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NOTATIONS.

We use the standard (Bourbaki) notations: ND f0;1;2; : : :g; Z
is the ring of integers; Q is the field of rational numbers; R is
the field of real numbers;C is the field of complex numbers; Fq
is a finite field with q elements where q is a power of a prime
number. In particular, Fp D Z=pZ for p a prime number.

For integers m and n, mjn means that m divides n, i.e.,
n 2 mZ. Throughout the notes, p is a prime number, i.e.,
p D 2;3;5;7;11; : : : ;1000000007; : : :.

Given an equivalence relation, Œ�� denotes the equivalence
class containing �. The empty set is denoted by ;. The car-
dinality of a set S is denoted by jS j (so jS j is the number of
elements in S when S is finite). Let I and A be sets; a family
of elements of A indexed by I , denoted .ai /i2I , is a function
i 7! ai WI ! A.1

Rings are required to have an identity element 1, and ho-
momorphisms of rings are required to take 1 to 1. An element
a of a ring is a unit if it has an inverse (element b such that
ab D 1D ba). The identity element of a ring is required to act
as 1 on a module over the ring.
X � Y X is a subset of Y (not necessarily proper);
X

def
D Y X is defined to be Y , or equals Y by definition;

X � Y X is isomorphic to Y ;
X ' Y X and Y are canonically isomorphic (or there is a given or unique isomorphism);

1A family should be distinguished from a set. For example, if f is the func-
tion Z! Z=3Z sending an integer to its equivalence class, then ff .i/ j i 2 Zg
is a set with three elements whereas .f .i//i2Z is family with an infinite index
set.
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PREREQUISITES

An undergraduate “abstract algebra” course.

COMPUTER ALGEBRA PROGRAMS

GAP is an open source computer algebra program, emphasiz-
ing computational group theory. To get started with GAP, I
recommend going to Alexander Hulpke’s page http://www.
math.colostate.edu/~hulpke/CGT/education.html
where you will find versions of GAP for both Windows and
Macs and a guide “Abstract Algebra in GAP”. The Sage page
http://www.sagemath.org/ provides a front end for GAP
and other programs. I also recommend N. Carter’s “Group
Explorer” http://groupexplorer.sourceforge.net
for exploring the structure of groups of small order. Earlier
versions of these notes (v3.02) described how to use Maple for
computations in group theory.
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flow by Richard Borcherds, Robin Chapman, Steve Dal-
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Qiaochu Yuan, and others (a reference monnnn means
http://mathoverflow.net/questions/nnnn/).
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The theory of groups of finite order may be said to date from the
time of Cauchy. To him are due the first attempts at classifica-
tion with a view to forming a theory from a number of isolated
facts. Galois introduced into the theory the exceedingly impor-
tant idea of a [normal] sub-group, and the corresponding divi-
sion of groups into simple and composite. Moreover, by shewing
that to every equation of finite degree there corresponds a group
of finite order on which all the properties of the equation de-
pend, Galois indicated how far reaching the applications of the
theory might be, and thereby contributed greatly, if indirectly, to
its subsequent developement.

Many additions were made, mainly by French mathemati-
cians, during the middle part of the [nineteenth] century. The
first connected exposition of the theory was given in the third
edition of M. Serret’s “Cours d’Algèbre Supérieure,” which was
published in 1866. This was followed in 1870 by M. Jordan’s
“Traité des substitutions et des équations algébriques.” The
greater part of M. Jordan’s treatise is devoted to a developement
of the ideas of Galois and to their application to the theory of
equations.

No considerable progress in the theory, as apart from its ap-
plications, was made till the appearance in 1872 of Herr Sylow’s
memoir “Théorèmes sur les groupes de substitutions” in the fifth
volume of the Mathematische Annalen. Since the date of this
memoir, but more especially in recent years, the theory has ad-
vanced continuously.

W. Burnside, Theory of Groups of Finite Order, 1897.



Galois introduced the concept of a normal subgroup in 1832, and
Camille Jordan in the preface to his Traité. . . in 1870 flagged
Galois’ distinction between groupes simples and groupes com-
posées as the most important dichotomy in the theory of permu-
tation groups. Moreover, in the Traité, Jordan began building a
database of finite simple groups — the alternating groups of de-
gree at least 5 and most of the classical projective linear groups
over fields of prime cardinality. Finally, in 1872, Ludwig Sylow
published his famous theorems on subgroups of prime power
order.

R. Solomon, Bull. Amer. Math. Soc., 2001.

Why are the finite simple groups classifiable?
It is unlikely that there is any easy reason why a classification
is possible, unless someone comes up with a completely new
way to classify groups. One problem, at least with the current
methods of classification via centralizers of involutions, is that
every simple group has to be tested to see if it leads to new
simple groups containing it in the centralizer of an involution.
For example, when the baby monster was discovered, it had a
double cover, which was a potential centralizer of an involution
in a larger simple group, which turned out to be the monster.
The monster happens to have no double cover so the process
stopped there, but without checking every finite simple group
there seems no obvious reason why one cannot have an infinite
chain of larger and larger sporadic groups, each of which has
a double cover that is a centralizer of an involution in the next
one. Because of this problem (among others), it was unclear un-
til quite late in the classification whether there would be a finite
or infinite number of sporadic groups.

Richard Borcherds, mo38161.
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Chapter 1

Basic Definitions and Results

The axioms for a group are short and natural. . . . Yet some-
how hidden behind these axioms is the monster simple group,
a huge and extraordinary mathematical object, which ap-
pears to rely on numerous bizarre coincidences to exist. The
axioms for groups give no obvious hint that anything like this
exists.
Richard Borcherds, in Mathematicians 2009.

Definitions and examples

DEFINITION 1.1 A group is a set G together with a binary
operation

.a;b/ 7! a�bWG�G!G

11



12 1. BASIC DEFINITIONS AND RESULTS

satisfying the following conditions:
G1: (associativity) for all a;b;c 2G,

.a�b/� c D a� .b � c/I

G2: (existence of a neutral element) there exists an element
e 2G such that

a� e D aD e �a (1)

for all a 2G;
G3: (existence of inverses) for each a 2G, there exists an a0 2

G such that
a�a0 D e D a0 �a:

We usually abbreviate .G;�/ to G. Also, we usually write ab
for a�b and 1 for e; alternatively, we write aCb for a�b and
0 for e. In the first case, the group is said to be multiplicative,
and in the second, it is said to be additive.

1.2 In the following, a;b; : : : are elements of a group G.
(a) An element e satisfying (1) is called a neutral element.

If e0 is a second such element, then e0 D e � e0 D e. In
fact, e is the unique element of G such that e � e D e
(apply G3).

(b) If b �aD e and a� c D e, then

b D b � e D b � .a� c/D .b �a/� c D e � c D c:

Hence the element a0 in (G3) is uniquely determined by
a. We call it the inverse of a, and denote it a�1 (or the
negative of a, and denote it �a).
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(c) Note that (G1) shows that the product of any ordered
triple a1, a2, a3 of elements of G is unambiguously de-
fined: whether we form a1a2 first and then .a1a2/a3,
or a2a3 first and then a1.a2a3/, the result is the same.
In fact, (G1) implies that the product of any ordered n-
tuple a1, a2,. . . , an of elements of G is unambiguously
defined. We prove this by induction on n. In one multi-
plication, we might end up with

.a1 � � �ai /.aiC1 � � �an/ (2)

as the final product, whereas in another we might end up
with

.a1 � � �aj /.ajC1 � � �an/: (3)

Note that the expression within each pair of parenthe-
ses is well defined because of the induction hypotheses.
Thus, if i D j , (2) equals (3). If i ¤ j , we may suppose
i < j . Then

.a1 � � �ai /.aiC1 � � �an/D

.a1 � � �ai /
�
.aiC1 � � �aj /.ajC1 � � �an/

�
.a1 � � �aj /.ajC1 � � �an/D�

.a1 � � �ai /.aiC1 � � �aj /
�
.ajC1 � � �an/

and the expressions on the right are equal because of
(G1).
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(d) The inverse of a1a2 � � �an is a�1n a�1n�1 � � �a
�1
1 , i.e., the

inverse of a product is the product of the inverses in the
reverse order.

(e) (G3) implies that the cancellation laws hold in groups,

ab D ac H) b D c; baD ca H) b D c

(multiply on left or right by a�1). Conversely, if G is
finite, then the cancellation laws imply (G3): the map
x 7! axWG ! G is injective, and hence (by counting)
bijective; in particular, e is in the image, and so a has
a right inverse; similarly, it has a left inverse, and the
argument in (b) above shows that the two inverses are
equal.

Two groups .G;�/ and .G0;�0/ are isomorphic if there ex-
ists a one-to-one correspondence a$ a0, G $ G0, such that
.a�b/0 D a0 �0 b0 for all a;b 2G.

The order jGj of a group G is its cardinality. A finite group
whose order is a power of a prime p is called a p-group.

For an element a of a group G, define

an D

8<: aa � � �a n > 0 .n copies of a/
e nD 0

a�1a�1 � � �a�1 n < 0 (jnj copies of a�1)

The usual rules hold:

aman D amCn; .am/n D amn; all m;n 2 Z: (4)
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It follows from (4) that the set

fn 2 Z j an D eg

is an ideal in Z, and so equals mZ for some integer m � 0.
WhenmD 0, an¤ e unless nD 0, and a is said to have infinite
order. When m¤ 0, it is the smallest integer m > 0 such that
amD e, and a is said to have finite orderm. In this case, a�1D
am�1, and

an D e ” mjn:

EXAMPLES

1.3 Let C1 be the group .Z;C/, and, for an integer m � 1,
let Cm be the group .Z=mZ;C/.

1.4 Permutation groups. Let S be a set and let Sym.S/ be
the set of bijections ˛WS ! S . We define the product of two
elements of Sym.S/ to be their composite:

˛ˇ D ˛ ıˇ:

For any ˛;ˇ;
 2 Sym.S/ and s 2 S ,

..˛ ıˇ/ı
/.s/D .˛ ıˇ/.
.s// (5)
D ˛.ˇ.
.s///

D .˛ ı .ˇ ı
//.s/;

and so associativity holds. The identity map s 7! s is an identity
element for Sym.S/, and inverses exist because we required
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the elements of Sym.S/ to be bijections. Therefore Sym.S/ is
a group, called the group of symmetries of S . For example, the
permutation group on n letters Sn is defined to be the group
of symmetries of the set f1; :::;ng— it has order nŠ.

1.5 WhenG andH are groups, we can construct a new group
G �H , called the (direct) product of G and H . As a set, it is
the cartesian product ofG andH , and multiplication is defined
by

.g;h/.g0;h0/D .gg0;hh0/:

1.6 A group G is commutative (or abelian)1 if

ab D ba; all a;b 2G:

In a commutative group, the product of any finite (not necessar-
ily ordered) family S of elements is well defined, for example,
the empty product is e. Usually, we write commutative groups
additively. With this notation, Equation (4) becomes:

maCnaD .mCn/a; m.na/Dmna:

When G is commutative,

m.aCb/DmaCmb for m 2 Z and a;b 2G,

and so the map

.m;a/ 7!maWZ�G!G

1“Abelian group” is more common than “commutative group”, but I prefer
to use descriptive names where possible.
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makes A into a Z-module. In a commutative group G, the el-
ements of finite order form a subgroup Gtors of G, called the
torsion subgroup.

1.7 Let F be a field. The n�n matrices with coefficients in
F and nonzero determinant form a group GLn.F / called the
general linear group of degree n. For a finite dimensional F -
vector space V , the F -linear automorphisms of V form a group
GL.V / called the general linear group of V . Note that if V
has dimension n, then the choice of a basis determines an iso-
morphism GL.V /! GLn.F / sending an automorphism to its
matrix with respect to the basis.

1.8 Let V be a finite dimensional vector space over a field
F . A bilinear form on V is a mapping �WV �V ! F that is
linear in each variable. An automorphism of such a � is an
isomorphism ˛WV ! V such that

�.˛v;˛w/D �.v;w/ for all v;w 2 V: (6)

The automorphisms of � form a group Aut.�/. Let e1; : : : ; en
be a basis for V , and let

P D .�.ei ; ej //1�i;j�n

be the matrix of �. The choice of the basis identifies Aut.�/
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with the group of invertible matrices A such that2

AT
�P �AD P . (7)

When � is symmetric, i.e.,

�.v;w/D �.w;v/ all v;w 2 V;

and nondegenerate, Aut.�/ is called the orthogonal group of
�.

When � is skew-symmetric, i.e.,

�.v;w/D��.w;v/ all v;w 2 V;

2When we use the basis to identify V with F n, the pairing � becomes0@a1::
:
an

1A ;
0@b1:
:
:
bn

1A 7! .a1; : : : ;an/ �P �

0@b1:
:
:
bn

1A :
If A is the matrix of ˛ with respect to the basis, then ˛ corresponds to the map0@a1::
:
an

1A 7!A

0@a1::
:
an

1A :Therefore, (6) becomes the statement that

.a1; : : : ;an/ �A
T �P �A �

0@b1:
:
:
bn

1AD .a1; : : : ;an/ �P �
0@b1:
:
:
bn

1A

for all

0@a1::
:
an

1A ;
0@b1:
:
:
bn

1A 2F n:
On examining this statement on the standard basis vectors for F n, we see that it
is equivalent to (7).
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and nondegenerate, Aut.�/ is called the symplectic group of
�. In this case, there exists a basis for V for which the matrix
of � is

J2m D

�
0 Im
�Im 0

�
; 2mD n;

and the group of invertible matrices A such that

ATJ2mAD J2m

is called the symplectic group Sp2m.

REMARK 1.9 A set S together with a binary operation
.a;b/ 7! a � bWS � S ! S is called a magma. When the bi-
nary operation is associative, .S; �/ is called a semigroup. The
product Q

A
def
D a1 � � �an

of any sequence AD .ai /1�i�n of elements in a semigroup S
is well-defined (see 1.2(c)), and for any pair A and B of such
sequences,

.
Q
A/.

Q
B/D

Q
.AtB/ . (8)

Let ; be the empty sequence, i.e., the sequence of elements in
S indexed by the empty set. What should

Q
; be? Clearly, we
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should have

.
Q
;/.

Q
A/D

Y
.;tA/

D

Y
A

D

Y
.At;/

D

�Y
A
��Y

;

�
:

In other words,
Q
; should be a neutral element. A semigroup

with a neutral element is called a monoid. In a monoid, the
product of any finite (possibly empty) sequence of elements is
well-defined, and (8) holds.

ASIDE 1.10 (a) The group conditions (G2,G3) can be replaced by the
following weaker conditions (existence of a left neutral element and
left inverses): (G20) there exists an e such that e �a D a for all a;
(G30) for each a 2G, there exists an a0 2G such that a0 �aD e. To
see that these imply (G2) and (G3), let a 2G, and apply (G30) to find
a0 and a00 such that a0 �aD e and a00 �a0 D e. Then

a�a0 D e� .a�a0/

D .a00 �a0/� .a�a0/

D a00 �
�
.a0 �a/�a0

�
D a00 �a0

D e;

whence (G3), and

aD e�aD .a�a0/�aD a� .a0 �a/D a�e;
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whence (G2).
(b) A group can be defined to be a set G with a binary operation

� satisfying the following conditions: (g1) � is associative; (g2) G
is nonempty; (g3) for each a 2 G, there exists an a0 2 G such that
a0 �a is neutral. As there is at most one neutral element in a set with
an associative binary operation, these conditions obviously imply those
in (a). They are minimal in the sense that there exist sets with a binary
operation satisfying any two of them but not the third. For example,
.N;C/ satisfies (g1) and (g2) but not (g3); the empty set satisfies (g1)
and (g3) but not (g2); the set of 2�2 matrices with coefficents in a
field and with A�B DAB�BA satisfies (g2) and (g3) but not (g1).

Multiplication tables

A binary operation on a finite set can be described by its mul-
tiplication table:

e a b c : : :
e ee ea eb ec : : :

a ae a2 ab ac : : :

b be ba b2 bc : : :

c ce ca cb c2 : : :
:::

:::
:::

:::
:::

The element e is an identity element if and only if the first
row and column of the table simply repeat the elements. In-
verses exist if and only if each element occurs exactly once
in each row and in each column (see 1.2e). If there are n el-
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ements, then verifying the associativity law requires checking
n3 equalities.

For the multiplication table of S3, see the front page. Note
that each colour occurs exactly once in each row and and each
column.

This suggests an algorithm for finding all groups of a given
finite order n, namely, list all possible multiplication tables and
check the axioms. Except for very small n, this is not practi-
cal! The table has n2 positions, and if we allow each position
to hold any of the n elements, then that gives a total of nn

2

possible tables very few of which define groups. For exam-
ple, there are 864 D 6277101735386680763835789423207
666416102355444464034512896 binary operations on a set
with 8 elements, but only five isomorphism classes of groups
of order 8 (see 4.21).

Subgroups

PROPOSITION 1.11 Let S be a nonempty subset of a groupG.
If

S1: a;b 2 S H) ab 2 S;and
S2: a 2 S H) a�1 2 S;

then the binary operation on G makes S into a group.

PROOF. (S1) implies that the binary operation on G defines
a binary operation S � S ! S on S , which is automatically
associative. By assumption S contains at least one element a,
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its inverse a�1, and the product e D aa�1. Finally (S2) shows
that the inverses of elements in S lie in S . 2

A nonempty subset S satisfying (S1) and (S2) is called a
subgroup of G. When S is finite, condition (S1) implies (S2):
let a 2 S ; then fa;a2; : : :g � S , and so a has finite order, say
an D e; now a�1 D an�1 2 S . The example .N;C/ � .Z;C/
shows that (S1) does not imply (S2) when S is infinite.

EXAMPLE 1.12 The centre of a group G is the subset

Z.G/D fg 2G j gx D xg for all x 2Gg:

It is a subgroup of G.

PROPOSITION 1.13 An intersection of subgroups of G is a
subgroup of G:

PROOF. It is nonempty because it contains e, and (S1) and (S2)
obviously hold. 2

REMARK 1.14 It is generally true that an intersection of sub-
objects of an algebraic object is a subobject. For example, an
intersection of subrings of a ring is a subring, an intersection
of submodules of a module is a submodule, and so on.

PROPOSITION 1.15 For any subset X of a group G, there is
a smallest subgroup of G containing X . It consists of all fi-
nite products of elements of X and their inverses (repetitions
allowed).
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PROOF. The intersection S of all subgroups ofG containingX
is again a subgroup containing X , and it is evidently the small-
est such group. Clearly S contains withX , all finite products of
elements of X and their inverses. But the set of such products
satisfies (S1) and (S2) and hence is a subgroup containing X .
It therefore equals S . 2

The subgroup S given by the proposition is denoted hXi,
and is called the subgroup generated byX . For example, h;iD
feg. If every element of X has finite order, for example, if G
is finite, then the set of all finite products of elements of X is
already a group and so equals hXi.

We say that X generates G if G D hXi, i.e., if every ele-
ment of G can be written as a finite product of elements from
X and their inverses. Note that the order of an element a of a
group is the order of the subgroup hai it generates.

EXAMPLES

1.16 The cyclic groups. A group is said to be cyclic if it is
generated by a single element, i.e., if G D hri for some r 2G.
If r has finite order n, then

G D fe;r; r2; :::; rn�1g � Cn; r i $ i mod n;

and G can be thought of as the group of rotational symmetries
about the centre of a regular polygon with n-sides. If r has
infinite order, then

G D f: : : ; r�i ; : : : ; r�1; e; r; : : : ; r i ; : : :g � C1; r i $ i:
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Thus, up to isomorphism, there is exactly one cyclic group of
order n for each n �1. In future, we shall loosely use Cn to
denote any cyclic group of order n (not necessarily Z=nZ or
Z).

1.17 The dihedral groups Dn.3 For n � 3, Dn is the group
of symmetries of a regular polygon with n-sides.4 Number
the vertices 1; : : : ;n in the counterclockwise direction. Let r
be the rotation through 2�=n about the centre of polygon (so
i 7! iC1 mod n/, and let s be the reflection in the line (= ro-
tation about the line) through the vertex 1 and the centre of the
polygon (so i 7! nC2� i mod n). For example, the pictures

3This group is denoted D2n or Dn depending on whether the author is
viewing it abstractly or concretely as the symmetries of an n-polygon (or perhaps
on whether the author is a group theorist or not; see mo48434).

4More formally, Dn can be defined to be the subgroup of Sn generated by
rW i 7! iC1 (mod n/ and sW i 7! nC2� i (mod n). Then all the statements
concerningDn can proved without appealing to geometry.
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�
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r D 1! 2! 3! 4! 1

illustrate the groups D3 and D4. In the general case

rn D eI s2 D eI srs D r�1 (so sr D rn�1s/:
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These equalites imply that

Dn D fe;r; :::; r
n�1; s; rs; :::; rn�1sg;

and it is clear from the geometry that the elements of the set
are distinct, and so jDnj D 2n.

Let t be the reflection in the line through the midpoint of the
side joining the vertices 1 and 2 and the centre of the polygon
(so i 7! nC3� i mod n/. Then r D ts. HenceDnD hs; ti and

s2 D e; t2 D e; .ts/n D e D .st/n:

We define D1 to be C2 D f1;rg and D2 to be C2 �C2 D
f1;r; s; rsg. The group D2 is also called the Klein Viergruppe
or, more simply, the 4-group. Note that D3 is the full group
of permutations of f1;2;3g. It is the smallest noncommutative
group.

1.18 The quaternion group Q: Let a D
�

0
p
�1

p
�1 0

�
and

b D
�
0 1
�1 0

�
. Then

a4 D e; a2 D b2; bab�1 D a3 (so baD a3b).

The subgroup of GL2.C/ generated by a and b is

QD fe;a;a2;a3;b;ab;a2b;a3bg:

The group Q can also be described as the subset
f˙1;˙i;˙j;˙kg of the quaternion algebra H. Recall that

HD R1˚Ri˚Rj ˚Rk
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with the multiplication determined by

i2 D�1D j 2; ij D k D�j i:

The map i 7! a, j 7! b extends uniquely to a homomorphism
H!M2.C/ of R-algebras, which maps the group hi;j i iso-
morphically onto ha;bi.

1.19 Recall that Sn is the permutation group on f1;2; :::;ng.
A transposition is a permutation that interchanges two ele-
ments and leaves all other elements unchanged. It is not dif-
ficult to see that Sn is generated by transpositions (see (4.26)
below for a more precise statement).

Groups of small order

[For] n D 6, there are three groups, a group C6, and two
groups C2�C3 and S3.
Cayley, American J. Math. 1 (1878), p. 51.

For each prime p, there is only one group of order p,
namely Cp (see 1.28 below). In the following table, cCnD t
means that there are c commutative groups and n noncommu-
tative groups (up to isomorphism, of course).
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jGj cCnD t Groups Ref.
4 2C0D 2 C4, C2�C2 4.18
6 1C1D 2 C6; S3 4.23
8 3C2D 5 C8, C2�C4 , C2�C2�C2; Q, D4 4.21
9 2C0D 2 C9, C3�C3 4.18
10 1C1D 2 C10; D5 5.14
12 2C3D 5 C12, C2�C6; C2�S3, A4, C4oC3 5.16
14 1C1D 2 C14; D7 5.14
15 1C0D 1 C15 5.14
16 5C9D 14 See Wild 2005
18 2C3D 5 C18, C3�C6; D9; S3�C3, .C3�C3/oC2
20 2C3D 5 C20,C2�C10;D10,C5oC4,ha;b ja4 D b5 D 1; baD ab2i
21 1C1D 2 C21; ha;b j a3 D b7 D 1, baD ab2i
22 1C1D 2 C22; D11 5.14
24 3C12D15 See opensourcemath.org/gap/small groups.html

Here ha;b ja4 D b5 D 1; ba D ab2i is the group with gener-
ators a and b and relations a4 D b5 D 1 and ba D ab2 (see
Chapter 2).

Roughly speaking, the more high powers of primes divide
n, the more groups of order n there should be. In fact, if f .n/ is
the number of isomorphism classes of groups of order n, then

f .n/� n.
2
27Co.1//e.n/

2

where e.n/ is the largest exponent of a prime dividing n and
o.1/! 0 as e.n/!1 (see Pyber 1993).

By 2001, a complete irredundant list of groups of order �
2000 had been found — up to isomorphism, there are exactly
49,910,529,484 (Besche et al. 2001).5

5In fact Besche et al. did not construct the groups of order 1024 individually,
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Homomorphisms

DEFINITION 1.20 A homomorphism from a groupG to a sec-
ond G0 is a map ˛WG ! G0 such that ˛.ab/ D ˛.a/˛.b/ for
all a;b 2G. An isomorphism is a bijective homomorphism.

For example, the determinant map detWGLn.F /! F� is a
homomorphism.

1.21 Let ˛ be a homomorphism. For any elements a1; : : : ;am
of G,

˛.a1 � � �am/D ˛.a1.a2 � � �am//

D ˛.a1/˛.a2 � � �am/

� � �

D ˛.a1/ � � �˛.am/,

and so homomorphisms preserve all products. In particular, for
m� 1,

˛.am/D ˛.a/m: (9)

Moreover ˛.e/ D ˛.ee/ D ˛.e/˛.e/, and so ˛.e/ D e (apply
1.2a). Also

aa�1 D e D a�1a H) ˛.a/˛.a�1/D e D ˛.a�1/˛.a/;

but it is known that there are 49487365422 groups of that order. The remaining
423164062 groups of order up to 2000 (of which 408641062 have order 1536)
are available as libraries in GAP and Magma. I would guess that 2048 is the
smallest number such that the exact number of groups of that order is unknown
(Derek Holt, mo46855; Nov 21, 2010).
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and so ˛.a�1/D ˛.a/�1. It follows that (9) holds for all m 2
Z, and so a homomorphism of commutative groups is also a
homomorphism of Z-modules.

As we noted above, each row of the multiplication table of a
group is a permutation of the elements of the group. As Cayley
pointed out, this allows one to realize the group as a group of
permutations.

THEOREM 1.22 (CAYLEY) There is a canonical injective ho-
momorphism

˛WG! Sym.G/:

PROOF. For a 2 G, define aLWG! G to be the map x 7! ax
(left multiplication by a). For x 2G,

.aL ıbL/.x/D aL.bL.x//D aL.bx/D abx D .ab/L.x/;

and so .ab/L D aL ıbL. As eL D id, this implies that

aL ı .a
�1/L D idD .a�1/L ıaL;

and so aL is a bijection, i.e., aL 2 Sym.G/. Hence a 7! aL is
a homomorphism G! Sym.G/, and it is injective because of
the cancellation law. 2

COROLLARY 1.23 A finite group of order n can be realized as
a subgroup of Sn.

PROOF. List the elements of the group as a1; : : : ;an. 2
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Unfortunately, unless n is small, Sn is too large to be man-
ageable. We shall see later (4.22) thatG can often be embedded
in a permutation group of much smaller order than nŠ.

Cosets

For a subset S of a group G and an element a of G, we let

aS D fas j s 2 Sg

SaD fsa j s 2 Sg:

Because of the associativity law, a.bS/ D .ab/S , and so we
can denote this set unambiguously by abS:

When H is a subgroup of G, the sets of the form aH are
called the left cosets of H in G, and the sets of the form Ha
are called the right cosets ofH inG. Because e 2H , aH DH
if and only if a 2H .

EXAMPLE 1.24 Let G D .R2;C/, and letH be a subspace of
dimension 1 (line through the origin). Then the cosets (left or
right) of H are the lines aCH parallel to H .

PROPOSITION 1.25 Let H be a subgroup of a group G.
(a) An element a ofG lies in a left coset C ofH if and only

if C D aH:
(b) Two left cosets are either disjoint or equal.
(c) aH D bH if and only if a�1b 2H:
(d) Any two left cosets have the same number of elements

(possibly infinite).
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PROOF. (a) Certainly a 2 aH . Conversely, if a lies in the left
coset bH , then aD bh for some h, and so

aH D bhH D bH:

(b) If C and C 0 are not disjoint, then they have a common
element a, and C D aH and C 0 D aH by (a).

(c) If a�1b 2 H , then H D a�1bH , and so aH D
aa�1bH D bH . Conversely, if aH D bH , then H D a�1bH ,
and so a�1b 2H .

(d) The map .ba�1/LWah 7! bh is a bijection aH ! bH:2

The index .G WH/ of H in G is defined to be the number
of left cosets of H in G.6 For example, .G W 1/ is the order of
G.

As the left cosets of H in G cover G, (1.25b) shows that
they form a partition G. In other words, the condition “a and b
lie in the same left coset” is an equivalence relation on G.

THEOREM 1.26 (LAGRANGE) If G is finite, then

.G W 1/D .G WH/.H W 1/:

In particular, the order of every subgroup of a finite group di-
vides the order of the group.

PROOF. The left cosets of H in G form a partition of G, there
are .G WH/ of them, and each left coset has .H W 1/ elements.2

6More formally, .G WH/ is the cardinality of the set faH j a 2Gg.
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COROLLARY 1.27 The order of each element of a finite group
divides the order of the group.

PROOF. Apply Lagrange’s theorem to H D hgi, recalling that
.H W 1/D order.g/. 2

EXAMPLE 1.28 If G has order p, a prime, then every element
of G has order 1 or p. But only e has order 1, and so G is
generated by any element a ¤ e. In particular, G is cyclic and
so G � Cp . This shows, for example, that, up to isomorphism,
there is only one group of order 1;000;000;007 (because this
number is prime). In fact there are only two groups of order
1;000;000;014;000;000;049 (see 4.18).

1.29 For a subset S of G, let S�1 D fg�1 j g 2 Sg. Then
.aH/�1 is the right coset Ha�1, and .Ha/�1 D a�1H .
Therefore S 7! S�1 defines a one-to-one correspondence be-
tween the set of left cosets and the set of right cosets under
which aH $ Ha�1. Hence .G W H/ is also the number of
right cosets of H in G: But, in general, a left coset will not be
a right coset (see 1.34 below).

1.30 Lagrange’s theorem has a partial converse: if a prime
p divides m D .G W 1/, then G has an element of order p
(Cauchy’s theorem 4.13); if a prime power pn divides m, then
G has a subgroup of order pn (Sylow’s theorem 5.2). However,
note that the 4-group C2�C2 has order 4, but has no element
of order 4, and A4 has order 12, but has no subgroup of order
6 (see Exercise 4-15).
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More generally, we have the following result.

PROPOSITION 1.31 For any subgroups H �K of G,

.G WK/D .G WH/.H WK/

(meaning either both are infinite or both are finite and equal).

PROOF. Write G D
F
i2I giH (disjoint union), and H DF

j2J hjK (disjoint union). On multiplying the second equal-
ity by gi , we find that giH D

F
j2J gihjK (disjoint union),

and so G D
F
i;j2I�J gihjK (disjoint union). This shows

that
.G WK/D jI jjJ j D .G WH/.H WK/: 2

Normal subgroups

When S and T are two subsets of a group G, we let

ST D fst j s 2 S , t 2 T g:

Because of the associativity law, R.ST /D .RS/T , and so we
can denote this set unambiguously as RST .

A subgroupN ofG is normal, denotedN GG, if gNg�1D
N for all g 2G.

REMARK 1.32 To show that N is normal, it suffices to check
that gNg�1 � N for all g, because multiplying this inclusion
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on the left and right with g�1 and g respectively gives the in-
clusion N � g�1Ng, and rewriting this with g�1 for g gives
that N � gNg�1 for all g. However, the next example shows
that there can exist a subgroup N of a group G and an element
g of G such that gNg�1 �N but gNg�1 ¤N .

EXAMPLE 1.33 Let G D GL2.Q/, and let H D˚�
1 n
0 1

� ˇ̌
n 2 Z

	
. Then H is a subgroup of G; in fact H ' Z.

Let g D
�
5 0
0 1

�
. Then

g

�
1 n
0 1

�
g�1 D

�
5 0
0 1

��
1 n
0 1

��
5�1 0
0 1

�
D

�
1 5n
0 1

�
:

Hence gHg�1 &H (and g�1Hg 6�H ).

PROPOSITION 1.34 A subgroup N of G is normal if and only
if every left coset ofN inG is also a right coset, in which case,
gN DNg for all g 2G:

PROOF. Clearly,

gNg�1 DN ” gN DNg:

Thus, if N is normal, then every left coset is a right coset (in
fact, gN DNg). Conversely, if the left coset gN is also a right
coset, then it must be the right coset Ng by (1.25a). Hence
gN DNg, and so gNg�1 DN . 2
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1.35 The proposition says that, in order for N to be normal,
we must have that for all g 2 G and n 2 N , there exists an
n0 2 N such that gn D n0g (equivalently, for all g 2 G and
n 2 N , there exists an n0 such that ng D gn0). In other words,
to say that N is normal amounts to saying that an element of
G can be moved past an element of N at the cost of replacing
the element of N by another element of N .

EXAMPLE 1.36 (a) Every subgroup of index two is normal.
Indeed, let g 2 G rH . Then G D H t gH (disjoint union).
Hence gH is the complement of H in G. Similarly, Hg is the
complement of H in G, and so gH DHg:

(b) Consider the dihedral group

Dn D fe;r; : : : ; r
n�1; s; : : : ; rn�1sg:

Then Cn D fe;r; : : : ; rn�1g has index 2, and hence is normal.
For n � 3 the subgroup fe;sg is not normal because r�1sr D
rn�2s … fe;sg.

(c) Every subgroup of a commutative group is normal (ob-
viously), but the converse is false: the quaternion group Q is
not commutative, but every subgroup is normal (see Exercise
1-1).

A groupG is said to be simple if it has no normal subgroups
other than G and feg. Such a group can still have lots of non-
normal subgroups — in fact, the Sylow theorems (Chapter 5)
imply that every finite group has nontrivial subgroups unless it
is cyclic of prime order.
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PROPOSITION 1.37 If H and N are subgroups of G and N is
normal, thenHN is a subgroup ofG. IfH is also normal, then
HN is a normal subgroup of G.

PROOF. The set HN is nonempty, and

.h1n1/.h2n2/
1.35
D h1h2n

0
1n2 2HN;

and so it is closed under multiplication. Since

.hn/�1 D n�1h�1
1.35
D h�1n0 2HN

it is also closed under the formation of inverses, and so HN is
a subgroup. If both H and N are normal, then

gHNg�1 D gHg�1 �gNg�1 DHN

for all g 2G. 2

An intersection of normal subgroups of a group is again a
normal subgroup (cf. 1.14). Therefore, we can define the nor-
mal subgroup generated by a subset X of a group G to be
the intersection of the normal subgroups containing X . Its de-
scription in terms of X is a little complicated. We say that a
subset X of a group G is normal or closed under conjugation
if gXg�1 �X for all g 2G.

LEMMA 1.38 If X is normal, then the subgroup hXi gener-
ated by it is normal.
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PROOF. The map “conjugation by g”, a 7! gag�1, is a homo-
morphism G!G. If a 2 hXi, say, aD x1 � � �xm with each xi
or its inverse in X , then

gag�1 D .gx1g
�1/ � � �.gxmg

�1/.

As X is closed under conjugation, each gxig�1 or its inverse
lies in X , and so ghXig�1 � hXi. 2

LEMMA 1.39 For any subset X of G, the subsetS
g2G gXg

�1 is normal, and it is the smallest normal
set containing X .

PROOF. Obvious. 2

On combining these lemmas, we obtain the following
proposition.

PROPOSITION 1.40 The normal subgroup generated by a sub-
set X of G is h

S
g2G gXg

�1i.

Kernels and quotients

The kernel of a homomorphism ˛WG!G0 is

Ker.˛/D fg 2Gj ˛.g/D eg:

If ˛ is injective, then Ker.˛/ D feg. Conversely, if Ker.˛/ D
feg, then ˛ is injective, because

˛.g/D˛.g0/ H) ˛.g�1g0/D e H) g�1g0D e H) gDg0.
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PROPOSITION 1.41 The kernel of a homomorphism is a nor-
mal subgroup.

PROOF. It is obviously a subgroup, and if a 2 Ker.˛/, so that
˛.a/D e, and g 2G, then

˛.gag�1/D ˛.g/˛.a/˛.g/�1 D ˛.g/˛.g/�1 D e:

Hence gag�1 2 Ker.˛/. 2

For example, the kernel of the homomorphism
detWGLn.F / ! F� is the group of n � n matrices with
determinant 1 — this group SLn.F / is called the special
linear group of degree n.

PROPOSITION 1.42 Every normal subgroup occurs as the ker-
nel of a homomorphism. More precisely, if N is a normal
subgroup of G, then there is a unique group structure on the
set G=N of cosets of N in G for which the natural map
a 7! Œa�WG!G=N is a homomorphism.

PROOF. Write the cosets as left cosets, and define
.aN /.bN / D .ab/N . We have to check (a) that this is
well-defined, and (b) that it gives a group structure on the set
of cosets. It will then be obvious that the map g 7! gN is a
homomorphism with kernel N .

(a). Let aN D a0N and bN D b0N ; we have to show that
abN D a0b0N . But

abN D a.bN /D a.b0N/
1.34
D aNb0 D a0Nb0

1.34
D a0b0N:
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(b). The product is certainly associative, the coset N is an
identity element, and a�1N is an inverse for aN . 2

The group G=N is called the7 quotient of G by N .
Propositions 1.41 and 1.42 show that the normal subgroups

are exactly the kernels of homomorphisms.

PROPOSITION 1.43 The map a 7! aN WG!G=N has the fol-
lowing universal property: for any homomorphism ˛WG! G0

of groups such that ˛.N / D feg, there exists a unique homo-
morphism G=N !G0 making the diagram at right commute:

G G=N

G0:

a 7! aN

˛

PROOF. Note that for n 2N , ˛.gn/D ˛.g/˛.n/D ˛.g/, and
so ˛ is constant on each left coset gN of N in G. It therefore
defines a map

N̨ WG=N !G0; N̨ .gN /D ˛.g/;

and N̨ is a homomorphism because

N̨ ..gN / � .g0N//D N̨ .gg0N/D

˛.gg0/D ˛.g/˛.g0/D N̨ .gN / N̨ .g0N/.

7Some authors say “factor” instead of “quotient”, but this can be confused
with “direct factor”.
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The uniqueness of N̨ follows from the surjectivity of G !
G=N . 2

EXAMPLE 1.44 (a) Consider the subgroupmZ of Z. The quo-
tient group Z=mZ is a cyclic group of order m.

(b) Let L be a line through the origin in R2. Then R2=L is
isomorphic to R (because it is a one-dimensional vector space
over R).

(c) For n� 2, the quotientDn=hri D fNe; Nsg (cyclic group of
order 2).

Theorems concerning homomorphisms

The theorems in this subsection are sometimes called the iso-
morphism theorems (first, second, . . . , or first, third, . . . , or
. . . ).

FACTORIZATION OF HOMOMORPHISMS

Recall that the image of a map ˛WS! T is ˛.S/D f˛.s/ j s 2
Sg.

THEOREM 1.45 (HOMOMORPHISM THEOREM) For any ho-
momorphism ˛WG!G0 of groups, the kernel N of ˛ is a nor-
mal subgroup of G, the image I of ˛ is a subgroup of G0, and
˛ factors in a natural way into the composite of a surjection, an
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isomorphism, and an injection:

G
˛

�����! G0

surjective
??yg 7!gN x??injective

G=N
gN 7!˛.g/
��������!
isomorphism

I:

PROOF. We have already seen (1.41) that the kernel is a nor-
mal subgroup of G. If b D ˛.a/ and b0 D ˛.a0/, then bb0 D
˛.aa0/ and b�1 D ˛.a�1/, and so I def

D ˛.G/ is a subgroup of
G0. The universal property of quotients (1.43) shows that the
map x 7! ˛.x/WG! I defines a homomorphism N̨ WG=N ! I
with N̨ .gN /D ˛.g/. The homomorphism N̨ is certainly surjec-
tive, and if N̨ .gN / D e, then g 2 Ker.˛/ D N , and so N̨ has
trivial kernel. This implies that it is injective (p. 40). 2

THE ISOMORPHISM THEOREM

THEOREM 1.46 (ISOMORPHISM THEOREM) Let H be a
subgroup of G and N a normal subgroup of G. Then HN is
a subgroup of G, H \N is a normal subgroup of H , and the
map

h.H \N/ 7! hN WH=H \N !HN=N

is an isomorphism.
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PROOF. We have already seen (1.37) that HN is a subgroup.
Consider the map

H !G=N; h 7! hN:

This is a homomorphism, and its kernel is H \N , which is
therefore normal in H . According to Theorem 1.45, the map
induces an isomorphism H=H \N ! I where I is its image.
But I is the set of cosets of the form hN with h 2 H , i.e.,
I DHN=N . 2

It is not necessary to assume that N be normal in G as long
as hNh�1 D N for all h 2H (i.e., H is contained in the nor-
malizer of N — see later). Then H \N is still normal in H ,
but it need not be a normal subgroup of G.

THE CORRESPONDENCE THEOREM

The next theorem shows that if NG is a quotient group of G,
then the lattice of subgroups in NG captures the structure of the
lattice of subgroups of G lying over the kernel of G! NG.

THEOREM 1.47 (CORRESPONDENCE THEOREM) Let
˛WG� NG be a surjective homomorphism, and letN DKer.˛/.
Then there is a one-to-one correspondence

fsubgroups of G containing N g
1W1
$ fsubgroups of NGg

under which a subgroup H of G containing N corresponds
to NH D ˛.H/ and a subgroup NH of NG corresponds to H D
˛�1. NH/. Moreover, if H $ NH and H 0$ NH 0, then
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(a) NH � NH 0” H �H 0, in which case . NH 0 W NH/D .H 0 W
H/;

(b) NH is normal in NG if and only if H is normal in G, in
which case, ˛ induces an isomorphism

G=H
'
! NG= NH:

PROOF. If NH is a subgroup of NG, then ˛�1. NH/ is easily seen
to be a subgroup of G containing N , and if H is a sub-
group of G, then ˛.H/ is a subgroup of NG (see 1.45). Clearly,
˛�1˛.H/ D HN , which equals H if and only if H � N ,
and ˛˛�1. NH/D NH . Therefore, the two operations give the re-
quired bijection. The remaining statements are easily verified.
For example, a decomposition H 0 D

F
i2I aiH of H 0 into a

disjoint union of left cosets ofH gives a similar decomposition
NH 0 D

F
i2I ai

NH of NH 0. 2

COROLLARY 1.48 Let N be a normal subgroup of G; then
there is a one-to-one correspondence between the set of sub-
groups of G containing N and the set of subgroups of G=N ,
H $H=N . Moreover H is normal in G if and only if H=N
is normal in G=N , in which case the homomorphism g 7!
gN WG!G=N induces an isomorphism

G=H
'
! .G=N/=.H=N/.

PROOF. This is the special case of the theorem in which ˛ is
g 7! gN WG!G=N . 2
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EXAMPLE 1.49 Let G D D4 and let N be its sub-
group hr2i. Recall (1.17) that srs�1 D r3, and so
sr2s�1 D

�
r3
�2
D r2. Therefore N is normal. The groups

G and G=N have the following lattices of subgroups:
D4 D4=hr

2i

hr2; si hri hr2; rsi hNsi hNri hNr Nsi

hsi hr2si hr2i hrsi hr3si 1

1

Direct products

Let G be a group, and let H1; : : : ;Hk be subgroups of G. We
say that G is a direct product of the subgroups Hi if the map

.h1;h2; : : : ;hk/ 7! h1h2 � � �hk WH1�H2� � � ��Hk !G

is an isomorphism of groups. This means that each element
g of G can be written uniquely in the form g D h1h2 � � �hk ,
hi 2Hi , and that if gD h1h2 � � �hk and g0 D h01h

0
2 � � �h

0
k

, then

gg0 D .h1h
0
1/.h2h

0
2/ � � �.hkh

0
k/:

The following propositions give criteria for a group to be a
direct product of subgroups.
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PROPOSITION 1.50 A group G is a direct product of sub-
groups H1, H2 if and only if

(a) G DH1H2,
(b) H1\H2 D feg, and
(c) every element of H1 commutes with every element of

H2.

PROOF. IfG is the direct product ofH1 andH2, then certainly
(a) and (c) hold, and (b) holds because, for any g 2H1\H2,
the element .g;g�1/ maps to e under .h1;h2/ 7! h1h2 and so
equals .e;e/.

Conversely, (c) implies that .h1;h2/ 7! h1h2 is a homo-
morphism, and (b) implies that it is injective:

h1h2 D e H) h1 D h
�1
2 2H1\H2 D feg:

Finally, (a) implies that it is surjective. 2

PROPOSITION 1.51 A group G is a direct product of sub-
groups H1, H2 if and only if

(a) G DH1H2,
(b) H1\H2 D feg, and
(c) H1 and H2 are both normal in G.

PROOF. Certainly, these conditions are implied by those in the
previous proposition, and so it remains to show that they imply
that each element h1 of H1 commutes with each element h2
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of H2. Two elements h1;h2 of a group commute if and only if
their commutator

Œh1;h2�
def
D .h1h2/.h2h1/

�1

is e. But

.h1h2/.h2h1/
�1
D h1h2h

�1
1 h�12 D

�
.h1h2h

�1
1 / �h�12

h1 �
�
h2h
�1
1 h�12

� ;

which is in H2 because H2 is normal, and is in H1 because
H1 is normal. Therefore (b) implies h1 and h2 commute. 2

PROPOSITION 1.52 A group G is a direct product of sub-
groups H1;H2; : : : ;Hk if and only if

(a) G DH1H2 � � �Hk ;
(b) for each j , Hj \ .H1 � � �Hj�1HjC1 � � �Hk/D feg, and
(c) each of H1;H2; : : : ;Hk is normal in G,

PROOF. The necessity of the conditions being obvious, we
shall prove only the sufficiency. For k D 2, we have just done
this, and so we argue by induction on k. An induction argument
using (1.37) shows that H1 � � �Hk�1 is a normal subgroup of
G. The conditions (a,b,c) hold for the subgroupsH1; : : : ;Hk�1
of H1 � � �Hk�1, and so the induction hypothesis shows that

.h1;h2; : : : ;hk�1/ 7! h1h2 � � �hk�1W

H1�H2� � � ��Hk�1!H1H2 � � �Hk�1
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is an isomorphism. The pair H1 � � �Hk�1, Hk satisfies the hy-
potheses of (1.51), and so

.h;hk/ 7! hhk W.H1 � � �Hk�1/�Hk !G

is also an isomorphism. The composite of these isomorphisms

H1� � � ��Hk�1�Hk
.h1;:::;hk/ 7!.h1���hk�1;hk/
��������������������!

H1 � � �Hk�1�Hk
.h;hk/7!hhk
���������!G

sends .h1;h2; : : : ;hk/ to h1h2 � � �hk : 2

Commutative groups

The classification of finitely generated commutative groups is
most naturally studied as part of the theory of modules over
a principal ideal domain, but, for the sake of completeness, I
include an elementary exposition here.

LetM be a commutative group, written additively. The sub-
group hx1; : : : ;xki of M generated by the elements x1; : : : ;xk
consists of the sums

P
mixi ,mi 2 Z. A subset fx1; : : : ;xkg of

M is a basis for M if it generates M and

m1x1C�� �Cmkxk D 0; mi 2Z H) mixi D 0 for every i I

then
M D hx1i˚ � � �˚hxki:
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LEMMA 1.53 Suppose that M is generated by fx1; : : : ;xkg
and let c1; : : : ; ck be integers such that gcd.c1; : : : ; ck/ D 1.
Then there exist generators y1; : : : ;yk for M such that y1 D
c1x1C�� �C ckxk .

PROOF. If ci < 0, we change the signs of both ci and xi . This
allows us to assume that all ci 2 N. We argue by induction
on s D c1C�� �C ck . The lemma certainly holds if s D 1, and
so we assume s > 1. Then, at least two ci are nonzero, say,
c1 � c2 > 0. Now

˘ fx1;x2Cx1;x3; : : : ;xkg generates M ,
˘ gcd.c1� c2; c2; c3; : : : ; ck/D 1, and
˘ .c1� c2/C c2C�� �C ck < s,

and so, by induction, there exist generators y1; : : : ;yk for M
such that

y1 D .c1� c2/x1C c2.x1Cx2/C c3x3C�� �C ckxk

D c1x1C�� �C ckxk . 2

THEOREM 1.54 Every finitely generated commutative group
M has a basis; hence it is a finite direct sum of cyclic groups.

PROOF. 8We argue by induction on the number of generators
of M . If M can be generated by one element, the statement
is trivial, and so we may assume that it requires at least k >

8John Stillwell tells me that, for finite commutative groups, this is similar to
the first proof of the theorem, given by Kronecker in 1870.
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1 generators. Among the generating sets fx1; : : : ;xkg for M
with k elements there is one for which the order of x1 is the
smallest possible. We shall show that M is then the direct sum
of hx1i and hx2; : : : ;xki. This will complete the proof, because
the induction hypothesis provides us with a basis for the second
group, which together with x1 forms a basis for M .

If M is not the direct sum of hx1i and hx2; : : : ;xki, then
there exists a relation

m1x1Cm2x2C�� �Cmkxk D 0 (10)

with m1x1 ¤ 0; we may suppose that m1 2 N and m1 <
order.x1/. Let d D gcd.m1; : : : ;mk/ > 0, and let ci D
mi=d . According to the lemma, there exists a generating set
y1; : : : ;yk such that y1 D c1x1C�� �C ckxk . But

dy1 Dm1x1Cm2x2C�� �Cmkxk D 0

and d �m1 < order.x1/, and so this is a contradiction. 2

COROLLARY 1.55 A finite commutative group is cyclic if, for
each n > 0, it contains at most n elements of order dividing n.

PROOF. After the Theorem 1.54, we may suppose that G D
Cn1 �� � ��Cnr with ni 2N. If n divides ni and nj with i ¤ j ,
then G has more than n elements of order dividing n. There-
fore, the hypothesis implies that the ni are relatively prime. Let
ai generate the i th factor. Then .a1; : : : ;ar / has order n1 � � �nr ,
and so generates G. 2
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EXAMPLE 1.56 Let F be a field. The elements of order divid-
ing n in F� are the roots of the polynomial Xn� 1. Because
unique factorization holds in F ŒX�, there are at most n of these,
and so the corollary shows that every finite subgroup of F� is
cyclic.

THEOREM 1.57 A nonzero finitely generated commutative
group M can be expressed

M � Cn1 � � � ��Cns �C
r
1 (11)

for certain integers n1; : : : ;ns � 2 and r � 0. Moreover,
(a) r is uniquely determined by M ;
(b) the ni can be chosen so that n1 � 2 and

n1jn2; : : : ;ns�1jns , and then they are uniquely de-
termined by M ;

(c) the ni can be chosen to be powers of prime numbers, and
then they are uniquely determined by M .

The number r is called the rank ofM . By r being uniquely
determined by M , we mean that in any two decompositions
of M of the form (11), the number of copies of C1 will be
the same (and similarly for the ni in (b) and (c)). The integers
n1; : : : ;ns in (b) are called the invariant factors of M . State-
ment (c) says that M can be expressed

M � C
p
e1
1

� � � ��C
p
et
t
�C r1, ei � 1, (12)

for certain prime powers peii (repetitions of primes allowed),
and that the integers pe11 ; : : : ;p

et
t are uniquely determined by

M ; they are called the elementary divisors of M .
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PROOF. The first assertion is a restatement of Theorem 1.54.
(a) For a prime p not dividing any of the di ,

M=pM � .C1=pC1/
r
� .Z=pZ/r ;

and so r is the dimension of M=pM as an Fp-vector space.
(b,c) If gcd.m;n/ D 1, then Cm �Cn contains an element

of order mn, and so

Cm�Cn � Cmn: (13)

Use (13) to decompose the Cni into products of cyclic groups
of prime power order. Once this has been achieved, (13) can
be used to combine factors to achieve a decomposition as in
(b); for example, Cns D

Q
C
p
ei
i

where the product is over the

distinct primes among the pi and ei is the highest exponent for
the prime pi .

In proving the uniqueness statements in (b) and (c), we can
replace M with its torsion subgroup (and so assume r D 0). A
prime p will occur as one of the primes pi in (12) if and only
M has an element of order p, in which case p will occur exact
a times where pa is the number of elements of order dividing
p. Similarly, p2 will divide some peii in (12) if and only if M
has an element of order p2, in which case it will divide exactly
b of the peii where pa�bp2b is the number of elements in M
of order dividing p2. Continuing in this fashion, we find that
the elementary divisors ofM can be read off from knowing the
numbers of elements of M of each prime power order.

The uniqueness of the invariant factors can be derived from
that of the elementary divisors, or it can be proved directly:
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ns is the smallest integer > 0 such that nsM D 0; ns�1 is the
smallest integer > 0 such that ns�1M is cyclic; ns�2 is the
smallest integer such that ns�2 can be expressed as a product
of two cyclic groups, and so on. 2

SUMMARY 1.58 Each finite commutative group is isomorphic
to exactly one of the groups

Cn1 � � � ��Cnr ; n1jn2; : : : ;nr�1jnr :

The order of this group is n1 � � �nr . For example, each commu-
tative group of order 90 is isomorphic to exactly one of C90
or C3�C30 — to see this, note that the largest invariant factor
must be a factor of 90 divisible by all the prime factors of 90.

THE LINEAR CHARACTERS OF A COMMUTATIVE
GROUP

Let �.C/ D fz 2 C j jzj D 1g. This is an infinite group. For
any integer n, the set �n.C/ of elements of order dividing n is
cyclic of order n; in fact,

�n.C/D fe2�im=n j 0�m� n�1g D f1;�; : : : ; �n�1g

where � D e2�i=n is a primitive nth root of 1.
A linear character (or just character) of a group G is a ho-

momorphism G! �.C/. The homomorphism a 7! 1 is called
the trivial (or principal) character.
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EXAMPLE 1.59 The quadratic residue modulo p of an inte-
ger a not divisible by p is defined by�

a

p

�
D

�
1 if a is a square in Z=pZ
�1 otherwise.

Clearly, this depends only on a modulo p, and if neither a nor
b is divisible by p, then

�
ab
p

�
D

�
a
p

��
b
p

�
(because .Z=pZ/�

is cyclic). Therefore Œa� 7!
�
a
p

�
W.Z=pZ/�! f˙1g D �2.C/

is a character of .Z=pZ/�.

The set of characters of a group G becomes a group G_
under the addition,

.�C�0/.g/D �.g/�0.g/;

called the dual group of G. For example, the dual group Z_ of
Z is isomorphic to �.C/ by the map � 7! �.1/.

THEOREM 1.60 Let G be a finite commutative group.

(a) The dual of G_ is isomorphic to G.
(b) The map G ! G__ sending an element a of G to the

character � 7! �.a/ of G_ is an isomorphism.

In other words, G �G_ and G 'G__.

PROOF. The statements are obvious for cyclic groups, and
.G�H/_ 'G_�H_. 2
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ASIDE 1.61 The statement that the natural map G ! G__ is an
isomorphism is a special case of the Pontryagin theorem. For infinite
groups, it is necessary to consider groups together with a topology.
For example, as we observed above, Z_ ' �.C/. Each m 2 Z does
define a character � 7! �mW�.C/!�.C/, but there are many homo-
morphisms�.C/!�.C/ not of this form, and so the dual of�.C/ is
larger thanZ. However, these are the only continuous homomorphisms.
In general, letG be a commutative group endowed with a locally com-
pact topology for which the group operations are continuous; then the
group G_ of continuous characters G! �.C/ has a natural topol-
ogy for which it is locally compact, and the Pontryagin duality theorem
says that the natural mapG!G__ is an isomorphism.

THEOREM 1.62 (ORTHOGONALITY RELATIONS) LetG be a
finite commutative group. For any characters � and  of G,X

a2G
�.a/ .a�1/D

�
jGj if �D  
0 otherwise.

In particular,X
a2G

�.a/D

�
jGj if � is trivial
0 otherwise.

PROOF. If � D  , then �.a/ .a�1/ D 1, and so the sum is
jGj. Otherwise there exists a b 2G such that �.b/¤  .b/. As
a runs over G, so also does ab, and soX

a2G
�.a/ .a�1/D

X
a2G

�.ab/ ..ab/�1/

D �.b/ .b/�1
X

a2G
�.a/ .a�1/:
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Because �.b/ .b/�1 ¤ 1, this implies thatP
a2G �.a/ .a

�1/D 0. 2

COROLLARY 1.63 For any a 2G,X
�2G_

�.a/D

�
jGj if aD e
0 otherwise.

PROOF. Apply the theorem to G_, noting that .G_/_ 'G.2

The order of ab

Let a and b be elements of a group G. If a has order m and b
has order n, what can we say about the order of ab? The next
theorem shows that we can say nothing at all.

THEOREM 1.64 For any integers m;n;r > 1, there exists a fi-
nite group G with elements a and b such that a has order m, b
has order n, and ab has order r .

PROOF. We shall show that, for a suitable prime power q,
there exist elements a and b of SL2.Fq/ such that a, b, and
ab have orders 2m, 2n, and 2r respectively. As �I is the
unique element of order 2 in SL2.Fq/, the images of a, b, ab in
SL2.Fq/=f˙I g will then have orders m, n, and r as required.

Let p be a prime number not dividing 2mnr . Then p is a
unit in the finite ring Z=2mnrZ, and so some power of it, q
say, is 1 in the ring. This means that 2mnr divides q� 1. As
the group F�q has order q � 1 and is cyclic (see 1.56), there
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exist elements u, v, and w of F�q having orders 2m, 2n, and 2r
respectively. Let

aD

�
u 1

0 u�1

�
and bD

�
v 0

t v�1

�
(elements of SL2.Fq/);

where t has been chosen so that

uvC tCu�1v�1 D wCw�1:

The characteristic polynomial of a is .X �u/.X �u�1/, and
so a is similar to diag.u;u�1/. Therefore a has order 2m. Sim-
ilarly b has order 2n. The matrix

ab D

�
uvC t v�1

u�1t u�1v�1

�
;

has characteristic polynomial

X2� .uvC tCu�1v�1/XC1D .X �w/.X �w�1/,

and so ab is similar to diag.w;w�1/. Therefore ab has order
2r .9 2

Exercises

1-1 Show that the quaternion group has only one element of
order 2, and that it commutes with all elements of Q. Deduce
that Q is not isomorphic to D4, and that every subgroup of Q
is normal.

9I don’t know who found this beautiful proof. Apparently the original proof
of G.A. Miller is very complicated; see mo24913.
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1-2 Consider the elements

aD

�
0 �1
1 0

�
b D

�
0 1
�1 �1

�
in GL2.Z/. Show that a4 D 1 and b3 D 1, but that ab has infi-
nite order, and hence that the group ha;bi is infinite.

1-3 Show that every finite group of even order contains an
element of order 2.

1-4 Let nD n1C�� �Cnr be a partition of the positive inte-
ger n. Use Lagrange’s theorem to show that nŠ is divisible byQr
iD1ni Š.

1-5 Let N be a normal subgroup of G of index n. Show that
if g 2G, then gn 2N . Give an example to show that this may
be false when the subgroup is not normal.

1-6 A group G is said to have finite exponent if there exists
an m> 0 such that am D e for every a in G; the smallest such
m is then called the exponent of G.

(a) Show that every group of exponent 2 is commutative.
(b) Show that, for an odd prime p, the group of matrices8<:

0@1 a b
0 1 c
0 0 1

1A ˇ̌̌̌ˇ̌ a;b;c 2 Fp
9=;

has exponent p, but is not commutative.
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1-7 Two subgroups H and H 0 of a group G are said to be
commensurable if H \H 0 is of finite index in both H and
H 0. Show that commensurability is an equivalence relation on
the subgroups of G.

1-8 Show that a nonempty finite set with an associative binary
operation satisfying the cancellation laws is a group.



Chapter 2

Free Groups and
Presentations; Coxeter
Groups

It is frequently useful to describe a group by giving a set of
generators for the group and a set of relations for the generators
from which every other relation in the group can be deduced.
For example,Dn can be described as the group with generators
r;s and relations

rn D e; s2 D e; srsr D e:

In this chapter, we make precise what this means. First we need
to define the free group on a set X of generators — this is a

61



62
2. FREE GROUPS AND PRESENTATIONS; COXETER

GROUPS

group generated by X and with no relations except for those
implied by the group axioms. Because inverses cause prob-
lems, we first do this for monoids. Recall that a monoid is a set
S with an associative binary operation having an identity ele-
ment e. A homomorphism ˛WS! S 0 of monoids is a map such
that ˛.ab/D ˛.a/˛.b/ for all a;b 2 S and ˛.e/D e — unlike
the case of groups, the second condition is not automatic. A
homomorphism of monoids preserves all finite products.

Free monoids

Let X D fa;b;c; : : :g be a (possibly infinite) set of symbols. A
word is a finite sequence of symbols from X in which repeti-
tion is allowed. For example,

aa; aabac; b

are distinct words. Two words can be multiplied by juxtaposi-
tion, for example,

aaaa�aabac D aaaaaabac:

This defines on the set of all words an associative binary op-
eration. The empty sequence is allowed, and we denote it by
1. (In the unfortunate case that the symbol 1 is already an ele-
ment of X , we denote it by a different symbol.) Then 1 serves
as an identity element. Write SX for the set of words together
with this binary operation. Then SX is a monoid, called the
free monoid on X .
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When we identify an element a of X with the word a, X
becomes a subset of SX and generates it (i.e., no proper sub-
monoid of SX contains X ). Moreover, the map X ! SX has
the following universal property: for any map of sets ˛WX! S
from X to a monoid S , there exists a unique homomorphism
SX ! S making the diagram at right commute:

X SX

S:

a 7! a

˛

Free groups

We want to construct a group FX containing X and having
the same universal property as SX with “monoid” replaced by
“group”. DefineX 0 to be the set consisting of the symbols inX
and also one additional symbol, denoted a�1, for each a 2 X ;
thus

X 0 D fa;a�1;b;b�1; : : :g:

Let W 0 be the set of words using symbols from X 0. This be-
comes a monoid under juxtaposition, but it is not a group be-
cause a�1 is not yet the inverse of a, and we can’t cancel out
the obvious terms in words of the following form:

� � �aa�1 � � � or � � �a�1a � � �
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A word is said to be reduced if it contains no pairs of the form
aa�1 or a�1a. Starting with a word w, we can perform a finite
sequence of cancellations to arrive at a reduced word (possibly
empty), which will be called the reduced form w0 of w. There
may be many different ways of performing the cancellations,
for example,

cabb�1a�1c�1ca ! caa�1c�1ca ! cc�1ca ! ca;

cabb�1a�1c�1ca ! cabb�1a�1a ! cabb�1 ! ca:

We have underlined the pair we are cancelling. Note that the
middle a�1 is cancelled with different a’s, and that different
terms survive in the two cases (the ca at the right in the first
cancellation, and the ca at left in the second). Nevertheless we
ended up with the same answer, and the next result says that
this always happens.

PROPOSITION 2.1 There is only one reduced form of a word.

PROOF. We use induction on the length of the word w. If w is
reduced, there is nothing to prove. Otherwise a pair of the form
a0a
�1
0 or a�10 a0 occurs — assume the first, since the argument

is the same in both cases.
Observe that any two reduced forms of w obtained by a

sequence of cancellations in which a0a�10 is cancelled first are
equal, because the induction hypothesis can be applied to the
(shorter) word obtained by cancelling a0a�10 .

Next observe that any two reduced forms ofw obtained by a
sequence of cancellations in which a0a�10 is cancelled at some
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point are equal, because the result of such a sequence of can-
cellations will not be affected if a0a�10 is cancelled first.

Finally, consider a reduced formw0 obtained by a sequence
in which no cancellation cancels a0a�10 directly. Since a0a�10
does not remain in w0, at least one of a0 or a�10 must be can-
celled at some point. If the pair itself is not cancelled, then the
first cancellation involving the pair must look like

� � � 6 a�10 6 a0a
�1
0 � � � or � � �a0 6 a�10 6 a0 � � �

where our original pair is underlined. But the word obtained
after this cancellation is the same as if our original pair were
cancelled, and so we may cancel the original pair instead. Thus
we are back in the case just proved. 2

We say two words w;w0 are equivalent, denoted w �w0, if
they have the same reduced form. This is an equivalence rela-
tion (obviously).

PROPOSITION 2.2 Products of equivalent words are equiva-
lent, i.e.,

w � w0; v � v0 H) wv � w0v0:

PROOF. Let w0 and v0 be the reduced forms of w and of v.
To obtain the reduced form of wv, we can first cancel as much
as possible in w and v separately, to obtain w0v0 and then
continue cancelling. Thus the reduced form of wv is the re-
duced form of w0v0. A similar statement holds for w0v0, but
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(by assumption) the reduced forms of w and v equal the re-
duced forms of w0 and v0, and so we obtain the same result in
the two cases. 2

Let FX be the set of equivalence classes of words. Proposi-
tion 2.2 shows that the binary operation onW 0 defines a binary
operation on FX , which obviously makes it into a monoid. It
also has inverses, because

.ab � � �gh/
�
h�1g�1 � � �b�1a�1

�
� 1:

Thus FX is a group, called the free group on X . To summa-
rize: the elements of FX are represented by words in X 0; two
words represent the same element of FX if and only if they
have the same reduced forms; multiplication is defined by jux-
taposition; the empty word represents 1; inverses are obtained
in the obvious way. Alternatively, each element of FX is rep-
resented by a unique reduced word; multiplication is defined
by juxtaposition and passage to the reduced form.

When we identify a 2 X with the equivalence class of the
(reduced) word a, then X becomes identified with a subset of
FX — clearly it generates FX . The next proposition is a pre-
cise statement of the fact that there are no relations among the
elements of X when regarded as elements of FX except those
imposed by the group axioms.

PROPOSITION 2.3 For any map of sets ˛WX!G fromX to a
group G, there exists a unique homomorphism FX!G mak-
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ing the following diagram commute:

X FX

G:

a 7! a

˛

PROOF. Consider a map ˛WX ! G. We extend it to a map
of sets X 0 ! G by setting ˛.a�1/ D ˛.a/�1. Because G
is, in particular, a monoid, ˛ extends to a homomorphism of
monoids SX 0!G. This map will send equivalent words to the
same element of G, and so will factor through FX D SX 0=�.
The resulting map FX ! G is a group homomorphism. It is
unique because we know it on a set of generators for FX . 2

REMARK 2.4 The universal property of the map �WX ! FX ,
x 7! x, characterizes it: if �0WX! F 0 is a second map with the
same universal property, then there is a unique isomorphism
˛WFX ! F 0 such that ˛ ı �D �0,

FX

X

F 0:

�

�0

˛
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We recall the proof: by the universality of �, there exists a
unique homomorphism ˛WFX ! F 0 such that ˛ ı � D �0; by
the universality of �0, there exists a unique homomorphism
ˇWF 0 ! FX such that ˇ ı �0 D �; now .ˇ ı ˛/ ı � D �, but
by the universality of �, idFX is the unique homomorphism
FX ! FX such that idFX ı�D �, and so ˇ ı˛ D idFX ; simi-
larly, ˛ ıˇ D idF 0 , and so ˛ and ˇ are inverse isomorphisms.

COROLLARY 2.5 Every group is a quotient of a free group.

PROOF. Choose a setX of generators forG (e.g.,X DG), and
let F be the free group generated by X . According to (2.3), the
map a 7! aW X!G extends to a homomorphism F !G, and
the image, being a subgroup containing X , must equal G: 2

The free group on the set X D fag is simply the infinite
cyclic group C1 generated by a, but the free group on a set
consisting of two elements is already very complicated.

I now discuss, without proof, some important results on free
groups.

THEOREM 2.6 (NIELSEN-SCHREIER) 1 Subgroups of free
groups are free.

The best proof uses topology, and in particular covering
spaces—see Serre 1980 or Rotman 1995, Theorem 11.44.

1Nielsen (1921) proved this for finitely generated subgroups, and in fact
gave an algorithm for deciding whether a word lies in the subgroup; Schreier
(1927) proved the general case.
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Two free groups FX and FY are isomorphic if and only
if X and Y have the same cardinality. Thus we can define the
rank of a free groupG to be the cardinality of any free generat-
ing set (subsetX ofG for which the homomorphism FX!G
given by (2.3) is an isomorphism). Let H be a finitely gener-
ated subgroup of a free groupG. Then there is an algorithm for
constructing from any finite set of generators forH a free finite
set of generators. If G has finite rank n and .G WH/D i <1,
then H is free of rank

ni � iC1:

In particular, H may have rank greater than that of F (or even
infinite rank2). For proofs, see Rotman 1995, Chapter 11, and
Hall 1959, Chapter 7.

Generators and relations

Consider a set X and a set R of words made up of symbols in
X 0. Each element of R represents an element of the free group
FX , and the quotient G of FX by the normal subgroup gener-
ated by these elements (1.40) is said to have X as generators
and R as relations (or as a set of defining relations). One also
says that .X;R/ is a presentation for G, and denotes G by
hX jRi.

2For example, the commutator subgroup of the free group on two generators
has infinite rank.
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EXAMPLE 2.7 (a) The dihedral group Dn has generators r;s
and defining relations

rn; s2; srsr:

(See 2.9 below for a proof.)
(b) The generalized quaternion group Qn, n� 3, has gen-

erators a;b and relations3

a2
n�1

D 1;a2
n�2

D b2;bab�1 D a�1:

For nD 3 this is the group Q of (1.18). In general, it has order
2n (for more on it, see Exercise 2-5).

(c) Two elements a and b in a group commute if and only
if their commutator Œa;b� def

D aba�1b�1 is 1. The free abelian
group on generators a1; : : : ;an has generators a1;a2; : : : ;an
and relations

Œai ;aj �; i ¤ j:

(d) Let G D hs; t j s3t; t3; s4i. Then G D f1g because

s D ss3t D s4t D t

1D s3t t�3 D s3ss�3 D s:

For the remaining examples, see Massey 1967, which con-
tains a good account of the interplay between group theory and
topology. For example, for many types of topological spaces,

3Strictly speaking, I should say the relations a2
n�1

, a2
n�2

b�2, bab�1a.
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there is an algorithm for obtaining a presentation for the fun-
damental group.

(e) The fundamental group of the open disk with one point
removed is the free group on � where � is any loop around the
point (ibid. II 5.1).

(f) The fundamental group of the sphere with r points re-
moved has generators �1; :::;�r (�i is a loop around the i th
point) and a single relation

�1 � � ��r D 1:

(g) The fundamental group of a compact Riemann surface
of genus g has 2g generators u1;v1; :::;ug ;vg and a single
relation

u1v1u
�1
1 v�11 � � �ugvgu

�1
g v�1g D 1

(ibid. IV Exercise 5.7).

PROPOSITION 2.8 Let G be the group defined by the presen-
tation .X;R/. For any group H and map of sets ˛WX ! H
sending each element of R to 1 (in the obvious sense4), there
exists a unique homomorphism G!H making the following

4Each element of R represents an element of FX , and the condition re-
quires that the unique extension of ˛ to FX sends each of these elements to
1.
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diagram commute:

X G

H:

a 7! a

˛

PROOF. From the universal property of free groups (2.3), we
know that ˛ extends to a homomorphism FX !H , which we
again denote ˛. Let �R be the image of R in FX . By assump-
tion �R � Ker.˛/, and therefore the normal subgroup N gen-
erated by �R is contained in Ker.˛/. By the universal property
of quotients (see 1.43), ˛ factors through FX=N D G. This
proves the existence, and the uniqueness follows from the fact
that we know the map on a set of generators for X . 2

EXAMPLE 2.9 Let G D ha;b j an;b2;babai. We prove that
G is isomorphic to the dihedral group Dn (see 1.17). Because
the elements r;s 2Dn satisfy these relations, the map

fa;bg !Dn; a 7! r; b 7! s

extends uniquely to a homomorphism G ! Dn. This homo-
morphism is surjective because r and s generate Dn. The
equalities

an D 1; b2 D 1; baD an�1b
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imply that each element of G is represented by one of the fol-
lowing elements,

1; : : : ;an�1;b;ab; : : : ;an�1b;

and so jGj � 2nD jDnj. Therefore the homomorphism is bi-
jective (and these symbols represent distinct elements of G).

Similarly,

ha;b j a2;b2; .ab/ni 'Dn

by a 7! s, b 7! t .

EXAMPLE 2.10 (a) Let G D hx;y j xm;yni where m;n > 1.
Then x has order m, y has order n, and xy has infinite order
in G. To see this, recall that for any integers m;n;r > 1, there
exists a group H with elements a and b such that a, b, and ab
have orders m, n, and r respectively (Theorem 1.64). Accord-
ing to (2.8), there exists a homomorphism ˛WG!H such that
˛.x/ D a and ˛.y/ D b. The order of x certainly divides m,
and the fact that ˛.x/ has order m shows that x has order ex-
actly m. Similarly, y has order n. As ˛.xy/D ab, the element
xy must have order at least r . As this is true for all r > 1, the
element xy has infinite order.

(b) LetGD SL2.Z/=f˙I g, and let S and T be the elements
of G represented by the matrices

�
0 �1
1 0

�
and

�
1 1
0 1

�
. Then S

and ST generate G, and S2 D 1D .ST /3 (see Theorem 2.12
of my course notes on modular forms). It is known that this is
a full set of relations for S and ST in G, and so every group
generated by an element of order 2 and an element of order 3
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is a quotient of G. Most finite simple groups of Lie type, and
all but three of the sporadic simple groups, fall into this class.

Finitely presented groups

A group is said to be finitely presented if it admits a presenta-
tion .X;R/ with both X and R finite.

EXAMPLE 2.11 Consider a finite group G. Let X D G, and
let R be the set of words

fabc�1 j ab D c in Gg:

I claim that .X;R/ is a presentation of G, and so G is finitely
presented. Let G0 D hX jRi. The extension of a 7! aWX !G
to FX sends each element of R to 1, and therefore defines a
homomorphism G0 ! G, which is obviously surjective. But
every element of G0 is represented by an element of X , and so
jG0j � jGj. Therefore the homomorphism is bijective.

Although it is easy to define a group by a finite presentation,
calculating the properties of the group can be very difficult —
note that we are defining the group, which may be quite small,
as the quotient of a huge free group by a huge subgroup. I list
some negative results.

THE WORD PROBLEM

LetG be the group defined by a finite presentation .X;R/. The
word problem for G asks whether there exists an algorithm
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(decision procedure) for deciding whether a word on X 0 rep-
resents 1 in G. The answer is negative: Novikov and Boone
showed that there exist finitely presented groups G for which
no such algorithm exists. Of course, there do exist other groups
for which there is an algorithm.

The same ideas lead to the following result: there does not
exist an algorithm that will determine for an arbitrary finite
presentation whether or not the corresponding group is trivial,
finite, abelian, solvable, nilpotent, simple, torsion, torsion-free,
free, or has a solvable word problem.

See Rotman 1995, Chapter 12, for proofs of these state-
ments.

THE BURNSIDE PROBLEM

Recall that a group is said to have exponent e if ge D 1 for all
g 2 G and e is the smallest natural number with this property.
It is easy to write down examples of infinite groups generated
by a finite number of elements of finite order (see Exercise 1-2
or Example 2.10), but does there exist such a group with finite
exponent? (Burnside problem). In 1968, Adjan and Novikov
showed the answer is yes: there do exist infinite finitely gener-
ated groups of finite exponent.

THE RESTRICTED BURNSIDE PROBLEM

The Burnside group of exponent e on r generators B.r;e/
is the quotient of the free group on r generators by the sub-
group generated by all eth powers. The Burnside problem
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asked whether B.r;e/ is finite, and it is known to be infinite
except some small values of r and e. The restricted Burnside
problem asks whetherB.r;e/ has only finitely many finite quo-
tients; equivalently, it asks whether there is one finite quotient
of B.r;e/ having all other finite quotients as quotients. The
classification of the finite simple groups (see p. 102) showed
that in order prove that B.r;e/ always has only finitely many
finite quotients, it suffices to prove it for e equal to a prime
power. This was shown by Efim Zelmanov in 1989 after earlier
work of Kostrikin. See Feit 1995.

TODD-COXETER ALGORITHM

There are some quite innocuous looking finite presentations
that are known to define quite small groups, but for which this
is very difficult to prove. The standard approach to these ques-
tions is to use the Todd-Coxeter algorithm (see Chapter 4 be-
low).

We shall develop various methods for recognizing groups
from their presentations (see also the exercises).

Coxeter groups

A Coxeter system is a pair .G;S/ consisting of a group G and
a set of generators S forG subject only to relations of the form
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.st/m.s;t/ D 1, where8<: m.s;s/ D 1 all s;
m.s; t/ � 2
m.s; t/ D m.t;s/:

(14)

When no relation occurs between s and t , we set m.s; t/D1.
Thus a Coxeter system is defined by a set S and a mapping

mWS �S ! N[f1g

satisfying (14); then G D hS jRi where

RD f.st/m.s;t/ jm.s; t/ <1g.

The Coxeter groups are those that arise as part of a Coxeter
system. The cardinality of S is called the rank of the Coxeter
system.

EXAMPLES

2.12 Up to isomorphism, the only Coxeter system of rank 1
is .C2;fsg/.

2.13 The Coxeter systems of rank 2 are indexed by m.s; t/�
2.

(a) If m.s; t/ is an integer n, then the Coxeter system is
.G;fs; tg/ where

G D hs; t j s2; t2; .st/ni.



78
2. FREE GROUPS AND PRESENTATIONS; COXETER

GROUPS

According to (2.9), G 'Dn. In particular, s ¤ t and st
has order n.

(b) If m.s; t/ D 1, then the Coxeter system is .G;fs; tg/
where G D hs; t j s2; t2i. According to (2.10), s and t
each have order 2, and st has infinite order.

2.14 Let V DRn endowed with the standard positive definite
symmetric bilinear form

..xi /1�i�n; .yi /1�i�n/D
X

xiyi :

A reflection is a linear map sWV ! V sending some nonzero
vector ˛ to �˛ and fixing the points of the hyperplane H˛
orthogonal to ˛. We write s˛ for the reflection defined by ˛;
it is given by the formula

s˛v D v�
2.v;˛/

.˛;˛/
˛;

because this is certainly correct for v D ˛ and for v 2H˛ , and
hence (by linearity) on the whole of V D h˛i˚H˛ . A finite
reflection group is a finite group generated by reflections. For
such a group G, it is possible to choose a set S of generating
reflections for which .G;S/ is a Coxeter system (Humphreys
1990, 1.9). Thus, the finite reflection groups are all Coxeter
groups (in fact, they are precisely the finite Coxeter groups,
ibid., 6.4).

2.15 Let Sn act on Rn by permuting the coordinates,

�.a1; : : : ;an/D .a�.1/; : : : ;a�.n//:



Coxeter groups 79

The transposition .ij / interchanging i and j , sends the vector

˛ D .0; : : : ;0;
i
1;0; : : : ;0;

j

�1;0; : : :/

to its negative, and leaves the points of the hyperplane

H˛ D .a1; : : : ;
i
ai ; : : : ;

j
ai ; : : : ;an/

fixed. Therefore, .ij / is a reflection. As Sn is generated by
the transpositions, this shows that it is a finite reflection group
(hence also a Coxeter group).

THE STRUCTURE OF COXETER GROUPS

THEOREM 2.16 Let .G;S/ be the the Coxeter system defined
by a map mWS �S ! N[f1g satisfying (14).

(a) The natural map S !G is injective.
(b) Each s 2 S has order 2 in G.
(c) For each s ¤ t in S , st has order m.s; t/ in G.

PROOF. Note that the order of s is 1 or 2, and the order of st
divides m.s; t/, and so the theorem says that the elements of S
remain distinct in G and that each s and each st has the largest
possible order.

If S has only a single element, then G ' C2 (see 2.12), and
so the statements are obvious. Otherwise, let s and t be distinct
elements of S , and let G0 D hs; t j s2; t2; .st/m.s;t/i. The map
S ! G0 sending s to s, t to t , and all other elements of S to
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1 extends to a homomorphism G ! G0. We know that s and
t are distinct elements of order 2 in G0 and that st has order
m.s; t/ in G0 (see 2.13), and it follows that the same is true in
G. 2

REMARK 2.17 Let V be the R-vector space with basis a fam-
ily .es/s2S indexed by S . The standard proof of Theorem
2.16 defines a “geometry” on V for which there exist “reflec-
tions” �s , s 2 S , such that �s�t has order m.s; t/. According
to (2.8), the map s 7! �s extends to homomorphism of group
G ! GL.V /. This proves the theorem, and it realizes G as
a group of automorphisms of a “geometry”. See Humphreys
1990, Chapter 5, or v3.02 of these notes.

Exercises

2-1 Let Dn D ha;bjan;b2;ababi be the nth dihedral group.
If n is odd, prove that D2n � hani � ha2;bi, and hence that
D2n � C2�Dn.

2-2 Prove that the group with generators a1; : : : ;an and re-
lations Œai ;aj � D 1, i ¤ j , is the free abelian group on
a1; : : : ;an. [Hint: Use universal properties.]

2-3 Let a and b be elements of an arbitrary free group F .
Prove:

(a) If an D bn with n > 1, then aD b.
(b) If ambn D bnam with mn 6D 0, then ab D ba.
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(c) If the equation xn D a has a solution x for every n, then
aD 1.

2-4 Let Fn denote the free group on n generators. Prove:
(a) If n < m, then Fn is isomorphic to both a subgroup and

a quotient group of Fm.
(b) Prove that F1�F1 is not a free group.
(c) Prove that the centre Z.Fn/D 1 provided n > 1.

2-5 Prove that Qn (see 2.7b) has a unique subgroup of order
2, which is Z.Qn/. Prove that Qn=Z.Qn/ is isomorphic to
D2n�1 .

2-6 (a) Prove that ha;b j a2;b2; .ab/ni 'Dn (cf. 2.9).
(b) Prove that G D ha;b j a2;ababi is an infinite group. (This
is usually known as the infinite dihedral group.)

2-7 Let G D ha;b;c j a3;b3; c4;acac�1;aba�1bc�1b�1i.
Prove that G is the trivial group f1g. [Hint: Expand
.aba�1/3 D .bcb�1/3.]

2-8 Let F be the free group on the set fx;yg and let G D C2,
with generator a ¤ 1. Let ˛ be the homomorphism F ! G
such that ˛.x/D a D ˛.y/. Find a minimal generating set for
the kernel of ˛. Is the kernel a free group?

2-9 Let G D hs; t j t�1s3t D s5i. Prove that the element

g D s�1t�1s�1tst�1st

is in the kernel of every map from G to a finite group.
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Coxeter came to Cambridge and gave a lecture [in which he
stated a] problem for which he gave proofs for selected exam-
ples, and he asked for a unified proof. I left the lecture room
thinking. As I was walking through Cambridge, suddenly the
idea hit me, but it hit me while I was in the middle of the road.
When the idea hit me I stopped and a large truck ran into me. . . .
So I pretended that Coxeter had calculated the difficulty of this
problem so precisely that he knew that I would get the solution
just in the middle of the road. . . . Ever since, I’ve called that the-
orem “the murder weapon”. One consequence of it is that in a
group if a2 D b3 D c5 D .abc/�1, then c610 D 1.

John Conway, Math. Intelligencer 23 (2001), no. 2, pp. 8–9.



Chapter 3

Automorphisms and
Extensions

Automorphisms of groups

An automorphism of a groupG is an isomorphism of the group
with itself. The set Aut.G/ of automorphisms of G becomes
a group under composition: the composite of two automor-
phisms is again an automorphism; composition of maps is al-
ways associative (see (5), p. 15); the identity map g 7! g is an
identity element; an automorphism is a bijection, and therefore
has an inverse, which is again an automorphism.

83
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For g 2G, the map ig “conjugation by g”,

x 7! gxg�1 WG!G

is an automorphism of G. An automorphism of this form is
called an inner automorphism, and the remaining automor-
phisms are said to be outer.

Note that

.gh/x.gh/�1 D g.hxh�1/g�1, i.e., igh.x/D .ig ı ih/.x/;

and so the map g 7! ig WG! Aut.G/ is a homomorphism. Its
image is denoted by Inn.G/. Its kernel is the centre of G,

Z.G/D fg 2G j gx D xg all x 2Gg;

and so we obtain from (1.45) an isomorphism

G=Z.G/! Inn.G/:

In fact, Inn.G/ is a normal subgroup of Aut.G/: for g 2G and
˛ 2 Aut.G/,

.˛ ı ig ı˛
�1/.x/D ˛.g �˛�1.x/ �g�1/

D ˛.g/ �x �˛.g/�1

D i˛.g/.x/:

EXAMPLE 3.1 (a) Let G D Fnp . The automorphisms of G as a
commutative group are just the automorphisms ofG as a vector
space over Fp ; thus Aut.G/ D GLn.Fp/. Because G is com-
mutative, all nontrivial automorphisms of G are outer.
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(b) As a particular case of (a), we see that

Aut.C2�C2/D GL2.F2/:

(c) Since the centre of the quaternion group Q is ha2i, we
have that

Inn.Q/'Q=ha2i � C2�C2:

In fact, Aut.Q/� S4. See Exercise 3-4.

ASIDE 3.2 The inner automorphisms of a group are the only automor-
phisms that extend to every overgroup (Schupp 1987).

COMPLETE GROUPS

DEFINITION 3.3 A group G is complete if the map g 7!
ig WG! Aut.G/ is an isomorphism.

Thus, a group G is complete if and only if (a) the centre
Z.G/ ofG is trivial, and (b) every automorphism ofG is inner.

EXAMPLE 3.4 (a) For n¤ 2;6, Sn is complete. The group S2
is commutative and hence fails (a); Aut.S6/=Inn.S6/�C2 and
hence S6 fails (b). See Rotman 1995, Theorems 7.5, 7.10.

(b) If G is a simple noncommutative group, then Aut.G/ is
complete. See Rotman 1995, Theorem 7.14.

According to Exercise 3-3, GL2 .F2/� S3, and so the non-
isomorphic groups C2�C2 and S3 have isomorphic automor-
phism groups.
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AUTOMORPHISMS OF CYCLIC GROUPS

Let G be a cyclic group of order n, say G D hai. Let m be
an integer � 1. The smallest multiple of m divisible by n is
m � n

gcd.m;n/ . Therefore, am has order n
gcd.m;n/ , and so the gen-

erators of G are exactly the elements am with gcd.m;n/D 1.
An automorphism ˛ of G must send a to another generator of
G, and so ˛.a/ D am for some m relatively prime to n. The
map ˛ 7!m defines an isomorphism

Aut.Cn/! .Z=nZ/�

where

.Z=nZ/�Dfunits in the ring Z=nZgD fmCnZ j gcd.m;n/D 1g:

This isomorphism is independent of the choice of a generator
a forG: if ˛.a/D am, then for any other element bD ai ofG,

˛.b/D ˛.ai /D ˛.a/i D ami D .ai /m D .b/m:

It remains to determine .Z=nZ/�. If nD pr11 � � �p
rs
s is the

factorization of n into a product of powers of distinct primes,
then

Z=nZ'Z=pr11 Z�� � ��Z=p
rs
s Z; m mod n$ .m mod pr1 ; : : :/

by the Chinese remainder theorem. This is an isomorphism of
rings, and so

.Z=nZ/� ' .Z=pr11 Z/
�
� � � �� .Z=prss Z/�:
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It remains to consider the case nD pr , p prime.
Suppose first that p is odd. The set f0;1; : : : ;pr � 1g is a

complete set of representatives for Z=prZ, and 1
p of these el-

ements are divisible by p. Hence .Z=prZ/� has order pr �
pr

p D p
r�1.p�1/. The homomorphism

.Z=prZ/�! .Z=pZ/�

is surjective with kernel of order pr�1, and we know that
.Z=pZ/� is cyclic. Let a 2 .Z=prZ/� map to a generator of
.Z=pZ/�. Then ap

r .p�1/ D 1 and ap
r

again maps to a gen-
erator of .Z=pZ/�. Therefore .Z=prZ/� contains an element
�

def
D ap

r
of order p�1. Using the binomial theorem, one finds

that 1Cp has order pr�1 in .Z=prZ/�. Therefore .Z=prZ/�
is cyclic with generator � � .1Cp/ (cf. (13), p. 53), and every
element can be written uniquely in the form

�i � .1Cp/j ; 0� i < p�1; 0� j < pr�1:

On the other hand,

.Z=8Z/� D fN1; N3; N5; N7g D hN3; N5i � C2�C2

is not cyclic.

SUMMARY 3.5 (a) For a cyclic group of G of order n,
Aut.G/ ' .Z=nZ/�: The automorphism of G corresponding
to Œm� 2 .Z=nZ/� sends an element a of G to am.
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(b) If nD pr11 � � �p
rs
s is the factorization of n into a product

of powers of distinct primes pi , then

.Z=nZ/� ' .Z=pr11 Z/
�
� � � �� .Z=prss Z/�;
m mod n$ .m mod pr1 ; : : :/:

(c) For a prime p,

.Z=prZ/� �

8̂<̂
:
C.p�1/pr�1 p odd,
C2 pr D 22

C2� C2r�2 p D 2, r > 2:

Characteristic subgroups

DEFINITION 3.6 A characteristic subgroup of a group G is a
subgroup H such that ˛.H/DH for all automorphisms ˛ of
G.

The same argument as in (1.32) shows that it suffices to
check that ˛.H/�H for all ˛ 2Aut.G/. Thus, a subgroupH
of G is normal if it is stable under all inner automorphisms of
G, and it is characteristic if it stable under all automorphisms.
In particular, a characteristic subgroup is normal.

REMARK 3.7 (a) Consider a group G and a normal subgroup
N . An inner automorphism of G restricts to an automorphism
of N , which may be outer (for an example, see 3.16 below).
Thus a normal subgroup of N need not be a normal subgroup
ofG. However, a characteristic subgroup ofN will be a normal
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subgroup of G. Also a characteristic subgroup of a character-
istic subgroup is a characteristic subgroup.

(b) The centre Z.G/ of G is a characteristic subgroup, be-
cause

zg D gz all g 2G H) ˛.z/˛.g/D ˛.g/˛.z/ all g 2G;

and as g runs overG, ˛.g/ also runs overG. Expect subgroups
with a general group-theoretic definition to be characteristic.

(c) If H is the only subgroup of G of order m, then it must
be characteristic, because ˛.H/ is again a subgroup of G of
order m.

(d) Every subgroup of a commutative group is normal but
not necessarily characteristic. For example, every subspace of
dimension 1 in F2p is subgroup of F2p , but it is not characteristic
because it is not stable under Aut.F2p/D GL2.Fp/.

Semidirect products

Let N be a normal subgroup of G. Each element g of G de-
fines an automorphism of N , n 7! gng�1, and this defines a
homomorphism

� WG! Aut.N /; g 7! ig jN:

If there exists a subgroupQ ofG such thatG!G=N mapsQ
isomorphically ontoG=N , then I claim that we can reconstruct
G fromN ,Q, and the restriction of � toQ. Indeed, an element
g of G can be written uniquely in the form

g D nq; n 2N; q 2Q;
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— q must be the unique element ofQ mapping to gN 2G=N ,
and n must be gq�1. Thus, we have a one-to-one correspon-
dence of sets

G
1-1
 !N �Q:

If g D nq and g0 D n0q0, then

gg0 D .nq/
�
n0q0

�
D n.qn0q�1/qq0 D n ��.q/.n0/ �qq0:

DEFINITION 3.8 A group G is a semidirect product of its
subgroups N and Q if N is normal and the homomorphism
G!G=N induces an isomorphism Q!G=N .

Equivalently, G is a semidirect product of subgroup N and
Q if

N GG; NQDG; N \QD f1g: (15)

Note that Q need not be a normal subgroup of G. When G is
the semidirect product of subgroups N and Q, we write G D
N oQ (or N o� Q where � WQ! Aut.N / gives the action of
Q on N by inner automorphisms).

EXAMPLE 3.9 (a) In Dn, n � 2, let Cn D hri and C2 D hsi;
then

Dn D hrio� hsi D Cno� C2

where �.s/.r i /D r�i (see 1.17).
(b) The alternating subgroupAn is a normal subgroup of Sn

(because it has index 2), and C2 D f.12/gmaps isomorphically
onto Sn=An. Therefore Sn D AnoC2.
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(c) The quaternion group can not be written as a semidirect
product in any nontrivial fashion (see Exercise 3-1).

(d) A cyclic group of order p2, p prime, is not a semidirect
product (because it has only one subgroup of order p).

(e) LetG DGLn.F /. Let B be the subgroup of upper trian-
gular matrices inG, T the subgroup of diagonal matrices inG,
and U the subgroup of upper triangular matrices with all their
diagonal coefficients equal to 1. Thus, when nD 2,

B D

��
� �

0 �

��
; T D

��
� 0
0 �

��
; U D

��
1 �

0 1

��
.

Then, U is a normal subgroup of B , UT D B , and U \T D
f1g. Therefore,

B D U oT .

Note that, when n � 2, the action of T on U is not trivial, for
example,�

a 0
0 b

��
1 c
0 1

��
a�1 0

0 b�1

�
D

�
1 ac=b
0 1

�
;

and so B is not the direct product of T and U .

We have seen that, from a semidirect product G D N oQ,
we obtain a triple

.N;Q;� WQ! Aut.N //;

and that the triple determinesG. We now prove that every triple
.N;Q;�/ consisting of two groups N and Q and a homomor-
phism � WQ! Aut.N / arises from a semidirect product. As a
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set, let G DN �Q, and define

.n;q/.n0;q0/D .n ��.q/.n0/;qq0/:

PROPOSITION 3.10 The composition law above makesG into
a group, in fact, the semidirect product of N and Q:

PROOF. Write qn for �.q/.n/, so that the composition law be-
comes

.n;q/.n0;q0/D .n � qn0;qq0/.

Then

..n;q/; .n0;q0//.n00;q00/D .n � qn0 � qq
0

n00;qq0q00/

D .n;q/..n0;q0/.n00;q00//

and so the associative law holds. Because �.1/ D 1 and
�.q/.1/D 1,

.1;1/.n;q/D .n;q/D .n;q/.1;1/,

and so .1;1/ is an identity element. Next

.n;q/.q
�1

n�1;q�1/D .1;1/D .q
�1

n�1;q�1/.n;q/;

and so .q
�1
n�1;q�1/ is an inverse for .n;q/. Thus G is a

group, and it is obvious that N GG, NQ D G, and N \Q D
f1g, and so G D N oQ. Moreover, when N and Q are re-
garded as subgroups of G, the action of Q on N is that given
by � . 2
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EXAMPLES

3.11 A group of order 12. Let � be the (unique) nontrivial
homomorphism

C4! Aut.C3/' C2;

namely, that sending a generator of C4 to the map a 7! a2.
Then G def

D C3o� C4 is a noncommutative group of order 12,
not isomorphic to A4. If we denote the generators of C3 and
C4 by a and b, then a and b generate G, and have the defining
relations

a3 D 1; b4 D 1; bab�1 D a2:

3.12 Direct products. The bijection of sets

.n;q/ 7! .n;q/WN �Q!N o� Q

is an isomorphism of groups if and only if � is the trivial ho-
momorphism Q! Aut.N /, i.e., �.q/.n/ D n for all q 2 Q,
n 2N .

3.13 Groups of order 6. Both S3 and C6 are semidirect
products of C3 by C2 — they correspond to the two distinct
homomorphisms C2! C2 ' Aut.C3/.

3.14 Groups of order p3 (element of order p2). Let N D
hai be cyclic of order p2, and let Q D hbi be cyclic of order
p, where p is an odd prime. Then AutN � Cp�1 �Cp (see
3.5), and Cp is generated by ˛Wa 7! a1Cp (note that ˛2.a/D
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a1C2p ; : : :). Define Q! AutN by b 7! ˛. The group G def
D

N o� Q has generators a;b and defining relations

ap
2

D 1; bp D 1; bab�1 D a1Cp :

It is a noncommutative group of order p3, and possesses an
element of order p2.

3.15 Groups of order p3 (no element of order p2). Let
N D ha;bi be the product of two cyclic groups hai and hbi of
order p, and let Q D hci be a cyclic group of order p. Define
� WQ! Aut.N / to be the homomorphism such that

�.ci /.a/D abi ; �.ci /.b/D b.

(If we regardN as the additive groupN D F2p with a and b the
standard basis elements, then �.ci / is the automorphism of N

defined by the matrix
�
1 0
i 1

�
.) The group G def

D N o� Q is a

group of order p3, with generators a;b;c and defining relations

ap D bp D cp D 1; ab D cac�1; Œb;a�D 1D Œb;c�:

Because b ¤ 1, the middle equality shows that the group is not
commutative. When p is odd, all elements except 1 have order
p. When pD 2,G �D4, which does have an element of order
22: Note that this shows that a group can have quite different
representations as a semidirect product:

D4
.3.9a)
� C4oC2 � .C2�C2/oC2:
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For an odd prime p, a noncommutative group of order p3 is
isomorphic to the group in (3.14) if it has an element of order
p2 and to the group in (3.15) if it doesn’t (see Exercise 4-4). In
particular, up to isomorphism, there are exactly two noncom-
mutative groups of order p3.

3.16 Making outer automorphisms inner. Let ˛ be an au-
tomorphism, possibly outer, of a group N . We can realize N
as a normal subgroup of a group G in such a way that ˛ be-
comes the restriction to N of an inner automorphism of G. To
see this, let � WC1!Aut.N / be the homomorphism sending a
generator a of C1 to ˛ 2Aut.N /, and letG DN o� C1. The
element g D .1;a/ of G has the property that g.n;1/g�1 D
.˛.n/;1/ for all n 2N .

CRITERIA FOR SEMIDIRECT PRODUCTS TO BE
ISOMORPHIC

It will be useful to have criteria for when two triples .N;Q;�/
and .N;Q;� 0/ determine isomorphic groups.

LEMMA 3.17 If there exists an ˛ 2 Aut.N / such that

� 0.q/D ˛ ı�.q/ı˛�1; all q 2Q;

then the map

.n;q/ 7! .˛.n/;q/WN o� Q!N o� 0Q

is an isomorphism.
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PROOF. For .n;q/ 2N o� Q, let 
.n;q/D .˛.n/;q/. Then


.n;q/ �
.n0;q0/D .˛.n/;q/ � .˛.n0/;q0/

D .˛.n/ �� 0.q/.˛.n0//;qq0/

D .˛.n/ � .˛ ı�.q/ı˛�1/.˛.n0//;qq0/

D .˛.n/ �˛.�.q/.n0//;qq0/;

and


..n;q/ � .n0;q0//D 
.n ��.q/.n0/;qq0/

D .˛.n/ �˛
�
�.q/.n0/

�
;qq0/:

Therefore 
 is a homomorphism. The map

.n;q/ 7! .˛�1.n/;q/WN o� 0Q!N o� Q

is also a homomorphism, and it is inverse to 
 , and so both are
isomorphisms. 2

LEMMA 3.18 If � D � 0 ı˛ with ˛ 2 Aut.Q/, then the map

.n;q/ 7! .n;˛.q//WN o� Q�N o� 0Q

is an isomorphism.

PROOF. Routine verification. 2

LEMMA 3.19 IfQ is cyclic and the subgroup �.Q/ of Aut.N /
is conjugate to � 0.Q/, then

N o� Q�N o� 0Q:
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PROOF. Let a generateQ. By assumption, there exists an a0 2
Q and an ˛ 2 Aut.N / such that

� 0.a0/D ˛ ��.a/ �˛�1:

The element � 0.a0/ generates � 0.Q/, and so we can choose a0

to generate Q, say a0 D ai with i relatively prime to the or-
der of Q. Now the map .n;q/ 7! .˛.n/;qi / is an isomorphism
N o� Q!N o� 0Q. 2

SUMMARY 3.20 LetG be a group with subgroupsH1 andH2
such thatGDH1H2 andH1\H2Dfeg, so that each element
g of G can be written uniquely as gD h1h2 with h1 2H1 and
h2 2H2.

(a) IfH1 andH2 are both normal, thenG is the direct prod-
uct of H1 and H2, G DH1�H2 (1.51).

(b) If H1 is normal in G, then G is the semidirect product
of H1 and H2, G DH1oH2 ((15), p. 90).

(c) If neither H1 nor H2 is normal, then G is the Zappa-
Szép (or knit) product of H1 and H2 (see http://en.
wikipedia.org/wiki/Zappa-Szep_product).

Extensions of groups

A sequence of groups and homomorphisms

1!N
�
!G

�
!Q! 1 (16)

http://en.wikipedia.org/wiki/Zappa-Szep_product
http://en.wikipedia.org/wiki/Zappa-Szep_product
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is exact if � is injective, � is surjective, and Ker.�/ D Im.�/.
Thus �.N / is a normal subgroup of G (isomorphic by � to N/

and G=�.N /
'
�! Q. We often identify N with the subgroup

�.N / of G and Q with the quotient G=N:
An exact sequence (16) is also called an extension of Q by

N .1 An extension is central if �.N / � Z.G/. For example, a
semidirect product N o� Q gives rise to an extension of Q by
N ,

1!N !N o� Q!Q! 1;

which is central if and only if � is the trivial homomorphism.
Two extensions of Q by N are said to be isomorphic if

there exists a commutative diagram

1 �����! N �����! G �����! Q �����! 1


 ??y� 



1 �����! N �����! G0 �����! Q �����! 1:

An extension of Q by N ,

1!N
�
!G

�
!Q! 1;

is said to be split if it is isomorphic to the extension defined by
a semidirect product N o� Q. Equivalent conditions:

(a) there exists a subgroup Q0 � G such that � induces an
isomorphism Q0!Q; or

1This is Bourbaki’s terminology (Algèbre, I �6); some authors call (16) an
extension ofN byQ.
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(b) there exists a homomorphism sWQ! G such that � ı
s D id :

In general, an extension will not split. For example, the ex-
tensions

1!N !Q!Q=N ! 1 (17)

withN any subgroup of order 4 in the quaternion groupQ, and

1! Cp! Cp2 ! Cp! 1

do not split. We give two criteria for an extension to split.

THEOREM 3.21 (SCHUR-ZASSENHAUS) An extension of fi-
nite groups of relatively prime order is split.

PROOF. Rotman 1995, 7.41. 2

PROPOSITION 3.22 An extension (17) splits ifN is complete.
In fact, G is then direct product of N with the centralizer of N
in G,

CG.N /
def
D fg 2G j gnD ng all n 2N g.

PROOF. Let Q D CG.N /. We shall check that N and Q sat-
isfy the conditions of Proposition 1.51.

Observe first that, for any g 2 G, n 7! gng�1WN ! N is
an automorphism of N , and (because N is complete), it must
be the inner automorphism defined by an element 
 of N ; thus

gng�1 D 
n
�1 all n 2N .



100 3. AUTOMORPHISMS AND EXTENSIONS

This equation shows that 
�1g 2Q, and hence gD 
.
�1g/2
NQ. Since g was arbitrary, we have shown that G DNQ.

Next note that every element of N \Q is in the centre of
N , which (becauseN is complete) is trivial; henceN \QD 1.

Finally, for any element g D nq 2G,

gQg�1 D n.qQq�1/n�1 D nQn�1 DQ

(recall that every element of N commutes with every element
of Q). Therefore Q is normal in G. 2

An extension

1!N !G!Q! 1

gives rise to a homomorphism � 0WG! Aut.N /, namely,

� 0.g/.n/D gng�1:

Let Qq 2 G map to q in Q; then the image of � 0. Qq/ in
Aut.N /=Inn.N / depends only on q; therefore we get a homo-
morphism

� WQ! Out.N / def
D Aut.N /=Inn.N /:

This map � depends only on the isomorphism class of the ex-
tension, and we write Ext1.Q;N /� for the set of isomorphism
classes of extensions with a given �: These sets have been ex-
tensively studied.
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When Q and N are commutative and � is trivial, the group
G is also commutative, and there is a commutative group struc-
ture on the set Ext1.Q;N /. Moreover, endomorphisms of Q
and N act as endomorphisms on Ext1.Q;N /. In particular,
multiplication bym onQ orN induces multiplication bym on
Ext1.Q;N /. Thus, if Q and N are killed by m and n respec-
tively, then Ext1.Q;N / is killed by m and by n, and hence by
gcd.m;n/. This proves the Schur-Zassenhaus theorem in this
case.

The Hölder program.

It would be of the greatest interest if it were possible to give an
overview of the entire collection of finite simple groups.

Otto Hölder, Math. Ann., 1892

Recall that a group G is simple if it contains no normal
subgroup except 1 and G. In other words, a group is simple
if it can’t be realized as an extension of smaller groups. Every
finite group can be obtained by taking repeated extensions of
simple groups. Thus the simple finite groups can be regarded
as the basic building blocks for all finite groups.

The problem of classifying all simple groups falls into two
parts:

A. Classify all finite simple groups;
B. Classify all extensions of finite groups.
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A. THE CLASSIFICATION OF FINITE SIMPLE GROUPS

There is a complete list of finite simple groups. They are2

(a) the cyclic groups of prime order,
(b) the alternating groups An for n � 5 (see the next chap-

ter),
(c) certain infinite families of matrix groups (said to be of

Lie type), and
(d) the 26 “sporadic groups”.

By far the largest class is (c), but the 26 sporadic groups are
of more interest than their small number might suggest. Some
have even speculated that the largest of them, the Fischer-
Griess monster, is built into the fabric of the universe.

As an example of a matrix group, consider

SLm.Fq/
def
Dfm�m matrices A with entries in Fq such that detAD 1g:

Here q D pn, p prime, and Fq is “the” field with q ele-
ments. This group is not simple if q ¤ 2, because the scalar

matrices

0BB@
� 0 � � � 0
0 � 0

: : :

0 0 � � � �

1CCA, �m D 1, are in the centre for any

2It has been shown that every group on the list can be generated by two
elements, and so this is true for all finite simple groups. If a proof of this could
be found that doesn’t use the classification, then the proof of the classification
would be greatly simplified (mo59213).
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m dividing q�1, but these are the only matrices in the centre,
and the groups

PSLm.Fq/
def
D SLn.Fq/=fcentreg

are simple when m � 3 (Rotman 1995, 8.23) and when mD 2
and q > 3 (ibid. 8.13). Other finite simple groups can be ob-
tained from the groups in (1.8). The smallest noncommutative
group is A5, and the second smallest is PSL3.F2/, which as
order 168 (see Exercise 4-8).

B THE CLASSIFICATION OF ALL EXTENSIONS OF
FINITE GROUPS

Much is known about the extensions of finite groups, for ex-
ample, about the extensions of one simple group by another.
However, as Solomon writes (2001, p. 347):

. . . the classification of all finite groups is com-
pletely infeasible. Nevertheless experience shows
that most of the finite groups which occur in “na-
ture” . . . are “close” either to simple groups or
to groups such as dihedral groups, Heisenberg
groups, etc., which arise naturally in the study of
simple groups.

As we noted earlier, by the year 2001, a complete irredundant
list of finite groups was available only for those up to an order
of about 2000, and the number of groups on the list is over-
whelming.
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NOTES The dream of classifying the finite simple groups goes back at
least to Hölder 1892. However a clear strategy for accomplishing this
did not begin to emerge until the 1950s, when work of Brauer and oth-
ers suggested that the key was to study the centralizers of elements of
order 2 (the involution centralizers). For example, Brauer and Fowler
(1955) showed that, for any finite group H , the determination of the
finite simple groups with an involution centralizer isomorphic to H is
a finite problem. Later work showed that the problem is even tractable,
and so the strategy became: (a) list the groups H that are candidates
for being an involution centralizer in some finite simple group, and (b)
for each H in (a) list the finite simple groups for which H occurs
as an involution centralizer. Of course, this approach applies only to
the finite simple groups containing an element of order 2, but an old
conjecture said that, except for the cyclic groups of prime order, every
finite simple group has even order and hence contains an element of
order 2 by Cauchy’s theorem (4.13). With the proof of this conjecture
by Feit and Thompson (1963), the effort to complete the classification
of the finite simple groups began in earnest. A complete classification
was announced in 1982, but there remained sceptics, because the proof
depended on thousands of pages of rarely read journal articles, and,
in fact, in reworking the proof, gaps were discovered. However, these
have been closed, and with the publication of Aschbacher and Smith
2004 it has become generally accepted that the proof of the classifica-
tion is indeed complete.

For a popular account of the history of the classification, see the
book Ronan 2006, and for a more technical account, see the expository
article Solomon 2001.
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Exercises

3-1 Let G be the quaternion group (1.18). Prove that G can’t
be written as a semidirect product in any nontrivial fashion.

3-2 Let G be a group of order mn where m and n have no
common factor. IfG contains exactly one subgroupM of order
m and exactly one subgroup N of order n, prove that G is the
direct product of M and N .

3-3 Prove that GL2.F2/� S3.

3-4 Let G be the quaternion group (1.18). Prove that
Aut.G/� S4.

3-5 Let G be the set of all matrices in GL3.R/ of the form0@a 0 b
0 a c
0 0 d

1A, ad ¤ 0. Check thatG is a subgroup of GL3.R/,

and prove that it is a semidirect product of R2 (additive group)
by R��R�. Is it a direct product of these two groups?

3-6 Find the automorphism groups of C1 and S3.

3-7 Let G D N oQ where N and Q are finite groups, and
let g D nq be an element of G with n 2N and q 2Q. Denote
the order of an element x by o.x/:

(a) Show that o.g/D k �o.q/ for some divisor k of jN j.
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(b) When Q acts trivially on N , show that o.g/ D
lcm.o.n/;o.q//:

(c) Let G D S5 D A5 oQ with Q D h.1;2/i. Let n D
.1;4;3;2;5/ and let q D .1;2/. Show that o.g/D 6, o.n/D 5,
and o.q/D 2.

(d) Suppose thatGD .Cp/poQwhereQ is cyclic of order
p and that, for some generator q of Q,

q.a1; : : : ;an/q
�1
D .an;a1; : : : ;an�1/:

Show inductively that, for i � p,

..1;0; : : : ;0/;q/i D ..1; : : : ;1;0; : : : ;0/ ;qi /

(i copies of 1). Deduce that ..1;0; : : : ;0/;q/ has order p2
(hence o.g/D o.n/ �o.q/ in this case).

(e) Suppose that G D N oQ where N is commutative, Q
is cyclic of order 2, and the generator q of Q acts on N by
sending each element to its inverse. Show that .n;1/ has order
2 no matter what n is (in particular, o.g/ is independent of
o.n/).

3-8 Let G be the semidirect G D N oQ of its subgroups N
and Q, and let

CN .Q/D fn 2N j nq D qn for all q 2Qg

(centralizer of Q in N ). Show that

Z.G/D

fn �q jn2CN .Q/, q 2Z.Q/, nn
0n�1D q�1n0q for all n0 2N g:
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Let � be the homomorphismQ!Aut.N / giving the action of
Q onN (by conjugation). Show that ifN is commutative, then

Z.G/D fn �q j n 2 CN .Q/, q 2Z.Q/\Ker.�/g;

and if N and Q are commutative, then

Z.G/D fn �q j n 2 CN .Q/, q 2 Ker.�/g:

3-9 A homomorphism aWG!H of groups is normal if a.G/
is a normal subgroup ofH . We define the cokernel of a normal
homomorphism a to beH=a.G/. Show that, if in the following
commutative diagram the blue sequences are exact and the ho-
momorphisms a;b;c are normal, then the red sequence exists
and is exact:
0 Kerf Kera Kerb Kerc

A B C 0

0 A0 B 0 C 0

Cokera Cokerb Cokerc Cokerg0 0

f

a b c

g0

d
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Chapter 4

Groups Acting on Sets

Definition and examples

DEFINITION 4.1 Let X be a set and let G be a group. A left
action of G on X is a mapping .g;x/ 7! gxWG�X !X such
that

(a) 1x D x, for all x 2X I
(b) .g1g2/x D g1.g2x/, all g1, g2 2G, x 2X:

A set together with a (left) action of G is called a (left) G-set.
An action is trivial if gx D x for all g 2G.

The conditions imply that, for each g 2 G, left translation
by g,

gLWX !X; x 7! gx;

109
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has .g�1/L as an inverse, and therefore gL is a bijection, i.e.,
gL 2 Sym.X/. Axiom (b) now says that

g 7! gLWG! Sym.X/ (18)

is a homomorphism. Thus, from a left action of G on X , we
obtain a homomorphismG! Sym.X/I conversely, every such
homomorphism defines an action of G on X . The action is
said to be faithful (or effective) if the homomorphism (18) is
injective, i.e., if

gx D x for all x 2X H) g D 1:

EXAMPLE 4.2 (a) Every subgroup of the symmetric group Sn
acts faithfully on f1;2; :::;ng.

(b) Every subgroup H of a group G acts faithfully on G by
left translation,

H �G!G; .h;x/ 7! hx:

(c) Let H be a subgroup of G. The group G acts on the set
of left cosets of H ,

G�G=H !G=H; .g;C / 7! gC:

The action is faithful if, for example, H ¤G and G is simple.
(d) Every group G acts on itself by conjugation,

G�G!G; .g;x/ 7! gx
def
D gxg�1:

For any normal subgroup N , G acts on N and G=N by conju-
gation.
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(e) For any group G, Aut.G/ acts on G:
(f) The group of rigid motions of Rn is the group of bijec-

tions Rn! Rn preserving lengths. It acts on Rn on the left.

A right action X �G ! G is defined similarly. To turn a
right action into a left action, set g �x D xg�1. For example,
there is a natural right action ofG on the set of right cosets of a
subgroup H in G, namely, .C;g/ 7! Cg, which can be turned
into a left action .g;C / 7! Cg�1.

A map of G-sets (alternatively, a G-map or a G-
equivariant map) is a map 'WX ! Y such that

'.gx/D g'.x/; all g 2G; x 2X:

An isomorphism of G-sets is a bijective G-map; its inverse is
then also a G-map.

ORBITS

Let G act on X .
A subset S �X is said to be stable under the action of G if

g 2G; x 2 S H) gx 2 S:

The action of G on X then induces an action of G on S .
Write x �G y if y D gx, some g 2 G. This relation is re-

flexive because x D 1x, symmetric because

y D gx H) x D g�1y
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(multiply by g�1 on the left and use the axioms), and transitive
because

y D gx; z D g0y H) z D g0.gx/D .g0g/x:

It is therefore an equivalence relation. The equivalence classes
are calledG-orbits. Thus theG-orbits partitionX . WriteGnX
for the set of orbits.

By definition, the G-orbit containing x0 is

Gx0 D fgx0 j g 2Gg:

It is the smallest G-stable subset of X containing x0.

EXAMPLE 4.3 (a) Suppose G acts on X , and let ˛ 2 G be an
element of order n. Then the orbits of h˛i are the sets of the
form

fx0;˛x0; : : : ;˛
n�1x0g:

(These elements need not be distinct, and so the set may con-
tain fewer than n elements.)

(b) The orbits for a subgroup H of G acting on G by left
multiplication are the right cosets of H in G. We write HnG
for the set of right cosets. Similarly, the orbits for H acting by
right multiplication are the left cosets, and we write G=H for
the set of left cosets. Note that the group law on G will not
induce a group law on G=H unless H is normal.

(c) For a group G acting on itself by conjugation, the orbits
are called conjugacy classes: for x 2G, the conjugacy class of
x is the set

fgxg�1 j g 2Gg
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of conjugates of x. The conjugacy class of x0 always contains
x0, and it consists only of x0 if and only if x0 is in the centre
of G. In linear algebra the conjugacy classes in G D GLn.k/
are called similarity classes, and the theory of rational canon-
ical forms provides a set of representatives for the conjugacy
classes: two matrices are similar (conjugate) if and only if they
have the same rational canonical form.

Note that a subset ofX is stable if and only if it is a union of
orbits. For example, a subgroup H of G is normal if and only
if it is a union of conjugacy classes.

The action of G on X is said to be transitive, and G is said
to act transitively on X , if there is only one orbit, i.e., for any
two elements x and y of X , there exists a g 2 G such that
gx D y. The set X is then called a homogeneous G-set. For
example, Sn acts transitively on f1;2; :::ng. For any subgroup
H of a group G, G acts transitively on G=H , but the action of
G on itself is never transitive if G ¤ 1 because f1g is always a
conjugacy class.

The action of G on X is doubly transitive if for any two
pairs .x1;x2/, .y1;y2/ of elements of X with x1 ¤ x2 and
y1 ¤ y2, there exists a (single) g 2G such that gx1 D y1 and
gx2 D y2. Define k-fold transitivity for k � 3 similarly.

STABILIZERS

Let G act on X . The stabilizer (or isotropy group) of an ele-
ment x 2X is

Stab.x/D fg 2G j gx D xg:
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It is a subgroup, but it need not be a normal subgroup (see the
next lemma). The action is free if Stab.x/D feg for all x.

LEMMA 4.4 For any g 2G and x 2X ,

Stab.gx/D g �Stab.x/ �g�1:

PROOF. Certainly, if g0x D x, then

.gg0g�1/gx D gg0x D gx D y;

and so g �Stab.x/ �g�1 � Stab.gx/. Conversely, if g0.gx/ D
gx, then

.g�1g0g/x D g�1g0.gx/D g�1y D x;

and so g�1g0g 2 Stab.x/, i.e., g0 2 g �Stab.x/ �g�1. 2

Clearly \
x2X

Stab.x/D Ker.G! Sym.X//;

which is a normal subgroup of G. The action is faithful if and
only if

T
Stab.x/D f1g.

EXAMPLE 4.5 (a) Let G act on itself by conjugation. Then

Stab.x/D fg 2G j gx D xgg:
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This group is called the centralizerCG.x/ of x inG. It consists
of all elements of G that commute with, i.e., centralize, x. The
intersection\

x2G

CG.x/D fg 2G j gx D xg for all x 2Gg

is the centre of G.
(b) Let G act on G=H by left multiplication. Then

Stab.H/DH , and the stabilizer of gH is gHg�1:
(c) Let G be the group of rigid motions of Rn (4.2f). The

stabilizer of the origin is the orthogonal group On for the stan-
dard positive definite form on Rn (Artin 1991, Chap. 4, 5.16).
Let T ' .Rn;C/ be the subgroup of G of translations of Rn,
i.e., maps of the form v 7! vCv0 some v0 2 Rn. Then T is a
normal subgroup of G and G ' T oO (cf. Artin 1991, Chap.
5, �2).

For a subset S of X , we define the stabilizer of S to be

Stab.S/D fg 2G j gS D Sg:

Then Stab.S/ is a subgroup of G, and the same argument as in
the proof of (4.4) shows that

Stab.gS/D g �Stab.S/ �g�1:

EXAMPLE 4.6 Let G act on G by conjugation, and let H be
a subgroup of G. The stabilizer of H is called the normalizer
NG.H/ of H in G:

NG.H/D fg 2G j gHg
�1
DH g:
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Clearly NG.H/ is the largest subgroup of G containing H as
a normal subgroup.

It is possible for gS � S but g 2 Stab.S/ (see 1.33).

TRANSITIVE ACTIONS

PROPOSITION 4.7 If G acts transitively on X , then for any
x0 2X , the map

gStab.x0/ 7! gx0WG=Stab.x0/!X

is an isomorphism of G-sets.

PROOF. It is well-defined because, if h 2 Stab.x0/, then
ghx0 D gx0. It is injective because

gx0 D g
0x0 H) g�1g0x0 D x0

H) g;g0 lie in the same left coset of Stab.x0/:

It is surjective because G acts transitively. Finally, it is obvi-
ously G-equivariant. 2

Thus every homogeneous G-set X is isomorphic to G=H
for some subgroup H of G, but such a realization of X is not
canonical: it depends on the choice of x0 2 X: To say this an-
other way, the G-set G=H has a preferred point, namely, the
coset H ; to give a homogeneous G-set X together with a pre-
ferred point is essentially the same as to give a subgroup of
G.
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COROLLARY 4.8 Let G act on X , and let O D Gx0 be the
orbit containing x0. Then the cardinality of O is

jOj D .G W Stab.x0//: (19)

For example, the number of conjugates gHg�1 of a subgroup
H of G is .GWNG.H//.

PROOF. The action of G on O is transitive, and so g 7! gx0
defines a bijection G=Stab.x0/!Gx0. 2

The equation (19) is frequently useful for computing jOj.

PROPOSITION 4.9 Let x0 2 X . If G acts transitively on X ,
then

Ker.G! Sym.X//

is the largest normal subgroup contained in Stab.x0/.

PROOF. When

Ker.G! Sym.X//D
\
x2X

Stab.x/

D

\
g2G

Stab.gx0/

(4.4)
D

\
g �Stab.x0/ �g�1:

Hence, the proposition is a consequence of the following
lemma. 2
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LEMMA 4.10 For any subgroup H of a group G,T
g2G gHg

�1 is the largest normal subgroup contained
in H .

PROOF. Note that N0
def
D
T
g2G gHg

�1, being an intersection
of subgroups, is itself a subgroup. It is normal because

g1N0g
�1
1 D

\
g2G

.g1g/N0.g1g/
�1
DN0

— for the second equality, we used that, as g runs over the
elements ofG, so also does g1g. ThusN0 is a normal subgroup
of G contained in eHe�1 DH . If N is a second such group,
then

N D gNg�1 � gHg�1

for all g 2G, and so

N �
\
g2G

gHg�1 DN0:

2

THE CLASS EQUATION

When X is finite, it is a disjoint union of a finite number of
orbits:

X D

m[
iD1

Oi (disjoint union):

Hence:
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PROPOSITION 4.11 The number of elements in X is

jX j D

mX
iD1

jOi j D

mX
iD1

.G W Stab.xi //; xi in Oi : (20)

When G acts on itself by conjugation, this formula be-
comes:

PROPOSITION 4.12 (CLASS EQUATION)

jGj D
X

.G W CG.x// (21)

.x runs over a set of representatives for the conjugacy classes),
or

jGj D jZ.G/jC
X

.G W CG.y// (22)

.y runs over set of representatives for the conjugacy classes
containing more than one element).

THEOREM 4.13 (CAUCHY) If the prime p divides jGj, then
G contains an element of order p.

PROOF. We use induction on jGj. If for some y not in the
centre of G, p does not divide .G W CG.y//, then pjCG.y/
and we can apply induction to find an element of order p in
CG.y/. Thus we may suppose that p divides all of the terms
.G W CG.y// in the class equation (second form), and so also
divides Z.G/. But Z.G/ is commutative, and it follows from
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the structure theorem1 of such groups that Z.G/ will contain
an element of order p. 2

COROLLARY 4.14 A finite group G is a p-group if and only
if every element has order a power of p.

PROOF. If jGj is a power of p, then Lagrange’s theorem (1.26)
shows that the order of every element is a power of p. The
converse follows from Cauchy’s theorem. 2

COROLLARY 4.15 Every group of order 2p, p an odd prime,
is cyclic or dihedral.

PROOF. From Cauchy’s theorem, we know that such a G con-
tains elements s and r of orders 2 and p respectively. Let
H D hri. Then H is of index 2, and so is normal. Obviously
s …H , and so G DH [Hs W

G D f1;r; : : : ; rp�1; s; rs; : : : ; rp�1sg:

As H is normal, srs�1 D r i , some i . Because s2 D 1, r D
s2rs�2 D s.srs�1/s�1 D r i

2
, and so i2 � 1 mod p. Because

1Here is a direct proof that the theorem holds for an abelian group Z. We
use induction on the order of Z. It suffices to show that Z contains an element
whose order is divisible by p; because then some power of the element will have
order exactly p. Let g ¤ 1 be an element of Z. If p doesn’t divide the order of
g , then it divides the order of Z=hgi, in which case there exists (by induction)
an element of G whose order in Z=hgi is divisible by p. But the order of such
an element must itself be divisible by p.
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Z=pZ is a field, its only elements with square 1 are˙1, and so
i � 1 or �1 mod p. In the first case, the group is commutative
(any group generated by a set of commuting elements is obvi-
ously commutative); in the second srs�1 D r�1 and we have
the dihedral group (2.9). 2

p-GROUPS

THEOREM 4.16 Every nontrivial finite p-group has nontrivial
centre.

PROOF. By assumption, .G W 1/ is a power of p, and so .G W
CG.y// is power of p (¤ p0) for all y not in the centre of
G. As p divides every term in the class equation (22) except
(perhaps) jZ.G/j, it must divide jZ.G/j also. 2

COROLLARY 4.17 A group of order pn has normal subgroups
of order pm for all m� n.

PROOF. We use induction on n. The centre of G contains an
element g of order p, and so N D hgi is a normal subgroup
of G of order p. Now the induction hypothesis allows us to
assume the result for G=N; and the correspondence theorem
(1.47) then gives it to us for G: 2

PROPOSITION 4.18 Every group of order p2 is commutative,
and hence is isomorphic to Cp �Cp or Cp2 .
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PROOF. We know that the centreZ is nontrivial, and thatG=Z
therefore has order 1 or p. In either case it is cyclic, and the
next result implies that G is commutative. 2

LEMMA 4.19 Suppose G contains a subgroup H in its cen-
tre (hence H is normal) such that G=H is cyclic. Then G is
commutative.

PROOF. Let a be an element of G whose image in G=H gen-
erates it. Then every element ofG can be written gD aih with
h 2H , i 2 Z. Now

aih �ai
0
h0 D aiai

0
hh0 because H �Z.G/

D ai
0
aih0h

D ai
0
h0 �aih: 2

REMARK 4.20 The above proof shows that if H �Z.G/ and
G contains a set of representatives for G=H whose elements
commute, then G is commutative.

For p odd, it is now not difficult to show that any noncom-
mutative group of order p3 is isomorphic to exactly one of the
groups constructed in (3.14, 3.15) (Exercise 4-4). Thus, up to
isomorphism, there are exactly two noncommutative groups of
order p3.

EXAMPLE 4.21 Let G be a noncommutative group of order
8. Then G must contain an element a of order 4 (see Ex-
ercise 1-6). If G contains an element b of order 2 not in
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hai, then G ' haio� hbi where � is the unique isomorphism
Z=2Z! .Z=4Z/�, and soG �D4. If not, any element b ofG
not in hai must have order 4, and a2 D b2. Now bab�1 is an
element of order 4 in hai. It can’t equal a, because otherwise
G would be commutative, and so bab�1 D a3. Therefore G is
the quaternion group (1.18, 2.7b).

ACTION ON THE LEFT COSETS

The action of G on the set of left cosets G=H of H in G is a
very useful tool in the study of groups. We illustrate this with
some examples.

Let X DG=H . Recall that, for any g 2G,

Stab.gH/D gStab.H/g�1 D gHg�1

and the kernel of
G! Sym.X/

is the largest normal subgroup
T
g2G gHg

�1 of G contained
in H .

REMARK 4.22 (a) LetH be a subgroup ofG not containing a
normal subgroup of G other than 1. Then G! Sym.G=H/ is
injective, and we have realizedG as a subgroup of a symmetric
group of order much smaller than .G W 1/Š. For example, if G
is simple, then the Sylow theorems (see Chapter 5) show that
G has many proper subgroups H ¤ 1 (unless G is cyclic), but
(by definition) it has no such normal subgroup.

(b) If .G W 1/ does not divide .G WH/Š, then

G! Sym.G=H/
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can’t be injective (Lagrange’s theorem, 1.26), and we can con-
clude that H contains a normal subgroup ¤ 1 of G. For ex-
ample, if G has order 99, then it will have a subgroup N of
order 11 (Cauchy’s theorem, 4.13), and the subgroup must be
normal. In fact, G DN �Q.

EXAMPLE 4.23 Corollary 4.15 shows that every group G of
order 6 is either cyclic or dihedral. Here we present a slightly
different argument. According to Cauchy’s theorem (4.13), G
must contain an element r of order 3 and an element s of order
2. Moreover N def

D hri must be normal because 6 doesn’t divide
2Š (or simply because it has index 2). Let H D hsi. Either (a)
H is normal in G, or (b) H is not normal in G. In the first
case, rsr�1 D s, i.e., rs D sr , and so G ' hri � hsi � C2 �
C3. In the second case, G ! Sym.G=H/ is injective, hence
surjective, and so G � S3 �D3.

Permutation groups

Consider Sym.X/ where X has n elements. Since (up to iso-
morphism) a symmetry group Sym.X/ depends only on the
number of elements in X , we may take X D f1;2; : : : ;ng, and
so work with Sn. The symbol

�
1 2 3 4 5 6 7
2 5 7 4 3 1 6

�
denotes the per-

mutation sending 1 7! 2, 2 7! 5, 3 7! 7, etc..
Consider a permutation

� D

�
1 2 3 : : : n
�.1/ �.2/ �.3/ : : : �.n/

�
:
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The pairs .i;j / with i < j and �.i/ > �.j / are called the in-
versions of � , and � is said to be even or odd according as the
number its inversions is even or odd.. The signature, sign.�/,
of � is C1 or �1 according as � is even or odd. For example,

sign.�/D�1 if � is a transposition.

REMARK 4.24 To compute the signature of � , connect (by a
line) each element i in the top row to the element i in the bot-
tom row, and count the number of times that the lines cross:
� is even or odd according as this number is even or odd. For
example,

1 2 3 4 5

3 5 1 4 2

is even (6 intersections). This works, because there is one
crossing for each inversion.
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For a permutation � , consider the products

V D
Y

1�i<j�n

.j � i/D .2�1/.3�1/ � � �.n�1/
.3�2/ � � �.n�2/

� � �

.n� .n�1//

�V D
Y

1�i<j�n

.�.j /��.i//

D .�.2/��.1//.�.3/��.1// � � �.�.n/��.1//
.�.3/��.2// � � �.�.n/��.2//

� � �

.�.n/��.n�1//:

The terms in the products are the same except that each inver-
sion introduces a negative sign.2 Therefore,

�V D sign.�/V:

Now let P be the additive group of maps Zn! Z. For f 2
P and � 2 Sn, let �f be the element of P defined by

.�f /.z1; : : : ; zn/D f .z�.1/; : : : ; z�.n//:

2Each is a product over the 2-element subsets of f1;2; : : : ;ng; the factor
corresponding to the subset fi;j g is˙.j � i/.
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For �;� 2 Sn, one finds that3

�.�f /D .��/f: (23)

Let p be the element of P defined by

p.z1; : : : ; zn/D
Y

1�i<j�n

.zj �zi /:

The same argument as above shows that

�p D sign.�/p:

On putting f D p in (23) and using that p ¤ 0, one finds that

sign.�/sign.�/D sign.��/:

Therefore, “sign” is a homomorphism Sn! f˙1g. When n �
2, it is surjective, and so its kernel is a normal subgroup of Sn
of order nŠ2 , called the alternating groupAn.

REMARK 4.25 Clearly sign is the unique homomorphism
Sn ! f˙1g such that sign.�/ D �1 for every transposition
� . Now let G D Sym.X/ where X is a set with n elements.
Once we have chosen an ordering of X , we can speak of the

3For x 2 Zn and � 2 Sn, let x� be the element of Zn such that .x� /i D
x�.i/. Then .x� /� D x�� . By definition, .�f /.x/D f .x� /. Therefore

.�.�f //.x/D .�f /.x� /D f ..x� /� /D f .x�� /D ..��/f /.x/:
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inversions of an element � of G. Define ".�/ to be C1 or �1
according as � has an even or an odd number of inversions. The
same arguments as above show that " is the unique homomor-
phism G! f˙1g such that ".�/D�1 for every transposition
� . In particular, it is independent of the choice of the ordering.
In other words, the parity of the number of inversions of � is
independent of the choice of the ordering on X . Can you prove
this directly?

A cycle is a permutation of the following form

i1 7! i2 7! i3 7! � � � 7! ir 7! i1; remaining i ’s fixed.

The ij are required to be distinct. We denote this cycle by
.i1i2:::ir /, and call r its length — note that r is also its or-
der as an element of Sn. A cycle of length 2 is a transposition.
A cycle .i/ of length 1 is the identity map. The support of the
cycle .i1 : : : ir / is the set fi1; : : : ; ir g, and cycles are said to be
disjoint if their supports are disjoint. Note that disjoint cycles
commute. If

� D .i1:::ir /.j1:::js/ � � �.l1:::lu/ (disjoint cycles);

then

�m D .i1:::ir /
m.j1:::js/

m
� � �.l1:::lu/

m (disjoint cycles);

and it follows that � has order lcm.r; s; :::;u/:

PROPOSITION 4.26 Every permutation can be written (in es-
sentially one way) as a product of disjoint cycles.
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PROOF. Let � 2 Sn, and let O � f1;2; : : : ;ng be an orbit for
h�i. If jOj D r , then for any i 2O;

O D fi;�.i/; : : : ;�r�1.i/g:

Therefore � and the cycle .i �.i/ : : : �r�1.i// have the same
action on any element of O . Let

f1;2; : : : ;ng D

m[
jD1

Oj

be the decomposition of f1; : : : ;ng into a disjoint union of orbits
for h�i, and let 
j be the cycle associated (as above) with Oj .
Then

� D 
1 � � �
m

is a decomposition of � into a product of disjoint cycles. For
the uniqueness, note that a decomposition � D 
1 � � �
m into
a product of disjoint cycles must correspond to a decomposi-
tion of f1; :::;ng into orbits (ignoring cycles of length 1 and
orbits with only one element). We can drop cycles of length
one, change the order of the cycles, and change how we write
each cycle (by choosing different initial elements), but that’s
all because the orbits are intrinsically attached to �: 2

For example,�
1 2 3 4 5 6 7 8
5 7 4 2 1 3 6 8

�
D .15/.27634/.8/: (24)

It has order lcm.2;5/D 10.
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COROLLARY 4.27 Each permutation � can be written as a
product of transpositions; the number of transpositions in such
a product is even or odd according as � is even or odd.

PROOF. The cycle

.i1i2:::ir /D .i1i2/ � � �.ir�2ir�1/.ir�1ir /;

and so the first statement follows from the proposition. Because
sign is a homomorphism, and the signature of a transposition
is �1, sign.�/D .�1/#transpositions. 2

Note that the formula in the proof shows that the signature
of a cycle of length r is .�1/r�1, that is, an r-cycle is even or
odd according as r is odd or even.

It is possible to define a permutation to be even or odd ac-
cording as it is a product of an even or odd number of transpo-
sitions, but then one has to go through an argument as above to
show that this is a well-defined notion.

The corollary says that Sn is generated by transpositions.
For An there is the following result.

COROLLARY 4.28 The alternating group An is generated by
cycles of length three.

PROOF. Any � 2 An is the product (possibly empty) of an
even number of transpositions, � D t1t 01 � � � tmt

0
m, but the prod-

uct of two transpositions can always be written as a product of
3-cycles:
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.ij /.kl/D

8̂<̂
:
.ij /.jl/D .ij l/ case j D k;
.ij /.jk/.jk/.kl/D .ijk/.jkl/ case i;j;k; l distinct,
1 case .ij /D .kl/:

2

Recall that two elements a and b of a group G are said to
be conjugate a � b if there exists an element g 2 G such that
b D gag�1, and that conjugacy is an equivalence relation. For
a group G, it is useful to determine the conjugacy classes in G.

EXAMPLE 4.29 In Sn, the conjugate of a cycle is given by:

g.i1 : : : ik/g
�1
D .g.i1/ : : :g.ik//:

Hence

g.i1 : : : ir / � � �.l1 : : : lu/g
�1
D .g.i1/ : : :g.ir // � � �.g.l1/:::g.lu//

(even if the cycles are not disjoint, because conjugation is a ho-
momorphism). In other words, to obtain g�g�1, replace each
element in each cycle of � by its image under g:

We shall now determine the conjugacy classes in Sn. By a
partition of n, we mean a sequence of integers n1; : : : ;nk such
that

1� n1 � n2 � � � � � nk � n and
n1Cn2C�� �Cnk D n:

For example, there are exactly 5 partitions of 4, namely,

4D 1C1C1C1; 4D 1C1C2; 4D 1C3; 4D 2C2; 4D 4;
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and 1;121;505 partitions of 61. Note that a partition

f1;2; :::;ng DO1[ :::[Ok (disjoint union)

of f1;2; : : : ;ng determines a partition of n,

nD n1Cn2C :::Cnk ; ni D jOi j;

provided the numbering has been chosen so that jOi j �
jOiC1j. Since the orbits of an element � of Sn form a parti-
tion of f1; : : : ;ng, we can attach to each such � a partition of
n. For example, the partition of 8 attached to .15/.27634/.8/
is 1;2;5 and the partition attached of n attached to

� D .i1 : : : in1/ � � �.l1 : : : lnk /;

(disjoint cycles) 1 < ni � niC1;

is 1;1; : : : ;1;n1; : : : ;nk .n�
P
ni ones/:

PROPOSITION 4.30 Two elements � and � of Sn are conju-
gate if and only if they define the same partitions of n.

PROOF. H) W We saw in (4.29) that conjugating an element
preserves the type of its disjoint cycle decomposition.
(H W Since � and � define the same partitions of n, their

decompositions into products of disjoint cycles have the same
type:

� D .i1 : : : ir /.j1 : : :js/ : : : .l1 : : : lu/;

� D .i 01 : : : i
0
r /.j

0
1 : : :j

0
s/ : : : .l

0
1 : : : l

0
u/:
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If we define g to be�
i1 � � � ir j1 � � � js � � � l1 � � � lu
i 01 � � � i 0r j 01 � � � j 0s � � � l 01 � � � l 0u

�
;

then
g�g�1 D �: 2

EXAMPLE 4.31 .ijk/D .1234:::
ijk4:::

/.123/.1234:::
ijk4:::

/�1:

REMARK 4.32 For 1 < k � n, there are n.n�1/���.n�kC1/
k

dis-
tinct k-cycles in Sn. The 1

k
is needed so that we don’t count

.i1i2 : : : ik/D .ik i1 : : : ik�1/D : : :

k times. Similarly, it is possible to compute the number of ele-
ments in any conjugacy class in Sn, but a little care is needed
when the partition of n has several terms equal. For example,
the number of permutations in S4 of type .ab/.cd/ is

1

2

�
4�3

2
�
2�1

2

�
D 3:

The 1
2 is needed so that we don’t count .ab/.cd/D .cd/.ab/

twice. For S4 we have the following table:

Partition Element No. in Conj. Class Parity
1C1C1C1 1 1 even
1C1C2 .ab/ 6 odd
1C3 .abc/ 8 even
2C2 .ab/.cd/ 3 even
4 .abcd/ 6 odd
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Note that A4 contains exactly 3 elements of order 2, namely
those of type 2C 2, and that together with 1 they form a sub-
group V . This group is a union of conjugacy classes, and is
therefore a normal subgroup of S4.

THEOREM 4.33 (GALOIS) The group An is simple if n� 5

REMARK 4.34 For nD 2, An is trivial, and for nD 3, An is
cyclic of order 3, and hence simple; for nD 4 it is nonabelian
and nonsimple — it contains the normal, even characteristic,
subgroup V (see 4.32).

LEMMA 4.35 Let N be a normal subgroup of An (n � 5/; if
N contains a cycle of length three, then it contains all cycles of
length three, and so equals An (by 4.28).

PROOF. Let 
 be the cycle of length three in N , and let � be a
second cycle of length three in An. We know from (4.30) that
� D g
g�1 for some g 2 Sn. If g 2An, then this shows that �
is also in N . If not, because n � 5, there exists a transposition
t 2 Sn disjoint from � . Then tg 2 An and

� D t� t�1 D tg
g�1t�1;

and so again � 2N . 2

The next lemma completes the proof of the Theorem.

LEMMA 4.36 Every normal subgroupN ofAn, n� 5,N ¤ 1,
contains a cycle of length 3.
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PROOF. Let � 2N , � ¤ 1. If � is not a 3-cycle, we shall con-
struct another element � 0 2 N , � 0 ¤ 1, which fixes more ele-
ments of f1;2; : : : ;ng than does � . If � 0 is not a 3-cycle, then
we can apply the same construction. After a finite number of
steps, we arrive at a 3-cycle.

Suppose � is not a 3-cycle. When we express it as a product
of disjoint cycles, either it contains a cycle of length� 3 or else
it is a product of transpositions, say

(i) � D .i1i2i3:::/ � � � or
(ii) � D .i1i2/.i3i4/ � � � .

In the first case, � moves two numbers, say i4, i5, other than
i1, i2, i3, because � ¤ .i1i2i3/, .i1 : : : i4/. Let 
 D .i3i4i5/.
Then �1

def
D 
�
�1 D .i1i2i4 : : :/ � � � 2 N , and is distinct from

� (because it acts differently on i2). Thus � 0 def
D �1�

�1¤ 1, but
� 0 D 
�
�1��1 fixes i2 and all elements other than i1; :::; i5
fixed by � — it therefore fixes more elements than � .

In the second case, form 
 , �1, � 0 as in the first case with
i4 as in (ii) and i5 any element distinct from i1; i2; i3; i4. Then
�1 D .i1i2/.i4i5/ � � � is distinct from � because it acts differ-
ently on i4. Thus � 0 D �1��1 ¤ 1, but � 0 fixes i1 and i2, and
all elements ¤ i1; :::; i5 not fixed by � — it therefore fixes at
least one more element than � . 2

COROLLARY 4.37 For n � 5, the only normal subgroups of
Sn are 1; An, and Sn.

PROOF. If N is normal in Sn, then N \An is normal in An.
Therefore either N \An D An or N \An D f1g. In the first
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case,N �An, which has index 2 in Sn, and soN DAn or Sn.
In the second case, the map x 7! xAnWN !Sn=An is injective,
and so N has order 1 or 2, but it can’t have order 2 because
no conjugacy class in Sn (other than f1g) consists of a single
element. 2

ASIDE 4.38 There exists a description of the conjugacy classes inAn,
from which it is possible to deduce its simplicity for n� 5 (see Exer-
cise 4-12).

ASIDE 4.39 A groupG is said to be solvable if there exist subgroups

G DG0 �G1 � �� � �Gi�1 �Gi � �� � �Gr D f1g

such that each Gi is normal in Gi�1 and each quotient Gi�1=Gi is
commutative. ThusAn (also Sn/ is not solvable if n� 5. Let f .X/2
QŒX� be of degree n.

In Galois theory, one attaches to f a subgroupGf of the group of
permutations of the roots of f , and shows that the roots of f can be
obtained from the coefficients of f by the algebraic operations of ad-
dition, subtraction, multiplication, division, and the extraction of mth
roots if and only if Gf is solvable (Galois’s theorem). For every n,
there exist lots of polynomials f of degree n with Gf � Sn, and
hence (when n� 5) lots of polynomials not solvable in radicals.

The Todd-Coxeter algorithm.

Let G be a group described by a finite presentation, and let H
be a subgroup described by a generating set. Then the Todd-
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Coxeter algorithm4 is a strategy for writing down the set of
left cosets of H in G together with the action of G on the set.
I illustrate it with an example (from Artin 1991, 6.9, which
provides more details, but note that he composes permutations
in the reverse direction from us).

LetGDha;b;c j a3;b2; c2; cbai and letH be the subgroup
generated by c (strictly speaking, H is the subgroup generated
by the element of G represented by the reduced word c). The
operation ofG on the set of cosets is described by the action of
the generators, which must satisfy the following rules:

(i) Each generator (a;b;c in our example) acts as a permu-
tation.

(ii) The relations (a3;b2; c2; cba in our example) act triv-
ially.

(iii) The generators ofH (c in our example) fix the coset 1H .
(iv) The operation on the cosets is transitive.

The strategy is to introduce cosets, denoted 1;2; : : :with 1D
1H , as necessary.

Rule (iii) tells us simply that c1D c. We now apply the first
two rules. Since we don’t know what a1 is, let’s denote it 2:
a1D 2. Similarly, let a2D 3. Now a3D a31, which according
to (ii) must be 1. Thus, we have introduced three (potential)

4To solve a problem, an algorithm must always terminate in a finite time
with the correct answer to the problem. The Todd-Coxeter algorithm does not
solve the problem of determining whether a finite presentation defines a finite
group (in fact, there is no such algorithm). It does, however, solve the problem
of determining the order of a finite group from a finite presentation of the group
(use the algorithm withH the trivial subgroup 1.)
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cosets 1, 2, 3, permuted by a as follows:

1
a
7! 2

a
7! 3

a
7! 1:

What is b1? We don’t know, and so it is prudent to introduce
another coset 4D b1. Now b4D 1 because b2 D 1, and so we
have

1
b
7! 4

b
7! 1:

We still have the relation cba. We know a1D 2, but we don’t
know what b2 is, and so we set b2D 5:

1
a
7! 2

b
7! 5:

By (iii) c1 D 1, and by (ii) applied to cba we have c5 D 1.
Therefore, according to (i) we must have 5 D 1; we drop 5,
and so now b2D 1. Since b4D 1 we must have 4D 2, and so
we can drop 4 also. What we know can be summarized by the
table:

a a a b b c c a b c
1 2 3 1 2 1 1 1 2 1 1
2 3 1 2 1 2 2 3 2
3 1 2 3 3 3 1 2 3

The bottom right corner, which is forced by (ii), tells us that
c2D 3. Hence also c3D 2, and this then determines the rest of
the table:

a a a b b c c a b c
1 2 3 1 2 1 1 1 2 1 1
2 3 1 2 1 2 3 2 3 3 2
3 1 2 3 3 3 2 3 1 2 3



Primitive actions. 139

We find that we have three cosets on which a;b;c act as

aD .123/ b D .12/ c D .23/:

More precisely, we have written down a map G ! S3 that is
consistent with the above rules. A theorem (Artin 1991, 9.10)
now says that this does in fact describe the action of G on
G=H . Since the three elements .123/, .12/, and .23/ gener-
ate S3, this shows that the action of G on G=H induces an
isomorphism G! S3, and that H is a subgroup of order 2.

In Artin 1991, 6.9, it is explained how to make this proce-
dure into an algorithm which, when it succeeds in producing a
consistent table, will in fact produce the correct table.

This algorithm is implemented in GAP.

Primitive actions.

Let G be a group acting on a set X , and let � be a partition of
X . We say that � is stabilized by G if

A 2 � H) gA 2 �:

It suffices to check the condition for a set of generators for G.

EXAMPLE 4.40 (a) The subgroup G D h.1234/i of S4 stabi-
lizes the partition ff1;3g;f2;4gg of f1;2;3;4g.

(b) Identify X D f1;2;3;4g with the set of vertices of
the square on which D4 acts in the usual way, namely,
with r D .1234/, s D .2;4/. Then D4 stabilizes the partition
ff1;3g;f2;4gg (opposite vertices stay opposite).
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(c) Let X be the set of partitions of f1;2;3;4g into two sets,
each with two elements. Then S4 acts on X , and Ker.S4 !
Sym.X// is the subgroup V defined in (4.32).

The group G always stabilizes the trivial partitions of X ,
namely, the set of all one-element subsets ofX , and fXg. When
it stabilizes only those partitions, we say that the action is prim-
itive; otherwise it is imprimitive. A subgroup of Sym.X/ (e.g.,
of Sn) is said to be primitive if it acts primitively on X . Ob-
viously, Sn itself is primitive, but Example 4.40b shows that
D4, regarded as a subgroup of S4 in the obvious way, is not
primitive.

EXAMPLE 4.41 A doubly transitive action is primitive: if it
stabilized

ffx;x0; :::g;fy; :::g:::g,
then there would be no element sending .x;x0/ to .x;y/.

REMARK 4.42 The G-orbits form a partition of X that is sta-
bilized by G. If the action is primitive, then the partition into
orbits must be one of the trivial ones. Hence

action primitive H) action transitive or trivial.

For the remainder of this section, G is a finite group acting
transitively on a set X with at least two elements.

PROPOSITION 4.43 The group G acts imprimitively if and
only if there is a proper subset A of X with at least 2 elements
such that,

for each g 2G, either gAD A or gA\AD ;: (25)
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PROOF. H): The partition � stabilized byG contains such an
A.
(H: From such an A, we can form a partition

fA;g1A;g2A;:::g of X , which is stabilized by G. 2

A subset A of X satisfying (25) is called block.

PROPOSITION 4.44 Let A be a block in X with jAj � 2 and
A¤X . For any x 2 A,

Stab.x/$ Stab.A/$G:

PROOF. We have Stab.A/� Stab.x/ because

gx D x H) gA\A¤ ; H) gAD A:

Let y 2 A, y ¤ x. Because G acts transitively on X , there is a
g 2G such that gx D y. Then g 2 Stab.A/, but g … Stab.x/:

Let y … A. There is a g 2 G such that gx D y, and then
g … Stab.A/: 2

THEOREM 4.45 The group G acts primitively on X if and
only if, for one (hence all) x in X , Stab.x/ is a maximal sub-
group of G.

PROOF. If G does not act primitively on X , then (see 4.43)
there is a blockA$X with at least two elements, and so (4.44)
shows that Stab.x/ will not be maximal for any x 2 A.
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Conversely, suppose that there exists an x in X and a sub-
group H such that

Stab.x/$H $G.

Then I claim that A D Hx is a block ¤ X with at least two
elements.

Because H ¤ Stab.x/, Hx ¤ fxg, and so fxg$ A$X .
If g 2 H , then gA D A. If g … H , then gA is disjoint

from A: for suppose ghx D h0x some h0 2H ; then h0�1gh 2
Stab.x/�H , say h0�1ghD h00, and g D h0h00h�1 2H . 2

Exercises

4-1 Let H1 and H2 be subgroups of a group G. Show that
the maps of G-sets G=H1! G=H2 are in natural one-to-one
correspondence with the elements gH2 of G=H2 such that
H1 � gH2g

�1.

4-2 (a) Show that a finite group G can’t be equal to the union
of the conjugates of a proper subgroup H .

(b) Show that (a) holds for an infinite groupG provided that
.GWH/ is finite.

(c) Give an example to show that (a) fails in general for
infinite groups.
(c) Give an example of a proper subset S of a finite group G
such that G D

S
g2G gSg

�1.

4-3 Show that any set of representatives for the conjugacy
classes in a finite group generates the group.
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4-4 Prove that any noncommutative group of order p3, p an
odd prime, is isomorphic to one of the two groups constructed
in (3.14, 3.15).

4-5 Let p be the smallest prime dividing .G W 1/ (assumed
finite). Show that any subgroup of G of index p is normal.

4-6 Show that a group of order 2m, m odd, contains a sub-
group of index 2. (Hint: Use Cayley’s theorem 1.22)

4-7 For n � 5, show that the k-cycles in Sn generate Sn or
An according as k is even or odd.

4-8 Let G D GL3.F2/.
(a) Show that .G W 1/D 168.
(b) Let X be the set of lines through the origin in F32; show

thatX has 7 elements, and that there is a natural injective
homomorphism G ,! Sym.X/D S7.

(c) Use Jordan canonical forms to show that G has six con-
jugacy classes, with 1, 21, 42, 56, 24, and 24 elements
respectively. [Note that if M is a free F2Œ˛�-module of
rank one, then EndF2Œ˛�.M/D F2Œ˛�.]

(d) Deduce that G is simple.

4-9 Let G be a group. If Aut.G/ is cyclic, prove that G is
commutative; if further, G is finite, prove that G is cyclic.

4-10 Show that Sn is generated by .12/; .13/; : : : ; .1n/; also
by .12/; .23/; : : : ; .n�1n/.
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4-11 LetK be a conjugacy class of a finite groupG contained
in a normal subgroupH ofG. Prove thatK is a union of k con-
jugacy classes of equal size in H , where k D .G WH �CG.x//
for any x 2K.

4-12 (a) Let � 2 An. From Exercise 4-11 we know that the
conjugacy class of � in Sn either remains a single conjugacy
class in An or breaks up as a union of two classes of equal size.
Show that the second case occurs ” � does not commute
with an odd permutation ” the partition of n defined by �
consists of distinct odd integers.
(b) For each conjugacy class K in A7, give a member of K,
and determine jKj.

4-13 Let G be the group with generators a;b and relations
a4 D 1D b2, abaD bab.

(a) Use the Todd-Coxeter algorithm (with H D 1) to find
the image of G under the homomorphism G! Sn, nD
.G W 1/, given by Cayley’s Theorem 1.11. [No need to
include every step; just an outline will do.]

(b) Use Sage/GAP to check your answer.

4-14 Show that if the action of G on X is primitive and ef-
fective, then the action of any normal subgroup H ¤ 1 of G is
transitive.

4-15 (a) Check that A4 has 8 elements of order 3, and 3 ele-
ments of order 2. Hence it has no element of order 6.
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(b) Prove that A4 has no subgroup of order 6 (cf. 1.30). (Use
4.23.)
(c) Prove that A4 is the only subgroup of S4 of order 12.

4-16 Let G be a group with a subgroup of index r . Prove:

(a) If G is simple, then .G W 1/ divides rŠ.
(b) If r D 2;3; or 4, then G can’t be simple.
(c) There exists a nonabelian simple group with a subgroup

of index 5.

4-17 Prove that Sn is isomorphic to a subgroup of AnC2.

4-18 Let H and K be subgroups of a group G. A double
coset of H and K in G is a set of the form

HaK D fhak j h 2H , k 2Kg

for some a 2G.

(a) Show that the double cosets of H and K in G partition
G.

(b) Let H \ aKa�1 act on H � K by b.h;k/ D
.hb;a�1b�1ak/. Show that the orbits for this action are
exactly the fibres of the map .h;k/ 7! hakWH �K !
HaK.

(c) (Double coset counting formula). Use (b) to show that

jHaKj D
jH jjKj

jH \aKa�1j
:





Chapter 5

The Sylow Theorems;
Applications

In this chapter, all groups are finite.
Let G be a group and let p be a prime dividing .GW1/. A

subgroup of G is called a Sylow p-subgroup of G if its order
is the highest power of p dividing .G W 1/. In other words, H
is a Sylow p-subgroup of G if it is a p-group and its index in
G is prime to p.

The Sylow theorems state that there exist Sylow p-
subgroups for all primes p dividing .GW1/, that the Sylow
p-subgroups for a fixed p are conjugate, and that every p-
subgroup of G is contained in such a subgroup; moreover, the
theorems restrict the possible number of Sylow p-subgroups in

147
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G.

The Sylow theorems

In the proofs, we frequently use that ifO is an orbit for a group
H acting on a set X , and x0 2O , then the map H ! X , h 7!
hx0 induces a bijection

H=Stab.x0/!OI

see (4.7). Therefore

.H W Stab.x0//D jOj:

In particular, when H is a p-group, jOj is a power of p: either
O consists of a single element, or jOj is divisible by p. Since
X is a disjoint union of the orbits, we can conclude:

LEMMA 5.1 Let H be a p-group acting on a finite set X , and
let XH be the set of points fixed by H ; then

jX j � jXH j .mod p/:

When the lemma is applied to a p-group H acting on itself
by conjugation, we find that

.Z.H/ W 1/� .H W 1/ mod p

and so pj.Z.H/W1/ (cf. the proof of 4.16).
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THEOREM 5.2 (SYLOW I) Let G be a finite group, and let p
be prime. If pr j.G W 1/, then G has a subgroup of order pr :

PROOF. According to (4.17), it suffices to prove this with pr
the highest power of p dividing .G W 1/, and so from now on
we assume that .G W 1/D prm with m not divisible by p. Let

X D fsubsets of G with pr elementsg;

with the action of G defined by

G�X !X; .g;A/ 7! gA
def
D fga j a 2 Ag:

Let A 2X , and let

H D Stab.A/ def
D fg 2G j gAD Ag:

For any a0 2 A, h 7! ha0WH ! A is injective (cancellation
law), and so .H W 1/� jAj D pr . In the equation

.G W 1/D .G WH/.H W 1/

we know that .G W 1/D prm, .H W 1/ � pr , and that .G WH/
is the number of elements in the orbit of A. If we can find an A
such that p doesn’t divide the number of elements in its orbit,
then we can conclude that (for such an A), H D StabA has
order pr .

The number of elements in X is

jX j D

�
prm
pr

�
D
.prm/.prm�1/ � � �.prm� i/ � � �.prm�pr C1/

pr .pr �1/ � � �.pr � i/ � � �.pr �pr C1/
:
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Note that, because i < pr , the power of p dividing prm� i is
the power of p dividing i . The same is true for pr � i . There-
fore the corresponding terms on top and bottom are divisible by
the same powers of p, and so p does not divide jX j. Because
the orbits form a partition of X ,

jX j D
X
jOi j; Oi the distinct orbits;

and so at least one of the jOi j is not divisible by p. 2

EXAMPLE 5.3 Let Fp DZ=pZ, the field with p elements, and
let G D GLn.Fp/. The n�n matrices in G are precisely those
whose columns form a basis for Fnp . Thus, the first column can
be any nonzero vector in Fnp , of which there are pn � 1; the
second column can be any vector not in the span of the first
column, of which there are pn�p; and so on. Therefore, the
order of G is

.pn�1/.pn�p/.pn�p2/ � � �.pn�pn�1/;

and so the power of p dividing .G W 1/ is p1C2C���C.n�1/. Con-
sider the upper triangular matrices with 1’s down the diagonal:0BBBB@

1 � � � � � �

0 1 � � � � �

0 0 1 � � � �

:::
:::

::: � � �
:::

0 0 0 � � � 1

1CCCCA :
They form a subgroup U of order pn�1pn�2 � � �p, which is
therefore a Sylow p-subgroup G.
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REMARK 5.4 The theorem gives another proof of Cauchy’s
theorem (4.13). If a prime p divides .GW1/, then G will have a
subgroup H of order p, and any g 2H , g ¤ 1, is an element
of G of order p.

REMARK 5.5 The proof of Theorem 5.2 can be modified to
show directly that for each power pr of p dividing .G W 1/
there is a subgroup H of G of order pr . One again writes .G W
1/D prm and considers the setX of all subsets of order pr . In
this case, the highest power pr0 of p dividing jX j is the highest
power of p dividing m, and it follows that there is an orbit in
X whose order is not divisible by pr0C1. For an A in such an
orbit, the same counting argument shows that Stab.A/ has pr
elements. We recommend that the reader write out the details.

THEOREM 5.6 (SYLOW II) Let G be a finite group, and let
jGj D prm with m not divisible by p.

(a) Any two Sylow p-subgroups are conjugate.
(b) Let sp be the number of Sylow p-subgroups in G; then

sp � 1 mod p and sp jm.
(c) Every p-subgroup of G is contained in a Sylow p-

subgroup.

Let H be a subgroup of G. Recall (4.6, 4.8) that the nor-
malizer of H in G is

NG.H/D fg 2G j gHg
�1
DH g;

and that the number of conjugates of H in G is .G WNG.H//.
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LEMMA 5.7 Let P be a Sylow p-subgroup of G, and let H
be a p-subgroup. IfH normalizes P , i.e., ifH �NG.P /, then
H � P . In particular, no Sylow p-subgroup of G other than P
normalizes P .

PROOF. Because H and P are subgroups of NG.P / with P
normal inNG.P /,HP is a subgroup, andH=H \P 'HP=P
(apply 1.46). Therefore .HP W P / is a power of p (here is
where we use that H is a p-group), but

.HP W 1/D .HP W P /.P W 1/;

and .P W 1/ is the largest power of p dividing .G W 1/, hence
also the largest power of p dividing .HP W 1/. Thus .HP W
P /D p0 D 1, and H � P . 2

PROOF (OF SYLOW II) (a) Let X be the set of Sylow p-
subgroups in G, and let G act on X by conjugation,

.g;P / 7! gPg�1WG�X !X:

Let O be one of the G-orbits: we have to show O is all of X .
Let P 2 O , and let P act on O through the action of G.

This single G-orbit may break up into several P -orbits, one
of which will be fP g. In fact this is the only one-point orbit
because

fQg is a P -orbit” P normalizes Q;

which we know (5.7) happens only forQDP . Hence the num-
ber of elements in every P -orbit other than fP g is divisible by
p, and we have that jOj � 1 mod p.
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Suppose there exists a P …O . We again let P act onO , but
this time the argument shows that there are no one-point orbits,
and so the number of elements in every P -orbit is divisible by
p. This implies that #O is divisible by p, which contradicts
what we proved in the last paragraph. There can be no such P ,
and so O is all of X .

(b) Since sp is now the number of elements in O , we have
also shown that sp � 1 (mod p/.

Let P be a Sylow p-subgroup of G. According to (a), sp is
the number of conjugates of P , which equals

.G WNG.P //D
.G W 1/

.NG.P / W 1/
D

.G W 1/

.NG.P / W P / � .P W 1/

D
m

.NG.P / W P /
:

This is a factor of m.
(c) Let H be a p-subgroup of G, and let H act on the set

X of Sylow p-subgroups by conjugation. Because jX j D sp is
not divisible by p,XH must be nonempty (Lemma 5.1), i.e., at
least one H -orbit consists of a single Sylow p-subgroup. But
then H normalizes P and Lemma 5.7 implies that H � P . 2

COROLLARY 5.8 A Sylow p-subgroup is normal if and only
if it is the only Sylow p-subgroup.

PROOF. Let P be a Sylow p-subgroup of G. If P is nor-
mal, then (a) of Sylow II implies that it is the only Sylow p-
subgroup. The converse statement follows from (3.7c) (which
shows, in fact, that P is even characteristic). 2
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COROLLARY 5.9 Suppose that a group G has only one Sylow
p-subgroup for each prime p dividing its order. Then G is a
direct product of its Sylow p-subgroups.

PROOF. Let P1; : : : ;Pk be Sylow subgroups of G, and let
jPi j D p

ri
i ; the pi are distinct primes. Because each Pi is

normal in G, the product P1 � � �Pk is a normal subgroup
of G. We shall prove by induction on k that it has or-
der pr11 � � �p

rk
k

. If k D 1, there is nothing to prove, and so
we may suppose that k � 2 and that P1 � � �Pk�1 has order
p
r1
1 � � �p

rk�1
k�1

. Then P1 � � �Pk�1 \ Pk D 1; therefore (1.51)
shows that .P1 � � �Pk�1/Pk is the direct product of P1 � � �Pk�1
and Pk , and so has order pr11 � � �p

rk
k

. Now (1.52) applied to the
full set of Sylow subgroups of G shows that G is their direct
product. 2

EXAMPLE 5.10 Let G DGL.V / where V is a vector space of
dimension n over Fp . There is a geometric description of the
Sylow subgroups of G. A full flag F in V is a sequence of
subspaces

V D Vn � Vn�1 � �� � � Vi � �� � � V1 � f0g

with dimVi D i . Given such a flag F , let U.F / be the set of
linear maps ˛WV ! V such that

(a) ˛.Vi /� Vi for all i , and
(b) the endomorphism of Vi=Vi�1 induced by ˛ is the iden-

tity map.
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I claim that U.F / is a Sylow p-subgroup of G. Indeed, we can
construct a basis fe1; : : : ; eng for V such fe1g is basis for V1,
fe1; e2g is a basis for V2, and so on. Relative to this basis, the
matrices of the elements of U.F / are exactly the elements of
the group U of (5.3).

Let g 2 GLn.F/. Then gF def
D fgVn;gVn�1; : : :g is again a

full flag, andU.gF /D g �U.F / �g�1. From (a) of Sylow II, we
see that the Sylow p-subgroups of G are precisely the groups
of the form U.F / for some full flag F .

ASIDE 5.11 Some books use different numberings for Sylow’s theo-
rems. I have essentially followed the original (Sylow 1872).

Alternative approach to the Sylow theorems

We briefly forget that we have proved the Sylow theorems.

THEOREM 5.12 Let G be a group, and let P be a Sylow p-
subgroup ofG. For any subgroupH ofG, there exists an a 2G
such that H \aPa�1 is a Sylow p-subgroup of H .

PROOF. Recall (Exercise 4-18) thatG is a disjoint union of the
double cosets for H and P , and so

jGj D
X

a
jHaP j D

X
a

jH jjP j

jH \aPa�1j
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where the sum is over a set of representatives for the double
cosets. On dividing by jP j we find that

jGj

jP j
D

X
a

jH j

jH \aPa�1j
;

and so there exists an a such that .H WH \aPa�1/ is not divis-
ible by p. For such an a, H \aPa�1 is a Sylow p-subgroup
of H . 2

PROOF (OF SYLOW I) According to Cayley’s theorem (1.22),
G embeds into Sn, and Sn embeds into GLn.Fp/ (see 7.1b
below). As GLn.Fp/ has a Sylow p-subgroup (see 5.3), so also
does G. 2

PROOF (OF SYLOW II(a,c)) Let P be a Sylow p-subgroup of
G, and let P 0 be a p-subgroup of G. Then P 0 is the unique
Sylow p-subgroup of P 0, and so the theorem with H D P 0
shows that aPa�1 � P 0 for some a. This implies (a) and (c)
of Sylow II. 2

Examples

We apply what we have learnt to obtain information about
groups of various orders.

5.13 (GROUPS OF ORDER 99) Let G have order 99. The Sy-
low theorems imply that G has at least one subgroup H of
order 11, and in fact s11

ˇ̌̌
99
11 and s11 � 1 mod 11. It follows
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that s11 D 1, and H is normal. Similarly, s9j11 and s9 � 1
mod 3, and so the Sylow 3-subgroup is also normal. HenceG is
isomorphic to the direct product of its Sylow subgroups (5.9),
which are both commutative (4.18), and so G commutative.

Here is an alternative proof. Verify as before that the Sy-
low 11-subgroup N of G is normal. The Sylow 3-subgroup Q
maps bijectively onto G=N , and so G D N oQ. It remains to
determine the action by conjugation of Q on N . But Aut.N /
is cyclic of order 10 (see 3.5), and so there is only the trivial
homomorphism Q! Aut.N /. It follows that G is the direct
product of N and Q.

5.14 (GROUPS OF ORDER pq, p;q PRIMES, p < q) Let
G be such a group, and let P and Q be Sylow p and q
subgroups. Then .G W Q/ D p, which is the smallest prime
dividing .G W 1/, and so (see Exercise 4-5) Q is normal.
Because P maps bijectively onto G=Q, we have that

G DQoP;

and it remains to determine the action of P on Q by conjuga-
tion.

The group Aut.Q/ is cyclic of order q�1 (see 3.5), and so,
unless pjq�1, G DQ�P .

If pjq � 1, then Aut.Q/ (being cyclic) has a unique sub-
group P 0 of order p. In fact P 0 consists of the maps

x 7! xi ; fi 2 Z=qZ j ip D 1g:

Let a and b be generators for P and Q respectively, and sup-
pose that the action of a on Q by conjugation is x 7! xi0 ;
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i0 ¤ 1 (in Z=qZ). Then G has generators a;b and relations

ap ; bq ; aba�1 D bi0 :

Choosing a different i0 amounts to choosing a different gener-
ator a for P , and so gives an isomorphic group G.

In summary: if p - q�1, then the only group of order pq is
the cyclic group Cpq ; if pjq�1, then there is also a nonabelian
group given by the above generators and relations.

5.15 (GROUPS OF ORDER 30) Let G be a group of order 30.
Then

s3 D 1;4;7;10; : : : and divides 10I
s5 D 1;6;11; : : : and divides 6:

Hence s3 D 1 or 10, and s5 D 1 or 6. In fact, at least one is
1, for otherwise there would be 20 elements of order 3 and 24
elements of order 5, which is impossible. Therefore, a Sylow
3-subgroup P or a Sylow 5-subgroupQ is normal, and soH D
PQ is a subgroup of G. Because 3 doesn’t divide 5� 1 D 4,
(5.14) shows that H is commutative, H � C3�C5. Hence

G D .C3�C5/o� C2;

and it remains to determine the possible homomorphisms
� WC2 ! Aut.C3 �C5/. But such a homomorphism � is de-
termined by the image of the nonidentity element of C2, which
must be an element of order 2. Let a, b, c generate C3, C5, C2.
Then

Aut.C3�C5/D Aut.C3/�Aut.C5/;
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and the only elements of AutC3 and AutC5 of order 2 are a 7!
a�1 and b 7! b�1. Thus there are exactly 4 homomorphisms
� , and �.c/ is one of the following elements:�
a 7! a
b 7! b

�
a 7! a

b 7! b�1

�
a 7! a�1

b 7! b

�
a 7! a�1

b 7! b�1
:

The groups corresponding to these homomorphisms have cen-
tres of order 30, 3 (generated by a), 5 (generated by b), and
1 respectively, and hence are nonisomorphic. We have shown
that (up to isomorphism) there are exactly 4 groups of order
30. For example, the third on our list has generators a;b;c and
relations

a3; b5; c2; ab D ba; cac�1 D a�1; cbc�1 D b:

5.16 (GROUPS OF ORDER 12) Let G be a group of order 12,
and let P be its Sylow 3-subgroup. If P is not normal, then P
doesn’t contain a nontrivial normal subgroup of G, and so the
map (4.2, action on the left cosets)

' WG! Sym.G=P /� S4

is injective, and its image is a subgroup of S4 of order 12. From
Sylow II we see that G has exactly 4 Sylow 3-subgroups, and
hence it has exactly 8 elements of order 3. But all elements of
S4 of order 3 are in A4 (see the table in 4.32), and so '.G/
intersects A4 in a subgroup with at least 8 elements. By La-
grange’s theorem '.G/D A4, and so G � A4.

Now assume thatP is normal. ThenGDP oQwhereQ is
the Sylow 4-subgroup. If Q is cyclic of order 4, then there is a
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unique nontrivial map Q.D C4/! Aut.P /.D C2/, and hence
we obtain a single noncommutative group C3 oC4. If Q D
C2�C2, there are exactly 3 nontrivial homomorphism � WQ!
Aut.P /, but the three groups resulting are all isomorphic to
S3 �C2 with C2 D Ker� . (The homomorphisms differ by an
automorphism of Q, and so we can also apply Lemma 3.18.)

In total, there are 3 noncommutative groups of order 12 and
2 commutative groups.

5.17 (GROUPS OF ORDER p3) LetG be a group of order p3,
with p an odd prime, and assume G is not commutative. We
know from (4.17) that G has a normal subgroup N of order
p2.

If every element of G has order p (except 1), then N �
Cp �Cp and there is a subgroup Q of G of order p such that
Q\N D f1g. Hence

G DN o� Q

for some homomorphism � WQ! N . The order of Aut.N /�
GL2.Fp/ is .p2 � 1/.p2 �p/ (see 5.3), and so its Sylow p-
subgroups have order p. By the Sylow theorems, they are con-
jugate, and so Lemma 3.19 shows that there is exactly one non-
abelian group in this case.

Suppose G has elements of order p2, and let N be the sub-
group generated by such an element a. Because .G WN/D p is
the smallest (in fact only) prime dividing .G W 1/, N is normal
in G (Exercise 4-5). We next show that G contains an element
of order p not in N .
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We know Z.G/ ¤ 1, and, because G isn’t commutative,
that G=Z.G/ is not cyclic (4.19). Therefore .Z.G/ W 1/ D p
and G=Z.G/ � Cp � Cp . In particular, we see that for all
x 2 G, xp 2 Z.G/. Because G=Z.G/ is commutative, the
commutator of any pair of elements of G lies in Z.G/, and
an easy induction argument shows that

.xy/n D xnynŒy;x�
n.n�1/
2 ; n� 1:

Therefore .xy/p D xpyp , and so x 7! xp WG ! G is a ho-
momorphism. Its image is contained in Z.G/, and so its ker-
nel has order at least p2. Since N contains only p � 1 ele-
ments of order p, we see that there exists an element b of or-
der p outside N . Hence G D haio hbi � Cp2 oCp , and it
remains to observe (3.19) that the nontrivial homomorphisms
Cp! Aut.Cp2/� Cp �Cp�1 give isomorphic groups.

Thus, up to isomorphism, the only noncommutative groups
of order p3 are those constructed in (3.14, 3.15).

5.18 (GROUPS OF ORDER 2pn , 4pn; AND 8pn , p ODD)
Let G be a group of order 2mpn, 1 �m � 3, p an odd prime,
1 � n. We shall show that G is not simple. Let P be a Sylow
p-subgroup and let N DNG.P /, so that sp D .G WN/.

From Sylow II, we know that sp j2m, sp D 1;pC 1;2pC
1; : : :. If sp D 1, P is normal. If not, there are two cases to
consider:

(i) sp D 4 and p D 3, or
(ii) sp D 8 and p D 7:
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In the first case, the action by conjugation ofG on the set of
Sylow 3-subgroups1 defines a homomorphismG!S4, which,
if G is simple, must be injective. Therefore .G W 1/j4Š, and so
nD 1; we have .G W 1/D 2m3. Now the Sylow 2-subgroup has
index 3, and so we have a homomorphism G! S3. Its kernel
is a nontrivial normal subgroup of G.

In the second case, the same argument shows that .G W 1/j8Š,
and so nD 1 again. Thus .G W 1/D 56 and s7D 8. ThereforeG
has 48 elements of order 7, and so there can be only one Sylow
2-subgroup, which must therefore be normal.

Note that groups of order pqr , p;q primes, p < q are not
simple, because Exercise 4-5 shows that the Sylow q-subgroup
is normal. An examination of cases now reveals that A5 is the
smallest noncyclic simple group.

5.19 (GROUPS OF ORDER 60) Let G be a simple group of
order 60. We shall show that G is isomorphic to A5. Let P be
a Sylow 2-subgroup and N D NG.P /, so that s2 D .G W N/.
According to the Sylow theorems, s2 D 1;3;5; or 15:

(a) The case s2 D 1 is impossible, because P would be nor-
mal (see 5.8).

(b) The case s2 D 3 is impossible, because the kernel of
G! Sym.G=N/ would be a nontrivial normal subgroup ofG.

(c) In the case s2 D 5, we get an inclusion G ,!
Sym.G=N/ D S5, which realizes G as a subgroup of index
2 in S5, but we saw in (4.37) that, for n � 5, An is the only
subgroup of index 2 in Sn.

1Equivalently, the usual mapG! Sym.G=N/.
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(d) In the case s2 D 15, a counting argument (using that
s5D 6) shows that there exist two Sylow 2-subgroups P andQ
intersecting in a group of order 2. The normalizer N of P \Q
contains P and Q, and so it has index 1, 3, or 5 in G. The
first two cases are impossible for the same reasons as in (a) and
(b). If .GWN/ D 5, the argument in (c) gives an isomorphism
G � A5; but this is impossible because s2.A5/D 5.

Exercises

5-1 Show that a finite group (not necessarily commutative) is
cyclic if, for each n> 0, it contains at most n elements of order
dividing n.





Chapter 6

Subnormal Series; Solvable
and Nilpotent Groups

Subnormal Series.

Let G be a group. A chain of subgroups

G DG0 �G1 � �� � �Gi �GiC1 � �� � �Gn D f1g:

is called a subnormal series if Gi is normal in Gi�1 for every
i , and it is called a normal series if Gi is normal in G for
every i .1 The series is said to be without repetitions if all the

1Some authors write “normal series” where we write “subnormal series”
and “invariant series” where we write “normal series”.

165
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inclusions Gi�1 � Gi are proper (i.e., Gi�1 ¤ Gi ). Then n is
called the length of the series. The quotient groups Gi�1=Gi
are called the quotient (or factor) groups of the series.

A subnormal series is said to be a composition series if it
has no proper refinement that is also a subnormal series. In
other words, it is a composition series if Gi is maximal among
the proper normal subgroups Gi�1 for each i . Thus a subnor-
mal series is a composition series if and only if each quotient
group is simple and nontrivial. Obviously, every finite group
has a composition series (usually many): choose G1 to be a
maximal proper normal subgroup ofG; then chooseG2 to be a
maximal proper normal subgroup ofG1, etc.. An infinite group
may or may not have a finite composition series.

Note that from a subnormal series

G DG0 FG1 F � � � FGi FGiC1 F � � � FGn D f1g

we obtain a sequence of exact sequences

1!Gn�1!Gn�2!Gn�2=Gn�1! 1

� � �

1!GiC1!Gi !Gi=GiC1! 1

� � �

1!G1!G0!G0=G1! 1:

Thus G is built up out of the quotients
G0=G1;G1=G2; : : : ;Gn�1 by forming successive exten-
sions. In particular, since every finite group has a composition
series, it can be regarded as being built up out of simple
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groups. The Jordan-Hölder theorem, which is the main topic
of this section, says that these simple groups are independent
of the composition series (up to order and isomorphism).

Note that if G has a subnormal series G D G0 FG1 F � � � F
Gn D f1g, then

.G W 1/D
Y

1�i�n
.Gi�1 WGi /D

Y
1�i�n

.Gi�1=Gi W 1/:

EXAMPLE 6.1 (a) The symmetric group S3 has a composition
series

S3 FA3 F1

with quotients C2, C3:
(b) The symmetric group S4 has a composition series

S4 FA4 FV Fh.13/.24/iF1;

where V � C2 �C2 consists of all elements of order 2 in A4
(see 4.32). The quotients are C2, C3, C2, C2.

(c) Any full flag in Fnp , p a prime, is a composition series.
Its length is n, and its quotients are Cp ;Cp ; : : : ;Cp :

(d) Consider the cyclic group Cm D hai. For any factoriza-
tion mD p1 � � �pr of m into a product of primes (not necessar-
ily distinct), there is a composition series

Cm F C m
p1

F C m
p1p2

F � � �

k k k

hai hap1i hap1p2i

The length is r , and the quotients are Cp1 ;Cp2 ; : : : ;Cpr .
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(e) Suppose G is a direct product of simple groups, G D
H1� � � ��Hr . Then G has a composition series

G FH2� � � ��Hr FH3� � � ��Hr F � � �

of length r and with quotients H1;H2; : : : ;Hr . Note that for
any permutation � of f1;2; : : : rg, there is another composition
series with quotients H�.1/;H�.2/; : : : ;H�.r/.

(f) We saw in (4.37) that for n � 5, the only normal sub-
groups of Sn are Sn, An, f1g, and in (4.33) that An is simple.
Hence Sn FAn Ff1g is the only composition series for Sn.

THEOREM 6.2 (JORDAN-HÖLDER) 2Let G be a finite group.
If

G DG0 FG1 F � � � FGs D f1g

G DH0 FH1 F � � � FHt D f1g

are two composition series for G, then s D t and there
is a permutation � of f1;2; : : : ; sg such that Gi=GiC1 �
H�.i/=H�.i/C1.

PROOF. We use induction on the order of G.
Case I: H1 D G1. In this case, we have two composition

series for G1, to which we can apply the induction hypothesis.

2Jordan showed that corresponding quotients had the same order, and
Hölder that they were isomorphic.
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Case II: H1 ¤ G1. Because G1 and H1 are both normal
in G, the product G1H1 is a normal subgroup of G. It prop-
erly contains bothG1 andH1, which are maximal normal sub-
groups of G, and so G1H1 DG. Therefore

G=G1 DG1H1=G1 'H1=G1\H1 (see 1.46).

SimilarlyG=H1'G1=G1\H1. LetK2DG1\H1; thenK2
is a maximal normal subgroup in both G1 and H1, and

G=G1 'H1=K2; G=H1 'G1=K2: (26)

Choose a composition series

K2 FK3 F � � � FKu:

We have the picture:

G1 F G2 F � � � F Gs
� �

G K2 F � � � F Ku
� �

H1 F H2 F � � � F Ht

:

On applying the induction hypothesis to G1 and H1 and their
composition series in the diagram, we find that

Quotients.G FG1 FG2 F � � �/
D fG=G1;G1=G2;G2=G3; : : :g (definition)
� fG=G1;G1=K2;K2=K3; : : :g (induction)
� fH1=K2;G=H1;K2=K3; : : :g (apply (26))
� fG=H1;H1=K2;K2=K3; : : :g (reorder)
� fG=H1;H1=H2;H2=H3; : : :g (induction)
D Quotients.G FH1 FH2 F � � �/ (definition). 2
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Note that the theorem applied to a cyclic group Cm implies
that the factorization of an integer into a product of primes is
unique.

REMARK 6.3 There are infinite groups having finite compo-
sition series (there are even infinite simple groups). For such
a group, let d.G/ be the minimum length of a composition
series. Then the Jordan-Hölder theorem extends to show that
all composition series have length d.G/ and have isomorphic
quotient groups. The same proof works except that you have to
use induction on d.G/ instead of jGj and verify that a normal
subgroup of a group with a finite composition series also has a
finite composition series (Exercise 6-1).

The quotients of a composition series are sometimes called
composition factors.

Solvable groups

A subnormal series whose quotient groups are all commutative
is called a solvable series. A group is solvable (or soluble) if it
has a solvable series. Alternatively, we can say that a group is
solvable if it can be obtained by forming successive extensions
of commutative groups. Since a commutative group is simple
if and only if it is cyclic of prime order, we see that G is solv-
able if and only if for one (hence every) composition series the
quotients are all cyclic groups of prime order.

Every commutative group is solvable, as is every dihedral
group. The results in Chapter 5 show that every group of order
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< 60 is solvable. By contrast, a noncommutative simple group,
e.g., An for n� 5, will not be solvable.

THEOREM 6.4 (FEIT-THOMPSON) Every finite group of odd
order is solvable.3

PROOF. The proof occupies an entire issue of the Pacific Jour-
nal of Mathematics (Feit and Thompson 1963). 2

In other words, every finite group is either solvable or con-
tains an element of order 2. For the role this theorem played in
the classification of the finite simple groups, see p. 104. For a
more recent look at the Feit-Thompson theorem, see Glauber-
man 1999.

EXAMPLE 6.5 Consider the subgroups B D
��
� �

0 �

��
and

U D

��
1 �

0 1

��
of GL2.F /, some field F . Then U is a nor-

3Burnside (1897, p. 379) wrote:
No simple group of odd order is at present known to exist. An
investigation as to the existence or non-existence of such groups
would undoubtedly lead, whatever the conclusion might be, to
results of importance; it may be recommended to the reader as
well worth his attention. Also, there is no known simple group
whose order contains fewer than three different primes. . . .

Significant progress in the first problem was not made until Suzuki, M., The
nonexistence of a certain type of simple group of finite order, 1957. However, the
second problem was solved by Burnside himself, who proved using characters
that any group whose order contains fewer than three different primes is solvable
(see Alperin and Bell 1995, p. 182).
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mal subgroup ofB , andB=U 'F��F�,U ' .F;C/. Hence
B is solvable.

PROPOSITION 6.6 (a) Every subgroup and every quotient
group of a solvable group is solvable.

(b) An extension of solvable groups is solvable.

PROOF. (a) Let G FG1 F � � � FGn be a solvable series for G,
and let H be a subgroup of G. The homomorphism

x 7! xGiC1 WH \Gi !Gi=GiC1

has kernel .H \Gi /\GiC1 D H \GiC1. Therefore, H \
GiC1 is a normal subgroup of H \Gi and the quotient H \
Gi=H \GiC1 injects into Gi=GiC1, which is commutative.
We have shown that

H FH \G1 F � � � FH \Gn

is a solvable series for H .
Let NG be a quotient group of G, and let NGi be the image of

Gi in NG. Then

NG F NG1 F � � � F NGn D f1g

is a solvable series for NG.
(b) Let N be a normal subgroup of G, and let NG D G=N .

We have to show that if N and NG are solvable, then so also is
G. Let

NG F NG1 F � � � F NGn D f1g
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N FN1 F � � � FNm D f1g

be solvable series for NG andN , and letGi be the inverse image
of NGi in G. Then Gi=GiC1 ' NGi= NGiC1 (see 1.48), and so

G FG1 F � � � FGn.DN/FN1 F � � � FNm

is a solvable series for G. 2

COROLLARY 6.7 A finite p-group is solvable.

PROOF. We use induction on the order the group G. Accord-
ing to (4.16), the centre Z.G/ of G is nontrivial, and so the in-
duction hypothesis implies that G=Z.G/ is solvable. Because
Z.G/ is commutative, (b) of the proposition shows that G is
solvable. 2

Let G be a group. Recall that the commutator of x;y 2 G
is

Œx;y�D xyx�1y�1 D xy.yx/�1

Thus
Œx;y�D 1 ” xy D yx;

and G is commutative if and only if every commutator equals
1.

EXAMPLE 6.8 For any finite-dimensional vector space V over
a field k and any full flag F D fVn;Vn�1; : : :g in V , the group

B.F /D f˛ 2 Aut.V / j ˛.Vj /� Vj all j g
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is solvable. Indeed, let U.F / be the group defined in Example
5.10. Then B.F /=U.F / is commutative, and, when k D Fp ,
U.F / is a p-group. This proves that B.F / is solvable when
k D Fp , and in the general case one defines subgroups B0 �
B1 � �� � of B.F / with

Bi D f˛ 2 B.F / j ˛.Vj /� Vj�i all j g

and notes that the commutator of two elements of Bi lies in
BiC1.

For any homomorphism 'WG!H

'.Œx;y�/D '.xyx�1y�1/D Œ'.x/;'.y/�;

i.e., ' maps the commutator of x;y to the commutator of
'.x/;'.y/. In particular, we see that ifH is commutative, then
' maps all commutators in G to 1.

The group G0 D G.1/ generated by the commutators in G
is called the commutator or first derived subgroup of G.

PROPOSITION 6.9 The commutator subgroup G0 is a charac-
teristic subgroup of G; it is the smallest normal subgroup of G
such that G=G0 is commutative.

PROOF. An automorphism ˛ of G maps the generating set for
G0 into G0, and hence maps G0 into G0. Since this is true for
all automorphisms of G, G0 is characteristic.

Write g 7! Ng for the homomorphism g 7! gG0WG!G=G0.
Then Œ Ng; Nh� D Œg;h�, which is 1 because Œg;h� 2 G0. Hence
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Œ Ng; Nh�D 1 for all Ng, Nh 2G=G0, which shows that G=G0 is com-
mutative.

Let N be a second normal subgroup of G such that G=N
is commutative. Then Œg;h� 7! 1 in G=N , and so Œg;h� 2 N .
Since these elements generate G0, N �G0. 2

For n� 5; An is the smallest normal subgroup of Sn giving
a commutative quotient. Hence .Sn/0 D An.

The second derived subgroup of G is .G0/0; the third is
G.3/ D .G00/0; and so on. Since a characteristic subgroup of
a characteristic subgroup is characteristic (3.7a), each derived
group G.n/ is a characteristic subgroup of G. Hence we obtain
a normal series

G �G.1/ �G.2/ � �� � ;

which is called the derived series of G. For example, when
n� 5, the derived series of Sn is

Sn � An � An � An � �� � :

PROPOSITION 6.10 A group G is solvable if and only if its
kth derived subgroup G.k/ D 1 for some k.

PROOF. IfG.k/D 1, then the derived series is a solvable series
for G. Conversely, let

G DG0 FG1 FG2 F � � � FGs D 1
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be a solvable series for G. Because G=G1 is commutative,
G1 �G

0. Now G0G2 is a subgroup of G1, and from

G0=G0\G2
'
!G0G2=G2 �G1=G2

we see that

G1=G2 commutative H) G0=G0\G2 commutative

H) G00 �G0\G2 �G2:

Continuing in the fashion, we find that G.i/ �Gi for all i , and
hence G.s/ D 1. 2

Thus, a solvable group G has a canonical solvable series,
namely the derived series, in which all the groups are normal
inG. The proof of the proposition shows that the derived series
is the shortest solvable series for G. Its length is called the
solvable length of G.

ASIDE 6.11 Not every element of the commutator subgroup of a
group is itself a commutator, but the smallest groups where this oc-
curs have order 94. This was shown by a computer search through the
libraries of small groups.

Nilpotent groups

Let G be a group. Recall that we write Z.G/ for the centre
of G. Let Z2.G/ � G be the subgroup of G corresponding to
Z.G=Z.G//�G=Z.G/. Thus

g 2Z2.G/ ” Œg;x� 2Z.G/ for all x 2G:
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Continuing in this fashion, we get a sequence of subgroups (as-
cending central series)

f1g �Z.G/�Z2.G/� �� �

where

g 2Zi .G/ ” Œg;x� 2Zi�1.G/ for all x 2G:

If Zm.G/DG for somem, then G is said to be nilpotent, and
the smallest such m is called the (nilpotency) class of G. For
example, all finite p-groups are nilpotent (apply 4.16).

Only the group f1g has class 0, and the groups of class 1 are
exactly the commutative groups. A group G is of class 2 if and
only if G=Z.G/ is commutative — such a group is said to be
metabelian.

EXAMPLE 6.12 (a) A nilpotent group is obviously solvable,
but the converse is false. For example, for a field F , let

B D

��
a b
0 c

�ˇ̌̌̌
a;b;c 2 F; ac ¤ 0

�
:

ThenZ.B/DfaI j a¤ 0g, and the centre ofB=Z.B/ is trivial.
Therefore B=Z.B/ is not nilpotent, but we saw in (6.5) that it
is solvable.

(b) The groupG D

8<:
0@1 � �

0 1 �

0 0 1

1A9=; is metabelian: its cen-

tre is

8<:
0@1 0 �

0 1 0
0 0 1

1A9=;, and G=Z.G/ is commutative.
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(c) Any nonabelian group G of order p3 is metabelian. In
fact, G0 DZ.G/ has order p (see 5.17), and G=G0 is commu-
tative (4.18). In particular, the quaternion and dihedral groups
of order 8,Q andD4, are metabelian. The dihedral groupD2n
is nilpotent of class n— this can be proved by induction, using
that Z.D2n/ has order 2, and D2n=Z.D2n/�D2n�1 . If n is
not a power of 2, then Dn is not nilpotent (use Theorem 6.18
below).

PROPOSITION 6.13 (a) A subgroup of a nilpotent group is
nilpotent.

(b) A quotient of a nilpotent group is nilpotent.

PROOF. (a) Let H be a subgroup of a nilpotent group
G. Clearly, Z.H/ � Z.G/\H . Assume (inductively) that
Zi .H/ � Zi .G/\H ; then ZiC1.H/ � ZiC1.G/\H , be-
cause (for h 2H )

h 2ZiC1.G/ H) Œh;x� 2Zi .G/ all x 2G

H) Œh;x� 2Zi .H/ all x 2H:

(b) Straightforward. 2

REMARK 6.14 It should be noted that ifH is a subgroup ofG,
then Z.H/ may be bigger than Z.G/. For example, the centre
of

H D

��
a 0
0 b

�ˇ̌̌̌
ab ¤ 0

�
� GL2.F /:

isH itself, but the centre of GL2.F / consists only of the scalar
matrices.
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PROPOSITION 6.15 A groupG is nilpotent of class�m if and
only if

Œ: : : ŒŒg1;g2�;g3�; : : : ; ;gmC1�D 1

for all g1; :::;gmC1 2G:

PROOF. Recall, g 2Zi .G/” Œg;x�2Zi�1.G/ for all x 2
G:

Assume G is nilpotent of class �m; then

G DZm.G/

H) Œg1;g2� 2Z
m�1.G/ all g1;g2 2G

H) ŒŒg1;g2�;g3� 2Z
m�2.G/ all g1;g2;g3 2G

� � � � � �

H) Œ� � � ŒŒg1;g2�;g3�; :::;gm� 2Z.G/ all g1; : : : ;gm 2G
H) Œ� � � ŒŒg1;g2�;g3�; : : : ;gmC1�D 1 all g1; : : : ;gm 2G:

For the converse, let g1 2G. Then

ŒŒ:::ŒŒg1;g2�;g3�; :::;gm�;gmC1�D 1 for all g1;g2; :::;gmC1 2G
H) Œ:::ŒŒg1;g2�;g3�; :::;gm� 2Z.G/; for all g1; :::;gm 2G

H) Œ:::ŒŒg1;g2�;g3�; :::;gm�1� 2Z
2.G/; for all g1; :::;gm�1 2G

� � � � � �

H) g1 2Z
m.G/ all g1 2G: 2

An extension of nilpotent groups need not be nilpotent, i.e.,

N and G=N nilpotent ;G nilpotent. (27)
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For example, the subgroup U of the group B in Examples 6.5
and 6.12 is commutative and B=U is commutative, but B is
not nilpotent.

However, the implication (27) holds when N is contained
in the centre of G. In fact, we have the following more precise
result.

COROLLARY 6.16 For any subgroup N of the centre of G,

G=N nilpotent of class m H) G nilpotent of class �mC1:

PROOF. Write � for the map G!G=N . Then

�.Œ:::ŒŒg1;g2�;g3�; :::;gm�;gmC1�/

D Œ:::ŒŒ�g1;�g2�;�g3�; :::;�gm�;�gmC1�D 1

all g1; :::;gmC1 2G. Hence Œ:::ŒŒg1;g2�;g3�; :::;gm�;gmC1� 2
N �Z.G/, and so

Œ:::ŒŒg1;g2�;g3�; :::;gmC1�;gmC2�D 1 all g1; :::;gmC2 2G:
2

COROLLARY 6.17 A finite p-group is nilpotent.

PROOF. We use induction on the order ofG. BecauseZ.G/¤
1, G=Z.G/ nilpotent, which implies that G is nilpotent. 2

Recall that an extension

1!N
�
!G

�
!Q! 1

is central if �.N /�Z.G/. Then:
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the nilpotent groups are those that can be obtained
from commutative groups by successive central
extensions.

Contrast:

the solvable groups are those that can be obtained
from commutative groups by successive exten-
sions (not necessarily central).

THEOREM 6.18 A finite group is nilpotent if and only if it is
equal to a direct product of its Sylow subgroups.

PROOF. A direct product of nilpotent groups is obviously
nilpotent, and so the “if” direction follows from the preceding
corollary. For the converse, let G be a finite nilpotent group.
According to (5.9) it suffices to prove that all Sylow sub-
groups are normal. Let P be such a subgroup of G, and let
N DNG.P /. The first lemma below shows that NG.N /DN ,
and the second then implies that N DG, i.e., that P is normal
in G. 2

LEMMA 6.19 Let P be a Sylow p-subgroup of a finite group
G. For any subgroup H of G containing NG.P /, we have
NG.H/DH .

PROOF. Let g 2 NG.H/, so that gHg�1 D H . Then H �
gPg�1 D P 0, which is a Sylow p-subgroup of H . By Sylow
II, hP 0h�1 D P for some h 2 H , and so hgPg�1h�1 � P .
Hence hg 2NG.P /�H , and so g 2H: 2
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LEMMA 6.20 Let H be proper subgroup of a finite nilpotent
group G; then H ¤NG.H/.

PROOF. The statement is obviously true for commutative
groups, and so we can assume G to be noncommutative. We
use induction on the order of G. Because G is nilpotent,
Z.G/¤ 1. Certainly the elements of Z.G/ normalize H , and
so if Z.G/*H , we have H $Z.G/ �H �NG.H/. Thus we
may supposeZ.G/�H . Then the normalizer ofH inG corre-
sponds under (1.47) to the normalizer ofH=Z.G/ inG=Z.G/,
and we can apply the induction hypothesis. 2

REMARK 6.21 For a finite abelian group G we recover the
fact that G is a direct product of its p-primary subgroups.

PROPOSITION 6.22 (FRATTINI’S ARGUMENT) Let H be a
normal subgroup of a finite group G, and let P be a Sylow
p-subgroup of H . Then G DH �NG.P /.

PROOF. Let g 2 G. Then gPg�1 � gHg�1 D H , and both
gPg�1 and P are Sylow p-subgroups ofH . According to Sy-
low II, there is an h 2 H such that gPg�1 D hPh�1, and it
follows that h�1g 2NG.P / and so g 2H �NG.P /. 2

THEOREM 6.23 A finite group is nilpotent if and only if every
maximal proper subgroup is normal.
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PROOF. We saw in Lemma 6.20 that for any proper subgroup
H of a nilpotent group G, H $NG.H/. Hence,

H maximal H) NG.H/DG;

i.e., H is normal in G.
Conversely, suppose every maximal proper subgroup of G

is normal. We shall check the condition of Theorem 6.18. Thus,
let P be a Sylow p-subgroup of G. If P is not normal in G,
then there exists a maximal proper subgroup H of G contain-
ing NG.P /. Being maximal, H is normal, and so Frattini’s
argument shows that G DH �NG.P /DH — contradiction.2

ASIDE 6.24 Consider a nilpotent groupG of class 2:

1!A!G!B! 1; A;B commutative; A�Z.G/:

Taking commutators induces a map
V2

B!A (and every such map
occurs for some extension). The image of this map is the commutator
subgroup and the image of the pure tensors b^ b0 is the set of ac-
tual commutators. This can be used to give examples of groups whose
commutator subgroup doesn’t consist entirely of commutators (Torsten
Ekedahl, mo44269).

Groups with operators

Recall that the set Aut.G/ of automorphisms of a group G is
again a group. Let A be a group. A pair .G;'/ consisting of
a group G together with a homomorphism 'WA! Aut.G/ is
called an A-group, or G is said to have A as a group of opera-
tors.

Let G be an A-group, and write ˛x for '.˛/x. Then
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(a) .˛ˇ/x D ˛.ˇx/ (' is a homomorphism);
(b) ˛.xy/D ˛x �˛y ('.˛/ is a homomorphism);
(c) 1x D x (' is a homomorphism).

Conversely, a map .˛;x/ 7! ˛x WA�G!G satisfying (a), (b),
(c) arises from a homomorphism A! Aut.G/. Conditions (a)
and (c) show that x 7! ˛x is inverse to x 7! .˛�1/x, and so
x 7! ˛x is a bijection G! G. Condition (b) then shows that
it is an automorphism of G. Finally, (a) shows that the map
'.˛/D .x 7! ˛x/ is a homomorphism A! Aut.G/.

Let G be a group with operators A. A subgroup H of G is
admissible or A-invariant if

x 2H H) ˛x 2H , all ˛ 2 A:

An intersection of admissible groups is admissible. If H is
admissible, so also are its normalizer NG.H/ and centralizer
CG.H/:

An A-homomorphism (or admissible homomorphism) of
A-groups is a homomorphism 
 WG ! G0 such that 
.˛g/ D
˛
.g/ for all ˛ 2 A, g 2G:

EXAMPLE 6.25 (a) A group G can be regarded as a group
with f1g as group of operators. In this case all subgroups and
homomorphisms are admissible, and so the theory of groups
with operators includes the theory of groups without operators.

(b) ConsiderG acting on itself by conjugation, i.e., consider
G together with the homomorphism

g 7! ig WG! Aut.G/:
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In this case, the admissible subgroups are the normal sub-
groups.

(c) Consider G with AD Aut.G/ as group of operators. In
this case, the admissible subgroups are the characteristic sub-
groups.

Almost everything we have proved for groups also holds for
groups with operators. In particular, the Theorems 1.45, 1.46,
and 1.47 hold for groups with operators. In each case, the proof
is the same as before except that admissibility must be checked.

THEOREM 6.26 For any admissible homomorphism 
 WG !

G0 ofA-groups,N def
DKer.
/ is an admissible normal subgroup

of G, 
.G/ is an admissible subgroup of G0, and 
 factors in a
natural way into the composite of an admissible surjection, an
admissible isomorphism, and an admissible injection:

G�G=N
'
! 
.G/ ,!G0:

THEOREM 6.27 LetG be a group with operatorsA, and letH
and N be admissible subgroups with N normal. Then H \N
is a normal admissible subgroup of H , HN is an admissible
subgroup ofG, and h.H \N/ 7! hH is an admissible isomor-
phism H=H \N !HN=N:

THEOREM 6.28 Let 'WG! NG be a surjective admissible ho-
momorphism of A-groups. Under the one-to-one correspon-
dence H $ NH between the set of subgroups of G containing
Ker.'/ and the set of subgroups of NG (see 1.47), admissible
subgroups correspond to admissible subgroups.
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Let 'WA! Aut.G/ be a group with A operating. An ad-
missible subnormal series is a chain of admissible subgroups
of G

G �G1 �G2 � �� � �Gr

with each Gi normal in Gi�1. Define similarly an admissible
composition series. The quotients of an admissible subnormal
series are A-groups, and the quotients of an admissible com-
position series are simple A-groups, i.e., they have no normal
admissible subgroups apart from the obvious two.

The Jordan-Hölder theorem continues to hold forA-groups.
In this case the isomorphisms between the corresponding quo-
tients of two composition series are admissible. The proof is
the same as that of the original theorem, because it uses only
the isomorphism theorems, which we have noted also hold for
A-groups.

EXAMPLE 6.29 (a) ConsiderG withG acting by conjugation.
In this case an admissible subnormal series is a sequence of
subgroups

G DG0 �G1 �G2 � �� � �Gs D f1g;

with eachGi normal inG, i.e., a normal series. The action ofG
onGi by conjugation passes to the quotient, to give an action of
G on Gi=GiC1. The quotients of two admissible composition
series are isomorphic as G-groups.

(b) Consider G with ADAut.G/ as operator group. In this
case, an admissible subnormal series is a sequence

G DG0 �G1 �G2 � �� � �Gs D f1g
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with each Gi a characteristic subgroup of G, and the quo-
tients of two admissible composition series are isomorphic as
Aut.G/-groups.

Krull-Schmidt theorem

A group G is indecomposable if G ¤ 1 and G is not isomor-
phic to a direct product of two nontrivial groups, i.e., if

G �H �H 0 H) H D 1 or H 0 D 1:

EXAMPLE 6.30 (a) A simple group is indecomposable, but an
indecomposable group need not be simple: it may have a nor-
mal subgroup. For example, S3 is indecomposable but has C3
as a normal subgroup.

(b) A finite commutative group is indecomposable if and
only if it is cyclic of prime-power order.

Of course, this is obvious from the classification, but it is
not difficult to prove it directly. Let G be cyclic of order pn,
and suppose that G � H �H 0. Then H and H 0 must be p-
groups, and they can’t both be killed by pm, m< n. It follows
that one must be cyclic of order pn, and that the other is triv-
ial. Conversely, suppose that G is commutative and indecom-
posable. Since every finite commutative group is (obviously)
a direct product of p-groups with p running over the primes,
G is a p-group. If g is an element of G of highest order, one
shows that hgi is a direct factor of G, G � hgi�H , which is a
contradiction.

(c) Every finite group can be written as a direct product of
indecomposable groups (obviously).
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THEOREM 6.31 (KRULL-SCHMIDT) Suppose that G is a di-
rect product of indecomposable subgroups G1; : : : ;Gs and of
indecomposable subgroups H1; : : : ;Ht :

G 'G1� � � ��Gs ; G 'H1� � � ��Ht :

Then s D t , and there is a re-indexing such that Gi � Hi .
Moreover, given r , we can arrange the numbering so that

G DG1� � � ��Gr �HrC1� � � ��Ht :

PROOF. See Rotman 1995, 6.36. 2

EXAMPLE 6.32 Let G D Fp �Fp , and think of it as a two-
dimensional vector space over Fp . Let

G1 D h.1;0/i; G2 D h.0;1/iIH1 D h.1;1/i; H2 D h.1;�1/i:

Then G DG1�G2, G DH1�H2, G DG1�H2.

REMARK 6.33 (a) The Krull-Schmidt theorem holds also for
an infinite group provided it satisfies both chain conditions on
subgroups, i.e., ascending and descending sequences of sub-
groups of G become stationary.

(b) The Krull-Schmidt theorem also holds for groups with
operators. For example, let Aut.G/ operate onG; then the sub-
groups in the statement of the theorem will all be characteristic.

(c) When applied to a finite abelian group, the theorem
shows that the groups Cmi in a decomposition G D Cm1 �
:::�Cmr with eachmi a prime power are uniquely determined
up to isomorphism (and ordering).
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Exercises

6-1 Let G be a group (not necessarily finite) with a finite
composition series

G DG0 �G1 � �� � �Gn D 1;

and let N be a normal subgroup of G. Show that

N DN \G0 �N \G1 � �� � �N \Gn D 1

becomes a composition series for N once the repetitions have
been omitted.

6-2 If G1 and G2 are groups such that G01 � G02 and
G1=G

0
1 � G2=G

0
2, are G1 and G2 necessarily isomorphic?

(Here 0 denotes the commutator subgroup.)





Chapter 7

Representations of Finite
Groups

Throughout this chapter, G is a finite group and F is a field.
All vector spaces are finite dimensional.

An F -algebra is a ring A containing F in its centre and
finite dimensional as an F -vector space. We do not assume A
to be commutative; for example, A could be the matrix algebra
Mn.F /. Let e1; : : : ; en be a basis for A as an F -vector space;
then eiej D

P
k a
k
ij ekfor some akij 2 F , called the structure

constants of A relative to the basis .ei /i ; once a basis has been
chosen, the algebra A is uniquely determined by its structure
constants.

All A-modules are finite dimensional when regarded as F -

191
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vector spaces. For an A-module V ,mV denotes the direct sum
of m copies of V .

The oppositeAopp of an F -algebraA is the same F -algebra
asA but with the multiplication reversed, i.e.,AoppD .A;C; �0/
with a �0 b D ba. In other words, there is a one-to-one corre-
spondence a$ a0WA$ Aopp which is an isomorphism of F -
vector spaces and has the property that a0b0 D .ba/0.

An A-module M is simple if it is nonzero and contains no
submodules except 0 and M , and it is semisimple if it is iso-
morphic to a direct sum of simple modules.

Matrix representations

A matrix representation of degree n of G over F is a ho-
momorphism G ! GLn.F /. The representation is said to be
faithful if the homomorphism is injective. Thus a faithful rep-
resentation identifies G with group of n�n matrices.

EXAMPLE 7.1 (a) There is a representation Q! GL2.C/ of

the quaternion groupQDha;bi sending a to
�

0
p
�1

p
�1 0

�
and

b to
�
0 1
�1 0

�
. In fact, that is how we originally defined Q in

(1.18).
(b) Let G D Sn. For each � 2 Sn, let I.�/ be the matrix

obtained from the identity matrix by using � to permute the
rows. Then, for any n� n matrix A, I.�/A is obtained from
A by using � to permute the rows. In particular, I.�/I.� 0/D
I.�� 0/, and so � 7! I.�/ is a representation of Sn. Clearly, it
is faithful. As every finite group embeds into Sn for some n
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(Cayley’s theorem, see 1.22), this shows that every finite group
has a faithful matrix representation.

(c) Let G D Cn D h�i. If F contains a nth root of 1, say
�, then there is representation � i 7! �i WCn! GL1.F /D F�.
The representation is faithful if and only if � has order exactly
n. If nD p is prime and F has characteristic p, then Xp�1D
.X �1/p , and so 1 is the only pth root of 1 in F . In this case,
the representation is trivial, but there is a faithful representation

� i 7!

�
1 i
0 1

�
WCp! GL2.F /:

ASIDE 7.2 Recall that the Burnside problem asks whether every
finitely generated group with finite exponent is finite (see p. 75). Burn-
side proved that the problem has a positive answer for subgroups of
GLn.C/. Therefore, no infinite finitely generated group with finite ex-
ponent has a faithful representation over C.

Roots of 1 in fields

As the last example indicates, the representations of a group
over a field F depend on the roots of 1 in the field. The nth
roots of 1 in a field F form a subgroup �n.F / of F�, which is
cyclic (see 1.56).

If the characteristic of F divides n, then j�n.F /j< n. Oth-
erwise,Xn�1 has distinct roots (a multiple root would have to
be a root of its derivative nXn�1), and we can always arrange
that j�n.F /j D n by extending F , for example, by replacing a
subfield F of C with F Œ�� where � D e2�i=n, or by replacing
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F with F ŒX�=.g.X// where g.X/ is an irreducible factor of
Xn�1 not dividing Xm�1 for any proper divisor m of n:

An element of order n in F� is called a primitive nth root
of 1. To say that F contains a primitive nth root of 1, �, means
that �n.F / is a cyclic group of order n and that � generates
it (and it implies that either F has characteristic 0 or it has
characteristic a prime not dividing n).

Linear representations

Recall (4.1) that we have defined the notion of a groupG acting
a set. When the set is an F -vector space V , we say that the
action is linear if the map

gV WV ! V , x 7! gx;

is linear for each g 2 G. Then gV has inverse the linear map
.g�1/V , and g 7! gV WG!GL.V / is a homomorphism. Thus,
from a linear action of G on V , we obtain a homomorphism of
groups G ! GL.V /; conversely, every such homomorphism
defines a linear action of G on V . We call a homomorphism
G ! GL.V / a linear representation of G on V . Note that a
linear representation ofG on F n is just a matrix representation
of degree n.

EXAMPLE 7.3 (a) LetGDCnD h�i, and assume that F con-
tains a primitive nth root of 1, say �. Let G ! GL.V / be a
linear representation of G. Then .�L/n D .�n/L D 1, and so
the minimum polynomial of �L dividesXn�1. AsXn�1 has
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n distinct roots �0; : : : ; �n�1 in F , the vector space V decom-
poses into a direct sum of eigenspaces

V D
M

0�i�n�1
Vi ; Vi

def
D fv 2 V j �v D �ivg.

Conversely, every such direct sum decomposition of G arises
from a representation of G.

(b) Let G be a commutative group of exponent n, and as-
sume that F contains a primitive nth root of 1. Let

G_ D Hom.G;F�/D Hom.G;�n.F //

To give a representation of G on a vector space V is the same
as to give a direct sum decomposition

V D
M

�2G_
V�; V�

def
D fv 2 V j �v D �.�/vg.

When G is cyclic, this is a restatement of (a), and the general
case follows easily (decompose V with respect to the action of
one cyclic factor of G; then decompose each summand with
respect to the action of a second cyclic factor of G; and so on).

Maschke’s theorem

LetG!GL.V / be a linear representation ofG on an F -vector
space V . A subspaceW of V is said to beG-invariant if gW �
W for all g 2G. An F -linear map ˛WV ! V 0 of vector spaces
on which G acts linearly is said to be G-invariant if

˛.gv/D g.˛v/ for all g 2G;v 2 V:
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Finally, a bilinear form �WV �V !F is said to beG-invariant
if

�.gv;gv0/D �.v;v0/ for all g 2G, v;v0 2 V:

THEOREM 7.4 (MASCHKE) Let G! GL.V / be a linear rep-
resentation of G. If the characteristic of F does not divide jGj,
then every G-invariant subspace W of V has a G-invariant
complement, i.e., there exists a G-invariant subspace W 0 such
that V DW ˚W 0.

Note that the theorem always applies when F has charac-
teristic zero.

The condition on the characteristic is certainly necessary:
letGD h�i be the cyclic group of order p, where p is the char-
acteristic of F , and let � acts on V D F 2 as the matrix

�
1 1
0 1

�
(see 7.3b); the subspace

�
�
0

�
is G-invariant, and this comple-

mentary subspaces are those of the form F
�a
b

�
, b¤ 0; none of

them is G-invariant.
Because of the importance of the ideas involved, we present

two proofs of Maschke’s theorem.

PROOF OF MASCHKE’S THEOREM (CASE F D R OR
C)

LEMMA 7.5 Let � be a symmetric bilinear form on V , and let
W be a subspace of V . If � and W are G-invariant, then so
also is W ? def

D fv 2 V j �.w;v/D 0 for all w 2W g.
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PROOF. Let v 2 W ? and let g 2 G. For any w 2 W ,
�.w;gv/ D �.g�1w;v/ because � is G-invariant, and
�.g�1w;v/ D 0 because W is G-invariant. This shows that
gv 2W ?. 2

Recall from linear algebra that if � is nondegenerate, then
V D W ˚W ?. Therefore, in order to prove Maschke’s theo-
rem, it suffices to show that there exists a G-invariant nonde-
generate symmetric bilinear from �WV �V ! F .

LEMMA 7.6 For any symmetric bilinear form � on V ,

N�.v;w/
def
D

X
g2G

�.gv;gw/

is a G-invariant symmetric bilinear form on V .

PROOF. The form � is obviously bilinear and symmetric, and
for g0 2G,

N�.g0v;g0w/
def
D

X
g2G

�.gg0v;gg0w/;

which equals
P
g2G �.gv;gw/ because, as g runs over G, so

also does gg0. 2

Unfortunately, we can’t conclude that N� is nondegenerate
when � is (otherwise we could prove that all F ŒG�-modules
are semisimple, with no restriction on F or G).

LEMMA 7.7 Let F D R. If � is a positive definite symmetric
bilinear form on V , then so also is N�.



198 7. REPRESENTATIONS OF FINITE GROUPS

PROOF. If N� is positive definite, then for any nonzero v in V ,

N�.v;v/D
X

g2G
�.gv;gv/ > 0:

2

This completes the proof of Maschke’s theorem when F D
R, because there certainly exist positive definite symmetric bi-
linear forms � on V . A similar argument using hermitian forms
applies when F DC (or, indeed, when F is any subfield of C).

ASIDE 7.8 A representation of a groupG on a real vector space V is
unitary if there exists a G-invariant positive definite symmetric bilin-
ear form on V . Lemma 7.6 shows that every unitary representation is
semisimple, and Lemma 7.7 shows that every real representation of a
finite group is unitary.

PROOF OF MASCHKE’S THEOREM (GENERAL CASE)

An endomorphism � of an F -vector space V is called a pro-
jector if �2 D � . The minimum polynomial of a projector �
divides X2�X D X.X � 1/, and so V decomposes into a di-
rect sum of eigenspaces,

V D V0.�/˚V1.�/

where �
V0.�/D fv 2 V j �v D 0g D Ker.�/
V1.�/D fv 2 V j �v D vg D Im.�/:

Conversely, a decomposition V D V0˚V1 arises from a pro-
jector .v0;v1/ 7! .0;v1/.
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Now suppose that G acts linearly on V . If a projector � is
G-invariant, then V1.�/ and V0.�/ are obviously G-invariant.
Thus, to prove the theorem it suffices to show that W is the
image of a G–invariant projector � .

We begin by choosing an F -linear projector � with image
W , which certainly exists, and we modify it to obtain a G-
invariant projector N� with the same image. For v 2 V , let

N�.v/D
1

jGj

X
g2G

g
�
�.g�1v/

�
:

This makes sense because jGj � 1 2 F�, and it defines an F -
linear map N� WV ! V . Let w 2W ; then g�1w 2W , and so

N�.w/D
1

jGj

X
g2G

g.g�1w/D
1

jGj

X
g2G

w D w: (28)

The image of N� is contained in W , because Im.�/ � W and
W is G-invariant, and so

N�2.v/
def
D N�. N� .v//

.28/
D N�.v/

for any v 2 V . Thus, N� is a projector, and (28) shows that
Im. N�/ � W , and hence Im. N�/ D W . It remains to show that
N� is G-invariant. For g0 2 V

N�.g0v/D
1

jGj

X
g2G

g
�
�.g�1g0v/

�
D g0

1

jGj

X
g2G

.g�10 g/
�
�.g�1g0v/

�
;

which equals g0 N� .v/ because, as g runs over G, so also does
g�10 g.
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The group algebra; semisimplicity

The group algebra F ŒG� of G is defined to be the F -vector
space with basis the elements of G endowed with the multipli-
cation extending that on G. Thus,

˘ an element of F ŒG� is a sum
P
g2G cgg, cg 2 F ,

˘ two elements
P
g2G cgg and

P
g2G c

0
gg of F ŒG� are

equal if and only if cg D c0g for all g, and

˘

�P
g2G cgg

��P
g2G c

0
gg
�
D

P
g2G c

00
gg; c00g DP

g1g2Dg
cg1c

0
g2
:

A linear action

g;v 7! gvWG�V ! V

of G on an F -vector space extends uniquely to an action of
F ŒG� on V ,X

g2G
cgg;v 7!

X
g2G

cggvWF ŒG��V ! V;

which makes V into an F ŒG�-module. The submodules for this
action are exactly the G-invariant subspaces.

Let G! GL.V / be a linear representation of G. When V
is simple (resp. semisimple) as an F ŒG�-module, the represen-
tation is usually said to be irreducible (resp. completely re-
ducible). However, I will call them simple (resp. semisimple)
representations.
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PROPOSITION 7.9 If the characteristic of F does not divide
jGj, then every F ŒG�-module is a direct sum of simple sub-
modules.

PROOF. Let V be a F ŒG�-module. If V is simple, then there is
nothing to prove. Otherwise, it contains a nonzero proper sub-
module W . According to Maschke’s theorem, V D W ˚W 0
with W 0 an F ŒG�-submodule. If W and W 0 are simple, then
the proof is complete; otherwise, we can continue the argu-
ment, which terminates in a finite number of steps because V
has finite dimension as an F -vector space. 2

As we have observed, the linear representations ofG can be
regarded as F ŒG�-modules. Thus, to understand the linear rep-
resentations of G, we need to understand the F ŒG�-modules,
and for this we need to understand the structure of the F -
algebra F ŒG�. In the next three sections we study F -algebras
and their modules; in particular, we prove the famous Wedder-
burn theorems concerning F -algebras whose modules are all
semisimple.

Semisimple modules

In this section, A is an F -algebra.

PROPOSITION 7.10 Every A-module V admits a filtration

V D V0 � V1 � �� � � Vs D f0g
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such that the quotients Vi=ViC1 are simple A-modules. If

V DW0 �W1 � �� � �Wt D f0g

is a second such filtration, then sD t and there is a permutation
� of f1; : : : ; sg such that Vi=ViC1 �W�.i/=W�.i/C1 for all i .

PROOF. This is a variant of the Jordan-Hölder theorem (6.2),
which can be proved by the same argument. 2

COROLLARY 7.11 Suppose

V � V1˚�� �˚Vs �W1˚�� �˚Wt

with all theA-modules Vi andWj simple. Then sD t and there
is a permutation � of f1; : : : ; sg such that Vi �W�.i/.

PROOF. Each decomposition defines a filtration, to which the
proposition can be applied. 2

PROPOSITION 7.12 Let V be an A-module. If V is a sum of
simple submodules, say V D

P
i2I Si (the sum need not be

direct), then for any submodule W of V , there is a subset J of
I such that

V DW ˚
M

i2J
Si :

PROOF. Let J be maximal among the subsets of I such the
sum SJ

def
D
P
j2J Sj is direct and W \SJ D 0. I claim that

W CSJ D V (hence V is the direct sum ofW and the Sj with
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j 2 J ). For this, it suffices to show that each Si is contained in
W CSJ . Because Si is simple, Si \ .W CSJ / equals Si or 0.
In the first case, Si �W CSJ , and in the second SJ \Si D 0
and W \ .SJ CSi /D 0, contradicting the definition of I . 2

COROLLARY 7.13 The following conditions on an A-module
V are equivalent:

(a) V is semisimple;
(b) V is a sum of simple submodules;
(c) every submodule of V has a complement.

PROOF. The proposition shows that (b) implies (c), and the
argument in the proof of (7.9) shows that (c) implies (a). It is
obvious that (a) implies (b). 2

COROLLARY 7.14 Sums, submodules, and quotient modules
of semisimple modules are semisimple.

PROOF. Each is a sum of simple modules. 2

Simple F -algebras and their modules

An F -algebra A is said to be simple if it contains no two-sided
ideals except 0 and A. We shall make frequent use of the fol-
lowing observation:

The kernel of a homomorphism f WA! B of F -
algebras is an ideal in A not containing 1; there-
fore, if A is simple, then f is injective.
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EXAMPLE 7.15 We consider the matrix algebra Mn.F /. Let
eij be the matrix with 1 in the .i;j /th position and zeros else-
where.

(a) Let I be a two-sided ideal in Mn.F /, and suppose
that I contains a nonzero matrix M D .mij / with, say,
mi0j0 ¤ 0. As

ei i0 �M � ej0j Dmi0j0eij

and ei i0 �M � ej0j 2 I , we see that I contains all the
matrices eij and so equals Mn.F /. We have shown that
Mn.F / is simple.

(b) ForM;N 2Mn.F /, the j th column ofM �N isM �Nj
whereNj is the j th column ofN . Therefore, for a given
matrix N ,�

Nj D 0 ) .M �N/j D 0
Nj ¤ 0 ) .M �N/j can be arbitrary: (29)

For 1� i � n, let L.i/ be the set of matrices whose j th
columns are zero for j ¤ i and whose i th column is
arbitrary. For example, when nD 4,

L.3/D

8̂<̂
:
0B@0 0 � 0
0 0 � 0
0 0 � 0
0 0 � 0

1CA
9>=>;�M4.F /:

It follows from (29) that L.i/ is a minimal left ideal in
Mn.F /. Note that Mn.F / is a direct sum

Mn.F /D L.1/˚�� �˚L.n/
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of minimal left ideals.

EXAMPLE 7.16 An F -algebra is said to be a division algebra
if every nonzero element a has an inverse, i.e., there exists a b
such that ab D 1D ba. Thus a division algebra satisfies all the
axioms to be a field except commutativity (and for this reason
is sometimes called a skew field). Clearly, a division algebra
has no nonzero proper ideals, left, right, or two-sided, and so is
simple.

If D is a division algebra, then the argument in (7.15a)
shows that the algebra Mn.D/ is simple.

EXAMPLE 7.17 For a;b 2 F�, let H.a;b/ be the F -algebra
with basis 1; i;j;k (as an F -vector space) and with the multi-
plication determined by

i2 D a; j 2 D b; ij D k D�j i

(so ik D i ij D aj etc.). Then H.a;b/ is an F -algebra, called
a quaternion algebra over F . For example, if F D R, then
H.�1;�1/ is the usual quaternion algebra. One can show
that H.a;b/ is either a division algebra or it is isomorphic to
M2.F /. In particular, it is simple.

7.18 Much of linear algebra does not require that the field
be commutative. For example, the usual arguments show that
a finitely generated module V over a division algebra D has a
basis, and that all bases have the same number n of elements
— n is called the dimension of V . In particular, all finitely
generated D-modules are free.
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7.19 Let A be an F -algebra, and let AA denote A regarded
as a left A-module. Right multiplication x 7! xa on AA by an
element a ofA is anA-linear endomorphism of AA. Moreover,
every A-linear map 'WAA! AA is of this form with aD '.1/.
Thus,

EndA.AA/' A (as F -vector spaces).

Let 'a be the map x 7! xa. Then

.'a ı'a0/.1/
def
D 'a.'a0.1//D 'a.a

0/D a0aD 'a0a.1/;

and so
EndA.AA/' A

opp (as F -algebras).

More generally,
EndA.V /' A

opp

for any A-module V that is free of rank 1, and

EndA.V /'Mn.A
opp/

for any free A-module V of rank n (cf. 7.32 below).

CENTRALIZERS

Let A be an F -subalgebra of an F -algebra B . The centralizer
of A in B is

CB .A/D fb 2 B j baD ab for all a 2 Ag:

It is again an F -subalgebra of B .
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EXAMPLE 7.20 In the following examples, the centralizers
are taken in Mn.F /.

(a) Let A be the set of scalar matrices in Mn.F /, i.e., AD
F �In. Clearly, C.A/DMn.F /.

(b) Let A DMn.F /. Then C.A/ is the centre of Mn.F /,
which we now compute. Let eij be the matrix with 1 in
the .i;j /th position and zeros elsewhere, so that

eij elm D

�
eim if j D l
0 if j ¤ l:

Let ˛ D .aij / 2Mn.F /. Then ˛ D
P
i;j aij eij , and so

˛elm D
P
i aileim and elm˛ D

P
j amj elj . If ˛ is in

the centre ofMn.F /, then ˛elmD elm˛, and so ail D 0
for i ¤ l , amj D 0 for j ¤m, and al l D amm. It follows
that the centre of Mn.F / is set of scalar matrices F �In.
Thus C.A/D F �In.

(c) Let A be the set of diagonal matrices in Mn.F /. In this
case, C.A/D A.

Notice that in all three cases, C.C.A//D A.

THEOREM 7.21 (DOUBLE CENTRALIZER THEOREM) LetA
be an F -algebra, and let V be a faithful semisimple A-module.
Then C.C.A//D A (centralizers taken in EndF .V /).

PROOF. Let D D C.A/ and let B D C.D/. Clearly A � B ,
and the reverse inclusion follows from the next lemma when
we take v1; : : : ;vn to generate V as a F -vector space. 2
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LEMMA 7.22 For any v1; : : : ; vn 2 V and b 2B , there exists
an a 2 A such that

av1 D bv1; av2 D bv2; : : : ; avn D bvn:

PROOF. We first prove this for nD 1. Note that Av1 is an A-
submodule of V , and so (see 7.13) there exists anA-submodule
W of V such that V D Av1 ˚W . Let � WV ! V be the
map .av1;w/ 7! .av1;0/ (projection onto Av1). It is A-linear,
hence lies inD, and has the property that �.v/D v if and only
if v 2 Av1. Now

�.bv1/D b.�v1/D bv1;

and so bv1 2 Av1, as required.
We now prove the general case. Let W be the direct sum of

n copies of V with A acting diagonally, i.e.,

a.v1; : : : ;vn/D .av1; : : : ;avn/; a 2 A; vi 2 V:

Then W is again a semisimple A-module (7.14). The central-
izer of A in EndF .W / consists of the matrices .
ij /1�i;j�n,

ij 2 EndF .V /, such that .
ij a/ D .a
ij / for all a 2 A, i.e.,
such that 
ij 2D (cf. 7.32). In other words, the centralizer of
A in EndF .A/ isMn.D/. An argument as in Example 7.20(b),
using the matrices eij .ı/ with ı in the ij th position and zeros
elsewhere, shows that the centralizer of Mn.D/ in EndF .W /
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consists of the diagonal matrices0BB@
ˇ 0 � � � 0
0 ˇ � � � 0
:::

:::
: : :

:::
0 0 � � � ˇ

1CCA
with ˇ 2 B . We now apply the case nD 1 of the lemma to A,
W , b, and the vector .v1; : : : ;vn/ to complete the proof. 2

THEOREM 7.23 Every simple F -algebra is isomorphic to
Mn.D/ for some n and some division F -algebra D.

PROOF. Choose a simple A-module S , for example, any min-
imal left ideal of A. Then A acts faithfully on S , because the
kernel of A! EndF .S/ will be a two-sided ideal of A not
containing 1, and hence is 0.

Let D be the centralizer of A in the F -algebra EndF .S/
of F -linear maps S ! S . According to the double central-
izer theorem (7.21), the centralizer ofD in EndF .S/ is A, i.e.,
AD EndD.S/. Schur’s lemma (7.24 below) implies that D is
a division algebra. Therefore S is a free D-module (7.18), say,
S �Dn, and so EndD.S/�Mn.Dopp/ (see 7.19). 2

LEMMA 7.24 (SCHUR’S LEMMA) For every F -algebra A
and simple A-module S , EndA.S/ is a division algebra.

PROOF. Let 
 be an A-linear map S ! S . Then Ker.
/ is an
A-submodule of S , and so it is either S or 0. In the first case,
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 is zero, and in the second it is an isomorphism, i.e., it has an
inverse that is also A-linear. 2

MODULES OVER SIMPLE F -ALGEBRAS

For any F -algebra A, the submodules of AA are the left ideals
in A, and the simple submodules of AA are the minimal left
ideals.

PROPOSITION 7.25 Any two minimal left ideals of a simple
F -algebra are isomorphic as leftA-modules, and AA is a direct
sum of its minimal left ideals.

PROOF. After Theorem 7.23, we may assume that A D
Mn.D/ for some division algebraD. We saw in (7.16) that the
minimal left ideals in Mn.D/ are those of the form L.fj g/.
Clearly AD

L
1�j�nL.fj g/ and each L.fj g/ is isomorphic

to Dn with its natural action of Mn.D/. 2

THEOREM 7.26 Let A be a simple F -algebra, and let S be
a simple A-module. Then every A-module is isomorphic to a
direct sum of copies of S .

PROOF. Let S0 be a minimal left ideal of A. The proposition
shows that AA � Sn0 for some n. Let e1; : : : ; er be a set of
generators for V as an A-module. The map

.a1; : : : ;ar / 7!
X

aiei
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realizes V as a quotient of a direct sum of r copies of AA,
and hence as a quotient of nrS0. Thus, V is a sum of simple
submodules each isomorphic to S0, and so Proposition 7.12
shows that V �mS0 for some m. 2

COROLLARY 7.27 Let A be a simple F -algebra. Then any
two simpleA-modules are isomorphic, and any twoA-modules
having the same dimension over F are isomorphic.

PROOF. Obvious from the Theorem. 2

COROLLARY 7.28 The integer n in Theorem 7.23 is uniquely
determined by A, and D is uniquely determined up to isomor-
phism.

PROOF. IfA�Mn.D/, thenD� EndA.S/ for any simpleA-
module S . Thus, the statement follows from Theorem 7.26. 2

CLASSIFICATION OF THE DIVISION ALGEBRAS OVER
F

After Theorem 7.23, to classify the simple algebras over F , it
remains to classify the division algebras over F .

PROPOSITION 7.29 When F is algebraically closed, the only
division algebra over F is F itself.

PROOF. LetD be division algebra over F . For any ˛ 2D, the
F -subalgebra F Œ˛� ofD generated by ˛ is a field (because it is
an integral domain of finite degree over F ). Therefore ˛ 2F .2
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ASIDE 7.30 The classification of the isomorphism classes of division
algebras over a field F is one the most difficult and interesting prob-
lems in algebra and number theory. For F D R, the only division al-
gebra is the usual quaternion algebra. For F finite, the only division
algebra with centre F is F itself (theorem of Wedderburn).

A division algebra over F whose centre is F is said to be central
(formerly normal). Brauer showed that the set of isomorphism classes
of central division algebras over a field form a group, called (by Hasse
and Noether) the Brauer group1 of the field. The statements in the last
paragraph show that the Brauer groups of algebraically closed fields
and finite fields are zero, and the Brauer group of R has order 2. The
Brauer groups of Q and its finite extensions were computed by Albert,
Brauer, Hasse, and Noether in the 1930s as a consequence of class field
theory.

Semisimple F -algebras and their modules

An F -algebra A is said to be semisimple if every A-module is
semisimple. Theorem 7.26 shows that simple F -algebras are
semisimple, and Maschke’s theorem shows that the group al-
gebra F ŒG� is semisimple when the order of G is not divisible
by the characteristic of F (see 7.9).

1The tensor product D˝F D0 of two central simple algebras over F is
again a central simple algebra, and hence is isomorphic to Mr .D

00/ for some
central simple algebraD00. Define

ŒD�ŒD0�D ŒD00�:

This product is associative because of the associativity of tensor products, the
isomorphism class of F is an identity element, and ŒDopp� is an inverse for ŒD�.
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EXAMPLE 7.31 Let A be a finite product of simple F -
algebras. Then every minimal left ideal of a simple factor of
A is a simple A-submodule of AA. Therefore, AA is a direct
sum of simple A-modules, and so is semisimple. Since every
A-module is a quotient of a direct sum of copies of AA, this
shows that A is semisimple.

Before stating the main result of this section, we recall some
elementary module theory.

7.32 Let A be an F -algebra, and consider modules

M DM1˚�� �˚Mn

N DN1˚�� �˚Nm:

Let ˛ be an A-linear map M !N . For xj 2Mj , let

˛.0; : : : ;0;xj ;0; : : : ;0/D .y1; : : : ;ym/:

Then xj 7! yi is an A-linear mapMj !Ni , which we denote
˛ij . Thus, ˛ defines an m� n matrix whose ij th coefficient
is an A-linear map Mj ! Ni . Conversely, every such matrix
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.˛ij / defines an A-linear map M !N , namely,0BBBBBB@

x1
:::
xj
:::
xn

1CCCCCCA 7!
0BBBBBB@

˛11 � � � ˛1j � � � ˛1n
:::

:::
:::

˛i1 � � � ˛ij � � � ˛jn
:::

:::
:::

˛m1 � � � ˛mj � � � ˛mn

1CCCCCCA

0BBBBBB@

x1
:::
xj
:::
xn

1CCCCCCA

def
D

0BBBBBB@

˛11.x1/C�� �C˛1n.xn/
:::

˛i1.x1/C�� �C˛in.xn/
:::

˛m1.x1/C�� �C˛mn.xn/

1CCCCCCA :

Thus, we see

HomA.M;N /'
�
HomA.Mj ;Ni /

�
1�j�n, 1�i�m (30)

(isomorphism of F -vector spaces). When M D N , this be-
comes an isomorphism of F -algebras. For example, if M is
a direct sum of m copies of M0, then

EndA.M/'Mm.EndA.M0// (31)

(m�m matrices with coefficients in the ring EndA.M0/).

THEOREM 7.33 Let V be a finite dimensionalF -vector space,
and let A be an F -subalgebra of EndF .V /. If V is semisim-
ple as an A-module, then the centralizer of A in EndF .V / is
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a product of simple F -algebras (hence it is a semisimple F -
algebra).

PROOF. By assumption, we can write V �
L
i riSi where the

Si are simpleA-modules, no two of which are isomorphic. The
centralizer of A in EndF .V / is EndA.V /, and EndA.V / �
EndA.

L
i riSi /. Because HomA.Sj ;Si /D 0 for i ¤ j ,

EndA.
M

riSi /'
Y

i
EndA.riSi / by (30)

'

Y
i
Mri .Di / by (31)

where Di D EndA.Si /. According to Schur’s lemma (7.24),
Di is a division algebra, and therefore Mri .Di / is a simple
F -algebra (see 7.16). 2

THEOREM 7.34 Every semisimpleF -algebra is isomorphic to
a product of simple F -algebras.

PROOF. Choose an A-module V on which A acts faithfully,
for example, V D AA. Then A is equal to its double centralizer
C.C.A// in EndF .V / (see 7.21). According to Theorem 7.33,
C.A/ is semisimple, and so C.C.A// is a product of simple
algebras. 2

Modules over a semisimple F -algebra

Let A D B �C be a product of F -algebras. A B-module M
becomes an A-module with the action

.b;c/mD bm:



216 7. REPRESENTATIONS OF FINITE GROUPS

THEOREM 7.35 Let A be a semisimple F -algebra, say, A D
A1�� � ��At with theAi simple. For eachAi , let Si be a simple
Ai -module (cf. 7.27).

(a) Each Si is a simple A-module, and every simple A-
module is isomorphic to exactly of of the Si .

(b) Every A-module is isomorphic to
L
riSi for some ri 2

N, and two modules
L
riSi and

L
r 0iSi are isomorphic

if and only if ri D r 0i for all i .

PROOF. (a) It is obvious that each Si is simple when regarded
as anA-module, and that no two of them are isomorphic. It fol-
lows from (7.25) that AA�

L
riSi for some ri 2 N. Let S be

a simple A-module, and let x be a nonzero element of S . Then
the map a 7! axWAA! S is surjective, and so its restriction to
some Si in AA is nonzero, and hence an isomorphism.

(b) The first part follows from (a) and the definition of a
semisimple ring, and the second part follows from (7.11). 2

The representations of G

PROPOSITION 7.36 The dimension of the centre of F ŒG� as
an F -vector space is the number of conjugacy classes in G.

PROOF. Let C1; : : : ;Ct be the conjugacy classes inG, and, for
each i , let ci be the element

P
a2Ci

a in F ŒG�. We shall prove
the stronger statement:

centre of F ŒG�D Fc1˚�� �˚Fct (32)
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As c1; : : : ; ct are obviously linearly independent, it suffices to
show that they span the centre.

For any g 2G and
P
a2Gmaa 2 F ŒG�,

g
�X

a2G
maa

�
g�1 D

X
a2G

magag
�1:

The coefficient of a in the right hand sum is mg�1ag , and so

g
�X

a2G
maa

�
g�1 D

X
a2G

mg�1aga:

This shows that
P
a2Gmaa lies in the centre of F ŒG� if and

only if the function a 7!ma is constant on conjugacy classes,
i.e., if and only if

P
a2Gmaa 2

P
i Fci . 2

REMARK 7.37 An element
P
a2Gmaa of F ŒG� can be re-

garded as a map a 7! maWG ! F . In this way, F ŒG� '
Map.G;F /. The action of G on F ŒG� corresponds to the ac-
tion .gf /.a/D f .g�1a/ of g 2G on f WG! F . In the above
proof, we showed that the elements of the centre of F ŒG� cor-
respond exactly to the functions f WG ! F that are constant
on each conjugacy class. Such functions are called class func-
tions.

In the remainder of this chapter, we assume that F is an
algebraically closed field of characteristic zero (e.g., C)

PROPOSITION 7.38 The group algebra F ŒG� is isomorphic to
a product of matrix algebras over F .
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PROOF. Recall that, when F has characteristic zero,
Maschke’s theorem (7.9) implies that F ŒG� is semisimple, and
so is a product of simple algebras (7.35). Each of these is a
matrix algebra over a division algebra (7.23), but the only divi-
sion algebra over an algebraically closed field is the field itself
(7.29). 2

The representation G! GL.F ŒG�F ŒG�/ is called the reg-
ular representation.

THEOREM 7.39 (a) The number of isomorphism classes of
simple F ŒG�-modules is equal to the number of conjugacy
classes in G.

(b) The multiplicity of any simple representation S in the
regular representation is equal to its degree dimF S .

(c) Let S1; : : : ;St be a set of representatives for the isomor-
phism classes of simple FG-modules, and let fi D dimF Si .
Then X

1�i�t
f 2i D jGj:

PROOF. (a) Under our hypothesis, F ŒG� � Mf1.F /� � � � �
Mft .F / for some integers f1; : : : ;ft . According to Theorem
7.35, the number of isomorphism classes of simple F ŒG�-
modules is the number of factors t . The centre of a product of
F -algebras is the product of their centres, and so the centre of
F ŒG� is isomorphic to tF . Therefore t is the dimension of the
centre of F , which we know equals the number of conjugacy
classes of G.

(b) With the notations of (7.15), Mf .F / ' L.1/˚ �� � ˚
L.f /.
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(c) The equality is simply the statementX
1�i�t

dimF Mfi .F /D dimF F ŒG�:
2

The characters of G

Recall that the trace TrV .˛/ of an endomorphism ˛WV ! V of
a vector space V is

P
ai i where .aij / is the matrix of ˛ with

respect to some basis for V . It is independent of the choice of
the basis (the traces of conjugate matrices are equal).

From each representation of g 7! gV WG!GL.V /, we ob-
tain a function �V on G;

�V .g/D TrV .gV /;

called the character of �. Note that �V depends only on the
isomorphism class of the F ŒG�-module V , and that �V is a
class function. The character � is said to be simple (or irre-
ducible) if it is defined by a simple FG-module. The princi-
pal character �1 is that defined by the trivial representation
of G (so �1.g/D 1 for all g 2 G), and the regular character
�reg is that defined by the regular representation. On comput-
ing �reg.g/ by using the elements of G as a basis for F ŒG�,
one see that �reg.g/ is the number of elements a ofG such that
gaD a, and so

�reg.g/D

�
jGj if g D e
0 otherwise.
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When V has dimension 1, the character �V of G is said to
be linear. In this case, GL.V / ' F�, and so �V .g/ D �.g/.
Therefore, �V is a homomorphism G! F�, and so this def-
inition of “linear character” essentially agrees with the earlier
one.

LEMMA 7.40 For any G-modules V and V 0,

�V˚V 0 D �V C�V 0 :

PROOF. Compute the matrix of gL with respect to a basis of
V ˚V 0 that is made by combining a basis for V with a basis
for V 0. 2

Let S1; : : : ;St be a set of representatives for the isomor-
phism classes of simple FG-modules with S1 chosen to be the
trivial representation, and let �1; : : : ;�t be the corresponding
characters.

PROPOSITION 7.41 The functions �1; : : : ;�t are linearly in-
dependent over F , i.e., if c1; : : : ; ct 2 F are such thatP
i ci�i .g/D 0 for all g 2G, then the ci are all zero.

PROOF. Write F ŒG��Mf1.F /�� � ��Mft .F /, and let ej D
.0; : : : ;0;1;0; : : : ;0/. Then ej acts as 1 on Sj and as 0 on Sj
for i ¤ j , and so

�i .ej /D

�
fj D dimF Sj if i D j

0 otherwise. (33)
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Therefore, X
i
ci�i .ej /D cj fj ,

from which the claim follows. 2

PROPOSITION 7.42 Two F ŒG�-modules are isomorphic if and
only if their characters are equal.

PROOF. We have already observed that the character of a
representation depends only on its isomorphism class. Con-
versely, if V D

L
1�i�t ciSi , ci 2 N, then its character is

�V D
P
1�i�t ci�i , and (33) shows that ci D �V .ei /=fi .

Therefore �V determines the multiplicity with which each Si
occurs in V , and hence it determines the isomorphism class of
V . 2

ASIDE 7.43 The proposition is false ifF is allowed to have character-

istic p ¤ 0. For example, the representation � i 7!
�
1 i
0 1

�
WCp!

GL2.F / of (7.1c) is not trivial, but it has the same character as the
trivial representation. The proposition is false even when the charac-
teristic of F doesn’t divide the order of the group, because, for any
representation G! GL.V /, the character of the representation of G
on pV is identically zero.

Any function G ! F that can be expressed as a Z-linear
combination of characters is called a virtual character.2

2Some authors call it a generalized character, but this is to be avoided: there
is more than one way to generalize the notion of a character.
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PROPOSITION 7.44 The simple characters of G form a Z-
basis for the virtual characters of G.

PROOF. Let �1; : : : ;�t be the simple characters of G. Then
the characters of G are exactly the class functions that can
be expressed in the form

P
mi�i , mi 2 N, and so the virtual

characters are exactly the class functions that can be expressedP
mi�i , mi 2 Z. Therefore the simple characters certainly

generate the Z-module of virtual characters, and Proposition
7.41 shows that they are linearly independent over Z (even over
F ). 2

PROPOSITION 7.45 The simple characters of G form an F -
basis for the class functions on G.

PROOF. The class functions are the functions from the set of
conjugacy classes in G to F . As this set has t elements, they
form an F -vector space of dimension t . As the simple charac-
ters are a set of t linearly independent elements of this vector
space, they must form a basis. 2

We now assume that F is a subfield of C stable under com-
plex conjugation c 7! Nc.

For class functions f1 and f2 on G, define

.f1jf2/D
1

jGj

X
a2G

f1.a/f2.a/:

LEMMA 7.46 The pairing . j / is an inner product on the F -
space of class functions on G.
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PROOF. We have to check:
˘ .f1Cf2jf /D .f1jf /C .f2jf / for all class functions

f1;f2;f ;
˘ .cf1jf2/ D c.f1;f2/ for c 2 F and class functions

f1;f2;
˘ .f2jf1/D .f1jf2/ for all class functions f1;f2;
˘ .f jf / > 0 for all nonzero class functions f .

All of these are obvious from the definition. 2

For an F ŒG�-module V , V G denotes the submodule of ele-
ments fixed by G:

V G D fv 2 V j gv D v for all g 2Gg

LEMMA 7.47 Let � be the element 1
jGj

P
a2G a of F ŒG�. For

any F ŒG�-module V , �V is a projector with image V G .

PROOF. For any g 2G,

g� D
1

jGj

X
a2G

gaD
1

jGj

X
a2G

aD �; (34)

from which it follows that �� D � (in the F -algebra F ŒG�).
Therefore, for any F ŒG�-module V , �2

V
D �V and so �V is a

projector. If v is in its image, say v D �v0, then

gv D g�v0
.34/
D �v0 D v

and so v lies in V G . Conversely, if v 2 V G , the obviously
�v D 1

jGj

P
a2G av D v, and so v is in the image of � . 2
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PROPOSITION 7.48 For any F ŒG�-module V ,

dimF V
G
D

1

jGj

X
a2G

�V .a/:

PROOF. Let � be as in Lemma 7.47. Because �V is a projec-
tor, V is the direct sum of its 0-eigenspace and its 1-eigenspace,
and we showed that the latter is V G . Therefore, TrV .�V / D
dimF V G . On the other hand, because the trace is a linear func-
tion,

TrV .�V /D
1

jGj

X
a2G

TrV .aV /D
1

jGj

X
a2G

�V .a/:

2

THEOREM 7.49 For any F ŒG�-modules V and W;

dimF HomF ŒG�.V;W /D .�V j�W /.

PROOF. The group G acts on the space HomF .V;W / of F -
linear maps V !W by the rule,

.g'/.v/D g.'.gv//; g 2G; ' 2 HomF .V;W /; v 2 V;

and HomF .V;W /G D HomFG.V;W /. 2

COROLLARY 7.50 If � and �0 are simple characters, then

.�j�0/D

�
1 if �D �0
0 otherwise.
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Therefore the simple characters form an orthonormal basis for
the space of class functions on G.

The character table of a group

To be written.

Examples

To be written.

Exercises

7-1 Let C be an n� r matrix with coefficients in a field F .
Show that

fM 2Mn.F / jMC D 0g

is a left ideal inMn.F /, and that every left ideal is of this form
for some C .

7-2 This exercise shows how to recover a finite groupG from
its category of representations over a field k. Let S be a finite
set, and let A be the set of maps S ! k.

(a) Show that A becomes a commutative ring with the prod-
uct

.f1f2/.g/D f1.g/f2.g/; f1, f2 2 A; g 2G:
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Moreover, when we identify c 2 k with the constant
function, A becomes a k-algebra.

(b) Show that
A'

Y
s2S

ks

(product of copies of k indexed by the elements of S ),
and that the ks are exactly the minimal k-subalgebras of
A. Deduce that Endk-alg.A/' Sym.S/.

(c) Let .f1;f2/ 2 A�A act on S �S by .f1;f2/.s1; s2/D
f1.s1/f2.s2/; show that this defines a bijectionA˝A'
Map.S �S;k/. Now take S DG.

(d) Show that the map rAWG! Endk-linear.A/,

.rA.g/f /.g
0/D f .gg0/; f 2 A; g;g0 2G

is a representation of G (this is the regular representa-
tion).

(e) Define �WA ! A˝ A by �.f /.g1;g2/ D f .g1g2/.
Show that, for any homomorphism ˛WA ! A of k-
algebras such .1˝˛/ı�D�ı˛, there exists a unique
element g 2G such that ˛.f /D gf for all f 2A. [Hint:
Deduce from (b) that there exists a bijection �WG! G
such that . f̨ / .g/D f .�g/ for all g 2G. From the hy-
pothesis on ˛, deduce that �.g1g2/D g1 ��.g2/ for all
g1;g2 2 G.R/. Hence �.g/ D g � �.e/ for all g 2 G.
Deduce that ˛.f /D �.e/f for all f 2 A.]

(f) Show that the following maps are G-equivariant

eWk! A (trivial representation on k; rA on A/
mWA˝A! A (rA˝ rA on A˝A; rA on A/
�WA! A˝A (rA on A; 1˝ rA on A˝A/:
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(g) Suppose that we are given, for each finite dimensional
representation .V;rV /, a k-linear map �V . If the family
.�V / satisfies the conditions

i) for all representations V ,W , �V˝W D �V ˝�W I
ii) for k with its trivial representation, �k D idk ;

iii) for all G-equivariant maps ˛WV ! W , �W ı˛ D
˛ ı�V I

then there exists a unique g 2 G.R/ such that �V D
rV .g/ for all V . [Hint: show that �A satisfies the con-
ditions of (d).]

NOTES For a historical account of the representation theory of finite
groups, emphasizing the work of “the four principal contributors to
the theory in its formative stages: Ferdinand Georg Frobenius, William
Burnside, Issai Schur, and Richard Brauer”, see Curtis 1999.





Appendix A

Additional Exercises

34. Prove that a finite group G having just one maximal sub-
group must be a cyclic p-group, p prime.

35. Let a and b be two elements of S76. If a and b both have
order 146 and ab D ba, what are the possible orders of the
product ab?

37. Suppose that the group G is generated by a set X .

(a) Show that if gxg�1 2 X for all x 2 X; g 2 G, then the
commutator subgroup of G is generated by the set of all
elements xyx�1y�1 for x;y 2X .

(b) Show that if x2 D 1 for all x 2X , then the subgroup H
ofG generated by the set of all elements xy for x;y 2X
has index 1 or 2.

229
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38. Suppose p � 3 and 2p� 1 are both prime numbers (e.g.,
p D 3;7;19;31; : : :/. Prove, or disprove by example, that every
group of order p.2p�1/ is commutative.

39. Let H be a subgroup of a group G. Prove or disprove the
following:

(a) If G is finite and P is a Sylow p-subgroup, then H \P
is a Sylow p-subgroup of H .

(b) If G is finite, P is a Sylow p-subgroup, and H �
NG.P /, then NG.H/DH .

(c) If g is an element of G such that gHg�1 � H , then
g 2NG.H/.

40. Prove that there is no simple group of order 616.

41. Let n and k be integers 1 � k � n. Let H be the subgroup
of Sn generated by the cycle .a1 : : :ak/. Find the order of the
centralizer of H in Sn. Then find the order of the normalizer
of H in Sn. [The centralizer of H is the set of g 2 G such
ghg�1 D h for all h 2H . It is again a subgroup of G.]

42. Prove or disprove the following statement: if H is a sub-
group of an infinite group G, then for all x 2 G, xHx�1 �
H H) x�1Hx �H .

43. Let H be a finite normal subgroup of a group G, and let
g be an element of G. Suppose that g has order n and that the
only element of H that commutes with g is 1. Show that:

(a) the mapping h 7! g�1h�1gh is a bijection from H to
H ;
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(b) the coset gH consists of elements of G of order n.

44. Show that if a permutation in a subgroupG of Sn maps x to
y, then the normalizers of the stabilizers Stab.x/ and Stab.y/
of x and y have the same order.

45. Prove that if all Sylow subgroups of a finite group G are
normal and abelian, then the group is abelian.

46. A group is generated by two elements a and b satisfying
the relations: a3 D b2, am D 1, bn D 1 where m and n are
positive integers. For what values ofm and n canG be infinite.

47. Show that the groupG generated by elements x and y with
defining relations x2 D y3 D .xy/4 D 1 is a finite solvable
group, and find the order of G and its successive derived sub-
groups G0, G00, G000.

48. A group G is generated by a normal set X of elements
of order 2. Show that the commutator subgroup G0 of G is
generated by all squares of products xy of pairs of elements of
X .

49. Determine the normalizer N in GLn.F / of the subgroup
H of diagonal matrices, and prove that N=H is isomorphic to
the symmetric group Sn.

50. LetG be a group with generators x and y and defining rela-
tions x2, y5, .xy/4. What is the index in G of the commutator
group G0 of G.

51. Let G be a finite group, and H the subgroup generated by
the elements of odd order. Show that H is normal, and that the
order of G=H is a power of 2.
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52. Let G be a finite group, and P a Sylow p-subgroup. Show
that if H is a subgroup of G such that NG.P /�H �G, then

(a) the normalizer of H in G is H ;
(b) .G WH/� 1 (mod p).

53. Let G be a group of order 33 �25. Show that G is solvable.
(Hint: A first step is to find a normal subgroup of order 11 using
the Sylow theorems.)

54. Suppose that ˛ is an endomorphism of the group G that
maps G onto G and commutes with all inner automorphisms
of G. Show that if G is its own commutator subgroup, then
˛x D x for all x in G.

55. LetG be a finite group with generators s and t each of order
2. Let nD .G W 1/=2.

(a) Show that G has a cyclic subgroup of order n. Now as-
sume n odd.

(b) Describe all conjugacy classes of G.
(c) Describe all subgroups of G of the form C.x/ D fy 2

Gjxy D yxg, x 2G.
(d) Describe all cyclic subgroups of G.
(e) Describe all subgroups of G in terms of (b) and (d).
(f) Verify that any two p-subgroups of G are conjugate .p

prime).

56. Let G act transitively on a set X . Let N be a normal sub-
group of G, and let Y be the set of orbits of N in X . Prove
that:
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(a) There is a natural action of G on Y which is transitive
and shows that every orbit of N on X has the same car-
dinality.

(b) Show by example that if N is not normal then its orbits
need not have the same cardinality.

57. Prove that every maximal subgroup of a finite p-group is
normal of prime index .p is prime).

58. A group G is metacyclic if it has a cyclic normal subgroup
N with cyclic quotient G=N . Prove that subgroups and quo-
tient groups of metacyclic groups are metacyclic. Prove or dis-
prove that direct products of metacyclic groups are metacylic.

59. Let G be a group acting doubly transitively on X , and let
x 2X . Prove that:

(a) The stabilizer Gx of x is a maximal subgroup of G.
(b) If N is a normal subgroup of G, then either N is con-

tained in Gx or it acts transitively on X .

60. Let x;y be elements of a group G such that xyx�1 D y5,
x has order 3, and y ¤ 1 has odd order. Find (with proof) the
order of y.

61. Let H be a maximal subgroup of G, and let A be a normal
subgroup ofH and such that the conjugates of A inG generate
it.

(a) Prove that if N is a normal subgroup of G, then either
N �H or G DNA.
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(b) Let M be the intersection of the conjugates of H in G.
Prove that if G is equal to its commutator subgroup and
A is abelian, then G=M is a simple group.

62. (a) Prove that the centre of a nonabelian group of order p3,
p prime, has order p.
(b) Exhibit a nonabelian group of order 16 whose centre is not
cyclic.

63. Show that the group with generators ˛ and ˇ and defining
relations

˛2 D ˇ2 D .˛ˇ/3 D 1

is isomorphic with the symmetric group S3 of degree 3 by giv-
ing, with proof, an explicit isomorphism.

64. Prove or give a counter-example:

(a) Every group of order 30 has a normal subgroup of order
15.

(b) Every group of order 30 is nilpotent.

65. Let t 2 Z, and let G be the group with generators x;y and
relations xyx�1 D yt , x3 D 1.

(a) Find necessary and sufficient conditions on t forG to be
finite.

(b) In case G is finite, determine its order.

66. Let G be a group of order pq, p ¤ q primes.

(a) Prove G is solvable.
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(b) Prove that G is nilpotent ” G is abelian ” G is
cyclic.

(c) IsG always nilpotent? (Prove or find a counterexample.)

67. Let X be a set with pn elements, p prime, and let G be a
finite group acting transitively on X . Prove that every Sylow
p-subgroup of G acts transitively on X .

68. Let G D ha;b;c j bc D cb, a4 D b2 D c2 D 1; aca�1 D c,
aba�1 D bci. Determine the order of G and find the derived
series of G.

69. LetN be a nontrivial normal subgroup of a nilpotent group
G. Prove that N \Z.G/¤ 1.

70. Do not assume Sylow’s theorems in this problem.

(a) LetH be a subgroup of a finite group G, and P a Sylow
p-subgroup of G. Prove that there exists an x 2 G such
that xPx�1\H is a Sylow p-subgroup of H .

(b) Prove that the group of n�nmatrices

0B@1 � : : :
0 1 � � �

: : :
0 1

1CA is

a Sylow p-subgroup of GLn.Fp/.
(c) Indicate how (a) and (b) can be used to prove that any

finite group has a Sylow p-subgroup.

71. Suppose H is a normal subgroup of a finite group G such
that G=H is cyclic of order n, where n is relatively prime to
.G W 1/. Prove that G is equal to the semidirect product H oS
with S a cyclic subgroup of G of order n.
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72. Let H be a minimal normal subgroup of a finite solvable
group G. Prove that H is isomorphic to a direct sum of cyclic
groups of order p for some prime p.

73. (a) Prove that subgroups A and B of a group G are of finite
index in G if and only if A\B is of finite index in G.
(b) An element x of a group G is said to be an FC-element if
its centralizer CG.x/ has finite index in G. Prove that the set
of all FC elements in G is a normal.

74. Let G be a group of order p2q2 for primes p > q. Prove
that G has a normal subgroup of order pn for some n� 1.

75. (a) Let K be a finite nilpotent group, and let L be a sub-
group ofK such that L �ıK DK, where ıK is the derived sub-
group. Prove that LDK. [You may assume that a finite group
is nilpotent if and only if every maximal subgroup is normal.]
(b) Let G be a finite group. If G has a subgroup H such that
both G=ıH and H are nilpotent, prove that G is nilpotent.

76. Let G be a finite noncyclic p-group. Prove that the follow-
ing are equivalent:

(a) .G WZ.G//� p2.
(b) Every maximal subgroup of G is abelian.
(c) There exist at least two maximal subgroups that are

abelian.

77. Prove that every group G of order 56 can be written (non-
trivially) as a semidirect product. Find (with proofs) two non-
isomorphic non-abelian groups of order 56.

78. Let G be a finite group and ' WG!G a homomorphism.
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(a) Prove that there is an integer n � 0 such that 'n.G/ D
'm.G/ for all integers m� n. Let ˛ D 'n.

(b) Prove that G is the semi-direct product of the subgroups
Ker˛ and Im˛.

(c) Prove that Im˛ is normal inG or give a counterexample.

79. Let S be a set of representatives for the conjugacy classes
in a finite group G and let H be a subgroup of G. Show that
S �H H) H DG.

80. Let G be a finite group.

(a) Prove that there is a unique normal subgroup K of G
such that (i) G=K is solvable and (ii) if N is a normal
subgroup and G=N is solvable, then N �K.

(b) Show that K is characteristic.
(c) Prove that K D ŒK;K� and that K D 1 or K is nonsolv-

able.





Appendix B

Solutions to the Exercises

These solutions fall somewhere between hints and complete so-
lutions. Students were expected to write out complete solutions.

1-1 By inspection, the only element of order 2 is c D a2 D b2.
Since gcg�1 also has order 2, it must equal c, i.e., gcg�1 D c
for all g 2 Q. Thus c commutes with all elements of Q, and
f1;cg is a normal subgroup of Q. The remaining subgroups
have orders 1, 4, or 8, and are automatically normal (see 1.36a).

1-2 The product ab D
�
1 1
0 1

�
, and

�
1 1
0 1

�n
D

�
1 n
0 1

�
.
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1-3 Consider the subsets fg;g�1g of G. Each set has exactly
2 elements unless g has order 1 or 2, in which case it has 1
element. Since G is a disjoint union of these sets, there must
be a (nonzero) even number of sets with 1 element, and hence
at least one element of order 2.

1-4 The symmetric group Sn contains a subgroup that is a di-
rect product of subgroups Sn1 , . . . , Snr .

1-5 Because the group G=N has order n, .gN /n D 1 for every
g 2 G (see 1.27). But .gN /n D gnN , and so gn 2 N . For the
second statement, consider the subgroup f1;sg of D3. It has
index 3 in D3, but the element t has order 2, and so t3 D t …
f1;sg.

1-6 (a) Let a;b 2 G. We are given that a2 D b2 D .ab/2 D e.
In particular, ababD e. On multiplying this on right by ba, we
find that ab D ba. (b) Show by induction that0@1 a b

0 1 c
0 0 1

1An D
0@1 na nbC

n.n�1/
2 ac

0 1 nc
0 0 1

1A :
1-7 Commensurability is obviously reflexive and symmetric,
and so it suffices to prove transitivity. We shall use that if a
subgroup H of a group G has finite index in G, then H \G0
has finite index in G0 for any subgroup G0 of G (because the
natural map G0=H \G0 ! G=H is injective). Using this, it
follows that if H1 and H3 are both commensurable with H2,
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then H1\H2\H3 is of finite index in H1\H2 and in H2\
H3 (and therefore also in H1 and H3). As H1\H3 �H1\
H2\H3, it also has finite index in each of H1 and H3.

1-8 By assumption, the set G is nonempty, so let a 2 G. Be-
causeG satisfies the cancellation law, the map x 7! axWG!G
is a permutuation of G, and some power of this permutation is
the identity permutation. Therefore, for some n � 1, anx D x
for all x 2G, and so an is a left neutral element. By counting,
one sees that every element has a left inverse, and so we can
apply (1.10a).

2-1 The key point is that hai D ha2i � hani. Apply (1.50) to
see that D2n breaks up as a product.

2-2 Note first that any group generated by a commuting set
of elements must be commutative, and so the group G in
the problem is commutative. According to (2.8), any map
fa1; : : : ;ang!A with A commutative extends uniquely to ho-
momorphism G!A, and so G has the universal property that
characterizes the free abelian group on the generators ai .

2-3 (a) If a ¤ b, then the word a � � �ab�1 � � �b�1 is reduced
and ¤ 1. Therefore, if anb�n D 1, then a D b. (b) is similar.
(c) The reduced form of xn, x ¤ 1, has length at least n.

2-4 (a) Universality. (b) C1 �C1 is commutative, and the
only commutative free groups are 1 and C1. (c) Suppose a
is a nonempty reduced word in x1; : : : ;xn, say a D xi � � � (or
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x�1i � � � ). For j ¤ i , the reduced form of Œxj ;a�
def
D xj ax

�1
j a�1

can’t be empty, and so a and xj don’t commute.

2-5 The unique element of order 2 is b2. Since gb2g�1 also
has order 2 for any g 2 Qn, we see that gb2g�1 D b2, and
so b2 lies in the centre. [Check that it is the full centre.] The
quotient group Qn=hb2i has generators a and b, and relations
a2
n�2
D 1, b2 D 1, bab�1 D a�1, which is a presentation for

D2n�2 (see 2.9).

2-6 (a) A comparison of the presentation Dn D hr;s j
rn; s2; srsr D 1i with that for G suggests putting r D ab and
s D a. Check (using 2.8) that there are homomorphisms:

Dn!G; r 7! ab; s 7! a;

G!Dn; a 7! s; b 7! s�1r .

The composites Dn ! G ! Dn and G ! Dn ! G are the
both the identity map on generating elements, and therefore
(2.8 again) are identity maps. (b) Omit.

2-7 The hint gives ab3a�1 D bc3b�1. But b3 D 1. So c3 D 1.
Since c4 D 1, this forces c D 1. From acac�1 D 1 this gives
a2 D 1. But a3 D 1. So a D 1. The final relation then gives
b D 1.

2-8 The elements x2, xy, y2 lie in the kernel, and it is easy
to see that hx;yjx2;xy;y2i has order (at most) 2, and so they
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must generate the kernel (at least as a normal group — the
problem is unclear). One can prove directly that these elements
are free, or else apply the Nielsen-Schreier theorem (2.6). Note
that the formula on p. 68 (correctly) predicts that the kernel is
free of rank 2 �2�2C1D 3

2-9 We have to show that if s and t are elements of a finite
group satisfying t�1s3t D s5, then the given element g is equal
to 1. Because the group is finite, sn D 1 for some n. If 3jn, the
proof is easy, and so we suppose that gcd.3;n/D 1. But then

3rCnr 0 D 1, some r;r 0 2 Z;

and so s3r D s. Hence

t�1st D t�1s3r t D .t�1s3t /r D s5r :

Now,

g D s�1.t�1s�1t /s.t�1st/D s�1s�5r ss5r D 1;

as required. [In such a question, look for a pattern. Note that g
has two conjugates in it, as does the relation for G, and so it is
natural to try to relate them.]

3-1 Let N be the unique subgroup of order 2 in G. Then G=N
has order 4, but there is no subgroup Q � G of order 4 with
Q\N D 1 (because every group of order 4 contains a group
of order 2), and so G ¤N oQ for any Q. A similar argument
applies to subgroups N of order 4.
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3-2 For any g 2 G, gMg�1 is a subgroup of order m, and
therefore equalsM . ThusM (similarlyN ) is normal inG, and
MN is a subgroup of G. The order of any element of M \N
divides gcd.m;n/D 1, and so equals 1. Now (1.51) shows that
M �N �MN , which therefore has order mn, and so equals
G.

3-3 Show that GL2.F2/ permutes the 3 nonzero vectors in
F2�F2 (2-dimensional vector space over F2).

3-4 The following solutions were suggested by readers. We
write the quaternion group as

QD f˙1;˙i;˙j;˙kg:

(A) Take a cube. Write the six elements of Q of order 4 on
the six faces with i opposite �i , etc.. Each rotation of the cube
induces an automorphism of Q, and Aut.Q/ is the symmetry
group of the cube, S4. (B) The group Q has one element of
order 2, namely �1, and six elements of order 4, namely, ˙i ,
˙j , ˙k. Any automorphism ˛ of Q must map �1 to itself
and permute the elements of order 4. Note that ij D k, jk D i ,
ki D j , so ˛ must send the circularly ordered set i;j;k to a
similar set, i.e., to one of the eight sets in the following table:

i j k �i �j k
i �j �k �i j �k
i k �j �i �k �j
i �k j �i k j

Because ˛.�1/ D �1, ˛ must permute the rows of the table,
and it is not difficult to see that all permutations are possible.
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3-5 The pair

N D

8<:
0@1 0 b
0 1 c
0 0 1

1A9=; and QD

8<:
0@a 0 0
0 a 0
0 0 d

1A9=;
satisfies the conditions (i), (ii), (iii) of (3.8). For example, for
(i) (Maple says that)0@a 0 b

0 a c
0 0 d

1A0@1 0 b
0 1 c
0 0 1

1A0@a 0 b
0 a c
0 0 d

1A�1 D
0@1 0 �

b
d
C
1
d
.bCab/

0 1 �
c
d
C
1
d
.cCac/

0 0 1

1A
It is not a direct product of the two groups because it is not
commutative.

3-6 Let g generate C1. Then the only other generator is g�1,
and the only nontrivial automorphism is g 7! g�1. Hence
Aut.C1/ D f˙1g. The homomorphism S3 ! Aut.S3/ is in-
jective because Z.S3/ D 1, but S3 has exactly 3 elements
a1;a2;a3 of order 2 and 2 elements b;b2 of order 3. The ele-
ments a1;b generate S3, and there are only 6 possibilities for
˛.a1/, ˛.b/, and so S3! Aut.S3/ is also onto.

3-7 (a) The element go.q/ 2 N , and so has order dividing
jN j. (c) The element g D .1;4;3/.2;5/, and so this is obvi-
ous. (d) By the first part, ..1;0; : : : ;0/;q/p D ..1; : : : ;1/;1/,
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and .1; : : : ;1/ has order p in .Cp/p . (e) We have .n;q/.n;q/D
.nn�1;qq/D .1;1/:

3-8 Let n �q 2Z.G/. Then

.n �q/.1 �q0/ D n �qq0

.1 �q0/.n �q/ D q0nq0�1 �q0q
all q0 2Q

�
H)

n 2 CN .Q/
q 2Z.Q/

and

.n �q/.n0 �1/ D nqn0q�1 �q

.n0 �1/.n �q/ D n0n �q
n0 2N

�
H) n�1n0nD qn0q�1:

The converse and the remaining statements are easy.

4-1 Let 'WG=H1 ! G=H2 be a G-map, and let '.H1/ D
gH2. For a 2 G, '.aH1/D a'.H1/D agH2. When a 2H1,
'.aH1/DgH2, and so agH2DgH2; hence g�1ag 2H2, and
so a 2 gH2g�1. We have shown H1 � gH2g�1. Conversely,
if g satisfies this condition, the aH1 7! agH2 is a well-defined
map of G-sets.

4-2 (a) LetH be a proper subgroup ofG, and letN DNG.H/.
The number of conjugates of H is .G W N/ � .G W H/ (see
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4.8). Since each conjugate of H has .H W 1/ elements and the
conjugates overlap (at least) in f1g, we see thatˇ̌̌[

gHg�1
ˇ̌̌
< .G WH/.H W 1/D .G W 1/:

(b) Use that the action of G on the left cosets of H de-
fines a homomorphism 'WG! Sn, and look at the finite group
G=Ker.'/.

(c) Let G D GLn.k/ with k an algebraically closed field.
Every element of G is conjugate to an upper triangular matrix
(its Jordan form). Therefore G is equal to the union of the con-
jugates of the subgroup of upper triangular matrices.

(d) Choose S to be a set of representatives for the conjugacy
classes.

4-3 Let H be a subgroup of a finite group G, and assume that
H contains at least one element from each conjugacy class of
G. Then G is the union of the conjugates of H , and so we can
apply Exercise 4-2. (According to Serre 2003, this result goes
back to Jordan in the 1870s.)

4-4 According to 4.17, 4.18, there is a normal subgroup N of
order p2, which is commutative. Now show that G has an el-
ement c of order p not in N , and deduce that G D N o hci,
etc..

4-5 Let H be a subgroup of index p, and let N be the kernel
of G! Sym.G=H/ — it is the largest normal subgroup of G
contained inH (see 4.22). IfN ¤H , then .H WN/ is divisible
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by a prime q � p, and .G W N/ is divisible by pq. But pq
doesn’t divide pŠ — contradiction.

4-6 EmbedG into S2m, and letN DA2m\G. ThenG=N ,!
S2m=A2m D C2, and so .G W N/ � 2. Let a be an element of
order 2 in G, and let b1; : : : ;bm be a set of right coset rep-
resentatives for hai in G, so that G D fb1;ab1; : : : ;bm;abmg.
The image of a in S2m is the product of the m transpositions
.b1;ab1/; : : : ; .bm;abm/, and since m is odd, this implies that
a …N .

4-7 The set X of k-cycles in Sn is normal, and so the group it
generates is normal (1.38). But, when n� 5, the only nontrivial
normal subgroups of Sn are An and Sn itself. If k is odd, then
X is contained in An, and if k is even, then it isn’t.

4-8 (a) The number of possible first rows is 23� 1; of second
rows 23�2; of third rows 23�22; whence .G W 1/D 7�6�4D
168. (b) Let V D F32. Then jV j D 23 D 8. Each line through
the origin contains exactly one point ¤ origin, and so jX j D
7. (c) We make a list of possible characteristic and minimal
polynomials:

Characteristic poly. Min’l poly. Size Order of element in class
1 X3CX2CXC1 XC1 1 1

2 X3CX2CXC1 .XC1/2 21 2

3 X3CX2CXC1 .XC1/3 42 4

4 X3C1 Same 56 3

5 X3CXC1 (irreducible) Same 24 7

6 X3CX2C1 (irreducible) Same 24 7

Here size denotes the number of elements in the conjugacy
class. Case 5: Let ˛ be an endomorphism with characteristic
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polynomial X3CX C 1. Check from its minimal polynomial
that ˛7 D 1, and so ˛ has order 7. Note that V is a free
F2Œ˛�-module of rank one, and so the centralizer of ˛ in G
is F2Œ˛�\G D h˛i. Thus jCG.˛/j D 7, and the number of
elements in the conjugacy class of ˛ is 168=7 D 24. Case 6:
Exactly the same as Case 5. Case 4: Here V D V1˚V2 as an
F2Œ˛�-module, and

EndF2Œ˛�.V /D EndF2Œ˛�.V1/˚EndF2Œ˛�.V2/:

Deduce that jCG.˛/j D 3, and so the number of conjugates
of ˛ is 168

3 D 56. Case 3: Here CG.˛/ D F2Œ˛�\G D h˛i,
which has order 4. Case 1: Here ˛ is the identity element. Case
2: Here V D V1˚ V2 as an F2Œ˛�-module, where ˛ acts as
1 on V1 and has minimal polynomial X2C 1 on V2. Either
analyse, or simply note that this conjugacy class contains all
the remaining elements. (d) Since 168 D 23 � 3� 7, a proper
nontrivial subgroup H of G will have order

2;4;8;3;6;12;24;7;14;28;56;21;24, or 84:

IfH is normal, it will be a disjoint union of f1g and some other
conjugacy classes, and so .N W 1/D 1C

P
ci with ci equal to

21, 24, 42, or 56, but this doesn’t happen.

4-9 Since G=Z.G/ ,!Aut.G/, we see that G=Z.G/ is cyclic,
and so by (4.19) that G is commutative. If G is finite and not
cyclic, it has a factor Cpr �Cps etc..

4-10 Clearly .ij / D .1j /.1i/.1j /. Hence any subgroup con-
taining .12/; .13/; : : : contains all transpositions, and we know
Sn is generated by transpositions.
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4-11 Note that CG.x/\H D CH .x/, and so H=CH .x/ �
H �CG.x/=CG.x//. Prove each class has the same number c
of elements. Then

jKjD .G WCG.x//D .G WH �CG.x//.H �CG.x/ WCG.x//D kc:

4-12 (a) The first equivalence follows from the preceding prob-
lem. For the second, note that � commutes with all cycles in
its decomposition, and so they must be even (i.e., have odd
length); if two cycles have the same odd length k, one can
find a product of k transpositions which interchanges them,
and commutes with � ; conversely, show that if the partition
of n defined by � consists of distinct integers, then � com-
mutes only with the group generated by the cycles in its cycle
decomposition. (b) List of conjugacy classes in S7, their size,
parity, and (when the parity is even) whether it splits in A7.

Cycle Size Parity Splits in A7‹ C7.�/ contains
1 .1/ 1 E N
2 .12/ 21 O
3 .123/ 70 E N .67/
4 .1234/ 210 O
5 .12345/ 504 E N .67/
6 .123456/ 840 O
7 .1234567/ 720 E Y 720 doesn’t divide 2520
8 .12/.34/ 105 E N .67/
9 .12/.345/ 420 O
10 .12/.3456/ 630 E N .12/
11 .12/.3456/ 504 O
12 .123/.456/ 280 E N .14/.25/.36/
13 .123/.4567/ 420 O
14 .12/.34/.56/ 105 O
15 .12/.34/.567/ 210 E N .12/
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4-13 According to GAP, n D 6, a 7! .13/.26/.45/, b 7!
.12/.34/.56/.

4-14 Since Stab.gx0/D gStab.x0/g�1, ifH � Stab.x0/ then
H � Stab.x/ for all x, and so H D 1, contrary to hypothesis.
Now Stab.x0/ is maximal, and so H � Stab.x0/ D G, which
shows that H acts transitively.

5-1 Let p be a prime dividing jGj and let P be a Sylow p-
subgroup, of order pm say. The elements of P all have order
dividing pm, and it has at most

1CpC�� �Cpm�1 D
pm�1

p�1
< pm

elements of order dividing pm�1; therefore P must have an el-
ement of order pm, and so it is cyclic. Each Sylow p-subgroup
has exactly pm elements of order dividing pm, and so there
can be only one. Now (5.9) shows that G is a product of its
Sylow subgroups.

6-2 No, D4 and the quaternion group have isomorphic com-
mutator subgroups and quotient groups but are not isomorphic.
Similarly, Sn and An�C2 are not isomorphic when n� 5.





Appendix C

Two-Hour Examination

1. Which of the following statements are true (give brief jus-
tifications for each of (a), (b), (c), (d); give a correct set of
implications for (e)).

(a) If a and b are elements of a group, then a2 D 1; b3 D
1 H) .ab/6 D 1.

(b) The following two elements are conjugate in S7:�
1 2 3 4 5 6 7
3 4 5 6 7 2 1

�
;�

1 2 3 4 5 6 7
2 3 1 5 6 7 4

�
:

(c) IfG andH are finite groups andG�A594�H �A594;
then G �H .
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(d) The only subgroup of A5 containing .123/ is A5 itself.
(e) Nilpotent H) cyclic H) commutative H) solvable

(for a finite group).

2. How many Sylow 11-subgroups can a group of order 110D
2 � 5 � 11 have? Classify the groups of order 110 containing a
subgroup of order 10. Must every group of order 110 contain a
subgroup of order 10?

3. Let G be a finite nilpotent group. Show that if every com-
mutative quotient of G is cyclic, then G itself is cyclic. Is the
statement true for nonnilpotent groups?

4. (a) Let G be a subgroup of Sym.X/, where X is a set with
n elements. If G is commutative and acts transitively on X ,
show that each element g¤ 1 of G moves every element of X .
Deduce that .G W 1/� n.
(b) For each m � 1, find a commutative subgroup of S3m of
order 3m.
(c) Show that a commutative subgroup of Sn has order � 3

n
3 .

5. Let H be a normal subgroup of a group G, and let P be
a subgroup of H . Assume that every automorphism of H is
inner. Prove that G DH �NG.P /.

6. (a) Describe the group with generators x and y and defining
relation yxy�1 D x�1.
(b) Describe the group with generators x and y and defining
relations yxy�1 D x�1, xyx�1 D y�1.
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You may use results proved in class or in the notes, but you
should indicate clearly what you are using.
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SOLUTIONS

1. (a) False: in ha;bja2;b3i, ab has infinite order.
(b) True, the cycle decompositions are (1357)(246),

(123)(4567).
(c) True, use the Krull-Schmidt theorem.
(d) False, the group it generates is proper.
(e) Cyclic H) commutative H) nilpotent H) solvable.

2. The number of Sylow 11-subgroups s11 D 1;12; : : : and di-
vides 10. Hence there is only one Sylow 11-subgroup P . Have

G D P o� H; P D C11; H D C10 or D5:

Now have to look at the maps � WH ! Aut.C11/D C10. Yes,
by the Schur-Zassenhaus lemma.

3. Suppose G has class > 1. Then G has quotientH of class 2.
Consider

1!Z.H/!H !H=Z.H/! 1:

Then H is commutative by (4.17), which is a contradiction.
Therefore G is commutative, and hence cyclic.

Alternatively, by induction, which shows that G=Z.G/ is
cyclic.

No! In fact, it’s not even true for solvable groups (e.g., S3).

4. (a) If gx D x, then ghx D hgx D hx. Hence g fixes every
element ofX , and so gD 1. Fix an x 2X ; then g 7! gx WG!
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X is injective. [Note that Cayley’s theorem gives an embedding
G ,! Sn, nD .G W 1/.]

(b) Partition the set into subsets of order 3, and let G D
G1� � � ��Gm.

(c) Let O1; : : : ;Or be the orbits of G, and let Gi be the
image of G in Sym.Oi /. Then G ,!G1� � � ��Gr , and so (by
induction),

.G W 1/� .G1 W 1/ � � �.Gr W 1/� 3
n1
3 � � �3

nr
3 D 3

n
3 :

5. Let g 2 G, and let h 2H be such that conjugation by h on
H agrees with conjugation by g. Then gPg�1 D hPh�1, and
so h�1g 2NG.P /.

6. (a) It’s the group .

G D hxio hyi D C1o� C1

with � WC1!Aut.C1/D˙1. Alternatively, the elements can
be written uniquely in the form xiyj , i;j 2 Z, and yx D
x�1y.

(b) It’s the quaternion group. From the two relations get

yx D x�1y; yx D xy�1

and so x2 D y2. The second relation implies

xy2x�1 D y�2;D y2;
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and so y4 D 1.
Alternatively, the Todd-Coxeter algorithm shows that it

is the subgroup of S8 generated by .1287/.3465/ and
.1584/.2673/.
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action
doubly transitive, 113
effective, 110
faithful, 110
free, 114
imprimitive, 140
k-fold transitive, 113
left, 109
linear, 194
primitive, 140
right, 111
transitive, 113
trivial, 109

algebra
division, 205
group, 200
quaternion, 205
semisimple, 212

simple, 203
algorithm

Todd-Coxeter, 76, 137
An, 127
automorphism

inner, 84
of a bilinear form, 17
of a group, 83
outer, 84

basis
for a commutative

group, 49
block, 141

centralizer
of element, 115
of subgroup, 230
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centralizer, of a subalgebra,
206

centre
of a group, 23

class
nilpotency, 177

class equation
class, 119

Cm, 15
commutator, 48, 70
composition factors, 170
conjugacy class, 112
coset

left, 32
right, 32

Coxeter system, 76
cycle, 128

dimension, 205
disjoint cycles

disjoint, 128
Dn, 25

element
neutral, 12

elementary divisors, 52
equivariant map, 111
exact sequence, 98
exponent

of a group, 59, 75
extension

central, 98
isomorphic, 98
split, 98

extension, of groups, 98

faithful representation, 192
flag

full, 154
Frattini’s argument, 182

G-map, 111
G-set, 109
generates, 24
generators

of a group, 69
GLn.F /, 17
group, 11

4-, 27
A-, 183
abelian, 16
additive, 12
alternating, 127
Burnside, 75
commutative, 16
complete, 85
Coxeter, 77
cyclic, 24
dihedral, 25
finite reflection, 78
finitely presented, 74
free, 66
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free abelian, 70
general linear, 17
indecomposable, 187
isotropy, 113
metabelian, 177
metacyclic, 233
multiplicative, 12
nilpotent, 177
of rigid motions, 111
of symmetries, 16
orthogonal, 18
p, 14
permutation, 16
primitive, 140
quaternion, 27

generalized, 70
quotient, 41
reflection, 78
simple, 37
soluble, 170
solvable, 136, 170
special linear, 40
symplectic, 19
with operators, 183

group.
factor, 41

groups
of order 12, 159
of order 2mpn, m �

3., 161
of order 2p, 120

of order 30, 158
of order 60, 162
of order 99, 156
of order p, 34
of order p2, 121
of order p3, 160
of order pq, 157
of small order, 28

homogeneous, 113
homomorphism

admissible, 184
of groups, 30

index
of a subgroup, 33

invariant factors, 52
inverse, 12
inversion, of a permutation,

125
isomorphism

ofG-sets, 111
of groups, 14, 30

kernel, 39
Klein Viergruppe, 27

length
of a subnormal series,

166
solvable, 176
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length of a cycle, 128

map, ofG-sets, 111
module

semisimple, 192
simple, 192

monoid
free, 62

negative, 12
normalizer

of a subgroup, 115

opposite algebra, 192
orbit, 112
order

of a group, 14
of an element, 15

partition
of a natural number,

131
stabilized, 139

permutation
even, 125
odd, 125

presentation
of a group, 69

problem
Burnside, 75
restricted Burnside, 75

word, 74
product

direct, 16, 46
knit, 97
semidirect, 90
Zappa-Szép, 97

projector, 198

quotients, of a normal series
of a normal series, 166

rank
of a commutative

group, 52
of a Coxeter system, 77
of a free group, 69

reduced form
of a word, 64

reflection, 78
relations, 69

defining, 69
representation

linear, 194
matrix, 192

series
admissible subnormal,

186
ascending central, 177
composition, 166
derived, 175
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normal, 165
solvable, 170
subnormal, 165
without repetitions,

165
signature, 125
skew field, 205
Sn, 16, 28
stabilizer

of a subset, 115
of an element, 113

stable subset
stable, 111

subgroup, 23
A-invariant, 184
admissible, 184
characteristic, 88
commutator, 174
first derived, 174
generated by a set, 24
normal, 35
normal generated by a

set, 38
second derived, 175
Sylow p-, 147
torsion, 17

subset
normal, 38

support
of a cycle, 128

table
multiplication, 21

theorem
Cauchy, 119
Cayley, 31
centre of a p-group,

121
commutative groups

have bases, 50
correspondence, 44
double centralizer, 207
factorization of homo-

morphisms, 42
Feit-Thompson, 171
Galois, 134
isomorphism, 43
Jordan-Hölder, 168
Krull-Schmidt, 188
Lagrange, 33
Maschke, 196
Nielsen-Schreier, 68
nilpotency condition,

181
primitivity condition,

141
Schur-Zassenhaus, 99
structure of commuta-

tive groups, 52
structure of Coxeter

groups, 79
Sylow I, 149
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Sylow II, 151
Sylow subgroups of

subgroups, 155
transposition, 28

word, 62
reduced, 64

words
equivalent, 65
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