
Appendix D

Derived Categories

Let F WA! B be a left exact functor of abelian categories, and assume that A has enough
injectives. For an object A of A, we choose an injective resolution A! I � of A and define
.RrF /.A/DH r.FI �/. A different choice A! J � gives a different object .RrF /.A/0 D

H r.FJ �/, but there exists a map ˛WI � ! J � of resolutions, and the corresponding map
.RrF /.A/! .RrF /.A/0 is an isomorphism which is independent of the choice of ˛. This
means that the object .RrF /.A/ of B is well-defined up to a unique isomorphism.

In passing from the complex FI � to the family of objects H r.FI �/, we have lost infor-
mation. However, FI � is not well-defined as an object of the category C.B/ of complexes in
B: different choices of I � may give different (nonisomorphic) complexes FI �. The derived
category D.B/ of B is defined to have the same objects as C.B) but it has a new notion of
morphism for which FI � is well-defined up to a unique isomorphism.

The homotopy category

Let A be an abelian category. The category C.A/ of complexes in A is an abelian category,
and we sometimes identify A with the full subcategory of C.A/ consisting of the complexes
concentrated in degree 0. For a complex X , define XŒr� to be the complex with .XŒr�/n D
XnCr and dn

XŒr�
D .�1/rdn

X . The functor

X  XŒ1�WC.A/! C.A/

is called the translation (or shift) functor, and is denoted by T .
Consider two maps f;gWX ! Y of complexes. A homotopy from f to g is a family of

maps snWXn! Y n�1 such that

f n
�gn

D snC1
ıdn

X Cd
n�1
Y ı sn:

We say that f and g are homotopic if there exists a homotopy from one to the other, i.e., if
there exists a diagram

These are my notes (not final) for a revised expanded version of my book Étale Cohomology, J.S. Milne,
Princeton University Press, 1980. Please send comments and corrections to me at jmilne at umich.edu. Dated
September 7, 2013.
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2 APPENDIX D. DERIVED CATEGORIES

Xn�1 Xn XnC1

Y n�1 Y n Y nC1

dn�1
X dn

X

dn�1
Y dn

Y

sn
snC1f n gn

in which the vertical maps from Xn to Y n differ by the sum of the two maps constructed
using the diagonal arrows.

z1 EXAMPLE D.1 Let A and B be objects of A, and let B ! I � be an injective resolution
of B . A map of complexes A! I �Œr� is simply a map f WA! I r such that d r

I ı f D

0. Moreover, � is homotopic to zero if and only if there exists a map sWB ! I r�1 such
that d r�1

I ı s D f . Thus, the group of homotopy classes of maps B ! I �Œr� is precisely

H r.Hom.B;I �// def
D Extr.B;C /.

A map of complexes homotopic to zero remains homotopic to zero when composed
with another map. Therefore, we can define a new category K.A/ as follows�

ob.K.A// D ob.C.A//
HomK.A/.X;Y / D HomC.A/.X;Y /=ff j f homotopic to zerog.

In other words, the objects of K.A/ are the complexes in A and the morphisms are the
homotopy classes of maps of complexes.

For each r , the functor X � H r.X �/ factors through K.A/.

Triangulated categories

The category K.A/ is additive but not abelian (in contrast to C.A/. In particular, there
is no notion of an exact sequence in K.A/. Of course, one can say that a sequence of
objects of K.A/ is exact if it is exact as a sequence in C.A/, but this notion is not intrinsic
to the category K.A/ — it depends on how we have described it — and the sequences
arising in this way are not well-behaved. So what extra structure does K.A/ have? It has a
distinguished class of triangles.

For the moment, let K be an additive category with an automorphism T WK! K (the
translation functor), and write XŒr� for T rX . A triangle in K is a sequence of morphisms

X
f
�! Y

g
�!Z

h
�!XŒ1�: (1) ez6

Sometimes, this triangle is written

X

Y Z;

C
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which explains the name. A morphism of triangles is a commutative diagram

X Y Z XŒ1�

X 0 Y 0 Z0 X 0Œ1�

u v w uŒ1� (2) ez7

in K.
Now return to C.A/. The cone of a map f WX ! Y of complexes is the complex

C.f /DXŒ1�˚Y; dC.f / D

�
dXŒ1� 0

f Œ1� dY

�
i.e.,

� � � Xn˚Y n�1 XnC1˚Y n � � ��
x

y

� �
�dn

Xx

f nxCdn�1
Y y

�
dn�1

C.f /

There are projection maps y 7! .0;y/WY ! C.f / and .x;y/ 7! �xWC.f /! XŒ1�, and
hence a triangle

X ! Y ! C.f /!XŒ1�: (3) ez3

A triangle in K.A/ isomorphic to one of this form is said to be distinguished.
The collection of distinguished triangles in K.A/ satisfies the following conditions.1

TR1 (Existence axiom). For every object X in A, the triangle X
id
�! X ! 0! XŒ1�

is distinguished; for every morphism X ! Y in K.A/, there exists a distinguished
triangle X ! Y ! Z! XŒ1�; every triangle isomorphic to a distinguished triangle
is distinguished.

TR2 (Rotation axiom). A triangle X
f
�! Y

g
�!Z

h
�!XŒ1� is distinguished if and only if

Y
g
�!Z

h
�!XŒ1�

�f Œ1�
�! Y Œ1� is distinguished.

TR3 (Morphisms axiom). Every diagram

X Y Z XŒ1�

X 0 Y 0 Z0 X 0Œ1�;

u v

in which the rows are distinguished triangles and the square at left commutes can be
completed to a morphism of triangles.

TR4 (octahedral axiom). For every pair of composable morphisms f1, f2 and every triple
of distinguished triangles

X
f1
�! Y

g1
�! A

h1
�!XŒ1�

Y
f2
�!Z

g2
�! B

h2
�! Y Œ1�

X
f2ıf1
�! Z

g 0

�! C
h0

�!XŒ1�

1We follow Verdier’s original numbering. Not all authors are so scrupulous.
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based on f1, f2, f2 ıf1, there exists a octahedron2 based on f1, f2 and containing
the distinguished triangles as faces:

X

A

C

Y

B

Z

f2 ıf1

f1 f2

g1 g2

g 0

h1
C

h2
C

h0 C

h

C

f g

(4) ez4

Each triangle either commutes or is distinguished. In other words, there exists a
distinguished triangle

A
f
�! C

g
�! B

h
�! AŒ1�

such that

h1 D h
0
ıf; g2 D g ıg

0; hD g1 ıh2

h2 ıg D f1 ıh
0; f ıg1 D g

0
ıf2:

An additive category together with a translation functor (automorphism T WX  XŒ1�)
and a collection of (distinguished) triangles satisfying TR1–TR4 is called a triangulated
category. Let F WK! K0 be a functor of triangulated categories together with an isomor-
phism F ıT ! T 0 ıF . Then F is said to be exact (or triangulated) if it maps distinguished
triangles to distinguished triangles.

Let K be a triangulated category. A cohomological functor on K is an additive functor
H WK! A to an abelian category such that, for every distinguished triangleX! Y !Z!

XŒ1� in K, the sequence
H.X/!H.Y /!H.Z/

is exact. Then TR2 implies that H.Y /!H.Z/!H.XŒ1�/ is exact, etc., and so there is a
long exact sequence

� � � !H r.X/!H r.Y /!H r.Z/!H rC1.X/! �� �

in which we have written H r.X/ for H.XŒr�/.
For example, if KDK.A/, then X  H 0.X/ is exact, and H r.X/ has its usual mean-

ing. In particular, from a morphism f WX ! Y , we obtain a long exact sequence

� � � !H r.X/
H r .f /
�! H r.Y /!H r.C.f //!H rC1.X/! �� � :

If f is injective, thenH r.C.f //'H r.Z/ whereZ is the cokernel of f (cf. Remark D.11
below). If f is surjective, then H r.C.f //'H rC1.Z/ where Z is the kernel of f .

2I have flattened it. The reader should imagine it folded so that the outside triangle forms the back face.



5

Let K be a triangulated category. For every objectA in K, Hom.A;�/ is a cohomological
functor, and so, from each distinguished triangle (1), we get a long exact sequence

� � � ! Hom.A;XŒr�/! Hom.A;Y Œr�/! Hom.A;ZŒr�/! Hom.A;XŒrC1�/! �� �

Using this and the usual five-lemma, it is possible to deduce the triangulated five-lemma: let
.u;v;w/ be a morphism of distinguished triangles (see (2)); if u and v are isomorphisms,
then so also is w.

NOTES

z9 D.2 In a triangulated category, the distinguished triangles play the role of short exact
sequences. We can think of the first three triangles in TR4 as giving isomorphisms Y=X '
A, Z=Y 'B , Z=X ' C ; then the distinguished triangle .f;g;h/ gives us an isomorphism
B ' C=A, i.e.,

Z=Y ' .Z=X/=.Y=X/:

Thus TR4 plays the role of one of the Noether isomorphism theorems.

z9a D.3 The cone of a map f WX ! Y of complexes is often written Y ˚XŒ1�, in which case
the differential becomes

dC.f / D

�
dY f Œ1�

0 dXŒ1�

�
.

z9b D.4 Let Y !C be an injective morphism of complexes such that, for each n, the sequence

0! Y n
! C n

! C n=Y n
! 0

is split exact. Choose a splitting,

C n
D Y n

˚C n=Y n

for each n, and let X D .C=Y /Œ�1�. With respect to the decomposition

C D Y ˚XŒ1�, (5) ez9

the differential on C becomes

dC D

�
dY f Œ1�

0 dXŒ1�

�
with f a morphism of complexes X ! Y , and (5) identifies Y with the cone of f .

z10 D.5 A weak variant of TR4 states that, for every pair of composable morphisms f1, f2,
there exists an octahedron (4) based on f1, f2. It is known that, in the presence of TR1,2,3,
the weak form of TR4 implies the usual form. On the other hand, it is known that, in the
presence of TR1,2, the usual form of TR4 implies TR3. (See the MR review 1867203 by
Balmer.)
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Differential graded categories

yThe passage from C.A/ to K.A/ described above can be abstracted as follows. A graded
category is an additive category C equipped with gradations

Hom.A;B/D
M

n
Homn.A;B/

on the Hom groups that are compatible with composition of morphisms; in particular, idA 2

Hom0.A;A/. Such a category is a differential graded (DG) category if, in addition, it
is equipped with differentials d WHomn.A;B/! HomnC1.A;B/ of degree one such that
d ıd D 0 and

d.g ıf /D dg ıf C .�1/degg.g ıdf /

whenever g is homogeneous and g ıf is defined. Thus, for every pair .A;B/ of objects in
a DG-category, we get a complex

� � � ! Homn.A;B/
d
�! HomnC1.A;B/! �� � :

A DG morphism A! B is an element of Z0.Hom�.A;B//. For example, the category
C �.A/ with the same objects as C.A/ but with the morphisms

HomC �.A/.A;B/D
M

n
HomC.A/.A;BŒn�/

is a graded category; with the differential

d WHomn.A;B/! HomnC1.A;B/

d.f /D dB ıf C .�1/
nf ıdA;

it becomes DG category. Note that, in this case, Z0.Hom�.A;B// consists of the usual
(degree 0) homomorphisms of complexes A! B and H 0.Hom�.A;B// consists of the
homotopy classes of homomorphisms of complexes A! B .

A strongly pre-triangulated category is a DG category C such that:
˘ for each object A of C and m 2 Z, there exists an object, denoted AŒm�, representing

the functor C  Homm.C;A/), so

Hom.C;AŒm�/D Homm.C;A/, all C 2 ob.C/I

˘ for each morphism f WA! B in C with d ıf D 0, there exists an object, denoted
Cone.f /, representing the functor sending each C 2 ob.C/ to the cone on

Hom.C;A/
f ı�
�! Hom.C;B/.

Let C be a DG category. The associated homotopy category Ho.C/ is the graded addi-
tive category with the same objects as C but with HomHo.C/.A;B/DH

0.Hom�C.A;B//. If
C is strongly pre-triangulated, then Ho.C/ has a translation functor, namely, A AŒ1�, and
a class of distinguished triangles, namely, those isomorphic to one of the form

A
f
�! B! Cone.f /! AŒ1�:

With this structure, Ho.C/ becomes a triangulated category.
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Categories of fractions

Return to the situation at the start of this appendix. If A! I � and A! J � are two injective
resolutions of A, then there exists a map I �! J � inducing the identity map on A, and any
two such maps are homotopic. Therefore they give a well-defined map FI �!FJ � inK.A/,
but this map is not an isomorphism, only a quasi-isomorphism. To complete the program
and obtain the derived category D.A/, we have to invert the quasi-isomorphisms. We first
consider this abstractly.

Let K be an additive category. A class S of morphisms in K is a multiplicative system
if it satisfies the following three conditions.

FR1 The identity map of every object of K belongs to S , and if f and g are composable
morphisms in S , then their composite g ıf belongs to S .

FR2 Every diagram with solid arrows and s in S can be completed to a commutative square
with t in S :

� �

� �

t s

� �

� �

s t

FR3 Let f;g be morphisms with the same source and target. If there exists a morphism
t such that t ı f D t ı g, then there exists a morphism s in S with f ı s D g ı s.
Similarly, with the arrows reversed.

A multiplicative system S is said to be saturated if a morphism f lies in S whenever there
exist morphisms h and k such that f ıh and k ıf lie in S .

We now let S be a multiplicative system for K, and we define the category KS�1. The
objects of KS�1 are the same as the objects of K.

Let X and Y be objects of K.A/. Each diagram

X 0

X Y

s f (6) ez1

with s in S defines a morphismX! Y inD.A/;which we denote “f ıs�1”. Two diagrams
.X 0; s;f / and .X 00; t;g/ define the same morphism if and only if there exists a commutative
diagram

X 000

X 0 X 00

X Y

r h

s ft g

(7) ez2

with r in S . In other words, the morphisms from X to Y in D.A/ are certain equivalence
classes of “roofs” (6).
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Consider morphisms X ! Y and Y !Z in D.A/:

X 0 Y 0

X Y Z

s f t g

This diagram can be completed to a diagram

X 00

X 0 Y 0

X Y Z

t 0 h

s f t g

in which t 0 is in S (by FR2). The composite of the the two morphisms is defined by the
diagram .X 00; st 0;gh/. In other words,

“g ı t�1”ı “f ı s�1”D “.gh/ı
�
st 0
��1 ”.

In this way, KS�1 becomes an additive category. The natural functor QWK! KS�1

sends elements of S is to isomorphisms, and is universal among additive functors with this
property. If S is saturated, then the only morphisms in K mapped to isomorphisms are those
in S .

Now let K be a triangulated category with translation functor T , and let S be a multi-
plicative system of morphisms in K satisfying the following conditions:
FR4 if s 2 S , then so also does T .s/;

FR5 if in TR3, the morphisms u;v are in S , then the diagram can be completed by a
morphism in S .

Then S�1K has a unique structure of triangulated category for which the functor K! S�1K
is exact.

NOTES

D.6 Let K be a triangulated category, and letH be a cohomological functor on K. Then the
morphisms f whose cone C.f / is such that H i .C.f //D 0 form a multiplicative system
in K (cf. Verdier 1977, 4-1.

D.7 Let K be an additive category. A class of morphisms S in K is said to admit a calculus
of right fractions if it satisfies FR1, FR2 with only the right hand diagram, and the first
statement of FR3. Then KS�1 can be constructed as above. Similarly, a class S is said to
admit a calculus of left fractions if it satisfies FR1, FR2 with only the left hand diagram,
and the second statement of FR3. For such a class, we can construct a category S�1K whose
morphisms are equivalence classes of diagrams

X Y

Y 0

f s
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with s in S . Now let S be an arbitrary class of morphisms in K. It is not difficult to show
that there always exists a functor from K to an additive category KŒS�1� sending elements
of S to isomorphisms, and universal with this property. However, there is not a pleasant
description of the morphisms in KŒS�1� unless S admits a calculus of right (resp. left)
fractions, in which case KŒS�1� equals KS�1 (resp. S�1K).3

D.8 Let K be a category with a single object X . The conditions FR1,2,3 on a set S of
morphisms K correspond to the Ore conditions on S as a subset of the ring End.X/.

Derived categories

Let A be an abelian category. The class of quasi-isomorphisms in K.A/ is a multiplicative
system4, and the corresponding category of fractions is called the derived category D.A/
of A. Thus, the objects of D.A/ are just the complexes in A.

The functor T WX  XŒ1� defines an automorphism T of D.A/, and D.A/ becomes a
triangulated category when we take the distinguished triangles to be those isomorphic (in
D.A/) to one of the form (3). Now QWK.A/! D.A/ is an exact functor of triangulated
categories.

A sequence of morphisms in K.A/;

X1
s1
 � Y1

f1
�!X2

s2
 � �� �

fn
�!Xn,

in which the si ’s are quasi-isomorphisms, defines a morphism

“fn ı s
�1
n ”ı � � � ı “f1 ı s

�1
1 ”WX1!Xn

in D.A/. It lifts the family of morphisms in A,

H r.fn/ı � � � ıH
r.s1/

�1
WH r.X1/!H r.Xn/; r 2 Z;

to the derived category.
Write Q for the functor K.A/!D.A/ (or C.A/!D.A/). Then “f ı s�1”DQ.f /ı

Q.s/�1.
The subcategories CC.A/, C�.A/, C b.A/ of C.A/ define categories KC.A/, K�.A/,

Kb.A/ and DC.A/, D�.A/, Db.A/. The inclusion functor

Db.A/!D.A/

is an equivalence from Db.A/ onto the full subcategory of D.A/ whose objects X are such
that H r.X/D 0 except possibly for finitely many values of r .

NOTES

z3 D.9 Let X be a complex in A. Then Q.X/ D 0 in D.A/ if and only if H r.X/ D 0 for
all r . Let f WX ! Y be a morphism in C.A/. Then Q.f / D 0 if and only if there exists
a quasi-isomorphism sWX 0! X such that f ı s D 0 in K.A/ (equivalently, there exists a
quasi-isomorphism t WY ! Y 0 such that t ıf D 0 in K.A/). There need not exist an s such
that f ı s D 0 in C.A/.

3For more on such things, see Krause, Henning. Localization theory for triangulated categories. In Trian-
gulated categories, 161–235, London Math. Soc. Lecture Note Ser., 375, Cambridge Univ. Press, Cambridge,
2010.

4This is not true in C.A/, which why we first pass to the homotopy category.
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z4 D.10 LetX be a complex in A. The endomorphisms ofX homotopic to zero form an ideal
in EndC.A/.X/, and the quotient of EndC.A/.X/ by this ideal is EndK.A/.X/. The quasi-
isomorphisms in EndK.A/.X/ form multiplicative subset S satisfying the Ore condition
(q.v. Wikipedia). Therefore, we can form the quotient ring S�1 EndK.A/.X/. The natural
map EndK.A/.X/! EndD.A/.X/ factors through S�1 EndK.A/.X/.

z5 D.11 Let
0!X

i
�! Y

p
�!Z! 0

be an exact sequence of complexes in A. The mapping cone C.p/ of p is Y Œ1�˚Z. There
are obvious maps

Z
j
�! C Œp�

s
 �XŒ1�,

and s is a quasi-isomorphism, and so we get a triangle

X
Qi
��! Y

Qp
��!Z

.Qs/�1
ıQ.j /

���������!XŒ1�

in D.A/. Such a triangle is said to be standard. The long exact cohomology sequence of
this triangle is the cohomology sequence of the original exact sequence. In other words, the
map “s�1 ıj ” lifts the family of connecting morphismsH r.Z/!H rC1.X/, r 2 Z, to the
derived category. The distinguished triangles in D.A/ are exactly the triangles isomorphic
to a standard triangle (Keller 1998, 3.1).5

z6 D.12 The Yoneda Ext group ExtrA.A;B/ of two objects A and B of an abelian category A
is defined to be the group of equivalence classes of exact sequences

0! B!Xr�1! �� � !X0! A! 0 (8) ez5

(see Mitchell 1965, VII). When A has enough projectives (resp. injectives) this agrees with
the usual definition defined in terms of projective (resp. injective) resolutions (ibid.). From
(8), we get a maps

.B Xr�1 � � � X0/

BŒr� A

f s

of complexes. As s is a quasi-isomorphism, this gives a morphism “f ı s�1”WA! BŒr� in
D.A/. In this way, we get a map6

ExtrA.A;B/! HomD.A/.A;BŒr�/;

which is known to be an isomorphism (Verdier 1996, 3.2.12). 7 In particular,

HomA.A;B/' HomD.A/.A;B/;

and so the natural functor A!D.A/ is fully faithful.

5Keller, Bernhard. Introduction to abelian and derived categories. Representations of reductive groups,
41–61, Publ. Newton Inst., Cambridge Univ. Press, Cambridge, 1998

6In fact, in order to get the boundary maps to agree, it is necessary to multiply this map by .�1/r.rC1/=2.
7Verdier, Jean-Louis. Des catégories dérivées des catégories abéliennes. Edited by Georges Maltsiniotis.

Astérisque No. 239 (1996)
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Derived subcategories defined by thick subcategories

A full subcategory C of an abelian category A is said to be thick if it is abelian, the inclusion
functor is exact, and if the class of its objects is closed under extension.

Let C be a thick subcategory of A. The category DC.A/ is defined to be the full sub-
category of D.A/ consisting of the objects X such that H r.X/ 2 C for all r . It is again a
triangulated category.

The canonical functorDC.C/!DCC .A/ is an equivalence if, for every monomorphism
C !A with C in C, there exists a morphism A! C 0 with C 0 in C such that the composite
C ! C 0 is a monomorphism. A similar statement holds with b forC.

NOTES

z2 D.13 The construction of the derived category D.A/ can be abstracted as follows. Let K
be a triangulated category. A null system in K is a class of objects N such that (a) 0 2N ;
(b) X 2 N if and only if XŒ1� 2 N ; and (c) if X;Y 2 N and X ! Y ! Z ! XŒ1� is
distinguished, then Z 2 N . Let S.N / be the set of morphisms sWX ! Y such that there
exists a distinguished triangle

X
s
�! Y !Z!XŒ1�

with Z 2 N . Then S.N / is a multiplicative system, and we define K=N to be the corre-
sponding category of fractions. Then K=N is a triangulated category. The natural functor
QWK! K=N has the property that Q.X/� 0 for all X 2N , and every functor of triangu-
lated categories with this property factors uniquely through Q.

In the construction of the derived category, N consists of the complexes X such that
H r.X/D 0 for all r , and S.N / consists of the quasi-isomorphisms.

z7 D.14 Let B be a full additive subcategory of A such that every object A of A is a subobject
of an object of B, i.e., there exists an exact sequence 0! A! B with B in B. Then, for
every complex X in CC.A/, there exists quasi-isomorphism X ! X 0 with X 0 in CC.B/.
The class

N 0 DN \ob.KC.B//D fX 2 ob.KC.B/ jH r.X/D 0 for all rg

is a null system in KC.B/, and the natural functor

KC.B)/N 0!DC.A/

is an equivalence of categories.

z8 D.15 Let A be an abelian category, and let I be the full additive subcategory of A whose
objects are injective. If I is a complex in CC.I/ such that H r.I /D 0 for all r , then idI is
homotopic to the zero map, and so I � 0 in KC.A/. The natural functor

KC.I/!DC.A/

is always fully faithful, and it is an equivalence of categories if A has enough injectives.
Let A and B be objects of A, and let sWB! I � be an injective resolution of B . Then

f 7! “sŒr��1
ıf ”WHomKC.A/.A;I

�Œr�/! HomDC.A/.A;BŒr�/
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is an isomorphism. Therefore (see Example 1),

HomDC.A/.A;BŒr�/' ExtrA.A;B/;

in agreement with (D.12).

z11 D.16 Let K be a triangulated category. A triangulated subcategory K0 of K is a subcate-
gory that admits a triangulated structure for which the inclusion is exact. A full subcategory
K0 of K is triangulated if and only if it is invariant under translation and every distinguished
triangle with two objects in K0 is isomorphic to a triangle with all of its objects in K0. A
full triangulated subcategory M of K is thick8 if every direct summand of an object of M is
isomorphic to an object of M.

Let M be a thick subcategory of K, and let S be the class of morphisms f such that
the cone on f lies in M (equivalently, the third vertex of every distinguished triangle based
on f lies in M). Then S is a saturated multiplicative subset of K, and every saturated
multiplicative subset of K arises in this way. The category S�1K has a natural structure of
triangulated category for which K! S�1K is exact.

Derived functors

LetF WA!B be a functor of abelian categories. Then F defines a functorCC.A/!CC.B/
that sends homotopic maps to homotopic maps, and so it defines a functorKC.F /WKC.A/!
KC.B/. However, F does not preserve quasi-isomorphisms unless it is exact, and so, in
general, there is not a functor RF WDC.A/!DC.B/ making the following diagram com-
mute

KC.A/ KC.B/

DC.A/ KC.B/:

KC.F /

Q Q

RF

Instead, one defines the right derived functor of F to be a functor RF WDC.A/!DC.B/
together a natural transformation sWQ ıKC.F /! RF ıQ such that the pair .RF;s/ is
universal. When it exists, the pair .RF;s/ is unique, up to a unique isomorphism, and
X  H r.RF.X// is called the r th right derived functor of F .

Let F WA! B be a left exact functor of abelian categories. A full additive subcategory I
of A is said to be F -injective if

(a) every object of A is a subobject of an object of I;

(b) if 0! A0! A! A00! 0 is exact in A, and A0 and A are in I, then A00 is in I;

(c) if 0! A0! A! A00! 0 is exact in A, and A0 is in I, then

0! F.A0/! F.A/! F.A00/! 0

is exact in B.
8Verdier’s original definition is that M is thick (épaisse) if it satisfies the following condition: let X !

Y ! Z! XŒ1� be a distinguished triangle in K; if Z is in M and the map X ! Y factors through an object
of M, then X , Y , and Z are all objects of M. It is not difficult to show that the two definitions are equivalent
(Rickard, Jeremy. Derived categories and stable equivalence. J. Pure Appl. Algebra 61 (1989), no. 3, 303–317,
Proposition 1.3).
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The conditions (b) and (c) imply that F maps objects in N 0 def
D N \KC.I/ to the zero

object, and so the composite KC.I/
KC.F /
�! KC.A/

Q
�!DC.A/ factors through KC.I/=N 0.

On the other hand (see D.14), (a) implies that the natural functor KC.I/=N 0!DC.A/ is
an equivalence of categories, and so we get a diagram

KC.I/=N 0

DC.A/ DC.B/:

equivalence

RF

Define RF by choosing a quasi-inverse to the equivalence; then RF is the right derived
functor of F . Explicitly, let X be a complex in CC.A/; according to (D.14), there exists
a quasi-isomorphism X ! I with I in CC.I/; the complex FI , regarded as an object in
DC.B/, is independent of the choice of the quasi-isomorphism up to a unique isomorphism,
and is defined to be RF.X/.

Note that the full subcategory I of A consisting of the injective objects satisfies the
conditions (b) and (c) because every short exact sequence whose first object is injective
splits. Therefore, if A has enough injectives, the subcategory I is F -injective, the right
derived functor RF exists, and RF.X/D F.I / for any quasi-isomorphism X! I with X
in CC.A/ and I in CC.I/.

Let F WA! B be left exact, and assume that RF exists. An object X of A is said to
be F -acyclic if RrF.X/ D 0 for all r > 0. The full subcategory of A whose objects are
F -acyclic if F -injective (and contains every F -injective subcategory). Therefore, if RF
exists, RF.X/ can always be computed by choosing a quasi-isomorphism X ! I with I a
bounded-below complex of F -acyclics, and setting RF.X/D FI .

Left derived functors are defined similarly. Let F WA! B be a left exact functor of
abelian categories. If A has enough projectives, then the left derived functor LF of F
exists; moreover, LF.X/D F.P / for any quasi-isomorphism P ! X with P a bounded-
above complex of projectives.

Composites of derived functors

Let
A

F
�! B

G
�! C

be left exact functors of abelian categories. If RF , RG; and R.G ıF / all exist, then it
follows from the definition of “right derived functor” that there is a canonical morphism of
functors

R.G ıF /!RG ıRF:

This is an isomorphism, for example, if A has enough injectives and F maps injective
objects in A to F -acyclic objects in B. Indeed, let X be a complex in CC.A/, and choose
a quasi-isomorphism X ! I with I a bounded-below complex of injective objects; then
R.G ıF /.X/D .G ıF /.I / and .RG ıRF /.X/DRG.FI/DG.FI/:

Derived Homs

Let A be an abelian category. For complexes X and Y in A with Y bounded below, define
Hom�.X;Y / to be the complex of abelian groups with Homr.X;Y / equal to the group of
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homomorphisms X ! Y of degree r and with the differential

' 7! dY ı'� .�1/
r' ıdX :

In this way, we get a bifunctor

Hom�WK.A/opp
�K.A/!K.Ab/:

If A has enough injectives, this derives to a bifunctor

RHomWD.A/opp
�DC.A/!D.Ab/:

Moreover,
HomD.A/.X;Y /'H

0.RHom.X;Y //:

This suggest defining

ExtrD.A).X;Y /DH
r.RHom.X;Y //

'H 0.RHom.X;Y Œr�//

' HomD.A/.X;Y Œr�/:

When X;Y 2 ob.A/;
ExtrD.A/.X;Y /' ExtrA.X;Y /.

Derived tensor products

Let A be an abelian category with a tensor product structure. For bounded-above complexes
X and Y in A, define X˝Y to be the complex with

.X˝Y /r D
M

pCqDr

Xp
˝Y q

and with the differential

dX ˝1C1˝dY W.X˝Y /
r
! .X˝Y /rC1 .

If A has enough flat objects, then the bifunctor

˝WK�.A/�K�.A/!K�.A/

derives to a functor
˝

L
WD�.A/�D�.A/!D�.A/.

To compute it on a pair of complexes X;Y , choose a quasi-isomorphism P ! X (or P !
Y ) with P a bounded-above complex of flat objects, and then

X˝L Y D P ˝Y (or X˝P ).

NOTES There is a friendly introduction to the theory of derived categories in Iversen 19869. The
first chapter of Kashiwara and Schapira 199010 is an excellent survey of the homological algebra
one needs for sheaf theory, and their book 200611 is a very complete account of the same topic. See
also Holm and Jørgensen 201012.

9Iversen, Birger. Cohomology of sheaves. Universitext. Springer-Verlag, Berlin, 1986.
10Kashiwara, Masaki; Schapira, Pierre. Sheaves on manifolds. Grundlehren der Mathematischen Wis-

senschaften 292. Springer-Verlag, Berlin, 1990.
11Kashiwara, Masaki; Schapira, Pierre. Categories and sheaves. 332. Springer-Verlag, Berlin, 2006.
12Holm, Thorsten; Jørgensen, Peter. Triangulated categories: definitions, properties, and examples. Tri-

angulated categories, 1–51, London Math. Soc. Lecture Note Ser., 375, Cambridge Univ. Press, Cambridge,
2010.
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