (definition of a modular form)

g.z/D .czCd/2k �g.z/ (the conjugate of the definition)

=.z/D =.z/
jczCd j2 (see p. 6)

�.dx �dy/D dxdy

jczCd j4 :

The last equation follows from the next lemma and the fact (4.8) that d=dz D 1=.czCd/2.
On raising the third equation to the .2k�2/ th power, and multiplying, we obtain the result.2

LEMMA 4.31 For every holomorphic function w.z/, the map z 7!w.z/ multiplies areas byˇ̌̌
dw
dz

ˇ̌̌2
:

PROOF. Write w.z/D u.x;y/C iv.x;y/, z D xC iy. Thus, z 7! w.z/ is the map

.x;y/ 7! .u.x;y/;v.x;y//;

and the Jacobian is ˇ̌̌̌
ux vx
uy vy

ˇ̌̌̌
D uxvy �vxuy :

According to the Cauchy-Riemann equations, w0.z/D uxC ivx , ux D vy , uy D�vx , and
so

jw0.z/j2 D u2xCv2x D uxvy �vxuy : 2

LEMMA 4.32 Let D be a fundamental domain for � . If f or g is a cusp form, then the
integral “

D

f .z/ �g.z/ �y2k�2dxdy
converges.
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PROOF. Clearly the integral converges if we exclude a neighbourhood of each of the cusps.
Near the cusp i1, f .z/ �g.z/DO.e�cy/ for some c > 0, and so the integral is dominated
by
R1
y1
e�cyyk�2dy <1. The other cusps can be handled similarly. 2

Let f and g be modular forms of weight 2k for some group � � � .1/, and assume that
one at least is a cusp form. The Petersson inner product of f and g is defined to be

hf;gi D
“
D

f .z/ �g.z/ �y2k�2dxdy:

Lemma 4.30 shows that it is independent of the choice of D. It has the following properties:

˘ it is linear in the first variable, and semi-linear in the second;

˘ hf;gi D hg;f i;
˘ hf;f i> 0 for all f ¤ 0.

It is therefore a positive-definite Hermitian form on Sk.� /, and so Sk.� / together with h ; i
is a finite-dimensional Hilbert space.

Completeness of the Poincaré series

Again let � be a subgroup of finite index in � .1/:

THEOREM 4.33 Let f be a cusp form of weight 2k � 2 for � , and let 'n be the Poincaré
series of weight 2k and character n� 1 for � . Then

hf;'ni D h2k.2k�2/Š
.4�/2k�1

�n1�2k �an

where h is the width of i1 as a cusp for � and an is the nth coefficient in the Fourier
expansion of f :

f D
X1

nD1
ane

2�inz
h :

PROOF. We omit the calculation, which can be found in Gunning 1962, III 11, Theorem 5.2

COROLLARY 4.34 Every cusp form is a linear combination of Poincaré series 'n.z/, n� 1:
PROOF. If f is orthogonal to the subspace generated by the Poincaré series, then all the
coefficients of its Fourier expansion are zero. 2

Eisenstein series for � .N/

The Poincaré series of weight 2k > 2 and character 0 for � .N/ is

'0.z/D
X 1

.czCd/2k (sum over .c;d/� .0;1/ modN , gcd.c;d/D 1/:

Recall (4.28) that this is a modular form of weight 2k for � .N/ which takes the value 1 at
i1 and vanishes at all the other cusps.

For every complex-valued function � on the (finite) set of inequivalent cusps for � .N/,
we want to construct a modular function f of weight 2k such that f jfcuspsg D �. Moreover,
we would like to choose the f to be orthogonal (for the Petersson inner product) to the
space of cusp forms. To do this, we shall construct a function (restricted Eisenstein series)
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which takes the value 1 at a particular cusp, takes the value 0 at the remaining cusps, and is
orthogonal to cusp forms.

Write j .z/D 1=.czCd/2, so that j .z/ is an automorphy factor:

j 0.z/D j . 0z/ �j 0.z/:

Let P be a cusp for � .N/, P ¤ i1, and let � 2 � .1/ be such that �.P /D i1. Define

'.z/D j� .z/k �'0.�z/:

LEMMA 4.35 The function '.z/ is a modular form of weight 2k for � .N/; moreover '
takes the value 1 at P , and it is zero at every other cusp.

PROOF. Let  2 � .N/. For the first statement, we have to show that '.z/D j .z/�k'.z/.
From the definition of ', we find that

'.z/D j� .z/k �'0.�z/:

As � .N/ is normal, ���1 2 � .N/, and so

'0.�z/D '0.���1 ��z/D j���1.�z/�k �'0.�z/:

On comparing this formula for '.z/ with

j .z/
�k �'.z/D j .z/�k �j� .z/k �'0.�z/;

we see that it suffices to prove that

j� .z/ �j���1.�z/�1 D j .z/�1 �j� .z/;

or that
j� .z/ �j .z/D j���1.�z/ �j� .z/:

But, because of the defining property of automorphy factors, this is just the obvious equality

j� .z/D j���1� .z/:

The second statement is a consequence of the definition of ' and the properties of '0.2

We now compute '.z/. Let T be a set of coset representatives for �0 in � .N/. Then

'.z/
defD j� .z/

k �'0.�z/
D j� .z/

k �P�2T j� .�z/
k

D P
�2T j�� .z/

k

D P
2T� j .z/

k :

Let � D
�
a0 b0
c0 d0

�
, so that ��1 D � d0 �b0

�c0 a0

�
, and P D ��1 �10�D�d0=c0. Note that�

a b

c d

�
2 � .N/)

�
a b

c d

��
a0 b0
c0 d0

�
�
� � �
c0 d0

�
modN:

From this, we can deduce that T� contains exactly one element of � .N/0 for each pair
.c;d/ with gcd.c;d/D 1 and .c;d/� .c0;d0/:
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DEFINITION 4.36 (a) A restricted Eisenstein series of weight 2k > 2 for � .N/ is a
series

G.zIc0;d0IN/D
X

.czCd/�2k

(sum over .c;d/� .c0;d0/ modN , gcd.c;d/D 1). Here .c0;d0/ is a pair such that
gcd.c0;d0;N /D 1:

(b) A general Eisenstein series of weight 2k > 2 for � .N/ is a series

G.zIc0;d0IN/D
X

.czCd/�2k

(sum over .c;d/ � .c0;d0/ modN , .c;d/ ¤ .0;0/). Here it is not required that
gcd.c0;d0;N /D 1:

Consider the restricted Eisenstein series. Clearly,

G.zIc0;d0IN/DG.zIc1;d1IN/

if .c0;d0/�˙.c1;d1/ modN . On the other hand, we get a restricted Eisenstein series for
each cusp, and these Eisenstein series are linearly independent. On counting, we see that
there is exactly one restricted Eisenstein series for each cusp, and so the distinct restricted
Eisenstein series are linearly independent.

PROPOSITION 4.37 The general Eisenstein series are the linear combinations of the re-
stricted Eisenstein series.

PROOF. Omitted. 2

REMARK 4.38 (a) Sometimes Eisenstein series are defined to be the linear combinations
of restricted Eisenstein series.

(b) The Petersson inner product hf;gi is defined whenever at least one of f or g is a cusp
form. One finds that hf;gi D 0 (e.g., '0 gives the zeroth coefficient) for the restricted
Eisenstein series, and hence hf;gi D 0 for all cusp forms f and all Eisenstein series
g: the space of Eisenstein series is the orthogonal complement of Sk.� / in Mk.� /:

For more details on Eisenstein series for � .N/, see Gunning 1962, IV 13.

ASIDE 4.39 In the one-dimensional case, compactifying � nH presents no problem, and the Riemann-
Roch theorem tells us there are many modular forms. The Poincaré series allow us to write down a
set of modular forms that spans Sk.� /. In the higher dimensional case (see 2.27), it is much more
difficult to embed the quotient � nD of a bounded symmetric domain in a compact analytic space.
Here the Poincaré series play a much more crucial role. In their famous 1964 paper, Baily and Borel
showed that the Poincaré series can be used to give an embedding of the complex manifold � nD
into projective space, and that the closure of the image is a projective algebraic variety containing the
image as a Zariski-open subset. It follows that � nD has a canonical structure of an algebraic variety.

In the higher-dimensional case, the boundary of � nD, i.e., the complement of � nD in its
compactification, is more complicated than in the one-dimensional case. It is a union of varieties
of the form � 0nD0 with D0 a bounded symmetric domain of lower dimension than that of D. The
Eisenstein series then attaches to a cusp form on D0 a modular form on D. (In our case, a cusp form
on the zero-dimensional boundary is just a complex number.)
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5 Hecke Operators

Hecke operators play a fundamental role in the theory of modular forms. After describing
the problem they were first introduced to solve, we develop the theory of Hecke operators
for the full modular group, and then for a congruence subgroup of the modular group.

Introduction

Recall that the cusp forms of weight 12 for � .1/ form a one-dimensional vector space over
C, generated by �D g32 �27g23 , where g2 D 60G2 and g3 D 140G3. In more geometric
terms, �.z/ is the discriminant of the elliptic curve C=ZzCZ. Jacobi showed that

�.z/D .2�/12 �q �
1Y
nD1

.1�qn/24; q D e2�iz :

Write f .z/ D q �Q1nD1.1� qn/24 DP�.n/ � qn. Then n 7! �.n/ is the Ramanujan � -
function. Ramanujan conjectured that it had the following properties:

(a) j�.p/j � 2 �p11=2;
(b)

�
�.mn/ D �.m/�.n/ if gcd.m;n/D 1

�.p/�.pn/ D �.pnC1/Cp11�.pn�1/ if p is prime and n� 1:
Property (b) was proved by Mordell in 1917 in a paper in which he introduced the first

examples of Hecke operators. To � we can attach a Dirichlet series

L.�;s/D
X

�.n/n�s:

PROPOSITION 5.1 The Dirichlet series L.�;s/ has an Euler product expansion of the form

L.�;s/D
Y
p prime

1

.1� �.p/p�sCp11�2s/
if and only if (b) holds.
PROOF. For a prime p, define

Lp.s/D
X
m�0

�.pm/ �p�ms D 1C �.p/ �p�sC �.p2/ � .p�s/2C�� � :

If n 2N has the factorization nDQprii , then the coefficient of n�s in
Q
Lp.s/ is

Q
�.p

ri
i /,

which the first equation in (b) implies is equal to �.n/. Thus

L.�;s/D
Y
Lp.s/:

Now consider
.1� �.p/p�sCp11�2s/ �Lp:

By inspection, we find that the coefficient of .p�s/n in this product is
1 for nD 0I
0 for nD 1I
� � � � � � � � ��
�.pnC1/� �.p/�.pn/Cp11�.pn�1/ for nC1:
Thus the second equation in (b) implies that .1� �.p/p�sCp11�2s/ �Lp D 1, and

hence that
L.�;s/D

Y
p

.1� �.p/p�sCp11�2s/�1:

The argument can be run in reverse. 2
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PROPOSITION 5.2 Write

1� �.p/XCp11X2 D .1�aX/.1�a0X/I
Then the following conditions are equivalent:

(a) j�.p/j � 2 �p11=2;

(b) jaj D p11=2 D ja0j;
(c) a and a0 are conjugate complex numbers, i.e., a0 D xa.

PROOF. First note that �.p/ is real (in fact, it is an integer).
(b)) (a): We have �.p/D aCa0, and so (a) follows from the triangle inequality.
(c)) (b): We have that jaj2 D axaD aa0 D p11:
(a)) (c): The discriminant of 1� �.p/XCp11X2 is �.p/2�4p11, which (a) implies

is < 0. 2

For each n� 1, we shall define an operator:

T .n/WMk.� .1//!Mk.� .1//:

These operators will have the following properties:
T .m/ıT .n/D T .mn/ if gcd.m;n/D 1I
T .p/ıT .pn/D T .pnC1/Cp2k�1T .pn�1/, p prime;
T .n/ preserves the space of cusp forms, and is a Hermitian (self-adjoint) operator on

Sk.� / W
hT .n/f;gi D hf;T .n/gi; f;g cusp forms:

LEMMA 5.3 Let V be a finite-dimensional vector space over C with a positive definite
Hermitian form h ;i.

(a) Let ˛WV ! V be a linear map which is Hermitian (i.e., such that h˛v;v0i D hv;˛v0i/;
then V has a basis consisting of eigenvectors for ˛ (thus ˛ is diagonalizable).

(b) Let ˛1;˛2; ::. be a sequence of commuting Hermitian operators; then V has a
basis consisting of vectors that are eigenvectors for all ˛i (thus the ˛i are simultaneously
diagonalizable).

PROOF. (a) Because C is algebraically closed, ˛ has an eigenvector e1. Let V1 D .C � e1/?.
Because ˛ is Hermitian, V1 is stable under ˛, and so it has an eigenvector e2. Let V2 D
.Ce1CCe2/?, and continue in this manner.

(b) From (a) we know that V DLV.�i / where the �i are the distinct eigenvalues for ˛1
and V.�i / is the eigenspace for �i ; thus ˛1 acts as multiplication by �i on V.�i /. Because
˛2 commutes with ˛1 , it preserves each V.�i /, and we can decompose each V.�i / further
into a sum of eigenspaces for ˛2. Continuing in this fashion, we arrive at a decomposition
V DLVj such that each ˛i acts as a scalar on each Vj . Now choose a basis for each Vj
and take the union. 2

REMARK 5.4 The pair .V;h ;i/ is a finite-dimensional Hilbert space. There is an analogous
statement to the lemma for infinite-dimensional Hilbert spaces (it’s called the spectral
theorem).

PROPOSITION 5.5 Let f .z/DPc.n/qn be a modular form of weight 2k, k > 0, f ¤ 0.
If f is an eigenfunction for all T .n/, then c.1/ ¤ 0, and when we normalize f to have
c.1/D 1, then

T .n/f D c.n/ �f:
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PROOF. See later (5.18). 2

We call a nonzero modular function a normalized eigenform for T .n/ if it is an eigen-
function for T .n/ and c.1/D 1.

COROLLARY 5.6 If f .z/ is a normalized eigenform for all T .n/, then c.n/ is real for all n.

PROOF. The eigenvalues of a Hermitian operator are real, because

h˛v;vi D h�v;vi D �hv;vi;
D hv;˛vi D hv;�vi D x�hv;vi

for any eigenvector v. 2

We deduce from these statements that if f is a normalized eigenform for all the T .n/,
then

c.m/c.n/D c.mn/ if gcd.m;n/D 1I
c.p/c.pn/D c.pnC1/Cp2k�1c.pn�1/ if p is prime and n� 1:

Just as in the case of �, this implies that

L.f;s/
defD
X

c.n/ �n�s D
Y
p prime

1

.1� c.p/p�sCp2k�1�2s/ :

Write 1�c.p/XCp2k�1�2sX2D .1�aX/.1�a0X/. As in (5.2), the following statements
are equivalent:

˘ jc.p/j � 2 �p k�12 I
˘ jaj D p k�12 D ja0jI
˘ a and a0 are complex conjugates.

These statements are also referred to as the Ramanujan conjecture. As we mentioned earlier
(p. 58), they have been proved by Deligne.

EXAMPLE 5.7 Because the space of cusp forms of weight 12 is one-dimensional, � is a
simultaneous eigenform for the Hecke operators, and so Ramanujan’s Conjecture (b) for
�.n/ does follow from the existence of Hecke operators with the above properties.

Note the similarity of L.f;s/ to the L-function of an elliptic curve E=Q, which is
defined to be

L.E;s/D
Y
p good

1

1�a.p/p�sCp1�2s �
Y
p bad

: : : :

Here 1� a.p/C p D #E.Fp/ for good p. The Riemann hypothesis for E=Fp is that
ja.p/j � 2pp. The number a.p/ can also be realized as the trace of the Frobenius map on a
certain Q`-vector space V`E. Since �.p/ is the trace of T .p/ acting on an eigenspace, this
suggests that there should be a relation of the form

“T .p/D˘pC x̆p ”

where ˘p is the Frobenius operator at p. We shall see that there do exist relations of
this form, and that this is the key to Deligne’s proof that the Weil conjectures imply the
(generalized) Ramanujan conjecture.
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CONJECTURE 5.8 (TANIYAMA-WEIL) Let E be an elliptic curve over Q. Then L.E;s/D
L.f;s/ for some normalized eigenform of weight 2 for �0.N /, where N is the conductor of
E:

This conjecture is very important. A vague statement of this form was suggested by
Taniyama in the 1950s, was promoted by Shimura in the 1960s, and then in 1967 Weil
provided some rather compelling evidence for it. We shall discuss Weil’s work in Section
6. Since it is possible to list the normalized eigenforms of weight 2 for �0.N / for a fixed
N , the conjecture predicts how many elliptic curves with conductor N there are over Q.
Computer searches confirmed the number for small N , and, as noted in 2.26, the conjecture
has been proved.

The conjecture is now subsumed by the Langlands program which (roughly speaking)
predicts that all Dirichlet series arising from algebraic varieties (more generally, motives)
occur among those arising from automorphic forms (better, automorphic representations) for
reductive algebraic groups.

Abstract Hecke operators

Let L be the set of full lattices in C. Recall (4.6) that modular forms are related to functions
on L. We first define operators on L, which define operators on functions on L, and then
operators on modular forms.

Let D be the free abelian group generated by the elements of L; thus an element of D is
a finite sum X

ni Œ�i � , ni 2 Z , �i 2 L:
For nD 1;2; ::. we define a Z-linear operator T .n/WD!D by setting T .n/Œ�� equal to the
sum of all sublattices of � of index n:

T .n/Œ��D
X

� such that .�W�0/Dn

Œ�0�:

The sum is obviously finite because any such sublattice �0 contains n�, and �=n� is finite.
Write R.n/ for the operator

R.n/Œ��D Œn��:
PROPOSITION 5.9 (a) If m and n are relatively prime, then

T .m/ıT .n/D T .mn/:

(b) If p is prime and n� 1, then

T .pn/ıT .p/D T .pnC1/CpR.p/ıT .pn�1/:
PROOF. (a) Note that

T .mn/Œ��D
X

Œ�00� .sum over �00 with .� W�00/Dmn/;
T .m/ıT .n/Œ��D

X
Œ�00� .sum over pairs .�0;�00/ with .� W�0/D n; .�0 W�00/Dm/:

But, if �00 is a sublattice of � of index mn, then there is a unique chain

���0 ��00
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with �0 of index n in �, because �=�00 has a unique subgroup of order m:
(b) Let � be a lattice. Note that

T .pn/ıT .p/Œ��D
X

Œ�00� .sum over .�0;�00/ with .� W�0/D p; .�0 W�00/D pn/
T .pnC1/Œ��D

X
Œ�00� .sum over � with .� W�00/D pnC1/I

pR.p/ıT .pn�1/Œ��D p �
X

R.p/Œ�0� .sum over �0 �� with .� W�0/D pn�1/:
Hence

pR.p/ıT .pn�1/Œ��D p �
X

Œ�00� .sum over �00 � p� with .p� W�00/D pn�1/:
Each of these is a sum of sublattices �00 of index pnC1 in �. Fix such a lattice, and let

a be the number of times it occurs in the first sum, and b the number of times it occurs in the
last sum. It occurs exactly once in the second sum, and so we have to prove:

aD 1Cpb:
There are two cases to consider.

THE LATTICE �00 IS NOT CONTAINED IN p�. Then b D 0, and a is the number of
lattices �0 containing �00 and of index p in �. Such a lattice contains p�, and its image
in �=p� is of order p and contains the image of �00, which is also of order p. Since the
subgroups of � of index p are in one-to-one correspondence with the subgroups of �=p�
of index p, this shows that there is exactly one lattice �0, namely �Cp�00, and so aD 1:

THE LATTICE �00 � p�. Here b D 1. Every lattice �0 of index p contains p�, and a
fortiori �. We have to count the number of subgroups of �=p� of index p, and this is the
number of lines through the origin in the Fp-plane, which is .p2�1/=.p�1/D pC1: 2

COROLLARY 5.10 For any m and n;

T .m/ıT .n/D
X

d jgcd.m;n/;d>0

d �R.d/ıT .mn=d2/

PROOF. Prove by induction on s that

T .pr/ıT .ps/D
X

i�min.r;s/

pi �R.pi /ıT .prCs�2i /;

and then apply (a) of the proposition. 2

COROLLARY 5.11 Let H be the Z-subalgebra of End.D/ generated by the T .p/ and R.p/
for p prime; then H is commutative, and it contains T .n/ for all n:
PROOF. Obvious from 5.10. 2

Let F be a function L! C. We can extend F by linearity to a function F WD! C;

F .
P
ni Œ�i �/D

P
niF.�i /:

For any operator T on D, we define T �F to be the function L! C such that

.T �F /.Œ��/D F.T Œ��/:
For example,

.T .n/ �F /.Œ��/D
X

F.Œ�0�/ (sum over sublattices �0 of � of index n/

and if F is of weight 2k, i.e., F.��/D ��2kF.�/ for all lattices �, then

R.n/ �F D n�2k �F:
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PROPOSITION 5.12 Let F WL! C be a function of weight 2k. Then T .n/ �F is again of
weight 2k, and for any m and n;

T .m/ �T .n/ �F D
X

d jgcd.m;n/ , d>0

d1�2k �T .mn=d2/ �F:

In particular, if m and n are relatively prime, then

T .m/ �T .n/ �F D T .mn/ �F;

and if p is prime and n� 1, then

T .p/ �T .pn/ �F D T .pnC1/ �F Cp1�2k �T .pn�1/ �F:
PROOF. Immediate from Corollary 5.10 and the definitions. 2

Lemmas on 2�2 matrices

Before defining the action of Hecke operators on modular forms, we review some elementary
results concerning 2�2 matrices with integer coefficients.

LEMMA 5.13 Let A be a 2�2 matrix with coefficients in Z and determinant n. Then there
is an invertible matrix U in M2.Z/ such that U �AD �a b

0 d

�
with

ad D n, a � 1, 0� b < d: (6)

Moreover, the integers a; b; d are uniquely determined.

PROOF. It is possible to put A into upper triangular form by using elementary operations of
the following types: add a multiple of one row to a second; swap two rows (see ANT 2.44).
Since these operations are invertible over Z, they amount to multiplying A on the left by an
invertible matrix in M2.Z/. For the uniqueness, note that a is the gcd of the elements in
the first column of A, d is the unique positive integer such that ad D n, and b is obviously
uniquely determined modulo d: 2

REMARK 5.14 LetM.n/ be the set of 2�2 matrices with coefficients in Z and determinant
n. The group SL2.Z/ acts on M.n/ by left multiplication, and the lemma provides us with a
canonical set of representatives for the orbits:

M.n/D
[

SL2.Z/ �
�
a b
0 d

�
(disjoint union over a;b;d as in the lemma):

Now let � be a lattice in C. Choose a basis !1, !2 for �, so that �D�.!1;!2/. For any
˛ D �a b

c d

� 2M.n/, define ˛�D�.a!1Cb!2; c!1Cd!2/. Then ˛� is a sublattice of �
of index n, and every such lattice is of this form for some ˛ 2M.n/. Clearly ˛�D ˇ� if
and only if ˇ D u˛ for u 2 SL2.Z/. Thus we see that the sublattices of � of index n are
precisely the lattices

�.a!1Cb!2;d!2/; a;b;d 2 Z; ad D n, a � 1, 0� b < d::

For example, consider the case nD p. Then the sublattices of� are in one-to-one correspon-
dence with the lines through the origin in the 2-dimensional Fp-vector space �=p�. Write
�=p�D Fpe1˚Fpe2 with ei D !i (mod p/ . The lines through the origin are determined
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by their intersections (if any) with the vertical line through .1;0/. Therefore there are pC1
lines through the origin, namely,

Fp � e1; Fp � .e1C e2/; : : : ; Fp � .e1C .p�1/e2/; Fp.e2/:

Hence there are exactly pC1 sublattices of �D Z!1CZ!2 of index p, namely,

�.!1;p!2/; �.!1C!2;p!2/; : : : ;�.p!1;!2/;

in agreement with the general result.

REMARK 5.15 Let ˛ 2M.n/, and let �0 D ˛�. According to a standard theorem, we can
choose bases !1, !2 for � and !01, !02 for �0 such that

!01 D a!1, !02 D d!2; a; d 2 Z, ad D n, ajd , a � 1
and a;d are uniquely determined. In terms of matrices, this says that

M.n/D
[

SL2.Z/ �
�
a 0

0 d

�
�SL2.Z/

—disjoint union over a;d 2Z, ad D n, ajd , a� 1. This decomposition ofM.n/ into a union
of double cosets can also be proved directly by applying both row and column operations of
the type considered in the proof of (5.13) to put the matrix

�
a b
c d

�
in the form

�
a 0
0 d

�
.

Hecke operators for � .1/

Recall 4.6 that we have a one-to-one correspondence between functions F on L of weight
2k and functions f on H that are weakly modular of weight 2k, under which

F.�.!1;!2//D !2�2k �f .!1=!2/,
f .z/D F.�.z;1//:

Let f .z/ be a modular form of weight 2k, and let F be the associated function of weight 2k
on L. We define T .n/ �f .z/ to be the function on H associated with n2k�1 �T .n/ �F . The
factor n2k�1 is inserted so that some formulas have integer coefficients rather than rational
coefficients. Thus

T .n/ �f .z/D n2k�1 � .T .n/ �F /.�.z;1//:
More explicitly,

T .n/ �f .z/D n2k�1 �
X

d�2k f
�
azCb
d

�
where the sum is over the triples a;b;d satisfying condition (6) of 5.13.

PROPOSITION 5.16 (a) If f is a weakly modular form of weight 2k for � .1/, then T .n/ �f
is also weakly modular of weight 2k, and

i) T .m/ �T .n/ �f D T .mn/ �f if m and n are relatively prime;

ii) T .p/ �T .pn/ �f D T .pnC1/ �f Cp2k�1 �T .pn�1/ �f if p is prime and n� 1:
(b) Let f be a modular form of weight 2k for � .1/, with the Fourier expansion f DP
m�0 c.m/q

m, q D e2�iz . Then T .n/ �f is also a modular form, and

T .n/ �f .z/D
X
m�0

.m/ �qm

with
.m/D

X
ajgcd.m;n/; a�1

a2k�1 � c.mn
a2
/:
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PROOF. (a) We know that

T .p/ �T .pn/ �F.�.z;1//D T .pnC1/ �F.�.z;1//Cp1�2k �T .pn�1/ �F.�.z;1//:

On multiplying through by .pnC1/2k�1 we obtain the second equation. The first is obvious.
(b) We know that

T .n/ �f .z/D n2k�1
X
a;b;d

d�2k f .azCb
d
/

where the sum over a;b;d satisfying (6), i.e., such that

ad D n; a � 1; 0� b < d:

Therefore T .n/ �f .z/ is holomorphic on H because f is. Moreover

T .n/ �f .z/D n2k�1
X
a;b;d

d�2k
X
m�0

c.m/q2�i
azCb
d

m:

But X
0�b<d

e2�i
bm
d D

�
d if d jm
0 otherwise.

Set m=d Dm0; then

T .n/ �f .z/D n2k�1
X
a;d;m0

d�2kC1 c.m0d/qam
0

where the sum is over the integers a;d;m0 such that ad D n and a � 1. The coefficient of
qt in this is X

ajgcd.n;t/;a�1

a2k�1 � c. t
a
n
a
/:

When we substitute m for t in this formula, we obtain the required formula. Because
.m/D 0 for m< 0, T .n/ �f is holomorphic at i1. 2

COROLLARY 5.17 Retain the notations of the proposition.

(a) The coefficients .0/D �2k�1.n/ � c.0/, .1/D c.n/:
(b) If nD p is prime, then

i) .m/D c.pm/ if p does not divide mI
ii) .m/D c.pm/Cp2k�1c.m=p/ if pjm:

(c) If f is a cusp form, then so also is T .n/ �f:
PROOF. These are all obvious consequences of the proposition. 2

Thus the T .n/ act on the vector spaces Mk.� .1// and Sk.� .1//, and satisfy the
identities

T .m/ıT .n/D T .mn/ if m and n relatively primeI
T .p/ıT .pn/D T .pnC1/Cp2k�1 �T .pn�1/ if p is prime n� 1:
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PROPOSITION 5.18 Let f DPc.n/qn be a nonzero modular form of weight 2k. Assume
that f is a simultaneous eigenform for all the T .n/, say,

T .n/ �f D �.n/ �f; �.n/ 2 C:
Then c.1/¤ 0, and if f is normalized to make c.1/D 1, then

c.n/D �.n/
for all n� 1:
PROOF. We have seen that the coefficient of q in T .n/ �f is c.n/. But, it is also �.n/ � c.1/,
and so c.n/D �.n/ � c.1/. If c.1/ were zero, then all c.n/ would be zero, and f would be
constant, which is impossible. 2

COROLLARY 5.19 Two normalized eigenforms of the same weight with the same eigenval-
ues are equal.

PROOF. The proposition implies that the coefficients of their Fourier expansions are equal.2

COROLLARY 5.20 If f DPc.n/qn is a normalized eigenform for the T .n/, then
c.m/ � c.n/D c.mn/ if m and n are relatively prime,
c.p/ � c.pn/D c.pnC1/Cp2k�1c.pn�1/ if p is prime and n� 1.

PROOF. We know that these relations hold for the eigenvalues. 2

With a modular form f , we can associate a Dirichlet series

L.f;s/D
X
n�1

c.n/ �n�s:

The series
P
n�s converges for <.s/ > 1. The bounds on the values jc.n/j (see p. 58) show

that L.f;s/ converges to the right of some vertical line (if one accepts Deligne’s theorem
and f is a cusp form of weight 2k, it converges for <.s�kC 1

2
/ > 1, i.e., for s > kC 1

2
/:

PROPOSITION 5.21 For every normalized eigenform f;

L.f;s/D
Y
p

1

1� c.p/p�sCp2k�1�2s :

PROOF. This follows from 5.20, as in the proof of (5.1). 2

THE HECKE OPERATORS FOR � .1/ ARE HERMITIAN

Before proving this, we make a small excursion.
Write GL2.R/C for the group of real 2�2 matrices with positive determinant. Let

˛ D
�
a b

c d

�
2 GL2.R/C;

and let f be a function on H; we define

f jk˛ D .det˛/k � .czCd/�2k �f . azCb
czCd

/:

For example, if ˛ D �
a 0
0 a

�
, then f jk˛ D a2k � a�2k � f .z/ D f .z/; i.e., the centre of

GL2.R/C acts trivially. Note that f is weakly modular of weight 2k for � � � .1/ if
and only if f jk˛ D f for all ˛ 2 �:
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Recall that

T .n/ �f .z/D n2k�1 �
X

d�2k �f .azCb
d

/

—sum over a;b;d , ad D n, a � 1, 0� b < d . We can restate this as

T .n/ �f D
X

nk�1 �f jk˛
where the ˛ run through a particular set of representatives for the orbits of � .1/ acting on
M.n/, i.e., for � .1/nM.n/. It is clear from the above remarks, that the right hand side is
independent of the choice of the set of representatives.

Recall, that the Petersson inner product of two cusp forms f and g for � .1/ is

hf;gi D
“
D

f � xg �y2k�2 �dxdy

where z D xC iy and D is any fundamental domain for � .1/.

LEMMA 5.22 For every ˛ 2 GL2.R/C;

hf jk˛;gjk˛i D hf;gi:
PROOF. Write !.f;g/D f .z/xg.z/yk�2dxdy, where z D xC iy. We first prove that

!.f jk˛;gjk˛/D ˛�!.f;g/: (7)

Since multiplying ˛ by a scalar changes neither !.f jk˛;gjk˛/ nor ˛�!.f;g/, we can
assume that det˛ D 1. Then

f jk˛ D .czCd/�2k �f .˛z/
xgjk˛ D .cxzCd/�2k �g.˛z/

and so
!.f jk˛;gjk˛/D jczCd j�4k �f .˛z/ �g.˛z/ �dx �dy:

On the other hand (see the proof of 4.30)

=.˛z/D=.z/=jczCd j2
˛�.dx �dy/D dx �dy=jczCd j4;

and so

˛�.!.f;g//D f .˛z/ �g.˛z/ � jczCd j4�4k �y2k�2 � jczCd j�4 �dx �dy
D !.f jk˛;gjk˛/:

From (7), “
D

!.f jk˛;gjk˛/D
“
D

˛�!.f;g/D
“
˛D

!.f;g/;

which equals hf;gi if ˛D is also a fundamental domain for � .1/. Unfortunately, this is not
always true. Instead one computes the Petersson scalar product with respect to a sufficiently
small congruence subgroup � such that ˛� ˛�1 � � .1/ (and normalizes by the quotient
of the volumes of the fundamental domains to get the wanted scalar product with respect
to � .1/). If D now denotes a fundamental domain for � , then ˛D is a fundamental domain
for ˛� ˛�1, and obviously it has the same volume as D, and by the choice of � , both of f
and g are still modular with respect to ˛� ˛�1. 2
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Note that the lemma implies that

hf jk˛;gi D hf;gjk˛�1i; all ˛ 2 GL2.R/C:

THEOREM 5.23 For cusp forms f;g of weight 2k

hT .n/f;gi D hf;T .n/gi; all n:

Because of 5.10, it suffices to prove the theorem for T .p/, p prime. Recall that M.n/ is
the set of integer matrices with determinant n:

LEMMA 5.24 There exists a common set of representatives f˛ig for the set of left orbits
� .1/nM.p/ and for the set of right orbits M.p/=� .1/:

PROOF. Let ˛, ˇ 2M.p/; then (see 5.15)

� .1/ �˛ �� .1/D � .1/ � �1 00 p � �� .1/D � .1/ �ˇ �� .1/:
Hence there exist elements u;v;u0;v0 2 � .1/ such that

u˛v D u0ˇv0

and so u0�1u˛ D ˇv0v�1,D  say. Then � .1/ �˛ D � .1/ � and ˇ �� .1/D  �� .1/: 2

For ˛D �a b
c d

� 2M.p/, set ˛0D � d �b
�c a

�D p �˛�1 2M.p/. Let ˛i be a set of common
representatives for � .1/nM.p/ and M.p/=� .1/, so that

M.p/D
[
i

� .1/ �˛i D
[
i

˛i �� .1/ (disjoint unions):

Then
M.p/D p �M.p/�1 D

[
p �� .1/ �˛i�1 D

[
� .1/ �˛0i :

Therefore,

hT .p/f;gi D pk�1
X
i

hf jk˛i ;gi

D pk�1
X
i

hf;gjk˛�1i i

D pk�1
X
i

hf;gjk˛0i i

D hf;T .p/gi:

The Z-structure on the space of modular forms for � .1/

Recall (4.20) that the Eisenstein series

Gk.z/
defD

X
.m;n/¤.0;0/

1

.mzCn/2k

D 2�.2k/C2 .2�i/
2k

.2k�1/Š
1X
nD1

�2k�1.n/q
n; q D e2�iz :
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For k � 1, define the normalized Eisenstein series

Ek.z/DGk.z/=2�.2k/:

Then, using that �.2k/D 22k�1

.2k/Š
Bk�

2k , one finds that

Ek.z/D 1Ck
1X
nD1

�2k�1.n/q
n; k D .�1/k �

4k

Bk
2Q:

For example,

E2.z/D 1C240
1X
nD1

�3.n/q
n;

E3.z/D 1�504
1X
nD1

�5.n/q
n;

� � �

E6.z/D 1C 54600
691

1X
nD1

�11.n/q
n:

Note that E2.z/ and E3.z/ have integer coefficients.

LEMMA 5.25 The Eisenstein series Gk , k � 2, is an eigenform of the T .n/, with eigenval-
ues �2k�1.n/. The normalized eigenform is k�1 �Ek . The corresponding Dirichlet series
is

�.s/ � �.s�2kC1/:
PROOF. The short proof that Gk is an eigenform, is to observe that Mk D Sk˚hGki; and
that T .n/ �Gk is orthogonal to Sk (because Gk is, T .n/ is Hermitian, and T .n/ preserves
Sk/. Therefore T .n/ �Gk is a multiple of Gk :

The computational proof starts from the definition

Gk.�/D
X

�2�;�¤0

1

�2k
:

Therefore
T .p/ �Gk.�/D

X
�0

X
�2�0;�¤0

1

�2k

where the outer sum is over the lattices �0 of index p in �. If � 2 p�, it lies in all �0, and
so contributes .pC 1/=�2k to the sum. Otherwise, it lies in only one lattice �0, namely
p�CZ�, and so it contributes 1=�2k . Hence

.T .p/ �Gk/.�/DGk.�/Cp
X

�2p�;�¤0

1

�2k
DGk.�/Cp1�2kGk.�/D .1Cp1�2k/Gk.�/:

Therefore Gk.�/, as a function on L, is an eigenform of T .p/, with eigenvalue 1Cp1�2k .
As a function on H it is an eigenform with eigenvalue p2k�1.1Cp1�2k/D p2k�1C1D
�2k�1.p/:
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The normalized eigenform is

�1k C
1X
nD1

�2k�1.n/q
n; k D .�1/k �

4k

Bk
;

and the associated Dirichlet series is

1X
nD1

�2k�1.n/

ns
D

X
a;d�1

a2k�1

asd s

D
0@X
d�1

1

d s

1A0@X
a�1

1

asC1�2k

1A
D �.s/ � �.s�2kC1/: 2

Let V be a vector space over C. By a Z-structure on V , I mean a Z-module V0 � V
which is free of rank equal to the dimension of V . Equivalently, it is a Z-submodule
that is freely generated by a C-basis for V , or a Z-submodule such that the natural map
V0˝ZC! V is an isomorphism.

Let Mk.Z/ be the Z-submodule of Mk.� .1// consisting of the modular forms f DP1
nD0anq

n with the an 2 Z:
PROPOSITION 5.26 The module Mk.Z/ is a Z-structure on Mk.� .1//:

PROOF. Recall that
L
kMk.C/D CŒG2;G3�D CŒE2;E3�. It suffices to show thatM

k
Mk.Z/D ZŒE2;E3�:

Note that E2.z/, E3.z/, and �0 D qQ.1�qn/24 all have integer coefficients. We prove
by induction on k that Mk.Z/ is the 2kth-graded piece of ZŒE2;E3� (here E2 has degree 4
and E3 has degree 6). Given f .z/DPanq

n, an 2 Z, write

f D a0Ea2 �Eb3 C� �g

with 4aC6b D 2k, and g 2Mk�12. Then a0 2 Z, and one checks by explicit calculation
that g 2Mk�12.Z/: 2

PROPOSITION 5.27 The eigenvalues of the Hecke operators are algebraic integers.

PROOF. Let Mk.Z/ be the Z-module of modular forms with integer Fourier coefficients. It
is stabilized by T .n/, because.

T .n/ �f .z/D
X
m�0

.m/ �qm

with
.m/D

X
a2k�1 � c

�mn
a2

�
(sum over ajm, a � 1/:

The matrix of T .n/ with respect to a basis for Mk.Z/ has integer coefficients, and this
shows that the eigenvalues of T .n/ are algebraic integers. 2

ASIDE 5.28 The generalization of (5.27) to Siegel modular forms of all levels was only proved in
the 1980s (by Chai and Faltings), using difficult algebraic geometry. See Section 7.
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Geometric interpretation of Hecke operators

Before discussing Hecke operators for a general group, we explain the geometric significance
of Hecke operators. Fix a subgroup � of finite index in � .1/:

Let ˛ 2 GL2.R/C. Then ˛ defines a map x 7! ˛xWH!H, and we would like to define
a map ˛W� nH! � nH, � z 7! “˛� z”. Unfortunately, � is far from being normal in
GL2.R/C. If we try defining ˛.� z/D � ˛z we run into the problem that the orbit � ˛z
depends on the choice of z (because ˛�1� ˛¤� in general, even if ˛ has integer coefficients
and � D � .N//.

In fact, ˛� z is not even a � -orbit. Instead, we need to consider the union of the orbits
meeting ˛� z, i.e., we need to look at � ˛� z. Every coset (right or left) of � in GL2.R/C
that meets � ˛� is contained in it, and so we can write

� ˛� D
[
� ˛i (disjoint union),

and then � ˛� z DS� ˛iz (disjoint union). Thus ˛, or better, the double coset � ˛� ,
defines a “many-valued map”

� nH! � nH; � z 7! f� ˛izg:

Since “many-valued maps” don’t exist in my lexicon, we shall have to see how to write this
in terms of honest maps. First we give a condition on ˛ that ensures that the “map” is at least
finitely-valued.

LEMMA 5.29 Let ˛ 2 GL2.R/C. Then � ˛� is a finite union of right (and of left) cosets if
and only if ˛ is a scalar multiple of a matrix with integer coefficients.

PROOF. Omit. [Note that the next lemma shows that this is equivalent to ˛�1� ˛ being
commensurable with �:� 2

LEMMA 5.30 Let ˛ 2 GL2.R/C. Write

� D
[
.� \˛�1� ˛/ˇi (disjoint union);

then
� ˛� D

[
� ˛i (disjoint union)

with ˛i D ˛ �ˇi :
PROOF. We are given that � DS.� \˛�1� ˛/ˇi . Therefore

˛�1� ˛� D
[
i

˛�1� ˛ � .� \˛�1� ˛/ �ˇi D
[
i

.˛�1� ˛� \˛�1� ˛/ �ˇi :

But ˛�1� ˛� � ˛�1� ˛, and so we can drop it from the right hand term. Therefore

˛�1� ˛� D
[
i

˛�1� ˛ˇi :

On multiplying by ˛, we find that � ˛� DSi � ˛ˇi , as claimed.
If � ˛ˇi D � ˛ˇj , then ˇiˇj�1 2 ˛�1� ˛; since it also lies in � , this implies that

i D j: 2
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Now let �˛ D � \˛�1� ˛, and write � DS�˛ �ˇi (disjoint union). Consider

�˛nH

� nH � nH:

˛

The map ˛ sends an orbit �˛ �x to � �˛x—this is now well-defined—and the left hand arrow
sends an orbit �˛ �x to � �x:

Let f be a modular function, regarded as a function on � nH. Then f ı˛ is a function
on �˛nH, and its “trace”

P
f ı˛ ıˇi is invariant under � , and is therefore a function on

� nH. This function is
P
f ı˛i D T .p/ �f . Similarly, a (meromorphic) modular form

can be thought of as a k-fold differential form on � nH, and T .p/ can be interpreted as the
pull-back followed by the trace in the above diagram.

REMARK 5.31 In general a diagram of finite-to-one maps

Y

X Z:

is called a correspondence on X �Z. The simplest example is obtained by taking Y to be
the graph of a map 'WX !Z; then the projection Y !X is a bijection. A correspondence
is a “many-valued mapping”, correctly interpreted: an element x 2 X is “mapped” to the
images in Z of its inverse images in Y . The above observation shows the Hecke operator
on modular functions and forms is defined by a correspondence, which we call the Hecke
correspondence.

The Hecke algebra

The above discussion suggests that we should define an action of double cosets � ˛� on
modular forms. It is convenient first to define an abstract algebra, H.�;�/, called the Hecke
algebra.

Let � be a subgroup of � .1/ of finite index, and let � be a set of real matrices with
positive determinant, closed under multiplication, and such that for ˛ 2�, the double coset
� ˛� contains only finitely many left and right cosets for � . Define H.�;�/ to be the free
Z-module generated by the double cosets � ˛� , ˛ 2�. Thus an element of H.�;�/ is a
finite sum, X

n˛� ˛� , ˛ 2� , n˛ 2 Z:
Write Œ˛� for � ˛� when it is regarded as an element of H.�;�/.

We define a multiplication on H.�;�/ as follows. Note that if � ˛� meets a right coset
� ˛0, then it contains it. Therefore, we can write � ˛� DS� ˛i , �ˇ� DS�ˇi (finite
disjoint unions). Then

� ˛� ��ˇ� D � ˛�ˇ�
D
[
� ˛�ˇj

D
[
i;j

� ˛iˇj I
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therefore � ˛�ˇ� is a finite union of double cosets. Define

Œ˛� � Œˇ�D
X

c


˛;ˇ
� Œ�

where the union is over the  2 � such that � � � � ˛�ˇ� , and c
˛;ˇ

is the number of
pairs .i;j / with � ˛iˇj D � :
EXAMPLE 5.32 Let � D � .1/, and let � be the set of matrices with integer coefficients
and positive determinant. Then H.�;�/ is the free abelian group on the generators

� .1/

�
a 0

0 d

�
� .1/; ajd; ad > 0; a � 1; a;d 2 Z:

Write T .a;d/ for the element � .1/
�
a 0
0 d

�
� .1/ of H.�;�/. Thus H.�;�/ has a quite

explicit set of free generators, and it is possible to write down (complicated) formulas for the
multiplication.

For a prime p, we define T .p/ to be the element T .1;p/ of H.�;�/. We would like to
define

T .n/DM.n/ defD fmatrices with integer coefficients and determinant ng:

We can’t do this because M.n/ is not a double coset, but it is a finite union of double cosets
(see 5.15), namely,

M.n/D
[
� .1/ �

�
a 0

0 d

�
�� .1/; ajd; ad D n; a � 1; a;d 2 Z:

This suggests defining

T .n/D
X

T .a;d/; ajd; ad D n; a � 1; a;d 2 Z:

As before, we let D be the free abelian group on the set of lattices L in C. A double
coset Œ˛� acts on D according to the rule:

Œ˛� ��D ˛�:

To compute ˛�, choose a basis
�
!1
!2

�
for �, and let ˛� be the lattice with basis ˛ � �!1!2 �;

this is independent of the choice of the basis, and of the choice of a representative for the
double coset � ˛� . We extend this by linearity to an action of H.�;�/ on D. It is immediate
from the various definitions that T .n/ (element of H.�;�/) acts on D as the T .n/ defined
at the start of this section. The relation in (5.10) implies that the following relation holds in
the ring H.�;�/:

T .n/T .m/D
X

d jgcd.m;n/

d �T .d;d/ �T .nm=d2/ (8)

In particular, for relatively prime integers m and n;

T .n/T .m/D T .nm/;

and for a prime p;

T .p/ �T .pn/D T .pnC1/Cp �T .p;p/ �T .pn�1/:
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The ring H.�;�/ acts on the set of functions on L:

Œ˛� �F D
X

F.˛i�/ if � ˛� D
[

i
� ˛i :

The relation (8) implies that

T .n/ �T .m/ �F D
X

d jgcd.m;n/

d1�2k �T .mn=d2/ �F

for F a function on L of weight 2k.
Finally, we make H.�;�/ act on Mk.� .1// by

Œ˛� �f D det.˛/k�1 �
X

f jk˛i (9)

if � ˛� DS� .1/ �˛i . Recall that

f jk˛ D .det˛/k � .czCd/2k �f . azCb
czCd

/

if ˛ D �a b
c d

�
. The element T .n/ 2H.�;�/ acts on Mk.� .1// as in the old definition, and

(8) implies that

T .n/ �T .m/ �f D
X

d jgcd.m;n/

d2k�1 �T .mn=d2/ �f:

We now define a Hecke algebra for � .N/. For this we take �.N/ to be the set of integer
matrices ˛ such that n defD det.˛/ is positive and prime to N , and ˛ � �1 00 n� mod N:

LEMMA 5.33 Let �0.N / be the set of integer matrices with positive determinant prime to
N . Then the map

� .N/ �˛ �� .N/ 7! � .1/ �˛ �� .1/WH.� .N /;�.N //!H.� .1/;�0.N //

is an isomorphism.

PROOF. Elementary. (See Ogg 1969, pIV-10.) 2

Let TN .a;d/ and TN .n/ be the elements of H.� .N /;�.N // corresponding to T .a;d/
and T .n/ in H.� .1/;�0.N // under the isomorphism in the lemma. Note that H.� .1/;�0.N //
is a subring of H.� .1/;�/. From the identity (8), we obtain the identity

TN .n/TN .m/D
X

d jgcd.n;m/

d �TN .d;d/ �TN .mn=d2/ (10)

for .mn;N /D 1:
When we let H.� .N /;�.N // act on Mk.� .N // by the rule (9), the identity (8)

translates into a slightly different identity for operators on Mk.� .N //. (The key point
is that

�
d 0
0 d

� 2 �0.N / if gcd.d;N / D 1 but not �.N/—see Ogg 1969, pIV-12). For
f 2Mk.� .N //, we have the identity

TN .n/ �TN .m/ �f D
X

d jgcd.m;n/

d2k�1 �Rd �TN .mn=d2/ �f

for .mn;N /D 1. Here Rd is a matrix in � .1/ such that Rd �
�
d�1 0
0 d

�
modN:



84 I. The Analytic Theory

The termRd causes problems. Let V DMk.� .N //. If d � 1modN , thenRd 2� .N/,
and so it acts as the identity map on V . Therefore d 7!Rd defines an action of .Z=NZ/�
on V , and so we can decompose V into a direct sum,

V D
M

V."/;

over the characters " of .Z=NZ/�, where

V."/D ff 2 V j f jkRd D ".d/ �f g :
LEMMA 5.34 The operators Rn and TN .m/ on V commute for .nm;N /D 1 . Hence V."/
is invariant under TN .m/:
PROOF. See Ogg 1969, pIV-13. 2

Let Mk.� .N /;"/D V."/. Then TN .n/ acts on Mk.� .N /;"/ with the basic identity:

TN .n/ �TN .m/D
X

d jgcd.n;m/

d2k�1 � ".d/ �TN .nm=d2/;

for .nm;N /D 1:
PROPOSITION 5.35 Let f 2Mk.� .N /;"/ have the Fourier expansion f DPanq

n. As-
sume that f is an eigenform for all TN .n/, and normalize it so that a1 D 1. Then

LN .f;s/
defD

X
gcd.n;N/D1

ann
�s D

Y
gcd.p;N/D1

1

.1�app�sC ".p/p2k�1�2s/
:

PROOF. Essentially the same as the proof of Proposition 5.1. 2

Let U D �1 10 1� (it would be too confusing to continue denoting it as T /. Then UN 2
� .N/, and so

f 7! f jkUm D f .zCm/
defines an action of Z=NZ on V defDMk.� .N //. We can decompose V into a direct sum
over the characters of Z=NZ. But the characters of Z=NZ are parametrized by the N th
roots of one in C—the character corresponding to � is m modN 7! �m. Thus

V D
M

�
V.�/; � an N th root of 1,

where V.�/ D ff 2 V j Um � f D �mf g. Alas V.�/ is not invariant under TN .n/. To
remedy this, we have to consider, for each t jN;

V.t/D
M

�
V.�/; � a primitive .N=t/th root of 1:

Let m be an integer divisible only by the primes dividing N ; we define

T t .m/Dmk�1 �
X

0�b<m

f jk
�
1 bN=t
0 m

�
:

For a general n > 1, we write nDmn0 with gcd.n0;N /D 1, and set

T t .n/D T .n0/ �T t .m/:
We then have the relation:

T t .n/ �T t .m/ �f D
X

d jgcd.n;m/

".d/d2k�1T t .nm=d2/ �f

for f 2 V."; t/ defD V."/\V.t/:
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THEOREM 5.36 Let f 2 V.t;"/ have the Fourier expansion f .z/ DPanq
n. If a1 D 1

and f is an eigenform for all the T t .n/ with gcd.n;N /D 1, then the associated Dirichlet
series has the Euler product expansionX

ann
�s D

Y
p

1

1�app�sC ".p/p2k�1�2s
:

PROOF. See Ogg 1969, pIV-10. 2

In the statement of the theorem, we have extended " from .Z=NZ/� to Z=NZ by setting
".p/D 0 for pjN . Thus ".p/D 0 if pjN , and ap D 0 if pjN

t
. This should be compared

with the L-series of an elliptic curve E with conductor N , where the p-factor of the L-series
is .1˙p�s/�1 if pjN but p2 does not divide N , and is 1 if p2jN:
PROPOSITION 5.37 Let f and g be cusp forms for � .N/ of weight 2k and character ".
Then

hT .n/ �f;gi D ".n/hf;T .n/ �gi
PROOF. See Ogg 1969, pIV-24. 2

Unlike the case of forms for � .1/, this does not imply that the eigenvalues are real. It
does imply that Mk.� .N /;"; t/ has a basis of eigenforms for the T .n/ with gcd.n;N /D 1
(but not for all T .n/).

For a summary of the theory of Hecke operators for �0.N /, see Milne 2006, V 4.





CHAPTER II
The Algebro-Geometric Theory

In this part we apply the preceding theory, first to obtain elliptic modular curves defined over
number fields, and then to study the zeta functions of modular curves and of elliptic curves.
There is considerable overlap between this part and my book on elliptic curves.

6 The Modular Equation for �0.N /

For every congruence subgroup � of � .1/, the algebraic curve � nH� is defined over a
specific number field. As a first step toward proving this general statement, we find in
this section a canonical polynomial F.X;Y / with coefficients in Q such that the curve
F.X;Y /D 0 is birationally equivalent to X0.N /

defD �0.N /nH�.
Recall that

�0.N /D
��
a b

c d

� ˇ̌̌̌
c � 0 modN

�
:

If  D
�
N 0

0 1

�
, then

�
N�1 0

0 1

��
a b

c d

��
N 0

0 1

�
D
�
a N�1b

Nc d

�
for

�
a b

c d

�
2 � .1/;

and so
�0.N /D � .1/\�1� .1/:

Note that �I 2 �0.N /. In the map

SL2.Z/! SL2.Z=NZ/

the image of �0.N / is the group of all matrices of the form
�
a b
0 a�1

�
in SL2.Z=NZ/. This

group obviously has order N �'.N /, and so (cf. 2.23),

�
defD . x� .1/ W x�0.N //D .� .1/ W �0.N //DN �

Y
pjN

�
1C 1

p

�
:

(Henceforth, x� denotes the image of � in SL2.Z/=f˙I g.) Consider the set of pairs .c;d/
of positive integers satisfying:

gcd.c;d/D 1; d jN; 0� c < N=d: (11)

87
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For each such pair, we choose a pair .a;b/ of integers such that ad � bc D 1. Then the
matrices

�
a b
c d

�
form a set of representatives for �0.N /n� .1/. (Check that they are not

equivalent under left multiplication by elements of �0.N /, and that there is the correct
number.)

If 4jN , then x�0.N / contains no elliptic elements of order 2, and if 9jN then it contains
no elliptic elements of order 3. The cusps for �0.N / are represented by the pairs .c;d/
satisfying (11), modulo the equivalence relation:

.c;d/� .c0;d 0/ if d D d 0 and c0 D cCm , some m 2 Z:

For each d , there are exactly '.gcd.d;N=d// inequivalent pairs, and so the number of cusps
is X

d jN;d>0

'.gcd.d; N
d
//:

It is now possible to use Theorem 2.22 to compute the genus of X0.N /. (See Shimura 1971,
p. 25, for more details on the above material.)

THEOREM 6.1 The field C.X0.N // of modular functions for �0.N / is generated (over C)
by j.z/ and j.Nz/. The minimum polynomial F.j;Y / 2 C.j /ŒY � of j.Nz/ over C.j /
has degree �. Moreover, F.j;Y / is a polynomial in j and has coefficients in Z, i.e.,
F.X;Y / 2 ZŒX;Y �. When N > 1; F.X;Y / is symmetric in X and Y , and when N D p is
prime,

F.X;Y /�XpC1CY pC1�XpY p�XY mod p:

PROOF. Let  D �a b
c d

�
be an element of �0.N / with c DNc0, c0 2 Z. Then

j.Nz/D j
�
NazCNb
czCd

�
D j

�
NazCNb
Nc0zCd

�
D j

�
a.Nz/CNb
c0.Nz/Cd

�
D j.Nz/

because
�
a Nb
c0 d

� 2 � .1/. Therefore C.j.z/;j.Nz// is contained in the field of modular
functions for �0.N /.

The curveX0.N / is a covering ofX.1/ of degree�D .� .1/ W�0.N //. From Proposition
1.16 we know that the field of meromorphic functions C.X0.N // on X0.N / has degree
� over C.X.1// D C.j /, but we shall prove this again. Let f1 D 1; :::;�g be a set of
representatives for the right cosets of �0.N / in � .1/, so that,

� .1/D
[
�0.N /i (disjoint union):

For every  2 � .1/, f1; :::;�g is also a set of representatives for the right cosets of
�0.N / in � .1/—the set f�0.N /ig is just a permutation of the set f�0.N /ig.

If f .z/ is a modular function for �0.N /, then f .iz/ depends only on the coset �0.N /i .
Hence the functions ff .iz/g are a permutation of the functions ff .iz/g, and every
symmetric polynomial in the f .iz/ is invariant under � .1/; since such a polynomial
obviously satisfies the other conditions, it is a modular function for � .1/, and hence a
rational function of j . We have shown that f .z/ satisfies a polynomial of degree � with
coefficients in C.j /, namely,

Q
.Y �f .iz//. Since this holds for every f 2 C.X0.N //,

we see that C.X0.N // has degree at most � over C.j /.
Next I claim that all the f .iz/ are conjugate to f .z/ over C.j /: for let F.j;Y / be the

minimum polynomial of f .z/ over C.j /; in particular, F.j;Y / is monic and irreducible
when regarded as a polynomial in Y with coefficients in C.j /; on replacing z with iz and
remembering that j.iz/D j.z/, we find that F.j.z/;f .iz//D 0, which proves the claim.
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If we can show that the functions j.Niz/ are distinct, then it will follow that the
minimum polynomial of j.Nz/ over C.j / has degree �; hence ŒC.X0.N // WC.j /�D� and
C.X0.N //D C.j.z//Œj.Nz/�.

Suppose j.Niz/D j.Ni 0z/ for some i ¤ i 0. Recall that j defines an isomorphism
� .1/nH�! .Riemann sphere/, and so, if j.Niz/D j.Ni 0z/ for all z, then there exists
a  2 � .1/ such that Niz D Ni 0z for all z, which implies that�

N 0

0 1

�
i D˙

�
N 0

0 1

�
i 0 :

Hence i�1i 0 2 � .1/\
�
N 0

0 1

��1
� .1/

�
N 0

0 1

�
D �0.N /, and this contradicts the fact

that i and i 0 lie in different cosets.
The minimum polynomial of j.Nz/ over C.j / is F.j;Y / DQ.Y � j.Niz//. The

symmetric polynomials in the j.Niz/ are holomorphic on H. As they are rational functions
of j.z/, they must in fact be polynomials in j.z/, and so F.X;Y / 2 CŒX;Y � (rather than
C.X/ŒY �).

But we know (4.22) that

j.z/D q�1C
1X
nD0

cnq
n (12)

with the cn 2 Z. Consider j.Nz/ for some  D �a0 b0
c0 d 0

� 2 � .1/. Then Nz D �Na0 Nb0
c0 d 0

�
z,

and j.Nz/ is unchanged when we act on the matrix on the left by an element of � .1/.
Therefore (see 5.15)

j.Nz/D j.azCb
d

/

for some integers a;b;d with ad DN . On substituting azCb
d

for z in (12) and noting that
e2�i.azCb/=d D e2�ib=d �e2�iaz=d , we find that j.Nz/ has a Fourier expansion in powers
of q1=N whose coefficients are in ZŒe2�i=N �, and hence are algebraic integers. The same
is then true of the symmetric polynomials in the j.Niz/. We know that these symmetric
polynomials lie in CŒj.z/�, and I claim that in fact they are polynomials in j with coefficients
that are algebraic integers.

Consider a polynomial P DPcnj
n 2 CŒj � whose coefficients are not all algebraic

integers. If cm is the coefficient having the smallest subscript among those that are not
algebraic integers, then the coefficient of q�m in the q-expansion of P is not an algebraic
integer, and so P can not be equal to a symmetric polynomial in the j.Niz/.

Thus F.X;Y /DPcm;nX
mY n with the cm;n algebraic integers (and c0;� D 1/.

When we substitute (12) into the equation

F.j.z/;j.Nz//D 0;

and equate coefficients of powers of q, we obtain a set of linear equations for the cm;n with
rational coefficients. When we adjoin the equation

c0;� D 1;

then the equations determine the cm;n uniquely (because there is only one monic minimum
equation for j.Nz/ over C.j /). Because the system of linear equations has a solution in C,
it also has a solution in Q; because the solution is unique, the solution in C must in fact lie
in Q. Thus the cm;n 2Q, but we know that they are algebraic integers, and so they lie in Z.
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Now assume N > 1. On replacing z with �1=Nz in the equation F.j.z/;j.Nz//D 0,
we obtain

F.j.�1=Nz/;j.�1=z//D 0;
which, because of the invariance of j , is just the equation

F.j.Nz/;j.z//D 0:

This shows that F.Y;X/ is a multiple of F.X;Y / (recall that F.X;Y / is irreducible in
C.X/ŒY �, and hence in CŒX;Y �), say, F.Y;X/D cF.X;Y /. On equating coefficients, one
sees that c2 D 1, and so c D ˙1. But c D �1 would imply that F.X;X/ D 0, and so
X �Y would be a factor of F.X;Y /, which contradicts the irreducibility. Hence c D 1, and
F.X;Y / is symmetric.

Finally, suppose N D p, a prime. The argument following (12) shows in this case that
the functions j.piz/ for i ¤ 1 are exactly the functions:

j
�
zCm
p

�
; mD 0;1;2; : : : ;p�1:

Let �p D e2�i=p, and let p denote the prime ideal .1� �p/ in ZŒ�p�. Then pp�1 D .p/.
When we regard the functions j.zCm

p
/ as power series in q, then we see that they are all

congruent modulo p (meaning that their coefficients are congruent modulo p), and so

F.j.z/;Y /
defD .Y �j.pz//

p�1Y
mD0

.Y �j.zCm
p

//

� .Y �j.pz//.Y �j.z=p//p .mod p/

� .Y �j.z/p/.Y p�j.z// .mod p/:

This implies the last equation in the theorem. 2

EXAMPLE 6.2 For N D 2, the equation is

X3CY 3�X2Y 2C1488XY.XCY /�162000.X2CY 2/C40773375XY
C8748000000.XCY /�157464000000000D 0:

Rather a lot of effort (for over a century) has been put into computing F.X;Y / for small
values of N . For a discussion of how to do it (complete with dirty tricks), see Birch’s article
in Modular Functions of One Variable, Vol I, SLN 320 (Ed. W. Kuyk).

The modular equation FN .X;Y /D 0 was introduced by Kronecker, and used by Kron-
ecker and Weber in the theory of complex multiplication. For N D 3; it was computed by
Smith in 1878; for N D 5 it was computed by Berwick in 1916; for N D 7 it was computed
by Herrmann in 1974; for N D 11 it was computed by MACSYMA in 1984. This last
computation took 20 hours on a VAX-780; the result is a polynomial of degree 21 with
coefficients up 1060 which takes 5 pages to write out. See Kaltofen and Yui, On the modular
equation of order 11, Proc. of the Third MACSYMA’s user’s Conference, 1984, pp. 472–485.

Clearly one gets nowhere with brute force methods in this subject.
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7 The Canonical Model of X0.N / over Q

After reviewing some algebraic geometry, we define the canonical model of X0.N / over Q.

Brief review of algebraic geometry

Theorem 6.1 will allow us to define a model of X0.N / over Q, but before explaining this
I need to review some basic definitions from algebraic geometry. First we need a slightly
more abstract notion of sheaf than that on p. 16.

DEFINITION 7.1 A presheaf F on a topological space X is a map assigning to each open
subset U of X a set F.U / and to each inclusion U � U 0 a “restriction” map

a 7! ajU 0 W F.U /! F.U 0/:

The restriction map corresponding to U � U is required to be the identity map, and if
U � U 0 � U 00, then the restriction map F.U /! F.U 00/ is required to be the composite of
the restriction maps F.U /! F.U 0/ and F.U 0/! F.U 00/.

If the sets F.U / are abelian groups and the restriction maps are homomorphisms, then
F is called a presheaf of abelian groups (similarly for a sheaf of rings, modules, etc.).

A presheaf F is a sheaf if for every open covering fUig ofU �X and family of elements
ai 2 F.Ui / agreeing on overlaps (that is, such that ai jUi \Uj D aj jUi \Uj for all i;j ),
there is a unique element a 2 F.U / such that ai D ajUi for all i .

A ringed space is a pair .X;OX / consisting of a topological space X and a sheaf of
rings OX on X . With the obvious notion of morphism, the ringed spaces form a category.

Let k0 be a field, and let k be an algebraic closure of k0. An affine k0-algebra A is a
finitely generated k0-algebra A such that k˝k0 A is reduced, i.e., has no nonzero nilpotent
elements. This is stronger than saying that A itself is reduced: for example,

A
defD k0ŒX;Y �=.XpCY pCa/

is an integral domain when p D char.k0/ and a … kp0 , because Xp C Y p C a is then
irreducible, but obviously

k˝k0 AD kŒX;Y �=.XpCY pCa/
D kŒX;Y �=..XCY Ca 1p /p/

is not reduced. This problem arises only because of inseparability—if k0 is perfect, then
every reduced finitely generated k0-algebra is an affine k0-algebra.

Let A be a finitely generated k0-algebra. We can write

AD k0Œx1; :::;xn�D k0ŒX1; :::;Xn�=.f1; :::;fm/;
and then

k˝k0 AD kŒX1; :::;Xn�=.f1; :::;fm/:
Thus A is an affine algebra if and only if the elements f1; :::;fm of k0ŒX1; :::;Xn� generate
a radical ideal1 in kŒX1; :::;Xn�:

1An ideal a is radical if
f n 2 a; n� 1 H) f 2 a:
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Let A be an affine k0-algebra. Define specm.A/ to be the set of maximal ideals in A,
and endow it with the topology for which the sets

D.f /
defD fm j f …mg; f 2 A;

form a base for the open sets. There is a unique sheaf of k0-algebras O on specm.A/ such
that O.D.f // D Af defD AŒf �1� for all f . Here O is a sheaf in the abstract sense—the
elements of O.U / are not functions on U with values in k0, although we may wish to think
of them as if they were. For f 2 A and mv 2 specmA, we define f .v/ to be the image of
f in the �.v/ defD A=mv. Then v 7! f .v/ is not a function on specm.A/ in the conventional
sense because, unless k0 D k, the fields �.v/ vary with v, but it does make sense to speak of
the set V.f / of zeros of f in X , and this zero set is the complement of D.f /.

The ringed space
Specm.A/ defD .specm.A/;O/;

as well as every ringed space isomorphic to such a space, is called an affine variety over k0.
A ringed space .X;OX / is a prevariety over k0 if there exists a finite covering .Ui / of X by
open subsets such that .Ui ;OX jUi / is an affine variety over k0 for all i .

A morphism, or regular map, of prevarieties over k0 is a morphism of ringed spaces.
For example, when k0 D k, we can regard OX as a sheaf of k-valued functions on X , and a
regular map of prevarieties .X;OX /! .Y;OY / is a continuous map 'WX ! Y such that

f 2OY .U /, U open in Y H) f ı' 2OX .'�1U/:

When k0 ¤ k, it is necessary to specify also the map on sheaves. A prevariety X over k is
separated if for all pairs of regular maps Z!X , the set where the maps agree is closed in
Z. A variety is a separated prevariety.

When V D SpecmA and W D SpecmB , there is a one-to-one correspondence between
the regular maps W ! V and the homomorphisms of k0-algebras A! B . For example, if

AD k0ŒX1; :::;Xm�=aD kŒx1; : : : ;xm�
B D k0ŒY1; :::;Yn�=bD kŒy1; : : : ;yn�;

then a homomorphism A! B is determined by a family of polynomials

.Pi /iD1;:::;m; Pi 2 k0ŒY1; : : : ;Yn�;

(representatives for the images of x1; : : : ;xm). The corresponding regular mapW ! V sends
.b1; : : : ;bn/ 2W.k/ to .: : : ;Pi .b1; :::;bn/; : : :/ 2 V.k/. In order to define a homomorphism,
the Pi must be such that

F 2 a) F.P1; :::;Pm/ 2 bI (13)

in particular, if .b1; : : : ;bn/ 2 W.k/, then (13) implies that F.: : : ;Pi .b1; :::;bn/; : : :/ D 0,
and so W.k/ does map into V.k/. Two families P1; :::;Pm and Q1; :::;Qm determine the
same map if and only if Pi �Qi mod b for all i:

There is a canonical way of attaching a variety X over k to a variety X0 over k0; for
example, if X0 D Specm.A/, then X D Specm.k˝k0 A/. We then call X0 a model for
X over k0. When X � An, to give a model for X over k0 is the same as giving an ideal
a0 � k0ŒX1; :::;Xn� such that a0 generates the ideal of X ,

I.X/
defD ff 2 kŒX1; : : : ;Xn� j f D 0 on Xg:
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Of course, X need not have a model over k0—for example, an elliptic curve E over k will
have a model over k0 � k if and only if its j -invariant j.E/ lies in k0. Moreover, when
X has a model over k0, it will usually have a large number of them, no two of which are
isomorphic over k0. For example, let X be a nondegenerate quadric surface in P3 over k.
Such a surface is isomorphic to the surface

X2CY 2CZ2CW 2 D 0:

The models of X over k0 are defined by equations

aX2CbY 2C cZ2CdW 2 D 0; a;b;c;d 2 k0; abcd ¤ 0.

Thus classifying the models of X over k0 amounts to classifying the equivalence classes of
quadratic forms over k0 in 4 variables. If k0 DQ, there are infinitely many.

LetX be a variety over k0. A point ofX with coordinates in k0, or a k0-point ofX , is a
morphism Specmk0!X . For example, if X is affine, say X D SpecmA, then a point of X
with coordinates in k0 is a k0-homomorphism A! k0. If AD kŒX1; :::;Xn�=.f1; :::;fm/,
then to give a k0-homomorphism A! k0 is the same as giving an n-tuple .a1; :::;an/ such
that

fi .a1; :::;an/D 0 i D 1; :::;m:
In other words, a point of X with coordinates in k0 is exactly what you expect it to be.
Similar remarks apply to projective varieties. We write X.k0/ for the points of X with
coordinates in k0.

Similarly, it is possible to define the notion of a point of X with coordinates in any k0-
algebra R, and we write X.R/ for the set of such points. For example, when X D SpecmA,

X.R/D Homk-algebra.A;R/:

When k D k0, X.k0/' X . How is X.k0/ related to X when k ¤ k0‹ Let v 2 X . Then v
corresponds to a maximal ideal mv (actually, it is a maximal ideal), and we write �.v/ for
the residue field Ov=mv . This is a finite extension of k0, and we call the degree of �.v/ over
k0 the degree of v. The set X.k0/ can be identified with the set of points v of X of degree 1.
(Suppose for example that X is affine, say X D SpecmA. Then a point v of X is a maximal
ideal mv in A. Obviously, mv is the kernel of a k0-homomorphism A! k0 if and only if
�.v/

defD A=mv D k0, in which case it is the kernel of exactly one such homomorphism.)
The set X.k/ can be identified with the set of points on Xk , where Xk is the variety over

k defined by X . When k0 is perfect, there is an action of Gal.k=k0/ on X.k/, and one can
show that there is a natural one-to-one correspondence between the orbits of the action and
the points of X . (Again suppose X D SpecmA, and let v 2 X ; then v corresponds to the
set of k0-homomorphisms A! k with kernel mv, which is a single orbit for the actiion of
Gal.k=k0/.)

Assume k0 is perfect. As we just noted, if X0 is a variety over k0, then there is
an action of Gal.k=k0/ on X0.k/. The variety X defD .X0/k together with the action of
Gal.k=k0/ on X.k/ determine X0. For example, if X0 D SpecmA0, so X D SpecmA with
AD k˝k0 A0, then the action of Gal.k=k0/ on X.k/ determines an action of Gal.k=k0/
on A and A0 D AGal.k=k0/.

For more details on this material, see my notes on Algebraic Geometry (AG), especially
Chapters 2, 3, and 11.
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Curves and Riemann surfaces

Fix a field k0, and let X be a connected algebraic variety over k0. The function field k0.X/
of X is the field of fractions of OX .U / for any open affine subset U of X ; for example, if
X D SpecmA, then k0.X/ is the field of fractions of A. The dimension of X is defined to
be the transcendence degree of k0.X/ over k0. An algebraic curve is an algebraic variety
of dimension 1.

To each point v of X there is attached a local ring Ov. For example, if X D SpecmA,
then a point v of X is a maximal ideal m in A, and the local ring attached to v is Am. An
algebraic variety is said to be regular if all the local rings Am are regular (“regular” is a
weaker condition than “nonsingular”; nonsingular implies regular, and the two are equivalent
when the ground field k0 is algebraically closed).

Consider an algebraic curve X . Then X is regular if and only if the local rings attached
to it are discrete valuation rings. For example, SpecmA is a regular curve if and only if A is
a Dedekind domain. A regular curve X defines a set of discrete valuation rings in k0.X/,
each of which contains k0, and X is complete if and only if this set includes all the discrete
valuation rings in k0.X/ having k0.X/ as field of fractions and containing k0.

A field K containing k0 is said to be a function field in n variables over k0 if it is
finitely generated and has transcendence degree n over k0. The field of constants of K is
the algebraic closure of k0 in K. Thus the function field of an algebraic variety over k0 of
dimension n is a function field in n variables over k0 (whence the terminology).

THEOREM 7.2 The map X k0.X/ defines an equivalence from the category of complete
regular irreducible algebraic curves over k0 to the category of function fields in one variable
over k0; the curve X is geometrically irreducible2 if and only if k0 is the field of constants
of k0.X/.

PROOF. The curve corresponding to the field K can be constructed as follows: take X to be
the set of discrete valuation rings in K containing k0 and having K as their field of fractions;
define a subset U of X to be open if it omits only finitely many elements of X ; for such a U ,
define OX .U / to be the intersection of the discrete valuation rings in U . 2

COROLLARY 7.3 A regular curve U can be embedded into a complete regular curve xU ; the
map U ,! xU is universal among maps from U into complete regular curves.

PROOF. Take xU to be the complete regular algebraic curve attached to k0.U /. There is an
obvious identification of U with an open subset of xU . 2

EXAMPLE 7.4 Let F.X;Y / be an absolutely irreducible polynomial in k0ŒX;Y �, and let
AD k0ŒX;Y �=.F.X;Y //. Thus A is an affine k0-algebra, and C defD SpecmA is the curve
F.X;Y /D 0. Let C ns be the complement in C of the set of maximal ideals of A containing
the ideal .@F=@X;@F=@Y / mod F.X;Y /. Then C ns is a nonsingular curve, and hence can
be embedded into a complete regular curve xC .

There is a geometric way of constructing xC , at least in the case that k0 D k is alge-
braically closed. First consider the plane projective curve C 0 defined by the homogeneous
equation

Zdeg.F /F.X=Z;Y=Z/D 0:
This is a projective (hence complete) algebraic curve which, in general, will have singular
points. It is possible to resolve these singularities geometrically, and so obtain a nonsingular
projective curve (see W. Fulton 1969, p. 179).

2A variety X over a field k0 is geometrically irreducible if Xk is irreducible (k an algebraic closure of k0).
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THEOREM 7.5 Every compact Riemann surface X has a unique structure of a complete
nonsingular algebraic curve.

PROOF. We explain only how to construct the associated algebraic curve. The underlying set
is the same; the topology is that for which the open sets are those with finite complements; the
regular functions on an open set U are the holomorphic functions on U that are meromorphic
on the whole of X . 2

REMARK 7.6 Theorems 7.2 and 7.5 depend crucially on the hypothesis that the variety has
dimension 1.

In general, many different complete nonsingular algebraic varieties can have the same
function field. A nonsingular variety U over a field of characteristic zero can be embedded
in a complete nonsingular variety xU , but this is a very difficult theorem (proved by Hironaka
in 1964), and xU is very definitely not unique. For a variety of dimension > 3 over a field of
characteristic p > 0, even the existence of xU is not known.

For a curve, “complete” is equivalent to “projective”; for smooth surfaces they are
also equivalent, but in higher dimensions there are many complete nonprojective varieties
(although Chow’s lemma says that a complete variety is not too far away from a projective
variety).

Many compact complex manifolds of dimension > 1 have no algebraic structure.

The curve X0.N / over Q

According to Theorem 7.5, there is a unique structure of a complete nonsingular curve on
X0.N / compatible with its structure as a Riemann surface. We write X0.N /C for X0.N /
regarded as an algebraic curve over C. Note thatX0.N /C is the unique complete nonsingular
curve over C having the field C.j.z/;j.Nz// of modular functions for �0.N / as its field of
rational functions.

Now write FN .X;Y / for the polynomial constructed in Theorem 6.1, and let C be the
curve over Q defined by the equation:

FN .X;Y /D 0:
As is explained above, we can remove the singular points of C to obtain a nonsingular curve
C ns over Q, and then we can embed C ns into a complete regular curve xC . The coordinate
functions x and y are rational functions on xC , they generate the field of rational functions
on xC , and they satisfy the relation FN .x;y/D 0; these statements characterize xC and the
pair of functions x;y on it.

Let xCC be the curve defined by xC over C. It can also be obtained in the same way as xC
starting from the curve FN .X;Y /D 0, now thought of as a curve over C. There is a unique
isomorphism xCC! X0.N /C making the rational functions x and y on xCC correspond to
the functions j.z/ and j.Nz/ on X0.N /. We can use this isomorphism to identify the two
curves, and so we can regard xC as being a model of X0.N /C over Q. We denote it by
X0.N /Q. (In fact, we often omit the subscripts from X0.N /C and X0.N /Q.)

We can be a little more explicit: on an open subset, the isomorphism X0.N /! xCC
is simply the map Œz� 7! .j.z/;j.Nz// (regarding this pair as a point on the affine curve
FN .X;Y /D 0).

The action of Aut.C/ on X0.N / corresponding to the model X0.N /Q has the following
description: for � 2 Aut.C/, �Œz�D Œz0� if �j.z/D j.z0/ and �j.Nz/D j.Nz0/.

The curve X0.N /Q is called the canonical model of X0.N / over Q. The canonical
modelX.1/Q ofX.1/ is just the projective line P1 over Q. If the field of rational functions on
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P1 is Q.T /, then the identification of P1 with X(1) is made in such a way that T corresponds
to j .

The quotient mapX0.N /!X.1/ corresponds to the map of algebraic curvesX0.N /Q!
X.1/Q defined by the inclusion of function fields Q.T /! Q.x;y/, T 7! x. On an open
subset of X0.N /Q, it is the projection map .a;b/ 7! a.
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8 Modular Curves as Moduli Varieties

Algebraic geometers and analysists worked with “moduli varietes” that classify isomorphism
classes of certain objects for a hundred years before Mumford gave a precise definition of a
moduli variety in the 1960s. In this section I explain the general notion of a moduli variety,
and then I explain how to realize the modular curves as moduli varieties for elliptic curves
with additional structure.

The general notion of a moduli variety

Fix a field k which initially we assume to be algebraically closed. A moduli problem over k
is a contravariant functor F from the category of algebraic varieties over k to the category of
sets. In particular, for each variety V over k we are given a set F.V /, and for each regular
map 'WW ! V , we are given a map F.'/WF.V /!F.W /. Typically, F.V / will be the set
of isomorphism classes of certain objects over V .

A solution to the moduli problem is a variety V over k together with an identification
V.k/DF.k/ and certain additional data sufficient to determine V uniquely. More precisely:

DEFINITION 8.1 A pair .V;˛/ consisting of a variety V over k together with a bijection
˛WF.k/! V.k/ is called a solution to the moduli problem F if it satisfies the following
conditions:

(a) Let T be a variety over k and let f 2 F.T /; a point t 2 T .k/ can be regarded as a
map Specmk! T , and so (by the functoriality of F) f defines an element ft of
F.k/; we therefore have a map t 7! ˛.ft /WT .k/! V.k/, and this map is required to
be regular (i.e., defined by a morphism of algebraic varieties),

T .k/ ! V.k/ f 2 F.T /
t 7! ˛.ft / ft D F.t/.f / 2 F.k/:

(b) (Universality) Let Z be a variety over k and let ˇWF.k/!Z.k/ be a map such that,
for every pair .T;f / as in (a), the map t 7! ˇ.ft /WT .k/!Z.k/ is regular; then the
map ˇ ı˛�1WV.k/!Z.k/ is regular,

F.k/ V .k/

Z.k/:

ˇ

˛

ˇı˛�1

A variety V that occurs as the solution of a moduli problem is called a moduli variety.

PROPOSITION 8.2 Up to a unique isomorphism, there exists at most one solution to a
moduli problem.

PROOF. Suppose there are two solutions .V;˛/ and .V 0;˛0/. Then because of the universal-
ity of .V;˛/, ˛0 ı˛�1WV ! V 0 is a regular map, and because of the universality of .V 0;˛0/,
its inverse is also a regular map. 2

Of course, in general there may exist no solution to a moduli problem, and when there
does exist a solution, it may be very difficult to prove it. Mumford was given the Fields
medal mainly because of his construction of the moduli varieties of curves and abelian
varieties.
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REMARK 8.3 (a) For a variety V over k, let hV denote the functor T  Hom.T;V /. The
condition (a) in (8.1) says that ˛ extends to a natural transformation F ! hV , which (b)
says is universal.

(b) It is possible to modify the above definition for the case that the ground field
k0 is not algebraically closed. For simplicity, we assume k0 to be perfect, and we fix
an algebraic closure k of k0. Now V is a variety over k0 and ˛ is a family of maps
˛.k0/WF.k0/! V.k0/ (one for each algebraic extension k0 of k0) compatible with inclusions
of fields, and .Vk;˛.k// is required to be a solution to the moduli problem over k. If .V;˛/
and .V 0;˛0/ are two solutions to the same moduli problem, then ˛0 ı˛�1WV.k/! V 0.k/

and its inverse are both regular maps commuting with the action of Gal.k=k0/; they are both
therefore defined over k0. Consequently, up to a unique isomorphism, there again can be at
most one solution to a moduli problem.

Note that we don’t require ˛.k0/ to be a bijection when k0 is not algebraically closed.
In particular, V need not represent the functor F . When V does represent the functor, V is
called a fine moduli variety; otherwise it is a coarse moduli variety.

The moduli variety for elliptic curves

We show that A1 is the moduli variety for elliptic curves over a perfect field k0.
An elliptic curve E over a field k0 is a curve given by an equation of the form,

Y 2ZCa1XYZCa3YZ2 DX3Ca2X2ZCa4XZ2Ca6Z3 (14)

for which the discriminant �.a1;a2;a3;a4;a6/¤ 0. It has a distinguished point .0W1W0/,
and an isomorphism of elliptic curves over k0 is an isomorphism of varieties carrying the
distinguished point on one curve to the distinguished point on the second. (There is a unique
group law on E having the distinguished element as zero, and a morphism of elliptic curves
is automatically a homomorphism of groups.)

Let V be a variety over a field k0. An elliptic curve (better, family of elliptic curves)
over V is a map of algebraic varieties E! V where E is the subvariety of V �P2 defined
by an equation of the form (14) with the ai regular functions on V ; �.a1;a2;a3;a4;a6/ is
now a regular function on V which is required to have no zeros.

For a variety V , let E.V / denote the set of isomorphism classes of elliptic curves over V .
Then E is a contravariant functor, and so can be regarded as a moduli problem over k0.

For any field k0 containing k0, the j -invariant defines a map

E 7! j.E/WE.k0/! A1.k0/D k0;
and the theory of elliptic curves (Milne 2006, II 2.1) shows that this map is an isomorphism
if k0 is algebraically closed (but not in general otherwise).

THEOREM 8.4 The pair .A1;j / is a solution to the moduli problem E .
PROOF. For any k0-homomorphism � Wk0! k00, j.�E/D �j.E/, and so it remains to show
that .A1;j / satisfies the conditions (a) and (b) over k.

Let E! T be a family of elliptic curves over T , where T is a variety over k. The map
t 7! j.Et /WT .k/! A1.k/ is regular because j.Et /D c34=� where c4 is a polynomial in
the ai and � is a nowhere zero polynomial in the ai .

Now let .Z;ˇ/ be a pair as in (b). We have to show that j 7! ˇ.Ej /WA1.k/! Z.k/,
where Ej is an elliptic curve over k with j -invariant j , is regular. Let U be the open subset
of A1 obtained by removing the points 0 and 1728. Then

EWY 2ZCXYZ DX3� 36

u�1728XZ
2� 1

u�1728Z
3; u 2 U;
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is an elliptic curve over U with the property that j.Eu/D u (Milne 2006, II 2.3). Because
of the property possessed by .Z;ˇ/, E=U defines a regular map u 7! ˇ.Eu/WU !Z. But
this is just the restriction of the map j 7! ˇ.Ej / to U.k/, which is therefore regular, and it
follows that j itself is regular. 2

The curve Y0.N /Q as a moduli variety

Let k be a perfect field, and let N be a positive integer not divisible by the characteristic
of k (so there is no restriction on N when k has characteristic zero). Let E be an elliptic
curve over k. When k is an algebraically closed field, a cyclic subgroup of E of order N is
simply a cyclic subgroup of E.k/ of order N in the sense of abstract groups. When k is not
algebraically closed, a cyclic subgroup of E is a Zariski-closed subset S such that S.kal/

is cyclic subgroup of E.kal/ of order N . Thus S.kal/ is a cyclic subgroup of order N of
E.kal/ that is stable (as a set—not elementwise) under the action of Gal.kal=k/, and every
such group arises from a (unique) S .

An isomorphism from one pair .E;S/ to a second .E 0;S 0/ is an isomorphism E!E 0

mapping S onto S 0.
These definitions can be extended in a natural way to families of elliptic curves over

varieties.
For a variety V over k, define E0;N .V / to be the set of isomorphism classes of pairs

.E;S/ where E is an elliptic curve over V , and S is a cyclic subgroup of E of order N .
Then E0;N is a contravariant functor, and hence is a moduli problem.

Recall that �.!1;!2/ is the lattice generated by a pair .!1;!2/ with =.!1=!2/ > 0.
Note that �.!1;N�1!2/=�.!1;!2/ is a cyclic subgroup of order N of the elliptic curve
C=�.!1;!2/.

LEMMA 8.5 The map

H! E0;N .C/; z 7! .C=�.z;1/;�.z;N�1/=�.z;1//

induces a bijection �0.N /nH! E0;N .C/.
PROOF. Easy—see Milne 2006, V 2.7. 2

Let E 00;N (k) denote the set of isomorphism classes of homomorphisms of elliptic curves
˛WE!E 0 over k whose kernel is a cyclic subgroup of E of order N . The map

˛ 7! .E;Ker.˛//WE 00;N .k/! E0;N .k/

is a bijection; its inverse is .E;S/ 7! .E!E=S/. For example, the element

.C=�.z;1/;�.z;N�1/=�.z;1//

of E0;N .C/ corresponds to the element .C=�.z;1/
N! C=�.Nz;1// of E 00;N .C/.

Let FN .X;Y / be the polynomial defined in Theorem 6.1 and let C be the (singular)
curve FN .X;Y /D 0 over Q. For any field k �Q; consider the map

E 00;N .k/! A2.k/; .E;E 0/ 7! .j.E/;j.E 0//:

When k D C, the above discussion shows that the image of this map is contained in C.C/,
and this implies that the same is true for all k.

Recall that Y0.N /D �0.N /nH. There is an affine curve Y0.N /Q �X0.N /Q which is a
model of Y0.N /� X0.N /. (This just says that the set of cusps on X0.N / is defined over
Q.)
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THEOREM 8.6 Let k be a field, and let N be an integer not divisible by the characteristic of
k. The moduli problem E0;N has a solution .M;˛) over k. When k DQ, M is canonically
isomorphic to Y0.N /Q, and the map

E0;N .k/
˛�!M.k/

��! Y0.N /Q.k/
.j;jN /����! C.k/

is .E;S/ 7! .j.E/;j.E=S//.

PROOF. When kDQ, it is possible to prove that Y0.N /Q is a solution to the moduli problem
in much the same way as for A1 above. If p −N , then it is possible to show that Y0.N /Q
has good reduction at p, and the curve Y0.N /Fp over Fp it reduces to is a solution to the
moduli problem over Fp. 2

The curve Y.N / as a moduli variety

Let N be a positive integer, and let � 2 C be a primitive N th root of 1. A level-N structure
on an elliptic curve E is a pair of points t D .t1; t2/ in E.k/ such that the map

.m;m0/ 7! .mt1;mt2/WZ=NZ�Z=NZ!E.k/

is injective. This means that E.k/N has order N 2, and t1 and t2 form a basis for E.k/N
as a Z=nZ-module. For any variety V over a field k �QŒ��, define EN .V / to be the set of
isomorphism classes of pairs .E; t/ where E is an elliptic curve over V and t D .t1; t2/ is a
level-N structure on E such that eN .t1; t2/D � (here eN is the Weil pairing—see Silverman
III.8). Then EN is a contravariant functor, and hence is a moduli problem.

LEMMA 8.7 The map

H! EN .C/; z 7! .C=�.z;1/; .z=N;1=N / mod�.z;1//

induces a bijection � .N/nH! EN .C/.
PROOF. Easy. 2

THEOREM 8.8 Let k be a field containing QŒ��, where � is a primitive N th root of 1. The
moduli problem EN has a solution .M;˛) over k. When kDC,M is canonically isomorphic
to Y.N /C .DX.N/C with the cusps removed). LetM be the solution to the moduli problem
EN over QŒ��; then M has good reduction at the prime ideals not dividing N .

PROOF. Omit. 2

EXAMPLE 8.9 For N D 2, the solution to the moduli problem is A1. In this case, there is a
universal elliptic curve with level-2 structure over A1, namely, the curve

EWY 2Z DX.X �Z/.X ��Z/:

Here � is the coordinate on A1, and the map E ! A1 is .x W y W z;�/ 7! �: The level-2
structure is the pair of points .0 W 0 W 1/, .1 W 0 W 1/. The curve E is universal in the following
sense: for every family of elliptic curves E 0 ! V with level-2 structure over a variety
V (with the same base field k), there is a unique morphism V ! A1 such that E 0 is the
pull-back of E. In this case the map E.k/! A1.k/ is an isomorphism for all fields k �Q,
and A1 is a fine moduli variety.
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9 Modular Forms, Dirichlet Series, and Functional Equations

The most famous Dirichlet series, �.s/ defDP1nD1n�s; was shown by Riemann (in 1859) to
have an analytic continuation to the whole complex plane except for a simple pole at s D 1,
and to satisfy a functional equation

Z.s/DZ.1� s/

where Z.s/D ��s=2� .s=2/�.s/. The Hasse-Weil conjecture states that all Dirichlet series
arising as the zeta functions of algebraic varieties over number fields should have mero-
morphic continuations to the whole complex plane and satisfy functional equations. In this
section we investigate the relation between Dirichlet series with functional equations and
modular forms.

We saw in (2.12) that the modular group � .1/ is generated by the matrices T D �1 10 1�
and S D � 0 1

�1 0

�
. Therefore a modular function f .z/ of weight 2k satisfies the following

two conditions:
f .zC1/D f .z/; f .�1=z/D .�z/2kf .z/:

The first condition implies that f .z/ has a Fourier expansion f .z/DPanq
n, and so defines

a Dirichlet series '.s/DPann
�s . Hecke showed that the second condition implies that

the Dirichlet series satisfies a functional equation, and conversely every Dirichlet series
satisfying a functional equation of the correct form (and certain holomorphicity conditions)
arises from a modular form. Weil extended this result to the subgroup �0.N / of � .1/, which
needs more than two generators (and so we need more than one functional equation for the
Dirichlet series). In this section we explain Hecke’s and Weil’s results, and in later sections
we explain the implications of Weil’s results for elliptic curves over Q.

The Mellin transform

Let a1;a2; : : : be a sequence of complex numbers such that an D O.nM / for some M .
This can be regarded as the sequence of coefficients of either the power series f .q/ DP1
1 anq

n, which is absolutely convergent for jqj < 1 at least, or for the Dirichlet series
'.s/ DP11 ann�s , which is absolutely convergent for <.s/ > M C 1 at least. In this
subsection, we give explicit formulae that realize the formal correspondence between f .y/
and '.s/.

Recall that the gamma function � .s/ is defined by the formula,

� .s/D
Z 1
0

e�xxs�1dx; <.s/ > 0:

It has the following properties: � .sC1/D s� .s/, � .1/D 1, and � .1
2
/Dp� ; � .s/ extends

to a function that is holomorphic on the whole complex plane, except for simple poles at
s D�n, where it has a residue .�1/n

nŠ
, nD 0;1;2; : : :.

PROPOSITION 9.1 (MELLIN INVERSION FORMULA) For every real c > 0,

e�x D 1

2�i

Z cCi1

c�i1

� .s/x�sds; x > 0:

(The integral is taken upwards on a vertical line.)
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PROOF. Regard the integral as taking place on a vertical circumference on the Riemann
sphere. The calculus of residues shows that the integral is equal to

2�i

1X
nD0

ressD�nx�s� .s/D 2�i
1X
nD0

.�x/n
nŠ
D 2�i � e�x :

Alternatively, note that the Mellin inversion formula is just the Fourier inversion formula for
the group RC with invariant measure dx=x. 2

THEOREM 9.2 Let a1;a2; : : : be a sequence of complex numbers such that an D O.nM /
for some M. Write f .x/DP11 ane�nx and �.s/DP11 ann�s . Then

� .s/�.s/D
Z 1
0

f .x/xs�1dx for <.s/ >max.0;M C1/; .�/

f .x/D 1

2�i

Z cCi1

c�i1

�.s/� .s/x�sds for c >max.0;M C1/ and <.s/ > 0: .��/

PROOF. First consider .�). Formally we haveZ 1
0

f .x/xs�1dx D
Z 1
0

1X
1

ane
�nxxs�1dx

D
1X
1

Z 1
0

ane
�nxxs�1dx

D
1X
1

an� .s/n
�s

D � .s/�.s/

on writing x for nx in the last integral and using the definition of � .s/. The only problem is
in justifying the interchange of the integral with the summation sign.

The equation .��) follows from Proposition 9.1. 2

The functions f .x/ and �.s/ are called the Mellin transforms of each other.
The equation .�) provides a means of analytically continuing �.s/ provided f .x/ tends

to zero sufficiently rapidly at xD 0. In particular, if f .x/DO.xA/ for everyA>0 as x! 0

through real positive values, then � .s/�.s/ can be extended to a holomorphic function over
the entire complex plane. Of course, this condition on f .x/ implies that x D 0 is an essential
singularity.

We say that a function '.s/ on the complex plane is bounded on vertical strips, if for
all real numbers a < b, '.s/ is bounded on the strip a �<.s/� b as =.s/!˙1.

THEOREM 9.3 (HECKE 1936) Let a0;a1;a2; : : : be a sequence of complex numbers such
that an DO.nM / for some M . Given � > 0; k > 0, C D˙1; write

(a) '.s/DPann
�sI .'.s/ converges for <.s/ >M C1)

(b) ˚.s/D �2�
�

��s
� .s/'.s/;

(c) f .z/DPn�0ane
2�inz=� ; (converges for =.z/ > 0).

Then the following conditions are equivalent:
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(i) The function˚.s/C a0
s
C Ca0
k�s

can be analytically continued to a holomorphic function
on the entire complex plane which is bounded on vertical strips, and it satisfies the
functional equation

˚.k� s/D C˚.s/:
(ii) In the upper half plane, f satisfies the functional equation

f .�1=z/D C.z=i/kf .z/:
PROOF. Given (ii), apply .�) to obtain (i); given (i), apply .��) to obtain (ii). 2

REMARK 9.4 Let � 0.�/ be the subgroup of � .1/ generated by the maps z 7! zC� and
z 7! �1=z. A modular form of weight k and multiplier C for � 0.�/ is a holomorphic
function f .z/ on H such that

f .zC�/D f .z/; f .�1=z/D C.z=i/kf .z/;
and f is holomorphic at i1. This is a slightly more general notion than in Section 4—if k
is an even integer and C D 1 then it agrees with it.

The theorem says that there is a one-to-one correspondence between modular forms of
weight k and multiplier C for � 0.�/ whose Fourier coefficients satisfy an D O.nM / for
some M , and Dirichlet series satisfying (i). Note that ˚.s/ is holomorphic if f is a cusp
form.

For example �.s/ corresponds to a modular form of weight 1/2 and multiplier 1 for
� 0.2/.

Weil’s theorem

Given a sequence of complex numbers a1;a2; : : : such that an DO.nM / for some M , write

L.s/D
1X
nD1

ann
�s; �.s/D .2�/�s� .s/L.s/; f .z/D

1X
nD1

ane
2�inz : (15)

More generally, let m > 0 be an integer, and let � be a primitive character on .Z=mZ/�
(primitive means that it is not a character on .Z=dZ/� for any proper divisor d of m). As
usual, we extend �.s/ to the whole of Z=mZ by setting �.n/D 0 if n is not relatively prime
to m. We write

L�.s/D
1X
nD1

an�.n/n
�s; ��.s/D . m

2�
/s� .s/L�.s/; f�.z/D

1X
nD1

an�.n/e
2�inz :

Note that L� and f� are the Mellin transforms of each other.
For any �, the associated Gauss sum is

g.�/D
mX
nD1

�.n/e�2�in=m:

Obviously x�.a/g.�/DP�.n/e�2�ian=m, and hence

�.n/Dm�1g.�/
X
x�.a/e2�ian=m:

It follows from this last equation that

f� Dm�1g.�/
mX
1

x�.a/f jk .m a
0 m/ :
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THEOREM 9.5 Let f .z/ be a modular form of weight 2k for �0.N /, and suppose that
f jk

�
0 �1
N 0

�D C.�1/kf for some C D˙1. Define

C� D Cg.�/�.�N/=g.x�/:

Then ��.s/ satisfies the functional equation:

��.s/D C�N k�s�x�.2k� s/ whenever gcd.m;N /D 1:
PROOF. Apply Theorem 9.3. 2

The most interesting result is the converse to this theorem.

THEOREM 9.6 (WEIL 1967) Fix a C D ˙1, and suppose that for all but finitely many
primes p not dividing N the following condition holds: for every primitive character �
of .Z=pZ/�, the functions �.s/ and ��.s/ can be analytically continued to holomorphic
functions in the entire complex plane and that each of them is bounded on vertical strips;
suppose also that they satisfy the functional equations:

�.s/D CN k�s�.2k� s/

��.s/D C�N k�s�x�.2k� s/
where C� is defined above; suppose further that the Dirichlet series L(s) is absolutely
convergent for s D k� � for some � > 0. Then f .z/ is a cusp form of weight 2k for �0.N /.

PROOF. Several pages of manipulation of 2�2 matrices. 2

Let E be an elliptic curve over Q, and let L.E;s/ be the associated L-series. As we
shall see shortly, it is generally conjectured that L.s/ satisfies the hypotheses of the theorem,
and hence is attached to a modular form f .z/ of weight 2 for �0.N /. Granted this, one can
show that there is nonconstant map ˛WX0.N /!E (defined over Q) such that the pull-back
of the canonical differential on E is the differential on X0.N / attached to f .z/.

REMARK 9.7 Complete proofs of the statements in this section can be found in Ogg 1969,
especially Chapter V. They are not particularly difficult—it would only add about 5 pages to
the notes to include them.
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10 Correspondences on Curves; the Theorem of
Eichler-Shimura

In this section we sketch a proof of the key theorem of Eichler and Shimura relating the
Hecke correspondence Tp to the Frobenius map. In the next section we explain how this
enables us to realize certain zeta functions as the Mellin transforms of modular forms.

The ring of correspondences of a curve

Let X and X 0 be projective nonsingular curves over a field k which, for simplicity, we take
to be algebraically closed.

A correspondence T between X and X 0 is a pair of finite surjective morphisms

X
˛ � Y ˇ�!X 0:

It can be thought of as a many-valued map X ! X 0 sending a point P 2 X.k/ to the set
fˇ.Qi /g where the Qi run through the elements of ˛�1.P / (the Qi need not be distinct).
Better, define Div.X/ to be the free abelian group on the set of points of X ; thus an element
of Div.X/ is a finite formal sum

D D
X

nPP; nP 2 Z; P 2 C:

A correspondence T then defines a map

Div.X/! Div.X 0/; P 7!
X

ˇ.Qi /;

(notations as above). This map multiplies the degree of a divisor by deg.˛/. It therefore
sends the divisors of degree zero on X into the divisors of degree zero on X 0, and one
can show that it sends principal divisors to principal divisors. It therefore defines a map
T WJ.X/! J.X 0/ where

J.X/
defD Div0.X/=f principal divisorsg:

We define the ring of correspondences A.X/ on X to be the subring of End.J.X// gener-
ated by the maps defined by correspondences.

If T is the correspondence

X
ˇ � Y ˛�!X 0:

then the transpose T 0 of T is the correspondence

X 0
˛ � Y ˇ�!X:

A morphism ˛WX !X 0 can be thought of as a correspondence

X  � !X 0

where � �X �X 0 is the graph of ˛ and the maps are the projections.

ASIDE 10.1 Attached to any complete nonsingular curve X there is an abelian variety Jac.X/
whose set of points is J.X/. The ring of correspondences is the endomorphism ring of Jac.X/—see
the next section.
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The Hecke correspondence

Let � be a subgroup of � .1/ of finite index, and let ˛ be a matrix with integer coefficients
and determinant > 0. Write � ˛� DS� ˛i (disjoint union). Then we get a map

T .˛/WJ.X.� //! J.X.� //; Œz� 7!
X

Œ˛iz�:

As was explained in Section 5, this is the map defined by the correspondence:

X.� / X.�˛/
˛!X.� /

where �˛ D � \˛�1� ˛. In this way, we get a homomorphism H!A from the ring of
Hecke operators into the ring of correspondences.

Consider the case � D �0.N / and T D T .p/ the Hecke correspondence defined by the
double coset �0.N /

�
1 0
0 p

�
�0.N /. Assume that p −N . We give two further descriptions of

T .p/.
First, identify a point of Y0.N / (over C) with an isomorphism class of homomorphisms

E!E 0 of elliptic curves with kernel a cyclic group of order N . The subgroup Ep of E of
points of order dividing p is isomorphic to .Z=pZ/� .Z=pZ/. Hence there are pC1 cyclic
subgroups of Ep of order p, say S0;S1; : : : ;Sp (they correspond to the lines through the
origin in F2p). Then (as a many-valued map), T .p/ sends ˛WE!E 0 to

fEi !E 0i j i D 0;1; : : : ;pg
where Ei DE=Si and E 0i DE 0=˛.Si /.

Second, regard Y0.N / as the curve C defined by the polynomial FN .X;Y / constructed
in Theorem 6.1 (of course, this isn’t quite correct—there is a map Y0.N /! C; Œz� 7!
.j.z/;j.Nz//, which is an isomorphism over the nonsingular part of C ). Let .j;j 0/ be
a point on C ; then there are elliptic curves E and E 0 (well-defined up to isomorphism)
such that j D j.E/ and j 0 D j.E 0/. The condition FN .j;j 0/D 0 implies that there is a
homomorphism ˛WE ! E 0 with kernel a cyclic subgroup of order N . Then T .p/ maps
.j;j 0/ to f.ji ;j 0i / j i D 0; : : : ;pg where ji D j.E=Si / and j 0i D j.E 0=˛.Si //.

These last two descriptions of the action of T .p/ are valid over any field of characteristic
0.

The Frobenius map

Let C be a curve defined over a field k of characteristic p ¤ 0. Assume (for simplicity) that
k is algebraically closed. If C is defined by equations

P
ci0i1���X

i0
0 X

i1
1 � � � D 0 and q is a

power of p, then C .q/ is the curve defined by the equations
P
c
q
i0i1���

X
i0
0 X

i1
1 � � � D 0, and the

Frobenius map ˘qWC ! C .q/ sends the point .a0 W a1 W � � �/ to .aq0 W aq1 W � � �/. Note that if
C is defined over Fq , so that the equations can be chosen to have coefficients ci0i1��� in Fq ,
then C D C .q/ and the Frobenius map is a map from C to itself.

Recall that a nonconstant morphism ˛WC!C 0 of curves defines an inclusion ˛�Wk.C 0/ ,!
k.C / of function fields, and that the degree of ˛ is defined to be Œk.C / W ˛�k.C 0/�. The map
˛ is said to be separable or purely inseparable according as k.C / is a separable or purely
inseparable extension of ˛�k.C 0/. If the separable degree of k.C / over ˛�k.C 0/ is m, then
the map C.k/! C 0.k/ ism W 1 except on a finite set (assuming k to be algebraically closed).

PROPOSITION 10.2 The Frobenius map ˘qWC ! C .q/ is purely inseparable of degree q,
and every purely inseparable map 'WC ! C 0 of degree q (of complete nonsingular curves)
factors as

C
˘q��! C .q/

��! C 0
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PROOF. Note that

˘�q k.C /D k.C .q//D k.C /q defD faq j a 2 k.C /g

It follows that k.C / is purely inseparable of degree q over k.C /q , and that this statement
uniquely determines k.C /q . The last sentence is obvious when k.C / D k.T / (field of
rational functions in T ), and the general case follows because k.C / is a separable extension
of such a field k.T /. 2

Brief review of the points of order p on elliptic curves

Let E be an elliptic curve over an algebraically closed field k. The map pWE!E (multipli-
cation by p) is of degree p2. If k has characteristic zero, then the map is separable, which
implies that its kernel has order p2. If k has characteristic p, the map is never separable:
either it is purely inseparable (and so E has no points of order p) or its separable and
inseparable degrees are p (and so E has p points of order dividing p). In the first case,
(10.2) tells us that multiplication by p factors as

E!E.p
2/ �!E:

Hence this case occurs only when E �E.p2/, i.e., when j.E/D j.E.p2//D j.E/p2 . Thus
if E has no points of order p, then j.E/ 2 Fp2 .

The Eichler-Shimura theorem

The curve X0.N / is defined over Q and the Hecke correspondence T .p/ is defined over
some number field K. For almost all primes p − N , X0.N / will reduce to a nonsingular
curve zX0.N /.3 For such a prime p, the correspondence T .p/ defines a correspondence
zT .p/ on zX0.N /.
THEOREM 10.3 For a prime p where X0.N / has good reduction,

xTp D˘pC˘ 0p

(equality in the ring A. zX0.N // of correspondences on zX0.N / over the algebraic closure F
of Fp; here ˘ 0p is the transpose of ˘p).

PROOF. We show that they agree as many-valued maps on an open subset of zX0.N /.
Over Qal

p we have the following description of Tp (see above): a homomorphism of
elliptic curves ˛WE! E 0 with cyclic kernel of order N defines a point .j.E/;j.E 0/) on
X0.N /; let S0; : : : ;Sp be the subgroups of order p in E; then

Tp.j.E/;j.E
0//D f.j.Ei /;j.E 0i //g

where Ei DE=Si and E 0i DE 0=˛.Si /.
Consider a point zP on zX0.N / with coordinates in F. Ignoring a finite number of points

of zX0.N /, we can suppose zP 2 zY0.N / and hence is of the form .j. zE/;j. zE 0// for some
map z̨W zE! zE 0. Moreover, we can suppose that zE has p points of order dividing p.

3In fact, it is known that X0.N / has good reduction for all primes p −N , but this is hard to prove. It is easy
to see that X0.N / does not have good reduction at primes dividing N .



108 II. The Algebro-Geometric Theory

Let ˛WE! E 0 be a lifting of z̨ to Qal
p. The reduction map Ep.Q al

p /! zEp.Fal
p/ has a

kernel of order p. Number the subgroups of order p in E so that S0 is the kernel of this map.
Then each Si , i ¤ 0, maps to a subgroup of order p in zE.

The map pW zE! zE factors as

zE '! zE=Si
 ! zE:

When i D 0, ' is a purely inseparable map of degree p (it is the reduction of the map
E ! E=S0—it therefore has degree p and has zero (visible) kernel), and so  must be
separable of degree p (we are assuming zE has p points of order dividing p). Proposition 10.2
shows that there is an isomorphism zE.p/! zE=S0. Similarly zE 0.p/ � zE 0=S0. Therefore

.j. zE0/;j. zE 00//D .j. zE.p//;j. zE 0.p///D .j. zE/p;j. zE 0/p/D˘p.j. zE/;j. zE 0//:

When i ¤ 0, ' is separable (its kernel is the reduction of Si /, and so  is purely inseparable.
Therefore zE � zE.p/i , and similarly zE 0 � zE 0i .p/. Therefore

.j. zEi /.p/;j. zE 0i /.p//D .j. zE/;j. zE 0//:

Hence
f.j. zEi /;j. zE 0i // j i D 1;2; : : : ;pg

is the inverse image of ˘p, i.e., it is ˘ 0p.j. zE/;j. zE 0//. This completes the proof of the
theorem. 2
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11 Curves and their Zeta Functions

We begin by reviewing the theory of the zeta functions of curves over Q; then we explain
the relation between the various representations of the ring of correspondences; finally we
explain the implications of the Eichler-Shimura theorem for the zeta functions of the curves
X0.N / and elliptic curves; in particular, we state the conjecture of Taniyama-Weil, and
briefly indicate how it implies Fermat’s last theorem.

Two elementary results

We begin with two results from linear algebra that will be needed later.

PROPOSITION 11.1 Let� be a free Z-module of finite rank, and let ˛W�!� be a Z-linear
map with nonzero determinant. Then the kernel of the map

z̨W.�˝Q/=�! .�˝Q/=�

defined by ˛ has order jdet.˛/j.
PROOF. Consider the commutative diagram:

0 � �˝Q .�˝Q/=� 0

0 � �˝Q .�˝Q/=� 0

˛ ˛˝1 z̨

Because det.˛/¤ 0, the middle vertical map is an isomorphism. Therefore the snake lemma
gives an isomorphism

Ker.z̨/! Coker.˛/:

There exist bases e D fe1; : : : ; emg and f D ff1; : : : ;fmg for � such that ˛.ei / D cifi ,
ci 2 Z, for all i (apply ANT 2.44 to both the rows and columns of some matrix for ˛). Now
#Coker.˛/D jc1 � � �cmj D jdet.˛/j. 2

Let V be a real vector space. To give the structure of a complex vector space on V
compatible with its real structure amounts to giving an R-linear map J WV ! V such that
J 2 D�1. Such a map extends by linearity to C˝R V , and C˝R V splits into a direct sum

C˝R V D V C˚V �

with V C (resp. V �) theC1 (resp. �1) eigenspace of J .

PROPOSITION 11.2 (a) The map

.V;J /
v 7!1˝v�����! C˝R V

project����! V C

is an isomorphism of complex vector spaces.
(b) The map

z˝v 7! xz˝vWV ˝RC! V ˝RC

is an R-linear involution of V ˝RC interchanging V C and V �.

PROOF. Left as an easy exercise. 2
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COROLLARY 11.3 Let ˛ be a C-linear endomorphism of V . Write A for the matrix of
˛ regarded as an R-linear endomorphism of V , and A1 for the matrix of ˛ as a C-linear
endomorphism of V . Then

A� A1˚ xA1:

(By this I mean that the matrix A is similar to the matrix
�
A1 0

0 xA1

�
PROOF. Follows immediately from the above Proposition. 2

For V D C and the map “multiplication by ˛ D aC ib”, the statement becomes,�
a �b
b a

�
�
�
aC ib 0

0 a� ib
�
;

which is obviously true because the two matrices are semisimple and have the same trace
and determinant.

The zeta function of a curve over a finite field

The next theorem summarizes what is known.

THEOREM 11.4 Let C be a complete nonsingular curve of genus g over Fq . Let Nn be
the number of points of C with coordinates in Fqn . Then there exist algebraic integers
˛1;˛2; : : : ;˛2g (independent of n) such that

Nn D 1Cqn�
2gX
iD1

˛ni I (16)

moreover, the numbers q=˛i are a permutation of the ˛i , and for each i , j˛i j D q1=2.

All but the last of these assertions follow in a straightforward way from the Riemann-
Roch theorem (see M. Eichler, Introduction to the Theory of Algebraic Numbers and
Function, Academic Press, 1966, V 5.1). The last is the famous “Riemann hypothesis” for
curves, proved in this case by Weil in the 1940s.

Define Z.C;t/ to be the power series with rational coefficients such that

logZ.C;t/D
1X
nD1

Nnt
n=n:

Then (16) is equivalent to the formula

Z.C;t/D .1�˛1t / � � �.1�˛nt /
.1� t /.1�qt/

(because � log.1�at/DPantn=n).
Define �.C;s/D Z.C;q�s/. Then the “Riemann hypothesis” is equivalent to �.C;s/

having all its zeros on the line <.s/D 1=2, whence its name. One can show that

�.C;s/D
Y
x2C

1

1� .Nx/�s

where Nx is the number of elements in the residue field at x, and so the definition of �.C;s/
is quite similar to that of �.Q; s/.
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The zeta function of a curve over Q

Let C be a complete nonsingular curve over Q. For all but finitely many primes p, the
reduction C.p/ of C modulo p will be a complete nonsingular curve over Fp. We call the
primes for which this is true the “good primes” for C and the remainder the “bad primes”.
We set

�.C;s/D
Y
p

�p.C;s/

where �p.C;s/ is the zeta function of C.p/ when p is a good prime and is as defined in
(Serre, Seminaire DPP 1969/70; Oeuvres, Vol II, pp 581–592) when p is a bad prime.

On comparing the expansion of �.C;s/ as a Dirichlet series with
P
n�s and using the

Riemann hypothesis (11.4), one finds that �.C;s/ converges for<.s/ > 3=2. It is conjectured
that it can be analytically continued to the entire complex plane except for simple poles at
the negative integers, and that it satisfies a functional equation relating �.s/ to �.2� s/. Note
that we can write

�.C;s/D �.s/�.s�1/
L.C;s/

where
L.C;s/D

Y
p

1

.1�˛1.p/p�s/ � � �.1�˛2g.p/p�s/
:

For an elliptic curve E over Q, there is a pleasant geometric definition of the factors of
L.E;s/ at the bad primes. Choose a Weierstrass minimal model for E, and reduce it mod p.
If E.p/ has a node at which each of the two tangents are rational over Fp , then the factor is
.1�p�s/�1; if E.p/ has a node at which the tangents are not separately rational over Fp
(this means that the tangent cone is a homogeneous polynomial of degree two variables with
coefficients in Fp that does not factor over Fp), then the factor is .1Cp�s/�1; if E.p/ has
a cusp, then the factor is 1.

The geometric conductor of E is defined to be

N D
Y
p

pfp

where fp D 0 ifE has good reduction at p, fp D 1 ifE.p/ has a node as its only singularity,
and fp � 2 if E.p/ has a cusp (with equality unless p D 2;3). Write

�.s/D .2�/�s� .s/L.E;s/:

Then it is conjectured that �.s/ can be analytically continued to the entire complex plane as
a holomorphic function, and satisfies the functional equation:

�.s/D˙N 1�s�.2� s/:

More generally, let m > 0 be a prime not dividing N and let � be primitive character of
.Z=mZ/�. If

L.E;s/D
X

cnn
�s;

we define
L�.E;s/D

X
cn�.n/n

�s;

and
��.E;s/D .m=2�/s� .s/L�.E;s/:
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It is conjectured that ��.E;s/ can be analytically continued to the whole complex plane as
a holomorphic function, and that it satisfies the functional equation

��.E;s/D˙.g.�/�.�N/=g.x�//N 1�s�x�.E;2� s/

where

g.�/D
mX
nD1

�.n/e2�in=m:

Review of elliptic curves

(See also Milne 2006.) Let E be an elliptic curve over an algebraically closed field k, and let
AD End.E/. Then Q˝ZA is Q, an imaginary quadratic field, or a quaternion algebra over
Q (the last case only occurs when k has characteristic p¤ 0, and then only for supersingular
elliptic curves).

Because E has genus 1; the map
P
ni ŒPi � 7!

P
niPi WDiv0.E/! E.k/ defines an

isomorphism J.k/!E.k/.
Here A is the full ring of correspondences of E. Certainly, any element of A can be

regarded as a correspondence on E. Conversely a correspondence

E Y !E

defines a map E.k/!E.k/, and it is easy to see that this is regular.
There are three natural representations of A.

˘ LetW D Tgt0.E/, the tangent space to E at 0. This is a one-dimensional vector space
over k. Since every element ˛ of A fixes 0, ˛ defines an endomorphism d˛ of W . We
therefore obtain a homomorphism �WA! End.W /.

˘ For any prime `¤ char.k/, the Tate module T`E of E is a free Z`-module of rank 2.
We obtain a homomorphism �`WA! End.T`E/.

˘ When k DC,H1.E;Z/ is a free Z-module of rank 2, and we obtain a homomorphism
�B WA! End.H1.E;Z//.

PROPOSITION 11.5 When k D C,

�B˝Z` � �`; �B˝C� �˚ x�:

(By this I mean that they are isomorphic as representations; from a more down-to-earth point
of view, this means that if we choose bases for the various modules, then the matrix .�B.˛//
is similar to .�`.˛// and to

�
�.˛/ 0
0 x�.˛/

�
for all ˛ 2A.)

PROOF. Write E D C=�. Then C is the universal covering space of E and � is the group
of covering transformations. Therefore �D �1.E;0/. From algebraic topology, we know
that H1 is the maximal abelian quotient of �1, and so (in this case),

H1.E;Z/' �1.E;0/'� .canonical isomorphisms/:

The map C!E defines an isomorphism C! Tgt0.E/. But� is a lattice in C (regarded
as a real vector space), which means that the canonical map�˝ZR!C is an isomorphism.
Now the relation �B � �˚ x� follows from (11.3).
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Next, note that the group of points of order `N on E, E`N , is equal to `�N�=�. There
are canonical isomorphisms

�˝Z .Z=`NZ/D�=`N� `�N���! `�N�=�DE`N :

When we pass to the inverse limit, these isomorphisms give an isomorphism�˝Z`Š T`E.2

REMARK 11.6 There is yet another representation of A. Let ˝1.E/ be the space of
holomorphic differentials on E. It is a one-dimensional space over k. Moreover, there is a
canonical pairing

˝1.E/� Tgt0.E/! k:

This is nondegenerate. Therefore the representation of A on ˝1.E/ is the transpose of the
representation on Tgt0.E/. Since both representations are one-dimensional, this means that
they are equal.

PROPOSITION 11.7 For every nonzero endomorphism ˛ of E, the degree of ˛ is equal to
det.�`˛/.

PROOF. Suppose first that kDC, so that we can identifyE.C/with C=�. ThenE.C/ torsD
.�˝Q/=�, and (11.1) shows that the kernel of the map E.C/ tors!E.C/ tors defined by ˛
is finite and has order equal to det.�B.˛//. But the order of the kernel is deg.˛/ and (11.5)
shows that det.�B.˛//D det.�`.˛//.

For k of characteristic zero, the statement follows from the case k D C. For a proof for
an arbitrary k in a more general setting, see my notes on Abelian Varieties, I, 10.20. 2

COROLLARY 11.8 Let E be an elliptic curve over Fp; then the numbers ˛1 and ˛2 occur-
ring in (11.4) are the eigenvalues of ˘p acting on T`E for all `¤ p.

PROOF. The elements of E.Fq/ are exactly the elements of E.xFp/ that are fixed by ˘q
defD

˘n
p , i.e., E.Fq/ is the kernel of the endomorphism ˘n

p �1. This endomorphism is separable
.˘p obviously acts as zero on the tangent space), and so

Nn D deg.˘n
p �1/

D det.�`.˘
n
p �1//

D .˛n1 �1/.˛n2 �1/
D q�˛n1 �˛n2 C1: 2

We need one last fact.

PROPOSITION 11.9 Let ˛0 be the transpose of the endomorphism ˛ of E; then �`.˛0/ is
the transpose of �`.˛/.

The zeta function of X0.N /: case of genus 1

When N is one of the integers 11, 14, 15, 17, 19, 20, 21, 24, 27, 32, 36, or, 49, the curve
X0.N / has genus 1. Recall (p. 88) that the number of cusps4 of �0.N / isX

d jN; d>0

'.gcd.d;N=d//:

4For a description of the cusps on X0.N / and their fields of rationality, see Ogg, Rational points on certain
elliptic modular curves, Proc. Symp. P. Math, 24, AMS, 1973, 221-231.



114 II. The Algebro-Geometric Theory

If N is prime, then there are two cusps, 0 and i1, and they are both rational over Q. If N is
one of the above values, and we take i1 to be the zero element of X0.N /, then it becomes
an elliptic curve over Q.

LEMMA 11.10 There is a natural one-to-one correspondence between the cusp forms of
weight 2 for �0.N / and the holomorphic differential forms X0.N / (over C).

PROOF. We know that f 7! fdz gives a one-to-one correspondence between the meromor-
phic modular forms of weight 2 for �0.N / and the meromorphic differentials on X0.N /, but
Lemma 4.11 shows that the cusp forms correspond to the holomorphic differential forms.2

Assume that X0.N / has genus one. Let ! be a holomorphic differential on X0.N /;
when we pull it back to H and write it f .z/dz, we obtain a cusp form f .z/ for �0.N / of
weight 2. It is automatically an eigenform for T .p/ all p − N , and we assume that it is
normalized so that f .z/DPanq

n with a1 D 1. Then T .p/ �f D apf . One can show that
ap is real.

Now consider zX0.N /, the reduction ofX0.N /modulo p. Here we have endomorphisms
˘p and ˘ 0p, and ˘p ı˘ 0p D deg.˘p/D p. Therefore

.I2��`.˘p/T /.I2��`.˘ 0p/T /D I2� .�`.˘pC˘ 0p//T CpT 2:

According to the Eichler-Shimura theorem, we can replace ˘pC˘ 0p by zT .p/, and since
the `-adic representation doesn’t change when we reduce modulo p, we can replace zT .p/
by T .p/. The right hand side becomes

I2�
�
ap 0
0 ap

�
T CpT 2:

Now take determinants, noting that ˘p and ˘ 0p , being transposes, have the same character-
istic polynomial. We get that

.1�apT CpT 2/2 D det.1�˘pT /2:

On taking square roots, we conclude that

.1�apT CpT 2/D det.1�˘pT /D .1�˛pT /.1� x̨pT /:

On replacing T with p�s in this equation, we obtain the equality of the p-factors of the
Euler products for the Mellin transform of f .z/ and of L.X0.N /;s/. We have therefore
proved the following theorem.

THEOREM 11.11 The zeta function of X0.N / (as a curve over Q) is, up to a finite number
of factors, the Mellin transform of f .z/.

COROLLARY 11.12 The strong Hasse-Weil conjecture (see below) is true for X0.N /:

PROOF. Apply Theorem 9.5. 2
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Review of the theory of curves

We repeat the above discussion with E replaced by a general (projective nonsingular) curve
C . Proofs can be found (at least when the ground field is C) in Griffiths 1989. Let C be a
complete nonsingular curve over an algebraically closed field k. Attached to C there is an
abelian variety J , called the Jacobian variety of C such that

J.k/D Div0.C /=f principal divisorsg:

In the case that C is an elliptic curve, J D C , i.e., an elliptic curve is its own Jacobian.
When k D C it is easy to define J , at least as a complex torus. As we have already

mentioned, the Riemann-Roch theorem shows that the holomorphic differentials ˝1.C / on
C form a vector space over k of dimension g D genus of C .

Now assume k D C. The map

H1.C;Z/!˝1.C /_;  7! .! 7!
Z


!/;

identifies H1.C;Z/ with a lattice in ˝1.C /_ (linear dual to the vector space ˝1.C //.
Therefore we have a g-dimensional complex torus ˝1.C /_=H1.C;Z/. One proves that
there is a unique abelian variety J over C such that J.C/D˝1.C /_=H1.C;Z/. (Recall
that not every compact complex manifold of dimension > 1 arises from an algebraic variety.)

We next recall two very famous theorems. Fix a point P 2 C .

Abel’s Theorem: Let P1; : : : ;Pr and Q1; : : : ;Qr be elements of C.C/; then
there is a meromorphic function on C.C/ with its poles at the Pi and its zeros
at the Qi if and only if, for any paths i from P to Pi and paths  0i from P to
Qi , there exists a  in H1.C.C/;Z/ such that

rX
iD1

Z
i

!�
rX
iD1

Z
 0
i

! D
Z


! all !:

Jacobi Inversion Formula: For any linear mapping l W˝1.C /! C, there
exist g points P1; : : : ;Pg in C.C/ and paths 1; : : : ;g from P to Pi such that
l.!/DPR

i
! for all ! 2˝1.C /.

These two statements combine to show that there is an isomorphism:X
niPi 7!

�
! 7!

X
ni

Z
i

!

�
WDiv0.C /=f principal divisorsg ! J.C/:

(The i are paths from P to Pi .) The construction of J is much more difficult over a general
field k. (See my second article in: Arithmetic Geometry, eds. G. Cornell and Silverman,
Springer, 1986.)

The ring of correspondences A of C can be identified with the endomorphism ring of J ,
i.e., with the ring of regular maps ˛WJ ! J such that ˛.0/D 0.

Again, there are three representations of A.

˘ There is a representation � of A on Tgt0.J /D˝1.C /_. This is a vector space of
dimension g over the ground field k.

˘ For every `¤ char.k/, there is a representation on the Tate module T`.J /D lim �J`n.k/.
This is a free Z`-module of rank 2g.



116 II. The Algebro-Geometric Theory

˘ When k D C, there is a representation on H1.C;Z/. This is a free Z-module of rank
2.

PROPOSITION 11.13 When k D C,

�B˝Z` � �`; �B˝C� �˚ x�:
PROOF. This can be proved exactly as in the case of an elliptic curve. 2

The rest of the results for elliptic curves extend in an obvious way to a curve C of genus
g and its Jacobian variety J.C /.

The zeta function of X0.N /: general case

Exactly as in the case of genus 1, the Eichler-Shimura theorem implies the following result.

THEOREM 11.14 Let f1;f2; :::;fg be a basis for the cusp forms of degree 2 for �0.N /,
chosen to be normalized eigenforms for the Hecke operators T .p/ for p prime to N . Then,
apart from the factors corresponding to a finite number of primes, the zeta function ofX0.N /
is equal to the product of the Mellin transforms of the fi .

THEOREM 11.15 Let f be a cusp form of weight 2, which is a normalized eigenform for
the Hecke operators, and write f DPanq

n. Then for all primes p −N , japj � 2p1=2.

PROOF. In the course of the proof of the theorem, one finds that ap D ˛C x̨ where ˛ occurs
in the zeta function of the reduction of X0.N / at p. Thus this follows from the Riemann
hypothesis. 2

REMARK 11.16 As mentioned earlier (p. 58), Deligne has proved the analogue of Theorem
11.15 for all weights: let f be a cusp form of weight 2k for �0.N / and assume f is an
eigenform for all the T .p/ with p a prime not dividing N and that f is “new” (see below);
write f DP11 anqn with a1 D 1; then

japj � 2p2k�1=2;

for all p not dividing N . The proof identifies the eigenvalues of the Hecke operator with
sums of eigenvalues of Frobenius endomorphisms acting on the étale cohomology of a power
of the universal elliptic curve; thus the inequality follows from the Riemann hypothesis
for such varieties. See Deligne, Sém. Bourbaki, Fév. 1969. In fact, Deligne’s paper Weil
II simplifies the proof (for a few hints concerning this, see E. Freitag and R. Kiehl, Etale
Cohomology and the Weil Conjecture, p. 278).

The Conjecture of Taniyama and Weil

Let E be an elliptic curve over Q. Let N be its geometric conductor. It has an L-series

L.E;s/D
1X
nD1

ann
�s:

For any prime m not dividing N , and primitive character �W.Z=mZ/�! C�, let

��.E;s/DN s=2
� m
2�

�s
� .s/

1X
nD1

an�.n/n
�s:
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CONJECTURE 11.17 (STRONG HASSE-WEIL CONJECTURE) For all m prime to N , and
all primitive Dirichlet characters �, ��.E;s/ has an analytic continuation of C, bounded in
vertical strips, satisfying the functional equation

��.E;s/D˙.g.�/�.�N/=g.x�//N 1�s�x�.E;2� s/

where

g.�/D
mX
nD1

�.n/e2�in=m:

An elliptic curveE over Q is said to be modular if there is a nonconstant mapX0.N /!
E (defined over Q).

REMARK 11.18 Let C be a complete nonsingular curve, and fix a rational point P on C
(assumed to exist). Then there is a canonical map 'P WC ! J.C / sending P to 0, and the
map is universal: for every abelian variety A and regular map 'WC ! A sending P to 0,
there is a unique map  WJ.C /! A such that  ı'P D '. Thus to say that E is modular
means that there is a surjective homomorphism J0.N /!E.

THEOREM 11.19 An elliptic curve E over Q is modular if and only if it satisfies the strong
Hasse-Weil conjecture (and in fact, there is a mapX0.N /!E withN equal to the geometric
conductor of E).

PROOF. Suppose E is modular, and let ! be the Néron differential on E. The pull-back of
! to X0.N / can be written f .z/dz with f .z/ a cusp form of weight 2 for �0.N /, and the
Eichler-Shimura theorem shows that �.E;s/ is the Mellin transform of f . (Actually, it is
not quite this simple...)

Conversely, suppose E satisfies the strong Hasse-Weil conjecture. Then according to
Weil’s theorem, �.E;s/ is the Mellin transform of a cusp form f . The cusp form has
rational Fourier coefficients, and the next proposition shows that there is a quotient E 0 of
J0.N / whose L-series is the Mellin transform of f ; thus we have found a modular elliptic
curve having the same zeta function as E, and a theorem of Faltings then shows that there is
an isogeny E 0!E. 2

THEOREM 11.20 (FALTINGS 1983) Let E and E 0 be elliptic curves over Q. If �.E;s/D
�.E 0; s/ then E is isogenous to E 0.

PROOF. See his paper proving Mordell’s conjecture (Invent. Math. 1983). 2

For any M dividing N , we have a canonical map X0.N /! X0.M/, and hence a
canonical map J0.N /! J0.M/. The intersection of the kernels of these maps is the “new”
part of J0.N /, which is denoted J new

0 .N /.
Similarly, it is possible to define a subspace S new

0 .N / of new cusp forms of weight 2.

PROPOSITION 11.21 There is a one-to-one correspondence between the elliptic curves E
over Q that admit a surjective map X0.N /!E, but no surjective map X0.M/!E with
M <N , and newforms for �0.N / that are eigenforms with rational eigenvalues.

PROOF. Given a “new” form f .z/DPanq
n as in the Proposition, we define an elliptic

curve E equal to the intersection of the kernels of the endomorphisms T .p/�ap acting
on J.X0.N //. Some quotient of E by a finite subgroup will be the modular elliptic curve
sought. 2
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CONJECTURE 11.22 (TANIYAMA-WEIL) LetE be an elliptic curve over Q with geometric
conductor N . Then there is a nonconstant map X0.N /! E; in particular, every elliptic
curve over Q is a modular elliptic curve.

We have proved the following.

THEOREM 11.23 The strong Hasse-Weil conjecture for elliptic curves over Q is equivalent
to the Taniyama-Weil conjecture.

Conjecture 11.22 was suggested (a little vaguely) by Taniyama5 in 1955, and promoted
by Shimura. Weil proved Theorem 11.23, which gave the first compelling evidence for
the conjecture, and he added the condition that the N in X0.N / be equal to the geometric
conductor of E, which allowed the conjecture to be tested numerically.

Notes

There is a vast literature on the above questions. The best introduction to it is: Swinnerton-
Dyer, H. P. F.; Birch, B. J. Elliptic curves and modular functions. Modular functions of one
variable, IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), pp. 2–32.
Lecture Notes in Math., Vol. 476, Springer, Berlin, 1975. See also: Manin, Parabolic points
and zeta-functions of modular curves, Math. USSR 6 (1972), 19–64.

Fermat’s last theorem

THEOREM 11.24 The Taniyama conjecture implies Fermat’s last theorem.

Idea: It is clear that the Taniyama conjecture restricts the number of elliptic curves
over Q that there can be with small conductor. For example, X0.N / has genus zero for
N D 1;2;3; :::;10;12;13;16;18;25 and so for these values, the Taniyama-Weil conjecture
implies that there can be no elliptic curve with this conductor. (Tate showed a long time ago
that there is no elliptic curve over Q with conductor 1, that is, with good reduction at every
prime.)

More precisely, one proves the following:

THEOREM 11.25 Let p be a prime > 2, and suppose that

ap�bp D cp

with a;b;c all nonzero integers and gcd.a;b;c/D 1. Then the elliptic curve

E W Y 2 DX.X �ap/.XCbp/
is not a modular elliptic curve.

PROOF. We can assume that p > 163; moreover that 2jb and a � 3 mod 3. An easy
calculation shows that the curve has bad reduction exactly at the primes p dividing abc, and
at each such prime the reduced curve has a node. Thus the geometric conductor is a product
of the primes dividing abc.

Suppose that E is a Weil curve. There is a weight 2 cusp form for �0.N / with integral
q-expansion, and Ribet proves that there is a cusp form of weight 2 for �0.2/ such that
f � f 0 modulo `. But X0.2/ has genus zero, and so there are no cusp forms of weight 2.2

5Taniyama was a very brilliant Japanese mathematician who was one of the main founders of the theory of
complex multiplication of abelian varietes of dimension > 1. He killed himself in late 1958, shortly after his
31st birthday.
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REMARK 11.26 Ribet’s proof is very intricate; it involves a delicate interplay between
three primes `;p; and q, which is one more than most of us can keep track of (Ribet, On
modular representations of Gal.xQ=Q/ arising from modular forms, Invent. Math 100 (1990),
431–476). As far as I know, the idea of using the elliptic curve in (11.25) to attempt to
prove Fermat’s last theorem is due to G. Frey. He has published many talks about it, see
for example, Frey, Links between solutions of A�B D C and elliptic curves, in Number
Theory, Ulm 1987, (ed. H. Schlickewei and Wirsing), SLN 1380.

Application to the conjecture of Birch and Swinnerton-Dyer

Recall (Milne 2006, IV 10) that, for an elliptic curve E over Q; the conjecture of Birch and
Swinnerton-Dyer predicts that

lim
s!1

.s�1/�rL.E;s/D ˝
Q
p cpŒ TS.E=Q/�R.E=Q/

ŒE.Q/ tors�2

where r D rank.E.Q//, ˝ D RE.R/ j!j where ! is the Néron differential on E, the product
of the cp is over the bad primes, TS is the Tate-Shafarevich group of E, and R.E=Q/ is the
discriminant of the height pairing.

Now supposeE is a modular elliptic curve. Put the equation forE in Weierstrass minimal
form, and let ! D dx=.2yC a1xC a3/ be the Néron differential. Assume ˛�! D fdz,
for f .z/ a newform for �0.N /. Then L.E;s/ is the Mellin transform of f .z/. Write
f .z/D c.qCa2q2C :::/q�1dq, where c is a positive rational number. Conjecturally c D 1,
and so I drop it.

Assume that i1 maps to 0 2 E. Then q is real for z on the imaginary axis between 0
and i1. Therefore j.z/ and j.Nz/ are real, and, as we explained (end of Section 8) this
means that the image of the imaginary axis in X0.N /.C/ is in X0.N /.R/, i.e., the points in
the image of the imaginary axis have real coordinates.

The Mellin transform formula (cf. 9.2) implies that

L.E;1/D � .1/L.E;1/D
Z i1

0

f .z/dz:

Define M by the equation Z i1

0

f .z/dz DM �
Z
E.R/

!:

Intuitively at least, M is the winding number of the map from the imaginary axis from
0 to i1 onto E.R/. The image of the point 0 in X0.N / is known to be a point of finite
order, and this implies that the winding number is a rational number. Thus, for a modular
curve (suitably normalized), the conjecture of Birch and Swinnerton-Dyer can be restated as
follows.

CONJECTURE 11.27 (BIRCH AND SWINNERTON-DYER) (a) The group E.Q/ is infinite
if and only if M D 0.

(b) If M ¤ 0, then MŒE.Q/�2 D Œ TS.E=Q/�
Q
p cp.

REMARK 11.28 Some remarkable results have been obtained in this context by Kolyvagin
and others. (See: Rubin, The work of Kolyvagin on the arithmetic of elliptic curves, SLN
1399, MR 90h:14001), and the papers of Kolyvagin.)
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More details can be found in the article of Birch and Swinnerton-Dyer mentioned
above. Winding numbers and the mysterious c are discussed in Mazur and Swinnerton-Dyer,
Inventiones math., 25, 1-61, 1974. See also the article of Manin mentioned above and Milne
2006.
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12 Complex Multiplication for Elliptic Curves Q
The theory of complex multiplication is not only
the most beautiful part of mathematics but also of
the whole of science.
D. Hilbert.

It was known to Gauss that QŒ�n� is an abelian extension of Q. Towards the end of the
1840’s Kronecker had the idea that cyclotomic fields, and their subfields, exhaust the abelian
extensions of Q, and furthermore, that every abelian extension of a quadratic imaginary
number field E DQŒ

p
�d� is contained in the extension given by adjoining to E roots of 1

and certain special values of the modular function j . Many years later, he was to refer to
this idea as the most cherished dream of his youth (mein liebster Jugendtraum) (Kronecker,
Werke, V , p. 435).6

Abelian extensions of Q

Let Q cyc DSQŒ�n�; it is a subfield of the maximal abelian extension Qab of Q:

THEOREM 12.1 (KRONECKER-WEBER) The field Q cyc DQab:

The proof has two steps.
Elementary part. Note that there is a homomorphism

�WGal.QŒ�n�=Q/! .Z=nZ/�; �� D ��.�/;
which is obviously injective. Proving that it is surjective is equivalent to proving that the
cyclotomic polynomial

˚n.X/
defD

Y
.m:n/D1

.X � �m/

is irreducible in QŒX�, or that Gal.QŒ�n�=Q/ acts transitively on the primitive nth roots of 1.
One way of doing this is to look modulo p, and exploit the Frobenius map (see FT 5.10).

Application of class field theory. For every abelian extension F of Q, class field theory
provides us with a surjective homomorphism (the Artin map)

�WI! Gal.F=Q/

where I is the group of idèles of Q (see CFT V, 4). When we pass to the inverse limit over
all F , we obtain an exact sequence

1! .Q� �RC/�! I! Gal.Qab=Q/! 1

where RC D fr 2 R j r > 0g, and the bar denotes the closure.
Consider the homomorphisms

I! Gal.Q ab=Q/! Gal.Q cyc=Q/
��! lim �.Z=mZ/� D yZ�:

All maps are surjective. In order to show that the middle map is an isomorphism, we have to
prove that the kernel of I! yZ� is .Q� �RC/�; it clearly contains .Q� �RC/�:

Note that yZDQZ`, and that yZ� DQZ�
`

. There is therefore a canonical embedding
i W yZ ,! I, and to complete the proof of the theorem, it suffices to show:

6For a history of complex multiplication for elliptic curves, see: Schappacher, Norbert, On the history of
Hilbert’s twelfth problem: a comedy of errors. Matériaux pour l’histoire des mathématiques au XXe siècle (Nice,
1996), 243–273, Sémin. Congr., 3, Soc. Math. France, Paris, 1998.
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(i) the composite yZ� i�! I! yZ� is the identity map;

(ii) .Q� �RC/� � i.yZ�/D I.
Assume these statements, and let ˛ 2 I. Then (ii) says that ˛ D a � i.z/ with a 2

.Q� �RC/� and z 2 Z�, and (i) shows that '.a � z/D z. Thus, if ˛ 2 Ker.'/, then z D 1,
and ˛ 2 .Q� �RC/�:

The proofs of (i) and (ii) are left as an exercise (see CFT, V, 5.9).
Alternative: Find the kernel of �W.A�=Q�/!Gal.QŒ�n�=Q/, and show that every open

subgroup of finite index contains such a subgroup.
Alternative: For a proof using only local (i.e., not global) class field theory, see CFT, I

4.16.

Orders in K

Let K be a quadratic imaginary number field. An order of K is a subring R containing Z
and free of rank 2 over Z. Clearly every element of R is integral over Z, and so R �OK
(ring of integers in K/. Thus OK is the unique maximal order.

PROPOSITION 12.2 Let R be an order in K. Then there is a unique integer f > 0 such that
RD ZCf �OK . Conversely, for every integer f > 0, ZCf �OK is an order in K:

PROOF. Let f1;˛g be a Z-basis for OK , so that OK D ZCZ˛. Then R\Z˛ is a subgroup
of Z˛, and hence equals Z f̨ for some positive integer f . Now ZCf OK � ZCZ f̨ �R.
Conversely, if mC n˛ 2 R, m;n 2 Z, then n˛ 2 R, and so n 2 f Z. Thus, mC n˛ 2
ZCf ˛Z� ZCf OK . 2

The number f is called the conductor of R. We often write Rf for ZCf �OK :
PROPOSITION 12.3 Let R be an order in K. The following conditions on an R-submodule
a of K are equivalent:

(a) a is a projective R-module;

(b) RD fa 2K j a �a� agI
(c) aD x �OK for some x 2 I (this means that for all primes v of OK , a �Ov D xv �Ov).

PROOF. For (b)) (c), see Shimura 1971, (5.4.2), p 122. 2

Such an R-submodule of K is called a proper R-ideal. A proper R-ideal of the form
˛R, ˛ 2K�, is said to be principal. If a and b are two proper R-ideals, then

a �b defD
nX

aibi

ˇ̌̌
ai 2 a; bi 2 b

o
is again a proper R-ideal.

PROPOSITION 12.4 For every order R in K, the proper R-ideals form a group with respect
to multiplication, with R as the identity element.

PROOF. Shimura 1971, Proposition 4.11, p. 105. 2

The class group Cl.R/ is defined to be the quotient of the group of proper R-ideals by
the subgroup of principal ideals. When R is the full ring of integers in E, then Cl.R/ is the
usual class group.
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REMARK 12.5 The class number of R is

h.R/D h �f � .O�K WR�/�1 �
Y
pjf

�
1�

�
K

p

�
p�1

�

where h is the class number of OK , and .K
p
/D 1;�1;0 according as p splits in K, stays

prime, or ramifies. (If we write f˙1g for the Galois group of K over Q, then p 7! .K
p
/ is

the reciprocity map.) See Shimura 1971, Exercise 4.12.

Elliptic curves over C

For every lattice � in C, the Weierstrass } and }0 functions realize C=� as an elliptic curve
E.�/, and every elliptic curve over C arises in this way. If � and �0 are two lattices, and ˛
is an element of C such that ˛���0, then Œz� 7! Œ˛z� is a homomorphism E.�/!E.�0/,
and every homomorphism is of this form; thus

Hom.E.�/;E.�0//D f˛ 2 C j ˛���0g:

In particular, E.�/�E.�0/ if and only if �0 D ˛� for some ˛ 2 C�:
These statements reduce much of the theory of elliptic curves over C to linear algebra.

For example, End.E/ is either Z or an order R in a quadratic imaginary field K. Consider
E DE.�/; if End.E/¤ Z, then there is an ˛ 2 C, ˛ … Z, such that ˛���, and

End.E/D f˛ 2 C j ˛���g;

which is an order in QŒ˛� having � as a proper ideal.
When End.E/DR¤ Z, we say E has complex multiplication by R:
Write E D E.�/, so that E.C/ D C=�. Clearly En.C/, the set of points of order

dividing n on E, is equal to n�1�=�, and so it is a free Z=nZ-module of rank 2. The
inverse limit, T`E

defD lim �E`m D lim �`
�m�=�D�˝Z`, and so V`E D�˝Q`:

Algebraicity of j

When R is an order in a quadratic imaginary field K � C, we write Ell.R/ for the set of
isomorphism classes of elliptic curves over C with complex multiplication by R:

PROPOSITION 12.6 For each proper R-ideal a, E.a/ defD C=a is an elliptic curve with com-
plex multiplication by R, and the map a 7! C=a induces a bijection

Cl.R/! Ell.R/:

PROOF. If a is a proper R-ideal, then

End.E.a//D f˛ 2 C j ˛a� ag (see above)

D f˛ 2K j ˛a� ag (easy)

DR (definition of proper R-ideal):

Since E.˛ �a/�E.b/ we get a well-defined map Cl.R/! Ell.R/. Similar arguments show
that it is bijective. 2

COROLLARY 12.7 Up to isomorphism, there are only finitely many elliptic curves over C
with complex multiplication by R; in fact there are exactly h.R/:



124 II. The Algebro-Geometric Theory

With an elliptic curve E over C, we can associate its j -invariant j.E/ 2 C, and E �E 0
if and only if j.E/D j.E 0/. For an automorphism � of C, we define �E to be the curve
obtained by applying � to the coefficients of the equation defining E. Clearly j.�E/D
�j.E/:

THEOREM 12.8 If E has complex multiplication then j.E/ is algebraic.

PROOF. Let z 2 C. If z is algebraic (meaning algebraic over Q/, then z has only finitely
many conjugates, i.e., as � ranges over the automorphisms of C, �z ranges over a finite
set. The converse of this is also true: if z is transcendental, then �z takes on uncountably
many different values (if z0 is any other transcendental number, there is an isomorphism
QŒz�!QŒz0� which can be extended to an automorphism of C/:

Now consider j.E/. As � ranges over C, �E ranges over finitely many isomorphism
classes, and so �j.E/ ranges over a finite set. This shows that j.E/ is algebraic. 2

COROLLARY 12.9 Let j be the (usual) modular function for � .1/, and let z 2H be such
that QŒz� is a quadratic imaginary number field. Then j.z/ is algebraic.

PROOF. The function j is defined so that j.z/D j.E.�//, where �D ZCZz. Suppose
QŒz� is a quadratic imaginary number field. Then

f˛ 2 C j ˛.ZCZz/� ZCZzg

is an order R in QŒz�, and E.�/ has complex multiplication by R, from which the statement
follows. 2

The integrality of j

Let E be an elliptic curve over a field k and let R be an order in a quadratic imaginary
number field K. When we are given an isomorphism i WR! End.E/, we say that E has
complex multiplication by R (defined over k/. Then R and Z` act on T`E, and therefore
R˝ZZ` acts on T`E; moreover,K˝QQ` acts on V`E

defD T`E˝Q. These actions commute
with the actions of Gal.kal=k/ on the modules.

Let ˛ be an endomorphism of an elliptic curve E over a field k. Define,

Tr.˛/D 1Cdeg.˛/�deg.1�˛/ 2 Z;

and define the characteristic polynomial of ˛ to be

f˛.X/DX2�Tr.˛/XCdeg.˛/ 2 ZŒX�:

PROPOSITION 12.10 (a) The endomorphism f˛.˛/ of E is zero.

(b) For all `¤ char.k/, f˛.X/ is the characteristic polynomial of ˛ acting on V`E:

PROOF. Part (b) is proved in Silverman 1986, 2.3, p. 134. Part (a) follows from (b), the
Cayley-Hamilton theorem, and the fact that the End.E/ acts faithfully on V`E (Silverman
1986, 7.4, p. 92). 2

COROLLARY 12.11 IfE has complex multiplication byR�K, then V`E is a freeK˝Q`-
module.
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PROOF. When the ground field k D C, this is obvious because V`E D �˝Z Q`, and
�˝ZQ` D .�˝ZQ/˝QQ` D K˝QQ`: When K˝QQ` is a field, it is again obvious
(every module over a field is free). Otherwise K˝QQ` DKv˚Kw where v and w are the
primes of K lying over p, and we have to see that V`E is isomorphic to the K˝Q`-module
Kv˚Kw (rather than Kv˚Kv for example). But for ˛ 2K, ˛ …Q, the proposition shows
that characteristic polynomial of ˛ acting on V`E is the minimum polynomial of ˛ over K,
and this implies what we want. 2

REMARK 12.12 In fact T`E is a free R˝Z`-module (see J-P. Serre and J. Tate, Good
reduction of abelian varieties, Ann. of Math. 88, 1968, pp 492-517, p. 502).

PROPOSITION 12.13 The action of Gal.kal=k/ on V`E factors through K˝Q`, i.e., there
is a homomorphism �`WGal.kal=k/! .K˝Q`/� such that

�`.�/ �x D �x; all � 2 Gal.kal=k/; x 2 V`A:
PROOF. The action of Gal.kal=k/ on V`E commutes with the action R (because we are
assuming that the action of R is defined over k/. Therefore the image of Gal.kal=k/ lies in
EndK˝Q`.V`E/, which equals K˝Q`, because V`E is free K˝Q`-module of rank 1. 2

In particular, we see that the image of �` is abelian, and so the action of Gal.kal=k/

factors through Gal.kab=k/—all the `m-torsion points of E are rational over kab for all m.
As Gal.kal=k/ is compact, Im.�`/�O�

`
, where O` is the ring of integers in K˝QQ` (O`

is either a complete discrete valuation ring or the product of two such rings).

THEOREM 12.14 Let E be an elliptic curve over a number field k having complex multi-
plication by R over k. Then E has potential good reduction at every prime v of k (i.e., E
acquires good reduction after a finite extension of k).
PROOF. Let ` be a prime number not divisible by v. According to Silverman 1986, VII.7.3,
p. 186, we have to show that the action of the inertia group Iv at v on T`A factors through a
finite quotient. But we know that it factors through the inertia subgroup Jv of Gal.kab=k/,
and class field theory tells us that there is a surjective map

O�v ! Jv

where Ov is the ring of integers in kv. Thus we obtain a homomorphism

O�v ! Jv!O�` � Aut.T`E/;

where O` is the ring of integers in K˝Q` . I claim that every homomorphism O�v !O�
`

automatically factors through a finite quotient. In fact algebraic number theory shows that
O�v has a subgroup U 1 of finite index which is a pro-p-group, where p is the prime lying
under v. Similary, O�

`
has a subgroup of finite index V which is a pro-`-group. Any map

from a pro-p group to a pro-`-group is zero, and so Ker.U 1!O�/D Ker.U 1!O�=V /,
which shows that the homomorphism is zero on a subgroup of finite index of U 1. 2

COROLLARY 12.15 If E is an elliptic curve over a number field k with complex multipli-
cation, then j.E/ 2OK :
PROOF. An elementary argument shows that, if E has good reduction at v, then j.E/ 2Ov
(cf. Silverman 1986, VII.5.5, p. 181). 2

COROLLARY 12.16 Let j be the (usual) modular function for � .1/, and let z 2H be such
that QŒz� is a quadratic imaginary number field. Then j.z/ is an algebraic integer.

REMARK 12.17 There are analytic proofs of the integrality of j.E/, but they are less
illuminating.



126 II. The Algebro-Geometric Theory

Statement of the main theorem (first form)

Let K be a quadratic imaginary number field, with ring of integers OK , and let Ell.OK/ be
the set of isomorphism classes of elliptic curves over C with complex multiplication by OK .
For any fractional OK-ideal � in K, we write j.�/ for j.C=�/. (Thus if �D Z!1CZ!2
where z D !1=!2 lies in the upper half plane, then j.�/D j.z/, where j.z/ is the standard
function occurring in the theory of elliptic modular functions.)

THEOREM 12.18 (a) For any elliptic curve E over C with complex multiplication by
OK , KŒj.E/� is the Hilbert class field Khcf of K:

(b) The group Gal.Khcf=K/ permutes the set fj.E/ jE 2 Ell.OK/g transitively.

(c) For each prime ideal p of K, Frob.p/.j.�//D j.� �p�1/.
The proof will occupy the next few subsections.

The theory of a-isogenies

Let R be an order in K, and let a be a proper ideal in R. For an elliptic curve E over a field
k with complex multiplication by R, we define

Ker.a/D
\
a2a

Ker.aWE!E/:

Note that if aD .a1; : : : ;an/, then Ker.a/D\Ker.ai WE!E/. Let � be a proper R-ideal,
and consider the elliptic curve E.�/ over C. Then � �a�1 is also a proper ideal.

LEMMA 12.19 There is a canonical map E.�/!E.� �a�1/ with kernel Ker.a/:

PROOF. Since ��� �a�1, we can take the map to be zC� 7! zC� �a�1. 2

PROPOSITION 12.20 Let E be an elliptic curve over k with complex multiplication by
R, and let a be a proper ideal in R. Assume k has characteristic zero. Then there is an
elliptic curve a �E and a homomorphism map 'aWE! a �E whose kernel is Ker.a/. The
pair .a �E;'a/ has the following universal property: for any homomorphism 'WE!E 0 with
Ker.'/� Ker.a/, there is a unique homomorphism  Wa �E!E 0 such that  ı'a D ':
PROOF. When k D C, we write E D E.�/ and take a �E D E.� �a�1/. If k is a field of
characteristic zero, we define a �E DE.� �a�1/ (see Silverman 1986, 4.12, 4.13.2, p. 78).2

We want to extend the definition of a �E to the case where k need not have characteristic
zero. For this, we define a �E to be the image of the map

x 7! .a1x; :::;anx/WE!En; aD .a1; : : : ;an/;
and 'a to be this map. We call the isogeny 'aWE! a �E (or any isogeny that differs from it
by an isomorphism) an a-isogeny. The degree of an a-isogeny is N.a/ defD .OK W a/.

We obtain an action, .a;E/ 7! a �E, of Cl.R/ on Ellk.R/, the set of isomorphism classes
of elliptic curves over k having complex multiplication by R.

PROPOSITION 12.21 The action of Cl.R/ on Ellk.R/ makes Ellk.R/ into a principal ho-
mogeneous space for Cl.R/, i.e., for any x0 2 Ell.R/, the map a 7! a �x0WCl.R/! Ell.R/
is a bijection.

PROOF. When k D C, this is a restatement of an earlier result (before we implicitly took
x0 to be the isomorphism of class of C=R, and considered the map Cl.R/! Ell.R/,
a! a�1 �x0/. We omit the proof of the general case, although this is a key point. 2
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Reduction of elliptic curves

Let E be an elliptic curve over a number field k with good reduction at a prime v of k. For
simplicity, assume that v does not divide 2 or 3. Then E has an equation

Y 2Z DX3CaXZ2CbZ3

with coefficients in Ov whose discriminant � is not divisible by pv.

REDUCTION OF THE TANGENT SPACE

Recall that for a curve C defined by an equation F.X;Y /D 0, the tangent space at .a;b/ on
the curve is defined by the equation:

@F

@X

ˇ̌̌̌
.a;b/

.X �a/C @F

@Y

ˇ̌̌̌
.a;b/

.Y �b/D 0:

For example, for
Z DX3CaXZ2CbZ3

we find that the tangent space to E at .0;0/ is given by the equation

Z D 0:
Now take a Weierstrass minimal equation for E over Ov—we can think of the equation as
defining a curve E over Ov , and use the same procedure to define the tangent space Tgt0.E/
at 0 on E—it is an Ov-module.

PROPOSITION 12.22 The tangent space Tgt0.E/ at 0 to E is a free Ov-module of rank one
such that

Tgt0.E/˝Ov Kv D Tgt0.E=Kv/; Tgt0.E/˝Ov �.v/D Tgt0.E.v//

where �.v/DOv=pv and E.v/ is the reduced curve.

PROOF. Obvious. 2

Thus we can identify Tgt0.E/ (in a natural way) with a submodule of Tgt0.E/, and
Tgt0.E.v//D Tgt0.E/=mv �Tgt0.E/, where mv is the maximal ideal of Ov:

REDUCTION OF ENDOMORPHISMS

Let ˛WE!E 0 be a homomorphism of elliptic curves over k, and assume that both E and E 0

have good reduction at a prime v of k. Then ˛ defines a homomorphism ˛.v/WE.v/!E 0.v/

of the reduced curves. Moreover, ˛ acts as expected on the tangent spaces and the points of
finite order. In more detail:

(a) the map Tgt0.˛/WTgt0.E/! Tgt0.E
0/ maps Tgt0.E/ into Tgt0.E 0/, and induces the

map Tgt0.˛.v// on the quotient modules;

(b) recall (Silverman 1986) that for `¤ char.�.v// the reduction map defines an isomor-
phism T`.E/! T`.E0/; there is a commutative diagram:

T`E T`E
0

T`E.v/ T`E
0.v/:

˛

˛0



128 II. The Algebro-Geometric Theory

It follows from (b) and Proposition 12.10 that ˛ and ˛0 have the same characteristic
polynomial (hence the same degree).

Also, we shall need to know that the reduction of an a-isogeny is an a-isogeny (this is
almost obvious from the definition of an a-isogeny).

Finally, consider an a-isogeny 'WE!E 0; it gives rise to a homomorphism

Tgt0.E/! Tgt0.E
0/

whose kernel is
T

Tgt0.a/, a running through the elements of a (this again is almost obvious
from the definition of a-isogeny).

The Frobenius map

Let E be an elliptic curve over the finite field k � Fp. If E is defined by

Y 2 DX3CaXCb;
then write E.q/ for the elliptic curve

Y 2 DX3CaqXCbq:
Then the Frobenius map Frobq is defined to be

.x;y/ 7! .xq;yq/WE!E.q/;

PROPOSITION 12.23 The Frobenius map Frobp is a purely inseparable isogeny of degree
p; if 'WE ! E 0 is a second purely inseparable isogeny of degree p, then there is an
isomorphism ˛WE.p/!E 0 such that ˛ ıFrobp D ':
PROOF. This is similar to Silverman 1986, 2.11, p. 30. We have .Frobp/�.k.E.p/// D
k.E/p, which the unique subfield of k.E/ such that k.E/� k.E/p is a purely inseparable
extension of degree p: 2

REMARK 12.24 There is the following criterion: A homomorphism ˛WE!E 0 is separable
if and only the map it defines on the tangent spaces Tgt0.E/! Tgt0.E

0/ is an isomorphism.

Proof of the main theorem

The group G D Gal.Qal=K/ acts on Ell.R/, and commutes with the action of Cl.R/. Fix an
x0 2 Ell.R/, and for � 2G, define '.�/ 2 Cl.R/ by:

�x0 D x0 �'.�/:
One checks directly that '.�/ is independent of the choice of x0, and that ' is a homomor-
phism. Let L be a finite extension of K such that

(a) ' factors through Gal.L=Q/I
(b) there is an elliptic curve E defined over L with j -invariant j.a/, some proper R-ideal

a.

LEMMA 12.25 There is a set S of prime ideals of K of density one excluding those that
ramify in L, such that

'.'p/D Cl.p/

for all p 2 S ; here 'p 2 Gal.L=K/ is a Frobenius element.
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PROOF. Let p be a prime ideal of K such that

(i) p is unramified in LI
(ii) E has good reduction at some prime ideal P lying over pI

(iii) p has degree 1, i.e., N.p/D p, a prime number.

The set of such p has density one (conditions (i) and (ii) exclude only finitely many
primes, and it is a standard result (CFT, VI 3.2) that the primes satisfying (iii) have density
one).

To prove the equation, we have to show that

'p.E/� p �E:

We can verify this after reducing mod P.
We have a p-isogeny E! p �E. When we reduce modulo p, this remains a p-isogeny.

It is of degree N.p/ D p, and by looking at the tangent space, one sees that it is purely
inseparable. Now 'p.E/ reduces to E.p/, and we can apply Proposition 12.23 to see that
E.p/ is isomorphic p �E. 2

We now prove the theorem. Since the Frobenius elements Frobp generate Gal.L=K/,
we see that ' is surjective; whence (a) of the theorem. Part (b) is just what we proved.

The main theorem for orders

(Outline) Let Rf be an order in K. Just as for the maximal order OK , the ideal class group
Cl.R/ can be identified with a quotient of the idèle class group ofK, and so class field theory
shows that there is an abelian extension Kf of K such that the Artin reciprocity map defines
an isomorphism

�WCl.Rf /! Gal.Kf =K/:

Of course, when f D 1, Kf is the Hilbert class field. The field Kf is called the ring class
field. Note that in general Cl.Rf / is much bigger than Cl.OK/:

The same argument as before shows that if Ef has complex multiplication by Rf , then
KŒj.Ef /� is the ring class field for K. Kronecker predicted (I think)7 that Kab should equal

K�
defDQ cyc �K 0, where K 0 D[K.j.Ef // (union over positive integers). Note that

K 0 D
[
K.j.�// (union over � 2K; � 2H/;

and so K� is obtained from K by adjoining the special values j.z/ of j and the special
values e2�im=n of ez :

THEOREM 12.26 The Galois group Gal.Kab=K�/ is a product of groups of order 2.

PROOF. Examine the kernel of the map IK ! Gal.K�=K/. 2

7Actually, it is not too clear exactly what Kronecker predicted—see the articles of Schappacher.
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Points of order m

(Outline) We strengthen the main theorem to take account of the points of finite order. Fix
an m, and let E be an elliptic curve over C with complex multiplication by OK . For any
� 2Aut.C/ fixingK, there is an isogeny ˛WE! �E, which we may suppose to be of degree
prime to m. Then ˛ maps Em into �Em, and we can choose ˛ so that ˛.x/� �x modm)
for all x 2 TfE.defDQT`E/. We know that ˛ will be an a-isogeny for some a, and under our
assumptions a is relatively prime to m.

Write Id.m/ for the set of ideals in K relatively prime to m, and Cl.m/ for the corre-
sponding ideal class group. The above construction gives a homomorphism

Aut.C=K/! Cl.m/:

Let Km be the abelian extension of K (given by class field theory) with Galois group Cl.m/:

THEOREM 12.27 The homomorphism factors through Gal.Km=K/, and is the reciprocal
of the isomorphism given by the Artin reciprocity map.

PROOF. FormD 1, this is the original form of the main theorem. A similar argument works
in the more general case. 2

Adelic version of the main theorem

Omitted.
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