Group Theory

J.S. Milne

Version 3.11
March 28, 2011






The first version of these notes was written for a first-year grad-
uate algebra course. As in most such courses, the notes concen-
trated on abstract groups and, in particular, on finite groups.
However, it is not as abstract groups that most mathematicians
encounter groups, but rather as algebraic groups, topological
groups, or Lie groups, and it is not just the groups themselves
that are of interest, but also their linear representations. It is
my intention (one day) to expand the notes to take account of
this, and to produce a volume that, while still modest in size
(c200 pages), will provide a more comprehensive introduction
to group theory for beginning graduate students in mathemat-
ics, physics, and related fields.
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NOTATIONS.

We use the standard (Bourbaki) notations: N = {0,1,2,...}; Z
is the ring of integers; Q is the field of rational numbers; R is
the field of real numbers; C is the field of complex numbers; Fy
is a finite field with ¢ elements where ¢ is a power of a prime
number. In particular, F,, = Z/ pZ for p a prime number.

For integers m and n, m|n means that m divides n, i.e.,
n € mZ. Throughout the notes, p is a prime number, i.e.,
p=2,3,5711,...,1000000007,....

Given an equivalence relation, [*] denotes the equivalence
class containing *. The empty set is denoted by @. The car-
dinality of a set S is denoted by |S| (so |S| is the number of
elements in S when S is finite). Let / and A be sets; a family
of elements of A indexed by I, denoted (a;);e7, is a function
irap ] — Al

Rings are required to have an identity element 1, and ho-
momorphisms of rings are required to take 1 to 1. An element
a of a ring is a unit if it has an inverse (element b such that
ab =1 = ba). The identity element of a ring is required to act

as 1 on a module over the ring.
X CY Xisasubsetof Y (not necessarily proper);
X &Yy X is defined to be Y, or equals Y by definition;
X ~Y X isisomorphictoY;
X ~Y X andY are canonically isomorphic (or there is a given or unique isomorphism);

! A family should be distinguished from a set. For example, if f is the func-
tion Z — 7Z/37Z sending an integer to its equivalence class, then { f(i) | i € Z}
is a set with three elements whereas (f(i));cz is family with an infinite index
set.



PREREQUISITES

An undergraduate “abstract algebra” course.

COMPUTER ALGEBRA PROGRAMS

GAP is an open source computer algebra program, emphasiz-
ing computational group theory. To get started with GAP, I
recommend going to Alexander Hulpke’s page http://www.
math.colostate.edu/~hulpke/CGT/education.html
where you will find versions of GAP for both Windows and
Macs and a guide “Abstract Algebra in GAP”. The Sage page
http://www.sagemath.org/ provides a front end for GAP
and other programs. I also recommend N. Carter’s “Group
Explorer” http://groupexplorer.sourceforge.net
for exploring the structure of groups of small order. Earlier
versions of these notes (v3.02) described how to use Maple for
computations in group theory.
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The theory of groups of finite order may be said to date from the
time of Cauchy. To him are due the first attempts at classifica-
tion with a view to forming a theory from a number of isolated
facts. Galois introduced into the theory the exceedingly impor-
tant idea of a [normal] sub-group, and the corresponding divi-
sion of groups into simple and composite. Moreover, by shewing
that to every equation of finite degree there corresponds a group
of finite order on which all the properties of the equation de-
pend, Galois indicated how far reaching the applications of the
theory might be, and thereby contributed greatly, if indirectly, to
its subsequent developement.

Many additions were made, mainly by French mathemati-
cians, during the middle part of the [nineteenth] century. The
first connected exposition of the theory was given in the third
edition of M. Serret’s “Cours d’Algébre Supérieure,” which was
published in 1866. This was followed in 1870 by M. Jordan’s
“Traité des substitutions et des équations algébriques.” The
greater part of M. Jordan’s treatise is devoted to a developement
of the ideas of Galois and to their application to the theory of
equations.

No considerable progress in the theory, as apart from its ap-
plications, was made till the appearance in 1872 of Herr Sylow’s
memoir “Théorémes sur les groupes de substitutions” in the fifth
volume of the Mathematische Annalen. Since the date of this
memoir, but more especially in recent years, the theory has ad-
vanced continuously.

W. Burnside, Theory of Groups of Finite Order, 1897.



Galois introduced the concept of a normal subgroup in 1832, and
Camille Jordan in the preface to his Traifé... in 1870 flagged
Galois’ distinction between groupes simples and groupes com-
posées as the most important dichotomy in the theory of permu-
tation groups. Moreover, in the Traité, Jordan began building a
database of finite simple groups — the alternating groups of de-
gree at least 5 and most of the classical projective linear groups
over fields of prime cardinality. Finally, in 1872, Ludwig Sylow
published his famous theorems on subgroups of prime power
order.

R. Solomon, Bull. Amer. Math. Soc., 2001.

Why are the finite simple groups classifiable?

It is unlikely that there is any easy reason why a classification
is possible, unless someone comes up with a completely new
way to classify groups. One problem, at least with the current
methods of classification via centralizers of involutions, is that
every simple group has to be tested to see if it leads to new
simple groups containing it in the centralizer of an involution.
For example, when the baby monster was discovered, it had a
double cover, which was a potential centralizer of an involution
in a larger simple group, which turned out to be the monster.
The monster happens to have no double cover so the process
stopped there, but without checking every finite simple group
there seems no obvious reason why one cannot have an infinite
chain of larger and larger sporadic groups, each of which has
a double cover that is a centralizer of an involution in the next
one. Because of this problem (among others), it was unclear un-
til quite late in the classification whether there would be a finite
or infinite number of sporadic groups.

Richard Borcherds, mo38161.



Chapter 1

Basic Definitions and Results

The axioms for a group are short and natural. . .. Yet some-
how hidden behind these axioms is the monster simple group,
a huge and extraordinary mathematical object, which ap-
pears to rely on numerous bizarre coincidences to exist. The
axioms for groups give no obvious hint that anything like this
exists.

Richard Borcherds, in Mathematicians 2009.

Definitions and examples

DEFINITION 1.1 A group is a set G together with a binary

operation
(a,b)>axb:GxG—>G
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satisfying the following conditions:
G1: (associativity) for all a,b,c € G,

(axb)xc=ax(bxc);

G2: (existence of a neutral element) there exists an element
e € G such that

axe=a=exa (1)
foralla € G;
G3: (existence of inverses) for each a € G, there exists an a’ €
G such that

axad =e=d xa.

We usually abbreviate (G, *) to G. Also, we usually write ab
for a x b and 1 for e; alternatively, we write a + b for a x b and
0 for e. In the first case, the group is said to be multiplicative,
and in the second, it is said to be additive.

1.2 In the following, a,b, ... are elements of a group G.

(a) An element e satisfying (1)) is called a neutral element.
If ¢’ is a second such element, then ¢/ = exe’ =e. In
fact, e is the unique element of G such that e xe = e
(apply G3).

(b) If bxa = e and a * ¢ = e, then

b=bxe=bx(axc)=(bxa)xc=ex*xc=c.

Hence the element a’ in (G3) is uniquely determined by
a. We call it the inverse of a, and denote it a~1 (or the
negative of a, and denote it —a).
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(c) Note that (G1) shows that the product of any ordered
triple ag, az, a3 of elements of G is unambiguously de-
fined: whether we form ajay first and then (aiaz)as,
or azas first and then aj(azas), the result is the same.
In fact, (G1) implies that the product of any ordered -
tuple ay, az...., ap of elements of G is unambiguously
defined. We prove this by induction on 7. In one multi-
plication, we might end up with

(a1---ai)(@iy1---an) 2
as the final product, whereas in another we might end up
with

(ay---aj)(aj+1---an). 3)
Note that the expression within each pair of parenthe-
ses is well defined because of the induction hypotheses.
Thus, if i = j, @) equals (B). If i # j, we may suppose
i < j.Then

(@1+++a;) (@i 41+ an) =
(ar--a;)((@it1--a;)(aj41---an))

(a1--aj)ajy1---an) =

((a1---a)(@jr1--a;))(@jt1---an)

and the expressions on the right are equal because of
(G1).
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1 -1
ne1°tay s ie, the

inverse of a product is the product of the inverses in the
reverse order.
(e) (G3) implies that the cancellation laws hold in groups,

(d) The inverse of ajaz---ay is a;la_

ab=ac = b=c, ba=ca — b=c

(multiply on left or right by a—1). Conversely, if G is
finite, then the cancellation laws imply (G3): the map
x — ax:G — G is injective, and hence (by counting)
bijective; in particular, e is in the image, and so a has
a right inverse; similarly, it has a left inverse, and the
argument in (b) above shows that the two inverses are
equal.

Two groups (G, *) and (G’, *’) are isomorphic if there ex-
ists a one-to-one correspondence a <> a’, G <> G’, such that
(axb) =a’' ' b foralla,b €G.

The order |G| of a group G is its cardinality. A finite group
whose order is a power of a prime p is called a p-group.

For an element a of a group G, define

aa---a n>0 (ncopiesof a)
a=1 e n=0
ala=l.e.a™ n<0 (In|copiesofa™l)

The usual rules hold:

aa" =™t (@™ =d™", allmneZ. @)
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It follows from (@) that the set
{neZla" =e}

is an ideal in Z, and so equals mZ for some integer m > 0.
When m = 0, a™ # e unless n = 0, and « is said to have infinite
order. When m # 0, it is the smallest integer m > 0 such that
a™ = e, and a is said to have finite order m. In this case,a ™! =
a™ 1 and

a’ =e < mjn.

EXAMPLES

1.3 Let Coo be the group (Z,+), and, for an integer m > 1,
let Cp, be the group (Z/mZ,+).

1.4 Permutation groups. Let S be a set and let Sym(S) be
the set of bijections «: S — S. We define the product of two
elements of Sym(S) to be their composite:

aff =aop.
For any o, 8,y € Sym(S) and s € S,
((@oB)oy)(s) = (o p)(y(s)) ®)
=a(B(y(s))
= (ao(Boy))(s),

and so associativity holds. The identity map s +> s is an identity
element for Sym(S), and inverses exist because we required
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the elements of Sym(S) to be bijections. Therefore Sym(S) is
a group, called the group of symmetries of S. For example, the
permutation group on n letters Sy is defined to be the group
of symmetries of the set {1,...,n} — it has order n!.

1.5 When G and H are groups, we can construct a new group
G x H, called the (direct) product of G and H. As a set, it is
the cartesian product of G and H, and multiplication is defined

by
(g.h)(g' 1) = (gg'.hit").
1.6 A group G is commutative (or abelian)' if

ab =ba, alla,beC.

In a commutative group, the product of any finite (not necessar-
ily ordered) family S of elements is well defined, for example,
the empty product is e. Usually, we write commutative groups
additively. With this notation, Equation (4) becomes:

ma+na=m+n)a, m(na)=mna.
When G is commutative,
m(a+b) =ma+mbformeZanda,beGqG,
and so the map

(m,a)>ma:ZxG —> G

1“Abelian group” is more common than “commutative group”, but I prefer
to use descriptive names where possible.
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makes A4 into a Z-module. In a commutative group G, the el-
ements of finite order form a subgroup Gors of G, called the
torsion subgroup.

1.7 Let F be a field. The n x n matrices with coefficients in
F and nonzero determinant form a group GLj (F) called the
general linear group of degree n. For a finite dimensional F -
vector space V', the F'-linear automorphisms of V' form a group
GL(V) called the general linear group of V. Note that if V'
has dimension 7, then the choice of a basis determines an iso-
morphism GL(V') — GL,, (F) sending an automorphism to its
matrix with respect to the basis.

1.8 Let V be a finite dimensional vector space over a field
F. A bilinear form on V is a mapping ¢:V x V — F that is
linear in each variable. An automorphism of such a ¢ is an
isomorphism «: V' — V' such that

d(av,aw) = ¢(v,w) forall v,w € V. 6)

The automorphisms of ¢ form a group Aut(¢). Let e1,...,en
be a basis for V, and let

P = (¢(ei.ej)1<i,j<n

be the matrix of ¢. The choice of the basis identifies Aut(¢)
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with the group of invertible matrices 4 such that?
AT.P.A=P. @)
When ¢ is symmetric, i.e.,
o(v,w) =¢(w,v)allv,w eV,
and nondegenerate, Aut(¢) is called the orthogonal group of
’ When ¢ is skew-symmetric, i.e.,

(v, w)=—¢(w,v)allv,w €V,

2When we use the basis to identify ¥ with F”, the pairing ¢ becomes

ap by by
( : ),( : )H(al,...,an)~P~( : )
an bn bn

If A is the matrix of & with respect to the basis, then & corresponds to the map

ay ay
( : ) A ( : ) .Therefore, (6) becomes the statement that
a

an n

b1 by
(al,..‘,a,,)~AT~PvA~( : ):(al,...,a,,)~P~( : )
bn bn
aj b
for all ( : ),( : )EF”.
a.n b’n

On examining this statement on the standard basis vectors for F'”*, we see that it
is equivalent to (7).
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and nondegenerate, Aut(¢) is called the symplectic group of
¢. In this case, there exists a basis for V' for which the matrix

of ¢ is
szz(—(f)m I(’)”), 2m=n,

and the group of invertible matrices A such that
AV oA = Jom

is called the symplectic group Sp,,,,.

REMARK 1.9 A set S together with a binary operation
(a,b) > a-b:S xS — S is called a magma. When the bi-
nary operation is associative, (S, -) is called a semigroup. The
product

HA gal...an

of any sequence A = (a;)1<;<n of elements in a semigroup S
is well-defined (see[T.2{c)), and for any pair A and B of such

sequences,
(ITA{18)=]1(4uB). (3

Let @ be the empty sequence, i.e., the sequence of elements in
S indexed by the empty set. What should [[@ be? Clearly, we
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should have
T[T =]]Jwu4
= HA
=[Jcauo
~(4)(IT).

In other words, [] @ should be a neutral element. A semigroup
with a neutral element is called a monoid. In a monoid, the
product of any finite (possibly empty) sequence of elements is
well-defined, and (8] holds.

ASIDE 1.10 (a) The group conditions (G2,G3) can be replaced by the
following weaker conditions (existence of a left neutral element and
left inverses): (G2) there exists an e such that e * a = a for all a;
(G3’) for each a € G, there exists an a’ € G such that a’ *a = e. To
see that these imply (G2) and (G3), let a € G, and apply (G3') to find
a’ and a” such thata’ *a = e and a”’ *a’ = e. Then

axa ' =ex(axa’)
=(a"*a")x(a*a’)
=a" x((a@' *xa)*a’)
=a’ xa
=e,
whence (G3), and

a=exa=(axa)*a=ax(a *a)=axe,
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whence (G2).

(b) A group can be defined to be a set G with a binary operation
* satisfying the following conditions: (gl) * is associative; (g2) G
is nonempty; (g3) for each a € G, there exists an @’ € G such that
a’ *a is neutral. As there is at most one neutral element in a set with
an associative binary operation, these conditions obviously imply those
in (a). They are minimal in the sense that there exist sets with a binary
operation satisfying any two of them but not the third. For example,
(N, +) satisfies (g1) and (g2) but not (g3); the empty set satisfies (g1)
and (g3) but not (g2); the set of 2 X 2 matrices with coefficents in a
field and with A * B = A B — BA satisfies (g2) and (g3) but not (g1).

Multiplication tables

A binary operation on a finite set can be described by its mul-
tiplication table:

ee ea eb ec
ae a* ab ac
be ba b% bc
ce ca c¢b ¢

o SN R

The element e is an identity element if and only if the first
row and column of the table simply repeat the elements. In-
verses exist if and only if each element occurs exactly once
in each row and in each column (see [I.2k). If there are n el-
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ements, then verifying the associativity law requires checking
n3 equalities.

For the multiplication table of S3, see the front page. Note
that each colour occurs exactly once in each row and and each
column.

This suggests an algorithm for finding all groups of a given
finite order 1, namely, list all possible multiplication tables and
check the axioms. Except for very small n, this is not practi-
cal! The table has n? positions, and if we allow each position
to hold any of the n elements, then that gives a total of n’
possible tables very few of which define groups. For exam-
ple, there are 84 = 6277101735386 680763835789423207
666416102355444464034512896 binary operations on a set
with 8 elements, but only five isomorphism classes of groups

of order 8 (see[d.21).

Subgroups
PROPOSITION 1.11 Let .S be a nonempty subset of a group G.
If

S1: a,beS — ab e S,and
S2: aeS = ales,

then the binary operation on G makes S into a group.
PROOF. (S1) implies that the binary operation on G defines

a binary operation S X § — § on S, which is automatically
associative. By assumption S contains at least one element a,
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its inverse 1, and the product e = aa~!. Finally (S2) shows
that the inverses of elements in S lie in S'. O

A nonempty subset S satisfying (S1) and (S2) is called a
subgroup of G. When S is finite, condition (S1) implies (S2):
let a € S; then {a,a?,...} C S, and so a has finite order, say
a" =e;now a~! = a1 € S. The example (N, +) C (Z,+)
shows that (S1) does not imply (S2) when S is infinite.

EXAMPLE 1.12 The centre of a group G is the subset
Z(G)={ge€G|gx=xgforallx € G}.

It is a subgroup of G.

PROPOSITION 1.13 An intersection of subgroups of G is a
subgroup of G.

PROOF. Itis nonempty because it contains e, and (S1) and (S2)
obviously hold. o

REMARK 1.14 It is generally true that an intersection of sub-
objects of an algebraic object is a subobject. For example, an
intersection of subrings of a ring is a subring, an intersection
of submodules of a module is a submodule, and so on.

PROPOSITION 1.15 For any subset X of a group G, there is
a smallest subgroup of G containing X . It consists of all fi-
nite products of elements of X and their inverses (repetitions
allowed).
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PROOF. The intersection S of all subgroups of G containing X
is again a subgroup containing X, and it is evidently the small-
est such group. Clearly S contains with X, all finite products of
elements of X and their inverses. But the set of such products
satisfies (S1) and (S2) and hence is a subgroup containing X .
It therefore equals S. O

The subgroup S given by the proposition is denoted (X),
and is called the subgroup generated by X . For example, (@) =
{e}. If every element of X has finite order, for example, if G
is finite, then the set of all finite products of elements of X is
already a group and so equals (X).

We say that X generates G if G = (X), i.e., if every ele-
ment of G can be written as a finite product of elements from
X and their inverses. Note that the order of an element a of a
group is the order of the subgroup (a) it generates.

EXAMPLES

1.16 The cyclic groups. A group is said to be cyclic if it is
generated by a single element, i.e., if G = (r) for some r € G.
If r has finite order 7, then

G=A{err? . ../ aCy, rl<i modn,
and G can be thought of as the group of rotational symmetries
about the centre of a regular polygon with n-sides. If r has

infinite order, then

G:{...,r_i,...,r_l,e,r,....ri,...}%Coo, rli.
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Thus, up to isomorphism, there is exactly one cyclic group of
order n for each n < oco. In future, we shall loosely use C; to
denote any cyclic group of order n (not necessarily Z/nZ or
7).

1.17 The dihedral groups D3 For n > 3, D, is the group
of symmetries of a regular polygon with n-sides.* Number
the vertices 1,...,n in the counterclockwise direction. Let r
be the rotation through 27 /n about the centre of polygon (so
i —i-+1 modn), and let s be the reflection in the line (= ro-
tation about the line) through the vertex 1 and the centre of the
polygon (soi +— n +2—i mod n). For example, the pictures

3This group is denoted D>, or D, depending on whether the author is
viewing it abstractly or concretely as the symmetries of an z-polygon (or perhaps
on whether the author is a group theorist or not; see mo48434).

“More formally, D,, can be defined to be the subgroup of S, generated by
r:i — i+ 1 (mod n) and s:i — n+ 2 —1i (mod n). Then all the statements
concerning D, can proved without appealing to geometry.
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11

2«3

r=1->2—-3->1

S =

11
s = 24
33

r=1-2—-3-4—-1

illustrate the groups D3 and Dg4. In the general case

1

r*=e; s“=e;, Ssrs=r_ (sosr:r"_ls).
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These equalites imply that
Dy ={e.r, ., r™ Ls,rs, .. r" s},

and it is clear from the geometry that the elements of the set
are distinct, and so | Dy | = 2n.

Let ¢ be the reflection in the line through the midpoint of the
side joining the vertices 1 and 2 and the centre of the polygon
(soi+>n+3—i modn).Thenr =ts. Hence Dy = (s,t) and

s2=e, 2=e, @s)"=e=(s1)".

We define D1 to be C; = {1,r} and D, to be C, x Cp =
{1,r,s,rs}. The group D5 is also called the Klein Viergruppe
or, more simply, the 4-group. Note that D3 is the full group
of permutations of {1,2,3}. It is the smallest noncommutative
group.

1.18 The quaternion group Q: Let a = (J()—T ‘/0_71) and
b= (_(1) (1)) Then
a*=e, a?>=0b% bab" =4 (so ba = a3b).
The subgroup of GL;(C) generated by a and b is
0= {e,a,az,a3,b,ab,a2b,a3b}.

The group Q@ can also be described as the subset
{%£1,%i, £/, £k} of the quaternion algebra H. Recall that

H=R1oRi ®R;j dRk
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with the multiplication determined by

i2=-1=j2 ij=k=—ji.

The map i — a, j +> b extends uniquely to a homomorphism
H — M>(C) of R-algebras, which maps the group (7, j) iso-
morphically onto (a,b).

1.19 Recall that S, is the permutation group on {1,2,...,n}.
A transposition is a permutation that interchanges two ele-
ments and leaves all other elements unchanged. It is not dif-
ficult to see that S, is generated by transpositions (see
below for a more precise statement).

Groups of small order

[For] n = 6, there are three groups, a group Cg, and two
groups Cy x C3 and S3.
Cayley, American J. Math. 1 (1878), p. 51.

For each prime p, there is only one group of order p,
namely C, (see[T.28|below). In the following table, ¢ +-n =t
means that there are ¢ commutative groups and » noncommu-
tative groups (up to isomorphism, of course).
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|G| | c+n=t Groups Ref.
4 240=2 | CsCaxCs L18
6| 1+1=2 | Ce; 53 23
8| 3+2=5 Cg,CyxCyq,CyxCorxCa; Q, Dy 4.21
9 240=2 | Co,C3xC3 .18
10| 141=2 | Ci0; D5 514
12 | 243=5 | C12,CaxCq; C2x S3, Aq, C4 1 C3 516
14| 1+1=2 Ci4; D7 5.14
5] 140=1 | C1s 514

16 | 5+9=14 | See/Wild2005

18 | 243=5 C18, C3xCg; D9, S3xC3, (C3xC3) 4 Ca

20 | 2+3=5 Czo,CzXCl();DlO,CS><1C44(a‘b‘a4:b5:l,ha:ﬂb2>
21 | 1+1=2 C21;(a,h\a3:b7:l,ha:ubz)

2 [ 1+1=2 | G D1y b4
24 | 34+12=15 | See opensourcemath.org/gap/small_groups.html

Here (a,b|a* =b°> =1,ba = abzg is the group with gener-
ators a and b and relations a* =1 and ba = ab* (see
Chapter 2).

Roughly speaking, the more high powers of primes divide
n, the more groups of order n there should be. In fact, if f(n) is
the number of isomorphism classes of groups of order n, then

F(n) < n(Frroey?

where e(n) is the largest exponent of a prime dividing n and
o(1) — 0 as e(n) — oo (see|[Pyber|1993).

By 2001, a complete irredundant list of groups of order <
2000 had been found — up to isomorphism, there are exactly
49,910,529,484 (Besche et al.[2001).

SIn fact Besche et al. did not construct the groups of order 1024 individually,
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Homomorphisms

DEFINITION 1.20 A homomorphism from a group G to a sec-
ond G’ is a map «:G — G’ such that a(ab) = a(a)a(b) for
all a,b € G. An isomorphism is a bijective homomorphism.

For example, the determinant map det: GL, (F) — F* is a
homomorphism.

1.21 Let o be a homomorphism. For any elements ay,...,am
of G,

alay---am) =a(ai(az---am))

=a(ay)a(az---am)

= a(al) ...a(am)’

and so homomorphisms preserve all products. In particular, for
m>1,
a@™) =a@)™. ()

Moreover a(e) = a(ee) = a(e)a(e), and so a(e) = e (apply

[T:2h). Also

aac'=e=a"1a = a(@a@ ) =e= oc(a_l)ot(a),

but it is known that there are 49487365422 groups of that order. The remaining
423164062 groups of order up to 2000 (of which 408641062 have order 1536)
are available as libraries in GAP and Magma. I would guess that 2048 is the
smallest number such that the exact number of groups of that order is unknown
(Derek Holt, mo46855; Nov 21, 2010).
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and so a(a™1) = a(a)™!. It follows that @]) holds for all m €
Z, and so a homomorphism of commutative groups is also a
homomorphism of Z-modules.

As we noted above, each row of the multiplication table of a
group is a permutation of the elements of the group. As Cayley
pointed out, this allows one to realize the group as a group of
permutations.

THEOREM 1.22 (CAYLEY) There is a canonical injective ho-
momorphism
a:G — Sym(G).

PROOF. Fora € G, define ay:G — G to be the map x — ax
(left multiplication by a). For x € G,

(apobp)(x) =ap(bp(x)) =ar(bx) = abx = (ab)L(x),
and so (ab);, = ay oby. As er, = id, this implies that
apo(@a ) =id= (@ YHoar,
and so ay, is a bijection, i.e., ay € Sym(G). Hence a — ay is

a homomorphism G — Sym(G), and it is injective because of
the cancellation law. O

COROLLARY 1.23 A finite group of order n can be realized as
a subgroup of Sy,.

PROOF. List the elements of the group as ay,...,ay. o
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Unfortunately, unless 7 is small, Sy is too large to be man-
ageable. We shall see later (#.22) that G can often be embedded
in a permutation group of much smaller order than n!.

Cosets
For a subset S of a group G and an element a of G, we let

aS={as|seS}
Sa={sa|seS}.

Because of the associativity law, a(bS) = (ab)S, and so we
can denote this set unambiguously by abS.

When H is a subgroup of G, the sets of the form a H are
called the left cosets of H in G, and the sets of the form Ha
are called the right cosets of H in G. Becausee € H,aH = H
if and only ifa € H.

EXAMPLE 1.24 Let G = (R2,+), and let H be a subspace of
dimension 1 (line through the origin). Then the cosets (left or
right) of H are the lines a + H parallel to H.

PROPOSITION 1.25 Let H be a subgroup of a group G.

(a) An element a of G lies in a left coset C of H if and only
if C =aH.

(b) Two left cosets are either disjoint or equal.

(c)aH = bH ifand only ifa~'b € H.

(d) Any two left cosets have the same number of elements
(possibly infinite).
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PROOF. (a) Certainly a € aH. Conversely, if a lies in the left
coset bH , then a = bh for some h, and so

aH =bhH = bH.

(b) If C and C’ are not disjoint, then they have a common
element @, and C = aH and C' = aH by (a).

() If a~'b € H, then H = a"1bH, and so aH =
aa”1bH = bH . Conversely, if aH = bH , then H = a~'bH,
andsoa”lbe H.

(d) The map (ba—1)z:ah > bh is a bijection aH — bH.n

The index (G : H) of H in G is defined to be the number
of left cosets of H in G.® For example, (G : 1) is the order of
G.

As the left cosets of H in G cover G, (I.25p) shows that
they form a partition G. In other words, the condition “a and b
lie in the same left coset” is an equivalence relation on G.

THEOREM 1.26 (LAGRANGE) If G is finite, then
(G:1)=(G:H)(H:1).

In particular, the order of every subgroup of a finite group di-
vides the order of the group.

PROOF. The left cosets of H in G form a partition of G, there
are (G : H) of them, and each left coset has (H : 1) elements.o

SMore formally, (G : H) is the cardinality of the set {aH | a € G}.
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COROLLARY 1.27 The order of each element of a finite group
divides the order of the group.

PROOE. Apply Lagrange’s theorem to H = (g), recalling that
(H :1) = order(g). a

EXAMPLE 1.28 If G has order p, a prime, then every element
of G has order 1 or p. But only e has order 1, and so G is
generated by any element a # e. In particular, G is cyclic and
so G ~ Cp. This shows, for example, that, up to isomorphism,
there is only one group of order 1,000,000,007 (because this
number is prime). In fact there are only two groups of order
1,000, 000,014,000,000, 049 (see[d.18).

1.29 For a subset S of G, let S~! = {g~! | g € S}. Then
(@aH)~1 is the right coset Ha~!, and (Ha)™! = a~'H.
Therefore S + S~1 defines a one-to-one correspondence be-
tween the set of left cosets and the set of right cosets under
which aH < Ha~l. Hence (G : H) is also the number of
right cosets of H in G. But, in general, a left coset will not be
aright coset (see[[.34] below).

1.30 Lagrange’s theorem has a partial converse: if a prime
p divides m = (G : 1), then G has an element of order p
(Cauchy’s theorem[£.13); if a prime power p" divides m, then
G has a subgroup of order p™ (Sylow’s theorem. However,
note that the 4-group C, x C3 has order 4, but has no element
of order 4, and A4 has order 12, but has no subgroup of order
6 (see Exercise [4-15).
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More generally, we have the following result.

PROPOSITION 1.31 For any subgroups H O K of G,
(G:K)=(G:H)(H:K)
(meaning either both are infinite or both are finite and equal).

PROOF. Write G = | |;c7 gi H (disjoint union), and H =
L jeJ h j K (disjoint union). On multiplying the second equal-
ity by g;, we find that g; H =| | ;¢ 7 gih; K (disjoint union),
and so G = Ui,je]xJ gih; K (disjoint union). This shows
that

(G:K)=|I||J|=(G:H)(H:K). O

Normal subgroups
When S and T are two subsets of a group G, we let
ST ={st|seS,teT}.

Because of the associativity law, R(ST) = (RS)T, and so we
can denote this set unambiguously as RST.

A subgroup N of G is normal, denoted N <G, if gNg_1 =
N forall g € G.

REMARK 1.32 To show that N is normal, it suffices to check
that gNg~! C N for all g, because multiplying this inclusion
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on the left and right with g~1 and g respectively gives the in-

clusion N C g~ Ng, and rewriting this with g—! for g gives
that N c gNg~! for all g. However, the next example shows
that there can exist a subgroup N of a group G and an element
g of G such that gNg~1 c N but gNg™1 #£ N.

EXAMPLE 1.33 Let G = GL3(Q), and let H =
{((1) '1’) ’n € Z}. Then H is a subgroup of G; in fact H ~ Z.

Let g = (3 9). Then

1 n\ —1_ (5 0\(1 n\(51 0\_(1 5n
glo 1)8 T\o 1)lo 1)L o 1)7\o 1)
Hence gHg ™! & H (and g 'Hg ¢ H).

PROPOSITION 1.34 A subgroup N of G is normal if and only
if every left coset of N in G is also a right coset, in which case,
gN = Ng forallg € G.

PROOF. Clearly,

gNg™' =N < gN = Ng.
Thus, if N is normal, then every left coset is a right coset (in
fact, gN = Ng). Conversely, if the left coset gN is also a right

coset, then it must be the right coset Ng by (I.25h). Hence
gN = Ng,andso gNg~l = N. !



Normal subgroups 37

1.35 The proposition says that, in order for N to be normal,
we must have that for all g € G and n € N, there exists an
n’ € N such that gn = n’g (equivalently, for all g € G and
n € N, there exists an n’ such that ng = gn’). In other words,
to say that N is normal amounts to saying that an element of
G can be moved past an element of N at the cost of replacing
the element of N by another element of N.

EXAMPLE 1.36 (a) Every subgroup of index two is normal.
Indeed, let g € G \ H. Then G = H U gH (disjoint union).
Hence gH is the complement of H in G. Similarly, Hg is the
complement of H in G,andso gH = Hg.

(b) Consider the dihedral group

Dy ={er,....r" Vs, ... .r" s

Then C,, = {e,r,.. .,r"_l} has index 2, and hence is normal.
For n > 3 the subgroup {e, s} is not normal because rlsr =
25 ¢ {e,s).

(c) Every subgroup of a commutative group is normal (ob-
viously), but the converse is false: the quaternion group Q is

not commutative, but every subgroup is normal (see Exercise

[T=1).

A group G is said to be simple if it has no normal subgroups
other than G and {e}. Such a group can still have lots of non-
normal subgroups — in fact, the Sylow theorems (Chapter 5)
imply that every finite group has nontrivial subgroups unless it
is cyclic of prime order.
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PROPOSITION 1.37 If H and N are subgroups of G and N is
normal, then HN is a subgroup of G. If H is also normal, then
HN is a normal subgroup of G.

PROOF. The set HN is nonempty, and

(hlnl)(hznz) h1h2n1n2 € HN,

and so it is closed under multiplication. Since

(hny ™t = B e gy

it is also closed under the formation of inverses, and so H N is
a subgroup. If both H and N are normal, then

gHNg ' =gHg ' - gNg~' = HN
forallg € G. o

An intersection of normal subgroups of a group is again a
normal subgroup (cf.[T.14). Therefore, we can define the nor-
mal subgroup generated by a subset X of a group G to be
the intersection of the normal subgroups containing X . Its de-
scription in terms of X is a little complicated. We say that a
subset X of a group G is normal or closed under conjugation
ifgXg=! C X forallg € G.

LEMMA 1.38 If X is normal, then the subgroup (X) gener-
ated by it is normal.
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PROOF. The map “conjugation by g”, a — gag ™!, is a homo-

morphism G — G.If a € (X), say, a = x1 --- X, with each x;
or its inverse in X, then

gag™' = (gx187Y) - (gxmg ™).

As X is closed under conjugation, each gx; g~ ! orits inverse
lies in X, and so g(X)g~! C (X). 0

LEMMA 1.39 For any subset X of G, the subset
UgEG gXg~1 is normal, and it is the smallest normal
set containing X .

PROOF. Obvious. m]

On combining these lemmas, we obtain the following
proposition.
PROPOSITION 1.40 The normal subgroup generated by a sub-
set X of G is (Ugeg gXg™h.

Kernels and quotients
The kernel of a homomorphism a: G — G’ is
Ker(a) = {g € G| a(g) =e}.

If « is injective, then Ker(o) = {e}. Conversely, if Ker(a) =
{e}, then « is injective, because

ag)=a(g) = a(g ') =e= g 'g'=e = g=¢.
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PROPOSITION 1.41 The kernel of a homomorphism is a nor-
mal subgroup.

PROOE. It is obviously a subgroup, and if @ € Ker(«), so that
a(a) =e,and g € G, then

a(gag™) = a(@a(@a(g) ™ =a(@)a() ! =e.

Hence gag~! € Ker(x). O

For example, the kernel of the homomorphism
det:GL,(F) — F* is the group of n x n matrices with
determinant 1 — this group SL,(F) is called the special
linear group of degree n.

PROPOSITION 1.42 Every normal subgroup occurs as the ker-
nel of a homomorphism. More precisely, if N is a normal
subgroup of G, then there is a unique group structure on the
set G/N of cosets of N in G for which the natural map
a+> [a]:G — G/N is a homomorphism.

PROOF. Write the cosets as left cosets, and define
(aN)(bN) = (ab)N. We have to check (a) that this is
well-defined, and (b) that it gives a group structure on the set
of cosets. It will then be obvious that the map g — gN is a
homomorphism with kernel N.

(a). Let aN = a’N and bN = b’ N; we have to show that
abN =a’b’N. But

abN = a(bN) = a'N)Eany = Ny iy,
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(b). The product is certainly associative, the coset N is an
identity element, and a~ !N is an inverse for aN . o

The group G/ N is called the” quotient of G by N.
Propositions[[.41]and [T.42]show that the normal subgroups
are exactly the kernels of homomorphisms.

PROPOSITION 1.43 The mapa+> aN:G — G/ N has the fol-
lowing universal property: for any homomorphism a: G — G’
of groups such that a(N) = {e}, there exists a unique homo-
morphism G/ N — G’ making the diagram at right commute:

ar—aN

G — G/N

N

G'.

PROOF. Note that forn € N, a(gn) = a(g)x(n) = a(g), and
S0 « is constant on each left coset gN of N in G. It therefore
defines a map

@:G/N - G', a(gN)=ua(g),
and o is a homomorphism because
a((gN)-(g'N)) =a(gg'N) =
a(gg) = a(g)a(g) = a(gN)a(g'N).

7Some authors say “factor” instead of “quotient”, but this can be confused
with “direct factor”.
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The uniqueness of @ follows from the surjectivity of G —
G/N. O

EXAMPLE 1.44 (a) Consider the subgroup mZ of Z. The quo-
tient group Z/mZ is a cyclic group of order m.

(b) Let L be a line through the origin in R%. Then R?/L is
isomorphic to R (because it is a one-dimensional vector space
over R).

(c) For n > 2, the quotient D, /(r) = {e, 5} (cyclic group of
order 2).

Theorems concerning homomorphisms

The theorems in this subsection are sometimes called the iso-
morphism theorems (first, second, ..., or first, third, ..., or

S

FACTORIZATION OF HOMOMORPHISMS

Recall that the image of amap «: S — T is a(S) = {a(s) | s €
S}.

THEOREM 1.45 (HOMOMORPHISM THEOREM) For any ho-
momorphism a: G — G’ of groups, the kernel N of « is a nor-
mal subgroup of G, the image I of « is a subgroup of G’, and
« factors in a natural way into the composite of a surjection, an
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isomorphism, and an injection:
o ’
G — G

surjectivel g—gN Tinjective

N
G/N EN=e®

isomorphism

PROOF. We have already seen (T4T)) that the kernel is a nor-
mal subgroup of G. If b = a(a) and b’ = a(a’), then bb’' =
a(aa’y and b~ = a(a~!), and so I £ «(G) is a subgroup of
G’. The universal property of quotients shows that the
map x — a(x): G — I defines a homomorphism @:G/N — [
with @(gN) = a(g). The homomorphism & is certainly surjec-
tive, and if ®(gN) = e, then g € Ker(e) = N, and so & has
trivial kernel. This implies that it is injective (p.[@0). o

THE ISOMORPHISM THEOREM

THEOREM 1.46 (ISOMORPHISM THEOREM) Let H be a
subgroup of G and N a normal subgroup of G. Then HN is
a subgroup of G, H N N is a normal subgroup of H, and the
map

h(HNN)—hN:H/HNN — HN/N

is an isomorphism.
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PROOF. We have already seen (1.37) that HN is a subgroup.
Consider the map

H — G/N, hw~hN.

This is a homomorphism, and its kernel is H N N, which is
therefore normal in H. According to Theorem the map
induces an isomorphism H/H NN — [ where [ is its image.
But [ is the set of cosets of the form hN with h € H, i.e.,
I =HN/N. =

It is not necessary to assume that N be normal in G as long
ashNh™1 = N forall h € H (i.e., H is contained in the nor-
malizer of N — see later). Then H N N is still normal in H,
but it need not be a normal subgroup of G.

THE CORRESPONDENCE THEOREM

The next theorem shows that if_G is a quotient group of G,
then the lattice of subgroups in G captures the structure of the
lattice of subgroups of G lying over the kernel of G — G.

THEOREM 1.47 (CORRESPONDENCE THEOREM) Let
a:G — G be a surjective homomorphism, and let N = Ker(«).
Then there is a one-to-one correspondence

{subgroups of G containing N } Y {subgroups of G}

under which a subgroup H of G containing N corresponds
to H = a(H) and a subgroup H of G corresponds to H =
o~ Y(H). Moreover, if H <> H and H' <> H’', then



Theorems concerning homomorphisms 45

(@) HC H' <= H C H’,inwhichcase (H': H)= (H':
H); _

(b) H is normal in G if and only if H is normal in G, in
which case, o induces an isomorphism

G/HS G/H.

PROOF. If H is a subgroup of G, then a1 (H) is easily seen
to be a subgroup of G containing N, and if H is a sub-
group of G, then a(H ) is a subgroup of G (see . Clearly,
o la(H) = HN, which equals H if and only if H D N,
and e~} () = H. Therefore, the two operations give the re-
quired bijection. The remaining statements are easily verified.
For example, a decomposition H' = | |;c;a; H of H' into a
disjoint union of left cosets of H gives a similar decomposition
H,:Llielal'HOfH/' [}

COROLLARY 1.48 Let N be a normal subgroup of G; then
there is a one-to-one correspondence between the set of sub-
groups of G containing N and the set of subgroups of G/ N,
H <> H/N. Moreover H is normal in G if and only if H/N
is normal in G/N, in which case the homomorphism g —
gN:G — G/ N induces an isomorphism

G/H 5 (G/N)/(H/N).

PROOF. This is the special case of the theorem in which « is
g—>gN:G— G/N. O
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EXAMPLE 1.49 Let D4 and let N be its sub-
group (r?). Recall - that srs™! = r3, and so

sr2s7l = (r3) = r2. Therefore N is normal. The groups

G and G/N have the following lattices of subgroups:

/D4 \ Da/(r?)

Direct products

Let G be a group, and let Hy, ..., H; be subgroups of G. We
say that G is a direct product of the subgroups H; if the map

(hi,ha,...,hg) > hihy--hy : HHx Hyx---x H - G

is an isomorphism of groups. This means that each element
g of G can be written uniquely in the form g = hyhy---hy,
h; € H;, and thatif g = h1ha---hy and g’ = h'| ly--- ), then

g’ = (h1h)(hah) - (hyhy).

The following propositions give criteria for a group to be a
direct product of subgroups.
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PROPOSITION 1.50 A group G is a direct product of sub-
groups Hi, H» if and only if

(a) G =HH>,

(b) Hi N Hy ={e}, and

(c) every element of H; commutes with every element of
H,.

PROOF. If G is the direct product of H; and H>, then certainly
(a) and (c) hold, and (b) holds because, for any g € Hy N Hy,
the element (g, g~ ') maps to e under (11,h2) — hhs and so
equals (e,e).

Conversely, (c) implies that (h1,h3) — hihs is a homo-
morphism, and (b) implies that it is injective:

hihy =e = hy =hy' € H N Hy = {e}.
Finally, (a) implies that it is surjective. o

PROPOSITION 1.51 A group G is a direct product of sub-
groups Hy, H» if and only if

(@) G =HH>,
(b) Hy N Hy ={e}, and
(¢) Hy and H, are both normal in G.

PROOF. Certainly, these conditions are implied by those in the
previous proposition, and so it remains to show that they imply
that each element 41 of H; commutes with each element /1,
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of H,. Two elements h1, 4, of a group commute if and only if
their commutator

def

[h1,h2] = (h1h2) (hahy) ™!

is e. But

-1 _ —1,—1 _ | (hihah")-h3!

(hth)(hZhl) —h1h2h1 h2 = hl'(hzhl_lhzl) B
which is in H, because H» is normal, and is in H; because
Hj is normal. Therefore (b) implies 41 and iy commute.

PROPOSITION 1.52 A group G is a direct product of sub-
groups H1,H>, ..., Hy if and only if

(@) G=HHy---Hy,
(b) foreach j, HiN(Hy---H; 1Hjy1---Hy) = {e}, and
(c) eachof Hy,H>,...,Hy is normal in G,

PROOF. The necessity of the conditions being obvious, we
shall prove only the sufficiency. For k = 2, we have just done
this, and so we argue by induction on k. An induction argument
using shows that Hy--- Hy_y is a normal subgroup of
G . The conditions (a,b,c) hold for the subgroups Hy,..., Hj_y
of Hy .-+ Hy_1, and so the induction hypothesis shows that

(h],hz,...,hk_l) l—>h1h2---hk_12
Hl ><H2><'-~XHk_1 —>H1H2~-~Hk_1
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is an isomorphism. The pair Hy -+ Hy_1, H}, satisfies the hy-
potheses of (T.51)), and so

(h,hg) v hhy:(Hy---Hp_ 1) x Hy - G

is also an isomorphism. The composite of these isomorphisms

(B1,eshg)>(hyhg—1,hg)
Hyx--x Hp_q x H 15k 1he—1:hk

(hhy)—>hhy
H] "'Hk—l X Hk — G

sends (hl,/’lz,...,hk) t0h1h2~~-hk. m]

Commutative groups

The classification of finitely generated commutative groups is
most naturally studied as part of the theory of modules over
a principal ideal domain, but, for the sake of completeness, I
include an elementary exposition here.

Let M be a commutative group, written additively. The sub-
group (x1,...,x;) of M generated by the elements xp,..., X
consists of the sums Y m;x;, m; € Z. A subset {xy,...,xz} of
M is a basis for M if it generates M and

mixy+-+mpxp =0, m; €Z = m;x; =0 forevery i;

then
M = (x1) - & (xg).
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LEMMA 1.53 Suppose that M is generated by {x1,...,x}}
and let c1,...,c be integers such that ged(cq,...,c;) = 1.
Then there exist generators yi,...,y for M such that y1 =
C1X1+ -+ Cp Xk

PROOF. If ¢; <0, we change the signs of both ¢; and x;. This
allows us to assume that all ¢; € N. We argue by induction
ons = cj + -+ + cg. The lemma certainly holds if s = 1, and
so we assume s > 1. Then, at least two ¢; are nonzero, say,
c1 > cp > 0. Now

o {x1.,x2+Xx1,X3,..., X} generates M,

o ged(er —ca,c02,¢3,...,¢) = 1,and

o (c1—c)+ca+-+ci <s,
and so, by induction, there exist generators yi,...,y; for M
such that

y1 = (c1—c2)x1 +c2(x1 4+ x2) +c3x3 4+ + cp Xg
=c1X1+- X O

THEOREM 1.54 Every finitely generated commutative group
M has a basis; hence it is a finite direct sum of cyclic groups.

PROOF. 8We argue by induction on the number of generators
of M. If M can be generated by one element, the statement
is trivial, and so we may assume that it requires at least k >

8John Stillwell tells me that, for finite commutative groups, this is similar to
the first proof of the theorem, given by Kronecker in 1870.
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1 generators. Among the generating sets {x1,...,x;} for M
with k elements there is one for which the order of x1 is the
smallest possible. We shall show that M is then the direct sum
of (x1) and (x2,...,xx). This will complete the proof, because
the induction hypothesis provides us with a basis for the second
group, which together with x; forms a basis for M.

If M is not the direct sum of (x1) and (x2,...,x;), then
there exists a relation

mixy+maxy+---+mpxp =0 (10)

with m1x1 # 0; we may suppose that m; € N and m; <
order(xy). Let d = ged(my,...,mg) > 0, and let ¢; =
m;/d. According to the lemma, there exists a generating set
V1,---, Yk such that y; = c1x1 4+ cpxi. But

dyy =mix1+maxa+--+mpx; =0

and d <mj < order(x1), and so this is a contradiction. o

COROLLARY 1.55 A finite commutative group is cyclic if, for
each n > 0, it contains at most n elements of order dividing n.

PROOF. After the Theorem we may suppose that G =
Cny x++-xCp, withn; € N. If n divides n; and n; withi # j,
then G has more than n elements of order dividing n. There-
fore, the hypothesis implies that the n; are relatively prime. Let
a; generate the ith factor. Then (ay,...,a,) hasorderny ---ny,
and so generates G. O
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EXAMPLE 1.56 Let F be a field. The elements of order divid-
ing n in F* are the roots of the polynomial X” — 1. Because
unique factorization holds in F[X], there are at most n of these,
and so the corollary shows that every finite subgroup of F* is
cyclic.

THEOREM 1.57 A nonzero finitely generated commutative
group M can be expressed

M ~ Cpy XX Cpy X Chy (11)

for certain integersny,...,ng > 2 and r > 0. Moreover,
(a) r is uniquely determined by M ;
(b) the n; can be chosen so that n; > 2 and
ni|na,...,ng_1|ns, and then they are uniquely de-

termined by M ;
(c) then; can be chosen to be powers of prime numbers, and

then they are uniquely determined by M .

The number r is called the rank of M. By r being uniquely
determined by M, we mean that in any two decompositions
of M of the form @), the number of copies of Coo Will be
the same (and similarly for the n; in (b) and (c)). The integers

ni,...,ng in (b) are called the invariant factors of M. State-
ment (c) says that M can be expressed
M =~ Cpf‘ X -ee X Cl’zet xClo,ei > 1, (12)

for certain prime powers pl.ei (repetitions of primes allowed),

and that the integers pf' yeees pf ! are uniquely determined by
M ; they are called the elementary divisors of M .
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PROOF. The first assertion is a restatement of Theorem [1.54]
(a) For a prime p not dividing any of the d;,

M/pM ~ (Coo/ pCoo)” ~ (Z/ pZ)",

and so r is the dimension of M/pM as an F ,-vector space.
(b,c) If ged(m,n) = 1, then Cp; x Cy, contains an element
of order mn, and so

Cin xCp ~ Ciyp. (13)

Use @]) to decompose the Cy; into products of cyclic groups
of prime power order. Once this has been achieved, can
be used to combine factors to achieve a decomposition as in
(b); for example, Cy, =[] Cpgei where the product is over the

distinct primes among the p; and e; is the highest exponent for
the prime p;.

In proving the uniqueness statements in (b) and (c), we can
replace M with its torsion subgroup (and so assume r = 0). A
prime p will occur as one of the primes p; in (I2) if and only
M has an element of order p, in which case p will occur exact
a times where p? is the number of elements of order dividing
p. Similarly, p? will divide some pl.e i in if and only if M
has an element of order pZ, in which case it will divide exactly
b of the pl.e i where p“_b p2b is the number of elements in M

of order dividing p?. Continuing in this fashion, we find that
the elementary divisors of M can be read off from knowing the
numbers of elements of M of each prime power order.

The uniqueness of the invariant factors can be derived from
that of the elementary divisors, or it can be proved directly:
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ng is the smallest integer > O such that ngM = 0; ng— is the
smallest integer > 0 such that ng_; M is cyclic; ng—p is the
smallest integer such that ny_5 can be expressed as a product
of two cyclic groups, and so on. o

SUMMARY 1.58 Each finite commutative group is isomorphic
to exactly one of the groups

Cyy x---xCy,., nilna,....np_1|ny.

The order of this group is n1 ---n,. For example, each commu-
tative group of order 90 is isomorphic to exactly one of Cgg
or C3 x C39 — to see this, note that the largest invariant factor
must be a factor of 90 divisible by all the prime factors of 90.

THE LINEAR CHARACTERS OF A COMMUTATIVE
GROUP

Let u(C) = {z € C| |z| = 1}. This is an infinite group. For
any integer n, the set i, (C) of elements of order dividing 7 is
cyclic of order n; in fact,

pn(©) = (TN [0 <m <n—1} = {1.5,...0" 1)
where ¢ = ¢27/" is a primitive nth root of 1.

A linear character (or just character) of a group G is a ho-
momorphism G — ©(C). The homomorphism a + 1 is called
the trivial (or principal) character.
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EXAMPLE 1.59 The quadratic residue modulo p of an inte-
ger a not divisible by p is defined by

ay _ 1 ifaisasquareinZ/pZ
r) | -1 otherwise.

Clearly, this depends only on ¢ modulo p, and if neither a nor
b is divisible by p, then <%) = (%) (%) (because (Z/ pZ)*
is cyclic). Therefore [a] — (%) (Z)pZ)* — {£1} = u,(C)
is a character of (Z/ pZ)*.

The set of characters of a group G becomes a group GV
under the addition,

x+ )@ = x(@x (9.

called the dual group of G. For example, the dual group Z" of
Z is isomorphic to i (C) by the map y — x(1).
THEOREM 1.60 Let G be a finite commutative group.

(a) The dual of GV is isomorphic to G.
(b) The map G — GVV sending an element a of G to the
character y — x(a) of GV is an isomorphism.

In other words, G ~ GY and G ~ GVV.

PROOF. The statements are obvious for cyclic groups, and
(GxH)Y ~GY xHV. o
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ASIDE 1.61 The statement that the natural map G — GV is an
isomorphism is a special case of the Pontryagin theorem. For infinite
groups, it is necessary to consider groups together with a topology.
For example, as we observed above, Z" =~ (C). Each m € Z does
define a character { +> £ ;1 (C) — . (C), but there are many homo-
morphisms 1 (C) — w1 (C) not of this form, and so the dual of (£ (C) is
larger than Z. However, these are the only continuous homomorphisms.
In general, let G be a commutative group endowed with a locally com-
pact topology for which the group operations are continuous; then the
group GV of continuous characters G — j1(C) has a natural topol-
ogy for which it is locally compact, and the Pontryagin duality theorem
says that the natural map G — G is an isomorphism.

THEOREM 1.62 (ORTHOGONALITY RELATIONS) LetG bea
finite commutative group. For any characters y and  of G,

-1y _ ) IGl ifx=y
ZaGG x@ya) = { 0  otherwise.
In particular,

_V IG| ify is trivial
ZaeG (@) = { 0 otherwise.

PROOF. If y = v, then y(a)¥(a¢~!) = 1, and so the sum is
|G |. Otherwise there exists a b € G such that y(b) # ¥ (b). As
a runs over G, so also does ab, and so

Yo X@V@H=3" @by (@b)™)
=20 Y a@va.
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Because )y d)Y #£ 1,  this implies  that
2acG x@y @) =0. a

COROLLARY 1.63 Foranya € G,
Z (@) = |G| ifa=e
XeGY )= 0  otherwise.
PROOF. Apply the theorem to GV, noting that (GY)Y ~ G.g

The order of ab

Let a and b be elements of a group G. If a has order m and b
has order n, what can we say about the order of ab? The next
theorem shows that we can say nothing at all.

THEOREM 1.64 For any integers m,n,r > 1, there exists a fi-
nite group G with elements a and b such that a has order m, b
has order n, and ab has order r.

PROOF. We shall show that, for a suitable prime power g,
there exist elements a and b of SL»(Fg) such that a, b, and
ab have orders 2m, 2n, and 2r respectively. As —I is the
unique element of order 2 in SL> (Fy), the images of a, b, ab in
SLy(IFg)/{£1} will then have orders m, n, and r as required.

Let p be a prime number not dividing 2mnr. Then p is a
unit in the finite ring Z/2mnrZ, and so some power of it, ¢
say, is 1 in the ring. This means that 2mnr divides g — 1. As
the group IF; has order ¢ — 1 and is cyclic (see , there
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exist elements u, v, and w of IFZ; having orders 2m, 2n, and 2r
respectively. Let

u 1 v 0

a= (0 u_l) and b = (l v_l) (elements of SL>(Fg)),

where ¢ has been chosen so that
wtt+u vl =w+w L

The characteristic polynomial of a is (X —u)(X —u~!), and
s0 a is similar to diag(u,u~1). Therefore a has order 2m. Sim-
ilarly b has order 2n. The matrix

ab — uv +¢ v!
wuly uy Tl )

has characteristic polynomial
X2—wv+r+u v HX+1=X -w) (X —wh),

and950 ab is similar to diag(w,w™1). Therefore ab has order
2r. m]

Exercises

1-1 Show that the quaternion group has only one element of
order 2, and that it commutes with all elements of Q. Deduce
that Q is not isomorphic to D4, and that every subgroup of Q
is normal.

I don’t know who found this beautiful proof. Apparently the original proof
of G.A. Miller is very complicated; see mo24913.
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1-2 Consider the elements

0 -1 0 1
) I C )
in GL»(Z). Show that a* = 1 and b3 = 1, but that ab has infi-
nite order, and hence that the group (a, b) is infinite.

1-3 Show that every finite group of even order contains an
element of order 2.

1-4 Letn =ny+---+ n, be a partition of the positive inte-
ger n. Use Lagrange’s theorem to show that n! is divisible by

[Tiegnit.

1-5 Let N be a normal subgroup of G of index n. Show that
if g € G, then g" € N. Give an example to show that this may
be false when the subgroup is not normal.

1-6 A group G is said to have finite exponent if there exists
an m > 0 such that " = e for every a in G; the smallest such
m is then called the exponent of G.

(a) Show that every group of exponent 2 is commutative.
(b) Show that, for an odd prime p, the group of matrices

1 a b
0 I c]lab,.celF,
0 0 1

has exponent p, but is not commutative.



60 1. BASIC DEFINITIONS AND RESULTS

1-7 Two subgroups H and H' of a group G are said to be
commensurable if H N H' is of finite index in both H and
H'. Show that commensurability is an equivalence relation on
the subgroups of G.

1-8 Show that a nonempty finite set with an associative binary
operation satisfying the cancellation laws is a group.



Chapter 2

Free Groups and
Presentations; Coxeter
Groups

It is frequently useful to describe a group by giving a set of
generators for the group and a set of relations for the generators
from which every other relation in the group can be deduced.
For example, D;, can be described as the group with generators
r,s and relations

M =e, st=e, srsr=e.

In this chapter, we make precise what this means. First we need
to define the free group on a set X of generators — this is a
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group generated by X and with no relations except for those
implied by the group axioms. Because inverses cause prob-
lems, we first do this for monoids. Recall that a monoid is a set
S with an associative binary operation having an identity ele-
ment e. A homomorphism «: .S — S’ of monoids is a map such
that w(ab) = a(a)a(b) forall a,b € S and a(e) = e — unlike
the case of groups, the second condition is not automatic. A
homomorphism of monoids preserves all finite products.

Free monoids

Let X ={a,b,c,...} be a (possibly infinite) set of symbols. A
word is a finite sequence of symbols from X in which repeti-
tion is allowed. For example,

aa, aabac, b

are distinct words. Two words can be multiplied by juxtaposi-
tion, for example,

aaaa xaabac = aaaaaabac.

This defines on the set of all words an associative binary op-
eration. The empty sequence is allowed, and we denote it by
1. (In the unfortunate case that the symbol 1 is already an ele-
ment of X, we denote it by a different symbol.) Then 1 serves
as an identity element. Write SX for the set of words together
with this binary operation. Then SX is a monoid, called the
Jree monoid on X.
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When we identify an element @ of X with the word a, X
becomes a subset of SX and generates it (i.e., no proper sub-
monoid of SX contains X). Moreover, the map X — SX has
the following universal property: for any map of sets : X — S
from X to a monoid S, there exists a unique homomorphism
SX — S making the diagram at right commute:

X —— SX
|
|
|
\2
S.

Free groups

We want to construct a group FX containing X and having
the same universal property as SX with “monoid” replaced by
“group”. Define X’ to be the set consisting of the symbols in X
and also one additional symbol, denoted a~!, for each a € X;
thus

X' =f{a,a L b,b7 1. )

Let W’ be the set of words using symbols from X’. This be-
comes a monoid under juxtaposition, but it is not a group be-
cause a1 is not yet the inverse of a, and we can’t cancel out
the obvious terms in words of the following form:

..aa_l... or ...a_la...
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A word is said to be reduced if it contains no pairs of the form
aa~! or a~la. Starting with a word w, we can perform a finite
sequence of cancellations to arrive at a reduced word (possibly
empty), which will be called the reduced form wg of w. There
may be many different ways of performing the cancellations,
for example,

cabb"Ya Y¢ lea — caa e tea — cclea — ca,

cabb™la ¢ ea — cabb™'a"la — cabb™! — ca.

We have underlined the pair we are cancelling. Note that the
middle ™! is cancelled with different a’s, and that different
terms survive in the two cases (the ca at the right in the first
cancellation, and the ca at left in the second). Nevertheless we
ended up with the same answer, and the next result says that
this always happens.

PROPOSITION 2.1 There is only one reduced form of a word.

PROOF. We use induction on the length of the word w. If w is
reduced, there is nothing to prove. Otherwise a pair of the form
apag Lor ay 140 occurs — assume the first, since the argument
is the same in both cases.

Observe that any two reduced forms of w obtained by a
sequence of cancellations in which agay ! is cancelled first are
equal, because the induction hypothesis can be applied to the
(shorter) word obtained by cancelling aoaal.

Next observe that any two reduced forms of w obtained by a
sequence of cancellations in which agay, 1 is cancelled at some
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point are equal, because the result of such a sequence of can-

cellations will not be affected if aga,, 1 is cancelled first.
Finally, consider a reduced form wg obtained by a sequence

in which no cancellation cancels agpay -1 directly. Since aoag -1

does not remain in wy, at least one of ag or a; ~1 must be can-

celled at some point. If the pair itself is not cancelled, then the
first cancellation involving the pair must look like

i foag’ -+ or ---ao fig" fo--

where our original pair is underlined. But the word obtained
after this cancellation is the same as if our original pair were
cancelled, and so we may cancel the original pair instead. Thus
we are back in the case just proved. o

We say two words w, w’ are equivalent, denoted w ~ w’, if
they have the same reduced form. This is an equivalence rela-
tion (obviously).

PROPOSITION 2.2 Products of equivalent words are equiva-
lent, i.e.,

w~w, v~v = wuv~uwv.

PROOF. Let wg and vg be the reduced forms of w and of v.
To obtain the reduced form of wv, we can first cancel as much
as possible in w and v separately, to obtain wovg and then
continue cancelling. Thus the reduced form of wv is the re-
duced form of wgvg. A similar statement holds for w’v’, but
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(by assumption) the reduced forms of w and v equal the re-
duced forms of w’ and v/, and so we obtain the same result in
the two cases. o

Let FX be the set of equivalence classes of words. Proposi-
tion shows that the binary operation on W’ defines a binary
operation on F'X, which obviously makes it into a monoid. It
also has inverses, because

(ab---gh) (h_lg_l ~--b_1a_1) ~1.

Thus FX is a group, called the free group on X. To summa-
rize: the elements of FX are represented by words in X'; two
words represent the same element of F X if and only if they
have the same reduced forms; multiplication is defined by jux-
taposition; the empty word represents 1; inverses are obtained
in the obvious way. Alternatively, each element of F X is rep-
resented by a unique reduced word; multiplication is defined
by juxtaposition and passage to the reduced form.

When we identify a € X with the equivalence class of the
(reduced) word a, then X becomes identified with a subset of
FX — clearly it generates FX. The next proposition is a pre-
cise statement of the fact that there are no relations among the
elements of X when regarded as elements of FX except those
imposed by the group axioms.

PROPOSITION 2.3 For any map of setsa: X — G from X toa
group G, there exists a unique homomorphism FX — G mak-
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ing the following diagram commute:

X —F

|
1
|
v
G.

PROOF. Consider a map a: X — G. We extend it to a map
of sets X’ — G by setting a(a™1) = a(a)”!. Because G
is, in particular, a monoid, « extends to a homomorphism of
monoids SX” — G. This map will send equivalent words to the
same element of G, and so will factor through FX = SX’/~.
The resulting map FX — G is a group homomorphism. It is
unique because we know it on a set of generators for FX. g

REMARK 2.4 The universal property of the map t: X — FX,
X > x, characterizes it: if /: X — F’ is a second map with the
same universal property, then there is a unique isomorphism
a:FX — F’ suchthatwor =1/,
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We recall the proof: by the universality of ¢, there exists a
unique homomorphism «: FX — F’ such that « ot = /; by
the universality of ¢/, there exists a unique homomorphism
B:F'" — FX such that 8ot = 1; now (Boa)ot =1, but
by the universality of ¢, idgx is the unique homomorphism
FX — FX suchthatidgy ot =, and so Boa = idf x; simi-
larly, v o 8 = id s, and so « and B are inverse isomorphisms.

COROLLARY 2.5 Every group is a quotient of a free group.

PROOF. Choose a set X of generators for G (e.g., X = G), and
let F be the free group generated by X. According to (2.3), the
map a — a: X — G extends to a homomorphism F — G, and
the image, being a subgroup containing X, must equal G. g

The free group on the set X = {a} is simply the infinite
cyclic group Coo generated by a, but the free group on a set
consisting of two elements is already very complicated.

I now discuss, without proof, some important results on free
groups.

THEOREM 2.6 (NIELSEN-SCHREIER) 1 Subgroups of free
groups are free.

The best proof uses topology, and in particular covering
spaces—see |Serre| 1980| or[Rotman| 1995} Theorem 11.44.

'Nielsen (1921) proved this for finitely generated subgroups, and in fact
gave an algorithm for deciding whether a word lies in the subgroup; Schreier
(1927) proved the general case.
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Two free groups FX and F'Y are isomorphic if and only
if X and Y have the same cardinality. Thus we can define the
rank of a free group G to be the cardinality of any free generat-
ing set (subset X of G for which the homomorphism FX — G
given by is an isomorphism). Let H be a finitely gener-
ated subgroup of a free group G. Then there is an algorithm for
constructing from any finite set of generators for H a free finite
set of generators. If G has finite rank n and (G : H) =i < oo,
then H is free of rank

ni—i+1.

In particular, H may have rank greater than that of F' (or even
infinite rankz). For proofs, see Rotman|[1995, Chapter 11, and
Hall||1959, Chapter 7.

Generators and relations

Consider a set X and a set R of words made up of symbols in
X'. Each element of R represents an element of the free group
FX, and the quotient G of FX by the normal subgroup gener-
ated by these elements (T.40) is said to have X as generators
and R as relations (or as a set of defining relations). One also
says that (X, R) is a presentation for G, and denotes G by
(X | R).

2For example, the commutator subgroup of the free group on two generators
has infinite rank.
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EXAMPLE 2.7 (a) The dihedral group D, has generators r,s
and defining relations

r* 52 srsr.

(See[2:9|below for a proof.)
(b) The generalized quaternion group Q,,n > 3, has gen-
erators a, b and relations

n—1 n—2 _ _
a? =1,4? =b2bab ' =al.

For n = 3 this is the group Q of (1.18). In general, it has order
2" (for more on it, see Exercise[2-3)).
(c) Two elements @ and b in a group commute if and only

if their commutator [a,b) © aba=1p1is 1. The Jree abelian
group on generators ai,...,d, has generators ay,as,...,dn
and relations
lai.ajl.  1#]).
(d) Let G = (5,1 | s3¢,¢3,5*). Then G = {1} because

l=s3113 =533 =5
For the remaining examples, see Massey|1967, which con-
tains a good account of the interplay between group theory and
topology. For example, for many types of topological spaces,

3Strictly speaking, I should say the relations ! s a2 b=2, bab'a.



Generators and relations 71

there is an algorithm for obtaining a presentation for the fun-
damental group.

(e) The fundamental group of the open disk with one point
removed is the free group on o where o is any loop around the
point (ibid. I 5.1).

(f) The fundamental group of the sphere with r points re-
moved has generators o1,...,0r (0; is a loop around the ith
point) and a single relation

oy-or = 1.

(g) The fundamental group of a compact Riemann surface
of genus g has 2g generators u1,v1,...,ug,Vg and a single
relation
Lyl =

-1,-1
UIVIU] V] UgUgllg Uy

(ibid. IV Exercise 5.7).

PROPOSITION 2.8 Let G be the group defined by the presen-
tation (X, R). For any group H and map of sets a: X — H
sending each element of R to 1 (in the obvious sense?), there
exists a unique homomorphism G — H making the following

“Each element of R represents an element of F X, and the condition re-
quires that the unique extension of @ to F'X sends each of these elements to
1.
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diagram commute:

ar—a
—
X

PROOF. From the universal property of free groups (2.3), we
know that o extends to a homomorphism FX — H, which we
again denote «. Let (R be the image of R in FX. By assump-
tion tR C Ker(«), and therefore the normal subgroup N gen-
erated by (R is contained in Ker(c). By the universal property
of quotients (see [L43), « factors through FX/N = G. This
proves the existence, and the uniqueness follows from the fact
that we know the map on a set of generators for X . !

X

SRR

EXAMPLE 2.9 Let G = {a,b | a”*,b2,baba). We prove that
G is isomorphic to the dihedral group D, (see[I.I7). Because
the elements r, s € Dy, satisfy these relations, the map

{a,b} > Dy, avr>r, bi>s
extends uniquely to a homomorphism G — Dj. This homo-

morphism is surjective because r and s generate Djy. The
equalities
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imply that each element of G is represented by one of the fol-
lowing elements,

L....,a" V. b,ab,...,a" b,

and so |G| < 2n = |Dy|. Therefore the homomorphism is bi-
jective (and these symbols represent distinct elements of G).
Similarly,

(a,b|a®,b%, (ab)") ~ Dy

byar>s,bt.

EXAMPLE 2.10 (a) Let G = (x,y | x™,y") where m,n > 1.
Then x has order m, y has order n, and xy has infinite order
in G. To see this, recall that for any integers m,n,r > 1, there
exists a group H with elements a and b such that a, b, and ab
have orders m, n, and r respectively (Theorem [T.64). Accord-
ing to (2.8), there exists a homomorphism o: G — H such that
a(x) = a and a(y) = b. The order of x certainly divides m,
and the fact that a(x) has order m shows that x has order ex-
actly m. Similarly, y has order n. As «(xy) = ab, the element
xy must have order at least r. As this is true for all » > 1, the
element xy has infinite order.

(b)Let G =SL,(Z)/{£1},andlet S and T be the elements
of G represented by the matrices (§ =}) and (} 1). Then S
and ST generate G, and S =1 = (ST)3 (see Theorem 2.12
of my course notes on modular forms). It is known that this is
a full set of relations for S and ST in G, and so every group
generated by an element of order 2 and an element of order 3
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is a quotient of G. Most finite simple groups of Lie type, and
all but three of the sporadic simple groups, fall into this class.

Finitely presented groups

A group is said to be finitely presented if it admits a presenta-
tion (X, R) with both X and R finite.

EXAMPLE 2.11 Consider a finite group G. Let X = G, and
let R be the set of words

{abc_1 |ab =cin G}.

I claim that (X, R) is a presentation of G, and so G is finitely
presented. Let G’ = (X | R). The extension of a = a: X — G
to FX sends each element of R to 1, and therefore defines a
homomorphism G’ — G, which is obviously surjective. But
every element of G’ is represented by an element of X, and so
|G’| < |G|. Therefore the homomorphism is bijective.

Although it is easy to define a group by a finite presentation,
calculating the properties of the group can be very difficult —
note that we are defining the group, which may be quite small,
as the quotient of a huge free group by a huge subgroup. I list
some negative results.

THE WORD PROBLEM

Let G be the group defined by a finite presentation (X, R). The
word problem for G asks whether there exists an algorithm
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(decision procedure) for deciding whether a word on X’ rep-
resents 1 in G. The answer is negative: Novikov and Boone
showed that there exist finitely presented groups G for which
no such algorithm exists. Of course, there do exist other groups
for which there is an algorithm.

The same ideas lead to the following result: there does not
exist an algorithm that will determine for an arbitrary finite
presentation whether or not the corresponding group is trivial,
finite, abelian, solvable, nilpotent, simple, torsion, torsion-free,
free, or has a solvable word problem.

See |[Rotman||{1995, Chapter 12, for proofs of these state-
ments.

THE BURNSIDE PROBLEM

Recall that a group is said to have exponent e if g€ = 1 for all
g € G and e is the smallest natural number with this property.
It is easy to write down examples of infinite groups generated
by a finite number of elements of finite order (see Exercise|l-2
or Example 2.10), but does there exist such a group with finite
exponent? (Burnside problem). In 1968, Adjan and Novikov
showed the answer is yes: there do exist infinite finitely gener-
ated groups of finite exponent.

THE RESTRICTED BURNSIDE PROBLEM

The Burnside group of exponent e on r generators B(r,e)
is the quotient of the free group on r generators by the sub-
group generated by all eth powers. The Burnside problem
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asked whether B(r,e) is finite, and it is known to be infinite
except some small values of r and e. The restricted Burnside
problem asks whether B(r, e) has only finitely many finite quo-
tients; equivalently, it asks whether there is one finite quotient
of B(r,e) having all other finite quotients as quotients. The
classification of the finite simple groups (see p.[I02) showed
that in order prove that B(r,e) always has only finitely many
finite quotients, it suffices to prove it for e equal to a prime
power. This was shown by Efim Zelmanov in 1989 after earlier
work of Kostrikin. See [Feit| 1995,

ToDD-COXETER ALGORITHM

There are some quite innocuous looking finite presentations
that are known to define quite small groups, but for which this
is very difficult to prove. The standard approach to these ques-
tions is to use the Todd-Coxeter algorithm (see Chapter 4 be-
low).

We shall develop various methods for recognizing groups
from their presentations (see also the exercises).

Coxeter groups

A Coxeter system is a pair (G, S) consisting of a group G and
a set of generators S for G subject only to relations of the form
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(s1)™1 = 1, where

m(s,s) = lalls,
m(s,t) > 2 (14)
m(s,t) = m(t,s).

When no relation occurs between s and ¢, we set m(s,7) = oo.
Thus a Coxeter system is defined by a set S and a mapping

m:S xS — NU{oco}
satisfying (14); then G = (S | R) where
R = {(st)"C | m(s,1) < oo}.

The Coxeter groups are those that arise as part of a Coxeter
system. The cardinality of S is called the rank of the Coxeter
system.

EXAMPLES

2.12 Up to isomorphism, the only Coxeter system of rank 1
is (Caz,{s}).

2.13 The Coxeter systems of rank 2 are indexed by m(s,t) >
2.

(a) If m(s,t) is an integer n, then the Coxeter system is
(G,{s,t}) where

G = (s,1| 2,62, (st)").
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According to (2.9), G >~ D, In particular, s # ¢ and st
has order 7.

(b) If m(s,t) = oo, then the Coxeter system is (G,{s,?})
where G = (s, | s2,12). According to , s and t
each have order 2, and st has infinite order.

2.14 Let V =R" endowed with the standard positive definite
symmetric bilinear form

() 1<i<n Oid1<izn) = ) _XiVi.

A reflection is a linear map s:V — V sending some nonzero
vector « to —o and fixing the points of the hyperplane Hy
orthogonal to . We write sy for the reflection defined by «;
it is given by the formula

2(v,a)
(@a) "

SqU =V —

because this is certainly correct for v = « and for v € Hy, and
hence (by linearity) on the whole of V = («) @ Hy. A finite
reflection group is a finite group generated by reflections. For
such a group G, it is possible to choose a set S of generating
reflections for which (G, S) is a Coxeter system (Humphreys
1990, 1.9). Thus, the finite reflection groups are all Coxeter
groups (in fact, they are precisely the finite Coxeter groups,
ibid., 6.4).

2.15 Let S, act on R” by permuting the coordinates,

o(al,.,.,an) = (ao(l),...,aa(n)).
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The transposition (ij) interchanging i and j, sends the vector

i J
a=(0,....0,1,0,...,0,—1,0,...)

to its negative, and leaves the points of the hyperplane

i
Hy =(ay,...,ai,...,d;j,...,an)

fixed. Therefore, (ij) is a reflection. As S, is generated by
the transpositions, this shows that it is a finite reflection group
(hence also a Coxeter group).

THE STRUCTURE OF COXETER GROUPS

THEOREM 2.16 Let (G, S) be the the Coxeter system defined
by amap m: S x S — NU {oo} satisfying (I4).

(a) The natural map S — G is injective.
(b) Eachs € S has order2 inG.
(c) Foreachs #t in S, st has order m(s,t) inG.

PROOF. Note that the order of s is 1 or 2, and the order of st
divides m(s,t), and so the theorem says that the elements of S
remain distinct in G and that each s and each st has the largest
possible order.

If S has only a single element, then G >~ C5 (see[2.12), and
so the statements are obvious. Otherwise, let s and ¢ be distinct
elements of S, and let G’ = (s, | 52,12, (s1)™ D)), The map
S — G’ sending s to s, f to ¢, and all other elements of S to
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1 extends to a homomorphism G — G’. We know that s and
t are distinct elements of order 2 in G’ and that s has order
m(s,t) in G’ (see[2.13), and it follows that the same is true in
G.

]

REMARK 2.17 Let V be the R-vector space with basis a fam-
ily (es)ses indexed by S. The standard proof of Theorem
[2.16] defines a “geometry” on V' for which there exist “reflec-
tions” oy, s € S, such that o507 has order m(s,t). According
to (2.8), the map s — o extends to homomorphism of group
G — GL(V). This proves the theorem, and it realizes G as
a group of automorphisms of a “geometry”. See [Humphreys
1990, Chapter 5, or v3.02 of these notes.

Exercises
2-1 Let Dy, = {a,b|a",b?,abab) be the nth dihedral group.

If n is odd, prove that Do, & (a") x {(a2,b), and hence that
D3y =~ Cy x Dy.

2-2 Prove that the group with generators ay,...,a, and re-
lations [a;.a;] = 1, i # j, is the free abelian group on
ai,...,an. [Hint: Use universal properties.]

2-3 Let a and b be elements of an arbitrary free group F.
Prove:

(a) Ifa”™ = b" withn > 1, thena = b.
(b) If a™b™ = b"a™ with mn # 0, then ab = ba.
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(c) If the equation x” = a has a solution x for every n, then
a=1.

2-4 Let Fy denote the free group on n generators. Prove:

(a) If n < m, then F; is isomorphic to both a subgroup and
a quotient group of Fyy.

(b) Prove that F; x Fj is not a free group.

(c) Prove that the centre Z(F) = 1 provided n > 1.

2-5 Prove that Q, (see[2.7b) has a unique subgroup of order
2, which is Z(Qy). Prove that Q,/Z(Qpy) is isomorphic to
Dyn—1.

2-6 (a) Prove that {(a,b | a2,b2,(ab)") ~ Dy, (cf..
(b) Prove that G = {a,b | a®,abab) is an infinite group. (This
is usually known as the infinite dihedral group.)

2-7 Let G = {(a,b,c | a3,b3,c4,acac_1,aba_lbc_lb_l).
Prove that G is the trivial group {l1}. [Hint: Expand
(aba™1)3 = (beb™1)3 ]

2-8 Let F be the free group on the set {x, y} and let G = C3,
with generator @ # 1. Let @ be the homomorphism F — G
such that «(x) = a = «(y). Find a minimal generating set for
the kernel of «. Is the kernel a free group?

2-9 Let G = (5.t | t~1s3t = s°). Prove that the element

-1

g= s e s st

is in the kernel of every map from G to a finite group.
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Coxeter came to Cambridge and gave a lecture [in which he
stated a] problem for which he gave proofs for selected exam-
ples, and he asked for a unified proof. I left the lecture room
thinking. As I was walking through Cambridge, suddenly the
idea hit me, but it hit me while I was in the middle of the road.
When the idea hit me I stopped and a large truck ran into me.....
So I pretended that Coxeter had calculated the difficulty of this
problem so precisely that he knew that I would get the solution
just in the middle of the road. ... Ever since, I've called that the-
orem “the murder weapon”. One consequence of it is that in a
group if a? = b3 = ¢ = (abc) ™!, then c®10 = 1.

John Conway, Math. Intelligencer 23 (2001), no. 2, pp. 8-9.



Chapter 3

Automorphisms and
Extensions

Automorphisms of groups

An automorphism of a group G is an isomorphism of the group
with itself. The set Aut(G) of automorphisms of G becomes
a group under composition: the composite of two automor-
phisms is again an automorphism; composition of maps is al-
ways associative (see (3), p. [I3); the identity map g — g is an
identity element; an automorphism is a bijection, and therefore
has an inverse, which is again an automorphism.
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For g € G, the map ig “conjugation by g”,
X > gxg_1 :G—->G

is an automorphism of G. An automorphism of this form is
called an inner automorphism, and the remaining automor-
phisms are said to be outer.

Note that

(gh)x(gh) ™' = g(hxh™1)g ™! i ign(x) = (ig 0ip)(x),

and so the map g — ig:G — Aut(G) is a homomorphism. Its
image is denoted by Inn(G). Its kernel is the centre of G,

Z(G)={geG|gx=xgalxeG},
and so we obtain from an isomorphism
G/Z(G) — Inn(G).

In fact, Inn(G) is a normal subgroup of Aut(G): for g € G and
o € Aut(G),

(@oigoa™)(x) =a(g-a'(x)-g7")
=a(g)x-alg) !
=lg(g) (x).
EXAMPLE 3.1 (a)Let G = IF‘;. The automorphisms of G as a
commutative group are just the automorphisms of G as a vector

space over [Fp; thus Aut(G) = GL, (Fp). Because G is com-
mutative, all nontrivial automorphisms of G are outer.
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(b) As a particular case of (a), we see that
Aut(Cy x Cp) = GLa(F3).

(c) Since the centre of the quaternion group Q is (a2), we
have that
Inn(Q) =~ Q/(a?) ~ Ca x C5.

In fact, Aut(Q) &~ S4. See Exercise|3-4

ASIDE 3.2 The inner automorphisms of a group are the only automor-
phisms that extend to every overgroup (Schupp|1987).

COMPLETE GROUPS

DEFINITION 3.3 A group G is complete if the map g —
ig:G — Aut(G) is an isomorphism.

Thus, a group G is complete if and only if (a) the centre
Z(G) of G is trivial, and (b) every automorphism of G is inner.

EXAMPLE 3.4 (a)Forn # 2,6, Sy, is complete. The group S»
is commutative and hence fails (a); Aut(S¢)/Inn(S¢) ~ C» and
hence S¢ fails (b). See Rotman| 1995 Theorems 7.5, 7.10.

(b) If G is a simple noncommutative group, then Aut(G) is
complete. See Rotman|1995, Theorem 7.14.

According to Exercise GL; (F) & S3, and so the non-
isomorphic groups C» x Cp and S3 have isomorphic automor-
phism groups.
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AUTOMORPHISMS OF CYCLIC GROUPS

Let G be a cyclic group of order n, say G = (a). Let m be
an integer > 1. The smallest multiple of m divisible by n is

_n_ m . n_ _
M dmn)” Therefore, a™ has order wed(mon)’ and so the gen

erators of G are exactly the elements a™ with gcd(m,n) = 1.
An automorphism « of G must send a to another generator of
G, and so a(a) = a™ for some m relatively prime to n. The
map o — m defines an isomorphism

Aut(Cp) — (Z/nZ)*
where
(Z/nZ)* = {units in the ring Z/nZ} = {m+nZ| gcd(m,n) = 1}.

This isomorphism is independent of the choice of a generator
a for G: if w(a) = a™, then for any other element b = a’ of G,

a(b) =a(@) =a@) =™ = @)" = )"
It remains to determine (Z/nZ)*. If n = pI' - psS is the
factorization of n into a product of powers of distinct primes,
then

Z/nZ:Z/p{le-~~xZ/p§“Z, mmodn < (mmod p't,...)

by the Chinese remainder theorem. This is an isomorphism of
rings, and so

(Z/nD)* =~ (Z] p} )" x--x (Z] P T)*.
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It remains to consider the case n = p”, p prime.

Suppose first that p is odd. The set {0,1,...,p" — 1} is a
complete set of representatives for Z/ p” Z, and % of these el-
ements are divisible by p. Hence (Z/p”7Z)> has order p” —

pr

> = p"~1(p—1). The homomorphism

(Z/p"2)* — (Z/pL)*
is surjective with kernel of order p”~!, and we know that
(Z/ pZ)* is cyclic. Let a € (Z/p"Z)* map to a generator of
(Z/ pZ)*. Then aP" (P~1) = | and aP?" again maps to a gen-
erator of (Z/pZ)*™. Therefore (Z/p"Z)* contains an element

¢ £ aP" of order p — 1. Using the binomial theorem, one finds

that 1+ p has order p” ! in (Z/ p” Z)*. Therefore (Z/ p"7Z)*

is cyclic with generator ¢ - (1 + p) (cf. (I3), p.[53), and every
element can be written uniquely in the form

d1+p)’, 0<i<p—-1, 0<j<p L

On the other hand,
(Z/87)* ={1,3,5,7} = (3,5) ~ C, x C3
is not cyclic.

SUMMARY 3.5 (a) For a cyclic group of G of order n,
Aut(G) =~ (Z/nZ)*. The automorphism of G corresponding
to [m] € (Z/nZ)* sends an element a of G to a™.
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b)) Ifn = p;' ... p¥S is the factorization of 1 into a product
of powers of distinct primes p;, then

(Z/nZ2)* = (L) py' 2)* x-+-x (L] ps* L),

mmodn < (mmod p't,..)).
(c) For a prime p,

C(p—l)pr_] P Odd,
(Z/p"Z)  ~ {Cy pr =22
Coyx Cyr—2 p=2,r>2.

Characteristic subgroups

DEFINITION 3.6 A characteristic subgroup of a group G is a
subgroup H such that «(H) = H for all automorphisms « of
G.

The same argument as in (I.32) shows that it suffices to
check that «(H) C H for all « € Aut(G). Thus, a subgroup H
of G is normal if it is stable under all inner automorphisms of
G, and it is characteristic if it stable under al// automorphisms.
In particular, a characteristic subgroup is normal.

REMARK 3.7 (a) Consider a group G and a normal subgroup
N. An inner automorphism of G restricts to an automorphism
of N, which may be outer (for an example, see [3.16] below).
Thus a normal subgroup of N need not be a normal subgroup
of G. However, a characteristic subgroup of N will be a normal
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subgroup of G. Also a characteristic subgroup of a character-
istic subgroup is a characteristic subgroup.

(b) The centre Z(G) of G is a characteristic subgroup, be-
cause

zg=gzallge G = a(z)a(g) =a(g)u(z)al g G,

and as g runs over G, «(g) also runs over G. Expect subgroups
with a general group-theoretic definition to be characteristic.

(c) If H is the only subgroup of G of order m, then it must
be characteristic, because a(H) is again a subgroup of G of
order m.

(d) Every subgroup of a commutative group is normal but
not necessarily characteristic. For example, every subspace of
dimension 1 in Ff, is subgroup of F2, but it is not characteristic

because it is not stable under Aut(]F%,) = GL2(Fp).

Semidirect products

Let N be a normal subgroup of G. Each element g of G de-
fines an automorphism of N, n gng~1, and this defines a
homomorphism

0:G — Aut(N), gr>ig|N.

If there exists a subgroup Q of G such that G — G/N maps Q
isomorphically onto G/ N, then I claim that we can reconstruct
G from N, Q, and the restriction of 6 to Q. Indeed, an element
g of G can be written uniquely in the form

g=nq, neN, qeQ;
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— ¢ must be the unique element of Q mapping to gN € G/N,
and n must be gg~1. Thus, we have a one-to-one correspon-
dence of sets
1-1
G<«— NxQ.

If g=nqgand g’ =n'q’, then

gg' = (nq)(n'q’) =n(gn’q )qq' =n-0(q)(n')-qq’.

DEFINITION 3.8 A group G is a semidirect product of its
subgroups N and Q if N is normal and the homomorphism
G — G/ N induces an isomorphism Q — G/N.

Equivalently, G is a semidirect product of subgroup N and
Qif
N «G; NQ =G; NNQ = {1} (15)

Note that Q need not be a normal subgroup of G. When G is
the semidirect product of subgroups N and Q, we write G =
N x Q (or N xg Q where 0: Q — Aut(N) gives the action of
Q on N by inner automorphisms).

EXAMPLE 3.9 (a) In Dy, n > 2, let C, = (r) and Cp = (s);
then
Dy =(r)xg (s) =Cn xg C2

where 0(s)(r') = r~ (see .
(b) The alternating subgroup A, is a normal subgroup of Sy,
(because it has index 2), and C» = {(12)} maps isomorphically

onto Sy, /Ay. Therefore S, = Ay x Cs.
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(c) The quaternion group can not be written as a semidirect
product in any nontrivial fashion (see Exercise 3-1).

(d) A cyclic group of order p2, p prime, is not a semidirect
product (because it has only one subgroup of order p).

(e) Let G = GL, (F). Let B be the subgroup of upper trian-
gular matrices in G, T the subgroup of diagonal matrices in G,
and U the subgroup of upper triangular matrices with all their
diagonal coefficients equal to 1. Thus, when n = 2,

p={G 2 =G b =i

Then, U is a normal subgroup of B, UT = B,and UNT =
{1}. Therefore,
B=UxT.

Note that, when n > 2, the action of T on U is not trivial, for
example,

a 0 1 ¢ al 0 (1 ac/b
0 b 0 1 o »1)7\o0 1 ’
and so B is not the direct product of 7" and U .

We have seen that, from a semidirect product G = N x Q,
we obtain a triple

(N,Q,60: 0 — Aut(N)),

and that the triple determines G. We now prove that every triple
(N, Q,0) consisting of two groups N and Q and a homomor-
phism 6: Q — Aut(N) arises from a semidirect product. As a
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set, let G = N x Q, and define
(n.q)(n'.q') = (n-0(q)(n"),qq").
PROPOSITION 3.10 The composition law above makes G into

a group, in fact, the semidirect product of N and Q.

PROOF. Write 91 for 6(¢q)(n), so that the composition law be-
comes
(n.q)n'.q") = (-1’ ,qq").

Then
((n.q), (" .gN".q") = (n-9n" -9 n" .qq'q"")
= (n.q9)((n".q")(n".q"))

and so the associative law holds. Because 6(1) = 1 and

0(g)(1) =1,
(I.D(n.q) = (n.q) = (n.q)(1.1),

and so (1, 1) is an identity element. Next

@ g =) =01 o9,

and so (q_ln_l,q_l) is an inverse for (n,q). Thus G is a
group, and it is obvious that N <G, NQ = G,and NN Q =
{1}, and so G = N x Q. Moreover, when N and Q are re-
garded as subgroups of G, the action of Q on N is that given
by 6. 0
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EXAMPLES

3.11 A group of order 12. Let 6 be the (unique) nontrivial
homomorphism

Cy — Aut(C3) ~ (C,,

namely, that sending a generator of Cy4 to the map a — a?.

Then G £ C3 xg C4 is a noncommutative group of order 12,
not isomorphic to A4. If we denote the generators of C3 and
C4 by a and b, then a and b generate G, and have the defining
relations

a’ = 1, bt = 1, bab~ ! =42

3.12 Direct products. The bijection of sets

(n,q)—> (n,q):NxQ — N xg Q

is an isomorphism of groups if and only if 6 is the trivial ho-
momorphism Q — Aut(N), i.e., 0(g)(n) =n for all ¢ € Q,
neN.

3.13 Groups of order 6. Both S3 and C¢ are semidirect
products of C3 by Co — they correspond to the two distinct
homomorphisms Cp — C5 >~ Aut(C3).

3.14 Groups of order 3 (element of order pz). Let N =
(a) be cyclic of order p~, and let Q = (b) be cyclic of order
p, where p is an odd prime. Then AutN ~ Cp—1 x Cp (see

, and Cp, is generated by o:a — al*P (note that o2 (a) =
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alt2P ). Define Q — AutN by b > a. The group G =
N xg Q has generators a, b and defining relations

ap2=1, pP =1, bab ! =4ltP,

It is a noncommutative group of order p3, and possesses an
element of order p2.

3.15 Groups of order p> (no element of order p2). Let
N = (a,b) be the product of two cyclic groups (@) and (b) of
order p, and let Q = (c¢) be a cyclic group of order p. Define
0: Q — Aut(N) to be the homomorphism such that

0(c')(a) = ab’, O(c')(b) =b.
(If we regard N as the additive group N = IF%, with ¢ and b the
standard basis elements, then 6(c’) is the automorphism of N
defined by the matrix (ll (1))) The group G N g Qisa
group of order p3, with generators a, b, ¢ and defining relations
a? =b? =cP =1, ab=cac”', [bal=1=]b.c].

Because b # 1, the middle equality shows that the group is not
commutative. When p is odd, all elements except 1 have order
p. When p =2, G & D4, which does have an element of order
22. Note that this shows that a group can have quite different
representations as a semidirect product:

3.9
Dy ) CaxCrx (CyxCr)xCsy.
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For an odd prime p, a noncommutative group of order p3 is
isomorphic to the group in (3.T4) if it has an element of order
p? and to the group in E if it doesn’t (see Exercise}4-4). In
particular, up to isomorphism, there are exactly two noncom-
mutative groups of order p3.

3.16 Making outer automorphisms inner. Let @ be an au-
tomorphism, possibly outer, of a group N. We can realize N
as a normal subgroup of a group G in such a way that « be-
comes the restriction to N of an inner automorphism of G. To
see this, let 6: Coo — Aut(N) be the homomorphism sending a
generator a of Coo to o € Aut(N), andlet G = N xg Coo. The
element ¢ = (1,a) of G has the property that g(n,1)g~! =
(x(n),1) foralln € N.

CRITERIA FOR SEMIDIRECT PRODUCTS TO BE
ISOMORPHIC

It will be useful to have criteria for when two triples (N, Q,0)
and (N, @, 0") determine isomorphic groups.

LEMMA 3.17 If there exists an o« € Aut(N) such that
0'(q) =aob(q)oa™t, allgeQ,
then the map

(n,q) = («(n),q):N xg Q — N xg/ Q

is an isomorphism.
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PROOE. For (n,q) € N xg9 Q,let y(n,q) = (x(n),q). Then
y(n.q)-y(n'.q") = (a(n),q)- (@®).q")

= (a(n)-0"(9)(@(n").qq")
= (@) (@o8(g) oo™ )(@(n").q¢")
= (a(n)-a(0(¢9)(n").q4"),

and

y((n,q)-(n',q")) = y(n-0(¢)(n"),q9")
= (a(n)-a (0(9)(n")).99").
Therefore y is a homomorphism. The map
(n,q) > (@' (n),q):N x19 Q — N x9 Q

is also a homomorphism, and it is inverse to y, and so both are
isomorphisms. O

LEMMA 3.18 If0 = 0’ oa witha € Aut(Q), then the map
(n.q) ~ (n.a(q)):N 39 Q ~ N xq Q
is an isomorphism.

PROOF. Routine verification. o

LEMMA 3.19 If Q is cyclic and the subgroup 8(Q) of Aut(N)
is conjugate to 6'(Q), then

NNgQ%NX]@/Q.
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PROOF. Leta generate Q. By assumption, there exists an a’ €
Q and an @ € Aut(N) such that

0'(a") =a-0(a)-a" L.

The element 6’(a’) generates 6'(Q), and so we can choose a’
to generate Q, say @’ = a! with i relatively prime to the or-
der of Q. Now the map (1,q) — ((n),¢") is an isomorphism
N X g Q — N X g Q [}

SUMMARY 3.20 Let G be a group with subgroups H; and Hp
such that G = Hy H and Hy N Hy = {e}, so that each element
g of G can be written uniquely as g = h1h, with h1 € Hy and
hy € Hy.
(a) If Hy and H» are both normal, then G is the direct prod-
uct of Hy and Ha, G = Hy x Hy (L.5]).
(b) If H; is normal in G, then G is the semidirect product
of Hy and H>, G = Hy < H» (@, p.@]).
(¢) If neither Hy nor H, is normal, then G is the Zappa-
Szép (or knit) product of Hy and H5 (see http://en.
wikipedia.org/wiki/Zappa-Szep_product).

Extensions of groups

A sequence of groups and homomorphisms

1-N5G650->1 (16)


http://en.wikipedia.org/wiki/Zappa-Szep_product
http://en.wikipedia.org/wiki/Zappa-Szep_product
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is exact if ¢ is injective, 7 is surjective, and Ker(sr) = Im(¢).
Thus ¢(N) is a normal subgroup of G (isomorphic by ¢ to N)

and G/t(N) — Q. We often identify N with the subgroup
t(N) of G and Q with the quotient G/ N.

An exact sequence is also called an extension of Q by
N." An extension is central if (N) C Z(G). For example, a
semidirect product N xg Q gives rise to an extension of Q by
N,

I1>N—->NxgQ— 0 —1,

which is central if and only if 6 is the trivial homomorphism.
Two extensions of Q by N are said to be isomorphic if
there exists a commutative diagram

1 N G 0 1
H =
1 N G’ 0 1

An extension of Q by N,

1-N5G65 01,
is said to be split if it is isomorphic to the extension defined by
a semidirect product N x¢y Q. Equivalent conditions:

(a) there exists a subgroup Q' C G such that 7 induces an
isomorphism Q" — Q; or

IThis is Bourbaki’s terminology (Algebre, I §6); some authors call an
extension of N by Q.
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(b) there exists a homomorphism s: Q — G such that 7 o
s =id.
In general, an extension will not split. For example, the ex-

tensions
1-N—->Q—>Q/N—1 17

with N any subgroup of order 4 in the quaternion group Q, and
1>Cp—>Cpo—>Cp—1

do not split. We give two criteria for an extension to split.

THEOREM 3.21 (SCHUR-ZASSENHAUS) An extension of fi-
nite groups of relatively prime order is split.

PROOF. Rotman|[1995| 7.41. O

PROPOSITION 3.22 An extension (I7) splits if N is complete.
In fact, G is then direct product of N with the centralizer of N
inG,

def

Co(N)={geG|gn=ngallneN}.

PROOF. Let Q = Cg(N). We shall check that N and Q sat-
isfy the conditions of Proposition [[.51]

Observe first that, for any g € G, n — gng LN - N is
an automorphism of N, and (because N is complete), it must
be the inner automorphism defined by an element y of N; thus

gng_1 = yny_l alln e N.
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This equation shows that y "1 g € O, and hence g = y(y " 1g) €

NQ. Since g was arbitrary, we have shown that G = NQ.
Next note that every element of N N Q is in the centre of

N, which (because N is complete) is trivial; hence N N Q = 1.
Finally, for any element g =nq € G,

gQs™ ' =n(qQq ™t =nQn~' =0
(recall that every element of N commutes with every element

of Q). Therefore Q is normal in G. !

An extension
1>N—->G—->0—1

gives rise to a homomorphism 6’: G — Aut(N ), namely,

0'(g)(n) = gng™".
Let § € G map to g in Q; then the image of /() in
Aut(N)/Inn(N) depends only on ¢; therefore we get a homo-
morphism

def

0:0Q — Out(N) = Aut(N)/Inn(N).

This map 6 depends only on the isomorphism class of the ex-
tension, and we write Ext! (Q, N)y for the set of isomorphism
classes of extensions with a given 6. These sets have been ex-
tensively studied.
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When Q and N are commutative and 6 is trivial, the group
G is also commutative, and there is a commutative group struc-
ture on the set Ext!(Q, N). Moreover, endomorphisms of Q
and N act as endomorphisms on Ext!(Q,N). In particular,
multiplication by m on Q or N induces multiplication by m on
Ext!(Q, N). Thus, if O and N are killed by m and n respec-
tively, then Ext! (Q, N) is killed by m and by n, and hence by
gcd(m,n). This proves the Schur-Zassenhaus theorem in this
case.

The Holder program.

It would be of the greatest interest if it were possible to give an
overview of the entire collection of finite simple groups.

Otto Holder, Math. Ann., 1892

Recall that a group G is simple if it contains no normal
subgroup except 1 and G. In other words, a group is simple
if it can’t be realized as an extension of smaller groups. Every
finite group can be obtained by taking repeated extensions of
simple groups. Thus the simple finite groups can be regarded
as the basic building blocks for all finite groups.

The problem of classifying all simple groups falls into two
parts:

A. Classify all finite simple groups;
B. Classify all extensions of finite groups.
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A. THE CLASSIFICATION OF FINITE SIMPLE GROUPS
There is a complete list of finite simple groups. They are?

(a) the cyclic groups of prime order,

(b) the alternating groups A, for n > 5 (see the next chap-
ter),

(c) certain infinite families of matrix groups (said to be of
Lie type), and

(d) the 26 “sporadic groups”.

By far the largest class is (c), but the 26 sporadic groups are
of more interest than their small number might suggest. Some
have even speculated that the largest of them, the Fischer-
Griess monster, is built into the fabric of the universe.

As an example of a matrix group, consider

SLm(Fg) “ {m xm matrices A with entries in Fy such that det A

Here ¢ = p”, p prime, and F; is “the” field with g ele-
ments. This group is not simple if g # 2, because the scalar

¢ 0 - 0
0 ¢ 0

matrices . , {™ =1, are in the centre for any
0 0 - ¢

2It has been shown that every group on the list can be generated by two
elements, and so this is true for all finite simple groups. If a proof of this could
be found that doesn’t use the classification, then the proof of the classification
would be greatly simplified (mo59213).
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m dividing g — 1, but these are the only matrices in the centre,
and the groups

def

PSL;; (Fg) = SLn (Fg)/{centre}

are simple when m > 3 (Rotman| 1995/ 8.23) and when m =2
and g > 3 (ibid. 8.13). Other finite simple groups can be ob-
tained from the groups in (T.8). The smallest noncommutative
group is As, and the second smallest is PSL3(IF2), which as
order 168 (see Exercise[4-8).

B THE CLASSIFICATION OF ALL EXTENSIONS OF
FINITE GROUPS

Much is known about the extensions of finite groups, for ex-
ample, about the extensions of one simple group by another.
However, as Solomon writes (2001, p. 347):

... the classification of all finite groups is com-
pletely infeasible. Nevertheless experience shows
that most of the finite groups which occur in “na-
ture” ... are “close” either to simple groups or
to groups such as dihedral groups, Heisenberg
groups, etc., which arise naturally in the study of
simple groups.

As we noted earlier, by the year 2001, a complete irredundant
list of finite groups was available only for those up to an order
of about 2000, and the number of groups on the list is over-
whelming.
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NOTES The dream of classifying the finite simple groups goes back at
least to Holder 1892. However a clear strategy for accomplishing this
did not begin to emerge until the 1950s, when work of Brauer and oth-
ers suggested that the key was to study the centralizers of elements of
order 2 (the involution centralizers). For example, Brauer and Fowler
(1955) showed that, for any finite group H, the determination of the
finite simple groups with an involution centralizer isomorphic to H is
a finite problem. Later work showed that the problem is even tractable,
and so the strategy became: (a) list the groups H that are candidates
for being an involution centralizer in some finite simple group, and (b)
for each H in (a) list the finite simple groups for which H occurs
as an involution centralizer. Of course, this approach applies only to
the finite simple groups containing an element of order 2, but an old
conjecture said that, except for the cyclic groups of prime order, every
finite simple group has even order and hence contains an element of
order 2 by Cauchy’s theorem @) With the proof of this conjecture
by Feit and Thompson (1963), the effort to complete the classification
of the finite simple groups began in earnest. A complete classification
was announced in 1982, but there remained sceptics, because the proof
depended on thousands of pages of rarely read journal articles, and,
in fact, in reworking the proof, gaps were discovered. However, these
have been closed, and with the publication of |Aschbacher and Smith
2004 it has become generally accepted that the proof of the classifica-
tion is indeed complete.

For a popular account of the history of the classification, see the
book|Ronan|2006, and for a more technical account, see the expository
article|Solomon/2001}
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Exercises

3-1 Let G be the quaternion group (T.T8). Prove that G can’t
be written as a semidirect product in any nontrivial fashion.

3-2 Let G be a group of order mn where m and n have no
common factor. If G contains exactly one subgroup M of order
m and exactly one subgroup N of order n, prove that G is the
direct product of M and N.

3-3 Prove that GL; (F2) ~ S3.

3-4 Let G be the quaternion group (T.I8). Prove that
Aut(G) ~ .

3-5 Let G be the set of all matrices in GL3(R) of the form
a 0 b
0 a c|,ad #0.Check that G is a subgroup of GL3(R),
0 0 d

and prove that it is a semidirect product of R2 (additive group)
by R* x R*. Is it a direct product of these two groups?

3-6 Find the automorphism groups of Coo and S3.

3-7 Let G = N x Q where N and Q are finite groups, and
let g = nq be an element of G withn € N and g € Q. Denote
the order of an element x by o(x).

(a) Show that 0(g) = k -0(q) for some divisor k of |N|.
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(b) When Q acts trivially on N, show that o(g) =
lem(o(n),0(g)).

(c) Let G = S5 = As x Q with O = ((1,2)). Let n =
(1,4,3,2,5) and let ¢ = (1,2). Show that o(g) = 6, 0o(n) =5,
and o(q) = 2.

(d) Suppose that G = (Cp)? x Q where Q is cyclic of order
p and that, for some generator ¢ of Q,

Q(al,--.,an)q_l =(ap.ai,....an—1).

Show inductively that, fori < p,

((1,0....,0).9)" =((1,....1,0,...,0).4")

(i copies of 1). Deduce that ((1,0,...,0),q) has order p?
(hence 0(g) = o(n)-o(q) in this case).

(e) Suppose that G = N x Q where N is commutative, Q
is cyclic of order 2, and the generator g of Q acts on N by
sending each element to its inverse. Show that (n, 1) has order
2 no matter what n is (in particular, o(g) is independent of

o(n)).

3-8 Let G be the semidirect G = N x Q of its subgroups N
and Q, and let

Cy(Q)={neN|ng=gqgnforalge Q}
(centralizer of Q in N). Show that
Z(G)=
{n-qlneCyn(Q),qeZ(Q),nn'n =g 'n'q foralln’ e N}.
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Let 6 be the homomorphism Q — Aut(/N) giving the action of
Q on N (by conjugation). Show that if N is commutative, then

Z(G)={n-q|neCN(Q).q € Z(Q)NKer(6)],

and if N and Q are commutative, then
Z(G)={n-q|neCn(Q).q €Ker(0)}.

3-9 A homomorphisma: G — H of groups is normal if a(G)
is a normal subgroup of H. We define the cokernel of a normal
homomorphism a to be H/a(G). Show that, if in the following
commutative diagram the blue sequences are exact and the ho-
momorphisms a, b, ¢ are normal, then the red sequence exists
and is exact:

0 > Ker f — Kera — Kerb —> Kerc)

A—' 5B A/C 0

Cokera > Cokerb - Cokerc - Cokerg’ - 0
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Chapter 4

Groups Acting on Sets

Definition and examples

DEFINITION 4.1 Let X be a set and let G be a group. A left
action of G on X is a mapping (g,x) — gx:G x X — X such
that

(@) 1x =x,forall x € X;
(b) (g182)x =g1(g2x),all g1, 82 € G, x € X.

A set together with a (left) action of G is called a (left) G-set.
An action is trivial if gx = x forall g € G.

The conditions imply that, for each g € G, left translation

by g,
gL X > X, x> gx,
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has (¢~ 1) as an inverse, and therefore g, is a bijection, i.e.,
g1 € Sym(X). Axiom (b) now says that

g gr:G — Sym(X) (18)

is @ homomorphism. Thus, from a left action of G on X, we
obtain a homomorphism G — Sym(X); conversely, every such
homomorphism defines an action of G on X. The action is
said to be faithful (or effective) if the homomorphism is
injective, i.e., if

gx=xforallxe X — g=1.

EXAMPLE 4.2 (a) Every subgroup of the symmetric group S,
acts faithfully on {1,2,...,n}.

(b) Every subgroup H of a group G acts faithfully on G by
left translation,

HxG— G, (hx)w hx.

(c) Let H be a subgroup of G. The group G acts on the set
of left cosets of H,

GxG/H - G/H, (g,C)+— gC.

The action is faithful if, for example, H # G and G is simple.
(d) Every group G acts on itself by conjugation,

GxG—>G, (g.x)—>8xZgxg™ L.

For any normal subgroup N, G acts on N and G/N by conju-
gation.
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(e) For any group G, Aut(G) acts on G.
(f) The group of rigid motions of R”" is the group of bijec-
tions R” — R” preserving lengths. It acts on R” on the left.

A right action X x G — G is defined similarly. To turn a
right action into a left action, set g % x = xg 1. For example,
there is a natural right action of G on the set of right cosets of a
subgroup H in G, namely, (C, g) — Cg, which can be turned
into a left action (g,C) +— Cg~ 1.

A map of G-sets (alternatively, a G-map or a G-
equivariant map) is a map ¢: X — Y such that

p(gx) =go(x), allgeG, xeX.

An isomorphism of G-sets is a bijective G-map; its inverse is
then also a G-map.

ORBITS

Let G acton X.
A subset S C X is said to be stable under the action of G if

geCG, xeS — gxelb.
The action of G on X then induces an action of G on §.

Write x ~g y if y = gx, some g € G. This relation is re-
flexive because x = 1x, symmetric because

y=gx = x=g"ly
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1

(multiply by g7 on the left and use the axioms), and transitive

because

y=gx. z=¢'y = z=¢"(gx) = (¢'g)x.

It is therefore an equivalence relation. The equivalence classes
are called G-orbits. Thus the G-orbits partition X. Write G\ X
for the set of orbits.

By definition, the G-orbit containing xg is

Gxo={gx0|g€G}.
It is the smallest G-stable subset of X containing xp.

EXAMPLE 4.3 (a) Suppose G acts on X, and let « € G be an
element of order n. Then the orbits of () are the sets of the
form

{x0,ax0,....a" Txg}.
(These elements need not be distinct, and so the set may con-
tain fewer than n elements.)

(b) The orbits for a subgroup H of G acting on G by left
multiplication are the right cosets of H in G. We write H\G
for the set of right cosets. Similarly, the orbits for H acting by
right multiplication are the left cosets, and we write G/H for
the set of left cosets. Note that the group law on G will not
induce a group law on G/H unless H is normal.

(c) For a group G acting on itself by conjugation, the orbits
are called conjugacy classes: for x € G, the conjugacy class of
x is the set

{gxg7'geG)
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of conjugates of x. The conjugacy class of xg always contains
Xg, and it consists only of x¢ if and only if x¢ is in the centre
of G. In linear algebra the conjugacy classes in G = GL,, (k)
are called similarity classes, and the theory of rational canon-
ical forms provides a set of representatives for the conjugacy
classes: two matrices are similar (conjugate) if and only if they
have the same rational canonical form.

Note that a subset of X is stable if and only if it is a union of
orbits. For example, a subgroup H of G is normal if and only
if it is a union of conjugacy classes.

The action of G on X is said to be transitive, and G is said
to act transitively on X, if there is only one orbit, i.e., for any
two elements x and y of X, there exists a g € G such that
gx = y. The set X is then called a homogeneous G-set. For
example, Sy, acts transitively on {1,2,...n}. For any subgroup
H of a group G, G acts transitively on G/H , but the action of
G on itself is never transitive if G # 1 because {1} is always a
conjugacy class.

The action of G on X is doubly transitive if for any two
pairs (x1,x2), (¥1,y2) of elements of X with x; # x5 and
¥1 # Y2, there exists a (single) g € G such that gx; = y; and
gx2 = y2. Define k-fold transitivity for k > 3 similarly.

STABILIZERS

Let G act on X. The stabilizer (or isotropy group) of an ele-
ment x € X is

Stab(x) ={g € G | gx = x}.
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It is a subgroup, but it need not be a normal subgroup (see the
next lemma). The action is free if Stab(x) = {e} for all x.

LEMMA 4.4 Foranyge G andx € X,
Stab(gx) = g - Stab(x) -g_l .
PROOF. Certainly, if g’x = x, then
(¢8's Dgx=gg'x =gx =1,

and so g - Stab(x)-g~! C Stab(gx). Conversely, if g’(gx) =
gx, then

(g '¢ox=g""g(gx)=¢g""y=x,

and so g 1g’g € Stab(x), i.e., g’ € g-Stab(x)-g~ L. o

Clearly

ﬂ Stab(x) = Ker(G — Sym(X)),
xeX

which is a normal subgroup of G. The action is faithful if and
only if () Stab(x) = {1}.

EXAMPLE 4.5 (a) Let G act on itself by conjugation. Then

Stab(x) ={g € G | gx = xg}.
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This group is called the centralizer Cg (x) of x in G. It consists
of all elements of G that commute with, i.e., centralize, x. The
intersection

m Co(x)={geG|gx=xgforalx € G}
x€G

is the centre of G.

(b) Let G act on G/H by left multiplication. Then
Stab(H) = H, and the stabilizer of gH is gHg L.

(c) Let G be the group of rigid motions of R" @.2f). The
stabilizer of the origin is the orthogonal group O, for the stan-
dard positive definite form on R” (Artin[1991, Chap. 4, 5.16).
Let T ~ (R", +) be the subgroup of G of translations of R”,
i.e., maps of the form v — v + vg some vy € R”. Then T is a
normal subgroup of G and G >~ T x O (cf.|Artin/[1991, Chap.
5, §2).

For a subset S of X, we define the stabilizer of S to be
Stab(S) ={geG|gS =S}

Then Stab(.S) is a subgroup of G, and the same argument as in
the proof of (4.4)) shows that

Stab(gS) = g-Stab(S) - g~ L.

EXAMPLE 4.6 Let G act on G by conjugation, and let H be
a subgroup of G. The stabilizer of H is called the normalizer
Ng(H) of H in G:

Ng(H)={geG|gHg ' = H}.
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Clearly Ng (H) is the largest subgroup of G containing H as
a normal subgroup.

It is possible for gS C S but g € Stab(S) (see[1.33).

TRANSITIVE ACTIONS

PROPOSITION 4.7 If G acts transitively on X, then for any
X0 € X, the map

g Stab(xg) +> gxo: G/ Stab(xg) —> X

is an isomorphism of G -sets.

PROOE. It is well-defined because, if i € Stab(xp), then
ghxo = gxo. It is injective because

gxo = g'xo = g~ '¢'x0 = xo
= g. g’ lie in the same left coset of Stab(xg).

It is surjective because G acts transitively. Finally, it is obvi-
ously G-equivariant. !

Thus every homogeneous G-set X is isomorphic to G/H
for some subgroup H of G, but such a realization of X is not
canonical: it depends on the choice of x¢ € X. To say this an-
other way, the G-set G/H has a preferred point, namely, the
coset H; to give a homogeneous G-set X rogether with a pre-
ferred point is essentially the same as to give a subgroup of

G.
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COROLLARY 4.8 Let G act on X, and let O = GXx¢ be the
orbit containing xo. Then the cardinality of O is

|O| = (G : Stab(xp)). (19)
For example, the number of conjugates gHg ™1
H of G is (G:Ng (H)).

of a subgroup

PROOF. The action of G on O is transitive, and so g — gxgo
defines a bijection G/ Stab(xg) — G xg. o
The equation is frequently useful for computing |O|.

PROPOSITION 4.9 Let xo € X. If G acts transitively on X,
then
Ker(G — Sym(X))

is the largest normal subgroup contained in Stab(xg).

PROOF. When

Ker(G — Sym(X)) = () Stab(x)
xeX

= ﬂ Stab(gxo)

geG
&3 ﬂg«Stab(xo)«g_l.

Hence, the proposition is a consequence of the following
lemma. !
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LEMMA 4.10 For any subgroup H of a group G,
ﬂgEG gHg™! is the largest normal subgroup contained
in H.

PROOF. Note that Nog = N geG 8H g~ !, being an intersection
of subgroups, is itself a subgroup. It is normal because

g1Nogi' = (1) (s18)No(g18) ™" = No
geG

— for the second equality, we used that, as g runs over the
elements of G, so also does g1 g. Thus Ny is a normal subgroup
of G contained in eHe™! = H.If N is a second such group,

then
N=gNg ' cgHg™

for all g € G, and so

N C ﬂ gHg_1 = Nop.
geG o

THE CLASS EQUATION

When X is finite, it is a disjoint union of a finite number of
orbits:

X = U O; (disjoint union).

Hence:
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PROPOSITION 4.11 The number of elements in X is

1X|=)"10;|=) (G :Stab(x;)), x;in0O;.  (20)

i=1 i=1
When G acts on itself by conjugation, this formula be-

comes:

PROPOSITION 4.12 (CLASS EQUATION)

G| =) (G :Cs(x)) Q1)
(x runs over a set of representatives for the conjugacy classes),

or
1G] =1Z(G)|+)_(G: Cg(y) (22)

(y runs over set of representatives for the conjugacy classes
containing more than one element).

THEOREM 4.13 (CAUCHY) If the prime p divides |G|, then
G contains an element of order p.

PROOF. We use induction on |G|. If for some y not in the
centre of G, p does not divide (G : Cg(y)), then p|Cg(y)
and we can apply induction to find an element of order p in
Cg(»). Thus we may suppose that p divides all of the terms
(G : Cg(y)) in the class equation (second form), and so also
divides Z(G). But Z(G) is commutative, and it follows from
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the structure theorem' of such groups that Z(G) will contain
an element of order p. o

COROLLARY 4.14 A finite group G is a p-group if and only
if every element has order a power of p.

PROOF. If |G| is a power of p, then Lagrange’s theorem (1.26})
shows that the order of every element is a power of p. The
converse follows from Cauchy’s theorem. O

COROLLARY 4.15 Every group of order 2p, p an odd prime,
is cyclic or dihedral.

PROOF. From Cauchy’s theorem, we know that such a G con-
tains elements s and r of orders 2 and p respectively. Let
H = (r). Then H is of index 2, and so is normal. Obviously
s¢ HyandsoG=HUHs:

G={lr....rP Vsrs . .. .rP71s).

As H is normal, srs~! = ri, some i. Because s2 =1, r =
_ 1 — i2 .
s2rs72 =s(srs™s™ =", and s0 i2 = 1 mod p. Because

"Here is a direct proof that the theorem holds for an abelian group Z. We
use induction on the order of Z. It suffices to show that Z contains an element
whose order is divisible by p, because then some power of the element will have
order exactly p. Let g # 1 be an element of Z. If p doesn’t divide the order of
g, then it divides the order of Z/(g), in which case there exists (by induction)
an element of G whose order in Z/(g) is divisible by p. But the order of such
an element must itself be divisible by p.
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7./ pZis a field, its only elements with square 1 are 1, and so
i =1or—1mod p. In the first case, the group is commutative
(any group generated by a set of commuting elements is obvi-
ously commutative); in the second srs~! = r~1 and we have
the dihedral group (2.9). o

p-GROUPS

THEOREM 4.16 Every nontrivial finite p-group has nontrivial
centre.

PROOE. By assumption, (G : 1) is a power of p, and so (G :
Cg(y)) is power of p (# p9) for all y not in the centre of
G. As p divides every term in the class equation (22)) except
(perhaps) |Z(G)|, it must divide | Z(G))] also. 0

COROLLARY 4.17 A group of order p™ has normal subgroups
of order p™ for allm < n.

PROOF. We use induction on n. The centre of G contains an
element g of order p, and so N = (g) is a normal subgroup
of G of order p. Now the induction hypothesis allows us to
assume the result for G/N, and the correspondence theorem
(T:47) then gives it to us for G. o

PROPOSITION 4.18 Every group of order p? is commutative,
and hence is isomorphic to Cp x Cp or sz.
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PROOF. We know that the centre Z is nontrivial, and that G/ Z
therefore has order 1 or p. In either case it is cyclic, and the
next result implies that G is commutative. !

LEMMA 4.19 Suppose G contains a subgroup H in its cen-
tre (hence H is normal) such that G/H is cyclic. Then G is
commutative.

PROOF. Let a be an element of G whose image in G/H gen-

erates it. Then every element of G can be written g = a’ h with
he H,i€Z. Now

alh-a’'h =alal' i’ because H C Z(G)
=a''alh'h
=ai'n-alh. 0

REMARK 4.20 The above proof shows that if H C Z(G) and
G contains a set of representatives for G/H whose elements
commute, then G is commutative.

For p odd, it is now not difficult to show that any noncom-
mutative group of order p3 is isomorphic to exactly one of the
groups constructed in (3.14] [3.15) (Exercise [-4). Thus, up to
isomorphism, there are exactly two noncommutative groups of
order p3.

EXAMPLE 4.21 Let G be a noncommutative group of order
8. Then G must contain an element a of order 4 (see Ex-
ercise [[-6). If G contains an element b of order 2 not in
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(a), then G >~ (a) xg (b) where 0 is the unique isomorphism
7./27. — (Z]4Z)*, and so G ~ Dy4. If not, any element b of G
not in {a) must have order 4, and a? = b2. Now bab~! is an
element of order 4 in (a). It can’t equal a, because otherwise
G would be commutative, and so hab~! = a>. Therefore G is

the quaternion group (T.T8] Z.7p).

ACTION ON THE LEFT COSETS

The action of G on the set of left cosets G/H of H in G is a
very useful tool in the study of groups. We illustrate this with
some examples.

Let X = G/H. Recall that, for any g € G,

Stab(gH) = gStab(H)g_1 = gHg_1

and the kernel of
G — Sym(X)

is the largest normal subgroup () geG 8H g1 of G contained
in H.

REMARK 4.22 (a) Let H be a subgroup of G not containing a
normal subgroup of G other than 1. Then G — Sym(G/H) is
injective, and we have realized G as a subgroup of a symmetric
group of order much smaller than (G : 1)!. For example, if G
is simple, then the Sylow theorems (see Chapter 5) show that
G has many proper subgroups H # 1 (unless G is cyclic), but
(by definition) it has no such normal subgroup.

(b) If (G : 1) does not divide (G : H)!, then

G — Sym(G/H)
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can’t be injective (Lagrange’s theorem, [1.26)), and we can con-
clude that H contains a normal subgroup # 1 of G. For ex-
ample, if G has order 99, then it will have a subgroup N of
order 11 (Cauchy’s theorem, [.13)), and the subgroup must be
normal. In fact, G = N x Q.

EXAMPLE 4.23 Corollary shows that every group G of
order 6 is either cyclic or dihedral. Here we present a slightly
different argument. According to Cauchy’s theorem ,G
must contain an element r of order 3 and an element s of order
2. Moreover N = ( ) must be normal because 6 doesn’t divide
2! (or simply because it has index 2). Let H = (s). Either (a)
H is normal in G, or (b) H is not normal in G. In the first
case, rsr~ 1 =5, ie., rs = sr,and so G ~ {r) x (s) ~ Cp x
C3. In the second case, G — Sym(G/H) is injective, hence
surjective, and so G ~ S3 &~ D3.

Permutation groups

Consider Sym(X) where X has n elements. Since (up to iso-
morphism) a symmetry group Sym(X) depends only on the
number of elements in X, we may take X = {1,2,...,n}, and
so work with Sj,. The symbol (1 23 1 g ‘15 g) denotes the per-
mutation sending 1 +— 2,2 +— 5, 3 »—> , etc..

Consider a permutation

(1 2 3 ... n
"—(a(l) o) o) ... a(n))'
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The pairs (i, j) withi < j and (i) > o(j) are called the in-
versions of o, and o is said to be even or odd according as the
number its inversions is even or odd.. The signature, sign(o),
of o is +1 or —1 according as o is even or odd. For example,

sign(o) = —1 if o is a transposition.

REMARK 4.24 To compute the signature of o, connect (by a
line) each element i in the top row to the element i in the bot-
tom row, and count the number of times that the lines cross:
o is even or odd according as this number is even or odd. For
example,

is even (6 intersections). This works, because there is one
crossing for each inversion.
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For a permutation o, consider the products

V= (G-= 2-DB-1D--(n-1)
lgilzljsn B3-2)--(n—2)

(n—(n—1))
ov="[] (@()-oG)

1<i<j<n

= (0@)—o)(@B)=a(1))---(0(n)—a(1))
(0(3)=0(2))+-(a(n)—0(2))

(c(n)—o(n—1)).

The terms in the products are the same except that each inver-
sion introduces a negative sign.? Therefore,

oV =sign(o)V.

Now let P be the additive group of maps Z" — Z. For f €
P and o € Sy, let o f be the element of P defined by

@)1 n2n) = [ (1) -2 Zo(n))-

2Each is a product over the 2-element subsets of {1,2,...,n}; the factor
corresponding to the subset {7, j}is £(j —1i).
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For 0,7 € S;, one finds that3

o(tf)=(o0)f. (23)
Let p be the element of P defined by
p(z1,...,2n) = l_[ (zj—zi).
1<i<j<n

The same argument as above shows that
op =sign(o)p.
On putting f = p in and using that p # 0, one finds that
sign(o) sign(t) = sign(o1).

Therefore, “sign” is a homomorphism S, — {+1}. When n >
2, it is surjective, and so its kernel is a normal subgroup of Sj,
of order "7!, called the alternating group Ay

REMARK 4.25 Clearly sign is the unique homomorphism
Sy — {£1} such that sign(o) = —1 for every transposition
0. Now let G = Sym(X) where X is a set with n elements.
Once we have chosen an ordering of X, we can speak of the

3For x € Z"* and 0 € Sy, let x° be the element of Z" such that (x%); =
Xo(i)- Then (x9)7 = x7. By definition, (0.f)(x) = f(x?). Therefore

(@@ NEx) = @fHx) = f((x°)7) = f(x?7) = ((07) ) (x)-
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inversions of an element o of G. Define ¢(o) to be +1 or —1
according as ¢ has an even or an odd number of inversions. The
same arguments as above show that ¢ is the unique homomor-
phism G — {1} such that ¢(6) = —1 for every transposition
0. In particular, it is independent of the choice of the ordering.
In other words, the parity of the number of inversions of o is
independent of the choice of the ordering on X. Can you prove
this directly?

A cycle is a permutation of the following form
i1 iy i3> > ip i1, remainingi’s fixed.

The i; are required to be distinct. We denote this cycle by
(i1i2...ir), and call r its length — note that r is also its or-
der as an element of ;. A cycle of length 2 is a transposition.
A cycle (i) of length 1 is the identity map. The support of the
cycle (i1 ...ir) is the set {i1,...,ir}, and cycles are said to be
disjoint if their supports are disjoint. Note that disjoint cycles
commute. If

0 =(i1...ir)(J1.--Js) - (U1..Iy) (disjoint cycles),
then
o™ = (i1.ir)"Grojs)™ - (I1...L)™ (disjoint cycles),
and it follows that o has order lem(r, s, ..., u).

PROPOSITION 4.26 Every permutation can be written (in es-
sentially one way) as a product of disjoint cycles.
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PROOF. Let 0 € Sy, and let O C {1,2,...,n} be an orbit for
(0).If|O| = r, then forany i € O,

0 ={i.0().....0" ")}

Therefore o and the cycle (i (i) ... " ~1(i)) have the same
action on any element of O. Let

(1.2....1y=J 0;
Jj=1
be the decomposition of {1,...,n} into a disjoint union of orbits

for (o), and let y; be the cycle associated (as above) with O ;.
Then
0O=Y1""VYm

is a decomposition of ¢ into a product of disjoint cycles. For
the uniqueness, note that a decomposition 0 = y1 -y into
a product of disjoint cycles must correspond to a decomposi-
tion of {1,...,n} into orbits (ignoring cycles of length 1 and
orbits with only one element). We can drop cycles of length
one, change the order of the cycles, and change how we write
each cycle (by choosing different initial elements), but that’s
all because the orbits are intrinsically attached to o. o

For example,
1 2 3 4 5 6 7 8
(5 74 2 1 3 6 8) = (15)(27634)(8). (24)

It has order lem(2,5) = 10.
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COROLLARY 4.27 Each permutation ¢ can be written as a
product of transpositions; the number of transpositions in such
a product is even or odd according as o is even or odd.

PROOF. The cycle
(ivin...iy) = (i1i2) - (lr—20ir—1)(r—1ir),

and so the first statement follows from the proposition. Because
sign is a homomorphism, and the signature of a transposition
is —1, sign(o) — (_1)#transposmons‘ o

Note that the formula in the proof shows that the signature
of a cycle of length r is (—1)" ™, that is, an r-cycle is even or
odd according as r is odd or even.

It is possible to define a permutation to be even or odd ac-
cording as it is a product of an even or odd number of transpo-
sitions, but then one has to go through an argument as above to
show that this is a well-defined notion.

The corollary says that S, is generated by transpositions.
For A, there is the following result.

COROLLARY 4.28 The alternating group Ay is generated by
cycles of length three.

PROOF. Any o € Ay, is the product (possibly empty) of an
even number of transpositions, o = 111} ---tm1,,, but the prod-
uct of two transpositions can always be written as a product of
3-cycles:
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@HGH =ajI) case j =k,
@ij)(kl) =3 @) Gk)Gk) (kD) = (ijk)(jkl) casei,j, k,I distinct,o
1 case (ij) = (kI).

Recall that two elements a and b of a group G are said to
be conjugate a ~ b if there exists an element g € G such that
b = gag™!, and that conjugacy is an equivalence relation. For
a group G, it is useful to determine the conjugacy classes in G.

EXAMPLE 4.29 In Sy, the conjugate of a cycle is given by:

gi1...ip)g ™' = (g(i1)...g(ix)).
Hence
glit...ip) (1 ...L)g = (gi1)...g(ir)) -+ (g(1)...g (1))

(even if the cycles are not disjoint, because conjugation is a ho-
momorphism). In other words, to obtain gcrg_l, replace each
element in each cycle of o by its image under g.

We shall now determine the conjugacy classes in Sy,. By a
partition of n, we mean a sequence of integers n1,...,n such
that

l1<ni<npy<--<np<nand

ny+nz+---+np =n.
For example, there are exactly 5 partitions of 4, namely,

A=1+41+1+1,4=1+1424=1+3,4=2+24=4,
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and 1,121,505 partitions of 61. Note that a partition
{1,2,...,n} =01 U...U O (disjoint union)
of {1,2,...,n} determines a partition of n,
n=ny+ny+..+ng, n;=,\0;l,

provided the numbering has been chosen so that |O;| <
|O;j+1]. Since the orbits of an element o of S; form a parti-
tion of {I,...,n}, we can attach to each such o a partition of
n. For example, the partition of 8 attached to (15)(27634)(8)
is 1,2, 5 and the partition attached of 7 attached to

o=(@1...in;)-U1...Ing)s
(disjoint cycles) 1 <n; <njyq,

isL,1,...,1,ny,...,ng (n—>_n; ones).

PROPOSITION 4.30 Two elements o and t of S, are conju-
gate if and only if they define the same partitions of n.

PROOF. = : We saw in (#.29) that conjugating an element
preserves the type of its disjoint cycle decomposition.
<= Since o and t define the same partitions of n, their
decompositions into products of disjoint cycles have the same
type:
o=(>1...ir)[J1---js)..-(1... ln),

T= (i) )G ) A,
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If we define g to be

ll “es ip jl ves Js ves ll eee lu ’

then

EXAMPLE 4.31 (ijk) = (1.1].2,3::-)(123)(1.11.2,{3;-‘;)—1.

REMARK 4.32 For 1 <k <n, there are %(n_km dis-

tinct k-cycles in Sy,. The % is needed so that we don’t count

({rin...ig) = (igi1 . ig—1) = ...
k times. Similarly, it is possible to compute the number of ele-
ments in any conjugacy class in Sy, but a little care is needed
when the partition of n has several terms equal. For example,
the number of permutations in Sy of type (ab)(cd) is

1 /(4x3 2x1

| —=—x——]=3

2 2 2
The % is needed so that we don’t count (ab)(cd) = (cd)(ab)
twice. For S4 we have the following table:

Partition Element No. in Conj. Class Parity
1+14+141 1 1 even
1+142 (ab) 6 odd
143 (abc) 8 even
242 (ab)(cd) 3 even
4 (abced) 6 odd
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Note that A4 contains exactly 3 elements of order 2, namely
those of type 2 4 2, and that together with 1 they form a sub-
group V. This group is a union of conjugacy classes, and is
therefore a normal subgroup of Sy.

THEOREM 4.33 (GALOIS) The group Ay is simple if n > 5

REMARK 4.34 Forn =2, A, is trivial, and for n = 3, A, is
cyclic of order 3, and hence simple; for n = 4 it is nonabelian
and nonsimple — it contains the normal, even characteristic,

subgroup V' (see[d.32).

LEMMA 4.35 Let N be a normal subgroup of A, (n > 5); if
N contains a cycle of length three, then it contains all cycles of
length three, and so equals A, (by[4.28).

PROOF. Let y be the cycle of length three in NV, and let o be a
second cycle of length three in A,. We know from (@.30) that
o = gyg 1 forsome g € Sy,. If g € Ay, then this shows that o
is also in N. If not, because n > 5, there exists a transposition
t € Sy, disjoint from o. Then g € A, and

o=tot L =tgyg 1,

and so againo € N. a

The next lemma completes the proof of the Theorem.

LEMMA 4.36 Every normal subgroup N of Ap,n>5,N #1,
contains a cycle of length 3.
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PROOF. Leto € N, o # 1. If o is not a 3-cycle, we shall con-
struct another element o’ € N, o’ # 1, which fixes more ele-
ments of {1,2,...,n} than does o. If ¢’ is not a 3-cycle, then
we can apply the same construction. After a finite number of
steps, we arrive at a 3-cycle.

Suppose o is not a 3-cycle. When we express it as a product
of disjoint cycles, either it contains a cycle of length > 3 or else
it is a product of transpositions, say

(i) o = (i1i2i3...):- or
(i) o= (i1i2)(i3ia)- .

In the first case, 0 moves two numbers, say i4, i5, other than
i1, i2, i3, because o # (i1i2i3), (i1...i4). Let y = (i3iais).
Then o1 4 yay_l = (iyipi4...)--- € N, and is distinct from
o (because it acts differently on i). Thus o’ £ o101 Z# 1, but
o = yoy‘lg—l fixes i and all elements other than iy, ...,i5
fixed by o — it therefore fixes more elements than o.

In the second case, form y, o1, ¢’ as in the first case with
i4 as in (ii) and i5 any element distinct from i1,i2,i3,i4. Then
o1 = (i1i2)(i4gis)--- is distinct from o because it acts differ-
ently on i4. Thus ¢’ = o101 # 1, but ¢’ fixes i1 and i», and
all elements # i1, ...,i5 not fixed by o — it therefore fixes at
least one more element than o. o

COROLLARY 4.37 For n > 5, the only normal subgroups of
Sy arel, Ay, and Sy,.

PROOF. If N is normal in Sy, then N N A, is normal in A4,.
Therefore either N N A, = A, or N N A, = {1}. In the first
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case, N D Ay, which has index 2 in S;;, and so N = A, or Sj.
In the second case, the map x — xA,: N — Sy /A, is injective,
and so N has order 1 or 2, but it can’t have order 2 because
no conjugacy class in Sy (other than {1}) consists of a single
element. O

ASIDE 4.38 There exists a description of the conjugacy classes in 4,
from which it is possible to deduce its simplicity for n > 5 (see Exer-

cise[d-12).
ASIDE 4.39 A group G is said to be solvable if there exist subgroups
G=GpDG1D-DGi_1D2G;D---DG, ={1}

such that each G; is normal in G;_1 and each quotient G;—1/Gj is
commutative. Thus A, (also Sj;) is not solvable if n > 5. Let f(X) €
Q[X] be of degree n.

In Galois theory, one attaches to f a subgroup G s of the group of
permutations of the roots of f', and shows that the roots of f can be
obtained from the coefficients of f by the algebraic operations of ad-
dition, subtraction, multiplication, division, and the extraction of mth
roots if and only if G ¢ is solvable (Galois’s theorem). For every n,
there exist lots of polynomials f* of degree n with G y ~ S, and
hence (when n > 5) lots of polynomials not solvable in radicals.

The Todd-Coxeter algorithm.

Let G be a group described by a finite presentation, and let H
be a subgroup described by a generating set. Then the Todd-
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Coxeter algorithm® is a strategy for writing down the set of
left cosets of H in G together with the action of G on the set.
I illustrate it with an example (from |Artin||1991, 6.9, which
provides more details, but note that he composes permutations
in the reverse direction from us).

Let G = (a,b,c|a3,b?,c?, cba) and let H be the subgroup
generated by c (strictly speaking, H is the subgroup generated
by the element of G represented by the reduced word c¢). The
operation of G on the set of cosets is described by the action of
the generators, which must satisfy the following rules:

(i) Each generator (a, b, c in our example) acts as a permu-
tation.
(ii) The relations (a3,b%,¢2,cha in our example) act triv-
ially.
(iii) The generators of H (c in our example) fix the coset 1 H.
(iv) The operation on the cosets is transitive.

The strategy is to introduce cosets, denoted 1,2,... with 1 =
1 H, as necessary.

Rule (iii) tells us simply that c1 = c¢. We now apply the first
two rules. Since we don’t know what al is, let’s denote it 2:
al = 2. Similarly, let a2 = 3. Now a3 = a>1, which according
to (ii) must be 1. Thus, we have introduced three (potential)

#To solve a problem, an algorithm must always terminate in a finite time
with the correct answer to the problem. The Todd-Coxeter algorithm does not
solve the problem of determining whether a finite presentation defines a finite
group (in fact, there is no such algorithm). It does, however, solve the problem
of determining the order of a finite group from a finite presentation of the group
(use the algorithm with H the trivial subgroup 1.)
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cosets 1, 2, 3, permuted by a as follows:
1525351
What is b1? We don’t know, and so it is prudent to introduce

another coset 4 = b1. Now b4 = 1 because b2 = 1, and so we

have
b b
l—>4+—1.

We still have the relation cha. We know al = 2, but we don’t
know what b2 is, and so we set b2 = 5:

b
1520 5.
By (iii) cl = 1, and by (ii) applied to cha we have ¢5 = 1.
Therefore, according to (i) we must have 5 = 1; we drop 5,
and so now b2 = 1. Since b4 = 1 we must have 4 = 2, and so

we can drop 4 also. What we know can be summarized by the
table:

3+ 23 3 3 1 2 3

The bottom right corner, which is forced by (ii), tells us that
c2 = 3. Hence also ¢3 = 2, and this then determines the rest of
the table:

a a a b b ¢ ¢ a b c

1 2 1 1 1 1 2 1 1
2 3 1 2 1 2 3 2 3 3 2
3 1 3 3 2 3 1 2 3
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We find that we have three cosets on which a, b, ¢ act as
a=(123) b=(12) c=(23).

More precisely, we have written down a map G — S3 that is
consistent with the above rules. A theorem (Artin||1991}, 9.10)
now says that this does in fact describe the action of G on
G/H. Since the three elements (123), (12), and (23) gener-
ate S3, this shows that the action of G on G/H induces an
isomorphism G — S3, and that H is a subgroup of order 2.

In|Artin/[1991] 6.9, it is explained how to make this proce-
dure into an algorithm which, when it succeeds in producing a
consistent table, will in fact produce the correct table.

This algorithm is implemented in GAP.

Primitive actions.

Let G be a group acting on a set X, and let = be a partition of
X . We say that 7 is stabilized by G if

Aen — gAem.

It suffices to check the condition for a set of generators for G.

EXAMPLE 4.40 (a) The subgroup G = ((1234)) of S4 stabi-
lizes the partition {{1,3},{2,4}} of {1,2,3,4}.

(b) Identify X = {1,2,3,4} with the set of vertices of
the square on which D4 acts in the usual way, namely,
with r = (1234), s = (2,4). Then D4 stabilizes the partition
{{1,3},{2,4}} (opposite vertices stay opposite).



140 4. GROUPS ACTING ON SETS

(c) Let X be the set of partitions of {1,2, 3,4} into two sets,
each with two elements. Then S4 acts on X, and Ker(S4 —
Sym(X)) is the subgroup V defined in (4.32).

The group G always stabilizes the trivial partitions of X,
namely, the set of all one-element subsets of X, and {X }. When
it stabilizes only those partitions, we say that the action is prim-
itive; otherwise it is imprimitive. A subgroup of Sym(X) (e.g.,
of Sy) is said to be primitive if it acts primitively on X. Ob-
viously, Sy itself is primitive, but Example f.40p shows that
Dy, regarded as a subgroup of S4 in the obvious way, is not
primitive.

EXAMPLE 4.41 A doubly transitive action is primitive: if it

stabilized

), L 0,,
then there would be no element sending (x, x’) to (x, y).
REMARK 4.42 The G-orbits form a partition of X that is sta-

bilized by G. If the action is primitive, then the partition into
orbits must be one of the trivial ones. Hence

action primitive == action transitive or trivial.
For the remainder of this section, G is a finite group acting
transitively on a set X with at least two elements.

PROPOSITION 4.43 The group G acts imprimitively if and
only if there is a proper subset A of X with at least 2 elements
such that,

foreach g € G, eithergA = AorgANA=290. (25)
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PROOF. == The partition 7 stabilized by G contains such an
A.

&=: From such an A, we can form a partition
{A,g14,824,...} of X, which is stabilized by G. =

A subset 4 of X satisfying is called block.

PROPOSITION 4.44 Let A be a block in X with |A| > 2 and
A# X.Foranyx € A,

Stab(x) & Stab(4) & G.
PROOF. We have Stab(A4) D Stab(x) because
gx=x — gANA#0 — gA=A.

Let y € A, y # x. Because G acts transitively on X, there is a

g € G such that gx = y. Then g € Stab(A), but g ¢ Stab(x).
Let y ¢ A. There is a g € G such that gx = y, and then

g ¢ Stab(A). O

THEOREM 4.45 The group G acts primitively on X if and
only if, for one (hence all) x in X, Stab(x) is a maximal sub-
group of G.

PROOF. If G does not act primitively on X, then (see |4.43)
there is a block 4 G X with at least two elements, and so (4.44)
shows that Stab(x) will not be maximal for any x € A.



142 4. GROUPS ACTING ON SETS

Conversely, suppose that there exists an x in X and a sub-
group H such that

Stab(x) G H G G.

Then I claim that A = Hx is a block # X with at least two
elements.
Because H # Stab(x), Hx # {x},andso {x} S A G X.
If g € H, then gA = A. If g ¢ H, then gA is disjoint
from A: for suppose ghx = h'x some h’ € H; then W' ~lgh
Stab(x) C H,say h'“lgh=h" andg=Wh'h"'eH. ¢

Exercises

4-1 Let Hy and H» be subgroups of a group G. Show that
the maps of G-sets G/H1 — G/H> are in natural one-to-one
correspondence with the elements gH, of G/H» such that
Hy C gHyg™ L.

4-2 (a) Show that a finite group G can’t be equal to the union
of the conjugates of a proper subgroup H.

(b) Show that (a) holds for an infinite group G provided that
(G: H) is finite.

(c) Give an example to show that (a) fails in general for
infinite groups.
(c) Give an example of a proper subset S of a finite group G
such that G = Ugeq gSg~L.

4-3 Show that any set of representatives for the conjugacy
classes in a finite group generates the group.
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4-4 Prove that any noncommutative group of order p3, p an
odd prime, is isomorphic to one of the two groups constructed

in 3.14, B-13).

4-5 Let p be the smallest prime dividing (G : 1) (assumed
finite). Show that any subgroup of G of index p is normal.

4-6 Show that a group of order 2m, m odd, contains a sub-
group of index 2. (Hint: Use Cayley’s theorem[I.22)

4-7 For n > 5, show that the k-cycles in S, generate S, or
Ap according as k is even or odd.

4-8 Let G = GL3(F,).

(a) Show that (G : 1) = 168.

(b) Let X be the set of lines through the origin in F' g; show
that X has 7 elements, and that there is a natural injective
homomorphism G < Sym(X) = S7.

(c) Use Jordan canonical forms to show that G has six con-
jugacy classes, with 1, 21, 42, 56, 24, and 24 elements
respectively. [Note that if M is a free F;[o]-module of
rank one, then Endp, [o](M) = Fa[a].]

(d) Deduce that G is simple.

4-9 Let G be a group. If Aut(G) is cyclic, prove that G is
commutative; if further, G is finite, prove that G is cyclic.

4-10 Show that S, is generated by (12),(13),...,(1n); also
by (12),(23),...,(n—1n).
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4-11 Let K be a conjugacy class of a finite group G contained
in a normal subgroup H of G. Prove that K is a union of k con-
jugacy classes of equal size in H, where k = (G : H - Cg(x))
for any x € K.

4-12 (a) Let 0 € Ay. From Exercise [d-11] we know that the
conjugacy class of o in ), either remains a single conjugacy
class in A, or breaks up as a union of two classes of equal size.
Show that the second case occurs <> o does not commute
with an odd permutation <= the partition of n defined by o
consists of distinct odd integers.

(b) For each conjugacy class K in A7, give a member of K,
and determine |K|.

4-13 Let G be the group with generators a,b and relations
a* =1=>2, aba = bab.

(a) Use the Todd-Coxeter algorithm (with H = 1) to find
the image of G under the homomorphism G — S, n =
(G : 1), given by Cayley’s Theorem 1.11. [No need to
include every step; just an outline will do.]

(b) Use Sage/GAP to check your answer.

4-14 Show that if the action of G on X is primitive and ef-
fective, then the action of any normal subgroup H # 1 of G is
transitive.

4-15 (a) Check that A4 has 8 elements of order 3, and 3 ele-
ments of order 2. Hence it has no element of order 6.
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(b) Prove that A4 has no subgroup of order 6 (cf.[I.30). (Use
B.23)
(c) Prove that A4 is the only subgroup of S4 of order 12.

4-16 Let G be a group with a subgroup of index r. Prove:
(a) If G is simple, then (G : 1) divides r!.
(b) If r = 2,3, or 4, then G can’t be simple.
(c) There exists a nonabelian simple group with a subgroup
of index 5.

4-17 Prove that S, is isomorphic to a subgroup of A,47.

4-18 Let H and K be subgroups of a group G. A double
coset of H and K in G is a set of the form

HaK = {hak |he H,k € K}

for some a € G.

(a) Show that the double cosets of H and K in G partition
G.

(b) Let H NaKa™ ! act on H x K by b(hk) =
(hb,a b~ Lak). Show that the orbits for this action are
exactly the fibres of the map (h,k) > hak: H x K —
HaK.

(c) (Double coset counting formula). Use (b) to show that

___|HIK]
|HaK| = — 281
|HNaKa™1|






Chapter 5

The Sylow Theorems;
Applications

In this chapter, all groups are finite.

Let G be a group and let p be a prime dividing (G:1). A
subgroup of G is called a Sylow p-subgroup of G if its order
is the highest power of p dividing (G : 1). In other words, H
is a Sylow p-subgroup of G if it is a p-group and its index in
G is prime to p.

The Sylow theorems state that there exist Sylow p-
subgroups for all primes p dividing (G:1), that the Sylow
p-subgroups for a fixed p are conjugate, and that every p-
subgroup of G is contained in such a subgroup; moreover, the
theorems restrict the possible number of Sylow p-subgroups in
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G.

The Sylow theorems
In the proofs, we frequently use that if O is an orbit for a group
H acting on aset X, and xg € O, thenthe map H — X, h —
hxg induces a bijection
H/Stab(xg) — O;

see ([@.7). Therefore

(H : Stab(xg)) = |0|.
In particular, when H is a p-group, | O] is a power of p: either

O consists of a single element, or |O| is divisible by p. Since
X is a disjoint union of the orbits, we can conclude:

LEMMA 5.1 Let H be a p-group acting on a finite set X, and
let X be the set of points fixed by H ; then

IX|= X" (mod p).

When the lemma is applied to a p-group H acting on itself
by conjugation, we find that

(Z(H)y:1)=(H:1) mod p

and so p|(Z(H):1) (cf. the proof of [4.16).
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THEOREM 5.2 (SYLOW I) Let G be a finite group, and let p
be prime. If p"|(G : 1), then G has a subgroup of order p”.

PROOF. According to (4.17), it suffices to prove this with p”
the highest power of p dividing (G : 1), and so from now on
we assume that (G : 1) = p”m with m not divisible by p. Let

X = {subsets of G with p” elements},
with the action of G defined by

GxX — X, (g,A)'—>gAd=€r{ga|a€A}.
Let A € X, and let

H = Stab(A) E{g e G | gA = A}.
For any ag € A, h + hag: H — A is injective (cancellation
law), and so (H : 1) <|A| = p". In the equation

(G:1)=(G:H)H:1

we know that (G : 1) = p"m, (H : 1) < p", and that (G : H)
is the number of elements in the orbit of A. If we can find an 4
such that p doesn’t divide the number of elements in its orbit,
then we can conclude that (for such an A), H = Stab A has
order p".

The number of elements in X is

x1= (77"
P
_ @"m)(pTm=1)--(p"m—i)---(p'm—p" +1)
prpt =1 (p" =i)--(p" =p" + 1
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Note that, because i < p", the power of p dividing p"m —i is
the power of p dividing i. The same is true for p” —i. There-
fore the corresponding terms on top and bottom are divisible by
the same powers of p, and so p does not divide | X |. Because
the orbits form a partition of X,

|X|=)"10;]. O; the distinct orbits,
and so at least one of the |O; | is not divisible by p. 0

EXAMPLE 5.3 LetF, =Z/ pZ, the field with p elements, and
let G = GLy (Fp). The n x n matrices in G are precisely those
whose columns form a basis for F. Thus, the first column can
be any nonzero vector in IF'I’,, of which there are p™ —1; the
second column can be any vector not in the span of the first
column, of which there are p” — p; and so on. Therefore, the
order of G is

(P"=1)(p" = p)(p" = p*)---(p" = p" ),

and so the power of p dividing (G : 1) is p1+2+“'+("_1). Con-
sider the upper triangular matrices with 1’s down the diagonal:

1 *x % -« %
0 1 % - %
0O 0 1 - =%
00 0 - 1

n—1_,n—-2

They form a subgroup U of order p"*~ " p
therefore a Sylow p-subgroup G.

-+ p, which is
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REMARK 5.4 The theorem gives another proof of Cauchy’s
theorem (@.13). If a prime p divides (G:1), then G will have a
subgroup H of order p, and any g € H, g # 1, is an element
of G of order p.

REMARK 5.5 The proof of Theorem [5.2] can be modified to
show directly that for each power p” of p dividing (G : 1)
there is a subgroup H of G of order p”. One again writes (G :
1) = p"m and considers the set X of all subsets of order p”. In
this case, the highest power p’© of p dividing | X | is the highest
power of p dividing m, and it follows that there is an orbit in
X whose order is not divisible by p"0T1. For an 4 in such an
orbit, the same counting argument shows that Stab(A) has p”
elements. We recommend that the reader write out the details.

THEOREM 5.6 (SYLOW II) Let G be a finite group, and let
|G| = p"m with m not divisible by p.
(a) Any two Sylow p-subgroups are conjugate.
(b) Let sp be the number of Sylow p-subgroups in G ; then
sp =1mod p and sp|m.
(c) Every p-subgroup of G is contained in a Sylow p-
subgroup.

Let H be a subgroup of G. Recall {#.6] .8) that the nor-
malizer of H in G is

Ng(H)={geG|gHg ' = H},

and that the number of conjugates of H in G is (G : Ng(H)).
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LEMMA 5.7 Let P be a Sylow p-subgroup of G, and let H
be a p-subgroup. If H normalizes P, i.e.,it H C Ng(P), then
H C P. In particular, no Sylow p-subgroup of G other than P
normalizes P.

PROOF. Because H and P are subgroups of Ng(P) with P
normal in Ng (P), HP is a subgroup,and H/HNP ~ HP/P
(apply [[.46). Therefore (HP : P) is a power of p (here is
where we use that H is a p-group), but

(HP :1)= (HP : P)(P: 1),

and (P : 1) is the largest power of p dividing (G : 1), hence
also the largest power of p dividing (HP : 1). Thus (HP :
P)=p%=1,and H C P. O

PROOF (OF SYLow II) (a) Let X be the set of Sylow p-
subgroups in G, and let G act on X by conjugation,

(g.P)~ gPg G xX - X.

Let O be one of the G-orbits: we have to show O is all of X.

Let P € O, and let P act on O through the action of G.
This single G-orbit may break up into several P-orbits, one
of which will be {P}. In fact this is the only one-point orbit
because

{0} is a P-orbit <=> P normalizes Q,

which we know (5.7) happens only for Q = P. Hence the num-
ber of elements in every P-orbit other than { P} is divisible by
p, and we have that |O| = 1 mod p.
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Suppose there exists a P ¢ O. We again let P acton O, but
this time the argument shows that there are no one-point orbits,
and so the number of elements in every P-orbit is divisible by
p. This implies that #0O is divisible by p, which contradicts
what we proved in the last paragraph. There can be no such P,
andso O is all of X.

(b) Since s is now the number of elements in O, we have
also shown that s, = 1 (mod p).

Let P be a Sylow p-subgroup of G. According to (a), sp is
the number of conjugates of P, which equals

' _(G:) G:1)
m
~ (Ng(P): P)’

This is a factor of m.

(c) Let H be a p-subgroup of G, and let H act on the set
X of Sylow p-subgroups by conjugation. Because |X | = s is
not divisible by p, X H must be nonempty (Lemma, ie.,at
least one H -orbit consists of a single Sylow p-subgroup. But
then H normalizes P and Lemmaimplies that H C P. o

COROLLARY 5.8 A Sylow p-subgroup is normal if and only
if it is the only Sylow p-subgroup.

PROOF. Let P be a Sylow p-subgroup of G. If P is nor-
mal, then (a) of Sylow II implies that it is the only Sylow p-
subgroup. The converse statement follows from (3.7¢) (which
shows, in fact, that P is even characteristic). ]
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COROLLARY 5.9 Suppose that a group G has only one Sylow
p-subgroup for each prime p dividing its order. Then G is a
direct product of its Sylow p-subgroups.

PROOF. Let Pp,..., P, be Sylow subgroups of G, and let
|P;| = pl.r 7. the p; are distinct primes. Because each P; is
normal in G, the product P1--- Py is a normal subgroup
of G. We shall prove by induction on k that it has or-
der pil p,rc". If k = 1, there is nothing to prove, and so
we may suppose that k > 2 and that Pj--- Pr_; has order
25 plrck:ll Then Pp---Px_1 N P = 1; therefore
shows that (Pq -+ Pr._1) Py is the direct product of Py --- Pr_1
and Py, and so has order pil prk. Now 4) applied to the
full set of Sylow subgroups of Gk shows that G is their direct
product. o

EXAMPLE 5.10 Let G = GL(V)) where V is a vector space of
dimension n over IF . There is a geometric description of the
Sylow subgroups of G. A full flag F in V is a sequence of
subspaces

V=V,2Vp—1D:-DV; D:---D V1 D{0}
with dimV; = i. Given such a flag F, let U(F) be the set of
linear maps «: V' — V such that

(a) a(V;) CV; forall i, and
(b) the endomorphism of V;/V;_1 induced by « is the iden-
tity map.
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I claim that U(F) is a Sylow p-subgroup of G. Indeed, we can
construct a basis {eq,...,e,} for V such {e1} is basis for V7,
{e1,ez} is a basis for V5, and so on. Relative to this basis, the
matrices of the elements of U(F') are exactly the elements of
the group U of (5.3).

Let g € GLy (F). Then gF “ {&Vn.gVn—1,...} is again a
full flag, and U(gF) = g-U(F)-g~!. From (a) of Sylow II, we
see that the Sylow p-subgroups of G are precisely the groups
of the form U(F) for some full flag F.

ASIDE 5.11 Some books use different numberings for Sylow’s theo-
rems. I have essentially followed the original (Sylow|1872).
Alternative approach to the Sylow theorems

We briefly forget that we have proved the Sylow theorems.

THEOREM 5.12 Let G be a group, and let P be a Sylow p-
subgroup of G. For any subgroup H of G, there exists ana € G
such that H NaPa~ ! is a Sylow p-subgroup of H.

PROOF. Recall (Exercise[d-18) that G is a disjoint union of the
double cosets for H and P, and so

[H|[P|
|G| = Za |HaP| = Za Hrapa T
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where the sum is over a set of representatives for the double
cosets. On dividing by | P| we find that

G| _ |H|
|P]| _Za |HNaPa=1|’

and so there exists an ¢ such that (H: H NaPa~") is not divis-
ible by p. For such an a, H NaPa~! is a Sylow p-subgroup
of H. o

PROOF (OF SYLOW I) According to Cayley’s theorem (1.22)),
G embeds into Sy, and Sy, embeds into GL, (Fp) (see|7.1p
below). As GLy, (F ) has a Sylow p-subgroup (see[5.3), so also
does G. i

PROOF (OF SYLow II(a,c)) Let P be a Sylow p-subgroup of
G, and let P’ be a p-subgroup of G. Then P’ is the unique
Sylow p-subgroup of P’, and so the theorem with H = P’
shows that aPa—! D P’ for some a. This implies (a) and (c)
of Sylow II. o

Examples

We apply what we have learnt to obtain information about
groups of various orders.

5.13 (GROUPS OF ORDER 99) Let G have order 99. The Sy-
low theorems imply that G has at least one subgroup H of

order 11, and in fact s11 ‘% and 511 = 1 mod 11. It follows
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that s11 = 1, and H is normal. Similarly, sg|11 and s9 = 1
mod 3, and so the Sylow 3-subgroup is also normal. Hence G is
isomorphic to the direct product of its Sylow subgroups (5.9),
which are both commutative (4.18), and so G commutative.

Here is an alternative proof. Verify as before that the Sy-
low 11-subgroup N of G is normal. The Sylow 3-subgroup Q
maps bijectively onto G/N, and so G = N x Q. It remains to
determine the action by conjugation of Q on N. But Aut(N)
is cyclic of order 10 (see [3.3), and so there is only the trivial
homomorphism Q — Aut(N). It follows that G is the direct
product of N and Q.

5.14 (GROUPS OF ORDER pg, p,q PRIMES, p <q) Let

G be such a group, and let P and Q be Sylow p and ¢
subgroups. Then (G : Q) = p, which is the smallest prime
dividing (G : 1), and so (see Exercise Q is normal.
Because P maps bijectively onto G/Q, we have that

G=0xP,

and it remains to determine the action of P on Q by conjuga-
tion.

The group Aut(Q) is cyclic of order g — 1 (see[3.3)), and so,
unless plg—1,G = Q x P.

If p|g — 1, then Aut(Q) (being cyclic) has a unique sub-
group P’ of order p. In fact P’ consists of the maps

x—>x, (e€Z/qZ|iP =1}

Let a and b be generators for P and Q respectively, and sup-
pose that the action of ¢ on Q by conjugation is x +> x'0,
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iop # 1 (in Z/qZ). Then G has generators a, b and relations
aP, b4, aba='=h".

Choosing a different ig amounts to choosing a different gener-
ator a for P, and so gives an isomorphic group G.

In summary: if p f ¢ — 1, then the only group of order pq is
the cyclic group Cpgq; if p|g — 1, then there is also a nonabelian
group given by the above generators and relations.

5.15 (GROUPS OF ORDER 30) Let G be a group of order 30.
Then

s3 =1,4,7,10,... and divides 10;
s5 =1,6,11,... and divides 6.

Hence s3 = 1 or 10, and s5 = 1 or 6. In fact, at least one is
1, for otherwise there would be 20 elements of order 3 and 24
elements of order 5, which is impossible. Therefore, a Sylow
3-subgroup P or a Sylow 5-subgroup Q is normal, and so H =
PQ is a subgroup of G. Because 3 doesn’t divide 5—1 = 4,
(5.14) shows that H is commutative, H ~ C3 x C5. Hence

G = (C3xC5) xg C3,

and it remains to determine the possible homomorphisms
0:Co — Aut(C3 x Cs). But such a homomorphism 6 is de-
termined by the image of the nonidentity element of C5, which
must be an element of order 2. Let a, b, ¢ generate C3, C5, C3.
Then

Aut(C3 x Cs) = Aut(C3) x Aut(Cs),
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and the only elements of AutC3 and AutCs of order 2 are a —
a~1 and b — b~!. Thus there are exactly 4 homomorphisms
0, and 0(c) is one of the following elements:

ava ara ara! ara!

bsb hisb~! b>b b>b1"
The groups corresponding to these homomorphisms have cen-
tres of order 30, 3 (generated by a), 5 (generated by b), and
1 respectively, and hence are nonisomorphic. We have shown
that (up to isomorphism) there are exactly 4 groups of order

30. For example, the third on our list has generators a, b, ¢ and
relations

a3, b>, 2, ab=ba, cac’l'=a71, cbcl=0b.

5.16 (GROUPS OF ORDER 12) Let G be a group of order 12,
and let P be its Sylow 3-subgroup. If P is not normal, then P
doesn’t contain a nontrivial normal subgroup of G, and so the
map @-2] action on the left cosets)

¢:G— Sym(G/P)~ S4

is injective, and its image is a subgroup of S4 of order 12. From
Sylow II we see that G has exactly 4 Sylow 3-subgroups, and
hence it has exactly 8 elements of order 3. But all elements of
S4 of order 3 are in A4 (see the table in [£.32)), and so ¢(G)
intersects A4 in a subgroup with at least 8 elements. By La-
grange’s theorem ¢(G) = A4, and so G &~ Ag4.

Now assume that P is normal. Then G = P x Q where Q is
the Sylow 4-subgroup. If Q is cyclic of order 4, then there is a
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unique nontrivial map Q(= C4) — Aut(P)(= C3), and hence
we obtain a single noncommutative group C3 x C4. If Q =
C, x C», there are exactly 3 nontrivial homomorphism 6: Q —
Aut(P), but the three groups resulting are all isomorphic to
S3 x Cy with Co = Ker6. (The homomorphisms differ by an
automorphism of Q, and so we can also apply Lemma[3.18])

In total, there are 3 noncommutative groups of order 12 and
2 commutative groups.

5.17 (GROUPS OF ORDER p3) Let G be a group of order p3,

with p an odd prime, and assume G is not commutative. We

know from that G has a normal subgroup N of order
2

If every element of G has order p (except 1), then N ~
Cp x Cp and there is a subgroup Q of G of order p such that
QNN ={1}. Hence

G =N xg0Q

for some homomorphism 6: Q — N. The order of Aut(N) ~
GLy(Fp) is (P2 —1)(p2—p) (see , and so its Sylow p-
subgroups have order p. By the Sylow theorems, they are con-
jugate, and so Lemma|3.19|shows that there is exactly one non-
abelian group in this case.

Suppose G has elements of order p2, and let N be the sub-
group generated by such an element a. Because (G : N) = p is
the smallest (in fact only) prime dividing (G : 1), N is normal
in G (Exercise [-3). We next show that G contains an element
of order p notin N.
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We know Z(G) # 1, and, because G isn’t commutative,
that G/Z(G) is not cyclic @.19). Therefore (Z(G) : 1) = p
and G/Z(G) ~ Cp x Cp. In particular, we see that for all
x € G, xP € Z(G). Because G/Z(G) is commutative, the
commutator of any pair of elements of G lies in Z(G), and
an easy induction argument shows that

(n—1)
)" =x"y"y.x]" 2 . n>1l.

Therefore (xy)? = xPyP, and so x > xP:G — G is a ho-
momorphism. Its image is contained in Z(G), and so its ker-
nel has order at least p2. Since N contains only p — 1 ele-
ments of order p, we see that there exists an element b of or-
der p outside N. Hence G = (a) x (b) ~ Cp2 X Cp, and it
remains to observe (3.19) that the nontrivial homomorphisms
Cp— Aut(sz) ~ Cp x Cp—1 give isomorphic groups.
Thus, u3p to isomorphism, the only noncommutative groups

of order p? are those constructed in (3.14} [3.15).

5.18 (GROUPS OF ORDER 2p", 4p™ AND 8p™, p ODD)
Let G be a group of order 2™ p”, 1 <m < 3, p an odd prime,
1 < n. We shall show that G is not simple. Let P be a Sylow
p-subgroup and let N = NG (P), sothat s, = (G : N).

From Sylow II, we know that 5,2, 5, =1,p+1,2p +
I,....If s, =1, P is normal. If not, there are two cases to
consider:

(i) sp =4and p =3, 0r
(ii) sp =8and p=T7.
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In the first case, the action by conjugation of G on the set of
Sylow 3-subgroups! defines a homomorphism G — S4, which,
if G is simple, must be injective. Therefore (G : 1)|4!, and so
n = 1; we have (G : 1) =2™3. Now the Sylow 2-subgroup has
index 3, and so we have a homomorphism G — S3. Its kernel
is a nontrivial normal subgroup of G.

In the second case, the same argument shows that (G : 1)|8!,
and so n = 1 again. Thus (G : 1) = 56 and s7 = 8. Therefore G
has 48 elements of order 7, and so there can be only one Sylow
2-subgroup, which must therefore be normal.

Note that groups of order pq”, p,q primes, p < ¢ are not
simple, because Exercise shows that the Sylow g-subgroup
is normal. An examination of cases now reveals that Az is the
smallest noncyclic simple group.

5.19 (GROUPS OF ORDER 60) Let G be a simple group of
order 60. We shall show that G is isomorphic to As. Let P be
a Sylow 2-subgroup and N = Ng(P), so that s = (G : N).
According to the Sylow theorems, s> = 1,3,5, or 15.

(a) The case s = 1 is impossible, because P would be nor-
mal (see[5.8).

(b) The case s = 3 is impossible, because the kernel of
G — Sym(G/N) would be a nontrivial normal subgroup of G.

(¢) In the case sp = 5, we get an inclusion G —
Sym(G/N) = S5, which realizes G as a subgroup of index
2 in S5, but we saw in that, for n > 5, A is the only
subgroup of index 2 in Sy.

!Equivalently, the usual map G — Sym(G/N).
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(d) In the case s» = 15, a counting argument (using that
s5 = 6) shows that there exist two Sylow 2-subgroups P and Q
intersecting in a group of order 2. The normalizer N of P N Q
contains P and Q, and so it has index 1, 3, or 5 in G. The
first two cases are impossible for the same reasons as in (a) and
(b). If (G: N) = 5, the argument in (c) gives an isomorphism
G ~ As; but this is impossible because s5(A5) = 5.

Exercises
5-1 Show that a finite group (not necessarily commutative) is

cyclic if, for each n > 0, it contains at most n elements of order
dividing n.






Chapter 6

Subnormal Series; Solvable
and Nilpotent Groups

Subnormal Series.

Let G be a group. A chain of subgroups
G=GoD>G1D---DG; DGj41D--DGy={1}.

is called a subnormal series if G; is normal in G;_; for every

i, and it is called a normal series if G; is normal in G for
every i.! The series is said to be without repetitions if all the

'Some authors write “normal series” where we write “subnormal series”
and “invariant series” where we write “normal series”.
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inclusions G;_1 D G; are proper (i.e., G;_1 # G;). Then n is
called the length of the series. The quotient groups G;_1/G;
are called the quotient (or factor) groups of the series.

A subnormal series is said to be a composition series if it
has no proper refinement that is also a subnormal series. In
other words, it is a composition series if G; is maximal among
the proper normal subgroups G;_; for each i. Thus a subnor-
mal series is a composition series if and only if each quotient
group is simple and nontrivial. Obviously, every finite group
has a composition series (usually many): choose G1 to be a
maximal proper normal subgroup of G; then choose G, to be a
maximal proper normal subgroup of G1, etc.. An infinite group
may or may not have a finite composition series.

Note that from a subnormal series

G=Go>rG1>-->Gi>Gip>->Gy = {1}
we obtain a sequence of exact sequences

1> Gu—1 > Gp—2—>Gp—2/Gp—1 —1
1-Gi+1 > G —>Gi/Giy1 —~ 1

1—- Gy —> Go— Go/G1 — 1.

Thus G is built up out of the quotients
Go/G1,G1/G3,...,Gp—1 by forming successive exten-
sions. In particular, since every finite group has a composition
series, it can be regarded as being built up out of simple



Subnormal Series. 167

groups. The Jordan-Holder theorem, which is the main topic
of this section, says that these simple groups are independent
of the composition series (up to order and isomorphism).

Note that if G has a subnormal series G = Go> G >--->
G, = {1}, then

G:=[],__,Gi1:G)=]],_,_,(Gi-1/Gi:1).

EXAMPLE 6.1 (a) The symmetric group S3 has a composition
series
S3> Az 1

with quotients C», Cs.
(b) The symmetric group S4 has a composition series

SarAg> V> ((13)(24)) > 1,

where V =~ Cy x Cy consists of all elements of order 2 in A4
(see[4.32)). The quotients are Co, C3, C3, C».

(c) Any full flag in 'I’,, p a prime, is a composition series.
Its length is n, and its quotients are Cp,Cp,...,Cp.

(d) Consider the cyclic group Cy, = (a). For any factoriza-
tion m = pip -+ pr of m into a product of primes (not necessar-
ily distinct), there is a composition series

Cpn » Cm b C_m_ >

I (%
P1) (aP1P2)

[
{a) (a

The length is r, and the quotients are Cp,,Cp,,...,Cp

e
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(e) Suppose G is a direct product of simple groups, G =
Hjy x---x Hy. Then G has a composition series

GrHyx---xHp>H3x - X Hpt>+--

of length r and with quotients H1, H2,..., Hy. Note that for
any permutation o of {1,2,...r}, there is another composition
series with quotients Hy (1), Hy(2)- -+ Ho(r)-

(f) We saw in that for n > 5, the only normal sub-
groups of Sy, are Sy, Ay, {1}, and in that A, is simple.
Hence Sy > Ay, > {1} is the only composition series for S,.

THEOREM 6.2 (JORDAN-HOLDER) 2Let G be a finite group.
If

G=Go>G1>-->Gg = {1}
G =Ho>H>--->Hy ={1}

are two composition series for G, then s =t and there
is a permutation o of {1,2,...,s} such that G;/Gj4+ ~
Ho(iy/Ho(iy+1-

PROOF. We use induction on the order of G.
Case I: H; = G1. In this case, we have two composition
series for G1, to which we can apply the induction hypothesis.

2Jordan showed that corresponding quotients had the same order, and
Holder that they were isomorphic.
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Case II: H; # G1. Because G; and Hp are both normal
in G, the product G1 H; is a normal subgroup of G. It prop-
erly contains both G and Hj, which are maximal normal sub-
groups of G, and so G1 H1 = G. Therefore

G/Gy=G1H1/Gy ~H{/GiNH; (see[T.46).

Similarly G/H; ~ G1/G1 N Hy.Let K = Gy N Hy; then K
is a maximal normal subgroup in both G; and H1, and

G/Gy~H1/Kz, G/H1~G1/K>. (26)
Choose a composition series
Ky K3y>---> Ky,
We have the picture:

Gy » Gy > - > Gy
/ AN
G K, » - > Ky .
AN /
H » H, > -- > H;

On applying the induction hypothesis to G; and H; and their
composition series in the diagram, we find that

Quotients(G>G1>Ga>+-+)

={G/G1,G1/G2.G2/G3,...} (definition)
~{G/G1,G1/K>2,K2/K3,...} (induction)
~{H1/K>,G/H1,K>/K3,...} (apply 26))
~{G/H1,H1/K>2,K>/K3,...} (reorder)
~{G/Hy,H1/H>,H2/H3,...} (induction)

= Quotients(G> Hy > Hy1>--+) (definition). O
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Note that the theorem applied to a cyclic group Cp; implies
that the factorization of an integer into a product of primes is
unique.

REMARK 6.3 There are infinite groups having finite compo-
sition series (there are even infinite simple groups). For such
a group, let d(G) be the minimum length of a composition
series. Then the Jordan-Holder theorem extends to show that
all composition series have length d(G) and have isomorphic
quotient groups. The same proof works except that you have to
use induction on d(G) instead of |G| and verify that a normal
subgroup of a group with a finite composition series also has a
finite composition series (Exercise [6-1)).

The quotients of a composition series are sometimes called
composition factors.

Solvable groups

A subnormal series whose quotient groups are all commutative
is called a solvable series. A group is solvable (or soluble) if it
has a solvable series. Alternatively, we can say that a group is
solvable if it can be obtained by forming successive extensions
of commutative groups. Since a commutative group is simple
if and only if it is cyclic of prime order, we see that G is solv-
able if and only if for one (hence every) composition series the
quotients are all cyclic groups of prime order.

Every commutative group is solvable, as is every dihedral
group. The results in Chapter 5 show that every group of order



Solvable groups 171

< 60 is solvable. By contrast, a noncommutative simple group,
e.g., Ay for n > 5, will not be solvable.

THEOREM 6.4 (FEIT-THOMPSON) Every finite group of odd
order is solvable.

PROOF. The proof occupies an entire issue of the Pacific Jour-
nal of Mathematics (Feit and Thompson||1963)). o

In other words, every finite group is either solvable or con-
tains an element of order 2. For the role this theorem played in
the classification of the finite simple groups, see p. @ For a
more recent look at the Feit-Thompson theorem, see |(Glauber-
man||1999.

EXAMPLE 6.5 Consider the subgroups B = % ((’; I)} and

U= { ((1) T)} of GL,(F), some field F. Then U is a nor-

3Burnside (1897, p. 379) wrote:

No simple group of odd order is at present known to exist. An
investigation as to the existence or non-existence of such groups
would undoubtedly lead, whatever the conclusion might be, to
results of importance; it may be recommended to the reader as
well worth his attention. Also, there is no known simple group
whose order contains fewer than three different primes. ...

Significant progress in the first problem was not made until Suzuki, M., The
nonexistence of a certain type of simple group of finite order, 1957. However, the
second problem was solved by Burnside himself, who proved using characters
that any group whose order contains fewer than three different primes is solvable
(see|Alperin and Bell|1995| p. 182).
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mal subgroup of B,and B/U ~ F*x F*,U ~ (F,+). Hence
B is solvable.

PROPOSITION 6.6 (a) Every subgroup and every quotient
group of a solvable group is solvable.
(b) An extension of solvable groups is solvable.

PROOF. (a) Let G> G >---> Gy be a solvable series for G,
and let H be a subgroup of G. The homomorphism

x> xGip1: HNG; — Gi/Giqq

has kernel (H N G;) N G;j+1 = H N G;41. Therefore, H N
G;41 is a normal subgroup of H N G; and the quotient H N
Gi/H N G4 injects into G;/Gj+1, which is commutative.
We have shown that

He-HNG>--->HNGy

is a solvable series for H. _
Let G be a quotient group of G, and let G; be the image of
G; in G. Then

G_1>G_1>--->Gn = {1}

is a solvable series for G. ~
(b) Let N be a normal subgroup of G, and let G = G/N.
We have to show that if N and G are solvable, then so also is
G. Let o _
G>Gyr>->Gy = {1}
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N>Ny>--> Ny ={1}

be solvable series for G and N, and let G; be the inverse image
of G; in G. Then G;/G; 1 ~ G;/G; 11 (see[1.48), and so

G>Gyp--->Gp(= N)> Ny b Ny

is a solvable series for G. O
COROLLARY 6.7 A finite p-group is solvable.

PROOF. We use induction on the order the group G. Accord-
ing to (4.16), the centre Z(G) of G is nontrivial, and so the in-
duction hypothesis implies that G/Z(G) is solvable. Because
Z(G) is commutative, (b) of the proposition shows that G is
solvable. o

Let G be a group. Recall that the commutator of x,y € G
is
1

[x.y]=xyx"1y ™ =xy(yx)7!

Thus
[x,y] =1 <= xy =yx,

and G is commutative if and only if every commutator equals
L.

EXAMPLE 6.8 For any finite-dimensional vector space V' over
a field k and any full flag F = {Vj,,V;,—1,...} in V, the group

B(F)={a e Aut(V) |a(V;) C V;all j}
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is solvable. Indeed, let U(F') be the group defined in Example
5.10l Then B(F)/U(F) is commutative, and, when k =T,
U(F) is a p-group. This proves that B(F) is solvable when
k =Tp, and in the general case one defines subgroups Bg D
B1 D --- of B(F) with

Bi ={a € B(F)|a(V;)CV;—; alj}

and notes that the commutator of two elements of B; lies in
Bit1.

For any homomorphism ¢: G — H

o([x.y]) = p(xyx"1y™h) = [p(x).0(»)].

i.e., ¢ maps the commutator of x,y to the commutator of
@(x),¢(y). In particular, we see that if H is commutative, then
¢ maps all commutators in G to 1.

The group G’ = M generated by the commutators in G
is called the commutator or first derived subgroup of G.

PROPOSITION 6.9 The commutator subgroup G’ is a charac-
teristic subgroup of G ; it is the smallest normal subgroup of G
such that G/ G’ is commutative.

PROOF. An automorphism o of G maps the generating set for
G’ into G’, and hence maps G’ into G’. Since this is true for
all automorphisms of G, G is characteristic.

Write g — g for the homomorphism g — gG’:G — G/G’.
Then [g,h] = [g,h], which is 1 because [g,/h] € G'. Hence
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[g.h] =1 forall g, h € G/G’, which shows that G/ G’ is com-
mutative.

Let N be a second normal subgroup of G such that G/N
is commutative. Then [g,h] 1 in G/N and so [g,h] € N.
Since these elements generate G, N D G o

Forn > 5, Ay is the smallest normal subgroup of S giving
a commutative quotient. Hence (Sy,)’ =
The second derived subgroup of G 1s (G )'; the third is

G® = (G”); and so on. Since a characteristic subgroup of
a characteristic subgroup is characteristic (3.7h), each derived

group G™ is a characteristic subgroup of G. Hence we obtain
a normal series

GHoGMW>5g®@ O,

which is called the derived series of G. For example, when
n > 5, the derived series of Sy, is

Sn DAy DAy DAy D

PROPOSITION 6.10 A group G is solvable if and only if its
kth derived subgroup G®) =1 for some k.

PrROOE. IfG*) = 1, then the derived series is a solvable series
for G. Conversely, let

G=GorG1>Gr>--->Gg =1
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be a solvable series for G. Because G/G1 is commutative,
G1 D G'. Now G'Gj is a subgroup of G, and from

G'/G'NG2 > G'Ga/Ga C G1/Go
we see that
G1/G, commutative = G’/G’ N G, commutative
= G"CG' NG, CGy.

Continuing in the fashion, we find that G ¢ G; forall i, and
hence G®) = 1. o

Thus, a solvable group G has a canonical solvable series,
namely the derived series, in which all the groups are normal
in G. The proof of the proposition shows that the derived series
is the shortest solvable series for G. Its length is called the
solvable length of G.

ASIDE 6.11 Not every element of the commutator subgroup of a
group is itself a commutator, but the smallest groups where this oc-
curs have order 94. This was shown by a computer search through the
libraries of small groups.

Nilpotent groups

Let G be a group. Recall that we write Z(G) for the centre
of G. Let Z<(G) C G be the subgroup of G corresponding to
Z(G/Z(G)) C G/Z(G). Thus

g€Z%(G) < [g.x] € Z(G) forall x € G.
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Continuing in this fashion, we get a sequence of subgroups (as-
cending central series)

{1} C Z(G) c Z*(G) C ---
where
ge Zi(G) — [g.,x] € Zi_l(G) forall x € G.

If Z™(G) = G for some m, then G is said to be nilpotent, and
the smallest such m is called the (nilpotency) class of G. For
example, all finite p-groups are nilpotent (apply [4.16).

Only the group {1} has class 0, and the groups of class 1 are
exactly the commutative groups. A group G is of class 2 if and
only if G/Z(G) is commutative — such a group is said to be
metabelian.

EXAMPLE 6.12 (a) A nilpotent group is obviously solvable,
but the converse is false. For example, for a field F, let

a b
=16 0)
Then Z(B) ={al | a # 0}, and the centre of B/Z(B) is trivial.

Therefore B/Z(B) is not nilpotent, but we saw in (6.5) that it
is solvable.

a,b,ce F, ac#0;.

%
* is metabelian: its cen-

1 x*
(b) The group G = 0 1
0 0 1

tre is

(=N
S = O

*
0] ¢,and G/Z(G) is commutative.
1
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(¢) Any nonabelian group G of order p3 is metabelian. In
fact, G’ = Z(G) has order p (see[5.17), and G/G’ is commu-
tative (@.18). In particular, the quaternion and dihedral groups
of order 8, Q and D4, are metabelian. The dihedral group Dyn
is nilpotent of class n — this can be proved by induction, using
that Z(D2n ) has order 2, and Dyn /Z(Dan) ~ Dyn—1. If n is
not a power of 2, then Dy, is not nilpotent (use Theorem [6.18]
below).

PROPOSITION 6.13 (a) A subgroup of a nilpotent group is
nilpotent.
(b) A quotient of a nilpotent group is nilpotent.

PROOF. (a) Let H be a subgroup of a nilpotent group
G. Clearly, Z(H) D Z(G) N H. Assume (inductively) that
ZI(H)D ZI(G)N H; then ZIY1(H) > ZIT1(G)N H, be-
cause (for h € H)

he ZHY(G) = [h.x] € ZI(G)allx e G
— [h.x]€ Z!(H)allx € H.
(b) Straightforward. o

REMARK 6.14 It should be noted that if H is a subgroup of G,
then Z(H ) may be bigger than Z(G). For example, the centre

a 0
#={(6 3)
is H itself, but the centre of GL3 (F') consists only of the scalar
matrices.

ab # o} C GL(F).
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PROPOSITION 6.15 A group G is nilpotent of class < m if and
only if

[..-[lg1.82].83].-...gm+1] =1
forallgy,....gm+1 €G.

PROOF. Recall, g € Z{(G) < [g.x] € ZI71(G) forall x €
G.

Assume G is nilpotent of class < m; then
G=27"(G)

= [g1.821€ Z" (G allg1,82€G

= [lg1.82].831 € Z"7*(G) all g1.22.83 € G

= [-[lg1.82].83].....4ml € Z(G) all g1.....gm € G
= [-[lg1.82].83]....gm+1]=1allgy,....gm € G.
For the converse, let g1 € G. Then
[[.[[g1.82].83].-..8m]. gm+1] = 1 forall g1,82,....gm+1 €G
= [...[[g1,82].83].---.gm] € Z(G), forall g1,....gm € G
= [..[[lg1.£2].83), - gm—1] € Z*(G), forall g1 ,...,gm—1 €

= g1€Z™(G)allg; €G. o
An extension of nilpotent groups need not be nilpotent, i.e.,

N and G/ N nilpotent = G nilpotent. 27
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For example, the subgroup U of the group B in Examples [6.3]
and is commutative and B/U is commutative, but B is
not nilpotent.

However, the implication holds when N is contained
in the centre of G. In fact, we have the following more precise
result.

COROLLARY 6.16 For any subgroup N of the centre of G,
G/ N nilpotent of class m = G nilpotent of class <m + 1.

PROOF. Write 7 for the map G — G/N. Then
7([.-llg1.82]. g3 .. &m]. gm+11)
= ["'[[ﬂglvﬂg2]7ng3]ﬁ'"’ﬂng]»ngm-l-l] =1

all g1,...,gm+1 € G. Hence [...[[g1.g2]. €3], --» &m]. €m+1] €
N C Z(G), and so

[..llg1.82]. &3] . &m+1). gm+2] = 1all g1,....gm+2 €G.

[}

COROLLARY 6.17 A finite p-group is nilpotent.

PROOE. We use induction on the order of G. Because Z(G) #
1, G/ Z(G) nilpotent, which implies that G is nilpotent. O

Recall that an extension
1-N5G6G35 01
is central if «(N) C Z(G). Then:
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the nilpotent groups are those that can be obtained
from commutative groups by successive central
extensions.

Contrast:

the solvable groups are those that can be obtained
from commutative groups by successive exten-
sions (not necessarily central).

THEOREM 6.18 A finite group is nilpotent if and only if it is
equal to a direct product of its Sylow subgroups.

PROOF. A direct product of nilpotent groups is obviously
nilpotent, and so the “if” direction follows from the preceding
corollary. For the converse, let G be a finite nilpotent group.
According to it suffices to prove that all Sylow sub-
groups are normal. Let P be such a subgroup of G, and let
N = Ng(P). The first lemma below shows that Ng(N) = N,
and the second then implies that N = G, i.e., that P is normal
in G ]

LEMMA 6.19 Let P be a Sylow p-subgroup of a finite group
G. For any subgroup H of G containing Ng(P), we have
Ng(H)=H.

PROOF. Let g € Ng(H), so that gHg™! = H. Then H D
gPg~1 = P’, which is a Sylow p-subgroup of H. By Sylow
II, hP'h~! = P for some h € H, and so hgPg~th™1 c P.
Hence hg € Ng(P) C H,andso g € H. !
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LEMMA 6.20 Let H be proper subgroup of a finite nilpotent
group G; then H # Ng(H).

PROOF. The statement is obviously true for commutative
groups, and so we can assume G to be noncommutative. We
use induction on the order of G. Because G is nilpotent,
Z(G) # 1. Certainly the elements of Z(G) normalize H, and
soif Z(G) € H,wehave H G Z(G)-H C Ng(H). Thus we
may suppose Z(G) C H. Then the normalizer of H in G corre-
sponds under to the normalizer of H/Z(G) in G/ Z(G),
and we can apply the induction hypothesis. !

REMARK 6.21 For a finite abelian group G we recover the
fact that G is a direct product of its p-primary subgroups.

PROPOSITION 6.22 (FRATTINI’S ARGUMENT) Let H be a
normal subgroup of a finite group G, and let P be a Sylow
p-subgroup of H. Then G = H - Ng(P).

PROOF. Let g € G. Then gPg~! c gHg™! = H, and both
gPg~ 1 and P are Sylow p-subgroups of H. According to Sy-
low II, there is an & € H such that gPg~! = hPh~!, and it
follows that k"1 g € Ng(P) andso g € H - Ng (P). o

THEOREM 6.23 A finite group is nilpotent if and only if every
maximal proper subgroup is normal.
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PROOF. We saw in Lemma[6.20] that for any proper subgroup
H of anilpotent group G, H ; Ng(H). Hence,

H maximal = Ng(H) =G,

i.e., H isnormal in G.

Conversely, suppose every maximal proper subgroup of G
is normal. We shall check the condition of Theorem[6.18} Thus,
let P be a Sylow p-subgroup of G. If P is not normal in G,
then there exists a maximal proper subgroup H of G contain-
ing Ng(P). Being maximal, H is normal, and so Frattini’s
argument shows that G = H - Ng (P) = H — contradiction.g

ASIDE 6.24 Consider a nilpotent group G of class 2:
1-A—->G—B—1, A,Bcommutative, A C Z(G).

Taking commutators induces a map /\2 B — A (and every such map
occurs for some extension). The image of this map is the commutator
subgroup and the image of the pure tensors b A b’ is the set of ac-
tual commutators. This can be used to give examples of groups whose
commutator subgroup doesn’t consist entirely of commutators (Torsten
Ekedahl, mo44269).

Groups with operators

Recall that the set Aut(G) of automorphisms of a group G is
again a group. Let A be a group. A pair (G, ¢) consisting of
a group G together with a homomorphism ¢: A — Aut(G) is
called an A-group, or G is said to have A as a group of opera-
tors.

Let G be an A-group, and write ®x for ¢(a)x. Then
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(@) @y = "‘(ﬁ x) (¢ is a homomorphism);
(b) ¥(xy) =%x-%y (¢(«) is a homomorphism);
©) lx=x (¢ is a homomorphism).

Conversely, amap (o, x) — %x : Ax G — G satisfying (a), (b),
(c) arises from a homomorphism A — Aut(G). Conditions (a)

and (c) show that x — %x is inverse to x ("‘_])x, and so
x > %X is a bijection G — G. Condition (b) then shows that
it is an automorphism of G. Finally, (a) shows that the map
(@) = (x > %x) is a homomorphism A — Aut(G).

Let G be a group with operators A. A subgroup H of G is
admissible or A-invariant if

xeH = *xcH,alla € A.

An intersection of admissible groups is admissible. If H is
admissible, so also are its normalizer NG (H) and centralizer
Cg(H).

An A-homomorphism (or admissible homomorphism) of
A-groups is a homomorphism y: G — G’ such that y(*g) =
%y(g)foralla € 4, g €G.

EXAMPLE 6.25 (a) A group G can be regarded as a group
with {1} as group of operators. In this case all subgroups and
homomorphisms are admissible, and so the theory of groups
with operators includes the theory of groups without operators.

(b) Consider G acting on itself by conjugation, i.e., consider
G together with the homomorphism

g ig:G — Aut(G).
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In this case, the admissible subgroups are the normal sub-
groups.

(c) Consider G with A = Aut(G) as group of operators. In
this case, the admissible subgroups are the characteristic sub-
groups.

Almost everything we have proved for groups also holds for
groups with operators. In particular, the Theorems [I.45] [T.46]
and[T.47]hold for groups with operators. In each case, the proof
is the same as before except that admissibility must be checked.

THEOREM 6.26 For any admissible homomorphism y:G —

G’ of A-groups, N e Ker(y) is an admissible normal subgroup
of G, y(G) is an admissible subgroup of G’, and y factors in a
natural way into the composite of an admissible surjection, an
admissible isomorphism, and an admissible injection:

G —»G/N 3 y(G)— G

THEOREM 6.27 Let G be a group with operators A, and let H
and N be admissible subgroups with N normal. Then H N N
is a normal admissible subgroup of H, HN is an admissible
subgroup of G, and h(H N N) + h H is an admissible isomor-
phism H/HNN — HN/N.

THEOREM 6.28 Let ¢:G — G be a surjective admissible ho-
momorphism of A-groups. Under the one-to-one correspon-
dence H <> H between the set of subgroups of G containing
Ker(¢p) and the set of subgroups of G (see , admissible
subgroups correspond to admissible subgroups.
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Let ¢: A — Aut(G) be a group with A operating. An ad-
missible subnormal series is a chain of admissible subgroups
of G

G>G1DG2D:--DGy

with each G; normal in G;_1. Define similarly an admissible
composition series. The quotients of an admissible subnormal
series are A-groups, and the quotients of an admissible com-
position series are simple A-groups, i.e., they have no normal
admissible subgroups apart from the obvious two.

The Jordan-Hoélder theorem continues to hold for A-groups.
In this case the isomorphisms between the corresponding quo-
tients of two composition series are admissible. The proof is
the same as that of the original theorem, because it uses only
the isomorphism theorems, which we have noted also hold for
A-groups.

EXAMPLE 6.29 (a) Consider G with G acting by conjugation.
In this case an admissible subnormal series is a sequence of
subgroups

G=GopDG; DGy D--DGg={l},

with each G; normal in G, i.e., a normal series. The action of G
on G; by conjugation passes to the quotient, to give an action of
G on G;/G;41. The quotients of two admissible composition
series are isomorphic as G-groups.

(b) Consider G with A = Aut(G) as operator group. In this
case, an admissible subnormal series is a sequence

G=GyDG1 DGy D DGy ={1}
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with each G; a characteristic subgroup of G, and the quo-
tients of two admissible composition series are isomorphic as
Aut(G)-groups.

Krull-Schmidt theorem

A group G is indecomposable if G # 1 and G is not isomor-
phic to a direct product of two nontrivial groups, i.e., if

GraHxH = H=1orH =1.

EXAMPLE 6.30 (a) A simple group is indecomposable, but an
indecomposable group need not be simple: it may have a nor-
mal subgroup. For example, S3 is indecomposable but has C3
as a normal subgroup.

(b) A finite commutative group is indecomposable if and
only if it is cyclic of prime-power order.

Of course, this is obvious from the classification, but it is
not difficult to prove it directly. Let G be cyclic of order p”,
and suppose that G ~ H x H'. Then H and H’ must be p-
groups, and they can’t both be killed by p™, m < n. It follows
that one must be cyclic of order p”, and that the other is triv-
ial. Conversely, suppose that G is commutative and indecom-
posable. Since every finite commutative group is (obviously)
a direct product of p-groups with p running over the primes,
G is a p-group. If g is an element of G of highest order, one
shows that (g) is a direct factor of G, G = (g) x H, which is a
contradiction.

(c) Every finite group can be written as a direct product of
indecomposable groups (obviously).
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THEOREM 6.31 (KRULL-SCHMIDT) Suppose that G is a di-
rect product of indecomposable subgroups G1,...,Gs and of
indecomposable subgroups H1,..., H;:

G~Gyx--xGg, G~H|x---xH;.

Then s = t, and there is a re-indexing such that G; ~ H;.
Moreover, given r, we can arrange the numbering so that

G=GyxxGpxHpy1x---x Hp.
PROOF. SeeRotman||1995] 6.36. |

EXAMPLE 6.32 Let G = Fp, xF), and think of it as a two-
dimensional vector space over IF . Let

G1=((1,0)), G2 = ((0,1)); H1 = ((1, 1)}, H2 = ((1,-1)).
Then G = G1xGy,G=H1xHy,G=G1 x Hj.

REMARK 6.33 (a) The Krull-Schmidt theorem holds also for
an infinite group provided it satisfies both chain conditions on
subgroups, i.e., ascending and descending sequences of sub-
groups of G become stationary.

(b) The Krull-Schmidt theorem also holds for groups with
operators. For example, let Aut(G) operate on G; then the sub-
groups in the statement of the theorem will all be characteristic.

(c) When applied to a finite abelian group, the theorem
shows that the groups Cy,; in a decomposition G = Cp,; x
... X Cpy,. with each m; a prime power are uniquely determined
up to isomorphism (and ordering).
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Exercises

6-1 Let G be a group (not necessarily finite) with a finite
composition series

G=GoDG1D--DGy =1,
and let N be a normal subgroup of G. Show that
N=NNGyDODNNG;D---DNNG, =1

becomes a composition series for N once the repetitions have
been omitted.

6-2 If G; and G are groups such that Gi =~ Gé and
G1/G} ~ G2/G), are G| and Gy necessarily isomorphic?
(Here ’ denotes the commutator subgroup.)






Chapter 7

Representations of Finite
Groups

Throughout this chapter, G is a finite group and F is a field.
All vector spaces are finite dimensional.

An F-algebra is a ring A containing F in its centre and
finite dimensional as an F-vector space. We do not assume A
to be commutative; for example, A could be the matrix algebra
My (F). Letey,...,e, be abasis for A as an F-vector space;

then eje; =) alkj erfor some afj € F, called the structure
constants of A relative to the basis (e;);; once a basis has been
chosen, the algebra A is uniquely determined by its structure
constants.

All A-modules are finite dimensional when regarded as F-
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vector spaces. For an A-module V', mV denotes the direct sum
of m copies of V.

The opposite A°PP of an F-algebra A is the same F-algebra
as A but with the multiplication reversed, i.e., A% = (4, +,-)
with @ b = ba. In other words, there is a one-to-one corre-
spondence a <> a’: A <> A°PP which is an isomorphism of F-
vector spaces and has the property that a’b’ = (ba)’.

An A-module M is simple if it is nonzero and contains no
submodules except 0 and M, and it is semisimple if it is iso-
morphic to a direct sum of simple modules.

Matrix representations

A matrix representation of degree n of G over F is a ho-
momorphism G — GL, (F). The representation is said to be
Saithful if the homomorphism is injective. Thus a faithful rep-
resentation identifies G with group of n X n matrices.

EXAMPLE 7.1 (a) There is a representation Q — GL5(C) of
0 N/—1)

JT o and

b to (_91). In fact, that is how we originally defined Q in

the quaternion group Q = (a,b) sending a to (

(b) Let G = S;,. For each o € Sy, let I(0) be the matrix
obtained from the identity matrix by using o to permute the
rows. Then, for any n x n matrix A, /(o)A is obtained from
A by using o to permute the rows. In particular, 1(c)I(c’) =
I(00”), and so o — I(0) is a representation of Sy,. Clearly, it
is faithful. As every finite group embeds into S, for some n
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(Cayley’s theorem, see[T.22)), this shows that every finite group
has a faithful matrix representation.

(c) Let G = C, = (o). If F contains a nth root of 1, say
¢, then there is representation ¢! +> ¢/:C,, — GL{(F) = F*.
The representation is faithful if and only if ¢ has order exactly
n.If n = p is prime and F has characteristic p, then X? — 1 =
(X —1)P, and so 1 is the only pth root of 1 in F. In this case,
the representation is trivial, but there is a faithful representation

ol (é 11) :Cp — GL,(F).

ASIDE 7.2 Recall that the Burnside problem asks whether every
finitely generated group with finite exponent is finite (see p.[75). Burn-
side proved that the problem has a positive answer for subgroups of
GL;, (C). Therefore, no infinite finitely generated group with finite ex-
ponent has a faithful representation over C.

Roots of 1 in fields

As the last example indicates, the representations of a group
over a field F depend on the roots of 1 in the field. The nth
roots of 1 in a field F form a subgroup uy (F) of F*, which is
cyclic (see[.56).

If the characteristic of F divides n, then |, (F)| < n. Oth-
erwise, X" — 1 has distinct roots (a multiple root would have to
be a root of its derivative n.X"~1), and we can always arrange
that |, (F)| = n by extending F, for example, by replacing a
subfield F of C with F[¢] where ¢ = ¢271/"_or by replacing
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F with F[X]/(g(X)) where g(X) is an irreducible factor of
X™—1 not dividing X™ — 1 for any proper divisor m of n.

An element of order n in F* is called a primitive nth root
of 1. To say that F contains a primitive nth root of 1, £, means
that uy, (F) is a cyclic group of order n and that { generates
it (and it implies that either F has characteristic O or it has
characteristic a prime not dividing n).

Linear representations

Recall (.I)) that we have defined the notion of a group G acting
a set. When the set is an F-vector space V', we say that the
action is linear if the map

gV >V, x— gx,

is linear for each g € G. Then gy has inverse the linear map
(g7 Yy ,and g~ gy: G — GL(V) is a homomorphism. Thus,
from a linear action of G on V', we obtain a homomorphism of
groups G — GL(V'); conversely, every such homomorphism
defines a linear action of G on V. We call a homomorphism
G — GL(V) a linear representation of G on V. Note that a
linear representation of G on F™ is just a matrix representation
of degree n.

EXAMPLE 7.3 (a) Let G = C,, = (0), and assume that F con-
tains a primitive nth root of 1, say {. Let G — GL(V) be a
linear representation of G. Then (07,)" = (6") = 1, and so
the minimum polynomial of o7, divides X" —1. As X" —1 has
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n distinct roots ¢ L ¢ n=1in F, the vector space V' decom-
poses into a direct sum of eigenspaces

def

V:@OsiSn—IVi’ ViStveViov=_{).

Conversely, every such direct sum decomposition of G arises
from a representation of G.

(b) Let G be a commutative group of exponent n, and as-
sume that F' contains a primitive nth root of 1. Let

G =Hom(G, F*) = Hom(G, i, (F))

To give a representation of G on a vector space V is the same
as to give a direct sum decomposition

def
V= @Xer Vi, Vy=1{veV|ov=y(o)v}.

When G is cyclic, this is a restatement of (a), and the general
case follows easily (decompose V' with respect to the action of
one cyclic factor of G; then decompose each summand with
respect to the action of a second cyclic factor of G; and so on).

Maschke’s theorem

Let G — GL(V) be a linear representation of G on an F -vector
space V. A subspace W of V is said to be G-invariant it gW C
W forall g € G. An F-linear map a: V — V’ of vector spaces
on which G acts linearly is said to be G-invariant if

a(gv) =g(av) forallge G,v e V.
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Finally, a bilinear form ¢: V x V' — F is said to be G-invariant
if

d(gv,gv) =¢(,v) forallg e G,v,v e V.
THEOREM 7.4 (MASCHKE) Let G — GL(V') be a linear rep-
resentation of G. If the characteristic of F does not divide |G|,
then every G-invariant subspace W of V has a G -invariant

complement, i.e., there exists a G -invariant subspace W' such
that V. =W e W’

Note that the theorem always applies when F has charac-
teristic zero.

The condition on the characteristic is certainly necessary:
let G = (o) be the cyclic group of order p, where p is the char-
acteristic of F, and let o acts on V = F? as the matrix (§ 1)
(see ); the subspace (3) is G-invariant, and this comple-
mentary subspaces are those of the form F (Z ), b # 0; none of
them is G-invariant.

Because of the importance of the ideas involved, we present
two proofs of Maschke’s theorem.

PROOF OF MASCHKE’S THEOREM (CASE F' = R OR
©)

LEMMA 7.5 Let ¢ be a symmetric bilinear form on V, and let
W be a subspace of V. If ¢ and W are G-invariant, then so
alsois Wt E{veV |¢p(w,v)=0forallwe W}
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PROOF. Let v € WL and let g € G. For any w € W,
¢(w,,§7v) = ¢(g 'w,v) because ¢ is G-invariant, and
¢(g” w,v) = 0 because W is G-invariant. This shows that
gv e wt. !

Recall from linear algebra that if ¢ is nondegenerate, then
V = W & W+, Therefore, in order to prove Maschke’s theo-
rem, it suffices to show that there exists a G-invariant nonde-
generate symmetric bilinear from ¢:V xV — F.

LEMMA 7.6 For any symmetric bilinear form ¢ on V,

def

p.w) =Y L 9(gv.gw)
is a G-invariant symmetric bilinear form on V.

PROOF. The form ¢ is obviously bilinear and symmetric, and
for go € G,

$lgov.20w) =} - #(20v.8g0w),

which equals deG ¢(gv, gw) because, as g runs over G, so
also does ggo. o

Unfortunately, we can’t conclude that ¢ is nondegenerate
when ¢ is (otherwise we could prove that all F[G]-modules
are semisimple, with no restriction on F or G).

LEMMA 7.7 Let F = R. If ¢ is a positive definite symmetric
bilinear form on V', then so also is ¢.
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PROOF. If q_S is positive definite, then for any nonzero v in V,

Pp(v.v) = dectﬁ(gv,gv) > 0.

]

This completes the proof of Maschke’s theorem when F' =
R, because there certainly exist positive definite symmetric bi-
linear forms ¢ on V. A similar argument using hermitian forms
applies when F = C (or, indeed, when F is any subfield of C).

ASIDE 7.8 A representation of a group G on a real vector space V is
unitary if there exists a G-invariant positive definite symmetric bilin-
ear form on V. Lemmashows that every unitary representation is
semisimple, and Lemma [7.7] shows that every real representation of a
finite group is unitary.

PROOF OF MASCHKE’S THEOREM (GENERAL CASE)

An endomorphism 7 of an F-vector space V is called a pro-
jector if 7% = 7. The minimum polynomial of a projector 7
divides X2 — X = X(X —1), and so V decomposes into a di-
rect sum of eigenspaces,

V =Vo(r)®V1(7)
where

Vo(n) ={v eV |mv=0}=Ker(x)
Vi(m)={v eV |mv=v}=Im(x).

Conversely, a decomposition V = Vg @ V7 arises from a pro-
jector (vg,v1) — (0,v1).
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Now suppose that G acts linearly on V. If a projector 7 is
G-invariant, then V1 (7r) and Vp(7r) are obviously G-invariant.
Thus, to prove the theorem it suffices to show that W is the
image of a G—invariant projector 7.

We begin by choosing an F-linear projector & with image
W, which certainly exists, and we modify it to obtain a G-
invariant projector & with the same image. For v € V, let

- 1 -
A0 =156 8 (76,

This makes sense because |G|-1 € F*, and it defines an F-
linear map 7:V — V. Let w € W; then g~ w € W, and so

_ 1 4 1
FW)=71) e 8E V=5 d g w =W @8)

The image of 7 is contained in W, because Im(r) C W and
W is G-invariant, and so

220 27 (1) B 7 )

for any v € V. Thus, 7 is a projector, and (28) shows that
Im(sr) D W, and hence Im(r) = W. It remains to show that
7 is G-invariant. For gg € V

ﬁ(gov)=iz g(m(g " gov)
G| £~geG

= goﬁ Y e @) (e gov).

which equals go7 (v) because, as g runs over G, so also does
& &
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The group algebra; semisimplicity

The group algebra F[G] of G is defined to be the F-vector
space with basis the elements of G endowed with the multipli-
cation extending that on G. Thus,
o anelementof F[G]isasum Y ,cgcgg,cg € F,
o two elements Y, Ceg and } o cgg of F[G] are
equal if and only if cg = cg, for all g, and

o (Saeoces) (Specths) = Teeodfe. < =

/
g182=g €81€g>"
A linear action

g > gu:GxXV >V

of G on an F-vector space extends uniquely to an action of
F[G]onV,

deG Cgg, V> deG cggU:F[GIxV =V,

which makes V into an F[G]-module. The submodules for this
action are exactly the G-invariant subspaces.

Let G — GL(V) be a linear representation of G. When V
is simple (resp. semisimple) as an F[G]-module, the represen-
tation is usually said to be irreducible (resp. completely re-
ducible). However, I will call them simple (resp. semisimple)
representations.
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PROPOSITION 7.9 If the characteristic of F does not divide
|G|, then every F|[G]-module is a direct sum of simple sub-
modules.

PROOF. Let V be a F[G]-module. If V' is simple, then there is
nothing to prove. Otherwise, it contains a nonzero proper sub-
module W. According to Maschke’s theorem, V = W & W’
with W’ an F[G]-submodule. If W and W' are simple, then
the proof is complete; otherwise, we can continue the argu-
ment, which terminates in a finite number of steps because V'
has finite dimension as an F-vector space. !

As we have observed, the linear representations of G can be
regarded as F[G]-modules. Thus, to understand the linear rep-
resentations of G, we need to understand the F[G]-modules,
and for this we need to understand the structure of the F-
algebra F[G]. In the next three sections we study F-algebras
and their modules; in particular, we prove the famous Wedder-
burn theorems concerning F-algebras whose modules are all
semisimple.

Semisimple modules

In this section, A is an F-algebra.

PROPOSITION 7.10 Every A-module V' admits a filtration

V=VoD VDDV ={0}
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such that the quotients V; / V; 41 are simple A-modules. If
V=WoD>W;D--DW;={0}

is a second such filtration, then s = t and there is a permutation
o of{1,...,s} such that V; [ Vi 41 = Wy(iy/ W ()41 for alli.

PROOF. This is a variant of the Jordan-Holder theorem (6.2)),
which can be proved by the same argument. o

COROLLARY 7.11 Suppose
Valie--eVsxW oW

with all the A-modules V; and W; simple. Then s =t and there
is a permutation o of {1,...,s} such that V; ~ W ;y.

PROOF. Each decomposition defines a filtration, to which the
proposition can be applied. !

PROPOSITION 7.12 Let V be an A-module. If V' is a sum of
simple submodules, say V =Y,y S; (the sum need not be
direct), then for any submodule W of V', there is a subset J of

1 such that
v=we. S

PROOF. Let J be maximal among the subsets of I such the
sum Sy d:“ZjGJSj is direct and W NSy = 0. I claim that
W + Sy =V (hence V is the direct sum of W and the S ; with
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Jj € J). For this, it suffices to show that each S; is contained in
W + Sj.Because S; is simple, S; N (W + Sy) equals S; or 0.
In the first case, S; C W 4+ Sy, and in the second S; NS; =0
and W N (Sy + S;) = 0, contradicting the definition of /. g

COROLLARY 7.13 The following conditions on an A-module
V are equivalent:

(a) V is semisimple;
(b) V is a sum of simple submodules;
(c) every submodule of V has a complement.

PROOF. The proposition shows that (b) implies (c), and the
argument in the proof of shows that (c) implies (a). It is
obvious that (a) implies (b). o

COROLLARY 7.14 Sums, submodules, and quotient modules
of semisimple modules are semisimple.

PROOF. Each is a sum of simple modules. o

Simple F-algebras and their modules

An F-algebra A is said to be simple if it contains no two-sided
ideals except 0 and A. We shall make frequent use of the fol-
lowing observation:

The kernel of a homomorphism f: A — B of F-
algebras is an ideal in A not containing 1; there-
fore, if A is simple, then f is injective.
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EXAMPLE 7.15 We consider the matrix algebra M, (F). Let
e;; be the matrix with 1 in the (7, j)th position and zeros else-
where.

(a)

(b)

Let / be a two-sided ideal in M, (F), and suppose
that / contains a nonzero matrix M = (m;;) with, say,
Miqjo 7 0. As

eiig M -ejyj = mig joeij

and e;j, - M -ej,; € I, we see that I contains all the
matrices ¢;; and so equals My (F'). We have shown that
M, (F) is simple.

For M,N € My (F), the jth columnof M -N is M -N;
where N is the jth column of N. Therefore, for a given
matrix N,

Nj=0 = (M~N)j=0 (29)
N;j#0 = (M-N); canbe arbitrary.
For 1 <i <mn,let L(i) be the set of matrices whose jth
columns are zero for j # i and whose ith column is
arbitrary. For example, when n = 4,

00 % 0
00 % 0

LB =10 o » olfcMap).
00 % 0

It follows from that L(i) is a minimal left ideal in
M, (F). Note that M, (F) is a direct sum

My(F)=L(1)®---® L)
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of minimal left ideals.

EXAMPLE 7.16 An F-algebra is said to be a division algebra
if every nonzero element a has an inverse, i.e., there exists a b
such that ab = 1 = ba. Thus a division algebra satisfies all the
axioms to be a field except commutativity (and for this reason
is sometimes called a skew field). Clearly, a division algebra
has no nonzero proper ideals, left, right, or two-sided, and so is
simple.

If D is a division algebra, then the argument in (7.I5h)
shows that the algebra M, (D) is simple.

EXAMPLE 7.17 For a,b € F*, let H(a,b) be the F-algebra
with basis 1,7, j,k (as an F-vector space) and with the multi-
plication determined by
i2=a, jZ=b, ij=k=—ji

(soik =iij = aj etc.). Then H(a,b) is an F-algebra, called
a quaternion algebra over F. For example, if F = R, then
H(—1,—1) is the usual quaternion algebra. One can show
that H(a,b) is either a division algebra or it is isomorphic to
M3 (F). In particular, it is simple.

7.18 Much of linear algebra does not require that the field
be commutative. For example, the usual arguments show that
a finitely generated module V' over a division algebra D has a
basis, and that all bases have the same number n of elements
— n is called the dimension of V. In particular, all finitely
generated D-modules are free.
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7.19 Let A be an F-algebra, and let 4 A denote A regarded
as a left A-module. Right multiplication x > xa on 4 A by an
element a of A4 is an A-linear endomorphism of 4 A. Moreover,
every A-linear map ¢: 4 A — 4 A is of this form with a = ¢(1).
Thus,

Endg(4A) >~ A (as F-vector spaces).

Let ¢, be the map x — xa. Then

def

(9a 0 9a)(1) = @alpy (1)) = @a(a") =d'a = @aa(1),

and so
End4(4A) >~ A°PP (as F-algebras).

More generally,
End 4 (V) >~ A°PP

for any A-module V that is free of rank 1, and
End 4 (V) >~ M, (A°PP)

for any free A-module V of rank n (cf.[7:32]below).

CENTRALIZERS

Let A be an F-subalgebra of an F-algebra B. The centralizer
of Ain B is

Cp(A)=1{b e B|ba=abforallac A}.

It is again an F-subalgebra of B.
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EXAMPLE 7.20 In the following examples, the centralizers
are taken in My (F).

(a)
(b)

©

Let A be the set of scalar matrices in My (F), i.e., A =
F-1y. Clearly, C(A) = M, (F).

Let A = M, (F). Then C(A) is the centre of My (F),
which we now compute. Let e;; be the matrix with 1 in
the (7, j )th position and zeros elsewhere, so that

3 | eim if j =1
€ijelm =) o it j #1.

Let o = (ajj) € Mp(F). Thena =} ; ; ajje;j, and so
aepy =Y jajjeim and epo =3 ;amjer;. If o is in
the centre of M, (F), then wey,,, = ej,, andsoa;; =0
fori #1,a,,; =0for j #m,and aj; = amm. It follows
that the centre of M,, (F') is set of scalar matrices F - I;.
Thus C(A) = F - I,,.

Let A be the set of diagonal matrices in My, (F). In this
case, C(A) = A.

Notice that in all three cases, C(C(A)) = A.

THEOREM 7.21 (DOUBLE CENTRALIZER THEOREM) Let A
be an F -algebra, and let V' be a faithful semisimple A-module.
Then C(C(A)) = A (centralizers taken in End g (V)).

PROOE. Let D = C(A) and let B = C(D). Clearly A C B,
and the reverse inclusion follows from the next lemma when
we take vy, ..., vy, to generate V as a F-vector space. o
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LEMMA 7.22 For any vi,..., vy € V and b € B, there exists
ana € A such that

avy = bvy, avy=bvy, ..., avy =bvy,.

PROOF. We first prove this for n = 1. Note that Av; is an A-
submodule of ¥, and so (see[7.13) there exists an A-submodule
W of V such that V = Avi @ W. Let n:V — V be the
map (avy,w) — (avy,0) (projection onto Avy). It is A-linear,
hence lies in D, and has the property that 7 (v) = v if and only
if v € Avy. Now

n(bvy) = b(wv1) = bvy,

and so bvy € Avy, as required.
We now prove the general case. Let W be the direct sum of
n copies of V' with A acting diagonally, i.e.,

a(vy,...,vp) = (avy,...,avy), a€A, v;eV.

Then W is again a semisimple A-module (7.14). The central-
izer of A in End g (W) consists of the matrices (y;;)1<i,j<n-
vij € Endp (V), such that (y;ja) = (ay;;) foralla € 4, ie.,
such that y;; € D (cf.[7.32). In other words, the centralizer of
AinEndf (A) is My (D). An argument as in Example[7.20{b),
using the matrices e;;(§) with & in the ijth position and zeros
elsewhere, shows that the centralizer of My (D) in Endg (W)
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consists of the diagonal matrices

B 0 -« 0
0 8 - 0
0 0 - B

with 8 € B. We now apply the case n = 1 of the lemma to A,
W, b, and the vector (vy,...,vy) to complete the proof. o

THEOREM 7.23 Every simple F-algebra is isomorphic to
My, (D) for some n and some division F -algebra D.

PROOF. Choose a simple A-module S, for example, any min-
imal left ideal of A. Then A acts faithfully on S, because the
kernel of A — Endg (S) will be a two-sided ideal of A not
containing 1, and hence is 0.

Let D be the centralizer of A in the F-algebra Endg (S)
of F-linear maps S — S. According to the double central-
izer theorem (7.21)), the centralizer of D in Endfr (S) is 4, i.e.,
A =Endp(S). Schur’s lemma (7.24] below) implies that D is
a division algebra. Therefore S is a free D-module (7.18), say,
S ~ D", and so Endp (S) ~ My (D°PP) (see[7.19). o

LEMMA 7.24 (SCHUR’S LEMMA) For every F-algebra A
and simple A-module S, End 4(S) is a division algebra.

PROOEF. Let y be an A-linear map S — S. Then Ker(y) is an
A-submodule of S, and so it is either S or 0. In the first case,
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y is zero, and in the second it is an isomorphism, i.e., it has an
inverse that is also A-linear. o

MODULES OVER SIMPLE F-ALGEBRAS

For any F-algebra A, the submodules of 4 A are the left ideals
in A, and the simple submodules of 4A4 are the minimal left
ideals.

PROPOSITION 7.25 Any two minimal left ideals of a simple
F -algebra are isomorphic as left A-modules, and 4 A is a direct
sum of its minimal left ideals.

PROOF. After Theorem we may assume that A =
My, (D) for some division algebra D. We saw in that the
minimal left ideals in M, (D) are those of the form L({;}).
Clearly A = @< j<, L({/}) and each L({j}) is isomorphic
to D™ with its natural action of M, (D). O

THEOREM 7.26 Let A be a simple F-algebra, and let S be
a simple A-module. Then every A-module is isomorphic to a
direct sum of copies of S.

PROOF. Let Sg be a minimal left ideal of A. The proposition

shows that 44 ~ S(’} for some n. Let eq,...,e; be a set of
generators for V' as an A-module. The map

(al,...,ar)HZa,-ei
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realizes V' as a quotient of a direct sum of r copies of 44,
and hence as a quotient of nrSq. Thus, V is a sum of simple
submodules each isomorphic to Sp, and so Proposition [7.12]
shows that V' ~ mSq for some m. O

COROLLARY 7.27 Let A be a simple F-algebra. Then any
two simple A-modules are isomorphic, and any two A-modules
having the same dimension over F are isomorphic.

PROOEF. Obvious from the Theorem. m]

COROLLARY 7.28 The integer n in Theorem|[7.23|is uniquely
determined by A, and D is uniquely determined up to isomor-
phism.

PROOF. If A~ My (D), then D = End 4(S) for any simple A4-
module S. Thus, the statement follows from Theorem[7.26] o

CLASSIFICATION OF THE DIVISION ALGEBRAS OVER
F

After Theorem[7.23] to classify the simple algebras over F, it
remains to classify the division algebras over F.

PROPOSITION 7.29 When F is algebraically closed, the only
division algebra over F is F itself.

PROOF. Let D be division algebra over F'. For any o € D, the
F-subalgebra F[«] of D generated by « is a field (because it is
an integral domain of finite degree over F'). Therefore o € F .o
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ASIDE 7.30 The classification of the isomorphism classes of division
algebras over a field F' is one the most difficult and interesting prob-
lems in algebra and number theory. For F' = R, the only division al-
gebra is the usual quaternion algebra. For F finite, the only division
algebra with centre F is F itself (theorem of Wedderburn).

A division algebra over F' whose centre is F' is said to be central
(formerly normal). Brauer showed that the set of isomorphism classes
of central division algebras over a field form a group, called (by Hasse
and Noether) the Brauer group' of the field. The statements in the last
paragraph show that the Brauer groups of algebraically closed fields
and finite fields are zero, and the Brauer group of R has order 2. The
Brauer groups of Q and its finite extensions were computed by Albert,
Brauer, Hasse, and Noether in the 1930s as a consequence of class field
theory.

Semisimple F-algebras and their modules

An F-algebra A is said to be semisimple if every A-module is
semisimple. Theorem shows that simple F-algebras are
semisimple, and Maschke’s theorem shows that the group al-
gebra F[G] is semisimple when the order of G is not divisible
by the characteristic of F (see[7.9).

!'The tensor product D @ D’ of two central simple algebras over F is
again a central simple algebra, and hence is isomorphic to M, (D”") for some
central simple algebra D”. Define

[D][D']=[D"].

This product is associative because of the associativity of tensor products, the
isomorphism class of F is an identity element, and [ D°PP] is an inverse for [D].
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EXAMPLE 7.31 Let A be a finite product of simple F-
algebras. Then every minimal left ideal of a simple factor of
A is a simple A-submodule of 4A. Therefore, 4A is a direct
sum of simple A-modules, and so is semisimple. Since every
A-module is a quotient of a direct sum of copies of 4A, this
shows that A is semisimple.

Before stating the main result of this section, we recall some
elementary module theory.

7.32 Let A be an F-algebra, and consider modules

M=M & &My
N =N & & Ny.

Let o be an A-linear map M — N.For x; € M, let

a(0,...,0,x;,0,...,0) = (y1,..., Ym)-

Then xj > y; is an A-linear map M ; — N;, which we denote
a;j. Thus, a defines an m x n matrlx whose ijth coefficient
is an A-linear map M; — N;. Conversely, every such matrix
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(tj;) defines an A-linear map M — N, namely,

X1 (o S I S F AL S ! X1
Xjp|—= | %1 o G ot Ggn Xj
Xn Om1 0 Omj Omn Xn

ar1(x1) + - Farn(xn)
=| ain(x1) +-+ain(xn)

a1 (x1) 4+ 4+ amn (Xn)
Thus, we see

Homy (M, N) ~ (Hom,4(M;,N;)) (30)

1<j=<n,1<i<m

(isomorphism of F-vector spaces). When M = N, this be-
comes an isomorphism of F-algebras. For example, if M is
a direct sum of m copies of My, then

End4(M) >~ My, (End 4 (Mo)) (1)
(m x m matrices with coefficients in the ring End 4 (Mj)).
THEOREM 7.33 LetV be a finite dimensional F -vector space,

and let A be an F -subalgebra of Endg (V). If V is semisim-
ple as an A-module, then the centralizer of A in Endg (V) is
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a product of simple F -algebras (hence it is a semisimple F -
algebra).

PROOF. By assumption, we can write V & P, r; S; where the
S; are simple A-modules, no two of which are isomorphic. The
centralizer of A in Endg (V) is End4(V), and End4(V) =~
End4(&P; r; S;). Because Hom 4 (S, S;) = 0 fori # j,

Endg(EPriSi) ~ ]‘[l_ End4(r;S;) by G0)
~ [, Mr, (D) by BI)

where D; = End 4(S;). According to Schur’s lemma (7.24),
D; is a division algebra, and therefore M, (D;) is a simple

F-algebra (see[7.16). O

THEOREM 7.34 Every semisimple F -algebra is isomorphic to
a product of simple F -algebras.

PROOF. Choose an A-module V' on which A acts faithfully,
for example, V = 4 A. Then A is equal to its double centralizer
C(C(A)) in Endp (V) (see[7.21). According to Theorem [7.33]
C(A) is semisimple, and so C(C(A)) is a product of simple
algebras. o

Modules over a semisimple F-algebra

Let A = B x C be a product of F-algebras. A B-module M
becomes an A-module with the action

(b,c)m = bm.
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THEOREM 7.35 Let A be a semisimple F-algebra, say, A =
Ay x---x A; with the A; simple. For each A;, let S; be a simple

A;-module (cf.[7.27).

(a) Each S; is a simple A-module, and every simple A-
module is isomorphic to exactly of of the S;.

(b) Every A-module is isomorphic to @r; S; for some r; €
N, and two modules @r; S; and @r/S; are isomorphic
if and only if r; = r{ for all i.

PROOF. (a) Itis obvious that each S; is simple when regarded
as an A-module, and that no two of them are isomorphic. It fol-
lows from that 4 A ~ @ r; S; for some r; € N. Let S be
a simple A-module, and let x be a nonzero element of S. Then
the map a — ax: 4 A — S is surjective, and so its restriction to
some S; in 4 A is nonzero, and hence an isomorphism.

(b) The first part follows from (a) and the definition of a
semisimple ring, and the second part follows from (7.11). o

The representations of G

PROPOSITION 7.36 The dimension of the centre of F[G] as
an F -vector space is the number of conjugacy classes in G.

PROOF. Let Cq,...,C; be the conjugacy classes in G, and, for
each i, let ¢; be the element ZaeCi a in F[G]. We shall prove
the stronger statement:

centre of F[G] = Fc1®---® Fe; (32)
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As c1,...,ct are obviously linearly independent, it suffices to
show that they span the centre.
Forany g € G and ), maa € F[G],

g (ZaEG maa) g_l = ZaeG magag_l ’

The coefficient of a in the right hand sum is m and so

g—lag’

-1 _
g (ZaGG maa) & = ZaEG Mg=lag?:

This shows that ), < mga lies in the centre of F[G] if and
only if the function a +— m, is constant on conjugacy classes,
ie,ifandonly if ) ,cgmaa € ) ; Fc;. o

REMARK 7.37 An element )_,cg Mqa of F[G] can be re-
garded as a map a +— mgy:G — F. In this way, F[G] ~
Map(G, F). The action of G on F[G] corresponds to the ac-
tion (gf)(a) = f(g 'a) of g € G on f:G — F.In the above
proof, we showed that the elements of the centre of F[G] cor-
respond exactly to the functions f:G — F that are constant
on each conjugacy class. Such functions are called class func-
tions.

In the remainder of this chapter, we assume that F is an
algebraically closed field of characteristic zero (e.g., C)

PROPOSITION 7.38 The group algebra F [G] is isomorphic to
a product of matrix algebras over F.
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PROOF. Recall that, when F has characteristic zero,
Maschke’s theorem implies that F[G] is semisimple, and
so is a product of simple algebras (7.35). Each of these is a
matrix algebra over a division algebra (7.23)), but the only divi-
sion algebra over an algebraically closed field is the field itself

(7.29). o

The representation G — GL(f[G]F[G]) is called the reg-
ular representation.

THEOREM 7.39 (a) The number of isomorphism classes of
simple F[G]-modules is equal to the number of conjugacy
classesin G.

(b) The multiplicity of any simple representation S in the
regular representation is equal to its degree dimp S

(c) Let S1,...,S; be a set of representatives for the isomor-
phism classes of simple F G-modules, and let f; = dimp S;.

Then 5
¥\ =0

PROOF. (a) Under our hypothesis, F[G] ~ My, (F) x -+ %
M ¢, (F) for some integers fi,..., fr. According to Theorem
[7.35] the number of isomorphism classes of simple F[G]-
modules is the number of factors ¢. The centre of a product of
F-algebras is the product of their centres, and so the centre of
F[G] is isomorphic to ¢ F. Therefore 7 is the dimension of the
centre of F', which we know equals the number of conjugacy
classes of G.

(b) With the notations of , Me(F)~L1) & &
L(f).
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(c) The equality is simply the statement

leist dimp M, (F) = dimp F[G].

The characters of G

Recall that the trace Try («) of an endomorphism «: V' — V' of
a vector space V' is ) _a;; where (a;;) is the matrix of o with
respect to some basis for V. It is independent of the choice of
the basis (the traces of conjugate matrices are equal).

From each representation of g > gy : G — GL(V'), we ob-
tain a function yy on G,

1v(g) =Try(gy),

called the character of p. Note that yy depends only on the
isomorphism class of the F[G]-module V, and that yy is a
class function. The character y is said to be simple (or irre-
ducible) if it is defined by a simple F G-module. The princi-
pal character yi is that defined by the trivial representation
of G (so y1(g) = 1 for all g € G), and the regular character
Xreg is that defined by the regular representation. On comput-
ing yreg(g) by using the elements of G as a basis for F[G],
one see that yreo(g) is the number of elements a of G such that
ga = a, and so

6l ifg=e
Yreg(8) = 0  otherwise.
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When V' has dimension 1, the character yy of G is said to
be linear. In this case, GL(V) >~ F*, and so yy(g) = p(g).
Therefore, yy is a homomorphism G — F*, and so this def-
inition of “linear character” essentially agrees with the earlier
one.

LEMMA 7.40 For any G-modules V and V',
VeV = v +Xv’.

PROOF. Compute the matrix of g7 with respect to a basis of
V @ V' that is made by combining a basis for ¥ with a basis
for V. o

Let S1,...,S¢ be a set of representatives for the isomor-
phism classes of simple ' G-modules with S1 chosen to be the
trivial representation, and let xp,..., x; be the corresponding
characters.

PROPOSITION 7.41 The functions x1,..., Xt are linearly in-
dependent over F, ie., if ci,...,c; € F are such that
> ;cixi(g) =0forall g € G, then the c; are all zero.

PROOF. Write F[G]~ My, (F)x---x My, (F),andlete; =
©,...,0,1,0,...,0). Then ejactsas 1 onS; andasOon S
fori # j, and so

szd(l)mFSj ifi = (33)

xilej) = otherwise.
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Therefore,
Zi ciyilej) =cjfj,

from which the claim follows. o

PROPOSITION 7.42 Two F[G]-modules are isomorphic if and
only if their characters are equal.

PROOF. We have already observed that the character of a
representation depends only on its isomorphism class. Con-
versely, if V = @ <;< ¢iSi, ¢; €N, then its character is
XV = Y 1<i<iCiXi» and shows that ¢; = yy(e;)/f;.
Therefore yy determines the multiplicity with which each S;
occurs in V, and hence it determines the isomorphism class of
V. O

ASIDE 7.43 The proposition is false if F' is allowed to have character-
. . ; 1 i

istic p # 0. For example, the representation o’ > (0 ll) :Cp —>
GL>(F) of ) is not trivial, but it has the same character as the
trivial representation. The proposition is false even when the charac-
teristic of F doesn’t divide the order of the group, because, for any
representation G — GL(V'), the character of the representation of G
on pV is identically zero.

Any function G — F that can be expressed as a Z-linear
combination of characters is called a virtual character.?

2Some authors call it a generalized character, but this is to be avoided: there
is more than one way to generalize the notion of a character.
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PROPOSITION 7.44 The simple characters of G form a Z-
basis for the virtual characters of G.

PROOF. Let y1,..., x;: be the simple characters of G. Then
the characters of G are exactly the class functions that can
be expressed in the form Y_m; x;, m; € N, and so the virtual
characters are exactly the class functions that can be expressed
> mjyi, m; € Z. Therefore the simple characters certainly
generate the Z-module of virtual characters, and Proposition
[7:4T]shows that they are linearly independent over Z (even over
F). 0

PROPOSITION 7.45 The simple characters of G form an F -
basis for the class functions on G .

PROOF. The class functions are the functions from the set of
conjugacy classes in G to F. As this set has ¢ elements, they
form an F-vector space of dimension ¢. As the simple charac-
ters are a set of ¢ linearly independent elements of this vector
space, they must form a basis. !

We now assume that F is a subfield of C stable under com-

plex conjugation ¢ +— ¢.
For class functions f1 and f> on G, define

()= 17 L e 1@ @)

LEMMA 7.46 The pairing (| ) is an inner product on the F -
space of class functions on G.
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PROOF. We have to check:
o (fi+ f21f) = (f1lf) + (f2|f) for all class functions

f1.02, [ .
o (cfilf2) = c(f1.f2) for ¢ € F and class functions
S, 125

o (f2]f1) = (f1| f2) for all class functions f1, f2;
o (f|f) > 0 for all nonzero class functions f.

All of these are obvious from the definition. o

For an F[G]-module V, VY denotes the submodule of ele-
ments fixed by G:

VG={v6V|gv=vforallgeG}
LEMMA 7.47 Let  be the element |(1?7| > aeq a of F[G]. For

any F[G]-module V, wry is a projector with image VY.

PROOF. Forany g € G,

1 1
gmw = ﬁzaeG ga = @ZaeGa =, (34)

from which it follows that 77 = 7 (in the F-algebra F[G]).
Therefore, for any F[G]-module V, n%, =y and so 7y is a
projector. If v is in its image, say v = wvg, then

- G
gV =_gmvg = WUy ="V

and so v lies in VO, Conversely, if v € VO, the obviously
TV = ﬁZaeGa” = v, and so v is in the image of 7. o
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PROPOSITION 7.48 For any F[G]-module V,
1
: G _
dimg V¥ = Gl E 4G xv(a).

PROOF. Let 7 be as in Lemma Because 7y is a projec-
tor, V is the direct sum of its 0-eigenspace and its 1-eigenspace,

and we showed that the latter is VC. Therefore, Try (ry) =
dimg VG On the other hand, because the trace is a linear func-
tion,

1 1
Try (ny) = Gl ZaEG Try (ay) = Gl ZaEG xv(@).

]

THEOREM 7.49 For any F[G]-modules V and W,
dimg Hompg1(V,. W) = (xv|xw)-

PROOE. The group G acts on the space Hompg (V, W) of F-
linear maps V' — W by the rule,

(gp)(v) =g(p(gv)). g€G., ¢eHomp(V.W), veV,
and Hompg (V, W)C = Hompg (V, W). O
COROLLARY 7.50 If y and x’ are simple characters, then

n_ |1 ify=y
() = 0 otherwise.
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Therefore the simple characters form an orthonormal basis for
the space of class functions on G.

The character table of a group

To be written.

Examples

To be written.

Exercises

7-1 Let C be an n x r matrix with coefficients in a field F'.
Show that
{MeMu(F)|MC =0}

is a left ideal in M}, (F'), and that every left ideal is of this form
for some C.

7-2 This exercise shows how to recover a finite group G from
its category of representations over a field k. Let S be a finite
set, and let A be the set of maps S — k.

(a) Show that A becomes a commutative ring with the prod-
uct

(1.2 = f1(@) f2(8). /1. f2€ A, g€G.
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Moreover, when we identify ¢ € k with the constant
function, A becomes a k-algebra.

(b) Show that
A= l_[seS ks

(product of copies of k indexed by the elements of §),
and that the kg are exactly the minimal k-subalgebras of
A. Deduce that Endj_g1o(4) = Sym(S).

(c) Let (f1,/2) € Ax Aacton S xS by (f1, 2)(s1,82) =
f1(s1) f2(s2); show that this defines a bijection A ® A =~
Map(S x S, k). Now take S = G.

(d) Show that the map r4: G — Endj _jjpear(4),

(ra(@ )¢ =f(gg). feA ggeG

is a representation of G (this is the regular representa-
tion).

(e) Define A:4 — A® A by A(f)(g1.82) = f(8182).
Show that, for any homomorphism a:4 — A of k-
algebras such (1 ® @) o A = Ao, there exists a unique
element g € G suchthata(f) = gf forall f € A. [Hint:
Deduce from (b) that there exists a bijection ¢:G — G
such that («f) (g) = f(¢g) for all g € G. From the hy-
pothesis on «, deduce that ¢(g122) = g1-¢(g2) for all
g1,82 € G(R). Hence ¢(g) = g-¢(e) for all g € G.
Deduce that a(f) = ¢(e) f forall f € A.]

(f) Show that the following maps are G -equivariant

ek —> A (trivial representation on k; r4 on A)
mARQA— A (raq®rqon AQ A;rq on A)
AA—> AR A (rqonA;1Q@rqgon AR A).
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(g) Suppose that we are given, for each finite dimensional
representation (V,ry ), a k-linear map Ay . If the family
(Ay) satisfies the conditions

i) for all representations V, W, Ay gw = Ay @ Aw;
ii) for k with its trivial representation, A5 = idy;
iii) for all G-equivariant maps a:V — W, Ay oox =
aody;

then there exists a unique g € G(R) such that Ay =
ry (g) for all V. [Hint: show that A 4 satisfies the con-
ditions of (d).]

NOTES For a historical account of the representation theory of finite
groups, emphasizing the work of “the four principal contributors to
the theory in its formative stages: Ferdinand Georg Frobenius, William
Burnside, Issai Schur, and Richard Brauer”, see|Curtis||1999|






Appendix A

Additional Exercises

34. Prove that a finite group G having just one maximal sub-
group must be a cyclic p-group, p prime.

35. Let a and b be two elements of Sv¢. If @ and b both have
order 146 and ab = ba, what are the possible orders of the
product ab?

37. Suppose that the group G is generated by a set X .

(a) Show that if gxg™! € X forall x € X, g € G, then the
commutator subgroup of G is generated by the set of all
elements xyx Ly~ forx,y € X.

(b) Show that if x2 = 1 for all x € X, then the subgroup H
of G generated by the set of all elements xy for x,y € X
has index 1 or 2.
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38. Suppose p > 3 and 2p — 1 are both prime numbers (e.g.,
p =3,7,19,31,...). Prove, or disprove by example, that every
group of order p(2p — 1) is commutative.

39. Let H be a subgroup of a group G. Prove or disprove the
following:

(a) If G is finite and P is a Sylow p-subgroup, then H N P
is a Sylow p-subgroup of H.

(b) If G is finite, P is a Sylow p-subgroup, and H D
NgG(P),then Ng(H)=H.

(c) If g is an element of G such that gHg™! C H, then
g € Ng(H).

40. Prove that there is no simple group of order 616.

41. Let n and k be integers 1 <k <n. Let H be the subgroup
of S, generated by the cycle (a1 ...ay ). Find the order of the
centralizer of H in Sy. Then find the order of the normalizer
of H in S;. [The centralizer of H is the set of g € G such
ghg™! =hforall h € H.Ttis again a subgroup of G.]

42, Prove or disprove the following statement: if H is a sub-
group of an infinite group G, then for all x € G, xHx~! C
H = x"'HxCH.

43. Let H be a finite normal subgroup of a group G, and let
g be an element of G. Suppose that g has order n and that the
only element of H that commutes with g is 1. Show that:

(a) the mapping h — g~ 'h~lgh is a bijection from H to

>
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(b) the coset gH consists of elements of G of order n.

44. Show that if a permutation in a subgroup G of Sy maps x to
¥, then the normalizers of the stabilizers Stab(x) and Stab(y)
of x and y have the same order.

45. Prove that if all Sylow subgroups of a finite group G are
normal and abelian, then the group is abelian.

46. A group is §enerated by two elements a and b satisfying
the relations: a> = b2, a™ =1, b" = 1 where m and n are
positive integers. For what values of m and  can G be infinite.

47. Show that the group G generated by elements x and y with
defining relations x2 (xy)* =1 is a finite solvable
group, and find the order of G and its successive derived sub-
groups G', G”, G".

48. A group G is generated by a normal set X of elements
of order 2. Show that the commutator subgroup G’ of G is
generated by all squares of products xy of pairs of elements of
X.

49. Determine the normalizer N in GL, (F) of the subgroup
H of diagonal matrices, and prove that N/H is isomorphic to
the symmetric group Sy.

50. Let G be a group with generators x and y and defining rela-
tions x2, y°, (xy)*. What is the index in G of the commutator
group G’ of G.

51. Let G be a finite group, and H the subgroup generated by
the elements of odd order. Show that H is normal, and that the
order of G/H is a power of 2.
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52. Let G be a finite group, and P a Sylow p-subgroup. Show
that if H is a subgroup of G such that Ng(P) C H C G, then

(a) the normalizer of H in G is H;
(b) (G: H)=1 (mod p).

53. Let G be a group of order 33-25. Show that G is solvable.
(Hint: A first step is to find a normal subgroup of order 11 using
the Sylow theorems.)

54. Suppose that « is an endomorphism of the group G that
maps G onto G and commutes with all inner automorphisms
of G. Show that if G is its own commutator subgroup, then
ax = x forall x in G.

55. Let G be a finite group with generators s and ¢ each of order
2.Letn =(G:1)/2.

(a) Show that G has a cyclic subgroup of order n. Now as-
sume 7 odd.

(b) Describe all conjugacy classes of G.

(c) Describe all subgroups of G of the form C(x) = {y €
Glxy =yx},x€QG.

(d) Describe all cyclic subgroups of G.

(e) Describe all subgroups of G in terms of (b) and (d).

(f) Verify that any two p-subgroups of G are conjugate (p
prime).

56. Let G act transitively on a set X. Let N be a normal sub-
group of G, and let Y be the set of orbits of N in X. Prove
that:
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(a) There is a natural action of G on Y which is transitive
and shows that every orbit of N on X has the same car-
dinality.

(b) Show by example that if N is not normal then its orbits
need not have the same cardinality.

57. Prove that every maximal subgroup of a finite p-group is
normal of prime index (p is prime).

58. A group G is metacyclic if it has a cyclic normal subgroup
N with cyclic quotient G/N. Prove that subgroups and quo-
tient groups of metacyclic groups are metacyclic. Prove or dis-
prove that direct products of metacyclic groups are metacylic.

59. Let G be a group acting doubly transitively on X, and let
x € X. Prove that:

(a) The stabilizer Gx of x is a maximal subgroup of G.
(b) If N is a normal subgroup of G, then either N is con-
tained in G or it acts transitively on X .

60. Let x, y be elements of a group G such that xyx~! = y°,
x has order 3, and y # 1 has odd order. Find (with proof) the
order of y.

61. Let H be a maximal subgroup of G, and let A be a normal
subgroup of H and such that the conjugates of 4 in G generate
it.

(a) Prove that if N is a normal subgroup of G, then either
N C Hor G = NA.
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(b) Let M be the intersection of the conjugates of H in G.
Prove that if G is equal to its commutator subgroup and
A is abelian, then G/ M is a simple group.

62. (a) Prove that the centre of a nonabelian group of order p3,
p prime, has order p.

(b) Exhibit a nonabelian group of order 16 whose centre is not
cyclic.

63. Show that the group with generators « and 8 and defining
relations ) )
o = 2= (@p)’ =1

is isomorphic with the symmetric group S3 of degree 3 by giv-
ing, with proof, an explicit isomorphism.

64. Prove or give a counter-example:

(a) Every group of order 30 has a normal subgroup of order
15.
(b) Every group of order 30 is nilpotent.

65. Let ¢ € Z, and let G be the group with generators x, y and
relations xyx~1 = y!, x3 = 1.
(a) Find necessary and sufficient conditions on ¢ for G to be
finite.
(b) In case G is finite, determine its order.
66. Let G be a group of order pg, p # ¢ primes.

(a) Prove G is solvable.
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(b) Prove that G is nilpotent <= G is abelian <= G is
cyclic.
(c) Is G always nilpotent? (Prove or find a counterexample.)

67. Let X be a set with p” elements, p prime, and let G be a
finite group acting transitively on X. Prove that every Sylow
p-subgroup of G acts transitively on X .

68.Let G = (a,b,c | bc = chya*=b2=c?=1,acal=c,
aba™! = bc). Determine the order of G and find the derived
series of G.

69. Let N be a nontrivial normal subgroup of a nilpotent group
G.Provethat NNZ(G) # 1.

70. Do not assume Sylow’s theorems in this problem.

(a) Let H be a subgroup of a finite group G, and P a Sylow
p-subgroup of G. Prove that there exists an x € G such
that xPx~1 N H is a Sylow p-subgroup of H.

1 =*

(b) Prove that the group of n x n matrices b is

0 1
a Sylow p-subgroup of GL (Fp).
(c) Indicate how (a) and (b) can be used to prove that any
finite group has a Sylow p-subgroup.

71. Suppose H is a normal subgroup of a finite group G such
that G/H is cyclic of order n, where n is relatively prime to
(G : 1). Prove that G is equal to the semidirect product H x S
with S a cyclic subgroup of G of order n.
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72. Let H be a minimal normal subgroup of a finite solvable
group G. Prove that H is isomorphic to a direct sum of cyclic
groups of order p for some prime p.

73. (a) Prove that subgroups A and B of a group G are of finite
index in G if and only if A N B is of finite index in G.

(b) An element x of a group G is said to be an FC-element if
its centralizer Cg (x) has finite index in G. Prove that the set
of all FC elements in G is a normal.

74. Let G be a group of order p24? for primes p > ¢q. Prove
that G has a normal subgroup of order p” for some n > 1.

75. (a) Let K be a finite nilpotent group, and let L be a sub-
group of K such that L-§K = K, where 6K is the derived sub-
group. Prove that L = K. [You may assume that a finite group
is nilpotent if and only if every maximal subgroup is normal.]
(b) Let G be a finite group. If G has a subgroup H such that
both G/§H and H are nilpotent, prove that G is nilpotent.

76. Let G be a finite noncyclic p-group. Prove that the follow-
ing are equivalent:
@ (G:Z(G) = p*.
(b) Every maximal subgroup of G is abelian.
(c) There exist at least two maximal subgroups that are
abelian.

77. Prove that every group G of order 56 can be written (non-
trivially) as a semidirect product. Find (with proofs) two non-
isomorphic non-abelian groups of order 56.

78. Let G be a finite group and ¢ : G — G a homomorphism.
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(a) Prove that there is an integer n > 0 such that 9" (G) =
@™ (G) for all integers m > n. Let ¢ = ™.

(b) Prove that G is the semi-direct product of the subgroups
Kero and Ima.

(c) Prove that Imo is normal in G or give a counterexample.

79. Let S be a set of representatives for the conjugacy classes
in a finite group G and let H be a subgroup of G. Show that
SCH = H=0G.

80. Let G be a finite group.

(a) Prove that there is a unique normal subgroup K of G
such that (i) G/K is solvable and (ii) if N is a normal
subgroup and G/ N is solvable, then N D K.

(b) Show that K is characteristic.

(c) Prove that K = [K, K] and that K = 1 or K is nonsolv-
able.






Appendix B

Solutions to the Exercises

These solutions fall somewhere between hints and complete so-
lutions. Students were expected to write out complete solutions.

1-1 By inspection, the only element of order 2 is ¢ = a® = b2.
Since gcg™! also has order 2, it must equal ¢, i.c., geg L =c¢
for all g € Q. Thus ¢ commutes with all elements of Q, and
{l,c} is a normal subgroup of Q. The remaining subgroups
have orders 1, 4, or 8, and are automatically normal (see[[.36h).

11 1 1\" _ (1 n
1-2 Theproductab:(O 1),and(o 1) =(0 1).
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1-3 Consider the subsets {g,g~!} of G. Each set has exactly
2 elements unless g has order 1 or 2, in which case it has 1
element. Since G is a disjoint union of these sets, there must
be a (nonzero) even number of sets with 1 element, and hence
at least one element of order 2.

1-4 The symmetric group Sy contains a subgroup that is a di-
rect product of subgroups Sy, , ..., Sy,

1-5 Because the group G/ N has order 1, (gN)" = 1 for every
g € G (see[1.27). But (gN)" = g" N, and so g" € N. For the
second statement, consider the subgroup {1,s} of D3. It has
index 3 in D3, but the element ¢ has order 2, and so 13 =1 ¢

{1,s}.

1-6 (a) Leta,b € G. We are given that a®> = b? = (ab)? =e.
In particular, abab = e. On multiplying this on right by ba, we
find that ab = ba. (b) Show by induction that

1 a b\" 1 na nb+ "(" D,
0 1 ¢ =10 1 nc
0 0 1 0 0 1

1-7 Commensurability is obviously reflexive and symmetric,
and so it suffices to prove transitivity. We shall use that if a
subgroup H of a group G has finite index in G, then H N G’
has finite index in G’ for any subgroup G’ of G (because the
natural map G'/H NG’ — G/H is injective). Using this, it
follows that if H{ and H3 are both commensurable with Ho,
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then H{ N Hy N H3j is of finite index in H{ N Hy and in Hy N
H3 (and therefore also in Hy and H3). As HHN H3 D Hi N
H» N Hsj, it also has finite index in each of H; and H3.

1-8 By assumption, the set G is nonempty, so let a € G. Be-
cause G satisfies the cancellation law, the map x > ax: G — G
is a permutuation of G, and some power of this permutation is
the identity permutation. Therefore, for some n > 1, a”x = x
for all x € G, and so a" is a left neutral element. By counting,
one sees that every element has a left inverse, and so we can

apply (L.10p).

2-1 The key point is that {a) = (a2) x {(a™). Apply (1.50) to
see that D,y breaks up as a product.

2-2 Note first that any group generated by a commuting set
of elements must be commutative, and so the group G in
the problem is commutative. According to (2.8), any map
{ai,...,an} — A with A commutative extends uniquely to ho-
momorphism G — A, and so G has the universal property that
characterizes the free abelian group on the generators a; .

2-3 (a) If a # b, then the word a---ab™!---b™1 is reduced
and # 1. Therefore, if a"b™" = 1, then a = b. (b) is similar.
(c) The reduced form of x™, x # 1, has length at least n.

2-4 (a) Universality. (b) Coo X Cxo is commutative, and the
only commutative free groups are 1 and C. (c) Suppose a
is a nonempty reduced word in x1,...,X,, say @ = x; -+ (or
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xi_1 ---). For j # i, the reduced form of [x;,a] dzeijaxjfla_l

can’t be empty, and so a and x; don’t commute.

2-5 The unique element of order 2 is b2. Since gh?g~! also
has order 2 for any g € Oy, we see that gh%2g~1 = b2, and
so b2 lies in the centre. [Check that it is the full centre.] The
quotient group Qy/(b?) has generators a and b, and relations

-2 . . .
a2 =1,b2=1,bab~' =4, which s a presentation for

D,n—2 (see @I}

2-6 (a) A comparison of the presentation D, = (r,s |
r,s2,srsr = 1) with that for G suggests putting r = ab and

s = a. Check (using[2:8) that there are homomorphisms:

Dy, — G, rw—ab, s~ a,
G— Dy, arss, bss"lr.
The composites D, - G — Dy, and G — D, — G are the
both the identity map on generating elements, and therefore
(28] again) are identity maps. (b) Omit.

2-7 The hint gives ab3a™! = be3b™1 . Buth3 =1.S0c3 =1.
Since ¢4 = 1, this forces ¢ = 1. From acac™l =1 this gives
a? =1.But a® = 1. So a = 1. The final relation then gives
b=1.

2-8 The elements x2, xy, y? lie in the kernel, and it is easy
to see that (x, y|xZ, xy, y2) has order (at most) 2, and so they
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must generate the kernel (at least as a normal group — the
problem is unclear). One can prove directly that these elements
are free, or else apply the Nielsen-Schreier theorem (2.6). Note
that the formula on p. [68] (correctly) predicts that the kernel is
free of rank 2-2—-2+1=3

2-9 We have to show that if s and ¢ are elements of a finite
group satisfying r ~1s3¢ = s, then the given element g is equal
to 1. Because the group is finite, s” = 1 for some n. If 3|n, the
proof is easy, and so we suppose that gcd(3,7) = 1. But then

3r+nr' =1,somer,r €7,
and so s3” = s. Hence
st =713 = ¢ s3n)T =507,
Now,
g=s ¢ s s st) = s s T = 1,

as required. [In such a question, look for a pattern. Note that g
has two conjugates in it, as does the relation for G, and so it is
natural to try to relate them.]

3-1 Let N be the unique subgroup of order 2 in G. Then G/ N
has order 4, but there is no subgroup Q C G of order 4 with
O NN =1 (because every group of order 4 contains a group
of order 2), and so G # N x Q for any Q. A similar argument
applies to subgroups N of order 4.
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3-2 For any g € G, gM g~ is a subgroup of order m, and

therefore equals M. Thus M (similarly N) is normal in G, and
MN is a subgroup of G. The order of any element of M N N
divides gcd(m,n) = 1, and so equals 1. Now shows that
M x N ~ M N, which therefore has order mn, and so equals
G.

3-3 Show that GL,(F5) permutes the 3 nonzero vectors in
F, x F» (2-dimensional vector space over F5).

3-4 The following solutions were suggested by readers. We
write the quaternion group as

0 = {£1,+i,+], £k}

(A) Take a cube. Write the six elements of Q of order 4 on
the six faces with i opposite —i, etc.. Each rotation of the cube
induces an automorphism of Q, and Aut(Q) is the symmetry
group of the cube, S4. (B) The group Q has one element of
order 2, namely —1, and six elements of order 4, namely, +i,
+j, k. Any automorphism « of Q must map —1 to itself
and permute the elements of order 4. Note thatij =k, jk =1,
ki = j, so o must send the circularly ordered set i, j,k to a
similar set, i.e., to one of the eight sets in the following table:

i j k —i —j k
i —j -k —i Jj -k
i k —j —i -k —j
i —k j —i k j
Because a(—1) = —1, o must permute the rows of the table,

and it is not difficult to see that all permutations are possible.
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3-5 The pair

b 0 0
c and Q = a 0
1 0 d

satisfies the conditions (i), (ii), (iii) of (3.8). For example, for

(1) (Maple says that)

1
N = 0
0

S = O
S O R

-1

a 0 b 1 0 b\ fa 0 b

0 a c¢ 0 1 ¢ 0 a c =

0 0 dJ\0 0 1 0 0 d
1 0 —§+%(b+ab)
0 1 —S+75(c+ac)

1

It is not a direct product of the two groups because it is not
commutative.

3-6 Let g generate Coo. Then the only other generator is g~ !,
and the only nontrivial automorphism is g — g~!. Hence
Aut(Cs) = {£1}. The homomorphism S3 — Aut(S3) is in-
jective because Z(S3) = 1, but S3 has exactly 3 elements
ay,az,as of order 2 and 2 elements b, b2 of order 3. The ele-
ments a1,b generate S3, and there are only 6 possibilities for
a(ay), a(b), and so S3 — Aut(S3) is also onto.

3-7 (a) The element g°@ € N, and so has order dividing
|[N|. (c) The element g = (1,4,3)(2,5), and so this is obvi-
ous. (d) By the first part, ((1,0,...,0),9)? = ((1,...,1),1),
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and (1,...,1) has order p in (Cp)?. (e) We have (n,9)(n,q) =
(nn~tqq) = (1,1).

3-8 Letn-q € Z(G). Then

(n-q)(1-q') = n-qq’ / }
_ 1lg e
1-qNnq) = gng~t-g'q M99
neCn(Q)
q€Z(Q)
and
(n-q)(n'-1) = nqn'q"'-q
o' Dnq) = nneg "N
= nn'n=qn'q .

The converse and the remaining statements are easy.

4-1 Let ¢:G/H; — G/H, be a G-map, and let (H;) =
gH>.Fora € G, p(aH1) =ap(Hy) =agH>. Whena € Hy,
@(aH1) = gH»,andsoagH» = gH»; hence g lag € Hy, and
soa € gH,g~!. We have shown H; C gH>g~!. Conversely,
if g satisfies this condition, the a H1 + agH> is a well-defined
map of G-sets.

4-2 (a)Let H be a proper subgroup of G, and let N = Ng (H).
The number of conjugates of H is (G : N) < (G : H) (see
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[8). Since each conjugate of H has (H : 1) elements and the
conjugates overlap (at least) in {1}, we see that

‘UgHg_1’ <(G:H)H:1)=(G:1).

(b) Use that the action of G on the left cosets of H de-
fines a homomorphism ¢: G — Sy, and look at the finite group
G/ Ker(p).

(c) Let G = GLy (k) with k an algebraically closed field.
Every element of G is conjugate to an upper triangular matrix
(its Jordan form). Therefore G is equal to the union of the con-
jugates of the subgroup of upper triangular matrices.

(d) Choose S to be a set of representatives for the conjugacy
classes.

4-3 Let H be a subgroup of a finite group G, and assume that
H contains at least one element from each conjugacy class of
G. Then G is the union of the conjugates of H, and so we can
apply Exercise f-2] (According to [Serre|2003] this result goes
back to Jordan in the 1870s.)

4-4 According to[4.17] [f.I8] there is a normal subgroup N of
order p?2, which is commutative. Now show that G has an el-
ement ¢ of order p not in N, and deduce that G = N x (c),
etc..

4-5 Let H be a subgroup of index p, and let N be the kernel
of G — Sym(G/H) — it is the largest normal subgroup of G
contained in H (see.22). If N # H, then (H : N) is divisible
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by a prime ¢ > p, and (G : N) is divisible by pg. But pg
doesn’t divide p! — contradiction.

4-6 Embed G into S, andlet N = A2, N G. Then G/N —
Som/A2m = Ca, and so (G : N) < 2. Let a be an element of
order 2 in G, and let by,...,b,y, be a set of right coset rep-
resentatives for (a) in G, so that G = {by,aby,...,bym,aby}.
The image of a in Sp,, is the product of the m transpositions
(b1,ab1),...,(bm,aby), and since m is odd, this implies that
a¢N.

4-7 The set X of k-cycles in Sy, is normal, and so the group it
generates is normal @]) But, when n > 5, the only nontrivial
normal subgroups of S,, are A, and S, itself. If k is odd, then
X is contained in Ay, and if k is even, then it isn’t.

4-8 (a) The number of possible first rows is 23 —1; of second
rows 23 —2; of third rows 23 —22; whence (G : 1) = 7x6x4 =
168. (b) Let V = F3. Then |V| = 23 = 8. Each line through
the origin contains exactly one point # origin, and so |X| =
7. (c) We make a list of possible characteristic and minimal

polynomials:
Characteristic poly. Min’l poly. Size Order of element in class
1 X34+X24+X41 X+1 1 1
2 X34 X24X+1 X+D%* 21 2
3 X34 X24X+1 X+13 42 4
4 X341 Same 56 3
5 Xx3 + X + 1 (irreducible) Same 24 7
6 X34 X241 (irreducible)  Same 24 7

Here size denotes the number of elements in the conjugacy
class. Case 5: Let o be an endomorphism with characteristic
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polynomial X3 + X + 1. Check from its minimal polynomial
that @7 = 1, and so « has order 7. Note that V is a free
F5[o]-module of rank one, and so the centralizer of « in G
is Fala] NG = (@). Thus |Cg(«)| = 7, and the number of
elements in the conjugacy class of « is 168/7 = 24. Case 6:
Exactly the same as Case 5. Case 4: Here V = V1 @ V> as an
F5[a]-module, and

Endg, [4](V) = Endp, [¢](V1) @ Endp, [¢](V2).

Deduce that |Cg(«)| = 3, and so the number of conjugates
of « is %.8 = 56. Case 3: Here Cg(a) = F2[¢] NG = (a),
which has order 4. Case 1: Here « is the identity element. Case
2: Here V = Vi @ V; as an Fp[w]-module, where « acts as
1 on Vi and has minimal polynomial X2 + 1 on V5. Either
analyse, or simply note that this conjugacy class contains all
the remaining elements. (d) Since 168 = 23 x 3 x 7, a proper
nontrivial subgroup H of G will have order

2,4,8,3,6,12,24,7,14,28,56,21,24, or 84.

If H is normal, it will be a disjoint union of {1} and some other
conjugacy classes, and so (N : 1) =14 Y ¢; with ¢; equal to
21, 24, 42, or 56, but this doesn’t happen.

4-9 Since G/Z(G) — Aut(G), we see that G/ Z(G) is cyclic,
and so by @.I9) that G is commutative. If G is finite and not
cyclic, it has a factor Cppr x Cps etc..

4-10 Clearly (ij) = (1j)(1i)(1j). Hence any subgroup con-
taining (12), (13), ... contains all transpositions, and we know
Sy is generated by transpositions.
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4-11 Note that Cg(x) N H = Cg(x), and so H/Cg(x) ~
H -Cg(x)/Cg(x)). Prove each class has the same number ¢
of elements. Then

|K|=(G:Cg(x))=(G:H-Ca(x))(H-Cg(x):Cg(x)) =ke.

4-12 (a) The first equivalence follows from the preceding prob-
lem. For the second, note that 0 commutes with all cycles in
its decomposition, and so they must be even (i.e., have odd
length); if two cycles have the same odd length k, one can
find a product of k transpositions which interchanges them,
and commutes with o; conversely, show that if the partition
of n defined by o consists of distinct integers, then ¢ com-
mutes only with the group generated by the cycles in its cycle
decomposition. (b) List of conjugacy classes in S7, their size,
parity, and (when the parity is even) whether it splits in A7.
Cycle Size Parity Splits in A7? C7(0o) contains

1 1) 1 E

2 (12) 21 0

3 (123 70 E N (67)

4 (1234 210 O

5 (12345) 504 E N (67)

6 (123456) 840 O

7 (1234567) 720 E Y 720 doesn’t divide 2520
8 (1234 105 E N (67)

9 (12)(345) 420 O

10 (12)(3456) 630 E N (12)
11 (12)(3456) 504 O

12 (123)(456) 280 E N (14)(25)(36)
13 (123)(4567) 420 O

14 (12)(34)(56) 105 O

15 (12)(34)(567) 210 E N (12)
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4-13 According to GAP, n = 6, a — (13)(26)(45), b
(12)(34)(56).

4-14 Since Stab(gxg) = g Stab(xg)g ™!, if H C Stab(x) then
H C Stab(x) for all x, and so H = 1, contrary to hypothesis.
Now Stab(xg) is maximal, and so H - Stab(xg) = G, which
shows that H acts transitively.

5-1 Let p be a prime dividing |G| and let P be a Sylow p-
subgroup, of order p™ say. The elements of P all have order
dividing p™, and it has at most

1_ "1

elements of order dividing p™~1; therefore P must have an el-
ement of order p™, and so it is cyclic. Each Sylow p-subgroup
has exactly p™ elements of order dividing p™, and so there
can be only one. Now (5.9) shows that G is a product of its
Sylow subgroups.

6-2 No, D4 and the quaternion group have isomorphic com-
mutator subgroups and quotient groups but are not isomorphic.
Similarly, S;, and A, x C; are not isomorphic when n > 5.






Appendix C

Two-Hour Examination

1. Which of the following statements are true (give brief jus-
tifications for each of (a), (b), (c), (d); give a correct set of
implications for (e)).

(a) Ifa and b are elements of a group, thena? =1, b3 =

1 (a .
(b) The following two elements are conjugate in S7:

1 2 3 4 5 6 17
2 3 1 5 6 7 4}
(c) If G and H are finite groups and G x Asgq ~ H X As94,
then G ~ H.
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(d) The only subgroup of As containing (123) is A5 itself.
(e) Nilpotent = cyclic = commutative =—> solvable
(for a finite group).

2. How many Sylow 11-subgroups can a group of order 110 =
2-5-11 have? Classify the groups of order 110 containing a
subgroup of order 10. Must every group of order 110 contain a
subgroup of order 10?

3. Let G be a finite nilpotent group. Show that if every com-
mutative quotient of G is cyclic, then G itself is cyclic. Is the
statement true for nonnilpotent groups?

4. (a) Let G be a subgroup of Sym(X), where X is a set with
n elements. If G is commutative and acts transitively on X,
show that each element g # 1 of G moves every element of X.
Deduce that (G : 1) <n.

(b) For each m > 1, find a commutative subgroup of S3;, of
order 3. Y
(c) Show that a commutative subgroup of S, has order < 33.

5. Let H be a normal subgroup of a group G, and let P be
a subgroup of H. Assume that every automorphism of H is
inner. Prove that G = H - Ng (P).

6. (a) Describe the group with generators x and y and defining
relation yxy~! = x71.

(b) Describe the group with generators x and y and defining
relations yxy 1 = x71, xyx~l = y~1
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You may use results proved in class or in the notes, but you
should indicate clearly what you are using.
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SOLUTIONS

1. (a) False: in (a,b|a?,b3), ab has infinite order.

(b) True, the cycle decompositions are (1357)(246),
(123)(4567).

(c) True, use the Krull-Schmidt theorem.

(d) False, the group it generates is proper.

(e) Cyclic = commutative = nilpotent = solvable.

2. The number of Sylow 11-subgroups s11 = 1,12,... and di-
vides 10. Hence there is only one Sylow 11-subgroup P. Have

G=P>49H, P:Cll, H:CloorDs.

Now have to look at the maps 6 : H — Aut(C11) = C1p. Yes,
by the Schur-Zassenhaus lemma.

3. Suppose G has class > 1. Then G has quotient H of class 2.
Consider

|- Z(H)—>H—>H/Z(H) — 1.

Then H is commutative by (4.17), which is a contradiction.
Therefore G is commutative, and hence cyclic.

Alternatively, by induction, which shows that G/Z(G) is
cyclic.

No! In fact, it’s not even true for solvable groups (e.g., S3).

4. (a) If gx = x, then ghx = hgx = hx. Hence g fixes every
element of X,andso g =1.Fixanx € X;thengr gx:G —
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X isinjective. [Note that Cayley’s theorem gives an embedding
G—Sp,n=(G:1).]

(b) Partition the set into subsets of order 3, and let G =
G1x--XGpy.

(c) Let Oq,..., O, be the orbits of G, and let G; be the
image of G in Sym(0O;). Then G — G X---x G, and so (by
induction),

n nr

(G:1)<(G1:1)--(Gr:1)<33 ...33 =35,

5.Let g € G, and let h € H be such that conjugation by 4 on
H agrees with conjugation by g. Then gPg~1 = hPh~!, and
soh~lg e Ng(P).

6. (a) It’s the group .
G =(x)x(y) =Coo Xg Coo

with 0: Coo — Aut(Coo) = 1. Alternatively, the elements can
be written uniquely in the form x'y/, i,j € Z, and yx =
-1
X"y
(b) It’s the quaternion group. From the two relations get

yx = xily, yx = xy71

and so x2 = y2. The second relation implies
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and so y* = 1.

Alternatively, the Todd-Coxeter algorithm shows that it
is the subgroup of Sg generated by (1287)(3465) and
(1584)(2673).
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