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Preface
For one who attempts to unravel the story, the
problems are as perplexing as a mass of hemp
with a thousand loose ends.
Dream of the Red Chamber, Tsao Hsueh-Chin.

Algebraic groups are groups defined by polynomials. Those that we shall be concerned
with in this book can all be realized as groups of matrices. For example, the group of
matrices of determinant 1 is an algebraic group, as is the orthogonal group of a symmetric
bilinear form. The classification of algebraic groups and the elucidation of their structure
were among the great achievements of twentieth century mathematics (Borel, Chevalley,
Tits and others, building on the work of the pioneers on Lie groups). Algebraic groups
are used in most branches of mathematics, and since the famous work of Hermann Weyl
in the 1920s they have also played a vital role in quantum mechanics and other branches
of physics (usually as Lie groups). Arithmetic groups are groups of matrices with integer
entries. They are a basic source of discrete groups acting on manifolds.

The first goal of the present work is to provide a modern exposition of the theory of al-
gebraic groups. It has been clear for fifty years, that in the definition of an algebraic group,
the coordinate ring should be allowed to have nilpotent elements,1 but the standard exposi-
tions2 do not allow this.3 In recent years, the tannakian duality4 between algebraic groups
and their categories of representations has come to play a role in the theory of algebraic
groups similar to that of Pontryagin duality in the theory of locally compact abelian groups.
Chapter I develops the basic theory of algebraic groups, including tannakian duality.

Lie algebras are a essential tool in studying both algebraic groups and Lie groups. In
Chapter II develops the basic theory of Lie algebras and discusses the functor from alge-
braic groups to Lie algebras.

As Cartier (1956) noted, the relation between Lie algebras and algebraic groups in char-
acteristic zero is best understood through their categories of representations. In Chapter III
we review the classification of semisimple Lie algebras and their representations, and we

1See, for example, Cartier 1962. Without nilpotents the centre of SLp in characteristic p is visible only
through its Lie algebra. Moreover, the standard isomorphism theorems fail, and so the intuition provided by
group theory is unavailable. Consider, for example, the subgroups H D SLp and N DGm (diagonal) of GLp
over a field of characteristic p. If nilpotents are not allowed, then N \H D 1, and the map H=H \N !
HN=N is the homomorphism SLp ! PGLp , which is an inseparable isogeny of degree p; in particular, it is
injective and surjective but not an isomorphism. While it is true that in characteristic zero all algebraic groups
are reduced, this is a theorem that can only be stated when nilpotents are allowed.

2The only exceptions I know of are Demazure and Gabriel 1970, Waterhouse 1979, and SGA3. While the
first two do not treat the classification of semisimple algebraic groups over fields, the third assumes it.

3Worse, much of the expository literature is based, in spirit if not in fact, on the algebraic geometry of
Weil’s Foundations (Weil 1962). Thus an algebraic group over k is defined to be an algebraic group over some
large algebraically closed field together with a k-structure. This leads to a terminology in conflict with that of
modern algebraic geometry, in which, for example, the kernel of a homomorphism of algebraic groups over a
field k need not be an algebraic group over k. Moreover, it prevents the theory of split reductive groups being
developed intrinsically over the base field.

When Borel first introduced algebraic geometry into the study of algebraic groups in the 1950s, Weil’s
foundations were they only ones available to him. When he wrote his influential book Borel 1969b, he persisted
in using Weil’s approach to algebraic geometry, and, with the exceptions noted in the preceding footnote, all
subsequent authors have followed him.

4Strictly, this should be called the “duality of Tannaka, Krein, Milman, Hochschild, Grothendieck, Saave-
dra Rivano, Deligne, et al.,” but “tannakian duality” is shorter. In his Récoltes et Semailles, 1985-86, 18.3.2,
Grothendieck argues that “Galois-Poincaré” would be more appropriate than “Tannaka” .
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exploit tannakian duality to deduce the classification of semisimple algebraic groups and
their representations in characteristic zero.5 The only additional complication presented by
algebraic groups is that of determining the centre of the simply connected algebraic group
attached to a semisimple Lie algebra, but this centre can also be seen in the category of
representations of the Lie algebra.

Although there are many books on algebraic groups, and even more on Lie groups, there
are few that treat both. In fact it is not easy to discover in the expository literature what the
precise relation between the two is. In Chapter IV we show that all connected complex
semisimple Lie groups are algebraic groups,6 and that all connected real semisimple Lie
groups arise as covering groups of algebraic groups. Thus the reader who understands the
theory of algebraic groups and their representations will find that he also understands much
of the basic theory of Lie groups. Realizing a Lie group as an algebraic group is the first
step towards understanding the discrete subgroups of the Lie group.

In Chapter V, which is largely independent of Chapters III and IV, we study split
reductive groups over arbitrary fields. It is a remarkable observation of Chevalley that, for
reductive groups containing a split maximal torus, the theory is independent of the ground
field (and, largely, even of the characteristic of the ground field). We define the root datum
of a split reductive and explain how this describes the structure of groups, and we prove the
fundamental isogeny theorem following the approach in Steinberg 1999.

In Chapter VI, we explain how descent theory and Galois cohomology allow one to
extend to study nonsplit reductive groups. In particular, we prove that the list of classical
semisimple algebraic groups in Chapter I, �19, is complete, and we include Tits’s classifi-
cation of nonsplit groups (Tits 1966, Selbach 1976).

For an algebraic group G over Q, any subgroup of G.Q/ commensurable with G.Z/
is said to be arithmetic. In Chapter VII, we show that such a group � is discrete in the
Lie group G.R/ and that the quotient G.R/=� has finite volume. Selberg conjectured,
and Margulis proved, that, except for SO.1;n/ and SU.1;n/, every discrete subgroup of
finite covolume in a semisimple Lie group is arithmetic. In combination with the results of
Chapter VI and VII, this gives a classification of Riemannian locally symmetric spaces up
to finite covers (with a few exceptions). 7

TERMINOLOGY

For readers familiar with the old terminology, as used for example in Borel 1969b, 1991,
we point out some differences with our terminology, which is based on that of modern
(post-1960) algebraic geometry.

5The classical proof of the classification theorems for semisimple groups in characteristic zero uses the
similar theorems for Lie algebras, deduces them for Lie groups, and then passes to algebraic groups (Borel
1975, �1). The only other proof in the expository literature that I know of is that of Chevalley, which works in
all characteristics, but is quite long and complicated and requires algebraic geometry. The proof presented here
requires neither analysis nor algebraic geometry.

6In other words, the convergent power series defining the group can be replaced by polynomials.
7Briefly, the universal covering space of such a space X is a Riemannian symmetric space QX . The identity

component of Aut. QX/ is a real semisimple Lie group G, andX � � nG=K withK a maximal compact subgroup
of G and � a discrete subgroup of G of finite covolume. The pairs .G;K/ can be classified in terms of Dynkin
diagrams. Except in SO.1;n/ and SU.1;n/, the group � is commensurable with i.G.Z// where G is an
algebraic group over Q and i WG.R/! G is a homomorphism of Lie groups with compact kernel and finite
cokernel. That a pair .G; i/ exists over R is shown in Chapter III, and the pairs .G; i/ over Q giving rise to a
given pair over R are classified for the classical groups in Chapter VII.
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˘ We allow our rings to have nilpotents, i.e., we don’t require that our algebraic groups
be reduced.

˘ We do not identify an algebraic group G with its points G.k/ with in k, even when
the ground field k is algebraically closed. Thus, a subgroup of an algebraic group G
is an algebraic subgroup, not an abstract subgroup of G.k/.

˘ An algebraic group G over a field k is intrinsically an object over k, and not an
object over some algebraically closed field together with a k-structure. Thus, for
example, a homomorphism of algebraic groups over k is truly a homomorphism over
k, and not over some large algebraically closed field. In particular, the kernel of such
a homomorphism is an algebraic subgroup over k. Also, we say that an algebraic
group over k is simple, split, etc. when it simple, split, etc. as an algebraic group
over k, not over some large algebraically closed field. When we want to say that G
is simple over k and remains simple over all fields containing k, we say that G is
geometrically (or absolutely) simple.

˘ For an algebraic group G over k and an extension field K, G.K/ denotes the points
of G with coordinates in K and GK denotes the algebraic group over K obtained
from G by extension of the base field.

Beyond its greater simplicity, there is another reason for replacing the old terminology with
the new: for the study of group schemes over bases more general than fields there is no old
terminology.
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0a Notations; terminology

We use the standard (Bourbaki) notations: N D f0;1;2; : : :g; Z D ring of integers; Q D
field of rational numbers; RD field of real numbers; CD field of complex numbers; Fp D
Z=pZD field with p elements, p a prime number. For integers m and n, mjn means that
m divides n, i.e., n 2mZ. Throughout the notes, p is a prime number, i.e., p D 2;3;5; : : :.

Throughout k is the ground ring (always commutative, and usually a field), and R
always denotes a commutative k-algebra. Unadorned tensor products are over k. Notations
from commutative algebra are as in my primer CA (see below). When k is a field, ksep

denotes a separable algebraic closure of k and kal an algebraic closure of k. The dual
Homk-lin.V;k/ of a k-module V is denoted by V _. The transpose of a matrixM is denoted
by M t .

We use the terms “morphism of functors” and “natural transformation of functors” in-
terchangeably. When F and F 0 are functors from a category, we say that “a homomorphism
F.a/! F 0.a/ is natural in a” when we have a family of such maps, indexed by the objects
a of the category, forming a natural transformation F ! F 0. For a natural transformation
˛WF ! F 0, we often write ˛R for the morphism ˛.R/WF.R/! F 0.R/. When its action on
morphisms is obvious, we usually describe a functor F by giving its action R F.R/ on
objects. Categories are required to be locally small (i.e., the morphisms between any two
objects form a set), except for the category A_ of functors A!Set. A diagramA!B⇒C

is said to be exact if the first arrow is the equalizer of the pair of arrows; in particular, this
means that A! B is a monomorphism (cf. EGA I, Chap. 0, 1.4).

Here is a list of categories:

Category Objects Page
Algk commutative k-algebras
A_ functors A! Set
Comodk.C / finite-dimensional comodules over C p. 100
Grp (abstract) groups
Repk.G/ finite-dimensional representations of G p. 95
Repk.g/ finite-dimensional representations of g
Set sets
Veck finite-dimensional vector spaces over k

In each case, the morphisms are the usual ones, and composition is the usual composition.
Throughout the work, we often abbreviate names. In the following table, we list the

shortened name and the page on which we begin using it.
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Shortened name Full name Page
algebraic group affine algebraic group p. 29
algebraic monoid affine algebraic monoid p. 29
bialgebra commutative bi-algebra p. 51
Hopf algebra bialgebra with an inversion p. 51
group scheme affine group scheme p. 60
algebraic group scheme affine algebraic group scheme p. 60
group variety affine group variety p. 60
subgroup affine subgroup p. 94
representation linear representation p. 97
root system reduced root system p. 297

When working with schemes of finite type over a field, we typically ignore the nonclosed
points. In other words, we work with max specs rather than prime specs, and “point” means
“closed point”.

We use the following conventions:
X � Y X is a subset of Y (not necessarily proper);
X

def
D Y X is defined to be Y , or equals Y by definition;

X � Y X is isomorphic to Y ;
X ' Y X and Y are canonically isomorphic (or there is a given or unique isomorphism);

Passages designed to prevent the reader from falling into a possibly fatal error are sig-
nalled by putting the symbolA in the margin.

ASIDES may be skipped; NOTES should be skipped (they are mainly reminders to the
author). There is some repetition which will be removed in later versions.

0b Prerequisites

Although the theory of algebraic groups is part of algebraic geometry, most people who use
it are not algebraic geometers, and so I have made a major effort to keep the prerequisites
to a minimum.

All chapters assume the algebra usually taught in first-year graduate courses and in
some advanced undergraduate courses, plus the basic commutative algebra to be found in
my primer CA.

Chapter IV assumes the analysis usually taught in first-year graduate courses and in
some advanced undergraduate courses.

Chapter V assumes some knowledge of algebraic geometry (my notes AG suffice).
Chapter VI assumes familiarity with the main statements of algebraic number theory

(including class field theory, e.g., CFT, Chapter I �1; Chapter V).

0c References

In addition to the references listed at the end (and in footnotes), I shall refer to the following
of my notes (available on my website):

CA A Primer of Commutative Algebra (v2.22, 2011).
GT Group Theory (v3.11, 2011).
FT Fields and Galois Theory (v4.22, 2011).
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AG Algebraic Geometry (v5.21, 2011).
CFT Class Field Theory (v4.00, 2008).

The links to CA, GT, FT, and AG in the pdf file will work if the files are placed in the same
directory.

Also, I use the following abbreviations:

Bourbaki A Bourbaki, Algèbre.
Bourbaki AC Bourbaki, Algèbre Commutative (I–IV 1985; V–VI 1975; VIII–IX 1983; X

1998).
Bourbaki LIE Bourbaki, Groupes et Algèbres de Lie (I 1972; II–III 1972; IV–VI 1981).
Bourbaki TG Bourbaki, Topologie Générale.
DG Demazure and Gabriel, Groupes Algébriques, Tome I, 1970.
EGA Eléments de Géométrie Algébrique, Grothendieck (avec Dieudonné).
SGA Séminaire de Géométrie Algébrique, Grothendieck et al.
monnnnn http://mathoverflow.net/questions/nnnnn/
� Subsection (so II, �3c means Chapter II, Section 3, Subsection c).

0d Sources

I list some of the works that I have found particularly useful in writing this book, and which
may be useful also to the reader.

Chapter I: Demazure and Gabriel 1970; Serre 1993; Springer 1998; Waterhouse 1979.
Chapters II, III: Bourbaki LIE; Demazure and Gabriel 1970; Erdmann and Wildon 2006;

Humphreys 1972; Serre 1965; Serre 1966.
Chapter IV: Lee 2002.
Chapter V: Conrad et al. 2010, Demazure and Gabriel 1970; SGA3; Springer 1979; Springer

1989; Springer 1998.
Chapter VI: Kneser 1969.
Chapter VII: Borel 1969a.
History: Borel 2001; Hawkins 2000; Helgason 1990, 1994; chapter notes in Springer

1998.
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DRAMATIS PERSONÆ

JACOBI (1804–1851). In his work on partial differential equations, he discovered the Jacobi
identity. Jacobi’s work helped Lie to develop an analytic framework for his geometric ideas.
RIEMANN (1826–1866). Defined the spaces whose study led to the introduction of local
Lie groups and Lie algebras.
LIE (1842–1899). Founded the subject that bears his name in order to study the solutions
of differential equations.
KILLING (1847–1923). He introduced Lie algebras independently of Lie in order to un-
derstand the different noneuclidean geometries (manifolds of constant curvature), and he
classified the possible Lie algebras over the complex numbers in terms of root systems. In-
troduced Cartan subalgebras, Cartan matrices, Weyl groups, and Coxeter transformations.
MAURER (1859–1927). His thesis was on linear substitutions (matrix groups). He charac-
terized the Lie algebras of algebraic groups, and essentially proved that group varieties are
rational (in characteristic zero).
ENGEL (1861–1941). In collaborating with Lie on the three-volume Theorie der Transfor-
mationsgruppen and editing Lie’s collected works, he helped put Lie’s ideas into coherent
form and make them more accessible.
E. CARTAN (1869–1951). Corrected and completed the work of Killing on the classifi-
cation of semisimple Lie algebras over C, and extended it to give a classification of their
representations. He also classified the semisimple Lie algebras over R, and he used this to
classify symmetric spaces.
WEYL (1885–1955). Proved that the finite-dimensional representations of semisimple Lie
algebras and Lie groups are semisimple (completely reducible).
NOETHER (1882–1935).
HASSE (1898–1979).
BRAUER (1901–1977).
ALBERT (1905–1972).

They found a classification of semisimple algebras
over number fields, which gives a classification of the
classical algebraic groups over the same fields.

HOPF (1894–1971). Observed that a multiplication map on a manifold defines a comultipli-
cation map on the cohomology ring, and exploited this to study the ring. This observation
led to the notion of a Hopf algebra.

VON NEUMANN (1903–1957). Proved that every closed subgroup of a real Lie group is
again a Lie group.

WEIL (1906–1998). Classified classical groups over arbitrary fields in terms of semisimple
algebras with involution (thereby winning the all India cocycling championship for 1960).
CHEVALLEY (1909–1984). He proved the existence of the simple Lie algebras and of their
representations without using the classification. One of the initiators of the systematic study
of algebraic groups over arbitrary fields. Classified the split semisimple algebraic groups
over any field, and in the process found new classes of finite simple groups.
KOLCHIN (1916–1991). Obtained the first significant results on matrix groups over arbi-
trary fields as preparation for his work on differential algebraic groups.
IWASAWA (1917–1998). Found the Iwasawa decomposition, which is fundamental for the
structure of real semisimple Lie groups.
HARISH-CHANDRA (1923–1983). Independently of Chevalley, he showed the existence of
the simple Lie algebras and of their representations without using the classification. With
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Borel he proved some basic results on arithmetic groups. Was one of the founders of the
theory of infinite-dimensional representations of Lie groups.

BOREL (1923–2003). He introduced algebraic geometry into the study of algebraic groups,
thereby simplifying and extending earlier work of Chevalley, who then adopted these meth-
ods himself. Borel made many fundamental contributions to the theory of algebraic groups
and of their arithmetic subgroups.

TITS (1930–). His theory of buildings gives an geometric approach to the study of algebraic
groups, especially the exceptional simple groups. With Bruhat he used them to study the
structure of algebraic groups over discrete valuation rings.

MARGULIS (1946–). Proved fundamental results on discrete subgroups of Lie groups.
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CHAPTER I
Basic Theory of Affine Groups

The emphasis in this chapter is on affine algebraic groups over a base field, but, when it
requires no extra effort, we often study more general objects: affine groups (not of finite
type); base rings rather than fields; affine algebraic monoids rather than groups; affine
algebraic supergroups (very briefly); quantum groups (even more briefly). The base field
(or ring) is always denoted k, and R is always a commutative k-algebra.

NOTES Most sections in this chapter are complete but need to be revised. The main exceptions are
Sections 18 and 19, which need to be completed, and Section 20, which needs to be written.
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14 I. Basic Theory of Affine Groups

1 Introductory overview

Loosely speaking, an algebraic group over a field k is a group defined by polynomials. Be-
fore giving the precise definition in the next section, we look at some examples of algebraic
groups.

Consider the group SLn.k/ of n�n matrices of determinant 1 with entries in a field k.
The determinant of a matrix .aij / is a polynomial in the entries aij of the matrix, namely,

det.aij /D
X

�2Sn
sign.�/ �a1�.1/ � � �an�.n/ (Sn D symmetric group),

and so SLn.k/ is the subset ofMn.k/D k
n2 defined by the polynomial condition det.aij /D

1. The entries of the product of two matrices are polynomials in the entries of the two
matrices, namely,

.aij /.bij /D .cij / with cij D ai1b1j C�� �Cainbnj ;

and Cramer’s rule realizes the entries of the inverse of a matrix with determinant 1 as poly-
nomials in the entries of the matrix, and so SLn.k/ is an algebraic group (called the special
linear group). The group GLn.k/ of n�n matrices with nonzero determinant is also an
algebraic group (called the general linear group) because its elements can be identified
with the n2C 1-tuples ..aij /1�i;j�n;d / such that det.aij / �d D 1. More generally, for a
finite-dimensional vector space V , we define GL.V / (resp. SL.V /) to be the group of au-
tomorphisms of V (resp. automorphisms with determinant 1). These are again algebraic
groups.

To simplify the statements, for the remainder of this section, we assume that the base
field k has characteristic zero.

1a The building blocks

We now list the five types of algebraic groups from which all others can be constructed
by successive extensions: the finite algebraic groups, the abelian varieties, the semisimple
algebraic groups, the tori, and the unipotent groups.

FINITE ALGEBRAIC GROUPS

Every finite group can be realized as an algebraic group, and even as an algebraic subgroup
of GLn.k/. Let � be a permutation of f1; : : : ;ng and let I.�/ be the matrix obtained from
the identity matrix by using � to permute the rows. For any n� n matrix A, the matrix
I.�/A is obtained from A by using � to permute the rows. In particular, if � and � 0 are two
permutations, then I.�/I.� 0/D I.�� 0/. Thus, the matrices I.�/ realize Sn as a subgroup
of GLn. Since every finite group is a subgroup of some Sn, this shows that every finite
group can be realized as a subgroup of GLn, which is automatically defined by polynomial
conditions. Therefore the theory of algebraic groups includes the theory of finite groups.
The algebraic groups defined in this way by finite groups are called constant finite algebraic
groups.

More generally, to give an étale finite algebraic group over k is the same as giving a
finite group together with a continuous action of Gal.kal=k/ — all finite algebraic groups
in characteristic zero are of this type.

An algebraic group is connected if its only finite quotient group is trivial.
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ABELIAN VARIETIES

Abelian varieties are connected algebraic groups that are projective when considered as
algebraic varieties. An abelian variety of dimension 1 is an elliptic curve, which can be
described by a homogeneous equation

Y 2Z DX3CbXZ2C cZ3:

Therefore, the theory of algebraic groups includes the theory of abelian varieties. We shall
ignore this aspect of the theory. In fact, we shall study only algebraic groups that are affine
when considered as algebraic varieties. These are exactly the algebraic groups that can be
realized as a closed subgroup of GLn for some n, and, for this reason, are often called linear
algebraic groups.

SEMISIMPLE ALGEBRAIC GROUPS

A connected affine algebraic group G is simple if it is not commutative and has no normal
algebraic subgroups (other than 1 and G), and it is almost-simple1 if its centre Z is finite
and G=Z is simple. For example, SLn is almost-simple for n > 1 because its centre

Z D

( 
� 0

:::
0 �

! ˇ̌̌̌
ˇ �n D 1

)
is finite and the quotient PSLn D SLn =Z is simple.

An isogeny of algebraic groups is a surjective homomorphism G!H with finite ker-
nel. Two algebraic groups H1 and H2 are isogenous if there exist isogenies

H1 G!H2:

This is an equivalence relations. When k is algebraically closed, every almost-simple alge-
braic group is isogenous to exactly one algebraic group on the following list:

An .n� 1/; the special linear group SLnC1I
Bn .n� 2/; the special orthogonal group SO2nC1 consisting of all 2nC1�2nC1matrices

A such that At �AD I and det.A/D 1;
Cn .n� 3/; the symplectic group Sp2n consisting of all invertible 2n�2nmatrices A such

that At �J �AD J where J D
�
0 I
�I 0

�
;

Dn .n� 4/; the special orthogonal group SO2n;
E6;E7;E8;F4;G2 the five exceptional groups.

We say that an algebraic groupG is an almost-direct product of its algebraic subgroups
G1; : : : ;Gr if the map

.g1; : : : ;gr/ 7! g1 � � �gr WG1� � � ��Gr !G

is an isogeny. In particular, this means that each Gi is a normal subgroup of G and that the
Gi commute with each other. For example,

G D SL2�SL2 =N; N D f.I;I /; .�I;�I /g (1)

is the almost-direct product of SL2 and SL2, but it is not a direct product of two almost-
simple algebraic groups.

A connected algebraic group is semisimple if it is an almost-direct product of almost-
simple subgroups. For example, the group G in (1) is semisimple. Semisimple algebraic
groups will be our main interest.

1Other authors say “quasi-simple” or “simple”.
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GROUPS OF MULTIPLICATIVE TYPE; ALGEBRAIC TORI

An affine algebraic subgroup T of GL.V / is said to be of multiplicative type if, over kal,
there exists a basis of V relative to which T is contained in the group Dn of all diagonal
matrices 0BBBBB@

� 0 � � � 0 0

0 � � � � 0 0
:::

:::
: : :

:::
:::

0 0 � � � � 0

0 0 � � � 0 �

1CCCCCA :
In particular, the elements of an algebraic torus are semisimple endomorphisms of V . A
connected algebraic group of multiplicative type is a torus.

UNIPOTENT GROUPS

An affine algebraic subgroup G of GL.V / is unipotent if there exists a basis of V relative
to which G is contained in the group Un of all n�n matrices of the form0BBBBB@

1 � � � � � �

0 1 � � � � �

:::
:::
: : :

:::
:::

0 0 � � � 1 �

0 0 � � � 0 1

1CCCCCA : (2)

In particular, the elements of a unipotent group are unipotent endomorphisms of V .

1b Extensions

We now look at some algebraic groups that are nontrivial extensions of groups of the above
types.

SOLVABLE GROUPS

An affine algebraic group G is solvable if there exists a sequence of algebraic subgroups

G DG0 � �� � �Gi � �� � �Gn D 1

such that each GiC1 is normal in Gi and Gi=GiC1 is commutative. For example, the group
Un is solvable, and the group Tn of upper triangular n�n matrices is solvable because it
contains Un as a normal subgroup with quotient isomorphic to Dn. When k is algebraically
closed, a connected subgroup G of GL.V / is solvable if and only if there exists a basis of
V relative to which G is contained in Tn (Lie-Kolchin theorem 16.31).

REDUCTIVE GROUPS

A connected affine algebraic group is reductive if it has no connected normal unipotent
subgroup other than 1. According to the table below, they are extensions of semisimple
groups by tori. For example, GLn is reductive. It is an extension of the simple group PGLn
by the torus Gm,

1!Gm! GLn! PGLn! 1:
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Here Gm D GL1 and the map Gm ! GLn sends it onto the subgroup of nonzero scalar
matrices.

NONCONNECTED GROUPS

We give some examples of naturally occurring nonconnected algebraic groups.

The orthogonal group. For an integer n � 1, let On denote the group of n�n matrices A
such that AtAD I . Then det.A/2D det.At /det.A/D 1, and so det.A/ 2 f˙1g. The matrix
diag.�1;1; : : :/ lies in On and has determinant �1, and so On is not connected: it contains

SOn
def
D Ker

�
On

det
�! f˙1g

�
as a normal algebraic subgroup of index 2 with quotient the

constant finite group f˙1g.

The monomial matrices. Let M be the group of monomial matrices, i.e., those with ex-
actly one nonzero element in each row and each column. This group contains both the
algebraic subgroup Dn and the algebraic subgroup Sn of permutation matrices. Moreover,
for any diagonal matrix diag.a1; : : : ;an/;

I.�/ �diag.a1; : : : ;an/ �I.�/�1 D diag.a�.1/; : : : ;a�.n//. (3)

As M D DnSn, this shows that Dn is normal in M . Clearly D\Sn D 1, and so M is the
semi-direct product

M D Dno� Sn

where � WSn! Aut.Dn/ sends � to the automorphism in (3).

1c Summary

Recall that we are assuming that the base field k has characteristic zero. Every algebraic
group has a composition series whose quotients are respectively a finite group, an abelian
variety, a semisimple group, a torus, and a unipotent group. More precisely:

(a) An algebraic group G contains a unique normal connected subgroup Gı such that
G=Gı is a finite étale algebraic group (see 13.17).

(b) A connected algebraic group G contains a largest2 normal connected affine algebraic
subgroup N ; the quotient G=N is an abelian variety (Barsotti, Chevalley, Rosen-
licht).3

(c) A connected affine algebraic group G contains a largest normal connected solvable
algebraic subgroup N (see �17a); the quotient G=N semisimple.

(d) A connected solvable affine algebraic group G contains a largest connected normal
unipotent subgroup N ; the quotient G=N is a torus (see 17.2; 16.33).

In the following tables, the group at left has a subnormal series whose quotients are the
groups at right.

2This means that it contains all other such algebraic subgroups; in particular, it is unique.
3The theorem is proved in Barsotti 1955b and in Rosenlicht 1956. Rosenlicht (ibid.) notes that it had been

proved earlier with a different proof by Chevalley in 1953, who only published his proof in Chevalley 1960. A
modern proof can be found in Conrad 2002.
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General algebraic group Affine algebraic group Reductive algebraic groups
general �

j finite étale

connected �

j abelian variety

connected affine �

j semisimple

solvable �

j torus

unipotent �

j unipotent

f1g �

affine �

j finite étale

connected �

j semisimple

solvable �

j torus

unipotent �

j unipotent

f1g �

reductive �

j semisimple

torus �

j torus

f1g �

When k is perfect of characteristic p ¤ 0 and G is smooth, the same statements hold.
However, when k is not perfect the situation becomes more complicated. For example, the
algebraic subgroup N in (b) need not be smooth even when G is, and its formation need
not commute with extension of the base field. Similarly, a connected affine algebraic group
G without a normal connected unipotent subgroup may acquire such a subgroup after an
extension of the base field — in this case, the group G is said to be pseudo-reductive (not
reductive).

1d Exercises

EXERCISE 1-1 Let f .X;Y / 2 RŒX;Y �. Show that if f .x;ex/D 0 for all x 2 R, then f is
zero (as an element of RŒX;Y �). Hence the subset f.x;ex/ j x 2Rg of R2 is not the zero-set
of a family of polynomials.

EXERCISE 1-2 Let T be a commutative subgroup of GL.V / consisting of diagonalizable
endomorphisms. Show that there exists a basis for V relative to which T � Dn.

EXERCISE 1-3 Let � be a positive definite bilinear form on a real vector space V , and let
SO.�/ be the algebraic subgroup of SL.V / of maps ˛ such that �.˛x;˛y/D �.x;y/ for all
x;y 2 V . Show that every element of SO.�/ is semisimple (but SO.�/ is not diagonalizable
because it is not commutative).

EXERCISE 1-4 Let k be a field of characteristic zero. Show that every element of GLn.k/
of finite order is semisimple. (Hence the group of permutation matrices in GLn.k/ consists
of semisimple elements, but it is not diagonalizable because it is not commutative).

2 Definitions

What is an affine algebraic group? For example, what is SLn? We know what SLn.R/ is
for any commutative ring R, namely, it is the group of n�n matrices with entries in R and
determinant 1. Moreover, we know that a homomorphism R!R0 of rings defines a homo-
morphism of groups SLn.R/! SLn.R0/. So what is SLn without the “.R/”? Obviously, it
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is a functor from the category of rings to groups. Essentially, this is our definition together
with the requirement that the functor be “defined by polynomials”.

Throughout this section, k is a commutative ring.

2a Motivating discussion

We first explain how a set of polynomials defines a functor. Let S be a subset of kŒX1; : : : ;Xn�.
For any k-algebra R, the zero-set of S in Rn is

S.R/D f.a1; : : : ;an/ 2R
n
j f .a1; : : : ;an/D 0 for all f 2 Sg:

A homomorphism of k-algebras R! R0 defines a map S.R/! S.R0/, and these maps
make R S.R/ into a functor from the category of k-algebras to the category of sets.

This suggests defining an affine algebraic group to be a functor Algk ! Grp that is
isomorphic (as a functor to sets) to the functor defined by a set of polynomials in a finite
number of symbols. For example, the functor R SLn.R/ satisfies this condition because
it is isomorphic to the functor defined by the polynomial det.Xij /�1 where

det.Xij /D
X

�2Sn
sign.�/ �X1�.1/ � � �Xn�.n/ 2 kŒX11;X12; : : : ;Xnn�: (4)

The condition thatG can be defined by polynomials is very strong: it excludes, for example,
the functor with

G.R/D

(
Z=2Z if RD k
f1g otherwise.

Now suppose that k is noetherian, and let S be a subset of kŒX1; : : : ;Xn�. The ideal a
generated by S consists of the finite sumsX

gifi ; gi 2 kŒX1; : : : ;Xn�; fi 2 S:

Clearly S and a have the same zero-sets for any k-algebra R. According to the Hilbert
basis theorem (CA 3.6), every ideal in kŒX1; : : : ;Xn� can be generated by a finite set of
polynomials, and so an affine algebraic group is isomorphic (as a functor to sets) to the
functor defined by a finite set of polynomials.

We have just observed that an affine algebraic group G is isomorphic to the functor
defined by an ideal a of polynomials in some polynomial ring kŒX1; : : : ;Xn�. Let A D
kŒX1; : : : ;Xn�=a. For any k-algebra R, a homomorphism A! R is determined by the
images ai of the Xi , and the n-tuples .a1; : : : ;an/ that arise from a homomorphism are
exactly those in the zero-set of a. Therefore the functor R a.R/ sending a k-algebra R
to the zero-set of a in Rn is canonically isomorphic to the functor

R Homk-alg.A;R/:

Since the k-algebras that can be expressed in the form kŒX1; : : : ;Xn�=a are exactly the
finitely generated k-algebras, we conclude that the functors Algk ! Set defined by a set
of polynomials in a finite number of symbols are exactly the functors R Homk-alg.A;R/

defined by a finitely generated k-algebra A.
Before continuing, it is convenient to review some category theory.
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2b Some category theory

An object A of a category A defines a functor

hAWA! Set by
�
hA.R/D Hom.A;R/; R 2 ob.A/;
hA.f /.g/D f ıg; f WR!R0; g 2 hA.R/D Hom.A;R/:

A morphism ˛WA0! A of objects defines a map f 7! f ı˛WhA.R/! hA
0

.R/ which is
natural in R (i.e., it is a natural transformation of functors hA! hA

0

):

THE YONEDA LEMMA

Let F WA! Set be a functor from A to the category of sets, and let A be an object of A. A
natural transformation T WhA! F defines an element aT D TA.idA/ of F.A/.

2.1 (YONEDA LEMMA) The map T 7! aT is a bijection

Hom.hA;F /' F.A/ (5)

with inverse a 7! Ta, where

.Ta/R.f /D F.f /.a/; f 2 hA.R/D Hom.A;R/:

The bijection is natural in both A and F (i.e., it is an isomorphism of bifunctors).

PROOF. Let T be a natural transformation hA ! F . For any morphism f WA! R, the
commutative diagram

hA.A/ hA.R/

F.A/ F.R/

hA.f /

TA TR

F.f /

idA f

aT F.f /.aT /D TR.f /

shows that
TR.f /D F.f /.aT /: (6)

Therefore T is determined by aT , and so the map T 7! aT is injective. On the other hand,
for a 2 F.A/,

.Ta/A.idA/D F.idA/.a/D a;

and so the map T 7! aT is surjective.
The proof of the naturality of (5) is left as an (easy) exercise for the reader. 2

2.2 When we take F D hB in the lemma, we find that

Hom.hA;hB/' Hom.B;A/:

In other words, the contravariant functor A hAWA! A_ is fully faithful.
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REPRESENTABLE FUNCTORS

2.3 A functor F WA! Set is said to be representable if it is isomorphic to hA for some
object A. A pair .A;a/, a 2 F.A/, is said to represent F if TaWhA! F is an isomorphism.
Note that, if F is representable, say F � hA, then the choice of an isomorphism T WhA!F

determines an element aT 2 F.A/ such that .A;aT / represents F — in fact, T D TaT —
and so we sometimes say that .A;T / represents F .

2.4 Let F1 and F2 be functors A! Set. In general, the natural transformations F1! F2
will form a proper class (not a set), but the Yoneda lemma shows that Hom.F1;F2/ is a set
if F1 is representable (because it is isomorphic to a set).

There are similar statements for the contravariant functors Hom.�;A/ defined by ob-
jects.

GROUP OBJECTS IN CATEGORIES

Let C be a category with finite products (including a final object �).

2.5 A group object in C is an object G of C together with a morphism mWG �G ! G

such that the induced map G.T /�G.T /!G.T / makes G.T / into a group for every T in
C. Here G.T /D Hom.T;G/.

2.6 A pair .G;m/ is a group object if and only if there exist maps eW�!G and invWG!G

making the diagrams (35) and (36), p. 46, commute. (Exercise!).

2.7 Let .G;m/ be a group object in C. For every map T ! T 0 of objects in C, the map
G.T /!G.T 0/ is a homomorphism, and so .G;m/ defines a functor C!Grp. Conversely,
suppose that for each object T in C we are given a group structure on G.T /, and that
for each morphism T ! T 0 in C the map G.T /! G.T 0/ is a homomorphism of groups.
According to the Yoneda lemma, the product maps G.T /�G.T /! G.T / arise from a
(unique) morphism mWG�G!G, and clearly .G;m/ is a group object in C. We conclude
that to give a group object in C is the same as giving a functor C! Grp such that the
underlying functor to Set is representable. (For more details, see, for example, Tate 1997,
�1.)

2.8 A monoid object in C is an objectM of C together with a morphismmWM �M !M

and a map eW� !G such that the induced map G.T /�G.T /!G.T / makes G.T / into a
monoid with identity element Im.e/ for every T in C. Remarks similar to (2.6) and (2.7)
apply.

2c Definition of an affine (algebraic) group

Recall (CA �8) that the tensor product of two k-algebrasA1 andA2 is their direct sum in the
category Algk . In other words, if f1WA1! R and f2WA2! R are homomorphisms of k-
algebras, there is a unique homomorphism .f1;f2/WA1˝A2! R such that .f1;f2/.a1˝
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1/D f1.a1/ and .f1;f2/.1˝a2/D f2.a2/ for all a1 2 A1 and a2 2 A2:

A1 A1˝A2 A2

R.

f1 f2.f1;f2/ (7)

Now consider a k-algebra A together with a k-algebra homomorphism �WA! A˝A.
For any k-algebra R, the map

f1;f2 7! f1 �f2
def
D .f1;f2/ı�Wh

A.R/�hA.R/! hA.R/, (8)

is a binary operation on hA.R/, which is natural in R.

DEFINITION 2.9 An affine group over k is a k-algebra A together with a homomorphism
� such that (8) makes hA.R/ into a group for all R. A homomorphism of affine groups
.A;�/! .A0;�0/ is a homomorphism ˛WA0!A of k-algebras such that�ı˛D .˛˝˛/ı
�0:

A
˛

 ���� A0??y� ??y�0
A˝A

˛˝˛
 ���� A0˝A0

(9)

Let G D .A;�/ be an affine group. The ring A is called the coordinate ring (or coordinate
algebra) of G, and is denoted O.G/, and � is called the comultiplication of G. When
O.G/ is finitely presented4, G is called an affine algebraic group.

EXAMPLE 2.10 Let AD kŒX�. Then hA.R/ is isomorphic to R by f 7! f .X/. Let � be
the homomorphism kŒX�! kŒX�˝kŒX�D kŒX˝1;1˝X� such that

�.X/DX˝1C1˝X .

For f1;f2 2 hA.R/,

.f1 �f2/.X/D .f1;f2/.X˝1C1˝X/D f1.X/Cf2.X/;

and so the binary operation on hA.R/' R defined by � is just addition. Hence .kŒX�;�/
is an affine algebraic group, called the additive group. It is denoted by Ga.

EXAMPLE 2.11 Let M be a (multiplicative) commutative group, and let A be its group
algebra; so the elements of A are the finite sumsP

mamm; am 2 k; m 2M;

and �P
mamm

��P
n bnn

�
D
P
m;nambnmn:

4Recall (CA 3.11) that a k-algebra A is finitely presented if it is isomorphic to the quotient of a polynomial
ring kŒX1; : : : ;Xn� by a finitely generated ideal. The Hilbert basis theorem (CA 3.6) says that, when k is
noetherian, every finitely generated k-algebra is finitely presented.
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Set
�.m/Dm˝m .m 2M/:

Then hA.R/' Homgroup.M;R
�/ with its natural group structure,

.f1 �f2/.m/D f1.m/ �f2.m/:

2.12 Let �WA! A˝A be a homomorphism of k-algebras. In (5.15) we shall see that
.A;�/ is an affine group if and only if there exist homomorphism �WA! k and S WA! A

such that certain diagrams commute. In particular, this will give a finite definition of “affine
group” that does not require quantifying over all k-algebras R.

2.13 Let G D .A;�/ be an affine algebraic group. Then

A� kŒX1; : : : ;Xm�=.f1; : : : ;fn/

for some m;n. The functor hAWAlgk ! Grp is that defined by the set of polynomials
ff1; : : : ;fng. The tensor product

kŒX1; : : : ;Xn�˝kŒX1; : : : ;Xn�

is a polynomial ring in the symbols X1˝ 1; : : : ;Xn˝ 1;1˝X1; : : : ;1˝Xn. Therefore �,
and hence the multiplication on the groups hA.R/, is also be described by polynomials,
namely, by any set of representatives for the polynomials �.X1/; : : : ;�.Xm/.

AFFINE GROUPS AS FUNCTORS

Because A1˝A2 is the direct sum of A1 and A2 in Algk , we have

hA1˝A2 ' hA1 �hA2 : (10)

In particular, hA˝A ' hA �hA, and so we can regard h�, for � a homomorphism A!

A˝A, as a functor hA�hA! hA. When .A;�/ is an affine group,

h�.R/WhA.R/�hA.R/! hA.R/

is the group structure in hA.R/ defined by �.
For an affine group G D .A;�/, we let G.R/ D hA.R/ when R a k-algebra. Then

R G.R/ is a functor Algk! Grp.
LetG0D .A0;�0/ be a second affine group, and let ˛W.A;�/! .A0;�0/ be a homomor-

phism of k-algebras. Because of the Yoneda lemma, the diagram (9) commutes if and only
if

hA
h˛

����! hA
0x??h� x??h�0

hA�hA
h˛�h˛

����! hA
0

�hA
0

(11)

commutes. This says that, under the bijection

Homk-alg.A
0;A/' Hom.G;G0/

provided by the Yoneda lemma, homomorphisms of algebraic groups correspond to natural
transformations preserving the group structure, i.e., to natural transformations from G to
G0 as functors to Grp (rather than Set).
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THEOREM 2.14 The functor A hA defines an equivalence from the category of affine
groups over k to the category of functors GWAlgk ! Grp such that underlying functor to
Set is representable. Under the equivalence, affine algebraic groups correspond to functors
representable by finitely presented k-algebras.

PROOF. We have just seen that the functor is fully faithful. LetG0 be a functor Algk!Set.
To give a functorGWAlgk!Grp such thatG0D .forget/ıG is the same as giving a natural
transformation G0 �G0 ! G0 that makes G

0
.R/ into a group for all k-algebras R. If

G0 is representable by A, then G0�G0 is representable by A˝A (see (10)), and so such
a natural transformation corresponds (by the Yoneda lemma) to a homomorphism of k-
algebras �WA! A˝A. Hence such a G arises from an affine group .A;�/, and so the
functor is essentially surjective. This proves the first statement, and the second statement is
obvious. 2

We now construct a canonical quasi-inverse to the functor in the theorem. Let A1 be
the functor sending a k-algebra R to its underlying set,

A1WAlgk! Set; .R;�;C;1/ R;

and let G be a functor from the category of k-algebras to groups,

GWAlgk! Grp.

Let G0 D .forget/ ıG be the underlying functor to Set, and let A be the set of natural
transformations from G0 to A1,

AD Hom.G0;A1/:

Thus an element f of A is a family of maps of sets

fRWG.R/!R; R a k-algebra,

such that, for every homomorphism of k-algebras R!R0, the diagram

G.R/
fR
����! R??y ??y

G.R0/
fR0
����! R0

commutes. For f;f 0 2 A and g 2G.R/, define

.f ˙f 0/R.g/D fR.g/˙f
0
R.g/

.ff 0/R.g/D fR.g/f
0
R.g/:

With these operations, A becomes a commutative ring, and even a k-algebra because each
c 2 k defines a constant natural transformation

cRWG0.R/!R; cR.g/D c for all g 2G0.R/:

An element g 2G.R/ defines a homomorphism f 7! fR.g/WA!R of k-algebras. In this
way, we get a natural transformation ˛WG0! hA of functors to sets.
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PROPOSITION 2.15 The functor G0 is a representable if and only if ˛ is an isomorphism.

PROOF. If ˛ is an isomorphism, then certainly G0 is representable. Conversely, suppose
that G0 is represented by .B;b/. Then

A
def
D Hom.G0;A1/

Tb
' Hom.hB ;A1/

Yoneda
' A1.B/' B ,

where the last isomorphism uses that A1 D hkŒX�. Thus A ' B , and one checks that
˛WhB ! hA is the natural transformation defined by this isomorphism; therefore ˛ is an
isomorphism. This proves the statement. 2

SUMMARY 2.16 We have shown that it is essentially the same to give

(a) a k-algebraA together with a homomorphism�WA!A˝kA that makes hA.R/ into
a group for all R, or

(b) a functor GWAlgk! Grp such that forgetıG is representable.

To pass from (a) to (b), take G D hA endowed with the multiplication h�WG�G!G.
To pass from (b) to (a), take A D Hom.A1;G0/ endowed with the homomorphism A!

A˝A corresponding (by the Yoneda lemma) to G�G!G.
We adopted (a), rather than (b), as the definition of an affine group because it is more

elementary. Throughout, we shall use the two descriptions of an affine algebraic group
interchangeably.

Let G be an affine group, and let A be its coordinate ring. When we regard A as
Hom.G;A1/, an element f 2 A is a family of maps fRWG.R/! R (of sets) indexed by
the k-algebras R and natural in R. On the other hand, when we regard A as a k-algebra
representing G, an element g 2 G.R/ is a homomorphism of k-algebras gWA! R. The
two points of views are related by the equation

fR.g/D g.f /; f 2 A; g 2G.R/: (12)

Moreover,
.�f /R.g1;g2/D fR.g1 �g2/: (13)

According to the Yoneda lemma, a homomorphism ˛WG!H defines a homomorphism of
rings ˛�WO.H/!O.G/. Explicitly,

.˛�f /R.g/D fR.˛Rg/; f 2O.H/; g 2G.R/: (14)

When G is a functor Algk ! Grp such that G0 is representable, we shall loosely refer
to any k-algebra A that represents G0 (with an implicit isomorphism hA ' G0) as the
coordinate ring of G, and denote it by O.G/.

NOTES Consider the categories with the following objects and the obvious morphisms:

(a) a functor GWAlgk ! Grp together with a representation .A;a/ of the underlying functor to
Set;

(b) a functor GWAlgk! Grp such that the underlying functor to Set is representable;

(c) a k-algebraA together with a homomorphism�WA!A˝kA that makes hA.R/ into a group
for all k-algebras R.
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There are canonical “forgetful” functors a!b and a!c which are equivalences of categories. There
are even canonical quasi-inverse functors b!a (take AD Hom.G;A1/ . . . ) and c!a (take G D hA

. . . ). However, the functors are not isomorphisms of categories. In the previous version of the notes,
I took (b) as the definition of affine group. In this version, I took (c) as the definition because it more
obviously gives a reasonable category (no set theory problems). Perhaps (a) is the best.

2d Affine monoids

Recall that a monoid is a setM together with an associative binary operationM �M !M

and an identity element (usually denoted 0, 1, or e). In other words, it is a “group without
inverses”. A homomorphism of monoids is a map 'WM !M 0 such that

(a) '.eM /D eM 0 , and
(b) '.xy/D '.x/'.y/ for all x;y 2M .

When M 0 is a group, (a) holds automatically because a group has only one element such
that ee D e. For any monoidM , the setM� of elements inM with inverses is a group (the
largest subgroup of M ).

An affine monoid is a k-algebra A together with homomorphisms �WA! A˝A and
�WA! k such that�makes hA.R/ into a monoid with identity element A

�
�! k �!R for

each k-algebra R. Essentially, this is the same as a functor from the category of k-algebras
to monoids that is representable (as a functor to sets). When A is finitely presented, the
affine monoid is said to be algebraic.

EXAMPLE 2.17 For a k-module V , let EndV be the functor

R .EndR-lin.R˝k V /;ı/:

When V is finitely generated and projective, we saw in (3.6) that, as a functor to sets, EndV
is represented by Sym.V ˝k V _/, and so it is an algebraic monoid. When V is free, the
choice of a basis e1; : : : ; en for V , defines an isomorphism of EndV with the functor

R .Mn.R/;�/ (multiplicative monoid of n�n matrices),

which is represented by the polynomial ring kŒX11;X12; : : : ;Xnn�.

PROPOSITION 2.18 For any affine monoidM over k, the functor R M.R/� is an affine
group M� over k; when M is algebraic, so also is M�.

PROOF. For an abstract monoid M , let M1 D f.a;b/ 2M �M j ab D 1g; then

M� ' f..a;b/; .a0;b0// 2M1�M1 j aD b
0
g:

This shows that M� can be constructed from M by using only fibred products:

M1 ����! f1g??y ??y
M �M

.a;b/7!ab
������! M

M� ����! M1??y ??y.a;b/ 7!b
M1

.a;b/ 7!a
������! M:

It follows that, for an affine monoid M , the functor R M.R/� can be obtained from M

by forming fibre products, which shows that it is representable (see �4b below). 2
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EXAMPLE 2.19 An associative k-algebra B with identity (not necessarily commutative)
defines a functor R  .R˝k B;�/ from the category of k-algebras to monoids. When
B is finitely generated and projective as a k-module, this is an affine algebraic monoid
For example, if B D Endk-lin.V /, then GBm D GLV . When B is also free, the choice of a
basis for B identifies it (as a functor to sets) with R 7! RdimkB , which is represented by
kŒX1; : : : ;XdimkB �. For the general case, see 2.21 or DG II, �1, 2.3, p.149.

We let GBm denote the corresponding affine algebraic group

R 7! .R˝B/�:

2e Affine supergroups

The subject of supersymmetry was introduced by the physicists in the 1970s as part of their
search for a unified theory of physics consistent with quantum theory and general relativity.
Roughly speaking, it is the study of Z=2Z-graded versions of some of the usual objects
of mathematics. We explain briefly how it leads to the notion of an affine “supergroup”.
Throughout, k is a field of characteristic zero.

A superalgebra over a field k is a Z=2Z-graded associative algebra R over k. In other
words, R is an associative k-algebra equipped with a decomposition R D R0˚R1 (as a
k-vector space) such that k � R0 and RiRj � RiCj (i;j 2 Z=2Z). An element a of R is
said to be even, and have parity p.a/D 0, if it lies in R0; it is odd, and has parity p.a/D 1,
if it lies in R1. The homogeneous elements of R are those that are either even or odd. A
homomorphism of super k-algebras is a homomorphism of k-algebras preserving the parity
of homogeneous elements.

A super k-algebra R is said to be commutative if baD .�1/p.a/p.b/ab for all a;b 2R.
Thus even elements commute with all elements, but for odd elements a;b,

abCbaD 0.

The commutative super k-algebra kŒX1; : : : ;Xm;Y1; : : : ;Yn� in the even symbolsXi and the
odd symbols Yi is defined to be the quotient of the k-algebra of noncommuting polynomials
in X1; : : : ;Yn by the relations

XiXi 0 DXi 0Xi ; XiYj D YjXi ; YjYj 0 D�Yj 0Yj ; 1� i; i 0 �m; 1� j;j 0 � n:

When nD 0, this is the polynomial ring in the commuting symbols X1; : : : ;Xm, and when
mD 0, it is the exterior algebra of the vector space with basis fY1; : : : ;Yng provided 2¤ 0
in k.

A functor from the category of commutative super k-algebras to groups is an affine
supergroup if it is representable (as a functor to sets) by a commutative super k-algebra.
For example, for m;n 2 N, let GLmjn be the functor

R 
˚�
A B
C D

�ˇ̌
A 2 GLm.R0/; B 2Mm;n.R1/; C 2Mn;m.R1/; D 2 GLn.R0/

	
:

It is known that such a matrix
�
A B
C D

�
is invertible (Varadarajan 2004, 3.6.1), and so GLmjn

is a functor to groups. It is an affine supergroup because it is represented by the commutative
super k-algebra obtained from the commutative super k-algebra kŒX11;X12; : : : ;XmCn;mCn;Y;Z�
in the even symbols

Y; Z; Xij .1� i;j �m; mC1� i;j �mCn/
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and the odd symbols
Xij .remaining pairs .i;j /)

by setting

Y � .det.Xij /1�i;j�m D 1;

Z �det.Xij /mC1�i:j�mCn D 1:

Much of the theory of affine groups extends to affine supergroups (see, for example,
Fioresi and Gavarini 2008).

2f A representability criterion

When k is not a field, the following criterion will sometimes be useful in showing that a
functor to groups is an affine group.

THEOREM 2.20 Let F WAlgk! Set be a functor. If F is representable, then it satisfies the
condition:

(*) for every faithfully flat homomorphismR!R0 of k-algebras, the sequence

F.R/! F.R0/⇒ F.R0˝RR
0/

is exact (i.e., the first arrow maps F.R/ bijectively onto the set on which the
pair of arrows coincide).

Conversely, if F satisfies (*) and there exists a faithfully flat homomorphism k! k0 such
that Fk0 is representable, then F itself is representable.

PROOF. Suppose F is representable, say F D hA. For any faithfully flat homomorphism
of rings R!R0, the sequence

R!R0⇒R0˝RR
0

is exact (CA 9.6). From this it follows that

Homk-alg.A;R/! Homk-alg.A;R
0/⇒ Homk-alg.A;R

0
˝RR

0/

is exact, and so F satisfies (*).
Conversely, suppose that F satisfies (*), and let k0 be a faithfully flat extension of k.

For every k-algebra R, the map R!Rk0 is faithfully flat, and so

F.R/! F.Rk0/⇒ F.Rk0˝RRk0/

is exact. In particular, F is determined by its restriction Fk0 to k0-algebras. Now suppose
that Fk0 is representable by a k0-algebra A0. The fact that Fk0 comes from a functor over
k means that it is equipped with a descent datum. This descent datum defines a descent
datum on A0, which descent theory shows arises from a k-algebra A, which represents F
(Waterhouse 1979, Chapter 17). 2

EXAMPLE 2.21 Let f1; : : : ;fr be elements of k such that .f1; : : : ;fr/ D k. Then k !Q
kfi is faithfully flat because the condition means that no maximal ideal of k contains all

fi . Therefore a functor F satisfying (*) and such that Fkfi is representable for each i is
itself representable.
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2g Terminology

From now on “algebraic group” will mean “affine algebraic group” and “algebraic monoid”
will mean “affine algebraic monoid”.

3 Examples

In this section, we list some examples of affine groups and of homomorphisms of affine
groups. Throughout this section, k is a commutative ring.

3a Examples of affine groups

3.1 We can now describe Ga more simply as the functor R .R;C/. It is represented by
kŒX�.

3.2 Let Gm be the functor R R� (multiplicative group). Each a 2 R� has a unique
inverse, and so

Gm.R/' f.a;b/ 2R2 j ab D 1g ' Homk-alg.kŒX;Y �=.XY �1/;R/:

Therefore Gm is an affine algebraic group, called the multiplicative group. Let k.X/ be the
field of fractions of kŒX�, and let kŒX;X�1� be the subring of polynomials in X and X�1.
The homomorphism

kŒX;Y �! kŒX;X�1�; X 7!X; Y 7!X�1

defines an isomorphism kŒX;Y �=.XY �1/' kŒX;X�1�, and so

Gm.R/' Homk-alg.kŒX;X
�1�;R/:

Thus O.Gm/D kŒX;X�1�; for f 2 kŒX;X�1� and a 2Gm.R/DR�,

fR.a/D f .a;a
�1/:

3.3 Let G be the functor such that G.R/D f1g for all k-algebras R. Then

G.R/' Homk-alg.k;R/;

and soG is an affine algebraic group, called the trivial algebraic group. More generally, for
any finite group G, let O.G/D

Q
g2G kg (product of copies of k indexed by the elements

of G). Then R Homk-alg.O.G/;R/ is an affine algebraic group .G/k over k such that
.G/k .R/D G for any k-algebra R with no nontrivial idempotents (see 5.23 below). Such
an affine algebraic group is called a constant finite algebraic group.

3.4 For an integer n� 1,
�n.R/D fr 2R j r

n
D 1g

is a multiplicative group, and R �n.R/ is a functor. Moreover,

�n.R/' Homk-alg.kŒX�=.X
n
�1/;R/;

and so �n is an affine algebraic group with O.�n/D kŒX�=.Xn�1/.
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3.5 In characteristic p ¤ 0, the binomial theorem takes the form .aC b/p D ap C bp.
Therefore, for any k-algebra R over a field k of characteristic p ¤ 0,

˛p.R/D fr 2R j r
p
D 0g

is an additive group, and R ˛p.R/ is a functor. Moreover,

˛p.R/' Homk-alg.kŒT �=.T
p/;R/;

and so ˛p is an affine algebraic group with O.˛p/D kŒT �=.T p/.

3.6 For any k-module V , the functor of k-algebras5

Da.V /WR Homk-lin.V;R/ (additive group) (15)

is represented by the symmetric algebra Sym.V / of V :

Homk-alg.Sym.V /;R/' Homk-lin.V;R/, R a k-algebra,

(see CA �8). ThereforeDa.V / is an affine group over k (and even an affine algebraic group
when V is finitely presented).

In contrast, it is known that the functor

VaWR R˝V (additive group)

is not representable unless V is finitely generated and projective.6 Recall that the finitely
generated projective k-modules are exactly the direct summands of free k-modules of finite
rank (CA �10), and that, for such a module,

Homk-lin.V
_;R/'R˝V

(CA 10.8). Therefore Va is an affine algebraic group with coordinate ring Sym.V _/ when
V is finitely generated and projective.

When V is finitely generated and free, the canonical maps

EndR-lin.R˝V / R˝Endk-lin.V /!R˝ .V _˝V /,

are obviously isomorphisms, and it follows that they are isomorphisms when V is a finitely
generated and projective. Therefore, when V is finitely generated and projective, the functor

R EndR-lin.R˝V / (additive group)

is an algebraic group with coordinate ring Sym.V ˝V _/.
When V is free and finitely generated, the choice of a basis e1; : : : ; en for V defines iso-

morphisms EndR-lin.R˝V /'Mn.R/ and Sym.V ˝V _/' kŒX11;X12; : : : ;Xnn� (poly-
nomial algebra in the n2 symbols .Xij /1�i;j�n). For f 2 kŒX11;X12; : : : ;Xnn� and a D
.aij / 2Mn.R/,

fR.a/D f .a11;a12; : : : ;ann/.

5Notations suggested by those in DG II, �1, 2.1.
6This is stated without proof in EGA I (1971) 9.4.10: “on peut montrer en effet que le foncteur T 7!

� .T;E.T // ... n’est représentable que si E est localement libre de rang fini”.
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3.7 For n�n matrices M and N with entries in a k-algebra R,

det.MN/D det.M/ �det.N / (16)

and
adj.M/ �M D det.M/ �I DM � adj.M/ (Cramer’s rule) (17)

where I denotes the identity matrix and

adj.M/D
�
.�1/iCj detMj i

�
2Mn.R/

with Mij the matrix obtained from M by deleting the i th row and the j th column. These
formulas can be proved by the same argument as for R a field, or by applying the principle
of permanence of identities (Artin 1991, 12.3). Therefore, there is a functor SLn sending a
k-algebra R to the group of n�n matrices of determinant 1 with entries in R. Moreover,

SLn.R/' Homk-alg

�
kŒX11;X12; : : : ;Xnn�

.det.Xij /�1/
;R

�
;

where det.Xij / is the polynomial (4), and so SLn is an affine algebraic group with O.SLn/D
kŒX11;X12;:::;Xnn�
.det.Xij /�1/

. It is called the special linear group. For f 2 O.SLn/ and a D .aij / 2
SLn.R/,

fR.a/D f .a11; : : : ;ann/:

3.8 Similar arguments show that the n� n matrices with entries in a k-algebra R and
with determinant a unit in R form a group GLn.R/, and that R GLn.R/ is a functor.
Moreover,

GLn.R/' Homk-alg

�
kŒX11;X12; : : : ;Xnn;Y �

.det.Xij /Y �1/
;R

�
;

and so GLn is an affine algebraic group with coordinate ring7 kŒX11;X12;:::;Xnn;Y �
.det.Xij /Y�1/

. It is
called the general linear group. For f 2O.GLn/ and aD .aij / 2 GLn.R/,

fR.aij /D f .a11; : : : ;ann;det.aij /�1/:

Alternatively, let A be the k-algebra in 2n2 symbols, X11;X12; : : : ;Xnn;Y11; : : : ;Ynn mod-
ulo the ideal generated by the n2 entries of the matrix .Xij /.Yij /�I . Then

Homk-alg.A;R/D f.A;B/ j A;B 2Mn.R/; AB D I g:

The map .A;B/ 7! A projects this bijectively onto fA 2Mn.R/ j A is invertibleg (because
a right inverse of a square matrix is unique if it exists, and is also a left inverse). Therefore
A'O.GLn/.

7In other words, O.GLn/ is the ring of fractions of kŒX11;X12; : : : ;Xnn� for the multiplicative subset
generated by det.Xij /,

O.GLn/D kŒX11;X12; : : : ;Xnn�det.Xij /:

See CA, 6.2.
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3.9 Let C be an invertible n�n matrix with entries in k, and let

G.R/D fT 2 GLn.R/ j T t �C �T D C g.

If C D .cij /, then G.R/ consists of the invertible matrices .tij / such thatX
j;k

tj icjktkl D cil ; i; l D 1; : : : ;n;

and so
G.R/' Homk-alg.A;R/

with A equal to the quotient of kŒX11;X12; : : : ;Xnn;Y � by the ideal generated by the poly-
nomials �

det.Xij /Y �1P
j;kXj icjkXkl � cil ; i; l D 1; : : : ;n:

Therefore G is an affine algebraic group. When C D I , it is the orthogonal group On, and
when C D

�
0 I
�I 0

�
, it is the symplectic group Spn.

3.10 There are abstract versions of the last groups. Let V be a finitely generated projective
k–module, let � be a nondegenerate symmetric bilinear form V �V ! k, and let  be a
nondegenerate alternating form V �V ! k. Then there are affine algebraic groups with

SLV .R/D fR-linear automorphisms of R˝k V with determinant 1g,

GLV .R/D fR-linear automorphisms of R˝k V g,

O.�/.R/D f˛ 2 GLV .R/ j �.˛v;˛w/D �.v;w/ for all v;w 2R˝k V g;

Sp. /.R/D f˛ 2 GLV .R/ j  .˛v;˛w/D  .v;w/ for all v;w 2R˝k V g.

When V is free, the choice of a basis for V defines an isomorphism of each of these functors
with one of those in (3.7), (3.8), or (3.9), which shows that they are affine algebraic groups
in this case. For the general case, use (2.21).

3.11 Let k be a field, and let K be a separable k-algebra of degree 2. This means that
there is a unique k-automorphism a 7! Na ofK such that aD Na if and only if a 2 k, and that
either

(a) K is a separable field extension of k of degree 2 and a 7! Na is the nontrivial element
of the Galois group, or

(b) K D k�k and .a;b/D .b;a/:

For an n�n matrix AD .aij / with entries in K, define NA to be .aij / and A� to be the
transpose of NA. Then there is an algebraic group G over k such that

G.k/D fA 2Mn.K/ j A
�AD I g:

More precisely, for a k-algebra R, define a˝ r D Na˝ r for a˝ r 2K˝k R, and, with the
obvious notation, let

G.R/D fA 2Mn.K˝kR/ j A
�AD I g:
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Note that A�AD I implies det.A/det.A/D 1. In particular, det.A/ is a unit, and so G.R/
is a group.

In case (b),
G.R/D f.A;B/ 2Mn.R/ j AB D I g

and so .A;B/ 7! A is an isomorphism of G with GLn.
In case (a), let e 2 K r k. Then e satisfies a quadratic polynomial with coefficients

in k. Assuming char.k/ ¤ 2, we can “complete the square” and choose e so that e2 2 k
and Ne D �e. A matrix with entries in K˝k R can be written in the form AC eB with
A;B 2Mn.R/. It lies in G.R/ if and only if

.At � eB t /.AC eB/D I

i.e., if and only if

At �A� e2B t �B D I; and

At �B �B t �AD 0:

Evidently, G is represented by a quotient of kŒ: : : ;Xij ; : : :�˝k kŒ: : : ;Yij ; : : :�.
In the classical case k D R and K D C. Then G.R/ is the set of matrices in Mn.C/ of

the form AC iB , A;B 2Mn.R/, such that

At �ACB t �B D I; and

At �B �B t �AD 0:

3.12 There exists an affine algebraic group G, called the group of monomial matrices,
such that, when R has no nontrivial idempotents, G.R/ is the group of invertible matrices
in Mn.R/ having exactly one nonzero element in each row and column. For each � 2 Sn
(symmetric group), let

A� DO.GLn/=.Xij j j ¤ �.i//

and let O.G/D
Q
�2Sn

A� . Then

A� ' kŒX1�.1/; : : : ;Xn�.n/;Y �=.sign.�/ �X1�.1/ � � �Xn�.n/Y �1/;

and so
G.R/'

G
�

Homk-alg.A� ;R/' Homk-alg.O.G/;R/:

3.13 Let k D k1�� � ��kn, and write 1D e1C�� �Cen. Then fe1; : : : ; eng is a complete set
of orthogonal idempotents in k. For any k-algebra R,

RDR1� � � ��Rn

where Ri is the k-algebra Rei . To give an affine group G over k is the same as giving an
affine group Gi over each ki . If G$ .Gi /1�i�n, then

G.R/D
Y

i
Gi .Ri /

for all k-algebras RDR1� � � ��Rn.
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3b Examples of homomorphisms

3.14 The determinant defines a homomorphism of algebraic groups

detWGLn!Gm:

3.15 The homomorphisms

R! SL2.R/; a 7!

�
1 a

0 1

�
;

define a homomorphism of algebraic groups Ga! SL2.

4 Some basic constructions

Throughout this section, k is a commutative ring.

4a Products of affine groups

Let G1 and G2 be affine groups over k. The functor

R G1.R/�G2.R/

is an affine group G1�G2 over k with coordinate ring

O.G1�G2/DO.G1/˝O.G2/; (18)

because, for any k-algebras A, A2, R,

Homk-alg.A1˝k A2;R/' Homk-alg.A1;R/�Homk-alg.A2;R/ (19)

(see (7), p. 22).
More generally, let .Gi /i2I be a (possibly infinite) family of affine groups over k, and

let G be the functor
R 

Y
i2I

Gi .R/:

Then G is an affine group with coordinate ring
N
i2I O.Gi / (in the infinite case, apply

Bourbaki A, III, �5, Prop. 8). Moreover, G together with the projection maps is the product
of the Gi in the category of affine groups. If I is finite and each Gi is an algebraic group,
then

Q
i2I Gi is an algebraic group .

4b Fibred products of affine groups

Let G1, G2, and H be functors from the category of k-algebras to sets, and let

G1!H  G2 (20)

be natural transformations. We define the fibred product functor G1 �H G2 to be the
functor

R G1.R/�H.R/G2.R/:

ObviouslyG1�H G2 is the fibred product ofG1 andG2 overH in the category of functors
from Algk to Set.
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Let B be a k-algebra, and let A1 and A2 be B-algebras. For any k-algebra R and
choice of a k-algebra homomorphism B!R (i.e., of a B-algebra structure on R), there is
a canonical isomorphism

HomB-alg.A1˝B A2;R/' HomB-alg.A1;R/�HomB-alg.A2;R/:

On taking the union over the different k-algebra homomorphisms B!R, we find that

Homk-alg.A1˝B A2;R/' Homk-alg.A1;R/�Homk-alg.B;R/Homk-alg.A2;R/: (21)

Therefore, if the functors G1, G2, andH in (20) are represented by k-algebras A1, A2, and
B , then G1�H G2 is represented by the k-algebra A1˝B A2.

When the natural transformationsG1!H G2 are homomorphisms of affine groups,
G1�H G2 is a functor to Grp, and the above remark shows that it is an affine group with
coordinate ring

O.G1�H G2/DO.G1/˝O.H/O.G2/. (22)

It is called the fibred product of G1 and G2 over H .
For example, let H be an affine group and let � ! H be the unique homomorphism

from the trivial group to H . For any homomorphism ˛WG!H;

.G�H �/.R/D Ker.˛.R/WG.R/!H.R//:

The affine group .G�H �/ is called the kernel of ˛, and is denoted Ker.˛/. Note that

O.Ker.G!H//DO.G/˝O.H/ k: (23)

Similarly, the equalizer of a pair of homomorphisms can be realized as a fibred product.
Therefore, all finite direct limits exist in the category of affine groups.

4c Extension of the base ring (extension of scalars)

Let k0 be a k-algebra. A k0-algebra R can be regarded as a k-algebra through k! k0!R,
and so a functor G of k-algebras “restricts” to a functor

Gk0 WR G.R/

of k0-algebras. If G is an affine group, then Gk0 is an affine group with coordinate ring
O.Gk0/DO.G/k0 because

Homk0-alg.k
0
˝O.G/;R/' Homk-alg.O.G/;R/ (R a k0-algebra)

(in (7), take A1 D k0, A2 D O.G/, and f1 equal to the given k0-algebra structure on R).
The affine group Gk0 is said to have been obtained from G by extension of the base ring
or by extension of scalars. If G is an algebraic group, so also is Gk0 . Clearly G Gk0 is
a functor.

EXAMPLE 4.1 Let V be a k-module and let W be a k0-module. A k-linear map V !W 0

extends uniquely to a k0-linear map Vk0 !W :

Homk-lin.V;W /' Homk0-lin.Vk0 ;W /:
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On applying this with W a k0-algebra R, we see that

Da.V /k0 'Da.Vk0/:

Similarly, if V is finitely generated and projective, then

.Va/k0 ' .Vk0/a:

EXAMPLE 4.2 Let G be the unitary group defined by a separable k-algebra K of degree 2
(see 3.11). For any field extension k! k0,Gk0 is the unitary group defined by the k0-algebra
K˝k k

0, and so, for example, Gkal ' GLn.

4d Restriction of the base ring (restriction of scalars)

Throughout this subsection, k0 is a k-algebra that is finitely generated and projective as a
k-module. We shall show that there is a right adjoint to the functor G  Gk0 . We first
explain this for functors to sets.

From a functor F WAlgk!Set we obtain a functor Fk0 WAlgk0!Set by setting Fk0.R/D
F.R/:On the other hand, from a functorF 0WAlgk0!Set we obtain a functor .F 0/k0=k WAlgk!
Set by setting .F 0/k0=k.R/D F 0.k0˝R/. Let ' be a natural transformation 'WFk0 ! F 0.
The homomorphisms

F.R/
F.r 7!1˝r/
��������! F.k0˝R/

'.k0˝R/
������! F 0.k0˝R/

def
D .F 0/k0=k.R/

are natural in the k-algebra R, and so their composite is a natural transformation F !
.F 0/k0=k . Thus, we have a morphism

Hom.Fk0 ;F
0/! Hom.F;.F 0/k0=k/:

This has an obvious inverse8, and so it is a bijection. We have shown that the extension of
scalars functor F  Fk0 has a right adjoint F 0 .F 0/k0=k:

Hom.Fk0 ;F
0/' Hom.F;.F 0/k0=k/: (24)

Because it is a right adjoint, F 0 .F 0/k0=k preserves inverse limits. In particular, it takes
(fibred) products to (fibred) products. This can also be checked directly.

LEMMA 4.3 If F WAlgk0 ! Set is represented by a (finitely-presented) k-algebra, then so
also is .F /k0=k .

PROOF. We prove this first in the case that k0 is free as a k-module, say,

k0 D ke1˚�� �˚ked ; ei 2 k
0:

8Given F ! .F 0/k0=k , we need Fk0!F 0. LetR be a k0-algebra, and letR0 beR regarded as a k-algebra.
The given k-algebra map k0!R and the identity map R0!R define a map k0˝k R0! R (of k0-algebras).
Hence we have

F.R0/! F 0.k0˝k R0/! F 0.R/;

and F.R0/D Fk0.R/:
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Consider first the case that F D An, so that F.R/D Rn for all k0-algebras R. For any
k-algebra R,

R0
def
D k0˝R'Re1˚�� �˚Red ;

and so there is a bijection

.ai /1�i�n 7! .bij / 1�i�n
1�j�d

WR0n!Rnd

which sends .ai / to the family .bij / defined by the equations

ai D
Pd
jD1 bij ej ; i D 1; : : : ;n. (25)

The bijection is natural in R, and shows that .F /k0=k � And (the isomorphism depends
only on the choice of the basis e1; : : : ; ed ).

Now suppose that F is the subfunctor of An defined by a polynomial f .X1; : : : ;Xn/ 2
k0ŒX1; : : : ;Xn�. On substituting

Xi D
Pd
jD1Yij ej

into f , we obtain a polynomial g.Y11;Y12; : : : ;Ynd / with the property that

f .a1; : : : ;an/D 0 ” g.b11;b12; : : : ;bnd /D 0

when the a’s and b’s are related by (25). The polynomial g has coefficients in k0, but we
can write it (uniquely) as a sum

g D g1e1C�� �Cgded ; gi 2 kŒY11;Y12; : : : ;Ynd �:

Clearly,

g.b11;b12; : : : ;bnd /D 0 ” gi .b11;b12; : : : ;bnd /D 0 for i D 1; : : : ;d ,

and so .F /k0=k is isomorphic to the subfunctor of And defined by the polynomials g1; : : : ;gd .
This argument extends in an obvious way to the case that F is the subfunctor of An

defined by a finite set of polynomials, and even to the case that it is a subfunctor of an
infinite dimensional affine space defined by infinitely many polynomials.

We deduce the general case from the free case by applying Theorem 2.20. For any
faithfully flat homomorphism R! R0 of k-algebras, Rk0 ! R0

k0
is a faithfully flat homo-

morphism of k0-algebras (CA 9.7), and so

F.Rk0/! F.R0k0/⇒ F.R0k0˝Rk0 R
0
k0/

is exact. But this equals

.F /k0=k.R/! .F /k0=k.R
0/⇒ .F /k0=k.R

0
˝RR

0/;

and so .F /k0=k satisfies the condition (*) of the theorem. According to (CA 10.4), there ex-
ist elements f1; : : : ;fr of k such that .f1; : : : ;fr/D k and k0

fi
is a free kfi -module for each

i . It follows that
�
.F /k0=k

�
kfi

is representable for each i , and so .F /k0=k is representable
(cf. Example 2.21). 2
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If G is a functor Algk0 ! Grp, then .G/k0=k is a functor Algk ! Grp. The lemma
shows that if G is an affine (algebraic) group, then so also is .G/k0=k , and (24) shows that
the functor G0 .G0/k0=k is right adjoint to the functor “extension of scalars”:

Hom.G;.G0/k0=k/' Hom.Gk0 ;G
0/:

The affine group .G/k0=k is said to have been obtained from G by (Weil) restriction of
scalars (or by restriction of the base ring). It is sometimes denoted Resk0=kG or ˘k0=kG,
and called the Weil restriction of G.

PROPERTIES OF THE RESTRICTION OF SCALARS FUNCTOR

4.4 For any homomorphisms k ! k0 ! k00 of rings such that k0 (resp. k00) is finitely
generated and projective over k (resp. k0),

˘k0=k ı˘k00=k0 '˘k00=k .

Indeed, for any affine group G over k00 and k-algebra R,��
˘k0=k ı˘k00=k0

�
.G/

�
.R/D

�
˘k0=k.˘k00=k0G/

�
.R/

DG.k00˝k0 k
0
˝kR/

'G.k00˝kR/

D
�
˘k00=kG

�
.R/

because k00˝k0 k0˝kR' k00˝kR.

4.5 For any k-algebra K and any affine group G over k0,�
˘k0=kG

�
K
'˘k0˝kK=K.GK/I (26)

in other words, Weil restriction commutes with base extension. Indeed, for a K-algebra R,�
˘k0=kG

�
K
.R/

def
DG.k0˝kR/'G.k

0
˝kK˝K R/

def
D˘k0˝kK=K.GK/.R/

because k0˝kR' k0˝kK˝K R.

4.6 Let k0 be a product of k-algebras, k0 D k1� � � � �kn, with each ki finitely generated
and projective as a k-module. Let G be the affine group over k0 corresponding to a family
.Gi /i of affine groups over the ki (see 3.13). Then

.G/k0=k ' .G1/k1=k � � � �� .Gn/kn=k . (27)

Indeed, for any k-algebra R,

.G/k0=k.R/
def
DG.k0˝R/

DG1.k1˝R/� � � ��Gn.kn˝R/

def
D
�
.G1/k1=k � � � �� .Gn/kn=k

�
.R/

because k0˝R' k1˝R� � � ��kn˝R and G is representable.
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4.7 There is a homomorphism i WG! .˘k0=kG/k0 of affine groups over k0 such that, for
all k0-algebras R, i.R/ is the map G.R/!G.k0˝R/ defined by a 7! 1˝aWR! k0˝R.
Then i is injective (obviously), and has the following universal property: let H be an affine
group over k; then any homomorphism G!Hk0 (over k0) factors uniquely through i .

4.8 Let k0 be a finite separable field extension of a field k, and let K be a field containing
all k-conjugates of k0, i.e., such that jHomk.k0;K/j D Œk0Wk�. Then�

˘k0=kG
�
K
'

Y
˛Wk0!K

G˛

whereG˛ is the affine group overK obtained by extension of scalars with respect to ˛Wk0!
K. Indeed �

˘k0=kG
�
K

(26)
' ˘k0˝K=KGK

(27)
'

Y
˛Wk0!K

G˛

because k0˝K 'KHomk.k0;K/.

4.9 Let k0 D kŒ"� where "2 D 0. For any algebraic group G over k0, there is an exact
sequence

0! Va! .G/k0=k!G! 0

where V is the tangent space to G at 1, i.e., V D Ker.G.kŒ"�/! G.k//. This is proved in
II, 1.29, below.

4.10 We saw in (4.8) that, when k0 is a separable field extension of k, .G/k0=k becomes
isomorphic to a product of copies of G over some field containing k0. This is far from true
when k0=k is an inseparable field extension. For example, let k be a nonperfect field of
characteristic 2, so that there exists a nonsquare a in k, and let k0 D kŒ

p
a�. Then

k0˝k k
0
' k0Œ"�; "D a˝1�1˝a; "2 D 0:

According to (4.5), �
˘k0=kG

�
k0
'˘k0Œ"�=k0Gk0 ;

which is an extension of Gk0 by a vector group (4.9).

4e Galois descent of affine groups

In this subsection, k is a field. Let ˝ be a Galois extension of the field k, and let � D
Gal.˝=k/. When˝ is an infinite extension of k, we endow � with the Krull topology. By
an action of � on an ˝-vector space V we mean a homomorphism � ! Autk.V / such
that each � 2 � acts � -linearly, i.e., such that

�.cv/D �.c/ ��.v/ for all � 2 � , c 2˝, and v 2 V .

We say that the action is continuous if every element of V is fixed by an open subgroup of
� , i.e., if

V D
[

� 0
V �

0

(union over the open subgroups � 0 of � ).
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PROPOSITION 4.11 For any ˝-vector space V equipped with a continuous action of � ,
the map P

i ci ˝vi 7!
P
i civi W˝˝k V

� ! V

is an isomorphism.

PROOF. See Chapter VI, 1.2 below or AG, 16.15 (the proof is quite elementary). 2

For any vector space V over k, the group � acts continuously on ˝˝V according to
rule:

�.c˝v/D �c˝v for all � 2 � , c 2˝, and v 2 V:

PROPOSITION 4.12 The functor V  ˝˝k V from vector spaces over k to vector spaces
over ˝ equipped with a continuous action of � is an equivalence of categories.

PROOF. When we choose bases for V and V 0, then Homk-lin.V;V
0/ and Hom˝-lin.˝˝

V;˝˝V 0/ become identified with with certain sets of matrices, and the fully faithfulness
of the functor follows from the fact that ˝� D k. That the functor is essentially surjective
follows from (4.11). 2

Let G be an affine group over ˝. By a continuous action of � on G we mean a
continuous action of � on O.G/ preserving � and the k-algebra structure on A; thus

�.f �f 0/ D �f ��f 0

�1 D 1

.�˝�/.�.f // D �.�f /

9=; for all � 2 � , f;f 0 2 A:

PROPOSITION 4.13 The functor G G˝ from affine groups over k to affine groups over
˝ equipped with a continuous action of � is an equivalence of categories.

PROOF. Immediate consequence of Proposition 4.12. 2

EXAMPLE 4.14 Let k0 be a finite separable field extension of k, and let ˝ be a Galois
extension of k containing all conjugates of k0. Let G D .A;�/ be an affine group over k0,
and let

G� D .A�;��/
def
D

Y
� Wk0!˝

.�A;��/

where � runs over the k-homomorphisms k0!˝. There is an obvious continuous action
of � def

D Gal.˝=k/ on G�, and the corresponding affine group over k is .G/k0=k . This is
essentially the original construction of .G/k0=k in Weil 1960, 1.3.

4f The Greenberg functor

Let A be a local artinian ring with residue field k. For example, A could be the ring Wm.k/
of Witt vectors of length m. In general, A is a Wm.k/-module for some m. For an affine
group G over A, consider the functor G.G/:

R G.A˝Wm.k/Wm.R//:

Then G.G/ is an affine group over k. See Greenberg 1961, Greenberg 1963.
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4g Exercises

EXERCISE 4-1 Let k0 be a finite separable extension of a field k. Let A1 be the functor
Algk ! Set sending R to R, and let Ui , i 2 k, be the subfunctor of A1 such that Ui .R/D
fa 2 R j a ¤ ig. Show that A1 D U0 [U1 but ˘k0=kA1 ¤

�
˘k0=kU0

�
[
�
˘k0=kU1

�
if

k0 ¤ k.

EXERCISE 4-2 Let k0=k be a finite field extension. Let ˛WGk0 !H be a homomorphism
of algebraic groups over k0, and let ˇWG!˘k0=kH be the corresponding homomorphism
over k. Show that Ker.ˇ/ is the unique affine subgroup of G such that Ker.ˇ/k0 D Ker.˛/.

5 Affine groups and Hopf algebras
Un principe général: tout calcul relatif aux

cogèbres est trivial et incompréhensible.
Serre 1993, p. 39.

In this section, we examine the extra structure that the coordinate ring of an affine group
G acquires from the group structure on G. Throughout k is a commutative ring.

5a Algebras

Recall that an associative algebra over k with identity is a module A over k together with a
pair of k-linear maps9

mWA˝A! A eWk! A

such that the following diagrams commute:

A˝A˝A A˝A k˝A A˝A A˝k

A˝A A A

A˝m

m˝A m

m

e˝A A˝e

' m '

associativity identity

(28)

On reversing the directions of the arrows, we obtain the notion of a coalgebra.

5b Coalgebras

DEFINITION 5.1 A co-associative coalgebra over k with co-identity (henceforth, a coal-
gebra over k) is a module C over k together with a pair of k-linear maps

�WC ! C ˝C �WC ! k

9Warning: I sometimes also use “e” for the neutral element of G.R/ (a homomorphism O.G/!R).
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such that the diagrams

C ˝C ˝C C ˝C k˝C C ˝C C ˝k

C ˝C C C

C ˝�

�˝C �

�

�˝C C ˝�

' � '

co-associativity co-identity

(29)

commute, i.e., such that�
.C ˝�/ı� D .�˝C/ı�

.C ˝ �/ı� D idC D .�˝C/ı�:
(30)

A homomorphism of coalgebras over k is a k-linear map f WC !D such that the diagrams

C ˝C
f˝f
����! D˝Dx??�C x??�D

C
f

����! D

C
f

����! D??y�C ??y�D
k k

(31)

commute, i.e., such that (
.f ˝f /ı�C D�D ıf

�D ıf D �C .

5.2 Let S be a set and let C be the k-vector space with basis S (so C D 0 if S is empty).
Then C becomes a coalgebra over k with � and � defined by

�.s/ D s˝ s

�.s/ D 1

�
all s 2 S:

This shows that every vector space admits the structure of a coalgebra.

5.3 Let .C;�;�/ be a coalgebra over k. A k-subspaceD of C is called a sub-coalgebra if
�.D/�D˝D. Then .D;�jD;�jD/ is a coalgebra (obvious), and the inclusion D ,! C

is a coalgebra homomorphism.

5.4 Let .C;�C ; �C / and .D;�D; �D/ be coalgebras over k; define �C˝D to be the com-
posite

C ˝D
�C˝�D
������! C ˝C ˝kD˝D

C˝t˝D
' C ˝D˝k C ˝D

where t is the transposition map c˝d 7! d ˝ c, and define �C˝D to be the composite

C ˝D
�C˝�D
�����! k˝k ' k;

then .C ˝D;�C˝D; �C˝D/ is a coalgebra over k. On taking D D C , we see that C ˝C
is a coalgebra over k.
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5c The duality of algebras and coalgebras

Recall that V _ denotes the dual of a k-module V . If V and W are k-modules, then the
formula

.f ˝g/.v˝w/D f .v/˝g.w/; f 2 V _, g 2W _, v 2 V , w 2W;

defines a linear map
V _˝W _! .V ˝W /_ (32)

which is always injective, and is an isomorphism when at least one of V or W is finitely
generated and projective (CA 10.8).

If .C;�;�/ is a co-associative coalgebra over k with a co-identity, then C_ becomes

an associative algebra over k with the multiplication C_˝C_ ,! .C ˝C/_
�_

�! C_ and

the identity k ' k_
�_

�! C_. Similarly, if .A;m;e/ is an associative algebra over k with
an identity and A is finitely generated and projective as a k-module, then A_ becomes a

co-associative coalgebra over k with the co-multiplication A_
m_

�! .A˝A/_ ' A_˝A_

and the co-identity k ' k_
�_

�!A_. These statements are proved by applying the functor _

to one of the diagrams (28) or (29).

EXAMPLE 5.5 Let X be a set, and let C be the free k-module with basis X . The k-linear
maps

�WC ! C ˝C; �.x/D x˝x; x 2X;

�WC ! k; �.x/D 1; x 2X;

endow C with the structure of coalgebra over k. The dual algebra C_ can be identified
with the k-module of maps X ! k endowed with the k-algebra structure

m.f;g/.x/D f .x/g.x/

e.c/.x/D cx:

5d Bi-algebras

For k-algebras A and B , A˝B becomes a k-algebra with the maps

mA˝B..a˝b/˝ .a
0
˝b0//DmA.a˝a

0/˝mA.b˝b
0/

eA˝B.c/D eA.c/˝1D 1˝ eB.c/:

DEFINITION 5.6 A bi-algebra over k is a k-module with compatible structures of an asso-
ciative algebra with identity and of a co-associative coalgebra with co-identity. In detail, a
bi-algebra over k is a quintuple .A;m;e;�;�/ where

(a) .A;m;e/ is an associative algebra over k with identity e;
(b) .A;�;�/ is a co-associative coalgebra over k with co-identity �;
(c) �WA! A˝A is a homomorphism of algebras;
(d) �WA! k is a homomorphism of algebras.

A homomorphism of bi-algebras .A;m; : : :/! .A0;m0; : : :/ is a k-linear map A! A0 that
is both a homomorphism of k-algebras and a homomorphism of k-coalgebras.
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The next proposition shows that the notion of a bi-algebra is self dual.

PROPOSITION 5.7 For a quintuple .A;m;e;�;�/ satisfying (a) and (b) of (5.6), the fol-
lowing conditions are equivalent:

(a) � and � are algebra homomorphisms;
(b) m and e are coalgebra homomorphisms.

PROOF Consider the diagrams:

A˝A A A˝A

A˝A˝A˝A A˝A˝A˝A

m

�˝�

�

A˝ t˝A

m˝m

A˝A A A˝A A

k˝k k k˝k k

� m

e˝e e �˝� �

' '

A

k k

e

id

�

The first and second diagrams commute if and only if � is an algebra homomorphism, and
the third and fourth diagrams commute if and only if � is an algebra homomorphism. On the
other hand, the first and third diagrams commute if and only if m is a coalgebra homomor-
phism, and the second and fourth commute if and only if e is a coalgebra homomorphism.
Therefore, each of (a) and (b) is equivalent to the commutativity of all four diagrams. 2

DEFINITION 5.8 A bi-algebra is said to be commutative, finitely generated, finitely pre-
sented, etc., if its underlying algebra is this property.

Note that these notions are not self dual.

DEFINITION 5.9 An inversion (or antipodal map10) for a bi-algebra A is a k-linear map
S WA! A such that

(a) the diagram

A
mı.S˝id/
 ������ A˝A

mı.id˝S/
�������! Ax??e x??� x??e

k
�

 ���� A
�

����! k

(33)

commutes, i.e.,

mı .S˝ id/ı�D e ı � Dmı .id˝S/ı�. (34)

and
(b) S.ab/ D S.ba/ for all a;b 2 A and S.1/ D 1 (so S is a k-algebra homomorphism

when A is commutative).
10Usually shortened to “antipode”.
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ASIDE 5.10 In fact, condition (a) implies condition (b) (Dăscălescu et al. 2001, 4.2.6).

EXAMPLE 5.11 Let X be a monoid, and let A be the k-module with basis X . The k-linear
maps

mWA˝A! A; m.x˝x0/D xx0; x;x0 2X;

eWk! A; e.c/D c1X ; c 2 k;

endow A with the structure of a k-algebra. When combined with the coalgebra structure in
(5.5), this makes A into a bi-algebra over k. When X is a group, the map

S WA! A; .Sf /.x/D f .x�1/

is an inversion.

PROPOSITION 5.12 Let A and A0 be bi-algebras over k. If A and A0 admit inversions S
and S 0, then, for any homomorphism f WA! A0,

f ıS D S 0 ıf:

In particular, a bi-algebra admits at most one inversion.

PROOF. For commutative bi-algebras, which is the only case of interest to us, we shall
prove this statement in (5.16) below. The general case is proved in Dăscălescu et al. 2001,
4.2.5. 2

DEFINITION 5.13 A bi-algebra over k that admits an inversion is called a Hopf algebra
over k. A homomorphism of Hopf algebras is a homomorphism of bi-algebras.

A sub-bi-algebra B of a Hopf algebraA is a Hopf algebra if and only if it is stable under
the (unique) inversion of A, in which case it is called a Hopf subalgebra.

The reader encountering bi-algebras for the first time should do Exercise 5-1 below
before continuing.

ASIDE 5.14 To give a k-bialgebra that is finitely generated and projective as a k-module is the same
as giving a pair of finitely generated projective k-algebras A and B together with a nondegenerate
k-bilinear pairing

h ; iWB �A! k

satisfying compatibility conditions that we leave to the reader to explicate.

5e Affine groups and Hopf algebras

Recall that a commutative bi-algebra over k is a commutative k-algebra A equipped with a
coalgebra structure .�;�/ such that � and � are k-algebra homomorphisms.

THEOREM 5.15 (a) Let A be a k-algebra, and let �WA! A˝A and �WA! k be homo-
morphisms. The triple .A;�;�/ is an affine monoid if and only if .A;�;�/ is a bi-algebra
over k.

(b) Let A be a k-algebra, and let �WA! A˝A be a homomorphism. The pair .A;�/
is an affine group if and only if there exists a homomorphism �WA! k such that .A;�;�/
is a Hopf algebra.
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PROOF. (a) Let M D hA, and let mWM �M !M and eW� !M be the natural transfor-
mations defined by � and � (here � is the trivial monoid represented by k). Then m and e
define a monoid structure on M.R/ for each k-algebra R if and only if the diagrams

M �M �M M �M

M �M M

idM �m

m� idM m

m

��M M �M M ��

M

e� idM

' m

idM �e

'

(35)
commute. As A hA sends tensor products to products (10, p. 10), the Yoneda lemma,
shows that these diagrams commute if and only if the diagrams (29) commute.

(b) An affine monoid M is an affine group if and only if there exists a natural transfor-
mation invWM !M such that

M
.inv;id/
����! M �M

.id;inv/
 ���� M??y ??ym ??y

�
e

����! M
e

 ���� �

(36)

commutes. Here .id; inv/ denotes the morphism whose composites with the projection maps
are id and inv. Such a natural transformation corresponds to a k-algebra homomorphism
S WA! A satisfying (34), i.e., to an inversion for A. 2

Thus, as promised in (2.12), we have shown that a pair .A;�/ is an affine group if and
only if there exist homomorphisms � and S making certain diagrams commute.

PROPOSITION 5.16 Let A and A0 be commutative Hopf algebras over k. A k-algebra
homomorphism f WA! A0 is a homomorphism of Hopf algebras if

.f ˝f /ı�D�0 ıf ; (37)

moreover, then f ıS D S 0 ıf for any inversions S for A and S 0 for A0.

PROOF. According to (5.15b), G D .A;�/ and G0 D .A0;�0/ are affine groups. A k-
algebra homomorphism f WA! A0 defines a morphism of functors hf WG ! G0. If (37)
holds, then this morphism sends products to products, and so is a morphism of group valued
functors. Therefore f is a homomorphism of Hopf algebras. As hf commutes with the
operation g 7! g�1, f ıS D S 0 ıf . 2

COROLLARY 5.17 For any commutative k-algebra A and homomorphism �WA!A˝A,
there exists at most one pair .�;S/ such that .A;m;e;�;�/ is a Hopf algebra and S is an
inversion.

PROOF. Apply (5.16) to the identity map. 2

THEOREM 5.18 The forgetful functor .A;�;�/ .A;�/ is an isomorphism from the cat-
egory of commutative Hopf algebras over k to the category of affine groups over k.
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PROOF. It follows from (5.15b) and (5.17) that the functor is bijective on objects, and it is
obviously bijective on morphisms. 2

EXAMPLE 5.19 Let G be the functor sending a k-algebra R to R�R�R with the (non-
commutative) group structure

.x;y;z/ � .x0;y0;z0/D .xCx0;yCy0;zCz0Cxy0/:

This is an algebraic group because it is representable by kŒX;Y;Z�. The map

.x;y;z/ 7!

0@1 x z

0 1 y

0 0 1

1A
is an injective homomorphism of G into GL3. Note that the functor R R�R�R also
has an obvious commutative group structure (componentwise addition), which shows that
the k-algebra kŒX;Y;Z� has more than one Hopf algebra structure.

5f Abstract restatement

Let C be a category with finite products and, in particular, a final object � (the product over
the empty set). A monoid object in C is an objectM together with morphismsmWM �M !
M and eW� !M such that the diagrams (35) commute. A morphism of monoid objects is
a morphism of the objects compatible with the maps m and e.

Let A be a category, and let A_ be the category of functors A! Set. For any finite
family .Fi /i2I of functors, the functor A 

Q
i2I Fi .A/ is the product of the Fi , and so

A_ has finite products. To give the structure of a monoid object on a functorM WA! Set is
the same as giving a factorization of M through Mon.

Now assume that A has finite direct sums. It follows from the definitions of direct sums
and products, that the functor A hA sends direct sums to direct products. According to
the Yoneda lemma (2.1), A hAWAopp ! A_ is fully faithful. Its essential image is (by
definition) the subcategory of representable functors. Therefore A hA is an equivalence
from the category of monoid objects in Aopp to the category of monoid objects in A_ whose
underlying functor to sets is representable (equivalently, to the category of functors A!
Mon whose underlying functor to sets is representable).

Now take A D Algk . Tensor products in this category are direct sums (in the sense
of category theory), and so the above remarks show that A hA is an equivalence from
the category of monoid objects in Algopp

k
to the category of affine monoids over k. On

comparing the diagrams (29) and (35), we see that a monoid object in Algopp
k

is just a
commutative bi-algebra.

Similarly, a group object in a category C with finite products is defined to be an object
M together with morphisms mWM �M !M , eW� !M , and invWM !M such that the
diagrams (35) and (36) commute.11 The same arguments as above show that A  hA

is an equivalence from the category of group objects in Algopp
k

to the category of affine
groups over k. Moreover, a group object in Algopp

k
is just a commutative bi-algebra with an

inversion.

11For any object T of C, the mapsm, e, and inv define a group structure on Hom.T;M/. The Yoneda lemma
shows that inv is uniquely determined by m and e. Thus, one can also define a group object to be a monoid
object for which there exists a morphism inv such that the diagram (36) commutes.
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In summary: the functor A hA defines an equivalence from the category of com-
mutative bi-algebras (resp. commutative Hopf algebras) to the category of affine monoids
(resp. groups). Under the equivalence, finitely presented bi-algebras (resp. Hopf algebras)
correspond to algebraic monoids (resp. groups).

5g Explicit description of �, �, and S

Let G be an affine group over k. Recall (2.16) that an element f of the coordinate ring
O.G/ is a family of functions fRWG.R/! R of sets compatible with homomorphisms of
k-algebras. An element f1˝f2 of O.G/˝O.G/ defines a function .f1˝f2/RWG.R/�
G.R/!R by the rule:

.f1˝f2/R.a;b/D .f1/R.a/ � .f2/R.b/:

In this way, O.G/˝O.G/ becomes identified with the coordinate ring of G�G.
For f 2O.G/, �.f / is the (unique) element of O.G/˝O.G/ such that

.�f /R.a;b/D fR.ab/; for all R and all a;b 2G.R/: (38)

Moreover,
�f D f .1/ (constant function), (39)

and Sf is the element of O.G/ such that

.Sf /R.a/D fR.a
�1/; for all R and all a 2G.R/: (40)

EXAMPLE 5.20 Recall (3.1) that Ga has coordinate ring kŒX� with f .X/ 2 kŒX� acting as
a 7! f .a/ on Ga.R/D R. The ring kŒX�˝kŒX� is a polynomial ring in X1 D X˝1 and
X2 D 1˝X ,

kŒX�˝kŒX�' kŒX1;X2�;

and so Ga�Ga has coordinate ring kŒX1;X2�withF.X1;X2/2 kŒX1;X2� acting as .a;b/ 7!
F.a;b/ on G.R/�G.R/. As .�f /R.a;b/D fR.aCb/ (see (38)), we find that

.�f /.X1;X2/D f .X1CX2/; f 2O.Ga/D kŒX�I

in other words, � is the homomorphism of k-algebras kŒX�! kŒX�˝kŒX� sending X to
X˝1C1˝X . Moreover,

�f D f .0/ .D constant term of f /;

and .Sf /R.a/D fR.�a/, so that

.Sf /.X/D f .�X/:

EXAMPLE 5.21 For G DGm, O.G/D kŒX;X�1�, � is the homomorphism of k-algebras
kŒX;X�1�! kŒX;X�1�˝kŒX;X�1� sendingX toX˝X , � is the homomorphism kŒX�!

k sending f .X;X�1/ to f .1;1/, and S is the homomorphism kŒX;X�1�! kŒX;X�1�

sending X to X�1.
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EXAMPLE 5.22 For G D GLn,

O.G/D
kŒX11;X12; : : : ;Xnn;Y �

.Y det.Xij /�1/
D kŒx11; : : : ;xnn;y�

and(
�xik D

P
jD1;:::;n

xij ˝xjk

�y D y˝y

8<:
�.xi i / D 1

�.xij / D 0, i ¤ j
�.y/ D 1

�
S.xij / D yaj i
S.y/ D det.xij /

where aj i is the cofactor of xj i in the matrix .xj i /. Symbolically, we can write the formula
for � as

�.x/D .x/˝ .x/

where .x/ is the matrix with ij th entry xij . We check the formula for �.xik/:

.�xik/R
�
.aij /; .bij /

�
D .xik/R

�
.aij /.bij /

�
definition (38)

D
P
j aij bjk as .xkl/R ..cij //D ckl

D .
P
jD1;:::;nxij ˝xjk/R

�
.aij /; .bij /

�
as claimed.

EXAMPLE 5.23 Let F be a finite group, and letA be the set of maps F ! k with its natural
k-algebra structure. Then A is a product of copies of k indexed by the elements of F . More
precisely, let e� be the function that is 1 on � and 0 on the remaining elements of F . The
e� ’s are a complete system of orthogonal idempotents for A:

e2� D e� ; e�e� D 0 for � ¤ �;
P
e� D 1.

The maps

�.e�/D
X

�;� with ��D�

e� ˝ e� ; �.e� /D

�
1 if � D 1
0 otherwise

; S.e� /D e��1 :

define a bi-algebra structure on A with inversion S . Let .F /k be the associated algebraic
group, so that

.F /k .R/D Homk-alg.A;R/:

If R has no idempotents other than 0 or 1, then a k-algebra homomorphism A! R must
send one e� to 1 and the remainder to 0. Therefore, .F /k .R/ ' F , and one checks that
the group structure provided by the maps �;�;S is the given one. For this reason, .F /k
is called the constant algebraic group defined by F (even though for k-algebras R with
nontrivial idempotents, .F /k .R/ may be bigger than F ).

5h Commutative affine groups

A monoid or group G (resp. an algebra A) is commutative if and only if the diagram at
left (resp. the middle diagram) commutes, and a coalgebra or bi-algebra C is said to be
co-commutative if the diagram at right commutes:

G�G G�G

G

t

m m

A˝A A˝A

A

t

m m

C ˝C C ˝C

C

t

� �

(41)
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In each diagram, t is the transposition map .x;y/ 7! .y;x/ or x˝y 7! y˝x.
On comparing the first and third diagrams and applying the Yoneda lemma, we see

that an affine monoid or group is commutative if and only if its coordinate ring is co-
commutative.

5i Finite flat algebraic groups; Cartier duality

If .A;m;e;�;�/ is a bi-algebra over k and A is finitely generated and projective as a k-
module, then .A_;�_; �_;m_; e_/ is also a k-bialgebra (see �5c and Proposition 5.7). If
moreover .A;m;e;�;�/ is commutative (resp. co-commutative), then .A_;�_; �_;m_; e_/
is co-commutative (resp. commutative).

An algebraic group G over k is said to be finite(resp. flat) if the k-algebra O.G/ is
a finite (resp. flat). Thus G is finite and flat if and only if O.G/ is finitely generated
and projective as a k-module (CA The coordinate ring O.G/ of a commutative finite flat
algebraic monoid is a commutative co-commutative bi-algebra, and so its dual O.G/_ is the
coordinate ring of a commutative finite flat algebraic monoid G_, called the Cartier dual
of G. If O.G/ admits an inversion S , then S_ is an algebra homomorphism, and so G_ is
an algebraic group. To check that S_ is an algebra homomorphism, we have to check that
�_ ı .S_˝S_/ D S_ ı�_, or, equivalently, that � ıS D .S ˝S/ ı�. In other words,
we have check the diagram at left below commutes. This corresponds (under a category
equivalence) to the diagram at right, which commutes precisely because G is commutative
(the inverse of a product is the product of the inverses):

O.G/ �
����! O.G/˝O.G/??yS ??yS˝S

O.G/ �
����! O.G/˝O.G/

G
m
 ���� G�Gx??inv

x??inv�inv

G
m
 ���� G�G:

Note that G__ 'G.

5j Quantum groups

Until the mid-1980s, the only Hopf algebras seriously studied were either commutative
or co-commutative. Then Drinfeld and Jimbo independently discovered noncommutative
Hopf algebras in the work of physicists, and Drinfeld called them quantum groups. There is,
at present, no definition of “quantum group”, only examples. Despite the name, a quantum
group does not define a functor from the category of noncommutative k-algebras to groups.

One interesting aspect of quantum groups is that, while semisimple algebraic groups
can’t be deformed (they are determined up to isomorphism by a discrete set of invariants),
their Hopf algebras can be. For q 2 k�, define Aq to be the free associative (noncommuta-
tive) k-algebra on the symbols a;b;c;d modulo the relations

baD qab; bc D cb; caD qac; dc D qcd;

db D qbd; daD ad C .q�q�1/bc; ad D q�1bc D 1:

This becomes a Hopf algebra with � defined by

�

�
a b

c d

�
D

�
a b

c d

�
˝

�
a b

c d

�
, i.e.,

8̂̂<̂
:̂
�.a/ D a˝aCb˝ c

�.b/ D a˝bCb˝d

�.c/ D c˝aCd ˝ c

�.d/ D c˝bCd ˝d

;
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and with suitable maps � and S . When q D 1, Aq becomes O.SL2/, and so the Aq can
be regarded as a one-dimensional family of quantum groups that specializes to SL2 when
q! 1. The algebra Aq is usually referred to as the Hopf algebra of SLq.2/:

For bi-algebras that are neither commutative nor cocommutative, many statements in
this section become more difficult to prove, or even false. For example, while it is still true
that a bi-algebra admits at most one inversion, the composite of an inversion with itself need
not be the identity map (Dăscălescu et al. 2001, 4.27).

5k Terminology

From now on, “bialgebra” will mean “commutative bi-algebra” and “Hopf algebra” will
mean “commutative bi-algebra that admits an inversion (antipode)” (necessarily unique).
Thus, the notion of a bialgebra is not self dual.12

5l Exercises

To avoid possible problems, in the exercises assume k to be a field.

EXERCISE 5-1 For a set X , let R.X/ be the k-algebra of maps X ! k. For a second set
Y , let R.X/˝R.Y / act on X �Y by the rule (f ˝g/.x;y/D f .x/g.y/.

(a) Show that the map R.X/˝R.Y /! R.X � Y / just defined is injective. (Hint:
choose a basis fi for R.X/ as a k-vector space, and consider an element

P
fi ˝gi .)

(b) Let � be a group and define maps

�WR.� /!R.� �� /; .�f /.g;g0/D f .gg0/

�WR.� /! k; �f D f .1/

S WR.� /!R.� /; .Sf /.g/D f .g�1/:

Show that if � maps R.� / into the subring R.� /˝R.� / of R.� �� /, then �, �, and S
define on R.� / the structure of a Hopf algebra.

(c) If � is finite, show that � always maps R.� / into R.� /˝R.� /.

EXERCISE 5-2 We continue the notations of the last exercise. Let � be an arbitrary group.
From a homomorphism �W� ! GLn.k/, we obtain a family of functions g 7! �.g/i;j ,
1� i;j � n, on G. Let R0.� / be the k-subspace of R.� / spanned by the functions arising
in this way for varying n. (The elements of R0.� / are called the representative functions
on � .)

(a) Show that R0.� / is a k-subalgebra of R.� /.
(b) Show that � maps R0.� / into R0.� /˝R0.� /.
(c) Deduce that �, �, and S define on R0.� / the structure of a Hopf algebra.

(Cf. Abe 1980, Chapter 2, �2; Cartier 2007, 3.1.1.)

EXERCISE 5-3 Let G be the constant algebraic group over k defined by a finite commuta-
tive group � . Let n be the exponent of � , and assume that k contains n distinct nth roots
of 1 (so, in particular, n is not divisible by the characteristic of k). Show that the Cartier
dual of G is the constant algebraic group defined by the dual group Hom.�;Q=Z/.

12In the literature, there are different definitions for “Hopf algebra”. Bourbaki and his school (Dieudonné,
Serre, . . . ) use “cogèbre” and “bigèbre” for “co-algebra” and “bi-algebra”.
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EXERCISE 5-4 If k has characteristic p ¤ 0, show that ˛_p ' ˛p and .Z=pZ/_
k
' �p

(hence �_p ' .Z=pZ/k) (here .Z=pZ/k , �p, and ˛p are the groups in (3.3), (3.4), and
(3.5)).

EXERCISE 5-5 Let A be a Hopf algebra. Prove the following statements by interpreting
them as statements about affine groups.

(a) S ıS D idA.
(b) �ıS D t ıS˝S ı� where t .a˝b/D b˝a:
(c) � ıS D �:
(d) The map a˝b 7! .a˝1/�.b/WA˝A! A˝A is a homomorphism of k-algebras.

Hints: .a�1/�1 D e; .ab/�1 D b�1a�1; e�1 D e.

EXERCISE 5-6 Show that there is no algebraic group G over k such that G.R/ has two
elements for every k-algebra R.

EXERCISE 5-7 Verify directly that O.Ga/ and O.Gm/ satisfy the axioms to be a Hopf
algebra.

EXERCISE 5-8 Verify all the statements in 5.23.

EXERCISE 5-9 A subspace V of a k-coalgebra C is a coideal if�C .V /� V ˝C CC ˝V
and �C .V /D 0.

(a) Show that the kernel of any homomorphism of coalgebras is a coideal and its image
is a sub-coalgebra.

(b) Let V be a coideal in a k-coalgebra C . Show that the quotient vector space C=V
has a unique k-coalgebra structure for which C ! C=V is a homomorphism. Show
that any homomorphism of k-coalgebras C ! D whose kernel contains V factors
uniquely through C ! C=V .

(c) Deduce that every homomorphism f WC !D of coalgebras induces an isomorphism
of k-coalgebras

C=Ker.f /! Im.f /.

Hint: show that if f WV ! V 0 and gWW !W 0 are homomorphisms of k-vector spaces, then

Ker.f ˝g/D Ker.f /˝W CV ˝Ker.g/:

EXERCISE 5-10 (cf. Sweedler 1969, 4.3.1). A k-subspace a of a k-bialgebra A is a bi-
ideal if it is both an ideal and a co-ideal. When A admits an inversion S , a bi-ideal a is a
Hopf ideal if S.a/� a. In other words, an ideal a� A is a bi-ideal if

�.a/� a˝ACA˝a and

�.a/D 0;

and it is a Hopf ideal if, in addition,

S.a/� a:
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(a) Show that the kernel of any homomorphism of bialgebras (resp. Hopf algebras) is a
bi-ideal (resp. Hopf ideal), and that its image is a bialgebra (resp. Hopf algebra).

(b) Let a be a bi-ideal in a k-bialgebra A. Show that the quotient vector space A=a has
a unique k-bialgebra structure for which A! A=a is a homomorphism. Show that
any homomorphism of k-bialgebrasA!B whose kernel contains a factors uniquely
throughA!A=a. Show that an inversion onA induces an inversion onA=a provided
that a is a Hopf ideal.

(c) Deduce that every homomorphism f WA! B of bialgebras (resp. Hopf algebras)
induces an isomorphism of bialgebras (resp. Hopf algebras),

A=Ker.f /! Im.f /:

In this exercise it is not necessary to assume that A is commutative, although it becomes
simpler you do, because then it is possible to exploit the relation to affine groups in (5.15).

6 Affine groups and affine group schemes

In the last section, we saw that affine groups over k correspond to group objects in the
opposite of the category of k-algebras (see �5f). In this section we interpret this opposite
category as the category of affine schemes over k. Thus algebraic groups over k correspond
to group objects in the category of affine schemes over k. When k is a field, we use this
geometric interpretation to obtain additional insights.

In the first three subsections, k is a commutative ring, but starting in �6d we require it
to be a field.

6a Affine schemes

Let A be commutative ring, and let V be the set of prime ideals in A. The principal open
subsets of V are the sets of the form

D.f /D fp 2 V j f … pg; f 2 A:

They form a base for a topology on V whose closed sets are exactly the sets

V.a/D fp 2 V j p� ag; a an ideal in A:

This is the Zariski topology, and the set V endowed with the Zariski topology is the (prime)
spectrum spec.A/ of A.

Let 'WA! B be a homomorphism commutative rings. For any prime ideal p in B , the
ideal '�1.p/ is prime becauseA='�1.p/ is a subring of the integral domainB=p. Therefore
' defines a map

spec.'/WspecB! specA; p 7! '�1.p/;

which is continuous because the inverse image of D.f / is D.'.f //. In this way, spec
becomes a contravariant functor from the category of commutative rings to topological
spaces.

Let A be a commutative ring. Let V D specA, and let B be the set of principal open
subsets. Then B is closed under finite intersections because

D.f1 � � �fr/DD.f1/\ : : :\D.fr/:
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For a principal open subsetD of V , define OA.D/D S�1D A where SD is the multiplicative
subset Ar

S
p2D p of A. If D D D.f /, then SD is the smallest saturated multiplicative

subset of A containing f , and so OA.D/ ' Af (see CA 6.12). If D � D0, then SD �
SD0 , and so there is a canonical “restriction” homomorphism OA.D/! OA.D0/. These
restriction maps make D OA.D/ into a functor on B satisfying the sheaf condition: for
any covering D D

S
i2I Di of a principal open subset D by principal open subsets Di , the

sequence
OA.D/!

Y
i2I

OA.Di /⇒
Y

.i;j /2I�I
OA.Di \Dj /

is exact.13 For an open subset U of V , define OA.U / by the exactness of

OA.U /!
Y

D2I
OA.D/⇒

Y
.D;D0/2I�I

OA.D\D0/ (42)

where I D fD 2 B jD � U g. Clearly, U  OA.U / is a functor on the open subsets of V ,
and it is not difficult to check that it is a sheaf. The set I in (42) can be replaced by any
subset of B covering U without changing OA.U /. In particular, if U DD.f /, then

OA.U /'OA.D.f //' Af :

Therefore, the stalk of OA at a point p 2 V is

Op
def
D lim
�!U3p

OA.U /D lim
�!f …p

OA.D.f //' lim
�!f …p

Af ' Ap

(for the last isomorphism, see CA 7.3). In particular, the stalks of OA are local rings.
Thus from A we get a locally ringed space Spec.A/D .specA;OA/. An affine scheme

.V;OV / is a ringed space isomorphic to Spec.A/ for some commutative ring A. A mor-
phism of affine schemes is morphism of locally ringed spaces, i.e., a morphism of ringed
spaces such that the maps of the stalks are local homomorphisms of local rings. A homo-
morphism A! B defines a morphism SpecB! SpecA of affine schemes.

PROPOSITION 6.1 The functor Spec is a contravariant equivalence from the category of
commutative rings to the category of affine schemes, with quasi-inverse .V;O/ O.V /.

PROOF. Straightforward. 2

We often write V for .V;O/, and we call O.V / the coordinate ring of V . The reader
should think of an affine scheme as being a topological space V together with the structure
provided by the ring O.V /.

NOTES The above is only a sketch. A more detailed account can be found, for example, in Mumford
1966, II �1.

6b Affine groups as affine group schemes

We now fix commutative ring k. An affine scheme over k (or an affine k-scheme) is an
affine scheme V together with a morphism V ! Speck. As a k-algebra is a commutative
ring together with a homomorphism k!A, we see that Spec defines a contravariant equiv-
alence from the category of k-algebras to the category of affine k-schemes. For any finite

13Recall that this means that the first arrow is the equalizer of the pair of arrows.
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family .Ai /i2I of k-algebras,
N
i2I Ai is the direct sum of the Ai in the category of k-

algebras, and so Spec.
N
i2I Ai / is the direct product14 of the affine k-schemes Spec.Ai /.

It follows that finite products exist in the category of affine k-schemes, and so we can define
an affine group scheme over k to be a group object in this category (see 2.5).

THEOREM 6.2 The functor Spec defines an equivalence from the category of affine groups
over k to the category of affine group schemes over k.

PROOF. The functor Spec sends a k-algebra A equipped with a homomorphism �WA!

A˝A to an affine k-scheme V equipped with a morphismmWV �V ! V . The pair .A;�/
is an affine group if and only if there exist homomorphisms k-algebra �WA! k and S WA!
A such that the diagrams (29) and (33) commute (see 5.15). But such a pair .�;S/ gives
rise to morphisms eW�! V and invWV ! V such that the diagrams (35) and (36) commute
(and conversely).

[Alternatively, the functor Spec maps a pair .A;�/, �WA! A˝A, to a pair .V;m/,
mWV �V ! V . As hA.B/D .SpecA/.SpecB/, we see that � defines a group structure on
hA.B/ for all k-algebras B if and only if m defines a group structure on V.T / for all affine
k-schemes T . Therefore .A;�/ is an affine group over k if and only if .V;m/ is a group
object in the category of affine schemes over k.] 2

We have constructed a realization of the category .Algk/
opp, and hence a realization of

affine k-groups as groups in a category. This construction has two main applications.

(a) A scheme is defined to be a locally ringed space that admits an open covering by
affine schemes, and a scheme V over k is a scheme together with a morphism V !

Speck. A group scheme over k is a group object in the category of schemes over
k. Therefore, our construction embeds the category of affine groups over k into the
much larger category of group schemes over k. This is important, but will not be
pursued here. The interested reader is referred to SGA3.

(b) When k is a field, the affine scheme attached to an affine algebraic group can be
regarded as a variety over k (perhaps with nilpotents in the structure sheaf). This
gives us a geometric interpretation of the algebraic group, to which we can apply
algebraic geometry. This we explain in the remainder of this section.

6c The topology of an affine scheme

6.3 A topological space V is noetherian if every ascending chain of open subsets U1 �
U2 � �� � eventually becomes constant. A topological space is irreducible if it is nonempty
and not the union of two proper closed subsets. Every noetherian topological space V can
be expressed as the union of a finite collection I of irreducible closed subsets:

V D
[
fW jW 2 I g:

Among such collections I there is exactly one that is irredundant in the sense that no sub-
set in I contains a second (CA 12.10). The elements of this I are called the irreducible
components of V .

14Fibred product over Speck in the category of all schemes.
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6.4 When A is a noetherian ring, every descending chain of closed subsets in spec.A/
eventually becomes constant, and so spec.A/ is noetherian. Moreover, the map a 7! V.a/
defines one-to-one correspondences

radical ideals $ closed subsets

prime ideals $ irreducible closed subsets

maximal ideals $ one-point sets:

The ideal corresponding to a closed set W is I.W /D
T
fp j p 2W g. The nilradical N of

A is the smallest radical ideal, and so it corresponds to the whole space spec.A/. Therefore
spec.A/ is irreducible if and only if N is prime.

For the remainder of this section, we assume that k is a field.

6d Affine k-algebras

An affine k-algebra is a finitely generated k-algebra A such that kal˝k A is reduced. If
A is affine, then K˝k A is reduced for all fields K containing k; in particular, A itself
is reduced (CA 18.3). When k is perfect, every reduced finitely generated k-algebra is an
affine k-algebra (CA 18.1). The tensor product of two affine k-algebras is again an affine
k-algebra (CA 18.4):

6e Schemes algebraic over a field

Let k be a field, and let V be an affine k-scheme. When OV .V / is a finitely generated
k-algebra (resp. an affine k-algebra), V is called an affine algebraic scheme over k (resp.
an affine algebraic variety over k).

For schemes algebraic over a field it is convenient to ignore the nonclosed points and
work only with the closed points. What makes this possible is that, for any homomorphism
'WA! B of algebras finitely generated over a field, Zariski’s lemma shows that the pre-
image of a maximal ideal in B is a maximal ideal in A.15

For a finitely generated k-algebra A, define spm.A/ to be the set of maximal ideals in
A endowed with the topology for which the closed sets are those of the form

V.a/
def
D fm maximal jm� ag; a an ideal in A:

The inclusion map spm.A/ ,! spec.A/ identifies spm.A/ with the set of closed points of
spec.A/, and the map S 7! S \ spm.A/ is a bijection from the open (resp. closed) subsets
of spec.A/ onto the open (resp. closed) subsets of spm.A/. As noted, Zariski’s lemma
shows that spm is a contravariant functor from the category of finitely generated k-algebras
to topological spaces. On V D spm.A/ there is a sheaf OV such that OV .D.f //'Af for

15Recall (CA 11.1) that Zariski’s lemma says that a field K that is finitely generated as an algebra over a
subfield k is, in fact, finitely generated as a vector space over k. Let 'WA! B be a homomorphism of finitely
generated k-algebras. For any maximal ideal m in B , B=m is a field, which Zariski’s lemma shows to be finite
over k. Therefore the image of A in B=m is finite over k. As it is an integral domain, this implies that it is a
field, and so '�1.m/ is a maximal ideal.
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all f 2 A. It can be defined the same way as for spec.A/, or as the restriction to spm.A/ of
the sheaf on spec.A/. When working with affine algebraic schemes (or varieties), implicitly
we use max specs. In other words, all points are closed.

When k is algebraically closed, the definition of an affine algebraic variety over k that
we arrive at is essentially the same as that in AG, Chapter 3 — see the next example.

EXAMPLE 6.5 Let k be an algebraically closed field, and endow kn with the topology for
which the closed sets are the zero-sets of families of polynomials. Let V be a closed subset
of kn, let a be the set of polynomials that are zero on V , and let

kŒV �D kŒX1; : : : ;Xn�=aD kŒx1; : : : ;xn�:

A pair of elements g;h 2 kŒV � with h¤ 0 defines a function

P 7! g.P /
h.P /
WD.h/! k

on the open subset D.h/ of V where h is nonzero. A function f WU ! k on an open subset
U of V is said to be regular if it is of this form in a neighbourhood of each point of U . Let
O.U / be the set of regular functions on U . Then U  O.U / is a sheaf of k-algebras on V ,
and .V;O/ is an affine algebraic scheme over k with O.V /D kŒV �. See AG 3.4 — the map

.a1; : : : ;an/ 7! .x1�a1; : : : ;xn�an/WV ! spm.kŒV �/

is a bijection because of the Nullstellensatz. When V D kn, the scheme .V;O/ is affine
n-space An.

EXAMPLE 6.6 Let k be an algebraically closed field. The affine algebraic scheme Spm.kŒX;Y �=.Y //
can be identified with the scheme attached to the closed subset Y D 0 of k�k in (6.5). Now
consider Spm.kŒX;Y �=.Y 2//. This has the same underlying topological space as before
(namely, the x-axis in k�k), but it should now be thought of as having multiplicity 2, or as
being a line thickened in another dimension.

6.7 Let K be a field containing k. An affine algebraic scheme V over k defines an affine
algebraic scheme VK over K with O.VK/DK˝kO.V /.

6.8 An affine algebraic scheme V over a field k is said to be reduced if O.V / is reduced,
and it is said to be geometrically reduced if Vkal is reduced. Thus V is geometrically
reduced if and only if O.V / is an affine k-algebra, and so a “geometrically reduced affine
algebraic scheme” is another name for an “affine algebraic variety”. Let N be the nilradical
of O.V /. Then

V is reduced ” ND 0I

V is irreducible ” N is prime;

V is reduced and irreducible ” O.V / is an integral domain.

The first statement follows from the definitions, the second statement has already been noted
(p. 56), and the third statement follows from the first two.
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6.9 Recall (CA 3.12) that the height ht.p/ of a prime ideal p in a noetherian ring A is the
greatest length d of a chain of distinct prime ideals

p� p1 � �� � � pd ,

and that the Krull dimension of A is

supfht.m/ jm 2 spm.A/g.

6.10 The dimension of an affine algebraic scheme V is the Krull dimension of O.V / —
this is finite (CA 13.11). When V is irreducible, the nilradical N of O.V / is prime, and
so O.V /=N is an integral domain. In this case, the dimension of V is the transcendence
degree over k of the field of fractions of O.V /=N, and every maximal chain of distinct
prime ideals in O.V / has length dimV (CA 13.8). Therefore, every maximal chain of
distinct irreducible closed subsets of V has length dimV . For example, the dimension of
An is the transcendence degree of k.X1; : : : ;Xn/ over k, which is n.

6f Algebraic groups as groups in the category of affine algebraic schemes

Finite products exist in the category of affine algebraic schemes over k. For example, the
product of the affine algebraic schemes V andW is Spec.O.V /˝O.W //, and �D Spm.k/
is a final object. Therefore monoid objects and group objects are defined. A monoid (resp.
group) in the category of affine algebraic schemes over k is called an affine algebraic
monoid scheme (resp. affine algebraic group scheme) over k.

As the tensor product of two affine k-algebras is again affine (�6d), the category of
affine algebraic varieties also has products. A monoid object (resp. group object) in the
category of affine algebraic varieties is called an affine monoid variety (resp. affine group
variety).

An affine algebraic scheme V defines a functor

R V.R/
def
D Homk-alg.O.V /;R/; (43)

from k-algebras to sets. For example, An.R/ ' Rn for all k-algebras R. Let V 0 be the
functor defined by V . It follows from (6.1) and the Yoneda lemma that V  V 0 is an
equivalence from the category of algebraic schemes over k to the category of functors from
k-algebras to sets representable by finitely generated k-algebras. Group structures on V
correspond to factorizations of V 0 through the category of groups. Thus V  V 0 is an
equivalence from the category of affine algebraic group schemes over k to the category
of functors Algk ! Grp representable by finitely generated k-algebras, with quasi-inverse
G Spm.O.G//.

The functor V  O.V / is an equivalence from the category of algebraic schemes over k
to the category of finitely generated k-algebras (cf. 6.1). Group structures on V correspond
to Hopf algebra structures on O.V /. Thus V  O.V / is a contravariant equivalence from
the category of affine algebraic group schemes over k to the category of finitely generated
Hopf algebras over k.

SUMMARY 6.11 Let k be a field. There are canonical equivalences between the following
categories:

(a) the category of affine algebraic groups over kI
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(b) the category of functors Algk! Grp representable by finitely generated k-algebras;
(c) the opposite of the category of finitely generated Hopf algebras over k;
(d) the category of affine algebraic group schemes over k.

There is a similar statement with “group” and “Hopf algebra” replaced by “monoid” and
“bi-algebra”.

For an affine algebraic groupG, we let .jGj;O.G//, or just jGj, denote the correspond-
ing affine group scheme (or group variety); thus jGj D Spm.O.G//. The dimension of an
algebraic group G is defined to be the Krull dimension of O.G/. When O.G/ is an integral
domain, this is equal to the transcendence degree of O.G/ over k (CA 13.8).

IS THE SET jGj A GROUP?

Not usually. The problem is that the functor spm does not send sums to products. For
example, when k1 and k2 are finite field extensions of k, the set spm.k1˝k k2/ may have
several points16 whereas spm.k1/� spm.k2/ has only one. For an algebraic group G, there
is a canonical map jG�Gj ! jGj� jGj, but the map

jG�Gj ! jGj

defined by m need not factor through it.
However, jGj is a group when k is algebraically closed. Then the Nullstellensatz shows

that jGj ' G.k/, and so jGj inherits a group structure from G.k/. To put it another way,
for finitely generated algebras A1 and A2 over an algebraically closed field k;

spm.A1˝A2/' spm.A1/� spm.A2/ (44)

(as sets, not as topological spaces17), and so the forgetful functor .V;O/ V sending an
affine algebraic scheme over k to its underlying set preserves finite products, and hence also
monoid objects and group objects.

Assume k is perfect, and let � D Gal.kal=k/. Then jGj ' � nG.kal/ and G.k/ '
G.kal/� . In other words, jGj can be identified with the set of � -orbits in G.kal/ and
G.k/ with the set of � -orbits consisting of a single point. While the latter inherits a group
structure from G.k/, the former need not.

The situation is worse with spec. For example, (44) fails for spec even when k is
algebraically closed.

16For example, if k1=k is separable, then

k1 D kŒa�' kŒX�=.f /

for a suitable element a and its minimum polynomial f . Let f D f1 � � �fr be the factorization of f into its
irreducible factors in k2 (they are distinct because k1=k is separable). Now

k1˝k k2 ' k2ŒX�=.f1 � � �fr /'
Yr

iD1
k2ŒX�=.fi /

by the Chinese remainder theorem. Therefore spm.k1˝k k2/ has r points.
17When regarded as a functor to topological spaces, .V;O/ V does not preserve finite products: the

topology on V �W is not the product topology. For an affine algebraic group G, the map mW jGj� jGj ! jGj
is not usually continuous relative to the product topology, and so jGj is not a topological group for the Zariski
topology.
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6g Terminology

From now on “group scheme” and “algebraic group scheme” will mean “affine group
scheme” and “affine algebraic group scheme”; similarly for “group variety”, “monoid
variety”, “monoid scheme” and “algebraic monoid scheme”.

6h Homogeneity

Let G be an algebraic group over a field k. An element a of G.k/ defines an element of
G.R/ for each k-algebra R, which we denote aR (or just a). Let e denote the identity
element of G.k/.

PROPOSITION 6.12 For each a 2G.k/, the natural map

LaWG.R/!G.R/; g 7! aRg;

is an isomorphism of set-valued functors. Moreover,

Le D idG and La ıLb D Lab; all a;b 2G.k/:

Here e is the neutral element in G.k/.

PROOF. The second statement is obvious, and the first follows from it, because the equali-
ties

La ıLa�1 D Le D idG

show that La is an isomorphism. 2

The homomorphism O.G/! O.G/ defined by La is the composite of the homomor-
phisms

O.G/ �
�!O.G/˝O.G/

a˝O.G/
������! k˝O.G/'O.G/. (45)

For a 2G.k/, we let ma denote the kernel of aWO.G/! k; thus

ma D ff 2O.G/ j fk.a/D 0g

(see the notations 2.16). Then O.G/=ma ' k, and so ma is a maximal ideal in O.G/. Note
that O.G/ma is the ring of fractions obtained from O.G/ by inverting the elements of the
multiplicative set ff 2O.G/ j fk.a/¤ 0g:

PROPOSITION 6.13 For each a 2G.k/, O.G/ma 'O.G/me :

PROOF. The isomorphism `aWO.G/!O.G/ corresponding (by the Yoneda lemma) to La
is defined by `a.f /R.g/ D fR.aRg/, all g 2 G.R/. Therefore, `�1a me D ma, and so `a
extends to an isomorphism O.G/ma!O.G/me (because of the universal property of rings
of fractions; CA 6.1). 2

COROLLARY 6.14 When k is algebraically closed, the local rings O.G/m at maximal ide-
als m of O.G/ are all isomorphic.
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PROOF. When k is algebraically closed, the Nullstellensatz (CA 11.6) shows that all max-
imal ideals in O.G/ are of the form ma for some a 2G.k/. 2

A
6.15 The corollary fails when k is not algebraically closed. For example, for the algebraic

group �3 over Q,

O.�3/D
kŒX�

.X3�1/
'

kŒX�

.X �1/
�

kŒX�

.X2CXC1/
'Q�QŒ

p
�3�;

and so the local rings are Q and QŒ
p
�3�.

6i Reduced algebraic groups

An algebraic group G is reduced if jGj is reduced, i.e., if O.G/ has no nilpotents.

PROPOSITION 6.16 Let G be a reduced algebraic group over a field k. If G.K/D f1g for
some algebraically closed field K containing k, then G is the trivial algebraic group, i.e.,
O.G/D k.

PROOF. Every maximal ideal of O.G/ arises as the kernel of a homomorphism O.G/!
K (Nullstellensatz, CA 11.5), and so O.G/ has only one maximal ideal m. As O.G/ is
reduced, the intersection of its maximal ideals is zero (CA 11.8), and so mD 0. Therefore
O.G/ is a field. It contains k, and the identity element inG is a homomorphism O.G/! k,
and so O.G/D k. 2

A
6.17 The proposition is false for nonreduced groups. For example, ˛p.K/D f1g for every

field K containing k, but ˛p is not the trivial group.

PROPOSITION 6.18 Let G be an algebraic group over a perfect field k, and let N be
the nilradical of O.G/. There is a unique Hopf algebra structure on O.G/=N such that
O.G/!O.G/=N is a homomorphism of Hopf algebras. LetGred!G be the correspond-
ing homomorphism of algebraic groups. Every homomorphism H !G with H a reduced
algebraic group factors uniquely through Gred!G.

PROOF. Let A D O.G/ and Ared D O.G/=N. Then Ared is a finitely generated reduced
algebra over a perfect field, and so it is an affine k-algebra (�6d). Hence Ared˝k Ared is
also an affine k-algebra. In particular, it is reduced, and so the map

A
�
�! A˝A! Ared˝Ared

factors throughAred. Similarly, S and � are defined onAred, and it follows that there exists a
unique structure of a Hopf algebra on Ared such that A!Ared is a homomorphism of Hopf
algebras. Every homomorphism from A to a reduced k-algebra factors uniquely through
A! Ared, from which the final statement follows. 2

The algebraic group Gred is called the reduced algebraic group attached to G.
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A
6.19 When k is not perfect, a Hopf algebra structure on A need not pass to the quotient
A=N. For example, let k be a field of characteristic 2, and let a be a nonsquare in k. Then
R G.R/D fx 2R j x4D ax2g is an additive commutative algebraic group, but O.G/=N
is not a Hopf algebra quotient of O.G/ (see Exercise 13-7 below).

NOTES Gred is an affine subgroup of G if Ared˝Ared is reduced.

6j Smooth algebraic schemes

We review some definitions and results in commutative algebra.

6.20 Let m be a maximal ideal of a noetherian ring A, and let nD mAm be the maximal
ideal of the local ring Am; for all natural numbers r � s, the map

aCms 7! aCnsWmr=ms! nr=ns

is an isomorphism (CA 6.7).

6.21 Let A be a local noetherian ring with maximal ideal m and residue field k. Then
m=m2 is a k-vector space of dimension equal to the minimum number of generators of
m (Nakayama’s lemma, CA 3.9). Moreover, ht.m/ � dimk.m=m2/ (CA 16.5), and when
equality holds A is said to be regular. Every regular noetherian local ring is an integral
domain (CA 17.3).

6.22 A point m of an affine algebraic scheme V is said to be regular if the local ring
O.V /m is regular, and V is said to be regular if all of its closed points are regular.18 A reg-
ular affine algebraic scheme is reduced. To see this, let f be a nilpotent element of O.V /;
as f maps to zero in O.V /m, sf D 0 for some s 2O.V /rm; therefore the annihilator of
f is an ideal O.V / not contained in any maximal ideal, and so it equals O.V /.

6.23 An affine algebraic scheme V over k is said to be smooth if Vkal is regular. If V is
smooth, then VK is regular for all fields K containing k; in particular, V itself is regular
(CA 18.14). If V is smooth, then it follows from (6.22) that O.V / is an affine k-algebra,
and so V is an algebraic variety. Every affine algebraic variety contains a regular point (CA
18.15).

6k Smooth algebraic groups

An algebraic group G is said to be smooth if jGj is smooth, and it is connected if jGj is
connected (as a topological space).

PROPOSITION 6.24 LetH be an algebraic subgroup of an algebraic groupG. Then dimH �
dimG, and dimH < dimG if G is smooth and connected and H ¤G.

PROOF. Because O.H/ is a quotient of O.G/, dim.O.H//� dim.O.G//. If G is smooth
and connected, then O.G/ is an integral domain; if H ¤ G, then dimH < dimG by (CA
13.3). 2

18This then implies that local ring at every (not necessarily closed) point is regular (for a noetherian ring A,
if Am is regular for all maximal ideals, then Ap is regular for all prime ideals (CA 17.5a).
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PROPOSITION 6.25 An algebraic group G over an algebraically closed field k is smooth if
and only if O.G/me is regular, where me D Ker.�WO.G/! k/.

PROOF. If O.G/m is regular for mDme, then O.G/m is regular for all m by homogeneity
(6.13). Hence G is smooth. 2

PROPOSITION 6.26 (a) An algebraic group G is smooth if and only if jGj is geometrically
reduced (i.e., an algebraic variety).

(b) An algebraic group G over a perfect field is smooth if and only if jGj is reduced.

PROOF. (a) If G is smooth, then jGj is an algebraic variety by (6.23). For the converse, we
have to show that Gkal is regular. According to (6.23), Gkal has a regular point, and so, by
homogeneity (6.13), all of its points are regular.

(b) When k is perfect, a finitely generated k-algebra A is reduced if and only if kal˝A

is reduced (see CA 18.1). Thus (b) follows from (a). 2

COROLLARY 6.27 An algebraic group G over an algebraically closed field k is smooth if
every nilpotent element of O.G/ is contained in m2e .

PROOF. Let NG be the reduced algebraic group attached to G (see 6.18), and let Ne be the
neutral element of NG.k/. By definition, O. NG/ D O.G/=N where N is the nilradical of
O.G/. Every prime ideal of O.G/ contains N, and so the prime ideals of O.G/ and O. NG/
are in natural one-to-one correspondence. Therefore me and m Ne have the same height, and
so

dimO. NG/m Ne D dimO.G/me
(Krull dimensions). The hypothesis on O.G/ implies that

me=m
2
e !m Ne=m

2
Ne

is an isomorphism of k-vector spaces. Because j NGj is a reduced, NG is smooth (6.26); in
particular, O. NG/m Ne is regular, and so

dimk.m Ne=m
2
Ne/D dimO. NG/m Ne .

Therefore
dimk.me=m

2
e/D dimO.G/me ;

and so O.G/me is regular. This implies that G is smooth (6.25). 2

A
6.28 A reduced algebraic group over a nonperfect field need not be smooth. For example,

let k be such a field, so that char.k/D p ¤ 0 and there exists an element a of k that is not
a pth power. Then the subgroup G of Ga �Ga defined by Y p D aXp is reduced but not
smooth. Indeed,

O.G/D kŒX;Y �=.Y p�aXp/;

which is an integral domain because Y p�aXp is irreducible in kŒX;Y �, but

O.Gkal/D kalŒX;Y �=.Y p�aXp/D kalŒx;y�
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contains the nilpotent element y � a
1
p x. The reduced subgroup .Gkal/red of Gkal is the

subgroup of Ga �Ga is defined by Y D a
1
pX , which is not defined over k (as a subgroup

of Ga�Ga).
Note that G is the kernel of .x;y/ 7! yp�axpWGa�Ga

˛
�!Ga. Therefore, although

Ker.˛kal/ is (of course) defined over k, Ker.˛kal/red is not.

6l Algebraic groups in characteristic zero are smooth (Cartier’s theorem)

We first prove two lemmas.

LEMMA 6.29 Let V and V 0 be vector spaces over a field,19 and let W be a subspace of V .
For x 2 V , y 2 V 0,

x˝y 2W ˝V 0 ” x 2W or y D 0:

PROOF. The element x˝y lies in W ˝V 0 if and only if its image in V ˝V 0=W ˝V 0 is
zero. But

V ˝V 0=W ˝V 0 ' .V=W /˝V 0;

and the image Nx˝y of x˝y in .V=W /˝V 0 is zero if and only if Nx D 0 or y D 0. 2

LEMMA 6.30 Let .A;�;�/ be a Hopf algebra over k, and let I D Ker.�/.

(a) As a k-vector space, AD k˚I .
(b) For any a 2 I ,

�.a/D a˝1C1˝a mod I ˝I .

PROOF. (a) The maps k �! A
�
�! k are k-linear, and compose to the identity. Therefore

AD k˚I and a 2 A decomposes as aD �.a/C .a� �.a// 2 k˚I .
(b) For a 2 A, write aD a0Ca00 with a0 D �.a/ 2 k and a00 2 I: Let

�.a/D
P
b˝ c; b;c 2 A:

From the commutativity of the second diagram in (29), p. 42, we find that

1˝aD
P
b0˝ c in k˝A

a˝1D
P
b˝ c0 in A˝k.

Therefore

�.a/�a˝1�1˝aD
P
.b˝ c�b0˝ c�b˝ c0/

D
P
.b00˝ c00�b0˝ c0/

��
P
b0˝ c0 mod I ˝I .

Now

..�;�/ı�/.a/D .�;�/.
P
b˝ c/D

P
b0˝ c0

..�;�/ı�/.a/D .� � �/.a/D �.a/ (as � � � def
D .�;�/ı�, (8), p. 22),

and so
P
b0˝ c0 D 0 if a 2 I . 2

19It suffices to require V and V 0 to be modules over a ring with V 0 faithfully flat.
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THEOREM 6.31 (CARTIER 1962) Every algebraic group over a field of characteristic zero
is smooth.

PROOF. We may replace k with its algebraic closure. Thus, let G be an algebraic group
over an algebraically closed field k of characteristic zero, and letADO.G/. Let mDme D
Ker.�/. Let a be a nilpotent element of A; according to (6.27), it suffices to show that a lies
in m2.

If a maps to zero in Am, then it maps to zero in Am=.mAm/
2, and therefore in A=m2 by

(6.20), and so a 2m2. Thus, we may suppose that there exists an n� 2 such that an D 0 in
Am but an�1 ¤ 0 in Am. Now san D 0 in A for some s … m. On replacing a with sa, we
find that an D 0 in A but an�1 ¤ 0 in Am.

Now a 2m (because A=mD k has no nilpotents), and so (see 6.30)

�.a/D a˝1C1˝aCy with y 2m˝km.

Because � is a homomorphism of k-algebras,

0D�.an/D .�a/n D .a˝1C1˝aCy/n. (46)

When expanded, the right hand side becomes a sum of terms

an˝1; n.an�1˝1/ � .1˝aCy/; .a˝1/h.1˝a/iyj .hC iCj D n, iCj � 2/:

As an D 0 and the terms with iCj � 2 lie in A˝m2, equation (46) shows that

nan�1˝aCn.an�1˝1/y 2 A˝m2,

and so
nan�1˝a 2 an�1m˝ACA˝m2 (inside A˝k A).

In the quotient A˝
�
A=m2

�
this becomes

nan�1˝ Na 2 an�1m˝A=m2 (inside A˝A=m2). (47)

Note that an�1 … an�1m, because if an�1 D an�1m with m 2 m, then .1�m/an�1 D 0
and, as 1�m is a unit in Am, this would imply an�1 D 0 in Am, which is a contradiction.
Moreover n is a unit in A because it is a nonzero element of k. We conclude that nan�1 …
an�1m, and so (see 6.29) NaD 0. In other words, a 2m2, as required. 2

COROLLARY 6.32 Let G be an algebraic group over a field of characteristic zero. If
G.K/D f1g for some algebraically closed field K, then G is the trivial algebraic group.

PROOF. According to the theorem, G is reduced, and so we can apply Proposition 6.16. 2

ASIDE 6.33 Let k be an arbitrary commutative ring. A functor F WAlgk! Set is said to be formally
smooth if, for any k-algebra A and nilpotent ideal n in A, the map F.A/! F.A=n/ is surjective.
A k-scheme X is smooth over k if it is locally of finite presentation and the functor A X.A/

def
D

Homk.SpecA;X/ is formally smooth. There is the following criterion (SGA1, II):

a finitely presented morphism is smooth if it is flat and its geometric fibres are nonsin-
gular algebraic varieties.

Therefore, when the ring k contains a field of characteristic zero, Cartier’s theorem (6.31) shows
that every flat affine group scheme of finite presentation over k is smooth.
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6m Smoothness in characteristic p ¤ 0

THEOREM 6.34 An algebraic groupG over an algebraically closed field k of characteristic
p ¤ 0 is smooth if O.G/ has the following property:

a 2O.G/; ap D 0 H) aD 0: (48)

PROOF. Let a be a nilpotent element of O.G/. As in the proof of Theorem 6.31, we may
suppose that an D 0 in O.G/ but an�1 ¤ 0 in O.G/me . If pjn, then .a

n
p /p D 0, and so

a
n
p D 0, which is a contradiction. Therefore n is nonzero in k, and the argument in the

proof of Theorem 6.31 shows that a 2m2e . 2

COROLLARY 6.35 For all r � 1, the image of a 7! ap
r

WO.G/! O.G/ is a Hopf subal-
gebra of O.G/, and for all sufficiently large r , it is a reduced Hopf algebra.

PROOF. Let k be a field of characteristic p ¤ 0. For a k-algebra R, we let fR denote the
homomorphism a 7! apWR! R. When R D k, we omit the subscript. We let fR denote

the ring R regarded as a k-algebra by means of the map k
f
�! k �! R. Let G be an

algebraic group over k, and let G.p/ be the functor R G.fR/. This is represented by
k˝f;kO.G/ (tensor product of O.G/ with k relative to the map f Wk! k),

R

O.G/ k˝f;kO.G/

k k;
f

and so it is again an algebraic group. The k-algebra homomorphism fRWR ! fR de-
fines a homomorphism G.R/! G.p/.R/, which is natural in R, and so arises from a
homomorphism F WG!G.p/ of algebraic groups. This homomorphism corresponds to the
homomorphism of Hopf algebras

c˝a 7! capWO.G.p//!O.G/:

When k is perfect, this has image O.G/p, which is therefore a Hopf subalgebra of O.G/
(Exercise 5-10). On repeating this argument with f and F replaced by f r and F r , we find
that O.G/pr is a Hopf subalgebra of O.G/.

Concerning the second part of the statement, because the nilradical N of O.G/ is
finitely generated, there exists an exponent n such that an D 0 for all a 2 N. Let r be
such that pr � n; then ap

r

D 0 for all a 2N. With this r , O.G/pr satisfies (48). As it is a
Hopf algebra, it is reduced. 2

NOTES The first part of (6.35) only requires that k be perfect (probably the same is true of the
remaining statements).
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6n Transporters

Recall that an action of a monoid G on a set X is a map

.g;x/ 7! gxWG�X !X

such that

(a) .g1g2/x D g1.g2x/ for all g1;g2 2G, x 2X , and
(b) ex D x for all x 2X (here e is the identity element of G).

Now let G be an affine monoid over k, and let X be a functor from the category of k-
algebras to sets, i.e., an object of Alg_

k
. An action of G on X is a natural transformation

G �X ! X such that G.R/�X.R/! X.R/ is an action of the monoid G.R/ on the set
X.R/ for all k-algebras R. Let Z and Y be subfunctors of X . The transporter TG.Y;Z/
of Y into Z is the functor

R fg 2G.R/ j gY �Zg;

where the condition gY � Z means that gY.R0/ � Z.R0/ for all R-algebras R0, i.e., that
gY �Z as functors on the category of R-algebras.

In the remainder of this subsection, we shall define the notion of a closed subfunctor,
and prove the following result.

THEOREM 6.36 Let G�X ! X be an action of an affine monoid G on a functor X , and
let Z and Y be subfunctors of X such that Z is closed in X . If Y is representable, then
TG.Y;Z/ is represented by a quotient of O.G/.

CLOSED SUBFUNCTORS

A subfunctor Z of a functor Y from Algk to Set is said to be closed if, for every k-algebra
A and map of functors hA! Y , the fibred product Z�Y hA is represented by a quotient of
A. The Yoneda lemma identifies a map hA! Y with an element ˛ of Y.A/, and, for any
k-algebra R, �

Z�Y h
A
�
.R/D f'WA!R j '.˛/ 2Z.A/g:

Thus, Z is closed in Y if and only if, for every k-algebra A and ˛ 2 Y.A/, the functor of
k-algebras

R f'WA!R j '.˛/ 2Z.A/g

is represented by a quotient of A; i.e., there exists an ideal a�A such that, for a homomor-
phism 'WA!R of k-algebras,

˛R 2Z.R/ ” '.a/D 0;

where ˛R is the image of ˛ under Y.A/! Y.R/.

EXAMPLE 6.37 Let Z be a subfunctor of Y D hB for some k-algebra B . For the identity
map hB! Y , the functorZ�Y hB DZ. Therefore, ifZ is closed in hB , then it represented
by a quotient of B . Conversely, let Z � hB is the functor defined by an ideal b� B , i.e.,

Z.R/D f'WB!R j '.b/D 0g:
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Then Z is closed because, for any ˛WB! A, the functor Z�hB h
A is

R f'WA!R j ' ı˛ 2Z.R/g;

which is represented by A=˛.b/.20

EXAMPLE 6.38 Let Y be the functor An D .R Rn/. A subfunctor of An is closed if
and if it is defined by a finite set of polynomials in kŒX1; : : : ;Xn� in the sense of �2a. This
is the special case B D kŒX1; : : : ;Xn� of Example 6.37.

For a k-algebra B and functor X WAlgB ! Set, we let ˘B=kX denote the functor R 
X.B˝R/ (cf. �4d).

LEMMA 6.39 If Z is a closed subfunctor of X , then, for any k-algebra B , ˘B=kZ is a
closed subfunctor of ˘B=kX .

PROOF. Let A be a k-algebra, and ˛ 2 X.B ˝A/. To prove that ˘B=kZ is closed in
˘B=kX we have to show that there exists an ideal a�A such that, for every homomorphism
'WA!R of k-algebras,

.B˝'/.˛/ 2Z.B˝R/ ” '.a/D 0:

Because Z is closed in X , there exists an ideal b� B˝A such that

.B˝'/.˛/ 2Z.B˝R/ ” .B˝'/.b/D 0: (49)

Choose a basis .ei /i2I for B as k-vector space. Each element b of B˝A can be expressed
uniquely as b D

P
i2I ei ˝ bi , bi 2 A, and we let a be the ideal in A generated by the

coordinates bi of the elements b 2 b. Then b� B˝a, and a is the smallest ideal in A with
this property, i.e.,

a� a0 ” b� B˝a0 (a0 an ideal in A). (50)

On applying (50) with a0 D Ker', we see that

a� Ker.'/ ” b� B˝Ker.'/D Ker.B˝'/:

Combined with (49), this shows that a has the required property. 2

LEMMA 6.40 If Z is a closed subfunctor of X , then, for any map T ! X of functors,
T �X Z is a closed subfunctor of T .

PROOF. Let hA! T be a map of functors. Then hA�T T �X Z ' hA�X Z, and so the
statement is obvious. 2

LEMMA 6.41 LetZ and Y be subfunctors of a functorX , and letG�X!X be an action
of an affine monoid G on X . Assume Y D hB . For a k-algebra R, let yR 2 Y.R˝B/ be
the homomorphism b 7! 1˝bWB!R˝B . Then

TG.Y;Z/.R/D fg 2G.R/ j gyR 2Z.R˝B/g:

20More generally, if Y is the functor of k-algebras defined by a scheme Y 0, then the closed subfunctors of
Y are exactly those defined by closed subschemes of Y 0.
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PROOF. Certainly, LHS�RHS. For the reverse inclusion, let R0 be an R-algebra, and let
˛ 2 Y.R0/D Hom.B;R0/. Then yR maps to ˛ under the map Y.R˝B/! Y.R0/ defined
by R!R0 and B

˛
�!R0, and so

gyR 2Z.R˝B/ H) g˛ 2Z.R0/: 2

We now prove Theorem 6.36. We may suppose that Y D hB . Lemma 6.41 shows that

TG.Y;Z/'G�˘B=kX ˘B=kZ;

where G!˘B=kX is the natural transformation g 7! gyRWG.R/! X.R˝B/. Lemma
6.39 shows that ˘B=kZ is a closed subfunctor of ˘B=kX , and so it follows from (6.40)
that TG.Y;Z/ is a closed subfunctor of hG . This means that it is represented by a quotient
of O.G/.

ASIDE 6.42 The assumption that k is a field was used in this subsection only to deduce in the proof
of Lemma 6.39 that B is free as a k-module. Thus Theorem 6.36 is true over a commutative ring k
when Y is a representable by a k-algebra B that is free as a k-module (or, more generally, locally
free; cf. DG I, �2, 7.7, p. 65).

6o Appendix: The faithful flatness of Hopf algebras

In this subsection, we prove the following very important technical result.

THEOREM 6.43 For any Hopf algebras A� B over a field k, B is faithfully flat over A.

For any field k0 � k, the homomorphism A! k0˝A is faithfully flat, and so it suffices
to show that k0˝B is faithfully flat over k0˝A (CA 9.4). Therefore we may suppose that
k is algebraically closed.

Let 'WH !G be a homomorphism of affine groups such that O.H !G/D B A.

CASE THAT A IS REDUCED AND A AND B ARE FINITELY GENERATED.

We begin with a remark. Let V be an algebraic scheme over an algebraically closed field.
Then V is a finite union V D V1 [ � � � [ Vr of its irreducible components (6c). Assume
that V is homogeneous, i.e., for any pair .a;b/ of points of V , there exists an isomorphism
V ! V sending a to b. Then V is a disjoint union of the Vi . As each Vi is closed, this
means that the Vi are the connected components of V . In particular, they are open. When
Vi is reduced, the ring O.Vi / is an integral domain.

We now regard H and G as algebraic group schemes, i.e., we write H and G for
jH j and jGj. Then H and G are disjoint unions of their connected components, say H DF
i2I Hi andGD

F
j2J Gj . BecauseG is reduced, each ring O.Gi / is an integral domain,

and O.G/ D
Q
j2J O.Gj /. Each connected component Hi of H maps into a connected

componentGj.i/ ofG. The map i 7! i.j /WI ! J is surjective, because otherwise O.G/!
O.H/ would not be injective (any f 2 O.G/ such that f jGj D 0 for j ¤ j0 would have
f ı˛ D 0).

Let H ı and Gı be the connected components of H and G containing the identity ele-
ments. ThenH ı maps intoGı. BecauseG is reduced, O.Gı/ is an integral domain, and so
the generic flatness theorem (CA 9.12; CA 16.9) shows that there exists a b 2H ı such that
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O.H/mb is faithfully flat over O.H/m'.b/ . Homogeneity, more precisely, the commutative
diagrams

H
Lb
����! H O.H/me

'
 ���� O.H/mb??y ??y x?? x??

G
La
����! G O.G/me

'
 ���� O.G/ma

(see �6h), now implies that O.H/mb is faithfully flat over O.G/m'.b/ for all b 2H . Hence
O.H/ is flat over O.G/ (CA 9.9), and it remains to show that the map (of sets) 'WH !G is
surjective (CA 9.10c). According to (CA 12.14), the image ofH !G contains a nonempty
open subset U of Gı. For any g 2Gı, the sets U�1 and Ug�1 have nonempty intersection.
This means that there exist u;v 2 U such that u�1 D vg�1, and so g D uv 2 U . Thus the
image of ' contains Gı, and the translates of Gı by points in the image cover G (because
I maps onto J ).

CASE THAT THE AUGMENTATION IDEAL OF A IS NILPOTENT

We begin with a remark. For any homomorphism ˛WH !G of abstract groups, the map

.n;h/ 7! .nh;h/WKer.˛/�H !H �GH (51)

is a bijection — this just says that two elements ofH with the same image inG differ by an
element of the kernel. Similarly, for any homomorphism ˛WH !G of affine groups, there
is an isomorphism

Ker.˛/�H !H �GH (52)

which becomes the map (51) for each k-algebraR. Because of the correspondence between
affine groups and Hopf algebras, this implies that, for any homomorphism A! B of Hopf
algebras, there is a canonical isomorphism

b1˝b2 7! .�b1/.1˝b2/WB˝AB! .B=IAB/˝k B (53)

where IA is the augmentation ideal Ker.A
�
�! k) of A.

Let I D IA, and assume that I is nilpotent, say In D 0. Choose a family .ej /j2J of
elements in B whose image in B=IB is a k-basis and consider the map

.aj /j2J 7!
P
j aj ej WA

.J /! B (54)

where A.J / is a direct sum of copies of A indexed by J . We shall show that (54) is an
isomorphism (hence B is even free as an A-module).

Let C be the cokernel of (54). A diagram chase in

A.J / ����! B ����! C ����! 0??y ??y
.A=I /.J /

onto
����! B=IB

shows that every element of C is the image of an element of B mapping to zero in B=IB ,
i.e., lying in IB . Hence C D IC , and so C D IC D I 2C D �� � D InC D 0. Hence
A.J /! B is surjective.
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For the injectivity, consider diagrams

A.J /
onto
����! B??y ??y

B.J /
onto
����! B˝AB

k.J /
'
����! B=IB??y ??y

.B=IB/.J /
'
����! .B=IB/˝k .B=IB/

in which the bottom arrows are obtained from the top arrows by tensoring on the left with
B and B=IB respectively. If b 2 B.J / maps to zero in B˝AB , then it maps to zero in
B=IB˝kB=IB , which implies that it maps to zero in .B=IB/.J /. Therefore the kernelM
of B.J /! B˝AB is contained in .IB/.J / D I �B.J /.

Recall (53) that
B˝AB ' B˝k B=IB .

As B=IB is free as a k-module (k is a field), B˝kB=IB is free as a left B-module, and so
B˝AB is free (hence projective) as a leftB-module. Therefore there exists aB-submodule
N of B.J / mapping isomorphically onto B˝AB , and

B.J / DM ˚N (direct sum of B-submodules).

We know that
M � I �B.J / D IM ˚IN;

and soM � IM . HenceM � IM � I 2M D �� � D 0. We have shown thatB.J /!B˝AB

is injective, and this implies that A.J /! B is injective because A.J / � B.J /.

CASE THAT A AND B ARE FINITELY GENERATED

We begin with a remark. For any homomorphisms of abstract groups

H??yˇ
G

˛
����! G0;

the map
.n;h/ 7! .n �ˇ.h/;h/WKer.˛/�H !G�G0H

is a bijection. This implies a similar statement for affine groups:

Ker.G!G0/�H 'G�G0H: (55)

After Theorem 6.31, we may suppose that k has characteristic p ¤ 0. According to
(6.35), there exists an n such that O.G/pn is a reduced Hopf subalgebra of O.G/. Let G0

be the algebraic group such that O.G0/DO.G/pn , and consider the diagrams

1 ����! N ����! H ����! G0 O.N /  ���� O.H/
faithfully
 �����

flat
O.G0/??y ??y  x?? x??injective


1 ����! M ����! G ����! G0 O.M/  ���� O.G/  ���� O.G0/
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where N andM are the kernels of the homomorphismsH !G0 and G!G0 respectively.
Because O.G0/ is reduced, the homomorphism O.G0/!O.H/ is faithfully flat, and so

O.G/!O.H/ injective H) .O.G/!O.H//˝O.G0/O.H/ injective.

As k is a direct summand of O.H/, this implies that .O.G/!O.H//˝O.G0/k is injective.
From the diagram

O.N /
(23)
' O.H/˝O.G0/ kx?? x??

O.M/
(23)
' O.G/˝O.G0/ k

we see that O.M/!O.N / is injective, and hence is faithfully flat (because the augmenta-
tion ideal of O.M/ is nilpotent). From the diagrams

N �H
(52)
' H �G0H??y ??y

M �H
(55)
' G�G0H

O.N /˝O.H/ ' O.H/˝O.G0/O.H/x?? x??
O.M/˝O.H/ ' O.G/˝O.G0/O.H/:

we see that .O.G/!O.H//˝O.G0/O.H/ is faithfully flat. As O.G0/!O.H/ is faith-
fully flat, this implies that O.G/!O.H/ is faithfully flat (CA 9.4).

GENERAL CASE

We show in (8.25) below that A and B are directed unions of finitely generated Hopf sub-
algebras Ai and Bi such that Ai � Bi . As Bi is flat as an Ai -module for all i , B is flat as
an A-module (CA 9.13). For the faithful flatness, we use the statement (CA 9.10b):

A! B faithfully flat, mB ¤ B , all maximal ideals m � A, aB ¤ B , all
proper ideals a� A.

Let m be a maximal ideal in A. If 1 2mB , then 1 2 .m\Ai /Bi for some i . But m\Ai ¤
Ai , and so this contradicts the faithful flatness of Bi over Ai . Hence mB ¤ B , and B is
faithfully flat over A.

COROLLARY 6.44 Let A�B be Hopf algebras with B an integral domain, and letK �L
be their fields of fractions. Then B \K D A; in particular, AD B if K D L.

PROOF. Because B is faithfully flat over A, cB \A D cA for any c 2 A. Therefore, if
a=c 2 B , a;c 2 A, then a 2 cB \AD cA, and so a=c 2 A. 2

ASIDE 6.45 Some statements have easy geometric proofs for smooth algebraic groups. In extend-
ing the proof to all algebraic groups, one often has to make a choice between a nonelementary
(sometimes difficult) proof using algebraic geometry, and an elementary but uninformative proof
using Hopf algebras. In general, we sketch the easy geometric proof for smooth algebraic groups,
and give the elementary Hopf algebra proof in detail.

NOTES In most of the literature, for example, Borel 1991, Humphreys 1975, and Springer 1998,
“algebraic group” means “smooth algebraic group” in our sense. Our approach is similar to that in
Demazure and Gabriel 1970 and Waterhouse 1979. The important Theorem 6.31 was announced
in a footnote to Cartier 1962; the direct proof presented here follows Oort 1966. Theorem 6.43 is
proved entirely in the context of Hopf algebras in Takeuchi 1972; the proof presented here follows
Waterhouse 1979, Chapter 14.
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7 Group theory: subgroups and quotient groups.

In this section and in Section 9, we show how the basic definitions and theorems in the
theory of abstract groups can be extended to affine groups. Throughout, k is a field.

7a A criterion to be an isomorphism

PROPOSITION 7.1 A homomorphism of affine groups ˛WH !G is an isomorphism if and
only if

(a) the map ˛.R/WH.R/!G.R/ is injective for all k-algebras R, and
(b) the homomorphism ˛�WO.G/!O.H/ is injective.

PROOF. The conditions are obviously necessary. For the sufficiency, note that the maps

H �GH ⇒H
˛
�!G

give rise to homomorphisms of Hopf algebras

O.G/!O.H/⇒O.H/˝O.G/˝.H/:

In particular, the homomorphisms

x 7! x˝1

x 7! 1˝x

�
WO.H/!O.H/˝O.G/O.H/ (56)

agree on O.G/, and so define elements of H.O.H/˝O.G/O.H// mapping to the same
element in G.O.H/˝O.G/O.H//. Now,

˘ condition (a) with R D O.H/˝O.G/O.H/ implies that the two homomorphisms
(56) are equal, and

˘ condition (b) implies that O.H/ is a faithfully flat O.G/-algebra (see 6.43), and so
the subset of O.H/ on which the two homomorphisms (56) agree is ˛�.O.G// by
(CA 9.6).

On combining these statements, we find that ˛� is surjective, and so it is an isomorphism.2

7b Injective homomorphisms

DEFINITION 7.2 A homomorphismH!G of affine groups is injective if the mapH.R/!
G.R/ is injective for all k-algebras R. An injective homomorphism is also called an em-
bedding.

PROPOSITION 7.3 A homomorphism ˛WH !G of affine groups is injective if and only if
the map ˛�WO.G/!O.H/ is surjective.

In other words, ˛WH ! G is injective if and only if the map j˛jW jH j ! jGj of affine
schemes is a closed immersion.
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PROOF. ): The homomorphism ˛� factors into homomorphisms of Hopf algebras

O.G/� ˛�.O.G// ,!O.H/

(see Exercise 5-10). Let H 0 be the affine group whose Hopf algebra is ˛�.O.G//. Then ˛
factors into

H !H 0!G;

and the injectivity of ˛ implies that H.R/!H 0.R/ is injective for all k-algebras R. Be-
cause O.H 0/! O.H/ is injective, Proposition 7.1 shows that the map H ! H 0 is an
isomorphism, and so ˛�.O.G//DO.H/.
(: If ˛� is surjective, then any two homomorphisms O.H/! R that become equal

when composed with ˛� must already be equal, and so H.R/!G.R/ is injective. 2

PROPOSITION 7.4 Let ˛WH ! G be a homomorphism of affine groups. If ˛ is injective,
then so also is ˛k0 WHk0 ! Gk0 for any field k0 containing k. Conversely, if ˛k0 is injective
for one field k0 containing k, then ˛ is injective.

PROOF. For any field k0 containing k, the map O.G/!O.H/ is surjective if and only if
the map k0˝kO.G/! k0˝kO.H/ is surjective (this is simply a statement about vector
spaces over fields). 2

A
7.5 When k is a perfect field, Gred is an affine subgroup of G (see 6.18). However, it need

not be normal. For example, over a field k of characteristic 3, let G D �3o .Z=2Z/k for
the nontrivial action of .Z=2Z/k on �3; then Gred D .Z=2Z/k , which is not normal in G
(see SGA3 VIA 0.2).

7c Affine subgroups

DEFINITION 7.6 An affine subgroup (resp. normal affine subgroup) of an affine group
G is a closed subfunctor H of G such that H.R/ is a subgroup (resp. normal subgroup) of
G.R/ for all R.

In other words, a subfunctor H of an affine group G is an affine subgroup of G if

˘ H.R/ is a subgroup of G.R/ for all k-algebras R; and
˘ H is representable (in which case it is represented by a quotient of O.G/— see 7.3).

REMARK 7.7 An affine subgroupH of an algebraic groupG is an algebraic group, because
O.H/ is a quotient of the finitely generated k-algebra O.G/.

PROPOSITION 7.8 The affine subgroups of an affine group G are in natural one-to-one
correspondence with the Hopf ideals on O.G/.

PROOF. For an affine subgroup H of G,

I.H/D ff 2O.G/ j fR.h/D 1 for all h 2H.R/ and all Rg
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is a Hopf ideal in G (it is the kernel of O.G/!O.H/; see Exercise 5-10). Conversely, if
a is a Hopf ideal in G, then the functor

R fg 2G.R/ j fR.g/D 0 for all f 2 ag

is an affine subgroup G.a/ of O.G/ (it is represented by O.G/=a). The maps H 7! I.H/

and a 7!G.a/ are inverse. 2

COROLLARY 7.9 Every set of affine subgroups of an algebraic group G has a minimal
element (therefore every descending chain of affine subgroups becomes stationary).

PROOF. The ring O.G/ is noetherian (Hilbert basis theorem, CA 3.6). 2

PROPOSITION 7.10 For any affine subgroup H of an algebraic group G, the algebraic
scheme jH j is closed in jGj.

PROOF. If a is the kernel of O.G/!O.H/, then jH j is the subspace V.a/ def
D fm jm� ag

of jGj : 2

PROPOSITION 7.11 For any family .Hj /j2J of affine subgroups of an affine group G, the
functor

R 
\

j2J
Hj .R/ (intersection inside G.R/)

is an affine subgroup
T
j2J Hj of G, with coordinate ring O.G/=I where I is the ideal

generated by the ideals I.Hj /.

PROOF. We have

Hj .R/D fg 2G.R/ j fR.g/D 0 for all f 2 I.Hj /g:

Therefore,

H.R/D fg 2G.R/ j fR.g/D 0 for all f 2
[
I.Hj /g

D Hom.O.G/=I;R/: 2

EXAMPLE 7.12 The intersection of the affine subgroups SLn and Gm (scalar matrices) of
GLn is �n (matrices diag.c; : : : ; c/ with cn D 1).

We sometimes loosely refer to an injective homomorphism ˛WH !G as an affine sub-
group of G.

DEFINITION 7.13 An affine subgroup H of algebraic group G is said to be characteristic
if, for all k-algebras R and all automorphisms ˛ of GR, ˛.HR/DHR (cf. DG II, �1, 3.9).
If the condition holds only when R is a field, we say that H is characteristic in the weak
sense.

Both conditions are stronger than requiring that ˛.H/DH for all automorphisms ofG
(see 16.15).
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A7.14 In the realm of not necessarily affine group schemes over a field, there can exist non-
affine (necessarily nonclosed) subgroup schemes of an affine algebraic group. For example,
the constant subgroup scheme .Z/k of Ga over Q is neither closed nor affine. Worse, the
(truly) constant subfunctor R Z � R of Ga is not representable. Over an algebraically
closed field k consider the discrete (nonaffine) group scheme with underlying set k; the
obvious map k!Ga of nonaffine group schemes is a homomorphism, and it is both mono
and epi, but it is not an isomorphism.

7d Kernels of homomorphisms

The kernel of a homomorphism ˛WH !G of affine groups is the functor

R N.R/
def
D Ker.˛.R/WH.R/!G.R//.

Let �WO.G/! k be the identity element ofG.k/. Then an element hWO.H/!R ofH.R/
lies in N.R/ if and only if its composite with ˛�WO.G/!O.H/ factors through �:

O.H/ O.G/

R k:

h

˛�

�

Let IG be the kernel of �WO.G/! k (this is called the augmentation ideal), and let
IG �O.H/ denote the ideal generated by its image in O.H/. Then the elements of N.R/
correspond to the homomorphisms O.H/!R that are zero on IG �O.H/, i.e.,

N.R/D Homk-alg.O.H/=IGO.H/;R/:

We have proved:

PROPOSITION 7.15 For any homomorphism H ! G of affine groups, there is an affine
subgroup N of H (called the kernel of the homomorphism) such that

N.R/D Ker.H.R/!G.R//

for all R; its coordinate ring is O.H/=IGO.H/.

Alternatively, note that the kernel of ˛ is the fibred product of H ! G �, and so it
is an algebraic group with coordinate ring

O.H/˝O.G/ .O.G/=IG/'O.H/=IGO.H/

(see �4b).

EXAMPLE 7.16 Consider the map g 7! gnWGm! Gm. This corresponds to the map on
Hopf algebras Y 7!XnWkŒY;Y �1�! kŒX;X�1� because

Xn.g/D gn D Y.gn/
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(cf. (14), p.25). The map �WkŒY;Y �1�! k sends f .Y / to f .1/, and so the augmentation
ideal for Gm is .Y �1/. Thus, the kernel has coordinate ring

kŒX;X�1�=.Xn�1/' kŒX�=.Xn�1/:

In other words, the kernel is the algebraic group �n, as we would expect.

EXAMPLE 7.17 Let N be the kernel of the determinant map detWGLn!Gm. This corre-
sponds to the map on Hopf algebras

X 7! det.Xij /WkŒX;X�1�! kŒ: : : ;Xij ; : : : ;det.Xij /�1�

because
det.Xij /.aij /D det.aij /DX.det.aij //:

As we just noted, the augmentation ideal for Gm is .X �1/, and so

O.N /D
kŒ: : : ;Xij ; : : : ;det.Xij /�1�

.det.Xij /�1/
'
kŒ: : : ;Xij ; : : :�

.det.Xij /�1/
:

In other words, the kernel of det is the algebraic group SLn, as we would expect.

PROPOSITION 7.18 When k has characteristic zero, a homomorphism G!H is injective
if and only if G.kal/!H.kal/ is injective.

PROOF. If G.kal/!H.kal/ is injective, the kernel N of the homomorphism has the prop-
erty that N.kal/D 0, and so it is the trivial algebraic group (by 6.32). 2

A
7.19 Proposition 7.18 is false for fields k of characteristic p ¤ 0. For example, the ho-

momorphism x 7! xpWGa ! Ga has kernel ˛p, and so it is not injective, but the map
x 7! xpWGa.R/!Ga.R/ is injective for every reduced k-algebra R.

REMARK 7.20 Let A be an object of some category A. A morphism uWS ! A is a
monomorphism if f 7! uıf WHom.T;S/!Hom.T;A/ is injective for all objects T . Two
monomorphisms uWS!A and u0WS 0!A are said to be equivalent if each factors through
the other. This is an equivalence relation on the monomorphisms with target A, and an
equivalence class of monomorphisms is called a subobject of A.

A homomorphism of affine groups is a injective if and only if it is a monomorphism
in the category of affine groups. To see this, let ˛WH ! G be a homomorphism of affine
groups. If ˛ is injective and the homomorphisms ˇ; WH 0 ! H agree when composed
with ˛, then (7.1a) with R D O.H 0/ shows that ˇ D  . Suppose, on the other hand, that
˛ is not injective, so that its kernel N is nontrivial. Then the homomorphisms n 7! 1,
n 7! nWN ! N are distinct, but they agree when composed with ˛, and so ˛ is not a
monomorphism.

Let G be an affine group. Two monomorphisms uWH ! G and uWH 0! G are equiv-
alent if and only if Im.uR/D Im.u0R/ for all k-algebras R. It follows that, in each equiva-
lence class of monomorphisms with targetG, there is exactly one withH an affine subgroup
of G and with u the inclusion map.
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ASIDE 7.21 In any category, the equalizer of a pair of morphisms is a monomorphism. A monomor-
phism that arises in this way is said to be regular. In Grp, every monomorphism is regular (see, for
example, van Oosten, Basic Category Theory, Exercise 42, p.21). For example, the centralizer of
an element a of a group A (which is not a normal subgroup in general) is the equalizer of the ho-
momorphisms x 7! x, x 7! axa�1WA! A. Is it true that every monomorphism in the category of
affine (or algebraic) groups is regular?

7e Dense subgroups

Let G be an algebraic group over a field k. By definition, a point a 2 G.k/ is a homomor-
phism O.G/! k, whose kernel we denote ma (a maximal ideal in O.G/). As we discussed
�6f, the map a 7! maWG.k/! jGj is injective with image the set of maximal ideals m of
O.G/ such that O.G/=mD k. We endow G.k/ with the subspace topology.

PROPOSITION 7.22 Let G be an algebraic group over a field k, and let � be a subgroup
of G.k/. There exists an affine subgroup H of G such that H.k/ D � if and only if �
is closed, in which case there exists a unique smallest H with this property. When k is
algebraically closed, every smooth affine subgroup of G arises in this way.

PROOF. If � D H.k/ for an affine subgroup H of G, then � D jH j \G.k/, which is
closed by (7.10). Conversely, let � be a closed subgroup of G.k/. Each f 2O.G/ defines
a function � ! k, and, for x;y 2 � , .�f /.x;y/D f .x �y/ (see (13), p. 25). Therefore,
when we let R.� / denote the k-algebra of maps � ! k and define �� WR.� /�R.� /!
R.� �� / as in Exercise 5-1, we obtain a commutative diagram

O.G/
�G
����! O.G/˝O.G/??y ??y

R.� /
��
����! R.� �� /;

which shows that �� maps into R.� /˝R.� /, and so .R.� /;�� / is a Hopf algebra
(ibid.). Because � is closed, it is the zero set of the ideal

a
def
D Ker.O.G/!R.� //;

which is a Hopf ideal because .O.G/;�G/! .R.� /;�� / is a homomorphism of Hopf
algebras (5.16). The affine subgroup H of G with O.H/DO.G/=a� R.� / has H.k/D
� . Clearly, it is the smallest subgroup of G with this property. When k is algebraically
closed and H is a smooth subgroup of G, then the group attached to � D H.k/ is H
itself. 2

REMARK 7.23 For any subgroup � ofG.k/, the closure N� of � inG.k/� jGj is a closed
subgroup of G.k/.21 The smallest affine subgroup H of G such that H.k/ D N� is often
called the “Zariski closure” of � in G.

21It is a general fact that the closure of a subgroup � of a topological group is a subgroup. To see this, note
that for a fixed c 2 � , the maps x! cx and x 7! x�1 are continuous, and hence are homeomorphisms because
they have inverses of the same form. For c 2 � , we have � c D � , and so N� c D N� . As c is arbitrary, this says
that N� �� D N� . For d 2 N� , d� � N� , and so d N� � N� . We have shown that N� � N� � N� . Because x 7! x�1 is a
homeomorphism, it maps N� onto .� �1/�. Therefore N� �1 D .� �1/� D N� .



7. Group theory: subgroups and quotient groups. 79

REMARK 7.24 When k is not algebraically closed, not every smooth algebraic subgroup
of G arises from a closed subgroup of G.k/. Consider, for example, the algebraic subgroup
�n �Gm over Q. If n is odd, then �n.Q/D f1g, and the algebraic group attached to f1g is
the trivial group.

REMARK 7.25 It is obvious from its definition thatR.� / has no nonzero nilpotents. There-
fore the affine subgroup attached to a closed subgroup � of G.k/ is reduced, and hence
smooth if k is perfect. In particular, no nonsmooth subgroup arises in this way.

DEFINITION 7.26 Let G be an algebraic group over a field k, and let k0 be a field contain-
ing k. We say that a subgroup � of G.k0/ is dense in G if the only affine subgroupH of G
such that H.k0/� � is G itself.

7.27 If � �G.k0/ is dense in G, then, for any field k00 � k0, � �G.k00/ is dense in G.

7.28 If G.k/ is dense in G, then G is reduced, hence smooth if k is perfect (see 7.25).

7.29 It follows from the proof of (7.22) that G.k/ is dense in G if and only if

f 2O.G/, f .P /D 0 for all P 2G.k/ H) f D 0: (57)

In other words, G.k/ is dense in G if and only if no nonzero element of O.G/maps to zero
under all homomorphisms of k-algebras O.G/! k:\

˛WO.G/!k

Ker.˛/D 0:

7.30 For an affine algebraic variety V over a field k, any f 2O.V / such that f .P /D 0
for all V.kal/ is zero (Nullstellensatz; CA 11.5); better, any f 2O.V / such that f .P /D 0
for all P 2 V.ksep/ is zero (AG 11.15). Therefore, if G is smooth, then G.ksep/ (a fortiori,
G.kal/) is dense in G.

7.31 If G.k/ is finite, for example, if the field k is finite, and dimG > 0, then G.k/ is
never dense in G.

PROPOSITION 7.32 If k is infinite, then G.k/ is dense in G when G DGa, GLn, or SLn.

PROOF. We use the criterion (7.29). Because k is infinite, no nonzero polynomial in
kŒX1; : : : ;Xn� can vanish on all of kn (FT, proof of 5.18). This implies that no nonzero
polynomial f can vanish on a set of the form

D.h/
def
D fa 2 kn j h.a/¤ 0g; h¤ 0;

because otherwise hf would vanish on kn. As

GLn.k/D fa 2 kn
2

j det.a/¤ 0g;

this proves the proposition for GLn.
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The proposition is obvious for Ga, and it can be proved for SLn by realizing O.SLn/
as a subalgebra of O.GLn/. Specifically, the natural bijection

A;r 7! A �diag.r;1; : : : ;1/WSLn.R/�Gm.R/! GLn.R/

(of set-valued functors) defines an isomorphism of k-algebras

O.GLn/'O.SLn/˝O.Gm/;

and the algebra on the right contains O.SLn/. Hence\
˛WO.SLn/!k

Ker.˛/�
\

˛WO.GLn/!k

Ker.˛/D 0:
2

PROPOSITION 7.33 Let G be an algebraic group over a perfect field k, and let � D
Gal.kal=k/. Then � acts on G.kal/, and H $ H.kal/ is a one-to-one correspondence
between the smooth subgroups of G and the closed subgroups of G.kal/ stable under � .

PROOF. Combine (7.22) with (4.13). (More directly, both correspond to radical Hopf ideals
a in the kal-bialgebra kal˝O.G/ stable under the action of � ; see AG 16.7, 16.8). 2

ASIDE 7.34 Let k be an infinite field. We say that a finitely generated k-algebra has “enough maps
to k” if

T
˛WA!kKer.˛/D 0 (intersection over k-algebra homomorphisms A! k). We saw in the

proof of (7.32) that kŒX1; : : : ;Xn�h has enough maps to k for any h¤ 0. Obviously, any subalgebra
of an algebra having enough maps to k also has enough maps to k. In particular, any subalgebra
of kŒX1; : : : ;Xn�h has enough maps to k. A connected affine variety V is said to unirational if
O.V / can be realized as a subalgebra kŒX1; : : : ;Xn�h in such a way that the extension of the fields
of fractions is finite. Geometrically, this means that there is a finite map from an open subvariety
of An onto an open subvariety of V . Clearly, if V is unirational, then O.V / has enough maps to
k. Therefore, if a connected algebraic group G is unirational, then G.k/ is dense in G. So which
algebraic groups are unirational? In SGA3, XIV 6.11 we find:

One knows (Rosenlicht) examples of forms of Ga over a nonperfect field, which have
only finitely many rational points, and therefore a fortiori are not unirational. More-
over Chevalley has given an example of a torus over a field of characteristic zero which
is not a rational variety. On the other hand, it follows from the Chevalley’s theory of
semisimple groups that over an algebraically closed field, every smooth connected
affine algebraic group is a rational variety.

Borel 1991, 18.2, proves that a connected smooth algebraic groupG is unirational if k is perfect or if
G is reductive. For a nonunirational nonconnected algebraic group, Rosenlicht gives the example of
the group of matrices

�
a b
�b a

�
over R with a2Cb2 D˙1. For a nonunirational connected algebraic

group, Rosenlicht gives the example of the subgroup of Ga�Ga defined by Y p�Y D tXp over the
field k D k0.t/ (t transcendental). On the other hand, if kŒ

p
a;
p
b� has degree 4 over k, then the

norm torus22 associated with this extension is a three-dimensional torus that is not a rational variety.
Proofs of these statements will be given in a future version of the notes.

22Let T D .Gm/kŒpa;
p
b�=k

. The norm map defines a homomorphism T !Gm, and the norm torus is the
kernel of this homomorphism.
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ASIDE 7.35 (mo56192) Rosenlicht’s subgroup Y p �Y D tXp of Ga �Ga (p ¤ 2) and the sub-
group Y p D tXp of Ga�Ga are examples of algebraic groupsG over k such thatG.k/ is not dense
in G (the first is smooth; the second is reduced but not smooth).

A smooth, connected unipotent group is said to be k-split if there is a filtration by k-subgroups
for which the successive quotients are isomorphic to Ga. The examples in the above paragraph
are non-split unipotent groups. Any smooth connected k-split unipotent group U is even a rational
variety (in fact, k-isomorphic as a variety to An), and so it is clear that U.k/ is Zariski dense in U
when is infinite. More generally, let G be a smooth connected affine algebraic group over k and
assume that the unipotent radical of Gkal is defined and split over k (both of these conditions can
fail). Then as a k-variety, G is just the product of its reductive quotient .G=RuG/ and its unipotent
radical (result of Rosenlicht). In particular, isG is unirational, and if k is infinite, thenG.k/ is dense
in G (George McNinch)

A necessary condition when k is imperfect: if G.k/ is dense in G, then Gred is a smooth alge-
braic group over k. Proof: the regular locus of Gred is open and non-empty, so contains a rational
point. This point is then smooth. By translation, Gred is smooth at origin, hence smooth everywhere.
This implies that it is an algebraic group because it is geometrically reduced (Qing Liu).

ASIDE 7.36 Let k be a commutative ring. Waterhouse 1979, 1.2, p. 5 defines an affine group
scheme to be representable functor from k-algebras to groups. He defines an affine group scheme to
be algebraic if its representing algebra is finitely generated (ibid. 3.3, p. 24) . Now assume that k is
a field. He defines an algebraic matrix group over k to be a Zariski-closed subgroup of SLn.k/ for
some n (ibid., 4.2, p. 29), and he defines an affine algebraic group to be a closed subset of kn some
n with a group law on it for which the multiplication and inverse are polynomial maps (ibid. 4.2, p.
29). Algebraic matrix groups and affine algebraic groups define (essentially the same) affine group
schemes.

Waterhouse 1979 This work

affine group scheme affine group

algebraic affine group scheme affine algebraic group (or just algebraic group)

algebraic matrix group affine subgroup G of GLn;k such that G.k/ is dense in G

affine algebraic group algebraic group G such that G.k/ is dense in G.

We shall sometimes use algebraic matrix group to mean an affine subgroup G of GLn;k
such that G.k/ is dense in G.

ASIDE 7.37 Before Borel introduced algebraic geometry into the theory of algebraic groups in a
more systematic way, Chevalley defined algebraic groups to be closed subsets of kn endowed with a
group structure defined by polynomial maps. In other words, he studied affine algebraic groups and
algebraic matrix groups in the above sense. Hence, effectively he studied reduced algebraic groups
G with the property that G.k/ is dense in G.

ASIDE 7.38 In the literature one finds statements:

When k is perfect, any algebraic subgroup of GLn defined by polynomials with coef-
ficients in k is automatically defined over k (e.g., Borel 1991, Humphreys 1975).

What is meant is the following:

When k is perfect, any smooth algebraic subgroupG of GLn;kal such the subsetG.kal/

of GLn.kal/ is defined by polynomials with coefficients in k arises from a smooth
algebraic subgroup of GLn;k .

From our perspective, the condition on G.kal/ (always) implies that G arises from a reduced alge-
braic subgroup of GLn;k , which is smooth if k is perfect.
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7f Normalizers; centralizers; centres

For a subgroup H of an abstract group G, we let NG.H/ (resp. CG.H/) denote the nor-
malizer (resp. centralizer) of H in G, and we let Z.G/ denote the centre of G. In this
subsection, we extend these notions to an affine subgroup H of an affine group G over a
field k.

For g 2G.R/, let gH be the functor of R-algebras

R0 g �H.R0/ �g�1 (subset of G.R0/):

Define N to be the functor of k-algebras

R fg 2G.R/ j gH DH g:

Thus, for any k-algebra R,

N.R/D fg 2G.R/ j g �H.R0/ �g�1 DH.R0/ for all R-algebras R0g

DG.R/\
\

R0
NG.R0/.H.R

0//:

PROPOSITION 7.39 The functor N is an affine subgroup of G.

PROOF. Clearly N.R/ is a subgroup of G.R/, and so it remains to show that N is repre-
sentable by a quotient of O.G/. Clearly

g �H.R0/ �g�1 DH.R0/ ” g �H.R0/ �g�1 �H.R0/ and g�1 �H.R0/ �g �H.R0/;

and so, when we let G act on itself by conjugation,

N D TG.H;H/\TG.H;H/
�1

(notations as in �6n). Proposition 6.36 shows that TG.H;H/ is representable, and it follows
from (7.11) that N is representable by a quotient of O.G/. 2

The affine subgroup N of G is called the normalizer NG.H/ of H in G. It is obvious
from its definition that the formation of NG.H/ commutes with extension of the base field:
for any field k0 � k,

NG.H/k0 'NGk0 .Hk0/:

PROPOSITION 7.40 IfH is an affine subgroup of an algebraic groupG, andH.k0/ is dense
in H for some field k0 � k, then

NG.H/.k/DG.k/\NG.k0/.H.k
0//:

PROOF. Let g 2 G.k/\NG.k0/.H.k0//. Because g 2 G.k/, gH is an algebraic subgroup
of G, and so gH \H is an algebraic subgroup of H . Because g 2NG.k0/.H.k0//,�

gH
�
.k0/DH.k0/;

and so .gH \H/.k0/DH.k0/. As H.k0/ is dense in H , this implies that gH \H DH ,
and so gH DH . 2
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COROLLARY 7.41 Let H be a smooth affine subgroup of a smooth algebraic group G. If
H.ksep/ is normal in G.ksep/, then H is normal in G.

PROOF. BecauseH is smooth,H.ksep/ is dense inH , and so (7.40) shows thatNG.H/.ksep/D

G.ksep/, and so NG.H/DG. 2

A
7.42 The corollary is false without the smoothness assumptions, even with kal for ksep.

For example, let H be the subgroup of SL2 in characteristic p ¤ 0 such that

H.R/D

��
1 a

0 1

�ˇ̌̌̌
paD 0

�
(so H ' ˛p). Then H.kal/D 1, but H is not normal in SL2.

PROPOSITION 7.43 Let H be an affine subgroup of an algebraic group G.

(a) H is normal in G if and only if NG.H/DG.
(b) Let ig denote the inner automorphism of G defined by g 2G.k/; if G.k/ is dense in

G and ig.H/DH for all g 2G.k/, then H is normal in G.

PROOF. (a) This is obvious from the definitions.
(b) Let N D NG.H/ � G. If ig.H/DH , then g 2 N.k/. The hypotheses imply that

G.k/�N.k/, and so N DG. 2

Let H be an affine subgroup of an affine group G, and let N be the normalizer of H .
Each n 2N.R/ defines a natural transformation in

h 7! nhn�1WH.R0/!H.R0/

of H regarded as a functor from the category of R-algebras to sets, and we define C to be
the functor of k-algebras

R fn 2N.R/ j in D idH g:

Thus,
C.R/DG.R/\

\
R0
CG.R0/.H.R

0//:

PROPOSITION 7.44 The functor C is an affine subgroup of G.

PROOF. We have to show that C is representable. Let G act on G�G by

g.g1;g2/D .g1;gg2g
�1/; g;g1;g2 2G.R/;

and embed H diagonally in G�G,

H !G�G; h 7! .h;h/ for h 2H.R/:

Then
C D TG�G.H;H/;

which is representable by (6.36). 2
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The affine subgroup C of G is called the centralizer CG.H/ of H in G. It is obvious
from its definition that the formation of CG.H/ commutes with extension of the base field:
for any field k0 � k,

CG.H/k0 ' CGk0 .Hk0/:

PROPOSITION 7.45 IfH is an affine subgroup of an algebraic groupG, andH.k0/ is dense
in H for some field k0 � k, then

CG.H/.k/DG.k/\CG.k0/.H.k
0//:

PROOF. Let n 2 G.k/\CG.k0/.H.k0//. According to (7.40), n 2 NG.H/.k/. The maps
in and idH coincide on an affine subgroup of H , which contains H.k0/, and so equals H .
Therefore n 2 CG.H/.k/. 2

COROLLARY 7.46 Let H be a smooth affine subgroup of a smooth algebraic group G. If
H.ksep/ is central in G.ksep/, then H is central in G.

PROOF. BecauseH is smooth,H.ksep/ is dense inH , and so (7.45) shows thatCG.H/.ksep/D

G.ksep/, and so CG.H/DG. 2

The centre Z.G/ of an affine group G is defined to be CG.G/. It is an affine subgroup
of G, and if G is algebraic and G.k0/ is dense in G, then

Z.G/.k/DG.k/\Z.G.k0//:

A
7.47 Even when G and H are smooth, CG.H/ need not be smooth. For example, it is

possible for CG.H/ to be nontrivial but for CG.H/.k0/ to be trivial for all fields k0 � k. To
see this, let G be the functor

R R�R�

with the multiplication .a;u/.b;v/ D .aC bup;uv/; here 0 ¤ p D char.k/: This is an
algebraic group because, as a functor to sets, it is isomorphic to Ga �Gm. For a pair
.a;u/ 2 R�R�, .a;u/.b;v/D .b;v/.a;u/ for all .b;v/ if and only if up D 1. Therefore,
the centre of G is �p, and so Z.G/.k0/D 1 for all fields k0 containing k. Another example
is provided by SLp over a field of characteristic p. The centre of SLp is �p, which is not
smooth.

EXAMPLE 7.48 For a k-algebra R, the usual argument shows that the centre of GLn.R/ is
the group of nonzero diagonal matrices. Therefore

Z.GLn/DGm (embedded diagonally).

More abstractly, for any finite-dimensional vector space V ,

Z.GLV /DGm (a 2Gm.R/ acts on VR as v 7! av).

EXAMPLE 7.49 Let G D GLn over a field k. For an integer N , let HN be the subfunctor

R HN .R/D fdiag.a1; : : : ;an/ 2 GLn.R/ j aN1 D �� � D a
N
n D 1g.
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of G. Then HN ' .�N /n, and so it is an affine subgroup of G. For N sufficiently large

CG.HN /D Dn

(group of diagonal matrices) (see (14.35)). We consider two cases.

(a) k DQ and N odd. Then HN .k/D f1g, and

CG.k/.HN .k//D GLn.k/¤ Dn.k/D CG.HN /.k/:

(b) k is algebraic closed of characteristic p¤ 0 andN is a power of p. ThenHN .k/D 1
and

CG.k/.HN .k//D GLn.k/¤ Dn.k/D CG.HN /.k/:

An affine subgroup H of an affine group G is said to normalize (resp. centralize) an
affine subgroup N of G if H.R/ normalizes (resp. centralizes) N.R/ for all k-algebras R;
equivalently, if H �NG.N / (resp. H � CG.N /).

7g Quotient groups; surjective homomorphisms

What does it mean for a homomorphism of algebraic groups G!Q to be surjective? One
might guess that it means that G.R/!Q.R/ is surjective for all R, but this condition is
too stringent. For example, it would say that x 7! xnWGm ! Gm is not surjective even
though x 7! xnWGm.k/!Gm.k/ is surjective whenever k is algebraically closed. In fact,
Gm

n
�!Gm is surjective according to the following definition.

DEFINITION 7.50 A homomorphism G ! Q is said to be surjective (and Q is called a
quotient of G) if for every k-algebra R and q 2 Q.R/, there exists a faithfully flat R-
algebra R0 and a g 2G.R0/ mapping to the image of q in Q.R0/:

G.R0/ Q.R0/ 9g �

G.R/ Q.R/ q:

In other words, a homomorphismG!Q is surjective if every q 2Q.R/ lifts toG after
a faithfully flat extension. A surjective homomorphism is also called a quotient map.

THEOREM 7.51 A homomorphism G!Q is surjective if and only if O.Q/! O.G/ is
injective.

PROOF. ): Consider the “universal” element idO.Q/ 2Q.O.Q//. IfG!Q is surjective,
there exists a g 2 G.R0/ with R0 faithfully flat over O.Q/ such that g and idO.Q/ map to
the same element of Q.R0/, i.e., such that the diagram

O.G/ O.Q/

R0 O.Q/

idO.Q/g

faithfully flat
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commutes. The map O.Q/!R0, being faithfully flat, is injective (CA 9.6), which implies
that O.Q/!O.G/ is injective.
(: According to (6.43) O.Q/!O.G/ is faithfully flat. Let q 2Q.R/. Regard q as a

homomorphism O.Q/!R, and form the tensor product R0 DO.G/˝O.Q/R:

O.G/ O.Q/

R0 DO.G/˝O.Q/R R

faithfully flat

qq0g D 1˝q (58)

ThenR0 is a faithfully flatR-algebra because O.G/ is a faithfully flat O.H/-algebra (apply
CA 9.7). The commutativity of the square in (58) means that g 2G.R0/ maps to the image
q0 of q in Q.R0/. 2

PROPOSITION 7.52 Let ˛WH !G be a homomorphism of affine groups. If ˛ is surjective,
then so also is ˛k0 WHk0!Gk0 for any field k0 containing k. Conversely, if ˛k0 is surjective
for one field k0 containing k, then ˛ is surjective.

PROOF. Because k! k0 is faithfully flat, the map O.G/!O.H/ is injective if and only
if k0˝kO.G/! k0˝kO.H/ is injective (see CA 9.2). 2

PROPOSITION 7.53 A homomorphism of affine groups that is both injective and surjective
is an isomorphism.

PROOF. The map on coordinate rings is both surjective and injective, and hence is an iso-
morphism. 2

PROPOSITION 7.54 Let G!Q be a homomorphism of algebraic groups. If G!Q is a
quotient map, then G.kal/!Q.kal/ is surjective; the converse is true if Q is smooth.

PROOF. Let q 2 Q.kal/. For some finitely generated kal-algebra R, the image of q in
Q.R/ lifts to an element g of G.R/. Zariski’s lemma (CA 11.1) shows that there exists a
kal-algebra homomorphism R! kal, and the image of g in G.kal/ maps to q 2Q.kal/:

G.R/ G.kal/

Q.kal/ Q.R/ Q.kal/

kal R kal

id

g gkal

q qR q

For the converse, we may suppose that k is algebraically closed. Recall (2.16) that
an element f of O.Q/ is a family .fR/R with fR a map Q.R/! R. Because Q is
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smooth, O.Q/ is reduced, and so f is determined by fk (CA 11.8). As G.k/!Q.k/ is

surjective, f is determined by the compositeG.k/�!Q.k/
fk
�! k, and so O.Q/!O.G/

is injective. 2

More generally, a homomorphism ˛WG ! H of algebraic groups is surjective if, for
some field k0 containing k, the image of G.k0/ in H.k0/ is dense in H (see 9.8 below).

A
7.55 The smoothness condition in the second part of the proposition is necessary. Let k be

a field of characteristic p ¤ 0, and consider the homomorphism 1! ˛p where 1 denotes
the trivial algebraic group. The map 1.kal/! ˛p.k

al/ is f1g ! f1g, which is surjective,
but 1! ˛p is not a quotient map because the map on coordinate rings is kŒX�=.Xp/! k,
which is not injective.

THEOREM 7.56 Let G!Q be a quotient map with kernel N . Then any homomorphism
G!Q0 whose kernel contains N factors uniquely through Q:

N G Q

Q0.

0

PROOF. Note that, if g and g0 are elements of G.R/ with the same image in Q.R/, then
g�1g0 lies in N and so maps to 1 in Q0.R/. Therefore g and g0 have the same image in
Q0.R/. This shows that the composites of the homomorphisms

G�QG⇒G!Q0

are equal. Therefore, the composites of the homomorphisms

O.G/˝O.Q/O.G/⇔O.G/ O.Q0/

are equal. The subring of O.G/ on which the two maps coincide is O.Q/ (CA 9.6), and
so the map O.Q0/! O.G/ factors through uniquely through O.Q/ ,! O.G/. Therefore
G!Q0 factors uniquely through G!Q. 2

COROLLARY 7.57 If � WG!Q and � 0WG!Q0 are quotient maps with the same kernel,
then there is a unique homomorphism ˛WQ!Q0 such that ˛ ı � D � 0; moreover, ˛ is an
isomorphism.

PROOF. From the theorem, there are unique homomorphisms ˛WQ!Q0 and ˛0WQ0!Q

such that ˛ ı� D � 0 and ˛0 ı� 0 D � . Now ˛0 ı˛D idQ, because both have the property that
ˇ ı� D � . Similarly, ˛ ı˛0 D idQ0 , and so ˛ and ˛0 are inverse isomorphisms. 2

DEFINITION 7.58 A surjective homomorphism G!Q with kernel N is called the quo-
tient of G by N , and Q is denoted by G=N .
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When it exists, the quotient is uniquely determined up to a unique isomorphism by the
universal property in (7.56). We shall see later (8.77) that quotients by normal subgroups
always exist.

DEFINITION 7.59 A sequence

1!N !G!Q! 1

is exact if G!Q is a quotient map with kernel N .

PROPOSITION 7.60 If
1!N !G!Q! 1

is exact, then
dimG D dimN CdimQ:

PROOF. For any homomorphism ˛WG!Q of abstract groups, the map

.n;g 7! .ng;g/WKer.˛/�G!G�QG

is a bijection — this just says that two elements of G with the same image in Q differ by
an element of the kernel. In particular, for any homomorphism ˛WG!Q of affine groups
and k-algebra R, there is a bijection

Ker.˛/.R/�G.R/!
�
G�QG

�
.R/,

which is natural in R. Therefore N �G 'G�QG,23 and so

O.N /˝O.G/'O.G�QG/:

Recall that the dimension of an algebraic group G has the following description: accord-
ing to the Noether normalization theorem (CA 5.11), there exists a finite set S of ele-
ments in O.G/ such that kŒS� is a polynomial ring in the elements of S and O.G/ is
finitely generated as a kŒS�-module; the cardinality of S is dimG. Since O.G �QG/ D
O.G/˝O.Q/O.G/, it follows from this description that

dim.G�QG/D 2dimG�dimQ:

Therefore 2dimG�dimQD dimN CdimG, from which the assertion follows. 2

ASIDE 7.61 Proposition 7.60 can also be proved geometrically. First make a base extension to kal.
For a surjective map 'WG ! Q of irreducible algebraic schemes, the dimension of the fibre over
a closed point P of Q is equal dim.G/� dimQ for P in a nonempty open subset of Q (cf. AG
10.9b). Now use homogeneity (I, �6h) to see that, when G!Q is a homomorphism of algebraic
group schemes, all the fibres have the same dimension.

23This duplicates (52), p. 70.
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ASIDE 7.62 A morphism uWA! B in a category A is said to be an epimorphism if Hom.B;T /!
Hom.A;T / is injective for all objects T .

It is obvious from Theorem 7.51 that a surjective homomorphism of affine groups is an epimor-
phism. The converse is true for groups (MacLane 1971, Exercise 5 to I 5), but it is false for affine
groups. For example, the embedding

B D

��
� �

0 �

��
,!

��
� �

� �

��
D GL2

is a nonsurjective epimorphism (any two homomorphisms from GL2 that agree on B are equal).24

7h Existence of quotients

PROPOSITION 7.63 Let G be an algebraic group, and let H be an affine subgroup of G.
There exists a surjective homomorphism G!Q containing H in its kernel and universal
among homomorphisms with this property.

PROOF. For any finite family .G
qi
�! Qi /i2I of surjective morphisms such that H �

Ker.qi / all i , let HI D
T
i2I Ker.qi /. According to (7.9), there exists a family for which

HI is minimal. For such a family, I claim that the map from G to the image of .qi /WG!Q
i2IQi is universal. If it isn’t, then there exists a homomorphism qWG!Q containing

H in its kernel but notHI . But thenHI[fqg DHI \Ker.q/ is properly contained inHI .2

Later (8.70), we shall show that, when H is normal, the kernel of the universal homo-
morphism G!Q is exactly H .

7i Semidirect products

DEFINITION 7.64 An affine group G is said to be a semidirect product of its affine sub-
groupsN andQ, denotedGDN oQ, ifN is normal inG and the map .n;q/ 7!nqWN.R/�

Q.R/!G.R/ is a bijection of sets for all k-algebras R.

In other words, G is a semidirect product of its affine subgroups N and Q if G.R/ is a
semidirect product of its subgroups N.R/ and Q.R/ for all k-algebras R (cf. GT 3.7).

For example, let Tn be the algebraic group of upper triangular matrices, so

Tn.R/D f.aij / 2 GLn.R/ j aij D 0 for i > j g:

Then Tn is the semidirect product of its (normal) subgroup Un and its subgroup Dn.

PROPOSITION 7.65 Let N and Q be affine subgroups of an affine group G. Then G is the
semidirect product of N and Q if and only if there exists a homomorphism G!Q whose
restriction to Q is the identity map and whose kernel is N .

24This follows from the fact that GL2 =B ' P1. Let f;f 0 be two homomorphisms GL2! G. If f jB D
f 0jB , then g 7! f 0.g/ �f .g/�1 defines a map P1! G, which has image 1G because G is affine and P1 is
complete (see AG 7.5).

Alternatively, in characteristic zero, one can show that any homomorphism of B \ SL2 has at most one
extension to SL2 because any finite dimensional representation of sl2 can be reconstructed from the operators
h and y. Specifically, if hv Dmv and ymC1v D 0, then xv D 0; if hv Dmv and uD ynv, then xynv can be
computed as usual using that Œx;y�D h.
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PROOF. )W By assumption, the product map is a bijection of functors N �Q! G. The
composite of the inverse of this map with the projection N �Q ! Q has the required
properties.
(W Let 'WG!Q be the given homomorphism. For each k-algebra R, '.R/ realizes

G.R/ as a semidirect product G.R/DN.R/oQ.R/ of its subgroups N.R/ and Q.R/. 2

LetG be an affine group andX a functor from the category of k-algebras to sets. Recall
�6n that an action of G on X is a natural transformation � WG�X !X such that each map
G.R/�X.R/!X.R/ is an action of the group G.R/ on the set X.R/. Now let N and Q
be algebraic groups and suppose that there is given an action of Q on N

.q;n/ 7! �R.q;n/WQ.R/�N.R/!N.R/

such that, for each q, the map n 7! �R.q;n/ is a group homomorphism. Then the functor

R N.R/o�RQ.R/

(cf. GT 3.9) is an affine group because, as a functor to sets, it isN �Q, which is represented
by O.N /˝O.G/. We denote it by N o� Q, and call it the semidirect product of N and
Q defined by � .

7j Smooth algebraic groups

PROPOSITION 7.66 Quotients and extensions of smooth algebraic groups are smooth.

PROOF. Let Q be the quotient of G by the affine subgroup N . Then Qkal is the quotient
of Gkal by Nkal . If G is smooth, O.Gkal/ is reduced; as O.Qkal/ � O.Gkal/, it also is
reduced, and so Q is smooth. For extensions, we (at present) appeal to algebraic geometry:
letW ! V be a regular map of algebraic varieties; if V is smooth and the fibres of the map
are smooth subvarieties of W with constant dimension, then W is smooth (?; tba). 2

A 7.67 The kernel of a homomorphism of smooth algebraic groups need not be smooth. For
example, in characteristic p, the kernels of x 7! xpWGm!Gm and x 7! xpWGa!Ga are
not smooth (they are �p and ˛p respectively).

7k Algebraic groups as sheaves

Some of the above discussion simplifies when regard affine groups as sheaves.

PROPOSITION 7.68 Let F be a functor from the category of k-algebras to sets. If F is
representable, then

(F1) for every finite family of k-algebras .Ri /i2I , the canonical mapF.
Q
i Ri /!

Q
i F.Ri /

is bijective;
(F2) for every faithfully flat homomorphism R!R0 of k-algebras, the sequence

F.R/! F.R0/⇒ F.R0˝RR
0/

is exact (i.e., the first arrow realizes F.R/ as the equalizer of the pair of arrows).
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PROOF. (F1). For any k-algebra A, it follows directly from the definition of product that

Hom.A;
Q
i2I Ri /'

Q
i2I Hom.A;Ri /;

(F2). If R!R0 is faithfully flat, then it is injective, and so

Hom.A;R/! Hom.A;R0/

is injective for any k-algebra A. According to (CA 9.5), the sequence

R!R0⇒R0˝RR
0

is exact, and it follows that

Homk-alg.A;R/! Homk-alg.A;R
0/⇒ Homk-alg.A;R

0
˝RR

0/

is exact. 2

A functor satisfying the conditions (F1) and (F2) is said to be a sheaf for the flat topol-
ogy25.

PROPOSITION 7.69 A functor F WAlgk ! Set is a sheaf if and only if it satisfies the fol-
lowing condition:

(S) for every k-algebra R and finite family .Ri /i2I of k-algebras such that R!
Q
i Ri is

faithfully flat, the sequence

F.R/!
Q
i2I F.Ri /⇒

Q
.i;i 0/2I�I F.Ri ˝kRi 0/

is exact.

PROOF. Easy exercise (cf. Milne 1980, II 1.5). 2

We sometimes use (S1) to denote the condition that F.R/!
Q
i2I F.Ri / is injective

and (S2) for the condition that its image is subset on which the pair of maps agree.

PROPOSITION 7.70 For any functor F WAlgk ! Set, there exists a sheaf aF and a natural
transformation F ! aF that is universal among natural transformations from F to sheaves.

PROOF. For a;b 2 F.R/, set a � b if a and b have the same image in F.R0/ for some
faithfully flat R-algebra R0. Then � is an equivalence relation on F.R/, and the functor
R F.R/=� satisfies (S1). Moreover, any natural transformation from F to a sheaf will
factor uniquely through F ! F=�.

Now let F be a functor satisfying (S1). For any k-algebra R, define

F 0.R/D lim
�!

Ker.F.R0/⇒ F.R0˝RR
0//:

where R0 runs over the faithfully flat R-algebras. One checks easily that F 0 is a sheaf, and
that any natural transformation from F to a sheaf factors uniquely through F ! F 0. 2

25Strictly, for the fpqc (fidèlement plat quasi-compacte) topology.
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The sheaf aF is called the associated sheaf of F .

PROPOSITION 7.71 Let S be a sheaf, and let F be a subfunctor of S . If

S.R/D
[

R0 a faithfully flatR-algebra

�
S.R/\F.R0/

�
(intersection inside S.R0/), then S is the sheaf associated with F .

PROOF. Obviously any natural transformation F ! F 0 with F 0 a sheaf extends uniquely
to S . 2

Let P be the category of functors Algk ! Set, and let S be the full subcategory of P
consisting of the sheaves.

PROPOSITION 7.72 The inclusion functor i WS! P preserves inverse limits; the functor
aWP! S preserves direct limits and finite inverse limits.

PROOF. By definition Hom.a.�/;�/'Hom.�; i.�//, and so a and i are adjoint functors.
This implies (immediately) that i preserves inverse limits and a preserves direct limits. To
show that a preserves finite inverse limits, it suffices to show that it preserves finite products
and equalizers, which follows from the construction of a. 2

PROPOSITION 7.73 Let G!Q be a surjective homomorphism of affine groups with ker-
nel N . Then Q represents the sheaf associated with the functor

R G.R/=N.R/:

PROOF. Let P be the functor R G.R/=N.R/. Then P commutes with products, and we
shall show:

(a) For any injective homomorphism R! R0 of k-algebras, the map P.R/! P.R0/ is
injective.

(b) Let
P 0.R/D lim

�!
R0

Ker.P.R0/⇒ P.R0˝RR
0//

where the limit is over all faithfully flat R-algebras; then P 0 'Q:

For (a), we have to prove that

N.R/DN.R0/\G.R/ (intersection inside G.R0/).

For some index set I , N.R/ is the subset of RI defined by some polynomial conditions

fj .: : : ;Xi ; : : :/D 0

and N.R0/ is the subset of R0I defined by the same polynomial conditions. But if an
element of RI satisfies the conditions when regarded as an element of R0I , then it already
satisfies the conditions in RI (because R!R0 is injective).
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For (b), consider the diagram

K.R0/ ! P.R0/ ⇒ P.R0˝RR
0/??y ??y

Q.R/ ! Q.R0/ ⇒ Q.R0˝RR
0/

whereK.R0/ is the equalizer of the top pair of maps — we know thatQ.R/ is the equalizer
of the bottom pair of maps. For any k-algebra R0, the map P.R0/!Q.R0/ is injective,
and so the two vertical arrows induce an injective homomorphism K.R0/!Q.R/. When
we pass to the limit over R0, it follows directly from the definition of “surjective’ (see 7.50)
that this map becomes surjective. 2

NOTES (a) Explain why it is useful to regard the affine groups as sheaves rather than presheaves.
(b) Explain the set-theoretic problems with (7.70) (limit over a proper class), and why we don’t

really need the result (or, at least, we can avoid the problems). See Waterhouse 1975.

7l Limits of affine groups

Recall (MacLane 1971, III 4, p.68) that, for a functor F WI ! C from a small category I to
a category C, there is the notion of an inverse limit of F (also called a projective limit, or
just limit). This generalizes the notions of a limit over a directed set and of a product.

THEOREM 7.74 Let F be a functor from a small category I to the category of affine groups
over k; then the functor

R lim
 �

F.R/ (59)

is an affine group, and it is the inverse limit of F in the category of affine groups.

PROOF. Denote the functor (59) by F
 �

; thus F
 �
.R/ is the inverse limit of the functor i  

Fi .R/ from I to the category of (abstract) groups. It is easy to see that F
 �
D lim
 �

F in the
category of functors from k-algebras to groups, and it will follow that F

 �
is the inverse limit

in the category of affine groups once we show that it is an affine group. But F
 �

is equal to
the equalizer of two homomorphismsY

i2ob.I /
Fi ⇒

Y
u2ar.I /

Ftarget.u/ (60)

(MacLane 1971, V 2 Theorem 2, p.109). Both products are affine groups, and we saw in
(�4b) that equalizers exist in the category of affine groups. 2

In particular, inverse limits of algebraic groups exist as affine groups. Later (8.23) we
shall see that every affine group arises in this way.

THEOREM 7.75 Let F be a functor from a finite category I to the category of algebraic
groups over k; then the functor

R lim
 �

Fi .R/ (61)

is an algebraic group, and it is the inverse limit of F in the category of algebraic groups.

PROOF. Both products in (60) are algebraic groups. 2



94 I. Basic Theory of Affine Groups

Direct limits, even finite direct limits, are more difficult. For example, the sum of
two groups is their free product, but when G1 and G2 are algebraic groups, the functor
R G1.R/�G2.R/ will generally be far from being an algebraic group. Moreover, the
functor R lim

�!I
Fi .R/ need not be a sheaf. Roughly speaking, when the direct limit of

a system of affine groups exists, it can be constructed by forming the naive direct limit in
the category of functors, and then forming the associated sheaf. For example, when N is a
normal subgroup of an affine groupG, the quotient affine groupG=N is the sheaf associated
with the functor R G.R/=N.R/ (cf. 7.73).

7m Terminology

From now on, “subgroup” of an affine group will mean “affine subgroup”. Thus, if G is
an affine (or algebraic) group, a subgroup H of G is again an affine (or algebraic) group,
whereas a subgroup H of G.k/ is an abstract group.

7n Exercises

EXERCISE 7-1 Let A and B be subgroups of the affine group G, and let AB be the sheaf
associated with the subfunctor R A.R/ �B.R/ of G.

(a) Show that AB is representable by O.G/=a where a is the kernel of homomorphism
O.G/! O.A/˝O.B/ defined by the map a;b 7! abWA�B ! G (of set-valued
functors).

(b) Show that, for any k-algebra R, an element G.R/ lies in .AB/.R/ if and only if its
image in G.R0/ lies in A.R0/ �B.R0/ for some faithfully flat R-algebra R0, i.e.,

.AB/.R/D
\

R0
G.R/\

�
A.R0/ �B.R0/

�
.

(c) Show that AB is a subgroup of G if B normalizes A.

EXERCISE 7-2 Let A, B , C be subgroups of an affine group G such that A is a normal
subgroup of B . Show:

(a) C \A is a normal subgroup of C \B;
(b) CA is a normal subgroup of CB .

EXERCISE 7-3 (Dedekind’s modular laws). Let A, B , C be subgroups of an affine group
G such that A is a subgroup of B . Show:

(a) B \AC D A.B \C/I
(b) if G D AC , then B D A.B \C/.

8 Representations of affine groups

One of the main results in this section is that all algebraic groups can be realized as sub-
groups of GLn for some n. At first sight, this is a surprising result, because it says that all
possible multiplications in algebraic groups are just matrix multiplication in disguise.

In this section, we often work with algebraic monoids rather than groups since this
forces us to distinguish between “left” and “right” correctly. Note that for a commutative
ring R, the only difference between a left module and a right module is one of notation: it
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is simply a question of whether we write rm or mr (or better
r
m). In this section, it will

sometimes be convenient to regard R-modules as right modules, and write V ˝kR instead
of R˝k V . Throughout, k is a field.

8a Finite groups

We first look at how to realize a finite group G as a matrix group. A representation of G on
a k-vector space V is a homomorphism of groups G! Autk-lin.V /, or, in other words, an
action G �V ! V of G on V in which each  2 G acts k-linearly. Let X �G! X be a
right action of G on a finite set X . Define V to be the k-vector space of maps X ! k, and
let G act on V according to the rule:

.gf /.x/D f .xg/ for g 2G, f 2 V , x 2X:

This defines a representation of G on V , which is faithful if G acts effectively on X . The
vector space V has a canonical basis consisting of the maps that send one element of X to
1 and the remainder to 0, and so this gives a homomorphism G! GLn.k/ where n is the
order of X . For example, for the symmetric group Sn acting on f1;2; : : : ;ng, this gives the
map � 7! I.�/WSn!GLn.k/ in (�1a). When we take X DG, the vector space V is the k-
algebra O.G/ of maps G! k, and the representation is called the regular representation.

8b Definition of a representation

Let V be a vector space over k. For a k-algebra R, we let

V.R/D V ˝R; (R-module)

EndV .R/D EndR-lin.V .R//; (monoid under composition)

AutV .R/D AutR-lin.V .R//; (group under composition).

Then R  EndV .R/ is a functor from the category of k-algebras to monoids and R  
AutV .R/ is a functor from the category of k-algebras to groups. With the terminology of
(2.18), AutV D End�V .

Let G be an affine monoid or group over k. A linear representation of G on a k-vector
space V is a natural transformation r WG! EndV of functors Algk!Mon. In other words,
it is a family of homomorphisms of monoids

rRWG.R/! EndR-lin.V .R//; R a k-algebra, (62)

such that, for every homomorphism R!R0 of k-algebras, the diagram

G.R/
rR
����! EndR-lin.V .R//??y ??y

G.R0/
rR0
����! EndR0-lin.V .R0//

commutes. When G is an affine group, r takes values in AutV and is a natural transfor-
mation of group-valued functors. A linear representation is said to be finite-dimensional if
V is finite-dimensional as a k-vector space, and it is faithful if all the homomorphisms rR
are injective. A subspace W of V is a subrepresentation if rR.g/.W.R// �W.R/ for all
k-algebras R and all g 2G.R/.
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A homomorphism of linear representations .V;r/! .V 0; r 0/ is a k-linear map ˛WV !
V 0 such that

V.R/
˛.R/
����! V 0.R/??yrR.g/ ??yr 0R.g/

V.R/
˛.R/
����! V 0.R/

commutes for all g 2G.R/ and all k-algebras R.
We write V also for the functor R V.R/ defined by V . Then a linear representation

of G on V can also be defined as an action of G on V;

G�V ! V; (63)

such that each g 2G.R/ acts R-linearly on V.R/.
When V D kn, EndV is the monoid R  .Mn.R/;�/ and AutV D GLn. A linear

representation of an affine monoid (resp. group)G on V is a homomorphismG! .Mn;�/

(resp. G! GLn).

EXAMPLE 8.1 LetGDGa. Let V be a finite-dimensional k-vector space, and let �0; : : : ;�i ; : : :
be a sequence of endomorphisms V such that all but a finite number are zero. For t 2R, let

rR.t/D
X

i�0
�i t

i
2 End.V .R//

(so rR.t/.v˝ c/D
P
�i .v/˝ ct

i ). If�
�0 D idV

�i ı�j D
�
iCj
i

�
�iCj all i;j � 0;

(64)

then
rR.tC t

0/D rR.t/C rR.t
0/ for all t; t 0 2R;

and so rR is a representation. We shall see later (8.15) that all finite-dimensional repre-
sentations of Ga are of this form. Note that (64) implies that �i ı �1 D .i C 1/�iC1, and
so �n1 D nŠ�n. When k has characteristic zero, this implies that �1 is nilpotent and that
�n D �

n
1=nŠ, and so

rR.t/D
X

.�1t /
n=nŠD exp.�1t /:

When k has nonzero characteristic, there are more possibilities. See Abe 1980, p. 185.

EXAMPLE 8.2 LetG DGLn, and letMn denote the vector space of all n�nmatrices with
entries in k. The actions

.P;A/ 7! PAP�1WG.R/�Mn.R/!Mn.R/

define a linear representation of G on Mn. The orbits of G.k/ acting on Mn.k/ are the
similarity classes, which are represented by the Jordan matrices when k is algebraically
closed.

EXAMPLE 8.3 There is a unique linear representation r of G on O.G/ (regarded as a k-
vector space) such that

.gf /R.x/D fR.xg/; for all g 2G.R/, f 2O.G/, x 2G.R/: (65)

This is called the regular representation. In more detail: the formula (65) defines a map
G.R/�O.G/! R˝O.G/, which extends by linearity to a map G.R/�R˝O.G/!
R˝O.G/.



8. Representations of affine groups 97

8c Terminology

From now on, “representation” will mean “linear representation”.

8d Comodules

Let .A;m;e/ be a k-algebra, not necessarily commutative. Recall that a left A-module is a
k-vector space V together with a k-linear map �WA˝V ! V such that the diagrams

V
�

 ���� A˝Vx??� x??m˝V
A˝V

A˝�
 ���� A˝A˝V

V
�

 ���� A˝V x??e˝V
V

'
 ���� k˝V

(66)

commute. On reversing the directions of the arrows, we obtain the notion of comodule over
a coalgebra.

DEFINITION 8.4 Let .C;�;�/ be a k-coalgebra. A right C -comodule26 is a k-linear map
�WV ! V ˝C (called the coaction of C on V ) such that the diagrams

V
�

����! V ˝C??y� ??yV˝�
V ˝C

�˝C
����! V ˝C ˝C

V
�

����! V ˝C ??yV˝�
V

'
����! V ˝k

(67)

commute, i.e., such that �
.V ˝�/ı� D .�˝C/ı�

.V ˝ �/ı� D V:

A homomorphism ˛W.V;�/! .V 0;�0/ of C -comodules is a k-linear map ˛WV ! V 0 such
that the diagram

V
˛

����! V 0??y� ??y�0
V ˝C

˛˝C
����! V 0˝C

commutes. A comodule is said to be finite-dimensional if it is finite-dimensional as a k-
vector space.

EXAMPLE 8.5 (a) The pair .C;�/ is a right C -comodule (compare (29), p. 42, with (67)).
More generally, for any k-vector space V ,

V ˝�WV ˝C ! V ˝C ˝C

26It would be more natural to consider left comodules, except that it is right comodules that correspond
to left representations of monoids. Because we consider right comodules we are more-or-less forced to write
V ˝R where elsewhere we write R˝V .
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is a right C -comodule (called the free comodule on V ). The choice of a basis for V realizes
this as a direct sum of copies of .C;�/:

V ˝C
V˝�
����! V ˝C ˝C??y� ??y�

C n
�n

����! .C ˝C/n:

(b) Let .V1;�1/ and .V2;�2/ be comodules over coalgebras C1 and C2 respectively. The
map

V1˝V2
�1˝�2
����! V1˝C1˝V2˝C2 ' V1˝V2˝C1˝C2

provides V1˝V2 with the structure of a C1˝C2-comodule.
(c) Let .V;�/ be a right C -comodule, and let ˛WC ! C 0 be a homomorphism of coal-

gebras. The map

V
�
�! V ˝C

V˝˛
���! V ˝C 0

provides V with the structure of a right C 0-comodule.
(d) Let V be a k-vector space, and let �WV ! V ˝C be a k-linear map. Choose a basis

.ei /i2I for V , and write
�.ej /D

X
i2I

ei ˝ cij ; cij 2 C; (68)

(finite sum, so, for each j , almost all cij ’s are zero). Then .V;�/ is a right comodule if and
only if27

�.cij / D
P
k2I cik˝ ckj

�.cij / D ıij

�
all i;j 2 I: (69)

For a module V over an algebra A, there is a smallest quotient of A, namely, the image
of A in Endk.V /, through which the action of A on V factors. In the next remark, we
show that for a comodule V over a coalgebra C , there is a smallest subcoalgebra CV of C
through which the co-action of C on V factors.

REMARK 8.6 Let .V;�/ be a C -comodule.
(a) When we choose a k-basis .ei /i2I for V , the equations (69) show that the k-

subspace spanned by the cij is a subcoalgebra of C , which we denote CV . Clearly, CV
is the smallest subspace of C such that �.V / � V ˝CV , and so it is independent of the
choice of the basis. When V is finite dimensional over k, so also is CV .

(b) Recall that for a finite-dimensional k-vector space V ,

Homk-lin.V;V ˝C/' Homk-lin.V ˝V
_;C /:

If �$ �0 under this isomorphism, then

�.v/D
X

i2I
ei ˝ ci H) �0.v˝f /D

X
i2I

f .ei /ci :

27The first equality can be written symbolically as�
�.cij /

�
D .cik/˝ .ckj /:
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In particular, �0.ej ˝ e_i /D cij (notation as in (68)). Therefore CV is the image of �0WV ˝
V _! C .

(c) If .V;�/ is a sub-comodule of .C;�/, then V � CV . To see this, note that the
restriction of the co-identity � of C to V is an element �V of V _ and that �0.v˝ �V /D v
for all v 2 V because

�0.ej ˝ �V /D
X

i2I
�.ej /cij

D .�˝ idC /�.ej /

D .idC ˝�/�.ej / (by (29), p. 42)

D

X
i2I

ej �.cij /

D ej (by (69)).

REMARK 8.7 Recall (�5c) that the linear dual of a coalgebra .C;�;�/ is an algebra .C_;�_; �_/
(associative with identity). Let V be a k-vector space, and let �WV ! V ˝C be a k-linear
map. Define � to be the composite of

C_˝V
C_˝�
����! C_˝V ˝C ' V ˝C_˝C

V˝ev
����! V ˝k ' V

where evWC_˝C ! k is the evaluation map. One can check that .V;�/ is a right C -
comodule if and only if .V;�/ is a left C_-module. When C and V are finite-dimensional,
� 7! � is a bijection

Homk-lin.V;V ˝C/' Homk-lin.C
_
˝V;V /,

and so there is a one-to-one correspondence between the right C -comodule structures on
V and the left C_-module structures on V . In the general case, not every C_-module
structure arises from a C -comodule structure, but it is known which do (Dăscălescu et al.
2001, 2.2; Sweedler 1969, 2.1).

A k-subspace W of V is a subcomodule if �.W /�W ˝C . Then .W;�jW / is itself a
C -comodule.

PROPOSITION 8.8 Every comodule .V;�/ is a filtered union of its finite-dimensional sub-
comodules.

PROOF. As a finite sum of (finite-dimensional) sub-comodules is a (finite-dimensional)
sub-comodule, it suffices to show that each element v of V is contained in a finite-dimensional
sub-comodule. Let .ei /i2I be a basis for C as a k-vector space, and let

�.v/D
X

i
vi ˝ ei ; vi 2 V;

(finite sum, i.e., only finitely many vi are nonzero). Write

�.ei /D
X

j;k
rijk.ej ˝ ek/; rijk 2 k.

We shall show that
�.vk/D

X
i;j
rijk

�
vi ˝ ej

�
(70)
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from which it follows that the k-subspace of V spanned by v and the vi is a subcomodule
containing v. Recall from (67) that

.V ˝�/ı�D .�˝C/ı�:

On applying each side of this equation to v, we find thatX
i;j;k

rijk.vi ˝ ej ˝ ek/D
X

k
�.vk/˝ ek (inside V ˝C ˝C/:

On comparing the coefficients of 1˝1˝ ek in these two expressions, we obtain (70). 2

COROLLARY 8.9 A coalgebra C is a union of its sub-coalgebras CV , where V runs over
the finite-dimensional sub-comodules of C .

PROOF. For any finite-dimensional sub-comodule V of C ,

V � CV � C

(see 8.6), and so this follows from the proposition. 2

ASIDE 8.10 The main definitions in this subsection require only that k be a commutative ring.
When k is noetherian, every comodule over a k-coalgebra C is a filtered union of finitely generated
subcoalgebras (Serre 1993, 1.4).

8e The category of comodules

Let .C;�;�/ be a coalgebra over k. With the obvious definitions, the standard isomorphism
theorems (cf. 9.1, 9.2, 9.3, 9.4 below) hold for comodules over C . For example, if .W;�W /
is a sub-comodule of .V;�V /, then the quotient vector space V=W has a (unique) comodule
structure �V=W for which .V;�V /! .V=W;�V=W / is a homomorphism. In particular, the
sub-comodules are exactly the kernels of homomorphism of comodules. The category of
comodules over C is abelian and the forgetful functor to k-vector spaces is exact.

A bialgebra structure .m;e/ on C defines a tensor product structure on the category of
comodules over C : when .V1;�1/ and .V2;�2/ are C -comodules, V1˝V2 has a natural
structure of a C ˝C -comodule (see 8.5b), and the homomorphism of coalgebras mWC ˝
C ! C turns this into a C -comodule structure (see 8.5c). The tensor product of the empty
family of comodules is the trivial comodule .k;k

e
�! C ' k˝C/. The forgetful functor

preserves tensor products.
Assume that V is finite dimensional. Under the canonical isomorphisms

Homk-lin.V;V ˝C/' Homk-lin.V ˝V
_;C /' Homk-lin.V

_;C ˝V _/; (71)

a right coaction � on V corresponds to left coaction �0 on V _. When C is a Hopf algebra,
the inversion can be used to turn �0 into a right coaction �_: define �_ to be the composite

V _
�0

�! A˝V _
t
�! V _˝A

V _˝S
�! V _˝A: (72)

The pair .V _;�_/ is called the dual or contragredient of .V;�/. The forgetful functor
preserves duals.

SUMMARY 8.11 Let C be a k-coalgebra.

˘ The finite-dimensional comodules over C form an abelian category Comod.C /.
˘ A bialgebra structure on C provides Comod.C / with a tensor product structure.
˘ A Hopf algebra structure on C provides Comod.C / with a tensor product structure

and duals.
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8f Representations and comodules

A comodule over a bialgebra .A;m;e;�;�/ is defined to be a comodule over the coalgebra
.A;�;�/.

PROPOSITION 8.12 Let G be an affine monoid over k. For any k-vector space V , there is
a natural one-to-one correspondence between the linear representations of G on V and the
O.G/-comodule structures on V .

We first describe the correspondence in the case that V is finite dimensional. The choice
of a basis .ei /i2I for V identifies EndV with Mn, and morphisms r WG ! EndV of set-
valued functors with the matrices .rij /.i;j /2I�I of regular functions on G,

rR.g/D

0@ �
rij
�
R
.g/

1A
i;j2I

:

The map r is a morphism of affine monoids if and only if .rij /R.1/D ıij (i;j 2 I / and�
rij
�
R
.gg0/D

P
k2I .rik/R .g/ �

�
rkj
�
R
.g0/; all g;g0 2G.R/; i;j 2 I: (73)

On the other hand, to give a k-linear map �WV ! V ˝O.G/ is the same as giving a matrix
.rij /i;j2I of elements of O.G/,

�.ej /D
P
i2I ei ˝ rij ;

and � is a co-action if and only if �.rij /D ıij (i;j 2 I ) and

�.rij /D
P
k2I rik˝ rkj , all i;j 2 I; (74)

(see (69), p. 98). But
�.rij /R.g;g

0/D
�
rij
�
R
.g �g0/

and �P
k2I rik˝ rkj

�
R
.g;g0/D

P
k2I .rik/R .g/ �

�
rkj
�
R
.g0/

(cf. �5g), and so (73) holds if and only if (74) holds. Therefore

r$ .rij /$ �

gives a one-to-one correspondence between the linear representations of G on V and the
O.G/-comodule structures on V .

SUMMARY 8.13 Let V D kn with its canonical basis .ei /i2I ; a matrix .rij /i;j2I of ele-
ments of O.G/ satisfying

�.rij / D
P
k2I rik˝ rkj

�.rij / D ıij

�
all i;j 2 I;

defines a coaction of O.G/ on V by

�.ej /D
P
i2I ei ˝ rij ;

and a homomorphism r WG! GLn by

r.g/D .rij .g//i;j2I ;

which corresponds to the homomorphism O.GLn/!O.G/ sending Xij to rij :
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In the more formal proof of Proposition 8.12 below, we construct a canonical correspon-
dence between the representations and the comodule structures, and in Proposition 8.18 we
show that, once a basis has been chosen, the correspondence becomes that described above.

PROOF (OF PROPOSITION 8.12) Let A D O.G/. We prove the following more precise
result:

Let r WG ! EndV be a representation; the “universal” element u D idA in
G.A/ ' Homk-alg.A;A/ maps to an element of EndV .A/

def
D EndA-lin.V .A//

whose restriction to V � V.A/ is a comodule structure �WV ! V ˝A on V .
Conversely, a comodule structure � on V determines a representation r such
that, for R a k-algebra and g 2 G.R/, the restriction of rR.g/WV.R/! V.R/

to V � V.R/ is

V
�
�! V ˝A

V˝g
�! V ˝R:

These operations are inverse.
Let V be a vector space over k, and let r WG ! EndV be a natural transformation of

set-valued functors. Let g 2G.R/D Homk-alg.A;R/, and consider the diagram:

V V ˝A V ˝R

V ˝A V ˝R

v 7! v˝1

�
def
D rA.u/jV

V ˝g

rA.u/ rR.g/

V ˝g

The k-linear map � determines rR.g/ because rA.u/ is the unique A-linear extension of �
to V ˝A and rR.g/ is the unique R-linear map making the right hand square commute.
Thus the map � determines the natural transformation r . Moreover, the diagram can be
used to extend any k-linear map �WV ! V ˝A to a natural transformation r of set-valued
functors, namely, for g 2 G.R/ D Homk-alg.A;R/ and define rR.g/ to be the linear map
V.R/! V.R/ whose restriction to V is .V ˝g/ı�. Thus,

rR.g/.v˝ c/D .V ˝g/.c�.v//; for all g 2G.R/, v 2 V , c 2R: (75)

In this way, we get a one-to-one correspondence r$ � between natural transformations of
set-valued functors r and k-linear maps �, and it remains to show that r is a representation
of G if and only if � is a comodule structure on V .

Recall that the identity element 1G.k/ of G.k/ is A
�
�! k. To say that rk.1G.k// D

idV˝k means that the following diagram commutes,

V V ˝A V ˝k

V ˝A V ˝k

v 7! v˝1

v 7! v˝1

�

V ˝�

V ˝k

V ˝�

i.e., that the right hand diagram in (67) commutes.
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Next consider the condition that rR.g/rR.h/D rR.gh/ for g;h 2 G.R/. By definition
(see (8)), gh is the map

A
�
�! A˝A

.g;h/
�! R;

and so rR.gh/ acts on V as

V
�
�! V ˝A

V˝�
����! V ˝A˝A

V˝.g;h/
������! V ˝R: (76)

On the other hand, rR.g/rR.h/ acts as

V
�
�! V ˝A

V˝h
���! V ˝R

�˝R
���! V ˝A˝R

V˝.g;id/
������! V ˝R;

i.e., as

V
�
�! V ˝A

�˝A
���! V ˝A˝A

V˝.g;h/
������! V ˝R: (77)

The maps (76) and (77) agree for all g;h if and only if the first diagram in (67) commutes.2

EXAMPLE 8.14 Recall (8.5) that, for any k-bialgebra A, the map �WA! A˝A is a co-
module structure on A. When ADO.G/, this comodule structure on A corresponds to the
regular representation of G on O.G/ (8.3).

EXAMPLE 8.15 Let �WV ! V ˝O.Ga/ be a finite-dimensional O.Ga/-comodule. The
k-vector space O.Ga/' kŒX� has basis 1;X;X2; : : : and so we can write

�.v/D
X

i�0
�i .v/˝X

i , v 2 V:

As � is k-linear, so also is each map v 7! �i .v/, and as the sum is finite, for each v; �i .v/ is
zero except for a finite number of i . As V is finite-dimensional, this means that only finitely
many of the �i are nonzero. It follows that the representations constructed in (8.1) form a
complete set.

PROPOSITION 8.16 Let r WG! EndV be the representation corresponding to a comodule
.V;�/. A subspace W of V is a subrepresentation if and only if it is a subcomodule.

PROOF. Routine checking. 2

PROPOSITION 8.17 Every representation of G is a union of its finite-dimensional subrep-
resentations.

PROOF. In view of (8.12) and (8.16), this is simply a restatement of Proposition 8.8. 2

PROPOSITION 8.18 Let r WG! EndV be the representation corresponding to a comodule
.V;�/. Choose a basis .ei /i2I for V , and write

�.ej /D
X

i
ei ˝aij ; aij 2O.G/: (78)

Then, for each g 2G.R/,

rR.g/.ej ˝1/D
P
i2I ei ˝g.aij /D

P
i2I ei ˝aijR.g/ (79)

(equality in V.R/; recall that aijR is a map G.R/! R and that rR.g/ is a map V.R/!
V.R/).
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PROOF. According to (75),

rR.g/.ej ˝1/D .idV ˝g/.�.ej //

D .idV ˝g/.
P
i ei ˝aij /

D
P
i ei ˝g.aij /

D
P
i ei ˝aijR.g/:

In the last step, we used that g.f /D fR.g/ for f 2O.G/ and g 2G.R/ (see 2.16). 2

COROLLARY 8.19 Let .G;r/ be the representation corresponding to a comodule .V;�/.
Choose a basis .ei /i2I for V . Then O.EndV / is a polynomial ring in variables Xij (i;j 2
I ) where Xij acts by sending an endomorphism of V to its .i;j /th matrix entry. The
homomorphism O.EndV /! O.G/ defined by r sends Xij to aij where aij is given by
(78).

PROOF. Restatement of the proposition. 2

COROLLARY 8.20 Let r WG ! EndV be the representation corresponding to a comodule
.V;�/. Let H be a subgroup of G, and let O.H/DO.G/=a. The following conditions on
a vector v 2 V are equivalent:

(a) for all k-algebras R and all g 2H.R/, rR.g/.vR/D vRI
(b) �.v/� v˝1 mod V ˝a.

PROOF. We may suppose that v ¤ 0, and so is part of a basis .ei /i2I for V , say v D ej .
Let .aij /i;j2I be as in (78); then (b) holds for ej if and only if aij � ıij 2 a for all i . On
the other hand, (79) shows that (a) holds for ej if and only if the same condition holds on�
aij
�
. 2

We say that v 2 V is fixed by H if it satisfies the equivalent conditions of the corollary,
and we let V H denote the subspace of fixed vectors in V . If H.k/ is dense in H , then
v 2 V H if and only if r.g/vD v for all g 2H.k/ (because there is a largest subgroup of G
fixing v).

LEMMA 8.21 Let G, r , V , �, and H be as in the corollary, and let R be a k-algebra. The
following submodules of V.R/ are equal:

(a) V H ˝R;
(b) fv 2 V.R/ j rR0.g/.vR0/D vR0 for all R-algebras R0 and g 2H.R0/gI
(c) fv 2 V.R/ j �.v/� v˝1 mod V ˝a˝Rg.

PROOF. Nothing in this subsection requires that k be a field (provided one assumes V to be
free). Therefore the equality of the sets in (b) and (c) follows by taking k DR in Corollary
8.20. The condition

�.v/� v˝1 mod V ˝a

is linear in v, and so if W is the solution space over k, then W ˝k R is the solution space
over R. This proves the equality of the sets in (a) and (c). 2
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8g The category of representations of G

Let G be an affine monoid over k, and let Rep.G/ be the category of representations of
G on finite-dimensional k-vector spaces. As this is essentially the same as the category of
finite-dimensional O.G/-comodules (see 8.12), it is an abelian category and the forgetful
functor to k-vector spaces is exact and faithful.

The tensor product of two representations .V;r/ and .V 0; r 0/ is defined to be .V ˝
V;r˝ r 0/ where .r˝ r 0/R.g/D rR.g/˝ r 0R.g/.

When G is a group, the contragredient (or dual) of a representation .V;r/ is defined to
be .V _; r_/ where,�

r_R.g/.f /
�
.v/D f .rR.g

�1/v/; g 2G.R/; f 2 V _.R/; v 2 V.R/

(more succinctly, .gf /.v/D f .g�1v/).

PROPOSITION 8.22 Let .V;r/ and .V 0; r 0/ be representations of G, and let � and �0 be the
corresponding comodule structures on V and V 0. The comodule structures on V ˝V 0 and
V _ defined by r˝ r 0 and r_ are those described in �8e.

PROOF. Easy exercise for the reader. 2

8h Affine groups are inverse limits of algebraic groups

It is convenient at this point to prove the following theorem.

THEOREM 8.23 Every affine monoid (resp. group) is an inverse limit of its algebraic quo-
tients.

In particular, every affine monoid (resp. group) is an inverse limit of algebraic monoids
(resp. groups) in which the transition maps are quotient maps.

We prove Theorem 8.23 in the following equivalent form.

THEOREM 8.24 Every bialgebra (resp. Hopf algebra) over k is a directed union of its
finitely generated sub-bialgebras (resp. Hopf subalgebras) over k.

PROOF. Let A be a k-bialgebra. By (8.8), every finite subset of A is contained in a finite-
dimensional k-subspace V such that �.V / � V ˝A. Let .ei / be a basis for V , and write
�.ej /D

P
i ei ˝aij . Then �.aij /D

P
k aik˝akj (see (69), p. 98), and the subspace L

of A spanned by the ei and aij satisfies �.L/� L˝L. The k-subalgebra A0 generated by
L satisfies �.A0/� A0˝A0, and so it is a finitely generated sub-bialgebra of A. It follows
that A is the directed union AD

S
A0 of its finitely generated sub-bialgebras.

Suppose that A has an inversion S . If �.a/D
P
bi ˝ ci , then �.Sa/D

P
Sci ˝Sbi

(Exercise 5-5b). Therefore, the k-subalgebra A0 generated by L and SL satisfies S.A0/ �
A0, and so it is a finitely generated Hopf subalgebra of A. It follows that A is the directed
union of its finitely generated Hopf subalgebras. 2

COROLLARY 8.25 Let A be a Hopf subalgebra of the Hopf algebra B . Then A and B are
directed unions of finitely generated Hopf subalgebras Ai and Bi such that Ai � Bi .
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PROOF. Since each finitely generated Hopf subalgebra of A is contained in a finitely gen-
erated Hopf subalgebra of B , this follows easily from the theorem. 2

COROLLARY 8.26 Let A be a Hopf algebra over a field k. If A is an integral domain and
its field of fractions is finitely generated (as a field) over k, then A is finitely generated.

PROOF. Any finite subset S of A is contained in a finitely generated Hopf subalgebra A0 of
A. When S is chosen to generate the field of fractions of A, then A0 and A have the same
field of fractions, and so they are equal (6.44). 2

COROLLARY 8.27 A Hopf algebra whose augmentation ideal is finitely generated is itself
finitely generated.

PROOF. Let A be a Hopf algebra. If IA is finitely generated, then there exists a finitely
generated Hopf subalgebra A0 of A containing a set of generators for IA. The inclusion
A0 ! A corresponds to a quotient map G ! G0 whose kernel has Hopf algebra A˝A0
A0=IA0 ' A=IA0AD A=IA ' k. Proposition 7.1 shows that G 'G0, and so A0 ' A. 2

PROPOSITION 8.28 Every quotient of an algebraic group is itself an algebraic group.

PROOF. We have to show that a Hopf subalgebra A of a finitely generated Hopf algebra
B is finitely generated. Because B is noetherian, the ideal IAB is finitely generated, and
because B is flat over A, the map IA˝AB!A˝AB 'B is an isomorphism of IA˝AB
onto IAB . Therefore IA˝B is a finitely generated as a B-module, and as B is faithfully
flat over A, this implies that IA is finitely generated.28

2

ASIDE 8.29 Proposition 8.28 is not obvious because subalgebras of finitely generated k-algebras
need not be finitely generated. For example, the subalgebra kŒX;XY;XY 2; : : :� of kŒX;Y � is not
even noetherian. There are even subfieldsK of k.X1; : : : ;Xn/ containing k such thatK\kŒX1; : : : ;Xn�
is not finitely generated as a k-algebra (counterexamples to Hilbert’s fourteenth problem; Nagata and
others).

ASIDE 8.30 Theorem 8.23 is also true for nonaffine group schemes: every quasicompact group
scheme over a field k is a filtered inverse limit of group schemes of finite type over k (Perrin 1976).

8i Algebraic groups admit finite-dimensional faithful representations

In fact, every sufficiently large finite-dimensional subrepresentation of the regular represen-
tation will be faithful.

THEOREM 8.31 For any algebraic group G, the regular representation of G has faithful
finite-dimensional subrepresentations; in particular, the regular representation itself is faith-
ful.

28As a B-module, IA˝AB has a finite set of generators fc1˝b1; : : : ; cm˝bmg, and the map

.a1; : : : ;am/ 7!˙aici WA
m
! IA

is surjective because it becomes surjective when tensored with B .
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PROOF. Let ADO.G/, and let V be a finite-dimensional subcomodule of A containing a
set of generators for A as a k-algebra. Let .ei /1�i�n be a basis for V , and write �.ej /DP
i ei˝aij . According to (8.19), the image of O.GLV /!A contains the aij . But, because

�WA! k is a co-identity (see (29), p. 42),

ej D .�˝ idA/�.ej /D
X
i

�.ei /aij ;

and so the image contains V ; it therefore equals A. We have shown that O.GLV /! A is
surjective, which means that G!GLV is injective (7.2). [Variant: AV � V (see 8.6c), and
so AV D A; this implies that the representation on V is faithful.] 2

COROLLARY 8.32 Every affine group admits a faithful family of finite-dimensional repre-
sentations.

PROOF. Write G as an inverse limit G D lim
 �i2I

Gi of algebraic groups, and, for each
i 2 I , choose a faithful finite-dimensional representation .Vi ; ri / of Gi . Each .Vi ; ri / can
be regarded as a representation of G, and the family is faithful. 2

The theorem says that every algebraic group can be realized as an algebraic subgroup
of GLn for some n. This does not mean that we should consider only subgroups of GLn
because realizing an algebraic group in this way involves many choices.

PROPOSITION 8.33 Let .V;r/ be a faithful representation of an algebraic group G. Then
V is a union of its finite-dimensional faithful subrepresentations.

PROOF. Let .ei /i2I be a basis for V , and write �.ej /D
P
i2I ei ˝aij , aij 2 A. Because

.V;r/ is faithful, the k-algebra A is generated by the aij (8.19). Because A is finitely
generated as a k-algebra, only finitely many aij ’s are need to generate it, and so there exists
a finite subset J of I such that the aij ’s appearing in �.ej / for some j 2 J generate A.
Every finite-dimensional subrepresentation of .V;r/ containing fej j j 2 J g is faithful. 2

ASIDE 8.34 Does every affine group of finite type over a commutative ring admit an injective ho-
momorphism into GLn for some n? Apparently, this is not known even when k is the ring of dual
numbers over a field and G is smooth (mo22078, Brian Conrad). Using (8.10), one sees by the
above arguments that an affine group scheme G of finite type over a noetherian ring k has a faithful
representation on a finitely generated submodule M of the regular representation. If M is flat over
k, then it is projective, and hence a direct summand of a free finitely generated k-module L, and
so G ,! GLrank.L/. When k is a Dedekind domain and G is flat, the module M is torsion-free,
and hence automatically flat. Thus, every flat affine group scheme of finite type over a Dedekind
domain admits an embedding into GLn for some n. As every split reductive group scheme over a
ring k arises by base change from a similar group over Z (Chevalley), such group schemes admit
embeddings into GLn. Since every reductive group splits over a finite étale extension of the base
ring (SGA3), an argument using restriction of scalars proves the statement for every reductive group
(mo22078).
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8j The regular representation contains all

Let .V;rV / be a representation of G. For v 2 V.R/ and u 2 V _.R/, let hu;vi D u.v/ 2R.
For a fixed v 2 V and u 2 V _, the maps

x 7! hu;rV .x/viWG.R/!R

are natural in R, and so define an element of O.G/, i.e., there exists a �u.v/ 2O.G/ such
that

�u.v/R.x/D hu;rV .x/vi (in R) for all x 2G.R/:

Let ADO.G/, and let rA be the regular representation of G on A.

PROPOSITION 8.35 The map �u is a homomorphism of representations .V;rV /! .A;rA/.

PROOF. We have to show that

.�u/R ı rV .g/D rA.g/ı .�u/R

for all k-algebras R and all g 2G.R/. For any v 2 V.R/ and x 2G.R/,

.LHS.v//.x/ D �u.rV .g/v/R.x/

D hu;rV .x/rV .g/vi (definition of �u)
D hu;rV .xg/vi (rV is a homomorphism)
D �u.v/R.xg/ (definition of �u)
D .rA.g/�u.v//R.x/ ((65), p. 96)
D .RHS.v//.x/,

as required. 2

PROPOSITION 8.36 If u1; : : : ;un span V _, then the k-linear map

v 7! .�u1.v/; : : : ;�un.v//WV ! An (80)

is injective.

PROOF. Note that �u.v/.1/D hu;vi, and so the composite

V.R/! An.R/!Rn

of (80) with the map “evaluate at 1” is

v 7! .hu1;vi; : : : ;hun;vi/;

which is injective by our choice of the ui ’s. 2

Thus, V embeds into a finite sum of copies of the regular representation. We give a
second proof of this.

PROPOSITION 8.37 Let .V;�/ be a finite-dimensional representation of G. Let V0 denote
V regarded as a vector space, and let V0˝O.G/ be the free comodule on V0 (see 8.5).
Then

�WV ! V0˝O.G/

is an injective homomorphism of representations.
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PROOF. The coaction on V0˝O.G/ is

V0˝�WV0˝O.G/! V0˝O.G/˝O.G/:

The commutative diagram (see (67), p. 97)

V
�

����! V0˝O.G/??y� ??yV0˝�
V ˝O.G/

�˝O.G/
�����! V0˝O.G/˝O.G/

says exactly that the map �WV ! V0˝O.G/ is a homomorphism of comodules. It is
obviously injective. 2

8k Every faithful representation generates Rep.G/

Let .C;�;�/ be a coalgebra over k, and let .V;�/ be a comodule over C . Recall (8.6)
that CV denotes the smallest subspace of C such that �.V / � V ˝CV . The space CV is
a sub-coalgebra of C , and, for any basis .ei /i2I of V , it is spanned by the elements cij
determined by the equation

�.ej /D
X

i2I
ei ˝ cij .

Note that
C˚Vi D

X
i
CVi (sum of subspaces of C ).

Any CV -comodule .W;�W / can be regarded as a C -comodule with the coaction

W
�W
�!W ˝CV �W ˝C:

LEMMA 8.38 Let .V;�/ be a finite dimensional C -comodule. Every finite-dimensional
CV -comodule (considered as a C -comodule) is isomorphic to a quotient of a sub-comodule
of V n for some n.

PROOF. We may replace C with CV , and so assume that C is finite dimensional. Let
A D C_. Because of the correspondence between right C -comodule structures and left
A-module structures (8.7), it suffices to prove the following statement:

let A be a finite k-algebra and let V be a finite-dimensional faithful left A-
module; then every finite-dimensionalA-moduleW is isomorphic to a quotient
of a submodule of V n for some n.

Every module W is isomorphic to a quotient of the free module Am for some m, and
so it suffices to prove that A itself is isomorphic to a submodule of V n for some n. But if
e1; : : : ; en span V as a k-vector space, then a 7! .ae1; : : : ;aen/WA! V n is injective because
V is faithful. 2

Now assume that A is a bialgebra over k. Then the tensor product of two A-comodules
has a natural A-comodule structure (�8e).

LEMMA 8.39 Let A be a bialgebra over k, and let V and V 0 be finite-dimensional A-
comodules. Then AV˝V 0 D AV �AV 0 .
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PROOF. Choose k-bases .ei /i2I and .e0i /i2I 0 for V and V 0, and write

�V .ej /D
X
i2I

ei ˝aij ; �V 0.e
0
j /D

X
i2I 0

e0i ˝a
0
ij :

Then .ei ˝ ei 0/.i;i 0/2I˝I 0 is a basis for V ˝k V 0, and

�V˝V 0.ej ˝ ej 0/D
P
i;i 0 .ei ˝ ei 0/˝ .aij �a

0
i 0j 0/

(see �8e). As

AV D haij j i;j 2 I i

AV 0 D haij j i;j 2 I
0
i

AV˝V 0 D haij �a
0
i 0j 0 j i;j 2 I; i 0;j 0 2 I 0i;

the statement is clear. (Alternatively, note that AV ˝AV 0 is the sub-coalgebra attached to
the A˝A-comodule V ˝V 0, and thatAV˝V 0 is the image of this by the multiplication map
mWA˝A! A.) 2

Now assume that A is a Hopf algebra over k. Then the dual of an A-comodule has a
natural A-comodule structure (�8e).

LEMMA 8.40 Let A be a Hopf algebra over k, and let S WA! A be its inversion. For any
finite-dimensional A-comodule .V;�/, AV _ D SAV .

PROOF. Under the isomorphisms (71), the right co-action �WV ! V ˝A corresponds to
a left co-action �0WV _ ! A˝V _, and AV is also the smallest subspace of A such that
�0.V _/�AV ˝V

_. It follows from the definition of �_ (see (72)) that SAV is the smallest
subspace of A such that �_.V _/� V _˝A. 2

LEMMA 8.41 Let V be a finite-dimensional comodule over a k-bialgebra A. Then

A.V /
def
D

X
n�0

AV˝n � A

is the smallest sub-bialgebra of A containing AV and 1.

PROOF. It follows from Lemma 8.39 that

AV˝n D AV � � �AV (n factors),

and so it is clear that A.V / is the subalgebra of A generated by AV and 1. 2

Note that AD
S
V A.V / because AD

S
V AV (see 8.9).

LEMMA 8.42 Let V be a finite-dimensional comodule over a Hopf k-algebra A. Then
A.V ˚V _/ is the smallest sub-bialgebra of A containing AV and 1 and stable under S (in
other words, it is the smallest Hopf subalgebra of A containing AV and 1).
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PROOF. From Lemma 8.41, A.V ˚ V _/ is the smallest sub-bialgebra of A containing
AV˚V _ and 1. But

AV˚V _ D AV CAV _
8.40
D AV CSAV ;

and so it is the smallest sub-bialgebra of A containing AV , SAV , and 1. 2

Let G be an algebraic group over k, and let ADO.G/.

LEMMA 8.43 Let .V;r/ be a finite-dimensional representation of G, and let .V;�/ be the
corresponding A-comodule. The representation r is faithful if and only if A.V ˚V _/DA.

PROOF. Choose a basis .ei /i2I for V , and write �.ej /D
P
ei ˝aij . Then A.V ˚V _/ is

the smallest sub-bialgebra of A containing the aij and 1 and stable under S (by 8.42). On
the other hand, the image of O.GLV /! O.G/D A is the k-subalgebra generated by the
aij (8.19). As this image is a sub-bialgebra stable under S , we see that O.GLV /!O.G/
is surjective (so r is faithful) if and only if A.V ˚V _/D A. 2

THEOREM 8.44 Let G!GLV be a representation of G. If V is faithful, then every finite-
dimensional representation of G is isomorphic to a quotient of a sub-representation of a
direct sum of representations

Nn
.V ˚V _/ .

PROOF. Let W be the direct sum of the representations
Nn

.V ˚ V _/. By definition,
A.V ˚ V _/ D AW . According to Lemma 8.38, every finite-dimensional AW -comodule
is isomorphic to a quotient of a sub-comodule of W . When V is faithful, AW D A. 2

COROLLARY 8.45 Every simple G-module is a Jordan-Hölder quotient of
Nn

.V ˚V _/

for some n.

PROOF. Immediate consequence of the theorem. 2

We close this subsection with some remarks.

8.46 When M is an affine monoid with coordinate ring O.M/ D A, we let MV denote
the quotient affine monoid of M with coordinate ring A.V /. Similarly, when G is an affine
group, we let GV denote the quotient affine group of G with coordinate ring A.V ˚V _/.
Both MV and GV act faithfully on V . Moreover,

M D lim
 �

MV ; G D lim
 �

GV

because AD
S
A.V /.

8.47 Let .V;�/ be a finite-dimensional comodule over a Hopf k-algebraA. Choose a basis
.ei /i2I for V and define the matrix .aij / by �.ej / D

P
i2I ei ˝ aij . Let ıV D det.aij /.

Then ıV is an invertible element of A, contained in A.V /, and

A.V ˚V _/D A.V /

�
1

ıV

�
:



112 I. Basic Theory of Affine Groups

8.48 The quotient MV of M is the smallest affine submonoid of EndV containing the
image of r , and the quotient GV of G is the smallest affine subgroup of GLV containing
the image of r .

8.49 Let det.V / D
VdimV

V . Then every simple G-module is a Jordan-Hölder quotient
of
Nn

V ˝
Nm det.V /_ for some m;n.

8.50 It sometimes happens that O.GV / is a quotient of O.EndV / (and not just of O.GLV /),
i.e., that A.V / D A.V ˚V _/. This is the case, for example, if GV is contained in SLV .
In this case, Theorem 8.44 and its corollary simplify: the tensor powers of V ˚V _ can be
replaced by those of V .

ASIDE 8.51 Our exposition of Theorem 8.44 follows Serre 1993.

8l Stabilizers of subspaces

PROPOSITION 8.52 Let G! GLV be a representation of G, and let W be a subspace of
V . The functor

R fg 2G.R/ j gWR DWRg

is a subgroup of G (denoted GW , and called the stabilizer of W in G).

PROOF. Let .ei /i2J be a basis for W , and extend it to a basis .ei /JtI for V . Write

�.ej /D
P
i2JtI ei ˝aij ; aij 2O.G/:

Let g 2G.R/D Homk-alg.O.G/;R/. Then (see 8.18)

gej D
P
i2JtI ei ˝g.aij /:

Thus, g.W ˝R/�W ˝R if and only if g.aij /D 0 for j 2 J , i 2 I . As g.aij /D .aij /R.g/
(see 2.16), this shows that the functor is represented by the quotient of O.G/ by the ideal
generated by faij j j 2 J; i 2 I g. 2

We say that an affine subgroup H of G stabilizes W if H � GW , i.e., if hWR D WR
for all k-algebras R and h 2H.R/.

COROLLARY 8.53 Let H be an algebraic subgroup of G such that H.k/ is dense in H . If
hW DW for all h 2H.k/, then H stabilizes W .

PROOF. As hW DW for all h 2H.k/, we have .H \GW /.k/DH.k/, and soH \GW D
H . 2

PROPOSITION 8.54 Let G act on V and V 0, and let W and W 0 be nonzero subspaces of V
and V 0. Then the stabilizer of W ˝W 0 in V ˝V 0 is GW \GW 0 .



8. Representations of affine groups 113

PROOF. Clearly GW \GW 0 � GW˝W 0 . Conversely, if g is an element of G.R/ not in
GW .R/, then there exists a nonzero w 2W such that gw …WR. For any nonzero element
w0 of W 0, the element g.w˝w0/D gw˝gw0 of VR˝V 0R is not in WR˝W 0R,29 and so
g …GW˝W 0.R/. 2

PROPOSITION 8.55 Let G! GLV be a representation of G, and let v 2 V . The functor

R Gv.R/
def
D fg 2G.R/ j g.v˝1/D v˝1 (in VR)g

is a subgroup of G (denoted Gv, and called the isotropy or stability group of v in G).

PROOF. If v D 0, then Gv D G and there is nothing to prove. Otherwise, choose a basis
.ei /i2I for V with ei0 D v for some i0 2 I . Write

�.ej /D
P
i2JtI ei ˝aij ; aij 2O.G/:

An element g 2G.R/ fixes v˝1 if and only if

g.ai i0/D

�
1 if i D i0
0 otherwise.

ThereforeGv is represented by the quotient of O.G/ by the ideal generated by fai i0�ıi i0 j
i 2 I g. 2

DEFINITION 8.56 For a representation r WG! GLV of G,

V G D fv 2 V j gv D v (in VR/ for all k-algebras R and and g 2G.R/g:

It is largest subspace of V on which the action ofG is trivial. If � denotes the corresponding
coaction, then

V G D fv 2 V j �.v/D v˝1g.

8m Chevalley’s theorem

THEOREM 8.57 (CHEVALLEY) Every subgroup of an algebraic group G is the stabilizer
of a one-dimensional subspace in a finite-dimensional representation of G.

PROOF. Let H be a subgroup of G, and let a be the kernel of O.G/!O.H/. According
to (8.8), there exists a finite-dimensional k-subspace V of O.G/ containing a generating
set of a as an ideal and such that

�.V /� V ˝O.G/:
29Let e and e0 be nonzero elements of V and V 0; if e˝ e0 2WR˝W 0R for some k-algebra R, then e2W

and e0 2W 0. To see this, write V DW ˚W1, so that

V ˝V 0 DW ˝V 0˚W1˝V
0:

Let e D e0C e1 with e0 2 W and e1 2 W1. If e1 ¤ 0, then e1˝ e0 ¤ 0 in W1˝V 0 � .W1˝V 0/R, and so
e˝ e0 …

�
W ˝V 0

�
R

.
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Let W D a\V in V . Let .ei /i2J be a basis for W , and extend it to a basis .ei /JtI for V .
Let

�ej D
P
i2JtI ei ˝aij ; aij 2O.G/:

As in the proof of 8.52,GW is represented by the quotient of O.G/ by the ideal a0 generated
by faij j j 2 J; i 2 I g. Because O.G/!O.H/ is a homomorphism of coalgebras30

�.a/� Ker.O.G/˝O.G/!O.H/˝O.H//DO.G/˝aCa˝O.G/;
�.a/D 0:

The first of these applied to ej , j 2 J , shows that a0 � a, and the second shows that

ej D .�; id/�.ej /D
P
i2I �.ei /aij :

As the ej , j 2 J , generate a (as an ideal), so do the aij , j 2 J , and so a0 D a. Thus H D
GW . The next (elementary) lemma shows that W can be taken to be one-dimensional. 2

LEMMA 8.58 Let W be a finite-dimensional subspace of a vector space V , and let D D
DD

VdimW
W �

VdimW
V . Let ˛ be an automorphism of VR for some k-algebraR. Then

˛WR DWR if and only if ˛DR DDR.

PROOF. Let .ej /j2J be a basis for W , and extend it to a basis .ei /JtI of V . Let w DV
j2J ej . For any k-algebra R,

WR D fv 2 VR j v^w D 0 (in
VdC1

VR)g.

To see this, let v 2 VR and write v D
P
i2JtI aiei , ai 2R. Then

v^w D
P
i2I aie1^� � �^ ed ^ ei .

As the elements e1^� � �^ ed ^ ei , i 2 I , are linearly independent in
VdC1

V , we see that

v^w D 0 ” ai D 0 for all i 2 I:

Let ˛ 2 GL.VR/. If ˛WR D WR, then obviously .
Vd

˛/.DR/ D DR. Conversely,
suppose that .

Vd
˛/.DR/DDR, so that .

Vd
˛/wD cw for some c 2R�. When v 2WR,

v^w D 0, and so

0D .
VdC1

˛/.v^w/D ˛v^ .
Vd

˛/w D c ..˛v/^w/;

which implies that ˛v 2WR. 2

COROLLARY 8.59 A subgroup H of an algebraic group G is the subgroup of G fixing a
vector in some faithful finite-dimensional representation of G in each of the following two
cases:

(a) all the representations of H are semisimple;

30We use the following elementary fact: for any subspace W of a vector space V , the kernel of V ˝V !
V=W ˝V=W is V ˝W CW ˝V: To prove this, write V DW ˚W 0.
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(b) a nonzero multiple of each character of H defined over k extends to a similar char-
acter of G.

PROOF. According to Chevalley’s theorem, H is the stabilizer of a line D in a finite-
dimensional representation V of G. Let D_ be the dual of D with H acting contragre-
diently. If we can find a representation V 0 of G containing D_ as an H -stable subspace,
then H will be the subgroup of G fixing any nonzero vector in D˝D_ � V ˝V 0.31

Certainly D_ occurs as a quotient of V _, and so, in case (a), it also occurs as a direct
summand of V _ (regarded as an H -module). In this case, we can take V 0 D V _.

The action ofH onD defines a character ofH , which in case (b) extends to a character
of G. In this case, we can take V 0 DD_. 2

8n Sub-coalgebras and subcategories

LetC be a coalgebra over k. As before, Comod.C / denotes the category of finite-dimensional
right C -comodules. Let D be a sub-coalgebra of C . Any D-comodule .V;�/ becomes a
C -comodule with the coaction

V
�
�! V ˝D � V ˝C:

In this way, we get an exact fully faithful functor Comod.D/! Comod.C /. We let D_

denote the full subcategory of Comod.C / whose objects are isomorphic to a comodule in
the image of this functor.

DEFINITION 8.60 A full subcategory of an abelian category is replete if it is closed under
the formation of finite direct sums, subobjects, and quotient objects.

In particular, every object isomorphic to an object in a replete subcategory also lies in
the subcategory. A replete subcategory is an abelian category, and the inclusion functor is
exact.

THEOREM 8.61 The mapD 7!D_ is a bijection from the set of sub-coalgebras of C onto
the set of replete subcategories of Comod.C /.

PROOF. It is obvious that D_ is replete. Let S be a replete subcategory of Comod.C /, and
let

C.S/D
X

V 2S
CV (sub-coalgebra of C ).

To prove the theorem, we have to show that:

˘ C.D_/DD for all sub-coalgebras D of C , and
˘ C.S/_ D S for all replete subcategories S of Comod.C /. 2

The first statement follows from Corollary 8.9, and the second follows from Lemma 8.38.

31Let v be a nonzero vector in D. Then

H �Gv˝v_ �GD˝D_ DGD \GD_ DGD DH:
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PROPOSITION 8.62 Let A be a bialgebra over k.

(a) A sub-coalgebra D of A is a sub-bialgebra of A if and only if D_ is stable under
tensor products and contains the trivial comodule.

(b) Assume A has an inversion S . A sub-bialgebraD is stable under S if and only ifD_

is stable under the contragredient functor.

PROOF. (a) If D is a sub-bialgebra of A, then certainly D_ is stable under tensor products
and contains the trivial comodule (see �8e). For the converse, recall that D D

S
DV and

that DV �DV 0 D DV˝V 0 (see 8.39), and so D is closed under products. Because D_

contains V0 D k, D contains DV0 D k.
(b) Use the formula AV _ D SAV (8.40). 2

8o Quotient groups and subcategories

For an affine groupG over k, Rep.G/ denotes the category of finite-dimensionalG-modules.
Let G ! Q be a quotient of G. A representation r WQ! GLV defines a representation
G ! Q

r
�! GLV of G. We get in this way an exact fully faithful functor Rep.Q/!

Rep.G/. The essential image of the functor consists of the representations of G containing
Ker.G!Q/ in their kernel. We let Q_ denote this subcategory of Rep.G/.

THEOREM 8.63 The map Q 7!Q_ is a bijection from the set of isomorphism classes of
quotients of G to the set of replete subcategories of Rep.G/ closed under the formation of
tensor products (including the empty tensor product) and under passage to the contragredi-
ent.

PROOF. Obvious from (8.61), (8.62), and the dictionary between Hopf algebras and their
comodules and affine groups and their representations. 2

8p Characters and eigenspaces

A character of an affine group G is a homomorphism G!Gm. As O.Gm/D kŒX;X�1�
and �.X/ D X ˝X , we see that to give a character � of G is the same as giving an
invertible element a D a.�/ of O.G/ such that �.a/ D a˝a; such an element is said to
be group-like. A one-dimensional representation L of G defines a character of G (because
GLL 'Gm).

A character �WG! Gm defines a representation of G on any finite-dimensional space
V : let g 2 G.R/ act on VR as multiplication by �.g/ 2 R�. For example, � defines a
representation of G on V D kn by

g 7!

0B@�.g/ 0
: : :

0 �.g/

1CA ; g 2G.R/:

Let r WG! GLV be a representation of G. We say that G acts on V through a character�
if

r.g/v D �.g/v all g 2G.R/, v 2 VR:
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More precisely, this means that the image of r is contained in the centre Gm of GLV and is
the composite of

T
�
�!Gm ,! GLV : (81)

More generally, we say that G acts on a subspace W of V through a character � if W
is stable under G and G acts on W through �. Note that this means, in particular, that
the elements of W are common eigenvectors for the g 2 G.k/: if w 2 W , then for every
g 2 G.k/, r.g/w is a scalar multiple of w. If G acts on subspaces W and W 0 through a
character �, then it acts on W CW 0 through �. Therefore, there is a largest subspace V� of
V on which G acts through �, called the eigenspace for G with character �.

LEMMA 8.64 Let .V;r/ be a representation of G, and let .V;�/ be the corresponding co-
module. For any character � of G,

V� D fv 2 V j �.v/D v˝a.�/g.

PROOF. LetW be a subspace of V . ThenG acts onW through � if and only if �jW factors
as

W
w 7!w˝X
�������!W ˝O.Gm/

w˝X 7!w˝a.�/
�����������!W ˝O.G/. 2

THEOREM 8.65 Let r WG! GL.V / be a representation of an algebraic group on a vector
space V . If V is a sum of eigenspaces, V D

P
�2� V�, then it is a direct sum of the

eigenspaces
V D

M
�2�

V�:

PROOF. We first prove this when G is smooth. We may replace k with a larger field, and
so assume that k is algebraically closed. If the sum is not direct, there exists a finite subset
f�1; : : : ;�mg, m� 2; of � and a relation

v1C�� �Cvm D 0, vi 2 V�i , vi ¤ 0. (82)

On applying g 2G.k/ to (82), we get a relation

�1.g/v1C�� �C�m�1.g/vm�1C�m.g/vm D 0: (83)

As �m ¤ �m�1 and G is smooth, there exists a g 2 G.k/ such that �m.g/ ¤ �m�1.g/.
Multiply (83) by �m.g/�1 and subtract it from (82). This will give us a new relation of the
same form but with fewer terms. Continuing in this fashion, we arrive at a contradiction.

For the proof of the general case, we shall make use of the elementary lemma 14.2,
which says that any set of units a in O.G/ satisfying�.a/D a˝a is linearly independent.
From the relation (82), we get a relation

0D
P
i2J �.vi /D

P
i2J vi ˝a.�i /

which contradicts the linear independence of the a.�i /. 2

In �14 we shall show that when G is a split torus, V is always a sum of the eigenspaces
V�. In general, this will be far from true. For example, SLn has no nontrivial characters.
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8q Every normal affine subgroup is a kernel

LEMMA 8.66 Let v and w be nonzero vectors in vector spaces V and W respectively, and
let ˛ and ˇ be endomorphisms of VR and WR for some k-algebra R. If v˝w is fixed by
˛˝ˇ, then there exists a c 2R� such that ˛.v/D cv and ˇ.w/D c�1w.

PROOF. Write
V D hvi˚V 0; W D hwi˚W 0:

Then
V ˝W D hv˝wi ˚ hvi˝W 0 ˚ V 0˝hwi ˚ V 0˝W 0;

where hv˝wi D hvi˝hwi ¤ 0. Write

˛v D avCv0; ˇw D bwCw0; a;b 2R; v0 2 V 0R; w0 2W 0R.

Then
.˛˝ˇ/.v˝w/D ab.v˝w/Cav˝w0Cv0˝bwCv0˝w0:

If .˛˝ˇ/.v˝w/D v˝w, then ab D 1 and

a
�
v˝w0

�
D 0D b

�
v0˝w

�
:

As a;b 2R� and v ¤ 0¤ w, this implies that w0 D 0D v0, as required. 2

LEMMA 8.67 For any normal subgroup N of an affine group G and representation .V;r/
of G, the subspace V N is stable under G.

PROOF. Let w 2 .V N /R and let g 2 G.R/ for some k-algebra R. For any R-algebra R0

and n 2N.R0/

r.n/.r.g/w/D r.ng/w D r.gn0/w D r.g/r.n0/w D r.g/w;

because n0 D g�1ng 2N.R0/. Therefore, r.g/w 2 .V N /R, as required. 2

LEMMA 8.68 Let G be an affine group over k, and let .V;r/ be a representation of G. If
V is a sum of simple subrepresentations, say V D

P
i2I Si (the sum need not be direct),

then for any subrepresentation W of V , there is a subset J of I such that

V DW ˚
M

i2J
Si :

In particular, V is semisimple.

PROOF. Let J be maximal among the subsets of I such the sum SJ
def
D
P
j2J Sj is direct

and W \SJ D 0. I claim that W CSJ D V (hence V is the direct sum of W and the Sj
with j 2 J ). For this, it suffices to show that each Si is contained in W CSJ . Because Si
is simple, Si \ .W CSJ / equals Si or 0. In the first case, Si �W CSJ , and in the second
SJ \Si D 0 and W \ .SJ CSi /D 0, contradicting the definition of I . 2

LEMMA 8.69 Suppose that k is algebraically closed. Every normal subgroup of an alge-
braic group G over k occurs as the kernel of representation of G.
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PROOF. Let N be a normal subgroup of G. According to Chevalley’s theorem 8.57, N is
the stabilizer of a line L in a representation V of G. Let N act on L through the character
�. After possibly replacing .V;L/ with a second pair, we shall find a G-module U and
a line L0 in U such that N acts on L0 through � and L0 is a direct summand of U as an
N -module. Then U_ contains a line L_ on which N acts through the character ��1, and
L˝L_ � .V ˝U_/N . If an element ˛ of G.R/ acts trivially on .V ˝U_/NR , then it acts
trivially on .L˝L_/R, and so it stabilizesLR in VR (by 8.66); hence ˛ 2N.R/. Therefore
N is the kernel of the representation of G on .V ˝U_/N .

It remains to construct U . Suppose first that G is smooth. In this case, we take U to
be the smallest G-stable subspace of V containing L. The subspace

P
g2G.k/gL of V is

stable under G.k/, hence under G (8.53), and so equals U . According to Lemma 8.68, U
decomposes into a direct sum U D

L
i2I Li of lines Li stable under N , one of which can

be taken to be L.
If G is not smooth, then the characteristic of k is p ¤ 0, and there exists an n such that

O.G/pn is a reduced Hopf subalgebra of O.G/ (see 6.35). In this case, we replace V by
V ˝p

n

and L by L˝p
n

— Proposition 8.54 shows that N is still the stabilizer of L. Let G0

be the quotient of G such that O.G0/DO.G/pn . Choose a basis .ei /i2I for V containing
a nonzero element e of L. Write

�.e/D e˝aC
X

ei¤e
ei ˚ai ; ai1 2 aD Ker.O.G/!O.N //: (84)

In replacing L with L˝p
r

, we replaced the original a with ap
n

, which now lies in O.G0/.
Let L0 D hai �O.G0/, and consider the representation

G!G0! GLO.G0/

of G on O.G0/. The character � of N corresponds to the element Na of O.N /, where Na is
the image of b in O.N /DO.G/=a (see (84)). As

�.a/� a˝a mod O.G/˝O.G/=a;

N acts on the line L0 through the same character �. Because G0 is smooth, we can take U
to be the smallest G0-stable subspace of O.G0/ containing L0, as in the paragraph above. 2

THEOREM 8.70 Let N be a normal subgroup of an algebraic group G. The universal
surjective homomorphism G!Q containing N its kernel (see 7.63) has kernel exactly N .

PROOF. Lemma 8.69 show that, over some finite extension k0 of k, there exists a homo-
morphismGk0!H with kernelNk0 . The kernel ofG!˘k0=kH isN . From the universal
property of G!Q, we see that Ker.G!Q/�N , and hence the two are equal. 2

COROLLARY 8.71 For any distinct normal subgroups N �N 0 of an affine group G, there
exists a representation of G on which N acts trivially but N 0 acts nontrivially.

PROOF. Let Q D G=N be the quotient of G by N , and let Q! GLV be a faithful repre-
sentation of Q. The composite G!Q! GLV is the required representation. 2
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8r Variant of the proof of the key Lemma 8.69

LEMMA 8.72 Let .V;r/ be a finite-dimensional faithful representation of an algebraic
group G, and let N be the kernel of the representation of G on V _˝V . Then

N.R/D f˛ 2G.R/ j there exists a c 2R such that ˛x D cv for all v 2 V g:

In other words, for any subgroup G of GLV , the subgroup of G acting trivially on
V _˝V is the subgroup acting on V by scalars.

PROOF. Let .ei /1�i�n be a basis for V , and let eij D e_i ˝ ej . Let ˛ be endomorphism of
VR for some k-algebra R. A direct calculation shows that ˛.eij / D eij for all i;j if and
only if there exists a c 2R such that ˛ei D cei for all i . 2

LEMMA 8.73 Let G be an algebraic group, and let H be a subgroup of G. The following
are equivalent:

(a) H is normal in G;
(b) for each representation V of G and k-character � of H , the subspace V � of V on

which H acts through � is stable under G;
(c) every H -isotypic component of a representation of G is stable under G.

PROOF. See André 1992, Lemma 1. (We sketch the proof of (a) H) (b). For any g 2G.k/,
gV � D V g�, but the action of G on the set of k-characters of H is trivial, because G is
connected and the set is discrete. WhenG is smooth, this is shown in the proof of (16.31).)2

We now prove that every normal subgroup N of a connected algebraic group G occurs
as the kernel of a representation of G (without assumption on the field k). Let L be a line
in a representation V of G such that GL D N . Then N acts on L through a character �.
Let W be the smallest G-stable subspace of V containing L. Then W � V � by (8.73), and
so N is contained in the kernel H of G! GLW _˝W . According to (8.72), H acts on W
through a k-character. In particular, it stabilizes L, and so H �N .

8s Applications of Corollary 8.71

LEMMA 8.74 Let N1 and N2 be normal subgroups of an affine group G. If Rep.G/N1 D
Rep.G/N2 then N1 DN2.

PROOF. If N1 ¤ N2, then Corollary 8.71 shows that there exists a representation .V;r/ of
G and a v 2 V fixed by N1 but not by N1N2. Then V N1 is an object of Rep.G/N1 but not
of Rep.G/N2 , which contradicts the hypothesis. 2

THEOREM 8.75 LetN be a normal subgroup of an affine groupG, and letQ be a quotient
of G. Then N D Ker.G!Q/ if and only if Rep.G/N DQ_.

PROOF. ): According to Theorem 7.56, a representation r WG! GLV factors through Q
(and so lies in Q_) if and only if r maps N to 1 (and so .V;r/ lies in Rep.G/N ).
(: Let N 0 be the kernel of G ! Q. Then Rep.G/N

0

D Q_, and so Rep.G/N D
Rep.G/N

0

. This implies that N DN 0. 2
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COROLLARY 8.76 The map N 7! Rep.G/N is a bijection from the set of normal sub-
groups of G to the set of replete subcategories of Rep.G/ closed under tensor products and
passage to the contragredient.

PROOF. Let S be a replete subcategory of Rep.G/ closed under tensor products and pas-
sage to the contragredient. The S D Q_ for some quotient Q of G, well-defined up to
isomorphism, and the kernel N of G!Q is a normal subgroup of G. The maps S 7! N

and N 7! Rep.G/N are inverse. 2

THEOREM 8.77 For any normal subgroup N of an affine group G, there exists a quotient
map with kernel N .

PROOF. The subcategory Rep.G/N of Rep.G/ is replete and closed under tensor products
and passage to the contragredient. Therefore Rep.G/N DQ_ for some quotient Q of G,
and the Theorem 8.75 implies that N is the kernel of G!Q. 2

NOTES Add a discussion of the correspondence between normal subgroups of an affine group G
and the normal Hopf ideals in O.G/ (Abe 1980, p. 179), and also of the correspondence between
normal Hopf ideals and Hopf subalgebras (ibid. 4.4.7, p. 207, in the case that k is algebraically
closed and the Hopf algebras are assumed to be reduced).

NOTES Add a discussion of the general theorem on the existence of quotients of group schemes
over artinian rings (SGA3, VIA).

9 Group theory: the isomorphism theorems

In this section, we show that the (Noether) isomorphism theorems in abstract group theory
hold also for affine groups.

9a Review of abstract group theory

For a group G (in the usual sense), we have the notions of subgroup, a normal subgroup, an
embedding (injective homomorphism), and of a quotient map (surjective homomorphism).
Moreover, there are the following basic results, which are often referred to collectively as
the isomorphisms theorems.32

9.1 (Existence of quotients). The kernel of a quotient map G!Q is a normal subgroup
ofG, and every normal subgroupN ofG arises as the kernel of a quotient mapG!G=N .

9.2 (Homomorphism theorem). The image of a homomorphism ˛WG!G0 is a subgroup
˛G of G0, and ˛ defines an isomorphism from G=Ker.˛/ onto ˛G; in particular, every
homomorphism is the composite of a quotient map and an embedding.

32Statements (9.2), (9.3), and (9.4) are sometimes called the first, second, and third isomorphism theorems,
but the numbering varies. In Noether 1927, the first isomorphism theorem is (9.4) and the second is (9.3).
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9.3 (Isomorphism theorem). Let H and N be subgroups of G such thatH normalizes N ;
thenHN is a subgroup ofG,N is a normal subgroup ofHN ,H \N is a normal subgroup
of H , and the map

h.H \N/ 7! hN WH=H \N !HN=N

is an isomorphism.

9.4 (Correspondence theorem). Let N be a normal subgroup of G. The map H 7!H=N

defines a one-to-one correspondence between the set of subgroups of G containing N and
the set of subgroups of G=N . A subgroup H of G containing N is normal if and only if
H=N is normal in G=N , in which case the map

G=H ! .G=N/=.H=N/

defined by the quotient map G!G=N is an isomorphism.

In this section, we shall see that, appropriately interpreted, all these notions and state-
ments extend to affine groups (in particular, to algebraic groups).

9b The existence of quotients

See Theorem 8.70.

EXAMPLE 9.5 Let PGLn be the quotient of GLn by its centre, and let PSLn be the quotient
of SLn by its centre:

PGLn D GLn =Gm; PSLn D SLn =�n:

The homomorphism SLn! GLn! PGLn contains �n in its kernel, and so defines a ho-
momorphism

PSLn! PGLn : (85)

Is this an isomorphism? Note that

SLn.k/=�n.k/! GLn.k/=Gm.k/ (86)

is injective, but not in general surjective: not every invertible n�n matrix can be written
as the product of a matrix with determinant 1 and a scalar matrix (such a matrix has de-
terminant in k�n). Nevertheless, I claim that (85) is an isomorphism of algebraic groups.
In characteristic zero, this follows from the fact that (86) is an isomorphism when k D kal

(apply 7.18 and 7.54). In the general case, we have to check the conditions (7.2a) and
(7.50).

Let q¤ 1 2 PSLn.R/. For some faithfully flatR-algebraR0, there exists a g 2 SLn.R0/
mapping to q in PSLn.R0/. The image of g in GLn.R0/ is not in Gm.R0/ (because q ¤ 1/;
therefore, the image of g in PGLn.R0/ is¤ 1, which implies that the image of q in PGL.R/
is¤ 1:

PSLn.R0/ ����! PGLn.R0/x?? x??injective

PSLn.R/ ����! PGLn.R/:
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We have checked condition (7.2a).
Let q 2 PGLn.R/. For some faithfully flat R-algebra R0, there exists a g 2 GLn.R0/

mapping to q. If a def
D det.g/ is an nth power, say a D tn, then g D g0t with det.g0/D 1,

and the image of g in GLn.R0/=Gm.R0/ is in the image of SLn.R0/=�n.R0/. Hence, the
image of q in PGLn.R0/ is in the image of PSLn.R0/. If a is not an nth power in R0, we
replaceR0 by the faithfully flat (even free) algebraR0ŒT �=.T n�a/ in which it does become
an nth power. We have checked condition (7.50).

9c The homomorphism theorem

A homomorphism ˛WG ! G0 of affine groups defines a homomorphism ˛�WO.G0/ !
O.G/ of Hopf algebras, whose kernel a is a Hopf ideal in O.G0/.33 Thus

aD ff 2O.G0/ j fR.˛R.P //D 0 for all k-algebras R and all P 2G.R/g:

The subgroup H of G0 corresponding to a (see 7.8) is called the image of ˛ (and often
denoted ˛G). Thus

H.R/D fg 2G.R/ j fR.g/D 0 for f 2 ag.

THEOREM 9.6 (Homomorphism theorem) For any homomorphism ˛WG ! G0 of affine
groups, the kernel N of ˛ is a normal subgroup of G, the image ˛G of ˛ is a subgroup of
G0, and ˛ factors in a natural way into the composite of a surjection, an isomorphism, and
an injection:

G
˛

�������! G0

surjective
??y x??injective

G=N
isomorphism
�������! ˛G:

If G is an algebraic group, then so also are G=N and ˛G.

PROOF. The factorization

O.G/ O.G0/=a O.G0/

of ˛� defines a factorization
G! ˛G!G0

of ˛ into a surjection followed by an injection. As G ! G=N and G ! ˛G are both
quotient maps with kernel N , there is a unique isomorphism G=N ! ˛G such that the
composite

G!G=N ! ˛G

is G
˛
�! ˛G (apply 7.57).

The final statement follows from (8.28). 2

33In fact, we don’t need to use that a is a Hopf ideal, just that it is an ideal.
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COROLLARY 9.7 For any k-algebra R,

.˛G/.R/D
[

R0
G.R/\ Im˛.R0/ (R0 runs over the R-algebras).

Therefore ˛G represents the sheaf associated with

R Im.˛.R//:

Moreover, ˛G is the intersection of the subgroupsH ofG0 with the property that Im˛.R/�
H.R/ for all k-algebras R.

PROOF. The mapG! ˛G is a quotient map, and so the first statement follows from (7.73).
IfH is a subgroup ofG0 such thatH.R/� Im˛.R/ for all k-algebrasR, then, for any fixed
k-algebra R,

H.R/�
[

R0
G.R/\ Im˛.R0/D .˛G/.R/;

and so H � ˛G. 2

COROLLARY 9.8 A homomorphism ˛WG ! G0 of algebraic groups is surjective if, for
some field K containing k, the image of G.K/ in G0.K/ is dense in G0.

PROOF. As ˛.G.K//� .˛G/.K/�G0.K/, the condition implies that ˛G DG. 2

Let ˛WG! G0 be a homomorphism of algebraic groups. Then G.kal/! .˛G/.kal/ is
surjective (see 7.54), and so

.˛G/.k/DG0.k/\ .˛G/.kal/

DG0.k/\ Im.G.kal/
˛.kal/
�! G0.kal//:

9d The isomorphism theorem

Let H and N be algebraic subgroups of G such that H normalizes N . The natural ac-
tion of H.R/ on N.R/ defines an action � of H on N by group homomorphisms, and
multiplication defines a homomorphism

N o� H !G.

We define NH DHN to be the image of this homomorphism. The following statements
are obvious from �9c.

9.9 For any k-algebraR, .HN/.R/ consists of the elements ofG.R/ that lie inH.R0/N.R0/
for some finitely generated faithfully flat R-algebra R0. ThereforeHN represents the sheaf
associated with the functor

R H.R/ �N.R/�G.R/:

Moreover, HN is the intersection of the subgroups G0 of G such that, for all k-algebras R,
G0.R/ contains both H.R/ and N.R/.
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9.10 We have
.HN/.kal/DH.kal/ �N.kal/;

and so
.HN/.k/DG.k/\ .H.kal/ �N.kal//:

A
9.11 It is not true that .HN/.R/ D H.R/N.R/ for all k-algebras R. For example,

consider the algebraic subgroups SLn and Gm (nonzero scalar matrices) of GLn. Then
GLn D SLn �Gm, but a matrix A 2 GLn.R/ whose determinant is not an nth power is not
the product of a scalar matrix with a matrix of determinant 1.

THEOREM 9.12 (Isomorphism theorem) LetH and N be algebraic subgroups of the alge-
braic group G such that H normalizes N . The natural map

H=H \N !HN=N (87)

is an isomorphism.

PROOF. We have an isomorphism of group-valued functors

H.R/=.H \N/.R/!H.R/N.R/=N.R/� .HN/.R/=N.R/:

The statement now follows from (7.73), or by passing to the associated sheaves. 2

EXAMPLE 9.13 Let G D GLn, H D SLn, and N D Gm (scalar matrices in G). Then
N \H D �n (obviously), HN D GLn (by the arguments in 9.5), and (87) becomes the
isomorphism

SLn =�n! GLn =Gm:

9e The correspondence theorem

THEOREM 9.14 (Correspondence theorem). Let N be a normal algebraic subgroup of G.
The map H 7! H=N defines a one-to-one correspondence between the set of algebraic
subgroups of G containing N and the set of algebraic subgroups of G=N . An algebraic
subgroup H of G containing N is normal if and only if H=N is normal in G=N , in which
case the map

G=H ! .G=N/=.H=N/ (88)

defined by the quotient map G!G=N is an isomorphism.

PROOF. The first statement follows from the fact that the analogous statement holds for
Hopf algebras (cf. Exercise 5-10). For the second statement, note that the map

G.R/=H.R/! .G.R/=N.R//=.H.R/=N.R//

defined by the quotient map G.R/! G.R/=N.R/ is an isomorphism. This isomorphism
is natural in R, and when we pass to the associated sheaves, we obtain the isomorphism
(88). 2

ASIDE 9.15 Let qWG!G=N be the quotient map. For any subgroupH ofG, qH is a subgroup of
G=N , which corresponds to HN . Deduce that if H 0 is normal in H , then H 0N is normal in HN .

NOTES Need to discuss how much of the isomorphism theorems hold for smooth groups. Should
move the smoothness part of (17.1) here.
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9f The Schreier refinement theorem

LEMMA 9.16 (BUTTERFLY LEMMA) Let H1 �N1 and H2 �N2 be algebraic subgroups
of an algebraic group G with N1 and N2 normal in H1 and H2. Then N1.H1\N2/ and
N2.N1\H2/ are normal algebraic subgroups of the algebraic groups N1.H1\H2/ and
N2.H2\H1/ respectively, and there is a canonical isomorphism of algebraic groups

N1.H1\H2/

N1.H1\N2/
'
N2.H1\H2/

N2.N1\H2/

PROOF. The algebraic groupH1\N2 is normal inH1\H2 and soN1.H1\H2/ is normal
in N1.H1\N2/ (see Exercise 7-2). Similarly, N2.H2\N1/ is normal in N2.H2\H1/.

The subgroup H1\H2 of G normalizes N1.H1\N2/, and so the isomorphism Theo-
rem 9.12 shows that

H1\H2

.H1\H2/\N1.H1\N2/
'
.H1\H2/ �N1.H1\N2/

N1.H1\N2/
: (89)

As H1\N2 �H1\H2, we have that H1\H2 D .H1\H2/.H1\N2/, and so

N1 � .H1\H2/DN1 � .H1\H2/ � .H1\N2/.

The first of Dedekind’s modular laws (Exercise 7-3a) with A DH1\N2, B DH1\H2,
and C DN1 becomes

.H1\H2/\N1 .H1\N2/D .H1\N2/.H1\H2\N1/

D .H1\N2/.N1\H2/.

Therefore (89) is an isomorphism

H1\H2

.H1\N2/.N1\H2/
'
N1.H1\H2/

N1.H1\N2/
:

A symmetric argument shows that

H1\H2

.H1\N2/.N1\H2/
'
N2.H1\H2/

N2.H2\N1/
;

and so
N1.H1\H2/

N1.H1\N2/
'
N2.H1\H2/

N2.H2\N1/
:

2

A subnormal series in an affine group G is a finite sequence of subgroups, beginning
with G and ending with 1, such that each subgroup is normal in the preceding subgroup.

PROPOSITION 9.17 Let H be a subgroup of an affine group G. If

G DG0 �G1 � �� � �Gs D f1g

is a subnormal series for G, then

H DH \G0 �H \G1 � �� � �H \Gs D f1g

is a subnormal series for H , and

H \Gi=H \GiC1 ,!Gi=GiC1:
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PROOF. Obvious. 2

Two subnormal sequences

G DG0 �G1 � �� � �Gs D f1g

G DH0 �H1 � �� � �Ht D f1g

are said to be equivalent if s D t and there is a permutation � of f1;2; : : : ; sg such that
Gi=GiC1 �H�.i/=H�.i/C1.

THEOREM 9.18 Any two subnormal series in an algebraic group have equivalent refine-
ments.

PROOF. Let Gij D GiC1.Hj \Gi / and let Hj i D HjC1.Gi \Hj /. According to the
butterfly lemma

Gij =Gi;jC1 'Hj i=Hj;iC1,

and so the refinement .Gij / of .Gi / is equivalent to the refinement .Hj i / of .Hi /. 2

A subnormal series is a composition series if no quotient group Gi has a proper non-
trivial normal subgroup.

THEOREM 9.19 For any two composition series

G DG0 �G1 � �� � �Gs D f1g

G DH0 �H1 � �� � �Ht D f1g;

s D t and there is a permutation � of f1;2; : : : ; sg such that Gi=GiC1 is isomorphic to
H�.i/=H�.i/C1 for each i .

PROOF. Use that, for each i , only one of the quotients GiC1.Hj \Gi /=GiC1.HjC1\Gi /
is nontrivial 2

An algebraic group is strongly connected if it has no finite quotient. An algebraic
group G with dimG > 0 is almost-simple if for any proper normal subgroup N we have
dimN < dimG. An almost-simple group is strongly connected.

THEOREM 9.20 Let G be a strongly connected algebraic group. There exists a subnormal
sequence

G DG0 �G1 � �� � �Gs D f1g

such that each Gi is strongly connected and Gi=GiC1 is almost-simple. If

G DH0 �H1 � �� � �Ht D f1g

is a second such sequence, then s D t and there is a permutation � of f1;2; : : : ; sg such that
Gi=GiC1 is isogenous to H�.i/=H�.i/C1 for each i .
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9g The category of commutative algebraic groups

THEOREM 9.21 The commutative algebraic groups over a field form an abelian category.

PROOF. The Hom sets are commutative groups, and the composition of morphisms is bilin-
ear. Moreover, the product G1�G2 of two commutative algebraic groups is both a product
and a sum of G1 and G2. Thus the category of commutative algebraic groups over a field is
additive. Every morphism in the category has both a kernel and cokernel (7.15; 8.70), and
the canonical morphism from the coimage of the morphism to its image is an isomorphism
(homomorphism theorem, 9.6). Therefore the category is abelian. 2

COROLLARY 9.22 The finitely generated co-commutative Hopf algebras over a field form
an abelian category.

ASIDE 9.23 Theorem 9.21 is generally credited to Grothendieck but, as we have seen, it is a fairly
direct consequence of allowing the coordinate rings to have nilpotent elements. See SGA3, VIA,
5.4; DG III �3, 7.4, p. 355.

Corollary 9.22 is proved purely in the context of Hopf algebras in Sweedler 1969, Chapter
XVI, for finite-dimensional co-commutative Hopf algebras, and in Takeuchi 1972, 4.16, for finitely
generated co-commutative Hopf algebras.

9h Exercises

EXERCISE 9-1 Let H and N be subgroups of the algebraic group G such that H normal-
izes N . Show that the kernel of O.G/!O.HN/ is equal to the kernel of the composite

O.G/ �
�!O.G/˝kO.G/!O.H/˝kO.N /:

ASIDE 9.24 As noted earlier, in much of the expository literature (e.g., Borel 1991, Humphreys
1975, Springer 1998), “algebraic group” means “smooth algebraic group”. With this terminology,
many of the results in this section become false.34,35 Fortunately, because of Theorem 6.31, this
is only a problem in nonzero characteristic. The importance of allowing nilpotents was pointed
out by Cartier (1962) more than forty years ago, but, except for Demazure and Gabriel 1970 and
Waterhouse 1979, this point-of-view has not been adopted in the expository literature. Contrast our
statement and treatment of the isomorphism theorems and the Schreier refinement theorem with
those in Barsotti 1955a and Rosenlicht 1956.

10 Recovering a group from its representations; Jordan
decompositions

By a character of a topological group, I mean a continuous homomorphism from the group
to the circle group fz 2 C j z Nz D 1g. A finite commutative group G can be recovered

34For example, in the category of smooth groups, the homomorphism H=H \N ! HN=N is a purely
inseparable isogeny of degree q where q is the multiplicity of H \N in the intersection product H �N .

35The situation is even worse, because these books use a terminology based on Weil’s Foundations, which
sometimes makes it difficult to understand their statements. For example, in Humphreys 1975, p. 218, one finds
the following statement: “for a homomorphism 'WG ! G0 of k-groups, the kernel of ' need not be defined
over k.” By this, he means the following: form the kernelN of 'kal WGkal !G0

kal (in our sense); thenNred need
not arise from a smooth algebraic group over k. Of course, with our (or any reasonable) definitions, the kernel
of a homomorphism of algebraic groups over k is certainly an algebraic group over k.
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from its group G_ of characters because the canonical homomorphism G ! G__ is an
isomorphism.

More generally, a locally compact commutative topological group G can be recovered
from its character group because, again, the canonical homomorphism G ! G__ is an
isomorphism (Pontryagin duality). Moreover, the dual of a compact commutative group
is a discrete commutative group, and so, the study of compact commutative topological
groups is equivalent to that of discrete commutative groups.

Clearly, “commutative” is required in the above statements, because any character will
be trivial on the derived group. However, Tannaka showed that it is possible to recover a
compact noncommutative group from its category of unitary representations.

In this section, we prove the analogue of this for algebraic groups. Initially, k is allowed
to be a commutative ring.

10a Recovering a group from its representations

Let G be an affine monoid with coordinate ring A, and let rAWG ! EndA be the regular
representation. Recall that g 2G.R/ acts on f 2 A according to the rule:

.gf /R.x/D fR.x �g/ all x 2G.R/: (90)

LEMMA 10.1 Let G be an affine monoid over a ring k, and let A D O.G/. Let ˛ be an
endomorphism of A (as a k-algebra) such that the diagram

A
�

����! A˝A??y˛ ??y1˝˛
A

�
����! A˝A

commutes. Then there exists a unique g 2G.k/ such that ˛ D rA.g/.

PROOF. According to the Yoneda lemma, there exists morphism �WG! G of set-valued
functors such that

. f̨ /R.x/D fR.�Rx/ all f 2 A, x 2G.R/: (91)

The commutativity of the diagram says that, for f 2 A,

.�ı˛/.f /D ..1˝˛/ı�/.f /:

Recall that .�f /R.x;y/D fR.x �y/ for f 2A (see (38), p. 48). Therefore, for x;y 2G.R/,

.LHS/R.x;y/D . f̨ /R.x �y/D fR.�R.x �y//

.RHS/R.x;y/D .�f /R.x;�Ry/D fR.x ��Ry/:36
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Hence
�R.x �y/D x ��R.y/; all x;y 2G.R/:

On setting yD e in the last equation, we find that �R.x/D x �g with gD �R.e/. Therefore,
for f 2 A and x 2G.R/,

. f̨ /R .x/
.91/
D fR.x �g/

.90)
D .gf /R.x/.

Hence ˛ D rA.g/.
The uniqueness of g follows from the faithfulness of the regular representation (8.31).2

THEOREM 10.2 Let G be an affine monoid (or group) over a field k, and let R be a k-
algebra. Suppose that we are given, for each finite-dimensional representation rV WG !
EndV of G, an R-linear map �V WVR! VR. If the family .�V / satisfies the conditions,

(a) for all representations V;W ,

�V˝W D �V ˝�W ;

(b) �11 is the identity map (here 11D k with the trivial action)
(c) for all G-equivariant maps ˛WV !W ,

�W ı˛R D ˛R ı�V ;

then there exists a unique g 2G.R/ such that �V D rV .g/ for all V .

PROOF. Recall (8.17) that every representation ofG is a filtered union of finite-dimensional
representations. It follows from (c) that, for each representation rV WG!GLV ofG (possi-
bly infinite dimensional), there exists a unique R-linear endomorphism �V of VR such that
�V jW D �W for each finite-dimensional subrepresentation W � V . The conditions (a,b,c)
will continue to hold for the enlarged family.

Let ADO.G/R, and let �AWA! A be the R-linear map corresponding to the regular
representation r of G on O.G/. The map mWA˝A! A is equivariant for the represen-
tations r ˝ r and r ,37 and so the first two diagrams in (10.1) commute with ˛ and ˛˝˛
replaced by �A and �A˝A D �A˝�A respectively. Similarly, the map �WA! A˝A is

36In detail, let �f D
P
fi ˝gi ; then

.RHS/R .x;y/D
�P

i fi ˝˛gi
�
R
.x;y/

D
P
i fiR.x/ � .˛gi /R.y/

D
P
i fiR.x/ �giR.�Ry/

D
�P

i fi ˝gi
�
R
.x;�Ry/

D .�f /R.x;�Ry/:

37We check that, for x 2G.R/;

.r.g/ım/.f ˝f 0/.x/D .r.g/.ff 0//.x/D .ff 0/.xg/D f .xg/ �f 0.xg/

.mı r.g/˝ r.g//.f ˝f 0/.x/D ..r.g/f / � .r.g/f 0/.x/D f .xg/ �f 0.xg/:
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equivariant for the representation 1˝ r on A˝A, and so the third diagram in (10.1) com-
mutes with ˛ replaced by �A. Now Lemma 10.1, applied to the affine monoid GR over R,
shows that there exists a g 2G.R/ such �A D r.g/.

Let .V;rV / be a finite-dimensional representation ofG. For any u 2 V _, the linear map
�uWV ! A is equivariant (see 8.35), and so

�u ı�V D �A ı�u D r.g/ı�u D �u ı rV .g/:

As the family of maps �u (u 2 V _) is injective (8.36), this implies that �V D rV .g/.
This proves the existence of g, and the uniqueness follows the fact that G admits a

faithful family of finite-dimensional representations (see 8.32). 2

We close this subsection with a series of remarks.

10.3 Each g 2G.R/ of course defines such a family. Thus, from the category Rep.G/ of
representations of G on finite-dimensional k-vector spaces we can recover G.R/ for any
k-algebra R, and hence the group G itself. For this reason, Theorem 10.2 is often called
the reconstruction theorem.

10.4 Let .�V / be a family satisfying the conditions (a,b,c) of Theorem 10.4. When G
is an affine group (rather than just a monoid), each �V is an isomorphism, and the family
satisfies the condition �V _ D .�V /_ (because this is true of the family .rV .g//).

10.5 Let !R be the forgetful functor RepR.G/! ModR, and let End˝.!R/ be the set
of natural transformations �W!R ! !R commuting with tensor products — the last con-
dition means that � satisfies conditions (a) and (b) of the theorem. The theorem says that
the canonical map G.R/! End˝.!R/ is an isomorphism. Now let End˝.!/ denote the
functor R 7! End˝.!R/; then G ' End˝.!/. When G is a group, this can be written
G ' Aut˝.!/.

10.6 Suppose that k is algebraically closed and that G is reduced, so that O.G/ can be
identified with a ring of k-valued functions on G.k/. It is possible to give an explicit de-
scription description of O.G/ in terms of the representations of G. For each representation
.V;rV / of G (over k/ and u 2 V _, we have a function �u on G.k/,

�u.g/D hu;rV .g/i 2 k:

Then �u 2 O.G/, and every element of O.G/ arises in this way (cf. Springer 1998, p.39,
and Exercise 5-2).

10.7 Let H be a subgroup of an algebraic group G. For each k-algebra R, let H 0.R/ be
the subgroup of G.R/ fixing all tensors in all representations of G fixed by H . The functor
R H 0.R/ is representable by a subgroup H 0 of G, which clearly contains H . It follows
from the theorem that H 0 DH .

10.8 In (10.7), instead of all representations of G, it suffices to choose a faithful represen-
tation V and take all quotients of subrepresentations of a direct sum of representations of
the form˝n.V ˚V _/ (by 8.44).
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10.9 In general, we can’t omit “quotients of” from (10.8).38 However, we can omit it if
some nonzero multiple of every homomorphism H ! Gm extends to a homomorphism
G!Gm (8.59).

10.10 Lemma 10.1 and its proof are valid with k a commutative ring. Therefore (using
8.10), one sees that Theorem 10.2 holds with k a noetherian ring and Repk.G/ the category
of representations of G on finitely generated k-modules, or with k a Dedekind domain, G a
flat group scheme, and Repk.G/ the category of representations of G on finitely generated
projective k-modules (or even finitely generated free k-modules).

10b Application to Jordan decompositions

We now require k to be a field.

THE JORDAN DECOMPOSITION OF A LINEAR MAP

In this subsubsection, we review some linear algebra.
Recall that an endomorphism ˛ of a vector space V is diagonalizable if V has a basis of

eigenvectors for ˛, and that it is semisimple if it becomes diagonalizable after an extension
of the base field k. For example, the linear map x 7! AxWkn ! kn defined by an n� n
matrix A is diagonalizable if and only if there exists an invertible matrix P with entries in k
such that PAP�1 is diagonal, and it is semisimple if and only if there exists such a matrix
P with entries in some field containing k.

From linear algebra, we know that ˛ is semisimple if and only if its minimum polyno-
mialm˛.T / has distinct roots; in other words, if and only if the subring kŒ˛�' kŒT �=.m˛.T //
of Endk.V / generated by ˛ is separable.

Recall that an endomorphism ˛ of a vector space V is nilpotent if ˛m D 0 for some
m > 0, and that it is unipotent if idV �˛ is nilpotent. Clearly, if ˛ is nilpotent, then its
minimum polynomial divides Tm for somem, and so the eigenvalues of ˛ are all zero, even
in kal. From linear algebra, we know that the converse is also true, and so ˛ is unipotent if
and only if its eigenvalues in kal all equal 1.

Let ˛ be an endomorphism of a finite-dimensional vector space V over k. We say that
˛ has all of its eigenvalues in k if the characteristic polynomial P˛.T / of ˛ splits in kŒX�:

P˛.T /D .T �a1/
n1 � � �.T �ar/

nr ; ai 2 k:

For each eigenvalue a of ˛ in k, the generalized eigenspace is defined to be:

Va D fv 2 V j .˛�a/
N v D 0; N sufficiently divisible39

g:

38Consider for example, the subgroup B D
˚�
� �
0 �

�	
of GL2 acting on V D k�k and suppose that a vector

v 2 .V ˚V _/˝n is fixed by B . Then g 7! gv is a regular map GL2 =B! .V ˚V _/˝n of algebraic varieties
(not affine). But GL2 =B ' P1, and so any such map is trivial. Therefore, v is fixed by GL2, and so B 0 D B .
Cf 7.62.

38By this I mean that there exists an N0 such that the statement holds for all positive integers divisible by
N0, i.e., that N is sufficiently large for the partial ordering

M �N ” M divides N:
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PROPOSITION 10.11 If ˛ has all of its eigenvalues in k, then V is a direct sum of its
generalized eigenspaces:

V D
M

i
Vai .

PROOF. Let P.T / be a polynomial in kŒT � such that P.˛/D 0, and suppose that P.T /D
Q.T /R.T / with Q and R relatively prime. Then there exist polynomials a.T / and b.T /
such that

a.T /Q.T /Cb.T /R.T /D 1:

For any v 2 V ,
a.˛/Q.˛/vCb.˛/R.˛/v D v, (92)

which implies immediately that Ker.Q.˛//\Ker.R.˛//D 0. Moreover, becauseQ.˛/R.˛/D
0, (92) expresses v as the sum of an element of Ker.R.˛// and an element of Ker.Q.˛//.
Thus, V is the direct sum of Ker.Q.˛// and Ker.P.˛//.

On applying this remark repeatedly, we find that

V D Ker.T �a1/n1˚Ker..T �a2/n2 � � �.T �ar/nr /D �� � D
M

i
Ker.T �ai /ni ;

as claimed. 2

THEOREM 10.12 Let V be a finite-dimensional vector space over a perfect field. For any
automorphism ˛ of V , there exist unique automorphisms ˛s and ˛u of V such that

(a) ˛ D ˛s ı˛u D ˛u ı˛s , and
(b) ˛s is semisimple and ˛u is unipotent.

Moreover, each of ˛s and ˛u is a polynomial in ˛.

PROOF. Assume first that ˛ has all of its eigenvalues in k, so that V is a direct sum of the
generalized eigenspaces of ˛, say, V D

L
1�i�mVai where the ai are the distinct roots of

P˛ . Define ˛s to be the automorphism of V that acts as ai on Vai for each i . Then ˛s is a
semisimple automorphism of V , and ˛u

def
D ˛ ı˛�1s commutes with ˛s (because it does on

each Va) and is unipotent (because its eigenvalues are 1). Thus ˛s and ˛u satisfy (a) and
(b).

Because the polynomials .T �ai /ni are relatively prime, the Chinese remainder theo-
rem shows that there exists a Q.T / 2 kŒT � such that

Q.T /� ai mod .T �ai /ni ; i D 1; : : : ;m:

Then Q.˛/ acts as ai on Vai for each i , and so ˛s DQ.˛/, which is a polynomial in ˛.
Similarly, ˛�1s 2 kŒ˛�, and so ˛u

def
D ˛ ı˛�1s 2 kŒ˛�.

It remains to prove the uniqueness of ˛s and ˛u. Let ˛ D ˇs ıˇu be a second decom-
position satisfying (a) and (b). Then ˇs and ˇu commute with ˛, and therefore also with ˛s
and ˛u (because they are polynomials in ˛). It follows that ˇ�1s ˛s is semisimple and that
˛uˇ

�1
u is unipotent. Since they are equal, both must equal 1. This completes the proof in

this case.
In the general case, because k is perfect, there exists a finite Galois extension k0 of

k such that ˛ has all of its eigenvalues in k0. Choose a basis for V , and use it to attach
matrices to endomorphisms of V and k0˝k V . Let A be the matrix of ˛. The first part of
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the proof allows us to write A D AsAu D AuAs with As a semisimple matrix and Au a
unipotent matrix with entries in k0; moreover, this decomposition is unique.

Let � 2 Gal.k0=k/, and for a matrix B D .bij /, define �B to be .�bij /. Because A has
entries in k, �AD A. Now

AD .�As/.�Au/

is again a decomposition of A into commuting semisimple and unipotent matrices. By
the uniqueness of the decomposition, �As D As and �Au D Au. Since this is true for all
� 2 Gal.K=k/, the matrices As and Au have entries in k. Now ˛ D ˛s ı˛u, where ˛s and
˛u are the endomorphisms with matrices As and Au, is a decomposition of ˛ satisfying (a)
and (b).

Finally, the first part of the proof shows that there exist ai 2 k0 such that

As D a0Ca1AC�� �Can�1A
n�1 .nD dimV /:

The ai are unique, and so, on applying � , we find that they lie in k. Therefore,

˛s D a0Ca1˛C�� �Can�1˛
n�1
2 kŒ˛�:

Similarly, ˛u 2 kŒ˛�. 2

The automorphisms ˛s and ˛u are called the semisimple and unipotent parts of ˛, and

˛ D ˛s ı˛u D ˛u ı˛s

is the (multiplicative) Jordan decomposition of ˛.

PROPOSITION 10.13 Let ˛ and ˇ be automorphisms of vector spaces V and W over a
perfect field, and let 'WV !W be a linear map. If ' ı˛ D ˇ ı', then ' ı˛s D ˇs ı' and
' ı˛u D ˇu ı'.

PROOF. It suffices to prove this after an extension of scalars, and so we may suppose that
both ˛ and ˇ have all of their eigenvalues in k. Recall that ˛s acts on each generalized
eigenspace Va, a 2 k, as multiplication by a. As ' obviously maps Va into Wa, it follows
that ' ı˛s D ˇs ı'. Similarly, ' ı˛�1s D ˇ

�1
s ı', and so ' ı˛u D ˇu ı'. 2

COROLLARY 10.14 Every subspaceW of V stable under ˛ is stable under ˛s and ˛u, and
˛jW D ˛sjW ı˛ujW is the Jordan decomposition of ˛jW:

PROOF. It follows from the proposition that W is stable under ˛s and ˛u, and it is obvious
that the decomposition ˛jW D ˛sjW ı˛ujW has the properties to be the Jordan decompo-
sition. 2

PROPOSITION 10.15 For any automorphisms ˛ and ˇ of vector spaces V and W over a
perfect field,

.˛˝ˇ/s D ˛s˝ˇs

.˛˝ˇ/u D ˛u˝ˇu:
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PROOF. It suffices to prove this after an extension of scalars, and so we may suppose that
both ˛ and ˇ have all of their eigenvalues in k. For any a;b 2 k, Va˝kWb � .V ˝kW /ab ,
and so ˛s˝ˇs and .˛˝ˇ/s both act on Va˝kWb as multiplication by ab. This shows that
.˛˝ˇ/s D ˛s˝ˇs . Similarly, .˛�1s ˝ˇ

�1
s /D .˛˝ˇ/�1s , and so .˛˝ˇ/u D ˛u˝ˇu. 2

A
10.16 Let k be a nonperfect field of characteristic 2, so that there exists an a 2 k that is

not a square in k, and let M D
�
0 1
a 0

�
. In kŒ

p
a�, M has the Jordan decomposition

M D

�p
a 0

0
p
a

��
0 1=

p
a

p
a 0

�
:

These matrices do not have coefficients in k, and so, if M had a Jordan decomposition in
M2.k/, it would have two distinct Jordan decompositions in M2.kŒ

p
a�/, contradicting the

uniqueness.

INFINITE-DIMENSIONAL VECTOR SPACES

Let V be a vector space, possibly infinite dimensional, over a perfect field k. An endomor-
phism ˛ of V is locally finite if V is a union of finite-dimensional subspaces stable under
˛. A locally finite endomorphism is semisimple (resp. locally nilpotent, locally unipotent)
if its restriction to each stable finite-dimensional subspace is semisimple (resp. nilpotent,
unipotent).

Let ˛ be a locally finite automorphism of V . By assumption, every v 2 V is contained
in a finite-dimensional subspace W stable under ˛, and we define ˛s.v/ D .˛jW /s.v/.
According to (10.12), this is independent of the choice of W , and so in this way we get a
semisimple automorphism of V . Similarly, we can define ˛u. Thus:

THEOREM 10.17 For any locally finite automorphism ˛ of V , there exist unique automor-
phisms ˛s and ˛u such that

(a) ˛ D ˛s ı˛u D ˛u ı˛s; and
(b) ˛s is semisimple and ˛u is locally unipotent.

For any finite-dimensional subspace W of V stable under ˛,

˛jW D .˛sjW /ı .˛ujW /D .˛ujW /ı .˛sjW /

is the Jordan decomposition of ˛jW .

JORDAN DECOMPOSITIONS IN ALGEBRAIC GROUPS

Finally, we are able to prove the following important theorem.

THEOREM 10.18 Let G be an algebraic group over a perfect field k. For any g 2 G.k/
there exist unique elements gs;gu 2 G.k) such that, for all representations .V;rV / of G,
rV .gs/D rV .g/s and rV .gu/D rV .g/u. Furthermore,

g D gsgu D gugs: (93)
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PROOF. In view of (10.13) and (10.15), the first assertion follows immediately from (10.2)
applied to the families .rV .g/s/V and .rV .g/u/V . Now choose a faithful representation rV .
Because

rV .g/D rV .gs/rV .gu/D rV .gu/rV .gs/;

(93) follows. 2

The elements gs and gu are called the semisimple and unipotent parts of g, and g D
gsgu is the Jordan decomposition of g.

10.19 To check that a decomposition g D gsgu is the Jordan decomposition, it suffices
to check that r.g/ D r.gs/r.gu/ is the Jordan decomposition of r.g/ for a single faithful
representation of G.

10.20 Homomorphisms of groups preserve Jordan decompositions. To see this, let ˛WG!
G0 be a homomorphism and let gD gsgu be a Jordan decomposition in G.k/. For any rep-
resentation 'WG0!GLV , ' ı˛ is a representation of G, and so .' ı˛/.g/D ..' ı˛/.gs// �
..' ı˛/.gu// is the Jordan decomposition in GL.V /. If we choose ' to be faithful, this
implies that ˛.g/D ˛.gs/ �˛.gu/ is the Jordan decomposition of ˛.g/.

NOTES Our proof of the existence of Jordan decompositions (Theorem 10.18) is the standard one,
except that we have made Lemma 10.1 explicit. As Borel has noted (1991, p. 88; 2001, VIII 4.2,
p. 169), the result essentially goes back to Kolchin 1948, 4.7.

10c Homomorphisms and functors
NOTES This section needs to be reworked. The proof of 10.22 requires the semisimplicity of the
category of representations of a reductive group in characteristic zero, and so needs to be moved.

Throughout this subsection, k is a field.

PROPOSITION 10.21 Let f WG!G0 be a homomorphism of affine groups over k, and let
!f be the corresponding functor Repk.G

0/! Repk.G/.

(a) f is faithfully flat if and only if !f is fully faithful and every subobject of !f .X/,
for X 0 2 ob.Repk.G//, is isomorphic to the image of a subobject of !f .X 0/.

(b) f is a closed immersion if and only if every object of Repk.G/ is isomorphic to a
subquotient of an object of the form of !f .X 0/, X 0 2 ob.Repk.G

0//.

PROOF. (a) If G
f
! G0 is faithfully flat, and therefore an epimorphism, then Repk.G

0/

can be identified with the subcategory of Repk.G/ of representations G ! GL.W / fac-
toring through G0. It is therefore obvious that !f has the stated properties. Conversely,
if !f is fully faithful, it defines an equivalence of Repk.G

0/ with a full subcategory of
Repk.G/, and the second condition shows that, for X 0 2 ob.Repk.G

0//, hX 0i is equivalent
to h!f .X/i. Let G D SpecB and G0 D SpecB 0; then (�11c) shows that

B 0 D lim
�!

End.!0jhX 0i/_ D lim
�!

End.!jh!f .X 0/i/_ � lim
�!

End.!jhXi/_ D B;

and B! B 0 being injective implies that G!G0 is faithfully flat (6.43).
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(b) Let C be the strictly full subcategory of Repk.G/ whose objects are isomorphic to
subquotients of objects of the form of !f .X 0/. The functors

Repk.G
0/! C! Repk.G/

correspond to homomorphisms of k-coalgebras

B 0! B 00! B

where G D SpecB and G0 D SpecB 0. An argument as in the above above proof shows that
B 00!B is injective. Moreover, forX 0 2 ob.Repk.G

0//, End.!jh!f .X/i/!End.!0jhX 0i/
is injective, and so B 0! B 00 is surjective. If f is a closed immersion, then B 0! B is sur-
jective and it follows that B 00

�
! B , and C D Repk.G/. Conversely, if C D Repk.G/,

B 00 D B and B 0! B is surjective. [Take a faithful representation of G0; it is also a faithful
representation of G, etc..] 2

PROPOSITION 10.22 LetG andG0 be algebraic groups over a field k of characteristic zero,
and assume Gı is reductive. Let f WG!G0 be a homomorphism, and let !f WRep.G0/!
Rep.G/ be the functor .r;V / 7! .r ı�;V /. Then:

(a) f is a quotient map if and only if !f is fully faithful;
(b) f is an embedding if and if every object of Repk.G/ is isomorphic to a direct factor

of an object of the form !f .V /.

PROOF. Omitted for the present (Deligne and Milne 1982, 2.21, 2.29). 2

11 Characterizations of categories of representations

Pontryagin duality has two parts. First it shows that a locally compact abelian group G can
be recovered from its dualG_. This it does by showing that the canonical mapG!G__ is
an isomorphism. Secondly, it characterizes the abelian groups that arise as dual groups. For
example, it shows that the duals of discrete abelian groups are exactly the compact abelian
groups, and that the duals of locally compact abelian groups are exactly the locally compact
abelian groups.

In �10 we showed how to recover an algebraic group G from its “dual” Rep.G/ (recon-
struction theorem). In this section, we characterize the categories that arise as the category
of representations of an algebraic or affine group (description theorem).

Throughout, k is a field. In Theorems 11.1, 11.5, 11.13, and 11.14, C is a small category
(or, at least, admits a set of representatives for its isomorphism classes of objects).

11a Categories of comodules

An additive category C is said to be k-linear if the Hom sets are k-vector spaces and com-
position is k-bilinear. Functors of k-linear categories are required to be k-linear, i.e., the
maps Hom.a;b/! Hom.Fa;F b/ defined by F are required to be k-linear. Recall that
Veck denotes the category of finite-dimensional vector spaces over k.

THEOREM 11.1 Let C be a k-linear abelian category, and let !WC! Veck be an exact
faithful k-linear functor. Then there exists a coalgebra C such that C is equivalent to the
category of C -comodules of finite dimension.
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The proof will occupy the rest of this subsection.
For an object X in C, !.idX /D !.0/ if and only if idX D 0. Therefore, X is the zero

object if and only if !.X/ is the zero object. It follows that, if !.˛/ is a monomorphism
(resp. an epimorphism, resp. an isomorphism), then so also is ˛. For objects X , Y of C,
Hom.X;Y / is a subspace of Hom.!X;!Y /, and hence has finite dimension.

For monomorphisms X
x
�! Y and X 0

x0

�! Y with the same target, write x � x0 if there
exists a morphism X !X 0 (necessarily unique) giving a commutative triangle. The lattice
of subobjects of Y is obtained from the collection of monomorphisms by identifying two
monomorphisms x and x0 if x � x0 and x0 � x. The functor ! maps the lattice of subobjects
of Y injectively40 to the lattice of subspaces of !Y . Hence X has finite length.

Similarly ! maps the lattice of quotient objects of Y injectively to the lattice of quotient
spaces of !Y .

For X in C, we let hXi denote the full subcategory of C whose objects are the quotients
of subobjects of direct sums of copies of X . For example, if C is the category of finite-
dimensional comodules over a coalgebra C , and then hV i DComod.CV / for any comodule
V (see 8.38).

Let X be an object of C. For any subset S of !.X/, there exists a smallest subobject Y
of X such that !.Y /� S , namely, the intersection of all such subobjects, which we call the
subobject of X generated by S :

Y �X �! S � !.Y /� !.X/:

An object Y is monogenic if it is generated by a single element, i.e., there exists a y 2!.Y /
such that the only subobject Y 0 of Y such y 2 !.Y 0/ is Y itself.

PROOF IN THE CASE THAT C IS GENERATED BY A SINGLE OBJECT

In the next three lemmas, we assume that C D hXi for an object X , and we let n D
dimk!.X/.

LEMMA 11.2 For any monogenic object Y of C,

dimk!.Y /� n
2:

PROOF. By hypothesis, Y D Y1=Y2 where Y1 is isomorphic to a subobject ofXm for some
m. Let y 2 !.Y / generate Y , and let y1 be an element of !.Y1/ whose image in !.Y / is
y. Let Z be the subobject of Y1 generated by y1. The image of Z in Y D Y1=Y2 is Y , and
so it suffices to prove the lemma for Z, i.e., we may suppose that Y �Xm for somem. We
shall show that it is possible to take m� n, from which the statement follows.

Suppose that m> n. We have y 2 !.Y /� !.Xm/D !.X/m. Let y D .y1; : : : ;ym/ in
!.X/m. Since m> n, there exist ai 2 k, not all zero, such that

P
aiyi D 0. The ai define

a surjective morphism Xm!X whose kernel N is isomorphic to Xm�1.41 As y 2 !.N/,

40If !.X/D !.X 0/, then the kernel of �x
x0
�
WX �X 0! Y

projects isomorphically onto each of X and X 0 (because it does after ! has been applied).
41Let A be an m� 1�m matrix such that

�
a1 : : :am

A

�
is invertible. Then AWXm ! Xm�1 defines an

isomorphism of N onto Xm�1 (because !.A/ does).
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we have Y �N . We have shown that Y embeds into Xm�1. Continue in this fashion until
Y �Xm with m� n. 2

As dimk!.Y / can take only finitely many values when Y is monogenic, there exists a
monogenic P for which dimk!.P / has its largest possible value. Let p 2 !.P / generate
P .

LEMMA 11.3 (a) The pair .P;p/ represents the functor !.
(b) The object P is a projective generator42 for C.

PROOF. (a) Let X be an object of C, and let x 2 !.X/; we have to prove that there exists
a unique morphism f WP ! X such that !.f / sends p to x. The uniqueness follows from
the fact p generates P . To prove the existence, let Q be the smallest subobject of P �X
such that !.Q/ contains .p;x/. The morphism Q! P defined by the projection map is
surjective because P is generated by p. Therefore,

dimk!.Q/� dimk!.P /;

but because dimk.!.P // is maximal, equality must hold, and soQ!P is an isomorphism.
The composite of its inverse with the second projection Q! X is a morphism P ! X

sending p to x.
(b) The object P is projective because ! is exact, and it is a generator because ! is

faithful. 2

Let AD End.P / — it is a k-algebra of finite dimension as a k-vector space (not neces-
sarily commutative) — and let hP be the functor X  Hom.P;X/.

LEMMA 11.4 The functor hP is an equivalence from C to the category of right A-modules
of finite dimension over k. Its composite with the forgetful functor is canonically isomor-
phic to !.

PROOF. Because P is a generator, the hP is fully faithful, and because P is projective, it
is exact. It remains to prove that it is essentially surjective.

Let M be a finite-dimensional right A-module, and choose a finite presentation for M ,

Am
˛
�! An!M ! 0

where ˛ is an m�n matrix with coefficients in A. This matrix defines a morphism Pm!

P n whose cokernel X has the property that hP .X/'M .
For the second statement,

!.X/' Hom.P;X/' Hom.hP .P /;hP .X//D Hom.A;hP .X//' hP .X/: 2

As A is a finite k-algebra, its linear dual C D A_ is a k-coalgebra, and to give a right
A-module structure on a k-vector space is the same as giving a left C -comodule structure
(see 8.7). Together with (11.4), this completes the proof in the case that CD hXi. Note that

A
def
D End.P /' End.hP /' End.!/;

and so
C ' End.!/_.

42An object P of a category is a generator of the category if the functor Hom.P;�/ is faithful, and an
object P of an abelian category is projective if Hom.P;�/ is exact.
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PROOF IN THE GENERAL CASE

We now consider the general case. For an object X of C, let AX be the algebra of endo-
morphisms of !jhXi, and let CX D A_X . For each Y in hXi, AX acts on !.Y / on the left,
and so !.Y / is a right C -comodule; moreover, Y  !.Y / is an equivalence of categories

hXi ! Comod.CX /:

Define a partial ordering on the set of isomorphism classes of objects in C by the rule:

ŒX�� ŒY � if hXi � hY i.

Note that ŒX�; ŒY �� ŒX˚Y �, so that we get a directed set, and that if ŒX�� ŒY �, then restric-
tion defines a homomorphism AY ! AX . When we pass to the limit over the isomorphism
classes, we obtain the following more precise form of the theorem.

THEOREM 11.5 Let C be a k-linear abelian category and let !WC! Veck be a k-linear
exact faithful functor. Let C D lim

�!
End.!jhXi/_. For each object Y in C, the vector

space !.Y / has a natural structure of right C -comodule, and the functor Y  !.Y / is an
equivalence of categories C! Comod.C /.

EXAMPLE 11.6 Let A be a finite k-algebra (not necessarily commutative). Because A is
finite, its dual A_ is a coalgebra (�5c), and we saw in (8.7) that left A-module structures on
k-vector space correspond to right A_-comodule structures. If we take C to be Mod.A/, !
to the forgetful functor, and X to be AA in the above discussion, then

End.!jhXi/_ ' A_,

and the equivalence of categories C! Comod.A_/ in (11.5) simply sends an A-module V
to V with its canonical A_-comodule structure.

ASIDE 11.7 Let C be a k-linear abelian category with a tensor product structure (see 11.13). A
coalgebra in C is an object C of C together with morphisms �WC ! C ˝C and �WC ! k such
that the diagrams (29) commute. Similarly, it is possible to define the notion of C -comodule in C.
Assume that there exists an exact faithful k-linear functor preserving tensor products. Then there
exists a coalgebra C in C together with a coaction of C on each object of C such that, for every
exact faithful k-linear functor ! to Veck preserving tensor products, !.C/' lim

�!
End.!jhXi/_ (as

coalgebras) and ! preserves the comodule structures. Moreover, the tensor product makes C into a
bialgebra in C, and if C has duals, then C is a Hopf algebra.

ASIDE 11.8 For the proof of Theorem 11.5, we have followed Serre 1993, 2.5. For a slightly
different proof, see Deligne and Milne 1982, �2, or Saavedra Rivano 1972. It is also possible to use
Grothendieck’s theorem that a right exact functor is pro-representable. Let P pro-represent !, and
let A be the endomorphism ring of P .

11b Categories of comodules over a bialgebra

Let C be a coalgebra over k. We saw in (�8e), that a bialgebra structure on C defines a
tensor product structure on Comod.C /, and that an inversion on C defines duals. In this
section we prove the converse: a tensor product structure on Comod.C / defines a bialgebra
structure on C , and the existence of duals implies the existence of an inversion.
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11.9 Let A be a finite k-algebra (not necessarily commutative), and let R be a commuta-
tive k-algebra. Consider the functors

Mod.A/
!

����!
forget

Vec.k/
�R

�������!
V 7!R˝kV

Mod.R/:

For M 2 ob.Mod.A//, let M0 D !.M/. An element � of End.�R ı!/ is a family of R-
linear maps

�M WR˝kM0!R˝kM0,

functorial in M . An element of R˝k A defines such a family, and so we have a map

˛WR˝k A! End.�R ı!/;

which we shall show to be an isomorphism by defining an inverse ˇ. Let ˇ.�/D �A.1˝1/.
Clearly ˇ ı˛ D id, and so we only have to show ˛ ıˇ D id. The A-module A˝kM0 is a
direct sum of copies of A, and the additivity of � implies that �A˝M0 D �A˝ idM0 . The
map a˝m 7! amWA˝kM0!M is A-linear, and hence

R˝k A˝kM0 ����! R˝kM??y�A˝idM0

??y�M
R˝k A˝kM0 ����! R˝kM

commutes. Therefore

�M .1˝m/D �A.1/˝mD .˛ ıˇ.�//M .1˝m/ for 1˝m 2R˝M;

i.e., ˛ ıˇ D id.

11.10 Let C be a k-coalgebra, and let !C be the forgetful functor on Comod.C /. Then

C ' lim
�!

End.!C jhXi/_: (94)

For a finite k-algebra A, (11.9) says that A' End.!/. Therefore, for any finite k-coalgebra
C , we have C ' End.!C /_. On passing to the limit, we get (94).

Let ˛WC ! C 0 be a homomorphism of k-coalgebras. A coaction V ! V ˝C de-
fines a coaction V ! V ˝C 0 by composition with idV ˝˛. Thus, ˛ defines a functor
F WComod.C /! Comod.C 0/ such that

!C 0 ıF D !C . (95)

LEMMA 11.11 Every functorF WComod.C /!Comod.C 0/ satisfying (95) arises, as above,
from a unique homomorphism of k-coalgebras C ! C 0.

PROOF. The functor F defines a homomorphism

lim
�!

End.!C 0 jhFXi/! lim
�!

End.!C jhXi/;

and lim
�!

End.!C 0 jhFXi/ is a quotient of lim
�!

End.!C 0 jhXi/. On passing to the duals, we get
a homomorphism

lim
�!

End.!C jhXi/_! lim
�!

End.!C 0 jhXi/_

and hence a homomorphism C ! C 0. This has the required property. 2
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Again, let C be a coalgebra over k. Recall (5.4) that C ˝C is again a coalgebra over
k. A coalgebra homomorphism mWC ˝C ! C defines a functor

�mWComod.C /�Comod.C /! Comod.C /

sending .V;W / to V ˝W with the coaction

V ˝W
�V˝�W
�! V ˝C ˝W ˝C ' V ˝W ˝C ˝C

V˝W˝m
�! V ˝W ˝C

(cf. 8.5b, �8e).

PROPOSITION 11.12 The mapm 7! �m defines a one-to-one correspondence between the
set of k-coalgebra homomorphisms mWC ˝C ! C and the set of k-bilinear functors

�WComod.C /�Comod.C /! Comod.C /

such that �.V;W /D V ˝W as k-vector spaces.

(a) The homomorphismm is associative (i.e., the left hand diagram in (28) commutes) if
and only if the canonical isomorphisms of vector spaces

u˝ .v˝w/ 7! .u˝v/˝wWU ˝ .V ˝W /! .U ˝V /˝W

are isomorphisms of C -comodules for all C -comodules U , V , W .
(b) The homomorphism m is commutative (i.e., m.a;b/ D m.b;a/ for all a;b 2 C ) if

and only if the canonical isomorphisms of vector spaces

v˝w 7! w˝vWV ˝W !W ˝V

are isomorphisms of C -comodules for all C -comodules W;V .
(c) There is an identity map eWk! C (i.e., a k-linear map such that the right hand dia-

gram in (28) commutes) if and only if there exists a C -comodule U with underlying
vector space k such that the canonical isomorphisms of vector spaces

U ˝V ' V ' V ˝U

are isomorphisms of C -comodules for all C -comodules V .

PROOF. The pair .Comod.C /�Comod.C /;!˝!/, with .!˝!/.X;Y /D !.X/˝!.Y /
(as a k-vector space), satisfies the conditions of (11.5), and lim

�!
End.!˝!jh.X;Y /i/_ D

C ˝C . Thus the first statement of the proposition follows from (11.11). The remaining
statements are easy. 2

Let !WA! B be a faithful functor. We say that a morphism !X ! !Y lives in A if it
lies in Hom.X;Y /� Hom.!X;!Y /.

For k-vector spaces U;V;W , there are canonical isomorphisms

�U;V;W WU ˝ .V ˝W /! .U ˝V /˝W; u˝ .v˝w/ 7! .u˝v/˝w

�U;V WU ˝V ! V ˝U; u˝v 7! v˝u.

THEOREM 11.13 Let C be a k-linear abelian category, and let˝WC�C! C be k-bilinear
functor. Let !WC! Veck be a k-linear exact faithful functor such that
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(a) !.X˝Y /D !.X/˝!.Y / for all X;Y ;
(b) the isomorphisms �!X;!Y;!Z and �!X;!Y live in C for all X;Y;Z;
(c) there exists an (identity) object 11 in C such that !.11/D k and the canonical isomor-

phisms
!.11/˝!.X/' !.X/' !.X/˝!.11/

live in C.

Let B D lim
�!

End.!jhXi/_, so that ! defines an equivalence of categories C! Comod.B/
(Theorem 11.5). Then B has a unique structure .m;e/ of a commutative k-bialgebra such
that˝D �m and !.11/D .k

e
�! B ' k˝B/.

PROOF. To give a bi-algebra structure on a coalgebra .A;�;�/, one has to give coalgebra
homomorphisms .m;e/ that make A into an algebra (5.7), and a bialgebra is a commutative
bi-algebra (�5k). Thus, the statement is an immediate consequence of Proposition 11.12. 2

11c Categories of representations of affine groups

THEOREM 11.14 Let C be a k-linear abelian category, let ˝WC�C! C be a k-bilinear
functor. Let ! be an exact faithful k-linear functor C! Veck satisfying the conditions (a),
(b), and (c) of (11.13). For each k-algebra R, let G.R/ be the set of families

.�V /V 2ob.C/; �V 2 EndR-linear.!.V /R/;

such that

˘ �V˝W D �V ˝�W for all V;W 2 ob.C/,
˘ �11 D id!.11/ for every identity object of 11 of C, and
˘ �W ı!.˛/R D !.˛/R ı�V for all arrows ˛ in C.

Then G is an affine monoid over k, and ! defines an equivalence of tensor categories over
k,

C! Rep.G/:

When ! satisfies the following condition, G is an affine group:

(d) for any object X such that !.X/ has dimension 1, there exists an object X�1 in C
such that X˝X�1 � 11.

PROOF. Theorem 11.13 allows us to assume that CD Comod.B/ for B a k-bialgebra, and
that ˝ and ! are the natural tensor product structure and forgetful functor. Let G be the
monoid corresponding to B . Using (11.9) we find that, for any k-algebra R,

End.!/.R/ def
D End.�R ı!/D lim

 �
Homk-lin.BX ;R/D Homk-lin.B;R/.

An element �2Homk-lin.BX ;R/ corresponds to an element of End.!/.R/ commuting with
the tensor structure if and only if � is a k-algebra homomorphism; thus

End˝.!/.R/D Homk-alg.B;R/DG.R/:

We have shown that End˝.!/ is representable by an affine monoid G D SpecB and that !
defines an equivalence of tensor categories

C! Comod.B/! Repk.G/.

On applying (d) to the highest exterior power of an object of C, we find that End˝.!/ D
Aut˝.!/, which completes the proof. 2
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REMARK 11.15 Let .C;!/ be .Repk.G/;forget/. On following through the proof of (11.14)
in this case one recovers Theorem 10.2: Aut˝.!G/ is represented by G.

NOTES Add discussion of how much of this section extends to base rings k. (Cf. mo3131.)

12 Finite flat affine groups

In this section, we allow k to be a commutative ring, but we emphasise the case of a field.
As usual, unadorned tensor products are over k. In the remainder of this chapter, we shall
need to use only the results on étale affine groups over a field.

12a Definitions

Let k be a commutative ring. Recall (CA 10.4) that the following conditions on a k-module
M are equivalent: M is finitely generated and projective; M is “locally free” over k (ibid.
(b) or (c)); M is finitely presented and flat.

DEFINITION 12.1 A finite flat affine group over k is an affine group G such that O.G/
satisfies these equivalent conditions.43,44 For such an affine group, the function

p 7! dimk.p/M ˝k.p/WSpec.k/! N

is locally constant; here k.p/ is the field of fractions of k=p. It is called the order of G over
k.

When k is a field, the flatness is automatic, and we usually simply speak of a finite affine
group over k. Thus a finite affine group over k is an affine group such that dimkO.G/ is
finite (and dimkO.G/ is then the order of G over k). We say that an affine group is an
affine p-group if it is finite and its order is a power of p.

12b Étale affine groups

ÉTALE k-ALGEBRAS (k A FIELD)

Let k be a field, and let A be a finite k-algebra. For any finite set S of maximal ideals in A,
the Chinese remainder theorem (CA 2.12) says that the map A!

Q
m2S A=m is surjective

with kernel
T

m2Sm. In particular, jS j � ŒAWk�, and so A has only finitely many maximal
ideals. If S is the set of all maximal ideals in A, then

T
m2Sm is the nilradical N of A (CA

11.8), and so A=N is a finite product of fields.

PROPOSITION 12.2 The following conditions on a finite k-algebra A are equivalent:

(a) A is a product of separable field extensions of k;
(b) A˝kal is a product of copies of kal;

43A finite flat group scheme over a ring is affine, and so

finite flat affine group = finite flat group scheme.

44One can define a finite affine groupG over k to be an affine group such that O.G/ is of finite presentation,
but these groups are of little interest.
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(c) A˝kal is reduced.

PROOF. (a))(b). We may suppose that A itself is a separable field extension of k. From
the primitive element theorem (FT 5.1), we know that AD kŒ˛� for some ˛. Because kŒ˛�
is separable over k, the minimum polynomial f .X/ of ˛ is separable, which means that

f .X/D
Y
.X �˛i /; ˛i ¤ ˛j for i ¤ j;

in kalŒX�. Now
A˝k k

al
' .kŒX�=.f //˝kal

' kalŒX�=.f /,

and, according to the Chinese remainder theorem (CA 2.12),

kalŒX�=.f /'
Y

i
kalŒX�=.X �˛i /' k

al
� � � ��kal.

(b))(c). Obvious.
(c))(a). The map a 7! a˝1WA!A˝k k

al is injective, and soA is reduced. Therefore
the above discussion shows that it is a finite product of fields. Let k0 one of the factors of
A. If k0 is not separable over k, then k has characteristic p ¤ 0 and there exists an element
˛ of k0 whose minimum polynomial is of the form f .Xp/ with f 2 kŒX� (see FT 3.6, et
seq.). Now

kŒ˛�˝kal
' .kŒX�=.f .Xp//˝kal

' kalŒX�=.f .Xp//;

which is not reduced because f .Xp/ is a pth power in kalŒX�. Hence A˝ kal is not re-
duced. 2

DEFINITION 12.3 A k-algebra is étale if it is finite and it satisfies the equivalent conditions
of the proposition.45

PROPOSITION 12.4 Finite products, tensor products, and quotients of étale k-algebras are
étale.

PROOF. This is obvious from the condition (b). 2

COROLLARY 12.5 The composite of any finite set of étale subalgebras of a k-algebra is
étale.

PROOF. Let Ai be étale subalgebras of B . Then A1 � � �An is the image of the map

a1˝�� �˝an 7! a1 � � �anWA1˝�� �˝An! B;

and so is a quotient of A1˝�� �˝An. 2

PROPOSITION 12.6 IfA is étale over k, thenA˝k k0 is étale over k0 for any field extension
k0 of k.

45This agrees with Bourbaki’s terminology (Bourbaki A, V �6): Let A be an algebra over a field k. We say
that A is diagonalizable if there exists an integer n� 0 such that A is isomorphic to the product algebra kn. We
say that A is étale if there exists an extension L of k such that the algebra L˝kA deduced from A by extension
of scalars is diagonalizable.
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PROOF. Let k0al be an algebraic closure of k0, and let kal be the algebraic closure of k in
kal. Then

k0 ����! k0alx?? x??
k ����! kal

is commutative, and so

.A˝k k
0/˝k0 k

0al
'
�
A˝k k

al�
˝kal k0al

' .kal
� � � ��kal/˝kal k0al

' k0al
� � � ��k0al: 2

CLASSIFICATION OF ÉTALE k-ALGEBRAS (k A FIELD)

Let ksep be the composite of the subfields k0 of kal separable over k. If k is perfect, for
example, of characteristic zero, then ksep D kal. Let � be the group of k-automorphisms of
ksep. For any subfieldK of ksep, finite and Galois over k, an easy Zorn’s lemma argument46

shows that
� 7! � jKW� ! Gal.K=k/

is surjective. Let X be a finite set with an action of � ,

� �X !X:

We say that the action is47 continuous if it factors through � !Gal.K=k/ for some subfield
K of ksep finite and Galois over k.

For an étale k-algebra A, let

F.A/D Homk-alg.A;k
al/D Homk-alg.A;k

sep/:

Then � acts on F.A/ through its action on ksep:

.�f /.a/D �.f .a//; � 2 � , f 2 F.A/, a 2 A:

The images of all homomorphisms A! ksep will lie in some finite Galois extension of k,
and so the action of � on F.A/ is continuous.

THEOREM 12.7 The mapA F.A/ defines a contravariant equivalence from the category
étale k-algebras to the category of finite sets with a continuous action of � .

PROOF. This is a restatement of the fundamental theorem of Galois theory (FT �3), and is
left as an exercise to the reader (the indolent may see Waterhouse 1979, 6.3). 2

46Let �0 2 Gal.K=k/. Apply Zorn’s lemma to the set of all pairs .E;˛/ where E is a subfield of ksep

containing k and ˛ is homomorphism E! ksep whose restriction to K is �0.
47Equivalently, the action is continuous relative to the discrete topology on X and the Krull topology on �

(FT �7).
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12.8 We explain the theorem in more detail. Let Nk D ksep, and let � D Gal. Nk=k/. Then
� acts on F.A/ def

D Homk-alg.A; Nk/ through its action on Nk:

� D  ı� for  2 � , � 2 F.A/:

For any étale k-algebra A, there is a canonical isomorphism

a˝ c 7! .�a � c/�2F.A/WA˝ Nk! Nk
F.A/; (96)

where
NkF.A/

def
D Hom.F.A/; Nk/D

Y
�2F.A/

k� ; k� D Nk:

In other words, NkF.A/ is a product of copies of Nk indexed by the elements of F.A/. When
we let � act on A˝ Nk through its action of Nk and on NkF.A/ through its actions on both Nk
and F.A/,

.f /.�/D .f .�1�//;  2 �; f WF.A/! Nk; � 2 F.A/;

then the (96) becomes equivariant. Now:

(a) for any étale k-algebra A,
AD .A˝ Nk/� I

(b) for any finite set S with a continuous action of � , . NkS /� is an étale k-subalgebra of
NkS , and

F.. NkS /� /' S:

Therefore, A F.A/ is an equivalence of categories with quasi-inverse S 7! . NkS /� .

12.9 Suppose that A is generated by a single element, say, A D kŒ˛� ' kŒX�=.f .X//.
Then A is étale if and only if f .X/ has distinct roots in kal. Assume this, and choose f .X/
to be monic. A k-algebra homomorphism A! ksep is determined by the image of ˛, which
can be any root of f in ksep. Therefore, F.A/ can be identified with the set of roots of f in
ksep. Suppose F.A/ decomposes into r orbits under the action of � , and let f1; : : : ;fr be
the monic polynomials whose roots are the orbits. Then each fi is stable under � , and so
has coefficients in k (FT 7.8). It follows that f D f1 � � �fr is the decomposition of f into
its irreducible factors over k, and that

A'
Y

1�i�r
kŒX�=.fi .X//

is the decomposition of A into a product of fields.

ÉTALE AFFINE GROUPS OVER A FIELD

Let k be a field. An affine groupG over k is étale if O.G/ is an étale k-algebra; in particular,
an étale affine group is finite (hence algebraic).48

48Algebraic geometers will recognize that an affine group G is étale if and only if the morphism of schemes
jGj ! Speck is étale.
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REMARK 12.10 Recall (6.26) that an algebraic group G over k is smooth if and only if
O.G/˝ kal is reduced. Therefore, a finite affine group G over k is étale if and only if it
is smooth. If k has characteristic zero, then every finite affine group is étale (6.31). If k is
perfect of characteristic p ¤ 0, then O.G/pr is a reduced Hopf algebra for some r (6.35);
as the kernel of the map x 7! xp

r

WO.G/! O.G/pr has dimension a power of p, we see
that a finite affine group of order n is étale if p does not divide n.

Let A be the category of étale k-algebras. The functor G  O.G/ is an equivalence
from the category of étale affine groups over k to the category of group objects in the cate-
gory Aopp (see �5f). As G.ksep/DHomk-alg.O.G/;ksep/, when we combine this statement
with Theorem 12.7, we obtain the following theorem.

THEOREM 12.11 The functor G  G.ksep/ is an equivalence from the category of étale
algebraic groups over k to the category of finite groups endowed with a continuous action
of � .

Let K be a subfield of ksep containing k, and let � 0 be the subgroup of � consisting of
the � fixing the elements of K. Then K is the subfield of ksep of elements fixed by � 0 (see
FT 7.10), and it follows that G.K/ is the subgroup G.ksep/ of elements fixed by � 0:

EXAMPLES

For an étale algebraic group G, the order of G is the order of the (abstract) group G.kal/.
Since Aut.X/D 1whenX is a group of order 1 or 2, there is exactly one étale algebraic

group of order 1 and one of order 2 over k (up to isomorphism).
Let X be a group of order 3. Such a group is cyclic and Aut.X/ D Z=2Z. Therefore

the étale algebraic groups of order 3 over k correspond to homomorphisms � ! Z=2Z
factoring through Gal.K=k/ for some finite Galois extensionK of k. A separable quadratic
extension K of k defines such a homomorphism, namely,

� 7! � jKW� ! Gal.K=k/' Z=2Z

and all nontrivial such homomorphisms arise in this way (see FT �7). Thus, up to isomor-
phism, there is exactly one étale algebraic group GK of order 3 over k for each separa-
ble quadratic extension K of k, plus the constant group G0. For G0, G0.k/ has order 3.
For GK , GK.k/ has order 1 but GK.K/ has order 3. There are infinitely many distinct
quadratic extensions of Q, for example, QŒ

p
�1�, QŒ

p
2�, QŒ

p
3�, : : :, QŒpp�, : : :. Since

�3.Q/D 1 but �3.QŒ 3
p
1�/D 3, �3 must be the group corresponding to QŒ 3

p
1�.

FINITE ÉTALE AFFINE GROUPS OVER RING

DEFINITION 12.12 A k-algebra A is étale if it is flat of finite presentation over k and
A˝k.p/ is étale over the field k.p/ for all prime ideals p in k.

Assume that Speck is connected, and let x be a homomorphism from k into an alge-
braically closed field˝. For a finite étale k-algebraA, letF.A/ denote the set Homk-alg.A;˝/.
Then A F.A/ is a functor, and we let � be its automorphism group. Then � is a profi-
nite group, which is called the fundamental group �1.Speck;x/ of Speck. It acts on each
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set F.A/, and the functor F is a contravariant equivalence from the category of finite étale
k-algebras to the category of finite sets with a continuous action of � .

An affine group G over k is étale if O.G/ is an étale k-algebra. As in the case that k is
a field, the functor

G G.˝/

is an equivalence from the category of étale affine groups over k to the category of finite
groups endowed with a continuous action of � .

12c Finite flat affine groups in general

Recall that the augmentation ideal IG of an affine group G is the kernel of �WO.G/! k.

PROPOSITION 12.13 Let G be a finite affine group over a field k of characteristic p ¤ 0,
and suppose that xp D 0 for all x 2 IG . For any basis x1; : : : ;xr of IG=I 2G , the monomials

x
m1
1 � � �x

mr
r ; 0�mi < p

form a basis for O.G/ as a k-vector space (and so ŒO.G/Wk�D pr ).

PROOF. Omitted for the moment (see Waterhouse 1979, 11.4). 2

The proposition says that O.G/' kŒX1; : : : ;Xr �=.Xp1 ; : : : ;X
p
r /. This generalizes.

THEOREM 12.14 Let G be a finite group scheme over a perfect field k of characteristic
p ¤ 0 such that jGj is connected. For any basis x1; : : : ;xr of IG=I 2G , there exist integers
e1; : : : ; er � 1 such that

O.G/' kŒX1; : : : ;Xr �=.Xp
e1

1 ; : : : ;Xp
er

r /:

PROOF. Omitted for the moment (see Waterhouse 1979, 14.4). 2

Let k be nonperfect, and let a 2 k r kp. The subgroup G of Ga �Ga defined by
the equations xp

2

D 0, yp D axp is finite and connected, but O.G/ is not a truncated
polynomial algebra, i.e., (12.14) fails for G .Waterhouse 1979, p. 113).

CLASSIFICATION OF FINITE COMMUTATIVE AFFINE GROUPS OVER A PERFECT

FIELD (DIEUDONNÉ MODULES)

Let k be a perfect field of characteristic p. A finite group scheme over k of order prime to
p is étale, which can be understood in terms of the Galois group of k, and so it remains to
classify the p-groups.

Let W be the ring of Witt vectors with entries in k. Thus W is a complete discrete
valuation ring with maximal ideal generated by pD p1W and residue field k. For example,
if kDFp, thenW DZp. The Frobenius automorphism � ofW is the unique automorphism
such that �a� ap .mod p/:



150 I. Basic Theory of Affine Groups

THEOREM 12.15 There exists a contravariant equivalence G M.G/ from the category
of commutative finite affine p-groups to the category of triples .M;F;V / in which M is a
W -module of finite length and F and V are endomorphisms of M satisfying the following
conditions (c 2W , m 2M ):

F.c �m/D �c �Fm

V.�c �m/D c �Vm

FV D p � idM D VF:

The order of G is plength.M.G//. For any perfect field k0 containing k, there is functorial
isomorphism

M.Gk0/'W.k
0/˝W.k/M.G/:

PROOF. The proof is quite long, and will not be included. See Demazure 1972, Chap. III,
or Pink 2005. 2

For example:

M.Z=pZ/DW=pW; F D 1; V D 0I

M.�p/DW=pW; F D 0; V D pI

M.˛p/DW=pW; F D 0; V D 0:

The module M.G/ is called the Dieudonné module of G.
The theorem is very important since it reduces the study of commutative affine p-groups

over perfect fields to semi-linear algebra. There are important generalizations of the theo-
rem to discrete valuation, and other, rings.

12d Cartier duality

In this subsection, we allow k to be a ring.
LetG be a finite flat commutative affine group with bialgebra .O.G/;m;e;�;�/. Recall

(�5i) that the Cartier dualG_ ofG is the affine group with bialgebra .O.G/_;�_; �_;m_; e_/.
The functor G G_ is a contravariant equivalence of the category of finite flat commuta-
tive affine groups with itself, and .G_/_ 'G. Our goal in this subsection is to describe the
affine group G_ as a functor.

For k-algebra R, let Hom.G;Gm/.R/ be the set of homomorphisms of ˛WGR!GmR
of affine groups over R. This becomes a group under the multiplication

.˛1 �˛2/.g/D ˛1.g/ �˛2.g/; g 2G.R0/; R0 an R-algebra.

In this way,
R Hom.G;Gm/.R/

becomes a functor Algk! Grp.

THEOREM 12.16 There is a canonical isomorphism

G_ ' Hom.G;Gm/

of functors Algk! Grp.
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PROOF. Let R be a k-algebra. We have

G.R/D HomR-alg.O.G/;R/ ,! HomR-lin.O.G/;R/DO.G_/R: (97)

The multiplication in O.G/ corresponds to comultiplication in O.G_/, from which it fol-
lows that the image of (97) consists of the group-like elements in O.G_/R. On the other
hand, we know that Hom.G_R;Gm/ also consists of the group-like elements in O.G_/R.
Thus,

G.R/' Hom.G_;Gm/.R/:

This isomorphism is natural in R, and so we have shown that G ' Hom.G_;Gm/. To
obtain the required isomorphism, replace G with G_ and use that .G_/_ 'G. 2

NOTES For more on Cartier duality, see Pink 2005, �24, and the notes on Cartier duality on Ching-
Li Chai’s website

EXAMPLE 12.17 Let G D ˛p, so that O.G/D kŒX�=.Xp/D kŒx�. Let 1;y;y2; : : : ;yp�1
be the basis of O.G_/ D O.G/_ dual to 1;x; : : : ;xp�1. Then yi D i Šyi ; in particular,
yp D 0. In fact, G_ ' ˛p, and the pairing is

a;b 7! exp.ab/W˛p.R/�˛p.R/!R�

where

exp.ab/D 1C
ab

1Š
C
.ab/2

2Š
C�� �C

.ab/p�1

.p�1/Š
.

ASIDE 12.18 The theory of finite flat affine groups, or finite flat group schemes to use the more
common term, is extensive. See Tate 1997 for a short introduction.

PROPOSITION 12.19 An algebraic groupG over a field is finite if and only if there exists a
representation .V;r/ such that every representation of G is a subquotient49 of V n for some
n� 0.

PROOF. If G is finite, then the regular representation X of G is finite-dimensional, and
(8.36) says that it has the required property. Conversely if, with the notations of (�11a),
Repk.G/D hXi, then G D SpecB where B is the linear dual of the finite k-algebra AX .2

12e Exercises

EXERCISE 12-1 Show that A is étale if and only if there are no nonzero k-derivations
DWA! k. [Regard A as a left A-module by left multiplication. Let A be a k-algebra and
M an A-module. A k -derivation is a k-linear map DWA!M such that

D.fg/D f �D.g/Cg �D.f / (Leibniz rule).]

EXERCISE 12-2 How many finite algebraic groups of orders 1;2;3;4 are there over R (up
to isomorphism)?

49Here V n is a direct sum of n copies of V , and subquotient means any representation isomorphic to a
subrepresentation of a quotient (equivalently, to a quotient of a subrepresentation).
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EXERCISE 12-3 (Waterhouse 1979, Exercise 9, p. 52). Let G be a finite group scheme.
Show that the following are equivalent:

(a) O.Gred/ is étale;
(b) Gred is a subgroup of G;
(c) G is isomorphic to the semi-direct product of Gı and �0G.

13 The connected components of an algebraic group

Recall that a topological spaceX is connected if it is not the union of two disjoint nonempty
open subsets. This amounts to saying that, apart from X itself and the empty set, there is
no subset of X that is both open and closed. For each point x of X , the union of the
connected subsets of X containing x is again connected, and so it is the largest connected
subset containing x — it is called the connected component of x. The set of the connected
components of the points of X is a partition of X by closed subsets. Write �0.X/ for the
set of connected components of X .

In a topological group G, the connected component of the neutral element is a closed
normal connected subgroup Gı of G, called the neutral (or identity) component of G.
Therefore, the quotient �0.G/ D G=Gı is a separated topological group. For example,
GL2.R/ has two connected components, namely, the identity component consisting of the
matrices with determinant> 0 and another connected component consisting of the matrices
with determinant < 0.

In this section, we discuss the identity component Gı of an affine group and the (étale)
quotient group �0.G/ of its connected components. Throughout, k is a field.

13a Some commutative algebra

Throughout this subsection, A is a commutative ring. An element e of A is idempotent if
e2 D e. For example, 0 and 1 are both idempotents — they are called the trivial idempo-
tents. Idempotents e1; : : : ; en are orthogonal if eiej D 0 for i ¤ j . Any sum of orthogonal
idempotents is again idempotent. A finite set fe1; : : : ; eng of orthogonal idempotents is
complete if e1C�� �C en D 1. Any finite set of orthogonal idempotents fe1; : : : ; eng can be
completed by adding the idempotent e D 1� .e1C�� �C en/.

If AD A1� � � ��An (direct product of rings), then the elements

e1 D .1;0; : : :/, e2 D .0;1;0; : : :/, : : : , en D .0; : : : ;0;1/

form a complete set of orthogonal idempotents. Conversely, if fe1; : : : ; eng is a complete set
of orthogonal idempotents in A, then Aei becomes a ring with the addition and multiplica-
tion induced by that of A (but with the identity element ei ), and A' Ae1� � � ��Aen.

LEMMA 13.1 The space specA is disconnected if and only if A contains a nontrivial idem-
potent.

PROOF. Let e be a nontrivial nilpotent, and let f D 1� e. For a prime ideal p, the map
A! A=p must send exactly one of e or f to a nonzero element. This shows that specA
is a disjoint union of the sets50 D.e/ and D.f /, each of which is open. If D.e/D specA,

50The set D.e/ consists of the prime ideals of A not containing e, and V.a/ consists of all prime ideals
containing a.
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then e would be a unit (CA 2.2), and hence can be cancelled from ee D e to give e D 1.
Therefore D.e/¤ specA, and similarly, D.f /¤ specA.

Conversely, suppose that specA is disconnected, say, the disjoint union of two nonempty
closed subsets V.a/ and V.b/. Because the union is disjoint, no prime ideal contains both
a and b, and so aC b D A. Thus aC b D 1 for some a 2 a and b 2 b. As ab 2 a\ b,
all prime ideals contain ab, which is therefore nilpotent (CA 2.5), say .ab/m D 0. Any
prime ideal containing am contains a; similarly, any prime ideal containing bm contains b;
thus no prime ideal contains both am and bm, which shows that .am;bm/D A. Therefore,
1D ramC sbm for some r;s 2 A. Now

.ram/.sbm/D rs.ab/m D 0;

.ram/2 D .ram/.1� sbm/D ram,

.sbm/2 D sbm

ramC sbm D 1;

and so fram; sbmg is a complete set of orthogonal idempotents. Clearly V.a/ � V.ram/
and V.b/ � V.sbm/. As V.ram/\V.sbm/D ;, we see that V.a/D V.ram/ and V.b/D
V.sbm/, and so each of ram and sbm is a nontrivial idempotent. 2

PROPOSITION 13.2 Let fe1; : : : ; eng be a complete set of orthogonal idempotents in A.
Then

specADD.e1/t : : :tD.en/

is a decomposition of specA into a disjoint union of open subsets. Moreover, every such
decomposition arises in this way.

PROOF. Let p be a prime ideal in A. Because A=p is an integral domain, exactly one of the
ei ’s maps to 1 in A=p and the remainder map to zero. This proves that specA is the disjoint
union of the sets D.ei /.

Now consider a decomposition

spmAD U1t : : :tUn

eachUi open. We use induction on n to show that it arises from a complete set of orthogonal
idempotents. When nD 1, there is nothing to prove, and when n� 2, we write

spmAD U1t .U2t : : :tUn/.

The proof of the lemma shows that there exist orthogonal idempotents e1, e01 2 A such that
e1C e

0
1 D 1 and

U1 DD.e1/

U2t : : :tUn DD.e
0
1/D specAe01:

By induction, there exist orthogonal idempotents e2; : : : ; en in Ae01 such that e2C�� �CenD
e01 and Ui D D.ei / for i D 2; : : : ;n. Now fe1; : : : ; eng is a complete set of orthogonal
idempotents in A such that Ui DD.ei / for all i . 2
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13.3 Recall that a ring A is said to be Jacobson if every prime ideal is an intersection of
maximal ideals, and that every finitely generated algebra over a field is Jacobson (see CA
12.3 et seq.). In a Jacobson ring, the nilradical is an intersection of maximal ideals. When
A is Jacobson, “prime ideal” can be replaced by “maximal ideal” and “spec” with “spm”
in the above discussion. In particular, for a Jacobson ring A, there are natural one-to-one
correspondences between

˘ the decompositions of spm.A/ into a finite disjoint union of open subspaces,
˘ the decompositions of A into a finite direct products of rings, and
˘ the complete sets of orthogonal idempotents in A.

Now consider a ring AD kŒX1; : : : ;Xn�=a. When k is algebraically closed

spmA' the zero set of a in kn

as topological spaces (Nullstellensatz, CA 11.6), and so spmA is connected if and only if
the zero set of a in kn is connected.

LEMMA 13.4 Let A be a finitely generated algebra over a separably closed field k. The
number of connected components of spmA is equal to the largest degree of an étale k-
subalgebra of A (and both are finite).

PROOF. Because spmA is noetherian, it is a finite disjoint union of its connected compo-
nents, each of which is open (CA 12.12). Let E be an étale k-subalgebra of A. Because k
is separably closed, E is a product of copies of k. A decomposition of E corresponds to
a complete set .ei /1�i�m of orthogonal idempotents in E, and mD ŒEWk�. Conversely, a
complete set .ei /1�i�m of orthogonal idempotents in A defines an étale k-subalgebra of A
of degree m, namely,

P
kei . Thus the statement follows from the above remark. 2

LEMMA 13.5 Let A be a finitely generated k-algebra. Assume that k is algebraically
closed, and let K be an algebraically closed field containing k. If spmA is connected,
so also is spmAK .

PROOF. Write AD kŒX1; : : : ;Xn�=a, so that AK D KŒX1; : : : ;Xn�=b where b is the ideal
generated by a. By assumption, the zero set V.a/ of a in kn is connected. As the closure
of a connected set is connected, it suffices to show that the zero set V.b/ of b in Kn is the
Zariski closure of V.a/. Let f 2 KŒX1; : : : ;Xn� be zero on V.a/. Choose a basis .ai /i2I
for K over k, and write

f D
X

i
aifi (fi 2 kŒX1; : : : ;Xn�, finite sum).

As f is zero on V.a/, so also is each fi . By the Strong Nullstellensatz (CA 11.7), this
implies that each fi lies in the radical of a, which implies that f is zero on V.b/. 2

LEMMA 13.6 Let A and B be finitely generated algebras over an algebraically closed field
k. If spmA and spmB are connected, then so also is spmA˝B .
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PROOF. Because of the Nullstellensatz, we can identify spmA˝B with spmA�spmB (as
a set). Let m1 2 spmA. The k-algebra homomorphisms

B ' .A=m1/˝B � A˝B

give continuous maps

n 7! .m1;n/Wspm.B/' spm.A=m1˝B/
closed
,! spm.A˝B/:

Similarly, for n2 2 spmB , we have

m 7! .m;n2/Wspm.A/' spm.A˝B=n2/
closed
,! spm.A˝B/:

As spmA and spmB are connected, this shows that .m1;n1/ and .m2;n2/ lie in the same
connected component of spmA� spmB for every n1 2 spmB and m2 2 spmA. 2

ASIDE 13.7 On Cn there are two topologies: the Zariski topology, whose closed sets are the zero
sets of collections of polynomials, and the complex topology. Clearly Zariski-closed sets are closed
for the complex topology, and so the complex topology is the finer than the Zariski topology. It
follows that a subset of Cn that is connected in the complex topology is connected in the Zariski
topology. The converse is false. For example, if we remove the real axis from C, the resulting space
is not connected for the complex topology but it is connected for the topology induced by the Zariski
topology (a nonempty Zariski-open subset of C can omit only finitely many points). Thus the next
result is a surprise:

If V � Cn is closed and irreducible for the Zariski topology, then it is connected for
the complex topology.

For the proof, see Shafarevich 1994, VII 2.

13b Étale subalgebras

Let A be a finitely generated k-algebra. An étale k-subalgebra of A will give an étale
kal-subalgebra of the same degree of Akal , and so its degree is bounded by the number of
connected components of spmAkal (13.4). The composite of two étale subalgebras of A is
étale (12.5), and so there is a largest étale k-subalgebra �0.A/ of A, containing all other
étale subalgebras.

Let K be a field containing k. Then �0.A/˝kK is an étale subalgebra of A˝kK (see
12.6). We shall need to know that it is the largest étale subalgebra.

PROPOSITION 13.8 LetA be a finitely generated k-algebra, and letK be a field containing
k. Then

�0.A/˝kK D �0.A˝kK/:

PROOF. If �0.A/˝K is not the largest étale subalgebra of A˝K, then �0.A/˝L will not
be the largest étale subalgebra in A˝L for any field L containing K. Therefore, it suffices
to prove the proposition for a field L containing K.

We first prove the statement with K D ksep. It follows from (12.8) that the étale k-
algebras in A are in canonical one-to-one correspondence with the étale ksep-algebras in
A˝ksep stable under the action of � DGal.ksep=k/ (acting on the second factor). Because
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it is the (unique) largest étale ksep-algebra in A˝ ksep, �0.A˝ ksep/ is stable under the
action of � . Under the correspondence

�0.A˝k
sep/$ �0.A˝k

sep/�

�0.A/˝k
sep
$ �0.A/:

As �0.A/˝ ksep � �0.A˝ k
sep/, we have �0.A/ � �0.A˝ ksep/� . But �0.A/ is the

largest étale k-algebra in A, and so �0.A/ D �0.A˝ ksep/� . Therefore �0.A/˝ ksep D

�0.A˝k
sep/.

We next prove the statement when k D ksep and K D kal. If K ¤ k, then k has charac-
teristic p ¤ 0 and K is purely inseparable over it. Let e1; : : : ; em be a basis of idempotents
for �0.A˝K/. Write ej D

P
ai˝ci with ai 2A and ci 2K. For some r , all the elements

c
pr

i lie in k, and then ep
r

j D
P
a
pr

i ˝ c
pr

i 2 A. But ej D e
pr

j , and so �0.A˝K/ has a
basis in A.

Finally, we prove the statement when k and K are both algebraically closed. We may
suppose that A is not a product of k-algebras, and so has no nontrivial idempotents. We
have to show that then A˝K also has no nontrivial idempotents, but this follows from
13.5. 2

COROLLARY 13.9 LetA be a finitely generated k-algebra. The degree Œ�0.A/Wk� of �0.A/
is equal to the number of connected components of spm.A˝kal/:

PROOF. We have

Œ�0.A/Wk�D Œ�0.A/˝k
al
Wkal�D Œ�0.A˝k

al/Wkal�;

and so this follows from 13.4. 2

Let A and A0 be finitely generated k-algebras. Then �0.A/˝�0.A0/ is an étale subal-
gebra of A˝A0 (see 12.4). We shall need to know that it is the largest étale subalgebra.

PROPOSITION 13.10 Let A and A0 be finitely generated k-algebras. Then

�0.A˝A
0/D �0.A/˝�0.A

0/:

PROOF. As �0.A/˝�0.A0/� �0.A˝A0/, we may suppose that k is algebraically closed
(13.8), and we may replace each of A and A0 with a direct factor and so suppose that
�0.A/ D 1 D �0.A

0/. We then have to show that �0.A˝A0/ D 1, but this follows from
13.6. 2

ASIDE 13.11 Let V be an algebraic variety over a field k, and let �0.Vksep/ be the set of connected
components of V over ksep. Then �0.Vksep/ is a finite set with an action of Gal.ksep=k/, and so
defines an étale k-algebra B . Let �0.V /D spmB . Then �0.V / is an algebraic variety, (finite and)
étale over k, and there is a canonical morphism V ! �0.V / of algebraic varieties whose fibres are
connected.51 For a projective variety, this is the Stein factorization of the morphism V ! Spmk (cf.
Hartshorne 1977, III, 11.5). For an affine variety V D spmA, �0.V /D spm.�0.A//.

51More precisely, let m be a point of spm.�0.V //, and let k.m/ be the residue field at m (finite extension of
k). Then the fibre over m is a geometrically connected algebraic variety over k.m/.
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13c Algebraic groups

Let G be an algebraic group with coordinate ring A D O.G/. The map �WA! A˝A

is a k-algebra homomorphism, and so sends �0.A/ into �0.A˝A/
13.10
D �0.A/˝�0.A/.

Similarly, S WA! A sends �0.A/ into �0.A/, and we can define � on �0.A/ to be the
restriction of � on A. Therefore �0.A/ is a Hopf subalgebra of A.

DEFINITION 13.12 Let G be an algebraic group over a field k.

(a) The group of connected components �0.G/ of G is the quotient algebraic group
corresponding to the Hopf subalgebra �0.O.G// of O.G/:

(b) The identity component Gı of G is the kernel of the homomorphism G! �0.G/.

PROPOSITION 13.13 The following four conditions on an algebraic group G are equiva-
lent:

(a) the étale affine group �0.G/ is trivial;
(b) the topological space spm.O.G// is connected;
(c) the topological space spm.O.G// is irreducible;
(d) the ring O.G/=N is an integral domain.

PROOF. (b))(a). Remark 13.3 implies that �0.O.G// has no nontrivial idempotents, and
so is a field. The existence of the k-algebra homomorphism �WO.G/! k implies that
�0.O.G//D k.

(c))(b). Trivial.
(d),(c). In general, spmA is irreducible if and only if the nilradical of A is prime (see

�6.4).
(a))(d). If �0.G/ is trivial, so also is �0.Gkal/ (Lemma 13.8). Write spmO.Gkal/ as a

union of its irreducible components. No irreducible component is contained in the union of
the remainder. Therefore, there exists a point that lies on exactly one irreducible component.
By homogeneity (6.12), all points have this property, and so the irreducible components are
disjoint. As spmO.Gkal/ is connected, there must be only one, and so Gkal is irreducible.
Let N0 be the nilradical of O.Gkal/D kal˝kO.G/ — we have shown that O.Gkal/=N0 is
an integral domain. As the canonical map O.G/=N!O.Gkal/=N0 is injective, we obtain
(d). 2

PROPOSITION 13.14 The fibres of the map jGj ! j�0.G/j are the connected components
of the topological space jGj.

PROOF. The connected components of jGj and the points of j�0.G/j are both indexed by
the elements of a maximal complete set of orthogonal idempotents. 2

PROPOSITION 13.15 Every homomorphism from G to an étale algebraic group factors
uniquely through G! �0.G/.

PROOF. Let G ! H be a homomorphism from G to an étale algebraic group H . The
image of O.H/ in O.G/ is étale (see 12.4), and so is contained in �0.O.G//

def
DO.�0G/.2
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PROPOSITION 13.16 The subgroupGı ofG is connected, and every homomorphism from
a connected algebraic group to G factors through Gı!G.

PROOF. The homomorphism of k-algebras �WO.�0G/! k decomposes O.�0G/ into a
direct product

O.�0G/D k�B .

Let e D .1;0/. Then the augmentation ideal of O.�0G/ is .1� e/, and

O.G/D eO.G/� .1� e/O.G/

with eO.G/ ' O.G/=.1� e/O.G/ D O.Gı/ (see 7.15). Clearly, k D �0.eO.G// '
�0.O.Gı//. Therefore �0Gı D 1, which implies that Gı is connected.

If H is connected, then the composite H !G! �0.G/ has trivial image. 2

PROPOSITION 13.17 The subgroup Gı is the unique connected normal affine subgroup of
G such that G=Gı is étale.

PROOF. The subgroup Gı is normal with étale quotient by definition, and we have shown
it to be connected. Suppose that H is a second normal algebraic subgroup of G. If G=H is
étale, then (by (a)) the homomorphism G! G=H factors through �0.G/, and so we get a
commutative diagram

1 ����! Gı ����! G ����! �0G ����! 1??y  ??y
1 ����! H ����! G ����! G=H ����! 1

with exact rows. The similar diagram with each � replaced with �.R/ gives, for each k-
algebra R, an exact sequence

1!Gı.R/!H.R/! .�0G/.R/: (98)

Since this functorial in R, it gives a sequence of algebraic groups

1!Gı!H ! �0G:

The exactness of (98) shows that Gı is the kernel of H ! �0G. This map factors through
�0H , and so if �0H D 1, its kernel is H : therefore Gı 'H . 2

Proposition 13.17 says that, for any algebraic groupG, there is a unique exact sequence

1!Gı!G! �0.G/! 1

such that Gı is connected and �0.G/ is étale. This is sometimes called the connected-étale
exact sequence.

The next proposition says that the functors G  �0G and G  Gı commute with
extension of the base field.
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PROPOSITION 13.18 For any field extension k0 � k,

�0.Gk0/' �0.G/k0

.Gk0/
ı
' .Gı/k0 :

In particular, G is connected if and only if Gk0 is connected.

PROOF. As O.Gk0/'O.G/˝k k0, this follows from (13.8). 2

PROPOSITION 13.19 For any algebraic groups G and G0,

�0.G�G
0/' �0.G/��0.G

0/

.G�G0/ı 'Gı�G0ı:

In particular, G�G0 is connected if and only if both G and G0 are connected.

PROOF. The coordinate ring O.G�G0/'O.G/˝O.G0/, and so this follows from (13.10).2

REMARK 13.20 Let G be an algebraic group over k. For any field k0 containing k, Propo-
sition 13.18 shows that G is connected if and only if Gk0 is connected. In particular, if an
algebraic group G over a field is connected, then so also is Gkal . In other words, a con-
nected algebraic group is geometrically connected. This is false for algebraic varieties: for
example,

X2CY 2 D 0

is connected over R (even irreducible), but becomes a disjoint union of the two lines

XC˙iY D 0

over C — the ring RŒX;Y �=.X2CY 2/ is an integral domain, but

CŒX;Y �=.X2CY 2/' CŒX;Y �=.XC iY /�CŒX;Y �=.X � iY /.

The reason for the difference is the existence of the homomorphism �WO.G/! k (the neu-
tral element of G.k/). An integral affine algebraic variety V over a field k is geometrically
connected if and only if k is algebraically closed in O.V /, which is certainly the case if
there exists a k-algebra homomorphism O.V /! k (AG 11.5).

PROPOSITION 13.21 Let
1!N !G!Q! 1

be an exact sequence of algebraic groups. If N and Q are connected, so also is G; con-
versely, if G is connected, so also is Q.

PROOF. Assume N and Q are connected. Then N is contained in the kernel of G !
�0.G/, so this map factors through G!Q (see 7.56), and therefore has image f1g. Con-
versely, since G maps onto �0.Q/, it must be trivial if G is connected. 2
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EXAMPLES

13.22 Let G be finite. When k has characteristic zero, G is étale, and so G D �0.G/ and
Gı D 1. Otherwise, there is an exact sequence

1!Gı!G! �0.G/! 1:

When k is perfect, the homomorphism G! �0.G/ has a section, and so G is a semidirect
product

G DGıo�0.G/:

To see this, note that the homomorphism Gred! �0.G/ is an isomorphism because both
groups are smooth, and it is an isomorphism on kal-points:

Gred.k
al/DG.kal/

�
�! �0.G/.k

al/:

13.23 The groups Ga, GLn, Tn (upper triangular), Un (strictly upper triangular), Dn are
connected because in each case O.G/ is an integral domain. For example,

kŒTn�D kŒGLn�=.Xij j i > j /;

which is isomorphic to the polynomial ring in the symbols Xij , 1 � i � j � n, with the
product X11 � � �Xnn inverted.

13.24 For the group G of monomial matrices (3.12), �0.O.G// is a product of copies of
k indexed by the elements of Sn. Thus, �0G D Sn (regarded as a constant algebraic group
(5.23)), and Gı D Dn.

13.25 The group SLn is connected. As we noted in the proof of (7.32), the natural iso-
morphism

A;r 7! A �diag.r;1; : : : ;1/WSLn.R/�Gm.R/! GLn.R/

(of set-valued functors) defines an isomorphism of k-algebras

O.GLn/'O.SLn/˝O.Gm/;

and the algebra on the right contains O.SLn/. In particular, O.SLn/ is a subring of O.GLn/,
and so is an integral domain.

13.26 Assume char.k/¤ 2. For any nondegenerate quadratic space .V;q/, the algebraic
group SO.q/ is connected. It suffices to prove this after replacing k with kal, and so we
may suppose that q is the standard quadratic form X21 C�� �CX

2
n , in which case we write

SO.q/D SOn. The latter is shown to be connected in Exercise 13-4 below.
The determinant defines a quotient map O.q/! f˙1g with kernel SO.q/. Therefore

O.q/ı D SO.q/ and �0.O.q//D f˙1g (constant algebraic group).

13.27 The symplectic group Sp2n is connected (for some hints on how to prove this, see
Springer 1998, 2.2.9).
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ASIDE 13.28 According to (13.7) and (13.13), an algebraic group G over C is connected if and
only if G.C/ is connected for the complex topology. Thus, we could for example deduce that GLn
is a connected algebraic group from knowing that GLn.C/ is connected for the complex topology.
However, it is easier to deduce that GLn.C/ is connected from knowing that GLn is connected (of
course, this requires the serious theorem stated in (13.7)).

A
13.29 An algebraic group G over R may be connected without G.R/ being connected,

and conversely. For example, GL2 is connected as an algebraic group, but GL2.R/ is not
connected for the real topology, and�3 is not connected as an algebraic group, but�3.R/D
f1g is certainly connected for the real topology.

13d Affine groups

LetG be an affine group, and writeG D lim
 �i2I

Gi where .Gi /i2I is the family of algebraic
quotients of G (see 8.23). Define

Gı D lim
 �i2I

Gıi ;

�0G D lim
 �i2I

�0Gi :

PROPOSITION 13.30 Assume k has characteristic zero. An algebraic groupG is connected
if and only if, for every representation V on which G acts nontrivially, the full subcategory
of Rep.G/ of subquotients of V n, n� 0, is not stable under˝.

PROOF. In characteristic zero, all finite groups are étale. Therefore, a groupG is connected
if and only if there is no non-trivial epimorphism G ! G0 with G0 finite. According to
(8.63), this is equivalent to Repk.G/ having no non-trivial subcategory of the type described
in (12.19). 2

NOTES Discuss connectedness over a base ring (or scheme). Not of much interest. More important
is to look at the connectedness of the fibres. The strong connectedness condition is that the geometric
fibres are connected, i.e., that for an algebraic group G over a commutative ring R, the algebraic
group GK is connected for every homomorphism R!K from R into an algebraically closed field
K.

13e Exercises

EXERCISE 13-1 Show that if 1!N !G!Q! 1 is exact, so also is �0.N /!�0.G/!

�0.Q/! 1 (in an obvious sense). Give an example to show that �0.N /! �0.G/ need not
be injective.

EXERCISE 13-2 What is the map O.SLn/!O.GLn/ defined in example 13.25?

EXERCISE 13-3 Prove directly that �0.O.On//D k�k.

EXERCISE 13-4 (Springer 1998, 2.2.2). Assume k has characteristic ¤ 2. For any k-
algebra R, let V.R/ be the set of skew-symmetric matrices, i.e., the matrices A such that
At D�A.
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(a) Show that the functor R 7! V.R/ is represented by a finitely generated k-algebra A,
and that A is an integral domain.

(b) Show that A 7! .InCA/
�1.In�A/ defines a bijection from a nonempty open subset

of SOn.kal/ onto an open subset of V.kal/.
(c) Deduce that SOn is connected.

EXERCISE 13-5 Let A be a product of copies of k indexed by the elements of a finite set
S . Show that the k-bialgebra structures on A are in natural one-to-one correspondence with
the group structures on S .

EXERCISE 13-6 Let G be a finite affine group. Show that the following conditions are
equivalent:

(a) the k-algebra O.Gred/ is étale;
(b) O.Gred/˝O.Gred/ is reduced;
(c) Gred is a subgroup of GI
(d) G is isomorphic to the semi-direct product of Gı and �0G.

EXERCISE 13-7 Let k be a nonperfect field of characteristic 2, so that there exists an a 2 k
that is not a square. Show that the functor R G.R/

def
D fx 2 R j x4 D ax2g becomes a

finite commutative algebraic group under addition. Show that G.k/ has only one element
but �0.G/ has two. Deduce that G is not isomorphic to the semi-direct product of Gı and
�0.G/. (Hence 13-6 shows that O.G/=N is not a Hopf algebra.)

EXERCISE 13-8 Let k be a field of characteristic p. Show that the extensions

0! �p!G! Z=pZ! 0

with G a finite commutative algebraic group are classified by the elements of k�=k�p (the
split extension G D �p �Z=pZ corresponds to the trivial element in k�=k�p). Show that
Gred is not a subgroup of G unless the extension splits.

13f Where we are

As discussed in the first section, every affine algebraic group has a composition series with
the quotients listed at right:

affine G

j finite étale

connected Gı

j semisimple

solvable �

j torus

unipotent �

j unipotent

f1g

We have constructed the top segment of this picture. Next we look at tori and unipotent
groups. Then we study the most interesting groups, the semisimple ones, and finally, we
put everything together.
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14 Groups of multiplicative type; tori

In this section we study the affine groups that become diagonalizable over an extension
field. Through k is a field.

We state for reference:

Gm.R/DR� O.Gm/D kŒX;X�1� �.X/DX˝X �.X/D 1 S.X/DX�1

�n.R/D f� 2R j �
n D 1g O.�n/D kŒX�

.Xn�1/
D kŒx� �.x/D x˝x �.x/D 1 S.x/D xn�1

14a Group-like elements

DEFINITION 14.1 Let AD .A;�;�/ be a k-coalgebra. An element a of A is group-like if
�.a/D a˝a and �.a/D 1.

LEMMA 14.2 The group-like elements in A are linearly independent.

PROOF. If not, it will be possible to express one group-like element e as a linear combina-
tion of other group-like elements ei ¤ e:

e D
P
i ciei , ci 2 k: (99)

We may even suppose that the ei occurring in the sum are linearly independent. Now

�.e/D e˝ e
(99)
D
P
i;j cicj ei ˝ ej

�.e/
(99)
D
P
i ci�.ei /D

P
i ciei ˝ ei :

The ei ˝ ej are also linearly independent, and so this implies that�
cici D ci all i
cicj D 0 if i ¤ j:

We also know that

�.e/D 1

�.e/D
P
ci�.ei /D

P
ci :

On combining these statements, we see that the ci form a complete set of orthogonal idem-
potents in the field k, and so one of them equals 1 and the remainder are zero, which
contradicts our assumption that e is not equal to any of the ei . 2

Let A be a k-bialgebra. If a and b are group-like elements in A, then

�.ab/D�.a/�.b/D .a˝a/.b˝b/D ab˝ab

�.ab/D �.a/�.b/D 1

because � and � are k-algebra homomorphisms. Therefore the group-like elements form a
submonoid of .A;�/.

Let A be a Hopf algebra, and let a 2 A. If a is group-like, then

1D .e ı �/.a/
(34)
D .multı .S˝ idA/ı�/.a/D S.a/a,



164 I. Basic Theory of Affine Groups

and so a is a unit in A with a�1 D S.a/. Conversely, if a is a unit in A such that �.a/D
a˝a, then

a
(30)
D ..�; idA/ı�/.a/D �.a/a;

and so �.a/D 1. Thus the group-like elements of A are exactly the units such that �.a/D
a˝a.

14b The characters of an affine group

Recall that a character of an affine group G is a homomorphism �WG ! Gm. To give a
character � of G is the same as giving a homomorphism of k-algebras O.Gm/! O.G/
respecting the comultiplications, and this is the same as giving a unit a.�/ of O.G/ (the
image of X ) such that �.a.�//D a.�/˝a.�/. Therefore, �$ a.�/ is a one-to-one cor-
respondence between the characters of G and the group-like elements of O.G/.

For characters �;�0, define

�C�0WG.R/!R�

by
.�C�0/.g/D �.g/ ��0.g/:

Then �C�0 is again a character, and the set of characters is an abelian group, denoted
X.G/. The correspondence �$ a.�/ between characters and group-like elements has the
property that

a.�C�0/D a.�/ �a.�0/:

ASIDE 14.3 Recall (2.16) that an element f of O.G/ can be regarded as a natural transformation
f WG! A1. Suppose that�

f .1G/D 1; for 1G the identity element in G.R/, and
f .xy/D f .x/f .y/; for x;y 2G.R/, R a k-algebra. (100)

Then f .R/ takes values in R� �A1.R/ and is a homomorphism G.R/!R�. In other words, f is
a character of G. One can see directly from the definitions that the condition (100) holds if and only
if f is group-like.

14c The affine group D.M/

Let M be a commutative group (written multiplicatively), and let kŒM� be the k-vector
space with basis M . Thus, the elements of kŒM� are finite sumsP

i aimi ; ai 2 k; mi 2M:

When we endow kŒM� with the multiplication extending that on M ,�P
i aimi

��P
j bjnj

�
D
P
i;j aibjminj ;

then kŒM� becomes a k-algebra, called the group algebra ofM . It becomes a Hopf algebra
when we set

�.m/Dm˝m; �.m/D 1; S.m/Dm�1 .m 2M/
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because, for m an element of the basis M ,

.id˝�/.�.m//Dm˝ .m˝m/D .m˝m/˝mD .�˝ id/.�.m//,

.�˝ id/.�.m//D 1˝m; .id˝�/.�.m//Dm˝1;

.multı .S˝ id//.m˝m/D 1D .multı .id˝S//.m˝m/:

Note that kŒM� is generated as a k-algebra by any set of generators for M , and so it is
finitely generated if M is finitely generated.

EXAMPLE 14.4 Let M be a cyclic group, generated by e.

(a) Case e has infinite order. Then the elements of kŒM� are the finite sums
P
i2Zaie

i

with the obvious addition and multiplication, and �.e/ D e˝ e, �.e/ D 1, S.e/ D
e�1. Therefore, kŒM�' kŒGm�.

(b) Case e is of order n. Then the elements of kŒM� are sums a0Ca1eC�� �Can�1en�1

with the obvious addition and multiplication (using enD 1), and�.e/D e˝e, �.e/D
1, and S.e/D en�1. Therefore, kŒM�' kŒ�n�.

EXAMPLE 14.5 Recall that ifW and V are vector spaces with bases .ei /i2I and .fj /j2J ,
then W ˝k V is a vector space with basis .ei˝fj /.i;j /2I�J . Therefore, if M1 and M2 are
commutative groups, then

.m1;m2/$m1˝m2WkŒM1�M2�$ kŒM1�˝kŒM2�

is an isomorphism of k-vector spaces, and one checks easily that it respects the Hopf k-
algebra structures.

PROPOSITION 14.6 For any commutative group M , the functor D.M/

R Hom.M;R�/ (homomorphisms of abelian groups)

is an affine group, with coordinate ring kŒM�. When M is finitely generated, the choice of
a basis for M determines an isomorphism of D.M/ with a finite product of copies of Gm
and various �n’s.

PROOF. To give a k-linear map kŒM�!R is the same as giving a map M !R. The map
kŒM�! R is a k-algebra homomorphism if and only if M ! R is a homomorphism from
M into R�. This shows that D.M/ is represented by kŒM�, and it is therefore an algebraic
group.

A decomposition of commutative groups

M � Z˚�� �˚Z˚Z=n1Z˚�� �˚Z=nrZ;

defines a decomposition of k-bialgebras

kŒM�� kŒGm�˝�� �˝kŒGm�˝kŒ�n1 �˝�� �˝kŒ�nr �

(14.4,14.5). Since every finitely generated commutative group M has such a decomposi-
tion, this proves the second statement. 2
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LEMMA 14.7 The group-like elements of kŒM� are exactly the elements of M .

PROOF. Let e 2 kŒM� be group-like. Then

e D
P
ciei for some ci 2 k, ei 2M:

The argument in the proof of Lemma 14.2 shows that the ci form a complete set of orthog-
onal idempotents in k, and so one of them equals 1 and the remainder are zero. Therefore
e D ei for some i . 2

Thus
X.D.M//'M:

The character of D.M/ corresponding to m 2M is

D.M/.R/
def
D Hom.M;R�/

f 7!f .m/
������!R�

def
DGm.R/:

SUMMARY 14.8 Let p be the characteristic exponent of k. Then:

D.M/ is algebraic ” M is finitely generated
D.M/ is connected ” M has only p-torsion
D.M/ is algebraic and smooth ” M is finitely generated and has no p-torsion
D.M/ is algebraic, smooth, and connected ” M is free and finitely generated.

14d Diagonalizable groups

DEFINITION 14.9 An affine groupG is diagonalizable if the group-like elements in O.G/
span it as a k-vector space.

THEOREM 14.10 An affine group G is diagonalizable if and only if it is isomorphic to
D.M/ for some commutative group M .

PROOF. The group-like elements of kŒM� span it by definition. Conversely, suppose the
group-like elementsM span O.G/. Lemma 14.2 shows that they form a basis for O.G/ (as
a k-vector space), and so the inclusion M ,! O.G/ extends to an isomorphism kŒM�!

O.G/ of vector spaces. That this isomorphism is compatible with the bialgebra structures
.m;e;�;�/ can be checked on the basis elements m 2M , where it is obvious. 2

ASIDE 14.11 When we interpret the characters of G as elements of O.G/ satisfying (100), we can
say that G is diagonalizable if and only if O.G/ is spanned by characters.

THEOREM 14.12 (a) The functor M  D.M/ is a contravariant equivalence from the
category of commutative groups to the category of diagonalizable affine groups (with quasi-
inverse G X.G/).
(b) If

1!M 0!M !M 00! 1

is an exact sequence of commutative groups, then

1!D.M 00/!D.M/!D.M 0/! 1

is an exact sequence of affine groups.
(c) Subgroups and quotient groups of diagonalizable affine groups are diagonalizable.
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PROOF. (a) Certainly, we have a contravariant functor

DW fcommutative groupsg fdiagonalizable groupsg:

We first show that D is fully faithful, i.e., that

Hom.M;M 0/! Hom.D.M 0/;D.M// (101)

is an isomorphism for all M;M 0. It sends direct limits to inverse limits and direct sums to
products, and so it suffices to prove that (101) is an isomorphism when 2M;M 0 are cyclic.
If, for example, M and M 0 are both infinite cyclic groups, then

Hom.M;M 0/D Hom.Z;Z/' Z;
Hom.D.M 0/;D.M//D Hom.Gm;Gm/D fX i j i 2 Zg ' Z;

and (101) is an isomorphism. The remaining cases are similarly easy.
Theorem 14.10 shows that the functor is essentially surjective, and so it is an equiva-

lence.
(b) The map kŒM 0�! kŒM� is injective, and so D.M/! D.M 0/ is a quotient map

(by definition). Its kernel is represented by kŒM�=IkŒM 0�, where IkŒM 0� is the augmentation
ideal of kŒM 0� (see 7.15). But IkŒM 0� is the ideal generated the elements m� 1 for m 2
M 0, and so kŒM�=IkŒM 0� is the quotient ring obtained by putting m D 1 for all m 2M 0.
Therefore M !M 00 defines an isomorphism kŒM�=IkŒM 0�! kŒM 00�.

(c) If H is a subgroup of G, then O.G/!O.H/ is surjective, and so if the group-like
elements of O.G/ span it, the same is true of O.H/.

Let D.M/! Q be a quotient map, and let H be its kernel. Then H D D.M 00/ for
some quotient M 00 of M . Let M 0 be the kernel of M !M 00. Then D.M/!D.M 0/ and
D.M/!Q are quotient maps with the same kernel, and so are isomorphic (7.57). 2

ASIDE 14.13 Our definition of a diagonalizable group agrees with that in SGA3, VIII 1.1: a group
scheme is diagonalizable if it is isomorphic to a scheme of the form D.M/ for some commutative
group M .

DIAGONALIZABLE REPRESENTATIONS

DEFINITION 14.14 A representation of an affine group is diagonalizable if it is a sum
of one-dimensional representations. (According to 8.68, it is then a direct sum of one-
dimensional representations.)

Recall that Dn is the group of invertible diagonal n�n matrices; thus

Dn 'Gm� � � ��Gm„ ƒ‚ …
n copies

'D.Zn/:

A finite-dimensional representation .V;r/ of an affine group G is diagonalizable if and
only if there exists a basis for V such that r.G/ � Dn. In more down-to-earth terms, the
representation defined by an inclusion G �GLn is diagonalizable if and only if there exists
an invertible matrix P in Mn.k/ such that, for all k-algebras R and all g 2G.R/,

PgP�1 2

8̂<̂
:
0B@� 0

: : :

0 �

1CA
9>=>; :
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A character �WG! Gm defines a representation of G on any finite-dimensional space
V : let g 2 G.R/ act on VR as multiplication by �.g/ 2 R�. For example, � defines a
representation of G on kn by

g 7!

0B@�.g/ 0
: : :

0 �.g/

1CA :
Let .V;r/ be a representation of G. We say that G acts on V through� if

r.g/v D �.g/v all g 2G.R/, v 2 VR:

This means that the image of r is contained in the centre Gm of GLV and that r is the
composite of

G
�
�!Gm ,! GLV :

Let �WV ! V ˝O.G/ be the coaction defined by r . ThenG acts on V through the character
� if and only if

�.v/D v˝a.�/, all v 2 V:

When V is 1-dimensional, GLV DGm, and soG always acts on V through some character.
Let .V;r/ be a representation of G. If G acts on subspaces W and W 0 through the

character �, then it acts onW CW 0 through the character �. Therefore, for each � 2X.G/,
there is a largest subspace V� (possibly zero) such that G acts on V� through �. We have
(8.64)

V� D fv 2 V j �.v/D v˝a.�/g:

THEOREM 14.15 The following conditions on an affine group G are equivalent:

(a) G is diagonalizable;
(b) every finite-dimensional representation of G is diagonalizable;
(c) every representation of G is diagonalizable;
(d) for every representation .V;r/ of G,

V D
M

�2X.T /
V�:

PROOF. (a))(c): Let �WV ! V ˝O.G/ be the comodule corresponding to a representa-
tion of G (see 8.12). We have to show that V is a sum of one-dimensional representations
or, equivalently, that V is spanned by vectors u such that �.u/ 2 hui˝O.G/.

Let v 2 V . As the group-like elements form a basis .ei /i2I for O.G/, we can write

�.v/D
P
i2I ui ˝ ei ; ui 2 V:

On applying the identities (p. 97)�
.idV ˝�/ı� D .�˝ idA/ı�
.idV ˝�/ı� D idV :

to v, we find that X
i
ui ˝ ei ˝ ei D

X
i
�.ui /˝ ei

v D
P
ui :
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The first equality shows that

�.ui /D ui ˝ ei 2 hui i˝k A;

and the second shows that the set of ui ’s arising in this way span V .
(c))(a): In particular, the regular representation ofG is diagonalizable, and so O.G/ is

spanned by its eigenvectors. Let f 2O.G/ be an eigenvector for the regular representation,
and let � be the corresponding character. Then

f .hg/D f .h/�.g/ for h;g 2G.R/, R a k-algebra.

In particular, f .g/D f .e/�.g/, and so f is a multiple of �. Hence O.G/ is spanned by its
characters.

(b))(c): As every representation is a sum of finite-dimensional subrepresentations
(8.33), (b) implies that every representation is a sum of one-dimensional subrepresentations.

(c))(b): Trivial.
(c))(d): Certainly, (c) implies that V D

P
�2X.G/V�, and Theorem 8.65 implies that

the sum is direct.
(d))(c): Clearly each space V� is a sum of one-dimensional representations. 2

NOTES Part of this subsection duplicates �7p.

NOTES Explain that to give a representation of D.M/ on V is the same as giving a gradation
(grading) on V (for a base ring, see CGP A.8.8.) Better, Rep.D.M//D :::

SPLIT TORI

14.16 A split torus is an algebraic group isomorphic to a finite product of copies of Gm.
Equivalently, it is a connected diagonalizable algebraic group. Under the equivalence of
categories M  D.M/ (see 14.12a), the split tori correspond to free abelian groups M of
finite rank. A quotient of a split torus is again a split torus (because it corresponds to a
subgroup of a free abelian group of finite rank), but a subgroup of a split torus need not
be a split torus. For example, �n is a subgroup of Gm (the map �n! Gm corresponds to
Z! Z=nZ).

EXAMPLE 14.17 Let T be the split torus Gm�Gm. ThenX.T /'Z˚Z, and the character
corresponding to .m1;m2/ 2 Z˚Z is

.t1; t2/ 7! t
m1
1 t

m2
2 WT .R/!Gm.R/.

A representation V of T decomposes into a direct sum of subspaces V.m1;m2/, .m1;m2/ 2
Z�Z, such that .t1; t2/ 2 T .k/ acts on V.m1;m2/ as tm11 t

m2
2 . In this way, the category

Rep.T / acquires a gradation by the group Z�Z.

14e Groups of multiplicative type

DEFINITION 14.18 An affine group G is of multiplicative type if Gksep is diagonalizable.
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Let M be an abelian group, and let � D Gal.ksep=k/. A continuous action of � on
M is a homomorphism � ! Aut.M/ such that every element of M is fixed by an open
subgroup of � , i.e.,

M D
[

K
MGal.ksep=K/

where K runs through the finite Galois extensions of k contained in ksep.
For an affine group G, we define

X�.G/D Hom.Gksep ;Gm/:

LEMMA 14.19 The canonical action of � on X�.G/ is continuous.

PROOF. WhenG is algebraic, X�.G/ is finitely generated, and each of its generators is de-
fined over a finite separable extension of k; therefore the action factors through Gal.K=k/
for some finite Galois extensionK of k. In the general case, every homomorphismGksep!

Gm factors through an algebraic quotient of G, and so X�.G/D
S
X�.Q/ with Q alge-

braic. 2

THEOREM 14.20 The functorX� is a contravariant equivalence from the category of affine
groups of multiplicative type over k to the category of commutative groups with a contin-
uous action of � . Under the equivalence, short exact sequences correspond to short exact
sequences.

PROOF. To give a continuous semilinear action of � on ksepŒM � is the same as giving a
continuous action of � on M (because M is the set of group-like elements in ksepŒM � and
M is a ksep-basis for ksepŒM �), and so this follows from Theorem 14.12 and Proposition
4.13. 2

Let G be a group of multiplicative type over k. For any K � ksep,

G.K/D Hom.X�.G/;ksep�/�K

where �K is the subgroup of � of elements fixing K, and the notation means the G.K/
equals the group of homomorphisms X�.G/! ksep� commuting with the actions of �K .

EXAMPLE 14.21 Take k D R, so that � is cyclic of order 2, and let X�.G/ D Z. Then
Aut.Z/D Z� D f˙1g, and so there are two possible actions of � on X�.G/:

(a) Trivial action. Then G.R/D R�, and G 'Gm.
(b) The generator � of � acts on Z as m 7! �m. Then G.R/D Hom.Z;C�/� consists

of the elements of C� fixed under the following action of �,

�z D Nz�1:

Thus G.R/D fz 2 C� j z Nz D 1g, which is compact.

EXAMPLE 14.22 Let K be a finite separable extension of k, and let T be the functor
R .R˝kK/

�. Then T is the group of multiplicative type corresponding to the � -module
ZHomk.K;ksep/ (families of elements of Z indexed by the k-homomorphisms K! ksep).

ASIDE 14.23 SGA3, IX 1.1, defines a group scheme to be of multiplicative type if it is locally
diagonalizable group for the flat (fpqc) topology. Over a field k, this amounts to requiring the group
scheme to become diagonalizable over some field extension of k. Because of Theorem 14.28 below,
this is equivalent to our definition.
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TORI

DEFINITION 14.24 A torus is an algebraic group T such that Tksep is a split torus.

In other words, the tori are the algebraic groups T of multiplicative type such that
X�.T / is torsion free.

PROPOSITION 14.25 For a torus T , there exist (unique) subtori T1; : : : ;Tr such that

˘ T D T1 � � �Tr ;

˘ Ti \Tj is finite for all i ¤ j , and
˘ X�.Ti /Q is a simple � -module for all i:

PROOF. Let � DGal.ksep=k/. BecauseX�.T / is finitely generated, � acts on it through a
finite quotient. Therefore Maschke’s theorem (GT 7.4) shows that X�.T /Q is a direct sum
of simple � -modules, say,

X�.T /Q D V1˚�� �˚Vr :

Let Mi be the image of X�.T / in Vi . Then there is an exact sequence

0!X�.T /!M1� � � ��Mr ! F ! 0

of continuous � -modules with F finite. On applying the functor D, we get an exact se-
quence of algebraic groups of multiplicative type

0!D.F /!D.M1/� � � ��D.Mr/! T ! 0:

Take Ti DD.Mi /. 2

A torus is anisotropic if X.T /D 0, i.e., X�.T /� D 0.

COROLLARY 14.26 Every torus has a largest split subtorus Ts and a largest anisotropic
subtorus Ta. The intersection Ts \Ta is finite and Ts �Ta D T .

PROOF. In fact Ts is the product of the Ti in the proposition such that � act trivially on
X�.Ti / and Ta is the product of the remainder. 2

REPRESENTATIONS OF A GROUP OF MULTIPLICATIVE TYPE

When G is a diagonalizable affine group, Rep.G/ is a semisimple abelian category whose
simple objects are in canonical one-to-one correspondence with the characters of G. When
G is of multiplicative type, the description of Rep.G/ is only a little more complicated.

Let ksep be a separable closure of k, and let � D Gal.ksep=k/.

THEOREM 14.27 Let G be an affine group of multiplicative type. Then Rep.G/ is a
semisimple abelian category whose simple objects are in canonical one-to-one correspon-
dence with the orbits of � acting on X�.G/.
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PROOF. It suffices to prove this in the case thatG is algebraic, and so is split be a finite Ga-
lois extension ˝ of k with Galois group N� . Let N� act on O.G˝/'˝˝O.G/ through its
action on˝. By a semilinear action of N� on a representation .V;r/ ofG˝ , we mean a semi-
linear action of N� on V such that �D � where � is the coaction of O.G/ on V . It follows
from Proposition 4.12 that the functor V  V˝ from Repk.G/ to the category of objects
of Rep˝.G˝/ equipped with a semilinear action of N� is an equivalence of categories.

Let V be a finite-dimensional representation of G˝ equipped with a semilinear action
of N� . Then

V D
M

�2X.G˝/
V�:

An element  of � acts on V by mapping V� isomorphically onto V�. Therefore, as a
representation of G˝ equipped with a semilinear action of N� , V decomposes into a direct
sum of simple objects corresponding to the orbits of N� acting on X.G˝/. As these are also
the orbits of � acting on X�.Gksep/'X.G˝/, the statement follows. 2

CRITERIA FOR AN AFFINE GROUP TO BE OF MULTIPLICATIVE TYPE

Recall that if C is a finite-dimensional cocommutative coalgebra over k, then its linear
dual C_ is a commutative algebra over k (�5c). We say that C is coétale if C_ is étale.
More generally, we say that a cocommutative coalgebra over k is coétale if every finite-
dimensional subcoalgebra is coétale (cf. 8.9).

THEOREM 14.28 The following conditions on an affine group G over k are equivalent:

(a) G is of multiplicative type (i.e., G becomes diagonalizable over ksep);
(b) G becomes diagonalizable over some field K � k;
(c) G is commutative and Hom.G;Ga/D 0;
(d) G is commutative and O.G/ is coétale.

PROOF. (a))(b): Trivial.
(b))(c): Clearly

Hom.G;Ga/' ff 2O.G/ j�.f /D f ˝1C1˝f g:

The condition on f is linear, and so, for any field K � k,

Hom.GK ;GaK/' Hom.G;Ga/˝K:

Thus, we may suppose that G is diagonalizable. If ˛WG ! Ga is a nontrivial homomor-
phism, then

g 7!

�
1 ˛.g/

0 1

�
is a nonsemisimple representation of G, which contradicts (14.15).

(c))(d): We may assume that k is algebraically closed. Let C be finite-dimensional
subcoalgebra of O.G/, i.e., a finite-dimensional k-subspace such that �.C/� C ˝C . Let
A D C_. Then A is a finite product of local Artin rings with residue field k (CA 15.7).
If one of these local rings is not a field, then there exists a surjective homomorphism of
k-algebras

A! kŒ"�; "2 D 0:
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This can be written x 7! hx;aiChx;bi" for some a;b 2 C with b ¤ 0. For x;y 2 A,

hxy;aiChxy;bi"D hxy;�aiChx˝y;�bi"

and

.hx;aiChx;bi"/.hy;aiChy;bi"D hx;aihy;aiC .hx;aihy;biChx;bihy;ai/"

D hx˝y;aiChx˝y;a˝bCb˝bi":

It follows that

�aD a˝a

�b D a˝bCb˝a.

On the other hand, the structure map k! A is .�jC/_, and so �.a/D 1. Therefore a is a
group-like element of O.G/, and so it is a unit (see �14a). Now

�.ba�1/D�b ��a�1 D .a˝bCb˝a/.a�1˝a�1/

D 1˝ba�1Cba�1˝1;

and so Hom.G;Ga/¤ 0, which contradicts (c). Therefore A is a product of fields.
(d))(a): We may suppose that k is separably closed. Let C be a finite-dimensional

subcoalgebra of O.G/, and let AD C_. By assumption, A is a product of copies of k. Let
a1; : : : ;an be elements of C such that

x 7! .hx;a1i; : : : ;hx;ani/WA! kn

is an isomorphism. Then fa1; : : : ;ang spans C and the argument in the above step shows
that each ai is a group-like element of C . As O.G/ is a union of its finite-dimensional
subcoalgebras (8.9), this shows that O.G/ is spanned by its group-like elements. 2

COROLLARY 14.29 An affine group G is of multiplicative type if and only if Gkal is diag-
onalizable.

PROOF. Certainly, Gkal is diagonalizable if G is of multiplicative type, and the converse
follows the theorem. 2

COROLLARY 14.30 A commutative affine group G is of multiplicative type if and only if
Rep.G/ is semisimple.

PROOF. We saw in 14.27 that Rep.G/ is semisimple if G is of multiplicative type. Con-
versely, if Rep.G/ is semisimple, then Hom.G;Ga/ D 0, and so G is of multiplicative
type. 2

ASIDE 14.31 In nonzero characteristic, the groups of multiplicative type are the only algebraic
groups whose representations are all semisimple.52 In characteristic zero, the reductive groups also
have semisimple representations (see II, 5).

52More precisely, for an algebraic group over a field k of characteristic p¤ 0, Rep.G/ is semisimple if and
only if Gı is of multiplicative type and G=Gı has order prime to p (Nagata’s theorem, DG IV �3 3.6, p. 509).



174 I. Basic Theory of Affine Groups

14f Rigidity

Later we shall need the following result.

THEOREM 14.32 Every action of a connected affine group G on an algebraic group H of
multiplicative type is trivial.

Clearly, it suffices to prove the theorem for an algebraically closed base field k:

PROOF OF THE THEOREM WHEN H IS FINITE.

When H D �n, an action of G on M defines a map

G! Aut.�n/� Hom.�n;�n/' Hom.�n;Gm/' Z=nZ

(see �12d), which is trivial, becauseG is connected. A similar argument proves the theorem
when H is finite (hence a finite product of groups of the form �n).

PROOF OF THE THEOREM IN THE CASE THAT G IS SMOOTH.

We shall use that G.k/ is dense in G. We may suppose that H is a torus T . The kernel
of x 7! xmWT ! T is a product of copies of �m, and so G acts trivially on it. Because
of the category equivalence T  X.T /, it suffices to show that g 2 G.k/ acts trivially
on the X.T /, and because g acts trivially on the kernel of mWT ! T it acts trivially on
X.T /=mX.T /. We can now apply the following elementary lemma.

LEMMA 14.33 Let M be a finitely generated commutative group, and let ˛WM !M be a
homomorphism such that

M ����! M??y ??y
M=mM

id
����! M=mM

commutes for all m. Then ˛ D id.

PROOF. We may suppose that M is torsion-free. Choose a basis ei for M , and write
˛.ej /D

P
i aij ei , aij 2 Z. The hypothesis is that, for every integer m,

.aij /� In mod m;

i.e., that mjaij for i ¤ j and mjai i �1. Clearly, this implies that .aij /D In. 2

PROOF OF THE THEOREM IN THE GENERAL CASE.

This doesn’t use the smooth case.

LEMMA 14.34 Let V be a k-vector space, and let M be a finitely generated commutative
group. Then the family of homomorphisms

V ˝kŒM�! V ˝kŒM=nM�; n� 2;

is injective.
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PROOF. An element f of V ˝kŒM� can be written uniquely in the form

f D
P
m2M fm˝m; fm 2 V .

Assume f ¤ 0, and let I D fm 2M j fm ¤ 0g. As I is finite, for some n, the elements
of I will remain distinct in M=nM , and for this n, the image of f in V ˝k kŒM=nM� is
nonzero. 2

As k is algebraically closed, the group H is diagonalizable. We saw above, that G acts
trivially on Hn for all n. Let H DD.M/ with M a finitely generated abelian group. Then
O.H/D kŒM� and O.Hn/D kŒM=nM�. Let

�WkŒM�!O.G/˝kŒM�

give the action. We have to show that �.x/ D 1˝ x for each x 2 kŒM�, but this follows
from the fact that G acts trivially on Hn for all n� 2, and the family of maps

O.G/˝k kŒM�!O.G/˝k kŒM=nM�; n� 2;

is injective.

DENSITY OF THE TORSION POINTS

PROPOSITION 14.35 Let T be an algebraic group of multiplicative type, and let Tn be the
kernel of nWT ! T . Let ˛WT ! T be a homomorphism whose restriction to Tn is the
identity map for all n. Then ˛ is the identity map.

PROOF. It suffices to show that X�.˛/WX�.T / ! X�.T / is the identity map, but the
hypothesis says that X�.˛/ induces the identity map on the quotient X�.T /=nX�.T / D
X�.Tn/ for all n, and so this follows from Lemma 14.33. 2

14g Exercises

EXERCISE 14-1 Show that the functor

C  fgroup-like elements in C ˝ksep
g

is an equivalence from the category of coétale finite cocommutative k-coalgebras to the
category of finite sets with a continuous action of Gal.ksep=k/. (Hint: use 12.7.)

EXERCISE 14-2 Show that Aut.�m/' .Z=mZ/� (constant group defined by the group of
invertible elements in the ring Z=mZ). Hint: To recognize the elements of Aut.�m/.R/ as
complete systems of orthogonal idempotents, see the proof of (14.2).

EXERCISE 14-3 Let k0=k be a cyclic Galois extension of degree n with Galois group �
generated by � , and let G D .Gm/k0=k .

(a) Show that X�.G/' ZŒ� � (group algebra ZCZ�C�� �CZ�n�1 of � ).
(b) Show that

End� .X�.G//D

8̂̂̂<̂
ˆ̂:
0BBB@
a1 a2 : : : an
an a1 : : : an
:::

:::
:::

a2 a3 � � � a1

1CCCA
ˇ̌̌̌
ˇ̌̌̌
ˇai 2 Z

9>>>=>>>; :
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15 Unipotent affine groups

Recall that an endomorphism of a finite-dimensional vector space V is unipotent if its char-
acteristic polynomial is .T �1/dimV . For such an endomorphism, there exists a basis of V
relative to which its matrix lies in

Un.k/
def
D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

0BBBBB@
1 � � : : : �

0 1 � : : : �

0 0 1 : : : �
:::

:::
: : :

:::

0 0 0 � � � 1

1CCCCCA

9>>>>>=>>>>>;
:

Let G be an algebraic group over a perfect field k. We say that g 2G.k/ is unipotent if
r.g/ is unipotent for all finite-dimensional representations .V;r/ of G. It suffices to check
that r.g/ is unipotent for some faithful representation .V;r/, or that g D gu (see 10.18).

By definition, a smooth algebraic group G over a field k is unipotent if the elements of
G.kal/ are all unipotent. However, not all unipotent groups are smooth, and so we adopt
a different definition equivalent to requiring that the group be isomorphic to a subgroup of
Un.

Throughout this section, k is a field.

15a Preliminaries from linear algebra

LEMMA 15.1 Let G ! GL.W / be a simple linear representation of an abstract group G
on a finite-dimensional vector space W over an algebraically closed field k. Let G act on
End.W / by the rule:

.gf /.w/D g.f .w//; g 2G; f 2 End.W /; w 2W:

Then every nonzero G-subspace X of End.W / contains an element f0WW !W such that
f0.W / has dimension one.

PROOF. We may suppose that X is simple. Then the k-algebra of G-endomorphisms of X
is a division algebra, and hence equals k (Schur’s lemma, GT 7.24, 7.29). For any w 2W ,
the map 'w ,

f 7! f .w/WX !W

is a G-homomorphism. As X ¤ 0, there exists an f 2X and a w0 2W such that f .w0/¤
0. Then 'w0 ¤ 0, and so it is an isomorphism (because X and W are simple). Let f0 2 X
be such that 'w0.f0/D w0.

Letw 2W . Then '�1w0 ı'w is aG-endomorphism ofX , and so 'w D c.w/'w0 for some
c.w/ 2 k. On evaluating this at f0, we find that f0.w/D c.w/w0, and so f0.W /� hw0i.2

PROPOSITION 15.2 Let V be a finite-dimensional vector space, and let G be a subgroup
of GL.V / consisting of unipotent endomorphisms. Then there exists a basis of V for which
G is contained in Un.
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PROOF. It suffices to show that V G ¤ 0, because then we can apply induction on the di-
mension of V to obtain a basis of V with the required property53.

Choose a basis .ei /1�i�n for V . The condition that a vector v D
P
aiei be fixed by

all g 2 G is linear in the ai , and so has a solution in kn if and only if it has a solution in
.kal/n.54 Therefore we may suppose that k is algebraically closed.

Let W be a nonzero subspace of V of minimal dimension among those stable under G.
Clearly W is simple. For each g 2G, TrW .g/D dimW , and so

TrW .g.g0�1//D TrW .gg0/�TrW .g/D 0:

Let U D ff 2 End.W / j TrW .gf /D 0 for all g 2Gg. If G acts nontrivially on W , then U
is nonzero because .g0�1/jW 2 U for all g0 2 G. The lemma then shows that U contains
an element f0 such that f0.W / has dimension one. Such an f0 has TrW f0 ¤ 0, which
contradicts the fact that f0 2 U . We conclude that G acts trivially on W . 2

15b Unipotent affine groups

DEFINITION 15.3 An affine groupG is unipotent if every nonzero representation ofG has
a nonzero fixed vector (i.e., a nonzero v 2 V such that �.v/D v˝1 when V is regarded as
a O.G/-comodule).

Equivalently, G is unipotent if every simple object in Rep.G/ is trivial. We shall see
that the unipotent algebraic groups are exactly the algebraic groups isomorphic to affine
subgroups of Un for some n. For example, Ga and its subgroups are unipotent.

PROPOSITION 15.4 An algebraic group G is unipotent if and only if, for every finite-
dimensional representation .V;r/ of G, there exists a basis of V for which the image of
G is contained in Un.

PROOF. ): This can be proved by induction on the dimension of V (see footnote 53).
(: If e1; : : : ; en is such a basis, then he1i is fixed by G. 2

DEFINITION 15.5 A Hopf algebra A is said to be coconnected if there exists a filtration
C0 � C1 � C2 � �� � of A by subspaces Ci such that55

C0 D k,
[

r�0
Cr D A, and �.Cr/�

X
0�i�r

Ci ˝Cr�i : (102)

53We use induction on the dimension of V . Let e1; : : : ; em be a basis for V G . The induction hypothesis
applied to G acting on V=V G shows that there exists a basis NemC1; : : : ; Nen for V=V G such that

˛. NemCi /D c1;i NemC1C�� �C ci�1;iemCi�1C NemCi for all i � n�m:

Let NemCi D emCi CV G with emCi 2 V . Then e1; : : : ; en is a basis for V relative to which G � Un.k/:
54For any representation .V;r/ of an abstract group G, the subspace V G of V is the intersection of the

kernels of the linear maps
v 7! gv�vWV ! V; g 2G:

It follows that .V ˝ Nk/G Nk ' V G˝ Nk, and so

.V ˝ Nk/G Nk ¤ 0 H) V G ¤ 0:

55This definition is probably as mysterious to the reader as it is to the author. Basically, it is the condition
you arrive at when looking at Hopf algebras with only one group-like element (so the corresponding affine
group has only one character). See Sweedler, Moss Eisenberg. Hopf algebras with one grouplike element.
Trans. Amer. Math. Soc. 127 1967 515–526.
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THEOREM 15.6 The following conditions on an algebraic group G are equivalent:

(a) G is unipotent;
(b) G is isomorphic to an algebraic subgroup of Un for some n;
(c) the Hopf algebra O.G/ is coconnected.

PROOF. (a))(b). Apply Proposition 15.4 to a faithful finite-dimensional representation of
G (which exists by 8.31).

(b))(c). Any quotient of a coconnected Hopf algebra is coconnected (the image of a
filtration satisfying (102) will still satisfy (102)), and so it suffices to show that O.Un/ is
coconnected. Recall that O.Un/' kŒXij j i < j �, and that

�.Xij /DXij ˝1C1˝Xij C
X
i<r<j

Xir˝Xrj :

Assign a weight of j � i to Xij , so that a monomial
Q
X
nij
ij will have weight

P
nij .j � i/,

and let Cr be the subspace spanned by the monomials of weight � r . Clearly, C0 D k,S
r�0Cr D A, and CiCj � CiCj . It suffices to check the third condition in (102) on the

monomials. For the Xij it is obvious. We proceed by induction on weight of a monomial.
If the condition holds for monomials P ,Q of weights r , s, then�.PQ/D�.P /�.Q/ lies
in �X

Ci ˝Cr�i

��X
Cj ˝Cr�j

�
�

X�
CiCj ˝Cr�iCs�j

�
�

X
CiCj ˝CrCs�i�j .

(c))(a). Now assume that O.G/ is a coconnected Hopf algebra, and let �WV ! V ˝

O.G/ be a comodule. Then V is a union of the subspaces

Vr D fv 2 V j �.v/ 2 V ˝Crg.

If V0 contains a nonzero vector v, then �.v/D v0˝1 for some vector v0; on applying �, we
find that v D v0, and so v is fixed. We complete the proof by showing that

Vr D 0 H) VrC1 D 0:

By definition, �.VrC1/� V ˝CrC1, and so

.id˝�/�.VrC1/� V ˝
X

i
Ci ˝Cr�i :

Hence VrCi maps to zero in V ˝A=Cr˝A=Cr . We now use that .id˝�/ı�D .�˝ id/ı�.
The map V ! V ˝A=Cr defined by � is injective because Vr D 0, and on applying �˝ id
we find that V ! .V ˝A=Cr/˝A=Cr is injective. Hence VrC1 D 0. 2

NOTES The exposition of 15.6 follows Waterhouse 1979, 8.3.

COROLLARY 15.7 Subgroups, quotients, and extensions of unipotent groups are unipo-
tent.
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PROOF. If G is isomorphic to a subgroup of Un, then so also is a subgroup of G.
A representation of a quotient ofG can be regarded as a representation ofG, and so has

a nonzero fixed vector if it is nontrivial and G is unipotent.
Suppose thatG contains a normal subgroupN such that bothN andG=N are unipotent.

For any representation .V;r/ of G, the subspace V N is stable under G (see 8.67), and so it
defines a representation of G=N . If V ¤ 0, then V N ¤ 0, and so V G D .V N /G=N ¤ 0. 2

COROLLARY 15.8 Let G be an algebraic group. If G is unipotent, then all elements of
G.k/ are unipotent, and the converse is true when G.k/ is dense in G.

PROOF. Let G be unipotent, and let .V;r/ be a finite-dimensional representation of V . For
some basis of V , the r.G/ � Un and so r.G.k// � Un.k/; in particular, the elements of
r.G.k// are unipotent. For the converse, choose a faithful representation G ! GLV of
G and let n D dimV . According to Proposition 15.2, there exists a basis of V for which
G.k/� Un.k/. Because G.k/ is dense in G, this implies that G � Un. 2

A
15.9 For an algebraic group G, even over an algebraically closed field k, it is possible for

all elements of G.k/ to be unipotent without G being unipotent. For example, in character-
istic p, the algebraic group �p has �p.kal/D 1, but it is not unipotent.

COROLLARY 15.10 Let k0 be a field containing k. An algebraic group G over k is unipo-
tent if and only if Gk0 is unipotent.

PROOF. If G is unipotent, then O.G/ is coconnected. But then k0˝O.G/ is obviously
coconnected, and so Gk0 unipotent. Conversely, suppose that Gk0 is unipotent. For any
representation .V;r/ of G, the subspace V G of V is the kernel of the linear map

v 7! �.v/�v˝1WV ! V ˝O.G/.

It follows that
.V ˝k0/Gk0 ' V G˝k0;

and so
.V ˝k0/Gk0 ¤ 0 H) V G ¤ 0: 2

EXAMPLE 15.11 Let k be a nonperfect field of characteristic p ¤ 0, and let a 2 krkp.
The affine subgroup G of Ga�Ga defined by the equation

Y p DX �aXp

becomes isomorphic to Ga over kŒa
1
p �, but it is not isomorphic to Ga over k. To see this,

let C be the complete regular curve with function field k.C / the field of fractions of O.G/.
Then G � C , and one checks that the complement consists of a single point whose residue
field is kŒa

1
p �. The inclusion G � C is canonical, and if G ' Ga, then the complement

would consist of a single point with residue field k.

COROLLARY 15.12 A smooth algebraic group G is unipotent if G.kal/ consists of unipo-
tent elements.
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PROOF. If G.kal/ consists of unipotent elements, then Gkal is unipotent (15.8), and so G is
unipotent (15.10). 2

A
15.13 A unipotent group need not be smooth. For example, in characteristic p, the sub-

group of U2 consisting of matrices
�
1 a
0 1

�
with ap D 0 is not smooth (it is isomorphic to

˛p).

COROLLARY 15.14 An algebraic group is unipotent if and only if it admits a subnormal
series whose quotients are isomorphic to affine subgroups of Ga.

PROOF. The group Un has a subnormal series whose quotients are isomorphic to Ga — for
example, the following subnormal series

U4 D

8̂̂<̂
:̂
0BB@
1 � � �

0 1 � �

0 0 1 �

0 0 0 1

1CCA
9>>=>>;�

8̂̂<̂
:̂
0BB@
1 0 � �

0 1 0 �

0 0 1 0

0 0 0 1

1CCA
9>>=>>;�

8̂̂<̂
:̂
0BB@
1 0 0 �

0 1 0 0

0 0 1 0

0 0 0 1

1CCA
9>>=>>;� 1

has quotients Ga �Ga �Ga, Ga �Ga, Ga. Therefore any affine subgroup of Un has a
subnormal series whose quotients are isomorphic to affine subgroups of Ga (see 9.17). For
the converse, note that Ga is unipotent, and so we can apply (15.7). 2

COROLLARY 15.15 Every homomorphism from a unipotent algebraic group to an alge-
braic group of multiplicative type is trivial.

PROOF. A nontrivial homomorphism U !H over k gives rise to a nontrivial homomor-
phism over kal. Over an algebraically closed field, every algebraic group H of multiplica-
tive type is a subgroup of Gnm for some n (because every finitely generated commutative
group is a quotient of Zn for some n), and so it suffices to show that Hom.U;Gm/D 0when
U is unipotent. But a homomorphism U !Gm is a one-dimensional representation of G,
which is trivial by definition. 2

COROLLARY 15.16 The intersection of a unipotent affine subgroup of an algebraic group
with a subgroup of multiplicative type is trivial.

PROOF. The intersection is unipotent (15.7), and so the inclusion of the intersection into
the group of multiplicative type is trivial. 2

For example, Un\Dn D 1 (which, of course, is obvious).

PROPOSITION 15.17 An algebraic group G is unipotent if and only if every nontrivial
affine subgroup of it admits a nonzero homomorphism to Ga.

PROOF. We use the criterion (15.14). Assume thatG is unipotent. ThenG has a subnormal
series

G BG1 B � � �BGr D 1
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whose quotients Gi=GiC1 are isomorphic to affine subgroups of Ga. Let H be a nontrivial
affine subgroup of G. As H ¤ 1, there exists an i such that H �Gi but H 6�GiC1. Now

H !Gi=GiC1 ,!Ga

is a nontrivial homomorphism.56

For the converse, let G1 be the kernel of a nontrivial homomorphism G ! Ga. If
G1 ¤ 1, let G2 be the kernel of a nontrivial homomorphism G1 ! Ga. Continuing in
this fashion, we obtain a subnormal series whose quotients are affine subgroups of Ga (the
series terminates in 1 because the topological space jGj is noetherian and only finitely many
Gi can have the same underlying topological space). 2

COROLLARY 15.18 Every homomorphism from a group of multiplicative type to a unipo-
tent algebraic group is trivial.

PROOF. Let ˛WT !U be such a homomorphism. If ˛T ¤ 1, then it admits a nontrivial ho-
momorphism to Ga, but this contradicts the fact that ˛T is of multiplicative type (14.28).2

EXAMPLE 15.19 Let k be a nonperfect field characteristic p. For any finite sequence
a0; : : : ;am of elements of k with a0 ¤ 0 and n � 1, the affine subgroup G of Ga �Ga
defined by the equation

Y p
n

D a0XCa1X
P
C�� �CamX

pm

is a form of Ga, and every form of Ga arises in this way (Russell 1970, 2.1; or apply 15.24).
Note that G is the fibred product

G ����! Ga??y ??ya0FC���CamF pm
Ga

F n

����! Ga:

In particular, G is an extension of Ga by a finite subgroup of Ga (so it does satisfy 15.14).
There is a criterion for when two forms are isomorphic (ibid. 2.3). In particular, any form
becomes isomorphic to Ga over a purely inseparable extension of k.

DEFINITION 15.20 A unipotent algebraic group is said to be split if it admits a subnormal
series whose quotients are isomorphic to Ga (and not just subgroups of Ga).57

Such a group is automatically smooth (7.66) and connected (13.21).

56Alternatively, use that every algebraic subgroup H of G is unipotent. Therefore H contains a normal
affine subgroup N such that H=N is isomorphic to a subgroup of Ga. Now the composite

H !H=N !Ga

is a nontrivial homomorphism from N to Ga.
57Cf. SGA3, XVII, 5.10: Let k be a field andG an algebraic k-group. Following the terminology introduced

by Rosenlicht (Questions of rationality for solvable algebraic groups over nonperfect fields. Ann. Mat. Pura
Appl. (4) 61 1963 97–120), we say that G is “k-résoluble” if G has a composition series whose successive
quotients are isomorphic to Ga . . .
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PROPOSITION 15.21 Every smooth connected unipotent algebraic group over a perfect
field is split.

PROOF. tba (cf. Borel 1991, 15.5(ii)). 2

In particular, every smooth connected unipotent algebraic group splits over a purely
inseparable extension.

Although the definition of “unipotent” applies to all affine groups, we have stated most
of the above results for algebraic groups. The next statement shows how to extend them to
affine groups.

PROPOSITION 15.22 (a) An inverse limit of unipotent affine groups is unipotent.
(b) An affine group is unipotent if and only if all of its algebraic quotients are unipotent.

PROOF. Obvious from the definitions. 2

ASIDE 15.23 The unipotent algebraic groups over a field of characteristic zero are classified by
their Lie algebras; more precisely, over a field k of characteristic zero, the functor G  Lie.G/ is
an equivalence from the category of unipotent algebraic groups over k to the category of nilpotent
Lie algebras over k (see II, 4.7, or DG IV �2 4.5, p. 499).

ASIDE 15.24 The unipotent algebraic groups over a field of characteristic p ¤ 0 are more compli-
cated than in characteristic zero. However, those isomorphic to a subgroup of Gna for some n are
classified by the finite-dimensional kŒF �-modules (polynomial ring with Fa D apF ). See DG IV
�3, 6.6 et seq., p. 521.

ASIDE 15.25 We compare the different definitions of unipotent in the literature.

(a) In SGA3, XVII 1.3, an algebraic group scheme G over a field k is defined to be unipotent if
there exists an algebraically closed field Nk containing k such that G Nk admits a composition
series whose quotients are isomorphic to algebraic subgroups of Ga. It is proved ibid. 2.1
that such a group is affine, and so 15.10 and 15.14 show that this definition is equivalent to
our definition.

(b) In DG IV, �2, 2.1, p. 485, a group scheme G over a field is defined to be unipotent if it is
affine and, for every nontrivial affine subgroup H , there exists a nontrivial homomorphism
H !Ga. Statement 15.17 shows that this is equivalent to our definition. (They remark that
an algebraic group scheme satisfying the second condition is automatically affine. However,
the constant group scheme .Z/k satisfies the second condition but is not affine.)

(c) In Conrad et al. 2010, A.1.3, p. 393, a group scheme U over a field is defined to be unipotent
if it is affine of finite type and Ukal admits a finite composition series over kal with successive
quotients isomorphic to a kal-subgroup of Ga. This is equivalent to our definition, except that
we don’t require the group scheme to be algebraic.

(d) In Springer 1998, p. 36, a linear algebraic group is defined to be unipotent if all its elements
are unipotent. Implicitly, the group G is assumed to be a smooth affine algebraic group over
an algebraically closed field, and the condition is that all the elements of G.k/ are unipotent.
For such groups, this is equivalent to our definition because of (15.8) (but note that not all
unipotent groups are smooth).
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ASIDE 15.26 Unipotent groups are extensively studied in Tits 1967. For summaries of his results,
see Oesterlé 1984, Chap. V, and Conrad et al. 2010 IV Appendix B. ( A unipotent group is said to
be wound if every map of varieties A1! G is constant. Every smooth unipotent algebraic group
G has unique largest split affine subgroup Gs , called the split part of G. It is normal in G, and the
quotient G=Gs is wound. The formation of Gs commutes with separable extensions.)

16 Solvable affine groups

Let G be an abstract group. Recall that the commutator of x;y 2G is

Œx;y�D xyx�1y�1 D .xy/.yx/�1:

Thus, Œx;y�D 1 if and only if xy D yx, and G is commutative if and only if every com-
mutator equals 1. The (first) derived group G0 (or DG) of G is the subgroup generated by
commutators. Every automorphism of G maps commutators to commutators, and so G0 is
a characteristic subgroup of G (in particular, it is normal). In fact, it is the smallest normal
subgroup such that G=G0 is commutative.

The map (not a group homomorphism)

.x1;y1; : : : ;xn;yn/ 7! Œx1;y1� � � � Œxn;yn�WG
2n
!G

has image the set of elements ofG that can be written as a product of at most n commutators,
and so DG is the union of the images of these maps. Note that the mapG2n�2!G factors
through G2n!G,

.x1;y1; : : : ;xn�1;yn�1/ 7! .x1;y1; : : : ;xn�1;yn�1;1;1/ 7! Œx1;y1� � � � Œxn�1;yn�1�:

A group G is said to be solvable if the derived series

G �DG �D2G � �� �

terminates with 1. For example, if n � 5, then Sn (symmetric group on n letters) is not
solvable because its derived series Sn � An terminates with An.

In this section we extend this theory to algebraic groups. Throughout, k is a field.

16a Trigonalizable affine groups

DEFINITION 16.1 An affine group G is trigonalizable58 if every nonzero representation
of G has a one-dimensional subrepresentation (i.e., there exists a nonzero v 2 V such that
�.v/D v˝a, a 2O.G/).

Equivalently, G is trigonalizable if every simple object in Rep.G/ is one-dimensional.
We shall see that the trigonalizable algebraic groups are exactly the algebraic groups iso-
morphic to affine subgroups of Tn for some n. Diagonalizable and unipotent groups are
both trigonalizable, and every trigonalizable group is an extension of one by the other.

PROPOSITION 16.2 An algebraic group G is trigonalizable if and only if, for every finite-
dimensional representation .V;r/ of G, there exists a basis of V for which the image of G
is contained in Tn.

58I follow Borel 1991, p. 203, and DG IV �2 3.1. Other names: triangulable (Waterhouse 1979, p. 72);
triagonalizable.
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PROOF. ): This can be proved by induction on the dimension of V .
(: If e1; : : : ; en is such a basis, then he1i is stable by G. 2

THEOREM 16.3 The following conditions on an algebraic group G are equivalent:

(a) G is trigonalizable;
(b) G is isomorphic to an algebraic subgroup of Tn for some n;
(c) there exists a normal unipotent affine subgroup U of G such that G=U is diagonaliz-

able.

PROOF. (a))(b). Apply Proposition 16.2 to a faithful finite-dimensional representation of
G (which exists by 8.31).

(b))(c). Embed G into Tn, and let U D Un\G.
(c))(a). Let U be as in (c), and let .V;r/ be a representation of G. The subspace V U

is stable under U (8.67), and so it defines a representation ofG=U . If V ¤ 0, then V U ¤ 0,
and so it contains a stable line. 2

COROLLARY 16.4 Subgroups and quotients of trigonalizable algebraic groups are trigo-
nalizable.

PROOF. If G is isomorphic to a subgroup of Tn, then so also is every affine subgroup of
G. If every nontrivial representation of G has a stable line, then the same is true of every
quotient of G (because a representation of the quotient can be regarded as a representation
of G). 2

COROLLARY 16.5 If an algebraic group G over a field k is trigonalizable, then so also is
Gk0 for any extension field k0.

PROOF. If G � Tn, then the same is true of Gk0 . 2

PROPOSITION 16.6 (a) An inverse limit of trigonalizable affine groups is trigonalizable.
(b) An affine group is trigonalizable if and only if all of its algebraic quotients are

trigonalizable.

PROOF. Obvious from the definitions. 2

THEOREM 16.7 LetG be a trigonalizable algebraic group, and letU be a normal unipotent
subgroup such that G=U is diagonalizable. Then the exact sequence

1! U !G!G=U ! 1

splits in each of the following cases: k is algebraically closed; k has characteristic zero; k
is perfect and G=U is connected; U is split.

PROOF. See DG IV �2 3.5, p. 494; SGA3, XVII, 5.1.1. 2

ASIDE 16.8 In DG IV �3 3.1, a group scheme G over a field is defined to be trigonalizable if it is
affine and has a normal unipotent subgroupU such thatG=U is diagonalizable. Because of Theorem
16.3, this is equivalent to our definition.
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16b Commutative algebraic groups

SMOOTH COMMUTATIVE ALGEBRAIC GROUPS ARE GEOMETRICALLY

TRIGONALIZABLE

Let ˛ be an endomorphism of a finite-dimensional vector space V over k. If all the eigen-
values of ˛ lie in k, then there exists a basis for V relative to which the matrix of ˛ lies
in

Tn.k/D

8̂̂̂<̂
ˆ̂:
0BBB@
� � : : : �

0 � : : : �
:::

:::
: : :

:::

0 0 � � � �

1CCCA
9>>>=>>>;

We extend this elementary statement to sets of commuting endomorphisms.

LEMMA 16.9 Let V be a finite-dimensional vector space over an algebraically closed field
k, and let S be a set of commuting endomorphisms of V . There exists a basis of V for
which S is contained in the group of upper triangular matrices, i.e., a basis e1; : : : ; en such
that

˛.he1; : : : ; ei i/� he1; : : : ; ei i for all i: (103)

In more down-to-earth terms, let S be a set of commuting n�n matrices; then there
exists an invertible matrix P such that PAP�1 is upper triangular for all A 2 S .

PROOF. We prove this by induction on the dimension of V . If every ˛ 2 S is a scalar
multiple of the identity map, then there is nothing to prove. Otherwise, there exists an
˛ 2 S and an eigenvalue a for ˛ such that the eigenspace Va ¤ V . Because every element
of S commutes with ˛, Va is stable under the action of the elements of S : for ˇ 2 S and
x 2 Va,

˛.ˇx/D ˇ.˛x/D ˇ.ax/D a.ˇx/:

The induction hypothesis applied to S acting on Va and V=Va shows that there exist bases
e1; : : : ; em for Va and NemC1; : : : ; Nen for V=Va such that

˛.he1; : : : ; ei i/� he1; : : : ; ei i for all i �m

˛.h NemC1; : : : ; NemCi i/� hNemC1; : : : ; NemCi i for all i � n�m:

Let NemCi D emCi CVa with emCi 2 V . Then e1; : : : ; en is a basis for V satisfying (103): 2

PROPOSITION 16.10 Let V be a finite-dimensional vector space over an algebraically
closed field k, and let G be a smooth commutative affine subgroup of GLV . Then there
exists a basis of V for which G is contained in Tn.

PROOF. According to the lemma, there exists a basis of V for which G.k/� Tn.k/. Now
G \Tn is a subgroup of G such that .G \Tn/.k/ D G.k/. As G.k/ is dense in G (see
7.30), this implies that G\Tn DG, and so G � Tn. 2
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DECOMPOSITION OF A SMOOTH COMMUTATIVE ALGEBRAIC GROUP

DEFINITION 16.11 Let G be an algebraic group over a perfect field k. An element g of
G.k/ is semisimple (resp. unipotent) if g D gs (resp. g D gu) with the notations of 10.18.

Thus, g is semisimple (resp. unipotent) if r.g/ is semisimple (resp. unipotent) for one
faithful representation .V;r/ of G, in which case r.g/ is semisimple (resp. unipotent) for
all representations r of G.

Theorem 10.18 shows that

G.k/DG.k/s �G.k/u (cartesian product of sets) (104)

where G.k/s (resp. G.k/u) is the set of semisimple (resp. unipotent) elements in G.k/.
However, this will not in general be a decomposition of groups, because Jordan decompo-
sitions do not respect products, for example, .gh/u ¤ guhu in general. However, if G is
commutative, then

G�G
multiplication
��������!G

is a homomorphism of groups, and so it does respect the Jordan decompositions (10.20).
Thus, in this case (104) realizes G.k/ as a product of subgroups. We can do better.

PROPOSITION 16.12 Every smooth commutative algebraic group G over a perfect field is
a direct product of two algebraic subgroups

G 'Gs �Gu

such that Gs.kal/DG.kal/s and Gu.kal/DG.kal/u. The decomposition is unique.

PROOF. The uniqueness allows us to assume that k D kal. First note that the subgroups Dn
and Un of Tn have trivial intersection, because

Dn.R/\Un.R/D fIng (inside Tn.R/)

for all R (alternatively, apply 15.16).
On applying (16.10) to a faithful representation ofG, we obtain an embeddingG ,!Tn

for some n. Let Gs DG\Dn and Gu DG\Un. Because G is commutative,

Gs �Gu!G (105)

is a homomorphism with kernel Gs \Gu. Because Dn\Un D 1 as algebraic groups, Gs \
Gu D 1, and so (105) is injective; because Gs.k/Gu.k/D G.k/ and G is smooth, (105) is
surjective (7.54); therefore it is an isomorphism. The uniqueness is obvious. 2

REMARK 16.13 Let G be a smooth algebraic group over an algebraically closed field k
(not necessarily commutative). In general,G.k/s will not be closed for the Zariski topology.
However, G.k/u is closed. To see this, embed G in GLn for some n. A matrix A is
unipotent if and only if its characteristic polynomial is .T � 1/n. But the coefficients of
the characteristic polynomial of A are polynomials in the entries of A, and so this is a
polynomial condition.
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DECOMPOSITION OF A COMMUTATIVE ALGEBRAIC GROUP

THEOREM 16.14 Let G be a commutative algebraic group over a field k.

(a) There exists a largest affine subgroup Gs of G of multiplicative type; this is a char-
acteristic subgroup (in the weak sense) of G, and the quotient G=Gs is unipotent.

(b) If k is perfect, there exists a largest unipotent affine subgroup Gu of G, and G D
Gs �Gu. This decomposition is unique.

PROOF. (a) Let Gs be the intersection of the affine subgroups H of G such that G=H
is unipotent. Then G=Gs !

Q
G=H is injective, and so G=Gs is unipotent (15.7). A

nontrivial homomorphism Gs ! Ga would have a kernel H such that G=H is unipotent
(15.7) butGs 6�H , contradicting the definition ofGs . ThereforeGs is of multiplicative type
(14.28). If H is a second affine subgroup of G of multiplicative type, then the map H !
G=Gs is zero (15.18), and so H �Gs . Therefore Gs is the largest affine subgroup of G of
multiplicative type. From this description, it is clear that ˛Gs DGs for any automorphism
˛ of G.

(b) Assume k is perfect. Then it suffices to show that G D T �U with T of multi-
plicative type and U unipotent because, for any other unipotent affine subgroup U 0 of G,
the map U 0!G=U ' T is zero (15.15), and so U 0 � U ; similarly any other subgroup T 0

of multiplicative type is contained in T ; therefore T (resp. U ) is the largest subgroup of
multiplicative type (resp. unipotent subgroup), and so the decomposition is unique. 2

ASIDE 16.15 In fact, Gs is characteristic in the strong sense, but this requires a small additional
argument (DG IV, �2, 2.4, p. 486; �3, 1.1, p. 501); in general, Gu is not (ibid. IV �3, 1.2).

REMARK 16.16 It is necessary that k be perfect in (b). Let k be a separably closed field of
characteristic p, and letG D .Gm/k0=k where k0 is an extension of k of degree p (necessar-
ily purely inseparable). Then G is a commutative smooth connected algebraic group over
k. The canonical map Gm! G realizes Gm as Gs , and the quotient G=Gm is unipotent.
Over kal, G decomposes into .Gm/kal � .G=Gm/kal , and so G is not reductive. However, G
contains no unipotent subgroup because G.k/D k0� has no p-torsion, and so Gu D 1. See
17.22.

16c The derived group of algebraic group

Let G be an algebraic group over a field k.

DEFINITION 16.17 The derived group DG (or G0 or Gder) of G is the intersection of the
normal algebraic subgroups N of G such that G=N is commutative.

PROPOSITION 16.18 The quotient G=DG is commutative (hence DG is the smallest nor-
mal subgroup with this property).

PROOF. For any normal affine subgroups N1; : : : ;Nr of G, the canonical homomorphism

G!G=N1� � � ��G=Nr

has kernel N1\ : : :\Nr . Therefore, if each of the algebraic groups G=Ni is commutative,
so also is G=.N1\ : : :\Nr/. 2
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We shall need another description of DG, which is analogous to the description of the
derived group as the subgroup generated by commutators. As for abstract groups, there
exist maps of functors

G2!G4! �� � !G2n!G:

Let In be the kernel of the homomorphism O.G/! O.G2n/ of k-algebras (not Hopf
algebras) defined by G2n!G: Then

I1 � I2 � �� � � In � �� �

and we let I D
T
In.

PROPOSITION 16.19 The coordinate ring of DG is O.G/=I .

PROOF. From the diagram of set-valued functors

G2n � G2n ��! G4n??y ??y ??y
G � G

mult
��! G

we get a diagram of k-algebras

O.G/=In ˝ O.G/=In  O.G/=I2nx?? x?? x??
O.G/ ˝ O.G/ �

 � O.G/

(because O.G/=In is the image of O.G/ in O.G4n/ ). It follows that

�WO.G/!O.G/=I ˝O.G/=I

factors through O.G/!O.G/=I , and defines a Hopf algebra structure on O.G/=I , which
corresponds to the smallest algebraic subgroup G0 of G such that G0.R/ contains all the
commutators for all R. Clearly, this is also the smallest normal subgroup such that G=G0 is
commutative. 2

COROLLARY 16.20 For any field K � k, DGK D .DG/K :

PROOF. The definition of I commutes with extension of the base field. 2

COROLLARY 16.21 IfG is connected (resp. smooth), then DG is connected (resp. smooth).

PROOF. Recall that an algebraic group G is connected (resp. smooth) if and only if O.G/
has no nontrivial idempotents (resp. nilpotents). If O.G/=I had a nontrivial idempotent
(resp. nilpotent), then so would O.G/=In for some n, but (by definition) the homomor-
phism of k-algebras O.G/=In ,! O.G2n/ is injective. If G is connected (resp. smooth),
then so also is G2n, and so O.G2n/ has no nontrivial idempotents (resp. nilpotents). 2
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COROLLARY 16.22 LetG be a smooth connected algebraic group. Then O.DG/DO.G/=In
for some n, and .DG/.kal/DD.G.kal//.

PROOF. As G is smooth and connected, so also is G2n (6.1, 13.19). Therefore, each ideal
In is prime, and a descending sequence of prime ideals in a noetherian ring terminates. This
proves the first part of the statement (CA 16.5).

Let Vn be the image of G2n.kal/ in G.kal/. Its closure in G.kal/ is the zero-set of In.
Being the image of a regular map, Vn contains a dense open subset U of its closure (CA
12.14). Choose n as in the first part, so that the zero-set of In is DG.kal/. Then

U �U�1 � Vn �Vn � V2n �D.G.kal//D
[

m
Vm �DG.kal/:

It remains to show that U �U�1 D DG.kal/. Let g 2 DG.kal/. Because U is open and
dense DG.kal/, so is gU�1, which must therefore meet U , forcing g to lie in U �U . 2

COROLLARY 16.23 The derived group DG of a smooth algebraic group G is the unique
smooth affine subgroup such that .DG/.kal/DD.G.kal//.

PROOF. The derived group has these properties by (16.21) and (16.22), and it is the only
affine subgroup with these properties because .DG/.kal/ is dense in DG. 2

A
16.24 For an algebraic groupG, the groupG.k/may have commutative quotients without
G having commutative quotients, i.e., we may have G.k/¤D.G.k// but G DDG. This is
the case for G D PGLn over nonperfect separably closed field of characteristic p dividing
n.

16d Solvable algebraic groups

Write D2G for the second derived group D.DG/, D3G for the third derived group D.D2G/,
and so on.

DEFINITION 16.25 An algebraic group G is solvable if the derived series

G �DG �D2G � �� �

terminates with 1.

LEMMA 16.26 An algebraic groupG is solvable if and only if it admits a subnormal series

G DG0 �G1 � �� � �Gn D 1 (106)

whose quotients Gi=GiC1are commutative.

PROOF. If G is solvable, then the derived series is such a sequence. Conversely, given a
sequence as in (106), G1 �DG, so G2 �D2G, . . . , so Gn �DnG. Hence DnG D 1. 2

A sequence of algebraic subgroups (106) such that GiC1 is normal in Gi for each i and
Gi=GiC1 is commutative is called solvable series.
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PROPOSITION 16.27 Subgroups, quotients, and extensions of solvable algebraic groups
are solvable.

PROOF. Obvious. 2

EXAMPLE 16.28 Let G be a finite group, and let .G/k be the algebraic group such that
.G/k.R/DG for all k-algebras R with no nontrivial idempotents. Then D.G/k D .DG/k ,
D2.G/k D .D2G/k , and so on. Therefore .G/k is solvable if and only if G is solvable.
In particular, the theory of solvable algebraic groups includes the theory of solvable finite
groups, which is already quite complicated. For example, all finite groups with no element
of order 2 are solvable.

EXAMPLE 16.29 The group Tn of upper triangular matrices is solvable. For example, the
subnormal series

T3 D

8<:
0@� � �0 � �

0 0 �

1A9=;�
8<:
0@1 � �0 1 �

0 0 1

1A9=;�
8<:
0@1 0 �

0 1 0

0 0 1

1A9=;� 1
has quotients Gm�Gm�Gm, Ga�Ga, and Ga.

More generally, the functor

R G0.R/
def
D f.aij / j ai i D 1 for all ig

is an algebraic subgroup of Tn because it is represented by O.Tn/=.T11�1; : : : ;Tnn�1/.
Similarly, there is an algebraic subgroup Gr of G0 of matrices .aij / such that aij D 0 for
0 < j � i � r . The functor

.aij / 7! .a1;rC2; : : : ;ai;rCiC1; : : :/

is a homomorphism from Gr onto Ga �Ga � � � � with kernel GrC1. Thus the sequence of
algebraic subgroups

Tn �G0 �G1 � �� � �Gn D f1g

exhibits Tn as a solvable group.
Alternatively, we can work abstractly. A flag in a vector space V is a set of subspaces

of V , distinct from f0g and V , ordered by inclusion. When we order the flags in V by
inclusion, the maximal flags are the families fV1; : : : ;Vn�1g with dimVi D i , n D dimV ,
and

V1 � �� � � Vn�1:

For example, if .ei /1�i�n is a basis for V , then we get a maximal flag by taking Vi D
he1; : : : ; ei i.

Let F D fV1; : : : ;Vn�1g be a maximal flag in V , and let T be the algebraic subgroup
of GLV such that T.R/ consists of the automorphisms preserving the flag, i.e., such that
˛.Vi ˝R/ � Vi ˝R for all k-algebras R. When we take F to be the maximal flag in kn

defined by the standard basis, G D Tn. Let G0 be the algebraic subgroup of G of ˛ acting
as id on the quotients Vi=Vi�i ; more precisely,

G0 D Ker.G!
Y

GLVi=Vi�i /:
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Then G0 is a normal algebraic subgroup of T with quotient isomorphic to Gnm. Now de-
fine Gr to be the algebraic subgroup of G0 of elements ˛ acting as id on the quotients
Vi=Vi�r�1: Again, GrC1 is a normal algebraic subgroup of Gr with quotient isomorphic
to a product of copies of Ga.

EXAMPLE 16.30 The group of n�n monomial matrices is solvable if and only if n � 4
(because Sn is solvable if and only if n� 4; GT 4.33).

THE LIE-KOLCHIN THEOREM

THEOREM 16.31 Let G be a subgroup of GLV . If G is connected, smooth, and solvable,
and k is algebraically closed, then it is trigonalizable.

PROOF. It suffices to show that there exists a basis for V such that G.k/� Tn.k/ (because
then .G\Tn/.k/DG.k/, and soG\TnDG, which implies thatG �T). Also, it suffices
to show that the elements of G.k/ have a common eigenvector, because then we can apply
induction on the dimension of V (cf. the proof of 16.9). We prove this by induction on the
length of the derived series G. If the derived series has length zero, then G is commutative,
and we proved the result in (16.10). Let N DDG. Its derived series is shorter than that of
G, and so we can assume that the elements of N have a common eigenvector, i.e., for some
character � of N , the space V� (for N ) is nonzero.

Let W be the sum of the nonzero eigenspaces V� for N . According to (8.65), the sum
is direct, W D

L
V�, and so the set fV�g of nonzero eigenspaces for N is finite.

Let x be a nonzero element of V� for some �, and let g 2G.k/. For n 2N.k/,

ngx D g.g�1ng/x D g ��.g�1ng/x D �.g�1ng/ �gx

For the middle equality we used that N is normal in G. Thus, gx lies in the eigenspace for
the character �g D .n 7! �.g�1ng// of N . This shows that G.k/ permutes the finite set
fV�g.

Choose a � and let H � G.k/ be the stabilizer of V�, so H consists of the g 2 G.k/
such that

�.n/D �.g�1ng/ for all n 2N.k/: (107)

Then, H is a subgroup of finite index in G.k/, and it is closed for the Zariski topology on
G.k/ because (107) is a polynomial condition on g for each n. Therefore H D G.k/, oth-
erwise its cosets would disconnect G.k/. This shows that W D V�, and so G.k/ stabilizes
V�.

An element n 2 N.k/ acts on V� as the homothety x 7! �.n/x, �.n/ 2 k: But each
element n of N.k/ is a product of commutators Œx;y� of elements of G.k/ (see 16.22), and
so n acts on V� as an automorphism of determinant 1. This shows that �.n/dimV� D 1, and
so the image of �WG!Gm is finite. Because N is connected, this shows that N.k/ in fact
acts trivially59 on V�. Hence G.k/ acts on V� through the quotient G.k/=N.k/, which is
commutative. In this case, we know there is a common eigenvalue (16.9). 2

59In more detail, the argument shows that the character � takes values in �m �Gm where mD dimV�. If
k has characteristic zero, or characteristic p and p 6 jm, then �m is étale, and so, because N is connected, �
is trivial. If pjm, the argument only shows that � takes values in �pr for pr the power of p dividing m. But
�pr .k/D 1, and so the action of N.k/ on V is trivial, as claimed.
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16.32 All the hypotheses in the theorem are needed (however, if k is algebraically closed
andG is solvable, then the theorem applies toGıred, which is a subgroup ofG with the same
dimension).

CONNECTED: The group G of monomial 2�2 matrices is solvable but not trigonalizable.
The only common eigenvectors of D2.k/�G.k/ are e1 D

�
1
0

�
and e2 D

�
0
1

�
, but the

monomial matrix
�
0 1
1 0

�
interchanges e1 and e2, and so there is no common eigenvec-

tor for the elements of G.k/.
SMOOTH: (Waterhouse 1979, 10, Exercise 3, p. 79.) Let k have characteristic 2, and let G

be the affine subgroup of SL2 of matrices
�
a b
c d

�
such that a2D 1D d2 and b2D 0D

c2. There is an exact sequence

0 ����! �2

a 7!
�
a 0
0 a

�
������! G

�
a b
c d

�
7!.ab;cd/

�����������! ˛2�˛2 ����! 1:

Moreover, �2 � Z.G/, and so G is connected and solvable (even nilpotent), but no
line is fixed in the natural action of G on k2. Therefore G is not trigonalizable.

SOLVABLE: As Tn is solvable (16.29) and a subgroup of a solvable group is obviously
solvable, this condition is necessary.

k ALGEBRAICALLY CLOSED: IfG.k/�Tn.k/, then the elements ofG.k/ have a common
eigenvector, namely, e1 D .10 : : : 0/t . Unless k is algebraically closed, an endomor-
phism need not have an eigenvector, and, for example,˚�

a b
�b a

� ˇ̌
a;b 2 R; a2Cb2 D 1

	
is an commutative algebraic group over R that is not trigonalizable over R.

16e Structure of solvable groups

THEOREM 16.33 LetG be a connected solvable smooth group over a perfect field k. There
exists a unique connected normal algebraic subgroup Gu of G such that

(a) Gu is unipotent;
(b) G=Gu is of multiplicative type.

The formation of Gu commutes with change of the base field.

PROOF. We first prove this when k D kal. Embed G into Tn for some n, and construct

1 ����! Un ����! Tn ����! Dn ����! 1x?? x?? x??
1 ����! Gu ����! G ����! T ����! 1

where T is the image of G in Dn and Gu D Un\G. Certainly Gu is a normal algebraic
subgroup of G satisfying (a) and (b). We next prove that Gu is connected.

Let QDG=DG. It is commutative, so that (16.12)

Q'Qu�Qs .
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This shows that Qu is connected (if it had an étale quotient, so would Q). As G=Gu is
commutative, DG �Gu, and the diagram

1 ����! DG ����! Gu ����! �0.Gu/ ����! 1 ??y ??y
1 ����! DG ����! G ����! Q ����! 1??y ??y

T ����! Q=�Gu??y ??y
1 1

shows that T ' Q=�0.Gu/. Since �.Gu/ � Qu, this shows that �0.Gu/ D Qu, and so
(13.21)

Qu, DG connected H) Gu connected.

For the uniqueness, note that Gu is the largest connected normal unipotent subgroup
of G, or that Gu.kal/ consists of the unipotent elements of G.kal/ (and apply a previous
result).

When k is only perfect, the uniqueness of .Gkal/u implies that it is stable under � D
Gal.kal=k/, and hence arises from a unique algebraic subgroup Gu of G (7.33), which
clearly has the required properties. 2

16f Split solvable groups

DEFINITION 16.34 A solvable algebraic group is split if it admits subnormal series whose
quotients are Ga or Gm.

Such a group is automatically smooth (7.66) and connected (13.21). This agrees with
our definition of split unipotent group. Any quotient of a split solvable group is again a split
solvable group.

16g Tori in solvable groups

PROPOSITION 16.35 Let G be a connected smooth solvable group over an algebraically
closed field. If T and T 0 are maximal tori in G, then T 0 D gTg�1 for some g 2G.k/.

PROOF. Omitted for the present (cf. Springer 1998, 6.3.5). 2

PROPOSITION 16.36 The centralizer of any torus in a connected smooth solvable groupG
is connected.

PROOF. Omitted for the present (cf. Springer 1998, 6.3.5). 2
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16h Exercises

EXERCISE 16-1 Give a geometric proof that G connected implies DG connected. [Show
that the image of connected set under a continuous map is connected (for the Zariski topol-
ogy, say), the closure of a connected set is connected, and a nested union of connected sets
is connected sets is connected; then apply the criterion (13.13).]

EXERCISE 16-2 Show that an algebraic groupG is trigonalizable if and only if there exists
a filtration C0 �C1 �C2 � �� � of O.G/ by subspaces Ci such that C0 is spanned by group-
like elements,

S
r�0Cr D A, and �.Cr/ �

P
0�i�r Ci ˝Cr�i (Waterhouse 1979, Chap.

9, Ex. 5, p. 72).

17 The structure of algebraic groups

Throughout this section, k is a field.

17a Radicals and unipotent radicals

LEMMA 17.1 Let N and H be algebraic subgroups of G with N normal. If H and N
are solvable (resp. unipotent, resp. connected, resp. smooth), then HN is solvable (resp.
unipotent, resp. connected, resp. smooth).

PROOF. We use the exact sequence

1 ����! N ����! HN ����! HN=N ����! 1:

(9.12)
x??'

H=H \N

Because H is solvable, so also is its quotient H=H \N ; hence HN=N is solvable, and
HN is solvable because it is an extension of solvable groups (16.27). The same argument
applies with “solvable” replaced by “unipotent” (use 15.7), or by “connected” (use 13.21),
or by “smooth” (use 7.66). 2

PROPOSITION 17.2 Let G be a smooth algebraic group over a field k.

(a) There exists a largest60 smooth connected normal solvable subgroup of G (called the
radical RG of G).

(b) There exists a largest smooth connected normal unipotent subgroup (called the unipo-
tent radical RuG of G).

PROOF. Immediate consequence of the lemma. 2

The formation of the radical and the unipotent radical each commute with separable
extensions of the base field: let K be a Galois extension of k with Galois group � ; by
uniqueness,RGK is stable under the action of � , and therefore arises from a subgroupR0G
of G (by 4.13); now .RG/K � RGK , and so RG � R0G; as RG is maximal, RG D R0G,
and so .RG/K D .R0G/K DRGK .

60Recall that “largest” means “unique maximal”.
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PROPOSITION 17.3 Let G be a smooth algebraic group over a perfect field k. For any
extension field K of k,

RGK D .RG/K and RuGK D .RuG/K .

Moreover, RuG D .RG/u (notations as in 16.33).

PROOF. See the above discussion. 2

DEFINITION 17.4 LetG be a smooth algebraic group over a field k. The geometric radical
of G is RGkal , and the geometric unipotent radical of G is RuGkal .

17b Definition of semisimple and reductive groups

DEFINITION 17.5 Let G be an algebraic group over a field k.

(a) G is semisimple if it is smooth and connected and its geometric radical is trivial.
(b) G is reductive if it is smooth and connected and its geometric unipotent radical is

trivial.
(c) G is pseudoreductive if it is smooth and connected and its unipotent radical is trivial.

Thus
semisimple H) reductive H) pseudoreductive.

For example, SLn, SOn, and Spn are semisimple, and GLn is reductive (but not semisim-
ple). When k is perfect, RuGkal D .RuG/kal , and so reductive and pseudoreductive are
equivalent.

PROPOSITION 17.6 Let G be a smooth connected algebraic group over a perfect field k.

(a) G is semisimple if and only if RG D 1.
(b) G is reductive if and only if RuG D 1 (i.e., G is pseudoreductive).

PROOF. Obvious from (17.3). 2

PROPOSITION 17.7 Let G be a smooth connected algebraic group over a field k:

(a) If G is semisimple, then every smooth connected normal commutative subgroup is
trivial; the converse is true if k is perfect.

(b) If G is reductive, then every smooth connected normal commutative subgroup is a
torus; the converse is true if k is perfect.

PROOF. (a) Suppose that G is semisimple, and let H be a smooth connected normal com-
mutative subgroup of G. Then Hkal � RGkal D 1, and so H D 1. For the converse, we
use that RG and DG are stable for any automorphism of G. This is obvious from their
definitions: RG is the largest connected normal solvable algebraic subgroup and DG is the
smallest normal algebraic subgroup such that G=DG is commutative. Therefore the chain

G �RG �D.RG/�D2.RG/� �� � �Dr.RG/� 1;
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is preserved by every automorphism of G, and, in particular, by the inner automorphisms
defined by elements of G.k/. This remains true over kal, and so the groups are normal in G
by (7.43). As Dr.RG/ is commutative, it is trivial.

(b) Let H be a smooth connected normal commutative subgroup of G; then Hkal �

RGkal , which has no unipotent subgroup. Therefore H is a torus. For the converse, we
consider the chain

G �RuG �D.RuG/�D2.RuG/� �� � �Dr.RuG/� 1:

Then Dr.RuG/ is a commutative unipotent subgroup, and so is trivial. 2

A smooth connected algebraic group G is pseudoreductive but not reductive if it con-
tains no nontrivial normal smooth unipotent affine subgroup but Gkal does contain such a
subgroup.

REMARK 17.8 If one of the conditions, smooth, connected, normal, commutative, is dropped,
then a semisimple group may have such a subgroup:

Group subgroup smooth? connected? normal? commutative?

SL2, char.k/¤ 2 f˙I g yes no yes yes

SL2 U2 D
˚�
1 �
0 1

�	
yes yes no yes

SL2�SL2 f1g�SL2 yes yes yes no

SL2, char.k/D 2 �p no yes yes yes

PROPOSITION 17.9 LetG be a smooth connected algebraic group over a perfect field. The
quotient group G=RG is semisimple, and G=RuG is reductive.

PROOF. One sees easily that R.G=RG/D 1 and Ru.G=RuG/D 1. 2

EXAMPLE 17.10 Let G be the group of invertible matrices
�
A B
0 C

�
with A of size m�m

and C of size n�n. The unipotent radical of G is the subgroup of matrices
�
I B
0 I

�
. The

quotient of G by RuG is isomorphic to the reductive group of invertible matrices of the
form

�
A 0
0 C

�
, i.e., to GLm�GLn. The radical of this is Gm�Gm.

PROPOSITION 17.11 Let G be a connected algebraic group, and let N be a normal unipo-
tent subgroup of G. Then N acts trivially on every semisimple representation of G.

PROOF. Let N be a normal affine subgroup of G, and let .V;r/ be a semisimple represen-
tation of G. I claim that .V;r jN/ is also semisimple. To prove this, it suffices to show that
.V;r jN/ is a sum of simple representations of N (8.68). We may suppose that V is simple
as a representation of G. Let S be an N -simple subrepresentation of .V;r jN/, and let W
be the sum of all subrepresentations of .V;r jN/ isomorphic to S (i.e., W is the N -isotypic
component of V of type S ). Then W is stable under G (see 8.73), and so equals V . This
proves the claim (in characteristic zero, the proof is simpler — see II, 6.15). If N is unipo-
tent, then every semisimple representation is trivial (by definition 15.3). This proves the
proposition. 2
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COROLLARY 17.12 Let G be a smooth connected algebraic group. If Rep.G/ is semisim-
ple, then G is reductive.

PROOF. Apply the proposition to N DRuG and to a faithful representation of G. 2

The proposition shows that, for a smooth connected algebraic group G,

RuG �
\

.V;r/ semisimple
Ker.r/:

In Chapter II, we shall prove that, in characteristic zero, RuG is equal to the intersection
of the kernels of the semisimple representations of G; thus G is reductive if and only if
Rep.G/ is semisimple. This is false in nonzero characteristic.

ASIDE 17.13 In SGA3, XIX, it is recalled that the unipotent radical of a smooth connected affine
group scheme over an algebraically closed field is the largest smooth connected normal unipotent
subgroup of G (ibid. 1.2). A smooth connected affine group scheme over an algebraically closed
field is defined to be reductive if its unipotent radical is trivial (ibid. 1.6). A group scheme G over
a scheme S is defined to be reductive if it is smooth and affine over S and each geometric fibre
of G over S is a connected reductive group (2.7). When S is the spectrum of field, this definition
coincides with our definition.

17c The canonical filtration on an algebraic group

THEOREM 17.14 Let G be an algebraic group over a field k.

(a) G contains a unique connected normal subgroup Gı such that G=Gı is an étale alge-
braic group.

(b) Assume that k is perfect; then G contains a largest smooth subgroup.
(c) Assume that k is perfect and that G is smooth and connected; then G contains a

unique smooth connected normal solvable subgroup N such that G=N is a semisim-
ple group.

(d) Assume that k is perfect and that G is smooth connected and solvable; then G con-
tains a unique connected unipotent subgroup N such that G=N is of multiplicative
type.

PROOF. (a) See 13.17.
(b) Because k is perfect, there exists a subgroup Gred of G with O.Gred/D O.G/=N

(see 6.18). This is reduced, and hence smooth (6.26b). This is the largest smooth subgroup
of G because O.Gred/ is the largest reduced quotient of O.G/.

(c) The radical RG of G has these properties. Any other smooth connected normal
solvable subgroup N of G is contained in RG (by the definition of RG), and if N ¤ RG
then G=N is not semisimple.

(c) See 16.33. 2

NOTES Perhaps (or perhaps not):

(a) Explain the connected components for a nonaffine algebraic group, at least in the smooth
case. Also discuss things over a ring k:

(b) Explain the Barsotti-Chevalley-Rosenlicht theorem.

(c) Explain anti-affine groups.

(d) Explain what is true when you drop “smooth” and “perfect”, and maybe even allow a base
ring.
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17d Semisimple groups

An algebraic group G is simple if it is connected, noncommutative, and its only proper
normal subgroups is 1, and it is almost-simple if it is connected, noncommutative, and
all its proper normal subgroups are finite. Thus, for n > 1, SLn is almost-simple and
PSLn D SLn =�n is simple. A subgroup N of an algebraic group G that is minimal
among the nonfinite normal subgroups of G is either commutative or almost-simple; if
G is semisimple, then it is almost-simple.

An algebraic group G is said to be the almost-direct product of its algebraic subgroups
G1; : : : ;Gr if the map

.g1; : : : ;gr/ 7! g1 � � �gr WG1� � � ��Gr !G

is a surjective homomorphism with finite kernel. In particular, this means that the Gi com-
mute and each Gi is normal in G.

PROPOSITION 17.15 Let G be a simple algebraic group over an algebraically closed field.
Then the group of inner automorphisms of G has finite index in the full group of automor-
phisms of G.

Alas, the usual proof of this shows that Aut.G/D Inn.G/ �D whereD is group of auto-
morphisms leaving stable a maximal torus and a Borel subgroup containing the torus, uses
the conjugacy of Borel subgroups and the conjugacy of maximal tori in solvable groups, and
then shows that D=D\ Inn.G/ is finite by letting it act on the roots. Unless, we can find
a more elementary proof, we shall include a reference to Chapter III for the characteristic
zero case, and to Chapter V for the general case.

THEOREM 17.16 A semisimple algebraic group G has only finitely many almost-simple
normal subgroups G1; : : : ;Gr , and the map

.g1; : : : ;gr/ 7! g1 � � �gr WG1� � � ��Gr !G (108)

is surjective with finite kernel. Each connected normal algebraic subgroup ofG is a product
of those Gi that it contains, and is centralized by the remaining ones.

In particular, an algebraic group is semisimple if and only if its an almost-direct product
of almost-simple algebraic groups. The algebraic groups Gi are called the almost-simple
factors of G.

PROOF. (This proof needs to be rewritten.) When k has characteristic zero, this is proved
in II, 5.31 using Lie algebras. We give the proof for a general field assuming (17.15).

Let G1;G2; : : : ;Gr be distinct minimal smooth connected normal subgroups of G. For
i ¤ j , .Gi ;Gj / is a connected normal subgroup contained in both Gi and Gj (tba), and so
it is trivial. Thus, the map

˛WG1� � � ��Gr !G

is a homomorphism of algebraic groups, andH def
DG1 � � �Gr is a connected normal subgroup

of G (hence semisimple). The kernel of ˛ is finite, and so

dimG � dimN D
X

dimGi :
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This shows that r is bounded, and we may assume that our family contains them all.
It remains to show that H D G. For this we may assume that k D kal. Let H 0 D

CG.H/
ı
red. Then CG.H/.k/ is the kernel of

G.k/! Aut.H/,

and its image is Inn.H/. As Inn.H/ has finite index in Aut.H/ (see 17.15), it follows that
H �H 0 has finite index in G, and hence equals G because G is connected. As H 0 is normal
in G, it is also semisimple. A minimal smooth connected normal subgroup of H 0 is a
minimal smooth connected normal subgroup of G (because G DH �H 0 and H centralizes
H 0). A nontrivial such group would contradict the definition of H — we deduce that
H 0 D 1. 2

COROLLARY 17.17 All nontrivial connected normal subgroups and quotients of a semisim-
ple algebraic group are semisimple.

PROOF. Any such group is an almost-product of almost-simple algebraic groups. 2

COROLLARY 17.18 If G is semisimple, then DG D G, i.e., a semisimple group has no
commutative quotients.

PROOF. This is obvious for almost-simple algebraic groups, and hence for any almost-
product of such algebraic groups. 2

SIMPLY CONNECTED SEMISIMPLE GROUPS

(This section need to be rewritten.) An semisimple algebraic group G is simply connected
if every isogeny G0!G is an isomorphism.

LetG be a simply connected semisimple group over a field k, and let � DGal.ksep=k/.
Then Gksep decomposes into a product

Gksep DG1� � � ��Gr (109)

of its almost-simple subgroups Gi . The set fG1; : : : ;Grg contains all the almost-simple
subgroups of G. When we apply � 2 � to (187), it becomes

Gksep D �Gksep D �G1� � � ���Gr

with f�G1; : : : ;�Grg a permutation of fG1; : : : ;Grg. LetH1; : : : ;Hs denote the products of
Gi in the different orbits of � . Then �Hi DHi , and so Hi is defined over k (I, 4.13), and

G DH1� � � ��Hs

is a decomposition of G into a product of its almost-simple subgroups.
Now suppose that G itself is almost-simple, so that � acts transitively on the Gi in

(109). Let
�D f� 2 � j �G1 DG1g;

and let K D .ksep/�.
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PROPOSITION 17.19 We have G ' .G1/K=k (restriction of base field).

PROOF. We can rewrite (109) as

Gksep D

Y
�G1ksep

where � runs over a set of cosets for � in � . On comparing this with (4.8), we see that
there is a canonical isomorphism

Gksep '
�
.G1/K=k

�
ksep .

In particular, it commutes with the action of � , and so is defined over k (see 4.13). 2

The group G1 over K is geometrically almost-simple, i.e., it is almost-simple and re-
mains almost-simple over Kal.

17e Reductive groups

THEOREM 17.20 If G is reductive, then the derived group DG of G is semisimple, the
connected centre Z.G/ı of G is a torus, and Z.G/\DG is the (finite) centre of DG;
moreover,

G DZ.G/ı �DG:

PROOF. It suffices to prove this with k D kal. By definition, .RG/u D 0, and so (16.33)
shows that RG is a torus T . Rigidity (14.32) implies that the action of G on RG by inner
automorphisms is trivial, and so RG � Z.G/ı. Since the reverse inclusion always holds,
this shows that

R.G/DZ.G/ı D torus.

We next show that Z.G/ı\DG is finite. Choose an embedding G ,! GLV , and write
V as a direct sum

V D V1˚�� �˚Vr

of eigenspaces for the action of Z.G/ı (see 14.15). When we choose bases for the Vi , then
Z.G/ı.k/ consists of the matrices 0B@A1 0 0

0
: : : 0

0 0 Ar

1CA
with each Ai nonzero and scalar,61 and so its centralizer in GLV consists of the matrices of
this shape with theAi arbitrary. Since .DG/.k/ consists of commutators (16.22), it consists
of such matrices with determinant 1. As SL.Vi / contains only finitely many scalar matrices,
this shows that Z.G/ı\DG is finite.

Note that Z.G/ı �DG is a normal algebraic subgroup of G such that G=.Z.G/ı �DG/
is commutative (being a quotient ofG=DG) and semisimple (being a quotient ofG=R.G/).
Hence62

G DZ.G/ı �Gder:

61That is, of the form diag.a; : : : ;a/ with a¤ 0.
62Because G DDG if G is semisimple. In other words, a semisimple group has no commutative quotients.

At the moment this is only proved at the end of II, �4.
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Therefore
Gder
!G=R.G/

is surjective with finite kernel. As G=R.G/ is semisimple, so also is Gder.
Certainly Z.G/\Gder � Z.Gder/, but, because G D Z.G/ı �Gder and Z.G/ı is com-

mutative, Z.Gder/�Z.G/. 2

REMARK 17.21 From a reductive group G, we obtain a semisimple group G0 (its derived
group), a group Z of multiplicative type (its centre), and a homomorphism 'WZ.G0/!Z.
Moreover, G can be recovered from .G0;Z;'/: the map

z 7! .'.z/�1;z/WZ.G0/!Z�G0

is an isomorphism from Z.G0/ onto a central subgroup of Z �G0, and the quotient is G.
Clearly, every reductive group arises from such a triple .G0;Z;'/ (and G0 can even be
chosen to be simply connected).

17f Pseudoreductive groups

We briefly summarize Conrad, Gabber, and Prasad 2010.

17.22 Let k be a separably closed field of characteristic p, and letGD .Gm/k0=k where k0

is an extension of k of degree p (necessarily purely inseparable). Then G is a commutative
smooth connected algebraic group over k. The canonical map Gm!G realizes Gm as the
largest subgroup ofG of multiplicative type, and the quotientG=Gm is unipotent. Over kal,
G decomposes into .Gm/kal � .G=Gm/kal (see 16.12), and so G is not reductive. However,
G contains no unipotent subgroup because G.k/D k0�, which has no p-torsion. Therefore
G is pseudo-reductive.

17.23 Let k0 be a finite field extension of k, and let G be a reductive group over k0. If k0

is separable over k, then .G/k0=k is reductive, but otherwise it is only pseudoreductive.

17.24 Let C be a commutative connected algebraic group over k. If C is reductive, then
C is a torus, and the tori are classified by the continuous actions of Gal.ksep=k/ on free
abelian groups of finite rank. By contrast, “it seems to be an impossible task to describe
general commutative pseudo-reductive groups over imperfect fields” (Conrad et al. 2010,
p. xv).

17.25 Let k1; : : : ;kn be finite field extensions of k. For each i , letGi be a reductive group
over ki , and let Ti be a maximal torus in Gi . Define algebraic groups

G - T � NT

by

G D
Y

i
.Gi /ki=k

T D
Y

i
.Ti /ki=k

NT D
Y

i
.Ti=Z.Gi //ki=k .
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Let �WT ! C be a homomorphism of commutative pseudoreductive groups that factors
through the quotient map T ! NT :

T
�
�! C

 
�! NT .

Then  defines an action of C on G by conjugation, and so we can form the semi-direct
product

GoC:

The map
t 7! .t�1;�.t//WT !GoC

is an isomorphism from T onto a central subgroup of GoC , and the quotient .GoC/=T
is a pseudoreductive group over k. The main theorem (5.1.1) of Conrad et al. 2010 says
that, except possibly when k has characteristic 2 or 3, every pseudoreductive group over k
arises by such a construction (the theorem also treats the exceptional cases).

17.26 The maximal tori in reductive groups are their own centralizers. Any pseudoreduc-
tive group with this property is reductive (except possibly in characteristic 2; Conrad et al.
2010, 11.1.1).

17.27 If G is reductive, then G D DG �Z.G/ı where DG is the derived group of G and
Z.G/ı is the largest central connected reductive subgroup of G. This statement becomes
false with “pseudoreductive” for “reductive” (Conrad et al. 2010, 11.2.1).

17.28 For a reductive group G, the map

RG DZ.G/ı!G=DG

is an isogeny, and G is semisimple if and only if one (hence both) groups are trivial. For
a pseudoreductive group, the condition RG D 1 does not imply that G D DG. Conrad
et al. 2010, 11.2.2, instead adopt the definition: an algebraic groupG is pseudo-semisimple
if it is pseudoreductive and G D DG. The derived group of a pseudoreductive group is
pseudo-semisimple (ibid. 1.2.6, 11.2.3).

17.29 A reductive group G over any field k is unirational, and so G.k/ is dense in G if k
is infinite. This fails for pseudoreductive groups: over every nonperfect field k there exists a
commutative pseudoreductive group that it not unirational; when k is a nonperfect rational
function field k0.T /, such a group G can be chosen so that G.k/ is not dense in G (Conrad
et al. 2010, 11.3.1).

17g Properties of G versus those of Repk.G/

We summarize.

17.30 An affine group G is finite if and only if there exists a representation .r;V / such
that every representation of G is a subquotient of V n for some n� 0 (12.19).
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17.31 A affine group G is strongly connected if and only if if and only if, for every rep-
resentation V on which G acts nontrivially, the full subcategory of Rep.G/ of subquotients
of V n, n� 0, is not stable under˝ (apply 17.30). In characteristic zero, a group is strongly
connected if and only if it is connected.

17.32 An affine group G is unipotent if and only if every simple representation is trivial
(this is essentially the definition 15.3).

17.33 An affine group G is trigonalizable if and only if every simple representation has
dimension 1 (this is the definition 16.1).

17.34 An affine group G is algebraic if and only if Rep.G/D hV i˝ for some representa-
tion .V;r/ (8.44).

17.35 Let G be a smooth connected algebraic group. If Rep.G/ is semisimple, then G is
reductive (17.12), and the converse is true in characteristic zero (II, 6.14).

18 Example: the spin groups

Let � be a nondegenerate bilinear form on a k-vector space V . The special orthogonal
group SO.�/ is connected and almost-simple, and it has a 2-fold covering Spin.�/ which
we now construct.

Throughout this section, k is a field not of characteristic 2 and “k-algebra” means “as-
sociative (not necessarily commutative) k-algebra containing k in its centre”. For example,
the n�n matrices with entries in k become such a k-algebra Mn.k/ once we identify an
element c of k with the scalar matrix cIn.

NOTES This section is OK as far as it goes, but it needs to be revised and completed. Also, should
explain in more detail that not all representations of son come from SOn, but they do from some
semisimple algebraic group.

18a Quadratic spaces

Let k be a field not of characteristic 2, and let V be a finite-dimensional k-vector space. A
quadratic form on V is a mapping

qWV ! k

such that q.x/D �q.x;x/ for some symmetric bilinear form �qWV �V ! k. Note that

q.xCy/D q.x/Cq.y/C2�q.x;y/, (110)

and so �q is uniquely determined by q. A quadratic space is a pair .V;q/ consisting of
a finite-dimensional vector space and a quadratic form q. Often I’ll write � (rather than
�q) for the associated symmetric bilinear form and denote .V;q/ by .V;�q/ or .V;�/. A
nonzero vector x in V is isotropic if q.x/D 0 and anisotropic if q.x/¤ 0. Note that q is
zero (i.e., q.V /D 0) if and only if � is zero (i.e., �.V;V /D 0).

The discriminant of .V;q/ is the determinant of the matrix .�.ei ; ej // where e1; : : : ; en
is a basis of V . The choice of a different basis multiplies det.�.ei ; ej // by a nonzero square,
and so the discriminant is an element of k=k�2.
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Let .V1;q1/ and .V2;q2/ be quadratic spaces. An isometry is an injective k-linear map
� WV1! V2 such that q2.�x/D q1.x/ for all x 2 V (equivalently, �.�x;�y/D �.x;y/ for
all x;y 2 V ). By .V1;q1/˚ .V2;q2/ we mean the quadratic space .V;q/ with

V D V1˚V2

q.x1Cx2/D q.x1/Cq.x2/; x1 2 V1, x2 2 V2:

Let .V;q/ be quadratic space. A basis e1; : : : ; en for V is said to be orthogonal if
�.ei ; ej /D 0 for all i ¤ j .

PROPOSITION 18.1 Every quadratic space has an orthogonal basis (and so is an orthogonal
sum of quadratic spaces of dimension 1).

PROOF. If q.V / D 0, then every basis is orthogonal. Otherwise, let e 2 V be such that
q.e/¤ 0, and extend it to a basis e;e2; : : : ; en for V . Then

e;e2�
�.e;e2/

q.e/
e; : : : ; en�

�.e;en/

q.e/
e

is again a basis for V , and the last n�1 vectors span a subspaceW for which �.e;W /D 0.
Apply induction to W . 2

An orthogonal basis defines an isometry .V;q/
�
�! .kn;q0/, where

q0.x1; : : : ;xn/D c1x
2
1C�� �C cnx

2
n; ci D q.ei / 2 k:

If every element of k is a square, for example, if k is algebraically closed, we can even scale
the ei so that each ci is 0 or 1.

18b Theorems of Witt and Cartan-Dieudonné

A quadratic space .V;q/ is said to be regular63 (or nondegenerate,. . . ) if for all x ¤ 0 in
V , there exists a y such that �.x;y/¤ 0. Otherwise, it is singular. Also, .V;q/ is

˘ isotropic if it contains an isotropic vector, i.e., if q.x/D 0 for some x ¤ 0;
˘ totally isotropic if every nonzero vector is isotropic, i.e., if q.x/D 0 for all x, and
˘ anisotropic if it is not isotropic, i.e., if q.x/D 0 implies x D 0.

Let .V;q/ be a regular quadratic space. Then for any nonzero a 2 V ,

hai?
def
D fx 2 V j �.a;x/D 0g

is a hyperplane in V (i.e., a subspace of dimension dimV � 1). For an anisotropic a 2 V ,
the reflection in the hyperplane orthogonal to a is defined to be

Ra.x/D x�
2�.a;x/

q.a/
a.

Then Ra sends a to �a and fixes the elements of W def
D hai?. Moreover,

q.Ra.x//D q.x/�2
2�.a;x/

q.a/
�.a;x/C

4�.a;x/2

q.a/2
q.a/D q.x/;

and so Ra is an isometry. Finally, relative to a basis a;e2; : : : ; en with e2; : : : ; en a basis for
W , its matrix is diag.�1;1; : : : ;1/, and so det.Ra/D�1.

63With the notations of the last paragraph, .V;q/ is regular if c1 : : : cn ¤ 0.
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THEOREM 18.2 Let .V;q/ be a regular quadratic space, and let � be an isometry from a
subspaceW of V into V . Then there exists a composite of reflections V ! V extending � .

PROOF. Suppose first that W D hxi with x anisotropic, and let �x D y. Geometry in the
plane suggests that we should reflect in the line xCy. In the plane this is the line orthogonal
to x�y, and, if x�y is anisotropic, then

Rx�y.x/D y

as required. To see this, note that

�.x�y;x/D��.x�y;y/

because q.x/D q.y/, and so

�.x�y;xCy/D 0

�.x�y;x�y/D 2�.x�y;x/I

hence

Rx�y.x/D x�
2�.x�y;x/

�.x�y;x�y/
.x�y/D x� .x�y/D y.

If x�y is isotropic, then

4q.x/D q.xCy/Cq.x�y/D q.xCy/

and so xCy is anisotropic. In this case,

RxCy ıRx.x/DRx�.�y/.�x/D y:

We now proceed64 by induction on

m.W /D dimW C2dim.W \W ?/:

CASE W NOT TOTALLY ISOTROPIC: In this case, the argument in the proof of (18.1)
shows that there exists an anisotropic vector x 2 W , and we let W 0 D hxi?\W . Then,
for w 2 W , w� �.w;x/

q.x/
x 2 W 0; and so W D hxi˚W 0 (orthogonal decomposition). As

m.W 0/Dm.W /� 1, we can apply induction to obtain a composite ˙ 0 of reflections such
that ˙ 0jW 0 D � jW 0. From the definition of W 0, we see that x 2 W 0?; moreover, for any
w0 2W 0,

�.˙ 0�1�x;w0/D �.x;��1˙ 0w0/D �.x;w0/D 0;

and so y def
D ˙ 0�1�x 2W 0?. By the argument in the first paragraph, there exist reflections

(one or two) of the form Rz , z 2W 0?, whose composite˙ 00 maps x to y. Because˙ 00 acts
as the identity on W 0, ˙ 0 ı˙ 00 is the map sought:

.˙ 0 ı˙ 00/.cxCw0/D˙ 0.cyCw0/D c�xC�w0:

CASE W TOTALLY ISOTROPIC: Let V _ D Homk-lin.V;k/ be the dual vector space, and
consider the surjective map

˛WV
x 7!�.x;�/
�������! V _

f 7!f jW
������!W _

64Following Scharlau 1985, Chapter 1, 5.5.
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(so x 2 V is sent to the map y 7! �.x;y/ on W ). Let W 0 be a subspace of V mapped
isomorphically onto W _. Then W \W 0 D f0g and we claim that W CW 0 is a regular
subspace of V . Indeed, if xCx0 2 W CW 0 with x0 ¤ 0, then there exists a y 2 W such
that

0¤ �.x0;y/D �.xCx0;y/;

if x ¤ 0, there exists a y 2W 0 such that �.x;y/¤ 0.
Endow W ˚W _ with the symmetric bilinear form

.x;f /; .x0;f 0/ 7! f .x0/Cf 0.x/.

Relative to this bilinear form, the map

xCx0 7! .x;˛.x0//WW CW 0!W ˚W _ (111)

is an isometry.
The same argument applied to �W gives a subspace W 00 and an isometry

xCx00 7! .x; : : :/W�W CW 00! �W ˚ .�W /_: (112)

Now the map

W CW 0
(111)
�!W ˚W _

�˚�_�1

������! �W ˚ .�W /_
(112)
�! �W CW 00 � V

is an isometry extending � . As

m.W ˚W 0/D 2dimW < 3dimW Dm.W /

we can apply induction to complete the proof. 2

COROLLARY 18.3 Every isometry of .V;q/ is a composite of reflections.

PROOF. This is the special case of the theorem in which W D V . 2

COROLLARY 18.4 (WITT CANCELLATION) Suppose .V;q/ has orthogonal decompositions

.V;q/D .V1;q1/˚ .V2;q2/D .V
0
1;q
0
1/˚ .V

0
2;q
0
2/

with .V1;q1/ and .V 01;q
0
1/ regular and isometric. Then .V2;q2/ and .V 02;q

0
2/ are isometric.

PROOF. Extend an isometry V1 ! V 01 � V to an isometry of V . It will map V2 D V ?1
isometrically onto V 02 D V

0?
1 . 2

COROLLARY 18.5 All maximal totally isotropic subspace of .V;q/ have the same dimen-
sion.

PROOF. Let W1 and W2 be maximal totally isotropic subspaces of V , and suppose that
dimW1 � dimW2. Then there exists an injective linear map � WW1! W2 � V , which is
automatically an isometry. Therefore, by Theorem 18.2 it extends to an isometry � WV ! V .
Now ��1W2 is a totally isotropic subspace of V containing W1. Because W1 is maximal,
W1 D �

�1W2, and so dimW1 D dim��1W2 D dimW2. 2
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REMARK 18.6 In the situation of Theorem 18.2, Witt’s theorem says simply that there
exists an isometry extending � to V (not necessarily a composite of reflections), and the
Cartan-Dieudonné theorem says that every isometry is a composite of at most dimV reflec-
tions. When V is anisotropic, the proof of Theorem 18.2 shows this, but the general case is
considerably more difficult — see Artin 1957.

DEFINITION 18.7 The (Witt) index of a regular quadratic space .V;q/ is the maximum
dimension of a totally isotropic subspace of V .

DEFINITION 18.8 A quadratic space .V;q/ is a hyperbolic plane if it satisfies one of the
following equivalent conditions:

(a) .V;q/ is regular and isotropic of dimension 2I
(b) for some basis of V , the matrix of the form is

�
0 1
1 0

�
;

(c) V has dimension 2 and the discriminant of q is �1 (modulo squares).

THEOREM 18.9 (WITT DECOMPOSITION) A regular quadratic space .V;q/ with Witt in-
dex m has an orthogonal decomposition

V DH1˚�� �˚Hm˚Va (113)

with the Hi hyperbolic planes and Va anisotropic; moreover, Va is uniquely determined up
to isometry.

PROOF. Let W be a maximal isotropic subspace of V , and let e1; : : : ; em be a basis for W .
One easily extends the basis to a linearly independent set e1; : : : ; em; emC1; : : : ; e2m such
that �.ei ; emCj /D ıij (Kronecker delta) and q.emCi /D 0 for i �m. Then V decomposes
as (113) with65 Hi D hei ; emCi i and Va D he1; : : : ; e2mi?. The uniqueness of Va follows
from the Witt cancellation theorem (18.4). 2

18c The orthogonal group

Let .V;q/ be a regular quadratic space. Define O.q/ to be the group of isometries of .V;q/.
Relative to a basis for V , O.q/ consists of the automorphs of the matrix M D .�.ei ; ej //,
i.e., the matrices T such that

T t �M �T DM:

Thus, O.q/ is an algebraic subgroup of GLV (see 3.9), called the orthogonal group of q (it
is also called the orthogonal group of �, and denoted O.�/).

Let T 2 O.q/. As detM ¤ 0, det.T /2 D 1, and so det.T / D ˙1. The subgroup of
isometries with detDC1 is an algebraic subgroup of SLV , called the special orthogonal
group SO.q/.

65We often write hSi for the k-space spanned by a subset S of a vector space V .
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18d Super algebras

Recall (�2e) that a superalgebra (or Z=2Z-graded algebra) over k is k-algebra C together
with a decomposition C D C0˚C1 of C as a k-vector space such that

k � C0; C0C0 � C0; C0C1 � C1; C1C0 � C1; C1C1 � C0:

Note that C0 is a k-subalgebra of C . A homomorphism of super k-algebras is a homomor-
phism 'WC !D of algebras such that '.Ci /�Di for i D 0;1:

EXAMPLE 18.10 Let c1; : : : ; cn 2 k. Define C.c1; : : : ; cn/ to be the k-algebra with genera-
tors e1; : : : ; en and relations

e2i D ci ; ej ei D�eiej (i ¤ j ).

As a k-vector space, C.c1; : : : ; cn/ has basis fei11 : : : e
in
n j ij 2 f0;1gg, and so has dimension

2n. When we set C0 and C1 equal to the subspaces

C0 D he
i1
1 : : : e

in
n j i1C�� �C in eveni

C1 D he
i1
1 : : : e

in
n j i1C�� �C in oddi;

of C.c1; : : : ; cn/, then it becomes a superalgebra.

Let C D C0˚C1 and D DD0˚D1 be two super k-algebras. The super tensor prod-
uct of C and D; C ŐD, is defined to be the k-vector space C ˝k D endowed with the
superalgebra structure�

C ŐD
�
0
D .C0˝D0/˚ .C1˝D1/�

C ŐD
�
1
D .C0˝D1/˚ .C1˝D0/

.ci ˝dj /.c
0
k˝d

0
l /D .�1/

jk.cic
0
k˝djd

0
l / ci 2 Ci , dj 2Dj etc..

The maps

iC WC ! C ŐD; c 7! c˝1

iDWD! C ŐD; d 7! 1˝d

have the following universal property: for any homomorphisms of k-superalgebras

f WC ! T; gWD! T

whose images anticommute in the sense that

f .ci /g.dj /D .�1/
ijg.dj /f .ci /; ci 2 Ci ;dj 2Dj ;

there is a unique superalgebra homomorphism hWC ŐD ! T such that f D h ı iC , g D
hı iD .

EXAMPLE 18.11 As a k-vector space, C.c1/ Ő C.c2/ has basis 1˝ 1, e˝ 1, 1˝ e, e˝ e,
and

.e˝1/2 D e2˝1D c1 �1˝1

.1˝ e/2 D 1˝ e2 D c2 �1˝1

.e˝1/.1˝ e/D e˝ e D�.1˝ e/.e˝1/:
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Therefore,

C.c1/ Ő C.c2/' C.c1; c2/

e˝1$ e1

1˝ e$ e2:

Similarly,
C.c1; : : : ; ci�1/ Ő C.ci /' C.c1; : : : ; ci /,

and so, by induction,
C.c1/ Ő � � � Ő C.cn/' C.c1; : : : ; cn/:

EXAMPLE 18.12 Every k-algebra A can be regarded as a k-superalgebra by setting A0 D
A and A1 D 0. If A;B are both k-algebras, then A˝k B D A Ő kB .

EXAMPLE 18.13 Let X be a manifold. Then H.X/ def
D
L
iH

i .X;R/ becomes an R-
algebra under cup-product, and even a superalgebra with H.X/0 D

L
iH

2i .X;R/ and
H.X/1 D

L
iH

2iC1.X;R/. If Y is a second manifold, the Künneth formula says that

H.X �Y /DH.X/ ŐH.Y /

(super tensor product).

18e Brief review of the tensor algebra

Let V be a k-vector space. The tensor algebra of V is T .V /D
L
n�0V

˝n, where

V ˝0 D k;

V ˝1 D V;

V ˝n D V ˝�� �˝V .n copies of V /

with the algebra structure defined by juxtaposition, i.e.,

.v1˝�� �˝vm/ � .vmC1˝�� �˝vmCn/D v1˝�� �˝vmCn:

It is a k-algebra.
If V has a basis e1; : : : ; em, then T .V / is the k-algebra of noncommuting polynomials

in e1; : : : ; em.
There is a k-linear map V ! T .V /, namely, V D V ˝1 ,!

L
n�0V

˝n, and any other
k-linear map from V to a k-algebra R extends uniquely to a k-algebra homomorphism
T .V /!R.

18f The Clifford algebra

Let .V;q/ be a quadratic space, and let � be the corresponding bilinear form on V .

DEFINITION 18.14 The Clifford algebra C.V;q/ is the quotient of the tensor algebra
T .V / of V by the two-sided ideal I.q/ generated by the elements x˝x�q.x/ .x 2 V /.
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Let �WV ! C.V;q/ be the composite of the canonical map V ! T .V / and the quotient
map T .V /! C.V;q/. Then � is k-linear, and66

�.x/2 D q.x/, all x 2 V: (114)

Note that if x is anisotropic in V , then �.x/ is invertible in C.V;q/, because (114) shows
that

�.x/ �
�.x/

q.x/
D 1.

EXAMPLE 18.15 If V is one-dimensional with basis e and q.e/D c, then T .V / is a poly-
nomial algebra in one symbol e, T .V /D kŒe�, and I.q/D .e2� c/. Therefore, C.V;q/�
C.c/.

EXAMPLE 18.16 If q D 0, then C.V;q/ is the exterior algebra on V , i.e., C.V;q/ is the
quotient of T .V / by the ideal generated by all squares x2, x 2 V . In C.V;q/,

0D .�.x/C�.y//2 D �.x/2C�.x/�.y/C�.y/�.x/C�.y/2 D �.x/�.y/C�.y/�.x/

and so �.x/�.y/D��.y/�.x/.

PROPOSITION 18.17 Let r be a k-linear map from V to a k-algebra D such that r.x/2 D
q.x/. Then there exists a unique homomorphism of k-algebras Nr WC.V;q/!D such that
Nr ı�D r :

V C.V;q/

D:

�

r
Nr

PROOF. According to the universal property of the tensor algebra, r extends uniquely to a
homomorphism of k-algebras r 0WT .V /!D, namely,

r 0.x1˝�� �˝xn/D r.x1/ � � �r.xn/.

As
r 0.x˝x�q.x//D r.x/2�q.x/D 0;

r 0 factors uniquely through C.V;q/. 2

As usual, .C.V;q/;�/ is uniquely determined up to a unique isomorphism by the uni-
versal property in the proposition.

66For a k-algebra R, we are regarding k as a subfield of R. When one regards a k-algebra R as a ring with
a k!R, it is necessary to write (114) as

�.x/2 D q.x/ �1C.V;q/:
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THE MAP C.c1; : : : ; cn/! C.V;q/

Because � is linear,

�.xCy/2 D .�.x/C�.y//2 D �.x/2C�.x/�.y/C�.y/�.x/C�.y/2:

On comparing this with

�.xCy/2
(114)
D q.xCy/D q.x/Cq.y/C2�.x;y/;

we find that
�.x/�.y/C�.y/�.x/D 2�.x;y/: (115)

In particular, if f1; : : : ;fn is an orthogonal basis for V , then

�.fi /
2
D q.fi /; �.fj /�.fi /D��.fi /�.fj / .i ¤ j /:

Let ci D q.fi /. Then there exists a surjective homomorphism

ei 7! �.fi /WC.c1; : : : ; cn/! C.V;�/: (116)

THE GRADATION (SUPERSTRUCTURE) ON THE CLIFFORD ALGEBRA

Decompose

T .V /D T .V /0˚T .V /1

T .V /0 D
M
m even

V ˝m

T .V /1 D
M
m odd

V ˝m:

As I.q/ is generated by elements of T .V /0,

I.q/D .I.q/\T .V /0/˚ .I.q/\T .V /1/ ;

and so
C.V;q/D C0˚C1 with Ci D T .V /i=I.q/\T .V /i :

Clearly this decomposition makes C.V;q/ into a super algebra.
In more down-to-earth terms, C0 is spanned by products of an even number of vectors

from V , and C1 is spanned by products of an odd number of vectors.

THE BEHAVIOUR OF THE CLIFFORD ALGEBRA WITH RESPECT TO DIRECT

SUMS

Suppose
.V;q/D .V1;q1/˚ .V2;q2/:

Then the k-linear map

V D V1˚V2
r
�! C.V1;q1/ Ő C.V2;q2/

x D .x1;x2/ 7! �1.x1/˝1C1˝�2.x2/:
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has the property that

r.x/2 D .�1.x1/˝1C1˝�2.x2//
2

D .q.x1/Cq.x2//.1˝1/

D q.x/;

because

.�1.x1/˝1/.1˝�2.x2//D �1.x1/˝�2.x2/D�.1˝�2.x2//.�1.x1/˝1//:

Therefore, it factors uniquely through C.V;q/:

C.V;q/! C.V1;q1/ Ő C.V2;q2/. (117)

EXPLICIT DESCRIPTION OF THE CLIFFORD ALGEBRA

THEOREM 18.18 Let .V;q/ a quadratic space of dimension n.

(a) For every orthogonal basis for .V;q/, the homomorphism (116)

C.c1; : : : ; cn/! C.V;q/

is an isomorphism.
(b) For every orthogonal decomposition .V;q/D .V1;q1/˚.V2;q2/, the homomorphism

(117)
C.V;q/! C.V1;q1/ Ő C.V2;q2/

is an isomorphism.
(c) The dimension of C.V;q/ as a k-vector space is 2n.

PROOF. If nD 1, all three statements are clear from (18.15). Assume inductively that they
are true for dim.V / < n. Certainly, we can decompose .V;q/D .V1;q1/˚ .V2;q2/ in such
a way that dim.Vi / < n. The homomorphism (117) is surjective because its image contains
�1.V1/˝1 and 1˝�2.V2/ which generate C.V1;q1/ Ő C.V2;q2/, and so

dim.C.V;q//� 2dim.V1/2dim.V2/ D 2n:

From an orthogonal basis for .V;q/, we get a surjective homomorphism (116). Therefore,

dim.C.V;q//� 2n:

It follows that dim.C.V;q// D 2n. By comparing dimensions, we deduce that the homo-
morphisms (116) and (117) are isomorphisms. 2

COROLLARY 18.19 The map �WV ! C.V;q/ is injective.

From now on, we shall regard V as a subset of C.V;q/ (i.e., we shall omit �).

REMARK 18.20 Let L be a field containing k. Then � extends uniquely to an L-bilinear
form

�0WV 0�V 0! L; V 0 D L˝k V;

and
C.V 0;q0/' L˝k C.V;q/

where q0 is quadratic form defined by �0.
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THE CENTRE OF THE CLIFFORD ALGEBRA

Assume that .V;q/ is regular, and that nD dimV > 0. Let e1; : : : ; en be an orthogonal basis
for .V;q/, and let q.ei /D ci . Let

�D .�1/
n.n�1/
2 c1 � � �cn D .�1/

n.n�1/
2 det.�.ei ; ej //.

We saw in (18.18) that
C.c1; : : : ; cn/' C.V;q/:

Note that, in C.c1; : : : ; cn/, .e1 � � �en/2 D�. Moreover,

ei � .e1 � � �en/D .�1/
i�1ci .e1 � � �ei�1eiC1 � � �en/

.e1 � � �en/ � ei D .�1/
n�ici .e1 � � �ei�1eiC1 � � �en/.

Therefore, e1 � � �en lies in the centre of C.V;q/ if and only if n is odd.

PROPOSITION 18.21 (a) If n is even, the centre of C.V;q/ is k; if n is odd, it is of degree
2 over k, generated by e1 � � �en: In particular, C0\Centre.C.V;q//D k.

(b) No nonzero element of C1 centralizes C0.

PROOF. First show that a linear combination of reduced monomials is in the centre (or cen-
tralizes C0) if and only if each monomial does, and then find the monomials that centralize
the ei (or the eiej ). 2

In Scharlau 1985, Chapter 9, 2.10, there is the following description of the complete
structure of C.V;q/:

If n is even, C.V;q/ is a central simple algebra over k, isomorphic to a tensor
product of quaternion algebras. If n is odd, the centre of C.V;q/ is generated
over k by the element e1 � � �en whose square is �, and, if � is not a square in
k, then C.V;q/ is a central simple algebra over the field kŒ

p
��.

THE INVOLUTION �

An involution of a k-algebra D is a k-linear map �WD!D such that .ab/� D b�a� and
a�� D 1. For example, M 7!M t (transpose) is an involution of Mn.k/.

Let C.V;q/opp be the opposite k-algebra to C.V;q/, i.e., C.V;q/opp D C.V;q/ as a
k-vector space but

ab in C.V;q/opp
D ba in C.V;q/.

The map �WV ! C.V;q/opp is k-linear and has the property that �.x/2 D q.x/. Thus, there
exists an isomorphism �WC.V;q/! C.V;q/opp inducing the identity map on V , and which
therefore has the property that

.x1 � � �xr/
�
D xr � � �x1

for x1; : : : ;xr 2 V . We regard � as an involution of A. Note that, for x 2 V , x�x D q.x/.
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18g The Spin group

Initially we define the spin group as an abstract group.

DEFINITION 18.22 The group Spin.q/ consists of the elements t of C0.V;q/ such that

(a) t�t D 1;
(b) tV t�1 D V ,
(c) the map x 7! txt�1WV ! V has determinant 1:

REMARK 18.23 (a) The condition (a) implies that t is invertible in C0.V;q/, and so (b)
makes sense.

(b) We shall see in (18.27) below that the condition (c) is implied by (a) and (b).

THE MAP Spin.q/! SO.q/

Let t be an invertible element of C.V;q/ such that tV t�1 D V . Then the mapping x 7!
txt�1WV ! V is an isometry, because

q.txt�1/D .txt�1/2 D tx2t�1 D tq.x/t�1 D q.x/.

Therefore, an element t 2 Spin.q/ defines an element x 7! txt�1of SO.q/.

THEOREM 18.24 The homomorphism

Spin.q/! SO.q/

just defined has kernel of order 2, and it is surjective if k is algebraically closed.

PROOF. The kernel consists of those t 2 Spin.q/ such that txt�1 D x for all x 2 V . As V
generates C.V;q/, such a t must lie in the centre of C.V;q/. Since it is also in C0, it must
lie in k. Now the condition t�t D 1 implies that t D˙1.

For an anisotropic a 2 V , let Ra be the reflection in the hyperplane orthogonal to a.
According to Theorem 18.2, each element � of SO.q/ can be expressed � D Ra1 � � �Ram
for some ai . As det.Ra1 � � �Ram/D .�1/

m, we see thatm is even, and so SO.q/ is generated
by elements RaRb with a;b anisotropic elements of V . If k is algebraically closed, we can
even scale a and b so that q.a/D 1D q.b/.

Now

axa�1 D .�xaC2�.a;x//a�1 as .axCxaD 2�.a;x/, see (115))

D�

�
x�

2�.a;x/

q.a/
a

�
as a2 D q.a/

D�Ra.x/:

Moreover,
.ab/�ab D baab D q.a/q.b/:

Therefore, if q.a/q.b/D 1, then RaRb is in the image of Spin.q/! SO.q/. As we noted
above, such elements generate SO.q/ when k is algebraically closed. 2

In general, the homomorphism is not surjective. For example, if k D R, then Spin.q/
is connected but SO.q/ will have two connected components when � is indefinite. In this
case, the image is the identity component of SO.q/.
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18h The Clifford group

Write  for the automorphism of C.V;q/ that acts as 1 on C0.V;q/ and as �1 on C1.V;q/.

DEFINITION 18.25 The Clifford group is

� .q/D ft 2 C.V;q/ j t invertible and .t/V t�1 D V g:

For t 2 � .q/, let ˛.t/ denote the homomorphism x 7! .t/xt�1WV ! V .

PROPOSITION 18.26 For all t 2 � .q/, ˛.t/ is an isometry of V , and the sequence

1! k�! � .q/
˛
�! O.q/! 1

is exact (no condition on k).

PROOF. Let t 2 � .q/. On applying  and � to .t/V D V t , we find that .t�/V D V t�,
and so t� 2 � .q/. Now, because � and  act as 1 and �1 on V ,

.t/ �x � t�1 D�..t/ �x � t�1/� D�.t��1x.t�//D .t��1/xt�;

and so
.t�/.t/x D xt�t: (118)

We use this to prove that ˛.t/ is an isometry:

q.˛.t/.x//D .˛.t/.x//� � .˛.t/.x//D t��1x.t/� �.t/xt�1
.118/
D t��1xxt�t t�1 D q.x/:

As k is in the centre of � .q/, k� is in the kernel of ˛. Conversely, let t D t0C t1 be an
invertible element of C.V;q/ such that .t/xt�1 D x for all x 2 V , i.e., such that

t0x D xt0; t1x D�xt1

for all x 2 V . As V generates C.V;q/ these equations imply that t0 lies in the centre of
C.V;q/, and hence in k (18.21a), and that t1 centralizes C0, and hence is zero (18.21b). We
have shown that

Ker.˛/D k�:

It remains to show that ˛ is surjective. For t 2 V , ˛.t/.y/ D �tyt�1 and so (see the
proof of (18.24)), ˛.t/DRt . Therefore the surjectivity follows from Theorem 18.2. 2

COROLLARY 18.27 For an invertible element t of C0.V;q/ such that tV t�1 D V , the
determinant of x 7! txt�1WV ! V is one.

PROOF. According to the proposition, every element t 2 � .q/ can be expressed in the form

t D ca1 � � �am

with c 2 k� and the ai anisotropic elements of V . Such an element acts as Ra1 � � �Ram on
V , and has determinant .�1/m. If t 2 C0.V;q/, then m is even, and so det.t/D 1. 2

Hence, the condition (c) in the definition of Spin.q/ is superfluous.
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18i Action of O.q/ on Spin.q/

18.28 An element � of O.q/ defines an automorphism of C.V;q/ as follows. Consider
� ı� WV ! C.V;q/. Then .�.�.x//2 D �.�.x// �1D �.x/ �1 for every x 2 V . Hence, by
the universal property, there is a unique homomorphism Q� WC.V;q/! C.V;q/ rendering

V
�

����! C.V;q/??y� ??yQ�
V

�
����! C.V;q/

commutative. Clearly �̃1 ı�2 D e�1 ı e�2 and eid D id, and so g��1 D Q��1, and so Q� is an
automorphism. If � 2 SO.�/, it is known that Q� is an inner automorphism of C.V;q/ by an
invertible element of CC.V;q/.

18j Restatement in terms of algebraic groups

Let .V;q/ be quadratic space over k, and let qK be the unique extension of q to a quadratic
form on K˝k V . As we noted in (18.20), C.V;qK/DK˝k C.V;q/.

THEOREM 18.29 There exists a naturally defined algebraic group Spin.q/ over k such that

Spin.q/.K/' Spin.qK/

for all fields K containing k. Moreover, there is a homomorphism of algebraic groups

Spin.q/! SO.q/

giving the homomorphism in (18.24) for each field K containing k. Finally, the action of
O.q/ on C.V;q/ described in (18.24) defines an action of O.q/ on Spin.q/.

PROOF. Show that, when k is infinite, the algebraic group attached to the subgroup Spin.q/
of GL.V / (see 7.22) has these properties. Alternatively, define a functorR Spin.qR/ that
coincides with the previous functor when R is a field. 2

In future, we shall write Spin.q/ for the algebraic group Spin.q/.

ASIDE 18.30 A representation of a semisimple algebraic group G gives rise to a representation of
its Lie algebra g, and all representations of g arise from G only if G has the largest possible centre.
“When E. Cartan classified the simple representations of all simple Lie algebras, he discovered
a new representation of the orthogonal Lie algebra [not arising from the orthogonal group]. But
he did not give a specific name to it, and much later, he called the elements on which this new
representation operates spinors, generalizing the terminology adopted by physicists in a special case
for the rotation group of the three dimensional space” (C. Chevalley, The Construction and Study of
Certain Important Algebras, 1955, III 6). This explains the origin and name of the Spin group.
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19 The classical semisimple groups

Over an algebraically closed field, the classical semisimple algebraic groups are those
whose almost-simple factors are isogenous to a group on the following list: SLnC1 (n� 1),
SO2nC1 (n � 2), Sp2n (n � 3), SO2n (n � 4); these are said to be, respectively, of type
An, Bn, Cn, orDn. Over an arbitrary field k, they are the semisimple algebraic groups that
become classical over kal. We shall call An, Bn, Cn, and Dn the classical types.

In this section, we describe the classical semisimple groups over a field k in terms of
the semisimple algebras with involution over k.67 Then we explain how class field theory
allows us describe the semisimple algebras over the algebraic number fields (e.g., Q/, the
p-adic fields (e.g., Qp/, and R.

In this section, by a k-algebra A, we mean a ring (not necessarily commutative) con-
taining k in its centre and of finite dimension as a k-vector space (the dimension is called
the degree ŒAWk� of A). Throughout this section, vector spaces and modules are finitely
generated.

Throughout this section, k is a field. In the second part of the section, k is assumed to
have characteristic zero.

NOTES This section is OK as far as it goes, but needs to be completed (proofs added; condition on
the characteristic removed). I think it can be made elementary (no root systems etc.) except that we
need to know what the groups of outer automorphisms are — in particular, that they are finite mod
inner automorphisms (perhaps this can be proved directly case by case).

19a Nonabelian cohomology

Let � be a group. A � -set is a set A with an action

.�;a/ 7! �aW� �A! A

of � on A (so .��/a D �.�a/ and 1a D a). If, in addition, A has the structure of a group
and the action of � respects this structure (i.e., �.aa0/ D �a � �a0), then we say A is a
� -group.

DEFINITION OF H 0.�;A/

For a � -set A,H 0.� ;A/ is defined to be the set A� of elements left fixed by the operation
of � on A, i.e.,

H 0.� ;A/D A� D fa 2 A j �aD a for all � 2 � g:

If A is a � -group, then H 0.�;A/ is a group.

DEFINITION OF H 1.� ;A/

LetA be a � -group. A mapping � 7! a� of � intoA is said to be a crossed homomorphism
or a 1-cocycle � in A if the relation a�� D a� ��a� holds for all �;� 2 � . Two 1-cocycles
.a� / and .b� / are said to be equivalent if there exists a c 2 A such that

b� D c
�1
�a� ��c for all � 2 � .

67Except for the algebraic groups of type 3D4, which seem to be neither classical nor exceptional.
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This is an equivalence relation on the set of 1-cocycles of � in A, and H 1.� ;A/ is defined
to be the set of equivalence classes of 1-cocycles.

In general H 1.� ;A/ is not a group unless A is commutative, but it has a distinguished
element, namely, the class of 1-cocycles of the form � 7! b�1 � �b, b 2 A (the principal
1-cocycles).

COMPATIBLE HOMOMORPHISMS

Let � be a second group. Let A be � -group and B an �-group. Two homomorphisms
f WA! B and gW�! � are said to be compatible if

f .g.�/a/D �.f .a// for all � 2�, a 2 A.

If .a� / is a 1-cocycle for A, then
b� D f .ag.�//

is a 1-cocycle of � in B , and this defines a mapping H 1.�;A/! H 1.�;B/, which is a
homomorphism if A and B are commutative.

When�D � , a homomorphism f WA!B compatible with the identity map, i.e., such
that

f .�a/D �.f .a// for all � 2 � , a 2 A,

f is said to be a � -homomorphism (or be � -equivariant).

EXACT SEQUENCES

PROPOSITION 19.1 An exact sequence

1! A0! A! A00! 1

of � -groups gives rise to an exact sequence of cohomology sets

1!H 0.�;A0/!H 0.�;A/!H 0.�;A00/!H 1.�;A0/!H 1.�;A/!H 1.�;A00/

Exactness at H 0.�;A00/ means that the fibres of the map H 0.�;A00/!H 1.�;A0/ are
the orbits of the group H 0.�;A/ acting on H 0.�;A00/. Exactness at H 1.�;A0/ means that
fibre of H 1.�;A0/!H 1.�;A/ over the distinguished element is the image of H 0.�;A00/.

We now define the boundary map H 0.�;A00/!H 1.�;A0/. For simplicity, regard A0

as a subgroup of A with quotient A00. Let a00 be an element of A00 fixed by � , and choose
an a in A mapping to it. Because a00 is fixed by � , a�1 ��a is an element of A0, which we
denote a� . The map � 7! a� is a 1-cocycle whose class in H 1.�;A0/ is independent of the
choice of a. To define the remaining maps and check the exactness is now very easy.

PROFINITE GROUPS

For simplicity, we now assume k to be perfect. Let � D Gal.kal=k/ where kal is the
algebraic closure of k. For any subfield K of kal finite over k, we let

�K D f� 2 � j �x D x for all x 2Kg:

We consider only � -groups A for which

AD
S
A�K (119)
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and we defineH 1.�;A/ to be the set of equivalence classes of 1-cocycles that factor through
Gal.K=k/ for some subfield K of kal finite and Galois over k. With these definitions,68

H 1.�;A/D lim
�!

H 1.Gal.K=k/;A�K / (120)

where K runs through the subfields K of kal finite and Galois over k.

THE GALOIS COHOMOLOGY OF ALGEBRAIC GROUPS

When G is an algebraic group over k,

G.kal/D
S
G.K/; G.K/DG.kal/�K ;

and so G.kal/ satisfies (119). We write H i .k;G/ for H i .Gal.kal=k/;G.kal//.
An exact sequence

1!G0!G!G00! 1

of algebraic groups over k gives rise to an exact sequence

1!G0.R/!G.R/!G00.R/

for any k-algebra R; when RD kal, we get a short exact sequence

1!G0.kal/!G.kal/!G00.kal/! 1

(7.54), and hence (19.1) an exact sequence

1!G0.k/!G.k/!G00.k/!H 1.k;G0/!H 1.k;G/!H 1.k;G00/.

CLASSIFYING VECTOR SPACES WITH TENSORS

Let K be a finite Galois extension of k with Galois group � . Let V be a finite-dimensional
K-vector space. A semi-linear action of � on V is a homomorphism � ! Autk-lin.V /

such that
�.cv/D �c ��v all � 2 � , c 2K, v 2 V:

If V D K˝k V0, then there is a unique semi-linear action of � on V for which V � D
1˝V0, namely,

�.c˝v/D �c˝v � 2 � , c 2K, v 2 V:

PROPOSITION 19.2 The functor V 7! K˝k V from k-vector spaces to K-vector spaces
endowed with a semi-linear action of � is an equivalence of categories with quasi-inverse
V 7! V � .

PROOF. The proof is elementary. See AG 16.14. 2

68Equivalently, we consider only � -groups A for which the pairing � �A!A is continuous relative to the
Krull topology on � and the discrete topology on A, and we require that the 1-cocycles be continuous for the
same topologies.
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BILINEAR FORMS AND COHOMOLOGY SETS

Let V0 be a k-vector space equipped with a bilinear form �0WV �V ! k, and write .V0;�0/K
for the pair overK obtained from .V0;�0/ by extension of scalars. Let A.K/ denote the set
of automorphisms of .V0;�0/K .69

THEOREM 19.3 The cohomology set H 1.�;A.K// classifies the isomorphism classes of
pairs .V;�/ over k that become isomorphic to .V0;�0/ over K.

PROOF. Suppose .V;�/K � .V0;�0/K , and choose an isomorphism

f W.V0;�0/K ! .V;�/K :

Let
a� D f

�1
ı�f:

Then

a� ��a� D .f
�1
ı�f /ı .�f �1 ı��f /

D a�� ;

and so a� .f / is a 1-cocycle. Moreover, any other isomorphism f 0W.V0;�0/K ! .V;�/K
differs from f by a g 2A.K/, and

a� .f ıg/D g
�1
�a� .f / ��g:

Therefore, the cohomology class of a� .f / depends only on .V;�/. It is easy to see that,
in fact, it depends only on the isomorphism class of .V;�/, and that two pairs .V;�/ and
.V 0;�0/ giving rise to the same class are isomorphic. It remains to show that every coho-
mology class arises from a pair .V;�/. Let .a� /�2� be a 1-cocycle, and use it to define a
new action of � on VK

def
DK˝k V :

�x D a� ��x; � 2 �; x 2 VK :

Then
� .cv/D �c � �v, for � 2 � , c 2K, v 2 V;

and
� .�v/D � .a��v/D a� ��a� ���v D

��v;

and so this is a semilinear action. Therefore,

V1
def
D fx 2 VK j

�x D xg

is a subspace of VK such that K˝k V1 ' VK (by 19.2). Because �0K arises from a pairing
over k,

�0K.�x;�y/D ��.x;y/; all x;y 2 VK :

Therefore (because a� 2A.K/),

�0K.
�x;�y/D �0K.�x;�y/D ��0K.x;y/:

If x;y 2 V1, then �0K.�x;�y/D �0K.x;y/, and so �0K.x;y/D ��0K.x;y/. By Galois
theory, this implies that �0K.x;y/ 2 k, and so �0K induces a k-bilinear pairing on V1. 2

69In more detail: .V0;�0/K D .V0K ;�0K/ where V0K DK˝k V0 and �0K is the unique K-bilinear map
V0K � V0K ! K extending �0; an element of A.K/ is a K-linear isomorphism ˛WV0K ! V0K such that
�0K.˛x;˛y/D �0K.x;y/ for all x;y 2 V0K .
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APPLICATIONS

Again let K be a finite Galois extension of k with Galois group � .

PROPOSITION 19.4 For all n, H 1.�;GLn.K//D 1:

PROOF. Apply Theorem 19.3 with V0D kn and �0 the zero form. It shows thatH 1.�;GLn.K//
classifies the isomorphism classes of k-vector spaces V such that K˝k V �Kn. But such
k-vector spaces have dimension n, and therefore are isomorphic. 2

PROPOSITION 19.5 For all n, H 1.�;SLn.K//D 1

PROOF. Because the determinant map detWGLn.K/!K� is surjective,

1! SLn.K/! GLn.K/
det
�!K�! 1

is an exact sequence of � -groups. It gives rise to an exact sequence

GLn.k/
det
�! k�!H 1.�;SLn/!H 1.�;GLn/

from which the statement follows. 2

PROPOSITION 19.6 Let �0 be a nondegenerate alternating bilinear form on V0, and let Sp
be the associated symplectic group70. Then H 1.�;Sp.K//D 1.

PROOF. According to Theorem 19.3,H 1.�;Sp.K// classifies isomorphism classes of pairs
.V;�/ over k that become isomorphic to .V0;�0/ over K. But this condition implies that
� is a nondegenerate alternating form and that dimV D dimV0. All such pairs .V;�/ are
isomorphic. 2

REMARK 19.7 Let �0 be a nondegenerate bilinear symmetric form on V0, and let O be
the associated orthogonal group. Then H 1.�;O.K// classifies the isomorphism classes of
quadratic spaces over k that become isomorphic to .V;�/ over K. This can be a very large
set.

19b Classifying the forms of an algebraic group (overview)

Again let K be a finite Galois extension of k with Galois group � . Let G0 be an algebraic
group over k, and let A.K/ be the group of automorphisms of .G0/K . Then � acts on
A.K/ in a natural way:

�˛ D � ı˛ ı��1; � 2 �; ˛ 2A.K/:

THEOREM 19.8 The cohomology set H 1.�;A.K// classifies the isomorphism classes of
algebraic groups G over k that become isomorphic to G0 over K.

70So Sp.R/D fa 2 EndR-lin.R˝k V / j �.ax;ay/D �.x;y/g
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PROOF. Let G be such an algebraic group over k, choose an isomorphism

f WG0K !GK ;

and write
a� D f

�1
ı�f:

As in the proof of Theorem 19.3, .a� /�2� is a 1-cocycle, and the map

G 7! class of .a� /�2� in H 1.�;A.K//

is well-defined and its fibres are the isomorphism classes.
In proving that the map is surjective, it is useful to identify A.K/ with the auto-

morphism group of the Hopf algebra O.G0K/ D K ˝k O.G0/. Let A0 D O.G0/ and
A D K˝k A0. As in the proof of Theorem 19.3, we use a 1-cocycle .a� /�2� to twist
the action of � on A; specifically, we define

�aD a� ı�a; � 2 �; a 2 A.

Proposition 19.2 in fact holds for infinite dimensional vector spaces V with the same proof,
and so the k-subspace

B D fa 2 A j �aD ag

of A has the property that
K˝k B ' A:

It remains to show that the Hopf algebra structure on A induces a Hopf algebra structure on
B . Consider for example the comultiplication. The k-linear map

�0WA0! A0˝k A0

has a unique extension to a K-linear map

�WA! A˝K A:

This map commutes with the action of � :

�.�a/D �.�.a//; all � 2 � , a 2 A.

Because a� is a Hopf algebra homomorphism,

�.a�a/D a��.a/; all � 2 � , a 2 A.

Therefore,
�.�a/D � .�.a//; all � 2 � , a 2 A.

In particular, we see that � maps B into .A˝K A/� , which equals B˝k B because the
functor in (19.2) preserves tensor products. Similarly, all the maps defining the Hopf alge-
bra structure on A preserve B , and therefore define a Hopf algebra structure on B . Finally,
one checks that the 1-cocycle attached to B and the given isomorphism K˝k B ! A is
.a� /. 2
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EXAMPLES

19.9 For all n, H 1.k;GLn/D 1.

This follows from (19.4) and (120).

19.10 For all n, H 1.k;SLn/D 1:

19.11 For all n, H 1.k;Spn/D 1:

19.12 Let .V;�/ be a nondegenerate quadratic space over k. ThenH 1.k;O.�// classifies
the isomorphism classes of quadratic spaces over k with the same dimension as V .

PROOF. Over kal, all nondegenerate quadratic spaces of the same dimension are isomor-
phic. 2

19.13 Let G be an algebraic group of k. The isomorphism classes of algebraic groups
over k that become isomorphic to Gkal over kal are classified by H 1.�;A.kal//. Here
� D Gal.kal=k/ and A.kal/ is the automorphism group of Gkal .

This can be proved by passing to the limit in (19.8) over all K � kal that are finite and
Galois over k, or by rewriting the proof of (19.8) for infinite extensions.

19.14 Let G� D .G/K=k . We have

H i .k;G�/'H
i .K;G/ for i D 0;1 (and for all i � 0 when G is commutative).

PROOF. Combine (186) with Shapiro’s lemma (CFT II, 1.11 for the commutative case;
need to add the proof for the noncommutative case). 2

An algebraic group G over a field k is said to be geometrically almost-simple (or abso-
lutely almost-simple) if it is almost-simple, and remains almost-simple over kal.71

From now on, we assume that k has characteristic zero.
Every semisimple algebraic group over a field k has a finite covering by a simply con-

nected semisimple algebraic group over k; moreover, every simply connected semisimple
algebraic group over k is a direct product of almost-simple algebraic groups over k (whenG
is simply connected, the map in (17.16) is an isomorphism); finally, every simply connected
almost-simple group over k is of the form .G/K=k where G is geometrically almost-simple
overK (17.19). Thus, to some extent, the problem of listing all semisimple algebraic groups
comes down to the problem of listing all simply connected, geometrically almost-simple,
algebraic groups.

A semisimple group G over a field k is said to be split if it contains a split torus T such
that Tkal is maximal in Gkal .

71The term “absolutely almost-simple” is more common, but I prefer “geometrically almost-simple”.
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SIMPLY CONNECTED, GEOMETRICALLY ALMOST-SIMPLE, ALGEBRAIC

GROUPS

For an algebraic group G, let Gad D G=Z.G/. We shall need a description of the full
automorphism group of G. This is provided by the following statement, which will be
proved in a later chapter.

19.15 Let G be a simply connected semisimple group G, and let A.kal/ be the group of
automorphisms of Gkal . There is an exact sequence

1!Gad.kal/!A.kal/! Sym.D/! 1

where Sym.D/ is the (finite) group of symmetries of the Dynkin diagram of G. When G
is split, � acts trivially on Sym.D/, and the sequence is split, i.e., there is a subgroup of
A.kal/ on which � acts trivially and which maps isomorphically onto Sym.D/.

An element of Gad.kal/D G.kal/=Z.kal/ acts on Gkal by an inner automorphism. The
Dynkin diagrams of almost-simple groups don’t have many symmetries: for D4 the sym-
metry group is S3 (symmetric group on 3 letters), for An, Dn, and E6 it has order 2, and
otherwise it is trivial. Later in this section, we shall explicitly describe the outer automor-
phisms arising from these symmetries.

19.16 For each classical type and field k, we shall write down a split, geometrically
almost-simple, algebraic group G over k such that Gkal is of the given type (in fact, G
is unique up to isomorphism). We know (19.13) that the isomorphism classes of algebraic
groups over k becoming isomorphic to G over kal are classified by H 1.k;A.kal// where
A.kal/ is the automorphism group ofGkal . The Galois group � acts trivially onX�.Z.G//;
for the form G0 of G defined by a 1-cocycle .a� /, Z.G0/kal D Z.G/kal but with � acting
through a� .

For example, for An, the split group is SLn. This has centre �n, which is the group of
multiplicative type corresponding to Z=nZ with the trivial action of � . Let G0 and G be
groups over k, and let f WG0kal !Gkal be an isomorphism over kal. Write a� D f �1 ı�f .
Then f defines an isomorphism

f WZ0.k
al/!Z.kal/

on the points of their centres, and

f .a��x/D �.f .x//:

When we use f to identify Z0.kal/ with Z.kal/, this says that � acts on Z.kal/ by the
twisted action �x D a��x.

REMARK 19.17 Let G0 be the split simply connected group of type Xy , and let G be a
form of G0. Let c be its cohomology class. If c 2H 1.k;Gad/, then G is called an inner
form of G. In general, c will map to a nontrivial element of

H 1.k;Sym.D//D Homcontinuous.�;Sym.D//:

Let � be the kernel of this homomorphism, and let L be the corresponding extension field
of k. Let z D .� W�/. Then we say G is of type zXy . For example, if G is of type 3D4,
then it becomes an inner form of the split form over a
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19c The forms of Mn.k/

DEFINITION 19.18 A k-algebra A is central if its centre is k, and it is simple if it has no
2-sided ideals (except 0 and A). If all nonzero elements have inverses, it is called a division
algebra (or skew field).

EXAMPLE 19.19 (a) The ring Mn.k/ is central and simple.
(b) For any a;b 2 k�, the quaternion algebra H.a;b/ is central and simple. It is either a

division algebra, or it is isomorphic to M2.k/.

THEOREM 19.20 (WEDDERBURN) For any division algebraD over k,Mn.D/ is a simple
k-algebra, and every simple k-algebra is of this form.

PROOF. See GT 7.22 or CFT, IV 1.9. 2

COROLLARY 19.21 When k is algebraically closed, the only central simple algebras over
k are the matrix algebras Mn.k/.

PROOF. Let D be a division algebra over k, and let ˛ 2 D. Then kŒ˛� is a commutative
integral domain of finite dimension over k, and so is a field. As k is algebraically closed,
kŒ˛�D k. 2

PROPOSITION 19.22 The k-algebras becoming isomorphic toMn.k/ over kal are the cen-
tral simple algebras over k of degree n2.

PROOF. Let A be a central simple algebra over k of degree n2. Then kal˝k A is again
central simple (CFT IV, 2.15), and so is isomorphic to Mn.k/ by (19.21). Conversely, if A
is a k-algebra that becomes isomorphic to Mn.k

al/ over kal, then it is certainly central and
simple, and has degree n2. 2

PROPOSITION 19.23 All automorphisms of the k-algebraMn.k/ are inner, i.e., of the form
X 7! YXY �1 for some Y .

PROOF. Let S be kn regarded as anMn.k/-module. It is simple, and every simpleMn.k/-
module is isomorphic to it (see AG 16.12). Let ˛ be an automorphism ofMn.k/, and let S 0

denote S , but with X 2Mn.k/ acting as ˛.X/. Then S 0 is a simple Mn.k/-module, and so
there exists an isomorphism of Mn.k/-modules f WS ! S 0. Then

˛.X/f Ex D fX Ex; all X 2Mn.k/, Ex 2 S:

Therefore,
˛.X/f D fX; all X 2Mn.k/:

As f is k-linear, it is multiplication by an invertible matrix Y , and so this equation shows
that

˛.X/D YXY �1: 2
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COROLLARY 19.24 The isomorphism classes of k-algebras becoming isomorphic toMn.k/

over kal are classified by H 1.k;PGLn/.

PROOF. The proposition shows that

Autkal-alg.Mn.k
al//D PGLn.kal/:

Let A be a k-algebra for which there exists an isomorphism f WMn.k
al/! kal˝k A, and

let
a� D f

�1
ı�f:

Then a� is a 1-cocycle, depending only on the k-isomorphism class of A.
Conversely, given a 1-cocycle, define

�X D a� ��X; � 2 � , X 2Mn.k
al/:

This defines an action of � onMn.k
al/ andMn.k

al/� is a k-algebra becoming isomorphic
to Mn.k/ over kal (cf. the proof of 19.3). 2

REMARK 19.25 Let A be a central simple algebra over k. For some n, there exists an
isomorphism f Wkal˝k A!Mn.k

al/, unique up to an inner automorphism (19.22, 19.23).
Let a 2 A, and let Nm.a/D det.f .a//. Then Nm.a/ does not depend on the choice of f .
Moreover, it is fixed by � , and so lies in k. It is called the reduced norm of a.

19d The inner forms of SLn

Consider
X 7!X WSLn.kal/!Mn.k

al/:

The action of PGLn.kal/ on Mn.k
al/ by inner automorphisms preserves SLn.kal/, and is

the full group of inner automorphisms of SLn.

THEOREM 19.26 The inner forms of SLn are the groups SLm.D/ forD a division algebra
of degree n=m.

PROOF. The inner forms of SLn and the forms ofMn.k/ are both classified byH 1.k;PGLn/,
and so correspond. The forms of Mn.k/ are the k-algebras Mm.D/ (by 19.22, 19.20), and
the form of SLn is related to it exactly as SLn is related to Mn. 2

Here SLm.D/ is the group

R 7! fa 2Mm.R˝kD/ j Nm.a/D 1g:
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19e Involutions of k-algebras

DEFINITION 19.27 Let A be a k-algebra. An involution of k is a k-linear map a 7!
a�WA! A such that

.ab/� D b�a� all a;b 2 A;

a�� D a:

The involution is said to be of the first or second kind according as it acts trivially on the
elements of the centre of k or not.

EXAMPLE 19.28 (a) OnMn.k/ there is the standard involutionX 7!X t (transpose) of the
first kind.

(b) On a quaternion algebra H.a;b/, there is the standard involution i 7! �i , j 7! �j
of the first kind.

(c) On a quadratic field extension K of k, there is a unique nontrivial involution (of the
second kind).

LEMMA 19.29 Let .A;�/ be an k-algebra with involution. An inner automorphism x 7!

axa�1 commutes with � if and only if a�a lies in the centre of A.

PROOF. To say that inn.a/ commutes with � means that the two maps

x 7! axa�1 7! .a�/�1x�a�

x 7! x� 7! ax�a�1

coincide, i.e., that
x� D .a�a/x�.a�a/�1

for all x 2 A. As x 7! x� is bijective, this holds if and only if a�a lies in the centre of a. 2

REMARK 19.30 Let A have centre k. We can replace a with ca, c 2 k�, without changing
inn.a/. This replaces a�a with c�c �a�a. When � is of the first kind, c�c D c2. Therefore,
when k is algebraically closed, we can choose c to make a�aD 1.

19f The outer forms of SLn

According to (19.15), there is an exact sequence

1! PGLn.kal/! Aut.SLnkal/! Sym.D/! 1;

and Sym.D/ has order 2. In fact,X 7! .X�1/t D .X t /�1 is an outer automorphism of SLn.
Now consider the k-algebra with involution of the second kind

Mn.k/�Mn.k/; .X;Y /� D .Y t ;X t /:

Every automorphism of Mn.k/�Mn.k/ is either inner, or is the composite of an inner
automorphism with .X;Y / 7! .Y;X/.72 According to (19.29), the inner automorphism by

72This isn’t obvious, but follows from the fact that the two copies ofMn.k/ are the only simple subalgebras
of Mn.k/�Mn.k/ (see Farb and Dennis, Noncommutative algebra, GTM 144, 1993, 1.13, for a more general
statement).
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a 2 A commutes with � if and only if a�a 2 k � k. But .a�a/� D a�a, and so a�a 2 k.
When we work over kal, we can scale a so that a�aD 1 (19.30): if aD .X;Y /, then

1D a�aD .Y tX;X tY /;

and so a D .X;.X t /�1/. Thus, the automorphisms of .Mn.k
al/�Mn.k

al/;�/ are the in-
ner automorphisms by elements .X;.X t /�1/ and composites of such automorphisms with
.X;Y / 7! .Y;X/. When we embed

X 7! .X;.X t /�1/WSLn.kal/ ,!Mn.k
al/�Mn.k

al/; (121)

the image it is stable under the automorphisms of .Mn.k
al/�Mn.k

al/;�/, and this induces
an isomorphism

Aut.Mn.k
al/�Mn.k

al/;�/' Aut.SLnkal/:

Thus, the forms of SLn correspond to the forms of .Mn.k/�Mn.k/;�/. Such a form is a
simple algebra A over k with centreK of degree 2 over k and an involution � of the second
kind.

The map (121) identifies SLn.kal/ with the subgroup ofMn.k
al/�Mn.k

al/ of elements
such that

a�aD 1; Nm.a/D 1:

Therefore, the form of SLn attached to the form .A;�/ is the group G such that G.R/
consists of the a 2R˝k A such that

a�aD 1; Nm.a/D 1:

There is a commutative diagram

Aut.SL
n Nk
/ ����! Sym.D/ 

Aut.Mn. Nk/�Mn. Nk/;�/ ����! Autk-alg. Nk� Nk/:

The centre K of A is the form of kal�kal corresponding to the image of the cohomology
class of G in Sym.D/. Therefore, we see that G is an outer form if and only if K is a field.

19g The forms of Sp2n
Here we use the k-algebra with involution of the first kind

M2n.k/; X� D SX tS�1; S D

�
0 I

�I 0

�
:

The inner automorphism defined by an invertible matrix U commutes with � if and only if
U �U 2 k (see 19.29). When we pass to kal, we may suppose U �U D I , i.e., that

SU tS�1U D I .

Because S�1 D�S , this says that
U tSU D S
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i.e., that U 2 Sp2n.k
al/. Since there are no symmetries of the Dynkin diagram Cn, we see

that the inclusion
X 7!X WSp2n.k

al/ ,!M2n.k
al/ (122)

induces an isomorphism

Aut.Sp2nkal/' Aut.M2n.k
al/;�/:

Therefore, the forms of Sp2ncorrespond to the forms of .M2n.k/;�/. Such a form is a
central simple algebra A over k with an involution � of the first kind.

The map (122) identifies Sp2n.k
al/ with the subgroup of M2n.k

al/ of elements such
that

a�aD 1:

Therefore, the form of Sp2n attached to .A;�/ is the group G such that G.R/ consists of
the a 2R˝k A for which

a�aD 1:

19h The forms of Spin.�/

Let .V;�/ be a nondegenerate quadratic space over k with largest possible Witt index. The
action of O.�/ on itself preserves SO.�/, and there is also an action of O.�/ on Spin.�/
(see �18i). These actions are compatible with the natural homomorphism

Spin.�/! SO.�/

and realize O.�/ modulo its centre as the automorphism group of each. Therefore, the
forms of Spin.�/ are exactly the double covers of the forms of SO.�/.

The determination of the forms of SO.�/ is very similar to the last case. Let M be the
matrix of � relative to some basis for V . We use the k-algebra with involution of the first
kind

Mn.k/; X� DMX tM�1:

The automorphism group of .Mn.k/;�/ is O.�/ modulo its centre, and so the forms of
SO.�/ correspond to the forms of .M2n.k/;�/. Such a form is a central simple algebra A
over k with an involution � of the first kind, and the form of SO.�/ attached to .A;�/ is the
group G such that G.R/ consists of the a 2R˝k A for which

a�aD 1:

19i Algebras admitting an involution

To continue, we need a description of the algebras with involution over a field k. For an
arbitrary field, there is not much one can say, but for one important class of fields there is a
great deal.

PROPOSITION 19.31 If a central simple algebra A over k admits an involution of the first
kind, then

A˝k A�Mn2.k/; n2 D ŒAWk�: (123)
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PROOF. Recall that the opposite algebra Aopp of A equals A as a k-vector space but has its
multiplication reversed:

aoppbopp
D .ba/opp.

Let A0 denote A regarded as a k-vector space. There are commuting left actions of A and
Aopp on A0, namely, A acts by left multiplication and Aopp by right multiplication, and
hence a homomorphism

A˝k A
opp
! Endk-lin .A0/ :

This is injective, and the source and target have the same dimension as k-vector spaces, and
so the map is an isomorphism. Since an involution on A is an isomorphism A! Aopp, the
proposition follows from this. 2

Over all fields, matrix algebras and quaternion algebras admit involutions. For many
important fields, these are essentially the only such algebras. Consider the following con-
dition on a field k:

19.32 The only central division algebras over k or a finite extension of k satisfying (123)
are the quaternion algebras and the field itself (i.e., they have degree 4 or 1).

THEOREM 19.33 The following fields satisfy (19.32): algebraically closed fields, finite
fields, R, Qp and its finite extensions, and Q and its finite extensions.

PROOF. The proofs become successively more difficult: for algebraically closed fields
there is nothing to prove (19.21); for Q it requires the full force of class field theory (CFT).2

19j The involutions on an algebra

Given a central simple algebra admitting an involution, we next need to understand the set
of all involutions of it.

THEOREM 19.34 (NOETHER-SKOLEM) Let A be a central simple algebra overK, and let
� and � be involutions of A that agree on K; then there exists an a 2 A such that

x� D ax�a�1; all x 2 A: (124)

PROOF. See CFT IV, 2.10. 2

Let � be an involution (of the first kind, and so fixing the elements of K, or of the
second kind, and so fixing the elements of a subfield k of K such that ŒKWk� D 2). For
which invertible a in A does (124) define an involution?

Note that
x�� D .a�a�1/�1x.a�a�1/

and so a�a�1 2K, say
a� D ca; c 2K:

Now,
a�� D c.c�a�/D cc� �a
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and so
cc� D 1:

If � is of the first kind, this implies that c2 D 1, and so c D˙1.
If � is of the second kind, this implies that cD d=d� for some d 2K (Hilbert’s theorem

90, FT 5.24). Since � is unchanged when we replace a with a=d , we see that in this case
(124) holds with a satisfying a� D a.

19k Hermitian and skew-hermitian forms

We need some definitions. Let

˘ .D;�/ be a division algebra with an involution �,
˘ V be a left vector space over D, and
˘ �WV �V ! D a form on V that is semilinear in the first variable and linear in the

second (so
�.ax;by/D a��.x;y/b; a;b 2D/:

Then � is said to hermitian if

�.x;y/D �.y;x/�; x;y 2 V;

and skew hermitian if
�.x;y/D��.y;x/�; x;y 2 V:

EXAMPLE 19.35 (a) Let D D k with � D idk . In this case, the hermitian and skew hermi-
tian forms are, respectively, symmetric and skew symmetric forms.

(b) Let D D C with � Dcomplex conjugation. In this case, the hermitian and skew
hermitian forms are the usual objects.

To each hermitian or skew-hermitian form, we attach the group of automorphisms of
.V;�/, and the special group of automorphisms of � (the automorphisms with determinant
1, if this is not automatic).

19l The groups attached to algebras with involution

We assume that the ground field k satisfies the condition (19.32), and compute the groups
attached to the various possible algebras with involution.

CASE ADMn.k/; INVOLUTION OF THE FIRST KIND.

In this case, the involution � is of the form

X� D aX ta�1

where at D ca with c D˙1. Recall that the group attached to .Mn.k/;�/ consists of the
matrices X satisfying

X�X D I; det.X/D 1;

i.e.,
aX ta�1X D I; det.X/D 1;
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or,
X ta�1X D a�1; det.X/D 1:

Thus, when c DC1, we get the special orthogonal group for the symmetric bilinear form
attached to a�1, and when c D �1, we get the symplectic group attached to the skew
symmetric bilinear form attached to a�1.

CASE ADMn.K/; INVOLUTION OF THE SECOND KIND

Omitted for the present.

CASE ADMn.D/; D A QUATERNION DIVISION ALGEBRA.

Omitted for the present.

19m Conclusion.

Let k be a field satisfying the condition (19.32). Then the absolutely almost-simple, simply
connected, classical groups over k are the following:

(A) The groups SLm.D/ for D a central division algebra over k (the inner forms of SLn);
the groups attached to a hermitian form for a quadratic field extension K of k (the
outer forms of SLn).

(BD) The spin groups of quadratic forms, and the spin groups of skew hermitian forms
over quaternion division algebras.

(C) The symplectic groups, and unitary groups of hermitian forms over quaternion division
algebras.

It remains to classify the quaternion algebras and the various hermitian and skew her-
mitian forms. For the algebraically closed fields, the finite fields, R, Qp, Q and their finite
extensions, this has been done, but for Q and its extensions it is an application of class field
theory.

20 The exceptional semisimple groups

Let k be an algebraically closed field. Beyond the four infinite families of classical algebraic
groups described in the last section, there are five exceptional algebraic groups, namely, the
groups of type F4, E6, E7, E8, and G2. In this section, I should describe them explicitly,
even over arbitrary fields. However, it is unlikely that this section will ever consist of more
than a survey, for the following reasons:

(a) This is at least as difficult for exceptional groups as for the classical groups, but there
are only five exceptional families whereas there are four infinite classical families.

(b) As for the classical groups, the exceptional groups can be constructed from their Lie
algebras (characteristic zero) or from their root systems (all characteristics).

(c) Traditionally, results have been proved case by case for the classical groups; in ex-
tending the result to all groups a uniform proof involving roots and weights has been
found. So perhaps one shouldn’t learn explicit descriptions of the exceptional groups
for fear that one will be tempted to prove all results by case by case arguments.
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20a The group G2
Let k be a field of characteristic zero. A Hurwitz algebra over k is a finite k-algebra A (not
necessarily commutative) together with a nondegenerate quadratic formN WA! k such that

N.xy/DN.x/N.y/ for all x;y 2 A:

The possible dimensions of A are 1, 2, 4, and 8. A Hurwitz algebra of dimension 8 is also
known as an octonion or Cayley algebra. For such an algebra A, the functor

R Autk.R˝k A/

is an algebraic group over k of type G2. (To be continued).

21 Tannakian categories

In the first subsection, we define the abstract notion of a category with a tensor product
structure. If the tensor category admits a fibre functor, it is a neutral Tannakian category. In
the third subsection, we explain how to interpret the centre of the affine group attached to a
fibre functor on Tannakian category in terms of the gradations on the category. This will be
used in Chapter III to compute the centre of the algebraic group attached to a semisimple
Lie algebra.

21a Tensor categories

21.1 A k-linear category is an additive category in which the Hom sets are finite-dimensional
k-vector spaces and composition is k-bilinear. Functors between such categories are re-
quired to be k-linear, i.e., induce k-linear maps on the Hom sets.

21.2 A tensor category over k is a k-linear category together with a k-bilinear functor
˝WC�C! C and compatible associativity and commutativity constraints ensuring that the
tensor product of any unordered finite set of objects is well-defined up to a well-defined
isomorphism. An associativity constraint is a natural isomorphism

�U;V;W WU ˝ .V ˝W /! .U ˝V /˝W; U;V;W 2 ob.C/;

and a commutativity constraint is a natural isomorphism

 V;W WV ˝W !W ˝V; V;W 2 ob.C/:

Compatibility means that certain diagrams, for example,

U ˝ .V ˝W /
�U;V;W
�����! .U ˝V /˝W

 U˝V;W
������! W ˝ .U ˝V /??yidU ˝ V;W

??y�W;U;V
U ˝ .W ˝V /

�U;W;V
�����! .U ˝W /˝V

 U;W˝idV
�������! .W ˝U/˝V;

commute, and that there exists a neutral object (tensor product of the empty set), i.e., an
object U together with an isomorphism uWU ! U ˝U such that V 7! V ˝U is an equiv-
alence of categories. For a complete definition, see Deligne and Milne 1982, �1. We use 11
to denote a neutral object of C.
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21.3 An object of a tensor category is trivial if it is isomorphic to a direct sum of neutral
objects.

EXAMPLE 21.4 The category of finitely generated modules over a ringR becomes a tensor
category with the usual tensor product and the constraints

u˝ .v˝w/ 7! .u˝v/˝wW U ˝ .V ˝W /! .U ˝V /˝W

v˝w! w˝vW V ˝W !W ˝V:

�
(125)

Any freeR-moduleU of rank one together with an isomorphismU !U ˝U (equivalently,
the choice of a basis for U ) is a neutral object. It is trivial to check the compatibility
conditions for this to be a tensor category.

EXAMPLE 21.5 The category of finite-dimensional representations of a Lie algebra or of
an algebraic (or affine) group G with the usual tensor product and the constraints (125) is a
tensor category. The required commutativities follow immediately from (21.4).

21.6 Let .C;˝/ and .C0;˝/ be tensor categories over k. A tensor functor C!C0 is a pair
.F;c/ consisting of a functor F WC!C0 and a natural isomorphism cV;W WF.V /˝F.W /!

F.V ˝W / compatible the associativity and commutativity constraints and sending neutral
objects to a neutral objects. Then F commutes with finite tensor products up to a well-
defined isomorphism. See Deligne and Milne 1982, 1.8.

21.7 Let C be a tensor category over k, and let V be an object of C. A pair

.V _;V _˝V
ev
�! 11/

is called a dual of V if there exists a morphism ıV W11! V ˝V _ such that the composites

V
ıV˝V
����! V ˝V _˝V

V˝ev
����! V

V _
V _˝ıV
�����! V _˝V ˝V _

ev˝V _
�����! V _

are the identity morphisms on V and V _ respectively. Then ıV is uniquely determined, and
the dual .V _;ev/ of V is uniquely determined up to a unique isomorphism. For example, a
finite-dimensional k-vector space V has as dual V _ def

DHomk.V;k/ with ev.f ˝v/D f .v/
— here ıV is the k-linear map sending 1 to

P
ei ˝fi for any basis .ei / for V and its dual

basis .fi /. More generally, a moduleM over a ring admits a dual if and only ifM is finitely
generated and projective (CA 10.9, 10.10). Similarly, the contragredient of a representation
of a Lie algebra or of an algebraic group is a dual of the representation.

21.8 A tensor category is rigid if every object admits a dual. For example, the category
Veck of finite-dimensional vector spaces over k and the category of finite-dimensional rep-
resentations of a Lie algebra (or an algebraic group) are rigid.
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21b Neutral tannakian categories

21.9 A neutral tannakian category over k is an abelian k-linear category C endowed with
a rigid tensor structure for which there exists an exact tensor functor !WC! Veck . Such a
functor ! is called a fibre functor over k.

We refer to a pair .C;!/ consisting of a tannakian category over k and a fibre functor
over k as a neutral tannakian category.

THEOREM 21.10 Let .C;!/ be a neutral tannakian category over k. For each k-algebra
R, let G.R/ be the set of families

�D .�V /V 2ob.C/; �V 2 EndR-linear.!.V /R/;

such that

˘ �V˝W D �V ˝�W for all V;W 2 ob.C/,
˘ �11 D id!.11/ for every neutral object of 11 of C, and
˘ �W ı˛R D ˛R ı�V for all arrows ˛WV !W in C.

ThenR G.R/ is an affine group over k, and ! defines an equivalence of tensor categories
over k,

C! Rep.G/:

PROOF. This is a restatement of Theorem 11.14. 2

21.11 Let !R be the functor V  !.V /˝R; then G.R/ consists of the natural transfor-
mations �W!R! !R such that the following diagrams commute

!R.V /˝!R.W /
cV;W
����! !R.V ˝W /??y�V˝�W ??y�V˝W

!R.V /˝!R.W /
cV;W
����! !R.V ˝W /

!R.11/
!R.u/
����! !R.11˝11/??y�11 ??y�11˝11

!R.11/
!R.u/
����! !R.11˝11/

for all objects V , W of C and all identity objects .11;u/.

21.12 I explain the final statement of (21.10). For each V in C, there is a representation
rV WG! GL!.V / defined by

rV .g/v D �V .v/ if g D .�V / 2G.R/ and v 2 V.R/:

The functor sending V to !.V / endowed with this action of G is an equivalence of cate-
gories C! Rep.G/.

21.13 A tannakian category C is said to be algebraic if there exists an object V such that
every other object is a subquotient of P.V;V _/ for some P 2NŒX;Y �. If G is an algebraic
group, then (8.31) and (8.44) show that Rep.G/ is algebraic. Conversely, if Rep.G/ is
algebraic, with generator V , then G is algebraic because G � GLV .
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21.14 It is usual to write Aut˝.!/ (functor of tensor automorphisms of !) for the affine
group G attached to the neutral tannakian category .C;!/ — we call it the Tannaka dual
or Tannaka group of .C;!/. We sometimes denote it by �.C;!/.

EXAMPLE 21.15 If C is the category of finite-dimensional representations of an algebraic
group H over k and ! is the forgetful functor, then G.R/ ' H.R/ by (10.2), and C!
Rep.G/ is the identity functor.

EXAMPLE 21.16 Let N be a normal subgroup of an algebraic group G, and let C be the
subcategory of Rep.G/ consisting of the representations of G on which N acts trivially.
The group attached to C and the forgetful functor is G=N (alternatively, this can be used as
a definition of G=N ).

21.17 Let .C;!/ and .C0;!0/ be neutral tannakian categories with Tannaka duals G and
G0. An exact tensor functor F WC! C0 such that !0 ıF D ! defines a homomorphism
G0!G, namely,

.�V /V 2ob.C0/ 7! .�FV /V 2ob.C/WG
0.R/!G.R/:

21.18 Let CD Rep.G/ for some algebraic group G.

(a) For an algebraic subgroup H of G, let CH denote the full subcategory of C whose
objects are those on which H acts trivially. Then CH is a neutral tannakian category
whose Tannaka dual is G=N where N is the smallest normal algebraic subgroup of
G containing H (intersection of the normal algebraic subgroups containing H ).

(b) (Tannaka correspondence.) For a collection S of objects of CD Rep.G/, let H.S/
denote the largest subgroup of G acting trivially on all V in S ; thus

H.S/D
\
V 2S

Ker.rV WG! Aut.V //:

Then the maps S 7!H.S/ and H 7! CH form a Galois correspondence

fsubsets of ob.C/g� falgebraic subgroups of Gg;

i.e., both maps are order reversing and CH.S/ � S andH.CH /�H for all S andH .
It follows that the maps establish a one-to-one correspondence between their respec-
tive images. In this way, we get a natural one-to-one order-reversing correspondence

ftannakian subcategories of Cg
1W1
$ fnormal algebraic subgroups of Gg

(a tannakian subcategory is a full subcategory closed under the formation of duals,
tensor products, direct sums, and subquotients).

21c Gradations on tensor categories

21.19 LetM be a finitely generated abelian group. AnM -gradation on an objectX of an
abelian category is a family of subobjects .Xm/m2M such that X D

L
m2M Xm. An M -

gradation on a tensor category C is anM -gradation on each object X of C compatible with
all arrows in C and with tensor products in the sense that .X˝Y /m D

L
rCsDmX

r˝Xs .
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Let .C;!/ be a neutral tannakian category, and let G be its Tannaka dual. To give an
M -gradation on C is the same as to give a central homomorphism D.M/! G.!/: a
homomorphism corresponds to the M -gradation such that Xm is the subobject of X on
which D.M/ acts through the character m (Saavedra Rivano 1972; Deligne and Milne
1982, �5).

21.20 Let C be a semisimple k-linear tensor category such that End.X/ D k for every
simple object X in C, and let I.C/ be the set of isomorphism classes of simple objects in
C. For elements x;x1; : : : ;xm of I.C/ represented by simple objects X;X1; : : : ;Xm, write
x � x1˝ �� �˝xm if X is a direct factor of X1˝ �� �˝Xm. The following statements are
obvious.

(a) Let M be a commutative group. To give an M -gradation on C is the same as to give
a map f WI.C/!M such that

x � x1˝x2 H) f .x/D f .x1/Cf .x2/:

A map from I.C/ to a commutative group satisfying this condition will be called a
tensor map. For such a map, f .11/ D 0, and if X has dual X_, then f .ŒX_�/ D
�f .ŒX�/.

(b) Let M.C/ be the free abelian group with generators the elements of I.C/ modulo the
relations: x D x1Cx2 if x � x1˝x2. The obvious map I.C/!M.C/ is a universal
tensor map, i.e., it is a tensor map, and every other tensor map I.C/!M factors
uniquely through it. Note that I.C/!M.C/ is surjective.

21.21 Let .C;!/ be a neutral tannakian category such that C is semisimple and End.V /D
k for every simple object in C. LetZ be the centre ofG def

DAut˝.!/. Because C is semisim-
ple, Gı is reductive (II, 6.17 ), and so Z is of multiplicative type. Assume (for simplicity)
that Z is split, so that Z D D.N/ with N the group of characters of Z. According to
(21.19), to give an M -gradation on C is the same as giving a homomorphism D.M/!Z,
or, equivalently, a homomorphism N ! M . On the other hand, (21.20) shows that to
give an M -gradation on C is the same as giving a homomorphism M.C/!M . Therefore
M.C/ ' N . In more detail: let X be an object of C; if X is simple, then Z acts on X
through a character n of Z, and the tensor map ŒX� 7! nW I.C/!N is universal.

21.22 Let .C;!/ be as in (21.21), and define an equivalence relation on I.C/ by

a � a0 ” there exist x1; : : : ;xm 2 I.C/ such that a;a0 � x1˝�� �˝xm:

A function f from I.C/ to a commutative group defines a gradation on C if and only if
f .a/D f .a0/ whenever a � a0. Therefore, M.C/' I.C/=� .

ASIDE 21.23 Discuss the prehistory: Tannaka (cf. Serre 1973, p. 71, remark), Krein (cf. Breen),
Chevalley (book), Hochschild and Mostow 1969, �4 (AJM 91, 1127–1140).

EXERCISES

EXERCISE 21-1 Use the criterion (12.19) to show that the centralizer of a torus in a con-
nected algebraic group is connected.





CHAPTER II
Lie Algebras and Algebraic Groups

The Lie algebra of an algebraic group is the (first) linear approximation to the group. The
study of Lie algebras is much more elementary than that of algebraic groups. For example,
most of the results on Lie algebras that we shall need are proved already in the undergrad-
uate text Erdmann and Wildon 2006.

Throughout this chapter k is a field.

NOTES Most sections in this chapter are complete, but need to be revised (especially Section 4,
which, however, can be skipped).
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1 The Lie algebra of an algebraic group

An algebraic group is a functorR G.R/WAlgk!Grp. The Lie algebra ofG depends only
on the value of the functor on the k-algebra of dual numbers, but it nevertheless contains a
surprisingly large amount of information about the group, especially in characteristic zero.

1a Lie algebras: basic definitions

DEFINITION 1.1 A Lie algebra1 over a field k is a vector space g over k together with a
k-bilinear map

Œ ; �Wg�g! g

(called the bracket) such that
1Bourbaki LIE, Historical Notes to Chapter I to III writes:

The term “Lie algebra” was introduced by H. Weyl in 1934; in his work of 1925, he had used the
expression “infinitesimal group”. Earlier mathematicians had spoken simply of the “infinitesi-
mal transformations X1f; : : : ;Xrf ” of the group, which Lie and Engel frequently abbreviated
by saying “the group X1f; : : : ;Xrf ”.

239
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(a) Œx;x�D 0 for all x 2 g,
(b) Œx; Œy;z��C Œy; Œz;x��C Œz; Œx;y��D 0 for all x;y;z 2 g.

A homomorphism of Lie algebras is a k-linear map ˛Wg! g0 such that

˛.Œx;y�/D Œ˛.x/;˛.y/� for all x;y 2 g:

A Lie subalgebra of a Lie algebra g is a k-subspace s such that Œx;y� 2 s whenever x;y 2 s
(i.e., such that Œs;s�� s).

Condition (b) is called the Jacobi identity. Note that (a) applied to ŒxCy;xCy� shows
that the Lie bracket is skew-symmetric,

Œx;y�D�Œy;x�, for all x;y 2 g; (126)

and that (126) allows the Jacobi identity to be rewritten as

Œx; Œy;z��D ŒŒx;y�;z�C Œy; Œx;z�� (127)

or
ŒŒx;y�;z�D Œx; Œy;z��� Œy; Œx;z�� (128)

An injective homomorphism is sometimes called an embedding, and a surjective homo-
morphism is sometimes called a quotient map.

We shall be mainly concerned with finite-dimensional Lie algebras.

EXAMPLE 1.2 For any associative k-algebra A, the bracket Œa;b�D ab�ba is k-bilinear.
It makes A into a Lie algebra because Œa;a� is obviously 0 and the Jacobi identity can be
proved by a direct calculation. In fact, on expanding out the left side of the Jacobi identity
for a;b;c one obtains a sum of 12 terms, 6 with plus signs and 6 with minus signs; by
symmetry, each permutation of a;b;c must occur exactly once with a plus sign and exactly
once with a minus sign. When A is the endomorphism ring Endk-lin.V / of a k-vector space
V , this Lie algebra is denoted glV , and when ADMn.k/, it is denoted gln. Let eij be the
matrix with 1 in the ij th position and 0 elsewhere. These matrices form a basis for gln, and

Œeij ; ei 0j 0 �D ıj i 0eij 0 � ıij 0ei 0j (ıij D Kronecker delta).

EXAMPLE 1.3 Let A be a k-algebra (not necessarily associative). A derivation of A is a
k-linear map DWA! A such that

D.ab/DD.a/bCaD.b/ for all a;b 2 A:

The composite of two derivations need not be a derivation, but their bracket

ŒD;E�
def
DD ıE�E ıD

is, and so the set of k-derivations A! A is a Lie subalgebra Derk.A/ of glA.
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EXAMPLE 1.4 For x 2 g, let adgx (or adx) denote the map y 7! Œx;y�Wg! g. Then adgx
is a k-derivation because (127) can be rewritten as

ad.x/Œy;z�D Œad.x/y;z�C Œy;ad.x/z�:

In fact, adg is a homomorphism of Lie algebras g! Der.g/ because (128) can be rewritten
as

ad.Œx;y�/z D ad.x/.ad.y/z/� ad.y/.ad.x/z/:

The kernel of adgWg! Derk.g/ is the centre of g,

z.g/
def
D fx 2 g j Œx;g�D 0g:

The derivations of g of the form adx are said to be inner (by analogy with the automor-
phisms of a group of the form inng).

1b The isomorphism theorems

An ideal in a Lie algebra g is a subspace a such that Œx;a� 2 a for all x 2 g and a 2 a
(i.e., such that Œg;a�� a). When a is an ideal, the quotient vector space g=a becomes a Lie
algebra with the bracket

ŒxCa;yCa�D Œx;y�Ca.

The following statements are straightforward consequences of the similar statements for
vector spaces.

1.5 (Existence of quotients). The kernel of a homomorphism g! q of Lie algebras is an
ideal, and every ideal a is the kernel of a quotient map g! g=a.

1.6 (Homomorphism theorem). The image of a homomorphism ˛Wg! g0 of Lie algebras
is a Lie subalgebra ˛g of g0, and ˛ defines an isomorphism of g=Ker.˛/ onto ˛g; in partic-
ular, every homomorphism of Lie algebras is the composite of a surjective homomorphism
with an injective homomorphism.

1.7 (Isomorphism theorem). Let h and a be Lie subalgebras of g such that Œh;a�� a; then
hCa is a Lie subalgebra of g, h\a is an ideal in h, and the map

xCh\a 7! xCaWh=h\a! .hCa/=a

is an isomorphism.

1.8 (Correspondence theorem). Let a be an ideal in a Lie algebra g. The map h 7! h=a is
a one-to-one correspondence between the set of Lie subalgebras of g containing a and the
set of Lie subalgebras of g=a. A Lie subalgebra h containing a is an ideal if and only if h=a
is an ideal in g=a, in which case the map

g=h! .g=a/=.h=a/

is an isomorphism
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1c The Lie algebra of an algebraic group

Let G be an algebraic group over a field k, and let kŒ"� be the ring of dual numbers:

kŒ"�
def
D kŒX�=.X2/:

Thus kŒ"�D k˚k" as a k-vector space and "2 D 0. There is a homomorphism

� WkŒ"� �! k; �.aC "b/D a:

DEFINITION 1.9 For an algebraic group G over k,

Lie.G/D Ker.G.kŒ"�/
�
�!G.k//:

Following a standard convention, we often write g for Lie.G/, h for Lie.H/, and so on.

EXAMPLE 1.10 Let G D GLn, and let In be the identity n�n matrix. An n�n matrix A
gives an element InC "A of Mn.kŒ"�/, and

.InC "A/.In� "A/D InI

therefore InC "A 2 Lie.GLn/. Clearly every element of Lie.GLn/ is of this form, and so
the map

A 7!E.A/
def
D InC "AWMn.k/! Lie.GLn/

is a bijection. Note that

E.A/E.B/D .InC "A/.InC "B/

D InC ".ACB/

DE.ACB/:

In the language of algebraic geometry, Lie.G/ is the tangent space to jGj at 1G (see CA
�18).

PROPOSITION 1.11 Let IG be the augmentation ideal in O.G/, i.e., IG DKer.�WO.G/!
k/. Then

Lie.G/' Homk-lin.IG=I
2
G ;k/: (129)

PROOF. By definition, an element x of Lie.G/ gives a commutative diagram

O.G/ x
����! kŒ"�??y� ??y�

k k;

and hence a homomorphism IG ! Ker.�/ ' k on the kernels. That this induces an iso-
morphism (129) is proved in CA 18.9. 2

From (129), we see that Lie.G/ has the structure of k-vector space, and that Lie is a
functor from the category of algebraic groups over k to k-vector spaces.
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THEOREM 1.12 There is a unique way of making G Lie.G/ into a functor to Lie alge-
bras such that Lie.GLn/D gln (as Lie algebras).

Without the condition on Lie.GLn/, we could, for example, take the bracket to be zero.
It is clear from the definition of the Lie algebra that an embedding of algebraic groups
G ,!H defines an injection LieG! LieH of k-vector spaces. On applying this remark
to an embedding ofG into GLn, we obtain the uniqueness assertion. The existence assertion
will be proved later in this section.

REMARK 1.13 If a¤ 0, then aCb"D a.1C b
a
"/ has inverse a�1.1� b

a
"/ in kŒ"�, and so

kŒ"�� D faCb" j a¤ 0g:

An element of Lie.G/ is a k-algebra homomorphism ˛WO.G/! kŒ"� whose composite
with " 7! 0 is �. Therefore, elements of O.G/ not in the kernel m of � map to units in kŒ"�,
and so ˛ factors uniquely through the local ring O.G/m. This shows that Lie.G/ depends
only on O.G/m. In particular, Lie.Gı/' Lie.G/.

REMARK 1.14 There is a more direct way of defining the action of k on Lie.G/: an ele-
ment c 2 k defines a homomorphism of k-algebras

uc WkŒ"�! kŒ"�; uc.aC "b/D aC c"b

such that � ıuc D � , and hence a commutative diagram

G.kŒ"�/
G.uc/
����! G.kŒ"�/??yG.�/ ??yG.�/

G.k/
id

����! G.k/;

which induces a homomorphism of groups Lie.G/! Lie.G/. For example, when G D
GLn,

G.uc/E.A/DG.uc/.InC "A/D InC c"ADE.cA/:

This defines a k-vector space structure on LieG, which agrees that given by (129).

NOTES The definition (1.9) is valid for any functor GWAlgk! Grp. See DG II, �4, 1.

1d Examples

1.15 By definition

Lie.SLn/D fI CA" 2Mn.kŒ"�/ j det.I CA"/D 1g:

When we expand det.I C "A/ as a sum of nŠ products, the only nonzero term isQn
iD1 .1C "ai i /D 1C "

Pn
iD1ai i ;

because every other term includes at least two off-diagonal entries. Hence

det.I C "A/D 1C " trace.A/
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and so

sln
def
D Lie.SLn/D fI C "A j trace.A/D 0g

' fA 2Mn.k/ j trace.A/D 0g:

For n�n matrices AD .aij / and B D .bij /,

trace.AB/D
X

1�i;j�n
aij bj i D trace.BA/. (130)

Therefore ŒA;B�D AB �BA has trace zero, and sln is a Lie subalgebra of gln.

1.16 Recall (I, �1) that Tn (resp. Un, resp. Dn) is the group of upper triangular (resp.
upper triangular with 1s on the diagonal, resp. diagonal) invertible matrices. As

Lie.Tn/D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

0BBBBB@
1C "c11 "c12 � � � "c1n�1 "c1n

0 1C "c22 � � � "c2n�1 "c2 n
:::

:::
: : :

:::
:::

0 0 � � � 1C "cn�1n�1 "cn�1n
0 0 � � � 0 1C "cnn

1CCCCCA

9>>>>>=>>>>>;
;

we see that

bn
def
D Lie.Tn/' f.cij / j cij D 0 if i > j g (upper triangular matrices).

Similarly,

nn
def
D Lie.Un/' f.cij / j cij D 0 if i � j g (strictly upper triangular matrices)

dn
def
D Lie.Dn/' f.cij / j cij D 0 if i ¤ j g (diagonal matrices).

These are Lie subalgebras of gln.

1.17 Assume that the characteristic¤ 2, and let On be orthogonal group:

On D fA 2 GLn j At �AD I g .At D transpose of A/:

For I C "A 2Mn.kŒ"�/,

.I C "A/t � .I C "A/D .I C "At / � .I C "A/D I C "At C "A;

and so

Lie.On/D fI C "A 2Mn.kŒ"�/ j A
t
CAD 0g

' fA 2Mn.k/ j A is skew symmetricg:

Similarly, Lie.SOn/ consists of the skew symmetric matrices with trace zero, but obviously
the second condition is redundant, and so

Lie.SOn/D Lie.On/:

This also follows from the fact that SOn D Oın (see 1.13).
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1.18 Let G be a finite étale algebraic group. Then O.G/ is a separable k-algebra, and
every quotient of O.G/ is separable (I, 12.4). The only separable subalgebra of kŒ"� is k,
and so G.kŒ"�/DG.k/ and Lie.G/D 0. This also follows from the fact that

Lie.G/D Lie
�
Gı
�
D Lie.1/D 0

(see 1.13).

1.19 Let k have characteristic p ¤ 0, and let G D ˛p, so that ˛p.R/D fr 2 R j rp D 0g
(see I, 3.5). Then ˛p.k/D f0g and ˛p.kŒ"�/D fa" j a 2 kg. Therefore,

Lie.˛p/D fa" j a 2 kg ' k:

Similarly,
Lie.�p/D f1Ca" j a 2 kg ' k:

As the bracket on a one-dimensional Lie algebra must be trivial, this shows that ˛p and �p
have the same Lie algebra.

1.20 Let V be a vector space over k. Every element of V."/ def
D kŒ"�˝k V can be written

uniquely in the form xC "y with x;y 2 V , i.e., V."/ D V ˚ "V . The kŒ"�-linear maps
V."/! V."/ are the maps ˛C "ˇ, ˛;ˇ 2 Endk-lin.V /, where

.˛C "ˇ/.xC "y/D ˛.x/C ".˛.y/Cˇ.x//: (131)

To see this, note that Endk-lin.V ."//'M2.Endk-lin.V //, and that " acts as
�
0 0
1 0

�
2M2.Endk.V //.

Thus

EndkŒ"�-lin.V ."//D
��
˛ ˇ

 ı

�
2M2.Endk.V //

ˇ̌̌̌�
˛ ˇ

 ı

��
0 0

1 0

�
D

�
0 0

1 0

��
˛ ˇ

 ı

��
D

��
˛ 0

ˇ ˛

�
2M2.Endk.V //

�
.

It follows that
GLV .kŒ"�/D f˛C "ˇ j ˛ invertibleg

and that
Lie.GLV /D fidV C"˛ j ˛ 2 End.V /g ' End.V /D glV :

1.21 Let V be a finite-dimensional k-vector space, and let Da.V / denote the algebraic
group R Homk-lin.V;R/ (see I, 3.6). Then

Lie.Da.V //' Homk-lin.V;k/

(as a k-vector space). Similarly,
Lie.Va/' V .

1.22 Let �WV � V ! k be a k-bilinear form, and let G be the subgroup of GLV of ˛
preserving the form, i.e., such that

G.R/D f˛ 2 GLV .R/ j �.˛x;˛x0/D �.x;x0/ for all x;x0 2 V.R/g:
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Then Lie.G/ consists of the endomorphisms idC"˛ of V."/ such that

�..idC"˛/.xC "y/; .idC"˛/.x0C "y0//D �.xC "y;x0C "y0/; all x;y;x0;y0 2 V:

The left hand side equals

�.xC "yC " �˛x;x0C "y0C " �˛x0/D �.xC "y;x0C "y0/C ".�.˛x;x0/C�.x;˛x0//;

and so

Lie.G/' f˛ 2 Endk-lin.V / j �.˛x;x
0/C�.x;˛x0/D 0 all x;x0 2 V g:

1.23 Let G be the unitary group defined by a quadratic extension K of k (I, 3.11). The
Lie algebra of G consists of the A 2Mn.K/ such that

.I C "A/�.I C "A/D I

i.e., such that
A�CAD 0:

Note that this is not a K-vector space, reflecting the fact that G is an algebraic group over
k, not K.

1.24 Let G D D.M/ (see I, �14c), so that G.R/ D Hom.M;R�/ (homomorphisms of
abelian groups). On applying Hom.M;�/ to the split-exact sequence of commutative
groups

0 ����! k
a 7!1Ca"
������! kŒ"��

"7!0
����! k� ����! 0;

we find that
Lie.G/' Hom.M;k/' Hom.M;Z/˝Z k:

A split torus T is the diagonalizable group associated with M DX.T /. For such a group,

Lie.T /' Hom.X.T /;Z/˝Z k

and
Homk-lin.Lie.T /;k/' k˝ZX.T /:

1e Description of Lie.G/ in terms of derivations

DEFINITION 1.25 Let A be a k-algebra and M an A-module. A k-linear map DWA!M

is a k-derivation of A into M if

D.fg/D f �D.g/Cg �D.f / (Leibniz rule).

For example, D.1/DD.1� 1/DD.1/CD.1/ and so D.1/D 0. By k-linearity, this
implies that

D.c/D 0 for all c 2 k: (132)

Conversely, every additive map A!M satisfying the Leibniz rule and zero on k is a k-
derivation.
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Let ˛WA! kŒ"� be a k-linear map, and write

˛.f /D ˛0.f /C "˛1.f /:

Then
˛.fg/D ˛.f /˛.g/

if and only if

˛0.fg/D ˛0.f /˛0.g/ and

˛1.fg/D ˛0.f /˛1.g/C˛0.g/˛1.f /:

The first condition says that ˛0 is a homomorphism A! k and, when we use ˛0 to make k
into an A-module, the second condition says that ˛1 is a k-derivation A! k.

Recall that O.G/ has a co-algebra structure .�;�/. By definition, the elements of
Lie.G/ are the k-algebra homomorphisms O.G/! kŒ"� such that the composite

O.G/ ˛
�! kŒ"�

"7!0
�! k

is �, i.e., such that ˛0 D �. Thus, we have proved the following statement.

PROPOSITION 1.26 There is a natural one-to-one correspondence between the elements of
Lie.G/ and the k-derivations O.G/! k (where O.G/ acts on k through �), i.e.,

Lie.G/' Derk;�.O.G/;k/: (133)

The correspondence is �C "D$D, and the Leibniz condition is

D.fg/D �.f / �D.g/C �.g/ �D.f / (134)

1f Extension of the base field

PROPOSITION 1.27 For any field K containing k, Lie.GK/'K˝k Lie.G/.

PROOF. We use the description of the Lie algebra in terms of derivations (133). Let ei be a
basis for O.G/ as a k-vector space, and let

eiej D
X

aijkek; aijk 2 k:

In order to show that a k-linear map DWA! k is a k-derivation, it suffices to check the
Leibniz condition on the elements of the basis. Therefore, D is a k-derivation if and only
if the scalars ci DD.ei / satisfyX

k
aijkck D �.ei /cj C �.ej /ci

for all i;j . This is a homogeneous system of linear equations in the ci , and so a basis for
the solutions in k is also a basis for the solutions in K (see the next lemma).

(Alternatively, use that

Lie.G/' Homk-lin.IG=I
2
G ;k/

and that IGK 'K˝k IG .) 2
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LEMMA 1.28 Let S be the space of solutions in k of a system of homogeneous linear
equations with coefficients in k. Then the space of solutions in any k-algebra R of the
system of equations is R˝k S .

PROOF. The space S is the kernel of a linear map

0! S ! V
˛
�!W .

Tensoring this sequence with R gives a sequence

0!R˝k S !R˝k V
idR˝˛
�! R˝kW ,

which is exact because R is flat. Alternatively, for a finite system, we can put the matrix of
the system of equations in row echelon form (over k), from which the statement is obvious.2

REMARK 1.29 Let G be an algebraic group over k. For a k-algebra R, define

g.R/D Ker.G.RŒ"�/!G.R//

where RŒ"�D kŒ"�˝kR'RŒX�=.X2/. Then, as in (1.26), g.R/ can be identified with the
space of k-derivations A! R (with R regarded as an A-module through �), and the same
proof shows that

g.R/'R˝k g.k/ (135)

where g.k/D Lie.G/. In other words, the functor R g.R/ is canonically isomorphic to
ga.

1g The adjoint map AdWG! Aut.g/

For any k-algebra R, we have homomorphisms

R
i
�!RŒ"�

�
�!R; i.a/D aC "0; �.aC "b/D a; � ı i D idR :

For an algebraic group G over k, they give homomorphisms

G.R/
i
�!G.RŒ"�/

�
�!G.R/; � ı i D idG.R/

where we have written i and � for G.i/ and G.�/. Let g.R/D Ker.G.RŒ"�/
�
�! G.R//,

so that
g.R/'R˝k g.k/

(see 1.29). We define
AdWG.R/! Aut.g.R//

by
Ad.g/x D i.g/ �x � i.g/�1; g 2G.R/; x 2 g.R/�G.RŒ"�/:

The following formulas hold:

Ad.g/.xCx0/D Ad.g/xCAd.g/x0; g 2G.R/; x;x0 2 g.R/

Ad.g/.cx/D c.Ad.g/x/; g 2G.R/; c 2R; x 2 g.R/:
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The first is clear from the definition of Ad, and the second follows from the description of
the action of c in (1.14). Therefore Ad maps into AutR-lin.g.R//. All the constructions are
clearly natural in R, and so we get a natural transformation

AdWG! Aut.ga/

of group-valued functors on Algk .
Let f WG!H be a homomorphism of algebraic groups over k. Because f is a functor,

the diagrams

G.RŒ"�/
�

����! G.R/??yf .RŒ"�/ ??yf .R/
H.RŒ"�/

�
����! H.R/

G.RŒ"�/
i

 ���� G.R/??yf .RŒ"�/ ??yf .R/
H.RŒ"�/

i
 ���� H.R/

commute. Thus f defines a homomorphism of functors

Lie.f /Wga! ha;

and the diagrams

G.R/ � g.R/ g.R/

H.R/ � h.R/ g.R/

f Lie.f / Lie.f /

commute for all R, i.e.,

Lie.f /.AdG.g/ �x/D AdH .f .g// �x; g 2G.R/; x 2 g.R/. (136)

1h First definition of the bracket

The idea of the construction is the following. In order to define the bracket Œ ; �Wg�g! g,
it suffices to define the map adWg! glg, ad.x/.y/D Œx;y�. For this, it suffices to define a
homomorphism of algebraic groups adWG! GLg, or, in other words, an action of G on g.
But G acts on itself by inner automorphisms, and hence on its Lie algebra.

In more detail, in the last subsection, we defined a homomorphism of algebraic groups

AdWG! GLg :

Specifically,

Ad.g/x D i.g/ �x � i.g/�1; g 2G.R/; x 2 g.R/�G.RŒ"�/:

On applying the functor Lie to the homomorphism Ad, we obtain a homomorphism of
k-vector spaces

adWLieG! LieGLg
(1.20)
' Endk-lin.g/:

DEFINITION 1.30 For a;x 2 Lie.G/,

Œa;x�D ad.a/.x/:
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LEMMA 1.31 For G D GLn, the construction gives ŒA;X�D AX �XA.

PROOF. An element I C "A 2 Lie.GLn/ acts on Mn.kŒ"�/ as

XC "Y 7! .I C "A/.XC "Y /.I � "A/DXC "Y C ".AX �XA/:

On comparing this with (1.20), we see that ad.A/ acts as idC"˛ where ˛.X/DAX�XA.2

LEMMA 1.32 The construction is functorial in G, i.e., the map LieG! LieH defined by
a homomorphism of algebraic groups G!H is compatible with the two brackets.

PROOF. This follows from (136). 2

Because the bracket ŒA;X�DAX�XA on gln satisfies the conditions in (1.1) and every
G can be embedded in GLn (I, 8.31), the bracket on Lie.G/ makes it into a Lie algebra.
This completes the first proof of Theorem 1.12.

1i Second definition of the bracket

Let A D O.G/, and consider the space Derk.A;A/ of k-derivations of A into A (with A
regarded as an A-module in the obvious way). The bracket

ŒD;D0�
def
D D ıD0�D0 ıD

of two derivations is again a derivation. In this way Derk.A;A/ becomes a Lie algebra.
Let G be an algebraic group. A derivation DWO.G/!O.G/ is left invariant if

�ıD D .id˝D/ı�: (137)

If D and D0 are left invariant, then

�ı ŒD;D0�D�ı .D ıD0�D0 ıD/

D .id˝.D ıD0/� id˝.D0 ıD//

D .id˝ŒD;D0�/ı�

and so ŒD;D0� is left invariant.

PROPOSITION 1.33 The map D 7! � ıDWDerk.O.G/;O.G//! Derk.O.G/;k/ defines
an isomorphism from the subspace of left invariant derivations onto Derk.O.G/;k/.

PROOF. If D is a left invariant derivation O.G/!O.G/, then

D
I, (30)
D .id˝�/ı�ıD

(137)
D .id˝�/ı .id˝D/ı�D .id˝.� ıD//ı�

and so D is determined by � ıD. Conversely, if d WO.G/! k is a derivation, then D D
.id˝d/ı� is a left invariant derivation O.G/!O.G/. 2

Thus, Lie.G/ is isomorphic (as a k-vector space) to the space of left invariant deriva-
tions O.G/!O.G/, which is a Lie subalgebra of Derk.O.G/;O.G//. In this way, Lie.G/
acquires a Lie algebra structure, which is clearly natural in G.

It remains to check that, when G DGLn, this gives the bracket ŒA;B�DAB�BA (left
as an exercise for the present).
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1j The functor Lie preserves fibred products

PROPOSITION 1.34 For any homomorphisms G!H  G0 of algebraic groups,

Lie.G�H G0/' Lie.G/�Lie.H/ Lie.G0/: (138)

PROOF. By definition (I �4b),�
G�H G

0
�
.R/DG.R/�H.R/G

0.R/; R a k-algebra.

Therefore,

Lie.G�H G0/D Ker
�
G.kŒ"�/�H.kŒ"�/G

0.kŒ"�/!G.k/�H.k/G
0.k/

�
D f.g;g0/ 2G.kŒ"�/�G0.kŒ"�/ j g;g0 have the same image in H.kŒ"�/, G.k/, and G0.k/g

D Ker.G.kŒ"�/!G.k//�H.kŒ��/Ker
�
G0.kŒ"�/!G0.k/

�
D Lie.G/�Lie.H/ Lie.G0/: 2

EXAMPLE 1.35 Let k be a field of characteristic p¤ 0. There are fibred product diagrams:

�p ����! Gm??y ??yy 7!.yp;y/
Gm ������!

x 7!.1;x/
Gm�Gm

Lie

k
id

����! k??yid

??yc 7!.0;c/
k �����!

c 7!.0;c/
k�k:

EXAMPLE 1.36 Recall (I, 7.15) that the kernel of a homomorphism ˛WG!H of algebraic
groups can be obtained as a fibred product:

Ker.˛/ ����! f1H g??y ??y
G

˛
����! H

Therefore (138) shows that

Lie.Ker.˛//D Ker.Lie.˛//:

In other words, an exact sequence of algebraic groups 1! N ! G!H gives rise to an
exact sequence of Lie algebras

0! LieN ! LieG! LieH:

For example, the exact sequence (cf. 1.35)

1! �p
x 7!.x;x/
������!Gm�Gm

.x;y/7!.yp;x=y/
�����������!Gm�Gm

gives rise to an exact sequence

0! k
x 7!.x;x/
������! k˚k

.x;y/7!.0;x�y/
�����������! k˚k:
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EXAMPLE 1.37 Let H and H 0 be algebraic subgroups of an algebraic group G. The al-
gebraic subgroup H \H 0 with .H \H 0/.R/DH.R/\H 0.R/ (inside G.R/) is the fibred
product of the inclusion maps, and so

Lie.H \H 0/D Lie.H/\Lie.H 0/ (inside Lie.G/).

More generally,

Lie.
\

i2I
Hi /D

\
i2I

LieHi (inside Lie.G/) (139)

for any family of subgroups Hi of G.
For example, the homomorphisms in (1.35) realize Gm in two ways as subgroups of

Gm�Gm, which intersect in �p, and so

Lie.�p/D Lie.Gm/\Lie.Gm/ (inside Lie.Gm�Gm/).

A
1.38 The examples 1.35–1.37 show that the functor Lie does not preserve fibred products,

left exact sequences, or intersections in the category of smooth algebraic groups.

A
1.39 The sequence

1! �p
x 7!.x;x/
������!Gm�Gm

.x;y/7!.yp;x=y/
�����������!Gm�Gm! 1

is exact in the category of algebraic groups over k, but

0! k
x 7!.x;x/
������! k˚k

.x;y/ 7!.0;x�y/
�����������! k˚k! 0

is not exact, and so functor Lie is not right exact.

1k Abelian Lie algebras

A Lie algebra g is said to be abelian (or commutative) if Œx;y�D 0 for all x;y 2 g. Thus,
to give an abelian Lie algebra amounts to giving a finite-dimensional vector space.

If G is commutative, then Lie.G/ is commutative. This can be seen directly from the
first definition of the bracket because the inner automorphisms are trivial if G is commuta-
tive. Alternatively, observe that if G is a commutative subgroup of GLn, then Lie.G/ is a
commutative subalgebra of Lie.GLn/. See also (2.24) below.

1l Normal subgroups and ideals

A normal algebraic subgroup N of an algebraic group G is the kernel of a quotient map
G!Q (see I, 8.70); therefore, Lie.N / is the kernel of a homomorphism of Lie algebras
LieG! LieQ (see 1.36), and so is an ideal in LieG. Of course, this can also be proved
directly.
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1m Algebraic Lie algebras

A Lie algebra is said to be algebraic if it is the Lie algebra of an algebraic group. A sum of
algebraic Lie algebras is algebraic Let gD Lie.G/, and let h be a Lie subalgebra of g. The
intersection of the algebraic Lie subalgebras of g containing h is again algebraic (see (139))
— it is called the algebraic envelope or hull of h.

Let h be a Lie subalgebra of glV . A necessary condition for h to be algebraic is that the
semisimple and nilpotent components of each element of h (as an endomorphism of glV /
lie in h. However, this condition is not sufficient, even in characteristic zero.

Let h be a Lie subalgebra of glV over a field k of characteristic zero. We explain how to
determine the algebraic hull of h. For any X 2 h, let g.X/ be the algebraic hull of the Lie
algebra spanned by X . Then the algebraic hull of h is the Lie subalgebra of glV generated
by the g.X/, X 2 h. In particular, h is algebraic if and only if each X is contained in an
algebraic Lie subalgebra of h. Write X as the sum S CN of its semisimple and nilpotent
components. Then g.N / is spanned by N , and so we may suppose that X is semisimple.
For some finite extension L of k, there exists a basis of L˝V for which the matrix of X is
diag.˛1; : : : ;˛n/. LetW be the subspaceMn.L/ consisting of the matrices diag.a1; : : : ;an/
such that X

i
ci˛i D 0, ci 2 L H)

X
i
ciai D 0,

i.e., such that the ai satisfy every linear relation over L that the ˛i do. Then the map

glV ! L˝glV 'Mn.L/

induces maps
g.X/! L˝g.X/'W:

See Chevalley 1951 (also Fieker and de Graaf 2007 where it is explained how to implement
this as an algorithm).

A
1.40 The following rules define a five-dimensional solvable Lie algebra gD

L
1�i�5kxi :

Œx1;x2�D x5; Œx1;x3�D x3; Œx2;x4�D x4 ; Œx1;x4�D Œx2;x3�D Œx3;x4�D Œx5;g�D 0

(Bourbaki LIE, I, �5, Exercise 6). For every injective homomorphism g ,! glV , there exists
an element of g whose semisimple and nilpotent components (as an endomorphism of V )
do not lie in g (ibid., VII, �5, Exercise 1). It follows that the image of g in glV is not the Lie
algebra of an algebraic subgroup of GLV (ibid., VII, �5, 1, Example).

NOTES Need to prove the statements in this subsection (not difficult). They are important in III, 3.

1n The exponential notation

Let S be an R-algebra, and let a be an element of S such that a2 D 0. There is a unique
R-algebra homomorphism RŒ"�! S sending " to a. Following DG, II �4, 3.7, p.209, we
denote the image of x 2 Lie.G/.R/ under the composite

Lie.G/.R/ ,!G.RŒ"�/!G.S/

by eax . For example, x D e"x in G.RŒ"�/. For x;y 2 Lie.G/.R/;

ea.xCy/ D eaxeay (in G.S/).
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The action of a 2R on x 2 Lie.G/.R/ is described by

e."a/x D e".ax/ (in G.RŒ"�/).

If f WG!H is a homomorphism of algebraic groups and x 2 Lie.G/.R/, then

f .eax/D ea.Lie.f /.x//:

The adjoint map Ad is described by

ge"xg�1 D e".Ad.g/x/ (in G.RŒ"�);

(g 2G.R/; x 2 Lie.G/.R/). Moreover,

Ad.e"x/D idC"ad.x/ (in AutR-lin.Lie.G/.R//.

Let x;y 2 Lie.G/.R/ and let a;b 2 S be of square 0. Then

eaxebye�axe�by D eabŒx;y� (in G.S/)

(ibid. 4.4).

1o Arbitrary base rings

Now let k be a commutative ring, and let kŒ"�D kŒX�=.X2/. For any smooth affine group
G over k, define gD Lie.G/ to be

Lie.G/D Ker.G.kŒ"�/
"7!0
�! G.k//:

This is a finitely generated projective k-module, and for any k-algebra R,

Lie.GR/DR˝g.

Therefore, the functor R  Lie.GR/ is equal to ga. The action of G on itself by inner
automorphisms defines an action of G on g, and, in fact, a homomorphism

AdWG! GLg

of affine groups over k. On applying the functor Lie to this, we get the adjoint map

adWg! Homk-lin.g;g/:

Now we can define a bracket operation on g by

Œx;y�D ad.x/y:

Equipped with this bracket, g is a Lie algebra over k. Most of the material in this subsection
extends to smooth affine groups over rings.

NOTES Perhaps should rewrite this subsection for smooth algebraic groups over rings.
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2 Lie algebras and algebraic groups

In this subsection, we apply some algebraic geometry (actually, just commutative algebra
CA) to study the relation between Lie algebras and algebraic groups. The strongest results
require that k have characteristic zero.

2a The dimension of Lie.G/ versus the dimension of G

In Chapter I, we defined the dimension of an algebraic group G to be the dimension of the
associated algebraic scheme jGj.

2.1 We list some alternative descriptions of dimG.

(a) According to the Noether normalization theorem (CA 5.11), there exists a finite set
S of elements in O.G/ such that kŒS� is a polynomial ring in the elements of S and
O.G/ is finitely generated as a kŒS�-module. The cardinality of S is dimG.

(b) Let Gı be the identity component of G (see I, 13.12). The algebraic variety jGıj
is irreducible, and so O.Gı/=N is an integral domain (I, 13.13). The transcendence
degree of its field of fractions is dimG.

(c) Let m be a maximal ideal of O.G/. The height of m is dimG.

PROPOSITION 2.2 For an algebraic groupG, dimLieG � dimG, with equality if and only
if G is smooth.

PROOF. Because Lie.Gkal/' Lie.G/˝k kal (see 1.27), we may suppose k D kal. Accord-
ing to (1.11),

Lie.G/' Homk-lin.m=m
2;k/

where mDKer.O.G/ �
�! k/. Therefore, dimLie.G/� dimG, with equality if and only if

the local ring O.G/m is regular (I, 6.22), but O.G/m is regular if and only if G is smooth
(I, 6.25). 2

EXAMPLE 2.3 We have

dimLieGa D 1D dimGa
dimLie˛p D 1 > 0D dim˛p

dimLieSLn D n2�1D dimSLn :

PROPOSITION 2.4 If
1!N !G!Q! 1

is exact, then
dimG D dimN CdimQ:

PROOF. See I, 7.60. 2
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2b Applications

PROPOSITION 2.5 Let H be a smooth algebraic subgroup of a connected algebraic group
G. If LieH D LieG, then G is smooth and H DG.

PROOF. We have

dimH
(2.2)
D dimLieH D dimLieG

(2.2)
� dimG:

Because H is a subgroup of G, dimH � dimG (see I, 6.24). Therefore

dimH D dimLie.G/D dimG;

and so G is smooth (2.2) and H DG (see I, 6.24). 2

COROLLARY 2.6 Assume char.k/D 0 and thatG is connected. A homomorphismH!G

is a surjective if LieH ! LieG is surjective.

PROOF. We know (I, 8.70) that H !G factors into

H ! NH !G

with H ! NH surjective and NH ! G injective. Correspondingly, we get a diagram of Lie
algebras

LieH ! Lie NH ! LieG:

Because NH !G is injective, Lie NH ! LieG is injective (1.36). If LieH ! LieG is surjec-
tive, then Lie NH ! LieG is an isomorphism. As we are in characteristic zero, NH is smooth
(I, 6.31), and so (2.5) shows that NH DG. 2

COROLLARY 2.7 Assume char.k/D 0. If

1!N !G!Q! 1

is exact, then
0! Lie.N /! Lie.G/! Lie.Q/! 0

is exact.

PROOF. The sequence 0! Lie.N /! Lie.G/! Lie.Q/ is exact (by 1.36), and the equal-
ity

dimG
(2.4)
D dimN CdimQ

implies a similar statement for the Lie algebras (by 2.2, as the groups are smooth). This
implies (by linear algebra) that Lie.G/! Lie.Q/ is surjective. 2

COROLLARY 2.8 The Lie algebra of G is zero if and only if G is étale; in particular, a
connected algebraic group with zero Lie algebra is trivial.
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PROOF. We have seen that the Lie algebra of an étale group is zero (1.18). Conversely, if
LieGD 0 thenG has dimension 0, and so O.G/ is a finite k-algebra; moreover, IG=I 2G D 0,
which implies that O.G/ is étale. 2

COROLLARY 2.9 In characteristic zero, a homomorphism G!H of connected algebraic
groups is an isogeny if and only if Lie.G/! Lie.H/ is an isomorphism.

PROOF. Apply (2.6), (2.7), and 2.8). 2

A
2.10 The smoothness and connectedness assumptions are necessary in (2.5) because

Lie.˛p/D Lie.Ga/ but ˛p ¤Ga and

Lie.SOn/D Lie.On/ but SOn ¤ On.

The same examples show that the characteristic and connectedness assumptions are neces-
sary in (2.6). The characteristic assumption is necessary in (2.7) because

0! ˛p!Ga
x 7!xp

�! Ga! 0

is exact, but the sequence

0! Lie˛p! LieGa! LieGa! 0

is
0! k

'
�! k

0
�! k! 0;

which is not exact.

THEOREM 2.11 Assume that char.k/D 0 and that G is connected. The map H 7! LieH
from connected algebraic subgroups of G to Lie subalgebras of LieG is injective and in-
clusion preserving.

PROOF. Let H and H 0 be connected algebraic subgroups of G. Then (see 1.37)

Lie.H \H 0/D Lie.H/\LieH 0/:

If Lie.H/D Lie.H 0/, then

Lie.H/D Lie.H \H 0/D Lie.H 0/;

and so (2.5) shows that
H DH \H 0 DH 0: 2

EXAMPLE 2.12 Let k be a field of characteristic zero, and consider GLn as an algebraic
group over k. According to I, 8.31, every algebraic group over k can be realized as a
subgroup of GLn for some n, and, according to (2.11), the algebraic subgroups of GLn
are in one-to-one correspondence with the algebraic Lie subalgebras of gln. This suggests
two questions: find an algorithm to decide whether a Lie subalgebra of gln is algebraic
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(i.e., arises from an algebraic subgroup)2; given an algebraic Lie subalgebra of gln, find an
algorithm to construct the group. For a recent discussion of these questions, see, de Graaf,
Willem, A. Constructing algebraic groups from their Lie algebras. J. Symbolic Comput. 44
(2009), no. 9, 1223–1233.3

PROPOSITION 2.13 Assume char.k/D 0. Let ˛;ˇ be homomorphisms of algebraic groups
G!H . If Lie.˛/D Lie.ˇ/ and G is connected, then ˛ D ˇ:

PROOF. Let � denote the diagonal in G �G — it is an algebraic subgroup of G �G
isomorphic to G. The homomorphisms ˛ and ˇ agree on the algebraic group

G0
def
D�\G�H G:

The hypothesis implies Lie.G0/D Lie.�/, and so G0 D�. 2

Thus, when char.k/D 0, the functor G Lie.G/ from connected algebraic groups to
Lie algebras is faithful and exact. It is not fully faithful, because

End.Gm/D Z¤ k D End.Lie.Gm//.

Moreover, it is trivial on étale algebraic groups.

2.14 Even in characteristic zero, infinitely many nonisomorphic connected algebraic groups
can have the same Lie algebra. For example, let g be the two-dimensional Lie algebra
hx;y j Œx;y�D yi, and, for each nonzero n 2 N, let Gn be the semidirect product GaoGm
defined by the action .t;a/ 7! tna of Gm on Ga. Then Lie.Gn/D g for all n, but no two
groups Gn are isomorphic.

2c Representations; stabilizers; isotropy groups

A representation of a Lie algebra g on a k-vector space V is a homomorphism �Wg! glV .
Thus � sends x 2 g to a k-linear endomorphism �.x/ of V , and

�.Œx;y�/D �.x/�.y/��.y/�.x/:

We often call V a g-module and write xv for �.x/.v/. With this notation

Œx;y�v D x.yv/�y.xv/. (140)

A representation � is said to be faithful if it is injective. The representation x 7! adxWg!
glg is called the adjoint representation of g (see 1.4).

Let W be a subspace of V . The stabilizer of W in g is

gW
def
D fx 2 g j xW �W g.

2See �1m.
3de Graaf (ibid.) and his MR reviewer write: “A connected algebraic group in characteristic 0 is uniquely

determined by its Lie algebra.” This is obviously false — for example, SL2 and its quotient by f˙I g have
the same Lie algebra. What they mean (but didn’t say) is that a connected algebraic subgroup of GLn in
characteristic zero is uniquely determined by its Lie algebra (as a subalgebra of gln).
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It is clear from (140) that gW is a Lie subalgebra of g.
Let v 2 V . The isotropy algebra of v in g is

gv
def
D fx 2 g j xv D 0g:

It is a Lie subalgebra of g. The Lie algebra g is said to fix v if gD gv, i.e., if gv D 0.
Let r WG ! GLV be a representation of G on a k-vector space V . Then Lie.r/ is a

representation of Lie.G/ on V . Recall (I, 8.52) that, for any subspace W of V , the functor

R GW .R/
def
D fg 2G.R/ j g.W ˝R/DW ˝Rg

is an algebraic subgroup of G, called the stabilizer of W in G .

PROPOSITION 2.15 For any representation G! GLV and subspace W � V ,

LieGW D .LieG/W :

PROOF. By definition, LieGW consists of the elements idC"˛ of G.kŒ"�/, ˛ 2 End.V /,
such that

.idC"˛/.W C "W /�W C "W;

(cf. 1.20), i.e., such that ˛.W /�W . 2

COROLLARY 2.16 IfW is stable under G, then it is stable under Lie.G/, and the converse
is true when char.k/D 0 and G is connected.

PROOF. To say that W is stable under G means that G D GW , but if G D GW , then
LieG D LieGW D .LieG/W , which means that W is stable under LieG. Conversely, to
say that W is stable under LieG, means that LieG D .LieG/W . But if LieG D .LieG/W ,
then LieG D LieGW , which implies that GW D G when char.k/D 0 and G is connected
(2.5). 2

Let r WG! GLV be a representation of G on a k-vector space V . Recall (I, 8.55) that,
for any v 2 V , the functor

R Gv.R/
def
D fg 2G.R/ j g.v˝1/D v˝1g

is an algebraic subgroup of G, called the isotropy group of v in G .

PROPOSITION 2.17 For any representation G! GLV and v 2 V ,

LieGv D .LieG/v:

PROOF. By definition, LieGv consists of the elements idC"˛ of G.kŒ"�/ such that

id.v/C "˛.v/D vC0";

i.e., such that ˛.v/D 0. 2
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COROLLARY 2.18 If v is fixed by G, then it is fixed by Lie.G/, and the converse holds
when char.k/ D 0 and G is connected. In other words, V G � V g, with equality when
char.k/D 0 and G is connected.

PROOF. The proof is the same as that of Corollary 2.16. 2

A
2.19 Let V be a one-dimensional vector space over Q, and let �3 act on V through the

inclusion �3 ,!Gm D GLV ; thus � 2 �3.C/ acts on V.C/ as v 7! �v. Then

V �3 D 0

but
V �3.Q/ D V D V Lie.�3/:

For a representation G! GL.V / of G and subspace W of V , the functor

R CG.W /.R/
def
D fg 2G.R/ j gw D w for all w 2W g

is an algebraic subgroup of G because

CG.W /D
\

w2S
Gw

for any set S spanning W . It is called the centralizer of W in G. When CG.W /D G, the
algebraic group G is said to centralize W .

Similarly, for a representation g! glV of g and subspace W of V ,

cg.W /
def
D fx 2 g j xw D 0 for all w 2W g

is a Lie subalgebra of g, called the centralizer ofW in g. When cg.W /D g, the Lie algebra
g is said to centralize W .

As Lie commutes with intersections (1.37); Proposition 2.17 implies the following state-
ment.

COROLLARY 2.20 For a representation G! GL.V / of G and subspace W of V ,

Lie.CG.W //D cg.W /:

If G centralizes W , then g centralizes W , and the converse holds when char.k/D 0 and G
is connected.

COROLLARY 2.21 Let G be an algebraic group with Lie algebra g. If G is connected and
k has characteristic zero, then the functor Repk.G/! Repk.g/ is fully faithful.

PROOF. Let V and W be representations of G. Let ˛ be a k-linear map V !W , and let
ˇ be the element of V _˝W corresponding to ˛ under the isomorphism Homk.V;W /'
V _˝W . Then ˛ is a homomorphism of representations of G if and only if ˇ is fixed by
G. Since a similar statement holds for g, the claim follows from (2.18). 2
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COROLLARY 2.22 Let r WG! GLV be a representation of an algebraic group G, and let
W 0 � W be subspace of V . There exists an algebraic subgroup GW 0;W of G such that
GW 0;W .R/ consists of the elements of G.R/ stabilizing each of W 0.R/ and W.R/ and
acting trivially on W.R/=W 0.R/; its Lie algebra is

Lie.GW 0;W /D gW 0;W
def
D fx 2 g j Lie.r/.x/ maps W into W 0g:

PROOF. Apply (2.15) twice, and then (2.20). (See also DG II, �2, 1.3; �5, 5.7). 2

2d Normalizers and centralizers

Clearly z.g/ is an ideal in g. For a subalgebra h of g, the normalizer and centralizer of h in
g are

ng.h/D fx 2 g j Œx;h�� hg

cg.h/D fx 2 g j Œx;h�D 0g:

Thus ng.h/ is the largest subalgebra of g containing h as an ideal. The centralizer is a
subalgebra; when h is abelian, it is the largest subalgebra of g containing h in its centre.

PROPOSITION 2.23 Let G be an algebraic group, and let H be a connected subgroup of
G.

(a) Then

Lie.NG.H//� ng.h/

Lie.CG.H//� cg.h/

with equalities when char.k/D 0.
(b) If H is normal in G, then h is an ideal in Lie.G/, and the converse holds when

char.k/D 0 and G is connected.
(c) If H lies in the centre of G, then h lies in the centre of g, and the converse holds

when char.k/D 0 and G is connected.

PROOF. (a) We prove this below.
(b) IfH is normal in G, then NG.H/DG, and so ng.h/D g by (a); hence h is an ideal

in g. Conversely, if char.k/D 0 and ng.h/D g, then Lie.NG.H//D Lie.G/ by (a), which
implies that NG.H/DG when G is connected (see 2.5).

(c) IfH lies in the centre of G, then CG.H/DG, and so cg.h/D g by (a); hence h lies
in the centre of g. Conversely, if char.k/D 0 and cg.h/D g, then Lie.CG.H//D Lie.G/,
which implies that CG.H/DG when G is connected (see 2.5). 2

COROLLARY 2.24 For any connected algebraic group G, LieZ.G/ � z.g/, with equality
when char.k/D 0. If an algebraic group G is commutative, then so also is its Lie algebra,
and the converse holds when char.k/D 0 and G is connected.

PROOF. SinceZ.G/DCG.G/ and z.g/D cg.g/, the first statement follows from (a) of the
proposition, and the second follows from the first. 2



262 II. Lie Algebras and Algebraic Groups

PROOF OF PROPOSITION 2.23(a)

Let H WAlgk! Grp and X WAlgk! Set be functors, and let H �X !X be an action of H
on X (cf. I, �6n) Let XH be the subfunctor of X ,

R XH .R/D fx 2X.R/ j hxS D xS for all h 2H.S/ with S an R-algebrag. (141)

LEMMA 2.25 For all k-algebras R,

XH .R/D fx 2X.R/ j hR˝SxR˝S D xR˝S for all h 2H.S/ with S a k-algebrag:

PROOF. Let S be a R-algebra, and let S0 denote S regarded as a k-algebra. The k-algebra
maps R! S and idWS0! S define a homomorphism R˝k S0! S of k-algebras:

R R˝k S0 S

k S0:

id

Let h 2H.S/DH.S0/, and let x 2 X.R/. If hR˝S0xR˝S0 D xR˝S0 in X.R˝S
0
/, then

hxS D xS in X.S/. 2

Let H �G ! G be an action of an algebraic group H on an algebraic group G by
group automorphisms. Let gD Lie.G/. Then H acts on the functor

R g.R/
def
DR˝g.k/' Ker.G.RŒ"�/!G.R//

(see 1.29). By definition (141),

gH .k/D fx 2 g.k/ j hxS D xS (in g.S/) for all h 2H.S/, S a k-algebrag. (142)

On the other hand, Lemma 2.25 says that

GH .kŒ"�/Dfx 2G.kŒ"�/ j hSŒ"�xSŒ"�D xSŒ"� (in G.SŒ"�/) for all h2H.S/, S a k-algebrag,

and so

Lie.GH /D fx 2 Lie.G/ j hxS D xS (in Lie.GH /.S/) for all h 2H.S/, S a k-algebrag.
(143)

Thus we have proved the following statement.

LEMMA 2.26 LetH �G!G be an action of an algebraic groupH on an algebraic group
G by group automorphisms. Then

Lie.GH /' Lie.G/H :

LEMMA 2.27 Let G be an algebraic group, and let H be a subgroup of G. Let H act on g

via H !G
Ad
�! Aut.g/. Then

Lie.CG.H//D Lie.G/H

Lie.NG.H//=Lie.H/' .Lie.G/=Lie.H//H :
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PROOF. Recall (I, 7f) that CG.H/D GH (H acting on G by inner automorphisms), and
so the assertion concerning CG.H/ follows directly from Lemma 2.26.

Let x 2 Lie.G/. According to Lemma 2.25, x 2 Lie.NG.H// if and only if, for all
k-algebras R and all h 2H.R/,4

.1C "xRŒ"�/hRŒ"�.1� "xRŒ"�/ 2H.RŒ"�/

.1� "xRŒ"�/hRŒ"�.1C "xRŒ"�/ 2H.RŒ"�/;

i.e., that

.1C "xRŒ"�/hRŒ"�.1� "xRŒ"�/h
�1
RŒ"� 2H.RŒ"�/

.1� "xRŒ"�/hRŒ"�.1C "xRŒ"�/h
�1
RŒ"� 2H.RŒ"�/:

But this last condition can be written in the form

1˙ ".xR�Ad.h/xR/ 2H.RŒ"�/;

i.e., in the form
xR�Ad.h/xR 2 Lie.H/.R/: (144a)

We have shown that x 2 Lie.NG.H// if and only if its image in Lie.G/=Lie.H/ is
fixed byH . Therefore the subspace of Lie.G/=Lie.H/ fixed byH is LieNG.H/=Lie.H/.
(Cf. DG II �5, 5.7). 2

We now prove Proposition 2.23(a). We know (2.27) that

LieNG.H/=LieH D .LieG=LieH/H I

moreover (2.18),
.LieG=LieH/H � .LieG=LieH/LieH

with equality when char.k/D 0 and H is connected. Since

ng.h/=hD .g=h/
h;

this implies the first statement.
We know (2.27) that Lie.CG.H//DLie.G/H ; moreover (2.18), Lie.G/H �Lie.G/Lie.H/

with equality when char.k/ D 0 and G is connected. Since Lie.G/Lie.H/ D cg.h/, this
proves the second statement. (Cf. DG II �6, 2.1.)

4In the notation of �1n, this reads:

.e"x/RŒ"� �hRŒ"� � .e
�"x/RŒ"� 2H.RŒ"�/

.e�"x/RŒ"� �hRŒ"� � .e
"x/RŒ"� 2H.RŒ"�/;

i.e., that

.e"x/RŒ"� �hRŒ"� � .e
�"x/RŒ"� �h

�1
RŒ"� 2H.RŒ"�/

.e�"x/RŒ"� �hRŒ"� � .e
"x/RŒ"� �h

�1
RŒ"� 2H.RŒ"�/:

But this last condition can also be written

e˙".xR�Ad.h/xR/ 2H.RŒ"�/;

i.e.,
xR�Ad.h/xR 2 Lie.H/.R/:
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2e A nasty example

A
2.28 Let k be a field of characteristic p ¤ 0. The following simple example (already

encountered in I, 7.47) illustrates some of the things that can go wrong in this case. Define
G to be the algebraic subgroup of GL3 such that

G.R/D

8<:
0@ u 0 0

0 up a

0 0 1

1A9=; :
In other words, G is algebraic subgroup defined by the equations X22 D X

p
11, X33 D 1,

X12 DX13 DX21 DX31 DX32 D 0. Note that G is isomorphic to Ga�Gm but with the
noncommutative group structure

.a;u/.b;v/D .aCbup;uv/:

In other words, G is the semi-direct product GaoGm with u 2Gm.R/ acting on Ga.R/ as
multiplication by up. The Lie algebra of G is the semi-direct product Lie.Ga/oLie.Gm/
with the trivial action of Lie.Gm/ on Lie.Ga/ and so is commutative. The centre of G is
f.0;u/ j up D 1g ' �p, and the centre of G.kal/ is trivial. Thus,

Lie.Z.G/red/$ Lie.Z.G//$Z.Lie.G//:

On the other hand
.Ad.a;u//.b";1Cv"/D .bup";1C "v/

and so the subset of Lie.G/ fixed by Ad.G/ is

0�k D Lie.Z.G//:

3 Nilpotent and solvable Lie algebras

We write ha;b; : : :i for Span.a;b; : : :/, and we write ha;b; : : : jRi for the Lie algebra with
basis a;b; : : : and the bracket given by the rules R.

3a Definitions

DEFINITION 3.1 A Lie algebra g is said to be solvable (resp. nilpotent) if it admits a
filtration

gD a0 � a1 � �� � � ar D 0 (145)

by ideals such that ai=aiC1 is abelian (resp. contained in the centre of a=aiC1). Such a
filtration is called a solvable series (resp. nilpotent series).

In other words, a Lie algebra is solvable (resp. nilpotent) if it can be obtained from
abelian Lie algebras by successive extensions (resp. successive central extensions).

For example,

b3 D

8<:
0@� � �0 � �

0 0 �

1A9=;�
8<:
0@0 � �0 0 �

0 0 0

1A9=;�
8<:
0@0 0 �

0 0 0

0 0 0

1A9=;� f0g
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is solvable because Œb3;b3� is contained in

n3 D

8<:
0@0 � �0 0 �

0 0 0

1A9=;�
8<:
0@0 0 �

0 0 0

0 0 0

1A9=;� f0g;
which is nilpotent. More generally, for any maximal flag

F W V D V0 � V1 � �� � � Vn D 0

in a vector space V , the Lie algebras

b.F /
def
D fx 2 glV j xVi � Vig

n.F /
def
D fx 2 glV j xVi � ViC1g

are respectively solvable and nilpotent.

PROPOSITION 3.2 A Lie algebra g is solvable if and only if its derived series

g� g0 D Œg;g�� g00 D Œg0;g0�� �� � � g.iC1/ D Œg.i/;g.i/�� �� �

terminates with zero, and it is nilpotent if and only if its descending central series

g� g1 D Œg;g�� g2 D Œg;g1�� �� � � giC1 D Œg;gi �� �� �

terminates with zero.

PROOF. If the derived (resp. descending central series) terminates with zero, then it is a
solvable (resp. nilpotent) series. Conversely, if there exists a solvable (resp. nilpotent)
series g � a1 � a2 � � � � , then g.i/ � ai (resp. gi � ai ) and so the derived series (resp.
descending central series) terminates with zero. 2

For example, the Lie algebra

hx;y j Œx;y�D yi

is solvable but not nilpotent, and the Lie algebra

hx;y;z j Œx;y�D z; Œx;z�D Œy;z�D 0i

is nilpotent (hence also solvable).

PROPOSITION 3.3 (a) Subalgebras and quotient algebras of solvable Lie algebras are solv-
able.

(b) A Lie algebra g is solvable if it contains an ideal n such that n and g=n are solvable.
(c) Let n be an ideal in a Lie algebra g, and let h be a subalgebra of g. If n and h are

solvable, then hCn is solvable.

PROOF. (a) Let g � a1 � a2 � �� � be solvable series for g. For any subalgebra h of g,
h � h\ a1 � h\ a2 � �� � is a solvable series for h, and, for any quotient ˛Wg! q of g,
q� ˛.a1/� ˛.a2/� �� � is solvable series for q.

(b) Because g=n is solvable, g.m/ � n for some m. Now g.mCn/ � n.n/, which is zero
for some n.

(c) This follows from (b) because hCn=n' h=h\n, which is solvable by (a). 2
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COROLLARY 3.4 Every finite-dimensional Lie algebra contains a largest solvable ideal.

PROOF. Let n be a maximal solvable ideal. If h is also a solvable subalgebra, then hCn is
solvable by (3.3c). Therefore, if h is a solvable ideal, then hCn is a solvable ideal, and so
h� n. 2

DEFINITION 3.5 The largest solvable ideal in g is called the radical of g.

PROPOSITION 3.6 (a) Subalgebras and quotient algebras of nilpotent Lie algebras are nilpo-
tent.

(b) A nonzero Lie algebra g is nilpotent if and only if g=a is nilpotent for some ideal
a� z.g/.

PROOF. Statement (a) follows directly from the definition. If g is nilpotent, then the last
nonzero term a in a nilpotent series is contained in z.g/ and g=a is obviously nilpotent.
Conversely, for any ideal a� z.g/, the inverse image of a nilpotent series for g=a becomes
a nilpotent series for g when extended by 0. 2

A
3.7 An extension of nilpotent algebras is solvable, but not necessarily nilpotent. For ex-

ample, nn is nilpotent and bn=nn is abelian, but bn is not nilpotent when n� 3:

PROPOSITION 3.8 Let k0 be a field containing k. A Lie algebra g over k is solvable (resp.
nilpotent) if and only if gk0

def
D k0˝k g is solvable (resp. nilpotent).

PROOF. Obviously, for any subalgebras h and h0 of g, Œh;h0�k0 D Œhk0 ;h0k0 �. 2

3b Nilpotent Lie algebras: Engel’s theorems

If the nC1st term gnC1 of the descending central series of g is zero, then

Œx1; Œx2; : : : Œxn;y� : : :��D 0

for all x1; : : : ;xn;y 2 g; in other words, ad.x1/ı � � � ıad.xn/D 0; in particular, ad.x/n D 0.
There is a converse statement.

THEOREM 3.9 A Lie algebra g is nilpotent if ad.x/Wg! g is nilpotent for every x 2 g.

The next two theorems are variants of (3.9).

THEOREM 3.10 Let V be a finite-dimensional vector space, and let g be subalgebra of
glV . If g consists of nilpotent endomorphisms, then there exists a basis of V for which g is
contained in nn, nD dimV .

In other words, there exists a basis e1; : : : ; en for V such that

gei � he1; : : : ; ei�1i, all i: (146)
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THEOREM 3.11 Let ˛Wg! glV be a representation of a Lie algebra g on a nonzero finite-
dimensional vector space V . If ˛.x/ is nilpotent for all x 2 g, then there exists a nonzero
vector v in such that gv D 0.

We note that, for a single x 2 g such that ˛.x/ is nilpotent, there is no problem finding a
nonzero v such that xv D 0: choose any nonzero vector v0 in V , and let v D xmv0 with m
the greatest element of N such that xmv0 ¤ 0.

A
3.12 Let g be a subalgebra of glV . If there exists a basis of V for which g� ndimV , then
g is nilpotent, but the converse statement is false. For example, if V has dimension 1, then
g D glV is nilpotent (even abelian), but there is no basis for which the elements of g are
represented by strictly upper triangular matrices. Note that Theorem 3.9 says only that, for
an element x of a nilpotent algebra, ad.x/ is nilpotent; it doesn’t say that x acts nilpotently
on every g-module V .

PROOF THAT (3.11) IMPLIES (3.9)

Assume that g satisfies the hypothesis of (3.9) and is nonzero. On applying (3.11) to the
homomorphism adWg! glg, we see there exists a nonzero x 2 g such that Œg;y�D 0. There-
fore z.g/¤ 0. The quotient algebra g=z.g/ satisfies the hypothesis of (3.9) and has smaller
dimension than g. Using induction on the dimension of g, we find that g=z.g/ is nilpotent,
which implies that g is nilpotent by (3.6b).

PROOF THAT (3.11) IMPLIES (3.10).

Let g � glV satisfy the hypothesis of (3.10). If V ¤ 0, then (3.11) applied to g! glV ,
shows that there exists a vector e1 ¤ 0 such that ge1 D 0; if V ¤ he1i, then (3.11) applied
to g! glV=he1i shows that there exists a vector e2 … he1i such that ge2 � he1i. Continuing
in this fashion, we obtain a basis e1; : : : ; en for V satisfying (146).

PROOF OF (3.11)

LEMMA 3.13 Let V be a vector space, and let xWV ! V be an endomorphism of V . If x
is nilpotent, then so also is adxWglV ! glV .

PROOF. Let y 2 glV D End.V /. Then

.adx/.y/D Œx;y�D x ıy�y ıx

.adx/2 .y/D Œx; Œx;y��D x2 ıy�2x ıy ıxCy ıx2

.adx/3 .y/D x3 ıy�3x2 ıy ıxC3x ıy ıx2�y ıx3

� � � .

In general, .adx/m.y/ is a sum of terms xj ı y ı xm�j with 0 � j � m. Therefore, if
xn D 0, then .adx/2n D 0. 2

We now prove (3.11). By induction, we may assume that the statement holds for Lie
algebras of dimension less than dimg. Also, we may replace g with its image in glV , and
so assume that g� glV .
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Let h be a proper subalgebra of g. We claim that ng.h/ ¤ h.5 The lemma shows that
adxWglV ! glV is nilpotent for all x 2 g. For any x 2 h, adx preserves both g and h, and it
induces a nilpotent endomorphism on g=h. Therefore, by induction (dimh < dimg), there
exists nonzero element yCh of g=h such that Œh;yCh�� h. Such a y 2 ng.h/rh.

This shows that, when h is a maximal proper subalgebra h of g, its normalizer ng.h/D g,
and so h is an ideal in g. Hence, for any x 2 gr h, the subspace hChxi of g is a Lie
subalgebra. Since it properly contains h, it equals g.

Let W D fv 2 V j hv D 0g; then W ¤ 0 by induction (dimh < dimg). Because x acts
nilpotently onW , there exists a nonzero v 2W such that xv D 0. Now gv D .hChxi/v D
0.

3c Solvable Lie algebras: Lie’s theorem

THEOREM 3.14 Let V be a finite-dimensional vector space over an algebraically closed
field k of characteristic zero, and let g be a subalgebra of glV . If g is solvable, then there
exists a basis of V for which g is contained in bdimV .

In other words, there exists a basis e1; : : : ; en for V such that

gei � he1; : : : ; ei i, all i:

COROLLARY 3.15 Assume k has characteristic zero. If g is solvable, then Œg;g� is nilpo-
tent.

PROOF. We may suppose that k is algebraically closed (3.8). It suffices to show that ad.g/
is solvable, and so we may suppose that g � glV for some finite-dimensional vector space
V . According to Lie’s theorem, there exists a basis of V for which g is contained in bdimV .
Then Œg;g�� ndimV , which is nilpotent. 2

In order for the map v 7! xv be trigonalizable, all of its eigenvalues must lie in k.
This explains why k is required to be algebraically closed. The condition that k have
characteristic zero is more surprising, but the following examples shows that it is necessary.

EXAMPLES IN NONZERO CHARACTERISTIC

A 3.16 In characteristic 2, sl2 is solvable but for no basis is it contained in b2.

A 3.17 Let k have characteristic p ¤ 0, and consider the matrices

x D

0BBBBB@
0 1 0 � � � 0

0 0 1 � � � 0
:::

:::
:::
: : :

:::

0 0 0 � � � 1

1 0 0 � � � 0

1CCCCCA ; y D

0BBBBB@
0 0 � � � 0 0

0 1 � � � 0 0
:::

:::
: : :

:::
:::

0 0 � � � p�2 0

0 0 � � � 0 p�1

1CCCCCA :
5Cf.: Let H be a proper subgroup of a finite nilpotent group G; then H ¤NG.H/ (GT 6.20.
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Then

Œx;y�D

0BBBBB@
0 1 0 � � � 0

0 0 2 � � � 0
:::

:::
:::
: : :

:::

0 0 0 � � � p�1

0 0 0 � � � 0

1CCCCCA�
0BBBBB@

0 0 0 � � � 0

0 0 1 � � � 0
:::

:::
:::
: : :

:::

0 0 0 � � � p�2

p�1 0 0 � � � 0

1CCCCCAD x
(this uses that p D 0). Therefore, gD hx;yi is a solvable subalgebra of glp. The matrices
x and y have the following eigenvectors:

x W

0BBBBB@
1

1

1
:::

1

1CCCCCA I y W

0BBBBB@
1

0

0
:::

0

1CCCCCA ,

0BBBBB@
0

1

0
:::

0

1CCCCCA , : : : ,

0BBBBB@
0

0
:::

0

1

1CCCCCA :
Therefore g has no simultaneous eigenvector, and so Lie’s theorem fails.

A
3.18 Even the corollary fails in nonzero characteristic. Note that it implies that, for a solv-

able subalgebra g of glV , the derived algebra Œg;g� consists of nilpotent endomorphisms.
Example (a), and example (b) in the case char.k/D 2, and show that this is false in char-
acteristic 2. For more examples in all nonzero characteristics, see Humphreys 1972, �4,
Exercise 4.

PROOF OF LIE’S THEOREM

LEMMA 3.19 (INVARIANCE LEMMA) Let V be a finite-dimensional vector space, and let
g be a Lie subalgebra of glV . For any ideal a in g and linear map �Wa! k, the eigenspace

V� D fv 2 V j av D �.a/v for all a 2 ag (147)

is invariant under g.

PROOF. Let x 2 g and let v 2 V�. We have to show that xv 2 V�, but for a 2 a;

a.xv/D x.av/C Œa;x�.v/D �.a/xvC�.Œa;x�/v.

Thus a nonzero V� is invariant under g if and only if �.Œa;g�/D 0.
Fix an x 2 g and a nonzero v 2 V�, and consider the subspaces

hvi � hv;xvi � � � � � hv;xv; : : : ;xi�1vi � � � �

of V . Let m be the first integer such that hv; : : : ;xm�1vi D hv; : : : ;xmvi. Then

W
def
D hv;xv; : : : ;xm�1vi

has basis v;xv; : : : ;xm�1v and contains xiv for all i .
We claim that an element a of a maps W into itself and has matrix0BBB@

�.a/ � � � � �

0 �.a/ � � � �

:::
:::

: : :
:::

0 0 � � � �.a/

1CCCA
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with respect to the given basis. We check this column by column. The equality

av D �.a/v

shows that the first column is as claimed. As Œa;x� 2 a,

a.xv/D x.av/C Œa;x�v

D �.a/xvC�.Œa;x�/v;

and so that the second column is as claimed (with � D �.Œa;x�/). Assume that the first i
columns are as claimed, and consider

a.xiv/D ax.xi�1v/D .xaC Œa;x�/xi�1v: (148)

From knowing the i th column, we find that

a.xi�1v/D �.a/xi�1vCu (149)

Œa;x�.xi�1v/D �.Œa;x�/xi�1vCu0 (150)

with u;u0 2 hv;xv; : : : ;xi�2vi. On multiplying (149) with x we obtain the equality

xa.xi�1v/D �.a/xivCxu (151)

with xu 2 hv;xv; : : : ;xi�1vi. Now (148), (150), and (151) show that the .iC1/st column
is as claimed.

This completes the proof that the matrix of a 2 a acting on W has the form claimed,
and shows that

TrW .a/Dm�.a/: (152)

We now complete the proof of the lemma by showing that �.Œa;g�/ D 0. Let a 2 a and
x 2 g. On applying (152) to the element Œa;x� of a, we find that

m�.Œa;x�/D TrW .Œa;x�/D TrW .ax�xa/D 0,

and so �.Œa;x�/D 0 (because m¤ 0 in k). 2

LEMMA 3.20 Under the hypotheses of Lie’s theorem, assume that V ¤ 0; then there exists
a nonzero vector v 2 V such that gv � hvi.

PROOF. We use induction on the dimension of g. If dimg D 1, then g D k˛ for some
endomorphism ˛ of V , and ˛ has an eigenvector because k is algebraically closed. Because
g is solvable, its derived algebra g0 ¤ g. The quotient g=g0 is abelian, and so is essentially
just a vector space. Write g=g0 as the direct sum of a subspace of codimension 1 and a
subspace of dimension 1. This decomposition corresponds to a decomposition gD aChxi
with a and hxi ideals in g. By induction, there exists a nonzero w 2 V such that aw � hwi,
i.e., such that aw D �.a/w, all a 2 a, for some �Wa! k. Let V� be the corresponding
eigenspace for a (147). According to the Invariance Lemma, V� is stable under g. As it is
nonzero, it contains a nonzero eigenvector v for x. Now, for any element g D aC cx 2 g,

gv D �.a/vC c.xv/ 2 hvi: 2

Lie’s theorem follows directly from Lemma 3.20 (cf. the proof of (3.11))(3.10)).

ASIDE 3.21 The proof shows that Lie’s theorem holds when k has characteristic p provided that
dimV < p. This is a general phenomenon: for any specific problem, there will be a p0 such that the
characteristic p case behaves as the characteristic 0 case provided p � p0.



3. Nilpotent and solvable Lie algebras 271

3d Jordan decompositions

PROPOSITION 3.22 Let V be a finite-dimensional vector space over a perfect field. For
any endomorphism ˛ of V , there exist unique endomorphisms ˛s and ˛n of V such that

(a) ˛ D ˛sC˛n,
(b) ˛s ı˛n D ˛n ı˛s , and
(c) ˛s is semisimple and ˛n is nilpotent.

Moreover, each of ˛s and ˛n is a polynomial in ˛.

PROOF. Assume first that ˛ has all of its eigenvalues in k, so that V is a direct sum of the
generalized eigenspaces of ˛, say, V D

L
a2I Va where I is the set of distinct eigenvalues

of ˛ (see I, 10.11). Define ˛s to be the endomorphism of V that acts as a on Va for
each a 2 I . Then ˛s is a semisimple endomorphism of V , and ˛n

def
D ˛�˛s commutes ˛s

(because it does on each Va) and is nilpotent (because it is so on each Va). Thus ˛s and ˛n
satisfy the conditions (a,b,c).

Let na be the multiplicity of an eigenvalue a. Because the polynomials .T �a/na , a 2 I ,
are relatively prime, the Chinese remainder theorem shows that there exists a Q.T / 2 kŒT �
such that

Q.T /� a mod .T �a/na

for all a 2 I . Then Q.˛/ acts as a on Va for each i , and so ˛s D Q.˛/. Moreover,
˛n D ˛�Q.˛/.

The rest of the proof is similar to that of (I, 10.12). 2

REMARK 3.23 (a) If 0 2 I , then Q.T / has no constant term. Otherwise, we can choose it
satisfy the additional congruence

Q.T /� 0 mod T

in order to achieve the same result.
(b) Suppose kDC, and let Na denote the complex conjugate of a. There exists aQ.T / 2

CŒT � such that
Q.T /� Na mod .T �a/na

for all a 2 I . Then Q.˛/ is an endomorphism of V that acts on Va as Na. Again, we can
choose Q.T / to have no constant term.

The endomorphisms ˛s and ˛n are called the semisimple and nilpotent parts of ˛, and

˛ D ˛sC˛n

is the (additive) Jordan decomposition of ˛.

PROPOSITION 3.24 Let ˛ be an endomorphism of a finite-dimensional vector space V over
a perfect field. The Jordan decomposition of ad.˛/ in End.End.V // is ad.˛/ D ad.˛s/C
ad.˛n/.
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PROOF. Suppose first that ˛ is semisimple. After a field extension, there will exist a basis
.ei /1�i�dimV of V for which ˛ has matrix diag.a1;a2; : : :/. If .eij /1�i;j�dimV is the cor-
responding basis for End.V /, then ad.˛/eij D .ai �aj /eij for all i;j . Therefore ad.˛/ is
semisimple.

For a general ˛, the decomposition ˛ D ˛sC˛n gives a decomposition ad˛ D ad˛sC
ad˛n. We have just seen that ad.˛s/ is semisimple, and Lemma 3.13 shows that ad.˛n/ is
nilpotent. The two commute because

Œad˛s;ad˛n�D adŒ˛s;˛n�D 0:

Therefore the decomposition ad˛D ad˛sCad˛n satisfies the conditions (a,b,c) of (3.22).2

3e Cartan’s first criterion

THEOREM 3.25 (CARTAN’S CRITERION) Let g be a subalgebra of glV , where V is a
finite-dimensional vector space over a field k of characteristic zero. Then g is solvable
if TrV .x ıy/D 0 for all x;y 2 g.

PROOF. We first observe that, if k0 is a field containing k, then the theorem is true for
g � glV if and only if it is true for gk0 � glVk0 (because, for example, g is solvable if and
only if gk0 is solvable). Therefore, we may assume that k is finitely generated over Q, hence
embeddable in C, and then that k D C.

We shall show that the condition implies that each x 2 Œg;g� defines a nilpotent endo-
morphism of V . Then Engel’s theorem 3.10 will show that Œg;g� is nilpotent, and it will
follow that g is solvable (3.3b).

Let x 2 Œg;g�, and fix a basis of V for which the matrix of xs is diagonal, say, diag.a1; : : : ;an/,
and the matrix of xn is strictly upper triangular. We have to show that xs D 0, and for this
it suffices to show that

Na1a1C�� �C Nanan D 0.

Note that
TrV . Nxs ıx/D Na1a1C�� �C Nanan,

where Nxs D diag. Na1; : : : ; Nan/. By assumption, x is a sum of commutators Œy;z�, and so it
suffices to show that

TrV . Nxs ı Œy;z�/D 0; all y;z 2 g:

From the trivial identity (see 5.8 below)

TrV .a ı Œb;c�/D TrV .Œa;b�ı c/; a;b;c 2 End.V /,

we see that it suffices to show that

TrV .Œ Nxs;y�ız/D 0; all y;z 2 g: (153)

This will follow from the hypothesis once we have shown that Œ Nxs;y� 2 g. According to
(3.23(b)),

Nxs D c1xC c2x
2
C�� � , for some ci 2 k,

and so
Œ Nxs;g�� g

because Œx;g�� g. 2
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COROLLARY 3.26 Let V be a finite-dimensional vector space over a field k of characteris-
tic zero, and let g be a subalgebra of glV . If g is solvable, then TrV .x ıy/D 0 for all x 2 g
and y 2 Œg;g�. Conversely, if TrV .x ıy/D 0 for all x;y 2 Œg;g�, then g is solvable.

PROOF. Recall (3.8) that g is solvable if and only if gkal is solvable, and so we may suppose
that k is algebraically closed. According to Lie’s theorem 3.14, there exists a basis of V for
which g� bn, nD dimV . Then Œg;g�� Œbn;bn�D nn, from which the statement follows.

For the converse, note that the condition implies that Œg;g� is solvable by (3.25). But
this implies that g is solvable (because g.m/ D .g0/.m�1/). 2

ASIDE 3.27 In the above proofs, it is possible to avoid passing to the case k D C. Roughly speak-
ing, instead of complex conjugation, one uses the elements of the dual of the subspace of k generated
by the eigenvalues of xs . See, for example, Humphreys 1972, 4.3.

4 Unipotent algebraic groups and nilpotent Lie algebras

In characteristic zero, the functor Lie is an equivalence from the category unipotent alge-
braic groups to that of nilpotent Lie algebras. The purpose of this section is to extract the
proof of this from DG (see IV, �2, 4.5). It may be skipped by the reader, since it is not used
later, and it exists only as a preliminary draft. (Cf. mo10730).

Throughout, k is a field of characteristic zero.

4a Preliminaries on Lie algebras

THE HAUSDORFF SERIES

For a nilpotent n�n matrix X ,

exp.X/ def
D I CXCX2=2ŠCX3=3ŠC�� �

is a well defined element of GLn.k/. Moreover, when X and Y are nilpotent,

exp.X/ � exp.Y /D exp.W /

for some nilpotent W , and we may ask for a formula expressing W in terms of X and Y .
This is provided by the Hausdorff series6, which is a formal power series,

H.X;Y /D
X

n�0
Hn.X;Y /; Hn.X;Y / homogeneous of degree n,

with coefficients in Q. The first few terms are

H 1.X;Y /DXCY

H 2.X;Y /D
1

2
ŒX;Y �:

6According to the Wikipedia, the formula was first noted in print by Campbell (1897); elaborated by
Henri Poincaré (1899) and Baker (1902); and systematized geometrically, and linked to the Jacobi identity by
Hausdorff (1906). I follow Bourbaki’s terminology — others write Baker-Campbell-Hausdorff, or Campbell-
Hausdorff, or . . .
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If g is a nilpotent Lie algebra over a field k of characteristic zero, then Hn.x;y/ D 0 for
x;y 2 g and n sufficiently large; we therefore have a morphism

hWga�ga! ga

such that, for all k-algebras R, and x;y 2 gR,

h.x;y/D
X

n�0
hn.X;Y /.

If x and y are nilpotent elements of GLn.k/, then

exp.x/ � exp.y/D exp.h.x;y//;

and this determines the power series H.X;Y / uniquely. See Bourbaki LIE, II.

ADO’S THEOREM

THEOREM 4.1 Let g be a finite-dimensional Lie algebra over a field of characteristic zero,
and let n be its largest nilpotent ideal. Then there exists a faithful representation .V;r/ of g
such that r.n/ consists of nilpotent elements.

PROOF. Bourbaki LIE, I, �7, 3. 2

4b Preliminaries on unipotent groups

We need to use a little algebraic geometry, but only over an algebraically closed field; in
fact, we only need the first ten chapters of AG.

NOTES The results in this subsection don’t require k to be of characteristic zero, and should be
moved to Chapter I.

LEMMA 4.2 Let U be a unipotent subgroup of an algebraic group G. Then G=U is iso-
morphic to a subscheme of an affine scheme (DG IV 2 2.8, p. 489).

PROOF. Let .V;r/ be a representation of G such that U is the stabilizer of a line L in V .
As U is unipotent, it acts trivially on L, and so LU D L. For any nonzero x 2 L, the map
g 7! gx is an injective regular map G=U ! Va. 2

LEMMA 4.3 For any connected algebraic groupG, the quotient Ker.AdWG!GLg/=Z.G/

is unipotent (DG IV 2 2.12, p. 490).

PROOF. We may suppose that k is algebraically closed. Let Oe D O.G/e (the local ring
at the identity element), and let me be its maximal ideal. Then G acts on k-vector space
Oe=mrC1e by k-algebra homomorphisms. By definition, Ker.Ad/ acts trivially on me=m

2
e ,

and so it acts trivially on each of the quotients mie=m
iC1
e . Let Cr be the centralizer of

O.G/e=mrC1 in G (see Section 2). We have shown that Ker.Ad/=Cr is unipotent. It
remains to show that Cr DZ.G/ for r sufficiently large. 2
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PROPOSITION 4.4 Let G be a smooth connected algebraic group over an algebraically
closed field k. If G contains no subgroup isomorphic to Gm, then it is unipotent (DG IV 2
3.11, p. 496).

PROOF. Let .V;r/ be a faithful representation of G, and let F be the variety of maximal
flags in V . Then G acts on V , and according to AG 10.6, there exists a closed orbit, say
Gd 'G=U . Then U is solvable, and so, by the Lie-Kolchin theorem 16.31, U ıred � Tn for
some choice of basis. By hypothesis, U ıred\Dn D 0, and so U ıred is unipotent. Now G=U ıred
is affine and connected, and so its image in F is a point. Hence G D U ıred. 2

COROLLARY 4.5 Let G be a smooth connected algebraic group. The following conditions
are equivalent:

(a) G is unipotent;
(b) The centre of G is unipotent and Lie.G/ is nilpotent;
(c) For every representation .V;r/ of G, Lier maps the elements of Lie.G/ to nilpotent

endomorphisms of V ;
(d) Condition (c) holds for one faithful representation .V;r/.

(DG IV 2 3.12, p. 496.)

PROOF. (a))(c). There exists a basis for V such that G maps into Un (see I, 15.4).
(c))(d). Trivial.
(a))(b). Every subgroup of a unipotent group is unipotent (I, 15.7), and G has a

filtration whose quotients are isomorphic to subgroups of Ga (I, 15.14).
(d))(a). We may assume that k is algebraically closed (I, 15.10). If G contains a

subgroup H isomorphic to Gm, then V D
L
n2ZVn where h 2 H.k/ acts on Vn as hn.

Then x 2 Lie.H/ acts on Vn as nx, which contradicts the hypothesis.
(b))(a). The kernel of the adjoint representation unipotent (in characteristic zero, it

is Z.G/ — see 5.30 below; in general it is an extension of unipotent groups, and hence is
unipotent by 15.7). Suppose that G contains a subgroup H isomorphic to Gm. Then H
acts faithfully on g, and its elements act semisimply, contradicting the nilpotence of g. 2

PROOF OF THE MAIN THEOREM

Let H.X;Y / D
P
n>0H

n.X;Y / denote the Hausdorff series. Recall (I, 3.6) that, for a
finite-dimensional vector space V , Va denotes the algebraic group R R˝k V .

PROPOSITION 4.6 Let G be a unipotent algebraic group. Then

exp.x/ � exp.y/D exp.h.x;y// (154)

for all x;y 2 gR and k-algebras R.

PROOF. We may identify G with a subgroup of GLV for some finite-dimensional vector
space V . Then g� glV , and, because G is unipotent, g is nilpotent. Now (154) holds in G
because it holds in GLV . 2
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THEOREM 4.7 Assume char.k/D 0.
(a) For any finite-dimensional nilpotent Lie algebra over k, the maps

.x;y/ 7!
P
n>0H

n.x;y/Wg.R/�g.R/! g.R/

(R a k-algebra) make ga into a unipotent algebraic group over k.
(b) The functor g ga is an equivalence from the category of finite-dimensional nilpo-

tent Lie algebras over k to the category of unipotent algebraic groups, with quasi-inverse
G Lie.G/.

PROOF. (a) Ado’s theorem allows us to identify g with a Lie subalgebra of glV whose
elements are nilpotent endomorphisms of V . Now (3.10) shows that there exists a basis
of V for which g is contained in the Lie subalgebra n of gln consisting of strictly upper
triangular matrices. Endow na with the multiplication

.x;y/ 7!
X

n
Hn.x;y/; x;y 2R˝nn, R a k-algebra.

According to the above discussion, we obtain in this way an algebraic group isomorphic to
Un. It is clear that ga is an affine subgroup of na. It remains to show that Lie.ga/D g (as a
Lie subalgebra of gln), but this follows from the definitions.

(b) We saw in the proof of (a) that Lie.ga/' g, and it follows that G ' .LieG/a. 2

COROLLARY 4.8 Every Lie subalgebra of glV formed of nilpotent endomorphisms is al-
gebraic.

See also �1m.

REMARK 4.9 In the equivalence of categories in (b), commutative Lie algebras (i.e., finite-
dimensional vector spaces) correspond to commutative unipotent algebraic groups. In other
words,U  Lie.U / is an equivalence from the category of commutative unipotent algebraic
groups over a field of characteristic zero to the category of finite-dimensional vector spaces,
with quasi-inverse V  Va.

NONZERO CHARACTERISTIC

ASIDE 4.10 Unipotent groups over fields of nonzero characteristic are very complicated. For exam-
ple, if p > 2, then there exist many “fake Heisenberg groups” (connected noncommutative smooth
unipotent algebraic groups of exponent p and dimension 2) over finite fields.

ASIDE 4.11 The nilpotent Lie algebras in low dimension have been classified:

Many articles on the classification of low-dimensional Lie algebras do contain mis-
takes. To the best of my knowledge, the full detailed proof is provided in the disser-
tation of Ming-Peng Gong, where he classifies all algebras up to dimension 7 over
algebraically closed fields of any characteristics except 2, and also over R. (mo21114,
mathreader)

There is indeed a lot of work devoted to the classification of nilpotent Lie algebras
of low dimension . . . , with numerous mistakes and omissions. Even worse, they use
different nomenclature and invariants to classify the algebras, and it is a nontrivial task
to compare different lists. Luckily, Willem de Graaf undertook the painstaking task to
make order out of this somewhat messy situation in “Classification of 6-dimensional



5. Semisimple Lie algebras and algebraic groups 277

nilpotent Lie algebras over fields of characteristic not 2”, J. Algebra 309 (2007), 640-
653; arXiv:math/0511668 . Even better, he provides an algorithm for identifying any
given nilpotent Lie algebra with one in his list, and the corresponding code is available
as a part of GAP package. He builds on earlier work of Skjelbred-Sund and his own
method of identification of Lie algebras by means of Groebner bases. (mo21114, Pasha
Zusmanovich)

5 Semisimple Lie algebras and algebraic groups

Throughout this section, k has characteristic zero, and all Lie algebras are of finite dimen-
sion over k.

5a Semisimple Lie algebras

DEFINITION 5.1 A Lie algebra g is said to be semisimple if its only abelian ideal is f0g
(Bourbaki LIE I, �6, 1).

5.2 The algebra f0g is semisimple, but no Lie algebra of dimension 1 or 2 is semisimple
(because they are all abelian). There exist semisimple Lie algebras of dimension 3, for
example, sl2 (see 5.10 below).

5.3 A Lie algebra g is semisimple if and only its radical r.g/D 0. (Recall (3.5) that r.g/
is the largest solvable ideal in g. If r.g/¤ 0, then the last nonzero term of its derived series
is an abelian ideal in g; if r.g/D 0, then every abelian ideal is zero because it is contained
in r.g/.)

5.4 For any Lie algebra g, the quotient g=r.g/ is semisimple. (A nonzero abelian ideal in
g=r.g/ would correspond to a solvable ideal in g properly containing r.g/.)

5.5 A product g D g1 � � � � � gn of semisimple Lie algebras is semisimple. (Let a be an
abelian ideal in g; the projection of a in gi is zero for each i , and so a is zero.)

5.6 A Lie algebra g is said to be reductive if its radical equals its centre; a reductive Lie
algebra g decomposes into a direct product of Lie algebras

gD c� Œg;g�

with c commutative and Œg;g� semisimple (Bourbaki LIE, I, �6, 4/:

TRACE FORMS

Let g be a Lie algebra. A symmetric k-bilinear form BWg� g! k on g is said to be
associative7 if

B.Œx;y�;z/D B.x; Œy;z�/ for all x;y;z 2 g:

LEMMA 5.7 Let B be an associative form on g, and let a be an ideal in g. The orthogonal
complement a? of a with respect to B is again an ideal. If B is nondegenerate, then a\a?

is abelian.
7Bourbaki LIE, I, �3, 6, says “invariant” instead of “associative”.
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PROOF. By definition
a? D fx 2 g j B.a;x/D 0g:

Let a0 2 a? and x 2 g. Then, for a 2 a,

B.a; Œx;a0�/D�B.a; Œa0;x�/D�B.Œa;a0�;x/D 0

and so Œx;a0� 2 a?. This shows that a? is an ideal.
Now assume that B is nondegenerate, and let b be an ideal in g such that Bjb�b D 0.

For x;y 2 b and z 2 g, B.Œx;y�;z/D B.x; Œy;z�/, which is zero because Œy;z� 2 b. Hence
Œx;y�D 0, and so b is abelian. 2

Let �Wg! glV be a representation of g on a finite-dimensional vector space V . For
x 2 g, write xV for �.x/. The trace form ˇV Wg�g! k defined by V is

.x;y/ 7! TrV .xV ıyV /; x;y 2 g:

LEMMA 5.8 The trace form is a symmetric bilinear form on g, and it is associative:

ˇV .Œx;y�;z/D ˇV .x; Œy;z�/; all x;y;z 2 g:

PROOF. It is k-bilinear because � is linear, composition of maps is bilinear, and trace is
linear. It is symmetric because for any n�n matrices AD .aij / and B D .bij /,

Tr.AB/D
P
i;j aij bj i D Tr.BA/: (155)

It is associative because for x;y;z 2 g,

ˇV .Œx;y�;z/D Tr.Œx;y�ız/D Tr.x ıy ı z/�Tr.y ıx ı z/ (definitions)

D Tr.x ıy ı z/�Tr.x ız ıy/ (apply (155))

D Tr.x ı Œy;z�/D ˇV .x; Œy;z�/ (definitions). 2

Therefore (see 5.7), the orthogonal complement a? of an ideal a of g with respect to a
trace form is again an ideal.

PROPOSITION 5.9 If g! glV is faithful and g is semisimple, then ˇV is nondegenerate.

PROOF. We have to show that g? D 0, but we know that it is an ideal (5.7), and Cartan’s
criterion (3.25) shows that it is solvable because

TrV .xV ıyV /D ˇV .x;y/D 0

for all x;y 2 g?. 2
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THE CARTAN-KILLING CRITERION

The trace form for the adjoint representation adWg! glg is called the Killing form8 �g on
g. Thus,

�g.x;y/D Trg.ad.x/ı ad.y//; all x;y 2 g:

In other words, �g.x;y/ is the trace of the k-linear map

z 7! Œx; Œy;z��Wg! g:

EXAMPLE 5.10 The Lie algebra sl2 consists of the 2�2matrices with trace zero. It has as
basis the elements9

x D

�
0 1

0 0

�
; y D

�
0 0

1 0

�
; hD

�
1 0

0 �1

�
;

and
Œh;x�D 2x; Œh;y�D�2y; Œx;y�D h:

Then

adx D

0@0 �2 0

0 0 1

0 0 0

1A ; adhD

0@2 0 0

0 0 0

0 0 �2

1A ; ady D

0@ 0 0 0

�1 0 0

0 2 0

1A
and so the top row .�.x;x/;�.x;h/;�.x;y// of the matrix of � consists of the traces of0@0 0 �2

0 0 0

0 0 0

1A ;
0@0 0 0

0 0 �2

0 0 0

1A ;
0@2 0 0

0 2 0

0 0 0

1A :

In fact, � has matrix

0@0 0 4

0 8 0

4 0 0

1A, which has determinant �128.

Note that, for sln, the matrix of � is n2� 1�n2� 1, and so this is not something one
would like to compute.

LEMMA 5.11 Let a be an ideal in g. The Killing form on g restricts to the Killing form on
a, i.e.,

�g.x;y/D �a.x;y/ all x;y 2 a:

PROOF. Let ˛ be an endomorphism of a vector space V such that ˛.V /�W ; then TrV .˛/D
TrW .˛jW /, because when we choose a basis for W and extend it to a basis for V , the ma-
trix for ˛ takes the form

�
A B
0 0

�
where A is the matrix of ˛jW . If x;y 2 a, then adx ı ady

is an endomorphism of g mapping g into a, and so its trace (on g), �g.x;y/, equals

Tra.adx ı adyja/D Tra.adax ı aday/D �a.x;y/: 2

8Also called the Cartan-Killing form. According to Bourbaki (Note Historique to I, II, III), E. Cartan
introduced the “Killing form” in his thesis and proved the two fundamental criteria: a Lie algebra is solvable
if its Killing form is trivial (5.12); a Lie algebra is semisimple if its Killing form is nondegenerate (5.13).
According to Helgason 1990, Killing introduced the Killing form, but Cartan made much more use of it.

9Some authors write .h;e;f / for .h;x;y/; Bourbaki LIE, I, �6, 7, writes .H;X;Y /; in VIII, �1, 1, Base
canonique de sl2, he writes .H;XC;�X�/, i.e., he sets X D

�
0 0
�1 0

�
.
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PROPOSITION 5.12 If �g.g; Œg;g�/D 0, then g is solvable.

PROOF. The map adWg! glg has kernel the centre z.g/ of g, and the condition implies that
the image is solvable (Cartan’s criterion, 3.26). 2

THEOREM 5.13 (Cartan-Killing criterion). A nonzero Lie algebra g is semisimple if and
only if its Killing form is nondegenerate.

PROOF. ): Because g is semisimple, the adjoint representation adWg! glg is faithful, and
so this follows (5.9).
(: Let a be an abelian ideal of g — we have to show that a D 0. For any a 2 a and

g 2 g, we have that

g
adg
�! g

ada
�! a

adg
�! a

ada
�! 0;

and so .ada ıadg/2 D 0. But an endomorphism of a vector space whose square is zero has
trace zero (because its minimum polynomial divides X2, and so its eigenvalues are zero).
Therefore

�g.a;g/
def
D Trg.ada ı adg/D 0;

and a� g? D 0. 2

COROLLARY 5.14 Let g be a Lie algebra over a field k, and let k0 be a field containing k.

(a) The Lie algebra g is semisimple if and only if gk0 is semisimple.
(b) The radical r.gk0/' k0˝k r.g/.

PROOF. (a) The Killing form of gk0 is obtained from that of g by extension of scalars.
(b) The exact sequence

0! r.g/! g! g=r.g/! 0

gives rise to an exact sequence

0! r.g/k0 ! gk0 ! .g=r.g//k0 ! 0:

As r.g/k0 is solvable (3.8) and .g=r.g//k0 is semisimple, the sequence shows that r.g/k0 is
the largest solvable ideal in gk0 , i.e., that r.g/k0 D r.gk0/. 2

THE DECOMPOSITION OF SEMISIMPLE LIE ALGEBRAS

DEFINITION 5.15 A Lie algebra g is simple if it is nonabelian and its only ideals are f0g
and g.

Clearly a simple Lie algebra is semisimple, and so a product of simple Lie algebras is
semisimple (by 5.5).

Let g be a Lie algebra, and let a1; : : : ;ar be ideals in g. If g is a direct sum of the ai as
k-subspaces,

gD a1˚�� �˚ar ,
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then Œai ;aj �� ai\aj D 0 for i ¤ j , and so g is a direct product of the ai as Lie subalgebras,

gD a1� � � ��ar .

The minimal nonzero ideals in a Lie algebra are either abelian or simple. Therefore, the
minimal nonzero ideals in a semisimple Lie algebra are exactly the ideals that are simple as
Lie algebras.

THEOREM 5.16 A semisimple Lie algebra g has only finitely many minimal nonzero ideals
a1; : : : ;ar , and

gD a1� � � ��ar .

Every ideal in a is a direct product of the ai that it contains.

In particular, a Lie algebra is semisimple if and only if it is isomorphic to a product of
simple Lie algebras.

PROOF. Let a be an ideal in g. Then the orthogonal complement a? of a is also an ideal
(5.7), and so a\a? is an ideal. By Cartan’s criterion (5.12), it is solvable, and hence zero.
Therefore, gD a˚a?.

If g is not simple, then it has a nonzero proper ideal a. Write gD a˚a?. If one of a or
a? is not simple (as a Lie subalgebra), then we can decompose again. Eventually,

gD a1˚�� �˚ar

with the ai simple (hence minimal) ideals.
Let a be a minimal nonzero ideal in g. Then Œg;a� is an ideal contained in a, which is

nonzero because z.g/D 0, and so Œg;a�D a. On the other hand,

Œg;a�D Œa1;a�˚�� �˚ Œar ;a�;

and so a D Œai ;a� � ai for exactly one i ; then a D ai (simplicity of ai ). This shows that
fa1; : : :arg is a complete set of minimal nonzero ideals in g.

Let a be an ideal in g. A similar argument shows that a is a direct sum of the minimal
nonzero ideals contained in a. 2

COROLLARY 5.17 All nonzero ideals and quotients of a semisimple Lie algebra are semisim-
ple.

PROOF. Any such Lie algebra is a product of simple Lie algebras, and so is semisimple. 2

COROLLARY 5.18 If g is semisimple, then Œg;g�D g.

PROOF. If g is simple, then certainly Œg;g�D g, and so this is true also for direct sums of
simple algebras. 2

REMARK 5.19 The theorem is surprisingly strong: a finite-dimensional vector space is a
sum of its minimal subspaces but is far from being a direct sum (and so the theorem fails for
abelian Lie algebras). Similarly, it fails for commutative groups: for example, if C9 denotes
a cyclic group of order 9, then

C9�C9 D f.x;x/ 2 C9�C9g�f.x;�x/ 2 C9�C9g:

If a is a simple Lie algebra, one might expect that a embedded diagonally would be another
simple ideal in a˚a. It is a simple Lie subalgebra, but it is not an ideal.



282 II. Lie Algebras and Algebraic Groups

DERIVATIONS OF A SEMISIMPLE LIE ALGEBRA

Recall that Derk.g/ is the space of k-linear endomorphisms of g satisfying the Leibniz
condition

D.Œx;y�/D ŒD.x/;y�C Œx;D.y/�.

The bracket
ŒD;D0�DD ıD0�D0 ıD

makes it into a Lie algebra.

LEMMA 5.20 For any Lie algebra g, the space fad.x/ j x 2 gg of inner derivations of g is
an ideal in Derk.g/.

PROOF. Let D be a derivation of g, and let x 2 g — we have to show that the derivation
ŒD;adx� is inner. For any y 2 g,

ŒD;adx�.y/D .D ı adx� adx ıD/.y/

DD.Œx;y�/� Œx;D.y/�

D ŒD.x/;y�C Œx;D.y/�� Œx;D.y/�

D ŒD.x/;y�:

Therefore
ŒD;ad.x/�D adD.x/; (156)

which is inner. 2

THEOREM 5.21 Every derivation of a semisimple Lie algebra g is inner; therefore adWg!
Der.g/ is an isomorphism.

PROOF. Let adg denote the (isomorphic) image of g in Der.g/, and let .adg/? denote its
orthogonal complement for the Killing form on Der.g/. It suffices to show that .adg/?D 0.

We have
Œ.adg/?;adg�� .adg/?\ adgD 0

because adg and .adg/? are ideals in Der.g/ (5.20, 5.7) and �Der.g/jadgD �adg is nonde-
generate (5.13). Therefore

ad.Dx/
(156)
D ŒD;ad.x/�D 0

if D 2 .adg/? and x 2 g. As adWg! Der.g/ is injective,

ad.Dx/D 0 for all x H) Dx D 0 for all x H) D D 0: 2

5b Semisimple algebraic groups and their Lie algebras

REVIEW

Recall that k has characteristic zero.

5.22 A connected algebraic group G contains a largest connected normal solvable sub-
group (I, 17.2), called the radical RG of G. The formation of RG commutes with exten-
sion of the base field (I, 17.3). A connected algebraic group G is said to be semisimple if
its radical is trivial (I, 17.6). A connected algebraic group is semisimple if and only if its
only connected normal commutative subgroup is f1g (I, 17.7).
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THE LIE ALGEBRA OF A SEMISIMPLE ALGEBRAIC GROUP

THEOREM 5.23 A connected algebraic groupG is semisimple if and only if its Lie algebra
is semisimple.

PROOF. Suppose that Lie.G/ is semisimple, and let N be a connected normal abelian sub-
group of G. Then Lie.N / is an abelian ideal in Lie.G/ (2.23, 2.24), and so is zero. This
implies that N D 1 (2.8).

Conversely, suppose that G is semisimple, and let n be an abelian ideal in g. When G
acts on g through the adjoint representation, the Lie algebra of H D CG.n/ is (see 2.20)

hD fx 2 g j Œx;n�D 0g,

which contains n. Because n is an ideal, so also is h: if h 2 h, x 2 g, and n 2 n, then

ŒŒh;x�;n�D Œh; Œx;n��� Œx; Œh;n��D 0

and so Œh;x� 2 h. Therefore,H ı is normal inG (2.23), which implies that its centreZ.H ı/
is normal in G. Because G is semisimple, Z.H ı/ is finite, and so z.h/ D 0 (2.24). But
z.h/� n, and so nD 0. 2

COROLLARY 5.24 For any connected algebraic group G, Lie.R.G//D r.g/.

PROOF. From the exact sequence

1!RG!G!G=RG! 1

we get an exact sequence (1.36)

1! Lie.RG/! g! Lie.G=RG/! 1

in which Lie.RG/ is solvable (apply 2.23, 2.24) and Lie.G=RG/ is semisimple (5.23).
Therefore LieRG is the largest solvable ideal in g. 2

THE LIE ALGEBRA OF Autk.C /

Let C be a finite-dimensional k-vector space with a k-bilinear pairing C �C ! C (i.e., C
is a k-algebra, not necessarily associative or commutative).

PROPOSITION 5.25 The functor

R Autk-alg.R˝k C/WAlgk! Grp

is an algebraic subgroup of GLC .

PROOF. Choose a basis for C . Then an element of Autk-lin.R˝k C/ is represented by a
matrix, and the condition that it preserve the algebra product is a polynomial condition on
the matrix entries. 2

Denote this algebraic group by AutC , so that

AutC .R/D Autk-alg.R˝k C/, all k-algebras R:
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PROPOSITION 5.26 The Lie algebra of AutC is glC \Derk.C /.

PROOF. Let idC"˛ 2 Lie.GLC /, and let aC "a0 and bC "b0 be elements of kŒ"�˝k C '
C ˚ "C . When we first apply idC"˛ to the two elements and then multiply them, we get

abC ".ab0Ca0bCa˛.b/C˛.a/b/I

when we first multiply them, and then apply idC"˛ we get

abC ".ab0Ca0bC˛.ab//:

These are equal if and only if ˛ satisfies the Leibniz rule. 2

THE MAP Ad

Let G be a connected algebraic group. Recall (�1g) that there is a homomorphism

AdWG! GLg :

Specifically, g 2G.R/ acts on g.R/�G.RŒ"�/ as inn.g/;

x 7! gxg�1:

On applying the functor Lie, we get a homomorphism

adWLie.G/! Lie.GLg/' End.g/;

and we defined
Œx;y�D ad.x/.y/:

LEMMA 5.27 For all g 2G.R/, the automorphism Ad.g/ of g.R/ preserves the bracket.

PROOF. Because every algebraic group can be embedded in some GLn (I, 8.31), it suffices
to prove the statement for GLn. But A 2 GLn.R/ acts on g.R/DMn.R/ as

X 7! AXA�1:

Now

AŒX;Y �A�1 D A.XY �YX/A�1

D AXA�1AYA�1�AYA�1AXA�1

D ŒAXA�1;AYA�1�: 2

Therefore Ad maps into Autg (in the sense of the preceding subsubsection),

AdWG! Autg;

and so (5.26) ad maps into Lie.Autg/D glg\Derk.g/;

adWg! glg\Derk.g/.
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LEMMA 5.28 Let g 2G.k/. The functor CG.g/

R fg0 2G.R/ j gg0 D g0ggWAlgk! Grp

is an algebraic subgroup of G with Lie algebra

cg.g/
def
D fx 2 g j Ad.g/.x/D xg:

PROOF. Embed G in GLn. If we can prove the statement for GLn, then we obtain it for G,
because CG.g/D CGLn.g/\G and cg.g/D cgln.g/\g.

Let A 2 GLn.k/. Then

CGLn.A/.R/D fB 2 GLn.R/ j AB D BAg:

Clearly this is a polynomial (even linear) condition on the entries of B . Moreover,

Lie.CGLn.A//D fI C "B 2 Lie.GLn/ j A.I C "B/D .I C "B/Ag

' fB 2Mn j AB D BAg: 2

PROPOSITION 5.29 For a connected algebraic group G, the kernel of Ad is the centre
Z.G/ of G.

PROOF. ClearlyZ �N def
DKer.Ad/. As the formation of kernels and centres commute with

extension of the base field, it suffices to prove that Z D N when k is algebraically closed.
For g 2 N.k/, cg.g/D g, and so (by 5.28) LieCG.g/D g . Hence CG.g/D G (2.5), and
so g 2Z.k/. We have shown that Z.k/DN.k/, and this implies that Z DN (7.30). 2

THEOREM 5.30 For any semisimple algebraic group G, the sequence

1!Z.G/ �!G
Ad
�! Autıg! 1

is exact.

PROOF. On applying Lie to AdWG! Autg, we get the homomorphism

adWg! Lie.Autg/� Der.g/:

But, according to (5.21), the map g! Der.g/ is surjective, which shows that adWg!
Lie.Autg/ is surjective, and implies that AdWG! Autıg is surjective (2.6). 2

Two semisimple algebraic groups G1, G2 are said to be isogenous if G1=Z.G1/ �
G2=Z.G2/; equivalently if there exists a semisimple algebraic group G and isogenies

G1 G!G2:

The theorem gives an inclusion

fsemisimple algebraic groupsg=isogeny ,! fsemisimple Lie algebrasg=isomorphism.

In III, Section 2 below, we classify the isomorphisms classes of semisimple Lie algebras
over an algebraically closed field of characteristic zero. Since all of them arise from al-
gebraic groups, this gives a classification of the isogeny classes of semisimple algebraic
groups over such fields. In III, Section 3, we follow a different approach which allows us to
describe the category of semisimple algebraic groups in terms of semisimple Lie algebras
and their representations.
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THE DECOMPOSITION OF SEMISIMPLE ALGEBRAIC GROUPS

An algebraic group G is simple if it is connected, noncommutative, and its only proper
normal subgroups is 1, and it is almost-simple if it is connected, noncommutative, and
all its proper normal subgroups are finite. Thus, for n > 1, SLn is almost-simple and
PSLn D SLn =�n is simple. A subgroup N of an algebraic group G that is minimal
among the nonfinite normal subgroups of G is either commutative or almost-simple; if
G is semisimple, then it is almost-simple.

An algebraic group G is said to be the almost-direct product of its algebraic subgroups
G1; : : : ;Gr if the map

.g1; : : : ;gr/ 7! g1 � � �gr WG1� � � ��Gr !G

is a surjective homomorphism with finite kernel. In particular, this means that the Gi com-
mute and each Gi is normal in G.

THEOREM 5.31 A semisimple algebraic group G has only finitely many almost-simple
normal subgroups G1; : : : ;Gr , and the map

.g1; : : : ;gr/ 7! g1 � � �gr WG1� � � ��Gr !G

is surjective with finite kernel. Each connected normal algebraic subgroup ofG is a product
of those Gi that it contains, and is centralized by the remaining ones.

In particular, an algebraic group is semisimple if and only if its an almost-direct product
of almost-simple algebraic groups.

PROOF. Because Lie.G/ is semisimple, it is a direct sum of its simple ideals

Lie.G/D g1˚�� �˚gr :

LetG1 be the identity component ofCG.g2˚�� �˚gr/ (notation as in 2.20). Then Lie.G1/
.2.20)
D

cg.g2˚�� �˚gr/D g1, and so it is normal inG (2.23). IfG1 had a proper normal connected
algebraic subgroup of dimension > 0, then g1would have an ideal other than g1 and 0, con-
tradicting its simplicity. Therefore G1 is almost-simple. Construct G2; : : : ;Gr similarly.
Then Œgi ;gj � D 0 implies that Gi and Gj commute (2.23). The subgroup G1 � � �Gr of G
has Lie algebra g, and so equals G (2.5). Finally,

Lie.G1\ : : :\Gr/
.1.37)
D g1\ : : :\gr D 0

and so G1\ : : :\Gr is étale (2.8).
Let H be a connected algebraic subgroup of G. If H is normal, then LieH is an ideal,

and so is a direct sum of those gi it contains and centralizes the remainder. This implies
that H is a product of those Gi it contains, and is centralized by the remaining ones. 2

COROLLARY 5.32 All nontrivial connected normal subgroups and quotients of a semisim-
ple algebraic group are semisimple.

PROOF. Any such group is an almost-product of almost-simple algebraic groups. 2
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COROLLARY 5.33 If G is semisimple, then DG D G, i.e., a semisimple group has no
commutative quotients.

PROOF. This is obvious for almost-simple algebraic groups, and hence for any almost-
product of such algebraic groups. 2

6 Semisimplicity of representations

The main theorem in this section is that the finite-dimensional representations of an alge-
braic group in characteristic zero are semisimple if and only if the identity component of
the group is connected. The starting point for the proof of this result is the theorem of Weyl
saying that the finite-dimensional representations of a semisimple Lie algebra in character-
istic zero are semisimple. Throughout this section (except the first subsection), k is a field
of characteristic zero.

6a Generalities on semisimple modules

Let k be a field, and let A be a k-algebra (either associative or a Lie algebra). An A-module
is simple if it does not contain a nonzero proper submodule.

PROPOSITION 6.1 The following conditions on anA-moduleM of finite dimension10 over
k are equivalent:

(a) M is a sum of simple modules;
(b) M is a direct sum of simple modules;
(c) for every submodule N of M , there exists a submodule N 0 such that M DN ˚N 0.

PROOF. Assume (a), and let N be a submodule of M . Let I be the set of simple modules
of M . For J � I , let N.J / D

P
S2J S . Let J be maximal among the subsets of I for

which

(i) the sum
P
S2J S is direct and

(ii) N.J /\N D 0.

I claim that M is the direct sum of N.J / and N . To prove this, it suffices to show that
each S � N CN.J /. Because S is simple, S \ .N CN.J // equals S or 0. In the first
case, S � N CN.J /, and in the second J [fSg has the properties (i) and (ii). Because J
is maximal, the first case must hold. Thus (a) implies (b) and (c), and it is obvious that (b)
and (c) each implies (a). 2

DEFINITION 6.2 An A-module is semisimple if it satisfies the equivalent conditions of the
proposition.

LEMMA 6.3 (SCHUR’S LEMMA) If V is a simple A-module and k is algebraically closed,
then EndA.V /D k.

10I assume this only to avoid using Zorn’s lemma in the proof.
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PROOF. Let ˛WV ! V be A-homomorphism of V . Because k is algebraically closed, ˛
has an eigenvector, say, ˛.v/D cv, c 2 k. Now ˛�cWV ! V is an A-homomorphism with
nonzero kernel. Because V is simple, the kernel must equal V . Hence ˛ D c. 2

NOTES Rewrite this section for a k-linear abelian category.

6b Reduction to the case of an algebraically closed field

Let g be a Lie algebra. We saw in (1.2) that any associative k-algebra A becomes a Lie
algebra with the bracket Œa;b� D ab � ba. Among pairs consisting of an associative k-
algebraA and a Lie algebra homomorphism g!A, there is one, g!U.g/, that is universal
—U.g/ is called the universal enveloping algebra of g. It can be constructed as the quotient
of the tensor algebra T .g/ by the relations

x˝y�y˝x D Œx;y�; x;y 2 g:

The map g!U.g/ is injective, and so we may regard g as a subset of U.g/. Any homomor-
phism g! glV of Lie algebras extends uniquely to a homomorphism U.g/! Endk-lin.V /

of associative algebras. Therefore the functor sending a representation �WU.g/!Endk-lin.V /

of U.g/ to �jg is an isomorphism(!) of categories

Repk.U.g//! Repk.g/: (157)

PROPOSITION 6.4 For a Lie algebra g over k, the category Repk.g/ is semisimple if and
only if Repkal.gkal/ is semisimple.

PROOF. Let g! glV be a finite-dimensional representation of g. Then V is semisimple as a
g-module if and only if it is semisimple as a U.g/-module (obviously), and it is semisimple
as a U.g/-module if and only if kal˝k V is semisimple as a kal˝kU.g/-module (Bourbaki
A, VIII, �13, 4). As kal˝k U.g/' U.gkal/, this shows that

Repkal.gkal/ semisimple H) Repk.g/ semisimple.

For the converse, let NV be an object of Repkal.gkal/. There exists a finite extension k0

of k and a representation V 0 of gk0 over k0 that gives NV by extension of scalars k0! kal.
When we regard V 0 as a vector space over k, we obtain a representation V of g over k.
By assumption, V is semisimple and, as was observed above, this implies that kal˝k V is
semisimple. But NV is a quotient of kal˝k V , and so it also is semisimple. 2

COROLLARY 6.5 For a connected algebraic group G over k, the category Repk.G/ is
semisimple if and only if Repkal.Gkal/ is semisimple.

PROOF. Let g D Lie.G/. For any finite-dimensional representation r WG ! GLV , a sub-
space W of V is stable under G if and only if it is stable under g (see 2.16). It follows
that,

.V;r/ is semisimple as a representation of G

” .V;dr/ is semisimple as a representation of g

” .V;dr/kal is semisimple as a representation of gkal (by 6.4)

” .V;r/kal is semisimple as a representation of Gkal . 2
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ASIDE 6.6 Let G be a connected algebraic group. It is not true that Rep.G/ is semisimple if
and only if Rep.Lie.G// is semisimple. For example, when G is reductive but not semisimple,
the first category is semisimple, but the second category is not, because there are nonsemisimple
representations of Lie(G) not arising from representations of G.

ASIDE 6.7 The following two statements give an alternative proof of (6.4) and (6.5).

Let A be a k-linear abelian category such that every object X has finite length and
Hom.X;Y / is finite-dimensional. Then A is semisimple if and and only if End.X/ is
a semisimple k-algebra for all X .

Let A be a finite-dimensional k-algebra; if A is semisimple, then so also if k0˝A
for every field k0 � k; conversely, if k0˝A is semisimple for some field k0 � k, then
A is semisimple (Bourbaki A, VIII; CFT IV, 2.15).

To apply these statements, note that for any representations V and W of a Lie algebra g, or of
an algebraic group G,

k0˝Homg.V;W /' Homgk0 .Vk0 ;Wk0/

k0˝HomG.V;W /' HomGk0
.Vk0 ;Wk0/;

because
k0˝Hom.V;W /' Hom.Vk0 ;Wk0/

and the condition that a linear map V !W be g or G equivariant is linear (for G, regard V and W
as comodules over O.G/).

6c Representations of Lie algebras.

CASIMIR OPERATOR

Let g be semisimple, and fix a faithful representation g! glV of g. Because the pairing

ˇV Wg�g! k

is nondegenerate (5.9), for any basis e1; : : : ; en for g as a k-vector space, there exists a dual
basis e01; : : : ; e

0
n for g such that ˇV .ei ; e0j /D ıij . Let x 2 g, and let

Œei ;x�D
Pn
jD1aij ej

Œx;e0i �D
Pn
jD1 bij e

0
j :

Then

ˇV .Œei ;x�;e
0
i 0/D

Pn
jD1aijˇV .ej ; e

0
i 0/D ai i 0

ˇV .ei ; Œx;e
0
i 0 �/D

Pn
jD1 bi 0jˇV .ei ; e

0
j /D bi i 0

and so ai i 0 D bi i 0 (because ˇV is associative). In other words, for x 2 g,

Œei ;x�D
Pn
jD1aij ej ” Œx;e�i �D

Pn
jD1aij e

0
j :

The Casimir operator attached to the representation g! glV is

cV D
Pn
iD1 eiV ı e

0
iV :
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PROPOSITION 6.8 (a) The element cV is independent of the choice of the basis e1; : : : ; en:
(b) The map cV WV ! V is a g-module homomorphism.
(c) We have TrV .cV /D n (dimg).

PROOF. (a) In fact, the element ı.1/ def
D
Pn
iD1 ei ˝ e

0
i of g˝g is the image of idg under the

isomorphisms

Endk-lin.g/' g˝g_
ˇV
' g˝g:

(b) This can be proved by a direct calculation (e.g., Erdmann and Wildon 2006, 17.3).
(c) We have

TrV .cV /D
Pn
iD1TrV .ei ı e0i /

D
Pn
iD1ˇV .ei ; e

0
i /

D
Pn
iD1 ıi i

D n. 2

ASIDE 6.9 For any basis e1; : : : ; en of g, let

c D
Pn
iD1 ei � e

0
i 2 U.g/:

Then c maps to cV under every representation of g, and is the unique element of U.g/ with this
property (the finite-dimensional representations of U.g/ form a faithful family). In particular, it is
independent of the choice of the basis. Statement 6.8b is equivalent to the statement that c lies in
the centre of U.g/.

WEYL’S THEOREM

Let g! glV a representation of a Lie algebra g. If g is semisimple, then gD Œg;g�, and so

TrV .gV /D TrV .Œg1;g2�V /D TrV .g1V ıg2V �g2V ıg1V /D 0; all g 2 g:

When V is one-dimensional, this implies that g acts trivially on V (i.e., xvD 0 for all x 2 g
and v 2 V ).

THEOREM 6.10 (WEYL) A Lie algebra g is semisimple if and only if every finite-dimensional
representation g is semisimple.

PROOF. (: For the adjoint representation adWg! glg, the g-submodules of g are exactly
the ideals in g. Therefore, if the adjoint representation is semisimple, then every ideal in g
admits a complementary ideal, and so is a quotient of g. Hence, if g is not semisimple, then
it admits a nonzero abelian quotient, and therefore a quotient of dimension 1. But the Lie
algebra k of dimension 1 has nonsemisimple representations, for example, c 7!

�
0 0
c 0

�
.

): Let g be a semisimple Lie algebra, which we may suppose to be nonzero, and
let g! glV be a finite-dimensional representation of g. We have to show that every g-
submodule W of V admits a g-complement. This we do by induction on dimW . After
(6.4), we may suppose that k is algebraically closed.

Assume first that dimV=W D 1 and that W is simple. The first condition implies that
g acts trivially on V=W (see the above remark). We may replace g with its image in glV ,
and so suppose that g � glV . Let cV WV ! V be the Casimir operator. As g acts trivially
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on V=W , so also does cV . On the other hand, cV acts on W as a scalar a (Schur’s lemma).
This scalar is nonzero, because otherwise TrV cV D 0, contradicting (6.8). Therefore, the
kernel of cV is a one-dimensional g-submodule of V which intersects W trivially, and so is
a g-complement for W .

Next assume only that dimV=W D 1. If W is simple, we have already proved that it
has a g-complement, and so we may suppose that there is a proper nonzero g-submodule
W 0 of W: Now W=W 0 is a g-submodule of V=W 0 of codimension 1, and so, by induction,

V=W 0 DW=W 0˚V 0=W 0

for some g-submodule V 0 of V containingW 0. NowW 0 is a g-submodule of V 0 of codimen-
sion 1 and so, by induction, V 0 DW 0˚L for some line L. Now L is a g-submodule of V ,
which intersects W trivially and has complementary dimension, and so is a g-complement
for W .

Finally, we consider the general case, W � V . The space Homk-lin.V;W / of k-linear
maps has a natural g-module structure:

.xf /.v/D x �f .v/�f .x �v/:

Let

V1 D ff 2 Homk-lin.V;W / j f jW D a idW for some a 2 kg

W1 D ff 2 Homk-lin.V;W / j f jW D 0g:

One checks easily that W1 and V1 are g-submodules of Homk-lin.V;W /. As V1=W1 has
dimension 1, the first part of the proof shows that

V1 DW1˚L

for some one-dimensional g-submodule L of V1. Let LD hf i. Because g acts trivially on
L,

0D .xf /.v/
def
D x �f .v/�f .x �v/; all x 2 g; v 2 V;

which says that f is a g-homomorphism V !W . As f jW D a idW with a¤ 0, the kernel
of f is a g-complement to W . 2

ASIDE 6.11 An infinite-dimensional representation of a semisimple Lie algebra, even of sl2, need
not be semisimple (see later, maybe).

ASIDE 6.12 Let Vn be the standard VnC1-dimensional representation of SLn over Fp . Then Vn is
simple for 0� n� p�1, but Vn˝Vn0 is not semisimple when nCn0 > p (mo57997).

ASIDE 6.13 In his original proof, Weyl showed that finite-dimensional representations of compact
groups are semisimple (because they are unitary), and deduced the similar statement for semisimple
Lie algebras over C by showing that such algebras all arise from the Lie algebras of compact real
Lie groups. The proof presented here follows that in Serre 1965.
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6d Representations of reductive groups

Let G be an algebraic group. The discussion in �6a carries over to G-modules.

THEOREM 6.14 The following conditions on a connected algebraic group G are equiva-
lent:

(a) G is reductive;
(b) every finite-dimensional representation of G is semisimple;
(c) some faithful finite-dimensional representation of G is semisimple.

We first prove two lemmas.

LEMMA 6.15 Let G be an algebraic group. The restriction to a normal subgroup N of a
semisimple representation of G is again semisimple.

PROOF. After (6.5), we may assume that k is algebraically closed. Let G ! GLV be a
representation of G, which we may suppose to be simple. Let S be a simple N -submodule
of V . For any g 2G.k/, gS is a simple N -submodule, and V is a sum of the gS (because
the sum is a nonzero G-submodule of V ); hence it is semisimple (cf. 6.1). 2

LEMMA 6.16 All finite-dimensional representations of a semisimple algebraic group are
semisimple.

PROOF. If G is a semisimple algebraic group, then Lie.G/ is a semisimple Lie algebra
(5.23). Hence the finite-dimensional representations of Lie.G/ are semisimple by Weyl’s
theorem (6.10), which implies the same statement for G (2.16). 2

PROOF OF THEOREM 6.14.

We may assume that k is algebraically closed.
(b) H) (c): Every algebraic group has a faithful finite-dimensional representation (I,

8.31).
(c) H) (a):Let G ! GLV be a faithful finite-dimensional representation of G. Let

N be a normal unipotent subgroup of G. Because N is normal, V is semisimple as a
representation of N , say, V D

L
Vi with Vi simple (6.15). Because N is unipotent, each

Vi contains a fixed vector (I, 15.6), which implies that it has dimension one and that N
acts trivially on it. Therefore, N acts trivially on V , but we chose V to be faithful, and so
N D 0.

(a) H) (b): If G is reductive, then G D Zı �G0 where Zı is the connected centre of
G (a torus) and G0 is the derived group of G (a semisimple group) — see (I, 17.20). Let
G! GLV be a representation of G. Then V D

L
i Vi where Vi is the subspace of V on

which Zı acts through a character �i (I, 14.15). Because Zı and G0 commute, each space
Vi is stable underG0, and becauseG0 is semisimple, Vi D

L
j Vij with each Vij simple as a

G0-module (6.16). Now V D
L
i;j Vij is a decomposition of V into a direct sum of simple

G-modules.
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NONCONNECTED GROUPS

THEOREM 6.17 All finite-dimensional representations of an algebraic groupG are semisim-
ple if and only if the identity component Gı of G is reductive.

This follows from Theorem 6.14 and the next lemma.

LEMMA 6.18 All finite-dimensional representations of G are semisimple if and only if all
finite-dimensional representations of Gı are semisimple

PROOF. We may assume that k is algebraically closed.
H) : Since Gı is a normal algebraic subgroup of G (I, 13.17), this follows from

Lemma 6.15.
(H : Let V be a G-module, and let W be a subspace stable under G. Then W is

also stable under Gı, and so there exists a Gı-equivariant linear map pWV !W such that
pjW D idW . Define

qWV !W; q D
1

n

X
g
gpg�1;

where nD .G.k/WGı.k// and g runs over a set of coset representatives for Gı.k/ in G.k/.
Then q is independent of the choice of the coset representatives, and is a G-equivariant
linear map V !W such that qjW D idW (cf. the second proof of GT 7.4). Hence Ker.q/
is a G-stable complement for W . 2

REMARK 6.19 The lemma implies that the representations of a finite group are semisim-
ple. This would fail if we allowed the characteristic to be a prime dividing the order of the
finite group.

6e A criterion to be reductive

There is an isomorphism of algebraic groups GLn! GLn sending an invertible matrix A
to the transpose .A�1/t of its inverse. The image of an algebraic subgroupH of GLn under
this map is the algebraic subgroup H t of GLn such that H t .R/D fAt j A 2H.R/g for all
k-algebras R.

Now consider GLV . The choice of a basis for V determines an isomorphism GLV �
GLn and hence a transpose map on GLV , which depends on the choice of the basis.

PROPOSITION 6.20 Every connected algebraic subgroup G of GLV such that G DGt for
all choices of a basis for V is reductive.

PROOF. We have to show thatRGD 0 is a group of multiplicative type. It suffices to check
this after an extension of scalars to the algebraic closure of k (because RGkal D .RG/kal

when k is perfect). Recall that the radical of G is the largest connected normal solvable
subgroup of G. It follows from (17.1c) that RG is contained in every maximal connected
solvable subgroup of G. Let B be such a subgroup. According to the Lie-Kolchin theorem
16.31, there exists a basis of V for which B � Tn (upper triangular matrices). Then B t is
also a maximal connected solvable subgroup of G, and so

RG � B \B t D Dn:

This proves that RG is diagonalizable. 2
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EXAMPLE 6.21 The group GLV itself is reductive.

EXAMPLE 6.22 Since the transpose of a matrix of determinant 1 has determinant 1, SLV
is reductive.

ASIDE 6.23 Prove (or disprove): a connected algebraic subgroup of GLV that is preserved by
conjugate transpose with respect to one basis is necessarily reductive.



CHAPTER III
The Structure of Semisimple Lie

Algebras and Algebraic Groups in
Characteristic Zero

To a semisimple Lie algebra, we attach some combinatorial data called a root system, from
which we can read off the structure of the Lie algebra and its representations. As every
root system arises from a semisimple Lie algebra and determines it up to isomorphism, the
root systems classify the semisimple Lie algebras. In the first section, we review the theory
of root systems and how they are classified in turn by Dynkin diagrams, and in the second
section we explain their application to the theory of semisimple Lie algebras.

The category of representations of a Lie algebra is a neutral tannakian category, and
so there exists an affine group G.g/ such that Rep.G.g//D Rep.g/. We show that, when
g is semisimple and the base field has characteristic zero, G.g/ is a connected algebraic
group with Lie algebra g that finitely covers every other connected algebraic group with
Lie algebra g. In other words, G.g/ is the (unique) simply connected semisimple algebraic
group with Lie algebra g. Once we have determined the centre of G.g/ in terms of g and
its root system, we are able to read off the structure and classification of the semisimple
algebraic groups and of their representations from the similar results for Lie algebras.

In the first three sections, we work over an arbitrary field of characteristic zero, but only
with semisimple Lie algebras and algebraic groups that are split over the field. In Section
4, we explain how the theory extends to arbitrary semisimple Lie algebras and algebraic
groups over R.

Finally, in Section 5 we explain how the theory extends to reductive groups.

NOTES Sections 1 and 2 omit some (standard) proofs, Section 3 needs to be extended, and Sections
4 and 5 are not yet available.

1 Root systems and their classification . . . . . . . . . . . . . . . . . . . . . . 296
2 Structure of semisimple Lie algebras and their representations . . . . . . . . 305
3 Structure of semisimple algebraic groups and their representations . . . . . . 317
4 Real Lie algebras and real algebraic groups . . . . . . . . . . . . . . . . . . 325
5 Reductive groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

295
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1 Root systems and their classification

At present, this section omits some proofs. For more detailed accounts, see: Bourbaki LIE,
Chapter VI; Erdmann and Wildon 2006, 11,13; Humphreys 1972, III; Serre 1966, Chapter
V; or Casselman’s notes roots.pdf on his website.

Throughout, F is a field of characteristic zero and V is a finite-dimensional vector space
over F . An inner product on a real vector space is a positive definite symmetric bilinear
form.

1a Reflections

A reflection of a vector space V is an endomorphism of V that fixes the vectors in a hy-
perplane and acts as �1 on a complementary line. Let ˛ be a nonzero element of V: A
reflection with vector ˛ is an endomorphism s of V such that s.˛/ D �˛ and the set of
vectors fixed by s is a hyperplane H . Then V DH ˚h˛i with s acting as 1˚�1, and so
s2 D�1. Let V _ be the dual vector space to V , and write h ; i for the tautological pairing
V �V _! k. If ˛_ is an element of V _ such that h˛;˛_i D 2, then

s˛Wx 7! x�hx;˛_i˛ (158)

is a reflection with vector ˛, and every reflection with vector ˛ is of this form (for a unique
˛_)1.

LEMMA 1.1 Let R be a finite spanning set for V . For any nonzero vector ˛ in V , there
exists at most one reflection s with vector ˛ such that s.R/�R.

PROOF. Let s and s0 be such reflections, and let t D ss0. Then t acts as the identity map on
both F˛ and V=F˛, and so

.t �1/2V � .t �1/F˛ D 0:

Thus the minimum polynomial of t divides .T �1/2. On the other hand, becauseR is finite,
there exists an integer m � 1 such that tm.x/D x for all x 2 R, and hence for all x 2 V .
Therefore the minimum polynomial of t divides Tm � 1. As .T � 1/2 and Tm � 1 have
greatest common divisor T �1, this shows that t D 1. 2

LEMMA 1.2 Let . ; / be an inner product on a real vector space V . Then, for any nonzero
vector ˛ in V , there exists a unique symmetry s with vector ˛ that is orthogonal for . ; /,
i.e., such that .sx;sy/D .x;y/ for all x;y 2 V , namely

s.x/D x�2
.x;˛/

.˛;˛/
˛: (159)

PROOF. Certainly, (159) does define an orthogonal symmetry with vector ˛. Suppose s0

is a second such symmetry, and let H D h˛i?. Then H is stable under s0, and maps
isomorphically on V=h˛i. Therefore s0 acts as 1 on H . As V DH ˚h˛i and s0 acts as �1
on h˛i, it must coincide with s. 2

1The composite of the quotient map V ! V=H with the linear map V=H ! F sending ˛CH to 2 is the
unique element ˛_ of V _ such that ˛.H/D 0 and h˛;˛_i D 2.
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1b Root systems

DEFINITION 1.3 A subset R of V over F is a root system in V if

RS1 R is finite, spans V , and does not contain 0;
RS2 for each ˛ 2R, there exists a (unique) reflection s˛ with vector ˛ such that s˛.R/�R;
RS3 for all ˛;ˇ 2R, s˛.ˇ/�ˇ is an integer multiple of ˛.

In other words, R is a root system if it satisfies RS1 and, for each ˛ 2 R, there exists a
(unique) vector ˛_ 2 V _ such that h˛;˛_i D 2, hR;˛_i 2 Z, and the reflection s˛Wx 7!
x�hx;˛_i˛ maps R in R.

We sometimes refer to the pair .V;R/ as a root system over F . The elements of R are
called the roots of the root system. If ˛ is a root, then s˛.˛/ D �˛ is also a root. The
dimension of V is called the rank of the root system.

EXAMPLE 1.4 Let V be the hyperplane in F nC1 of nC 1-tuples .xi /1�i�nC1 such thatP
xi D 0, and let

RD f˛ij
def
D ei � ej j i ¤ j; 1� i;j � nC1g

where .ei /1�i�nC1 is the standard basis for F nC1. For each i ¤ j , let s˛ij be the linear
map V ! V that switches the i th and j th entries of an nC 1-tuple in V . Then s˛ij is a
reflection with vector ˛ij such that s˛ij .R/ � R and s˛ij .ˇ/�ˇ 2 Z˛ij for all ˇ 2 R. As
R obviously spans V , this shows that R is a root system in V .

For other examples of root systems, see �2h below.

PROPOSITION 1.5 Let .V;R/ be a root system over F , and let V0 be the Q-vector space
generated byR. Then c˝v 7! cvWF ˝QV0! V is an isomorphism, andR is a root system
in V0 (Bourbaki LIE, VI, 1.1, Pptn 1; Serre 1987, V, 17, Thm 5, p. 41).

Thus, to give a root system over F is the same as giving a root system over Q (or R or C).
In the following, we assume that F � R (and sometimes that F D R).

PROPOSITION 1.6 If .Vi ;Ri /i2I is a finite family of root systems, thenL
i2I .Vi ;Ri /

def
D .

L
i2I Vi ;

F
Ri /

is a root system (called the direct sum of the .Vi ;Ri /).

A root system is indecomposable (or irreducible) if it can not be written as a direct sum
of nonempty root systems.

PROPOSITION 1.7 Let .V;R/ be a root system. There exists a unique partitionRD
F
i2I Ri

of R such that
.V;R/D

M
i2I
.Vi ;Ri /; Vi D span of Ri ;

and each .Vi ;Ri / is an indecomposable root system (Bourbaki LIE, VI, 1.2).
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Suppose that roots ˛ and ˇ are multiples of each other, say,

ˇ D c˛; c 2 F; 0 < c < 1:

Then hc˛;˛_i D 2c 2 Z and so c D 1
2

. For each root ˛, the set of roots that are multiples of
˛ is either f�˛;˛g or f�˛;�˛=2;˛=2;˛g. When only the first case occurs, the root system
is said to be reduced.

From now on “root system” will mean “reduced root system”.

1c The Weyl group

Let .V;R/ be a root system. The Weyl group W D W.R/ of .V;R/ is the subgroup of
GL.V / generated by the reflections s˛ for ˛ 2 R. Because R spans V , the group W acts
faithfully on R, and so is finite.

For ˛ 2R, we let H˛ denote the hyperplane of vectors fixed by s˛. A Weyl chamber is
a connected component of V r

S
˛2RH˛.

PROPOSITION 1.8 The group W.R/ acts simply transitively on the set of Weyl chambers
(Bourbaki LIE, VI, �1, 5).

1d Existence of an inner product

PROPOSITION 1.9 For any root system .V;R/, there exists an inner product . ; / on V such
the w 2R, act as orthogonal transformations, i.e., such that

.wx;wy/D .x;y/ for all w 2W , x;y 2 V:

PROOF. Let . ; /0 be any inner product V �V ! R, and define

.x;y/D
X

w2W
.wx;wy/0:

Then . ; / is again symmetric and bilinear, and

.x;x/D
X

w2W
.wx;wx/0 > 0

if x ¤ 0, and so . ; / is positive-definite. On the other hand, for w0 2W;

.w0x;w0y/D
X

w2W
.ww0x;ww0y/

0

D .x;y/

because as w runs through W , so also does ww0. 2

In fact, there is a canonical inner product on V .
When we equip V with an inner product . ; / as in (1.9),

s˛.x/D x�2
.x;˛/

.˛;˛/
˛ for all x 2 V:

Therefore the hyperplane of vectors fixed by ˛ is orthogonal to ˛, and the ratio .x;˛/=.˛;˛/
is independent of the choice of the inner product:

2
.x;˛/

.˛;˛/
D hx;˛_i:
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1e Bases

Let .V;R/ be a root system. A subset S of R is a base for R if it is a basis for V and if each
root can be written ˇ D

P
˛2Sm˛˛ with the m˛ integers of the same sign (i.e., either all

m˛ � 0 or all m˛ � 0). The elements of a (fixed) base are called the simple roots (for the
base).

PROPOSITION 1.10 There exists a base S for R (Bourbaki LIE, VI, �1, 5).

More precisely, let t lie in a Weyl chamber, so t is an element of V such that ht;˛_i ¤ 0
if ˛ 2 R, and let RC D f˛ 2 R j .˛; t/ > 0g. Say that ˛ 2 RC is indecomposable if it can
not be written as a sum of two elements of RC. The indecomposable elements form a base,
which depends only on the Weyl chamber of t . Every base arises in this way from a unique
Weyl chamber, and so (1.8) shows thatW acts simply transitively on the set of bases for R.

PROPOSITION 1.11 Let S be a base for R. Then W is generated by the fs˛ j ˛ 2 Sg, and
W �S DR (Serre 1987, V, 10, p. 33).

PROPOSITION 1.12 Let S be a base for R. If S is indecomposable, there exists a root
Q̨ D

P
˛2S n˛˛ such that, for any other root

P
˛2Sm˛˛, we have that n˛ � m˛ for all ˛

(Bourbaki LIE, VI, �1, 8).

Obviously Q̨ is uniquely determined by the base S . It is called the highest root (for the
base). The simple roots ˛ with n˛ D 1 are said to be special.

EXAMPLE 1.13 Let .V;R/ be the root system in (1.4), and endow V with the usual inner
product (assume F � R). When we choose

t D ne1C�� �C en�
n

2
.e1C�� �C enC1/;

then
RC

def
D f˛ j .˛; t/ > 0g D fei � ej j i > j g:

For i > j C1,
ei � ej D .ei � eiC1/C�� �C .ejC1� ej /;

and so ei � ej is decomposable. The indecomposable elements are e1� e2; : : : ; en� enC1.
Obviously, they do form a base S for R. The Weyl group has a natural identification with
SnC1, and it certainly is generated by the elements s˛1 ; : : : ; s˛n where ˛i D ei �eiC1; more-
over, W �S DR. The highest root is

Q̨ D e1� enC1 D ˛1C�� �C˛n:

1f Reduced root systems of rank 2

The root systems of rank 1 are the subsets f˛;�˛g, ˛¤ 0, of a vector space V of dimension
1, and so the first interesting case is rank 2. Assume F D R, and choose an invariant inner
product. For roots ˛;ˇ, we let

n.ˇ;˛/D 2
.ˇ;˛/

.˛;˛/
D hˇ;˛_i 2 Z.
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Write

n.ˇ;˛/D 2
jˇj

j˛j
cos�

where j � j denotes the length of a vector and � is the angle between ˛ and ˇ. Then

n.ˇ;˛/ �n.˛;ˇ/D 4cos2� 2 Z:

When we exclude the possibility that ˇ is a multiple of ˛, there are only the following
possibilities (in the table, we have chosen ˇ to be the longer root):

n.ˇ;˛/ �n.˛;ˇ/ n.˛;ˇ/ n.ˇ;˛/ � jˇj=j˛j

0 0 0 �=2

1
1

�1

1

�1

�=3

2�=3
1

2
1

�1

2

�2

�=4

3�=4

p
2

3
1

�1

3

�3

�=6

5�=6

p
3

If ˛ and ˇ are simple roots and n.˛;ˇ/ and n.ˇ;˛/ are strictly positive (i.e., the angle
between ˛ and ˇ is acute), then (from the table) one, say, n.ˇ;˛/, equals 1. Then

s˛.ˇ/D ˇ�n.ˇ;˛/˛ D ˇ�˛;

and so ˙.˛�ˇ/ are roots, and one, say ˛�ˇ, will be in RC. But then ˛ D .˛�ˇ/Cˇ,
contradicting the simplicity of ˛. We conclude that n.˛;ˇ/ and n.ˇ;˛/ are both negative.
From this it follows that there are exactly the four nonisomorphic root systems of rank 2
displayed below. The set f˛;ˇg is the base determined by the shaded Weyl chamber.

˛ D .2;0/�˛

ˇ D .0;2/

�ˇ

A1�A1

˛ D .2;0/

ˇ D .�1;
p
3/

˛Cˇ

�˛

�˛�ˇ �ˇ

A2
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˛ D .2;0/

ˇ D .�2;2/
˛Cˇ

�˛

�˛�ˇ �ˇ

2˛Cˇ

�2˛�ˇ

B2

˛ D .2;0/

ˇ D .�3;
p
3/ ˛Cˇ

3˛C2ˇ

˛Cˇ 2˛Cˇ˛Cˇ 3˛Cˇ

�˛

�ˇ�˛�ˇ

�3˛�2ˇ

�2˛�ˇ�3˛�ˇ

G2

Note that each set of vectors does satisfy (RS1–3). The root system A1�A1 is decom-
posable and the remainder are indecomposable.

We have

A1�A1 A2 B2 G2

s˛.ˇ/�ˇ 0˛ 1˛ 2˛ 3˛

� �=2 2�=3 3�=4 5�=6

W.R/ D2 D3 D4 D6

.Aut.R/WW.R// 2 2 1 1

where Dn denotes the dihedral group of order 2n.

1g Cartan matrices

Let .V;R/ be a root system. As before, for ˛;ˇ 2R, we let

n.˛;ˇ/D h˛;ˇ_i 2 Z;

so that

n.˛;ˇ/D 2
.˛;ˇ/

.ˇ;ˇ/

for any inner form satisfying (1.9). From the second expression, we see that n.w˛;wˇ/D
n.˛;ˇ/ for all w 2W .

Let S be a base forR. The Cartan matrix ofR (relative to S ) is the matrix .n.˛;ˇ//˛;ˇ2S .
Its diagonal entries n.˛;˛/ equal 2, and the remaining entries are negative or zero.

For example, the Cartan matrices of the root systems of rank 2 are, 
2 0

0 2

!  
2 �1

�1 2

!  
2 �1

�2 2

!  
2 �1

�3 2

!
A1�A1 A2 B2 G2
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and the Cartan matrix for the root system in (1.4) is0BBBBBBBBB@

2 �1 0 0 0

�1 2 �1 0 0

0 �1 2 0 0

: : :

0 0 0 2 �1

0 0 0 �1 2

1CCCCCCCCCA
because

2
.ei � eiC1; eiC1� eiC2/

.ei � eiC1; ei � eiC1/
D�1, etc..

PROPOSITION 1.14 The Cartan matrix of .V;R/ is independent of S , and determines
.V;R/ up to isomorphism.

In fact, if S 0 is a second base for R, then we know that S 0 D wS for a unique w 2W and
that n.w˛;wˇ/D n.˛;ˇ/. Thus S and S 0 give the same Cartan matrices up to re-indexing
the columns and rows. Let .V 0;R0/ be a second root system with the same Cartan matrix.
This means that there exists a base S 0 for R0 and a bijection ˛ 7! ˛0WS ! S 0 such that

n.˛;ˇ/D n.˛0;ˇ0/ for all ˛;ˇ 2 S: (160)

The bijection extends uniquely to an isomorphism of vector spaces V ! V 0, which sends
s˛ to s˛0 for all ˛ 2 S because of (160). But the s˛ generate the Weyl groups (1.11), and
so the isomorphism maps W onto W 0, and hence it maps R D W �S onto R0 D W 0 �S 0

(see 1.11). We have shown that the bijection S ! S 0 extends uniquely to an isomorphism
.V;R/! .V 0;R0/ of root systems.

1h Classification of root systems by Dynkin diagrams

Let .V;R/ be a root system, and let S be a base for R.

PROPOSITION 1.15 Let ˛ and ˇ be distinct simple roots. Up to interchanging ˛ and ˇ, the
only possibilities for n.˛;ˇ/ are

n.˛;ˇ/ n.ˇ;˛/ n.˛;ˇ/n.ˇ;˛/

0 0 0

�1 �1 1

�2 �1 2

�3 �1 3

If W is the subspace of V spanned by ˛ and ˇ, then W \R is a root system of rank 2 in
W , and so (1.15) can be read off from the Cartan matrices of the rank 2 systems.

Choose a base S for R. Then the Coxeter graph of .V;R/ is the graph whose nodes are
indexed by the elements of S ; two distinct nodes are joined by n.˛;ˇ/ �n.ˇ;˛/ edges. Up
to the indexing of the nodes, it is independent of the choice of S .
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PROPOSITION 1.16 The Coxeter graph is connected if and only if the root system is inde-
composable.

In other words, the decomposition of the Coxeter graph of .V;R/ into its connected
components corresponds to the decomposition of .V;R/ into a direct sum of its indecom-
posable summands.

PROOF. A root system is decomposable if and only if R can be written as a disjoint union
R D R1 tR2 with each root in R1 orthogonal to each root in R2. Since roots ˛;ˇ are
orthogonal if and only n.˛;ˇ/ � n.ˇ;˛/ D 4cos2� D 0, this is equivalent to the Coxeter
graph being disconnected. 2

The Coxeter graph doesn’t determine the Cartan matrix because it only gives the number
n.˛;ˇ/ �n.ˇ;˛/. However, for each value of n.˛;ˇ/ �n.ˇ;˛/ there is only one possibility
for the unordered pair

fn.˛;ˇ/;n.ˇ;˛/g D

�
2
j˛j

jˇj
cos�;2

jˇj

j˛j
cos�

�
:

Thus, if we know in addition which is the longer root, then we know the ordered pair.
To remedy this, we put an arrowhead on the lines joining the nodes indexed by ˛ and ˇ
pointing towards the shorter root. The resulting diagram is called the Dynkin diagram of
the root system. It determines the Cartan matrix and hence the root system.

For example, the Dynkin diagrams of the root systems of rank 2 are:

˛ ˇ ˛ ˇ ˛ ˇ ˛ ˇ

A1�A1 A2 B2 G2

THEOREM 1.17 The Dynkin diagrams arising from indecomposable root systems are ex-
actly the diagrams An (n � 1), Bn (n � 2), Cn (n � 3), Dn (n � 4), E6, E7, E8, F4, G2
listed at the end of the section — we have used the conventional (Bourbaki) numbering for
the simple roots.

PROOF. See, for example, Humphreys 1972, 11.4. 2

For example, the Dynkin diagram of the root system in (1.4, 1.13) is An. Note that
Coxeter graphs do not distinguish Bn from Cn.

1i The root and weight lattices

1.18 Let X be a lattice in a vector space V over F . The dual lattice to X is

Y D fy 2 V _ j hX;yi � Zg:

If e1; : : : ; em is a basis of V that generatesX as a Z-module, then Y is generated by the dual
basis f1; : : : ;fm (defined by hei ;fj i D ıij ).
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1.19 Let .V;R/ be a root system in V . Recall that, for each ˛ 2 R, there is a unique
˛_ 2 V such that h˛;˛_i D 2, hR;˛_i 2 Z, and the reflection x 7! x�hx;˛_i˛ sends R
into R. The set R_ def

D f˛_ j ˛ 2Rg is a root system in V _ (called the inverse root system).

1.20 (Bourbaki LIE, VI, �1, 9.) Let .V;R/ be a root system. The root lattice Q DQ.R/
is the Z-submodule of V generated by the roots:

Q.R/D ZRD
˚P

˛2Rm˛˛ jm˛ 2 Z
	

.

Every base for R forms a basis for Q. The weight lattice P D P.R/ is the lattice dual to
Q.R_/:

P D fx 2 V j hx;˛_i 2 Z for all ˛ 2Rg:

The elements of P are called the weights of the root system. We have P.R/ � Q.R/
(because hR;˛_i � Z for all ˛ 2 R), and the quotient P.R/=Q.R/ is finite (because the
lattices generate the same Q-vector space).

1.21 (Bourbaki LIE, VI, �1, 10.) Let S be a base for R. Then S_ def
D f˛_ j ˛ 2 Sg is a base

for R_. For each simple root ˛, define $˛ 2 P.R/ by the condition

h$˛;ˇ
_
i D ı˛;ˇ ; all ˇ 2 S .

Then f$˛ j ˛ 2 Sg is a basis for the weight lattice P.R/, dual to the basis S_. Its elements
are called the fundamental weights.

1.22 (Bourbaki LIE, VIII, �7.) Let S be a base for R, so that

RDRCtR� with

(
RC D f

P
m˛˛ jm˛ 2 Ng\R

R� D f
P
m˛˛i j �m˛ 2 Ng\R

We let PC D PC.R/ denote the set of weights that are positive for the partial ordering on
V defined by S ; thus

PC.R/D
˚P

˛2S c˛˛ j c˛ � 0; c˛ 2Q
	
\P.R/.

A weight � is dominant if h�;˛_i 2 N for all ˛ 2 S , and we let PCC D PCC.R/ denote
the set of dominant weights of R; thus

PCC.R/D fx 2 V j hx;˛
_
i 2 N all ˛ 2 Sg � PC.R/:

Since the$˛ are dominant, they are sometimes called the fundamental dominant weights.

1.23 When we write S D f˛1; : : : ;˛ng, the fundamental weights are $1; : : : ;$n, where

h$i ;˛
_
j i D ıij .

Moreover

RDRCtR� with

(
RC D f

P
mi˛i jmi 2 Ng\R

R� D f
P
mi˛i j �mi 2 Ng\R

I

Q.R/D Z˛1˚�� �˚Z˛n � V D R˛1˚�� �˚R˛nI
P.R/D Z$1˚�� �˚Z$n � V D R$1˚�� �˚R$nI

PCC.S/D
nX

mi$i jmi 2 N
o
:
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1j List of indecomposable Dynkin diagrams

An (n nodes, n� 1)
˛1 ˛2 ˛3 ˛n�2 ˛n�1 ˛n

Bn (n nodes, n� 2)
˛1 ˛2 ˛3 ˛n�2 ˛n�1 ˛n

Cn (n nodes, n� 3)
˛1 ˛2 ˛3 ˛n�2 ˛n�1 ˛n

Dn (n nodes, n� 4)
˛1 ˛2 ˛3 ˛n�3 ˛n�2

˛n�1

˛n

E6

˛1 ˛3 ˛4

˛2

˛5 ˛6

E7

˛1 ˛3 ˛4

˛2

˛5 ˛6 ˛7

E8

˛1 ˛3 ˛4

˛2

˛5 ˛6 ˛7 ˛8

F4

˛1 ˛2 ˛3 ˛4

G2

˛1 ˛2

2 Structure of semisimple Lie algebras and their
representations

This section is an introductory survey, based on Bourbaki LIE, where the reader can find
omitted details. Most can also be found in Jacobson 1962 and, when the ground field k is
algebraically closed field, in Humphreys 1972 and Serre 1966.

Throughout this section, k is a field of characteristic zero, and all representations of Lie
algebras are finite dimensional.
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2a Elementary automorphisms of a Lie algebra

2.1 If u is a nilpotent endomorphism of a k-vector space V , then the sum euD
P
n�0u

n=nŠ

has only finitely many terms (it is a polynomial in u), and so it is also an endomorphism of
V . If v is another nilpotent endomorphism of V that commutes with u, then

euev D

�X
m�0

um

mŠ

��X
n�0

vn

nŠ

�
D

X
m;n�0

umvn

mŠnŠ

D

X
r�0

1

rŠ

 X
mCnDr

 
r

m

!
umvn

!

D

X
r�0

1

rŠ
.uCv/r

D euCv:

In particular, eue�u D e0 D 1, and so eu an automorphism of V .

2.2 Now suppose that V is equipped with a k-bilinear pairing V �V (i.e., it is a k-algebra)
and that u is a nilpotent derivation of V . Recall that this means that

u.xy/D x �u.y/Cu.x/ �y (x;y 2 V ).

On iterating this, we find that

ur.x;y/D
X

mCnDr

 
r

m

!
um.x/ �un.y/ (Leibniz’s formula).

Hence

eu.xy/D
X

r�0

1

rŠ
ur.xy/ (definition of eu)

D

X
r�0

1

rŠ

X
mCnDr

 
r

m

!
um.x/ �un.y/ (Leibniz’s formula)

D

X
m;n�0

um.x/

mŠ
�
un.y/

nŠ

D eu.x/ � eu.y/:

Therefore eu is an automorphism of the k-algebra V . In particular, a nilpotent derivation u
of a Lie algebra defines an automorphism of the Lie algebra.

2.3 The nilpotent radical of a Lie algebra g is the intersection of the kernels of the simple
representations of g. For any x in the nilpotent radical of g, adgx is a nilpotent derivation
of g, and so eadg.x/ is an automorphism of g. Such an automorphism is said to be special.
(Bourbaki LIE, I, �6, 8.)

2.4 More generally, any element x of g such that adg.x/ is nilpotent defines an automor-
phism of g. A finite products of such automorphisms is said to be elementary. The elemen-
tary automorphisms of g form a subgroup Aute.g/ of Aut.g/. As uead.x/u�1 D ead.ux/ for
any automorphism u of g, Aute.g/ is a normal subgroup of Aut.g/. (Bourbaki Lie, VII, �3,
1).
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2.5 Let g be a Lie algebra. According to Theorem 11.14, there exists an affine group G
such that

Rep.G/D Rep.g/:

Let x be an element of g such that �.x/ is nilpotent for all representation .V;�/ of g over k,
and let .ex/V D e�.x/. Then

˘ .ex/V˝W D .e
x/V ˝ .e

x/W for all representations .V;�V / and .W;�W / of g;
˘ .ex/V D idV if g acts trivially on V ;
˘ .ex/W ı˛R D ˛R ı .e

x/V for all homomorphisms ˛W.V;�V /! .W;�W / of repre-
sentations of g over k.

Therefore (Theorem 10.2), there exists a unique element ex in G.k/ such that ex acts on V
as e�.x/ for all representations .V;�/ of g.

ASIDE 2.6 Let Aut0.g/ denote the (normal) subgroup of Aut.g/ consisting of automorphisms that
become elementary over kal. If g is semisimple, then Aute.g/ is equal to its own derived group, and
when g is split, it is equal to the derived group of Aut0.g/ (Bourbaki LIE, VIII, �5, 2; �11, 2, Pptn
3).

2b Jordan decompositions in semisimple Lie algebras

Recall that every endomorphism of a vector space has a unique (additive Jordan) decom-
position into the sum of a semisimple endomorphism and a commuting nilpotent endomor-
phism (II, 3.22). For a Lie subalgebra g of glV , the semisimple and nilpotent components
of an element of g need not lie in g (II, 1.40).

DEFINITION 2.7 An element x of a semisimple Lie algebra is semisimple (resp. nilpotent)
if, for every g-module V , xV is semisimple (resp. nilpotent).

THEOREM 2.8 Every element of a semisimple Lie has a unique (Jordan) decomposition
into the sum of a semisimple element and a commuting nilpotent element.

PROOF. Omitted for the present (Bourbaki LIE, I, �6, 3, Thm 3) — the proof uses Weyl’s
theorem (II, 6.10). 2

Let x be an element of a semisimple Lie algebra g, and let x D xsCxn be its decom-
position. For any g-module V , xV D .xs/V C .xn/V is the Jordan decomposition of xV .

COROLLARY 2.9 In order to show that an element of a semisimple Lie algebra is semisim-
ple (resp. nilpotent), it suffices to check that it acts semisimply (resp. nilpotently) on one
faithful module.

PROOF. If .xn/V D 0 for one faithful g-module V , then xn D 0, and so xW D .xs/W for
every g-module W . 2

ASIDE 2.10 As noted earlier (�1m), Theorem 2.8 holds for every algebraic Lie algebra. The theo-
rem may be regarded as the first step in the proof that all semisimple Lie algebras are algebraic.
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2c Split semisimple Lie algebras

DEFINITION 2.11 A Lie algebra h is toral if adhx is semisimple for every element x of h.

PROPOSITION 2.12 Every toral Lie algebra is abelian.

PROOF. Let x be an element of such an algebra. We have to show that adx D 0. If not,
then, after possibly passing to a larger base field, adx will have an eigenvector with nonzero
eigenvalue, say ad.x/.y/D cy, c ¤ 0, y ¤ 0. Now ad.y/.x/D�ad.x/.y/D�cy ¤ 0 but
ad.y/2.x/ D ad.y/.�cy/ D 0. Thus, ad.y/ doesn’t act semisimply on the subspace of h
spanned by x and y, which contradicts its semisimplicity on h. 2

DEFINITION 2.13 A Cartan subalgebra of a semisimple Lie algebra is a maximal toral
subalgebra.2

Because the adjoint representation of a semisimple Lie algebra is faithful, (2.9) shows
that the elements of toral subalgebra of a semisimple Lie algebra are semisimple (in the
sense of 2.7).

EXAMPLE 2.14 For any maximal torus T in a semisimple algebraic group G, Lie.T / is a
Cartan subalgebra of Lie.G/.

PROPOSITION 2.15 A toral subalgebra of a semisimple Lie algebra is a Cartan subalgebra
if and only if it is equal to its own centralizer.

PROOF. If hD cg.h/ then obviously h is maximal. For the converse, see Humphreys 1972,
8.2. 2

DEFINITION 2.16 A Cartan subalgebra h of a semisimple Lie algebra g is said to be split-
ting if the eigenvalues of the linear maps ad.h/Wg! g lie in k for all h 2 h. A split semisim-
ple Lie algebra is a pair .g;h/ consisting of a semisimple Lie algebra g and a splitting Cartan
subalgebra h (Bourbaki LIE, VIII, �2, 1, Déf. 1).

More loosely, we say that a semisimple Lie algebra is split if it contains a splitting
Cartan subalgebra (Bourbaki says splittable).

EXAMPLE 2.17 (a) For any split maximal torus T in a semisimple algebraic group G,
Lie.T / is a splitting Cartan subalgebra of Lie.G/ (see 3.15).

(b) The subalgebra of diagonal elements is a splitting Cartan subalgebra of sln (see
�2h).

The semisimple Lie algebra g determines the pair .g;h/ up to isomorphism. More
precisely, there is the following important result.

THEOREM 2.18 Let h and h0 be splitting Cartan subalgebras of a semisimple Lie algebra
g. Then there exists an elementary automorphism e of g such that e.h/D h0.

2This is not the usual definition, but is equivalent to it when the algebra is semisimple (Bourbaki LIE, VII,
�2, 4, Th. 2).
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PROOF. Bourbaki LIE, VIII, �3, 3, Cor. to Prop. 10. 2

DEFINITION 2.19 The common dimension of the splitting Cartan subalgebras of a split
semisimple Lie algebra is called the rank of the Lie algebra.

2d The roots of a split semisimple Lie algebra

Let .g;h/ be a split semisimple Lie algebra. For each h 2 h, the action of adgh is semisim-
ple with eigenvalues in k, and so g has a basis of eigenvectors for adgh. Because h is
abelian, the adgh form a commuting family of diagonalizable endomorphisms of g, and so
there exists a basis of simultaneous eigenvectors. In other words, g is a direct sum of the
subspaces3

g˛
def
D fx 2 g j Œh;x�D ˛.h/x for all h 2 hg; ˛ 2 h_

def
D Homk-linear.h;k/:

The roots of .g;h/ are the nonzero ˛ such that g˛ ¤ 0. Write R for the set of roots of .g;h/.
Then the Lie algebra g decomposes into a direct sum

gD h˚
M

˛2R
g˛:

Clearly the set R is finite, and (by definition) doesn’t contain 0. We shall see that R is a
reduced root system in h_, but first we look at the basic example of sl2.

2e The Lie algebra sl2

2.20 This is the Lie algebra of 2�2 matrices with trace 0. Let

x D

 
0 1

0 0

!
; hD

 
1 0

0 �1

!
; y D

 
0 0

1 0

!
:

Then
Œx;y�D h; Œh;x�D 2x; Œh;y�D�2y:

Therefore fx;h;yg is a basis of eigenvectors for adh with integer eigenvalues 2;0;�2, and

sl2 D g˛˚h˚g�˛

D hxi˚hhi˚hyi

where hD hhi and ˛ is the linear map h! k such that ˛.h/D 2. The decomposition shows
that h is equal to its centralizer, and so it is a splitting Cartan subalgebra for g. Hence, sl2
is a split simple Lie algebra of rank one; in fact, up to isomorphism, it is the only such Lie
algebra. LetRD f˛g � h_. ThenR is a root system in h_: it is finite, spans h_,and doesn’t
contain 0; if we let ˛_ denote h regarded as an element of .h_/_, then h˛;˛_i D 2, the
reflection x 7! x�hx;˛_i˛ maps R to R, and h˛;˛_i 2 Z. The root lattice Q D Z˛ and
the weight lattice P D Z˛

2
.

3Elsewhere we write V˛ rather than V ˛ . Which should it be?
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2f The root system attached to a split semisimple Lie algebra

Let .g;h/ be a split semisimple Lie algebra, and let R � h_ be the set of roots of .g;h/, so
that

gD h˚
M

˛2R
g˛:

LEMMA 2.21 For ˛;ˇ 2 h_, Œg˛;gˇ �� g˛Cˇ .

PROOF. Let x 2 g˛ and y 2 gˇ . Then, for h 2 h, we have

ad.h/Œx;y�D Œad.h/x;y�C Œx;ad.h/y�

D Œ˛.h/x;y�C Œx;ˇ.h/y�

D .˛.h/Cˇ.h//Œx;y�: 2

THEOREM 2.22 Let ˛ be a root of .g;h/.

(a) The spaces g˛ and h˛
def
D Œg˛;g�˛� are one-dimensional.

(b) There is a unique element h˛ 2 h˛ such that ˛.h˛/D 2.
(c) For each nonzero element x˛ 2 g˛, there is a unique y˛ 2 g�˛ such that

Œx˛;y˛�D h˛; Œh˛;x˛�D 2x˛; Œh˛;y˛�D�2y˛:

Hence s˛
def
D g�˛˚h˛˚g˛ is a subalgebra isomorphic to sl2.

PROOF. Bourbaki LIE, VIII, �2, 2, Pptn 1, Thm 1. 2

In particular, for each root ˛ of .g;h/, there is a unique one-dimensional k-subspace g˛

of g such that
Œh;x�D ˛.h/x for all h 2 h, x 2 g˛:

The subalgebra s˛ is the centralizer of Ker.˛/.
An sl2-triple in a Lie algebra g is a triple .x;h;y/¤ .0;0;0/ of elements such that

Œx;y�D h; Œh;x�D 2x; Œh;y�D�2y:

There is a canonical one-to-one correspondence between sl2-triples in g and injective ho-
momorphisms sl2! g. The theorem says that, for each root ˛ of g and choice of x 2 g˛,
there is a unique sl2-triple .x;h;y/ such that ˛.h/ D 2. Replacing x with cx replaces
.x;h;y/ with .cx;h;c�1y/. 4

THEOREM 2.23 For each ˛ 2R, let ˛_ denote h˛ regarded as an element of .h_/_. Then
R is a reduced root system in h_; moreover, ˛_ is the unique element of .h_/_ such that
h˛;˛_i D 2 and the reflection x 7! x�hx;˛_i˛ preserves R.

PROOF. Bourbaki LIE, VIII, �2, 2, Thm 2. 2

4Cf. Bourbaki LIE, �11, 1, where it is required that Œx;y� D �h. In other words, Bourbaki replaces
everyone else’s y with �y.
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Note that, once we choose a base for R, the dominant weights (i.e., the elements of
PCC) are exactly the elements ˛ of h_ such that ˛.hˇ / 2 N for all ˇ 2RC.

ASIDE 2.24 Let x be an element of a semisimple Lie algebra g (not necessarily split). If x belongs
to an sl2-triple .x;h;y/, then x is nilpotent (apply 2.9). Conversely, the Jacobson-Morozov theorem
says that every nonzero nilpotent element x in a semisimple Lie algebra extends to an sl2-triple
.x;h;y/ (Bourbaki LIE, VIII, �11, 2).

2g Criteria for simplicity and semisimplicity

PROPOSITION 2.25 Let g be a Lie algebra, and let h be an abelian Lie subalgebra. For
each ˛ 2 h_, let

g˛ D fx 2 g j hx D ˛.h/x all h 2 hg,

and let R be the set of nonzero ˛ 2 h_ such that g˛ ¤ 0. Suppose that:

(a) gD h˚
L
˛2R g˛;

(b) for each ˛ 2R, the space g˛ has dimension 1;
(c) for each nonzero h 2 h, there exists an ˛ 2R such that ˛.h/¤ 0; and
(d) if ˛ 2R, then �˛ 2R and ŒŒg˛;g�˛�;g˛�¤ 0.

Then g is semisimple and h is a splitting Cartan subalgebra of g.

PROOF. Let a be an abelian ideal in g; we have to show that aD 0. As Œh;a�� a, (a) gives
us a decomposition

aD a\h˚
M

˛2R
a\g˛.

If a\ g˛ ¤ 0 for some ˛ 2 R, then a � g˛ (by (b)). As a is an ideal, this implies that
a� Œg˛;g�˛�, and as Œa;a�D 0, this implies that ŒŒg˛;g�˛�;g˛�D 0, contradicting (d).

Suppose a\h¤ 0, and let h be a nonzero element of a\h. According to (c), there exists
an ˛ 2 R such that ˛.h/ ¤ 0. Let x be a nonzero element of g˛. Then Œh;x� D ˛.h/x,
which is a nonzero element of g˛. As Œh;x� 2 a, this contradicts the last paragraph.

Condition (a) implies that the elements of h act semisimply on g and that their eigen-
values lie in k and that h is its own centralizer. Therefore h is a splitting Cartan subalgebra
of g. 2

PROPOSITION 2.26 Let .g;h/ be a split semisimple algebra. A decomposition gD g1˚g2
of semisimple Lie algebras defines a decomposition .g;h/D .g1;h1/˚ .g2;h2/, and hence
a decomposition of the root system of .g;h/.

PROOF. Let

gD h˚
M

˛2R
g˛

g1 D h1˚
M

˛2R1
g˛1

g2 D h2˚
M

˛2R2
g˛2

be the eigenspace decompositions of g, g1, and g2 respectively defined by the action of h.
Then hD h1˚h2 and RDR1tR2. 2
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COROLLARY 2.27 If the root system of .g;h/ is indecomposable (equivalently, its Dynkin
diagram is connected), then g is simple.

ASIDE 2.28 The converses of (2.26) and (2.27) are also true: a decomposition of its root system
defines a decomposition of .g;h/, and if g is simple then the root system of .g;h/ is indecomposable
(2.32 below).

2h Examples

We first look at OgD glnC1, even though this is not (quite) a semisimple algebra (its centre
is the subalgebra of scalar matrices). Let Oh be the Lie subalgebra of diagonal elements in
Og. Let Eij be the matrix in Og with 1 in the .i;j /th position and zeros elsewhere. Then
.Eij /1�i;j�nC1 is a basis for Og and .Ei i /1�i�nC1 is a basis for Oh. Let ."i /1�i�nC1 be the
dual basis for Oh_; thus

"i .diag.a1; : : : ;anC1//D ai :

An elementary calculation shows that, for h 2 Oh,

Œh;Eij �D ."i .h/� "j .h//Eij :

Thus,
OgD Oh˚

M
˛2R
Og˛

where RD f"i � "j j i ¤ j; 1� i;j � nC1g and Og"i�"j D kEij .

EXAMPLE (An): slnC1

Let gD sl.W / where W is a vector space of dimension nC1. Choose a basis .ei /1�i�nC1
for W , and use it to identify g with slnC1, and let h be the Lie subalgebra of diagonal
matrices in g. The matrices

Ei;i �EiC1;iC1 (1� i � n/

form a basis for h, and, together with the matrices

Eij (1� i;j � n, i ¤ j /;

they form a basis for g.
Let V be the hyperplane in Oh_ consisting of the elements ˛ D

PnC1
iD1 ai"i such thatPnC1

iD1 ai D 0. The restriction map � 7! �jh defines an isomorphism of V onto h_, which
we use to identify the two spaces.5 Now

gD h˚
M

˛2R
g˛

where RD f"i � "j j i ¤ j g � V and g"i�"j D kEij . We check the conditions of Proposi-
tion 2.25. We already know that (a) and (b) hold. For (c), let

hD diag.c1; : : : ; cnC1/;
P
ci D 0;

5In more detail: Oh is a vector space with basis E11; : : : ;EnC1;nC1, and h its the subspace f
P
aiEi i jP

ai D 0g. The dual of Oh is a vector space with basis "1; : : : ; "nC1 where "i .Ej /D ıij , and the dual of h is
the quotient of .Oh/_ by the line h"1C�� �C "ni. However, it is more convenient to identify dual of h with the
orthogonal complement of this line, namely, with the hyperplane V in .Oh/_.
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be an element of h. If h¤ 0, then ci ¤ cj for some i;j , and so ."i �"j /.h/D ci �cj ¤ 0.
For (d), let ˛ D "i � "j . Then �˛, is also a root and

ŒŒg˛;g�˛�;g˛� 3 ŒŒEij ;Ej i �;kEij �

D ŒEi i �Ejj ;Eij �

D 2:

Therefore .g;h/ is a split semisimple Lie algebra.
The family .˛i /1�i�n, ˛i D "i � "iC1, is a base for R. Relative to the inner product

.
P
ai"i ;

P
bi"i /D

X
aibi ;

we find that

n.˛i ;˛j /D 2
.˛i ;˛j /

.˛j ;˛j /
D .˛i ;˛j /D

8̂<̂
:

2 if j D i
�1 if j D i˙1
0 otherwise

and so

n.˛i ;˛j / �n.˛j ;˛i /D

(
1 if j D i˙1
0 if j ¤ i , i˙1:

Thus, the Dynkin diagram of .g;h/ is indecomposable of type An. Therefore g is simple.

EXAMPLE (Bn): o2nC1

EXAMPLE (Cn): sp2n

EXAMPLE (An): o2n

See Bourbaki LIE, VIII, �13 (for the present). In fact, the calculations are almost the same
as those in V, �2n.

2i Subalgebras of split semisimple Lie algebras

Let .g;h/ be a split semisimple Lie algebra with root systemR� h_. We wish to determine
the subalgebras a of g normalized by h, i.e., such that Œh;a�� a.

For a subset P of R, we let

gP D
X
˛2P

g˛ and hP D
X
˛2P

h˛:

DEFINITION 2.29 A subset P of R is said to be closed6 if

˛;ˇ 2 P; ˛Cˇ 2R H) ˛Cˇ 2 P:

As Œg˛;gˇ � � g˛Cˇ (see 2.21), in order for hP C gP to be a Lie subalgebra of g, we
should expect to have to require P to be closed.

6This is Bourbaki’s terminology, LIE VI, �1, 7.
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PROPOSITION 2.30 For every closed subsetP ofR and subspace h0 of h containing hP\�P ,
the subspace aD h0CgP of g is a Lie subalgebra normalized by h, and every Lie subalgebra
of g normalized by h is of this form for some h0 and P . Moreover,

(a) a is semisimple if and only if P D�P and h0 D hP ;
(b) a is solvable if and only if

P \ .�P /D ;: (161)

PROOF. See Bourbaki LIE, VIII, �3, 1, Pptn 1, Pptn 2. 2

EXAMPLE 2.31 For any root ˛, P D f˛;�˛g is a closed subset of R, and Œg˛;g�˛�CgP

is the Lie subalgebra s˛ of (2.22).

PROPOSITION 2.32 The root system R is indecomposable if and only if g is simple.

PROOF. Ibid., VIII, �3, 2, Pptn 6. 2

In more detail, let R1; : : : ;Rm be the indecomposable components of R. Then hR1 C
gR1 ; : : : ;hRmCgRm are the minimal ideals of g.

For base S of R, the set RC of positive roots is a maximal closed subset of R satisfying
(161), and every maximal such set arises in this way from a base (Bourbaki LIE, VI, �1,
7, Pptn 22). Therefore, the maximal solvable subalgebras of g containing h are exactly
subalgebras of the form

b.S/
def
D h˚

M
˛>0

g˛, S a base of R:

The subalgebra b.S/ determines RC, and hence the base S (as the set of indecomposable
elements of RC).

DEFINITION 2.33 Let .g;h/ be a split semisimple Lie algebra; a Borel subalgebra of .g;h/
is a maximal solvable subalgebra of g containing h. Let g be a semisimple Lie algebra; a
Borel subalgebra of g is a Lie subalgebra of g that is a Borel subalgebras of .g;h/ for some
splitting Cartan subalgebra h of g.

EXAMPLE 2.34 Let g D slnC1 and let h be the subalgebra of diagonal matrices. For the
base S D .˛i /1�i�n, ˛i D "i � "iC1, as in �2h, the positive roots are those of the form
"i � "j with i < j , and the Borel subalgebra b.S/ consists of upper triangular matrices of
trace 0. More generally, let gD sl.W / with W a vector space of dimension nC1. For any
maximal flag ı in W , the set bı of elements of g leaving stable all the elements of ı is a
Borel subalgebra of g, and the map ı 7! bı is a bijection from the set of maximal flags onto
the set of Borel subgroups of g (Bourbaki LIE, VIII, �13).

2j Classification of split semisimple Lie algebras

THEOREM 2.35 Every root system over k arises from a split semisimple Lie algebra over
k.



2. Structure of semisimple Lie algebras and their representations 315

For an indecomposable root system of type An–Dn this follows from examining the stan-
dard examples (see �2h). In the general case, it is possible to define g by generators
.x˛;h˛;y˛/˛2S and explicit relations (Bourbaki LIE, VIII, �4, 3, Thm 1).

THEOREM 2.36 The root system of a split semisimple Lie algebra determines it up to
isomorphism.

In more detail, let .g;h/ and .g0;h0/ be split semisimple Lie algebras, and let S and S 0 be
bases for their corresponding root systems. For each ˛ 2 S , choose a nonzero x˛ 2 g˛,
and similarly for g0. For any bijection ˛ 7! ˛0WS ! S 0 such that h˛;ˇ_i D h˛0;ˇ0_i for all
˛;ˇ 2 S , there exists a unique isomorphism g! g0 such that x˛ 7! x˛0 and h˛ 7! h˛0 for
all ˛ 2R; in particular, h maps into h0 (Bourbaki LIE, VIII, �4, 4, Thm 2).

2k Representations of split semisimple Lie algebras

Throughout this subsection, .g;h/ is a split semisimple Lie algebra with root system R �

h_, and b is the Borel subalgebra of .g;h/ attached to a base S for R. According to Weyl’s
theorem (II, 6.10), g-modules, and so to classify them it suffices to classify the simple
representations.

Proofs of the next three theorems can found in Bourbaki LIE, VIII, �7 (and elsewhere).

THEOREM 2.37 Let V be a simple g-module.

(a) There exists a unique one-dimensional subspace L of V stabilized by b.
(b) The L in (a) is a weight space for h, i.e., LD V$V for some $V 2 h_.
(c) The $V in (b) is dominant, i.e., $V 2 PCC;
(d) If $ is also a weight for h in V , then $ D$V �

P
˛2Sm˛˛ with m˛ 2 N.

Lie’s theorem (II, 3.14) shows that there does exist a one-dimensional eigenspace for b —
the content of (a) is that when V is a simple g-module, the space is unique. Since L is
mapped into itself by b, it is also mapped into itself by h, and so lies in a weight space. The
content of (b) is that it is the whole weight space.

Because of (d), $V is called the highest weight of the simple g-module V .

THEOREM 2.38 Every dominant weight occurs as the highest weight of a simple g-module.

THEOREM 2.39 Two simple g-modules are isomorphic if and only if their highest weights
are equal.

Thus V 7!$V defines a bijection from the set of isomorphism classes of simple g-modules
onto the set of dominant weights PCC.

COROLLARY 2.40 If V is a simple g-module, then End.V;r/' k.

Let V D V$ with $ dominant. Every isomorphism V$ ! V$ maps the highest weight
line L into itself, and is determined by its restriction to L because L generates V$ as a
g-module.
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EXAMPLE 2.41 Let gD sl.W /, and choose a basis .ei /1�i�nC1 for W as in �2h. Recall
that

S D f˛1; : : : ;˛ng; ˛i D "i � "iC1; "i .diag.a1; : : : ;an//D ai

is a base for the root system of .g;h/; moreover h˛i DEi;i �EiC1;iC1. Let

$ 0i D "1C�� �C "i :

Then
$i .h˛j /D ıij ; 1� i;j � n;

and so $ 0i jh is the fundamental weight corresponding to ˛i . This is represented by the
element

$i D "1C�� �C "i �
i

nC1
."1C�� �C "nC1/

of V . Thus the fundamental weights corresponding to the base S are $1; : : : ;$n. We have

Q.R/D fm1"1C�� �CmnC1"nC1 jmi 2 Z; m1C�� �CmnC1 D 0g

P.R/DQ.R/CZ �$1
P.R/=Q.R/' Z=.nC1/Z:

The action of g on W defines an action of g on
Vr

W . The elements

e11 ^� � �^ eir ; i1 < � � �< ir ,

form a basis for
Vr

W , and h 2 h acts by

h � .e11 ^� � �^ eir /D ."i1.h/C�� �C "ir .h//.e11 ^� � �^ eir / .

Therefore the weights of h in
Vr

W are the elements

"i1C�� �C "ir ; i1 < � � �< ir ;

and each has multiplicity 1. As the Weyl group acts transitively on the weights,
Vr

W is a
simple g-module, and its highest weight is $r .

2.42 The category Rep.g/ is a semisimple k-linear tensor category to which we can apply
(I, 21.20). Statements (2.38, 2.39) allow us to identify the set of isomorphism classes of
Rep.g/ with PCC. Let M.PCC/ be the free abelian group with generators the elements of
PCC and relations

$ D$1C$1 if V$ � V$1˝V$2 :

Then PCC!M.PCC/ is surjective, and two elements $ and $ 0 of PCC have the same
image inM.PCC/ if and only if there exist$1; : : : ;$m 2PCC such thatW$ andW$ 0 are
subrepresentations of W$1˝�� �˝W$m (I, 21.22). Later we shall prove that this condition
is equivalent to $ �$ 0 2 Q, and so M.PCC/ ' P=Q. In other words, Rep.g/ has a
gradation by PCC=Q\PCC ' P=Q but not by any larger quotient.

For example, let gD sl2, so thatQD Z˛ and P D Z˛
2

. For n 2N, let V.n/ be a simple
representation of g with highest weight n

2
˛. From the Clebsch-Gordon formula (Bourbaki

LIE, VIII, �9), namely,

V.m/˝V.n/� V.mCn/˚V.mCn�2/˚�� �˚V.m�n/; n�m;

we see that Rep.g/ has a natural P=Q-gradation (but not a gradation by any larger quotient
of P ).
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ASIDE 2.43 The above theorems are important, but are far from being the whole story. For exam-
ple, we need an explicit construction of the simple representation with a given highest weight, and
we need to know its properties, e.g., its character. Moreover, in order to determine Rep.g/ as a tensor
category, it is is necessary to describe how the tensor product of two simple g-modules decomposes
as a direct sum of g-modules.

ASIDE 2.44 Is it possible to prove that the kernel of PCC!M.PCC/ is Q\PCC by using only
the formulas for the characters and multiplicities of the tensor products of simple representations
(cf. Humphreys 1972, �24, especially Exercise 12)?

3 Structure of semisimple algebraic groups and their
representations

In this section, we classify the split semisimple algebraic groups and their representations
over a field of characteristic zero. Throughout, the ground field k has characteristic zero.

3a Basic theory

Recall (II, 2.7, 2.13) that the functor G Lie.G/ is exact and faithful on connected alge-
braic groups. However, it is not full, and infinitely many nonisomorphic connected alge-
braic groups may have the same Lie algebra (II, 2.14).

For any connected algebraic group G, the map H 7! Lie.H/ is a bijection from the set
of connected algebraic subgroups of G onto the set of algebraic Lie subalgebras of Lie.G/
(II, 2.11). As commutative subgroups (resp. normal subgroups) correspond to commutative
subalgebras (resp. ideals), we see G is semisimple if Lie.G/ is semisimple; the converse
statement is also true (II, 5.23).

Let G be a semisimple algebraic group, and let g be its Lie algebra. Then

gD g1� � � ��gn

where g1; : : : ;gn are the minimal nonzero ideals in g; each ai is a simple Lie algebra.
Correspondingly, there is an isogeny

.g1; : : : ;gn/ 7! g1 � � �gnWG1� � � ��Gn!G

where Gi is the connected algebraic subgroup of G with Lie algebra gi ; each Gi is almost-
simple.

3b Rings of representations of Lie algebras

Let g be a Lie algebra over k. A ring of representations of g is a collection of representa-
tions of g that is closed under the formation of direct sums, subquotients, tensor products,
and duals. An endomorphism of such a ring R is a family

˛ D .˛V /V 2R; ˛V 2 Endk-linear.V /;

such that

˘ ˛V˝W D ˛V ˝ idW C idV ˝˛W for all V;W 2R,
˘ ˛V D 0 if g acts trivially on V , and
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˘ for any homomorphism ˇWV !W of representations in R,

˛W ıˇ D ˛V ıˇ:

The set gR of all endomorphisms of R becomes a Lie algebra over k (possibly infinite
dimensional) with the bracket

Œ˛;ˇ�V D Œ˛V ;ˇV �:

EXAMPLE 3.1 (IWAHORI 1954) Let k be an algebraically closed field, and let g be k re-
garded as a one-dimensional Lie algebra. To give a representation of g on a vector space V
is the same as to give an endomorphism ˛ of V , and so the category of representations of
g is equivalent to the category of pairs .kn;A/; n 2 N, with A an n�n matrix. It follows
that to give an endomorphism of the ring R of all representations of g is the same as to give
a map A 7! �.A/ sending a square matrix A to a matrix of the same size and satisfying
certain conditions. A pair .g;c/ consisting of an additive homomorphism gWk! k and an
element c of k defines a � as follows:

˘ �.S/DU diag.ga1; : : : ;gan/U�1 if � is the semisimple matrixU diag.a1; : : : ;an/U�1;
˘ �.N /D cN if N is nilpotent;
˘ �.A/ D �.S/C�.N / if A D S CN is the decomposition of A into its commuting

semisimple and nilpotent parts.

Moreover, every � arises from a unique pair .g;c/. Note that gR has infinite dimension.

Let R be a ring of representations of a Lie algebra g. For any x 2 g, .rV .x//V 2R is an
endomorphism of R, and x 7! .rV .x// is a homomorphism of Lie algebras g! gR.

LEMMA 3.2 If R contains a faithful representation of g, then the homomorphism g! gR
is injective.

PROOF. For any representation .V;rV / of g, the composite

g
x 7!.rV .x//
��������! gR

� 7!�V
�����! gl.V /:

is rV . Therefore, g! gR is injective if rV is injective. 2

PROPOSITION 3.3 LetG be an affine group over k, and let R be the ring of representations
of Lie.G/ arising from a representation ofG. Then gR' Lie.G/; in particular, gR depends
only of Gı.

PROOF. By definition, Lie.G/ is the kernel of G.kŒ"�/! G.k/. Therefore, to give an
element of Lie.G/ is the same as to give a family of kŒ"�-linear maps

idV C˛V "WV Œ"�! V Œ"�

indexed by V 2R satisfying the three conditions of (I, 10.2). The first of these conditions
says that

idV˝W C˛V˝W "D .idV C˛V "/˝ .idW C˛W "/;

i.e., that
˛V˝W D idV ˝˛W C˛V ˝ idW :
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The second condition says that
˛11 D 0;

and the third says that the ˛V commute with all G-morphisms (D g-morphisms by 2.21).
Therefore, to give such a family is the same as to give an element .˛V /V 2R of gR. 2

PROPOSITION 3.4 Let g be a Lie algebra, and let R be a ring of representations of g. The
canonical map g! gR is an isomorphism if and only if g is the Lie algebra of an affine
group G whose identity component is algebraic and R is the ring of representations of g
arising from a representation of G.

PROOF. On applying I, 11.14, to the full subcategory of Rep.g/ whose objects are those
in R and the forgetful functor, we obtain an affine group such that Lie.G/' gR (by (3.3)
and R is the ring of representation of gR arising from a representation of G. If g! gR
is an isomorphism, then Gı is algebraic because its Lie algebra is finite-dimensional. This
proves the necessity, and the sufficiency follows immediately from (3.3). 2

COROLLARY 3.5 Let g! gl.V / be a faithful representation of g, and let R.V / be the ring
of representations of g generated by V . Then g! gR.V / is an isomorphism if and only if g
is algebraic, i.e., the Lie algebra of an algebraic subgroup of GLV .

PROOF. Immediate consequence of the proposition. 2

3.6 Let R be the ring of all representations of g. When g! gR is an isomorphism we
says that Tannaka duality holds for g. It follows from (II, 2.22) that Tannaka duality holds
for g if Œg;g�D g. On the other hand, Example 3.1 shows that Tannaka duality fails when
Œg;g�¤ g, and even that gR has infinite dimension in this case.

EXAMPLE 3.7 Let g be a one-dimensional Lie algebra over an algebraically closed field k.
The affine group attached to Rep.g/ is D.M/�Ga where M is k regarded as an additive
abelian group (cf. I, �14c). In other words,D.M/ represents the functorR Hom.M;R�/
(homomorphisms of abelian groups). This follows from Iwahori’s result (3.1). Note thatM
is not finitely generated as an abelian group, and so D.M/ is not an algebraic group.

NOTES Let g! gl.V / be a faithful representation of g, and let R.V / be the ring of representations
of g generated by V . When is g! gR.V / an isomorphism? It follows easily from (II, 2.22) that it
is, for example, when gD Œg;g�. In particular, g! gR.V / is an isomorphism when g is semisimple.
For an abelian Lie group g, g! gR.V / is an isomorphism if and only if g! gl.V / is a semisimple
representation and there exists a lattice in g on which the characters of g in V take integer values.
For the Lie algebra in (II, 1.40), g! gR.V / is never an isomorphism.

3c An adjoint to the functor Lie

Let g be a Lie algebra, and let R be the ring of all representations of g . We define G.g/
to be the Tannaka dual of the neutral tannakian category .Rep.g/; forget/. Recall (I, 11.14)
that this means that G.g/ is the affine group whose R-points for any k-algebra R are the
families

�D .�V /V 2R; �V 2 EndR-linear.V .R//;

such that
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˘ �V˝W D �V ˝�W for all V 2RI
˘ if V is the trivial representation of g (i.e., xV D 0 for all x 2 g), then �V D idV ;
˘ for every g-homomorphism ˇWV !W ,

�W ıˇ D ˇ ı�V :

For each V 2R, there is a representation rV of G.g/ on V defined by

rV .�/v D �V v; � 2G.g/.R/; v 2 V.R/; R a k-algebra,

and V  .V;rV / is an equivalence of categories

Rep.g/
�
�! Rep.G.g//: (162)

LEMMA 3.8 The homomorphism �Wg! Lie.G.g// is injective, and the composite of the
functors

Rep.G.g//
.V;r/ .V;Lie.r//
�����������! Rep.Lie.G.g///

�_

��! Rep.g/ (163)

is an equivalence of categories.

PROOF. According to (3.3), Lie.G.g//' gR, and so the first assertion follows from (3.2)
and Ado’s theorem. The composite of the functors in (163) is a quasi-inverse to the functor
in (162). 2

LEMMA 3.9 The affine group G.g/ is connected.

PROOF. When g is one-dimensional, we computed G.g/ in (3.7) and found it to be con-
nected.

For a general g, we have to show that only a trivial representation of g has the property
that the category of subquotients of direct sums of copies of the representation is stable
under tensor products (see I, 13.30 ). When g is semisimple, this follows from (2.37).

Let V be a representation of g with the property. It follows from the one-dimensional
case that the radical of g acts trivially on V , and then it follows from the semisimple case
that g itself acts trivially. 2

PROPOSITION 3.10 The pair .G.g/;�/ is universal: for any algebraic group H and k-
algebra homomorphism aWg! Lie.H/, there is a unique homomorphism bWG.g/! H

such that aD Lie.b/ı�:

G.g/ g Lie.G.g//

Lie

H Lie.H/:

9Šb

�

a Lie.b/

In other words, the map sending a homomorphism bWG.g/! H to the homomorphism
Lie.b/ı�Wg! Lie.H/ is a bijection

Homaffine groups.G.g/;H/! HomLie algebras.g;Lie.H//: (164)

If a is surjective and Rep.G.g// is semisimple, then b is surjective.
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PROOF. From a homomorphism bWG.g/!H , we get a commutative diagram

Rep.H/
b_

����! Rep.G.g//

fully faithful
??y.2:21/ '

??y.3:8/
Rep.Lie.H//

a_

����! Rep.g/

a
def
D Lie.b/ı�:

If a D 0, then a_ sends all objects to trivial objects, and so the functor b_ does the
same, which implies that the image of b is 1. Hence (164) is injective.

From a homomorphism aWg! Lie.H/, we get a tensor functor

Rep.H/! Rep.Lie.H//
a_

�! Rep.g/' Rep.G.g//

and hence a homomorphism G.g/!H , which acts as a on the Lie algebras. Hence (164)
is surjective.

If a is surjective, then a_ is fully faithful, and so Rep.H/!Rep.G.g// is fully faithful,
which implies that G.g/!G is surjective by (I, 10.21a). 2

PROPOSITION 3.11 For any finite extension k0 � k of fields, G.gk0/'G.g/k0 .

PROOF. More precisely, we prove that the pair .G.g/k0 ;�k0/ obtained from .G.g/;�/ by
extension of the base field has the universal property characterizing .G.gk0/;�/. Let H be
an algebraic group over k0, and let H� be the group over k obtained from H by restriction
of the base field. Then

Homk0.G.g/k0 ;H/' Homk.G.g/;H�/ (universal property of H�)

' Homk.g;Lie.H�// (3.10)

' Homk0.gk0 ;Lie.H//:

For the last isomorphism, note that

Lie.H�/
def
D Ker.H�.kŒ"�/!H�.k//' Ker.H.k0Œ"�/!H.k0//

def
D Lie.H/:

In other words, Lie.H�/ is Lie.H/ regarded as a Lie algebra over k (instead of k0), and the
isomorphism is simply the canonical isomorphism in linear algebra,

Homk-linear.V;W /' Homk0-linear.V ˝k k
0;W /

(V;W vector spaces over k and k0 respectively). 2

The next theorem shows that, when g is semisimple, G.g/ is a semisimple algebraic
group with Lie algebra g, and any other semisimple group with Lie algebra g is a quotient
of G.g/; moreover, the centre of G.g/ has character group P=Q.

THEOREM 3.12 Let g be a semisimple Lie algebra.

(a) The homomorphism �Wg! Lie.G.g// is an isomorphism.
(b) The affine group G.g/ is a semisimple algebraic group.
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(c) For any algebraic group H and isomorphism aWg! Lie.H/, there exists a unique
isogeny bWG.g/!H ı such that aD Lie.b/ı�:

T .g/

H

9Šb

g Lie.T .g//

Lie.H/:

�

a Lie.b/

(d) Let Z be the centre of G.g/; then X�.Z/' P=Q.

PROOF. (a) Because Rep.G.g// is semisimple, G.g/ is reductive (II, 6.14). Therefore
Lie.G.g// is reductive, and so Lie.G.g//D �.g/�a�c with a is semisimple and c commu-
tative (II, 5.6; II, 5.16). If a or c is nonzero, then there exists a nontrivial representation r of
G.g/ such that Lie.r/ is trivial on g. But this is impossible because � defines an equivalence
Rep.G.g//! Rep.g/.

(b) Now G.g/ is semisimple because its Lie algebra is semisimple (see II, 5.23).
(c) Proposition 3.10 shows that there exists a unique homomorphism b such that a D

Lie.b/ı�, which is an isogeny because Lie.b/ is an isomorphism (see II, 2.9).
(d) In the next subsection, we show that if g is split, then X�.Z/ ' P=Q (as abelian

groups). As g splits over a finite Galois extension, this implies (d). 2

REMARK 3.13 The isomorphismX�.Z/'P=Q in (d) commutes with the natural actions
of Gal.kal=k/.

3d Split semisimple algebraic groups

Let .g;h/ be a split semisimple Lie algebra, and let P and Q be the corresponding weight
and root lattices. The action of h on a g-module V decomposes it into a direct sum V DL
$2P V$ of weight spaces. Let D.P / be the diagonalizable group attached to P (I,

�14c). Thus D.P / is a split torus such that Rep.D.P // has a natural identification with
the category of P -graded vector spaces. The functor .V;rV / 7! .V;.V$ /!2P / is an exact
tensor functor Rep.g/! Rep.D.P // compatible with the forgetful functors, and hence
defines a homomorphism D.P /!G.g/. Let T .h/ be the image of this homomorphism.

THEOREM 3.14 With the above notations:

(a) The group T .h/ is a split maximal torus in G.g/, and � restricts to an isomorphism
h! Lie.T .h//.

(b) The map D.P /! T .h/ is an isomorphism; therefore, X�.T .h//' P .
(c) The centre of G.g/ is contained in T .h/ and equals\

˛2R
Ker.˛WT .h/!Gm/

(and so has character group P=Q).

PROOF. (a) The torus T .h/ is split because it is the quotient of a split torus. Certainly,
� restricts to an injective homomorphism h! Lie.T .h//. It must be surjective because
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otherwise h wouldn’t be a Cartan subalgebra of g. The torus T .h/must be maximal because
otherwise h wouldn’t be equal to its normalizer.

(b) Let V be the representation
L
V$ of g where $ runs through a set of fundamental

weights. Then G.g/ acts on V , and the map D.P /! GL.V / is injective. Therefore,
D.P /! T .h/ is injective.

(c) A gradation on Rep.g/ is defined by a homomorphism P !M.PCC/ (see 2.42),
and hence by a homomorphism D.M.PCC//! T .h/. This shows that the centre of G.g/
is contained in T .h/. The kernel of the adjoint map AdWG.g/!GLg is the centre Z.G.g//
of G.g/ (see 5.29), and so the kernel of Ad jT .h/ is Z.G.g//\T .h/DZ.G.g//. But

Ker.Ad jT .h//D
\
˛2R

Ker.˛/;

so Z.G.g// is as described. 2

LEMMA 3.15 The following conditions on a subtorus T of a semisimple algebraic group
G are equivalent;

(a) T is a maximal torus in G;
(b) Tkal is a maximal torus in Gkal ;
(c) T D CG.T /ı;
(d) t is a Cartan subalgebra of g.

PROOF. (c))(a). Obvious.
(a))(d). Let T be a torus in G, and let G ! GLV be a faithful representation of

G. After we have extended k, V will decompose into a direct sum
L
�2X�.T /V�, and

Lie.T / acts (semisimply) on each factor V� through the character Lie.�/. As g! glV is
faithful, this shows that t consists of semisimple elements (2.9). Hence t is toral. Any toral
subalgebra of g containing t arises from a subtorus of G, and so t is maximal.

(d))(c). Because t is a Cartan subalgebra, tD cg.t/ (see 2.15). As Lie.CG.T //D cg.t/
(see II, 2.23), we see that T and CG.T / have the same Lie algebra, and so T D CG.T /ı

(see 2.11).
(b),(a). This follows from the equivalence of (a) and (d) and the fact that t is a Cartan

subalgebra of g if and only if tkal is a Cartan subalgebra of gkal . 2

DEFINITION 3.16 A split semisimple algebraic group is a pair .G;T / consisting of a
semisimple algebraic group G and a split maximal torus T .

More loosely, we say that a semisimple algebraic group is split if it contains a split
maximal torus.7

THEOREM 3.17 Let T and T 0 be split maximal tori in a semisimple algebraic group G.
Then T 0 D gTg�1 for some g 2G.k/:

7Caution: a semisimple algebraic group always contains a maximal split torus, but that torus may not be
maximal among all subtori, and hence not a split maximal torus.
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PROOF. We may set G D G.g/ with g the semisimple Lie algebra Lie.G/. Let x be a
nilpotent element of g. For any representation .V;rV / of g, erV .x/ 2 G.g/.k/. According
to (2.16), there exist nilpotent elements x1; : : : ;xm in g such that

ead.x1/ � � �ead.xm/Lie.T /D Lie.T 0/:

Let g D ead.x1/ � � �ead.xm/; then gTg�1 D T 0 because they have the same Lie algebra. 2

3e Classification

We can now read off the classification theorems for split semisimple algebraic groups from
the similar theorems for split semisimple Lie algebras.

Let .G;T / be a split semisimple algebraic group. Because T is diagonalizable, the
k-vector space g decomposes into eigenspaces under its action:

gD
M

˛2X�.T /

g˛:

The roots of .G;T / are the nonzero ˛ such that g˛ ¤ 0. Let R be the set of roots of .G;T /.

PROPOSITION 3.18 The set of roots of .G;T / is a reduced root systemR in V def
DX�.T /˝

Q; moreover,
Q.R/�X�.T /� P.R/: (165)

PROOF. Let gD LieG and hD LieT . Then .g;h/ is a split semisimple Lie algebra, and,
when we identify V with a Q-subspace of h_ ' X�.T /˝k, the roots of .G;T / coincide
with the roots of .g;h) and so (165) holds. 2

By a diagram .V;R;X/, we mean a reduced root system .V;R/ over Q and a lattice X
in V that is contained between Q.R/ and P.R/.

THEOREM 3.19 (EXISTENCE) Every diagram arises from a split semisimple algebraic
group over k.

More precisely, we have the following result.

THEOREM 3.20 Let .V;R;X/ be a diagram, and let .g;h/ be a split semisimple Lie alge-
bra over k with root system .V ˝ k;R/ (see 2.35). Let Rep.g/X be the full subcategory
of Rep.g/ whose objects are those whose simple components have highest weight in X .
Then Rep.g/X is a tannakian subcategory of Rep.g/, and there is a natural tensor functor
Rep.g/X ! Rep.D.X// compatible with the forgetful functors. The Tannaka dual .G;T /
of this functor is a split semisimple algebraic group with diagram .V;R;X/.

In more detail: the pair .Rep.g/X ; forget/ is a neutral tannakian category, with Tannaka
dual G say; the pair .Rep.D.X/; forget/ is a neutral tannakian category, with Tannaka dual
D.X/; the tensor functor

.Rep.g/X ; forget/! .Rep.D.X/; forget/

defines an injective homomorphism

D.X/!G;

whose image we denote T . Then .G;T / is split semisimple group with diagram .V;R;X/.
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PROOF. When X DQ, .G;T / D .G.g/;T .h//, and the statement follows from Theorem
3.14. For an arbitrary X , let

N D
\

�2X=Q
Ker.�WZ.G.g//!Gm/:

Then Rep.g/X is the subcategory of Rep.g/ on which N acts trivially, and so it is a tan-
nakian category with Tannaka dualG.g/=N (see I, 8.63). Now it is clear that .G.g/=N;T .h/=N /
is the Tannaka dual of Rep.g/X ! Rep.D.X//, and that it has diagram .V;R;X/. 2

THEOREM 3.21 (ISOGENY) Let .G;T / and .G0;T 0/ be split semisimple algebraic groups
over k, and let .V;R;X/ and .V;R0;X 0/ be their associated diagrams. Any isomorphism
V ! V 0 sending R onto R0 and X into X 0 arises from an isogeny G!G0 mapping T onto
T 0.

PROOF. Let .g;h/ and .g0;h0/ be the split semisimple Lie algebras of .G;T / and .G0;T 0/.
An isomorphism V ! V 0 sending R onto R0 and X into X 0 arises from an isomorphism

.g;h/
ˇ
�! .g0;h0/ (see 2.36). Now ˇ defines an exact tensor functor Rep.g0/X

0

!Rep.g/X ,
and hence a homomorphism ˛WG!G0, which has the required properties. 2

PROPOSITION 3.22 Let .G;T / be a split semisimple algebraic group. For each root ˛ of
.G;T / and choice of a nonzero element of g˛, there a unique homomorphism

'WSL2!G

such that Lie.'/ is the inclusion s˛! g of (2.22).

PROOF. From the inclusion s˛! g we get a tensor functor Rep.g/! Rep.s˛/, and hence
a tensor functor Rep.G/! Rep.SL2/; this arises from a homomorphism SL2!G. 2

The image U˛ of U2 under ' is called the root group of ˛. It is uniquely determined by
having the following properties: it is isomorphic to Ga, and for any isomorphism u˛WGa!
U˛;

t �u˛.a/ � t
�1
D u˛.˛.t/a/; a 2 k; t 2 T .k/:

NOTES To be continued — there is much more to be said. In particular, we need to determine the
algebraic subalgebras of g, so that we can read off everything about the algebraic subgroups of G in
terms of the subalgebras of g (and hence in terms of the root system of .G;T /).

4 Real Lie algebras and real algebraic groups

The statement (3.12),

the affine group attached to the category of representations of a semisimple Lie
algebra g is the simply connected semisimple algebraic group with Lie algebra
g

holds over any field of characteristic zero, in particular, over R. Thus, we can read off the
whole theory of algebraic groups over R and their representations (including the theory of
Cartan involutions) from the similar theory for Lie algebras.

In this section, I’ll develop the theory of real Lie algebras, and then read off the similar
theory for algebraic groups.
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5 Reductive groups

Explain how everything extends to reductive algebraic groups (or perhaps rewrite the chap-
ter for reductive groups).

5a Filtrations of Repk.G/

Let V be a vector space. A homomorphism �WGm! GL.V / defines a filtration

� � � � F pV � F pC1V � �� � ; F pV D
M

i�p
V i ;

of V , where V D
L
i V

i is the grading defined by �.
Let G be an algebraic group over a field k of characteristic zero. A homomorphism

�WGm! G defines a filtration F � on V for each representation .V;r/ of G, namely, that
corresponding to r ı�. These filtrations are compatible with the formation of tensor prod-
ucts and duals, and they are exact in the sense that V 7! Gr�F .V / is exact. Conversely,
any functor .V;r/ 7! .V;F �/ from representations of G to filtered vector spaces compati-
ble with tensor products and duals which is exact in this sense arises from a (nonunique)
homomorphism �WGm!G. We call such a functor a filtration F � of Repk.G/, and a ho-
momorphism �WGm!G defining F � is said to split F �. We write Filt.�/ for the filtration
defined by �.

For each p, we define F pG to be the subgroup of G of elements acting as the identity
map on

L
i F

iV=F iCpV for all representations V of G. Clearly F pG is unipotent for
p � 1, and F 0G is the semi-direct product of F 1G with the centralizer Z.�/ of any �
splitting F �.

PROPOSITION 5.1 Let G be a reductive group over a field k of characteristic zero, and let
F � be a filtration of Repk.G/. From the adjoint action of G on g, we acquire a filtration of
g.

(a) F 0G is the subgroup of G respecting the filtration on each representation of G; it is
a parabolic subgroup of G with Lie algebra F 0g.

(b)F 1G is the subgroup ofF 0G acting trivially on the graded module
L
pF

pV=F pC1V

associated with each representation ofG; it is the unipotent radical ofF 0G, and Lie.F 1G/D
F 1g.

(c) The centralizer Z.�/ of any � splitting F � is a Levi subgroup of F 0G; therefore,
Z.�/' F 0G=F 1G, and the composite N� of � with F 0G! F 0G=F 1G is central.

(d) Two cocharacters � and �0 of G define the same filtration of G if and only if they
define the same group F 0G and N�D N�0; � and �0 are then conjugate under F 1G.

PROOF. Omitted for the present (Saavedra Rivano 1972, especially IV 2.2.5). 2

REMARK 5.2 It is sometimes more convenient to work with ascending filtrations. To turn
a descending filtration F � into an ascending filtration W�, set Wi D F�i ; if � splits F �

then z 7! �.z/�1 splits W . With this terminology, we have W0G DW�1GoZ.�/.



CHAPTER IV
Lie groups

The theory of algebraic groups can be described as that part of the theory of Lie groups that
can be developed using only polynomials (not convergent power series), and hence works
over any field. Alternatively, it is the elementary part that doesn’t require analysis. As we’ll
see, it does in fact capture an important part of the theory of Lie groups.

Throughout this chapter, k D R or C. The identity component of a topological group
G is denoted by GC. All vectors spaces and representations are finite-dimensional. In this
chapter, reductive algebraic groups are not required to be connected.

NOTES Only a partial summary of this chapter exists. Eventually it will include an explanation of
the exact relation between algebraic groups and Lie groups; an explanation of how to derive the
theory of reductive Lie groups and their representations from the corresponding theory for real and
complex algebraic groups; and enough of the basic material to provide a complete introduction to
the theory of Lie groups. It is intended as introduction to Lie groups for algebraists (not analysts,
who prefer to start at the other end).

1 Lie groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
2 Lie groups and algebraic groups . . . . . . . . . . . . . . . . . . . . . . . . 328
3 Compact topological groups . . . . . . . . . . . . . . . . . . . . . . . . . . 331

1 Lie groups

In this section, we define Lie groups, and develop their basic properties.

DEFINITION 1.1 (a) A real Lie group is a smooth manifold G together with a group struc-
ture such that both the multiplication map G �G ! G and the inverse map G ! G are
smooth.

(b) A complex Lie group is a complex manifold G together with a group structure such
that both the multiplication map G�G!G and the inverse map G!G are holomorphic.

Here “smooth” means infinitely differentiable.
A real (resp. complex) Lie group is said to be linear if it admits a faithful real (resp.

complex) representation. A real (resp. complex) linear Lie group is said to be reductive if
every real (resp. complex) representation is semisimple.

327
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2 Lie groups and algebraic groups

In this section, we discuss the relation between Lie groups and algebraic groups (especially
those that are reductive).

2a The Lie group attached to an algebraic group

THEOREM 2.1 There is a canonical functor L from the category of real (resp. complex)
algebraic groups to real (resp. complex) Lie groups, which respects Lie algebras and takes
GLn to GLn.R/ (resp. GLn.C/) with its natural structure as a Lie group. It is faithful on
connected algebraic groups (all algebraic groups in the complex case).

According to taste, the functor can be constructed in two ways.

(a) Choose an embedding G ,! GLn. Then G.k/ is a closed subgroup of GLn.C/, and
it is known that every such subgroup has a unique structure of a Lie group (it is real
or complex according to whether its tangent space at the neutral element is a real or
complex Lie algebra). See Hall 2003, 2.33.

(b) For k D R (or C), there is a canonical functor from the category of nonsingular real
(or complex) algebraic varieties to the category of smooth (resp. complex) manifolds
(Shafarevich 1994, II, 2.3, and VII, 1), which clearly takes algebraic groups to Lie
groups.

To prove that the functor is faithful in the real case, use (II, 2.13). In the complex case,
use that G.C/ is dense in G (I, �7e).

We often write G.R/ or G.C/ for L.G/, i.e., we regard the group G.R/ (resp. G.C/)
as a real Lie group (resp. complex Lie group) endowed with the structure given by the
theorem.

2b Negative results

2.2 In the real case, the functor is not faithful on nonconnected algebraic groups.

LetGDH D�3. The real Lie group attached to�3 is�3.R/Df1g, and so Hom.L.G/;L.H//D
1, but Hom.�3;�3/ is cyclic of order 3.

2.3 The functor is not full.

For example, z 7! ez WC!C� is a homomorphism of Lie groups not arising from a homo-
morphism of algebraic groups Ga!Gm.

For another example, consider the quotient map of algebraic groups SL3! PSL3. It
is not an isomorphism of algebraic groups because its kernel is �3, but it does give an
isomorphism SL3.R/! PSL3.R/ of Lie groups. The inverse of this isomorphism is not
algebraic.

2.4 A Lie group can have nonclosed Lie subgroups (for which quotients don’t exist).

This is a problem with definitions, not mathematics. Some authors allow a Lie subgroup
of a Lie group G to be any subgroup H endowed with a Lie group structure for which the
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inclusion map is a homomorphism of Lie groups. If instead one requires that a Lie sub-
group be a submanifold in a strong sense (for example, locally isomorphic to a coordinate
inclusion Rm!Rn), these problems don’t arise, and the theory of Lie groups quite closely
parallels that of algebraic groups.

2.5 Not all Lie groups have a faithful representation.

For example, �1.SL2.R// � Z, and its universal covering space G has a natural structure
of a Lie group. Every representation of G factors through its quotient SL2.R/. Another
(standard) example is the Lie group R1�R1�S1 with the group structure

.x1;y1;u1/ � .x2;y2;u2/D .x1Cx2;y1Cy2; e
ix1y2u1u2/:

This homomorphism 0B@1 x a

0 1 y

0 0 1

1CA 7! .x;y;eia/;

realizes this group as a quotient of U3.R/, but it can not itself be realized as a matrix group
(see Hall 2003, C.3).

A related problem is that there is no very obvious way of attaching a complex Lie group
to a real Lie group (as there is for algebraic groups).

2.6 Even when a Lie group has a faithful representation, it need not be of the form L.G/

for any algebraic group G.

Consider, for example, GL2.R/C.

2.7 Let G be an algebraic group over C. Then the Lie group G.C/ may have many more
representations than G.

Consider Ga; the homomorphisms z 7! ecz WC!C�DGL1.C/ and z 7!

 
1 z

0 1

!
WC!

GL2.C/ are representations of the Lie group C, but only the second is algebraic.

2c Complex groups

A complex Lie group G is algebraic if it is the Lie group defined by an algebraic group
over C.

For any complex Lie group G, the category RepC.G/ is obviously tannakian.

PROPOSITION 2.8 All representations of a complex Lie groupG are semisimple (i.e., G is
reductive) if and only if G contains a compact subgroup K such that C �Lie.K/D Lie.G/
and G DK �GC.

PROOF. Lee 2002, Proposition 4.22. 2
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For a complex Lie group G, the representation radical N.G/ is the intersection of the
kernels of all simple representations of G. It is the largest closed normal subgroup of G
whose action on every representation of G is unipotent. When G is linear, N.G/ is the
radical of the derived group of G (Lee 2002, 4.39).

THEOREM 2.9 For a complex linear Lie group G, the following conditions are equivalent:

(a) the tannakian category RepC.G/ is algebraic (i.e., admits a tensor generator I, 21.13);
(b) there exists an algebraic group T .G/ over C and a homomorphism G ! T .G/.C/

inducing an equivalence of categories RepC.T .G//! RepC.G/.
(c) G is the semidirect product of a reductive subgroup and N.G/.

Moreover, when these conditions hold, the homomorphism G ! T .G/.C/ is an isomor-
phism.

PROOF. The equivalence of (a) and (b) follows from (I, 21.10) and (I, 21.13). For the
remaining statements, see Lee 2002, Theorem 5.20. 2

COROLLARY 2.10 Let V be a complex vector space, and letG be a complex Lie subgroup
of GL.V /. If RepC.G/ is algebraic, then G is an algebraic subgroup of GLV , and every
complex analytic representation of G is algebraic.

PROOF. Lee 2002, 5.22. 2

REMARK 2.11 The theorem shows, in particular, that every reductive Lie group G is al-
gebraic: more precisely, there exists a reductive algebraic group T .G/ and an isomor-
phism G! T .G/.C/ of Lie groups inducing an isomorphism RepC.T .G//! RepC.G/.
Note that T .G/ is reductive (6.14). Conversely, if G is a reductive algebraic group, then
RepC.G/' RepC.G.C// (see Lee 1999, 2.8); thereforeG.C/ is a reductive Lie group, and
T .G.C// ' G. We have shown that the functors T and L are quasi-inverse equivalences
between the categories of complex reductive Lie groups and complex reductive algebraic
groups.

EXAMPLE 2.12 The Lie group C is algebraic, but nevertheless the conditions in (2.9) fail
for it — see (2.7).

2d Real groups

We say that a real Lie group G is algebraic if GC DH.R/C for some algebraic group H
(here C denotes the identity component for the real topology).

THEOREM 2.13 For every real reductive Lie groupG, there exists an algebraic group T .G/
and a homomorphism G ! T .G/.R/ inducing an equivalence of categories RepR.G/!
RepR.T .G//. The Lie group T .G/.R/ is the largest algebraic quotient of G, and equals G
if and only if G admits a faithful representation.

PROOF. The first statement follows from the fact that RepR.G/ is tannakian. For the second
statement, we have to show that T .G/.R/ D G if G admits a faithful representation, but
this follows from Lee 1999, 3.4, and (2.9). 2
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THEOREM 2.14 For every compact connected real Lie group K, there exists a semisimple
algebraic group T .K/ and an isomorphism K ! T .K/.R/ which induces an equivalence
of categories RepR.K/! RepR.T .K//. Moreover, for any reductive algebraic group G0

over C,
HomC.T .K/C;G

0/' HomR.K;G
0.C//

PROOF. See Chevalley 1957, Chapter 6, ��8–12, and Serre 1993. 2

3 Compact topological groups

Let K be a topological group. The category RepR.K/ of continuous representations of
K on finite-dimensional real vector spaces is, in a natural way, a neutral tannakian cate-
gory over R with the forgetful functor as fibre functor. There is therefore (I, 21.10) a real
affine algebraic group G called the real algebraic envelope of K and a continuous homo-
morphismK!G.R/ inducing an equivalence of tensor categories RepR.K/!RepR.G/.
The complex algebraic envelope of K is defined similarly.

LEMMA 3.1 Let K be a compact group, and let G be the real envelope of K. Each f 2
O.G/ defines a real-valued function on K, and in this way A becomes identified with the
set of all real-valued functions f on K such that

(a) the left translates of f form a finite-dimensional vector space;
(b) f is continuous.

PROOF. Serre 1993, 4.3, Ex. b), p. 67. 2

Similarly, if G0 is the complex envelope of K, then the elements of O.G0/ can be
identified with the continuous complex valued functions on K whose left translates form a
finite-dimensional vector space.

PROPOSITION 3.2 If G and G0 are the real and complex envelopes of a compact group K,
then G0 DGC.

PROOF. Let A and A0 be the bialgebras of G and G0. Then it is clear from Lemma 3.1 that
A0 D C˝RA. 2

DEFINITION 3.3 An affine algebraic groupG over R is said to be anisotropic (or compact)
if it satisfies the following conditions:

(a) G.R/ is compact, and
(b) G.R/ is dense in G for the Zariski topology.

As G.R/ contains a neighbourhood of 1 in G, condition (b) is equivalent to the follow-
ing:

(b0). Every connected component (for the Zariski topology) of G contains a
real point.

In particular, (b) holds if G is connected.
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PROPOSITION 3.4 Let G be an algebraic group over R, and let K be a compact subgroup
of G.R/ that is dense in G for the Zariski topology. Then G is anisotropic, K DG.R/, and
G is the algebraic envelope of K.

PROOF. Serre 1993, 5.3, Pptn 5, p. 71. 2

If K is a compact Lie group, then RepR.K/ is semisimple, and so its real algebraic
envelope G is reductive. Hence GC is a complex reductive group. Conversely:

THEOREM 3.5 Let G be a reductive algebraic group over C, and let K be a maximal com-
pact subgroup of G.C/. Then the complex algebraic envelope of K is G, and so the real
algebraic envelope of K is a compact real form of G.

PROOF. Serre 1993, 5.3, Thm 4, p. 74. 2

COROLLARY 3.6 There is a one-to-one correspondence between the maximal compact
subgroups of G.C/ and the anisotropic real forms of G.

PROOF. Obvious from the theorem (see Serre 1993, 5.3, Rem., p. 75). 2

THEOREM 3.7 Let K be a compact Lie group, and let G be its real algebraic envelope.
The map

H 1.Gal.C=R/;K/!H 1.Gal.C=R/;G.C//

defined by the inclusion K ,!G.C/ is an isomorphism.

PROOF. Serre 1964, III, Thm 6. 2

Since Gal.C=R/ acts trivially on K, H 1.Gal.C=R/;K/ is the set of conjugacy classes
in K consisting of elements of order 2.

ASIDE 3.8 A subgroup of an anisotropic group is anisotropic. Maximal compact subgroups of
complex algebraic groups are conjugate.



CHAPTER V
The Structure of Reductive Groups:

the split case

This chapter gives an exposition of the theory of split reductive groups and their repre-
sentations over arbitrary fields (potentially, over Z), including a proof of the classification
(isomorphism, existence, and isogeny theorems) along the lines of Steinberg 1998, 1999. It
assumes a knowledge of elementary algebraic geometry (varieties over algebraically closed
fields, as in my notes AG), and the basic theory of algebraic groups (Chapter I and II, of
these notes). Except for �1 of Chapter III (Root systems and their classification), it is largely
independent of Chapters III and IV.

Throughout this section, k is a field (not necessarily of characteristic zero, or even per-
fect). Also, “semisimple group” and “reductive group” mean “semisimple affine algebraic
group” and “reductive affine algebraic group”.

NOTES At present, only the first 4 sections are more-or-less complete (but need even they need
revision).

1 Split reductive groups: the program . . . . . . . . . . . . . . . . . . . . . . 333
2 The root datum of a split reductive group . . . . . . . . . . . . . . . . . . . . 338
3 Borel fixed point theorem and applications . . . . . . . . . . . . . . . . . . . 351
4 Parabolic subgroups and roots . . . . . . . . . . . . . . . . . . . . . . . . . 363
5 Root data and their classification . . . . . . . . . . . . . . . . . . . . . . . . 366
6 Construction of split reductive groups: the existence theorem . . . . . . . . . 374
7 Construction of isogenies of split reductive groups: the isogeny theorem . . . 377
8 Representations of split reductive groups . . . . . . . . . . . . . . . . . . . . 378

1 Split reductive groups: the program

1a Brief review of reductive groups

1.1 The unipotent radical RuG of smooth algebraic group G is the largest smooth con-
nected normal unipotent subgroup ofG. The geometric unipotent radical ofG is the unipo-
tent radical of Gkal . (I, 17.2.)
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1.2 A reductive group is a smooth connected algebraic group whose geometric unipotent
radical is trivial. If G is reductive, then RuG D 0, and the converse is true when k is
perfect1. (I, 17.5, 17.6.)

1.3 Let G be a smooth connected algebraic group. If G is reductive, then every smooth
connected normal commutative subgroup is a torus; the converse is true if k is perfect. (I,
17.7.)

1.4 IfG is reductive, then the derived groupGder ofG is semisimple, the connected centre
Z.G/ı of G is a torus equal to the radical RG of G, and Z.G/\Gder is the (finite) centre
of Gder; moreover,

Z.G/ı �Gder
DG

(I, 17.20).

1.5 Let G0 be a semisimple group, let Z be a torus, and let 'WZ.G0/!Z be a homomor-
phism; the algebraic group G defined by the exact sequence

1!Z.G0/
z 7!.'.z/�1;z/
����������!Z�G0!G! 1 (166)

is reductive, and every reductive group arises in this fashion (take Z to be the connected
centre of G). (I, 17.21.)

1.6 Let G be an algebraic group over a field of characteristic zero. All representations of
G are semisimple if and only if Gı is reductive. (II, 6.17.)

1b Split tori

Recall that a split torus is a connected diagonalizable group. Equivalently, it is an algebraic
group isomorphic to a product of copies of Gm (I, 14.16). A torus over k is a connected
algebraic group that becomes diagonalizable over kal. A torus in GLV is split if and only if
it is contained in Dn for some basis of V:

Consider for example

T D

( 
a b

�b a

!ˇ̌̌̌
ˇ a2Cb2 ¤ 0

)
:

The characteristic polynomial of such a matrix is

X2�2aXCa2Cb2 D .X �a/2Cb2

and so its eigenvalues are
�D a˙b

p
�1:

It is easy to see that T is split (i.e., diagonalizable over k) if and only if �1 is a square in k:

1But not when k is nonperfect, otherwise Conrad, Gabber, and Prasad wouldn’t have had to write their
book.
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Recall (I, �14) that End.Gm/' Z: the only group-like elements in kŒGm�D kŒX;X�1�
are the powers of X , and the only homomorphisms Gm ! Gm are the maps t 7! tn for
n 2 Z. For a split torus T , we set

X�.T /D Hom.T;Gm/D group of characters of T;

X�.T /D Hom.Gm;T /D group of cocharacters of T:

There is a pairing

h ; iWX�.T /�X�.T /! End.Gm/' Z; h�;�i D �ı�: (167)

Thus
�.�.t//D t h�;�i for t 2Gm.R/DR�:

Both X�.T / and X�.T / are free abelian groups of rank equal to the dimension of T , and
the pairing h ; i realizes each as the dual of the other.

For example, let

T D Dn D

8̂̂<̂
:̂
0BB@
a1 0

: : :

0 an

1CCA
9>>=>>; :

Then X�.T / has basis �1; : : : ;�n, where

�i .diag.a1; : : : ;an//D ai ;

and X�.T / has basis �1; : : : ;�n, where

�i .t/D diag.1; : : : ;
i
t ; : : : ;1/:

Note that

h�j ;�i i D

(
1 if i D j

0 if i ¤ j
;

i.e.,

�j .�i .t//D

(
t D t1 if i D j

1D t0 if i ¤ j
:

Some confusion is caused by the fact that we write X�.T / and X�.T / as additive
groups. For example, if aD diag.a1;a2;a3/, then

.5�2C7�3/aD �2.a/
5�3.a/

7
D a52a

7
3:

For this reason, some authors use an exponential notation �.a/ D a�. With this notation,
the preceding equation becomes

a5�2C7�3 D a5�2a7�3 D a52a
7
3.
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1c Split reductive groups

Let G be an algebraic group over a field k. When k D kal, a torus T �G is maximal if it is
not properly contained in any other torus. In general, T � G is said to be maximal if Tksep

is maximal in Gksep . If a torus T in G is its own centralizer, then this remains true over ksep

(I, 7.44 et seq.), and so T is maximal. For example, Dn is a maximal torus in GLn because
it is equal to own centralizer. A reductive group is split if it contains a split maximal torus.

A reductive group over a separably closed field is automatically split, as all tori over
such field are split (by definition I, 14.24). As we discuss below, for any reductive group G
over a separably closed field k and subfield k0 of k, there exists a split reductive group G0
over k0; unique up to isomorphism, that becomes isomorphic to G over k.

EXAMPLE 1.7 The group GLn is a split reductive group (over any field) with split maximal
torus Dn. On the other hand, let H be the quaternion algebra over R. As an R-vector space,
H has basis 1; i;j; ij , and the multiplication is determined by

i2 D�1; j 2 D�1; ij D�j i:

It is a division algebra with centre R. There is an algebraic group G over R such that

G.R/D .R˝kH/�

for all R-algebrasR (I, 2.19). In particular,G.R/DH�. As C˝RH�M2.C/,G becomes
isomorphic to GL2 over C, but as an algebraic group over R it is not split, because its
derived group G0 is the subgroup of elements of norm 1, and as G0.R/ is compact, it can’t
contain a split torus.

EXAMPLE 1.8 The group SLn is a split semisimple group, with split maximal torus the
diagonal matrices of determinant 1.

EXAMPLE 1.9 Let .V;q/ be a nondegenerate quadratic space (see I, �18b). Recall that this
means that V is a finite-dimensional vector space and q is a nondegenerate quadratic form
on V with associated symmetric form �. Recall (I, 18.7) that the Witt index of .V;q/ is
the maximum dimension of an isotropic subspace of V . If the Witt index is r , then V is an
orthogonal sum

V DH1 ? : : :?Hr ? V1 (Witt decomposition)

where eachHi is a hyperbolic plane and V1 is anisotropic (I, 18.9). The associated algebraic
group SO.q/ is split if and only if its Witt index is as large as possible.

(a) Case dimV D n is even, say, n D 2r . When the Witt index is as large as possible

there is a basis for which the matrix2 of the form is

 
0 I

I 0

!
, and so

q.x1; : : : ;xn/D x1xrC1C�� �Cxrx2r :

2Recall that SO.q/ consists of the automorphs of this matrix with determinant 1, i.e., SO.q/.R/ consists

of the n�n matrices A with entries in R and determinant 1 such that At
 
0 I

I 0

!
AD

 
0 I

I 0

!
:



1. Split reductive groups: the program 337

Note that the subspace of vectors

.�; : : : ;
r
�;0; : : : ;0/

is totally isotropic. The algebraic subgroup consisting of the diagonal matrices of the form

diag.a1; : : : ;ar ;a�11 ; : : : ;a�1r /

is a split maximal torus in SO.q/.
(b) Case dimV D n is odd, say, nD 2rC1. When the Witt index is as large as possible

there is a basis for which the matrix of the form is

0B@1 0 0

0 0 I

0 I 0

1CA, and so

q.x0;x1; : : : ;xn/D x
2
0Cx1xrC1C�� �Cxrx2r :

The algebraic subgroup consisting of the diagonal matrices of the form

diag.1;a1; : : : ;ar ;a�11 ; : : : ;a�1r /

is a split maximal torus in SO.q/.
Notice that any two nondegenerate quadratic spaces with largest Witt index and the

same dimension are isomorphic. In the rest of the notes, I’ll refer to these groups as the
split SOn’s.

EXAMPLE 1.10 Let V D k2n, and let be the skew-symmetric form with matrix

 
0 I

�I 0

!
,

so
 .Ex; Ey/D x1ynC1C�� �Cxny2n�xnC1y1�� � ��x2nyn:

The corresponding symplectic group Spn is split, and the algebraic subgroup consisting of
the diagonal matrices of the form

diag.a1; : : : ;ar ;a�11 ; : : : ;a�1r /

is a split maximal torus in Spn.

1d The program

1.11 A reductive group G over k is split if it contains a split maximal torus3 T , i.e., a
split torus T � G such Tksep is maximal in Gksep . A split reductive group is a pair .G;T /
consisting of a reductive group G and a split maximal torus T:

1.12 Any two split maximal tori in G are conjugate by an element of G.k/ (see 3.22); in
particular, the isomorphism class of .G;T / depends only on G.

1.13 To each split reductive group .G;T / we attach a more elementary object, namely, its
root datum 	.G;T / (see �2). The root datum 	.G;T / determines .G;T / up to isomor-
phism, and every root datum arises from a pair .G;T /.

3Not to be confused with a maximal split torus in G, which is a torus that is maximal among the split tori
in G. A split maximal torus is a maximal split torus, but the converse need not be true.
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1.14 We study, and classify, the root data.

1.15 Since knowing the root datum of .G;T / is equivalent to knowing .G;T /, we should
be able to read off information about the structure ofG and its representations from the root
datum. This is true.

1.16 The root data have nothing to do with the field! In particular, we see that for each
reductive group G over kal, there is (up to isomorphism) exactly one split reductive group
over k that becomes isomorphic to G over kal. However, there will in general be many
nonsplit groups, and so we are left with the problem of understanding them (Chapter VI).

In linear algebra and the theory of algebraic groups, one often needs the ground field to
be algebraically closed in order to have enough eigenvalues (and eigenvectors). By requir-
ing that the group contains a split maximal torus, we ensure that there are enough eigenval-
ues without having to make an assumption on the ground field.

2 The root datum of a split reductive group

2a Roots

Let .G;T / be a split reductive group. Then G acts on gD Lie.G/ via the adjoint represen-
tation

AdWG! GLg

(II, �1g). In particular, T acts on g, and so it decomposes as

gD g0˚
M

�
g�

where g0 is the subspace on which T acts trivially, and g� is the subspace on which T acts
through the nontrivial character � (I, 14.15). The nonzero � occurring in this decomposition
are called the roots of .G;T /. They form a finite subset R of X�.T /.

NOTES There is probably some inconsistency my notations for root data: R.G;T /, ˚.G;T /, and
	.G;T / all seem to be used. Conrad et al. 2010 write RD ˚.G;T / in 3.2.2, p. 94, and R.G;T /D
.X.T /;˚.G;T /;X�.T /;˚.G;T /

_/ in 3.2.5, p. 96.

2b Example: GL2

Here
gD gl2 DM2.k/ with ŒA;B�D AB �BA;

and

T D

( 
x1 0

0 x2

!ˇ̌̌̌
ˇx1x2 ¤ 0

)
:

Therefore,

X�.T /D Z�1˚Z�2; where
�
x1 0
0 x2

�
a�1Cb�2
7������! xa1x

b
2 :
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The torus T acts on g by conjugation, 
x1 0

0 x2

! 
a b

c d

! 
x�11 0

0 x�12

!
D

 
a x1

x2
b

x2
x1
c d

!
:

Write Eij for the matrix with a 1 in the ij th-position, and zeros elsewhere. Then T acts
trivially on g0DhE11;E22i, through the character ˛D�1��2 on g˛DhE12i, and through
the character �˛ D �2��1 on g�˛ D hE21i.

Thus, R D f˛;�˛g where ˛ D �1��2. When we use �1 and �2 to identify X�.T /
with Z˚Z, R becomes identified with f˙.e1� e2/g:

2c Example: SL2

Here

gD sl2 D

( 
a b

c d

!
2M2.k/

ˇ̌̌̌
ˇ aCd D 0

)
;

and

T D

( 
x 0

0 x�1

!)
:

Therefore,

X�.T /D Z� where

 
x 0

0 x�1

!
�
7�! x:

Again T acts on g by conjugation, 
x 0

0 x�1

! 
a b

c �a

! 
x�1 0

0 x

!
D

 
a x2b

x�2c �a

!
Therefore, the roots are ˛D 2� and �˛D�2�. When we use � to identify X�.T / with Z,
R becomes identified with f2;�2g:

2d Example: PGL2

Recall that this is the quotient of GL2 by its centre: PGL2DGL2 =Gm. For all fieldsR� k,
PGL2.R/D GL2.R/=R�. In this case,

gD pgl2 D gl2=fscalar matricesg;

and

T D

( 
x1 0

0 x2

! ˇ̌̌̌
ˇ x1x2 ¤ 0

),( 
x 0

0 x

!ˇ̌̌̌
ˇx ¤ 0

)
:

Therefore,

X�.T /D Z� where

 
x1 0

0 x2

!
�
7�!

x1

x2
;

and T acts on g by conjugation: 
x1 0

0 x2

! 
a b

c d

! 
x�11 0

0 x�12

!
D

 
a x1

x2
b

x2
x1
c d

!
:

Therefore, the roots are ˛D � and �˛D��. When we use � to identify X�.T / with Z, R
becomes identified with f1;�1g.
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2e Example: GLn

Here
gD gln DMn.k/ with ŒA;B�D AB �BA;

and

T D

( 
x1 0

:::
0 xn

! ˇ̌̌̌
ˇ x1 � � �xn ¤ 0

)
:

Therefore,

X�.T /D
M

1�i�n
Z�i ;

 
x1 0

:::
0 xn

!
�i
7�! xi :

The torus T acts on g by conjugation:

 
x1 0

:::
0 xn

!0B@
a11 ��� ��� a1n
::: aij

:::
:::

:::
an1 ��� ��� ann

1CA
0@x�11 0

:::
0 x�1n

1AD
0BBB@

a11 ��� ���
x1
xn
a1n

::: xi
xj
aij

:::

:::
:::

xn
x1
an1 ��� ��� ann

1CCCA :
Write Eij for the matrix with a 1 in the ij th-position, and zeros elsewhere. Then T acts
trivially on g0 D hE11; : : : ;Enni and through the character ˛ij D �i ��j on g˛ij D hEij i.
Therefore

RD f˛ij j 1� i;j � n; i ¤ j g:

When we use the �i to identify X�.T / with Zn, then R becomes identified with

fei � ej j 1� i;j � n; i ¤ j g

where e1; : : : ; en is the standard basis for Zn.

2f Definition of a root datum

DEFINITION 2.1 A root datum is a quadruple 	 D .X;R;X_;R_/ where4

˘ X;X_ are free Z-modules of finite rank in duality by a pairing h ; iWX �X_! Z,
˘ R;R_ are finite subsets of X and X_ in bijection by a map ˛$ ˛_,

satisfying the following conditions

(rd1) h˛;˛_i D 2 for all ˛ 2R;
(rd2) s˛.R/�R for all ˛ 2R; where s˛ is the homomorphism X !X defined by

s˛.x/D x�hx;˛
_
i˛; x 2X , ˛ 2R;

(rd3) the group of automorphisms W.	/ of X generated by the s˛ for ˛ 2R is finite.

4More accurately, it is an ordered sextuple,

.X;X_;h ; i;˚;˚_;˚ ! ˚_/;

but everyone says quadruple.
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Note that (rd1) implies that
s˛.˛/D�˛;

and that the converse holds if ˛ ¤ 0. Moreover, because s˛.˛/D�˛,

s˛.s˛.x//D s˛.x�hx;˛
_
i˛/D .x�hx;˛_i˛/�hx;˛_is˛.˛/D x;

i.e.,
s2˛ D 1:

Clearly, also s˛.x/D x if hx;˛_iD 0. Thus, s˛ should be considered an “abstract reflection
in the hyperplane orthogonal to ˛_”.

The elements of R and R_ are called the roots and coroots of the root datum (and ˛_

is the coroot of ˛). The group W DW.	/ of automorphisms of X generated by the s˛ for
˛ 2R is called the Weyl group of the root datum.

We want to attach to each pair .G;T / consisting of a split reductive group G and split
maximal torus T , a root datum 	.G;T / with

X D X�.T /;

R D roots;
X_ D X�.T / with the pairing X�.T /�X�.T /! Z in (167), p. 335
R_ D coroots (to be defined).

2g First examples of root data

EXAMPLE 2.2 Let G D SL2. Here

X D X�.T /D Z�;
�
x 0
0 x�1

� �
7�! x

X_ D X�.T /D Z�; t
�
7�!

�
t 0
0 t�1

�
R D f˛;�˛g; ˛ D 2�

R_ D f˛_;�˛_g; ˛_ D �:

Note that
t

�
7�!

�
t 0
0 t�1

� 2�
7�! t2

and so
h˛;˛_i D 2I

in fact, we had only one choice for ˛_. As always,

s˛.˛/D�˛; s˛.�˛/D ˛

etc., and so s˙˛.R/ � R. Finally, s˛ has order 2, and so W.	/D f1;s˛g is finite. Hence
	.SL2;T / is a root system, isomorphic to

.Z;f2;�2g;Z;f1;�1g/

with the canonical pairing hx;yi D xy and the bijection 2$ 1, �2$�1.
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EXAMPLE 2.3 Let G D PGL2. Here

R_ D f˛_;�˛_g; ˛_ D 2�:

In this case 	.PGL2;T / is a root system, isomorphic to

.Z;f1;�1g;Z;f2;�2g/:

REMARK 2.4 If ˛ is a root, then so also is �˛, and there exists an ˛_ such that h˛;˛_i D
2. It follows immediately, that the above are the only two root data with X D Z and R
nonempty. There is also the root datum

.Z;;;Z;;/;

which is the root datum of the reductive group Gm.

EXAMPLE 2.5 Let G D GLn. Here

X DX�.Dn/D
M

i
Z�i ; diag.x1; : : : ;xn/

�i
7�! xi

X_ DX�.Dn/D
M

i
Z�i ; t

�i
7�! diag.1; : : : ;1;

i
t ;1; : : : ;1/

RD f˛ij j i ¤ j g; ˛ij D �i ��j

R_ D f˛_ij j i ¤ j g; ˛_ij D �i ��j :

Note that

t
�i��j
7�! diag.1; : : : ;

i
t ; : : : ;

j

t�1; : : :/
�i��j
7�! t2

and so
h˛ij ;˛

_
ij i D 2:

Moreover, s˛.R/�R for all ˛ 2R. We have, for example,

s˛ij .˛ij /D�˛ij

s˛ij .˛ik/D ˛ik �h˛ik;˛
_
ij i˛ij

D ˛ik �h�i ;�i i˛ij .if k ¤ i;j )

D �i ��k � .�i ��j /

D ˛jk

s˛ij .˛kl/D ˛kl .if k ¤ i;j , l ¤ i;j ).

Finally, let E.ij / be the permutation matrix in which the i th and j th rows have been
swapped. The action

A 7!E.ij / �A �E.ij /�1

ofEij on GLn by inner automorphisms stabilizes T and swaps xi and xj . Therefore, it acts
on X D X�.T / as s˛ij . This shows that the group generated by the s˛ij is isomorphic to
the subgroup of GLn generated by the E.ij /, which is isomorphic to Sn. In particular, W
is finite.

Therefore, 	.GLn;Dn/ is a root datum, isomorphic to

.Zn;fei � ej j i ¤ j g;Zn;fei � ej j i ¤ j g

equipped with the pairing hei ; ej i D ıij and the bijection .ei � ej /_ D ei � ej . Here, as
usual, e1; : : : ; en is the standard basis for Zn.
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In the above examples we wrote down the coroots without giving any idea of how to
find (or even define) them. Before defining them, we need to state some general results on
reductive groups.

2h Semisimple groups of rank 0 or 1

The rank of a reductive group is the dimension of a maximal torus, i.e., it is the largest r
such that Gkal contains a subgroup isomorphic to Grm. Since all maximal tori in Gkal are
conjugate (see 3.22 below), the rank is well-defined.

THEOREM 2.6 (a) Every semisimple group of rank 0 is trivial.
(b) Every semisimple group of rank 1 over an algebraically closed field is isomorphic

to SL2 or PGL2.

PROOF. (a) Let G be a semisimple group of rank 0. We may assume that k is algebraically
closed. If all the elements of G.k/ are unipotent, then G is solvable (I, 15.2), and hence
trivial (being semisimple). Otherwise, G.k/ contains a semisimple element (I, 10.18). The
smallest algebraic subgroup H of G such that H.k/ contains the element is commutative,
and therefore decomposes into Hs �Hu (I, 16.12). If all semisimple elements of G.k/ are
of finite order, then G is finite, and hence trivial (being connected). If G.k/ contains a
semisimple element of infinite order, then H ıs is a nontrivial torus, and so G is not of rank
0.

(b) One shows that G contains a solvable subgroup B such that G=B � P1. From this
one gets a nontrivial homomorphism G! Aut.P1/' PGL2. See Theorem 3.40 below or
Springer 1998, 7.3.2. 2

2i Centralizers and normalizers

Let H be a subgroup of an algebraic group G. Recall (I, �7f) that normalizer of H in G is
the algebraic subgroup N DNG.H/ of G such that, for any k-algebra R,

N.R/D fg 2G.R/ j g �H.R0/ �g�1 DH.R0/ for all R-algebras R0g;

and that the centralizer ofH inG is the algebraic subgroup C DCG.T / ofG such that, for
any k-algebra R,

C.R/D fg 2G.R/ j ghD hg for all h 2H.R0/ and all R-algebras R0g:

If H.k0/ is dense H for some field k0 � k, then

N.k/DG.k/\NG.k0/.H.k
0//

C.k/DG.k/\CG.k0/.H.k
0//:

This last applies when H is smooth, for example a torus, and k0 D ksep.

THEOREM 2.7 Let T be a torus in a reductive group G.

(a) The centralizer CG.T / of T in G is a reductive group; in particular, it is smooth and
connected.

(b) The identity component of the normalizer NG.T / of T in G is CG.T /; therefore,
NG.T /=CG.T / is a finite étale group.
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(c) The torus T is maximal if and only if T D CG.T /:

PROOF. (a) We defer the proof to the next section (and the next version of the notes; cf.
3.44).

(b) Certainly NG.T /ı �CG.T /ıDCG.T /. But NG.T /ı=CG.T / acts faithfully on T ,
and so is trivial by rigidity (I, 14.32). For any algebraic group H , the quotient H=H ı is a
finite étale group (almost by definition; see I, 13.17).

(c) Certainly, if CG.T / D T , then T is maximal because any torus containing T is
contained in CG.T /. Conversely, CG.T / is a reductive group containing T as a maximal
torus, and so Z.CG.T //ı is a torus (1.4) containing T and therefore equal to it. Hence
CG.T /=T is a semisimple group (1.4) of rank 0, and so is trivial (2.6). Thus CG.T / D
Z.CG.T //

ı D T . 2

The quotient W.G;T / D NG.T /=CG.T / is called the Weyl group of .G;T /. It is a
constant étale algebraic group5 when T is split, and so may be regarded simply as a finite
group.

2j Definition of the coroots

LEMMA 2.8 Let .G;T / be a split reductive group. The action of W.G;T / on X�.T /
stabilizes R.

PROOF. Take k D kal. Let s normalize T (and so represent an element of W ). Then s acts
on X�.T / (on the left) by

.s�/.t/D �.s�1ts/:

Let ˛ be a root. Then, for x 2 g˛ and t 2 T .k/,

t .sx/D s.s�1ts/x D s.˛.s�1ts/x/D ˛.s�1ts/sx;

and so T acts on sg˛ through the character s˛, which must therefore be a root. [This is at
least the third proof of this.] 2

PROPOSITION 2.9 Let .G;T / be a split reductive group, and let R � X def
D X�.T / be its

root system.

(a) For each ˛ 2R, there exists a unique subgroup U˛ of G isomorphic to Ga such that,
for any isomorphism u˛WGa! U˛,

t �u˛.a/ � t
�1
D u˛.˛.t/a/, all t 2 T .kal/, a 2G.kal/:

(b) For a root ˛ of .G;T /, let T˛ D Ker.˛/ı, and let G˛ be centralizer of T˛. Then
W.G˛;T / contains exactly one nontrivial element s˛, and there is a unique ˛_ 2
X�.T / such that

s˛.x/D x�hx;˛
_
i˛; for all x 2X�.T /: (168)

Moreover, h˛;˛_i D 2.
5That is, W.R/ is the same finite group for all integral domains R. Roughly speaking, the reason for this

is that W.k/ equals the Weyl group of the root datum, which doesn’t depend on the base field (or base ring).
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(c) For each root ˛ of .G;T /, G˛ is the affine subgroup of G generated by T , U˛, and
U�˛.

We prove this after giving an application and some examples. The group U˛ in (a) is
called the root group of ˛.

THEOREM 2.10 For any split reductive group .G;T /, the system

.X�.T /;R;X�.T /;R
_/

with R_ D f˛_ j ˛ 2 Rg and the map ˛ 7! ˛_WR! R_ determined by (168) is a root
datum.

PROOF. We noted in (2.9b) that (rd1) holds. The s˛ attached to ˛ lies in W.G˛;T / �
W.G;T /, and so stabilizes R by the lemma. Finally, all s˛ lie in the Weyl group W.G;T /,
and so they generate a finite group (in fact, the generate exactly W.G;T /; see 3.43). 2

EXAMPLE 2.11 Let G D SL2, and let ˛ be the root 2�. Then T˛ D 1 and G˛ D G. The
unique s ¤ 1 in W.G;T / is represented by 

0 1

�1 0

!
;

and the unique ˛_ for which (168) holds is �.

EXAMPLE 2.12 Let G D GLn, and let ˛ D ˛12 D �1��2. Then

T˛ D fdiag.x;x;x3; : : : ;xn/ j xxx3 : : :xn ¤ 1g

and G˛ consists of the invertible matrices of the form0BBBBBBB@

� � 0 0

� � 0 0

0 0 � 0

: : :
:::

0 0 0 � � � �

1CCCCCCCA
:

Clearly

n˛ D

0BBBBBBB@

0 1 0 0

1 0 0 0

0 0 1 0

: : :
:::

0 0 0 � � � 1

1CCCCCCCA
represents the unique nontrivial element s˛ of W.G˛;T /. It acts on T by

diag.x1;x2;x3; : : : ;xn/ 7�! diag.x2;x1;x3; : : : ;xn/:

For x Dm1�1C�� �Cmn�n,

s˛x Dm2�1Cm1�2Cm3�3C�� �Cmn�n

D x�hx;�1��2i.�1��2/:

Thus (168), p. 344, holds if and only if ˛_ is taken to be �1��2.
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SKETCH OF THE PROOF OF PROPOSITION 2.9.

The key point is that the derived group of G˛ is a semisimple group of rank one and T
is a maximal torus of G˛. Thus, we are essentially in the case of SL2 or PGL2, where
everything is obvious (see above). Note that the uniqueness of ˛_ follows from that of s˛.

For GLn, the coroot ˛_ij of ˛ij is

t 7! diag.1; : : : ;1;
i
t ;1; : : : ;1;

j

t�1;1; : : : ;1/:

Clearly h˛ij ;˛_ij i D ˛ij ı˛
_
ij D 2.

LEMMA 2.13 Let G˛ be the subgroup of G of semisimple rank 1 generated by T , U˛, and
U�˛, and let w˛ 2G˛ represent the nontrivial element of the Weyl group of .G˛;T /. Then
there is a unique ˛_ 2X_ such that

w˛�D ��h�;˛
_
i˛ all � 2X: (169)

PROOF. Let � 2 X D X�.T /. We first show that there exists a G˛-module V such that
V� ¤ 0. To see this, regard � as an element of O.T /, and let f be an element of O.G˛/
that restricts to it. Let V be any finite-dimensional subspace of O.G˛/ containing f and
stable under G˛ (I, �8i). For v 2 V ,

u˛.a/v D
X

i�0
aivi ; some vi 2 V; (170)

because u˛.a/ is a polynomial in a. If v 2 V for some  2 X , then vi 2 V Ci˛. This
is a simple calculation using (170) and the definition of U˛. We have that V� ¤ 0 and thatP
i2ZV�Ci˛ is invariant under T , U˛, and U�˛, and hence also under G˛ and w˛. Thus

w˛�D �C i˛ for some i 2 Z, and the map � 7! �i defines an ˛_ 2 X_ for which (169)
holds; and clearly ˛_ is unique. 2

It follows that h˛;˛_i D 2, either because w˛˛ D �˛ or because w2˛ D 1, both of
which hold because the semisimple rank of G˛ is 1. If we extend scalars Z!R and X_ is
identified with X via any w˛-invariant positive definite bilinear form, then ˛_ takes on the
familiar form .2=.˛;˛//˛ so that the lemma implies that important fact that 2.ˇ;˛/=.˛;˛/2
Z for any two roots ˛;ˇ.

2k Computing the centre

PROPOSITION 2.14 (a) Every maximal torus T in a reductive algebraic group G contains
the centre Z DZ.G/ of G.

(b) The kernel of AdWT ! GLg is Z.G/.

PROOF. (a) Clearly Z � CG.T /, but (see 2.7), CG.T /D T .
(b) In characteristic zero, the kernel of AdWG ! GLg is Z.G/ (II, 5.29), and so the

kernel of Ad jT is Z.G/\T DZ.G/. In general, Ker.Ad/=Z.G/ is a unipotent group (II,
4.3). Therefore, the image of Ker.Ad jT / in Ker.Ad/=Z.G/ is trivial, which implies that
Ker.Ad jT /�Z.G/. The reverse inclusion follows from (a). 2
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From the proposition,

Z.G/D Ker.Ad jT /D
\

˛2R
Ker.˛/:

We can use this to compute the centres of groups. For example,

Z.GLn/D
\

i¤j
Ker.�i ��j /D

( 
x1 0

:::
0 xn

! ˇ̌̌̌
ˇ x1 D x2 D �� � D xn ¤ 0

)
;

Z.SL2/D Ker.2�/D
˚�
x 0
0 x�1

�
j x2 D 1

	
D �2;

Z.PGL2/D Ker.�/D 1:

On applying X� to the exact sequence

0!Z.G/! T
t 7!.:::;˛.t/;:::/
����������!

Y
˛2R

Gm (171)

we get (I, 14.20) an exact sequenceM
˛2R

Z
.:::;m˛;:::/7!

P
m˛˛

�������������!X�.T /!X�.Z.G//! 0;

and so
X�.Z.G//DX�.T /=fsubgroup generated by Rg. (172)

For example,

X�.Z.GLn//' Zn=hei � ej j i ¤ j i
.a1;:::;an/ 7!

P
ai

�����������!
'

Z;

X�.Z.SL2//' Z=.2/;
X�.Z.PGL2//' Z=ZD 0:

2l Semisimple and toral root data

DEFINITION 2.15 A root datum is semisimple if R generates a subgroup of finite index in
X .

PROPOSITION 2.16 A split reductive group is semisimple if and only if its root datum is
semisimple.

PROOF. A reductive group is semisimple if and only if its centre is finite, and so this follows
from (172), p. 347. 2

DEFINITION 2.17 A root datum is toral if R is empty.

PROPOSITION 2.18 A split reductive group is a torus if and only if its root datum is toral.

PROOF. If the root datum is toral, then (172), p. 347, shows that Z.G/ D T . Hence DG
has rank 0, and so is trivial. It follows that G D T . Conversely, if G is a torus, the adjoint
representation is trivial and so gD g0. 2
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2m The main theorems

Let .G;T / be a split reductive group, with root datum 	.G;T /:

THEOREM 2.19 Let T 0 be a split maximal torus in G. Then T 0 is conjugate to T by an
element of G.k/.

PROOF. See 3.22, 3.23 below. (When k has characteristic zero and G is semisimple, this
was proved in III, 3.17.) 2

EXAMPLE 2.20 Let G D GLV , and let T be a split torus. A split torus is (by definition)
diagonalizable, i.e., there exists a basis for V such that T � Dn. Since T is maximal, it
equals Dn. This proves the theorem for GLV since any two bases are conjugate by an
element of GLV .k/.

It follows that the root datum attached to .G;T / depends only on G (up to isomor-
phism).

THEOREM 2.21 (EXISTENCE) Every reduced root datum arises from a split reductive group
.G;T /.

PROOF. See Section 6 below (or Springer 1998, 16.5). 2

A root datum is reduced if the only multiples of a root ˛ that can also be a root are ˛
and �˛.

THEOREM 2.22 (ISOMORPHISM) Every isomorphism 	.G;T /! 	.G0;T 0/ of root data
arises from an isomorphism .G;T /! .G0;T 0/.

PROOF. See Section 7 below Springer 1998, 16.3.2. 2

In fact, with the appropriate definitions, every isogeny of root data (or even epimor-
phism of root data) arises from and isogeny (or epimorphism) of split reductive groups
.G;T /! .G0;T 0/.

Later we shall define the notion of a base for a root datum. If bases are fixed for .G;T /
and .G0;T 0/, then ' can be chosen to send one base onto the other, and it is then unique up
to composition with a homomorphism inn.t/ such that t 2 T .kal/ and ˛.t/ 2 k for all ˛.

2n Examples

We now work out the root datum attached to each of the classical split semisimple groups.
In each case the strategy is the same. We work with a convenient form of the group G in
GLn. We first compute the weights of the split maximal torus of G on gln, and then check
that each nonzero weight occurs in g (in fact, with multiplicity 1). Then for each ˛ we find
a natural copy of SL2 (or PGL2) centralizing T˛, and use it to find the coroot ˛_.
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EXAMPLE (An): SLnC1.

Let G be SLnC1 and let T be the algebraic subgroup of diagonal matrices:

fdiag.t1; : : : ; tnC1/ j t1 � � � tnC1 D 1g:

Then

X�.T /D
M

Z�i
.
Z�;

(
diag.t1; : : : ; tnC1/

�i
7�! ti

�D
P
�i

X�.T /D f
P
ai�i j

P
ai D 0g; t

P
ai�i
7�! diag.ta1 ; : : : ; tan/; ai 2 Z;

with the obvious pairing h ; i. Write N�i for the class of �i inX�.T /. Then all the characters
N�i� N�j , i ¤ j , occur as roots, and their coroots are respectively �i��j , i ¤ j . This follows
easily from the calculation of the root datum of GLn.

EXAMPLE (Bn): SO2nC1 :

Consider the symmetric bilinear form � on k2nC1,

�.Ex; Ey/D 2x0y0Cx1ynC1CxnC1y1C�� �Cxny2nCx2nyn

Then SO2nC1
def
D SO.�/ consists of the 2nC 1� 2nC 1 matrices A of determinant 1 such

that
�.AEx;A Ey/D �.Ex; Ey/;

i.e., such that

At

0B@1 0 0

0 0 I

0 I 0

1CAAD
0B@1 0 0

0 0 I

0 I 0

1CA :
The Lie algebra of SO2nC1 consists of the 2nC1�2nC1 matrices A of trace 0 such that

�.AEx; Ey/D��.Ex;A Ey/;

(II, 1.22), i.e., such that

At

0B@1 0 0

0 0 I

0 I 0

1CAD�
0B@1 0 0

0 0 I

0 I 0

1CAA:
Take T to be the maximal torus of diagonal matrices

diag.1; t1; : : : ; tn; t�11 ; : : : ; t�1n /

Then

X�.T /D
M

1�i�n
Z�i ; diag.1; t1; : : : ; tn; t�11 ; : : : ; t�1n /

�i
7�! ti

X�.T /D
M

1�i�n
Z�i ; t

�i
7�! diag.1; : : : ;

iC1
t ; : : : ;1/

with the obvious pairing h ; i. All the characters

˙�i ; ˙�i ˙�j ; i ¤ j

occur as roots, and their coroots are, respectively,

˙2�i ; ˙�i ˙�j ; i ¤ j:
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EXAMPLE (Cn): Sp2n.

Consider the skew symmetric bilinear form k2n�k2n! k;

�.Ex; Ey/D x1ynC1�xnC1y1C�� �Cxny2n�x2nyn:

Then Sp2n consists of the 2n�2n matrices A such that

�.AEx;A Ey/D �.Ex; Ey/;

i.e., such that

At

 
0 I

�I 0

!
AD

 
0 I

�I 0

!
:

The Lie algebra of Spn consists of the 2n�2n matrices A such that

�.AEx; Ey/D��.Ex;A Ey/;

i.e., such that

At

 
0 I

�I 0

!
D�

 
0 I

�I 0

!
A:

Take T to be the maximal torus of diagonal matrices

diag.t1; : : : ; tn; t�11 ; : : : ; t�1n /:

Then

X�.T /D
M

1�i�n
Z�i ; diag.t1; : : : ; tn; t�11 ; : : : ; t�1n /

�i
7�! ti

X�.T /D
M

1�i�n
Z�i ; t

�i
7�! diag.1; : : : ;

i
t ; : : : ;1/

with the obvious pairing h ; i. All the characters

˙2�i ; ˙�i ˙�j ; i ¤ j

occur as roots, and their coroots are, respectively,

˙�i ; ˙�i ˙�j ; i ¤ j:

EXAMPLE (Dn): SO2n.

Consider the symmetric bilinear form k2n�k2n! k;

�.Ex; Ey/D x1ynC1CxnC1y1C�� �Cxny2nCx2ny2n:

Then SOn D SO.�/ consists of the n�n matrices A of determinant 1 such that

�.AEx;A Ey/D �.Ex; Ey/;

i.e., such that

At

 
0 I

I 0

!
AD

 
0 I

I 0

!
:
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The Lie algebra of SOn consists of the n�n matrices A of trace 0 such that

�.AEx; Ey/D��.Ex;A Ey/;

i.e., such that

At

 
0 I

I 0

!
D�

 
0 I

I 0

!
A:

When we write the matrix as

 
A B

C D

!
, then this last condition becomes

ACDt D 0; C CC t D 0; BCB t D 0:

Take T to be the maximal torus of matrices

diag.t1; : : : ; tn; t�11 ; : : : ; t�1n /

and let �i , 1� i � r , be the character

diag.t1; : : : ; tn; t�11 ; : : : ; t�1n / 7! ti :

All the characters
˙�i ˙�j ; i ¤ j

occur, and their coroots are, respectively,

˙�i ˙�j ; i ¤ j:

REMARK 2.23 The subscript on An, Bn, Cn, Dn denotes the rank of the group, i.e., the
dimension of a maximal torus.

3 Borel fixed point theorem and applications

3a Brief review of algebraic geometry

We need the notion of an algebraic variety (not necessarily affine). To keep things simple,
I assume that k is algebraically closed, and I use the conventions of my notes AG. Thus, an
algebraic variety over k is topological space X together with a sheaf OX such that OX .U /
is a k-algebra of functions U ! k; it is required that X admits a finite open covering
X D

S
Ui such that, for each i , .Ui ;OX jUi / is isomorphic to SpmAi for some finitely

generated reduced k-algebra Ai ; finally, X is required to be separated.

3.1 A projective variety is a variety that can be realized as a closed subvariety of some
projective space Pn. In particular, any closed subvariety of a projective variety is projective.

3.2 Let V be a vector space of dimension n over k.
(a) The set P.V / of one-dimensional subspaces of V is in a natural way a projective

variety: in fact the choice of a basis for V defines a bijection P.V /$ Pn�1.
(b) Let Gd .V / be the set of d -dimensional subspaces of V . When we fix a basis for V ,

the choice of a basis for S determines a d�nmatrixA.S/whose rows are the coordinates of
the basis elements. Changing the basis for S multipliesA.S/ on the left by an invertible d �
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d matrix. Thus, the family of d �d minors of A.S/ is determined by S up to multiplication
by a nonzero constant, and so defines a point P.S/ of P.

n
d/�1: One shows that S 7! P.S/

is a bijection of Gd .V / onto a closed subset of P.
n
d/�1 (called a Grassmann variety; AG

6.26). For a d -dimensional subspace S of V , the tangent space

TS .Gd .V //' Hom.S;V=S/

(ibid. 6.29).
(c) For any sequence of integers n > dr > dr�1 > � � �> d1 > 0 the set of flags

Vr � �� � � V1

with Vi a subspace of V of dimension di has a natural structure of a projective algebraic
variety (called a flag variety; AG p. 131).

3.3 An algebraic variety X is said to be complete if, for all algebraic varieties T , the
projection map X �T ! T is closed (AG 7.1). Every projective variety is complete (AG
7.7). IfX is complete, then its image under any regular mapX! Y is closed and complete
(AG 7.3). An affine variety is complete if and only if it has dimension zero, and so is a finite
set of points (AG 7.5).

3.4 A regular map f WX! S is proper if, for all regular maps T ! S , the mapX�S T !
T is closed. If f WX ! S is proper, then, for any complete subvariety Z of X , the image
f Z of Z in S is complete (AG 8.26); moreover, X is complete if S is complete (AG 8.24).
Finite maps are proper because they are closed (AG 8.7) and the base change of a finite map
is finite.

3.5 A regular map 'WY ! X is said to be dominant if its image is dense in X . If '
is dominant, then the map f 7! ' ı f WOX .X/! OY .Y / is injective, and so, when X
and Y are irreducible, ' defines a homomorphism k.X/! k.Y / of the fields of rational
functions. A dominant map Y ! X of irreducible varieties is said to be separable when
k.Y / is separably generated over k.X/, i.e., it is a finite separable extension of a purely
transcendental extension of k.X/. A regular map 'WY ! X of irreducible varieties is
dominant and separable if and only if there exists a nonsingular point y 2 Y such x D '.y/
is nonsingular and the map d'WTy.Y /! Tx.X/ is surjective (in which case, the set of such
points y is open.

3.6 A bijective regular map of algebraic varieties need not be an isomorphism. For ex-
ample, x 7! xpWA1! A1 in characteristic p corresponds to the map of k-algebras T 7!
T pWkŒT �! kŒT �, which is not an isomorphism, and

t 7! .t2; t3/WA1! fy2 D x3g � A2

corresponds to the map kŒt2; t3� ,! kŒt �, which is not an isomorphism. In the first example,
the map is not separable, and in the second the curve y2D x3 is not normal. Every separable
bijective map 'WY ! X with X normal is an isomorphism (AG 10.12 shows that ' is
birational, and AG 8.19 then shows that it is an isomorphism).
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3.7 The set of nonsingular points of a variety is dense and open (AG 5.18). Therefore, an
algebraic variety on which an algebraic group acts transitively by regular maps is nonsin-
gular (cf. AG 5.20). As a nonsingular point is normal (i.e., OX;x is integrally closed; see
CA 17.5), the same statements hold with “nonsingular” replaced by “normal”.6

3b Quotients

In Chapter I, we defined the quotient of an algebraic group G by a normal algebraic sub-
group N . Now we need to consider the quotient of G by an arbitrary algebraic subgroup
H .

We continue with the conventions of the last subsection: k is algebraically closed, and
we consider only reduced (hence smooth) algebraic groups.

3.8 Let G be a smooth algebraic group. An action of G on a variety X is a regular map
G �X ! X such that the underlying map of sets is an action of the abstract group G on
the set X . Every orbit for the action is open in its closure, and every orbit of minimum
dimension is closed. In particular, each orbit is a subvariety of X and there exist closed
orbits. The isotropy group Go at a point o of X is the pre-image of o under the regular map
g 7! goWG!X , and so is an affine algebraic subgroup of G). (AG 10.6.)

3.9 Let H be a smooth subgroup of the smooth algebraic group G. A quotient of G by
H is an algebraic variety X together with a transitive action G�X ! X of G and a point
o fixed by H having the following universal property: for any variety X 0 with action of G
and point o0 of X 0 fixed by H , the regular map

.g;o0/ 7! go0WG�X !X 0

factors through X (as a regular map). Clearly, a quotient is unique (up to a unique isomor-
phism) if it exists.

3.10 LetH be a smooth subgroup of a connected smooth algebraic groupG, and consider
a transitive action G �X ! X of G on a variety X . Suppose that there exists a point o in
X such that the isotropy group Go at o is H . The pair .X;o/ is a quotient of G by H if and
only if the map

g 7! g �oWG
'
�!X

is separable. The fibres of the map ' are the conjugates of H . In particular, they all have
dimension dimH , and so

dimX D dimG�dimH

(AG 10.9). The map
.d'/eWTeG! TeX

contains TeH in its kernel. As dimTeG D dimG and dimTeH D dimH (because G and
H are smooth), we see that .d'/e is surjective if and only if its kernel is exactly TeH .
Therefore .X;o/ is a quotient of G by H if Ker..d'/e D Lie.H/ (by (3.5) and (3.10)).

6The proof that nonsingular points are normal is quite difficult. It is possible to avoid it by showing directly
that the set of normal points in an algebraic variety is open and dense (Springer 1998, 5.2.11).
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PROPOSITION 3.11 A quotient exists for every smooth subgroup H of a smooth algebraic
group G. It is a quasi-projective algebraic variety, and the isotropy group of the distin-
guished point is H .

PROOF. As in the case of a normal subgroup, a key tool in the proof is Chevalley’s theorem
(I, 8.57): there exists a representation G! GLV and a one-dimensional subspace L in V
such that H is the stabilizer of L. The action of G on V defines a action

G�P.V /! P.V /

of the algebraic group G on the algebraic variety P.V /. Let X be the orbit of L in P.V /,
i.e.,X DG �L. ThenX is a subvariety of P.V /, and so it is quasi-projective (because P.V /)
is projective). Let ' be the map g 7! gLWG! X . It follows from II, 2.15, that the kernel
of .d'/e is h, and so the map is separable. This implies that X is a quotient of G by H . 2

We let G=H denote the quotient of G by H . Because H is the isotropy group at the
distinguished point,

.G=H/.k/DG.k/=H.k/:

3.12 In the proof of the proposition, we showed that, for any representation .V;r/ of G
and line L such that H is the stabilizer of L, the orbit of L in P.V / is a quotient of G by
H .

3.13 Let G D GL2 and H D T2 D f.� �0 �/g. Then G acts on k2, and H is the subgroup
fixing the line LD f.�0 /g. The proof of the proposition shows that G=H is isomorphic to
the orbit of L, but G acts transitively on the set of lines, and so G=H ' P1.

3.14 When H is normal in G, this construction of G=H agrees with that in (I 7.63). In
particular, when H is normal, G=H is affine.

3.15 LetG�X!X be a transitive action of a smooth algebraicG on a varietyX , and let
o be a point of X . Let H be the isotropy group at o. The universal property of the quotient
shows that the map g 7! go factors through G=H . The resulting map G=H ! X is finite
and purely inseparable.

ASIDE 3.16 Quotients exist under much more general hypotheses. Let G be an affine algebraic
group scheme over an arbitrary field k, and let H be an affine subgroup scheme. Then then the
associated sheaf of the presheaf R G.R/=H.R/ is represented by an algebraic schemeG=H over
k. See DG, III, �3, 5.4, p. 341.

For any homomorphism of k-algebras R! R0, the map G.R/=H.R/! G.R0/=H.R0/ is in-
jective. Therefore, the statement means that there exists a scheme G=H of finite type over k and a
morphism � WG!G=H such that,

˘ for all k-algebras R, the nonempty fibres of the map �.R/WG.R/! .G=H/.R/ are cosets of
H.R/;

˘ for all k-algebras R and x 2 .G=H/.R/, there exists a finitely generated faithfully flat R-
algebra R0 and a y 2G.R0/ lifting the image of x in .G=H/.R0/.
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3c The Borel fixed point theorem

THEOREM 3.17 When a smooth connected solvable algebraic group acts on an algebraic
variety, no orbit contains a complete subvariety of dimension > 0.

PROOF. Let G be a connected solvable smooth algebraic group. If the statement fails for
G acting on X , then it fails for Gkal acting on Xkal , and so we may suppose that k is
algebraically closed. We use induction on the dimension of G.

It suffices to prove the statement for G acting on G=H where H is a smooth connected
subgroup of G (because any orbit of G acting on a variety has a finite covering by such a
variety G=H (3.15), and the inverse image of a complete subvariety under a finite map is
complete (3.4)).

Fix a smooth connected subgroup H of G with H ¤ G. Either H maps onto G=DG
or it doesn’t. In the first case, DG acts transitively on G=H , and the statement follows by
induction (using I, 16.21). In the second case, we let N be the subgroup of G containing
H corresponding to the image of H in G=DG (see I, 9.14); then N is normal in G and
G=N ' Im.H/=DG.7 Consider the quotient map � WG=H ! G=N . Let Z be a complete
subvariety of G=H , which we may assume to be connected. Because N is normal, G=N
is affine (see 3.14), and so the image of Z in G=N is a point (see 3.3). Therefore Z is
contained in one of the fibres of the map � , but these are all isomorphic to N=H , and so we
can conclude by induction again. 2

THEOREM 3.18 (BOREL FIXED POINT THEOREM) Any smooth connected solvable alge-
braic group acting on a complete variety over an algebraically closed field has a fixed point.

PROOF. According to (3.8), the action has a closed orbit, which is complete, and hence is
a finite set of points (Theorem 3.17). As the group is connected, so is the orbit. 2

REMARK 3.19 It is possible to recover the Lie-Kolchin theorem (I, 16.31) from the Borel
fixed point theorem. Let G be a smooth connected solvable subgroup of GLV , and let
X be the collection of maximal flags in V (i.e., the flags corresponding to the sequence
dimV D n > n� 1 > � � � > 1 > 0). As noted in (3.2), this has a natural structure of a
projective variety, and G acts on it by a regular map

g;F 7! gF WG�X !X

where
g.Vn � Vn�1 � �� �/D gVn � gVn�1 � �� � :

According to the theorem, there is a fixed point, i.e., a maximal flag such that gF D F for
all g 2G.k/. Relative to a basis e1; : : : ; en adapted to the flag,8 G � Tn.

NOTES The improvement, Theorem 3.17 of Borel’s fixed point theorem, is from Allcock 2009.

7The group N is connected by I, 13.21, and smooth by I, 17.1.
8That is, such that e1; : : : ; ei is a basis of Vi .
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3d Borel subgroups

Throughout this subsection, G is a reductive group.

DEFINITION 3.20 A Borel subgroup of G is a smooth subgroup B such that Bkal is a
maximal smooth connected solvable subgroup of Gkal .

For example, T2
def
D f.� �0 �/g is a Borel subgroup of GL2 (it is certainly connected and

solvable, and the only connected subgroup properly containing it is GL2, which isn’t solv-
able).

THEOREM 3.21 Let G be a reductive group over k.

˘ If B is a Borel subgroup of G, then G=B is projective.
˘ Any two Borel subgroups of G are conjugate by an element of kal.

PROOF. We may assume k D kal.
We first prove that G=B is projective when B is a Borel subgroup of largest possible

dimension. Apply the theorem of Chevalley (I, 8.57) to obtain a representation G! GLV
and a one-dimensional subspace L such that B is the subgroup fixing L. Then B acts on
V=L, and the Lie-Kolchin theorem gives us a maximal flag in V=L stabilized by B . On
pulling this back to V , we get a maximal flag,

F WV D Vn � Vn�1 � �� � � V1 D L� 0

in V . Not only does B stabilize F , but (because of our choice of V1), B is the isotropy
group at F , and so the map G=B ! B �F is finite (see 3.15). This shows that, when we
let G act on the variety of maximal flags, G �F is the orbit of smallest dimension, because
for any other maximal flag F 0, the stabilizer H of F 0 is a solvable algebraic subgroup of
dimension at most that of B , and so

dimG �F 0 D dimG�dimH � dimG�dimB D dimG �F:

Therefore G �F is closed (3.8), and hence projective variety of maximal flags in V , G �F
is projective. The map G=B ! G �F is finite, and so G=B is complete (see 3.4). As it is
quasi-projective, this implies that it is projective.

To complete the proof of the theorems, it remains to show that for any Borel subgroups
B and B 0 with B of largest possible dimension, B 0 � gBg�1 for some g 2 G.k/ (because
the maximality of B 0 will then imply that B 0 D gBg�1). Let B 0 act on G=B by b0;gB 7!
b0gB . The Borel fixed point theorem shows that there is a fixed point, i.e., for some g 2
G.k/, B 0gB � gB . Then B 0g � gB , and so B 0 � gBg�1 as required. 2

THEOREM 3.22 Let G be a smooth connected algebraic group. All maximal tori in G are
conjugate by an element of G.kal/.

PROOF. Let T and T 0 be maximal tori. Being smooth, connected, and solvable, they are
contained in Borel subgroups, say T � B , T 0 � B 0. For some g 2 G, gB 0g�1 D B , and
so gT 0g�1 � B . Now T and gT 0g�1 are maximal tori in the B , and we know that the
theorem holds for connected solvable groups (I, 16.35). 2
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REMARK 3.23 We mention two stronger results.

(a) (Grothendieck): Let G be a smooth affine group over a separably closed field k.
Then any two maximal tori in G are conjugate by an element of G.k/. In Conrad
et al. 2010, Appendix A, 2.10, p. 401, it is explained how to deduce this from the
similar statement with k algebraically closed.

(b) (Borel-Tits): Let G be a smooth affine group over a field k. Then any two maximal
split tori in G are conjugate by an element of G.k/. In Conrad et al. 2010, Appendix
C, 2.3, p. 506, it is explained how to deduce this from the statement that maximal tori
in solvable groups are G.k/-conjugate.

THEOREM 3.24 For any Borel subgroup B of G, G D
S
g2G.kal/gBg

�1.

SKETCH OF PROOF. Show that every element x of G is contained in a connected solvable
subgroup of G (sometimes the identity component of the closure of the group generated by
x is such a group), and hence in a Borel subgroup, which is conjugate to B (3.21). 2

THEOREM 3.25 For any torus T in G, CG.T / is connected.

PROOF. We may assume that k is algebraically closed. Let x 2 CG.T /.k/, and let B be
a Borel subgroup of G. Then x is contained in a connected solvable subgroup of G (see
3.24), and so the Borel fixed point theorem shows that the subset X of G=B of cosets gB
such that xgB D gB is nonempty. It is also closed, being the subset where the regular maps
gB 7! xgB and gB 7! gB agree. As T commutes with x, it stabilizes X , and another
application of the Borel fixed point theorem shows that it has a fixed point in X . In other
words, there exists a g 2G such that

xgB D gB

TgB D gB:

Thus, both x and T lie in gBg�1 and we know that the theorem holds for connected solvable
groups (I, 16.36). Therefore x 2 CG.T /ı. 2

3e Parabolic subgroups

In this subsection, assume that k is algebraically closed.

DEFINITION 3.26 An algebraic subgroup P of G is parabolic if G=P is projective.

THEOREM 3.27 Let G be a connected algebraic group. An algebraic subgroup P of G is
parabolic if and only if it contains a Borel subgroup.

PROOF. H) : Let B be a Borel subgroup of G. According to the Borel fixed point
theorem, the action of B on G=P has a fixed point, i.e., there exists a g 2 G such that
BgP D gP . Then Bg � gP and g�1Bg � P .
(H : Suppose P contains the Borel subgroup B . Then there is quotient map G=B!

G=P . Recall thatG=P is quasi-projective, i.e., can be realized as a locally closed subvariety
of PN for some N . Because G=B is projective, the composite G=B ! G=P ! PN has
closed image (see 3.4), but this image is G=P , which is therefore projective. 2
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COROLLARY 3.28 Any connected solvable parabolic algebraic subgroup of a connected
algebraic group is a Borel subgroup.

PROOF. Because it is parabolic it contains a Borel subgroup, which, being maximal among
connected solvable groups, must equal it. 2

3f Examples of Borel and parabolic subgroups

EXAMPLE: GLV

Let G D GLV with V of dimension n. Let F be a maximal flag

F WVn�1 � �� � � V1

and let G.F / be the stabilizer of F , so

G.F /.R/D fg 2 GL.V ˝R/ j g .Vi ˝R/� Vi ˝R for all ig:

ThenG.F / is connected and solvable (because the choice of a basis adapted to F defines an
isomorphismG.F /!Tn), and GLV =G.F / is projective (because GL.V / acts transitively
on the space of all maximal flags in V ). Therefore, G.F / is a Borel subgroup (3.28). For
g 2 GL.V /,

G.gF /D g �G.F / �g�1:

Since all Borel subgroups are conjugate, we see that the Borel subgroups of GLV are pre-
cisely the groups of the form G.F / with F a maximal flag.

Now consider G.F / with F a (not necessarily maximal) flag. Clearly F can be re-
fined to a maximal flag F 0, and G.F / contains the Borel subgroup G.F 0/. Therefore it is
parabolic. Later we’ll see that all parabolic subgroups of GLV are of this form.

EXAMPLE: SO2n

Let V be a vector space of dimension 2n, and let � be a nondegenerate symmetric bilinear
form on V with Witt index n. By a totally isotropic flag we mean a flag � � � �Vi �Vi�1� �� �
such that each Vi is totally isotropic. We say that such a flag is maximal if it has the
maximum length n.

Let
F WVn � Vn�1 � �� � � V1

be such a flag, and choose a basis e1; : : : ; en for Vn such that Vi D he1; : : : ; ei i. Then
he2; : : : ; eni

? contains Vn and has dimension9 nC 1, and so it contains an x such that
he1;xi¤ 0. Scale x so that he1;xiD 1, and define enC1D x� 12�.x;x/e1. Then �.enC1; enC1/D
0 and �.e1; enC1/D 1. Continuing in this fashion, we obtain a basis e1; : : : ; en; enC1; : : : ; e2n

for which the matrix of � is

 
0 I

I 0

!
.

9Recall that in a nondegenerate quadratic space .V;�/,

dimW CdimW ? D dimV:
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Now let F 0 be a second such flag, and choose a similar basis e01; : : : ; e
0
n for it. Then the

linear map ei 7! e0i is orthogonal, and maps F onto F 0. Thus O.�/ acts transitively on the
set X of maximal totally isotropic flags of V . One shows that X is closed (for the Zariski
topology) in the flag variety consisting of all maximal flags Vn � �� � � V1, and is therefore
a projective variety. It may fall into two connected components which are the orbits of
SO.�/.10

Let G D SO.�/. The stabilizer G.F / of any totally isotropic flag is a parabolic sub-
group, and one shows as in the preceding case that the Borel subgroups are exactly the
stabilizers of maximal totally isotropic flags.

EXAMPLE: Sp2n
Again the stabilizers of totally isotropic flags are parabolic subgroups, and the Borel sub-
groups are exactly the stabilizers of maximal totally isotropic flags.

EXAMPLE: SO2nC1

Same as the last two cases.

EXERCISE 3-1 Write out a proof that the Borel subgroups of SO2n, Sp2n, and SO2nC1 are
those indicated above.

3g Algebraic groups of rank one

Throughout this section, we assume that k is algebraically closed (for the present).

PRELIMINARIES

Let G be a reductive algebraic group, and let B be a Borel subgroup of G. The following
are consequences of the completeness of the flag variety G=B .

3.29 All Borel subgroups, and all maximal tori, are conjugate (see 3.21; in fact, for any
maximal torus T , NG.T / acts transitively on the Borel subgroups containing T ).

3.30 The group G is solvable if one of its Borel subgroups is commutative.

3.31 The connected centralizer CG.T /ı of any maximal torus T lies in every Borel sub-
group containing T .

3.32 The normalizer NG.B/ of a Borel subgroup B contains B as a subgroup of finite
index (and therefore is equal to its own normalizer).

3.33 The centralizer of a torus T in G has dimension equal dimgT .

10Let .V;�/ be a hyperbolic plane with its standard basis e1; e2. Then the flags

F1W he1i

F2W he2i

fall into different SO.�/ orbits.
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According to (II, 2.26,
Lie.CG.T //D Lie.G/T :

As CG.T / is smooth (see 2.7),

dimCG.T /D dim.Lie.CG.T //

(see II, 2.2).

PROPOSITION 3.34 Let .V;r/ be a representation of a torus T . In any closed subvariety of
dimension d in P.V / stable under T , there are at least d C1 points fixed by T .

PROOF. (Borel 1991, IV, 13.5). Let Y be a closed subvariety of P.V / of dimension d . As
T is connected, it leaves stable each irreducible component of Y , and so we may suppose
that Y is irreducible. We use induction on the dimension of Y . If dimY D 0, the statement
is obvious.

Let �1; : : : ;�n be the distinct characters of T on V . There exists a � 2X�.T / such that
the integers h�i ;�i are distinct. Now �.Gm/ and T have the same eigenvectors in V , and
hence the same fixed points, and so we may suppose that T DGm.

If dimY T > 0, then Y T is infinite, so we may assume that this not so. The intersection
of the hyperplanes containing Y (i.e., the smallest affine space containing Y ) is stable under
T , and so we may suppose that no hyperplane in P.V / contains Y .

Choose a basis fe1; : : : ; eng of eigenvectors for Gm, so �.t/ei D tmi ei for somemi 2 Z
and t 2 Gm.k/. We may suppose that m1 � � � � � mn. Since Y is not contained in a
hyperplane, there exists a v 2 V such that hvi 2 Y and

v D a1e1C�� �Canen; ai 2 k;

with a1¤ 0. The map t 7! �.t/vWGm! P.V / extends to A1 — let �.0/v denote the image
of 0. Then h�.0/vi lies in Y and is fixed by Gm. Moreover, it doesn’t lie in the intersection
of Y with the hyperplane in P.V / defined by the condition a1 D 0. This intersection has
dimension at most d � 1 (AG 9.18) and is stable under Gm and so, by induction, it has at
least d fixed points. Together with h�.0/vi, this gives Gm at least dC1 fixed points in Y .2

COROLLARY 3.35 Let P be a parabolic subgroup of a smooth connected algebraic group
G, and let T be a torus in G. Then T fixes at least 1CdimG=P points of G=P .

PROOF. There exists a representation .V;r/ ofG and an o2P.V / such g 7! goWG!P.V /
defines an isomorphism ofG=P onto the orbitG �o (see 3.12). We can apply the proposition
with Y DG �o'G=P . 2

PRELIMINARIES ON SOLVABLE GROUPS

Let G be a smooth connected algebraic group. Let �WGm! G be a cocharacter of G, and
for g 2G.k/, consider the regular map

t 7! �.t/ �g ��.t/�1WGm!G:
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We let P.�/ denote subgroup of G.k/ consisting of those g for which the map extends to
A1 D Gm[f0g. For g 2 P.�/, limt!0�.t/ �g ��.t/�1 denote the value of the extended
map at t D 0. We let

U.�/D fg 2 P.�/ j lim
t!0

�.t/ �g ��.t/�1 D 1g:

Both P.�/ and U.�/ are closed subgroups of G.k/, and so may be regarded as smooth
algebraic subgroups of G (cf. Springer 1998, 13.4).

PROPOSITION 3.36 The subgroupGC is unipotent, and every weight of Gm on Lie.U.�//
is a strictly positive integer. If G is smooth, connected, and solvable, then Lie.U.�// con-
tains all the strictly positive weight spaces for Gm on Lie.G/.

PROOF. Choose a faithful representation .V;r/ of G. There exists a basis for V such that
r.�.Gm//�Dn, say �ır.t/D diag.tm1 ; : : : ; tmn/,m1 �m2 � � � � �mn. Then U.�/�Un,
and the first statement is obvious.

Now assume that G is smooth, connected, and solvable. Then there is a unique con-
nected normal unipotent subgroup Gu of G such that G=Gu is a torus (I, 16.33). We use
induction on dimGu. When dimGu D 0, G is a torus, and there are no nonzero weight
spaces.

Thus, we may assume that dimGu > 0. Then there exists a surjective homomorphism
� WGu!Ga, and

�.�.t/ �g ��.t/�1/D tn ��.g/; g 2Gu.k/; t 2Gm.k/;

for some n 2 Z.
If n� 0, then t 7! �.�.t/ �g ��.t/�1/WGm!Ga doesn’t extend to A1 unless �.g/D 0.

Hence U.�/� Ker.�/, and we can apply induction.
If n > 0, then one shows that �.U.�// D Ga, and we can again apply induction to

Ker.�/. See Allcock 2009, Pptn 1. 2

COROLLARY 3.37 If G is connected, smooth, and solvable, then G is generated its sub-
groups U.�/, CG.�.Gm//ı, and U.��/.

PROOF. Their Lie algebras span g. 2

ALGEBRAIC GROUPS OF RANK ONE

Let G be smooth connected algebraic group of rank 1, and assume that G is not solvable.
Let T be a maximal torus in G, and fix an isomorphism �WGm! T . Call a Borel subgroup
positive if it contains U.�/ and negative if it contains U.��/.

LEMMA 3.38 With the above assumptions:

(a) T lies in at least two Borel subgroups, one positive and one negative.
(b) If B (resp. B 0) is a positive (resp. negative) Borel subgroup containing T , then every

Borel subgroup containing T lies in the subgroup generated by B and B 0.
(c) No Borel subgroup containing T is both positive and negative.
(d) The normalizer of T in G contains an element acting on T as t 7! t�1.
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PROOF. (a) The subgroup U.�/ is connected, unipotent, and normalized by T . Therefore
T U.�/ lies in a Borel subgroup, which is positive (by definition). A similar argument
applies to U.��/.

(b) Apply Corollary 3.37.
(c) Otherwise (b) would imply that every Borel subgroup is contained in a single Borel

subgroup, which contradicts (a).
(d) The normalizer NG.T / acts transitively on the Borel subgroups containing T (see

3.29). Any element taking a negative Borel subgroup to a positive Borel subgroup acts as
t 7! t�1 on T . 2

LEMMA 3.39 Each maximal torus of G lies in exactly two Borel subgroups, one positive
and one negative.

PROOF. Let T be a maximal torus, and choose an identification of it with Gm. We use
induction on the dimension of a Borel subgroup B . If dimB D 1, then it is commutative,
and so G is solvable (3.30), contradicting the hypothesis.

We next consider the case dimB D 2. We already know that T lies in a positive and
in a negative Borel subgroup, and we have to show that any two positive Borel subgroups
coincide. If not, their unipotent radicals would be distinct subgroups of U.�/, and hence
would generate a unipotent subgroup of dimension > 1, contradicting dimBu D 1.

Now suppose that dimB � 3. We may suppose that B � T and is positive. Consider
the action of B on G=N where N D NG.B/. Because the only Borel subgroup that B
normalizes is itself, B has a unique fixed point in G=N . Let O be an orbit of B in G=N of
minimal dimension > 0. The closure of O in G=N is a union of orbits of lower dimension,
and so O is either a projective variety or a projective variety with one point omitted. This
forces O to be a curve, because otherwise it would contain a complete curve, in contradic-
tion to Theorem 3.17. Therefore, there exists a Borel subgroup B 0 such that B \NG.B 0/
has codimension 1 in B .

Thus H def
D .B \B 0/ı has codimension 1 in each of B and B 0. Either H D Bu D B 0u

or it contains a torus. In the first case, hB;B 0i normalizes H , and a Borel subgroup in
hB;B 0i=H has no unipotent part, and so hB;B 0i is solvable, which is impossible.

Therefore H contains a torus. Conclude that B and B 0 are the only Borel subgroups
of hB;B 0i containing T , and one is positive and one negative. Then Lemma 3.38(d) shows
that B and B 0 are interchanged by an element ofNhB;B 0i.T / that acts a t 7! t�1 on T . This
implies that B 0 is negative as a Borel subgroup of G. Finally Lemma 3.38(b) implies that
every Borel subgroup of G containing T lies in hB;B 0i, hence equals B or B 0 2

THEOREM 3.40 Let G be a connected smooth algebraic group of rank 1. Either G is
solvable or there exists an isogeny G=RuG! PGL2.

PROOF. Let T be a maximal torus, let B be a Borel subgroup of G, and let N D NG.B/.
Since N is its own normalizer (3.32), it fixes only one point in B=N , and so the stabilizers
of distinct points of G=N are the normalizers of distinct Borel subgroups. The fixed points
of T in G=N correspond to the Borel subgroups that T normalizes, and hence contain T .
Lemma 3.39 shows that T has exactly 2 fixed points in G=N . As G is nonsolvable, G=B
(hence also G=N ) has dimension � 1. In fact, G=N has dimension 1, because otherwise
Corollary 3.33b would show that T has more than 2 fixed points. Therefore G=N is a
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projective curve. Standard arguments show that it must be isomorphic to P1 (tba; see Borel
1991, 10.7; Humphreys 1975, p. 155). Choose an isomorphism G=N ' P1. This gives
nontrivial homomorphism G! Aut.P1/, and Aut.P1/' PGL2.k/ (AG 6.22). 2

3h Applications

Let G be a connected algebraic group, and let T be maximal torus in G. Let W be the
subgroup of NG.T /=CG.T / generated by reflections.

THEOREM 3.41 (Bruhat decomposition). For any Borel subgroup B of G, B D BWB:

PROOF. Springer 1998, 8.3.8. 2

THEOREM 3.42 (Normalizer theorem). For any Borel subgroup B of G, NG.B/D B .

PROOF. This follows from the Bruhat decomposition and the simple transitivity of W on
the Weyl chambers. 2

COROLLARY 3.43 W DNG.T /=CG.T /.

THEOREM 3.44 (Connectedness of torus centralizers). For any torus T in G, CG.T / is
connected.

PROOF. This can be deduced from the Bruhat decomposition and a standard fact about
reflection groups: the pointwise stabilizer of a linear subspace is generated by the reflections
that fix it pointwise. 2

ASIDE 3.45 Our proof of Theorem 3.40 follows Allcock 2009. Unlike the standard proofs (e.g.,
Humphreys 1975, �25), it avoids using the normalizer theorem (every Borel subgroup of a connected
group is its own normalizer).

4 Parabolic subgroups and roots

Throughout this section, k is algebraically closed of characteristic zero.

NOTES This needs to be rewritten for split reductive groups over arbitrary fields.

Recall (I, 14.15) that for a representation T ! GLV of a (split) torus T ,

V D
M

�2X�.T /
V�

where V� is the subspace on which T acts through the character �. The � for which V�¤ 0
are called the weights of T in V , and the corresponding V� are called the weight spaces.
Clearly

Ker.T ! GLV /D
\

� a weight
Ker.�/:

Therefore T acts faithfully on V if and only if the weights generate X�.T / (by I, 14.12).
We wish to understand the Borel and parabolic subgroups in terms of root systems. We

first state a weak result.
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THEOREM 4.1 Let G be a connected reductive group, T a maximal torus in G, and .V;R/
the corresponding root system (so V DR˝QQ whereQ is the Z-module generated by R).

(a) The Borel subgroups of G containing T are in one-to-one correspondence with the
bases of R.

(b) Let B be the Borel subgroup of G corresponding to a base S for R. The number of
parabolic subgroups of G containing B is 2jS j.

We examine this statement for G D GLV . Let nD dimV .

4.2 The maximal tori of G are in natural one-to-one correspondence with the decomposi-
tions of V into a direct sum V D

L
j2J Vj of one-dimensional subspaces.

Let T be a maximal torus of GLV . As the weights of T in V generate X�.T /, there are
n of them, and so each weight space has dimension one. Conversely, given a decomposition
V D

L
j2J Vj of V into one-dimensional subspaces, we take T to be the subgroup of g

such that gVj � Vj for all j .
Now fix a maximal torus T in G, and let V D

L
j2J Vj be the corresponding weight

decomposition of V .

4.3 The Borel subgroups ofG containing T are in natural one-to-one correspondence with
the orderings of J .

The Borel subgroups of V are the stabilizers of maximal flags

F WV DWn �Wn�1 � �� �

If T stabilizes F , then each Wr is a direct sum of eigenspaces for T , but the Vj are the
only eigenspaces, and soWr is a direct sum of r of the Vj ’s. Therefore, from F we obtain a
unique ordering jn > � � �>j1 of J such thatWr D

L
i�r Vji . Conversely, given an ordering

of J we can use this formula to define a maximal flag.

4.4 The bases for R are in natural one-to-one correspondence with the orderings of J .

The vector space V has basis .�j /j2J , and R D f�i � �j j i ¤ j g. Recall that to
define a base, we choose a t 2 V _ that is not orthogonal to any root, and let S be the set of
indecomposable elements in RC D f�i ��j j h�i ��j ; ti > 0g. Clearly, specifying RC in
this way amounts to choosing an ordering on J .11

4.5 Fix a Borel subgroup B of G containing T , and hence a base S for R. The parabolic
subgroups containing B are in one-to-one correspondence with the subsets of S .

Having fixed a Borel subgroup, we have an ordering of J , and so we may as well write
J D f1;2; : : : ;ng. From a sequence a1; : : : ;ar of positive integers with sum n, we get a
parabolic subgroup, namely, the stabilizer of the flag

V � Vr � �� � � V1 � 0

with Vj D
L
i�a1C���Caj

Vi . Since the number of such sequences12 is 2n�1, the theorem
implies that this is a complete list of parabolic subgroups.

11Let .fi /i2I be the dual basis to .�i /i2I . We can take t to be any vector
P
aifi with the ai distinct. Then

RC depends only on ordering of the ai (relative to the natural order on R), and it determines this ordering.
12Such sequences correspond to functions �W f1; : : : ;ng ! f0;1g with �.0/D 1 — the ai are the lengths of

the strings of zeros or ones.
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4a Lie algebras

Recall that sl2 consists of the 2�2 matrices with trace zero, and that for the basis

x D

 
0 1

0 0

!
; hD

 
1 0

0 �1

!
; y D

 
0 0

1 0

!
;

and
Œx;y�D h; Œh;x�D 2x; Œh;y�D�2y:

A Lie algebra g is said to be reductive if it is the direct sum of a commutative Lie algebra
and a semisimple Lie algebra. Let h be a maximal subalgebra consisting of elements x such
that adx is semisimple. Then

gD g0˚
M

˛2R
g˛

where g0 is the subspace of g on which h acts trivially, and g˛ is the subspace on which h
acts through the nonzero linear form ˛. The ˛ occurring in the decomposition are called
the roots of g (relative to h).

THEOREM 4.6 For each ˛ 2 R, the spaces g˛ and h˛
def
D Œg˛;g�˛� are one-dimensional.

There is a unique element h˛ 2 h˛ such that ˛.h˛/D 2. For each nonzero element x˛ 2X˛,
there exists a unique y˛ such that

Œx˛;y˛�D h˛; Œh˛;x˛�D 2x˛; Œh˛;y˛�D�2y˛:

Hence g˛ D g�˛˚h˛˚g˛ is isomorphic to sl2.

PROOF. See Serre 1987, Chapter VI. 2

4b Algebraic groups

Let G be a reductive group containing a split maximal torus T . Let Lie.G;T / D .g;h/.
Then

Homk-lin.h;k/' k˝ZX
�.T /

(II, 1.24), and so each ˛ 2 R defines a linear form ˛0 on h. It can be shown that these are
the roots of g. Every vector space W defines an algebraic group R 7!R˝kW (considered
as a group under addition).

THEOREM 4.7 For each ˛ 2R there is a unique homomorphism exp˛Wg˛!G of algebraic
groups such that

t exp˛.x/t
�1
D exp.˛.t/x/

Lie.exp˛/D .g˛ ,! g/:

PROOF. Omitted. 2

EXAMPLE 4.8 Let G D GLn, and let ˛ D ˛ij . Then

exp˛.x/D
X

.xEij /
n=nŠ

D I CxEij

where Eij is the matrix with 1 in the .i;j /-position, and zeros elsewhere.
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Let U˛ denote the image of exp˛.

THEOREM 4.9 For any base S for R, the subgroup of G generated by T and the U˛ for
˛ 2 RC is a Borel subgroup of G, and all Borel subgroups of G containing T arise in this
way from a unique base. The base corresponding to B is that for which

RC D f˛ 2R j U˛ 2 Bg

is the set of positive roots (so S is the set of indecomposable elements in RC).

PROOF. Omitted. 2

THEOREM 4.10 Let S be a base for R and let B be the corresponding Borel subgroup. For
each subset I of R, there is a unique parabolic subgroup P containing B such that

U�˛ � P ” ˛ 2 I:

PROOF. Omitted. 2

For example, the parabolic subgroup corresponding to the subset

f�1��2;�2��3;�4��5g

of the simple roots of GL5 is 8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

0BBBBBB@
� � � � �

� � � � �

� � � � �

0 0 0 � �

0 0 0 � �

1CCCCCCA

9>>>>>>=>>>>>>;
:

5 Root data and their classification
NOTES No algebraic groups in this section — only combinatorics. Need to rewrite this section to
remove overlap with III, �1. Then, include complete proofs assuming the results from that section.

5a Generalities

The following is the standard definition.

DEFINITION 5.1 A root datum is an ordered quadruple 	 D .X;R;X_;R_/ where

˘ X;X_ are free Z-modules of finite rank in duality by a pairing h ; iWX �X_! Z,
˘ R;R_ are finite subsets of X and X_ in bijection by a correspondence ˛$ ˛_,

satisfying the following conditions

RD1 h˛;˛_i D 2;
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RD2 s˛.R/�R, s_˛ .R
_/�R_, where

s˛.x/D x�hx;˛
_
i˛; for x 2X , ˛ 2R;

s_˛ .y/D y�h˛;yi˛
_; for y 2X_;˛ 2R:

Recall that RD1 implies that s˛.˛/D�˛ and s2˛ D 1.
Set13

QD ZR �X Q_ D ZR_ �X_

V DQ˝ZQ V _ DQ˝ZQ
_:

X0 D fx 2X j hx;R
_i D 0g

By ZR we mean the Z-submodule of X generated by the ˛ 2R.

LEMMA 5.2 For ˛ 2R, x 2X , and y 2X_,

hs˛.x/;yi D hx;s
_
˛ .y/i; (173)

and so
hs˛.x/;s

_
˛ .y/i D hx;yi: (174)

PROOF. We have

hs˛.x/;yi D hx�hx;˛
_
i˛;yi D hx;yi�hx;˛_ih˛;yi

hx;s_˛ .y/i D hx;y�h˛;yi˛
_
i D hx;yi�hx;˛_ih˛;yi;

which gives the first formula, and the second is obtained from the first by replacing y with
s_˛ .y/. 2

In other words, as the notation suggests, s_˛ (which is sometimes denoted s˛_) is the
transpose of s˛.

LEMMA 5.3 The following hold for the mapping

pWX !X_; p.x/D
X
˛2R

hx;˛_i˛_:

(a) For all x 2X ,
hx;p.x/i D

X
˛2R
hx;˛_i2 � 0; (175)

with strict inequality holding if x 2R:
(b) For all x 2X and w 2W ,

hwx;p.wx/i D hx;p.x/i: (176)

(c) For all ˛ 2R,
h˛;p.˛/i˛_ D 2p.˛/; all ˛ 2R: (177)

13The notation Q_ is a bit confusing, because Q_ is not in fact the dual of Q.



368 V. The Structure of Reductive Groups: the split case

PROOF. (a) This is obvious.
(b) It suffices to check this for w D s˛, but

hs˛x;˛
_
i D hx;˛_i�hx;˛_ih˛;˛_i D �hx;˛_i

and so each term on the right of (175) is unchanged if x with replaced with s˛x.
(c) Recall that, for y 2X_,

s_˛ .y/D y�h˛;yi˛
_:

On multiplying this by h˛;yi and re-arranging, we find that

h˛;yi2˛_ D h˛;yiy�h˛;yis_˛ .y/:

But

�h˛;yi D hs˛.˛/;yi

(173)
D h˛;s_˛ .y/i

and so
h˛;yi2˛_ D h˛;yiyCh˛;s_˛ .y/is

_
˛ .y/:

As y runs through the elements of R_, so also does s_˛ .y/, and so when we sum over
y 2R_, we obtain (177). 2

REMARK 5.4 Suppose m˛ is also a root. On replacing ˛ with m˛ in (177) and using that
p is a homomorphism of Z-modules, we find that

mh˛;p.˛/i.m˛/_ D 2p.˛/; all ˛ 2R:

Therefore,
.m˛/_ Dm�1˛_: (178)

In particular,
.�˛/_ D�.˛_/: (179)

LEMMA 5.5 The map pWX !X_ defines an isomorphism

1˝pWV ! V _:

In particular, dimV D dimV _.

PROOF. As h˛;p.˛/i ¤ 0, (177) shows that p.Q/ has finite index in Q_. Therefore,
when we tensor pWQ ! Q_ with Q, we get a surjective map 1˝pWV ! V _; in par-
ticular, dimV � dimV _. The definition of a root datum is symmetric between .X;R/ and
.X_;R_/, and so the symmetric argument shows that dimV _ � dimV . Hence

dimV D dimV _;

and 1˝pWV ! V _ is an isomorphism. 2
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LEMMA 5.6 The kernel of pWX !X_ is X0.

PROOF. Clearly, X0 � Ker.p/, but (175) proves the reverse inclusion. 2

PROPOSITION 5.7 We have

Q\X0 D 0

QCX0 is of finite index in X:

Thus, there is an exact sequence

0!Q˚X0
.q;x/ 7!qCx
��������!X ! finite group! 0:

PROOF. The map
1˝pWQ˝X ! V _

has kernel Q˝X0 (see 5.6) and maps the subspace V of Q˝X isomorphically onto V _

(see 5.5). This implies that
.Q˝ZX0/˚V 'Q˝X;

from which the proposition follows. 2

LEMMA 5.8 The bilinear form h ; i defines a nondegenerate pairing V �V _!Q.

PROOF. Let x 2X . If hx;˛_i D 0 for all a_ 2R_, then x 2 Ker.p/DX0. 2

LEMMA 5.9 For any x 2X and w 2W , w.x/�x 2Q.

PROOF. From (RD2),
s˛.x/�x D�hx;˛

_
i˛ 2Q:

Now
.s˛1 ı s˛2/.x/�x D s˛1.s˛2.x/�x/C s˛1.x/�x 2Q;

and so on. 2

Recall that the Weyl group W DW.	/ of 	 is the subgroup of Aut.X/ generated by
the s˛, ˛ 2R. We let w 2W act on X_ as .w_/�1, i.e., so that

hwx;wyi D hx;yi; all w 2W , x 2X , y 2X_:

Note that this makes s˛ act on X_ as .s_˛ /
�1 D s_˛ (see 173).

PROPOSITION 5.10 The Weyl group W acts faithfully on R (and so is finite).
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PROOF. By symmetry, it is equivalent to show that W acts faithfully on R_. Let w be an
element of W such that w.˛/D ˛ for all ˛ 2R_. For any x 2X ,

hw.x/�x;˛_i D hw.x/;˛_i�hx;˛_i

D hx;w�1.˛_/i�hx;˛_i

D 0:

Thus w.x/� x is orthogonal to R_. As it lies in Q (see 5.9), this implies that it is zero
(5.8), and so w D 1. 2

Thus, a root datum in the sense of (5.1) is a root datum in the sense of (2.1), and the
next proposition proves the converse.

PROPOSITION 5.11 Let 	 D .X;R;X_;R_/ be a system satisfying the conditions (rd1),
(rd2), (rd3) of (2.1). Then 	 is a root datum.

PROOF. We have to show that

s_˛ .R
_/�R_ where s_˛ .y/D y�h˛;yi˛

_:

As in Lemma 5.2, hs˛.x/;s_˛ .y/i D hx;yi:
Let ˛;ˇ 2R, and let t D ss˛.ˇ/s˛sˇ s˛. An easy calculation14 shows that

t .x/D xC .hx;s_˛ .ˇ
_/i�hx;s˛.ˇ/

_
i/s˛.ˇ/; all x 2X:

Since

hs˛.ˇ/;s
_
˛ .ˇ
_/i�hs˛.ˇ/;s˛.ˇ/

_
i D hˇ;ˇ_i�hs˛.ˇ/;s˛.ˇ/

_
i D 2�2D 0;

we see that t .sa.ˇ//D s˛.ˇ/. Thus,

.t �1/2 D 0;

and so the minimum polynomial of t acting on Q˝ZX divides .T �1/2. On the other hand,
since t lies in a finite group, it has finite order, say tm D 1. Thus, the minimum polynomial
also divides Tm�1, and so it divides

gcd.Tm�1;.T �1/2/D T �1:

This shows that t D 1, and so

hx;s_˛ .ˇ
_/i�hx;s˛.ˇ/

_
i D 0 for all x 2X:

Hence
s_˛ .ˇ

_/D s˛.ˇ/
_
2R_:

2

REMARK 5.12 To give a root datum amounts to giving a triple .X;R;f / where

˘ X is a free abelian group of finite rank,
˘ R is a finite subset of X , and
˘ f is an injective map ˛ 7! ˛_ from R into the dual X_ of X

satisfying the conditions (rd1), (rd2), (rd3) of (2.1).

14Or so it is stated in Springer 1979, 1.4.
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5b Classification of semisimple root data

Throughout this section, F is a field of characteristic zero, for example F D Q, R, or C.
An inner product on a real vector space is a positive-definite symmetric bilinear form.

GENERALITIES ON SYMMETRIES

See III, �1a, p. 296.

GENERALITIES ON LATTICES

In this subsection V is a finite-dimensional vector space over F .

DEFINITION 5.13 A subgroup of V is a lattice in V if it can be generated (as a Z-module)
by a basis for V . Equivalently, a subgroup X is a lattice if the natural map F ˝ZX ! V is
an isomorphism.

REMARK 5.14 (a) When F DQ, every finitely generated subgroup of V that spans V is a
lattice, but this is not true for F D R or C. For example, Z1CZ

p
2 is not a lattice in R.

(b) When F D R, the discrete subgroups of V are the partial lattices, i.e., Z-modules
generated by an R-linearly independent set of vectors for V (see my notes on algebraic
number theory 4.13).

DEFINITION 5.15 A perfect pairing of free Z-modules of finite rank is one that realizes
each as the dual of the other. Equivalently, it is a pairing into Z with discriminant˙1.

PROPOSITION 5.16 Let
h ; iWV �V _! k

be a nondegenerate bilinear pairing, and let X be a lattice in V . Then

Y D fy 2 V _ j hX;yi � Zg

is the unique lattice in V _ such that h ; i restricts to a perfect pairing

X �Y ! Z:

PROOF. Let e1; : : : ; en be a basis for V generating X , and let e01; : : : ; e
0
n be the dual basis.

Then
Y D Ze01C�� �CZe0n;

and so it is a lattice, and it is clear that h ; i restricts to a perfect pairing X �Y ! Z.
Let Y 0 be a second lattice in V _ such that hx;yi 2 Z for all x 2 X , y 2 Y 0. Then

Y 0 � Y , and an easy argument shows that the discriminant of the pairing X �Y 0! Z is
˙.Y WY 0/, and so the pairing on X �Y 0 is perfect if and only if Y 0 D Y . 2

ROOT SYSTEMS

See III, �1b, 297.
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ROOT SYSTEMS AND SEMISIMPLE ROOT DATA

Compare (III, 1.3 and 5.12):

Semisimple root datum Root system (over Q)

X;R;˛ 7! ˛_WR ,!X_ V;R

R is finite R is finite

.X WZR/ finite R spans V

0 …R

h˛;˛_i D 2, s˛.R/�R 9s˛ such that s˛.R/�R

hˇ;˛_i 2 Z, all ˛;ˇ 2R

Weyl group finite

For a root system .V;R/, let QD ZR be the Z-submodule of V generated by R and let
Q_ be the Z-submodule of V _ generated by the ˛_, ˛ 2R. Then,Q andQ_ are lattices15

in V and V _, and we let
P D fx 2 V j hx;Q_i � Zg:

Then P is a lattice in V (see 5.16), and because of (RS3),

Q � P . (180)

PROPOSITION 5.17 If .X;R;˛ 7! ˛_/ is a semisimple root datum, then .Q˝ZX;R/ is a
root system over Q. Conversely, if .V;R/ is root system over Q, then for any choice X of a
lattice in V such that

Q �X � P (181)

.X;R;˛ 7! ˛_/ is a semisimple root datum.

PROOF. If .X;R;˛ 7! ˛_/ is a semisimple root datum, then 0 … R because h˛;˛_i D 2,
and hˇ;˛_i 2 Z because ˛_ 2X_. Therefore .Q˝ZX;R/ is a root system.

Conversely, let .V;R/ be a root system. Let X satisfy (181), and let X_ denote the
lattice in V _ in duality with X (see 5.16). For each ˛ 2 R, there exists an ˛_ 2 V _ such
that h˛;˛_i D 2 and s˛.R/ � R (because .V;R/ is a root datum); moreover, ˛_ is unique
(see III, �1a). Therefore, we have a function ˛ 7! ˛_WR! V _ which takes its values inX_

(because X � P implies X_ � R_/, and is injective. The Weyl group of .X;R;˛ 7! ˛_/

is the Weyl group of .V;R/, which, as we noted above, is finite. Therefore .X;R;˛ 7! ˛_/

is a semisimple root datum. 2

THE BIG PICTURE

Recall that the base field k (for G) has characteristic zero.

15They are finitely generated, and ˚_ spans V _ by Serre 1987, p28.
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Split reductive groups Reduced root data

Split semisimple groups Reduced semisimple root data

Lie algebras Reduced root systems
kD kal

5.18 As we discussed in �2, the reduced root data classify the split reductive groups over
k:

5.19 As we discussed in (1.4), from a reductive group G, we get semisimple groups DG
and G=Z.G/ together with an isogeny DG!G=Z.G/. Conversely, every reductive group
G can be built up from a semisimple group and a torus (1.5).

5.20 As we discuss in the next section, the relation between reduced root data and reduced
semisimple root data is the same as that between split reductive groups and split semisimple
groups. It follows that to show that the reduced root data classify split reductive groups, it
suffices to show that reduced semisimple root data classify split semisimple groups.

5.21 From a semisimple group G we get a semisimple Lie algebra Lie.G/ (see II, 5.23),
and from Lie.G/we can recoverG=Z.G/ (see II, 5.30). Passing fromG to Lie.G/ amounts
to forgetting the centre of G.16

5.22 From a semisimple root datum .X;R;˛ 7! ˛_/, we get a root system .V D Q˝Z
X;R/. Passing from the semisimple root datum to the root system amounts to forgetting
the lattice X in V .

5.23 Take k D kal, and let g be a semisimple Lie algebra over k. A Cartan subalgebra
h of g is a commutative subalgebra that is equal to its own centralizer. For example, the
algebra of diagonal matrices of trace zero in sln is a Cartan subalgebra. Then h acts on g
via the adjoint map adWh! End.g/, i.e., for h 2 h, x 2 g; ad.h/.x/ D Œh;x�. One shows
that g decomposes as a sum

gD g0˚
M

˛2h_
g˛

where g0 is the subspace on which h acts trivially, and hence equals h, and g˛ is the subspace
on which h acts through the linear form ˛Wh! k, i.e., for h2 h, x 2 g˛, Œh;x�D ˛.h/x. The
nonzero ˛ occurring in the above decomposition form a reduced root system R in h_ (and
hence in the Q-subspace of h_ spanned by R). In this way, the semisimple Lie algebras
over k are classified by the reduced root systems (see III, �8).

16Perhaps this was accurate when first written, but, as we show in Chapter II??, it is possible to recover the
centre also from Lie.G/ by looking at its representations.
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CLASSIFICATION OF THE REDUCED ROOT SYSTEM

See Chapter III, Section 1.

6 Construction of split reductive groups: the existence theorem

We show that, for any field k, every root datum arises from a split reductive group over k.

NOTES Show first that it suffices to prove the result for root systems and semisimple groups. Dis-
cuss three proofs.

(a) Construct a split almost simple group for each diagram, as in Chapter I. Only the exceptional
case still requires work (from me).

(b) In characteristic zero, construct the Lie algebra; get the semisimple group as in Chapter III.
Then discuss Chevalley bases and explain how to get the groups over Z, and hence over each
prime field. Also take a look at the Tannakian point of view; perhaps look at the Tannakian
category over Z.

(c) Directly — see Springer (Chapter 10, 10 pages) in the case that k is algebraically closed, and
the notes at the end of his chapter. Better: do this directly of Z.

6a Preliminaries on root data/systems

Recall (5.17) that semisimple root data (hence semisimple algebraic groups) correspond to
reduced root systems .V;R/ together with a choice of a lattice X ,

Q �X � P

where QD ZR and P is the lattice in duality with ZR_. Thus

P D fx 2 V j hx;˛_i 2 Z; all ˛ 2Rg:

When we take V to be a real vector space and choose an inner product as in (III, 1.9), this
becomes

P D

�
x 2 V

ˇ̌̌̌
2
.x;˛/

.˛;˛/
2 Z; all ˛ 2R

�
:

Choose a base S D f˛1; : : : ;˛ng for R (see III, 1.10). Then

QD Z˛1˚�� �˚Z˛n;

and we want to find a basis for P . Let f�1; : : : ;�ng be the basis of V dual to the basis�
2

.˛1;˛1/
˛1; : : : ;

2

.˛i ;˛i /
˛i ; : : : ;

2

.˛n;˛n/
˛n

�
;

i.e., .�i /1�i�n is characterized by

2
.�i ;˛j /

.˛j ;˛j /
D ıij (Kronecker delta).

PROPOSITION 6.1 The set f�1; : : : ;�ng is a basis for P , i.e.,

P D Z�1˚�� �˚Z�n:
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PROOF. Let � 2 V , and let

mi D 2
.�;˛i /

.˛i ;˛i /
, i D 1; : : : ;n:

Then
.��

X
mi�i ;˛/D 0

if ˛ 2 S . Since S is a basis for V , this implies that ��
P
mi�i D 0 and

�D
X

mi�i D
X

2
.�;˛i /

.˛i ;˛i /
�i :

Hence,

� 2
M

Z�i ” 2
.�;˛i /

.˛i ;˛i /
2 Z for i D 1; : : : ;n;

and so P �
L

Z�i . The reverse inclusion follows from the next lemma. 2

LEMMA 6.2 Let R be a reduced root system, and let R0 be the root system consisting of
the vectors ˛0 D 2

.˛;˛/
˛ for ˛ 2R. For any base S for R, the set S 0 D f˛0 j ˛ 2 Sg is a base

for R0.

PROOF. See Serre 1987, V 9, Proposition 7. 2

PROPOSITION 6.3 For each j ,

˛j D
X

1�i�n
2
.˛i ;˛j /

.˛i ;˛i /
�i :

PROOF. This follows from the calculation in the above proof. 2

Thus, we have
P D

M
i
Z�i �QD

M
i
Z˛i

and when we express the ˛i in terms of the �i , the coefficients are the entries of the Cartan
matrix. Replacing the �i ’s and ˛i ’s with different bases amounts to multiplying the transi-
tion (Cartan) matrix on the left and right by invertible matrices. A standard algorithm allows
us to obtain new bases for which the transition matrix is diagonal, and hence expressesP=Q
as a direct sum of cyclic groups. When one does this, one obtains the following table:

An Bn Cn Dn (n odd/ Dn (n even) E6 E7 E8 F4 G2

CnC1 C2 C2 C4 C2�C2 C3 C2 C1 C1 C1

In the second row, Cm denotes a cyclic group of order m.
Also, by inverting the Cartan matrix one obtains an expression for the �i ’s in terms of

the ˛i ’s. Cf.Humphreys 1972, p. 69.
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6b Brief review of diagonalizable groups

Recall from I, �14 that we have a (contravariant) equivalence M 7!D.M/ from the cate-
gory of finitely generated abelian groups to the category of diagonalizable algebraic groups.
For example, D.Z=mZ/D �m and D.Z/DGm. A quasi-inverse is provided by

D 7!X.D/
def
D Hom.D;Gm/:

Moreover, these functors are exact. For example, an exact sequence

0!D0!D
�
�!D00! 0

of diagonalizable groups corresponds to an exact sequence

0!X.D00/!X.D/!X.D0/! 0

of abelian groups. Under this correspondence,

D0 D Ker.D!D00
�
,!

Y
�2X.D00/

Gm/

i.e.,
D0 D

\
�2X.D00/

Ker.D
�ı�
�!Gm/: (182)

6c Construction of all almost-simple split semisimple groups

Recall that the indecomposable reduced root systems are classified by the Dynkin diagrams,
and that from the Dynkin diagram we can read off the Cartan matrix, and hence the group
P=Q.

THEOREM 6.4 For each indecomposable reduced Dynkin diagram, there exists an alge-
braic group G, unique up to isomorphism, with the given diagram as its Dynkin diagram
and equipped with an isomorphism X.ZG/' P=Q.

For each diagram, one can simply write down the corresponding group. For example,
for An it is SLnC1 and for Cn it Sp2n. For Bn and Dn one tries SO2nC1 and SO2n (as
defined in 1.9), but their centres are too small. In fact the centre of Om is ˙I , and so
SO2nC1 has trivial centre and O2n has centre of order 2. The group one needs is the
corresponding spin group (see I, �18). The exceptional groups can be found, for example,
in Springer 1998.

The difficult part in the above theorem is the uniqueness. Also, one needs to know that
the remaining groups with the same Dynkin diagram are quotients of the one given by the
theorem (which has the largest centre, and is said to be simply connected).

Here is how to obtain the group G.X/ corresponding to a lattice X ,

P �X �Q:

As noted earlier ((172), p. 347), the centre of G.X/ has character group X=Q, so, for
example, the group corresponding to P is the simply connected group G. The quotient of
G by

N D
\

�2X=Q
Ker.�WZ.G/!Gm/

has centre with character group X=Q (cf. (182), p. 376), and is G.X/.
It should be noted that, because of the existence of outer automorphisms, it may happen

that G.X/ is isomorphic to G.X 0/ with X ¤X 0:
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6d Split semisimple groups.

These are all obtained by taking a finite product of split simply connected semisimple
groups and dividing out by a subgroup of the centre (which is the product of the centres
of the factor groups).

6e Split reductive groups

Let G0 be a split semisimple group, D a diagonalizable group, and Z.G0/!D a homo-
morphism from Z.G0/ to D. Define G to be the quotient

Z.G0/!G0�D!G! 1:

All split reductive groups arise in this fashion (1.4).

ASIDE 6.5 With only minor changes, the above description works over fields of nonzero character-
istic.

6f Exercise

EXERCISE 6-1 Assuming Theorem 6.4, show that the split reductive groups correspond
exactly to the reduced root data.

7 Construction of isogenies of split reductive groups: the
isogeny theorem

In this section we (shall) rewrite Steinberg 1999 for split reductive groups over arbitrary
fields.

Let .G;T / be a split reductive group, and let R � X.T / be the root system of .G;T /.
For each ˛ 2 R, let U˛ be the corresponding root group. Recall that this means that U˛ �
Ga and, for any isomorphism u˛WGa! Ua,

t �u˛.a/ � t
�1
D u˛.˛.t/a/; t 2 T .k/, a 2 k:

DEFINITION 7.1 An isogeny of root data is a homomorphism 'WX 0!X such that

(a) both ' and '_ are injective (equivalently, ' is injective with finite cokernel);
(b) there exists a bijection ˛ 7! ˛0 from R to R0 and positive integers q.˛/, each an

integral power of the characteristic exponent p of k, such that '.˛0/ D q.˛/˛ and
'_.˛_/D q.˛/.˛0/_ for all ˛ 2R.

Let f W.G;T /! .G0;T 0/ be an isogeny of split reductive groups. This defines a homo-
morphism 'WX 0!X of character groups:

'.�0/D �0 ıf jT for all �0 2X 0:

Moreover, for each ˛ 2R, f .U˛/D U˛0 for some ˛0 2R0.

PROPOSITION 7.2 Let f W.G;T / ! .G0;T 0/ be an isogeny. Then the associated map
'WX 0!X is an isogeny. Moreover, for each ˛ 2R,

f .u˛.a//D u˛0.c˛a
q.˛//

for some q.˛/ as in (b), some c˛ 2 k�, and all a 2 k.
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Thus, an isogeny .G;T /! .G0;T 0/ defines an isogeny of root data. The isogeny of
root data does not determine f , because an inner automorphism of .G;T / defined by an
element of T .k/ induces the identity map on the root datum of .G;T /. However, as the
next lemma shows, this is the only indeterminacy.

LEMMA 7.3 If two isogenies .G;T /! .G0;T 0/ induce the same map on the root data,
then they differ by an inner automorphism by an element of .T=Z/.k/.

PROOF. Let f and g be such isogenies. Then they agree on T obviously. Let S be a base
for R. For each ˛ 2 S , it follows from '.˛0/D q.˛/˛ that f .u˛.a//D u˛0.c˛aq.˛//, and
similarly for g with c˛ replaced by d˛. As S is linearly independent, there exists a t 2 T
such a.t/q.˛/ D d˛c�1˛ for all ˛ 2 S . Let hD f ı it where it is the inner automorphism of
G defined by t . Then g and h agree on every U˛, ˛ 2 S , as well as on T , and hence also on
the Borel subgroup B that these groups generate. It follows that they agree on G because
the map xB 7! h.x/g.x/�1WG=B!G0 must be constant (the varietyG=B is complete and
G0 is affine). As h.e/g.e/�1 D 1, we see that h.x/D g.x/ for all x. 2

THEOREM 7.4 (Isogeny theorem). Let .G;T / and .G0;T 0/ be split reductive algebraic
groups over a field k, and let 'WX.T 0/!X.T / be an isogeny of their root data. Then there
exists an isogeny f W.G;T /! .G0;T 0/ inducing '.

THEOREM 7.5 Let .G;T / and .G0;T 0/ be split reductive algebraic groups over a field k,
and let fT WT ! T 0 be an isogeny. Then fT extends to an isogeny f WG! G0 if and only
if X.fT / is an isogeny of root data.

THEOREM 7.6 (Isomorphism theorem). Let .G;T / and .G0;T 0/ be split reductive alge-
braic groups over a field k. An isomorphism f W.G;T /! .G0;T 0/ defines an isomorphism
of root data, and every isomorphism of root data arises from an isomorphism f , which is
uniquely determined up to an inner automorphism by an element of T .k/.

Immediate consequence of the isogeny theorem. The key point is that an isogeny
f WG ! G0 that induces the identity map on root data is an isomorphism. The first step
is that it is an isomorphism T ! T .

To be continued.

8 Representations of split reductive groups

Throughout this section, k is algebraically closed of characteristic zero (get rid of that).

NOTES This needs to be rewritten for split reductive groups over arbitrary fields.

8a The dominant weights of a root datum

Let .X;R;X_;R_/ be a root datum. We make the following definitions:

˘ QD ZR (root lattice) is the Z-submodule of X generated by the roots;
˘ X0 D fx 2X j hx;˛

_i D 0 for all ˛ 2Rg;
˘ V D R˝ZQ � R˝ZX ;
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˘ P D f� 2 V j h�;˛_i 2 Z for all ˛ 2Rg (weight lattice).

Now choose a base S D f˛1; : : : ;˛ng for R, so that:

˘ RDRCtR� where RC D f
P
mi˛i jmi � 0g and R� D f

P
mi˛i jmi � 0gI

˘ QD Z˛1˚�� �˚Z˛n � V D R˛1˚�� �˚R˛n,
˘ P D Z�1˚�� �˚Z�n where �i is defined by h�i ;˛_j i D ıij .

The �i are called the fundamental (dominant) weights. Define

˘ PC D f� 2 P j h�;˛_i � 0 all ˛ 2R_g:

An element � of X is dominant if h�;˛_i � 0 for all ˛ 2RC. Such a � can be written
uniquely

�D
X

1�i�n
mi�i C�0 (183)

with mi 2 N,
P
mi�i 2X , and �0 2X0.

8b The dominant weights of a semisimple root datum

Recall (5.17) that to give a semisimple root datum amounts to giving a root system .V;R/

and a lattice X ,
P �X �Q:

Choose an inner product . ; / on V for which the s˛ act as orthogonal transformations (I,
1.9). Then, for � 2 V

h�;˛_i D 2
.�;˛/

.˛;˛/
:

Since in this case X0 D 0, the above definitions become:

˘ QD ZRD Z˛1˚�� �˚Z˛n;
˘ P D f� 2 V j 2 .�;˛/

.˛;˛/
2 Z all ˛ 2Rg D Z�1˚�� �˚Z�n where �i is defined by

2
.�i ;˛/

.˛;˛/
D ıij :

˘ PC D f�D
P
imi�i jmi � 0g D fdominant weightsg.

8c The classification of representations

Let G be a reductive group. We choose a maximal torus T and a Borel subgroup B con-
taining T (hence, we get a root datum .X;R;X_;R_/ and a base S for R). As every
representation of G is (uniquely) a sum of simple representations (II, 6.14), we only need
to classify them.

THEOREM 8.1 Let r WG! GLW be a simple representation of G.

(a) There exists a unique one-dimensional subspace L of W stabilized by B .
(b) The L in (a) is a weight space for T , say, LDW�r .
(c) The �r in (b) is dominant.
(d) If � is also a weight for T in W , then �D �r �

P
mi˛i with mi 2 N.

PROOF. Omitted. 2
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Note that the Lie-Kolchin theorem (I, 16.31) implies that there does exist a one-dimensional
eigenspace for B — the content of (a) is that when W is simple (as a representation of G),
the space is unique. Since L is mapped into itself by B , it is also mapped into itself by
T , and so lies in a weight space. The content of (b) is that it is the whole weight space.
Because of (d), �r is called the highest weight of the simple representation r .

THEOREM 8.2 The map .W;r/ 7! �r defines a bijection from the set of isomorphism
classes of simple representations of G onto the set of dominant weights in X DX�.T /.

PROOF. Omitted. 2

8d Example:

Here the root datum is isomorphic to fZ;f˙2g;Z;f˙1gg. Hence Q D 2Z, P D Z, and
PC D N. Therefore, there is (up to isomorphism) exactly one simple representation for
each m� 0. There is a natural action of SL2.k/ on the ring kŒX;Y �, namely, let 

a b

c d

! 
X

Y

!
D

 
aXCbY

cXCdY

!
:

In other words,
f A.X;Y /D f .aXCbY;cXCdY /:

This is a right action, i.e., .f A/B D f AB . We turn it into a left action by setting Af D
f A
�1

. Then one can show that the representation of SL2 on the homogeneous polynomials
of degreem is simple, and every simple representation is isomorphic to exactly one of these.

8e Example: GLn

As usual, let T be Dn, and let B be the standard Borel subgroup. The characters of T are
�1; : : : ;�n. Note that GLn has representations

GLn
det
�!Gm

t 7!tm

�! GL1 DGm
for each m, and that any representation can be tensored with this one. Thus, given any
simple representation of GLnwe can shift its weights by any integer multiple of �1C�� �C
�n.

In this case, the simple roots are �1��2; : : : ;�n�1��n, and the root datum is isomor-
phic to

.Zn;fei � ej j i ¤ j g;Zn;fei � ej j i ¤ j g/:
In this notation the simple roots are e1� e2; : : : ; en�1� en, and the fundamental dominant
weights are �1; : : : ;�n�1with

�i D e1C�� �C ei �n
�1i .e1C�� �C en/ :

The dominant weights are the expressions

a1�1C�� �Can�1�n�1Cm.e1C�� �C en/; ai 2 N; m 2 Z:

These are the expressions
m1e1C�� �Cmnen

where the miare integers with m1 � � � � � mn. The simple representation with highest
weight e1is the representation of GLn on kn(obviously), and the simple representation with
highest weight e1C�� �C ei is the representation on

Vi
.kn/ (Springer 1998, 4.6.2).
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8f Example: SLn

Let T1be the diagonal in SLn. Then X�.T1/DX�.T /=Z.�1C�� �C�n/with T DDn. The
root datum for SLnis isomorphic to .Zn=Z.e1C�� �C en/;f"i � "j j i ¤ j g; : : :/ where "i is
the image of ei in Zn=Z.e1C�� �C en/. It follows from the GLncase that the fundamental
dominant weights are �1; : : : ;�n�1with

�i D "1C�� �C "i :

Again, the simple representation with highest weight "1is the representation of SLnon kn,
and the simple representation with highest weight "1C�� �C "i is the representation SLnonVi
.kn/(ibid.).

ASIDE 8.3 Including pinnings (épinglages) — cf. mo17594.





CHAPTER VI
The Structure of Reductive Groups:

general case

In this chapter, we study algebraic groups, especially nonsplit reductive groups, over arbi-
trary fields.

The algebraic groups over a field k that become isomorphic to a fixed algebraic group
over kal are classified by a certain cohomology group. In the first section, we explain this,
and discuss what is known about the cohomology groups.

Over an algebraically closed field, the classical semisimple groups are exactly those
described by central simple algebras equipped with an involution. In the second section, we
show that this remains true over an arbitrary field, roughly speaking, because the two are
classified by the same cohomology groups [this has been moved to Chapter I]

Root data are also important in the nonsplit case. For a reductive groupG, one chooses a
torus that is maximal among those that are split, and defines the root datum much as before
— in this case it is not necessarily reduced. This is an important approach to describing
arbitrary algebraic groups, but clearly it yields no information about anisotropic groups
(those with no split torus). We explain this approach in the third section.

In this version of the chapter, we usually assume that k has characteristic zero. Let A
be a set with an equivalence relation �, and let B be a second set. When there exists a
canonical surjection A!B whose fibres are the equivalence classes, I say that B classifies
the �-classes of elements of A.

NOTES This chapter is in disarray, since I moved part of it to Chapter I. Probably it should be split
into two parts, one on the cohomology of algebraic groups and one on the Tits-Selbach classification
of reductive groups and their representations over arbitrary fields.

1 The cohomology of algebraic groups; applications . . . . . . . . . . . . . . . 384
2 Classical groups and algebras with involution . . . . . . . . . . . . . . . . . 394
3 Relative root systems and the anisotropic kernel. . . . . . . . . . . . . . . . . 395

EXAMPLE: THE FORMS OF GL2.

What are the groups G over a field k such that Gkal � GL2? For any a;b 2 k�, define
H.a;b/ to be the algebra over k with basis 1; i;j; ij as a k-vector space, and with the

383
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multiplication given by
i2 D a; j 2 D b; ij D�j i:

This is a k-algebra with centre k, and it is either a division algebra or is isomorphic to
M2.k/. For example, H.1;1/ � M2.k/ and H.�1;�1/ is the usual quaternion algebra
when k D R.

Each algebra H.a;b/ defines an algebraic group G D G.a;b/ with G.R/ D .R˝

H.a;b//�. These are exactly the algebraic groups over k becoming isomorphic to GL2
over kal, and

G.a;b/�G.a0;b0/ ” H.a;b/�H.a0;b0/:

Over R, every H is isomorphic to H.�1;�1/ or M2.R/, and so there are exactly two
forms of GL2 over R.

Over Q, the isomorphism classes of H’s are classified by the subsets of

f2;3;5;7;11;13; : : : ;1g

having a finite even number of elements. The proof of this uses the quadratic reciprocity
law in number theory. In particular, there are infinitely many forms of GL2 over Q, exactly
one of which, GL2, is split.

1 The cohomology of algebraic groups; applications

Throughout this section, vector spaces and modules are finitely generated. In the early part
of the section, there is no need to assume k to be of characteristic zero.

1a Non-commutative cohomology.

Let � be a group. A � -set is a set A with an action

.�;a/ 7! �aW� �A! A

of � on A (so .��/a D �.�a/ and 1a D a). If, in addition, A has the structure of a group
and the action of � respects this structure (i.e., �.aa0/ D �a � �a0), then we say A is a
� -group.

DEFINITION OF H 0.�;A/

For a � -set A,H 0.� ;A/ is defined to be the set A� of elements left fixed by the operation
of � on A, i.e.,

H 0.� ;A/D A� D fa 2 A j �aD a for all � 2 � g:

If A is a � -group, then H 0.�;A/ is a group.

DEFINITION OF H 1.� ;A/

Let A be a � -group. A mapping � 7! a� of � into A is said to be a 1-cocycle of � in A if
the relation a�� D a� ��a� holds for all �;� 2 � . Two 1-cocycles .a� / and .b� / are said
to be equivalent if there exists a c 2 A such that

b� D c
�1
�a� ��c for all � 2 � .
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This is an equivalence relation on the set of 1-cocycles of � in A, and H 1.� ;A/ is defined
to be the set of equivalence classes of 1-cocycles.

In general H 1.� ;A/ is not a group unless A is commutative, but it has a distinguished
element, namely, the class of 1-cocycles of the form � 7! b�1 � �b, b 2 A (the principal
1-cocycles).

COMPATIBLE HOMOMORPHISMS

Let � be a second group. Let A be � -group and B an �-group. Two homomorphisms
f WA! B and gW�! � are said to be compatible if

f .g.�/a/D �.f .a// for all � 2�, a 2 A.

If .a� / is a 1-cocycle for A, then
b� D f .ag.�//

is a 1-cocycle of � in B , and this defines a mapping H 1.�;A/! H 1.�;B/, which is a
homomorphism if A and B are commutative.

When�D � , a homomorphism f WA!B compatible with the identity map, i.e., such
that

f .�a/D �.f .a// for all � 2 � , a 2 A,

f is said to be a � -homomorphism (or be � -equivariant).

EXACT SEQUENCES

PROPOSITION 1.1 An exact sequence

1! A0! A! A00! 1

of � -groups gives rise to an exact sequence of cohomology sets

1!H 0.�;A0/!H 0.�;A/!H 0.�;A00/!H 1.�;A0/!H 1.�;A/!H 1.�;A00/

Exactness at H 0.�;A00/ means that the fibres of the map H 0.�;A00/!H 1.�;A0/ are
the orbits of the group H 0.�;A/ acting on H 0.�;A00/. Exactness at H 1.�;A0/ means that
fibre of H 1.�;A0/!H 1.�;A/ over the distinguished element is the image of H 0.�;A00/.

We now define the boundary map H 0.�;A00/!H 1.�;A0/. For simplicity, regard A0

as a subgroup of A with quotient A00. Let a00 be an element of A00 fixed by � , and choose
an a in A mapping to it. Because a00 is fixed by � , a�1 ��a is an element of A0, which we
denote a� . The map � 7! a� is a 1-cocycle whose class in H 1.�;A0/ is independent of the
choice of a. To define the remaining maps and check the exactness is now very easy.

PROFINITE GROUPS

For simplicity, we now assume k to be perfect. Let � D Gal.kal=k/ where kal is the
algebraic closure of k. For any subfield K of kal finite over k, we let

�K D f� 2 � j �x D x for all x 2Kg:

We consider only � -groups A for which

AD
[
A�K (184)
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and we defineH 1.�;A/ to be the set of equivalence classes of 1-cocycles that factor through
Gal.K=k/ for some subfield K of kal finite and Galois over k. With these definitions,1

H 1.�;A/D lim
�!

H 1.Gal.K=k/;A�K / (185)

where K runs through the subfields K of kal finite and Galois over k.

THE GALOIS COHOMOLOGY OF ALGEBRAIC GROUPS

When G is an algebraic group over k,

G.kal/D
[
G.K/; G.K/DG.kal/�K ;

and so G.kal/ satisfies (119). We write H i .k;G/ for H i .Gal.kal=k/;G.kal//.
An exact sequence

1!G0!G!G00! 1

of algebraic groups over k gives rise to an exact sequence

1!G0.kal/!G.kal/!G00.kal/! 1

(I, �7)2, and hence (see (120), p. 219) to an exact sequence

1!G0.k/!G.k/!G00.k/!H 1.k;G0/!H 1.k;G/!H 1.k;G00/.

1b Classifying bilinear forms

Let K be a finite Galois extension of k with Galois group � . Let V be a finite-dimensional
K-vector space. A semi-linear action of � on V is a homomorphism � ! Autk-lin.V /

such that
�.cv/D �c ��v all � 2 � , c 2K, v 2 V:

If V D K˝k V0, then there is a unique semi-linear action of � on V for which V � D
1˝V0, namely,

�.c˝v/D �c˝v � 2 � , c 2K, v 2 V:

PROPOSITION 1.2 The functor V 7! K ˝k V from k-vector spaces to K-vector spaces
endowed with a semi-linear action of � is an equivalence of categories with quasi-inverse
V 7! V � .

LEMMA 1.3 Let S be the standard Mn.k/-module, namely, kn with Mn.k/ acting by left
multiplication. The functor V 7! S ˝k V is an equivalence from the category of k-vector
spaces to that of left Mn.k/-modules.

1Equivalently, we consider only � -groups A for which the pairing � �A!A is continuous relative to the
Krull topology on � and the discrete topology on A, and we require that the 1-cocycles be continuous for the
same topologies.

2In fact,
1!G0.R/!G.R/!G00.R/

is exact for all k-algebras; only the surjectivity G.R/!G00.R/ requires that R be an algebraically closed field
(I, 7.54).
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PROOF. Note that S is a simple Mn.k/-module. Since

Endk-lin.k/D k D EndMn.k/.k
n/

and every k-vector space is isomorphic to a direct sum of copies of k, the functor is obvi-
ously fully faithful (i.e., gives isomorphisms on Homs). It remains to show that every left
Mn.k/-module is a direct sum of copies of S . This is certainly true of Mn.k/ itself:

Mn.k/D
M

1�i�n
L.i/ (as a left Mn.k/-module)

where L.i/ is the set of matrices whose entries are zero except for those in the i th column.
Since every left Mn.k/-module M is a quotient of a direct sum of copies of Mn.k/, this
shows that such an M is a sum of copies of S . Let I be the set of submodules of M
isomorphic to S , and let J be a subset that is maximal among those for which

P
N2J N is

direct. Then M D
L
N2J N (see II, 6.1). 2

LEMMA 1.4 For any k-vector space W , the functor V 7!W ˝k V is an equivalence from
the category of k-vector spaces to that of left Endk.W /-modules.

PROOF. When we choose a basis for W , this becomes the previous lemma. 2

PROOF OF PROPOSITION 1.2

LetKŒ� � be theK-vector space with basis the elements of � , made into a k-algebra by the
rule

.a�/ � .b�/D a ��b ���; a;b 2K; �;� 2 �:

Then KŒ� � acts k-linearly on K by

.
P
a��/c D

P
a��c;

and the resulting homomorphism

KŒ� �! Endk.K/

is injective by Dedekind’s theorem on the independence of characters (FT 5.14). Since
KŒ� � and Endk.K/ have the same dimension as k-vector spaces, the map is an isomor-
phism. Therefore, the corollary shows that

V 7!K˝k V

is an equivalence from the category of k-vector spaces to that of left modules over Endk.K/'
KŒ� �. This is the statement of the proposition.

BILINEAR FORMS AND COHOMOLOGY SETS

Let V0 be a k-vector space equipped with a bilinear form �0WV �V ! k, and write .V0;�0/K
for the pair overK obtained from .V0;�0/ by extension of scalars. Let A.K/ denote the set
of automorphisms of .V0;�0/K .3

3In more detail: .V0;�0/K D .V0K ;�0K/ where V0K DK˝k V0 and �0K is the unique K-bilinear map
V0K � V0K ! K extending �0; an element of A.K/ is a K-linear isomorphism ˛WV0K ! V0K such that
�0K.˛x;˛y/D �0K.x;y/ for all x;y 2 V0K .
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THEOREM 1.5 The cohomology set H 1.�;A.K// classifies the isomorphism classes of
pairs .V;�/ over k that become isomorphic to .V0;�0/ over K.

PROOF. Suppose .V;�/K � .V0;�0/K , and choose an isomorphism

f W.V0;�0/K ! .V;�/K :

Let
a� D f

�1
ı�f:

Then

a� ��a� D .f
�1
ı�f /ı .�f �1 ı��f /

D a�� ;

and so a� .f / is a 1-cocycle. Moreover, any other isomorphism f 0W.V0;�0/K ! .V;�/K
differs from f by a g 2A.K/, and

a� .f ıg/D g
�1
�a� .f / ��g:

Therefore, the cohomology class of a� .f / depends only on .V;�/. It is easy to see that,
in fact, it depends only on the isomorphism class of .V;�/, and that two pairs .V;�/ and
.V 0;�0/ giving rise to the same class are isomorphic. It remains to show that every coho-
mology class arises from a pair .V;�/. Let .a� /�2� be a 1-cocycle, and use it to define a
new action of � on VK

def
DK˝k V :

�x D a� ��x; � 2 �; x 2 VK :

Then
� .cv/D �c � �v, for � 2 � , c 2K, v 2 V;

and
� .�v/D � .a��v/D a� ��a� ���v D

��v;

and so this is a semilinear action. Therefore,

V1
def
D fx 2 VK j

�x D xg

is a subspace of VK such that K˝k V1 ' VK (by 1.2). Because �0K arises from a pairing
over k,

�0K.�x;�y/D ��.x;y/; all x;y 2 VK :

Therefore (because a� 2A.K/),

�0K.
�x;�y/D �0K.�x;�y/D ��0K.x;y/:

If x;y 2 V1, then �0K.�x;�y/D �0K.x;y/, and so �0K.x;y/D ��0K.x;y/. By Galois
theory, this implies that �0K.x;y/ 2 k, and so �0K induces a k-bilinear pairing on V1. 2
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APPLICATIONS

Again let K be a finite Galois extension of k with Galois group � .

PROPOSITION 1.6 For all n, H 1.�;GLn.K//D 1:

PROOF. Apply Theorem 1.5 with V0D kn and �0 the zero form. It shows thatH 1.�;GLn.K//
classifies the isomorphism classes of k-vector spaces V such that K˝k V �Kn. But such
k-vector spaces have dimension n, and therefore are isomorphic. 2

PROPOSITION 1.7 For all n, H 1.�;SLn.K//D 1

PROOF. Because the determinant map detWGLn.K/!K� is surjective,

1! SLn.K/! GLn.K/
det
�!K�! 1

is an exact sequence of � -groups. It gives rise to an exact sequence

GLn.k/
det
�! k�!H 1.�;SLn/!H 1.�;GLn/

from which the statement follows. 2

PROPOSITION 1.8 Let �0 be a nondegenerate alternating bilinear form on V0, and let Sp
be the associated symplectic group4. Then H 1.�;Sp.K//D 1.

PROOF. According to Theorem 1.5, H 1.�;Sp.K// classifies isomorphism classes of pairs
.V;�/ over k that become isomorphic to .V0;�0/ over K. But this condition implies that
� is a nondegenerate alternating form and that dimV D dimV0. All such pairs .V;�/ are
isomorphic. 2

REMARK 1.9 Let �0 be a nondegenerate bilinear symmetric form on V0, and let O be
the associated orthogonal group. Then H 1.�;O.K// classifies the isomorphism classes of
quadratic spaces over k that become isomorphic to .V;�/ over K. This can be a very large
set.

1c Classifying the forms of an algebraic group

Again let K be a finite Galois extension of k with Galois group � . Let G0 be an algebraic
group over k, and let A.K/ be the group of automorphisms ˛WGK !GK . Then � acts on
A.K/ in a natural way:

�˛ D � ı˛ ı��1:

THEOREM 1.10 The cohomology set H 1.�;A.K// classifies the isomorphism classes of
algebraic groups G over k that become isomorphic to G0 over K.

4So Sp.R/D fa 2 EndR-lin.R˝k V / j �.ax;ay/D �.x;y/g
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PROOF. Let G be such an algebraic group over k, choose an isomorphism

f WG0K !GK ;

and write
a� D f

�1
ı�f:

As in the proof of Theorem 1.5, .a� /�2� is a 1-cocycle, and the map

G 7! class of .a� /�2� in H 1.�;A.K//

is well-defined and its fibres are the isomorphism classes.
In proving that the map is surjective, it is useful to identify A.K/ with the auto-

morphism group of the Hopf algebra O.G0K/ D K ˝k O.G0/. Let A0 D O.G0/ and
A D K ˝k A0. As in the proof of Theorem 1.5, we use a 1-cocycle .a� /�2� to twist
the action of � on A; specifically, we define

�aD a� ı�a; � 2 �; a 2 A.

Proposition 1.2 in fact holds for infinite dimensional vector spaces V with the same5 proof,
and so the k-subspace

B D fa 2 A j �aD ag

of A has the property that
K˝k B ' A:

It remains to show that the Hopf algebra structure on A induces a Hopf algebra structure on
B . Consider for example the comultiplication. The k-linear map

�0WA0! A0˝k A0

has a unique extension to a K-linear map

�WA! A˝K A:

This map commutes with the action of � :

�.�a/D �.�.a//; all � 2 � , a 2 A.

Because a� is a Hopf algebra homomorphism,

�.a�a/D a��.a/; all � 2 � , a 2 A.

Therefore,
�.�a/D � .�.a//; all � 2 � , a 2 A.

In particular, we see that � maps B into .A˝K A/� , which equals B˝k B because the
functor in (1.2) preserves tensor products. Similarly, all the maps defining the Hopf algebra
structure on A preserve B , and therefore define a Hopf algebra structure on B . Finally, one
checks that the 1-cocycle attached to B and the given isomorphism K˝k B!A is .a� /.2

5Except that the last step of the proof of (1.3) requires Zorn’s lemma.
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EXAMPLES

1.11 For all n, H 1.k;GLn/D 1.

This follows from (1.6) and (120).

1.12 For all n, H 1.k;SLn/D 1:

1.13 For all n, H 1.k;Spn/D 1:

1.14 Let .V;�/ be a nondegenerate quadratic space over k. Then H 1.k;O.�// classifies
the isomorphism classes of quadratic spaces over k with the same dimension as V .

PROOF. Over kal, all nondegenerate quadratic spaces of the same dimension are isomor-
phic. 2

1.15 Let G be an algebraic group of k. The isomorphism classes of algebraic groups
over k that become isomorphic to Gkal over kal are classified by H 1.�;A.kal//. Here
� D Gal.kal=k/ and A.kal/ is the automorphism group of Gkal .

(WEIL) RESTRICTION OF THE BASE FIELD

Let K be a finite extension of k, and let G be an algebraic group over K. Recall (I, �4d)
that the functor

R G�.R/DG.K˝kR/

from k-algebras to groups is an algebraic group over k.

PROPOSITION 1.16 There is a canonical isomorphism

G�kal '

Y
�WK!kal

�G: (186)

PROOF. The product is over the k-homomorphisms K ! kal, and by �G, we mean the
algebraic group over kal such that, for a kal-algebra R,

.�G/.R/DG.R/

— on the right, R is regarded as a k-algebra via �. For a kal-algebra R,

K˝kR'K˝k .k
al
˝kal R/

' .K˝k k
al/˝kal R

'

�Y
�WK!kal

kal
�
˝kal R:

Thus, G�kal '
Q
�WK!kal �G as functors, and therefore as algebraic groups. 2

COROLLARY 1.17 We have

H i .k;G�/'H
i .K;G/ for i D 0;1 (and for all i � 0 when G is commutative).

PROOF. Combine (186) with Shapiro’s lemma (CFT II, 1.11 for the commutative case;
need to add for the noncommutative case). 2

From now on, we assume that k has characteristic zero.
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1d Reductive algebraic groups

According to (I, 17.21), to give a reductive algebraic groupG over a field k amounts to giv-
ing a simply connected semisimple group G over k, an algebraic group Z of multiplicative
type over k, and homomorphism Z.G/! Z. Because k has characteristic zero, Z.G/ is
of multiplicative type (even étale), and according to I, Theorem 14.20, the functor sending
an algebraic group of multiplicative type to its character group is an equivalence to the cat-
egory finitely generated Z-modules with a continuous action of � . If we suppose this last
category to be known, then describing the reductive algebraic groups amounts to describing
the simply connected semisimple groups together with their centres.

TORI

A torus T over a field k is said to be quasi-trivial if it is a product of tori of the form
.Gm/k0=k with k0 a finite field extension of k. If T D

Q
i .Gm/ki=k , then

H 1.k;T /
(1.17)
'

Y
i
H 1.ki ;Gm/

(1.6)
D 0:

If T is quasi-trivial over k, then Tk0 is quasi-trivial over k0 for any field k0 � k, and so
H 1.k0;Tk0/D 0. There is a converse to this.

THEOREM 1.18 A torus T over k has the property that H 1.k0;Tk0/ D 0 for all fields k0

containing k if and only if T is a direct factor of a quasi-trivial torus.

PROOF. Omitted for the present. 2

SIMPLY CONNECTED SEMISIMPLE GROUPS

Let G be a simply connected semisimple group over k. Then, according to II, Theorem
5.31, Gkal decomposes into a product

Gkal DG1� � � ��Gr (187)

of its almost-simple subgroups Gi . The set fG1; : : : ;Grg contains all the almost-simple
subgroups of G. When we apply � 2 � to (187), it becomes

Gkal D �Gkal D �G1� � � ���Gr

with f�G1; : : : ;�Grg a permutation of fG1; : : : ;Grg. LetH1; : : : ;Hs denote the products of
Gi in the different orbits of � . Then �Hi DHi , and so Hi is defined over k (I, 4.13), and

G DH1� � � ��Hs

is a decomposition of G into a product of its almost-simple subgroups.
Now suppose that G itself is almost-simple, so that � acts transitively on the Gi in

(187). Let
�D f� 2 � j �G1 DG1g:

Then G1 is defined over the subfield K D kal� of kal (I, 4.13).

PROPOSITION 1.19 We have G 'G1� (and so H 1.k;G/'H 1.K;G1/).
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PROOF. We can rewrite (187) as

Gkal D

Y
�G1kal

where � runs over a set of cosets for � in � . On comparing this with (186), we see that
there is a canonical isomorphism

Gkal ' .G1�/kal :

In particular, it commutes with the action of � , and so is defined over k (I, 4.13). 2

The group G1 over K is geometrically almost-simple, i.e., it is almost-simple and re-
mains almost-simple over kal. The discussion in this section shows that it suffices to con-
sider such groups.

ABSOLUTELY ALMOST-SIMPLE SIMPLY-CONNECTED SEMISIMPLE GROUPS

For an algebraic group G, let Gad DG=Z.G/.

PROPOSITION 1.20 For any simply connected semisimple group G, there is an exact se-
quence

1!Gad.kal/!A.kal/! Sym.D/! 1:

When G is split, � acts trivially on Sym.D/, and the sequence is split, i.e., there is a sub-
group of A.kal/ on which � acts trivially and which maps isomorphically onto Sym.D/.

PROOF. An element of Gad.kal/DG.kal/=Z.kal/ acts on Gkal by an inner automorphism.
Here D is the Dynkin diagram of G, and Sym.D/ is the group of symmetries of it. This
description of the outer automorphisms of G, at least in the split case, is part of the full
statement of the isomorphism theorem (V, 2.22). 2

The indecomposable Dynkin diagrams don’t have many symmetries: for D4 the sym-
metry group is S3 (symmetric group on 3 letters), for An, Dn, and E6 it has order 2, and
otherwise it is trivial.

THEOREM 1.21 For each indecomposable Dynkin diagram D, there is a split, geomet-
rically almost-simple, simply connected algebraic group G over k such that Gkal has the
type of the Dynkin diagram; moreover G is unique up to isomorphism. The isomorphism
classes of algebraic groups over k becoming isomorphic to G over kal are classified by
H 1.k;A.kal// where A.kal/ is the automorphism group of Gkal . For the split group G,
X�.Z.G// D P.D/=Q.D/ with � acting trivially. For the form G0 of G defined by a
1-cocycle .a� /, Z.G0/DZ.G/ but with � acting through a� .

For example, for An, the split group is SLn. This has centre �n, which is the group of
multiplicative type corresponding to Z=nZ with the trivial action of � . Let G0 and G be
groups over k, and let f WG0kal !Gkal be an isomorphism over kal. Write a� D f �1 ı�f .
Then f defines an isomorphism

f WZ0.k
al/!Z.kal/
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on the points of their centres, and

f .a��x/D �.f .x//:

When we use f to identify Z0.kal/ with Z.kal/, this says that � acts on Z.kal/ by the
twisted action �x D a��x.

REMARK 1.22 LetG0 be the split simply connected group of typeXy , and letG be a form
of G0. Let c be its cohomology class. If c 2H 1.k;Gad/, then G is called an inner form of
G. In general, c will map to a nontrivial element of

H 1.k;Sym.D//D Homcontinuous.�;Sym.D//:

Let � be the kernel of this homomorphism, and let L be the corresponding extension field
of k. Let z D .� W�/. Then we say G is of type zXy .

1e The main theorems on the cohomology of groups

To complete the classification of algebraic groups, it remains to compute the cohomology
groups. This, of course, is an important problem. All I can do here is list some of the main
theorems.

1.23 Let k be finite. If G is connected, then H 1.k;G/D 1:

1.24 Let k be a finite extension of the field of p-adic numbers Qp. If G is simply con-
nected and semisimple, then H 1.k;G/D 1.

1.25 Let k DQ, and let G be a semisimple group over Q.

(a) If G is simply connected, then

H 1.Q;G/'H 1.R;G/:

(b) If G is an adjoint group (i.e., has trivial centre), or equals O.�/ for some nondegen-
erate quadratic space .V;�/, then

H 1.Q;G/!
Y

pD2;3;5;:::;1
H 1.Qp;G/

is injective.

Note that the last result implies that two quadratic spaces over Q are isomorphic if and
only if they become isomorphic over Qp for all p (including p D 1, for which we set
Qp D R). This is a very important, and deep result, in number theory.

Statement 1.25 extends in an obvious way to finite extensions of Q.

NOTES For more on the cohomology of algebraic groups, see Kneser 1969 or Platonov and Rap-
inchuk 1994.

2 Classical groups and algebras with involution

Moved to Chapter I.
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3 Relative root systems and the anisotropic kernel.

The aim of this section is to explain Tits’s strategy for classifying nonsplit groups and their
representations. Here is a brief overview.

The isomorphism classes of split semisimple algebraic groups are classified over any
field. Given a semisimple algebraic group G over a field k, one knows that G splits over
the separable algebraic closureK of k, and so the problem is to determine the isomorphism
classes of semisimple algebraic groups over k corresponding to a given isomorphism class
over K. Tits (1966) sketches a program for doing this. Let T0 be a maximal split subtorus
of G, and let T be a maximal torus containing T0. The derived group of the centralizer
of T0 is called the anisotropic kernel of G — it is a semisimple algebraic group over k
whose split subtori are trivial. Let S be a simple set of roots for .GK ;TK/, and let S0 be
the subset vanishing on T0. The Galois group ofK=k acts on S , and the triple consisting of
S , S0, and this action is called the index of G. Tits sketches a proof (corrected in the MR
review of the article) that the isomorphism class of G is determined by the isomorphism
class of GK , its anisotropic kernel, and its index. It remains therefore to determine for
each isomorphism class of semisimple algebraic groups over k (a) the possible indices, and
(b) for each possible index, the possible anisotropic kernels. Tits (ibid.) announces some
partial results on (a) and (b).

Problem (b) is related to the problem of determining the central division algebras over
a field, and so it is only plausible to expect a solution to it for fields k for which the Brauer
group is known.

Tits’s work was continued by his student Selbach. To quote the MR review of Selbach
1976 (slightly edited):

This booklet treats the classification of quasisimple algebraic groups over ar-
bitrary fields along the lines of Tits 1966. Tits had shown that each such group
is described by three data: the index, the anisotropic kernel and the connect-
edness type. For his general results Tits had given or sketched proofs, but not
for the enumeration of possible indices, whereas the classification of possible
anisotropic kernels was not dealt with at all. The booklet under review starts
with an exposition with complete proofs of the necessary general theory. Some
proofs are simplified using results on representation theory over arbitrary fields
from another paper by Tits (Crelle 1971), and a different proof is given for the
main result, viz., that a simply connected group is determined by its index and
anisotropic kernel, because Tits’s original proof contained a mistake, as was in-
dicated in the review of that paper. Then it presents the detailed classifications
with proofs of all possible indices, and of the anisotropic kernels of exceptional
type. Questions of existence over special fields (finite, reals, p-adic, number)
are dealt with only in cases which fit easily in the context (Veldkamp).

It is interesting to note that, while Tits’s article has been cited 123 times, Selbach’s has been
cited on twice (MR April 2010).

Here is the MR review of Tits 1971 (my translation).

The author proposes to study the linear irreducible k-representations of a re-
ductive algebraic groupG over k, where k is any field. When k is algebraically
closed, Chevalley showed that the irreducible representations of G are charac-
terized, as in the classical case, by the weights of G (characters of a maximal
torus of G), every weight “dominant relative to a Borel subgroup” being the
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dominant weight of an irreducible representation. The author first shows that
this correspondence continues when G is split over k. In the general case, it is
necessary to start with a maximal k-torus T in G and a Borel subgroup B of
G containing T in order to define the weights (forming a group �) and the set
�C of dominant weights with respect to B; let �0 denote the subgroup of �
generated by the roots and by the weights zero on the intersection T \D.G/;
the quotient C � D �=�0 is the dual of the centre of G. The Galois group �
of the separable closure ksep of k over k acts canonically on �, �0, and �C;
the central result attaches to each dominant weight � 2 �C invariant under
� an absolutely irreducible representation of G in a linear group GL.m;D/,
well determined up to equivalence, D being a skew field with centre k, well
determined up to isomorphism; moreover, if � 2 �0 or if G is quasi-split (in
which case the Borel group B is defined over k), then D D k. One attaches
in this way to any weight � of �C invariant by � an element ŒD�D ˛G;k.�/
of the Brauer group Br.k/, and one shows that ˛G;k extends to a homomor-
phism of the group �� of weights invariant under � into Br.k/; moreover,
the kernel of ˛G;k contains �0, and so there is a fundamental homomorphism
ˇG;k WC

�� ! Br.k/ (where C �� is the subgroup of C � formed of the ele-
ments invariant under � ). The author shows that this homomorphism can be
defined cohomologically, in relation with the “Brauer-Witt invariant” of the
group G. A good part of the memoir is concerned with the study of the ho-
momorphism ˇ, notably the relations between ˇG;k and ˇG1;k , where G1 is
a reductive subgroup of G, as well as with majorizing the degree of ˇ.c/ in
Br.k/ when G is an almost-simple group and c is the class of the minuscule
dominant weight. He examines also a certain number of examples, notably the
groups of typeE6 andE7. Finally, he shows how starting from a knowledge of
˛, one obtains all the irreducible k-representations of G: start with a dominant
weight � 2�C, and denote by k� the field of invariants of the stabilizer of � in
� ; then if ˛G;k�.�/D ŒD��, one obtains a k�-representationG!GL.m;D�/,
whence one deduces canonically a k-representation k��, which is irreducible;
every irreducible k-representation is equivalent to a k��, and k�� and k��0 are
k-equivalent if and only if � and �0 are transformed into one another by an
element of � (Dieudonné).



CHAPTER VII
Arithmetic Subgroups

We study discrete subgroups of real Lie groups that are large in the sense that the quotient
has finite volume. For example, if the Lie group equals G.R/C for some algebraic group
G over Q, then G.Z/ is such a subgroup of G.R/C. The discrete subgroups of a real Lie
group G arising in (roughly) this way from algebraic groups over Q are called the arithmetic
subgroups of G (see 15.1 for a precise definition). Except when G is SL2.R/ or a similarly
special group, no one was able to construct a discrete subgroup of finite covolume in a
semisimple Lie group except by this method. Eventually, Selberg conjectured that there are
no others, and this was proved by Margulis.

NOTES At present this chapter is only an introductory survey. My intention is to expand it by
adding, for example, a more detailed discussion of Margulis’s theorem and its applications, and by
adding more proofs (but not, of course, all proofs).
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1 Commensurable groups

Subgroups H1 and H2 of a group are said to be commensurable if H1\H2 is of finite
index in both H1 and H2.

397
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The subgroups aZ and bZ of R are commensurable if and only if a=b 2Q. For example,
6Z and 4Z are commensurable because they intersect in 12Z, but 1Z and

p
2Z are not

commensurable because they intersect in f0g. More generally, lattices L and L0 in a real
vector space V are commensurable if and only if they generate the same Q-subspace of V .

Commensurability is an equivalence relation: obviously, it is reflexive and symmetric,
and if H1;H2 and H2;H3 are commensurable, one shows easily that H1\H2\H3 is of
finite index in H1;H2; and H3.

2 Definitions and examples

Let G be an algebraic group over Q. Let �WG! GLV be a faithful representation of G on
a finite-dimensional vector space V , and let L be a lattice in V . Define

G.Q/L D fg 2G.Q/ j �.g/LD Lg:

An arithmetic subgroup of G.Q/ is any subgroup commensurable with G.Q/L. For an
integer N > 1, the principal congruence subgroup of level N is

� .N/L D fg 2G.Q/L j g acts as 1 on L=NLg:

In other words, � .N/L is the kernel of

G.Q/L! Aut.L=NL/:

In particular, it is normal and of finite index in G.Q/L. A congruence subgroup of G.Q/
is any subgroup containing some � .N/ as a subgroup of finite index, so congruence sub-
groups are arithmetic subgroups.

EXAMPLE 2.1 LetG DGLn with its standard representation on Qn and its standard lattice
LD Zn. Then G.Q/L consists of the A 2 GLn.Q/ such that

AZn D Zn:

On applyingA to e1; : : : ; en, we see that this implies thatA has entries in Z. SinceA�1ZnD
Zn, the same is true of A�1. Therefore, G.Q/L is

GLn.Z/D fA 2Mn.Z/ j det.A/D˙1g.

The arithmetic subgroups of GLn.Q/ are those commensurable with GLn.Z/.
By definition,

� .N/D fA 2 GLn.Z/ j A� I mod N g

D f.aij / 2 GLn.Z/ jN divides .aij � ıij /g;

which is the kernel of
GLn.Z/! GLn.Z=NZ/:

EXAMPLE 2.2 Consider a triple .G;�;L/ as in the definition of arithmetic subgroups. The
choice of a basis for L identifies G with a subgroup of GLn and L with Zn. Then

G.Q/L DG.Q/\GLn.Z/
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and �L.N / for G is
G.Q/\� .N/:

For a subgroupG of GLn, one often writesG.Z/ forG.Q/\GLn.Z/. By abuse of notation,
given a triple .G;�;L/, one often writes G.Z/ for G.Q/L.

EXAMPLE 2.3 The group

Sp2n.Z/D
˚
A 2 GL2n.Z/ j At

�
0 I
�I 0

�
AD

�
0 I
�I 0

�	
is an arithmetic subgroup of Sp2n.Q/, and all arithmetic subgroups are commensurable
with it.

EXAMPLE 2.4 Let .V;˚/ be a root system and X a lattice P �X �Q. Chevalley showed
that .V;˚;X/ defines an “algebraic group G over Z” which over Q becomes the split
semisimple algebraic group associated with .V;˚;X/, and G.Z/ is a canonical arithmetic
group in G.Q/.

EXAMPLE 2.5 Arithmetic groups may be finite. For example Gm.Z/ D f˙1g, and the
arithmetic subgroups of G.Q/ will be finite if G.R/ is compact (because arithmetic sub-
groups are discrete in G.R/ — see later).

EXAMPLE 2.6 (for number theorists). Let K be a finite extension of Q, and let U be the
group of units in K. For the torus T D .Gm/K=k over Q, T .Z/D U .

3 Questions

The definitions suggest a number of questions and problems.

˘ Show the sets of arithmetic and congruence subgroups of G.Q/ do not depend on the
choice of � and L.

˘ Examine the properties of arithmetic subgroups, both intrinsically and as subgroups
of G.R/.

˘ Give applications of arithmetic subgroups.
˘ When are all arithmetic subgroups congruence?
˘ Are there other characterizations of arithmetic subgroups?

4 Independence of � and L.

LEMMA 4.1 Let G be a subgroup of GLn. For any representation �WG! GLV and lattice
L� V , there exists a congruence subgroup of G.Q/ leaving L stable (i.e., for some m� 1,
�.g/LD L for all g 2 � .m/).

PROOF. When we choose a basis for L, � becomes a homomorphism of algebraic groups
G ! GLn0 . The entries of the matrix �.g/ are polynomials in the entries of the matrix
g D .gij /, i.e., there exist polynomials P˛;ˇ 2QŒ: : : ;Xij ; : : :� such that

�.g/˛ˇ D P˛;ˇ .: : : ;gij ; : : :/:
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After a minor change of variables, this equation becomes

�.g/˛ˇ � ı˛;ˇ DQ˛;ˇ .: : : ;gij � ıij ; : : :/

with Q˛;ˇ 2 QŒ: : : ;Xij ; : : :� and ı the Kronecker delta. Because �.I /D I , the Q˛;ˇ have
zero constant term. Let m be a common denominator for the coefficients of the Qa;ˇ , so
that

mQ˛;ˇ 2 ZŒ: : : ;Xij ; : : :�:
If g � I mod m, then

Q˛;ˇ .: : : ;gij � ıij ; : : :/ 2 Z:

Therefore, �.g/Zn0 � Zn0 , and, as g�1 also lies in � .m/, �.g/Zn0 D Zn0 . 2

PROPOSITION 4.2 For any faithful representations G ! GLV and G ! GLV 0 of G and
lattices L and L0 in V and V 0, G.Q/L and G.Q/L0 are commensurable.

PROOF. According to the lemma, there exists a subgroup � of finite index in G.Q/L such
that � �G.Q/L0 . Therefore,

.G.Q/LWG.Q/L\G.Q/L0/� .G.Q/LW� / <1:

Similarly,
.G.Q/L0 WG.Q/L\G.Q/L0/ <1: 2

Thus, the notion of arithmetic subgroup is independent of the choice of a faithful rep-
resentation and a lattice. The same is true for congruence subgroups, because the proof of
(4.1) shows that, for any N , there exists an m such that � .Nm/� �L.N /.

5 Behaviour with respect to homomorphisms

PROPOSITION 5.1 Let � be an arithmetic subgroup of G.Q/, and let �WG ! GLV be a
representation of G. Every lattice L of V is contained in a lattice stable under � .

PROOF. According to (4.1), there exists a subgroup � 0 leaving L stable. Let

L0 D
X

�.g/L

where g runs over a set of coset representatives for � 0 in � . The sum is finite, and so L0 is
again a lattice in V , and it is obviously stable under � . 2

PROPOSITION 5.2 Let 'WG ! G0 be a homomorphism of algebraic groups over Q. For
any arithmetic subgroup � ofG.Q/, '.� / is contained in an arithmetic subgroup ofG0.Q/.

PROOF. Let �WG0! GLV be a faithful representation of G0, and let L be a lattice in V .
According to (5.1), there exists a lattice L0 � L stable under .� ı'/.� /, and so G0.Q/L �
'.� /. 2

REMARK 5.3 If 'WG ! G0 is a quotient map and � is an arithmetic subgroup of G.Q/,
then one can show that '.� / is of finite index in an arithmetic subgroup of G0.Q/ (Borel
1969a, 8.9, 8.11). Therefore, arithmetic subgroups ofG.Q/map to arithmetic subgroups of
G0.Q/. (Because '.G.Q// typically has infinite index in G0.Q/, this is far from obvious.)
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6 Adèlic description of congruence subgroups

In this subsection, which can be skipped, I assume the reader is familiar with adèles. The
ring of finite adèles is the restricted topological product

Af D
Y
.Q`WZ`/

where ` runs over the finite primes of Q. Thus, Af is the subring of
Q

Q` consisting of the
.a`/ such that a` 2 Z` for almost all `, and it is endowed with the topology for which

Q
Z`

is open and has the product topology.
Let V D SpmA be an affine variety over Q. The set of points of V with coordinates in

a Q-algebra R is
V.R/D HomQ.A;R/:

When we write
ADQŒX1; : : : ;Xm�=aDQŒx1; : : : ;xm�;

the map P 7! .P .x1/ ; : : : ;P.xm// identifies V.R/ with

f.a1; : : : ;am/ 2R
m
j f .a1; : : : ;am/D 0; 8f 2 ag:

Let ZŒx1; : : : ;xm� be the Z-subalgebra of A generated by the xi , and let

V.Z`/D HomZ.ZŒx1; : : : ;xm�;Z`/D V.Q`/\Zm` (inside Qm` ).

This set depends on the choice of the generators xi for A, but if ADQŒy1; : : : ;yn�, then the
yi ’s can be expressed as polynomials in the xi with coefficients in Q, and vice versa. For
some d 2 Z, the coefficients of these polynomials lie in ZŒ 1

d
�, and so

ZŒ 1
d
�Œx1; : : : ;xm�D ZŒ 1

d
�Œy1; : : : ;yn� (inside A).

It follows that for ` - d , the yi ’s give the same set V.Z`/ as the xi ’s. Therefore,

V.Af /D
Q
.V .Q`/WV.Z`//

is independent of the choice of generators for A.
For an algebraic group G over Q, we define

G.Af /D
Q
.G.Q`/WG.Z`//

similarly. Now it is a topological group.1 For example,

Gm.Af /D
Q
.Q�` WZ

�
` /D A�f .

PROPOSITION 6.1 For any compact open subgroup K of G.Af /, K \G.Q/ is a congru-
ence subgroup of G.Q/, and every congruence subgroup arises in this way.2

1The choice of generators determines a group structure on G.Z`/ for almost all `, etc..
2To define a basic compact open subgroup K of G.Af /, one has to impose a congruence condition at

each of a finite set of primes. Then � D G.Q/\K is obtained from G.Z/ by imposing the same congruence
conditions. One can think of � as being the congruence subgroup defined by the “congruence condition” K.
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PROOF. Fix an embedding G ,! GLn. From this we get a surjection QŒGLn�!QŒG� (of
Q-algebras of regular functions), i.e., a surjection

QŒX11; : : : ;Xnn;T �=.det.Xij /T �1/!QŒG�;

and hence QŒG�DQŒx11; : : : ;xnn; t �. For this presentation of QŒG�,

G.Z`/DG.Q`/\GLn.Z`/ (inside GLn.Q`/).

For an integer N > 0, let

K.N/D
Q
`K`; where K` D

(
G.Z`/ if ` -N
fg 2G.Z`/ j g � Inmod`r`g if r` D ord`.N /:

Then K.N/ is a compact open subgroup of G.Af /, and

K.N/\G.Q/D � .N/.

It follows that the compact open subgroups of G.Af / containing K.N/ intersect G.Q/
exactly in the congruence subgroups of G.Q/ containing � .N/. Since every compact open
subgroup of G.Af / contains K.N/ for some N , this completes the proof. 2

7 Applications to manifolds

Clearly Zn2 is a discrete subset of Rn2 , i.e., every point of Zn2 has an open neighbourhood
(for the real topology) containing no other point of Zn2 . Therefore, GLn.Z/ is discrete in
GLn.R/, and it follows that every arithmetic subgroup � of a group G is discrete in G.R/.

Let G be an algebraic group over Q. Then G.R/ is a Lie group, and for every compact
subgroup K of G.R/, M DG.R/=K is a smooth manifold (Lee 2003, 9.22).

THEOREM 7.1 For any discrete torsion-free subgroup � ofG.R/, � acts freely onM , and
� nM is a smooth manifold.

PROOF. Standard; see for example Lee 2003, Chapter 9, or Milne 2005, 3.1. 2

Arithmetic subgroups are an important source of discrete groups acting freely on man-
ifolds. To see this, we need to know that there exist many torsion-free arithmetic groups.

8 Torsion-free arithmetic groups

Note that SL2.Z/ is not torsion-free. For example, the following elements have finite order: 
�1 0

0 �1

!2
D

 
1 0

0 1

!
,

 
0 �1

1 0

!2
D

 
�1 0

0 �1

!
D

 
0 �1

1 1

!3
:

THEOREM 8.1 Every arithmetic group contains a torsion-free subgroup of finite index.

For this, it suffices to prove the following statement.
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LEMMA 8.2 For any prime p � 3, the subgroup � .p/ of GLn.Z/ is torsion-free.

PROOF. If not, it will contain an element of order a prime `, and so we will have an equation

.I CpmA/` D I

with m � 1 and A a matrix in Mn.Z/ not divisible by p (i.e., not of the form pB with B
in Mn.Z/). Since I and A commute, we can expand this using the binomial theorem, and
obtain an equation

`pmAD�
X`

iD2

 
`

i

!
pmiAi :

In the case that `¤ p, the exact power of p dividing the left hand side is pm, but p2m

divides the right hand side, and so we have a contradiction.
In the case that ` D p, the exact power of p dividing the left hand side is pmC1, but,

for 2 � i < p, p2mC1j
�
p
i

�
pmi because pj

�
p
i

�
, and p2mC1jpmp because p � 3. Again we

have a contradiction. 2

9 A fundamental domain for SL2

Let H be the complex upper half plane

HD fz 2 C j =.z/ > 0g:

For

 
a b

c d

!
2 GL2.R/,

=

�
azCb

czCd

�
D
.ad �bc/=.z/

jczCd j2
: (188)

Therefore, SL2.R/ acts on H by holomorphic maps

SL2.R/�H!H;
 
a b

c d

!
z D

azCb

czCd
:

The action is transitive, because  
a b

0 a�1

!
i D a2iCab;

and the subgroup fixing i is

O D

( 
a b

�b a

! ˇ̌̌̌
ˇ a2Cb2 D 1

)

(compact circle group). Thus
H' .SL2.R/=O/ � i

as a smooth manifold.
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PROPOSITION 9.1 Let D be the subset

fz 2 C j �1=2�<.z/� 1=2; jzj � 1g

of H. Then
HD SL2.Z/ �D;

and if two points of D lie in the same orbit then neither is in the interior of D.

PROOF. Let z0 2 H. One checks that, for any constant A, there are only finitely many
c;d 2 Z such that jcz0Cd j � A, and so (see (188)) we can choose a  2 SL2.Z/ such that

=..z0// is maximal. As T D

 
1 1

0 1

!
acts on H as z 7! zC1, there exists an m such that

�1=2�<.Tm.z0//� 1=2:

I claim that Tm.z0/ 2D. To see this, note that S D

 
0 �1

1 0

!
acts by S.z/D�1=z, and

so

=.S.z//D
=.z/

jzj2
:

If Tm.z0/ …D, then jTm.z0/j < 1, and =.S.Tm.z0/// > =.Tm.z0//, contradicting
the definition of  .

The proof of the second part of the statement is omitted. 2

10 Application to quadratric forms

Consider a binary quadratic form:

q.x;y/D ax2CbxyC cy2; a;b;c 2 R:

Assume q is positive definite, so that its discriminant �D b2�4ac < 0.
There are many questions one can ask about such forms. For example, for which in-

tegers N is there a solution to q.x;y/ D N with x;y 2 Z? For this, and other questions,
the answer depends only on the equivalence class of q, where two forms are said to be
equivalent if each can be obtained from the other by an integer change of variables. More
precisely, q and q0 are equivalent if there is a matrix A 2 SL2.Z/ taking q into q0 by the
change of variables,  

x0

y0

!
D A

 
x

y

!
:

In other words, the forms

q.x;y/D .x;y/ �Q �

 
x

y

!
; q0.x;y/D .x;y/ �Q0 �

 
x

y

!

are equivalent if QD At �Q0 �A for A 2 SL2.Z/.
Every positive-definite binary quadratic form can be written uniquely

q.x;y/D a.x�!y/.x� N!y/, a 2 R>0, ! 2H:
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If we let Q denote the set of such forms, there are commuting actions of R>0 and SL2.Z/
on it, and

Q=R>0 'H

as SL2.Z/-sets. We say that q is reduced if

j!j> 1 and �
1

2
�<.!/ <

1

2
, or

j!j D 1 and �
1

2
�<.!/� 0:

More explicitly, q.x;y/D ax2CbxyC cy2 is reduced if and only if either

�a < b � a < c or

0� b � aD c:

Theorem 9.1 implies:

Every positive-definite binary quadratic form is equivalent to a reduced form;
two reduced forms are equivalent if and only if they are equal.

We say that a quadratic form is integral if it has integral coefficients, or, equivalently, if
x;y 2 Z H) q.x;y/ 2 Z.

There are only finitely many equivalence classes of integral definite binary
quadratic forms with a given discriminant.

Each equivalence class contains exactly one reduced form ax2CbxyC cy2. Since

4a2 � 4ac D b2��� a2��

we see that there are only finitely many values of a for a fixed �. Since jbj � a, the same
is true of b, and for each pair .a;b/ there is at most one integer c such that b2�4ac D�.

This is a variant of the statement that the class number of a quadratic imaginary field is
finite, and goes back to Gauss (cf. my notes on Algebraic Number Theory, 4.28, or, in more
detail, Borevich and Shafarevich 1966, especially Chapter 3, �6).

11 “Large” discrete subgroups

Let � be a subgroup of a locally compact group G. A discrete subgroup � of a locally
compact group G is said to cocompact (or uniform) if G=� is compact. This is a way
of saying that � is “large” relative to G. There is another weaker notion of this. On
each locally compact group G, there exists a left-invariant Borel measure, unique up to a
constant, called the left-invariant Haar measure3, which induces a measure � on � nG. If
�.� nG/ <1, then one says that � has finite covolume, or that � is a lattice in G. IfK is
a compact subgroup of G, the measure on G defines a left-invariant measure on G=K, and
�.� nG/ <1 if and only if the measure �.� nG=K/ <1.

EXAMPLE 11.1 Let G D Rn, and let � D Ze1C�� �CZei . Then � nG.R/ is compact if
and only if i D n. If i < n, � does not have finite covolume. (The left-invariant measure
on Rn is just the usual Lebesgue measure.)

3For real Lie groups, the proof of the existence is much more elementary than in the general case (cf.
Boothby 1975, VI 3.5).



406 VII. Arithmetic Subgroups

EXAMPLE 11.2 Consider, SL2.Z/� SL2.R/. The left-invariant measure on SL2.R/=O '
H is dxdy

y2
, and

Z
� nH

dxdy

y2
D

“
D

dxdy

y2
�

Z 1
p
3=2

Z 1=2

�1=2

dxdy

y2
D

Z 1
p
3=2

dy

y2
<1:

Therefore, SL2.Z/ has finite covolume in SL2.R/ (but it is not cocompact — SL2 .Z/nH is
not compact).

EXAMPLE 11.3 Consider G DGm. The left-invariant measure4 on R� is dx
x

, andZ
R�=f˙1g

dx

x
D

Z 1
0

dx

x
D1:

Therefore, G.Z/ is not of finite covolume in G.R/.

EXERCISE

EXERCISE 11-1 Show that, if a subgroup � of a locally compact group is discrete (resp. is
cocompact, resp. has finite covolume), then so also is every subgroup commensurable with
� .

12 Reduction theory

In this section, I can only summarize the main definitions and results from Borel 1969a.
Any positive-definite real quadratic form in n variables can be written uniquely as

q.Ex/D t1.x1Cu12x2C�� �Cu1nxn/
2
C�� �C tn�1.xn�1Cun�1nxn/

2
C tnx

2
n

D Eyt � Ey

where

Ey D

0BBBB@
p
t1 0 0

0
p
t2 0

: : :

0 0
p
tn

1CCCCA
0BBBB@
1 u12 � � � u1n

0 1 � � � u2n
: : :

:::

0 0 1

1CCCCA
0BBBB@
x1

x2
:::

xn

1CCCCA : (189)

Let Qn be the space of positive-definite quadratic forms in n variables,

Qn D fQ 2Mn.R/ jQt DQ; ExtQEx > 0g:

Then GLn.R/ acts on Qn by

B;Q 7! B tQBWGLn.R/�Qn!Qn:
4Because daxax D

dx
x ; alternatively,Z t2

t1

dx

x
D log.t2/� log.t1/D

Z at2

at1

dx

x
:
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The action is transitive, and the subgroup fixing the form I is5 On.R/DfA jAtAD I g, and
so we can read off from (189) a set of representatives for the cosets of On.R/ in GLn.R/.
We find that

GLn.R/' A �N �K
where

˘ K is the compact group On.R/,
˘ AD T .R/C for T the split maximal torus in GLn of diagonal matrices,6 and
˘ N is the group Un.R/.

Since A normalizes N , we can rewrite this as

GLn.R/'N �A �K:

For any compact neighbourhood ! of 1 in N and real number t > 0, let

St;! D ! �At �K

where
At D fa 2 A j ai;i � taiC1;iC1; 1� i � n�1g: (190)

Any set of this form is called a Siegel set.

THEOREM 12.1 Let � be an arithmetic subgroup in G.Q/D GLn.Q/. Then

(a) for some Siegel set S, there exists a finite subset C of G.Q/ such that

G.R/D � �C �SI

(b) for any g 2G.Q/ and Siegel set S, the set of  2 � such that

gS\S¤ ;

is finite.

Thus, the Siegel sets are approximate fundamental domains for � acting on G.R/.
Now consider an arbitrary reductive group G over Q. Since we are not assuming G to

be split, it may not have a split maximal torus, but, nevertheless, we can choose a torus T
that is maximal among those that are split. From .G;T /, we get a root system as before (not
necessarily reduced). Choose a base S for the root system. Then there is a decomposition
(depending on the choice of T and S )

G.R/DN �A �K

where K is again a maximal compact subgroup and AD T .R/C (Borel 1969a, 11.4, 11.9).
The definition of the Siegel sets is the same except now7

At D fa 2 A j ˛.a/� t for all ˛ 2 Sg. (191)

Then Theorem 12.1 continues to hold in this more general situation (Borel 1969a, 13.1,
15.4).

5So we are reverting to using On for the orthogonal group of the form x21C�� �Cx
2
n.

6The C denotes the identity component of T .R/ for the real topology. Thus, for example,

.Gm.R/r /C D .Rr /C D .R>0/r :

7Recall that, with the standard choices, �1��2; : : : ;�n�1��n is a base for the roots of T in GLn, so this
definition agrees with that in (190).
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EXAMPLE 12.2 The images of the Siegel sets for SL2 in H are the sets

St;u D fz 2H j =.z/� t; j<.z/j � ug:

THEOREM 12.3 If Homk.G;Gm/D 0, then every Siegel set has finite measure.

PROOF. Borel 1969a, 12.5. 2

THEOREM 12.4 Let G be a reductive group over Q, and let � be an arithmetic subgroup
of G.Q/.

(a) The volume of � nG.R/ is finite if and only if G has no nontrivial character over Q
(for example, if G is semisimple).

(b) The quotient � nG.R/ is compact if and only if it G has no nontrivial character over
Q and G.Q/ has no unipotent element¤ 1.

PROOF. (a) The necessity of the conditions follows from (11.3). The sufficiency follows
from (12.2) and (12.3).

(b) See Borel 1969a, 8.4. 2

EXAMPLE 12.5 Let B be a quaternion algebra, and let G be the associated group of ele-
ments of B of norm 1 (we recall the definitions in 15.2 below).

(a) If B � M2.R/, then G D SL2.R/, and G.Z/nG.R/ has finite volume, but is not
compact (

�
1 1
0 1

�
is a unipotent in G.Q/).

(b) If B is a division algebra, but R˝Q B �M2.R/, then G.Z/nG.R/ is compact (if
g 2 G.Q/ is unipotent, then g� 1 2 B is nilpotent, and hence zero because B is a
division algebra).

(c) If R˝QB is a division algebra, then G.R/ is compact (and G.Z/ is finite).

EXAMPLE 12.6 Let G D SO.q/ for some nondegenerate quadratic form q over Q. Then
G.Z/nG.R/ is compact if and only if q doesn’t represent zero in Q, i.e., q.Ex/D 0 does not
have a nontrivial solution in Qn (Borel 1969a, 8.6).

13 Presentations

In this section, I assume some familiarity with free groups and presentations (see, for ex-
ample, GT, Chapter 2).

PROPOSITION 13.1 The group SL2.Z/=f˙I g is generated by S D
�
0 �1
1 0

�
and T D

�
1 1
0 1

�
.

PROOF. Let � 0 be the subgroup of SL2.Z/=f˙I g generated by S and T . The argument in
the proof of (9.1) shows that � 0 �D DH.

Let z0 lie in the interior of D, and let  2 � . Then there exist  0 2 � 0 and z 2D such
that z0D  0z. Now  0�1z0 lies inD and z0 lies in the interior ofD, and so  0�1 D˙I
(see 9.1). 2
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In fact SL2.Z/=f˙I g has a presentation hS;T jS2; .ST /3i. It is known that every
torsion-free subgroup � of SL2.Z/ is free on 1C .SL2.Z/W� /

12
generators (thus the subgroup

may be free on a larger number of generators than the group itself). For example, the com-
mutator subgroup of SL2.Z/ has index 12, and is the free group on the generators

�
2 1
1 1

�
and�

1 1
1 2

�
:

For a general algebraic group G over Q, choose S and C as in (12.1a), and let

D D
[

g2C
gS=K:

Then D is a closed subset of G.R/=K such that � �D DG.R/=K and

f 2 � j D\D ¤ ;g

is finite. One shows, using the topological properties of D, that this last set generates � ,
and that, moreover, � has a finite presentation.

14 The congruence subgroup problem

Consider an algebraic subgroup G of GLn. Is every arithmetic subgroup congruence? That
is, does every subgroup commensurable with G.Z/ contain

� .N/
def
D Ker.G.Z/!G.Z=NZ//

for some N .
That SL2.Z/ has noncongruence arithmetic subgroups was noted by Klein as early as

1880. For a proof that SL2.Z/ has infinitely many subgroups of finite index that are not
congruence subgroups see Sury 2003, 3-4.1. The proof proceeds by showing that the groups
occurring as quotients of SL2.Z/ by principal congruence subgroups are of a rather special
type, and then exploits the known structure of SL2.Z/ as an abstract group (see above)
to construct many finite quotients not of his type. It is known that, in fact, congruence
subgroups are sparse among arithmetic groups: if N.m/ denotes the number of congruence
subgroups of SL2.Z/ of index � m and N 0.m/ the number of arithmetic subgroups, then
N.m/=N 0.m/! 0 as m!1.

However, SL2 is unusual. For split simply connected almost-simple groups other than
SL2, for example, for SLn (n� 3), Sp2n (n� 2/, all arithmetic subgroups are congruence.

In contrast to arithmetic subgroups, the image of a congruence subgroup under an
isogeny of algebraic groups need not be a congruence subgroup.

Let G be a semisimple group over Q. The arithmetic and congruence subgroups of
G.Q/ define topologies on it, namely, the topologies for which the subgroups form a neigh-
bourhood base for 1. We denote the corresponding completions by OG and NG. Because
every congruence group is arithmetic, the identity map on G.Q/ gives a surjective homo-
morphism OG ! NG, whose kernel C.G/ is called the congruence kernel. This kernel is
trivial if and only if all arithmetic subgroups are congruence. The modern congruence sub-
group problem is to compute C.G/. For example, the group C.SL2/ is infinite. There is a
precise conjecture predicting exactly when C.G/ is finite, and what its structure is when it
is finite.
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Now let G be simply connected, and let G0 D G=N where N is a nontrivial subgroup
of Z.G/. Consider the diagram:

1 ����! C.G/ ����! OG ����! NG ����! 1??y ??y O� ??y N�
1 ����! C.G0/ ����! OG0 ����! NG0 ����! 1:

It is known that NG D G.Af /, and that the kernel of O� is N.Q/, which is finite. On
the other hand, the kernel of N� is N.Af /, which is infinite. Because Ker. N�/ ¤ N.Q/,
� WG.Q/! G0.Q/ doesn’t map congruence subgroups to congruence subgroups, and be-
cause C.G0/ contains a subgroup isomorphic to N.Af /=N.Q/, G0.Q/ contains a noncon-
gruence arithmetic subgroup.

It is known that C.G/ is finite if and only if is contained in the centre of Ĝ.Q/. For
an geometrically almost-simple simply connected algebraic group G over Q, the modern
congruence subgroup problem has largely been solved when C.G/ is known to be central,
because then C.G/ is the dual of the so-called metaplectic kernel which is known to be a
subgroup of the predicted group (except possibly for certain outer forms of SLn) and equal
to it many cases (work of Gopal Prasad, Raghunathan, Rapinchuk, and others).

15 The theorem of Margulis

Already Poincaré wondered about the possibility of describing all discrete
subgroups of finite covolume in a Lie group G. The profusion of such sub-
groups in G D PSL2.R/makes one at first doubt of any such possibility. How-
ever, PSL2.R/was for a long time the only simple Lie group which was known
to contain non-arithmetic discrete subgroups of finite covolume, and further ex-
amples discovered in 1965 by Makarov and Vinberg involved only few other
Lie groups, thus adding credit to conjectures of Selberg and Pyatetski-Shapiro
to the effect that “for most semisimple Lie groups” discrete subgroups of finite
covolume are necessarily arithmetic. Margulis’s most spectacular achievement
has been the complete solution of that problem and, in particular, the proof of
the conjecture in question.

Tits 1980

DEFINITION 15.1 LetH be a semisimple algebraic group over R. A subgroup � of H.R/
is arithmetic if there exists an algebraic group G over Q, a surjective map GR!H such
that the kernel of '.R/WG.R/!H.R/ is compact, and an arithmetic subgroup � 0 of G.R/
such that '.� 0/ is commensurable with � .

EXAMPLE 15.2 Let B be a quaternion algebra over a finite extension F of Q,

B D F CF iCFj CFk

i2 D a; j 2 D b; ij D k D�j i:

The norm of an element wCxiCyj C zk of R˝QB is

.wCxiCyj C zk/.w�xi �yj �zk/D w2�ax2�by2Cabz2:
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Then B defines an almost-simple semisimple group G over Q such that, for any Q-algebra
R,

G.R/D fb 2R˝QB j Nm.b/D 1g:

Assume that F is totally real, i.e.,

F ˝QR' R� � � ��R;

and that correspondingly,

B˝QR�M2.R/�H� � � ��H

where H is the usual quaternion algebra over R (corresponding to .a;b/D .�1;�1/). Then

G.R/� SL2.R/�H1� � � ��H1

H1 D fwCxiCyj Czk 2H j w2Cx2Cy2C z2 D 1g:

Nonisomorphic B’s define different commensurability classes of arithmetic subgroups of
SL2.R/, and all such classes arise in this way.

Not every discrete subgroup in SL2.R/ (or SL2.R/=f˙I g) of finite covolume is arith-
metic. According to the Riemann mapping theorem, every compact Riemann surface of
genus g � 2 is the quotient of H by a discrete subgroup of Aut.H/D SL2.R/=f˙I g acting
freely on H: Since there are continuous families of such Riemann surfaces, this shows that
there are uncountably many discrete cocompact subgroups in SL2.R/=f˙I g (therefore also
in SL2.R/), but there only countably many arithmetic subgroups.

The following amazing theorem of Margulis shows that SL2 is exceptional in this re-
gard:

THEOREM 15.3 Let � be a discrete subgroup of finite covolume in a noncompact almost-
simple real algebraic group H ; then � is arithmetic unless H is isogenous to SO.1;n/ or
SU.1;n/:

PROOF. For the proof, see Margulis 1991 or Zimmer 1984, Chapter 6. For a discussion of
the theorem, see Witte Morris 2008, �5B. 2

Here
SO.1;n/ correspond to x21C�� �Cx

2
n�x

2
nC1

SU.1;n/ corresponds to z1 Nz1C�� �C zn Nzn�znC1 NznC1.
Note that, because SL2.R/ is isogenous to SO.1;2/, the theorem doesn’t apply to it.

16 Shimura varieties

Let U1 D fz 2C j z Nz D 1g. Recall that for a group G, Gad DG=Z.G/ and that G is said to
be adjoint if G DGad (i.e., if Z.G/D 1).

THEOREM 16.1 Let G be a semisimple adjoint group over R, and let uWU1! G.R/ be a
homomorphism such that

(a) only the characters z�1;1;z occur in the representation of U1 on Lie.G/CI
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(b) the subgroup
KC D fg 2G.C/ j g D inn.u.�1//. Ng/g

of G.C/ is compact; and
(c) u.�1/ does not project to 1 in any simple factor of G.

Then,
K DKC\G.R/C

is a maximal compact subgroup of G.R/C, and there is a unique structure of a complex
manifold on X DG.R/C=K such that G.R/C acts by holomorphic maps and u.z/ acts on
the tangent space at p D 1K as multiplication by z. (Here G.R/C denotes the identity for
the real topology.)

PROOF. See Helgason 1978, VIII; see also Milne 2005, 1.21. 2

The complex manifolds arising in this way are the hermitian symmetric domains. They
are not the complex points of any algebraic variety, but certain quotients are.

THEOREM 16.2 Let G be a simply connected semisimple algebraic group over Q having
no simple factorH withH.R/ compact. Let uWU1!Gad.R/ be a homomorphism satisfy-
ing (a) and (b) of (16.1), and letX DGad.R/C=K with its structure as a complex manifold.
For each torsion-free arithmetic subgroup � of G.Q/, � nX has a unique structure of an
algebraic variety compatible with its complex structure.

PROOF. This is the theorem of Baily and Borel, strengthened by a theorem of Borel. See
Milne 2005, 3.12, for a discussion of the theorem. 2

EXAMPLE 16.3 LetGD SL2. For z 2C, choose a square root aC ib, and map z to
�
a b
�b a

�
in SL2.R/=f˙I g. For example, u.�1/D

�
0 1
�1 0

�
, and

KC D f
�
a b

� Nb Na

�
2 SL2.C/ j jaj2Cjbj2 D 1g;

which is compact. Moreover,

K
def
DKC\SL2.R/D

˚�
a b
�b a

�
2 SL2.R/ j a2Cb2 D 1

	
:

Therefore G.R/=K �H.

THEOREM 16.4 Let G; u, and X be as in (16.2). If � is a congruence subgroup, then
� nX has a canonical model over a specific finite extension Q� of Q.

PROOF. For a discussion of the theorem, see Milne 2005, ��12–14. 2

The varieties arising in this way are called connected Shimura varieties. They are very
interesting. For example, let �0.N / be the congruence subgroup of SL2.Q/ consisting of

matrices the

 
a b

c d

!
in SL2.Z/ with c divisible by N . Then Q�0.N/ D Q, and so the

algebraic curve �0.N /nH has a canonical model Y0.N / over Q. It is known that, for every
elliptic curve E over Q, there exists a nonconstant map Y0.N /! E for some N , and that
from this Fermat’s last theorem follows.
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OESTERLÉ, J. 1984. Nombres de Tamagawa et groupes unipotents en caractéristique p.
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monoid, 26
affine, 26

monoid object, 47
morphism of, 47

monoid scheme
affine algebraic, 58

monoid variety, 58
�n, 29

n.F /, 265
noetherian, 55
norm

reduced, 226
normalize, 85
normalizer, 261

object
dual, 234
monogenic, 138
trivial, 234

On, 32

p-group, 144
part

semisimple, 134, 136
unipotent, 134, 136

perfect pairing, 371
plane

hyperbolic, 207
point

regular, 62
product

almost direct, 15, 198,
286

semidirect, 89
semidirect defined by

a map, 90

quadratic form
integral, 405
reduced, 405

quadratic space
anisotropic, 204
isotropic, 204
nondegenerate, 204
regular, 204
singular, 204
totally isotropic, 204

quotient
by N , 87
of an algebraic group,

85
of G by H , 353

quotient object, 138

radical, 194
geometric, 195
geometric unipotent,

195
nilpotent, 306
of a Lie algebra, 266
unipotent, 194

rank
of a reductive group,

343
of a root system, 297
of semisimple Lie al-

gebra, 309
reduced, 57, 61

geometrically, 57
reductive group

split, 336, 337
reflection, 204, 296

with vector ˛, 296
regular, 62
represent, 21
representation

diagonalizable, 167
faithful, 95
finite-dimensional, 95
linear, 95
of a Lie algebra, 258
regular, 95, 96

ring
coordinate, 54
of dual numbers, 242
of finite adeles, 401
regular, 62

root
highest, 299
indecomposable, 299
special, 299

root datum, 340
reduced, 348
semisimple, 347
toral, 347

root group, 325
root system, 297

indecomposable, 297
reduced, 298

roots, 309, 338, 341, 365
of a root system, 297
simple, 299

scheme, 55
affine over k, 54
affine, 54
over $k$, 55

series
composition, 127
derived, 189
subnormal, 126

set
� -, 217, 384

sheaf
for the fpqc topology,

91
Shimura variety, 412
Siegel set, 407
simple, 15
sl2-triple, 310
SLn, 31
SOn

split, 337
space

quadratic, 203
spectrum

prime, 53
splitting, 308
Spn, 32
stabilizer, 112, 258
subalgebra

Borel, 314
Cartan, 308
Hopf, 45
Lie, 240

subcategory
replete, 115

subcoalgebra, 42
subcomodule, 99
subfunctor

closed, 67
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subgroup
affine, 74
arithmetic, 398, 410
Borel, 356
characteristic, 75
congruence, 398
dense, 79
parabolic, 357
principal congruence,

398
subgroups

commensurable, 397
subobject, 138

generated by, 138
subrepresentation, 95
superalgebra, 27, 208

commutative, 27
supergroup

affine algebraic, 27

tannakian category
algebraic, 235

tba, 90, 182, 198
tba
tensor product

super, 208
theorem

description, 137
reconstruction, 131

Tn, 16
topology

Zariski, 53
torus, 16, 171

anisotropic, 171
maximal, 336
quasi-trivial, 392
split, 169

trace form, 278
transporter, 67

Un, 16
uniform, 405

Va, 30
variety

flag, 352
Grassman, 352

vector
anisotropic, 203
isotropic, 203

weight
dominant, 304
fundamental, 304, 379
fundamental domi-

nant, 304
highest, 315, 380

weight spaces, 363
weights, 304, 363
Weyl group, 341, 344
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