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Original Preface (slightly edited)

The purpose of this book is to provide a comprehensive introduction to the étale topology,
sheaf theory, and cohomology. When a variety is defined over the complex numbers, the
complex topology may be used to define cohomology groups that reflect the structure of
the variety much more strongly than do those defined, for example, by the Zariski topology.
For an arbitrary scheme the complex topology is not available, but the étale topology, whose
definition is purely algebraic, may be regarded as a replacement. It gives a sheaf theory and
cohomology theory with properties very close to those arising from the complex topology.
When both are defined for a variety over the complex numbers, the étale and complex
cohomology groups are closely related. On the other hand, when the scheme is the spectrum
of a field and hence has only one point, the étale cohomology need not be trivial; in fact it is
precisely equivalent to the Galois cohomology of the field. Étale cohomology has achieved
an importance for the study of schemes comparable to that of complex cohomology for the
study of the geometry of complex manifolds or of Galois cohomology for the study of the
arithmetic of fields.

The étale topology was initially defined by A. Grothendieck and developed by him with
the aid of M. Artin and J.-L. Verdier in order to explain Weil’s insight (Weil [1]) that, for
polynomial equations with integer coefficients, the complex topology of the set of complex
solutions of the equations should profoundly influence the number of solutions of the equa-
tions modulo a prime number. In this, the étale topology has been brilliantly successful. We
give a sketch of the explanation it provides. It must be assumed that the equations define a
scheme proper and smooth over some ring of integers. The complex topology on the com-
plex points of the scheme determines the complex cohomology groups. The comparison
theorem says that these groups are essentially the same as the étale cohomology groups of
the scheme regarded as a variety over the complex numbers. The proper and smooth base
change theorems now show that these last groups are canonically isomorphic to the étale
cohomology groups of the scheme regarded as a variety over the algebraic closure of a finite
residue field. But the points of the scheme with coordinates in a finite field are the fixed
points of the Frobenius operator acting on the set of points of the scheme with coordinates
in the algebraic closure of the finite field. The Lefschetz trace formula now shows that the
number of points in the finite field may be computed from the trace of the Frobenius oper-
ator acting on étale cohomology groups that are essentially equal to the original complex
cohomology groups. A large part of this book may be regarded as a justification of this
sketch.

To give the reader some idea of the similarities and differences to be expected between
the étale and complex theories, we consider the case of a projective nonsingular curve X
of genus g over an algebraically closed field k. If k is the complex numbers, then X may
be regarded as a one-dimensional compact complex manifold X.C/, and its fundamental
group �1.X;x/ has 2g generators and a single, well-known relation. The most interesting
cohomology group is H 1, and H 1.X.C/;�/ D Hom.�1.X;x/;�) for a constant abelian
sheaf �; for example, H 1.X.C/;Z/ D Z2g . If k is arbitrary, then it is possible to define
in a purely algebraic way a fundamental group �alg

1 .X;x/ that, when k is of characteristic
zero, is the pro-finite completion of �1.X;x/. The étale cohomology group H 1.Xet;�/D

Hom.�alg
1 .X;x/;�) for any constant abelian sheaf �, but now Hom refers to continuous

This is a revised corrected version of Chapter I of Étale Cohomology, J.S. Milne, Princeton University
Press, 1980. Rings are no longer required to be noetherian. The numbering is unchanged (at present). Please
send comments and corrections to me at jmilne at umich.edu. Dated April 25, 2017.



2

homomorphisms. Thus H 1.Xet;�/D �
2g , if � is finite or is the l-adic integers Zl . But

H 1.Xet;Z/D 0, for Z must be given the discrete topology, and the image of any continuous
map �alg

1 .X;x/!Z is finite. Therefore the étale cohomology is as expected in the first two
cases but is anomalous in the last.

It may seem that the étale topology should be superfluous when k is the complex num-
bers, but this is not so: the étale groups have one important advantage over the complex
groups, namely, that if X is defined over a subfield k0 of k, then every automorphism of
k=k0 acts on H r.Xet;�/.

The book’s first chapter is concerned with the properties of étale morphisms, Henselian
rings, and the algebraic fundamental group. It had been my original intention to state these
without proof, but this would have been unsatisfactory since one of the essential differences
between étale sheaf theory and the usual sheaf theory is that trivial facts from point set
topology must frequently be replaced by subtle facts from algebraic geometry. On the
other hand to give a complete treatment of these topics would require a book in itself. Thus
Chapter I is a compromise: almost everything about étale morphisms and Henselian rings is
proved and almost nothing about the fundamental group. The prerequisites for this chapter
are a solid knowledge of basic commutative algebra, for example, the contents of Atiyah
and Macdonald [1], plus a reasonable understanding of the language of schemes.

The next two chapters are concerned with the basic theory of étale sheaves and with
elementary étale cohomology. The prerequisite for these chapters is some knowledge of
homological algebra and Galois cohomology.

The fourth chapter treats Azumaya algebras over schemes and the Brauer groups of
schemes. Here it is assumed that the reader is familiar with the corresponding objects over
fields. This chapter may be skipped.

The fifth chapter contains a detailed analysis of the cohomology of curves and of sur-
faces. The section on curves assumes a knowledge of the representation theory of finite
groups and that on surfaces assumes a more detailed knowledge of algebraic geometry than
required earlier in the book.

The sixth chapter proves the fundamental theorems in étale cohomology and applies
them to show the rationality of some very general classes of zeta functions and L-series.

The appendixes list definitions and results concerning limits, spectral sequences, and
hypercohomology that the reader may find useful.

The most striking application of étale cohomology, that of Deligne to proving the Weil-
Riemann hypothesis, is not included, but anyone who reads this book will find little diffi-
culty with Deligne’s original paper. Essentially the only results he uses that are not included
here concern Lefschetz pencils of odd fiber dimension. However, we do treat Lefschetz
pencils of fiber dimension one, and the general case is very similar and only slightly more
difficult.

I have tried to keep things as concrete as possible. Only enough foundational material
is included to treat the étale site and similar sites, such as the flat and Zariski sites. In
particular, the word topos does not occur. Derived categories are not used although their
spirit pervades the last part of Chapter VI.

For an account of the origins of étale cohomology and its results up to the mid 1960s, I
recommend Artin’s talk at the International Congress in Moscow, 1966 [3]; for a “popular”
account of the history of the Weil conjectures (which is intimately related to the history of
étale cohomology) and of Deligne’s solution, I recommend Katz’s article [2], and for a sur-
vey of the main ideas and results in étale cohomology and their relations to their classical
analogues, I recommend Deligne’s Arcata lectures [SGA. 41

2
, Arcata]. The best introduc-
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tion to the material from algebraic geometry required for reading this book is provided by
Hartshorne [2].

It is a pleasure to thank M. Artin for explaining a number of points to me, R. Hoobler
for his comments on Chapter IV, and the Institute for Advanced Study and l’Institut des
Hautes Études Scientifiques where parts of the book were written.

Terminology and Conventions

We no longer require that all rings are noetherian and all schemes are locally noetherian
(however, we sometimes insert noetherian hypotheses when they are not strictly needed).

A variety is a geometrically reduced and irreducible scheme of finite type over a field,
and a curve or surface is a variety of dimension one or two.

For a field k;ks or ksep is the separable algebraic closure of k and kal the algebraic
closure. If K is Galois over k, then Gal.K=k/ or G.K=k/ is the corresponding Galois
group; Gk denotes Gal.ks=k/.

For a ring A;A� denotes the group of units of A and �.p/ the field of fractions of A=p,
where p is a prime ideal in A.

For a scheme X;R.X/ is the ring of rational functions on X;Xi the set of points x of
codimension i (that is, such that dimOX;x D i ), and X i the set of points x of dimension i
(that is, such that fxg has dimension i/. A geometric point of X is a map z!X where z is
the spectrum of a separably closed field.

Set is the category of sets, Ab the category of abelian groups, Gp the category of groups,
G-sets the category of finite sets on which G acts (continuously on the left), G-mod the
category of (discrete) G-modules, Sch=X the category of schemes over X;FEt=X the cat-
egory of schemes finite and étale over X;LFT=X the category of schemes locally of finite
type over X , and Fun.C;A/ the category of functors from C to A.

The symbols N;Z;Q;R;C;Fq denote respectively, the natural numbers, the ring of inte-
gers, the field of rational numbers, the field of real numbers, the field of complex numbers,
and the finite field of q elements.

The symbols ˛p;�n;Gm;Ga denote certain group schemes (II, 2.18).
An injection is denoted by ,!, a surjection by � an isomorphism by �, a quasi-

isomorphism (or homotopy) by �, and a canonical (or given) isomorphism by '. The
symbol X def

D Y means that X is defined to be Y , or that X equals Y by definition.
The kernel and cokernel of multiplication by n;M

n
�!M , are denoted respectively by

Mn and M .n/.
The empty set and empty scheme are both denoted by ;.
The symbol b� a means b is sufficiently greater than a.

Added 2012

These are my notes for a revised updated version of the book. Although the book was not
published until 1980, the manuscript was completed, and submitted, in 1977.1 At the time,
apart from the semi-published notes Mumford [3], the only way to learn scheme theory was
by reading EGA. When Hartshorne [2] became available, I was able to insert only a few
references to it.

1At the time, Princeton University Press was notoriously slow. In addition, a certain editor left the
manuscript and a referee’s report buried in the material on his desk for many months. They only re-emerged
when the editor changed offices.
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In the 1970s, derived categories were still quite new, and known to only a few algebraic
geometers, and so I avoided using them. In some places this worked out quite well, for
example, contrary to statements in the literature they are not really needed for the Lefschetz
trace formula with coefficients in Z=mZ, but in others it led to complications. Anyone
who doubts the need for derived categories should try studying the Künneth formula (VI,
8) without them. In the new version, I shall use them.

I also regret treating Lefschetz pencils only in the case of fiber dimension 1. Apart from
using derived categories and including Lefschetz pencils with arbitrary fiber dimension, I
plan to keep the book much as before, but with the statements of the main theorems updated
to take account of later work. Whether the new version will ever be completed, only time
will tell.



Chapter I

Étale Morphisms

A flat morphism is the algebraic analogue of a map whose fibers form a continuously vary-
ing family. For example, a surjective morphism of smooth varieties is flat if and only if
all fibers have the same dimension. A finite morphism to a reduced scheme is flat if and
only if, over every connected component, all fibers have the same number of points (count-
ing multiplicities). A flat morphism of finite type of noetherian schemes is open, and flat
morphisms that are surjective on the underlying spaces are epimorphisms in a very strong
sense.

An étale morphism is a flat quasi-finite morphism Y !X with no ramification (that is,
branch) points. Locally Y is then defined by an equation TmC a1Tm�1C �� �C am D 0,
where a1; : : : ; am are functions on an open subset U of X and all roots of the equation over
a point of U are simple. An étale morphism induces isomorphisms on the tangent spaces
and so might be expected to be a local isomorphism. This is true over the complex numbers
if local is meant in the sense of the complex topology, but the Zariski topology is too coarse
for this to hold algebraically. However, an étale morphism induces an isomorphism on the
completions of the local rings at a point where there is no residue field extension. Moreover,
it has all the uniqueness properties of a local isomorphism.

A local scheme is Henselian if, for any scheme étale over it, every section of the closed
fiber extends to a section of the scheme. It is strictly Henselian, or strictly local, if every
scheme étale and faithfully flat over it has a section. The strictly local rings play the same
role for the étale topology that the local rings play for the Zariski topology.

The fundamental group of a scheme classifies the finite étale coverings of it. For a
smooth variety over the complex numbers, the algebraic fundamental group is simply the
profinite completion of the topological fundamental group. There are algebraic analogues
for many of the results on the topological fundamental group.

1 Finite and Quasi-Finite Morphisms

Recall that a morphism of schemes f WY ! X is affine if the inverse image of every open
affine subset U ofX is an open affine subset of Y . If, moreover, � .f �1.U /;OY / is a finite
� .U;OX /-algebra for every such U , then f is said to be finite. These conditions need only
be checked for all U in some open affine covering of X (Mumford [3, III, 1, Prop. 5]).

Examples of finite morphisms abound. Let X be an integral scheme with field of ratio-
nal functions R.X/, and let L be a finite field extension of R.X/. The normalization of X
in L is a pair .X 0;f ) where X 0 is an integral scheme with R.X 0/D L and f WX 0! X is

5



6 CHAPTER I. ÉTALE MORPHISMS

an affine morphism such that, for all open affines U of X , � .f �1.U /;OX 0/ is the integral
closure of � .U;OX / in L.

PROPOSITION 1.1 If X is normal and locally noetherian, then the normalization f WX 0!
X of X in any finite separable extension of R.X/ is finite.

PROOF. One has only to show that � .f �1.U /;OX 0/ is a finite � .U;OX / -algebra for U
an open affine in X , but this is proved in Atiyah-Macdonald [1, 5.17]. 2

REMARK 1.2 The above proposition holds for many schemes X without the separability
assumption, for example, for reduced excellent schemes and so for varieties ([EGA IV, 7.8]
and Bourbaki [2, V, 3.2]). (A field is excellent; a Dedekind domain A with field of fraction
K is excellent if, for every maximal ideal m of A; the field of fractions of the completion
of Am is separable over K; every scheme locally of finite type over an excellent scheme is
excellent.)

PROPOSITION 1.3 (a) A closed immersion is finite.
(b) The composite of two finite morphisms is finite.
(c) Every base change of a finite morphism is finite, that is, if f WY ! X is finite, then

so also is f.X 0/WY.X 0/!X 0 for any morphism X 0!X .

PROOF. These come down to statements about rings, all of which are obvious. 2

The “going up” theorem of Cohen-Seidenberg has the following geometric interpreta-
tion.

PROPOSITION 1.4 Every finite morphism f WY ! X is proper, that is, it is separated, of
finite type, and universally closed.

PROOF. For any open affine covering .Ui / ofX , f restricted to f �1.Ui /!Ui is separated
for all i , and so f is separated (Hartshorne [2, II, 4.6]). To show that finite morphisms are
universally closed it suffices, according to (1.3c), to show that they are closed, and for this
it suffices, according to (1.3a,b), to show that they map the whole space onto a closed set.
Thus it suffices to show that f .Y / is closed. This reduces easily to the affine case with,
for example, f D ag where gWA! B is finite. Let I D ker.g/. Then f factors into
SpecB ! SpecA=I! SpecA. The first map is surjective (Atiyah-Macdonald [1, 5.10]),
and the second is a closed immersion. 2

For morphisms X ! Speck, with k a field, there is a topological characterization of
finiteness.

PROPOSITION 1.5 Let f WX ! Speck be a morphism of finite type with k a field. The
following are equivalent:

(a) X is affine and � .X;OX / is an Artin ring;

(b) X is finite and discrete (as a topological space);

(c) X is discrete;

(d) f is finite.

PROOF. See Atiyah-Macdonald [1, Chapter VIII, especially the exercises]. 2
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A morphism f WY! X is quasi-finite if it is of finite type and has finite fibers, that is,
f �1.x/ is discrete (and hence finite) for all x 2X (EGA I, 6.11.3). Similarly an A-algebra
B is quasi-finite if it is finitely generated andB˝A�.p/ is a finite �.p/-algebra for all prime
ideals p� A.

EXERCISE 1.6 (a) Let A be a discrete valuation ring. Show that AŒT �=.P.T // is a quasi-
finite A-algebra if and only if some coefficient of P.T / is a unit, and that it is finite if and
only if the leading coefficient of P.T / is a unit.

(b) Let A be a Dedekind domain with field of fractionsK. Show that SpecK! SpecA
is never finite, that it is quasi-finite if it is of finite type, and that it is of finite type if and
only if A has only finitely many prime ideals.

PROPOSITION 1.7 (a) Every quasi-compact immersion is quasi-finite.
(b) The composite of two quasi-finite morphisms is quasi-finite.
(c) Every base change of a quasi-finite morphism is quasi-finite.

PROOF. (a) Let f WY ! X be an immersion. Clearly f has finite fibers, and to show that
it is of finite type it suffices to show that f �1.U / is quasi-compact for every open affine U
in X , but this is true by hypothesis.

(b) This is obvious.
(c) Let f WY !X be quasi-finite and X 0!X arbitrary. If x0 7! x under X 0!X , then

the fiber
f �1.X 0/.x

0/D f �1.x/˝�.x/ �.x
0/

and hence is discrete. 2

One way of constructing quasi-finite morphisms is to take a finite morphism f WY !X

and consider its restriction to an open subscheme U of Y . Remarkably, essentially every
quasi-finite morphism comes in this way.

THEOREM 1.8 (ZARISKI’S MAIN THEOREM) Let X be a noetherian scheme. Every sep-
arated quasi-finite morphism f WY !X factors into the composite

Y
f 0

�! Y 0
g
�!X

of an open immersion f 0 and a finite morphism g.

PROOF. Under the additional assumption that f is quasi-projective, there is a cohomolog-
ical proof of the theorem in [EGA III, 4.4.3]. The above statement is proved in [EGA IV,
8.12.6].

When X and Y are both affine, the theorem follows from the slightly more precise
statement:

let B be a quasi-finite A-algebra, and let A0 be the integral closure of A in B;
then the map SpecB ! SpecA0 is an open immersion; moreover, there exists
a subalgebra A1 of A0, finite over A, such that SpecB ! SpecA1 is also an
open immersion.

A proof of this affine statement can be found, in Raynaud [3, p. 42] and in my notes on
Commutative Algebra. Deducing the global statement from the affine statement requires an
additional argument. Specifically, it requires the statement:
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Let f WY ! X be a separated morphism of finite type such that OX ! f�OY
is an isomorphism. Let V be the open subset of Y of points y such that the
fiber over f .y/ has dimension 0. Then the restriction of f to V is an open
immersion V !X and f �1.f .V //D V .

This is Theorem 12.83 of Görtz and Wedhorn, Algebraic Geometry I, 2010. To obtain
(1.8), apply this statement to the map obtained from f WY ! X by replacing X with its
normalization in Y . 2

REMARK 1.9 Zariski’s main theorem is, more correctly, the main theorem of Zariski [2].
There he was interested in the behavior of a singularity on a normal variety under a bira-
tional map. The original statement is essentially that if f WY !X is a birational morphism
of varieties and OX;x is integrally closed, then either f �1.x/ consists of one point and
the inverse morphism f �1 is defined in a neighborhood of x or all components of f �1.x/
have dimension � 1. To relate this to Grothendieck’s version, note that if in (1.8) X and
Y are varieties, f is birational and X is normal, then g is an isomorphism. For a more
complete discussion of the theorem, see Mumford [3, III.9]; see also my notes on Algebraic
Geometry.

COROLLARY 1.10 Let X be a noetherian scheme. Every proper, quasi-finite morphism
f WY !X is finite.

PROOF. Let f D gf 0 be the factorization as in (1.8). As g is separated and f is proper, f 0

is proper. (Use the factorization

f 0 D f.Y 0/ ı�f 0 WY ! Y �X Y
0
! Y 0:/

Thus f 0 is an immersion with closed image, that is, a closed immersion. Now both f 0 and
g are finite. 2

REMARK 1.11 The separatedness is necessary in both of the above results: for if X is
the affine line with the “origin doubled” (Hartshorne [2, II, 2.3.6]), and f WX ! A1 is the
natural map, then f is universally closed and quasi-finite, but not finite. (It is even flat and
étale; see the next two sections.)

EXERCISE 1.12 Let f WY ! X be separated and of finite type with X irreducible. Show
that if the fiber over the generic point � is finite, then there exists an open neighborhood U
of � in X such that f �1.U /! U is finite. Cf. Hartshorne [2, II, Exercise 3.7].

2 Flat Morphisms

A homomorphism f WA! B of rings is flat if B is flat when regarded as an A-module by
means of f . Thus, f is flat if and only if the functor�˝AB fromA-modules toB-modules
is exact. In particular, if I is an ideal of A and f is flat, then I˝AB ! A˝AB ' B is
injective. The converse to this statement is also true.

PROPOSITION 2.1 A homomorphism f WA! B is flat if the map

a˝b 7! f .a/bWI˝AB! B

is injective for all ideals I in A.
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PROOF. Let gWM 0 ! M be an injective map of A-modules where, following Atiyah-
Macdonald [1, 2.19], we may assume M to be finitely generated.

Case (a) M is free. We prove this case by induction on the rank r of M . If r D 1, then
we may identifyM withA andM 0 with an ideal inA; then the statement to be proved is the
statement given. If r > 1, thenM DM1˚M2 withM1 andM2 free of rank < r . Consider
the exact commutative diagram:

0 M1 M M2 0

0 g�1.M1/ M 0 pg.M 0/ 0

p

g1 g g2

When tensored with B , the top row remains exact, and g1 and g2 remain injective. This
implies that g˝1 is injective.

Case (b)M arbitrary (finitely generated). Let x1; : : : ;xr generateM , letM � be the free
A-module on x1; : : : ;xr , and consider the exact commutative diagram:

0 N M � M 0

0 N h�1g.M 0/ M 0 0:

j h

i g

By case (a), i˝1 is injective, and it follows that g˝1 is injective. 2

PROPOSITION 2.2 If f WA! B is flat, then so also is S�1A! T �1B for any multiplica-
tive subsets S �A and T �B such that f .S/� T . Conversely, if Af �1.n/!Bn is flat for
all maximal ideals n of B , then A! B is flat.

PROOF. The map S�1A! S�1B is flat according to Atiyah-Macdonald [1, 2.20], and
S�1B! T �1B is flat according to Atiyah-Macdonald [1, 3.6]. For the converse statement,
let M 0 !M be an injective map of A-modules. To show that B˝AM 0 ! B˝AM is
injective, it suffices to show that

Bn˝B .B˝AM
0/! Bn˝B .B˝AM/

is injective for all n, but this follows from the flatness of Ap! Bn (pD f �1.n/) and the
existence of a canonical isomorphism

Bn˝B .B˝AN/' Bn˝Ap .Ap˝AN/;

natural in the A-module N . 2

REMARK 2.3 If a 2 A is not a zero-divisor and f WA! B is flat, then f .a/ is not a zero-
divisor in B because the injectivity of x 7! axWA! A implies that of

x 7! f .a/xWB! B ' A˝AB .

Thus, if A is an integral domain and B ¤ 0, then f is injective. Conversely, every injective
homomorphism f WA!B of integral domains with A Dedekind is flat. In proving this, we
may localize and hence assume that A is principal. According to (2.1), it suffices to prove
that every nonzero ideal I of A, the map I˝AB ! B is injective. But I˝AB is a free
B-module of rank one, and the generator of I is not mapped to zero in B .
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A morphism f WY ! X of schemes is flat if, for all points y of Y , the induced map
OX;f .y/! OY;y is flat. Equivalently, f is flat if for every pair V and U of open affines
of Y and X such that f .V / � U , the map � .U;OX /! � .V;OY / is flat. From (2.2) it
follows that the first condition needs only to be checked for closed points y of Y.

PROPOSITION 2.4 (a) An open immersion is flat.
(b) The composite of two flat morphisms is flat.
(c) Every base extension of a flat morphism is flat.

PROOF. (a) and (b) are obvious from the definition.
(c) If f WA! B is flat and A! A0 is arbitrary, then to see that A0! B˝AA

0 is flat,
one may use the canonical isomorphism .B˝AA

0/˝A0M ' B˝AM , which exists for
any A0-module M . 2

In order to get less trivial examples of flat morphisms we shall need the following
criterion.

PROPOSITION 2.5 Let ˛WA! B be a flat homomorphism of noetherian rings, and let b 2
B .

(a) If the image of b in B=˛�1.n/B is not a zero-divisor for any maximal ideal n in B ,
then B=.b/ is a flat A-algebra.

(b) Assume that A is Jacobson1 and that B is a finitely generated A-algebra. If the image
of b in B=mB is not a zero-divisor for any maximal ideal m of A, then B=.b/ is a flat
A-algebra. 2

PROOF. Under the hypotheses of (b), the ideal ˛�1.n/ is maximal, and so it suffices to
prove (a). After applying (2.2), we may assume that A! B is a local homomorphism
of local rings. Let m be the maximal ideal of A. By assumption, if c 2 B and bc D 0,
then c 2 mB . We shall show by induction that in fact c 2 mrB for all r , and hence c 2T
r�1m

rB D .0/ (Krull intersection theorem). Assume that c 2mrB , and write

c D
X

aibi

where the ai form a minimal generating set for mr and the bi 2 B . Then

0D bc D
X
i

aibib;

and so, by one of the standard flatness criteria (see the note following 2.10 below), there are
equations

bib D
X
j

aij b
0
j

1A ring A is Jacobson if every prime ideal in A is an intersection of maximal ideals. For example, a
Dedekind domain is Jacobson if and only if it has infinitely many maximal ideals. A local ring is Jacobson if
and only if its maximal ideal is its only prime ideal. A general form of Hilbert’s Nullstellensatz states that if A
is a Jacobson ring, then so is any finitely generated A-algebra B . Moreover the pullback of any maximal ideal
n of B is a maximal ideal m of A, and B=n is a finite extension of the field A=m (q.v. Wikipedia).

2The following example shows that (b) fails without the hypotheses on A and B . Let A D kŒŒx;y��, let
B D Ap with pD .x/, and let b D x. The only maximal ideal in A is mD .x;y/, and B=mB D 0, and so b is
not a zero-divisor in B=mB . However, the injective map a 7! abWA! A doesn’t stay injective when tensored
with B=.b/, which therefore is not flat over A.
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with b0j 2 B , aij 2 A, such that X
i

aiaij D 0

for all j . From the choice of the ai , all aij 2 m. Thus bib 2 mB , and since b is not a
zero-divisor in B=mB , this implies that bi 2 mB . Thus c 2 mrC1B , which completes the
induction. We have shown that b is not a zero-divisor in B , and the same argument, with A
replaced by A=I and B by B==B , shows that b is not a zero-divisor in B=I for any ideal I
of A.

Fix such an ideal, and consider the exact commutative diagram:

0 0

I˝B I˝B I˝ .B=.b// 0

0 B B B=.b/ 0

0 B=I B=IB .B=.b//=I.B=.b// 0

0 0 0

b

b

in which b means multiplication by b. An application of the snake lemma shows that
I˝B=.b/!B=.b/ is injective, which shows thatB=.b/ is flat overA, according to (2.1).2

REMARK 2.6 Let 'WA! B be a homomorphism of noetherian rings, and let q be a prime
ideal of B . If ' is flat, then

ht.q/D ht.p/Cdim.B˝A �.p//; pD '�1.q/

(see, for example, �23 of my notes on commutative algebra).
(a) Let A be a noetherian ring, and consider B=fB where B D AŒX1; : : : ;Xn� and f is

a nonzero element of B without constant term. Then B is a free A-module, and so A! B

is flat. For any prime ideal p in A, B=pB D .A=p/ŒX1; : : : ;Xn� is an integral domain.
Therefore (2.5) shows that B=fB is flat over A if no maximal ideal of A contains all the
coefficients of f . In other words, B=fB is a flat k-algebra if the ideal generated by the
coefficients of f is A.

Let Z D Spec.B=.f // be the hypersurface in AnA defined by f . The above discussion
shows that Z is flat over Spec.A/ if the fiber of Z over every closed point of Spec.A/ has
dimension n�1.

Now assume that A is Cohen-Macaulay. Then A is catenary, i.e., for any prime ideals
p � q in A, the maximal chains of prime ideals between p and q all have the same length.
Moreover, B is also Cohen-Macaulay. Let q be a prime ideal of B=fB and let pD q\A.
If B=fB is flat over A, then (see above),

ht.q/D ht.p/Cdim
�
�.p/ŒX1; : : : ;Xn�=. Nf /

�
:
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Let Qq be the inverse image of q in B . Using Krull’s principal ideal theorem and that the
rings are catenary, we find that

ht.Qq/D ht.q/C1

ht.Qq/D ht.p/Cn:

Therefore, if B=fB is flat over A, then dim
�
�.p/ŒX1; : : : ;Xn�=. Nf /

�
D n� 1, and so the

coefficients of f don’t all lie in p. We have shown that, when A is Cohen-Macaulay, B=fB
is flat over A if and only if the ideal generated by the coefficients of f is A.

(b) We may restate (a) as follows: a hypersurface Z is flat if and only if its closed fibers
over SpecA all have the same dimension. This generalizes. Firstly, if f WY ! X is a flat
morphism of noetherian schemes, then

dim.OY;y/D dim.OX;x/Cdim.OYx ;y/ .x D f .y//: (*)

For varieties, (*) becomes

dim.Y /D dim.X/Cdim.Yx/:

The proof, which is quite elementary, may be found in [EGA IV, 6.1] or Hartshorne [2,
III, 9.5] (the affine case was recalled above). Secondly, let f WY ! X be a morphism of
noetherian schemes with X regular and Y Cohen-Macaulay; if (*) holds for all y 2 Y , then
f is flat. The proof again may be found in [EGA IV, 6.1]. (See also Hartshome [2, III, Ex.
10.9].)

(c) There is another criterion for flatness that is frequently very useful. It is easy to

construct examples of morphisms of noetherian schemesZ
f
�!Y

g
�!X in which g and gf

are flat, but f is not flat. However, if one also knows that the maps on fibers fx WZx! Yx
are flat for all closed x 2 X , then f is flat ([SGA 1, IV, 5.9], or Bourbaki [2, III, 5.4 Prop.
2,3]).

(d) If B is flat over A and b1; : : : ;bn is a sequence of elements of B whose image
in B=mB is regular for each maximal ideal m of B , that is, bi is not a zero-divisor in
B=.mC .b1;b2; : : : :bi�1// for any i , then B=.b1; : : : ;bn/ is flat over A. This follows by
induction from (2.5).

(e) There is a second generalization of (a). Let X be an integral noetherian scheme and
Z a closed subscheme of PnX ; for each x 2 X , let px 2 QŒT � be the Hilbert polynomial of
the fiberZx � Pn

�.x/
; thenZ is flat overX if and only if px is independent of x (Hartshorne

[2, III, 9.9]).

A flat morphism f WA! B is faithfully flat if B ˝AM is nonzero whenever M is
nonzero. On takingM to be a principal ideal in A, we see that such a morphism is injective.

PROPOSITION 2.7 Let f WA!B be a flat morphism with A¤ 0. The following are equiv-
alent:

(a) f is faithfully flat;

(b) a sequence M 0 !M !M 00 of A-modules is exact whenever B˝AM 0 ! B˝A
M ! B˝AM

00 is exact;

(c) af WSpecB! SpecA is surjective;

(d) for every maximal ideal m of A, f .m/B ¤ B: In particular, a flat local homomor-
phism of local rings is automatically faithfully flat.
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PROOF. (a))(b). Suppose thatM 0
g1
�!M

g2
�!M 00 becomes exact after tensoring with B .

Then im.g2g1/D 0 because

B˝A im.g2g1/D im..1˝g2/.1˝g1//D 0;

and im.g1/D ker.g2/ because

B˝ .kerg2= img1/D ker.1˝g2/= im.1˝g1/D 0:

(b))(a). The sequence M
0
�!M �! 0 is exact if and only if M D 0.

(a))(c). For any prime ideal p of A, B˝A �.p/¤ 0, and so af �1.p/D spec.B˝A
�.p// is nonempty.

(c))(d). This is trivial.
(d))(a). Let x 2M , x ¤ 0. Because f is flat, it suffices to show that B˝AN ¤ 0

where N D Ax �M . But N � A=I for some ideal I of A, and hence B˝N � B=IB . If
m is a maximal ideal of A containing I, then IB � f .m/B ¤ B , and so B=IB ¤ 0. 2

COROLLARY 2.8 Let f WY ! X be flat; let y 2 Y , and let x0 be such that x D f .y/ is in
the closure fx0g of fx0g. Then there exists a y0 such that y 2 fy0g and f .y0/D x0.

PROOF. The x0 such that x 2 fx0g are exactly the points in the image of the canonical
map SpecOx!X . The corollary therefore follows from the fact that the map SpecOy!
SpecOx induced by f is surjective. 2

A morphism f WY ! X is faithfully flat if it is flat and surjective. According to (2.7c),
this agrees with the previous definition for rings.

We now consider the question of flatness for finite morphisms. The next theorem shows
that, for such a morphism f WY ! X , flatness has a very explicit interpretation in terms of
the properties of f�OY as an OX -module.

THEOREM 2.9 The following conditions on an A-module are equivalent:
(a) M is finitely generated and projective;

(b) M is finitely presented and Mm is a free Am-module for all maximal ideals m of A;

(c) QM is a locally free sheaf on SpecA, i.e., there exists a finite family .fi /i2I of ele-
ments of A generating the ideal A and such that, for all i 2 I , the Afi

-module Mfi

is free of finite rank;

(d) M is finitely presented and flat.
Moreover, when A is an integral domain andM is finitely presented, they are equivalent to:

(e) dim�.p/.M ˝A �.p// is the same for all prime ideals p of A (here �.p/ denotes the
field of fractions of A=p).

PROOF. (a))(d). As tensor products commute with direct sums, every free module is flat
and every direct summand of a flat module is flat. As projective modules are exactly the
direct summands of free modules, they are flat. It remains to show that every finitely gener-
ated projective moduleM is finitely presented. The kernel of any surjective homomorphism
Ar !M is a direct summand (hence quotient) of Ar , and so is finitely generated.

(b))(c). Let m be a maximal ideal of A, and let x1; : : : ; xr be elements of M whose
images in Mm form a basis for Mm over Am. The kernel N 0 and cokernel N of the homo-
morphism

˛W Ar !M; ˛.a1; : : : ; ar/D
X

aixi ;
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are both finitely generated, and N 0m D 0DNm. Therefore, there exists3 an f 2 Arm such
that N 0

f
D 0DNf . Now ˛ becomes an isomorphism when tensored with Af .

The set T of elements f arising in this way is contained in no maximal ideal, and so
generates the ideal A. Therefore, 1D

P
i2I aifi for certain ai 2 A and fi 2 T .

(c))(d). Let B D
Q
i2I Afi

. Then B is faithfully flat over A, and B˝AM D
Q
Mfi

,
which is clearly a flat B-module. It follows that M is a flat A-module.

(c))(e). This is obvious.
(e))(c): Fix a prime ideal p of A. For some f … p, there exist elements x1; : : : ; xr of

Mf whose images in M ˝A �.p/ form a basis. Then the map

˛WArf !Mf ; ˛.a1; : : : ; ar/D
P
aixi ;

defines a surjection Arp !Mp (Nakayama’s lemma; note that �.p/ ' Ap=pAp). Because
the cokernel of ˛ is finitely generated, the map ˛ itself will be surjective once f has been
replaced by a multiple. For any prime ideal q of Af , the map �.q/r !M ˝A �.q/ de-
fined by ˛ is surjective, and hence is an isomorphism because dim.M ˝A �.q//D r . Thus
ker.˛/� qAr

f
for every q, which implies that it is zero as Af is reduced. Therefore Mf is

free. As in the proof of (b), a finite set of such f ’s will generate A. 2

To prove the remaining implications, (d))(a);(b) we shall need the following lemma.

LEMMA 2.10 Let
0!N ! F !M ! 0 (1)

be an exact sequence of A-modules with N a submodule of F .
(a) lf M and F are flat over A, then N \aF D aN (inside F ) for all ideals a of A.

(b) Assume that F is free with basis .yi /i2I and that M is flat. If the element n DP
i2I aiyi of F lies in N , then there exist ni 2N such that nD

P
i2I aini :

(c) Assume that M is flat and F is free. For every finite set fn1; : : : ; nrg of elements of
N , there exists an A-linear map f WF !N with f .nj /D nj ; j D 1; : : : , r .

PROOF. (a) Consider

a˝N a˝F a˝M

0 N \aF aF aM

' '

The first row is obtained from (1) by tensoring with a, and the second row is a subsequence
of (1). Both rows are exact. On tensoring a!A with F we get a map a˝F !F , which is
injective because F is flat. Therefore a˝F ! aF is an isomorphism. Similarly, a˝M !
aM is an isomorphism. From the diagram we get a surjective map a˝N ! N \aF , and
so the image of a˝N in aF is N \aF . But this image is aN .

(b) Let a be the ideal generated by the ai . Then n 2 N \ aF D aN , and so there are
ni 2N such that nD

P
aini :

(c) We use induction on r . Assume first that r D 1, and write

n1 D
P
i2I0

aiyi

3To say that S�1N D 0means that, for each x 2N , there exists an sx 2 S such that sxx D 0. If x1; : : : ;xn
generate N , then s def

D sx1
� � �sxn lies in S and has the property that sN D 0. Therefore, Ns D 0.
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where .yi /i2I is a basis for F and I0 is a finite subset of I . Then

n1 D
P
i2I0

ain
0
i

for some n0i 2N (by (b)), and f may be taken to be the map such that f .yi /D n0i for i 2 I0
and f .yi /D 0 otherwise. Now suppose that r > 1, and that there are maps f1; f2 : F !N

such that f1.n1/D n1 and

f2.ni �f1.ni //D ni �f1.ni /; i D 2; : : : r:

Then
f WF !N; f D f1Cf2�f2 ıf1

has the required property. 2

We now complete the proof of the Theorem 2.9.
(d))(a). Because M is finitely presented, there is an exact sequence

0!N ! F !M ! 0

in which F is free and N and F are both finitely generated. Because M is flat, (c) of the
lemma shows that this sequence splits, and so M is projective.

(d))(b):We may suppose thatA itself is local, with maximal ideal m. Let x1; : : : ; xr 2
M be such that their images in M=mM form a basis for this over the field A=m. Then the
xi generate M (by Nakayama’s lemma), and so there exists an exact

0!N ! F
g
�!M ! 0

in which F is free with basis fy1; : : : ; yrg and g.yi /D xi . According to (a) of the lemma,
mN DN \ .mF /, which equalsN becauseN �mF . ThereforeN is zero by Nakayama’s
lemma. 2

NOTES Using (2.10), we prove the following statement:

Let M be a flat A-module, and suppose that
Pr
iD1 aixi D 0, ai 2 A, xi 2M . Then

there exist aij 2 A and yj 2M such that
P
i aiaij D 0 and xi D

P
j aijyj . (In other

words, every linear relation in M arises from a family of linear relations in A.)

Note that there exists a surjection gWF !M from a free module F onto M and a basis .yi / for F
such that g.yi /D xi for i D 1; : : : ; r . Now nD

P
aiyi 2 ker.g/, and so nmay be written nD

P
aini

with ni 2 ker.g/ (apply 2.10(b)). Write ni D yi �
P
j aijyj , aij 2A. Then xi D

P
j aijg.yj /, and

nD
P
i aini D n�

P
j .
P
i aiaij /yj ;

which implies that
P
i aiaij D 0.

REMARK 2.11 Let f WY ! X be finite and flat. I claim that f is open, that is, maps open
sets to open sets. Following (2.9), we may assume that X D SpecA, Y D SpecB , and B �
Ar as an A-module. Let T rCa1T r�1C�� �Car be the characteristic polynomial over A of
an element b 2B . A prime ideal p ofA is in the image of spec.Bb/! spec.A/ exactly when
Bb=pBb is nonzero. But Bb=pBb ' .B=pB/ Nb and so this ring is nonzero exactly when Nb is
not nilpotent in B=pB or, equivalently, when some coefficient of T r Ca1T r�1C�� �Car
is nonzero in A=p. Thus the image of specBb in specA is

S
specAai

, which is open. A
much more general statement holds.
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THEOREM 2.12 Every flat morphism locally of finite type of noetherian schemes is open.

We first prove a lemma.

LEMMA 2.13 Let f WY ! X be of finite type. For all pairs .Z;U / where Z is a closed
irreducible subset of Y and U is an open subset such that U \Z ¤ ;, there exists an open
subset V of X such that f .U \Z/ � V \f .Z/¤ ;. (Here, f .Z/ denotes the closure of
the set f .Z/).

PROOF. First note the following statements.

(a) The lemma is true for closed immersions.

(b) The lemma is true for f if it is true for fred W Yred!Xred:

(c) The lemma is true for gf if it is true for f and g. (For, if V 0 satisfies the conclusion of
the lemma for the pair .f .Z/;V / and the map g, then it also satisfies the conclusion
for the pair .Z;U / and the map gf .)

(d) It suffices to check the lemma locally on Y and X .

(e) In checking the lemma for a given Z, we note that X may be replaced by f .Z/, and
hence may be assumed to be irreducible.

Using (a), (c), and (d), we may reduce the question to the case that f is the projection
An�X!X whereX is affine. Using (b) and (e), we reduce the question further to the case
that X D SpecA, A an integral domain. Finally, using (c) again, we reduce the question to
the case that f is the projection A1�X !X .

Let Z be a closed irreducible subset of A1X , say Z D SpecB where B D AŒT �=q. We
may assume that q¤ 0, for otherwise the lemma is easy. We may also assume, according
to (e), that q\AD .0/, that is, that f .Z/D X . Let K be the field of fractions of A, and
let t D T (mod q). Since q contains a nonconstant polynomial, t is algebraic over K, and
so there is an a 2 A, a ¤ 0, such that at is integral over A. Then Ba is finite over Aa, and
so spec.Ba/! spec.Aa/ is surjective (Atiyah-Macdonald [1, 5.10]). Thus we are reduced
to showing that the image of a nonempty open subset U of spec.Ba/ contains a nonempty
open subset of spec.A/. But if U contains .spec.Ba//b , and b satisfies the polynomial
TmCa1T

m�1C�� �Cam D 0, ai 2 Aa, then f .U /�
S
.specAa/ai

. 2

PROOF (OF (2.12)) Let f WY ! X be as in the theorem. It suffices to show that f .Y / is
open. Let W D X rf .Y / and let Z1; : : : ;Zn be the irreducible components of NW . Let zj
be the generic point of Zj . If zj 2 f .Y /, say zj D f .y/, then (2.13) applied to .fyg;Y /
shows that there exists an open U in X such that f .Y /� U \Zj � fzj g. But then

f .Y /� U \
�
X r

[
i¤j

Zi

�
� fzj g;

and, as U and .Xr
S
i¤j Zi / are open, this implies that zj 62 NW , which is a contradiction.

Thus zj 2W , and, according to (2.8), all specializations of zj belong toW . ThusW �Zj ,
W �

S
Zj D NW , and f .Y / is open. 2

REMARK 2.14 If f WY ! X is finite and flat, then it is both open and closed. Thus, if X
is connected, then f is surjective and hence faithfully flat (provided Y is nonempty).
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REMARK 2.15 In fact, every flat morphism locally of finite presentation is open [EGA
IV, 2.4.6]. However, a flat morphism f WY !X of noetherian schemes, even faithfully flat,
need not be open. For example, letX D SpecAwithA a Dedekind domain having infinitely
many prime ideals, and let Y D X tSpecK with K the field of fractions of A. Under the
natural map Y !X , the image of SpecK is not open in X (cf. 1.6b).

If f WY !X is finite, and for some y 2 Y , Oy is free as an Of .y/-module, then clearly
� .f �1.U /;OY / is free over � .U;OX / for some open affine U in X containing f .y/.
(See the proof of (b))(c) in 2.9.) Thus the set of points y 2 Y such that Oy is flat over Ox
is open in Y and is even nonempty if X is integral and f .Y /D X . Again this holds more
generally.

THEOREM 2.16 Let f WY ! X be locally of finite type with X locally noetherian. The
set of points y 2 Y such that Oy is flat over Of .y/ is open in Y ; it is nonempty if f is
dominant and X is integral.

PROOF. See [EGA IV, 11.1.1]. A reasonably self-contained proof of the affine case can be
found in Matsumura [1, Chapter VIII]; see also Mumford [2, p.57]. 2

Recall that, in any category with fiber products, a morphism Y !X is a strict epimor-
phism if the sequence

Y �X Y Y X
p1

p2

is exact, that is, if the sequence of sets

Hom.X;Z/ Hom.Y;Z/ Hom.Y �X Y;Z/
p�1

p�2

is exact for all objectsZ, that is, the first arrow maps Hom.X;Z/ bijectively onto the subset
of Hom.Y;Z/ on which p�1 and p�2 agree.

Clearly the condition that a morphism of schemes be surjective is not sufficient to imply
that it is a strict epimorphism—consider the morphism Speck! SpecA where A is a local
Artin ring with residue field k—but for flat morphisms it is, almost.

THEOREM 2.17 Every faithfully flat morphism f WY !X of finite type is a strict epimor-
phism.

It is convenient to prove the following result first.

PROPOSITION 2.18 If f WA! B is faithfully flat, then the sequence4

0! A
f
�! B

d0

�! B˝2 �! �� � �! B˝r
dr�1

�! B˝rC1 �! �� �

is exact, where

B˝r D B˝AB˝A � � �˝AB .r times)

d r�1 D
X

.�1/iei

ei .b0˝�� �˝br�1/D b0˝�� � ˝bi�1˝1˝bi ˝�� �˝br�1:

4Sometimes called the Amitsur complex (Amitsur, S.A., Trans. Amer. Math. Soc. 90 1959 73–112).
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PROOF. The usual argument shows that d r ı d r�1 D 0. We assume first that f admits
a section, that is, that there exists a homomorphism gWB ! A such that gf D 1, and we
construct a contracting homotopy kr : B˝rC2! B˝rC1. Define

kr.b0˝�� �˝brC1/D g.b0/b1˝b2˝�� �˝brC1, r � �1:

It is easily checked that krC1d rC1Cd rkr D 1, r � �1, and this implies that the sequence
is exact.

Now let A0 be an A-algebra, let B 0 D A0˝A B , and let f 0 D 1˝ f WA0 ! B 0. The
sequence corresponding to f 0 is obtained from the sequence for f by tensoring with A0

(because B˝r ˝A A0 ' .B 0/˝r ). Thus, if A0 is a faithfully flat A-algebra, it suffices to
prove the theorem for f 0. Take A0 D B , and then f 0 D .b 7! b˝ 1/WB ! B˝AB has a
section, namely, g.b˝b0/D bb0, and so the sequence is exact. 2

REMARK 2.19 A similar argument to the above shows that if f WA! B is faithfully flat
and M is an A-module, then the sequence

0!M !M ˝AB
1˝d0

�! M ˝AB
˝2
! �� � !M ˝B˝r

1˝dr�1

�! M ˝B˝rC1! �� �

is exact. Indeed, one may assume again that f has a section and construct a contracting
homotopy as before.

PROOF (OF 2.17) We have to show that for every schemeZ and morphism hWY !Z such
that hp1 D hp2, there exists a unique morphism gWX !Z such that gf D h.

Case (a) X D SpecA, Y D SpecB , and Z D SpecC are all affine. In this case the
theorem follows from the exactness of

0! A! B
e0�e1
�! B˝AB

(since ae0 D p2, ae1 D p1).
Case (b) X D SpecA and Y D SpecB affine, Z arbitrary. We first show the unique-

ness of g. If g1;g2WX ! Z are such that g1f D g2f , then g1 and g2 must agree on
the underlying topological space of X because f is surjective. Let x 2 X ; let U be an
open affine neighborhood of g1.x/.D g2.x// in Z, and let a 2 A be such that x 2 Xa and
g1.Xa/D g2.Xa/� U . Then Bb , where b is the image of a in B is faithfully flat over Aa,
and it therefore follows from case (a) that g1jXa D g2jXa.

Now let hWY ! Z have hp1 D hp2. Because of the uniqueness just proved, it suffices
to define g locally. Let x 2 X , y 2 f �1.x/, and let U be an open affine neighborhood
of h.y/ in Z. Then f .h�1.U // is open in X (apply 2.12), and so it is possible to find
an a 2 A such that x 2 Xa � f .h�1.U //. I claim that f �1.Xa/ is contained in h�1.U /.
Indeed, if f .y1/D f .y2/, there is a y0 2 Y �Y such that p1.y0/D y1 and p2.y0/D y2; if
y2 2 h

�1.U /, then
h.y1/D hp1.y

0/D hp2.y
0/D h.y2/ 2 U;

which proves the claim. If now b is the image of a in B , then h.Yb/D h.f �1.Xa//� U ,
and Bb is faithfully flat over Aa. Thus the problem is reduced to case (a).

Case .c/ General case. It is easy to reduce to the case where X is affine. Since f is
quasi-compact, Y is a finite union, Y D Y1[� � �[Yn, of open affines. Let Y � be the disjoint
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union Y1 t � � � tYn. Then Y � is affine and the obvious map Y �! X is faithfully flat. In
the commutative diagram,

Hom.X;Z/ Hom.Y;Z/ Hom.Y �X Y;Z/

Hom.X;Z/ Hom.Y �;Z/ Hom.Y ��X Y �;Z/,

the lower row is exact by case (b) and the middle vertical arrow is obviously injective. An
easy diagram chase now shows that the top row is exact. 2

EXERCISE 2.20 Show that SpeckŒT �! SpeckŒT 3;T 5� is an epimorphism, but not a strict
epimorphism.

REMARK 2.21 Let f WA! B be a faithfully flat homomorphism, and let M be an A-
module. Write M 0 for the B-module f�M D B ˝AM . The module e0�M 0 D .B ˝A
B/˝BM

0 may be identified with B˝AM 0 where B˝AB acts by .b1˝ b2/.b˝m/ D
b1b˝ b2m, and e1�M 0 may be identified with M 0˝A B where B ˝A B acts by .b1˝
b2/.m˝ b/ D b1m˝ b2b. There is a canonical isomorphism �We1�M

0! e0�M
0 arising

from
e1�M

0
D .e1f /�M D .e0f /�M D e0�M

0;

explicitly it is the map

M 0˝AB ! B˝AM
0

.b˝m/˝b0 7! b˝ .b0˝m/; m 2M:

Moreover, M can be recovered from the pair .M 0;�/ because

M D fm 2M 0 j 1˝mD �.m˝1/g

according to (2.19).
Conversely, every pair .M 0;�/ satisfying certain conditions does arise in this way from

an A-module. Given �WM 0˝AB! B˝AM
0 define

�1WB˝AM
0
˝AB! B˝AB˝AM

0;

�2 WM
0
˝AB˝AB! B˝AB˝AM

0;

�3WM
0
˝AB˝AB! B˝AM

0
˝AB

by tensoring � with idB in the first, second, and third positions respectively. Then a pair
.M 0;�/ arises from an A-module M as above if and only if �2 D �1�3. The necessity is
easy to check. For the sufficiency, define

M D fm 2M 0 j 1˝mD �.m˝1/g:

There is a canonical map b˝m 7! bmWB˝AM !M 0, and it suffices to show that this is
an isomorphism (and that the map arising from M is �). Consider the diagram

M 0˝AB B˝AM
0˝AB

B˝AM
0 B˝AB˝AM

0

˛˝1

ˇ˝1

e0˝1

e1˝1

� �1
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in which ˛.m/D 1˝m and ˇ.m/D �.m˝1/. As the diagram commutes with either the
upper or the lower horizontal maps (for the lower maps, this uses the relation �2 D �1�3),
� induces an isomorphism on the kernels. But, by definition of M , the kernel of the pair
.˛˝ 1;ˇ˝ 1/ is M ˝AB , and, according to (2.19), the kernel of the pair .e0˝ 1;e1˝ 1/
is M 0. This essentially completes the proof.

More details on this, and the following two results may be found in Murre [1, Chapter
VII] and Knus-Ojanguren [1, Chapter II].

PROPOSITION 2.22 Let f WY ! X be faithfully flat and quasi-compact. To give a quasi-
coherent OX -module M is the same as giving a quasi-coherent OY -module M 0 plus an
isomorphism �Wp�1M

0! p�2M
0 satisfying

p�31.�/D p
�
32.�/p

�
21.�/:

(Here the pij are the various projections Y �Y �Y ! Y �Y , that is, pj i .y1;y2;y3/ D
.yj ;yi /, j > i/.

PROOF. In the case that Y and X are affine, this is a restatement of (2.21). 2

By using the relation between schemes affine over a scheme and quasi-coherent sheaves
of algebras (Hartshorne [2, II, Ex. 5.17]), one can deduce from (2.22) the following result.

THEOREM 2.23 Let f WY ! X be faithfully flat and quasi-compact. To give a scheme
Z affine over X is the same as giving a scheme Z0 affine over Y plus an isomorphism
�Wp�1Z

0! p�2Z
0 satisfying

p�31.�/D p
�
32.�/p

�
21.�/:

REMARK 2.24 The above is a sketch of part of descent theory. Another part describes
which properties of morphisms descend. Consider a Cartesian square

Y Y 0

X X 0

f f 0

in which the map X 0 ! X is faithfully flat and quasi-compact. If f 0 is quasi-compact
(respectively separated, of finite type, proper, an open immersion, affine, finite, quasi-finite,
flat, smooth, étale), then f is also [EGA IV, 2.6, 2.7]. The reader may check that this
statement implies the same statement for faithfully flat morphisms X 0!X that are locally
of finite type. (Use (2.12)).

Of a similar nature is the result that if f WY ! X is faithfully flat and Y is integral
(respectively normal, regular), then so also is X [EGA 0IV, 17.3.3].

Finally, we quote a result that may be regarded as a vast generalization of the Hilbert
Nullstellensatz. Recall that the Nullstellensatz says that every morphism of finite type
f WX ! Spec.k/ with k a field has a quasi-section, that is, that there exists a k-morphism
gWSpec.k0/!X with k0 a finite field extension of k.

PROPOSITION 2.25 Let f WY !X be faithfully flat and locally of finite presentation, and
assume that X is quasi-compact and quasi-separated. Then there exists an affine scheme
X 0, a faithfully flat quasi-finite morphism hWX 0!X , and an X -morphism gWX 0! Y .
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PROOF. One has to show that, locally, there exist sequences satisfying the conditions of
(2.6d) and of length equal to the relative dimension of Y=X . See [EGA IV, 17.16.2] for the
details. 2

3 Étale Morphisms

Let k be a field and Nk its algebraic closure. A k-algebra A is separable if NAD A˝k k has
zero Jacobson radical, that is, if the intersection of the maximal ideals of NA is zero.5

PROPOSITION 3.1 Let A be a finite algebra over a field k. The following are equivalent:
(a) A is separable over k;

(b) NA is isomorphic to a finite product of copies Nk;

(c) A is isomorphic to a finite product of separable field extensions of k;

(d) the discriminant of any basis ofA over k is nonzero (that is, the trace pairingA�A!
k is nondegenerate).

PROOF. (a))(b). From (1.5) we know that NA has only finitely many prime ideals and that
they are all maximal. Now (a) implies that their intersection is zero and (b) follows from
the Chinese remainder theorem (Atiyah-Macdonald [1, 1.10]).

(b))(c). The Chinese remainder theorem implies that A=Ir , where lr is the Jacob-
son radical of A, is isomorphic to a finite product

Q
ki of finite field extensions of k.

Write ŒKWk�s for the separable degree of a field extension K=k. Then Homk-alg.A; Nk/ hasP
Œki Wk�s elements. But

Homk-alg.A; Nk/ ' Hom Nk-alg.
NA; Nk/;

and this set has Œ NAW Nk� elements by (b). Thus

Œ NAW Nk�D
X

Œki Wk�s �
X

Œki Wk�D ŒA=Ir Wk�� ŒAWk�:

Since Œ NAW Nk�D ŒAWk�, equality must hold throughout and we have (c).
(c))(d). If AD

Q
ki , where the ki are separable field extensions of k, then disc.A/DQ

disc.ki /, and this is nonzero by one of the standard criteria for a field extension to be
separable.

(d))(a). The discriminants of A and NA are the same. If x is in the radical of NA, then
xa is nilpotent for all a 2 NA, and so Tr NA= Nk.xa/D 0 all a. Thus x D 0. 2

A morphism f WY ! X that is locally of finite presentation is said to be unramified at
y 2 Y if OY;y=mxOY;y is a finite separable field extension of �.x/, where x D f .y/. In
terms of rings, this says that a homomorphism f WA!B of finite presentation is unramified
at q 2 specB if and only if p D f �1.q/ generates the maximal ideal in Bq and �.q/ is a
finite separable field extension of �.p/. Thus this terminology agrees with that in number
theory.

A morphism f WY !X is unramified if it is unramified at all y 2 Y .

5Bourbaki’s terminology (A, V, �6) is that an algebra A over a field k is diagonalizable if it is isomorphic
to a product algebra kn for some n, and it is étale if L˝k A is diagonalizable for some field L containing k.
Thus a finite k-algebra is étale if and only if it satisfies the equivalent conditions of (3.1).
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PROPOSITION 3.2 Let f WY ! X be locally of finite presentation. The following are
equivalent:

(a) f is unramified;

(b) for all x 2X , the fiber Yx! Spec�.x/ over X is unramified;

(c) all geometric fibers of f are unramified (that is, for all morphisms Speck!X , with
k separably closed, Y �SpeckX ! Speck is unramified);

(d) for all x 2X , Yx has an open covering by spectra of finite separable �.x/-algebras;

(e) for all x 2X , Yx is a disjoint union
F

Specki , where the ki are finite separable field
extensions of �.x/.

(If f is of finite presentation, then Yx itself is the spectrum of a finite separable �.x/-
algebra in (d), and Yx is a finite sum in (e); in particular f is quasi-finite.)

PROOF. (a),(b). This follows from the isomorphism OY;y=mxOY;y 'OYx;y
.

(b))(d). Let U be an open affine subset of Yx , and let q be a prime ideal in B D
� .U;OYx

/. According to (b), Bq is a finite separable field extension of �.x/. Also

�.x/ � B=q� Bq=qBq D Bq;

and so B=q is also a field. Thus q is maximal, B is an Artin ring (Atiyah-Macdonald [1,
8.5]), and B D

Q
Bq, where q runs through the finite set SpecB . This proves (d).

A similar argument shows that (c))(d), and (d))(e))(c) and (d))(b) are trivial
consequences of (3.1). 2

Notice that according to the above definition, every closed immersion Z ,! X is un-
ramified. Since this does not agree with our intuitive idea of an unramified covering, for
example, of Riemann surfaces, we need a more restricted notion. A morphism of schemes
(or rings) is defined to be étale if it is flat and unramified (hence also locally of finite pre-
sentation).

PROPOSITION 3.3 (a) Every open immersion is étale.
(b) The composite of two étale morphisms is étale.
(c) Every base change of an étale morphism is étale.

PROOF. After applying (2.4), we only have to check that the three statements hold for
unramified morphisms. Both (a) and (b) are obvious (every immersion is unramified). Also,
(c) is obviously true according to (3.1) if the base change is of the form k! k0, where k
and k0 are fields but, according to (3.2), this is all that has to be checked. 2

EXAMPLE 3.4 . Let k be a field and P.T / a monic polynomial over k. Then the mono-
genic extension kŒT �=.P / is separable (equivalently, unramified or étale) if and only if P
is separable, that is, has no multiple roots in Nk.

This generalizes to rings. A monic polynomial P.T / 2 AŒT � is separable if .P;P 0/D
AŒT �, that is, if P 0.T / is a unit in AŒT �=.P / where P 0.T / is the formal derivative of P.T /.
It is easy to see that P is separable if and only if its image in �.p/ŒT � is separable for all
prime ideals p in A.

Let B D AŒT �=.P /, where P is any monic polynomial in AŒT �. As an A-module, B is
free of finite rank equal to the degree of P . Moreover, B˝A �.p/D �.p/ŒT �=. NP / where NP
is the image of P in �.p/ŒT �. It follows from (3.2b) that B is unramified and so étale over
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A if and only if P is separable. More generally, for any b 2 B , Bb is étale over A if and
only if P 0 is a unit in Bb .

For example, B DAŒT �=.T r �a/ is étale over A if and only if ra is invertible in A (for
ra 2 A� ” r Na 2 �.p/�, all p ” T r � Na is separable in �.p/ŒT � all p).

For algebras generated by more than one element, there is the following Jacobian crite-
rion: let C DAŒT1; : : : ;Tn�, let P1; : : : ;Pn 2C , and letB DC=.P1; : : : ;Pn/; thenB is étale
over A if and only if the image of det.@Pi=@Tj / in B is a unit. That B is unramified over A
if and only if the condition holds follows directly from (3.5b) below. (The B-module˝1

B=A

has generators dT1; : : : ;dTn and relations
P
.@Pi=@Tj /dTj D 0.) That B is flat over A

may be proved by repeated applications of (2.5). (See Mumford [3, III, �10. Thm. 30] for
the details.)

Note that if Y D SpecB and X D SpecA were analytic manifolds, then this criterion
would say that the induced maps on the tangent spaces were all isomorphisms, and hence
Y !X would be a local isomorphism at every point of Y by the inverse function theorem.
It is clearly not true in the geometric case that SpecB ! SpecA is a local isomorphism
(unless local is meant in the sense of the étale topology—see later). For example, consider
SpecZŒT �=.T 2�2/! SpecZ, which is étale on the complement of f.2/g but is not a local
isomorphism.

PROPOSITION 3.5 Let f WY ! X be locally of finite presentation. The following are
equivalent:

(a) f is unramified;

(b) the sheaf ˝1
Y=X

is zero;

(c) the diagonal morphism �Y=X WY ! Y �X Y is an open immersion.

PROOF. (a))(b). Since ˝1
Y=X

behaves well with respect to base change, it suffices to
consider the case that Y D SpecB and X D SpecA are affine, then the case that A! B is
a local homomorphism of local rings, and finally, using Nakayama’s lemma, the case that
A and B are fields. Then B is a separable field extension of A, and it is a standard fact that
this implies that ˝1

B=A
D 0.

(b))(c). Since the diagonal is always at least locally closed, we may choose an open
subscheme U of Y �X Y such that �Y=X WY ! U is a closed immersion and regard Y as a
subscheme of U . Let I be the sheaf of ideals on U defining Y . Then I=I2, regarded as a
sheaf on Y , is isomorphic to ˝1

Y=X
and hence is zero. Using Nakayama’s lemma, one sees

that this implies that Iy D 0 for all y 2 Y , and it follows that I D 0 on some open subset V
of U containing Y . Then .Y;OY /D .V;OV / is an open subscheme of Y �Y .

(c))(a). According to (3.2), it suffices to show that each geometric fiber of f is un-
ramified. Thus we need only consider the case of a morphism f WY ! Speck where k is an
algebraically closed field. Let y be a closed point of Y . Because k is algebraically closed,
there exists a section gWSpeck! Y whose image is fyg. The following square is Cartesian:

Y Y �X Y

fyg Y:

�

g

g

.gf;1/

Since � is an open immersion, this implies that fyg is open in Y . Moreover, the map

SpecOy D fyg ! Speck
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still has the property that SpecOy
�
�! Spec.Oy ˝k Oy/ is an open immersion. But Oy

is a local Artin ring with residue field k, and so SpecOy ˝k Oy has only one point, and
Oy˝kOy !Oy must be an isomorphism. By counting dimensions over k, one sees then
that Oy D k. Thus, on applying (3.1) and (3.2), we obtain (a). 2

COROLLARY 3.6 Consider morphisms Y
g
�!X

f
�! S . If f ıg is étale and f is unrami-

fied, then g is étale.

PROOF. Write g D p2�g where �g WY ! Y �S X is the graph of g and p2WY �S X ! X

is the projection on the second factor. Now �g is the pull-back of the open immersion
�X=S WX!X �S X by g�1WY �S X!X �S X , and p2 is the pull-back of the étale map
fgWY ! S by f WX ! S . Thus, by using (3.3), we see that g is étale. 2

REMARK 3.7 Let f WY !X be locally of finite presentation. The annihilator of˝1
Y=X

(an
ideal in OY ) is called the different dY=X of Y over X . That this definition agrees with the
one in number theory is proved in Serre [7, III, �7].

The closed subscheme of Y defined by dY=X is called the branch locus of Y over X .
The open complement of the branch locus is precisely the set on which ˝1

Y=X
D 0, that is,

on which f WY ! X is unramified. Assume X is locally noetherian. The theorem of the
purity of branch locus states that the branch locus (if nonempty) has pure codimension one
in Y in each of the two cases: (a) when f is faithfully flat and finite over X ; or (b) when f
is quasi-finite and dominating, Y is regular and X is normal. (See Altman and Kleiman [1,
VI, 6.8], [SGA 1, X, 3.1], and [SGA 2, X, 3.4].)

PROPOSITION 3.8 If f WY !X is locally of finite presentation, then the set of points y of
Y , such that OY;y is flat over OX;f .y/ and˝1

Y=X;y
D 0, is open in Y. Thus there is a unique

largest open set U in Y on which f is étale.

PROOF. This follows immediately from (2.16). 2

EXERCISE 3.9 Let f WY ! X be finite and flat, and assume that X is connected. Then
f�OY is locally free, of constant rank r say. Show that there is a sheaf of ideals DY=X
on X , called the discriminant of Y over X , with the property that if U is an open affine
in X such that B D � .f �1.U /;OY / is free with basis fb1; : : : ;brg over A D � .U;OX /,
then � .U;DY=X / is the principal ideal generated by det.TrB=A.bibj //. Show that f is
unramified, hence étale, at all y 2 f �1.x/ if and only if .DY=X /x D OX;x (use (3.1d)).
Use this to show that if f is unramified at all y 2 f �1.x/ for some x 2 X , then there
exists an open subset U � X containing x such that f Wf �1.U /! U is étale. Show that
if B D AŒT �=.P.T // with P monic, then the discriminant DB=A D .D.P //, where D.P /
is the discriminant of P , that is, the resultant, res.P;P 0/, of P and P 0. Show also that the
different dB=A D .P 0.t// where t D T .modP /. (See Serre [7, III, �6].)

The next proposition and its corollaries show that étale morphisms have the uniqueness
properties of local isomorphisms.

PROPOSITION 3.10 Let f WY ! X be a closed immersion of noetherian schemes. If f is
flat (hence étale), then it is an open immersion.

PROOF. According to (2.12), f .Y / is open in X and so, after replacing X with f .Y /, we
may assume f to be surjective. As f is finite, f�OY is locally free as an OX -module
(2.9). Since f is a closed immersion, this implies that OX ' f�OY , that is, that f is an
isomorphism. 2
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REMARK 3.11 By using Zariski’s main theorem, we may prove a stronger result, namely,
that every étale, universally injective, separated morphism f WY !X of locally noetherian
schemes is an open immersion. (An injective morphism is universally injective if and only if
the maps �.f .y//! �.y/ are radicial for all y 2 Y [EGA I, 3.7.1].) In fact, by proceeding
as above, we can assume that f is universally bijective, hence a homeomorphism (2.12),
hence proper, and hence finite (1.10). Now f being étale and radicial implies that f�OY
must be free of rank one.

COROLLARY 3.12 Let X be a connected noetherian scheme. If f WY ! X is étale (resp.
étale and separated), then every section s of f is an open immersion (resp. an isomorphism
onto an open connected component). Thus there is a one-to-one correspondence between
the set of such sections and the set of those open (resp. open and closed) subschemes Yi
of Y such that f induces an isomorphism Yi ! X . In particular, when f is separated, a
section is determined by its value at a single point.

PROOF. Only the first assertion requires proof. Assume first that f is separated. Then s is
a closed immersion because f sD 1 is a closed immersion, and f is separated (compare the
proof of (3.6)). According to (3.6) s is étale, and hence it is an open immersion. Thus s is
an isomorphism onto its image, which is both open and closed in Y . If f is only assumed
to be étale, then it is separated in a neighborhood of y and x D f .y/, and hence the above
argument shows that s is a local isomorphism at x. 2

COROLLARY 3.13 Let f;gWY 0! Y be X -morphisms where X is locally noetherian, Y 0

is connected, and Y is étale and separated over X. If there exists a point y0 2 Y 0 such that
f .y0/D g.y0/D y and the maps �.y/! �.y0/ induced by f and g coincide, then f D g.

PROOF. The graphs �f ;�g WY 0 ! Y 0 �X Y of f and g are sections to the projection
p1WY

0 �X Y ! Y 0. The conditions imply that �f and �g agree at a point, and so �f
and �g are equal (3.12). Thus f D p2�f D p2�g D g. 2

We saw in (3.4) above that given a monic polynomial P.T / over A, it is possible to
construct an étale morphism SpecC ! SpecA by taking C D Bb where B D AŒT �=.P /
and b is such that P 0.T / is a unit in Bb . We shall call such an étale morphism standard.
The interesting fact is that locally every étale morphism Y !X is standard. Geometrically
this means that in a neighborhood of any point x of X , there are functions a1; : : : ;ar on X
such that Y is locally described by the equation

T rCa1T
r�1
C�� �Car D 0;

and the roots of the equation are all simple (at any geometric point).

THEOREM 3.14 Let X be a locally noetherian scheme. If f WY !X is étale in some open
neighborhood of y 2 Y , then there are open affine neighborhoods V and U of y and f .y/,
respectively, such that f jV WV ! U is a standard étale morphism.

PROOF. Clearly, we may assume that Y D SpecC and X D SpecA are affine. Also, by
Zariski’s main theorem (1.8), we may assume that C is a finite A-algebra. Let q be the
prime ideal of C corresponding to y. We have to show that there is a standard étale A-
algebra Bb such that Bb � Cc for some c 62 q. It is easy to see (because everything is finite
over A) that it suffices to do this with A replaced by Ap, where pD f �1.q/, that is, that we
may assume that A is local and that q lies over the maximal ideal p of A.



26 CHAPTER I. ÉTALE MORPHISMS

Choose an element t 2 C whose image Nt in C=pC generates �.q/ over �.p/, that is, t
is such that �.p/ŒNt � D �.q/ � C=pC . Such an element exists because C=pC is a product
�.q/�C 0, and �.q/=�.p/ is separable. Let q0 D q\AŒt�. I claim that AŒt�q0 ! Cq is an
isomorphism. Note first that q is the only prime ideal of C lying over q0 (in checking this,
one may tensor with �.p//. Thus the semilocal ring C ˝AŒt�AŒt�q, is actually local and so
equals Cq. As AŒt�! C is injective and finite, it follows that

AŒt�q0 ! C ˝AŒt�AŒt�q0 D Cq

is injective and finite. It is surjective because �.q0/! �.q/ is surjective, and Nakayama’s
lemma may be applied.

The A-algebra AŒt� is finite (it is a submodule of a noetherian A-module), and the
isomorphism AŒt�q0 ! Cq extends to an isomorphism AŒt�c0 ! C for some c … q, c0 … q0.
Thus C may be replaced by AŒt�, that is, we may assume that t generates C over A.

Let n D Œ�.q/W�.p/�, so that 1; t ; : : : , Ntn�1 generate �.q/ as a vector space over �.p/.
Then 1, t; : : : ; tn�1 generate C D AŒt� over A (according to Nakayama’s lemma), and so
there is a monic polynomial P.T / of degree n and a surjection hWB D AŒT �=.P /! C .
Clearly NP .T / is the characteristic polynomial of Nt in �.q/ over �.p/ and so is separable.
Thus Bb is a standard étale A-algebra for some b 62 h�1.q/. With a suitable choice of b
and c we get a surjection h0WBb! Cc with both Bb and Cc étale A-algebras. According to
(3.6), h0 is étale, and ah0WSpecCc ! SpecBb is a closed immersion. Hence, according to
(3.10), ah0 is an open immersion, which completes the proof. 2

REMARK 3.15 The fact that f was flat was used only in the last step of the above proof.
Thus the argument shows that locally every unramified morphism is a composite of a closed
immersion with a standard étale morphism.

COROLLARY 3.16 A morphism f WY ! X is étale if and only if for every y 2 Y , there
exist open affine neighborhoods V D SpecC of y and U D SpecA of x D f .y/ such that

C D AŒT1; : : : ;Tn�=.P1; : : : ;Pn/

and det.@Pi=@Tj / is a unit in C .

PROOF. Because of (3.4), we only have to prove the necessity. From the theorem, we
may assume that Y ! X is standard étale, say, X D SpecA, Y D SpecC , C D Bb , B D
AŒT �=.P /. Then C ' AŒT;U �=.P.T /;bU �1/, and the determinant corresponding to this
is P 0.T /b. Since the image of P 0.T /b is a unit in C , this proves the corollary with the
added information that n may be taken to be two. 2

With this structure theorem, it is relatively easy to prove that if Y !X is étale, then Y
inherits many of the good properties of X . (For the opposite inheritance, see (2.24).)

PROPOSITION 3.17 Let f WY !X be étale.

(a) For all y 2 Y , dim.OY;y/D dim.OX;f .y//

(b) If X is normal, then Y is normal.

(c) If X is regular, then Y is regular.
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PROOF. (a) We may assume thatX D SpecAwhereA.DOx/ is local and that Y D SpecB .
The proof uses only the assumption that B is quasi-finite and flat over A. Let q be the
prime ideal of B corresponding to y (so q lies over p, the maximal ideal of A). Then
SpecBq! SpecA is surjective (2.7), so dim.Bq/ � dim.A/. Conversely we may assume
B D B 0

b
, where B 0 is finite over A (see 1.8). Then dim.A/ � dim.B 0/.� dimBq/ (Atiyah-

Macdonald [1, 5.9]).
(b) We may assume that X D SpecA where A is local (hence normal) and that T D

SpecC where C D Bb is a standard étale A-algebra with B DAŒT �=.P.T //. Let K be the
field of fractions of A, let LD C ˝AK DKŒT �=.P.T //, and let A0 be the integral closure
of A in L. Note that L is a product of separable field extensions of K. Then we have the
inclusions

C � A0
b
� L

[ [

A � B � A0

Write t D T .mod P.T //. Choose an a 2 A0. We have to show that a=bs , or equivalently,
a itself, is in C .

Let NK be the algebraic closure of K, and let �1; : : : ;�r be the homomorphisms L! NK

over K such that �1.t/; : : : ;�r.t/ are the roots of P.T / (so r D degree P ). Write

aD a0Ca1tC�� �Car�1t
r�1; ai 2K:

Then we have r equations,

�j .a/D a0Ca1tj C�� �Car�1t
r�1
j

where tj D �j .t/. Let D be the determinant of these equations, regarding the ai as un-
knowns, so that D D˙

Q
i<j .ti � tj /, that is, D2 D discriminant of P.T /DDB=A (com-

pare (3.9)). Since the �j .a/ and t ij are integral over A, it follows from Cramer’s rule that
the Dai ; i D 1; : : : ; r , are also integral over A. Since the Dai 2 K and A is normal, they
belong to A, and this implies that Da 2 B � C . Since D is a unit in C , it follows that
a 2 C .

(c) Let y 2 Y and let x D f .y/. Then dim.OY;y/ D dim.OX;x/ and my D mxOY;y ,
which can be generated by dim.OX;x/ elements. 2

REMARK 3.18 An argument, similar to that in (b), shows that if X is reduced, then Y is
reduced (Raynaud [3, p. 74]).

We now determine the structure of étale morphisms Y !X when X is normal.

PROPOSITION 3.19 Let f WY ! X be étale, where X is normal and noetherian. Then
locally f is a standard étale morphism of the form SpecC ! SpecA where A is an integral
domain, C D Bb , B DAŒT �=.P.T //, and P.T / is irreducible over the field of fractions of
A.

PROOF. The only new fact to be shown is that P.T / may be chosen to be irreducible over
the field of fractions K of A. It suffices to consider the case that X D SpecA, where A is
a local ring, and Y D SpecC , where C is a standard étale A-algebra, say C D Bb;B D
AŒT �=.P.T // with P.T / possibly reducible. Fix a prime ideal q in C such that pD q\A
is the maximal ideal of A.
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Note that every monic factor Q.T / of P.T / in KŒT � automatically has coefficients in
A. (Let K 0 be a splitting field for Q.T /; the roots of Q.T / in K 0 are also roots of P.T /
and hence are integral over A; it follows that the coefficients of Q.T / are also integral
over A since they can be expressed in terms of the roots.) Choose P1.T / to be a monic
irreducible factor of P.T / whose image in �.q/ is zero, and write P.T / D P1.T /Q.T /
with P1;Q 2 AŒT �. Then the images NP1 and NQ of P1 and Q in �.p/ŒT � are coprime since
NP .T / is separable and so has no multiple roots. It follows that .P1;Q/D AŒT � (compare

(4.1a) below), and the Chinese remainder theorem shows that B 'AŒT �=.P1/�AŒT �=.Q/.
Let b1 be the image of b in B1 D AŒT �=.P1/. Obviously C1 D .B1/b1

is the standard A-
algebra sought. 2

THEOREM 3.20 Let X be a normal noetherian scheme and f WY !X an unramified mor-
phism. Then f is étale if and only if, for all y 2 Y , OX;f .y/!OY;y is injective.

PROOF. If f is flat, then Of .y/! Oy is injective according to (2.3). For the converse,

note that locally f factors into Y
f 0

�! Y 0
g
�! X with f 0 a closed immersion and g étale

(3.15). Write A D OX;f .y/; following (3.19), we may write OY 0;f 0.y/ D Cq where C D
AŒT �=.P.T //withP.T / irreducible over the field of fractionsK ofA. We haveA!Cq!

OY;y , which, when tensored withK, becomesK!Cq˝AK!OY;y˝AK. AsA!OY;y
is injective, K!OY;y˝AK is injective, which shows that Cq˝AK!OY;y˝AK is not
the zero map. But Cq˝AK DKŒT �=.P / is a field, and so this last map is injective. Hence
Cq ! OY;y is injective, and we already know that it is surjective because f 0 is a closed
immersion. Thus OY;y D Cq is flat over A. 2

THEOREM 3.21 Let X be a connected normal noetherian scheme, and let K DR.X/. Let
L be a finite separable field extension of K, let X 0 be the normalization of X in L, and let
U be any open subscheme of X 0 that is disjoint from the support of ˝1

X 0=X
. Then U ! X

is étale, and conversely every separated étale morphism Y ! X of finite presentation can
be written Y D

`
Ui !X where each Ui !X is of this form.

PROOF. The sheaf ˝1
U=X
D ˝1

X 0=X
jU D 0, and so U ! X is unramified according to

(3.5). It is étale according to (3.20).
Conversely, let Y ! X be separated, étale, and of finite presentation. The connected

components Yi of Y are irreducible (because the irreducible components of Y containing y
are in one-to-one correspondence with the minimal prime ideals of OY;y and Y is normal).
If SpecLi ! SpecK is the generic fiber of Yi ! X and Xi is the normalization of X in
Li , then Zariski’s main theorem implies that Yi !Xi is an open immersion (see (1.8)). 2

REMARK 3.22 In [EGA IV, 17] the following functorial definitions are made. Let X be
a scheme and F a contravariant functor Sch=X ! Set. Then F is said to be formally
smooth (lisse) (respectively, formally unramified (net), formally étale) if for every affineX -
scheme X 0 and every subscheme X0 of X 0 defined by a nilpotent ideal I, F.X 0/! F.X 00/

is surjective (respectively, injective, bijective).
A scheme Y over X is said to be formally smooth, formally unramified, or formally

étale overX when the functor hY DHomX .-, Y / it defines has the corresponding property.
If, in addition, Y is locally of finite presentation over X , then one says simply that Y is
smooth, unramified, or étale over X .

Let X be noetherian. We show that a morphism f WY ! X that is étale in our sense
is also étale in the above sense. (The converse, which is more difficult, may be found, for
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example, in Artin [9, I, 1.1].) Thus, given an X -morphism g0WX
0
0! Y , we must show that

there is a unique X -morphism gWX 0! Y lifting it:

Y X 00

X X 0

f

g0

g

The uniqueness implies that it sufficies to do this locally. Thus we may assume that f is
standard, for example, X D SpecA, Y D SpecC , C D Bb , B D AŒT �=.P / D AŒt�. Let
X 0 D SpecR, X 00 D SpecR0 and R0 D R=I. Then we are given an A-homomorphism
g0WC !R0, and we want to find a unique gWC !R lifting it:

C R0 DR=I

A R

g0

g

Induction on the length of I shows that it suffices to treat the case that I2 D 0. Let r 2 R
be such that g0.t/ D r .mod I/. We have to find an r 0 2 R such that r 0 � r (mod I) and
P.r 0/D 0. Write r 0 D rCh, h 2 I. Then h must satisfy the equation P.rCh/D 0. But
P.r C h/ D P.r/C hP 0.r/, where P.r/ 2 I and P 0.r/ is a unit (since P 0.t/ 2 C � )
P 0.r/ 2R�0/, and so there is a unique h.

Alternatively, this may be proved by applying (3.12) to Y �X X 0=X 0.

THEOREM 3.23 (Topological invariance of étale morphisms.) Let X0 be the closed sub-
scheme of a noetherian scheme X defined by a nilpotent ideal. The functor Y  Y0 D

Y �X X0 is an equivalence from the category of étale X -schemes to the category of étale
X0-schemes.

PROOF. To give an X -morphism Y ! Z of étale X -schemes is the same as giving its
graph, that is, a section to Y �X Z! Y . According to (3.12), such sections are in one-to-
one correspondence with the open subschemes of Y �X Z that map isomorphically onto Y .
Since the same is true for X0-morphisms Y0! Z0, it is easy to see using (3.10) or (3.11)
that our functor is faithfully full. Thus it remains to show that it is essentially surjective
on objects. Because of the uniqueness assertion for morphisms, it suffices to locally lift an
étaleX0-scheme Y0 to anX -scheme Y . But then we may assume that Y0!X0 is standard,
and the assertion is obvious. 2

For completeness, we list some conditions equivalent to smoothness.

PROPOSITION 3.24 Let f WY ! X be locally of finite presentation. The following are
equivalent:

(a) f is smooth in the sense of (3.22);
(b) for any y 2 Y , there exist open affine neighborhoods V of y and U of f .y/ such

that f jV factors into V ! AnU ! U ,!X where V ! AnU is étale and AnU is affine
n-space over U ,

Y V

AnU

X U

f f jV

étale
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(c) for any y 2 Y , there exist open affine neighborhoods V D SpecC of y and U D
SpecA of f .y/ such that

C D AŒT1; : : : :Tn�=.P1; : : : ;Pm/; m� n;

and the ideal generated by the m�m minors of .@Pi=@Tj / is C ;

(d) f is flat and for every algebraically closed geometric point Nx of X , the fiber Y Nx! Nx
is smooth;

(e) f is flat and for every algebraically closed geometric point Nx of X;Y Nx is regular;

(f) f is flat and ˝1
Y=X

is locally free of rank equal to the relative dimension of Y=X .6

PROOF. See [SGA 1, II] or Demazure-Gabriel [1, I, �4.4]. 2

REMARK 3.25 (a) In the case that f is of finite presentation, conditions (d) and (e) may
be paraphrased by saying that Y is a flat family of nonsingular varieties over X .

(b) Condition (b) shows that for a morphism of finite presentation, “étale” is equivalent
to “smooth and quasi-finite”.

Finally we note that, when the morphism f in (2.25) is smooth, the covering h can be
taken to be étale.

PROPOSITION 3.26 Let f WY ! X be smooth and surjective, and assume that X is quasi-
compact. Then there exists an affine scheme X 0, a surjective étale morphism hWX 0! X ,
and an X -morphism gWX 0! Y .

PROOF. See [EGA IV, 17.16.3]. 2

EXERCISE 3.27 (Hochster). Let A be the ring kŒT 2;T 3� localized at its maximal ideal
.T 2;T 3/ (that is, A is the local ring at a cusp on a curve); let B DAŒS�=.S3T 2CSCT 2/,
and let C be the integral closure of A in B . Show that B is étale over A, but that C is not
flat over A. (Hint: show that TS and T 2S are in C ; hence TS 2 .T 2WT 3/C . If C were flat
over A, then

.T 2WT 3/C D .T
2
IT 3/AC D .T

2;T 3/I

but TS 2 .T 2;T 3/ would imply S 2 C:)

EXERCISE 3.28 Let Y and X be smooth varieties over a field k. Show that a morphism
Y !X is étale if and only if it induces an isomorphism on tangent spaces for every closed
point of Y .

EXERCISE 3.29 (Hartshorne [2, III, Ex. 10.6]). Let C be the plane nodal cubic curve Y 2D
X2.XC1/. Show that C has a finite étale covering C 0 of degree 2, where X is a union of
two irreducible components, each isomorphic to the normalization of C .

6In more detail, f is flat and ˝1
Y=X

is locally free with rank dimy f at each point y of Y , where dimy f

is the dimension of the topological space f �1.f .y//:
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4 Henselian Rings

Throughout this section, A will be a local ring with maximal ideal m and residue field k.
The homomorphisms A! k and AŒT �! kŒT � will be written as a 7! Na and f 7! Nf .

Two polynomials f .T /, g.T / with coefficients in a ring B are strictly coprime if the
ideals .f / and .g/ are coprime in BŒT �, that is, if .f;g/D BŒT �. For example, f .T / and
T �a are coprime if and only if f .a/¤ 0 and are strictly coprime if and only if f .a/ is a
unit in B .

If A is a complete discrete valuation ring, then Hensel’s lemma (in number theory)
states the following: if f is a monic polynomial with coefficients in A such that Nf factors
as Nf D g0h0 with g0 and h0 monic and coprime, then f itself factors as f D gh with
g and h monic and such that Ng D g0, Nh D h0. In general, any local ring A for which the
conclusion of Hensel’s lemma holds is said to be Henselian.

REMARK 4.1 (a) The g and h in the above factorization are strictly coprime. More gener-
ally, if f;g 2 AŒT � are such that Nf ; Ng are coprime in kŒT � and f is monic, then f and g
are strictly coprime in AŒT �. Indeed, let M D AŒT �=.f;g/. As f is monic, this is a finitely
generated A-module; as . Nf ; Ng/ D kŒT �, .f;g/CmAŒT � D AŒT � and mM D M , and so
Nakayama’s Iemma implies that M D 0.

(b) The factorization f D gh is unique, for let f D ghD g0h0 with g;h;g0;h0 all monic,
Ng D Ng0, NhD Nh0, and Ng and Nh coprime. Then g and h0 are strictly coprime in AŒT �, and so
there exist r;s 2 AŒT � such that grCh0s D 1. Now

g0 D g0grCg0h0s D g0grCghs;

and so g divides g0. As they are monic and have the same degree, they must be equal.

THEOREM 4.2 Let x be the closed point of X D SpecA. The following are equivalent:
(a) A is Henselian;

(b) every finite A-algebra B is a direct product of local rings B D
Q
Bi (the Bi are then

necessarily isomorphic to the rings Bmi
, where the mi are the maximal ideals of B);

(c) if f WY ! X is quasi-finite and separated, then Y D Y0tY1t � � � tYn where f .Y0/
does not contain x and Yi is finite over X and is the spectrum of a local ring, i � 1;

(d) if f WY !X is étale and there is a point y 2 Y such that f .y/D x and �.y/D �.x/,
then f has a section sWX ! Y ;

(d0/ let f1; : : :fn 2AŒT1; : : : ;Tn�; if there exists an aD .a1; : : :an/2 kn such that Nfi .a/D
0, i D 1;2; : : : ;n, and det..@ Nfi=@Tj /.a// ¤ 0, then there exists a b 2 An such that
Nb D a and fi .b/D 0, i D 1; : : : ;n;

(e) let f .T / 2 AŒT �; if Nf factors as Nf D g0h0 with g0 monic and g0 and h0 coprime,
then f factors as f D gh with g monic and Ng D g0, NhD h0.

PROOF. (a))(b). According to the going-up theorem, every maximal ideal of B lies over
m. Thus B is local if and only if B=mB is local.

Assume first that B is of the form B D AŒT �=.f / with f .T / monic. If f is a power
of an irreducible polynomial, then B=mB D kŒT �=.f / is local and B is local. If not, then
(a) implies that f D gh where g and h are monic, strictly coprime, and of degree � 1.
Then B � AŒT �=.g/�AŒT �=.h/ (Atiyah-Macdonald [1, 1.10]), and this process may be
continued to get the required splitting.
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Now let B be an arbitrary finite A-algebra. If B is not local, then there is a b 2 B
such that b is a nontrivial idempotent in B=mB . Let f be a monic polynomial such that
f .b/ D 0; let C D AŒT �=.f /, and let �WC ! B be the map that sends T to b. Since
C is monogenic over A, the first part implies that there is an idempotent c 2 C such that
�.c/D Nb. Now �.c/D e is a nontrivial idempotent in B; B DBe�B.1�e/ is a nontrivial
splitting, and the process may be continued.

(b))(c). According to (1.8), f factors into Y
f 0

�! Y 0
g
�! X with f 0 an open immer-

sion and g finite. Then (b) implies that Y 0 D
`

Spec.OY 0;y/ where the y run through the
(finitely many) closed points of Y . Let Y� D

`
Spec.OY 0;y/, where the y runs through the

closed points of Y 0 that are in Y . Then Y� is contained in Y and is both open and closed in
Y because it is so in Y 0. Let Y D Y�tY0. Then clearly f .Y0/ does not contain x.

(c))(d). Using (c), we may reduce the question to the case of a finite étale local ho-
momorphism A!B such that �.m/D �.n/ where n is the maximal ideal of B . According
to (2.9b), B is a free A-module, and since

�.n/' B˝A �.m/' �.m/

it must have rank 1, that is, A' B .
(d))(d0). Let

B D AŒT1; : : : :Tn�=.f1; : : : ;fn/D AŒt1; : : : ; tn�;

and let J.T1; : : : ;Tn/D det.@fi=@Tj /. The conditions imply that there exists a prime ideal
q in B lying over m such that J.t1; : : : ; tn/ is a unit in Bg. It follows that J.t1; : : : ; tn/ is a
unit in Bb for some b 2B , b 62 q and thus that Bb is étale over A (compare (3.4); to convert
Bb to an algebra of the form considered there, use the trick of the proof of (3.16)). Now
apply (d) to lift the solution in kn to one in An.

(d0))(e). Write
f .T /D anT

n
Can�1T

n�1
C�� �Ca0;

and consider the equations,

X0Y0 D a0;

X0Y1CX1Y0 D a1;

X0Y2CX1Y1CX2Y0 D a2;

� � �

Xr�1YsCYs�1 D an�1;

Ys D an

where r D deg.g0/ and s D n� r . Clearly .b0; : : : ;br�1Ic0; : : : ; cs/ is a solution to this
system of equations if and only if

f .T /D .T rCbr�1T
r�1
C�� �Cb0/.csT

s
C�� �C c0/:

The Jacobian of the equations is

det

0BBBBBBBB@

Y0 X0
Y1 Y0 X1 X0
::: Y1 X2 X1 X0
:::

:::
:::

:::
:::

Ys
1

1CCCCCCCCA
D res.g;h/;
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the resultant of g and h, where g D T r CXr�1T r�1C�� �CX0 and hD YsT sC�� �CY0.
To prove (e) we have only to show that res.g0;h0/¤ 0. But res.g0;h0/ can be zero only if
both deg.g0/ < r and deg.h0/ < s, or g0 and h0 have a common factor, and neither of these
occurs.

(e))(a). This is trivial. 2

COROLLARY 4.3 IfA is Henselian, then so also is every finite localA-algebraB and every
quotient ring A=I.

PROOF. ObviouslyB satisfies condition (b) of the theorem, andA=I satisfies the definition
of a Henselian ring. 2

PROPOSITION 4.4 If A is Henselian, then the functor B B˝Ak induces an equivalence
between the category of finite étale A-algebras and the category of finite étale k-algebras.

PROOF. After applying (4.2b), we need only consider local A-algebras B . The canonical
map

HomA.B;B 0/! Homk.B˝k;B
0
˝k/

is injective according to (3.13). To see the surjectivity, note that a k-homomorphism B˝

k!B 0˝k induces anA-homomorphism gWB!B 0˝Ak by composition withB!B˝k

and hence an A-homomorphism

b0˝b 7! b0g.b/WB 0˝AB! B 0˝A k:

Now apply (4.2d) to the map Spec.B 0˝B/! Spec.B 0/ to get anA-homomorphismB 0˝A
B ! B 0 that induces the required map B ! B 0. Thus the functor is fully faithful. To
complete the proof, one only has to observe that every local étale k-algebra k0 can be
written in the form kŒT �=.f0.T //, where f0.T / is monic and irreducible and then that B D
AŒT �=.f .T //, where f .T /D f0.T / and f is monic, has the property that B˝A k D k0.2

So far, we have had no examples of Henselian rings. The following is a generalization
of Hensel’s lemma in number theory.

PROPOSITION 4.5 Every complete local ring A is Henselian.

PROOF. Let B be an étale A-algebra, and suppose that there exists a section s0WB ! k.
We have to show (4.2d) that this lifts to a section sWB ! A. Write Ar D A=mrC1 ; if we
can prove that there exist compatible sections sr WB ! Ar , then these maps will induce a
section sWB! lim

 �
Ar D A. For r D 0 the existence of sr is given. For r > 0 the existence

of sr follows from that of sr�1 because of the property of the functor defined by an étale
morphism (3.22). 2

REMARK 4.6 (a) The last two propositions show that the functor B  B˝A OA gives an
equivalence between the categories of finite étale algebras over A and over its comple-
tion when A is Henselian. Under certain circumstances, notably when X is proper over a
Henselian ring A, this result extends to the categories of schemes finite and étale over X
and over OX DX˝A OA. See Artin [2] and [5].

(b) The result in (4.4) has the following generalization. Let X be a scheme proper over
a Henselian local ring A, and let X0 be the closed fiber of X . The functor Y  Y �X X0
induces an equivalence between the category of schemes Y finite and étale overX and those
over X0.
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When A is complete, proofs of this may be found in Artin [9, VII, 11.7] and Murre [1,
8.1.3]. The Henselian case is deduced from the complete case by means of the approxima-
tion theorem (Artin [9, II]; see also Artin [5, Theorem 3.1]).

(c) Part (c) of (4.2) also has a generalization. Let f WY ! X be separated and of finite
presentation, where X D SpecA with A Henselian local. If y is an isolated point in the
closed fiber Y0 of f , so that Y0 D fygtY 00 (as schemes), then Y D Y 00tY 0 with Y 00 finite
over X and Y 00 and Y 0 having closed fibers fyg and Y 00 respectively. For a proof, see Artin
[9, I, 1.10].

(d) IfX is an analytic manifold over C, then the local ring at a point x ofX is Henselian.
(For this, and similar examples, see Raynaud [3, VII, 4].)

REMARK 4.7 Let f WY !X be étale, and suppose �.x/D �.y/ for some y 2 Y , xD f .y/.
Then the map on the completions OOX;x ! OOY;y is étale and, according to (4.5) and (4.2),
has a section, which implies (3.12) it is an isomorphism OOX;x ! OOY;y . (See Hartshorne
[2, III. Ex. 10.4] for a converse statement.)

This may be used to give an example of an injective unramified map of rings that is
not étale. Let X be a curve over a field having a node at x0, and let f WY ! X be the
normalization ofX in k.X/. It is obvious that this map is unramified, and OX;f .y/ ,!OY;y
is injective for all y, but if y lies over x0, then OOX;x0

! OOY;y is not an isomorphism
because OOX;x0

is not an integral domain. (It has two minimal prime ideals; see Hartshorne
[2, I.5.6.3].)

If A is noetherian, then it is a subring of its completion OA, and so A is a subring of
a Henselian ring; the smallest such ring is called the Henselization of A. More precisely,
let i WA! Ah be a local homomorphism of local rings; Ah is the Henselization of A if it is
Henselian and if every other local homomorphism fromA into a Henselian local ring factors
uniquely through i . Clearly .Ah; i/ is unique, up to a unique isomorphism, if it exists.

Before proving the existence of Ah, we introduce the notion of an étale neighborhood
of a local ring A. It is a pair .B;q/ where B is an étale A-algebra and q is a prime ideal of
B lying over m such that the induced map k! �.q/ is an isomorphism.

LEMMA 4.8 (a) If .B;q/ and .B 0;q0/ are étale neighborhoods of A such that SpecB 0 is
connected, then there is at most one A-homomorphism f WB! B 0 such that f �1.q0/D q.

(b) Let .B;q/ and .B 0;q0/ be étale neighborhoods of A; there is an étale neighborhood
.B 00;q0/ of A with SpecB 00 connected and A-homomorphisms f WB ! B 00, f 0W B 0! B 00

such that f �1.q00/D q, f 0�1.q00/D q0.

PROOF. (a) This is an immediate consequence of (3.13).
(b) Let C DB˝AB 0. The maps B! �.q/D k, B 0! �.q0/D k induce a map C ! k.

Let q0 be the kernel of this map. Then .B 00;q0B 00/, where B 00 D Cc with some c 62 q00 such
that SpecB 00 is connected, is the required étale neighborhood. 2

It follows from the lemma that the étale neighborhoods of A with connected spectra
form a filtered direct system. Define .Ah;mh/ to be its direct limit, .Ah;mh/D lim

�!
.B;q/. It

is easy to check that Ah is a local A-algebra with maximal ideal mh;Ah=mh D k and Ah is
the Henselization of A. Also Ah is obviously flat over A. Slightly less trivial is the fact that
Ah is noetherian if A is noetherian. This may be found in Artin [1, III.4.2].
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EXERCISE 4.9 Instead of building Ah from below, it is possible to descend on it from
above. Let A be a noetherian local ring, and let QA be the intersection of all local Henselian
subringsH of OA, containing A, that have the property that Om\H DmH . Show that . QA;i/,
where i WA ,! QA is the inclusion map, is a Henselization of A. (Hint: to show that QA satisfies
the definition of Henselian ring, note that the factorization f D g0h0 lifts to a factorization
f D gh in any H ; use the uniqueness of the factorization to show that g and h are inT
H D QA:/

EXAMPLE 4.10 (a) Let A be normal; let K be the field of fractions of A, and let Ks be a
separable closure of K. The Galois group G of Ks over K acts on the integral closure B of
A in Ks . Let n be a maximal ideal of B lying over m, and let D �G be the decomposition
group of n, that is, D D f� 2Gj�.n/D ng. Let Ah be the localization at nD of the integral
closure BD of A in KDs . (Here

BD D f b 2 B j �.b/D b all � 2Dg

etc.) I claim that Ah is the Henselization of A.
Indeed, if Ah were not Henselian, there would exist a monic polynomial f .T / that is

irreducible over Ah but whose reduction f .T / factors into relatively prime factors. But
from such an f one can construct a finite Galois extension L of KDs such that the integral
closure A0 of Ah in L is not local. This is a contradiction since the Galois group of L
over KDs permutes the prime ideals of A0 lying over nD and hence cannot be a quotient
of D. To see that Ah is the Henselization, one only has to show that it is a union of étale
neighborhoods of A, but this is easy using (3.21).

(b) Let k be a field, and let A be the localization of kŒT1; : : : ;Tn� at .T1; : : : ;Tn/. The
Henselization of A is the set of power series P 2 kŒŒT1; : : : ;Tn�� that are algebraic over A.
(For a good discussion of why this should be so, see Artin [8]; for a proof, see Artin [9,
II.2.9].)

(c) The Henselization of A=I is Ah=IAh. This is immediate from the definition of the
Henselization and (4.3).

Every ring is a quotient of a normal ring, and so it would have sufficed to construct Ah

for A normal. This is the approach adopted by Nagata [1].

REMARK 4.11 We have seen that if A is normal, then so also is Ah. It is also true that if A
is reduced or regular, then Ah is reduced or regular and dimAh D dimA. These statements
follow from (3.18) or (3.17).

LetX be a scheme and let x 2X . An étale neighborhood of x is a pair .Y;y/where Y is
an étaleX -scheme and y is a point of Y mapping to x such that �.x/D �.y/. The connected
étale neighborhoods of x form a filtered system and clearly the limit lim

�!
� .Y;OY /DOh

X;x .
By definition, A being Henselian means that it has no finite étale extensions with trivial

residue field extension (4.2d) except those of the form A! Ar . Thus if the residue field
of A is separably algebraically closed, then A has no finite étale extensions at all. Such a
Henselian ring is called strictly Henselian or strictly local. Most of the above theory can
be rewritten for strictly Henselian rings. In particular, the strict Henselization of A is a pair
.Ash; i/ where Ash is a strictly Henselian ring and i WA! Ash is a local homomorphism
such that every other local homomorphism f WA!H withH strictly Henselian extends to
a local homomorphism f 0WAsh!H ; moreover, f 0 is to be uniquely determined once the
induced map Ash=msh!H=mH on residue fields is given.
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Fix a separable closure ks of k. Then Ash D lim
�!

B , where the limit runs over all com-
mutative diagrams

B ks

A

in which A! B is étale. If AD k is a field, then Ash is any separable closure of k; if A
is normal, then Ash can be constructed the same way as Ah except that the decomposition
group must be replaced by the inertia group; if A is normal and Henselian, then Ash is the
maximal unramified extension ofA in the sense of the number theorists. Finally, .A=I/shD

Ash=IAsh.
Let X be a scheme and Nx! X a geometric point of X . An étale neighborhood of Nx is

a commutative diagram:
Nx U

X

with U ! X étale. Clearly
�
OX;x

�sh
D lim
�!

� .U;OU / where the limit is taken over all
étale neighborhoods of Nx. We write Osh

X; Nx , or simply OX; Nx for this limit. As we shall see,
OX; Nx is the analogue for the étale topology of the local ring for the Zariski topology, that
is, it is the local ring relative to a stronger notion of localization. Note that its definition
is formally the same, for OX;x D lim

�!
� .U;OU / where the limit is taken over all Zariski

(open) neighborhoods of x.

EXERCISE 4.12 Study the properties of the ring AqhD lim
�!

B , where the limit is taken over
all diagrams

B

A k

in which SpecB is connected and SpecB! SpecA is finite and étale or an open immersion
or a composite of such morphisms.

EXERCISE 4.13 LetX be a smooth scheme over SpecA, whereA is Henselian with residue
field k. Show that X.A/!X.k/ is surjective. (Use 3.24b).

5 The Fundamental Group: Galois Coverings

In this section we summarize some of the basic properties of the fundamental group of a
scheme. For simplicity, we require all schemes X to be locally noetherian. We let FEt=X
denote the category of schemes finite and étale over X .

The fundamental group �1.X;x0/ of an arcwise connected, locally connected, and lo-
cally simply connected topological space with base point x0 may be defined in two ways:
either as the group of closed paths through x0 modulo homotopy equivalence or as the
automorphism group of the universal covering space of X . The first definition does not
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generalize well to schemes—there are simply too few algebraically defined closed paths—
but the second does. Thus the important, defining property of the fundamental group of a
scheme is that it classifies in a natural way the étale coverings of X , étale being the most
natural analogue of local homeomorphism.

Thus let X be a connected scheme, and let Nx ! X be a geometric point of X . Let
F WFEt=X ! Set be the functor Y  HomX . Nx;Y /. Thus to give an element of F.Y / is
to give a point y 2 Y lying over x and a �.x/-homomorphism �.y/! �. Nx/. It may be
shown that this functor is strictly prorepresentable, that is, that there exists a directed set I ,
a projective system .Xj ;�ij /i2I in FEt=X in which the transition morphisms �ij WXj !Xi
.i � j / are epimorphisms, and elements fi 2 F.Xi / such that

(a) fi D �ij ıfj , and
(b) the natural map lim

�!
Hom.Xi ;Z/! F.Z/ induced by the fi is an isomorphism for

any Z in FEt=X .
The projective system QX D .Xi ;�ij / will play the role of the universal covering space

of a topological space, and we want to define �1 to be its automorphism group.
For an X -scheme Y , we let AutX .Y / denote the group of X -automorphisms of Y act-

ing on the right. For any Y 2 FEt=X , AutX .Y / acts on F.Y / (on the right), and if Y is
connected, then this action is faithful, that is, for any g 2 F.Y /, the map

� 7! � ıgWAutX .Y /! F.Y /

is injective (this follows from (3.13)). If Y is connected and AutX .Y / acts transitively on
F.Y /, so that the above map AutX .Y /! F.Y / is bijective, then Y is said to be Galois
over X . For any Y 2 FEt=X there is a Y 0 2 FEt=X that is Galois and an X -morphism
Y 0! Y (see 5.4 below). It follows that the objects Xi in QX may be assumed to be Galois
over X . Now, given j � i , we can define a map  ij WAutX .Xj /! AutX .Xi / by requiring
that  ij .�/fi D �ij ı� ıfj . We define �1.X; Nx/ to be the profinite group lim

 �
AutX .Xi /.

REMARK 5.1 (a) If Nx0 is any other geometric point of X , then �1.X; Nx0/ is isomorphic to
�1.X; Nx/ and the isomorphism is canonically determined up to an inner automorphism of
�1.X; Nx/.

(b) If the above process is carried through for an arcwise connected, locally connected,
and locally simply connected topological space X , a point x on it, and the category of
covering spaces of X , then one finds that F is representable, that is, not merely prorepre-
sentable, by the universal covering space QX of X . Thus �1.X;x/ can be directly defined as
the automorphism group of QX over X .

(c) Let X be a smooth projective variety over C, and let X an be the associated analytic
manifold. The Riemann existence theorem states that the functor that associates with any
finite étale map Y ! X the local isomorphism of analytic manifolds Y an ! X an, is an
equivalence of categories. Thus the étale fundamental group �1.X;x/, x a closed point of
X , and the analytic fundamental group �1.X an;x/ have the same finite quotients. It follows
that their completions with respect to the topology defined by the subgroups of finite index
are equal. But �1.X;x/ by definition, is already complete, and so �1.X;x/' ̂�1.X an;x/.

The reason that no algebraically defined fundamental group can equal �1.X an;x/ is
that, in general, the covering space does not exist algebraically .

(d) A theorem of Grauert and Remmert implies that (c) also holds for nonprojective
varieties. This fact is the basis of the proof of the theorem comparing étale and complex
cohomology. (See III, 3.)
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REMARK 5.2 (a) Let X D Speck, k a field. The Xi may be taken to be the spectra of all
finite Galois extensions Ki of k contained in �. Nx/. Thus �1.X; Nx/ is the Galois group over
k of the separable closure of �.x/ in �. Nx/. Changing Nx corresponds therefore to choosing
a different separable algebraic closure.

(b) Let X be a normal scheme, and let Nx D Spec�.x/sep where x is the generic point
of X . Then the Xi may be taken to be the normalizations of X in Ki , where the Ki run
through the finite Galois extensions of �.x/ contained in �. Nx/ such that the normalization
of X in Ki is unramified. Thus �1.X; Nx/ is the Galois group of �.x/un over �.x/, where
�.x/un D

S
Ki .

(c) Let X D SpecA, where A is a strictly Henselian local ring. Then �1.X; Nx/ D f1g
since FEt=X consists only of direct sums of copies of X . (If X is a scheme and Nx a
geometric point of X , then SpecOX; Nx is the algebraic analogue of a sufficiently small ball
about a point x on a manifold, and so �1 D f1g agrees with the ball being contractible.)

(d) Let X D SpecA, where A is Henselian. Let Nx be a geometric point over the closed
point x of X . The equivalence of categories FEt=X $ FEt=Spec�.x/ (see 4.4) induces an
isomorphism �1.X; Nx/' �1.Spec�.x/; Nx/.

(e) LetX D SpecK whereK is the field of fractions of a strictly Henselian discrete val-
uation ring A. Then X is the algebraic analogue of a punctured disc in the plane (compare
with (c) above) and so one might hope that �1.X; Nx/� OZ. This is true if the residue field
A=m has characteristic zero because (Serre [7, IV, Proposition 8]) the Galois extensions of
K are exactly the Kummer extensions Kn=K, where Kn DKŒt1=n� with t a uniformizing
parameter. The map

� 7! �.t1=n/=t1=nWGal.Kn=K/! �n.K/

is an isomorphism from the Galois group onto the nth roots of unity. Thus

�1.X; Nx/D lim
 �

Gal.Kn=K/D lim
 
�n.K/� OZ:

If the residue field has characteristic p, then this is no longer true because of wild ramifi-
cation. However, every tamely ramified extension of K is still Kummer (Serre [7, IV]) and
the tame fundamental group

� t1.X; Nx/D lim
 �
p-n

�n.K/� lim
 �
p-n

Z=nZ:

(In general, if K is a field and A is a discrete valuation ring with field of fractions K, then
a finite separable field extension L of K is tamely ramified7 with respect to A if, for each
valuation ring B of L lying over A, the residue field extension B=n�A=m is separable and
the ramification index of B=A is not divisible by the characteristic p of A=m. Let X be a
connected normal noetherian scheme; letD be a finite unionDD

S
Di of irreducible divi-

sors onX , and let xi be the generic point ofDi . Then a map f WY !X is a tamely ramified
covering if it is finite and étale overXrD, Y is connected and normal, and R.Y /=R.X/ is
tamely ramified with respect to the rings OX;xi

. The tame fundamental group � t1 is defined
so as to classify such coverings. A basic theorem of Abhyankar generalizes the statement
that, in the above example, tame coverings are all Kummer. Assume that the Di have only
normal crossings, and that f WY ! X is a finite covering; if f is tame, then there exists a

7See also the article of Kerz and Schmidt http://arxiv.org/abs/0807.0979.

http://arxiv.org/abs/0807.0979
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surjective family of étale maps .Ui !X/i such that Y �X Ui ! Ui is a Kummer covering
for each i . See Grothendieck-Murre [1], especially 2.3.)

(f) Let X be the projective line P1 over a separably closed field k. If k D C, then X is
topologically a sphere, and so �1.X; Nx/D f1g. To see that this is true in general we have
to show that FEt=X is trivial or, more precisely, that any finite étale map Y ! X with Y
connected is an isomorphism. But if ! is the differential dt on P1, then ! has a double pole
at infinity and no other poles or zeros. Thus f �.!/ has 2n poles, where n is the degree of
f , and no zeros. But �2nD 2g�2 � �2, where g is the genus of Y , and so nD 1 and f
is an isomorphism.

(The same argument shows that there is no nontrivial finite map Y ! P1 that is étale
over A1 � P1 and tamely ramified at infinity. In this case f �.!/ has at most 2n� .n�1/D
nC 1 poles and no zeros, and the inequalities �.nC 1/ � 2g� 2 � �2 show again that
nD 1:)

(g) Let X be a proper scheme over a Henselian local ring A such that the closed fiber
X0 of X is geometrically connected. Let Nx0!X0 be a geometric point of X0 and let Nx be
its image in X . It follows from (4.6b) that �1.X; Nx/' �1.X0; Nx0/.

(h) Let U be an open subscheme of a regular scheme X whose closed complement
X rU has codimension � 2. It follows immediately from the theorem of the purity of
branch locus (3.7) and the description of the fundamental group of a normal scheme given
in (b) above, that �1.U; Nx/' �1.X; Nx/ for any geometric point Nx of U .

It follows that the fundamental group is a birational invariant for varieties complete and
regular over a field k (because any dominating rational map of such varieties is defined on
the complement of a closed subset of codimension � 2; see Hartshorne [2, V, 5.1]).

(i) Let X be a scheme proper and smooth over SpecA where A is a complete dis-
crete valuation ring with algebraically closed residue field of characteristic p. Assume that
X NK is connected, where NK is the algebraic closure of the field of fractions of A, and that
the special fiber of X=A is connected. Then the kernel of the surjective homomorphism
�1.X NK ; Nx/! �1.X; Nx/, for any geometric point Nx of X NK , is contained in the kernel of ev-
ery homomorphism of �1.X NK ; Nx/ into a finite group of order prime to p (see [SGA. 1, X.]
or Murre [1]).

(j) Let X0 be a smooth projective curve of genus g over an algebraically closed field k
of characteristic p. Then there is a complete discrete valuation ring A with residue field k
and a smooth projective curveX overA such thatX0DX˝Ak. (The obstructions to lifting
a smooth projective variety lie in second (Zariski) cohomology groups and hence vanish for
a curve ([SGA. 1, III.7])). It follows from (g) above that �1.X0; Nx/' �1.X; Nx/ and from (i)
that there is a surjection �1.X NK ; Nx/!�1.X; Nx/with small kernel. The comparison theorem
(5.1c) shows that �1.X NK ; Nx/ is the profinite completion of the topological fundamental
group of a curve of genus g over C and hence is well-known. On putting these facts together,
one finds that �1.X0; Nx0/.p/�G.p/ whereG is the free group on 2g generators ui ;vi .i D
1; : : : ;g/ with the single relation

.u1v1u
�1
1 v�11 / � � �.ugvgu

�1
g v�1g /D 1

and where the superscript .p/ on a group H means replace H by lim
 �

Hi with the Hi
running through all finite quotients of H of order prime to p.

This computation of the prime-to-p part of the fundamental group of a curve in char-
acteristic p was one of the first major successes of Grothendieck’s approach to algebraic
geometry.
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Once �1.X; Nx/ has been constructed, the important result is that it really does classify
finite étale maps Y !X .

THEOREM 5.3 Let Nx be a geometric point of the connected scheme X . The functor F
defines an equivalence between the category FEt=X and the category �1.X; Nx/-sets of finite
sets on which �1.X; Nx/ acts continuously (on the left).

PROOF. See Murre [1]. 2

REMARK 5.4 Recall that if Y ! X is finite and étale and both Y and X are connected,
then we defined Y to be Galois over X if AutX .Y / has as many elements as the degree of
Y over X . We wish to extend this notion slightly.

If G is a finite group, then GX (for any scheme X ) denotes the scheme
`
�2GX� ,

where X� D X for each � . Note that we may define an action of G on GX (on the right)
by requiring � jX� to be the identity map X� !X�� .

Let G act on Y over X ; then Y ! X is Galois, with Galois group G, if it is faithfully
flat and the map

 WGY ! Y �Y;  jY� D .y 7! .y;y�//

is an isomorphism. Equivalently, Y ! X is Galois with Galois group G if there is a faith-
fully flat morphism U !X , locally of finite presentation, such that YU is isomorphic (with
its G-action) to GU . In terms of rings, a ring B �A on which G acts by A-automorphisms
(on the left) is a Galois extension of A with Galois group G if B is a finite flat A-algebra
and EndA.B/ has a basis f� j� 2Gg as a left B-module with multiplication table

.b�/.c�/D b�.c/��; b; c 2 B; �; � 2G:

We leave it to the reader to check that these are all equivalent and that if Y ! X is Galois
with Galois group G, then so also is Y.X 0/! X 0 for any X 0! X . Also the reader may
check that any finite étale morphism Y !X can be embedded in a Galois extension, that is,
that there exists a Galois morphism Y 0! X that factors through Y ! X . (For X normal,
this is obvious from the Galois theory of fields; the general case is not much more difficult;
see, for example, Murre [1, 4.4.1.8].)

Let X be connected, with geometric point Nx. According to (5.3), to give an Nx-pointed
Galois morphism Y ! X with a given action of G on Y over X is the same as giv-
ing a continuous morphism �1.X; Nx/ ! G. We shall sometimes write �1.X; NxIG/ def

D

Homconts.�1.X; Nx/;G) � set of Nx-pointed Galois coverings of X with Galois group G
(modulo isomorphism). As an application of étale cohomology we shall show how to com-
pute �1.X; NxIG/ for some schemes X when G is commutative. Note that in this case it is
not necessary to endow the Galois coverings with Nx-points.

REMARK 5.5 Let A be a ring with no idempotents other than 0 and 1, that is, such that
X D SpecA is connected, and letX D .Xi ;�ij / be the universal covering scheme (as above)
relative to some geometric point Nx of X . Each Xi is an affine scheme SpecAi and A D
lim
�!

Ai has the following properties: Spec QAD lim
 �

Xi ; there is no nontrivial finite étale map
QA! B; �1.X; Nx/ D AutA. QA/. Thus A may reasonably be called the étale closure of A.

If A has only a finite number of idempotents, then AD
Q
Aj (finite product), X D

`
Xj

(Xj D SpecAj ), and FEt=X �
Q
j FEt=Xj . If A has an infinite number of idempotents,

then AD
S
Aj where each Aj has only a finite number of idempotents, X D lim

 �
Xj , and

FEt=X D lim
 �

FEt=Xj [EGA IV, 17]. Thus the study of FEt=X , X affine, essentially comes
down to the case with X connected.
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REMARK 5.6 We have seen that �1.X; Nx/ prorepresents the functor that takes a finite group
N to the set of isomorphism classes of Nx-pointed Galois coverings of X with a given action
of N . Clearly this property determines �1.X; Nx/, and, since the category of finite groups
is Artinian, a standard theorem (Grothendieck [3]) shows that the existence of �1.X; Nx/ is
equivalent to the left exactness of the functor.

It is natural to ask whether there exists a larger fundamental group that, in addition, clas-
sifies coverings whose structure groups are finite group schemes. More precisely, consider
a variety X over a field k; fix a Spec.kal/-point Nx on X , and consider the functor that takes
a finite group scheme N over k to the set of isomorphism classes of pairs .Y; Ny/ where Y is
a principal homogeneous space for N over X (see III.4 below) and Ny is a Spec.kal/-point
of Y lying over Nx. Unless X is complete and k is algebraically closed, this functor will
not be left exact, as one may see by looking at the cohomology sequence of a short exact
sequence of commutative finite group schemes. However, when these conditions hold, then
the functor is left exact and is represented by a profinite group scheme �1.Xfl; Nx/, (Nori [1]).
The fundamental group �1.X; Nx/ is the maximal proétale quotient of this true fundamental
group �1.Xfl; Nx/. See also [SGA 1, p. 271, 289, 309].

COMMENTS ON THE LITERATURE

Proofs for this section may be found in Murre [1].
The first source for much of the material in this chapter is Grothendieck’s Bourbaki

talks [3] and [SGA 1], and the ultimate source is Chapter IV of [EGA]. Some of the same
material can be found in Raynaud [3] and Iverson [2] in the affine case and in the notes
of Altman-Kleiman [1]. The first chapter of Artin [9] also contains an elegant, if brief,
treatment of étale maps and Henselian rings. See also Kurke-Pfister-Roczen [1]. The most
useful introduction to the fundamental group is Murre [1].8 The theory of the higher étale
homotopy groups is developed in Artin-Mazur [1].

8Available on the TIFR website.
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