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FOREWORD

In 1977, the AMS Summer Research Institute was devoted to “Au-
tomorphic Forms, Representations, and L-Functions”. One of its cen-
tral topics was the relation between automorphic forms (in their mod-
ern guise as automorphic forms on adéle groups) and various objects
arising from algebraic geometry, most notably the Hasse-Weil zeta
functions of varieties, Galois representations, and Grothendieck’s mo-
tives. These conjectural relations had been explored by Shimura and
others, but Langlands had formulated a systematic program to study
them for Shimura varieties. At the time of the conference, Deligne and
Langlands stated several fundamental conjectures concerning Shimura
varieties, Galois representations, and L-functions.

The decade following the conference saw substantial progress on
many of these problems, and the conference was organized in Ann
Arbor in 1988 to review this progress and to explore new avenues
of research and new questions. In the theory of automorphic forms,
advances have been made in the study of the Arthur-Selberg trace
formula, the analytic properties of automorphic L-functions including
in some cases their analytic continuation, Langlands’s functoriality
principle including its proof in some important instances, the struc-
ture and properties of the discrete spectrum for classical groups, and
the p-adic interpolation of certain L-functions. Moreover the baffling
problems raised by L-indistinguishability are better understood. As
regards Shimura varieties, the basic conjecture of Shimura and Deligne
about their canonical models has been proved in the strenthened form
conjectured by Langlands at the Corvallis conference, and a combi-
natorial conjecture of Langlands, allowing one to express their local
zeta functions in automorphic terms, proved in some cases. Certain
questions that arise in the comparison of the f-adic representations
associated with Shimura varieties and automorphic forms (Zucker’s
conjecture, formulas for the traces of Hecke operators in L2- cohomol-
ogy spaces) have been solved. Important arithmetic consequences of
the theory of automorphic forms and the functoriality principle have

v



vi FOREWORD

been obtained or seem more accessible, for example, the construction
of the Galois representations associated with Maass forms and proofs
of the Tate conjecture for certain arithmetic varieties. There has also
been progress in the study of the local zeta function of a Shimura
variety at a prime of bad reduction. Finally, starting with Drinfeld,
the analogues of these problems have been studied for function fields.

The articles in these Proceedings, which are expansions of the lec-
tures given at the conference, are intended to reflect these advances.
They are divided, in a somewhat arbitrary manner, between two vol-
umes. The first volume contains expository articles on the trace for-
mula (Labesse) and on the progress since Corvallis in understanding
the analytic properties of L-functions (Shahidi). The articles of Milne
and Clozel develop two different aspects of Langlands’s paper at Cor-
vallis: while Milne’s article explains results on Langlands’s conjecture
on conjugates of Shimura varieties and how they should extend to
holomorphic automorphic forms and mixed Shimura varieties, that of
Clozel takes up the more speculative question of defining a category
of automorphic representations that has the structure of a Tannakian
category. The article of Laumon is concerned with finding a geometric
interpretation for certain Eisenstein series in the function field case.
The papers of Arthur and Kottwitz concern, inter alia, the conjec-
tural Hecke-Galois relations for Shimura varieties in the most general
case; Kottwitz’s paper also includes a conjectural description of the
number of points on a Shimura variety over a finite field.

The second volume contains papers on Galois representations asso-
ciated with automorphic forms (Blasius, Carayol, Taylor); bad reduc-
tion of Shimura varieties (Rapoport); higher L-functions (Jacquet-
Shalika); coherent cohomology and automorphic forms (Harris); a
Lefschetz trace formula, conjectured by Deligne, of importance for
zeta functions of Shimura varieties (Zink); the conjectures of Tate
and Beilinson in the context of Shimura varieties and a review of the
progress that has been made on them and related questions (Ramakr-
ishnan); the p-adic L-functions associated with Shimura convolutions
(Hida); and finally, the proof of the Zucker conjecture (Zucker).

The conference was supported by generous grants from the National
Science Foundation through the Presidential Young Investigator and
Special Projects programs. We are indebted to the Mathematics De-
partment of the University of Michigan, and especially Don Lewis, for
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its assistance, and to the School of Business Administration for pro-
viding us with an air-conditioned auditorium during one of the hottest
spells of the century in Ann Arbor. The manuscripts not submitted in
TEX were TEX-ed by Steve Tinney and Chris Weider, and Steve Tin-
ney had the difficult task of preparing a uniform manuscript for the
publisher from files in submitted in every known dialect of TEX. Fi-
nally, the nonmathematical organization of the conference would not
have been possible without the exceptional efforts of Lee Zukowski.
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Automorphic Forms and Galois Representations:
Some Examples

DonN BLaASIUS

1.1. Introduction. Let K be a number field. According to a gen-
eral philosophy, one hopes to identify the L-functions of automorphic
forms on GL,(Ai) which are arithmetic (c.f. 1.7 below) with those of
n-dimensional motivic Galois representations, i.e. which occur in the
etale cohomology of varieties defined over K. Stated in this generality,
the study of this correspondence is still in its infancy. Except in the
case n = 1 where a complete result, due to Shimura and Taniyama,
as recently complemented by Faltings, exists, the problem is not fully
settled for any n or any K. The purpose of this paper is to sketch
some recent developments concerning the problem of finding a motivic
representation having a given L-function in the cases n = 2, 3, and
where K is totally real.

Over the last 35 years, steady progress has been made towards pro-
viding such a motivic interpretation for the L-functions of holomor-
phic Hilbert modular forms which are discrete series at each infinite
place. Indeed, after the foundational results of Eichler and Shimura,
the well-known paper of Deligne ([De2]) constructed representations
for all such holomorphic forms, matching L-factors at the unramified
places. Later work of Langlands, Deligne, and Carayol ([Ca]) settled
the problem at the ramified places. If K is totally real, then Ro-
gaski and Tunnel ([RT]) found representations for many such forms,
again matching Euler factors at the unramified places. Their method
excluded exactly those forms not of CM type which are not supercus-
pidal at some finite place when [K : Q] is even. Carayol’s work ([Cal))
also completed the problem for the remaining places. Recently, Taylor
constructed the remaining representations by a sophisticated congru-
ence argument. These representations have the sought L-factors at
all finite places but do not come equipped with a motivic realiza-
tion. Later, Rogawski and the author used the theory of U(3) and its
Shimura varieties to provide a motivic realization. That this theory
is available is due principally to Rogawski, who established the sta-
ble trace formula for U(3) and derived its global consequences, and

Partially supported by NSF and an AMS Fellowship.

Automorphic Forms, Shimura Copyright © 1990 by Academic Press, Inc.
Varieties, and L-Functions All rights of reproduction in any form reserved.
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2 DON BLASIUS

to Kottwitz, who gave the description of the points modulo p on the
associated Shimura varieties. Thus, altogether, the problem is solved
for such holomorphic Hilbert modular forms.

The case of holomorphic forms which are limit discrete series (i.e.
weight 1) at each infinte place has also attracted attention. For these
forms, the f-adic representation should arise from a complex Galois
representation with finite image. If K = Q, such representations were
constructed by Deligne and Serre ([DS]). Their result was generalized
to totally real K by Rogawski and Tunnell ([RT]), again excluding the
case of certain insufficiently ramified forms in the case where [K : Q]
is even. Later, Wiles found a p-adic method to construct all the
sought representations, although now the result of [Tay] enables one
to proceed also as in [RT).

Recently, Ramakrishnan, Clozel and the author found a simple con-
struction using new cases of the principle of functoriality to address
the case of forms which are non-holomorphic at an infinite place. This
method at present yields only algebraicity statements ([BHR]) about
the Hecke eigenvalues of the forms, but we hope that further progress
in the theory of Shimura varieties and the trace formula will yield
the Galois representations. These representations should have finite
image only if the form is not discrete series at any infinite place.
Thus, there should be many examples, although none has been con-
structed, where the image is infinite. For these forms, the directions
sketched here may eventually yield representations with the correct
Euler factors at unramified places, if not a motivic realization. The
construction is summarized in Section 3.

In the fourth section, we again invoke the recent progress in the
theory of U(3) to obtain some easy consequences of this type for
forms on GL3. For a further contribution of this type, for general n,
see Clozel’s article in this volume.

The first and second sections of the paper review definitions and
summarize the case n = 1, respectively.

1.2. Representations. Let K C @ C C be a number field. Let
Gk = Gal(@/K). Let £ be a rational prime. Recall that a A-adic rep-
resentation of Gk is a continuous homomorphism p: Gxg — GL(V)
where V is a finite dimensional vector space over a finite extension
L of Q; contained in Q,. We always assume that p is unramified at
almost all finite places v of I(, i.e. for such v, if ¥ is an extension of
v to @, with inertia group Iy C Gk, then p is trivial on Iy. We let
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F; denote a Frobenius element for . Let E be a number field and let
n: E < @, be an embedding. We say that p is E-rational at 1 if the
characteristic polynomial of p(F5) has coefficients in n(E), for almost
all unramified v.

1.3. Compatible systems. ([T]). Suppose we are given, for each
prime £ and each 7 : E < Qg, a A-adic representation (p,, V,) defined
over L, which is E-rational relative to 1. Such a system is denoted
V. Let W(3/v) C Gk be a Weil group for the finite place v with
associated Weil-Deligne group W D(%/v). Then, for v not dividing
I, the restriction of p, to W(v/v) defines an isomorphism class of
representation o,(p,) of WD(v/v) on V;. Let S be a finite set of finite
places of K. Then V is strictly compatible (outside S) if, for v ¢ S,
and for each extension of n~! to an isomorphism 77! : @, — C,
the class of the complex representation 7~ *(0,(py)) is independent
of £ and 7. Denote by o,(V) the class of complex representation of
W D(%/v) so defined. We refer the reader to [T] for the definitions of
conductor and epsilon factors for the ¢,(V). For L-factors, we recall
that, for v ¢ S and v not dividing ¢,

Ly(V,s) = P,(X)™ IX:N,,_’
where N, is the number of elements in the residue field of K at v, and

Py(X) =07 (det(1 - py(Fp)X Ivﬂ’ﬁ )-

Put
Ls(V,s)= J] Lu(V,s).
vgS
v finite
1.4. Local Langlands correspondence. Let xi,...,Xx, be un-
ramified quasicharacters of K} = W(#/v)%, such that |x;(@,)| is
independent of j, and let m(x1,...,Xxn) be the irreducible unitarily

induced principal series representation of GL, (K ,) defined by the ;.
The local Langlands correspondence, proven for n = 1,2,3, and in
many other cases, parametrizes all isomorphism classes of irreducible
admissible representations m of GL,(K,) by all classes o,(7) of F;-
semisimple complex representations of W D(v/v). We denote the in-
verse correspondence by o — m,(0). For example, for 7(x1,...,Xn)
above, we have o,(7(x1,.-- ,Xn)) X1 DB - ® Xn, and

Lv(ﬂ'(Xh- .. ,Xn),é’) = HLU(XJ’S)
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where, as usual,

L(xjrs) = (1 — xj(@u)N;*) 7"

Hence, if v ¢ S, and we put x; = 7 '(a;) where aq,... ,a, :
K} — n(F) are the characters occuring in the diagonalization of
(the semisimplification of) the action of F on V,;, we have

L,(V,s) = Ly(m(X1,--- ,Xn)»$),

or equivalently,

7N 0u(V)) 2 oo (T(X1s- -+ » Xn))-

Put, in general,
(V) = (17" (0u(V)),

and

(V) = @) (V)
vgS
v finite
1.5. Motivic V.. We say that the E-rational strictly compatible
system V is motivic if there exists a proper smooth variety X over K

and, for each n: E < Qy, an L,-linear G g-embedding
&V, — H¥(X, Q)

where X = X x Spec(@). If V is motivic, the component represen-
tations acquire many good properties: Riemann Hypothesis, Hodge-
Tate, etc. Nevertheless, it is of interest to know whether V arises from
a Grothendieck motive M C H¥(X). This means that there exists a
finite extension T of E and an embedding T' — End(M) such that
V, is isomorphic to the 7j-component of the T ® Q,-module M, @ Qq,
where M, is the [-adic realization of M and 7 is any extension of 7
to T. One hopes that every motivic V arises from a Grothendieck
motive.

1.6. Global Langlands Correspondence. Let V be an E-rational
motivic system, strictly compatible outside S. One conjectures

that there is an isobaric automorphic representation 7’ = 7'(V) of
GL,(Ak), n =dimV, such that

(V) = ( (%) 7rv> ® ms(V).

vES or

infinite
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Furthermore, #’(V) should be a cusp form exactly when any (and
hence, conjecturally, every) V,, is irreducible. Of course, one conjec-
tures that S = @, and so 7’(V) should be simply the completion of
74(V) with factors at the archimedean places.

1.7. Archimedean places. If V arises from a Grothendieck motive
M, then the Hodge theory of its topological realizations Mp (7 :
K — C) provides a rule (See [Ta]) for computing suitable factors
L,(V,s) where v is the infinite place defined by 7. In this case one
attaches to each archimedian v a class 0,(V) of representations of the
Weil group W, and hence, by the local Langlands correspondence, a
class of representations m, = w(0,) of GL,(K,). It is this m, which
should occur above (1.6) in 7'(V). However, we neglect this question
in this paper. Conversely, given a representation m, of GL,(IK,),
we say that m, is arithmetic if the restriction of o,(m,) to C* C W,
diagonalizes as a sum of characters z — 22z with a,b € Z. We say
that an automorphic representation 7 is arithmetic if 7, is arithmetic
for each archimedian v. Of course, if 7, = n(0,(V)) as above, then
m, is arithmetic.

1.8. Converse to 1.6. If 7 is an isobaric arithmetic automorphic
representation of GL,(Af), one conjectures that there exists a num-
ber field F and a motivic E-rational strictly compatible (S = ¢)
system V = V() such that

(1.8.1) oo (V(r)) = o4 ()

for all finite v. The purpose of this paper is to review some examples
of this correspondence.

2.1. The case n = 1.

THEOREM. (a)Let S be a finite set of finite primes. Let V be a system
of E-rational compatible outside S one-dimensional A-adic represen-
tations of Gx. Then V is strictly compatible with S = § and there
exists a unique quasicharacter x = x(V) : A% /K* — C* such that
0u(X) = Xv = 04,(V) for all finite v. (b) Conversely, let x be a qua-
sicharacter of A% /K* which is arithmetic (i.e. is of type Ao, in the
sense of Weil). Let E be the field generated by the values of x on
the finite ideles of K. Then there exists a strictly compatible motivic
E-rational system V(x) (with S = 0) such that II'(V(x)) = x. We
have 0,(V(x)) = 0,(x) at all finite places. The system V() is unique
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up to possible enlargements of the L, and there is a natural minimal
choice where L, is the closure of n(E) for each 7. (c) A multiple of
V(x) arises from a Grothendieck motive in the category of such mo-
tives generated by abelian varieties defined over K and of CM type
over K. The system V(x) itself arises from the etale realization of
a motive for absolute Hodge cycles in the category of such motives
generated by abelian varieties over K. (d) Let V C H¥(X) ® Q; be
any 1-dimensional A-adic representation. Then there exists an arith-
metic quasicharacter x and an embedding j of Q into @, such that
(x(@y)) = p(Fy) for all v which are unramified for p.

2.2. Theorem 2.1 is a summary of well-known results. For example,
part (a) is a theorem of Serre, Waldschmidt and Henniart ([He]).
Similarly, part (d) follows from a theorem of Tate ([Se]) since Faltings
has shown that the H}°(X) are Hodge-Tate. Part (b) follows from the
theory of Shimura-Taniyama and a theorem of Casselman ([S]). Part
(c) follows from [DMOS].

3.1. The case n = 2. We assume, for the rest of the paper, that
K is totally real. Let 7 be a cuspidal automorphic representation
of GLy(Ak) for which, at archimedean v, 7, belongs to the discrete
series, i.e.

(3.1.1) o() = Inde (21750 @ wikv1-w)/2

with integers k, > 2 and w, k, = w mod(2), and where w,, : W, —
R* is the norm. These 7 correspond to all holomorphic forms of
weight {k,} where all k, are congruent modulo 2 and greater than
one. Let E(w) C C be the field generated by the coefficients of the
Hecke polynomials of the 7, for the finite, unramified v.

THEOREM. ([BRol], [Tay]). For 7 as above, there exists a motivic
E(x)-rational strictly compatible (S = 0) system V(=) such that

(3.1.2) 0,(V(7)) = a,(7)

for all finite v. Each V;, € V(r) can be realized over the closure in Q
of n(E(r)) and is irreducible.

3.2. Remarks on the Proof. In [BRo1] it is shown that there exists
a motivic V() in the endoscopic part of the cohomology of a fiber
system over a Shimura surface defined by a unitary group in 3 vari-
ables such that (3.1.2) holds at the unramified places. On the other
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hand, [Tay] constructs a V(r) which satisfies (3.1.2) at all places v
where m, is principal series. From here, one proceeds as in [Ca], part
12, using base change and the local Langlands classification to obtain
(3.1.2) at all finite places. The irreducibility is well known.

3.3. There are many arithmetic Hilbert modular forms which are not
treated by Theorem 3.1. However, at least if m, is holomorphic for
each infinite v, we can provide a partial solution.

THEOREM. Suppose 7 is a cuspidal automorphic representation of
GL,(Ay) which satisfies (3.1.1) with integers k, > 1 and w,k, # w
mod (2) (so that m, is now allowed to be limit discrete series as well).
Then there exists an E(r)-rational system V(r), strictly compatible
at all finite v which are unramified for = so that at such v (3.1.2)
holds. Each V,, is irreducible and can be realized over the closure in

Q¢ of n(E(w)).

3.4. The proof of Theorem 3.3 follows from Wiles’ method of pseudo-
representations ([Tay]). If all k, = 1, these representations are sys-
tems associated to totally odd Galois representations G g — GL2(C)
with finite image and hence V(x) is motivic. These were already con-
structed by [DS], [RT], and [Wi]. However, if some, but not all,
k, > 1, then V() is not known to be motivic unless 7 is of CM type.

3.5. The general case. If 7 is an arithmetic cusp form on GL,(Ayg),
then, if o,(7) is not of the form (3.1.1), we must have

oo(m) = (triv. @ triv.) ® w;“/2sgn®

where w € 2Z and a € {0,1}. Thus, 7, belongs to the principal series
at such a place. For these m we cannot, at present, construct V(r).
In [BCR1], [BCR2], [BHR], and [BR], a study of this case was
begun when K = Q. We now sketch how these methods extend to
treat the remaining arithmetic Hilbert modular forms.

3.6. Fix an arithmetic 7. Let L be a totally imaginary quadratic
extension of K and let x : A}/L* — C* be an arithmetic qua-
sicharacter such that x,(z,) = 27, with a (large) positive integer
a, independent of v, having fixed an identification of K} with C* for
each infinite v. Let m be the base change of 7 to GL(AyL); as-
sume, without loss, that m is cuspidal. Let Ir;x (7L ® x) be the

automorphic induction of 77 ® x to GLs(Ak). It is cuspidal. Let
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A? : GL4(C) — GLg(C) be the exterior square representation. Ex-
actly as in [BR], §6.2, we find

(3.6.1) Ls(Ir/x(mr ®Xx), A% s)
= LS(W’S)’UI2 & XoEL; S)LS(IL/K(XZ) ® wr, s)Ls(wrXo, 8)

where Sym? : GLy(C) — GL3(C) is the symmetric square, xo de-
notes the restriction of x to A}, wy is the central character of = and
€L is the quadratic idele class character of A} associated to L/K
by classfield theory. Thus, a twist of the exterior square L-function
(3.6.1) has a pole with non-zero residue, and so, by the theorem of
Jacquet, Piatetski-Shapiro, and Shalika ([BR]), there exists a generic
cusp form on II(7, x) on GS,(4,Ak), where GS,(4,—) is the group
of symplectic similitudes in dimension 4, such that

L,(II(m,x),8) = Ly(Ip k(7L ® X), 5)

at all finite places where = and Iy (x) are unramified, and

au(Il(m, X)) = 0u(7) @ Indg¥(272)
at infinite v. Thus,

au(Il(7, x)) =
(Indg* (z'~%~%) @ Ind e (21~ Fv272))
®wgk,,—w—1)/z, (kv > 1)

2 Ind (z7%) @ /%, (otherwise).

Hence, if k, > 2, II{7, x), belongs to a discrete series L-packet on
GS,(4,R), and, otherwise, the packet of II(II, x), is a limit of discrete
series ((BHRY]). In each case, II(7, x) is 0-cohomological in the sense
of [BHRY], and hence, as explained there, the unramified Hecke eigen-
values of II(m, x) occur in the action of the Hecke algebra on a higher
coherent cohomology group HY(S, V), where V is an automorphic vec-
tor bundle, determined by the II(w, x), for v infinite, defined on the
Shimura variety associated to GS,(4, K). Since V is defined over the
Galois closure of K, this proves:
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THEOREM [BHR|]. The coefficients of the unramified Hecke eigen-
values of m are algebraic numbers.

3.7. According to Prop. 6.6 of [BR], the L-packet with parameter
o,(II(7, x)) contains a holomorphic element I1%. Further, Hypothesis
1 (87.1 of [BR]) extends naturally to this case: we expect a suitably
refined trace formula to show that if

H(ﬂ'v X) = ®v[oon(7r? X)v 2 H(W’X)f

then
" (7, X) = @)oo lI(m, x)2 @ II(, X) ¢

is automorphic. If each 7, is either principal series or limit of discrete
series, so that V(), if it exists, is the system associated to a complex
Galois representation, then the program of [BR] extends. Accord-
ingly, one needs to settle the further problem of finding systems V(II)
for IT a cusp form on GS,(4,Ak) which is everywhere at infinity of
discrete series type. However, if K = Q, then R. Taylor has found
a method, using the congruence relations of Shimura for the Siegel
modular three-folds, to evade this last condition, i.e. it is enough to
show that the II(w, x)* exist. On the other hand, for more general
7, one must hope to extend the interpolation methods of Wiles and
Taylor; it is likely that such an extension can be found. The V(II)
for GS,(4,Ak) will themselves be difficult to construct but at least
a program exists: generalizing [BR] and [BRol], one may hope to
(a) transfer IT to a II' on GL4(Ak), (b) base change IT' to a I for a
CM quadratic extension L of K; (c) descend a twist of IT} to a II' on
quasisplit U(4), (d) realize II"” as an endoscopic L-packet on a form
of U(5) which is compact at all but one infinite place, where we have
U(5), — U(4,1), and quasisplit at all finite places, and (e) compute
the zeta function of an associated Shimura variety. This procedure
will construct representations V as in (1.8.1) for II}, and varying L,
we obtain V for II. Of course, these steps are well out of reach at
present.

4.1. The case n = 3. If n = 3, we must impose strong conditions
on the archimedian type of our representation in order to obtain any
result. However, for this restricted class, we obtain the sought V’s.

Definition. An automorphic representation 7 of GL,(Ak) is essen-

tially self-dual if 7 —5 7 ® 9 for some quasicharacter 1, where 77 is
the contragredient of .



10 DON BLASIUS

If m is arithmetic, we see that it is also essentially self-dual, for
n = 3 and K totally real, only if, for infinite v,

o,(T) |c-—> Diag(2°2°, 2°2°, (23) Q_;Lb)

with a + b € 2Z. Hence, if a # b,

atb
ou(m) = InddP(2°2°) B w,? sgn™

v ?

with m € {0,1}, or, if a = b,
ou(T) = wisgn® @ wisgn? @ wsgn?

with a, 3,7 € {0, 1}. Following Clozel, we say that Il is reqularif a # b
for each o,(m).

4.2. THEOREM. Let 7 be a regular, essentially self-dual cuspidal au-
tomorphic representation of GL3(Ak). Let S be the set of finite places
where 7 ramifies. Then there exists a motivic strictly compatible out-
side S system of E(r)-rational A-adic representations V() which is
unramified outside S such that (1.8.1) holds for all finitev ¢ S. Each
Vi € V() can be realized over the closure of n(E(w)) in Qq; a multi-
ple of V(x) arises from the etale realization of a Grothendieck motive.
Each V,, is absolutely irreducible.

4.3. PROOF: The argument which follows is similar to that of [BRol].
Let L be a quadratic CM extension of K. Since the theorem is true
for m if and only if it is true for 7 ® p with a character p of fi-
nite order, we may assume that 7¥ —— 7 ® w¥y with w € Z and
a totally even 9 of finite order. Such ¢ are trivial on the kernel
of the morphism mo(A%-/K*) — mo(A%/L*) defined by the inclu-
sion K < L. Thus, ¢ extends to a character ¢ of A% /L*, also of
finite order. For a cusp form n on GL3(AL), let en be defined by
(e)(g) = n¥(7g) where 7 is the nontrivial automorphism of L over K.
Then (7L ®v) = e(r)®@P " Lor = (7TL®1,[)ONL/K)®1/_)_IOT =T Q1.
Thus, by [R], 71 ® ¥ is the base change to GL3(AL) of a cuspidal
L-packet II" on the quasisplit unitary group V' in 3 variables, de-
fined relative to L/K. By [R] again, there exists II" on a group U”
which is quasisplit at the finite place defined by the given embedding
I — € and at all finite places, and is compact at all remaining infi-
nite places. From [M], we conclude that there is a compatible system
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V(IT"") of motivic E(w)E(3)-rational A-adic representations each that
ou(mL ® ) = 0,(V(II")) for all finite v at which 77 and 1 are un-
ramified, as well as infinite v. Further, by [BRo2], each constituent
V, € V(II") is absolutely irreducible. Put V(r;) = V(II") ® ¥,
where 9~ ! is identified with the system defined by 4, viewed as a
Galois character. (Here, we enlarge each L = L, as needed.) Suppose
that the finite place v of K splits in L and is unramified for w. Let
w/v be one of the places of L which lie over v. Then we can choose
% to be unramified at w: suppose 1, is ramified. By the Grunwald-
Hasse-Wang theorem, there is a character of finite order ¢ of A} /L*
such that ¢, = 97! and gy = 1. Put A = p/p o1 and ¢’ = Y.
Then e(r ® ') = © ® ¥’ since £(\) = X and the claim is proved.

4.4. Now let {L;|j > 1} be an infinite family of distinct quadratic
CM extensions of K such that each finite prime of K splits in at least
one L;. For each j, let V; be the system constructed above j it is
E;-rational. Then the isomorphism class of V;, depends only upon j
and 7. In particular,

(Vimdt;Lm — (V)L Lm

where, as usual, the subscript L;L,, denotes the restriction to
Gal(Q/L;L,,). Exactly as in [BR], §4, this means that we can de-
scend each family {V;, | j > 1} to a representation V; of Gg. In
view of our result at the end of 4.3, we know that

0y(V) = ou(7)

forallv¢ S.

4.5. Let E = E(r) and for each n: E < Qg let E, denote the closure
of n(E). We now show that each V;, is of the form W, ® g, Ly, with an
E,-vector space W, on which G acts. The claim that V(w), rather
than just V(r)z, is motivic follows if we consider that V(m)r, ® ¥
occurs in the cohomology of Ry, ,x(A) where A is a suitable fiber
system of abelian varieties over the Shimura variety used above, and
Ry, Kk is the restriction of scalars functor. Let ¢, € Gk be a complex
conjugation defined by the place v : K — R. As in [BRo2], an
analysis of the Hodge types of the motivic realization of the V;, shows
that ¢, cannot act on V,, as a scalar. If V,, is not of the sought form,
we can only have 3V, of the form W, ®g, L, with a representation
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W, irreducible over E,. Then Im (E,[Gk]) is a division algebra of
degree 9 over E,. Since ¢, has distinct rational eigenvalues, Ey[c,]

does not have image a field, which is impossible. Thus, V,, descends
to E,, and the claim is proved. Let V() = {W,}.

4.6. This proves all claims of the theorem except that pertaining
to Grothen-dieck motives. To show that a multiple of V(r) arises
as the etale realization of a Grothendieck motive, one must use the
observation that the Shimura varieties (and fiber systems) defined
by unitary groups descend canonically to the maximal totally real
subfield of their canonical field of definition. Although the action of
the Hecke operators does not descend, they satisfy the reciprocity
law [g]” = [¢7] for g € GU(Ak s) where [g] denotes the (K-rational)
automorphism of the Shimura variety defined by g. The claim follows
from these facts but we omit details.

4.7. We conclude by noting that this theorem, excepting the claim
about irreducibility, extends to the = treated by Clozel in the last
section of his article.
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Non-abelian Lubin-Tate Theory

H. CarAYOL

0. INTRODUCTION

0.1. Let f =) anq™ € Si(N,¢) be a primitive normalized cuspidal
eigenform of weight k > 2, level V and character €. Then a classical
construction, due to Eichler and Shimura in the weight 2 case and
to Deligne in the general situation, associates to f a system (py) of
two-dimensional A-adic Galois representations :

px : Gal(Q/Q) — GLz(E)),

where A ranges over the set of primes of the number field E, which is
generated by the coefficients a,, and the values of €. In classical terms,
the relationship between f and p) is as follows : if we denote by [ the
residual characteristic of A, then py is unramified outside N!; and for
p any prime number not dividing N, the trace and determinant of py
on the arithmetic Frobenius ¢, are given by :

{ tr pA(dp) =ap
det pa(¢p) =e(p)p*t.

The classical theory of modular forms, however, was not suitable
to formulate a precise conjecture describing the behaviour of the rep-
resentations py at bad primes : that means, for p # [ a divisor of N,
giving a recipe to compute the restriction py , of px to the local Galois
group Gal(Q,/Q,). It was only after Jacquet-Langlands’ work that
such a precise recipe was elaborated : a modular form f as above gives
rise to an automorphic representation r = ®m, of the group GL2(A),
and the conjecture was that the local restriction py , should corre-
spond to the local factor m, via the local Langlands correspondence
(suitably normalized).

0.2. At the time when the Antwerp conference was held, the ex-
istence of the local Langlands correspondence had been checked for
p # 2, via an explicit “dictionary” : principal series were associated to
decomposed Galois representations, special GL(2) representations to
Automorphic Forms, Shimura Copyright © 1990 by Academic Press, Inc.

Varieties, and L-Functions All rights of reproduction in any form reserved.
ISBN 0-12-176652-9
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special Galois representations; and finally, cuspidal (Weil) represen-
tations to irreducible (induced) Galois representations. And it was
during this Antwerp conference that Langlands gave a proof of the
above conjecture whenever m, is either a principal or a special series
representation.

As soon as 7, is not a spherical principal series representation,
the Galois representation p) occurs in the cohomology of a modular
curve which has bad reduction at p, and the whole question amounts
to computing that cohomology group : it sits in an exact sequernce,
with on the left side the cohomology group of the special fiber and
on the right the cohomology of vanishing cycles. One can explicitely
describe the set of points of the special fiber, together with the Hecke
and Galois actions. Using such a description, Langlands was able
to compute the cohomology of the special fiber and (comparing the
Selberg and Lefschetz trace formulas) to prove the above conjecture
in the case of principal or special representations; more precisely, it
turned out that principal series representations occured only in the
special fiber cohomology and cuspidal ones only in the vanishing cycles
cohomology, while special representations contributed to both. The
case of cuspidal series remained open, as there was no way to compute
explicitely the vanishing cycles cohomology.

0.3. However, this last case was solved some time later by Deligne
[De 1], at least for p # 2. His method consisted in constructing a local
representation of the product group GL2(Q,) x B, x Wgq,, where B,
denotes the quaternion division algebra over Q,, and Wg, the Weil
group. Using this local representation and its interplay with the global
representation (on the vanishing cycles group of the modular curve),
he was able to prove that the local restriction py, was expressible
in terms of the local component 7, alone. As a consequence of this,
when the (cuspidal) factor 7, is a Weil representation (which is always
the case if p # 2), one can reduce oneself to the situation where the
automorphic representation 7 itself is obtained from the (global) Weil
construction, and then the conjecture is easy to prove.

But the case of so-called “extraordinary” cuspidal representations of
GL2(Q2) was still unsettled, and the very existence of the local Lang-
lands correspondence had not yet been shown in that case. Some ten
years after the works of Langlands and Deligne, I studied the same
question for Hilbert modular forms. I found that a theory of bad
reduction for Shimura curves existed, similar to the one for modular
curves, and, using this theory, I was able to generalize the results of
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Deligne and Langlands to the Hilbert case. In this more general con-
text, it became possible to use base change arguments and finally to
prove the above conjecture even in the case of extraordinary cuspidal
representations (Kutzko had proven in the interval the existence in
all cases of the local Langlands correspondence for GL(2)).

0.4. In the sequel, we are going to focus our attention on the “lo-
cal fundamental representation”. In the framework of my paper [C],
it was defined, for F' a finite extension of @,, as an l-adic (I # p)
representation Ur of the product GLy(F) x By x Wp, where Bp
is the quaternion division algebra with center F' and Wg the Weil
group. One purpose of what follows is to explain how to generalize
that construction to arbitrary dimensions, thus obtaining for every
local field F (i.e. a finite extension of Q, as above, or some F4(T'))
and for every integer h > 1, a representation U} . of the product
GL(h, F) x B} px W, where By, r denotes the skew field with center
F and invariant 1/h.

In the notation just introduced, the upper-script “v” stands for
“vanishing”, as our representation is defined from the cohomology of a
vanishing cycle variety. I also want to show that another construction
can be obtained by considering rigid-analytic coverings (defined by
Drinfeld) of the so-called “p-adic generalized upper half-plane” : the
cohomologies of these coverings give rise to another representation,
which I call U, p, of the same product group.

¥

Then I state a conjecture which predicts the decomposition of the
representation U} r, in terms of both the Jacquet-Langlands corre-
spondence (between GL(h, F') and B}, r) and the (conjectural) Lang-
lands correspondence (between GL(h, F) and Wr). I also state a con-
jecture for U} @ it is essentially the same, except for some dualities.
Thus those two representations should be closely related, but I do not
know exactly how, nor why! Note finally that those conjectures are
not specially mine. They seem to have been known for a certain time
by some people, mostly by Deligne and Drinfeld : for instance, the
conjecture for U} p is implicitly suggested in the introduction of [Dr
3.

0.5. For h = 1, both conjectures constitute an easy exercise : in this
case, it is easy to see that U ;- and U]  coincide up to a sign, and
that our conjectures are exactly equivalent to Lubin-Tate theory. In
case h = 2, it was proved in [C] for U3 p when F is a p-adic field, and
an analogous proof (although never explicitely written) works for F' a
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local field of positive characteristic. Below, I will sketch a proof of the
conjecture for U3 p, when F' is p-adic : this constitutes an alternative
route, maybe easier in some sense, to reach the results of [C].

In contrast to the h = 1 case, the proofs for h = 2 are of global
nature, using a comparison between the local fundamental represen-
tation and the cohomology of some Shimura curves (resp. Drinfeld
modular curves in the geometric case). My last aim is to convince
you that for A > 3 things should probably work in a similar way, now
using the cohomology of Shimura varieties associated to some unitary
groups (resp. Drinfeld modular varieties). The expected proof of the
conjecture for Uf . (h > 3, F p-adic) should use a higher-dimensional
generalization, due to Rapoport, of Cerednik’s theorem.

Notation. We denote by F a local non-archimedean field, and we
choose a separable closure F'; we write F*" for the maximal unram-

ified extension of F (inside F) and F™" (resp. F) for the respective

completions of F*" and F. The respective rings of integers are writ-
ten :

Ooc oc O
N n
Oormc O

We call k the residue field of F', p its characteristic and g its cardi-
nality. The residue field k of F*" (or F™") is an algebraic closure of
k.

Finally, we choose an uniformizing parameter @ € O (this choice
will only play an auxiliary role).

1. DEFINITION OF THE LOCAL REPRESENTATIONS :
THE VANISHING CYCLE SIDE

1.1. Our representation Uy - is constructed by considering defor-
mations of formal O-modules, and I first recall (after Drinfeld [Dr 1])
some definitions and results.

Let A be any O-algebra. Then a (one dimensional) formal O-module
over A is a couple constituted of a (one dimensional) formal group
over A together with an action of O on it (1 acting as the identity),
such that the derived action on the Lie algebra coincides with the
structural morphism O — A.

The theory of those objects is a straighforward generalization of the
theory of formal groups (which we recover when F = Q,, O = Z,)). To
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begin with, one looks at formal O-modules over k. The action of the
uniformizer @ is expressed by a formal power series with coeflicients
in k, and it is easy to see that the order of this series is a power
q" of q, or else infinite. The integer h so defined (we shall always
suppose in the sequel that this order is finite) is by definition the
height of our formal module (this does not coincide with the height
of the underlying formal group). It turns out that formal O-modules
over k are classified by their height : for any fixed h > 1, there exists
exactly one (up to isomorphism) O-module of height h. We will write
¥, for such a module.

Moreover, it can be shown that the ring of endomorphisms of ¥y
(as a formal O-module) is isomorphic to the maximal order O(Bj, r)
of the skew-field By, p over F with invariant 1/h. We fix for the sequel
such an isomorphism. (Note : while F' and h are fixed, we shall often
drop these indices, in order to simplify notations).

1.2. Deformation theory. It was also proved by Drinfeld that the
functor of deformations of ¥ = ¥}, (over complete local @"r-algebras
with residue field k) was representable by a ring Dy, isomorphic to the
ring of formal power series in h — 1 variables over O"". Call X, the
spectrum of Dy : this scheme is equipped with a formal O-module
VU (universal deformation). The group O(B)* of automorphisms of ¥
acts on Xy and 7.

Now consider, for any integer n > 1, the group ¥, of @™-torsion
points in ¥. Over the generic fiber Xo,; = Xo ®gnr F"’", this is an
étale O-module locally isomorphic to (@~ "O/O)*. Then we define
an étale Galois covering X, , of Xy ,, as the classifying space for
isomorphisms :

G mO/O) T,

(such an isomorphism is usually called a “level n structure”.)

This covering has Galois group GL(h, O/@™O); it can be extended,
using the concept of “Drinfeld basis” (cf. [Dr 1]), to a flat covering
X, of the whole X3. As n increases, the various X, constitute a
projective system in an obvious way.

1.3. Vanishing cycles. We are interested in the vanishing cycles
cohomology groups :

H" Y (X ®@pr F, Q1) (with 1 # p)
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They constitute, for increasing n, an injective system with injective
transition maps. We denote by H” the injective limit. On each of
these cohomology groups, and hence on the limit, we have obvious
actions of the three groups GL(h, ), O(B)* and Gal(F/F™") (the
inertia group). These actions commute with each other, and thus
we get an action on H? of the product group GL(h,O) x O(B)* x
Gal(F/F™).

1.4. My next objective is to extend the above action to a bigger
subgroup P of the product GL(k, F) x B* x Wg. This subgroup is
defined as the kernel of the homomorphism :

GL(h,F) x B* x Wp — Z
(g,b,w) — val[det(g) " v(b)cl(w)]

(where v denotes the reduced norm and ¢l : Wg — F* the local class
field homomorphism, normalized in such a way that geometric Frobe-
niuses go to uniformizing parameters; as usual, val is the normalized
valuation of F).

The extended action of the group P on H" will be trivial on central
elements of the form (z,2,1) with 2 € F*. I will confine myself to
a description of the action of the following elements, which generate
the group P (together with those of the form (z,z,1)) :

(a): (g7, 571 1) with: g € M,(O).

[then : val det g = val v(b) = m > 0]
(b) : (g71,1,071), again with : g € M,(O).

[val det g = val ¢l (o) = m > 0]

case (a): The (left) action of the given element on H” will result
from a (right) action on the projective system of the X, ,. To sim-
plify notations, I shall describe this action at the projective limit level
Xoo,n : on the projective limit X, we still have our universal defor-
mation \T’, now endowed with an infinite level structure above the
generic fiber : o : (F/O)*5T,, (where U, denotes the torsion
group of \ff)

Our element g € M(O) defines a surjective homomorphism :

(F/O)*=(F[O)".
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_ Let NV be its kernel (it has cardinality ¢™) and put : L = o(N) C
Voo,n. We consider the closure L of L in ¥, and form the quotient
E = U/L. This quotient is a formal O-module over X, endowed

with the obvious isogeny T E of degree ¢™. Moreover, an (infinite)
level structure B on FE, is naturally defined in such a way that the
following diagram commutes :

a: (FIOF = T,
g9l il
B:(FIO* = B
Finally, b defines the following isomorphism between the special
fiber E; of E and that {Iv!s =¥ of U :

b~! i
V—Vv—F,.

(this quasi-isogeny is an isomorphism for degree reasons).

In this way, E appears as a deformation of ¥ over X, endowed
with an infinite level structure. By universality, we get a map
Xoo,y — Xoo,n Which is the required one.

Case (b). We use g exactly as above to obtain E. Then E, appears
as a deformation of the special fiber of T, via :

s Fyme
v — ¥, —FE;.

(here Fy; stands for the log,(q)- power of the usual Frobenius isogeny).

So we get a map Xoon, — X, which induces on cohomology the

required action.

1.5. I leave it as an unpleasant exercise to check that the above
constructions define an action of the group P on the space H"”. Then
we define the local fundamental representation U” = U} ¢ to be the
induced representation, from P to GL(h, F) x B} p x W, of H”.

In [C], we constructed this representation (for h = 2 and F p-adic)
in a slightly different way : using a theory of polarizations for formal
modules, we constructed a formalism to define deformations of polar-
ized formal modules that are only given “up to isogeny”. This more
abstract approach had the advantage of being more functorial, and
consequently to allow a more natural definition of the group actions.
The way we have just followed now, on the contrary, gives a quick
and “down to earth” description of the representation space, but it
requires some brute force to define the actions.



22 H. CARAYOL

It is possible to proceed in general exactly as in [C]. The general-
ization is easy and formal, except for the existence of polarizations,
which was established in [C] by global methods : those can be gener-
alized, or else, one can use a purely local construction due to Lubin

[Lu].

2. THE RIGID SIDE

2.1. This second approach relies on Drinfeld’s construction of a
system of coverings of the p-adic upper half plane (and its generaliza-
tions), and we first recall (very briefly) some of the main features of
Drinfeld’s paper [Dr 3].

Q% denotes the rigid analytic space obtained by removing all ratio-
nal hyperplanes from the projective space P}Fl ; the rigid structure is
explained in [Dr 1]. According to Raynaud’s theory, this rigid space
can also be defined from some formal scheme over O, and such a for-
mal scheme ﬁ’} was effectively supplied by Deligne [De 2]. Drinfeld’s
basic discovery consisted in an interpretation of the formal scheme
ﬁ'} Ro O as a moduli space for certain formal groups endowed with
an action of the ring O(B), r). This gives on the formal scheme a uni-
versal family ® of such formal groups (X in Drinfeld’s terminology),
and we denote by @, the group of &"-torsion points in ® (=T, in
Drinfeld). Returning to the rigid category, those torsion groups cor-

respond to some étale rigid coverings &, ® ~ . F™" of the rigid space

nr

Q'}; ®r F™" deduced from Q']w by scalar extension. Finally Drinfeld
considers the difference (points exactly killed by w™) :

h,n mnr mnr
EF dff(én ®Anr Fn ) - ((bn_l ®6nr F )'

This is an étale rigid Galois covering of Q% ®F F™ with Galois
group [O(B)/&™O(B)]*. When n increases, these coverings constitute
a projective system, with transition maps given by the action of @.

[As in the 1°! paragraph, we will often drop the indices h and F.]

2.2. Group actions. There exists on the space 2 an obvious (at
least from the set-theoretic point of view) action of the projective
linear group PGL(h, F). Drinfeld considers the semilinear action on
QQF Fn7 of the product group GL(h, F') x B* obtained as the twist
of the above action (factorized via PGL(h, F')) by the following action
on ™" :
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(g, b) € GL(h, F) X B* —_ @;al[det(g).u(b)]

where ¢, denotes the “geometric” Frobenius element in the Galois
group Gal(F™"/F). It turns out that the action thus defined admits
a natural modular interpretation, and consequently lifts to an action
on the universal formal group ®. It results from this fact that the
action of the group GL(h, F) x B* lifts to the system of coverings ¥™.
It will be more convenient for our purposes in the sequel to convert
Drinfeld’s left action into a right action. In any case, one sees easily
that central elements of the form (z,27!), with 2z € F*, act trivially.

We now introduce a subgroup P’ of the product GL(h, F) x B* x
Wp, analogous to the group P of the first paragraph. Now P’ is
defined as the kernel of the homomorphism :

GL(h,F)x B* xWp —
defined by

(g,b,w) — val(det(g)v(b)cl(w)™h).

Let (g,b,w) € P'. The semi-linearity of the above action means

that (g, b), acting on the right, induces an isomorphism :
(=" ©pn. F] - [2" 5., F

2.3. Rigid étale cohomology. The construction we want to make
in this paragraph relies on the existence of a good theory of étale l-adic
cohomology for p-adic rigid analytic spaces (I # p), satisfying usual
GAGA-type comparison theorems. Although it is easy to construct
such a cohomological functor (cf. for instance [FVDP]), it seems much
more difficult to prove comparison theorems (cf. (4.2) below). For the
moment, | only assume the existence of a cohomology theory, with
simply the minimal requirement that it should be invariant under
base change on the ground field (supposed to be separably closed).

Then we consider the space :

W =l H* (5" g, B, Q).

One sees, from the discussion above, that this is a representation
space for the group P’. We define, in analogy with the first paragraph,
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the local fundamental representation U™ = U] p to be the induced rep-
resentation, from P' to GL(h,F) x By p X Wr, of H".

It will be convenient to use a slight variant of this definition, by
considering the restriction of scalars from Fn to F of the space X", If
we re-extend the scalars to F n" then we get an F ""_rigid space which
is the disjoint union of the X" BFnr o Fm_ where o varies inside the

Galois group Gal(F""/F). This space is too big, so we rather consider
the subspace of it obtained as ¢ only varies inside the group generated

by the Frobenius ¢, : we write Res'i;“r / (") for this subspace. It is

an F "T_rigid space, endowed with a descent datum to F defined only
on the Weil group. It is obvious how to define “extension of scalars”

to F for such a structure, and to obtain on the cohomology an action
of Wg. Thus we can now define the local fundamental representation
as follows :

r : h—1 n 5o
7 =mH (RBSI»F\M_/F(E )®FF,Q1).

n

3. STATEMENT OF THE CONJECTURES

3.1. Jacquet-Langlands correspondence. Let us write A(h, F)
for the set of equivalence classes of admissible irreducible represen-
tations of the group GL(h, F), and A¢(h, F) for the subset of those
which are essentially square integrable (or discrete): that means that
the coeficients are square integrable modulo center. Inside A¢(h, F)
lies the smaller subset A°(h, F) of cuspidal representations (it is in
some sense the main and more interesting part of 2¢). The differ-
ence A% — A° contains the special representations (which constitute a
single class modulo twisting), and nothing else if h is prime. On the
contrary, if h is composite, we also have “generalized special represen-
tations”, associated to cuspidal representations of GL(h, F') for h; a
proper divisor of h.

On the other hand, let ﬁ,‘: 5 denote the set of all irreducible admissi-
ble representations of the group B}, p (those representations are finite
dimensional). The following theorem is due to Jacquet-Langlands
when h = 2, and to Bernstein-Deligne-Kazhdan-Vigneras ([BDKV])
and Rogawski ([R]) in general :

THEOREM. There exists a bijection
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Ad(h, F) — Bj p
T— ](71')

characterized by the property that, on regular elliptic elements, the
characters of = and j(r) coincide up to the (—1)*~1 sign.

In fact, this theorem makes sense not only for C-representations,
but also over any algebraically closed field of zero characteristic (and
we shall use it in the sequel for Q;-representations). To see that, it
is enough to prove that the notion of an essentially square integrable
representation is “algebraic”, i.e. invariant under C-automorphisms :
this is obvious for cuspidal representations; for the other ones, this
results from the cuspidal case and Zelevinski’s classification of discrete
series for GLy. Clozel knows another (unpublished) proof, which is
valid for any reductive p-adic group.

3.2. Langlands local conjecture. We now write &(h, F') for the
set of equivalence classes of ¢-semisimple h-dimensional representa-
tions of the Weil-Deligne group WDp (cf. [T]). When the field of
definition is an [l-adic field (I # p), it is well-known how to interpret
those representations as continuous representations of the Weil group.
Let 8° (resp. &i") be the subset of irreductible (resp. indecompos-
able) representations.

Langlands conjectures the existence of a bijection (we are assuming
at the moment that our base field is C) :

A(h,F) — &(h, F)
T — L(T).
This bijection should be characterized by equalities of L and e fac-

tors on both sides, for all possible twists, or even (if b > 3) for pairs
of representations. It should also restrict to bijections :

Qld _ @in

A0 — &°
And in fact the existence of Langlands correspondence is essentially
equivalent to the existence (for all k) of this last bijection between A°

and 8°. This conjecture has been proved for h = 2 (Kutzko [K]),
h = 3 (Henniart [H1]), and numerically in all cases (Henniart [H2]).
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We now choose a different normalization for the Langlands corre-
spondence (assumed to exist) : the “Hecke” correspondence differs
from Langlands’ by a contragredient, followed by a twist :

(m) = L @] 7).

(where | | denotes the normalized absolute value on F).

The advantage of that new correspondence should be its invariance
under automorphisms of the field of definition. As a consequence, it
should make sense over any algebraically closed field of zero charac-
teristic, in particular over @;. This property can be proved at least

for h=1,2,3.

3.3. Conjectures. These conjectures predict a decomposition of the
representations ¥ (resp. U"). It is convenient to begin with a fixed
(arbitrary) smooth quasi-character x (with values in @;) of F*. Then
we write U”(x) (resp. U"(x)) for the subspace of U? (resp. U") where
the center F'* of GL(h, F) acts as x.

Conjecture (vanishing cycle side). The representation U¥(x) of the
group GL(h, F) x By p x W decomposes as the direct sum :

U= @ reim" e,

n€Ad(x)

where ™ varies through the set U4(x) of discrete representations of
GL(h, F) with central character x. The representation $(r)" is the
unique trreducible quotient of $(m), which is H(n) itself if © is cusp-
tdal.

The conjecture for U7 is almost the same, except for the contragre-
dient on the second factor.

CONJECTURE (RIGID SIDE). The representation U"(x) decomposes
as the direct sum :

u(x)= P =eir)e o),
TeAL(x)
with the same notations as before.

Remark. Maybe I have been a little bit rash in the above rule pre-
dicting $(r)’ for # € A? — A% . That could be specially the case,
when h is composite, for generalized special series. Thus there is a
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possibility that the given rule should have to be modified for discrete
non-cuspidal series. In this case, the required modification would not
necessarily be the same in both conjectures.

3.4. The h = 1 case : Lubin-Tate theory. In this case, both
conjectures are true, and easily reduced to Lubin-Tate theory; this is
only a matter of unravelling definitions, with the only true difficulties
lying in sign questions.

Let us look first at the vanishing cycle side : with the notations of
the first paragraph, the ring Dy is O™, Our universal deformation
¥ is nothing else but the restriction to Onr of any Lubin-Tate group.
Applying Lubin-Tate theory, one sees that the covering X, defined in
81 coincides with the spectrum of the completion O™ of the abelian
extension of F*" corresponding to the subgroup (1 + &"O)* C O*.

Extending the scalars to F, then one gets a finite set isomorphic
to (O/0"0)*, where the three “right” actions of GL(1,0) = O,
O(B)* = O* and Gal(F/F™") are respectively :

(1) g — multiplication by g.
(2) br—s multiplication by b~!.
(3)  wr— multiplication by cl{w)~!.

The cohomology group H°(X,, , ® Fur F, Q) is then isomorphic to
the set of functions from (O/&™0)* to Q;. Going to the limit, our
representation HY of the group P is then isomorphic to the space of
locally constant functions ©O* — @, with the above actions. Further,
it is easy to check that elements of the form (@, @,1) or (@, 1,&) act
trivially, and consequently P acts through the homomorphism :

P —_ o*
(g,b,w) +— gb~lcl(w)™!

by multiplication on the variable. Then it is an immediate exercise to
check that the induced representation (/¥ is isomorphic to the space
of locally constant functions F* — @, with the product group
F* x F* x Wg acting (by multiplication on the variable) through
the homomorphism :

F*x F*xWp — F*
(g,b,w) —  gb~lcl(w) 1.

The conjecture follows.
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On the rigid side, it turns out that Q! is isomorphic to the formal
spectrum of O™, with again the Lubin-Tate group as the universal

formal group ®. The systems of coverings £" @4, F thus coincides

with the system X, , ®=,. F and so we get the same representation
as before, with some sign changes in the group actions.

3.5. For h = 2 and F a p-adic field, the conjecture relative to Uy
was proved in [C]. It seems clear to me that the same proof (although
never written) should also work for F a local field of equal character-
istics, with Drinfeld modular curves replacing Shimura curves. This
proof should be even shorter, as it suffices to show how the global
correspondence (between automorphic forms on function fields and
Galois representations) can be computed, at bad (discrete) places,
by means of the local fundamental representation. No further (base
change) arguments are required, since the behaviour at bad primes
of compatible systems of Galois representations over function fields is
a priori controlled by Grothendieck’s theory of L-functions. On the
other hand, this approach does not produce any new result of a global
nature, as it does in the arithmetic case, but merely a proof of the
local conjecture.

Consider now the rigid side. When F is a p-adic field, the conjecture
for U3 f can be proved, using Cerednik’s theorem for Shimura curves.
In the next paragraph, I will sketch this proof for F' = Q,. This
restriction is essentially for notational convenience, except for the fact
that Cerednik’s theorem in Drinfeld’s style has never been written
for number fields but Q@ : however, it is known to specialists how to
deduce it from [Dr 3]. Finally, when F is of equal characteristics, there
also exists a Cerednik-Drinfeld type theorem, relating the (global)
coverings constructed in [Dr 2] to the (local) coverings of the p-adic
upper half plane (this results from a letter Drinfeld wrote to me some
years ago). Using this fact, one can probably also prove the conjecture
for U r when F is of equal characteristics.

4. PROOF OF THE CONJECTURE FOR Uj o (SKETCH)

4.1. We begin with slightly modifying our notations : we will now
write B for a global quaternion algebra over @ that splits at oo but not
at p; thus its completion B, = B® Q, at p is “the” quaternion skew
field over Q,, which was denoted Bs g, in the preceeding paragraphs.
We call B the quaternion algebra obtained by interchanging the local
invariants at p and oo : so B, is isomorphic to M>(Q,), and B to
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the skew field of Hamilton quaternions; everywhere else B has the
same (unspecified) invariants as B.

Let G (resp. G) be the reductive group over Q defined by the
multiplicative group of B (resp. B). Inside the group G(As) = (B®
A)* of points with values in the finite adeles, we will consider open-
compact subgroups K of the following form :

K = K'K?

where K C B, = G(Q,) is the group of those units in O(B,)*
which are congruent to 1 modulo @™, and K? is any (open compact)
subgroup of G(A’}); here we denote, as usual, by A% the ring of finite
adeles without the p-component.

The corresponding Shimura curve is a complete curve S, defined
over @, whose set of complex points is given by :

Sk(C) = G\(H* x G(Af)/K),

where H* denotes the “double” Poincaré half plane P}(C) — P1(R).
The quotient above is nothing else but a finite union of quotients I'\H
of the Poincaré upper half-plane by arithmetic subgroups I' C G(Q).

We fix an isomorphism G(A%) =~ G(A?%), coming from an algebra
anti-isomorphism : BOAY =~ E@N}. We shall write ' for the image
of K? under this isomorphism. On the other hand, we also fix an iso-
morphism G(Q,) =~ GL2(Q,) obtained from an algebra isomorphism
B® Qp ~ M2(Qp)

Then the Cerednik-Drinfeld theorem gives the following rigid-
analytic description of the curve S ® Q, :

(Sk @ Qplan ~ (8™ X X77)/GL2(Qp),

where £" is the covering of the p-adic upper half plane, as defined in
the second paragraph, and :

Xgr = GQ\G(A))/K".

In the above formula, ¥™ ( a priori defined over F "T) is viewed
as defined over F by restriction of scalars. This can also be easily
written, using the notations of the second paragraph :

(SK ® Qp)an ~ (ReS’En X XI_‘P)/GLQ(QP)
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(The “difference” between Res’E™ and ResX™ vanishes in the quo-
tient). This quotient is nothing over F*" (there are some Galois twists
over F!) but a finite union of quotients £ /T" for some Schotty groups
I' ¢ PGLy(Q,). For n = 0, we thus get Mumford quotients, and a
generalization of them when n > 1. The meaning of those quotients
is easy when K? (and so I') is small enough : when I acts sufficiently
freely on the Bruhat-Tits tree, then taking the quotient amounts to
glueing together affinoid pieces.

Group actions : The group G(Ay) (resp. a(ﬁ\’f’) X G(Q,)) acts
on the projective system of the Sk (resp. of the analytic quotients
written above). The Drinfeld-Cerednik isomorphisms are compatible
(when K varies) with the transition maps of both projective systems.
They are also compatible with the G(Ay)-actions, via the “outer”
automorphism which was fixed above.

4.2. Rigid étale cohomology and algebraic étale cohomol-
ogy. . Very little reference is known to me on this subject. It would
be reasonable to expect, for any proper and smooth algebraic variety
over Q,, a canonical isomorphism between its étale l-adic (I # p) co-
homology, and the cohomology of the underlying rigid analytic space.
On the other hand, the cohomology of a quotient X/T" of a rigid space
by a discrete group should be computable by means of a Cartan-Leray
spectral sequence :

HP(T,HY(X, Q) = H"Y(X/T,Qu)).

According to a letter that Berthelot wrote to me, those questions
were studied by Gabber, who should in principle be able to prove
everything we need. This, however, requires a lot of work, and no
proof has been written by now.

For curves, everything is more explicit : at least the comparison
theorem is known (cf. [Dr 1]), and the above spectral sequence should
materialize as an exact sequence :

(*)
0— HI(P,HO(X,QI)) I HI(X/Fan) — HI(X,@I)F —0

beyond of course the obvious relation H°(X/T,Q;) = H°(X, Q).
The existence of this exact sequence was established in [Drl] (cf. also
[G] and [De-Hu]) in the case when X = Q? (i.e. n = 0), using explicit
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Cech coverings. It can be checked-if no other reference is available-
that an analogous method also works for Drinfeld’s coverings £”. In
any case, I will assume from now on the existence and exactness of
the above sequence.

4.3. Connected components. Our aim is thE determination of
the representation U = U™ = IiLnH (Res'S" ®f F, Q) of the group
GL2(®,) % B, x Wgq,. We will begin by the computation, by using a
local-global comparison method, of the representation, which I call 24°,
obtained when the H! above is replaced by H°. This method is the
exact prefiguration of the one we will use later for the representation
U itself.

If we apply the rule H°(X/T') = H°(X)' (I have dropped Q; to
simplify notations) to the Cerednik-Drinfeld formula (after a trivial
translation in adeélic terms), then we get the following :

H°(Sk ®Q,) = [H'(Res'S" @ F) @ HO(X3»)|C-2(Q)

Here, H 0(Xfp) simply denotes the space of @;-valued functions on
the set X¢» = G(Q)\G(A;)/K". This set can be replaced (without
changing the above formula) by the space ]fp of @;-valued smooth
functions on G(Ay), left invariant under G(@) and right invariant
under Fp; the limit of these spaces when K decreases is the space
A of Q-valued smooth automorphic functions on G(A) which are
G(R)-invariant. A decomposes into the sum of all automorphic repre-
sentations with trivial infinite component of the group G(A). Those
automorphic representations are of two types :

(i) Those which factor through the norm G(A) — A*.

(i) The “true” ones, which are infinite dimensional.

Going to the limit in the above formula, one gets :

lim H(Sx © @) = [U° @ A|5H+(),
K

Or else, if we decompose A into the sum P~ 7 of all automorphic
representations with trivial infinite component, and if we notice that
[U° ® 7,]6L2(@) is isomorphic to the isotypic component U°(y) for
the contragredient 7;’, we get :
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l—irﬂHO(SK ®6p) = 6_9 [UO(WZ) ® ®q#p7q] :

T

But now, the left-hand term above is given by the “reciprocity law”,
which describes the set of connected components of any Shimura vari-
ety. In our very simple situation, this rule says that the representation
of the group G(Ays) x Wq, on lim H°(Skx ® Q,) decomposes as the
sum :

D rs ® H(pp),

where p ranges over the set of those automorphic representations of
G(A) which factor through the norm and with trivial infinite compo-
nent, and $) denotes the Hecke correspondence for GL(1). Comparing
with the preceeding expression, one gets :

0/—V 0 if 7, is infinite dimensional.
U (m,) = { P e = . .
Pp @ 9(pp) if T, = pp is one-dimensional.

[There is a change of sign due to the fact that the chosen isomor-
phism between G(A%) and é(ﬂ’}) induces the inverse map at the norm
level.]

At this stage, one has to be a little bit careful because the formula
just written is a priori only valid when 7, is the local component of
an automorphic representation with trivial infinite component : that
is, when its central character is of finite order. But it is easy to
prove that the representation 2/° is invariant under twisting by those
characters of the group GLy(Q,) x B; x Wg, which can be factored
via : (g,b, w) — val(det(g).v(b).cl(w)™1); that results from the fact
U® (like U itself) is induced from the subgroup P’. As a result, the
above formula is valid in all cases. If we denote (as for &) U°(x) the
subspace of U° where the center of GL; acts via X, then we get :

U =Droue i,

where the sum is extended to the characters p of Q; such that pr=x
(such a character is viewed via the determinant -resp. the norm- as a
character of GLg - resp. B;).

This representation-theoretic formula can easily be translated in

more practical terms : it means that the set lim mo[Res’ " @f F|
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is isomorphic to @, with GL2(Q,) and B, acting through the norm
and Wr through the inverse of the class-field homomorphism.

4.4. We now want to use the exact sequence () in order to compare
the local and global H!. Our first task is to evaluate the left hand
side. For that, one works essentially along the same lines as in [Dr
1]. Writing T for the tree associated to PGL2(Q,), one has, for any
Schotty group I' :

HYT,Q) = HY(T/T, Q).

We apply this to the Cerednik-Drinfeld formula, and we get the
(projective limit of the) left hand side :

LHS = lim HY(T x @, x X5, /GL2(Q,))

This is essentially the same formula as in [Dr 1], except for the
term @, coming from the fact that our coverings are not absolutely
connected, contrarily to Q? itself. Reasoning like in [Dr 1], one sees
that LHS identifies to the space of GL2(Q,)-invariants inside the ten-
sor product Z ® U° @ A, where Z denotes the space of harmonic
1-cochains on 7 : this space Z is a realization of the (dual of) the
special representation Sp of the group GL2(Q,).

Using the decomposition of A into automorphic representations and
the decomposition of U°, one finds immediately :

LHS = @ (®q¢p7q) ® 1 ® H(p),
?wzl;Fzzp_ISp

where the sum is extended to the set of automorphic representations
of G(A) with trivial infinite component and p-component isomorphic
to a twist p~!Sp of the special representation. Via the Jacquet-
Langlands global correspondence, such an automorphic representa-
tion corresponds to an automorphic representation 7 of G(AR) with p-
component ! and infinite component the discrete series Dy = Dy
(with the notation of [C]) of GL2(R); everywhere else 7 has the same
factors as @. Using this, the LHS can be rewritten as :

LHS= P =@ H(w.

s
Too=Doimp=p
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(Remember that the chosen isomorphism between G(A%) and

E(A’}) is “outer” : this transforms the correspondence above, chang-
ing m, (¢ # p) into its contragredient).

4.5. We are now ready to compare the local and global H!. First,
the following decomposition of the cohomology of Shimura curves is
well-known (cf. [C]) :

hr_n*Hl(SK(gQ): @ 7(1@0’(71'),

K
1r°o=D2

where the sum is extended to the set of all automorphic representa-
tions of G(A), with infinite component isomorphic to Ds, and o(r)
stands for some two-dimensional l-adic representation of Gal(Q/Q).
If we write o(m)q for the restriction of o(7) to the local Weil group
Wq,, then the Eichler-Shimura theory proves that o(r), = $(r,) for
q a “good” prime (i.e. B, unramified and ng spherical). The global
conjecture we want to prove says that this is true for every ¢ (the
assertion at a prime ¢ where B, is ramified must be understood as :
o(n)y = H(37'(ny))). Using the result at almost all places, it is not
hard to prove that at least the determinant det o(r) is everywhere as
expected.

Using the above result giving the LHS of the Cartan-Leray exact
sequence, and the fact that the determinant of o(x) is known, are
sees immediately that in the case when 7, is one-dimensional, then
at least the semi-simplification of o(w), is as predicted. One would
like to prove in fact that o(7), is a special Galois representation, i.e.
that the extension defined by restricting the exact sequence () to
o(m), is not split. A similar phenomenon occurs on the vanishing
cycle side, and in this case the non-splitting was proved by Langlands
([La]) (using the Picard-Lefschetz formula). In our present situation,
we can either use directly Langland’s result (because both questions
are equivalent from the global point of view), or else give a similar
argument on the rigid-analytic side : the required expression for the
variation can be extracted from [M-D].

Taking the “difference” between the above formula and the one for
the LHS, one gets the following expression for the right hand side :

RHS = EB Tr@a(m)y,
7"oolDZ

with
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o(w), = o(m), if T is not 1-dimensional.
P\ Sl i =

On the other hand, this RHS is also the space of GLZ(Q,,)-invariaBts
in the tensor product Y ® A (cf. 4.3) and we get, by decomposing A :

RS = (P (@ 0uy),

T _ q#p

Too=1

where the sum is extended to the set of all automorphic representa-
tions of G(A) with trivial infinite component. A comparison -using the
global Jacquet-Langlands correspondence- between both expressions
giving the RHS proves that our local restriction o ()], only depends
on the local component 7, (thus we are allowed to write o(7,)’ instead

of o(7),), and this gives moreover :

0 if ¥, is a 1 — dimensional or a
U@, = principal series representation,
J(@y) @ 0(j(Tp))" otherwise,

where 7, varies through the set of all admissible irreducible represen-
tations of GL2(Q,) whose central character is of finite order.

It remains to prove the equality : o(j(7,)) = $H(7,)'. This results
from the above if 7, is special. If 7, is ordinary cuspidal (i.e. comes
from a character of the multiplicative group of a quadratic extension
of Q,) then it is possible to compute o(j(7,))’ from the global theory
because we can then assume that 7 itself comes from an idele class
character of a quadratic extension of @. This gives o(j(7T,))’ whenever
7p is ordinary cuspidal, for instance for p # 2. Returning to the
formula above, one obtains the predicted decomposition of U(x) :

U(x) = @ﬁp & j(fp) ® f)(ﬁp),

Tp

where 7, ranges over the set of discrete admissible irreducible rep-
resentations of GLo(Q,) with central character x. [ Note that this
is a priori only valid for x of finite order, but we can use the same
argument as in 4.3. |.

The case p = 2 requires the use of base change arguments exactly
similar to those of [C], and so it is first necessary to make the above
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local-global comparison arguments work for all totally real fields, and
not only for @. Another possibility is to use the global results ob-
tained from the vanishing cycle side : these results directly imply
that o(7), = H(7,) in all cases, including p = 2 and 7, extraordinary
cuspidal.

5. THE HIGHER DIMENSIONAL CASE

5.1 For h > 3, similar approaches should work, by using com-
parisons between our local representations and global ones. In the
geometric case, one should simply use moduli spaces for Drinfeld
modules of rank > 3. While in the arithmetic case, one should
look at unitary groups over totally real fields, with archimedean type
Uh—1,1)xU(h) x...x U(h). More precisely (assume for simplicity
that the base field is @) :

(a) The vanishing representation Uy g should be studied in com-
parison with the cohomology of a Shimura variety associated to
some form G of the unitary group such that Gg ~ U(h — 1,1) and
Gg, ~ GL(h,Q,). For instance, one can take some “true” unitary
group associated with a hermitian form over a quadratic field £ which
splits at p. It is easy to check that a one dimensional formal group
is defined on the special fiber at p of such a variety, and that the
height A’ < h at geometric points of this formal group “controls” the
singularity type. This height h’ defines a stratification of the special
fiber : the “worst” singularity occurs on the stratum kA’ = h, which
is a discrete set. The contribution of this stratum to the vanishing
cycles is related to the local representation Uy q . For h' < h, the
corresponding stratum is of dimension h — h’ and is related to U}, Q,-

The projective system of Shimura varieties associated to G is de-
fined over E. If we consider the cohomology (in degree h — 1) of those
varieties, and decompose it under the action of Hecke operators, we
get systems of [-adic representations of Gal(E/E). In this way, we ob-
tain a (global) correspondence between automorphic representations
of G(A) and representations of the Galois group of E. It is expected
that this correspondence is expressible, locally at p, by means of the
representations Uy, q (R’ < h) in a way similar to the GLy-case (cf.
[CD).

(b) For the rigid representation Uy q , one should rather use
some form G with the same infinite type as before, but now with
G, ~ Bj g, Indeed, it is known in this case that the correspond-

ing Shimura variety admits a Cerednik-Drinfeld type uniformization
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(by the generalized p-adic upper half plane Q" and its coverings ©"").
This generalization of Cerednik’s theorem was discovered by Rapoport
(as far as I know, he has not written the proof by now). It has the
same expression as in [4.1], where G now denotes the inner form of G
which satisfies :

@QP ~ GL(h,Q,), 5Qq ~ Ggq, (for ¢ # p), and Gr ~ U(h).

In both cases, similar methods as in the GLo-case should in prin-
ciple work. That should be easier on the rigid side, because the con-
sideration of a group which is anisotropic at p cuts out the whole
non-discrete spectrum : while in the first case, on the contrary, all
representations occur at p, and that means that a difficult general-
ization of Langlands’ trace formula methods [La] is needed : in the
spectral sequence of vanishing cycles, we must indeed take care of the
contribution of all the strata in the special fiber, and we must find
the corresponding parts in the Selberg trace formula.

5.2. In conclusion of this report, let me ask some questions that
must be solved in order to be able to work out the above program.

(a) Algebro-geometric questions. From the point of view of the rigid
local representation, it is needed to establish properties of GAGA-type
for the rigid étale cohomology. On the other hand, working on the
vanishing cycle side would require results, in some sense analogous,
allowing to replace “henselian” vanishing cycles by “formal” ones.
Those results were proved for curves (using resolution of singularities)
by Brylinski, in an appendix to my thesis ([C]).

(b) “Usual” questions on Shimura varieties. That means com-
puting at good places the Galois representations associated to au-
tomorphic forms. For the varieties considered here, that could be
now within reach, thanks to Kottwitz’ results on the structure of the
set of mod p points; note that we can always choose our groups in
such a way that the variety should be proper, and the problems of
L-indistinguishability should be empty.

(c) Automorphic questions. One essential tool for the local-global
comparison in case h > 3 (in the arithmetic case) would be the
Jacquet-Langlands correspondence between two inner forms of the
unitary group, together with base change over the quadratic exten-
sion where this unitary group becomes an inner form of GL,. I do not
know the exact state of these questions. For unitary groups in three
variables, they should be solved in Rogawski’s forthcoming book.
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(d) The last problem might be the most difficult. The local-global
comparison is expected to prove the local conjecture whenever 7, is
ordinary cuspidal. In the case h = 2, a base-change argument then
gives the answer in general (cf. [C] : in fact a non-normal cubic base
change is sometimes needed). I do not know what to do in general,
for instance if h =3, p = 3.
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Automorphic Forms
and the
Cohomology of Vector Bundles
on Shimura Varieties

MicHAEL HARRIS

INTRODUCTION

The systematic study of the cohomology with twisted coeflicients
of locally symmetric varieties, and its relation with Lie algebra co-
homology, was initiated by Matsushima, Murakami, and Kuga in the
1960s [38]. The subject was taken up again by Borel, Casselman, Ku-
maresan, Vogan, Wallach, Zuckerman and others in the 1970s, using
methods of infinite-dimensional representation theory; the standard
reference for this work is [11]. In the cocompact case, Hodge the-
ory provides a ready expression for these cohomology groups in terms
of automorphic forms; in general, Borel’s theory of cohomology with
growth conditions [7],[8] permits harmonric cusp forms, at least, to be
interpreted cohomologically.

When the locally symmetric variety in question is a Shimura vari-
ety, automorphic forms can also define classes in the cohomology of
certain coherent sheaves—the automorphic vector bundles discussed
in Milune’s talk—computed in the Zariski topology. The existence of
canonical models of automorphic vector bundles introduces a new ra-
tionality principle for automorphic forms, with applications to arith-
metic. This may be seen as the natural generalization of the classical
theory of elliptic modular forms with algebraic Fourier coeflicients.

The following abstract considerations may shed some light on the
significance of this rationality principle. If M is a motive over @,
then, following Greg Anderson, we define its arithmetic Hodge struc-
ture to be the triple (Hpr(M),Hp(M),I : Hg(M)CSHpr(M)C),
where Hpp (resp. Hp) is the algebraic de Rham (resp. topologi-
cal) cohomology of M with coefficients in Q, and I is the comparison
isomorphism (cf. [13], §0); Hpr(M) is assumed to be endowed with
its Q-rational Hodge filtration. Now let Sh;, ¢ = 1, 2, be Shimura
varieties, V.V a flat automorphic vector bundle (cf. §1) over Sh; and
M; a motive over @ occuring in the cuspidal cohomology of Sh; with
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coefficients in V¥, i = 1, 2. We assume furthermore (this may be un-
necessary) that M; is defined as an eigenspace for the Hecke operators
of the group attached to Sh; at almost all places. Then standard con-
jectures, most importantly the Tate conjecture (cf. Ramakrishnan’s
article in this volume) suggest the following

PRINCIPLE. Suppose the {-adic cohomology groups He(M;)=H,(M>)
as Gal(Q/Q)-modules for all {. Then the arithmetic Hodge structures
attached to M1 and M, are isomorphic.

The rationality principle discussed in these notes is (as we indicate
in 4.3.2) related to the natural rational structure on Hpr(M). The
results described in 7.1 and 7.2.4 may be viewed as a attempts to
verify the above principle in some specific cases.

It may reasonably be asked to what extent the converse of the above
principle also is valid: i.e., to what extent the periods of a motive
determine its {-adic representations.

This survey is primarily an exposition of recent results on the co-
herent cohomology classes defined by automorphic forms. These re-
sults are contained in the author’s article [28] and in joint work with
Phong [31], Blasius-Ramakrishnan [6], and Kudla [30]. In order to
emphasize the parallel with the earlier work on cohomology with
twisted coefficients, we have included a review of this theory. The
relation between the two cohomology theories is worked out in §4, us-
ing Faltings’ idea of the B-G-G resolution of local systems on Shimura
varieties [18]. The results in the last part of §4 are new, as are the
results on Eisenstein cohomology and the periods of Hilbert modular
forms, described in §6 and 7.1, respectively.

Discussions with Arthur, Blasius, Garrett, Kudla, and Ramakrish-
nan were helpful in the preparation of this manuscript. I also thank
Borel for comments which led to clearing up some confusing points in

§1.

NOTATION AND CONVENTIONS

By A (resp. A) we mean the ring of rational adéles (resp. of
rational finite adéles). The group schemes GL(n) and G, are denoted
as usual. By @ we always mean the algebraic closure of Q in C.

If V and T are schemes over the scheme S, then V(T') denotes the
set of T-valued points of V; Vo =V xg T. If T is Spec(A) for some
ring A, we often write V(A) and Vj in place of V(T) and Vp. If
S = Speck’, where k' is a finite field extension of the field k, then
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Ry V is the scheme over k obtained by Weil’s restriction of scalars
functor. The structure sheaf of V is denoted Oy .

If G is an algebraic group, then G%¢, G%", G, and Z; are the
adjoint group, the derived subgroup, the abelianization G/G%", and
the center, respectively, of G. The Lie algebra of G is denoted g or
Lie(G); the enveloping algebra of g is U(G), and the center of U(g) is
written Z(g). The unipotent radical of G is denoted R,(G). If G is
a topological group, then GY is its connected component containing
the identity.

If X is a C*°-manifold and V is a complex vector space, then
C*(X,V) is the space of C* functions on X with valuesin V. If X
is an adelic group then C°°(X, V) is the space of V-valued functions
on X which are C™ (resp. locally constant) in the archimedean (resp.
non-archimedean) variables.

If £ is a vector bundle over the (algebraic or analytic) variety X,
then I'(X, £) is the space of global sections of £ over X. The same
notation is used for C'"*° vector bundles. We make no notational dis-
tinction between &£ and its associated locally free sheaf; in particular,
if X is an algebraic variety, then H*(X, &) denotes cohomology of the
sheaf of sections of £ in the Zariski topology.

For Hodge structures, we use the notation of Milne’s article in this
volume, except that we write S instead of § for R¢/gGm. If G is an al-
gebraic group, and p: G — GL(V) is an algebraic representation, we
often denote the representation (p, V), and use p and V interchange-
ably. If G is a topological group and V is a topological vector space,
we use the same convention. If G is a reductive Lie group, Koo C G
an algebraic subgroup containing a maximal compact subgroup, and
(7, V) is a unitary representation of G, we denote again by 7 or V
the associated (g, I[{oo) module. Here (g, K ) modules are defined as
in [8], with the following modification: since K, typically contains
the center of G and is thus not compact, we require that the K
-types occurring in the restriction of # to K be finite-dimensional
algebraic representations of K.

§1. DE RHAM COHOMOLOGY OF LOCAL SYSTEMS
WITH GROWTH CONDITIONS

In this section we review some of Borel’s work [4],[5],[8] on the
cohomology of Shimura varieties with twisted coefficients. We remark
that Borel studies local systems over general locally symmetric spaces,
and that the existence of a complex structure plays no role at this
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stage of the theory.

1.1. Let (G,X) be the datum defining the Shimura variety Sh =
Sh(G, X) (see Milne’s article in this volume for notation and hypothe-
ses). In order to avoid technical complications, we assume, except
when otherwise indicated, that Zg(R)/Zg(R) is compact, where Zg
is the center of G and Zg; is its maximal Q-split subtorus. For any
compact open subgroup K C G(AY), let xSh be the Shimura variety
of level K, denoted Shg (G, X) in Milne’s article:

(1.1.1) kSh=G(Q\X x G(AT)/K, Sh = lim g Sh.
K

For h € X, let K}, denote its stabilizer in G(R). The adjoint action
of h(S) on the Lie algebra g of G defines a Hodge structure on g such
that

(1.1.2) gc=g"@g " @gh!, where g®° =, ¢ = [12].

We let pt = g=11 p~ = gl>~!, Then pt and p~ are invariant under
the adjoint action of €, ¢. We let P;, be the parabolic subgroup of
G¢ with Lie algebra Py, = &, c ®p~, and let X be the flag variety of
parabolic subgroups of G conjugate to Pp. The association h — Py
defines a holomorphic, G(R)-equivariant imbedding X — X(C), the
Borel imbedding (cf. Milne’s article, III).

In Milne’s talk it is explained how to associate to each G-
homogeneous vector bundle £ over X a G(Af)-homogeneous auto-
morphic vector bundle [£] (denoted V(E) by Milne) over Sh. The
association & — [€] is functorial and respects the tensor operations
on vector bundles, and [£] is endowed with a canonical model over
the field of definition of £ [32,cf. 19].

Let £ be a G-homogeneous vector bundle over X. For each point
h € X, the fiber £, of £ is a representation space for the isotropy
group Pj,. The association £ — &, defines an equivalence of categories
between the category of G-homogeneous vector bundles over X of
finite rank and the category of finite-dimensional representations of
Ph.

In particular, any finite-dimensional representation (p, V') of the al-
gebraic group G defines, by the functor of the previous paragraph,
an automorphic vector bundle V over Sh. Similarly, to any finite-
dimensional representation (o, W, ) of the algebraic group K, we may
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associate a homogeneous vector bundle £, over X, and an automor-
phic vector bundle E, = [£,] over Sh. Automorphic vector bundles
of the first type are called flat; they are naturally endowed with in-
tegrable G(A/)-invariant connections [19]. Automorphic vector bun-
dles of the second type are called fully decomposed. Holomorphic
automorphic forms may be viewed as sections of fully decomposed
automorphic vector bundles [19,II]. We let k(o) be the field of def-
inition of £, as a homogeneous vector bundle. Then E,, together
with its canonical G(A/)-action, has a canonical model over k().
We warn the reader that the subgroup K of G, and a fortiori its
representation o, are not generally defined over k(o).

Let X C G(AY) be an open compact subgroup. The bundles V and
E; defined above descend to automorphic vector bundles, also denoted
V and E, over kSh, as explained in Milne’s talk. Occasionally we
denote these bundles Kf/ and g E,.

1.1.3. Example. Let J = (_01 10,,) € GL(2n), where I, isthe nxn

identity matrix, and let G,, = GSp(n) be the similitude group of the
alternating form defined by J. The G,(R) orbit of the homomorphism
h:S — G, g, which takes z = ¢ + iy € C* & S(R) to the matrix

(_xy :) € G,(R), is analytically isomorphic to the union & of the
Siegel upper and lower half-planes of genus n. The pair (G, &%) de-
fines a Shimura variety M, = Sh(G,, %), isomorphic to the moduli
space of principally polarized abelian varieties of dimension n with a
consistent family of level N structures for all positive integers N. In
this case, we have

thc
_ z2-T ) t. 1.,
_{k(z7x17m2): ( —z4 2'.’1,'1) Ty = —T1, Tz = T2, Zec 3
. r —iT
—ix -z

p
z T
!
where z1, 2 and z are all n X n complex matrices.
1.2. To each finite-dimensional representation (p,V) of G we have
associated a flat vector bundle V over Sh. The sheaf V'V of horizon-
tal sections of V is a G(A/)-invariant local system over Sh, whose
cohomology can be computed using the de Rham resolution. Thus,
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for p=0,1,...,2n, let AP(V) denote the space of C*°p-forms on Sh
with coefficients in V'V. Here and in what follows, a space of differ-
ential forms on Sh with coefficients in a vector bundle is the direct
limit over open compact subgroups K C G(AY) of the corresponding
spaces of differential forms on gSh. Cohomology is likewise defined
as a direct limit. Letting d be exterior differentiation, we have the de
Rham complex

(1.2.1) 0 A°(V) S A (V) S .. 5 A2(V) -0,
and a canonical G(Af)-equivariant isomorphism H*(Sh,VV) &
H*(A(V)).

Fix a point h € X; let K, = Lie(), and let g = €, @ ps be the
Cartan decomposition. Note that pj, is canonically isomorphic to the

tangent space of X at h. There are canonical lifting maps (cf. [8],
VII, §2)

(1.2.2) AP(V)S(C™(GQ\G(A)) @ A7(p)* @ V)T,

the fixed vectors under the diagonal action of K}, whose action on
C>®(G(Q)\G(A)) is given by right translation. Note that G(A/) acts
on both sides of (1.2.2): the action on AP(V) is induced from the
G(AS)-homogeneity of V'V, whereas the action on the right-hand side
is induced from the right action of G(Af) on C®°(G(Q)\G(A)). The
isomorphism (1.2.2) is clearly G(A7)-equivariant.

We recall briefly the standard construction of the relative Lie alge-
bra cohomology of (g, K )-modules. Let W be a (g, K3)-module, and
let

(1.2.3)
Cq(G,I{h, W) = HornKm (Aq(g/éh), W)

= Hompg_ (A%p), W), 0<qg<dimp.
Define d : C(g, Ky, W) — C71(g, K3, W) by the formula

(1.2.4)
df(zo,...,xq) = Z(—l)i:z:i “f(zoy -y &iyeony2q)

(3

+D D ([, 25] @0y s By s B2 Tg),s

i<j
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where {zg,...,z,} C p and the variables wearing "~ are omitted from
the summation. Then d? = 0 and H*(g, Ky, W) = Hx(C (g, K1, W)).
For each p, there is an obvious isomorphism

(1.25) (C™(G(Q\G(A)) ® AP(p)" © V)
=C?(g, K, CT(G(Q\G(A)) ® V).

Combining (1.2.5) and (1.2.2), we obtain isomorphisms
(1.2.6) AP(V)=CP(g, Kn, C=(G(Q\G(A)) @ V).

The isomorphisms (1.2.6) commute with the differentials on both
sides [30], [8,VII]. In other words,

1.2.7. ProPOSITION. ([8], VII, Corollary 2.7). There is a canonical
isomorphism of graded complexes

A (V)=C (8, Kn, C*(GIR\G(A)) @ V),
which induces canonical isomorphisms of cohomology groups
H*(Sh,VV)SH*(g, K1, C®(G(Q)\G(A) ® V).

These isomorphisms commute with the natural G(AY)-actions on
both sides.

1.2.8. Remark. Note that C*(G(Q)\G(A)) is not strictly speak-
ing a (g,K)-module, since it is not equal to its submodule
C*(G(Q)\G(A))o of Kp-finite vectors. However, the relative Lie
algebra complex only notices Kj-finite vectors; one can thus replace
C*(G(Q)\G(A)) by C*(G(Q)\G(A))o in all the formulas without
changing the cohomology. We will not dwell on this point.
1.3. When G has @Q-rank 0, the varieties xSh are compact, and
C*>*(G(Q)\G(A)) becomes a unitarizable G(A)-module (modulo the
action of Z;(A)). One can then apply Hodge theory to the Lie al-
gebra complex C'(g, K, C®(G(Q)\G(A)) ® V), as in [8,esp. II and
VII, §6]. The cohomology H*(Sh,VV) is then entirely represented
by automorphic forms. Computation of H*(Sh,VV) is carried out in
two steps:

(1) Decomposition of C®(G(Q)\G(A))s as a (g, Kx) x G(AS)-
module. Say

C=(G@N\GAN ¥ & m(re®7))Vr © Vi,
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where (7o, Vi) (resp. (75, Vr,) runs through the set of unitarizable
(g, K1)-modules (resp. G(Af)-modules). It is well known that the
multiplicities m(7o, ® 75) are finite.

(2) Computation of H*(g, Kp,Vx. ) for any unitarizable (g, Kj)-
module (7o, Vr ). This step is carried out completely in [54].

When G has Q-rank > 0, this approach fails, and it is not known
in general to what extent H*(Sh,VV) can be represented by auto-
morphic forms. As a partial substitute, Borel was led to introduce
de Rham cohomology with growth conditions. We review the most
important elements of this theory here; the analogous theory for co-
herent cohomology will be described in §2.

Let Go = G%"(R)?, and let g — § be the Cartan involution ad(h(i))
on Gy with respect to K}, and define ||g||g, = tr(Ad(§™'-g)),g € Go.
If (V,]|]lv) is a normed complex vector space, f € C®(G(A),V) is
called slowly increasing (resp. rapidly decreasing) if
(1.3.1) f is a finite sum of eigenfunctions for Z5(A); and
(1.3.2) [|f(g07)llv < Cligo]|B,, Vg0 € Go,7 € G(A), for some (resp for
all) m > 0,C € R*(resp. C € Rt depending on m and 7).

The condition (1.3.1) is included here for convenience; it is auto-
matically satisfied in every case of interest to us.

We let xCy; = KCsi(G) (resp. kCra = ](C,-d(G)) denote the
space of all C* functions on G(Q)\G(A)/K which, together with
all their right U(g)-derivatives, are slowly increasing (resp. rapidly
decreasing), in the above sense. Let Cy; = Csi(G) = li_r’nK Csi,Crg =

Crd(G) = h_H_)lK kCra-

1.3.3. THEOREM. (Borel [4],[5],[6]). Let (p,V) be a finite dimen-

sional representation of G. The inclusion of Lie algebra complexes
C(9,Kn,Csi ® V) C C(g, K, C*(G(QN\G(A)) @ V)

defines an isomorphism on cohomology. In particular, there is a nat-
ural isomorphism '

H*(g,K,Csi @ V)SH*(Sh,VY)

of admissible G(A)-modules.

1.4. The constructions in 1.2 above also apply to cohomology with
compact support. Thus, let H}(Sh,VV) denote the cohomology with
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compact support of the local system V'V, and let C°(G(Q)\G(A)) de-
note the space of C* functions on G(Q)\G(A) with compact support
modulo Zg(A). Then the complex C'(g, Kx,CEP(G(Q\G(A)) @ V)
computes HX(Sh,VV) [5], and the isomorphism

C'(8, Kn, CZ(G(Q\G(A)) @ V)= HZ(Sh,VY)

is G(Af)-equivariant.

1.4.1. THEOREM. (Borel, [5],[6]). The inclusion of Lie algebra com-
plexes

C(9, Kn, CZ(G(RN\G(A))®V)) CC(8, Kn, Cra® V)

defines an isomorphism on cohomology. In particular, there is a
natural isomorphism H*(g, Kp,Crq ® V)= H?(Sh,VV) of admissible
G(A7)-modules.

The product of a slowly increasing function by a rapidly decreasing
function is rapidly decreasing. Contraction thus defines a morphism
of complexes
(1.4.2)

C(8,Kn kCsi®V)RC (8, Kn, kCra @ V™) = C (8, Kn, kCra)

where the double complex on the left hand side is identified with
the associated single complex. In particular, (1.4.2) defines, for each
i € {0,...,2n}, a bilinear pairing

H(g,Kn, kCsi ®V)QH*" (8, K, kCra ®@V™*) — H*™(g, K1, kCrq)
and thus, by 1.3.3 and 1.4.1, a bilinear pairing
(1.4.3)  HY(xSh,VV)® H" i (Sh,(V*)V) = H?"(xSh,C)

We denote this pairing -—. Define

T;' : Czn(g,l(h, KCT‘d) e C; I,:;(LU) = (27r7/)_n/ .
GQN\G(A)/ KK,

Note that the integral is well-defined because K;, O Zg(R). Borel
proves
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1.4.4. PROPOSITION. (Borel, [5], 5.6).

(a) The map Tr factors through H**(g, Ky, kCrq) and defines a
surjective homomorphism Tr : H?*(xSh,C) — C.

(b) For each connected component Sh® of xSh, the restriction of
Tr defines an isomorphism H**(Sh°,C) — C.

(c) The bilinear pairing

Hi(xSh,VV)Y® H> {(kSh,(V)¥) 5 C,w@uw' — Tr(w — ')

coincides (up to a non-zero scalar multiple) with Poincare duality.

1.5. The symmetric space X possesses a G(R)-invariant Hermitian
metric. In what follows we assume this metric fixed; it descends to a
complete Hermitian metric on g Sh, for any K C G(AY). If (p,V)isa
finite-dimensional complex representation of G, we may endow V with
a K-invariant Hermitian inner product with respect to which the ele-
ments of pj, are self-adjoint. Likewise, if (6, W) is a finite-dimensional
complex representation of K, W, has a Kp-invariant Hermitian inner
product. In this way, the flat (resp. fully decomposed) automorphic
vector bundle V (resp. E, ) becomes a Hermitian vector bundle over
Sh. We fix these metrics in what follows.

Define the de Rham complex A(V) as in 1.2; let QP9(E,) be the
space of C* (p,q) forms on Sh with values in E;, 0 < p,q < n.
With respect to the metrics defined above, the exterior derivative
dv : A (V) — A(V) (resp. the d operator 9, : Q0 (E,) — Q% (E,))
has a formal adjoint 8y (resp. 6,), defined by the usual formulas
(cf. [10]). Completeness of gSh (any K) implies that the formal
adjoints coincide with the Hilbert space adjoints on the respective
spaces of square integrable forms. Let Ay = dyéy +6ydy : A(V) —
A(V),0, = 0,05 +6,0, : N0 (E,) = Q% (E,) be the corresponding
Laplacians. We save O, for 2.6.

The operator Ay corresponds, under the lifting (1.2.2), to
an operator, also denoted Ay, on the Lie algebra complex
C(g, Kn,C*(G(Q)\G(A))®V). Let Cy4 denote the Casimir operator
in the center Z(g¢) of the enveloping algebra U(gc), and let R de-
note the right regular representation of U(ge) on C*(G(Q)\G(A)).
Kuga’s formula [30],[8] states that, in terms of the identification
(1.2.4),

(1.5.1) Ay =R(Cg)®11-101dp(Cy),
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where 1 is the identity operator.

Let A(G) (resp. A(2)(G), resp. Ao(G)) denote the space of
all automorphic forms (resp. automorphic forms which are square-
integrable modulo Zg(A), resp. cusp forms) on G(Q)\G(A). Thus
A(G) is the (g, Kj)-submodule of Kj-finite and Z(gc)-finite vec-

tors in C,;. Let Hfusp,v (resp. 7'{?2),‘,) denote the kernel of Ay

on C?(g, Ky, Ao(G) @ V) (resp. CP(g,Kpn, A2)(G) ® V); these are
the harmonic cusp forms (resp. harmonic square integrable forms)
with valuesin V. As for ’Hfusp’v, it follows from Theorem 1.4.1 (since
cusp forms are rapidly decreasing) that there is a map H7, v —

H(Sh,VV). Borel proved the following theorem:

1.5.2 THEOREM. (Borel, [4],[5]). Let H*(Sh,VV) denote the image
of H}(Sh,VV) in H*(Sh,VY). Then the canonical map H}, ., v —
H*(Sh,VV) is an injection of G(A')-modules.

§2. AUTOMORPHIC FORMS AS COHERENT COHOMOLOGY CLASSES

The arithmetic properties of the canonical models play no role in
Borel’s theory, which, as mentioned above, is valid for any locally
symmetric space. We now want to study the coherent cohomology of
certain automorphic vector bundles in terms of automorphic forms.
Automorphic vector bundles, and therefore their cohomology groups,
have canonical models over number fields. The automorphic forms
which contribute to these cohomology groups have arithmetic prop-
erties connected with the existence of canonical models.

Borel’s study of the cohomology of local systems exploits the fact
that a locally symmetric space is homotopy equivalent to a well-
behaved compact manifold with corners, the Borel-Serre compacti-
fication. The analogue for the holomorphic theory is provided by
Mumford’s theory of toroidal compactifications. The toroidal com-
pactification of a Shimura variety is not unique, but, as we explain
below, its coherent cohomology with coeflicients in suitably extended
automorphic vector bundles is independent of the choice of compact-
ification. This is the starting point in the application of coherent
cohomology to automorphic forms.

2.1. Let K be an open compact subgroup of G(AY). We say K is neat
if for each k € K, there exists a prime p such that the p-component
k, of k has the following property: for any faithful finite-dimensional
Qp-rational representation p of G(Q,), the subgroup of Q}’,‘ generated
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by the eigenvalues of the semisimple part of p(k,) contains no roots
of unity.

Assume K is neat, and let Sh° be a connected component of g Sh.
In [1], Mumford and his collaborators construct a certain class of com-
pactifications of Sh?, called toroidal compactifications. The toroidal
compactification Sh%, associated to a rather complicated collection
¥ of combinatorial data, is in general a complex algebraic space. Tai
shows in [1] that ¥ may be chosen in such a way as to assure that the
compactifications are smooth projective varieties, and that the com-
plements of Sh? in ShY, is a divisor with normal crossings. A toroidal
compactification with these properties will be called SNC. Such com-
pactifications arise in Looijenga’s proof of the Zucker conjecture; cf.
Zucker’s talk.

In [22], we construct toroidal compactifications in the adelic frame-
work. In this way we can find combinatorial data ¥ defining toroidal
compactifications g Shy of xSh, some of which are projective vari-
eties rational over E(G,X) [22]. For K fixed, the X, and hence the
kShy, form an inverse system with respect to the relation of refine-
ment; cf. [1],[22].

Let V be an automorphic vector bundle over g Sh. For any xShy,
there exist two functorial extensions of V to vector bundles over ¢ Shy,
rational over k(o) [21,§ 2]. The first one, called the canonical exten-
sion and denoted V" was constructed by Mumford in [34] and,
more generally, in [22]. The functor V +— V" commutes with tensor
operations.

Let Zy = g Shy — Sh; let I(Zg) CO=0,5hns be the ideal sheaf
defining the divisor Zs,. The subcanonical extension of V is the vector
bundle V**® = V*" @ I(Zx). Then V*'® is naturally a subsheaf of
Vear - and there is a short exact sequence

(2.1.1) 0 — VYsub L pean _, pe

where V' is the restriction of V" to Zy. When necessary, we write
ysub.X pean,E ook If ¥V is a refinement of X, let 7 : xShy —
kShs be the natural map; then 7*(Vsub-¥) o2 YsubX' gx(peanBy o
Vca.n,E'.

The following proposition is a summary of the contents of §2 of [21]:

2.2. PROPOSITION. (a) Let gShy, kShy' be two toroidal compact-
ifications of i Sh. Then there are natural isomorphisms of sheaf co-
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homology

H*(KShE, vcan,E);H*(KShzl’ Vcan,E')’
H*(KShE, vSUb’E);’H*(KShE' : vsub,E')'

(b) We define

Hi (V™) = lim H* (x Shs, V"),
=
H;{(VSUb) = li_I’nH*(KShE, Vsub,E),
z

where the direct limits are taken with respect to refinement. Let

g*(vcan) — l_ing;((Vcan),iI*(VSUb) — li_r)nH;((VSUb),
K K

Then H*(V°") and H*(V*"®) are naturally admissible graded G(AY)-
modules, and the natural homomorphism H*(Vs'®) — H*(V*) is
G(A7)-equivariant. Moreover, if V = E,, (notation 1.1) then the
action of G(AY) preserves the natural k(c)-rational structures on
H*(E") and H*(E:*?).

2.2.1. Remark. The methods of Milne [32] imply a stronger asser-
tion. For any automorphic vector bundle V over Sh, let H *(V)(o0) =
H_II)IK Ii_r_)n2 H*(gShs,V>>F). Let T € Aut(C), choose a special point
h € X, and let ("*G, ™" X) be the basic pair which appears in the
Langlands conjecture, such that Sh(G,X)” = Sh(""G,™"X). Let
€ be a G-homogeneous vector bundle over X, ™*& the corresponding
7hG-homogeneous vector bundle over ™ X. Then there is a canonical
isomorphism of long exact sequences (depending on the choice of h):

C— H(EP)T — H(El)T — HY[ED(o0)” — ...

! ! !

L= BYTREP®) — BoE) — B (o) —

This isomorphism commutes with the natural action of G(AS) =
"hG(A’) on both sides, and depends on the choice of h only up to
a canonical isomorphism ¢ (7, b, k) : [F' E]S["" £] (cf. Lemma 5.1
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and Theorem 5.2 of [32] for the relevant definitions for connected
Shimura varieties).

Let H} (V) denote the image of H¥ (V) in HE(Vean); let
HYY) = lim H{.(V) = the image of HI(V*"®) in HI(Ven).
2.3. Let A be the disc of radius 7 in C, and let A* = A — {0}
be the punctured disc. Let z be the variable in A,r = |[z|. Let 6
be the differential operator z - %,0_ =z- %. If N € Z, we say a
function g € C®°(A*) is slowly increasing of ezponent N if it satisfies

an inequality of the form
(2.3.1) lg(2)| < C|logr|V.

We say g is slowly increasing (resp., rapidly decreasing) if g is slowly
increasing of exponent N for some N € Z (resp. for all N € Z). We
say g is slowly increasing to all orders (resp. rapidly decreasing to all
orders) if 8'g and 8'g are slowly increasing (resp. rapidly decreasing)
for all 4,7 > 0.

The relation between the cohomology groups H I(ES™) and
H9(E3™) and the theory of automorphic forms is based on the fol-
lowing lemma:

2.3.2. LEMMA. (Harris-Phong). (a) Let g € C*°(A*) be a function
which is slowly increasing of exponent N. Then the equation 6f = g
has a solution f which is slowly increasing of exponent N + 2.

(b) In (a), if g is rapidly decreasing, then the equation 8f = g has
a solution f which is rapidly decreasing.

(c) In (a), suppose g is slowly increasing (resp. rapidly decreasing)
to all orders. Then the equation f = g has a solution f which is
slowly increasing (resp. rapidly decreasing) to all orders.

Parts (a) and (b) are proved in [24],[21]. Suppose g is slowly in-
creasing to all orders and, for r > 0, let f. be the slowly increasing
solution to the equation 8f, = 6"g constructed as in [24]. A simple
modification of the arguments in [24],[21] (see Remark 2.3.4, below)
shows:

(2.3.3) If h € C°(A*) is such that h and 6h are slowly increasing and
¢ is the slowly increasing solution to 8¢ = h constructed in [24], then
8¢ is slowly increasing.

In particular 8f, is slowly increasing for all r. Since the operators
¢ and § commute, we see that, for all r, 8f, — f,41 is holomorphic
and slowly increasing on A*, hence is holomorphic on A. It follows by
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induction that, for all r, 87 f — f. is slowly increasing and holomorphic
on A, hence f is slowly increasing to all orders. If now g is rapidly
decreasing to all orders, the analogue of (2.3.3) holds, and the obvious
argument (with f,. now rapidly decreasing) shows that, for all r, 6 f,. —
fr+1 is holomorphic and rapidly decreasing on A*, hence has a zero
at 0; thus 6" f — f,. is rapidly decreasing and holomorphic on A. This
implies (c).

2.3.3. Remark. The proof of (2.3.3) can be found in an unpublished
manuscript of C. Soulé entitled “Dolbeault Hodge theory with loga-
rithmic growth.”

2.4. The growth conditions defined in 2.3 extend naturally to poly-
discs. Thus, if V is a smooth complex algebraic variety and Z is a
divisor with normal crossings on V, there is no difficulty in defin-
ing smooth functions on V' — Z which are slowly increasing, rapidly
decreasing, or slowly increasing to all orders along Z. These rings
of functions are denoted Cj; z(V),Crq,z(V), and Ciiq,z(V), respec-
tively.

More generally, let X = X,, = (A*)" x A®™", with co-
ordinates zj,...,z,. Let A;(X) be the algebra generated over
the ring of slowly increasing functions on X by the differentials
dzi/|zl,-..,dz.[|zr],dZ 41, - - . ,dZ,. An element of A};(X) is called
a slowly increasing (antiholomorphic) differential form. We similarly
define A; ;(X) (resp. A};,(X)), whose elements are called rapidly de-
creasing differential forms (resp. differential forms slowly increasing
to all orders, resp. differential forms rapidly decreasing to all orders).

Again, these notions globalize; with V and Z as above, we may
define A; 7(V), A,4.2(V), Ay z(V) and 4,4, 7(V) in the obvious
way. The algebras A ;, (V) and A;,, ;(V) are already complexes
under J; we let C;; (V') (resp. C,4,2(V)) be the complex of forms w
such that both w and dw are slowly increasing (resp. rapidly decreas-
ing). If £ is a holomorphic vector bundle on V, we let C.iz(V,€)
be the differential graded sheaf C}; ,(V) ® £, and define C,, ,(V,£),
Ciia,z(V,€) and C, (V,€) similarly. It follows from Lemma 2.3.2
and the arguments in [24],[21] that the complexes C;;, »(V,€) and
C.;.z(V,E) (resp. C’;du’z(V,S) and C;, (V,&) are fine resolutions of
& (resp. of £(—2)).

Let Tz C Oy be the ideal sheaf defining Z. With £ as above, let
E(-2)=E®oy Iz. Let Q% (€) (resp. Q% (£(—Z2))) be the standard
C* Dolbeault complex of £ (resp. £(—Z)). It follows formally from
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the above remarks (cf. [24],[21]) that

2.4.1. THEOREM. The Inclusions
Q%(€) C Cyiaz(V,E) C Cy 2(V,€)

and
Q%(E(-2)) C Cry z(V,€) C Craa,z(V,E)

induce isomorphisms on cohomology. In particular, there are natural
isomorphisms:

H'(V,€) C Hy(Ci,,2(V,E)) C H5(Cy; 2(V,E)),
H(V,E(=2)) C H3(Crq,7(V,€)) C H3(Crya,z(V,E)).

where the left hand side is computed in the Zariski topology.

We now apply this to the spaces defined in 2.2. Let j : gSh —
kShs be an SNC toroidal compactification. Fix a point h € X,
define Ky, P, and P, asin 1.1, and let (o, W, ) be a finite-dimensional
representation of P,. Let E, be the corresponding automorphic vector
bundle over Sh. As in 1.2, there is a canonical lifting

(2.4.2) T(kShs,isQ% (E,)) 2 T(kSh,Q% (E,))
S(C®(GQ\G(A)/K) @ A'(p7)" @ Wo)F*,

where Q% (E,) is the standard C* Dolbeault complex of E, over
kSh. As in [21], we may identify the right hand side with the Lie
algebra complex C' (B, Kp, C®(G(Q)\G(A)/K) ® W,). Let d be
the differential of this complex.

2.4.3. LEMMA. Let Lift be the lifting (2.4.2). Then

(a) Lift(T'(k Shx, C,; 7, (kShs, Es))) (resp. Lift(T(xShs,Crq4 7,
(kShs,E,))) is the subcomplex gC;, (resp. kCrq, of
C (B, Kp, C=(G(Q\G(A)/K)R@W,), consisting of cochains w such
that both w and dw are slowly increasing (resp. rapidly decreasing)
W, -valued forms, in the sense of 1.3.

(b) Lift(T'(k Shs, Cyiy 2, (k Sk, Eo))) = C (P, Kn, Csi @ Wo) K.

s

(c) Lift(T(xShs, C 40,2, (k She, Es))) = C'(Bh, Kn, Cra @ Wo) .

2.4.3.1. Remark. Part (a) is essentially [21], 3.3.4. Parts (b) and (c)
follow from standard estimates for the coefficients of left-invariant dif-
ferential operators on G(R) in symmetric space coordinates, as in [6],
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Correction and complement. In particular, the image under Lift of

each of these complexes is independent of the choice of toroidal com-

pactification. Let C;, = lim gC; = lim gC Com-
— K — K

si,o 81,09 Yrd,o

rd,o*
bining 2.4.1 and 2.4.3, we obtain the following analogue of Borel’s
results.

2.4.4. THEOREM. Let E, be the fully decomposed automorphic
vector bundle on Sh, attached to the representation (o, W,) of Kj.
There is a natural commutative diagram of admissible graded G(AY)-
modules

H (PBn,Kn,Cra @ W,) —— H(Coy,) — H(EP)

rd,oc

(2.4.5) l l l

H(Bn, Kp,Ci @W,) —— H(C;,) —— H (B

81,0
The horizontal arrows are isomorphisms.

Fix an open compact subgroup K C G(Af). Let K = K, 55 =
7 op, and, when g Shy is a toroidal compactification of xSh, write
Ky = K, sny for the dualizing sheaf of Shy, whether or not g Shy
is smooth. Then K*'® 2 Ky [21]. For any vector bundle £ over xSh,
let &' = K® E*.

Define E, as in Theorem 2.4.4. Let 7 (resp. w) be the representa-
tion of K, corresponding to E;, (resp. to K = Q7 g, ). The natural
pairing E! ® E, — K defines a morphism of complexes

(2.4.6) Crar®Ciio = Cra f®g [fAg]

where the double complex on the left hand side is identified with the
associated single complex. The analogue of Borel’s Proposition 1.4.4
is the following interpretation of Serre duality:

2.5. PROPOSITION [21]. (a) For any automorphic vector bundle V,
and for any ¢ = 0,1,...,n, the cup product

(2.5.1) HE (V") @ HE (V") — HR(K") = C

is a nondegenerate pairing (Serre duality), rational over any base field
k over which Sh and V are defined.

(b) Let ¢ € Hy 1(E*P), ¢ € HL(ES®"). Let f (resp. g) be a
O-closed form in KC’: d_,f (resp. ](Cgi’a) representing the cohomology
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class ¢ (resp. v). The Serre duality pairing is given, up to a constant
multiple, by

(2.5.2) < 6,1 >= (2mi)" / [f Agl.
G(Q\G(A)/ KKa

2.6. Define O, : Q% (E,) — Q% (E,) as in 1.5. Under the isomor-
phism Lift of (2.4.2), O, corresponds to an operator, also denoted

Oy : C'(Br, Kn, C*(G(QRN\G(A)) @ Wo)
= C'(PBr, Kn, C*(G(QN\G(A)) @ Wo)

As in 1.5, we may define spaces of harmonic cusp forms and har-

monic square integrable forms with values in E,: let ngsp,a (resp.
H€’2)a) denote kernel of O, on CP(Bj, Ky, Ao(G) @ W,) (resp.

CP (B, In, A2)(G) @ Wo)).
The following theorem is a slight strengthening (using Theorem
2.4.4) of the main result of [21]:

2.7. THEOREM. Let (o0,W,) be a representation of K}, and let E,
be the corresponding fully decomposed automorphic vector bundle.
Then

(a) The canonical map cl : H},,, , — H*(E,), derived from (2.4.5)
and the obvious inclusion Mgy, , C H (P, Kn,Cra ® Ws), is an
injection of G(AS)-modules.

(b) H*(E,) is contained in the image of H}, , in H*(E*™"), under
the homomorphism derived from (2.4.5) and the obvious inclusion
7'((*2),0, C C.(('Bh’ Ky, Csi @ Wo).

Here part (a) is the analogue of Borel’s theorem 1.5.2, and is proved
in the same way. The analogue of part (b) for the cohomology of local
systems is well known to the experts, but I have not seen it stated in
print. This analogue is an immediate consequence of the theorem of
Borel and Casselman [7] that, under certain hypotheses (verified by
Shimura varieties) the L, cohomology of a locally symmetric space
with coefficients in a local system is finite-dimensional.

2.7.1. Remark. We emphasize that we do not know at present
whether or not the L, cohomology of a fully decomposed automorphic
vector bundle is finite-dimensional. The methods of Borel and Cassel-
man do not appear to apply. The proof of part (b) in [21] is based on
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the fact that the continuous spectrum in Lo(G(Q)\G(A)/K) contains
no vectors which transform under a finite-dimensional representation
of the Hecke algebra of G(AY) relative to K.

In the holomorphic and anti-holomorphic cases we can improve on
Theorem 2.7:

2.7.2. PROPOSITION [21,5.4.2]. When q = 0 or ¢ = n, The canonical

map cl : Hi,, » — H9(E,) is an isomorphism, for any o.

The proof is an application of the results of Baily and Borel.

§3. 0-COHOMOLOGY OF IRREDUCIBLE UNITARY
REPRESENTATIONS; APPLICATIONS

3.0 We retain the notation of the preceding chapters. It follows from
3.2.2, below, that there are natural isomorphisms

(3.0.1) Heusp.o = H* (B, Kpn, A(G) @ W,),
H{pyy0 2 H* (P, Kn, A2y (G) ® W)

Let A,..(G) denote the orthogonal complement to A¢(G) in A(2)(G).
As in 1.3, we may write

(302) A, (G) = O m*(ﬂ'co ® 71'_{')‘/1%o ® Vr

o
Wm,ﬂ'f

where * = (2), 0, or res, and (7o, Vr,, ) (resp. (7, Vz,) runs through
the set of unitarizable (g, K;)-modules (resp. G(A)-modules). A
well-known theorem of Gelfand and Piatetski-Shapiro asserts that
the multiplicities mo(7o ® 7) are finite; the analogous theorem for
M(2)(Too ® Ts) and Myes(Too ® 75) is due to Langlands. Asin 1.3, we
are thus led to study the spaces H*(Pn, Kn, Va, @ W, ) for general
unitary (g, I, )-modules (7o, Vi, ).

In contrast to what is known for (g, K} )-cohomology, the classifica-
tion of unitary (g, I(, )-modules with non-trivial (B, (1 )-cohomology
is not complete. There are certainly many unitary (g, Kp)-modules
which do not have (g, Kj)-cohomology, and whose (B, K} )-cohom-
ology does not vanish; the nondegenerate limits of discrete series
furnish an important class of examples (cf. Theorem 3.4, below).
It is nevertheless possible to make a number of strong qualitative
assertions about unitary (g, K} )-modules with non-trivial (P, Kr)-
cohomology; these assertions in turn have consequences for the arith-
metic of the coherent cohomology spaces introduced in §2.
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3.1. In what follows, all (g, K, )-modules will be assumed to be com-
plex vector spaces. If V is a g-module on which K}, acts, consistently
with the adjoint action of K on g, we let V; denote the space of
K -finite vectors in V. Choose a maximal torus H C K}, and let
b be its Lie algebra. Then h¢ is a Cartan subalgebra of g¢ as well
as of €, ¢. Choose a set RT of positive roots for (g¢, be); let RF
(resp. R}) be the subset of RY of compact (resp. non-compact)
roots. We assume henceforward that R} is the set of roots on p+.

Let p = %ZQER+ Q, pn = % X:QGR;F & Pc = P~ Pn-
3.1.1. Example: 1.1.3, continued. In Example 1.1.3, let

d(ty,...,t,) denote the n x n diagonal matrix with entries t1,...,1,,
and let h¢ be the algebra of matrices {k(z,I,,d(t1,...,t,)} C
Ehc- For 7 = 1,...,n, let oj(k(z,In,d(ts,...,tn)) =

itj, v(k(z, I, d(t1,...,t,)) = z. Then for R} (resp. R}) we may
take the set of characters {o; + «j,%4,5 = 1,...,n} (resp. {o; —
aj,4,j = 1,...,n,1 < j}. We write (ai,...,an;c) for the charac-
ter 3 5_; ajo; +cv € h*C; then p = (n,n — 1,...,1;0). The finite
dimensional representations of g¢ (resp. of K} ¢) are parametrized
by integer n + 1-tuples (ay,...,an;¢) with a; > as > -+ > a, > 0
(resp. a; > ag > -+ > a,) such that ¢ = Z}l:l a;{ mod 2).

3.1.2. DeFINITION. Let (7,V) be a G-module on which K acts, con-
sistently with the adjoint action of K, on g, and let (0, W,) be a finite
dimensional representation of K. We say (7,V) has 0-cohomology
with coefficients in o (or in W, ) if the relative Lie algebra cohomol-
ogy space H*(Pp, K, VRW,) # {0}. If HY( Py, K, VRW,) # {0}
for some degree q, we say (m,V) has 8-cohomology in degree q with
coefficients in o (or in W,). We say (x,V) is a representation with O-
cohomology if (z, V) has 0-cohomology with coefficients in o for some
(o, W,).

It is not difficult to verify {21,84] that, with V and W, as above,
(3.1.3)
H*(Pr, I, VOW,) = (H*(p~,V)QW, )M =2 (H* (p™, Vo) @W,) .

Suppose (7,V) is an irreducible admissible (g, {)-module. Let
Z(gc) denote the center of the enveloping algebra U(gg). There
exists a homomorphism xr : Z(gc) — C, the infinitesimal character
of 7, such that 7(z) = x(2),Vz € Z(gc). Let 6 : Z(ge)=>S(H)W
be the Harish-Chandra isomorphism, where W = W (gc¢, hc) is the
Weyl group [28]. Any A € h* naturally defines a homomorphism
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ea : S(h) — C, and thus an algebra homomorphism x5 = ex 06 :
Z(ge) — C. Note that xo = xwa,Yw € W. For any irreducible
admissible (g, Kj)-module =, it is known that x» = xa, for some
A € b*, determined uniquely modulo the action of W.

Similarly, we let Z(¥, ¢) denote the center of the enveloping alge-
bra of &, ¢, W, = W(t, c,bec) C W. Let 6 : Z(eh’c);S(f])Wc be
the Harish-Chandra isomorphism for K ¢. As above, any A € h*
defines an algebra homomorphism x} : Z(¥,,¢c) — C. Suppose A is
integral and R}-dominant, and let (o, Wy ) be the irreducible finite-
dimensional Kj-module with highest weight A. Let x/ denote the
infinitesimal character of o; then x; = X}, - The inclusion W, C W
defines a surjective restriction map

f : Homalg(Z(Eh,c),C) — Homalg(Z(gc),C)

such that £(x,) = XA+p.- In our situation, a theorem of Casselman-
Osborne [53,3.1.5] implies

3.1.4. ProprosITION [21]. Let (m,V) be an irreducible admissible
(g, Ki)-module. Let (o4, Vy) be the finite dimensional representation
of K}, with highest weight A. Suppose (r,V) has 8-cohomology with
coefficients in 0. Then X = &(X(5,)-) = X-A-p- In particular, for
a given finite-dimensional representation (o,V,) of K, the number of
irreducible admissible (g, K )-modules with 8-cohomology with coef-
ficients in ¢ is finite.

The last assertion is a consequence of Harish-Chandra’s well-known
theorem that the number of irreducible admissible (g, K})-modules
with given infinitesimal character is finite.

3.2. We henceforth assume that (7,V) is a unitary (g, Kp)-module;
i.e. that there is a positive non-degenerate hermitian scalar product
(*y+)x on V such that

(3.2.1) (Xv,w)r + (v, Xw)r = 0,VX € g*"(R),v,w € V.

The (g, Kp)-module of Kj-finite vectors of a unitary representation
of the identity component G° of G(R) is unitary in this sense.

Let A € h* be R}-dominant and integral. Choose Kj-invariant
hermitian inner products on Wy and on p~; together with the given
inner product on V, these define Kj-invariant hermitian inner prod-
ucts on each of the terms of the complex C'(Br, Kp,V @ Wi). We
let d} denote the adjoint of dy with respect to these inner products,
and let Oj » = dad} +d}ida. The analogue of Kuga’s formula (1.5.1)
implies
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3.2.2. ProposITION. Let (m,V) be an irreducible unitary (g, Kp)-
module, and let (o5, V) be the irreducible representation of K with
highest weight A. Let cA =< A+ p,A+p> —<p,p>.

(a) If x=(Cg) # ca, then (m,V) has no 8-cohomology with coefli-
cients in op.

(b) If xx(Cy) = ca, then all cochains in the complex C"(*Bs, Kp, V®
W) are closed,

HY(Bn, Kp, VO W) = CU B, Kpn,V @ Wh)
= Hompg, (AY(p7) @ WR,V), ¢=0,...,n,

and every class in H1(By, K,V ® Wy ) has a unique Op -harmonic
representative.

3.3. Let F C hg denote the set of differentials of algebraic characters
of the torus H C Kj. Let F+p={A+p|A € F} C bg. Let <,> be
the bilinear form on hg induced by the Killing form. Choose a system
9 of positive roots ¥ for (g¢,hc),¥ DO R}, such that A is dominant
relative to v, and suppose A € F 4 p satisfies
(3.3.1)

<M\ a> >0,Ya € RY such that o is simple with respect to 1.

If X is nonsingular for R, then 1 = v, is uniquely determined, and
we define the discrete series w) with Harish-Chandra parameter A; in
general, we may define the limit of discrete series w(\,9) as in [28],
XII, §7. Let V(),9) (resp. Vi) be the (g, K;)-module associated to
7{\, 1) (resp. to 7). The infinitesimal character of 7(}A, ), or of my,

is xa.

3.3.2. Remark. Strictly speaking, =) is discrete series only if
A|Lie(zs) corresponds to a unitary character; we drop this condition,
which is unnatural from the arithmetic point of view. In any case,
both 7y and 7(), ) are irreducible representations of G(R)® which
are unitary on Gy = G%"(R)°.

The discrete series representations are the representations of G(R)°
whose matrix coefficients are square-integrable on Gy or, equivalently,
are the representations which occur with positive measure in the
Plancherel formula for Gy. The limits of discrete series share with
the discrete series the property of being tempered, a weaker growth
condition for the matrix coefficients than square-integrability.
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Tempered representations are the basic building blocks in the Lang-
lands classification of irreducible (g, K )-modules. The following the-
orems completely describe the d-cohomology of tempered (g, Kp)-
modules:

3.4. THEOREM ( [41],[57],[3]). Let A € F+p, and suppose < A, >
> 0 Va € R}. Let v be as above, and let gy, be the cardinality

of y N R}. Let T € by be an RY-dominant integral weight and let
(0,,W;) be the finite-dimensional irreducible representation of K},
with highest weight 7. Then

() HI(Bn, Kn, (7(A,¢))* ® V) =0 unless ¢ = gy and 7 = A =
def.A = p.

(i) The character A € b} is R} -dominant and integral, and

diqu)‘"”(‘Bh,I{h, (W(/\,’I,b))* ®@Vy)=1.

When X is regular, the analogous statements hold with ¢ = ¢, and
7(A, %) replaced by =y.

3.5. THEOREM. (Mirkovi¢, [33]) Suppose V is a tempered repre-
sentation with O-cohomology. Then V is a discrete series or non-
degenerate limit of discrete series.

Theorem 3.4, which is proved in [3], is a simple adaptation of the

computation by Schmid [41] (generalized to limits of discrete series
by Williams [57]) of the N-cohomology of discrete series, where N
is the maximal unipotent subalgebra of g¢ corresponding to —R*.
Theorem 3.5 was verified explicitly in [3] when G is the symplectic
group of genus 2, here denoted Sp(2). The general proof of Mirkovié
uses the Beilinson-Bernstein technique of localization (D-modules on
the flag variety). It should be mentioned that the N-cohomology
versions of these theorems have been proved whenever rank G = rank
K}, and do not require that G/K} have a complex structure.
3.6. It is obvious that the matrix coeflicients of unitary representa-
tions are bounded; in fact, Howe has proved that the coefficients of a
non-trivial unitary representation of G¢ vanish at infinity. This fact,
together with the Langlands classification, places strong restrictions
on the infinitesimal characters of non-tempered unitary representa-
tions ( [8], IV, Theorem 5.2). A crude version of these restrictions is
the following statement:
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3.6.1. LEMMA. There is a constant b > 0, depending only on G, with
the following property: Let (m,V) be an irreducible unitary (g, Ky)-
module, and suppose that x. = x for some A € hg. Suppose | <
Aya > |>bforall o € Rt. Then 7 is tempered.

The importance to us of tempered representations lies in the fol-
lowing theorem of Wallach:

3.6.2. THEOREM (WALLACH, [55]). Let (o, Vr,) be a tempered
(8, Ky)-module, and let (7f,V;,) be any G(Af)-module. Then, in
the notation of 3.0, mo(TeoTs) = M2)(Teo ® Tg).

The following existence theorem is an immediate consequence of
Theorems 2.7 and 3.4, (3.0.1), and the last two results:

3.6.3 THEOREM ( [21], COROLLARY 5.3.3). There is a constant
b > 0, depending only on G, with the following property. Assume the
highest weight A of the irreducible representation ¢ of K} satisfies
| <A+ p,a>|>bfor every a € RY. Then the inclusion H}, , , —
H*(E,) of Theorem 2.7 is an isomorphism. In particular

I_{q(Eo) = qu 96 dA+ps

and there is a natural isomorphism of G(A/)-modules:
(364) Hq(Ea) = Hom(g’[{h)((ﬂ‘,\.pp)*,Ao(G)).

3.6.5. Remark. This theorem is extremely crude; for any given
(G, X), one can prove much more precise statements. For example,
using Mirkovié’s Theorem

3.5, one can prove a version of the above theorem for limits of discrete
series whose infinitesimal characters are “far from as many walls as
possible” [3]. This fact has applications to Maass forms of Galois
type [3].

Under the hypotheses of Theorem 3.6.3, we obtain a natural k(o)-
rational structure on Homg g, y((ma+,)*, Ao(G)). Techniques for rec-
ognizing k(o )-rational elements of Homg k,)((Ta4,)*, Ao(G)) will be
discussed in §5. More generally, the methods involved in the proof
of Theorem 3.6.3 provide a number of rationality theorems for repre-
sentations with d-cohomology, many of which cannot be proved using
(g, Kp)-cohomology. A simple example is



AUTOMORPHIC FORMS AND COHOMOLOGY 65

3.7. PROPOSITION [3]. Suppose 7 is an irreducible (g, K3)-module
with 8-cohomology with coefficients in o, and suppose ©f is an irre-
ducible admissible representation of G(AY) such that the representa-
tion 1 ® wf occurs in Ao(G). Then nf can be defined over a finite
extension of k(o).

84. FALTINGS’ B — G — G SPECTRAL SEQUENCE

In [15], Faltings defines a spectral sequence which relates the co-

homology groups studied in §2 to those in §1. In favorable cases
this spectral sequence degenerates at E; and defines mixed Hodge
structures on the cohomology of local systems over Shimura vari-
eties [14],[58],{10]. In this section we recall Faltings’ construction,
which is based on the Bernstein-Gelfand-Gelfand resolution in cat-
egory O of a finite dimensional representation of a semi-simple Lie
algebra. We then interpret Faltings’ spectral sequence in terms of Lie
algebra cohomology.
4.1. We define R*, W, and W, asin §3. Let W! = {w € W|w(R*) D
R}}. Then every element w € W has a unique decomposition w =
w, - wt, with w, € W,,w! € W, and ¢(w) = £(w,) + £(w'), where
£(w) is the length of w. For any integer p > 0, let Wi(p) = {w €
W, t(w) = p}.

Let p € b be an R*-dominant integral weight, and let (p,V,) be
the finite dimensional representation of G with highest weight u, rel-
ative to RY. If A € b} is an RY-dominant integral weight, let W,
be the finite dimensional K1-module with highest weight A, as in §3;
W extends trivially to a Pp-module. We let €4 be the correspond-
ing homogeneous vector bundle on X. By adapting the method of
Bernstein-Gelfand-Gelfand, Faltings constructs an exact sequence of
(g9, K1 )-modules [15]:

(4.1.1) O0—=L,— Ly 1 —-—Le—>V -0,
where
(*12) br= weWi (p) U(ge) ®uemn) Wutute)—p)”

Let D(A) = U(gc) Quep,) (Wa)*. It is easy to see [15,Theorem
2;26,87] that for any two RY-dominant integral weights A, A’, there
is a natural bijection
(4.1.3) {homogeneous diff. ops. £ — Exr over X} =

Homy(gcy(D(A'), D(A)).
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The exact sequence (4.1.1) thus gives rise to a complex
(4.1.4) 0 K% BKL... 5" Ke o0,
of homogeneous vector bundles K, where

4.1.5 KP= ¢ €&, —ps
( ) BT ewi(p) (u+p)—p

and where the 6, are homogeneous differential operators. Moreover,
the kernel of & is the constant sheaf X x V.

Applying the functor £€ — [£] of 1.1, we obtain a G(AS)-
homogeneous complex of automorphic vector bundles over Sh =

Sh(G, X):
(4.1.6)
0o KOS KIS "KM L0K2=  @©  Eyuin-p

weW1(p)

Moreover, the sequence K, is a resolution in the category of
abelian sheaves of the local system VNV. Thus the hypercohomol-
ogy H*(Sh, K,,) is isomorphic to H *(V”V). However, it is more useful
to work on the toroidal compactifications.

We use the same notation as in (4.1.6) to denote the correspond-
ing sequence over gSh, for any open compact K C G(AY). As-
sume K is neat and fix a projective SNC toroidal compactification
j : kSh — gShs defined over E(G,X). We can extend (4.1.6) to
a complex (K,)®™¥ of canonical extensions. Faltings verifies ( {15],
§7) that the inclusion (K,)*™* < jx (K, ) = Rjs .(K}) is a quasi-
isomorphism. In view of the above remarks, the hypercohomology
H*(k Shg, (K,)*™*) is thus isomorphic to H*(V,Y). This can be seen
in another way. Since K, is a resolution of the local system Vuv, it
follows from [22], §4 that (K l‘l)“‘“*E is a resolution of the canonical ex-
tension, in the sense of Deligne [11], of V.Y to a vector bundle V7"
with a regular connection. The result then follows from Deligne’s
comparison Theorem ( [11], Theorem 6.2; cf. [9, IV, Theorem 6.2]).

As an immediate consequence, we obtain the following theorem:

4.2. THEOREM. (Faltings, [15]) There is a spectral sequence

(4.2.1) EP? = HY(kShs, (K2)*™F) = HP¥Y(Sh,V,Y).
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Passing to the limit over & and K, we obtain a G(A')-equivariant
spectral sequence

(4.2.2) EP? = HI((K?)™") = HP*9(Sh, V).

4.3. THEOREM. (a) (Faltings, [15]) If G%" has Q-rank O, then the
spectral sequence (4.2.2) degenerates at Fy and defines a Hodge struc-
ture on HP*9(Sh,V,Y).

(b) (Faltings, Chai-Faltings, [14],[10]) If G = GSp(n), for some n,
and Sh is the Siegel modular Shimura variety of genus n, then the
spectral sequence (4.2.2) degenerates at Ey and defines the F'-filtration
of a mixed Hodge structure on H?*4(Sh,V,Y).

4.3.1. Remark. A result equivalent to Theorem 4.3 (a) is proved
by Zucker in [58], following Deligne. Both proofs are based on the
theory of harmonic forms. The proof of 4.3 (b) is based on Deligne’s
mixed Hodge theory for complete varieties, specifically for the univer-
sal abelian variety over the Siegel modular variety with level structure.
It presumably extends to any situation in which V is obtained by ten-
sor operations from the cohomology of a family of abelian varieties
over Sh. Faltings has conjectured that the spectral sequence (4.2.2)
always degenerates at Ej.

4.3.2. Suppose the complex (4.1.4) of homogeneous vector bundles
on X is defined over the number field k’(1). The spectral sequence
(4.2.2), and the existence of canonical models for automorphic vec-
tor bundles, determines a k'(p)-rational structure and F-filtration on
H*(Sh,VY). On the other hand, if k(y) is the field of definition of
(p,V,), then H*(Sh, V”V) comes equipped with a k(u)-rational struc-
ture. Following Deligne [13], we refer to the first structure as the de
Rham rational structure, the second as the Betti rational structure.
Even if k(u) = k'(p), these two rational structures are expected in
general to be quite different, reflecting the presence of transcendental
periods.

4.4. We have already interpreted the E; and Ey terms in (4.2.2)
in terms of Lie algebra cohomology. It is therefore not surprising
that the spectral sequence itself has an interpretation in terms of Lie
algebra cohomology. With D(A) as in 4.1, let D(A) denote the space
of Kj-finite vectors in Homg(D(A),C). Dualizing (4.1.2), we obtain
an exact sequence of (g, K;)-modules

(4.4.1) 0=V, =L L'—-.. -5 L" >0,
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where

(442) = 9 , )D(w(u +p)—p)

The actions of g and K} on L? are the usual contragredient actions:
if f € Homg(D(A),C), X € g,k € Kp, and v € D(A), then

(4.4.3) X-f(v) = -f(Xv), k-f(v)=fk~t v).
If Z is any (*Bn, Kr)-module we define, following Vogan [53,6.1.21]

(4.4.4) pro.%:(’}(h(Z) = Homyg, (Ugc, Z)o,

where the subscript 0 denotes Kj-finite vectors, as before. Here
Uge and Z are viewed as left UPp-modules, and Uge acts on
Homy, (Ugc, Z) by right multiplication. With the diagonal action
of Kp, pro%f’}( (Z) becomes in a natural way a (g, K )-module.

If H is any (g, K3 )-module, let L'(H) be the complex L' ®@¢ W. The
diagonal action of g makes L'(H) into a complex of (g, Kp)-modules,
and we have an exact sequence

(4.45) 0—=H®cV,— L°(H) = L*(H) = --- — L™(H) — 0.
For each ¢, there is a natural isomorphism of (g, Kj)-modules

(4.4.6) L= 8, o prof i, (Waut o))

(Warning: the right and left actions of g have been interchanged!)
Oun the other hand, for any (Pr, Kr)-module Z, there is a natural
isomorphism

(4.4.7) HRc¢ promh W, (Z)=> prowh %, (H®c¢ Z)

given by the map
(4.4.8)
h@A— (Y~ Y-hA(Y)),A € Homyg, (Uge, Z)o,h € H,Y € Ugc.

It is clear that (4.4.8) intertwines the (g, K5 )-actions on the two sides

of (4.4.7). That (4.4.7) is an isomorphism follows from the fact that,

as Kj-modules, pro;nf’}( (Z) is isomorphic to @ Sym™(pt)* ® Z.
n>0
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By (4.4.6) and (4.4.7), (4.4.5) becomes
(449) 0—-H®cV,—L(H)— L (H)—>--— L(H) =0,

where K
LY(H) = wev%al( )Pros%,, '1'(,, (H ®¢ Wu(utp)-p)-

We obtain a spectral sequence in relative Lie algebra cohomology:

(44.10) EP'=H%g,Kn, @ H®cprof i, Wugusp)-p)
weW(p)
= HP*9(g, Kp, H ®c V,,).

Now Shapiro’s Lemma, in the form given in [53], Proposition 6.1.27,
implies that, for any (‘Bp, K1 )-module Z,

(4.4.11) H? (g,Kh progn K (Z)) ’EHQ(‘Bh,I(h,Z).

Combining (4.4.10) and (4.4.11), we obtain

4.4.12. PROPOSITION. Let V, be the finite dimensional (g,K))-
module with highest weight p, and let H be any (g, K})-module.
There is a spectral sequence (the B-G-G spectral sequence)

EP? = g9 ‘Bh, Kh3 & H®C ”w +p)—
! ( weW1(p) (u+e) p)
= H”'q(g,Kh,'H Kc Lu)

If H is a unitary (g, K1)-module, then the B-G-G spectral sequence
degenerates at E.

The last statement is an immediate consequence of the usual har-
monic theory (Kuga’s formula (1.5.1) and Proposition 3.2.2), and
is a somewhat more efficient way of expressing the bigrading on
H*(g,Kp,H ®c V) in the Hermitian symmetric case ( [30], [8, II,

§4]).

4.4.13. Example: The discrete series. Fix an integer py €
{0,...,n} and a w € W1(py), and let H be the discrete series module
To(utp) L€V 40 = Qu(utp), Mo = w(p+p)—p. Evidently po+go = n. It
follows from Theorem 3.4 that every term E?*? in the B-G-G spectral
sequence vanishes except the term E?°'%, which is one-dimensional
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and equal to H® (P, Kp, H @¢ Va,). The B-G-G spectral sequence
thus becomes a canonical isomorphism

HE (Bhs Kny Tt p) OC Vootutp)-p) = H™ (8, Kny T4 ) O Vir)

of one-dimensional vector spaces; all H'(g, Kj, To(uts) OC Vi),
with ¢ # n, vanish. This computation of the cohomology
H*(g, Kny Ty ,4 ) ®c V) is the same as the one given in [8].

We now return to the global situation of §1-2. Let V,, and K7, be as
in 4.1, and take H in (4.4.12) to be the (g, K3 )-module C,; = Cy;(G).
We obtain

4.5. THEOREM. The B-G-G spectral sequence (4.4.12) for the
(g, Kp)-module Cs; gives, via the isomorphisms (1.3.3) and (2.4.5),
a G(AY)-equivariant spectral sequence

Bp = HO((KQ)™) = HP(Sh,VY),

which coincides with Faltings’ spectral sequence (4.2.1).

That the spectral sequences 4.5 and (4.2.1) coincide follows imme-
diately from the definitions. We note that Chai and Faltings also
construct a spectral sequence

Ef’q — gQ((I{z)sub) = H{;;+‘I(Sh, VuV)

The above arguments show that this coincides with the B-G-G spec-
tral sequence (4.4.12) for the (g, Kj)-module C,4, via (1.3.3) and
(2.4.5).

It does not seem that the methods of 4.4 provide a simple route
to proving the degeneration of the spectral sequence (4.5), except
in the case where G has Q-rank 0, where the result is well-
known. One might consider replacing C,; with the space Cypmg of
functions of uniform moderate growth, as in [6]. Borel shows that
H*(Sh, V“V ~ H*(g, Kp, Cumg®V,,), and his methods probably work
for (B, Kp)-cohomology as well. The advantage of Cymg, as Borel
points out, is that Langlands’ theory of Eisenstein series implies that
Cumg decomposes as the direct sum of pieces corresponding to the
standard rational parabolic subgroups of G. One might then hope
that the degeneration can be proved by induction on the Q-rank of
G%". The problem is that the Levi components of parabolic sub-
groups of G are in general not of Hermitian type; nevertheless, their
cohomology contributes to the cohomology of Sh, as we see in §6.
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4.6. Example: 1.1.3, continued. We retain the coordinates of 3.1.1,
and work out the parameters for the B-G-G spectral sequence for
GL(2) =2 GSp(1) and GSp(2). For G = GL(2), the highest weight ;
of V, is given by a pair (a;c) € g, with ¢ = a(mod2), a > 0. Then
K) = E(4;), K}, = E(_g_2;)- The discrete series representation 73,
with A = (a + 1;¢) (resp. A = (—a — 1;¢)) has 8-cohomology with
coefficients in Wy, with A = (a;c) (tesp. A = (—a — 2;c¢)). Hence
Tat1c) (T€SP. T_, . ) contributes to HY(KJ) (resp. to HY(KJD));
if a > 1 (X far from the walls), then there are isomorphisms

(4.6.1) H'(KD) = Hom(g, Ki)(T}oy1.0)) Ao(G)), H(K})
= Hom(g, Kn)(7{_q—1.¢)> Ao(G))-

The latter group corresponds to the space of holomorphic cusp forms
of all levels, of weight a + 2 and central character —c (at the
archimedean prime).

Now assume G = GSp(2). Then p is given by (a,b;c), witha > b >
0,¢ = a 4+ b(mod2). We have K2 = E(a,b;c),Ki = E(a,—b-—2;c)al{z =
E(y-1,-a-3;c)s K3 = E(_y—3,—a—3;c)- The corresponding discrete series
representations, in the same order, are Wza+2,b+1;c)’ W{a-}-?,—b—l;c)’

* *
T(b4+1,—a=2;¢) and T(eb=1,—a—2;c)"

85. RATIONALITY CRITERIA FOR HARMONIC CUSP FORMS

5.1. If # = ma4, is a sufficiently regular discrete series (g, K4)-
module, then Theorem 3.6.3 defines a natural k(o )-rational struc-
ture on Homg g,)(7*, Ao(G)), or equivalently on the space H{ . »
of harmonic cuspidal (0, g)-forms with values in Wy, where ¢ = gp4,.
The question was raised in §3 of recognizing the k(oa)-rational ele-
ments in HJ 1. An extended discussion of the motivation for this
question can be found in [20].

When ¢ = 0, H?,,, » may be identified with a space of holomorphic

cusp,
functions on X x G(A7), and the question has been studied by numer-
ous authors. The cases of elliptic, Hilbert, and Siegel modular forms
are familiar: a Q-rational structure is defined by forms with algebraic
Fourier coefficients. Generalizations of this criterion were studied by
Shimura, Garrett, Brylinski, Milne, and the author [46},{16],[19], and
are discussed in Milne’s talk. We will see below that the obvious ex-
tension of this criterion fails when ¢ > 0.

An alternative characterization of “arithmetic” holomorphic auto-
morphic forms was introduced by Shimura in [48] and exploited in his .
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subsequent papers. It is based on the values of automorphic forms at
CM points: an arithmetic section of E,, is one whose values at the
CM point w is an algebraic multiple of a certain product of periods of
CM abelian varieties, depending on w and A. This criterion has the
advantage that it is available for all Shimura varieties, whereas the
criterion based on Fourier coeflicients (or, more generally, on Fourier-
Jacobi expansions) only works for Shimura varieties with point bound-
ary components. Suitably generalized, this criterion is at the heart of
the author’s construction over the reflex field of the functor £ — [£]
of 1.1, and of Milne’s subsequent construction of canonical models of
automorphic vector bundles [19],(32].

The next case to study is the case g = n = dim X. Let V = E,,,
and define V' as in 2.4; let A’ € h¢ be the character such that V' =
E,,,. Complex conjugation, followed by a certain character twist,
defines an antilinear isomorphism

(5.1.1) C : Hoyep.a = Hesp.ar (cf. [23, 85]).

When G = GL(2,Q),C takes holomorphic forms with algebraic
Fourier coefficients to anti-holomorphic forms with algebraic Fourier
coefficients. More generally, C preserves the arithmetic properties of
values of forms at CM points. But Serre duality shows that the map
Cy : H'(V) —» H*(V') = H°(V)* defined by C is not, in general, Q-
rational. Indeed, suppose f € HY,,, 4 is such that ¢ = cl(f) € H°(V)
is arithmetic, in the above sense; here ¢l is as in 2.7. Suppose f belongs
to an irreducible representation 7/ of G(Af). If ¢ = 4etcl(C(f)) €

HO(V)* were arithmetic, then, by Proposition 2.5, we would have

(5.1.2) < 6,1 >= (2mi)" / [F AC(f)] € G.
G(RN\G(A)/ Kn

In other words, the Petersson square norm of ¢, normalized as in
(5.1.2), would have to be an algebraic number, which is extremely
unlikely.

We remark that when G = GL(2, F), with F a totally real field,
Shimura has shown [47, Prop. 4.14] that, if ¢ and ¢’ are two arith-
metic holomorphic vectors belonging to the same irreducible G(Af)-
submodule of Qy(G), then

(5.1.3) < $,Cv(9)) >~ g < ¢',Cv(¢)) >,
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where if a,b € C* and k is a subfield of C, we write a ~ b if a/b €
k*. The proof is based on the relation between the Petersson inner
product and special values (more precisely, residues) of L-functions.
For general G, a similar argument of Shimura [51] shows, in some
cases, that (5.1.3) holds under the weaker assumption that ¢ and ¢’
generate isomorphic representations of G(Af). When this is true, it
follows easily that

Cy(9)
e T X OF

is a Q-rational element of H™(V").

One way to distinguish arithmetic cohomology classes of inter-
mediate dimension is provided, in some cases, by the following cri-
terion, which may be viewed as a generalization of Shimura’s cri-
terion in [48] for arithmetic holomorphic automorphic forms. Let
(G#,X#) — (G,X) be a morphism of data defining Shimura vari-
eties; then Sh#* = Sh(G#, X#) is naturally a G¥#(A)-homogeneous
subvariety of Sh. Similarly, the flag variety X# is a G#(Af)-
homogeneous subvariety of X. We assume our point h € X is ac-
tually in X#, and let K f C K}, be its stabilizer in G# (R); define h#,
p#*~ and ‘Bf in the obvious way. The following is a special case of
Theorem 7.6 of [21]:

5.2. THEOREM. Let (m,V) (resp. (n#,V#)) be an irreducible uni-

tary representation of G(R)® (resp. G¥#(R)®) such that 7# is a closed

direct factor of m|g#(ry. Let (o,Ws) (resp. (0%,W,+)) be an ir-

reducible unitary representation of K, (resp. Kff) such that o# is

a direct factor of o| KE- Define the homogeneous vector bundles &,
h

£+, over X and X# respectively, and let V = E,,V# = E_4 be the
corresponding automorphic vector bundles. Assume that &,, &, %,
and the natural homomorphism €,y — E,# are all defined over the
extension k¥ of E(G¥#,X#). Assume

(a) The representations = and 7# belong to the discrete series, and
their parameters A and A\#* are both sufficiently regular (cf. Remark
5.2.1, below);

(b) dim HY(P, Kn, Vo @ W,) = dim HUBF, KF V¥ @ W,4) = 1,
and the orthogonal projection p® pyo# : V@ Wy — V(r#) @ W,
induces a non-trivial homomorphism

HY(PBn, K, Vo ® Wo) = HUPF, KF,V(#)0 @ W)
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, where V(n#) is the n#-isotypic subspace of V.

Let ¢ € Hi,s, o, and let F = cl(¢) € HI(V), in the notation of 2.7.
For v € G(AY), we let 1, : HY(V) — HY(V#) denote 3 o t!, where
7+ t% is the natural action of G(A) on HY(V). Then F is rational
over the extension L of k¥ if and only if, for every v € G(AY), the

element 1, (F) is an L-rational element of HI(V#).

5.2.1. Remark. (cf. [21], Remark 7.6.1): In (a) it is necessary to
assume in particular that 7# belongs to the integrable discrete series,
and that both A and A\#¥ are sufficiently regular to satisfy Theorem
3.6.3. It is actually not necessary that = be a discrete series represen-
tation; it suffices that it satisfy the analogue of (3.6.4).

The remainder of this section will discuss some examples in which
this criterion can be applied.
5.3. In this section G = GL(2, F), where F is a real quadratic field
(possibly @ x Q), and G¥ = GL(2,Q), with its natural imbedding
in G. This case is studied in [21, §8]. As in 3.1.1, representa-
tions of K #, and hence automorphic vector bundles over Sh¥, are
parametrized by pairs of integers (a;¢), with a = ¢(mod 2). Similarly,
GR) = G*(R) x G*¥(R),K, = K¥ x K¥,; representations of K,
and automorphic vector bundles over Sh correspond to quadruples
((a1;¢1), (az; c2)) satisfying a; = c;(mod 2); this congruence condition
will henceforth be assumed. We note that Zg does not satisfy the
hypothesis imposed in 1.1, so that the automorphic vector bundles
over Sh exist, in general, only in the sense of stacks, as in Milne’s
article in this volume. The reader who dislikes stacks may replace G
by its subgroup of elements with determinant in G,,,@ C Rr/@Gm, F-

For a and c as above, a > 0, let m(a;¢) and 7(—a;c) be the discrete
series representations of GL(2,R)°, parametrized as in 4.6. A theorem
of Repka [37] describes the restriction to the diagonal of completed
tensor products of discrete series representations.

5.3.1. THEOREM. ( [37], Theorem 7.3). Let k,l,c,c’ € Z, with
k = c(mod 2), £ = d(mod 2),k,£ > 1. The restriction to the diagonal
G#(R)® C G(R)° of the completed tensor product (k)@ (_ gy con-
tains as a closed direct summand the representation m(a_1 ctcy With
multiplicity one, for every a € Z such that (i) 2 < |a| < |k — £|; and
(iii) a is of the same sign and parity as k — £.

5.3.2. COROLLARY. ( [21], Theorem 8.6). Let A =
((a1;¢1), (a2;¢2)) € bg, and supposea; < =2,a2 > 0, and ay+az > 0.
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Let A* = (a; 4+ azjc1 + ) € bﬁ’*. Let Ep and Ey4 be the corre-
sponding automorphic vector bundles over Sh and M#, respectively.
Then f € HY(E,) is rational over the extension L of F if and only
if, for every v € G(AY), the element 1. (f), defined as above, is an
L-rational element of H(E#).

An analogous result holds when G is replaced by the multiplica-

tive group of certain totally indefinite quaternion algebras. A test for
rationality of elements of H'(Ex#) in terms of integrals against holo-
morphic cusp forms on M#, along the lines described in 5.1, above, is
discussed in [20] and [21,§8], where it is explained how such integrals
arose in earlier work of Shimura [50].
5.4. In this section G = GSp(2), G* = {(g1,92) € GL(2) x
GL(2)|det(g;) = det(ge)}, imbedded diagonally in G. In this case
h = b# = {k(z, ,,d(t;,t)}, in the notation of 3.1.1. Automorphic
vector bundles on Sk and Sh¥, and discrete series representations of
G(R)° and G¥#¥(R)®, will all be parametrized by triples (a, b; c), as in
3.1.1 and 4.6. The following results are joint work with S. Kudla.

5.4.1. THEOREM [23, §4]. Let 7 be the discrete series representation
W{b+1,_0_2,_c) of G(R)®, with @ > b > 0. The discrete spectrum of

the restriction of m to G#(R)° is given by the the union of three sets
of discrete series representations:

(7) Tk, g)s k—¢€ >a+b+4;
(ZZ) Tk, t;c)s k+t<a-b
(ZZZ) T(k,—t:c) and W(_g,k;c),k —{>2a-b+2,k+€<a+bd+2.

In each case, k,€ > 1 are integers which satisfy k + £ = a + b(mod 2),
and each of these representations occurs in m with multiplicity one.

E‘b+1,—a—2;—c)’ “
logy in degree one, and to its contragredient, which has 8-cohomology
in degree two, we can prove

Applying this theorem both to = which has 8-cohomo-

5.4.2. THEOREM [23, §2]. In the notation of 5.4.1, suppose b >
l,a—-b>1.

(a) Let A = A#* = (b—1,—a—3,c). Foreveryy € G(AY), restriction
defines a natural map v, : H'(EA) — H'(Ep+), as above, and f €
HY(E,) is rational over the extension L of Q if and only if 1 (f) is
an L-rational element of H'(Ey#), for every v € G(AY).
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(b) Let A = (a,—b—2,—¢),A*(i) = (a —i,-b—-2+1i,—¢),0 <
i < a+b+ 2. Then Eps(; is a direct factor of Epsp#, and for
every v € G(AY), restriction defines a natural map v, : H2(Ep) —
H?(E,4). Suppose b+ 2 < i < a. Then f € H%(E,) is rational over
the extension L of Q if and only if ¥(f) is an L-rational element of
H?*(Ep#()), for every v € G(AS).

The inequalities above ensure that hypothesis (a) is verified in The-
orem 5.2; however, they are probably unnecessarily restrictive. Some
arithmetic applications only require necessary conditions for rational-
ity, in which case the inequalities can be removed.

We note that (a) of 5.4.2 uses the set of representations in (iii)
of 5.4.2, whereas (b) uses the representations in (ii) of 5.4.1. The
arithmetic significance of the infinite family (i) of 5.4.1 is unknown.

5.5. Remark. In contrast to the situation with ¢ = 0, nothing guar-
antees a priori that the restriction maps v, on coherent cohomology
in higher degree are ever non-trivial, much less that they determine
the rational structure on the coherent cohomology of the ambient
group. Thus our criterion 5.4.2 may seem surprising. However, Weis-
sauer has recently announced that the divisor class group of the Siegel
modular variety g My of genus 2 and level K is generated by imbed-
ded products of modular curves. In particular, if gMgs — gMsx
is a projective toroidal compactification, then one can find a positive
linear combination D of imbedded products of modular curves and
divisors at infinity which is linearly equivalent to a hyperplane sec-
tion on xMs x; restriction to this D thus defines (by Serre’s FAC)
an injective morphism HY(gMa s, V) — HY(D,V**"[p) for ¢ < 2.
Here D is viewed as an infinitesimal neighborhood of Supp(D). We
note that, if SA# is an imbedded product of modular curves in g Ma,
restricting cohomology to an infinitesimal neighborhood of Sh# corre-
sponds, on the level of representation theory, to projecting a discrete
series representation of G(R)? simultaneously onto several of the fac-
tors in (ii) and (iii) of 5.4.1.

Weissauer’s results raise the possibility that the restriction maps
HiY(gMsyx, V") — HYD,V®"|p) can be used to determine the
Z-structure of the former group, defined by Chai and Faltings [10].

§6. COHERENT COHOMOLOGY DEFINED BY EISENSTEIN SERIES

Classical holomorphic Eisenstein series may be regarded, like cusp
forms, as sections of automorphic vector bundles, or of their canon-
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ical extensions to toroidal compactifications. In general, it is well-
known that, if V is a sufficiently regular automorphic vector bundle
on Sh = Sh(G,X), H°(V*") decomposes as a direct sum of cusp
forms and convergent holomorphic Eisenstein series, corresponding
to the rational maximal parabolic subgroups of G. On the other
hand, if n = dim X, then H™(V°") always consists entirely of anti-
holomorphic cusp forms.

For H 7(yeean), with 0 < ¢ < n, the situation is much less clear,
even for highly regular V. The spectral sequence (4.2.2) shows that
this problem is related to the problem of representing elements of
H*(Sh,V,Y) by automorphic forms. The work of Harder and Schw-
ermer [17],[42],[43] has succeeded, in some cases, in representing
H*(Sh,V,Y) as a direct sum of cuspidal cohomology (1.5.2) and ei-
ther the values or residues of certain Eisenstein series. Their methods,
which in general make no reference to the holomorphic structure of
M, produce Eisenstein cohomology classes which are rational for the
Betti rational structure on H*(Sh, V7).

It is desirable to have a similar theory of Eisenstein cohomology

which, corresponds to the de Rham rational structure on H*(Sh, VuV ,
or more precisely, which provides a complement to the cuspidal classes
in H*(V**"). In general this problem is far from being completely
understood. However, by using the explicit imbeddings, defined by
Blank [2], of discrete series representations in certain induced repre-
sentations, one can define arithmetically interesting Eisenstein classes
in coherent cohomology. These classes correspond to cusp forms on
cuspidal mazximal parabolic subgroups.
6.1. We briefly recall the construction of Blank. Let P = MAN
be a cuspidal maximal rational parabolic subgroup of G and assume
that K = I{ N M contains a maximal compact subgroup of My =
M (R)°. For simplicity, we assume G to be R-simple, although
this hypothesis is unnecessary. Thus dimA = 1 and M = Zg(4)
has the property that rank M = rank Kjp;. We assume that hy =
H N Lie(M) is a Cartan subalgebra of Ky, hence of M.

Let A € F+p C bg (notation 3.3) be the Harish-Chandra parameter
of the discrete series representation ny of G¢ (cf. 3.3.2) and let Ay be
the restriction of X to hps. Then Ajps is a Harish-Chandra parameter
for My [2, Prop. 4.1]. We would like to define the corresponding
discrete series representation of M(R). Since M(R) is disconnected,
this can be done in more than one way; Blank picks one out, which
we denote 7, .
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Let a = Lie(A); then any v € af defines a character e” of A.
Extend my,, ® €” trivially to N, and let I(P, Apr,v) denote the rep-
resentation induced from P to G of 7, ® €, normalized so that
I(P,A\p,v) is unitary when v is imaginary. Order ak so that the
roots of A on N are positive. In [2], Blank gives an explicit analytic
proof of the following unpublished theorem of Schmid:

6.2. THEOREM. There exists a unique positive v(\) € ak such that

there exists an imbedding Sy : w1y — I(P, Apr,v())) as representations
of Go .

Although the uniqueness of v(A) is not mentioned by Blank, it is
determined by the condition that I{ P, Apr,v())) and 7, have the same
infintesimal character.

6.3. Since dim(A) = 1 we may identify ap = R, with the given
ordering. If v()) is sufficiently large (this is true for A far from the
walls), then I(P, Apr,v(A)) is in the range of absolute convergence for
Eisenstein series. More precisely, let Mp be the Levi factor of P such
that Mp(R) = MA, and let (0,V,),0(v) = ®,0,(v), be a cuspidal
automorphic representation of the algebraic group Mp, where v runs
through the places of Q, such that o (v) = 7y, ® €”,v € R. Extend
o trivially to a representation of P(A), and let Ip(o,v) denote the
(normalized) induced representation from P(A) to G(A) of 0. Thus

(6.3.1) Ip(o,v)={¢ € C7(G(A),Vo)|¢(pg)
= o(v)(p)ér(p)¢(g),p € P(A),g € G(A)},
where ép is the square root of the modulus character for P(A).
Let Ip(o,v)o be the space of Kj-finite vectors in Ip(o,v). For
¢ € Ip(o,v)o and g € G(A),¢(g)(-) is a cusp form on Mp. If we let

fo(9) = ¢(g)(1), then fy4 is a function on N(A)- P(Q)\G(A). If v is
sufficiently large, the Eisenstein series

(6.3.2) E@¢v,9)= Y,  fs(r9)
YEP(@\G(Q)

converges absolutely to an element of A(G) C Cs;(G), thus defining
a morphism

(6.3.3) E: Ip(o,v)o — Csi(G)

of (g, K1) x G(AT)-modules.
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Let Ip(o,my) be the (g,Ki) x G(AS)-submodule of Ip(o,v)o
of elements whose archimedean components belong to Sx(my) C
I(P, A, v(N) = Ip(0,v)eo. We may write Ip(o,my) = map ® IL,
where 7y o is the (g, K;)-module associated to m» and I/ is a repre-
sentation of G(Af). Then the map

If, — Hom(g,K,,)(WA,o, Csi(G)),
(6.3.4) v/ o (Voo — E(voov?))

is intertwining for the G(A/)-actions. Moreover, we have

6.3.5 LEMMA. Let
()= ()p: AG) — C=(N(A) - P(Q\G(A))

be the map which takes an element of A(G) to its constant term along
P. Then

E(¢,v,9)p = fo,Yo € Ip(o,m)).

PROOF (SKETCH): For general ¢ € Ip(o,v)o, E(¢,v,g)p is the sum
of fs and (possibly) a term M(v)fy, where M(v) = ®,M,(v) is the
global intertwining operator from the theory of Eisenstein series. But,
for v positive, the image of the local intertwining operator My (v) is
the Langlands quotient of Ip(0,v)e; it follows that M(v) vanishes
on I p(U s )‘).

By Theorem 3.4, there exists a unique A’ € bg and ¢\ € Z such

that 7y has O-cohomology, in degree n — gy, with coefficients in o:.
Composing (6.3.4) with (2.4.5), we obtain

6.3.6. PROPOSITION. There is a natural homomorphism of G(A7)-
modules

Eis: I, — H" % (ES").

6.4. There exists a unique w € W!(gq,) (notation 4.1) such that g =
w~(A) — p is R*-dominant and integral. Let V, be the correspond-
ing finite-dimensional representation of g; then H"(g, K4, 7\ ®@V,) is
canonically isomorphic, by 4.4.13, to H* =By, Kp, mx @ Wa/). Via
Theorem 4.5, 6.3.6 defines a natural homomorphism

Eis¥ : I, — H"(M,V))
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of G(Af)-modules. This is not the map used by Harder and Schwer-
mer. However, Lemma 6.3.5, combined with Satz 1.10 of [42], implies
that Eis¥ does provide a lifting of cohomology classes on the Borel-
Serre boundary dSh of Sh to classes in H"(Sh, V”V). In particular,
when the cusp form fy|ar(a) defines a non-trivial class in the corre-
sponding component of dSh, it follows from the preceding argument
that Eis" (I If,), and hence Eis(I {,), is non-trivial.

For X sufficiently regular, it can be shown that the G(A7)-action
separates the Eis(/ }f,,) from Eis({ };,), when P and P’ are not associate,
and from A"~ (Ey) C H"~9(E$) (cf. [18]). In some cases (e.g.,
when it is known that H™(Sh, Vuv) is represented entirely by automor-
phic forms) information of this type suffices to show that Eis(] {,) isa
k(A")-rational subspace of H*~9(E3"), and that the k(A’)-rational
elements are those which restrict to k(A’)-rational classes in the co-
herent cohomology, with appropriate coefficients, of the boundary of
some toroidal compactification g Sh < gShy.

For certain groups more explicit answers can be obtained. The

following results represent work in progress on Kisenstein classes in
coherent cohomology, in the case G = GSp(2). Let P, be a mini-
mal parabolic of G, and let P and @ be the two standard maximal
parabolics of G, with abelian and non-abelian unipotent radicals, re-
spectively.
6.5. The parabolic (). Starting from an antiholomorphic elliptic mod-
ular cusp form f of weight k + 2, one can define spaces of Eisenstein
classes Eis(Ié) C H*(E3"),A = (k,—f — 2,c), where the central
character ¢ coincides with that of f, and where ¢ is any large integer
such that k 4+ £ = ¢(mod 2). These are non-holomorphic analogues of
the Eisenstein series of Klingen [27]. Unpublished results of Schwer-
mer, mentioned briefly in [43], seem to imply that the Eisenstein map
(6.3.5) is injective in this case, provided A’ is sufficiently regular. In
any case, the image Eis(Ié) is non-trivial and @-rational for highly
regular A’. Given a level subgroup K and a toroidal compactification
kSh < gShy, one can show that the elements of Eis( qf?) of level K
restrict non-trivially to the genus one component of the boundary of
Kk Shy, whose typical connected component is a toroidal compactifica-
tion of the universal elliptic fibration over the modular curve of some
level.

Moreover, if ¢ € Ig(o, 7)o belongs to the minimal Kj-type of my
and has the property that the function fg is rational in the sense of
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(5.4.1), then E(¢) is also rational. One can apply this fact, and the
results of 5.4, to express the special values of certain triple product
L-functions (cf. Shahidi’s article in this volume) in terms of periods.
6.6. The parabolic P. In this case M(R)%" = SL(2,R)*, the group of
2x 2 matrices with determinant £1. One is thus forced to lift holomor-
phic and anti-holomorphic forms together; in other words, one is lift-
ing elements of the cohomology of a locally symmetric space attached
to M(R) with coefficients in a local system VY. Since My = SL(2,R),
we may take p to be a positive integer; then these forms give rise to
Eisenstein classes in I-Ifl(Ef\a,“), A = (b,—a,c), wherea+b = p,a > b,
and c is determined by the central character. Again, Schwermer’s un-
published results suggest that the Eisenstein map is injective for suffi-
ciently regular A’, and one can use Theorem 4.5 to show that Eis(] {,)
is non-trivial and Q-rational for highly regular A’. Identifying ratio-
nal classes is more difficult in this case, however, since the elements of
Eis(I }f)) of level K are associated to the genus zero component of the
boundary of g Shy, whose typical connected component is a union of
rational surfaces. Heuristic arguments suggest that the rational ele-
ments of Eis(] {,) are the Eisenstein series attached to rational classes
in H*(V,Y). This argument is supported, in a sense, by the expression

of the Whittaker coefficients of elements of Eis(I {,) in terms of special
values of standard L-functions for GL(2) (cf. [44]).

§7. ARITHMETIC APPLICATIONS

We describe three applications of the theory developed thus far.
Together with the results mentioned in 6.5-6.6, those presented here
are in some sense typical of the arithmetic applications of the rep-
resentation of automorphic forms of d-cohomology type as coherent
cohomology classes. An application to the arithmetic of Maass wave-
forms is discussed in Blasius’ article in this collection.

7.1. Period invariants of Hilbert modular forms, and special
values of L-functions. Let F be a totally real number field of degree
n, and let ¥ = {o1,...,0,} be the set of real imbeddings of F'. For any
subset I C X, let |I| denote its cardinality. Let G = Rp/@GL(2)F.
Let M = Sh(G, X) be the corresponding Shimura variety (or stack).
In [52], Shimura conjectured that, to any cuspidal modular eigenform
f on G, one can associate two collections of numerical invariants in
CX, defined up to multiplication by élements of @%. These invariants
are expected to satisfy certain hypotheses which imply, among other
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things, that they can be used to express the critical values of all Hecke-
and Rankin-Selberg-type L-functions.

Let f be a holomorphic cuspidal Hilbert modular eigenform for F'
of weight k = (ki,...,kn,c) on G (cis the central character, assumed
algebraic). If o, 8 € C*, we write @ ~ (3 if a/3 € Q*. More generally,
if L C Q, we write a ~ 8 if a/3 € L*. We paraphrase Shimura’s
hypotheses in the case of the first set of invariants, which Shimura
denotes Q(x, @), and which we denote Q(m,I), where 7 = 7o, @ 7y is
the automorphic representation of G(A) which corresponds to f and
I runs through subsets of :

(7.1.1)(Q1) Q(m,0) ~ 1.

(Q2) Q(m,D)-Q(m,J) ~Q(r,1UT)-Q(x,INJ).

(Q3) Let B be a quaternion algebra over F unramified at
places in I and ramified at places in ¥ — I. Suppose there is an auto-
morphic representation 7% of BX(A) which transfers to = under the
Jacquet-Langlands correspondence. Let g and h be two arithmetic
holomorphic automorphic forms in 72, and let <, > p be the Peters-
son inner product on B*(A), normalized as in [52]. If < g,h > g # 0,
then < g,h > p ~ Q(m, I).

(Q4) The Q(m,I) are related to special values of certain
Dirichlet series introduced by Shimura (see [52], p. 279 for details).

(Q5) Let E be a totally imaginary quadratic extension of F,
® a CM type of F, and let £ be an algebraic Hecke character of EX(A)
with the property that o = Y, ¢ €00, With &5 > 0. Let 7 = n(E, )
be the base change of £ to an automorphic representation of G(A).
Then (20))11Q(x,I) ~ pE(£,2F4¢,0). Here n = {0 € Blo\r € I}
and pg(-,-) is the period invariant introduced by Shimura in [48]; it
is a product of certain periods of abelian varieties of CM type (E, ®).

When B and 7% exist as in (Q3), one is forced by the hypotheses
to propose < g,g9 > p as a candidate for Q(m,I). One then has to
verify that one obtains the same Q(w,I) if © comes from two distinct
quaternion algebras B; and Bp; this is proved under a rather mild
hypothesis by Shimura as Theorem 5.6 of [52], and conjectured to be
true in general.

The theory of arithmetic higher coherent cohomology suggests a
natural set of candidates for these invariants. These candidates are
defined for all f, and are determined up to multiplication by a non-
zero element of the field generated by the Hecke eigenvalues of f.

Let f, k, and # = 7 @7 be as above; let £(k) be the automorphic
vector bundle (possibly in the sense of stacks) of which f is a section,
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and let Q(7) be the field generated by the Hecke eigenvalues of f. Let
g = Lie(G)¢c. As U(g) x G(AY)-module,  splits up as the direct sum
of 2" representations 7!, parametrized by the subsets I C ¥ in such a
way that, for any v € ¥, the component 7] has a holomorphic (resp.
anti-holomorphic) vector w! if and only if v ¢ I (resp. v € I). We let
wlh= @ Wl

v|oo v
Start with I = (. We use the same letter f to designate the function
on G(A)t = G(R)t x G(AY) and the holomorphic function on the
hermitian symmetric space. In the former setting, f is an element
of the subspace V() = Cw® ® 7y C 7° of the space Ay(G) of cusp
forms, and is assumed to be normalized, in the following sense: If

Wy(f)(g) = @ Wy (f)(g) is the Whittaker function attached to f
and some additive character v, then ® Wy ,(f)(1) = ce has the
v]oo

property that, for all v|oo, the local zeta integral
(7.1.2

)
Jwoutn) ((§ 7)) al+iaa = (2m) =0 (s + )
Fy

where a,(k) is an integer (or half integer) determined by k and var-
ious normalizations. We further assume Wy ,(f)(1) = 1 for v non-
archimedean. Let V(); denote the Q(r)-rational form of V(0) gener-
ated by the G(A)-translates of f. Let V()2 denote the Q(x)-rational
form of V(@) generated by elements of V() which define @(7)-rational
sections of £(k). In this case V(#), = V(0),, by the g-expansion prin-
ciple.

For general I C X, the space V(I) = Cw! ® 7y C 7! injects, by the
theory of §2-3, into a cohomology space of the form HI(M,E(ET)),
for some £(k'). We let V(I)y denote the Q(r)-rational form of V(I)
generated by elements of V(I) which define Q()-rational elements of
HT(M, E(kT)). Again, we let V(I); denote the @()-rational form
of V(I) generated by functions whose Whittaker functions have the
value co, at the identity. As representations of G(A/), the spaces
V(I);,i = 1,2 contains primitive vectors (“new forms”) f{, fJ; we
write fI = ff, flarith — £I Let v!(x) € CX be the constant such
that

1/1(71') A f[,arit.h — fI‘

The function f! is essentially what you obtain by conjugating the
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I-variables in f, viewed as a holomorphic function. The v'(x) are
well-defined up to multiplication by Q(w)*.

7.1.3. CONJECTURE. The quantities Q(r,I) = v () satisfy Shimu-
ra’s conjecture (7.1.1). Moreover, in (Q1-3), ~ may be replaced by
~@(n,1), Where Q(m,I) is a certain finite extension of @(r) depending
only on I and k.

At least the v!(r) satisfy Shimura’s Conjecture (Q1), that v*(r) =
1. More interestingly, it is easy to prove (Q2) in the special case
INJ=0,IUJ=X. Indeed, for such I and J, () @ £(k7) 2 K
(cf. 2.4) and Serre duality defines a cup product pairing

() BIIM, (D) @ HYI(M,E(k)) - €
which is (at least) rational over Q. In particular
(14)  (F1,£7) = Vi) - o (@) (FR0, ) () 7 (),

On the other hand, one can show directly that (f7, f7) ~ (fI', f7') if
I'nJ' =0, I'UJ =7Y;the point is that f! is essentially obtained
by conjugating f in the variables in I. In particular, we may take
I'=¢,J =%

By similar considerations, we can prove the following relation with
special values of L-functions, which may be regarded as a partial
analogue of Shimura’s (Q4): We consider cusp forms f and f’, of
weights k = (ky,...,kn,¢), = (£1,...,€5,c'), respectively, and let I
(resp. J) be the subset of o; € ¥ for which k; > ¢; (resp. ¢; > k;).
Let m and n’ be the corresponding automorphic representations. We
assume (i) TUJ = X, and (ii) ki — ¢; = k; — £;(mod 2) for all i,
j. Let s¢ be a critical point of the Rankin-Selberg tensor product L-
function L(s,m x '), in the sense of Deligne’s conjecture [13]. Then
the methods of [47] show easily that

7.1.5. PROPOSITION. There exists a positive integer d(sg) depending
only on k, £ and sy, such that
L(so, 7 x ©') ~ (271) )1 (7). 7 ().

One can actually demonstrate more precise results about the field of
rationality of the quotient of the left hand side by the right hand side,
along the lines of Theorem 4.2 of [47].

If we admit (Q3), then Proposition 7.1.5 implies Theorem 5.3 of [52]
as a special case. On the other hand, it is possible to reduce (Q3),
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at least when all the weights k; > 3, to Proposition 7.1.5 and (Q5),
the special case of binary theta functions. Now a generalization of
Corollary 5.3.2, together with some results of Shimura in [50], implies
(Q5) when |I| =1 or |I| = n — 1. Using this special case, (Q5) can be
reduced to some assertions about special values of L-functions which
are, in principle, known.

This leaves the general case of (Q2). We first remark that, if B, I,
and 7P are as in (Q3), then, for any J C I, the theory of arithmetic
automorphic forms on B*(A) and the theory of L-functions of auto-
morphic forms on B*(A) permit us to define invariants v’ (7 ?), in
analogy with the definition for B split. Again, v’ (7®) is well-defined
up to multiplication by Q(m)*.

7.1.6. CONJECTURE. For all J C I,v’(n®) ~q(r 5y v/ (7).

Using the methods developed by Shimura in [49],[50], it is not
difficult to reduce (Q2) and Conjecture 7.1.6 to the special case of
7.1.6 in which 7 is of the form 7(F, ) (notation as in (Q5)). In any
case, the above remarks imply

7.1.7. PROPOSITION. Assume n = 2. Then the quantities v!(r)
satisfy Shimura’s conjectures (Q1), (Q2), (Q3), and (Q5).

Proof of (Q2) in general will imply, among other things, the tran-
scendental part of the Birch-Swinnerton-Dyer conjecture for the L-
function of a factor of the Jacobian of a Shimura curve over F, lifted
to a quadratic CM extension of F. This is far from what one wants,
but may still be of interest. Similarly, the conjecture provides a (con-
jectural) analytic definition for the periods of an F-rational differential
on an arbitrary elliptic curve over F, including (for the first time) the
case of elliptic curves with good reduction everywhere. This refines
the (conjectural) analytic definition of the Hodge structure on such
curves, due to Oda [36] and Murty-Ramakrishnan (to appear).

7.2. Arithmeticity of certain non-holomorphic thetafunc-
tions [23]. Let W be a vector space of dimension 4 over @, endowed
with a non-degenerate symmetric bilinear form (-,-)w of signature
(2,2) over R. Let H be the connected component of the group GO(W)
of similitudes of W. Then there is a (non-connected) hermitian sym-
metric space X g such that (H, Xp) is the datum defining a Shimura
variety. Shimura shows in [50] that the theta correspondence for the
dual reductive pair [25] SL(2) x O(W) C Sp(W?) defines a lifting
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from arithmetic holomorphic cusp forms on M;j to arithmetic holo-
morphic cusp forms on Sh(H,Xpg). When H is quasi-split, this was
known [35]; but when H is anisotropic one needs to use Shimura’s
characterization of arithmetic automorphic forms in terms of their
values at CM points.

One can also consider the theta correspondence for the dual reduc-
tive pair Sp(2) x O(W) C Sp(W*). The theta-lifting for this pair
takes cusp forms on H to automorphic forms on G = GSp(2), and
one verifies that cusp forms on H whose archimedean components are
of sufficiently regular discrete series type go to cusp forms on G be-
longing to the non-holomorphic discrete series of G. Thus, the choice
of an appropriate theta kernel defines a homomorphism from a coher-
ent cohomology group of Sh(H, Xy ) to higher coherent cohomology
of Mg.

Consider first the case in which (-,-) is the split form. Then
H = GL(2) x GL(2) modulo centers; an automorphic form on H
corresponds to a pair (f1, f2) of automorphic forms on GL(2) whose
central characters are inverse to one another. Such a pair defines a
class in coherent cohomology if and only if f; and fs are each either
holomorphic or anti-holomorphic. (We are identifying a holomorphic
modular form with its lift to GL(2).)

Thus, let f; be holomorphic cusp forms of weight k;,i = 1,2, which
are eigenfunctions of the Hecke operators T, for almost all p. Suppose
that f; and fo have algebraic Fourier coefficients and that their cen-
tral characters coincide. Let < -,- > be the classical Petersson inner
product. Then (f1,C(f2)/ < fa,f2 >) (notation 5.1) defines a cusp
form ¢ on H.

The Weil representation of the dual reductive pair (Sp(2),0(W))
in may be realized on the Schwarz space S((Wa)?) [56]. Thus
® € S((Wa)?) defines, in the usual way, a theta-kernel 65 on
Sp(2,@\Sp(2,A) x O(W,Q)\O(W, A), where ~ denotes a two-fold
cover, which for our purposes may be disregarded. With ¢ as above,

define 05 (¢) € A(Sp(2)) by the integral

(21 @)= [ Gelohen)dn
O(W,QN\O(W,A)
If ki # ko, then 04(¢) is necessarily a cusp form [26]. We say @

is arithmetic if it is a tensor product ®., ® ®;, where ®; is a Q-
valued function in S((War)?) and & € S((Wg)?) is the product of
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a standard exponential by a polynomial with coefficients in Q. The
following theorem, based on the rationality criterion 5.4.2 and the
method of seesaw dual reductive pairs [29], is typical of the results
of [23] (joint work with S. Kudla):

7.2.2. THEOREM. With ¢ as above, suppose ky = a — b — 2,k =
a+b+2, for some a,b € Z,a—4 > b > 0. Let Ep be the automorphic
vector bundle on My with A = (b, —a;c), where c is determined by the
central character of f;,i = 1,2. Then there exists 5 € Z, depending
only on (a,b,c), such that for any arithmetic ® such that ®, has the
right K-type (see Remark 7.2.3), (27i)"0¢(¢) defines a Q-rational
element of H'(E}).

7.2.3. Remark. We are assuming that &, transforms accord-
ing to a certain representation of the maximal compact subgroup of
Sp(2,R) x O(W, R); otherwise the cohomology class of 64(¢) is trivial.
Non-trivial ®,.’s with the given K ,.-type do exist, and it follows from
the results of Howe and Piatetski-Shapiro [26] that, possibly after
twisting ¢ by a quadratic character, one can guarantee non-vanishing
of the cohomology class of 8¢ (¢).

The non-triviality in [26] is a consequence of the fact that the stan-
dard Whittaker functions of §¢(¢) are linear combination with coef-
ficients in (273)°Q, for some fixed e € Z, of the Whittaker functions
of ¢. With our normalization above, this implies that, up to a fixed
power of (277), the values at the identity of the standard Whittaker
functions of 65 (¢) are algebraic multiples of < fo, fo >. The coho-
mology classes on My defined by theta lifts from O(W) are far from
typical, but this suggests nevertheless that the Whittaker functions
of Hecke eigenforms in H'(E,) contain interesting arithmetic infor-
mation.

7.2.4. Remark. The analogue of Theorem 7.2.2 is apparently true
for general W of signature (2,2); as of the date of this writing, this
has been verified when W is globally isotropic, or when W is the
space of a quaternion division algebra B over Q with the quadratic
form given by the reduced norm. The latter case has the following
consequence. Let F be a real quadratic field, and let f be a holomor-
phic Hecke eigenform on the Shimura variety attached to the algebraic
group B*F. Let f’ be its Jacquet-Langlands transfer to a holomor-
phic cusp form on GL(2, F). Following the method of Oda [36], one
can attach “motives” M(f) and M(f'), of dimension 4 over the field of
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Hecke eigenvalues, to f and f’. These motives have obvious Betti ra-
tional structures, and the constructions in §4 define de Rham rational
structures as well (cf. 4.3.2). Under a suitable regularity hypothe-
sis on the archimedean component of the automorphic representation
attached to f, the analogue of Theorem 7.2.4 provides algebraic re-
lations between the period matrices of M(f) and M(f'), relative to
these two rational structures. Details will appear in [23].

We note that similar results hold for theta-liftings to H? of auto-
morphic vector bundles over M.

7.3. Limit multiplicities of discrete series. In this section
(G, X) is arbitrary. Let A € F + p be the Harish-Chandra param-
eter of a discrete series representation of Gy. If K is a level subgroup,
let m(K, (72)*) = dimHomg k_)((72)*, Ao(G, K)), where Ay(G, K)
is the space of cusp forms on G(Q)\G(A)/K. Let A= X — p, and let
En (resp. Ej) be the corresponding homogeneous vector bundle on
X (resp. automorphic vector bundle on M). Let X(xSh, E4) (resp.
x(X,£€4)) denote the Euler characteristic x(Sh, E$*") of the vector
bundle [V]*® over some SNC toroidal compactification Sh of g Sh
(resp. the Euler characteristic of £y over X). By Proposition 2.4,
X(kSh, Ep) is independent of the choice of Sh.

It has recently been proved by Savin [40], using previous work of
Rohlfs and Speh [38] that

(7.3.1) vol(li}gr)l_}o[vol(KSh)_l(m(K, (ma)*) = (=)™ Py (X, Ex)] = 0.

Savin’s proof works for general discrete series representations; the pair
(G, K3) is not assumed to be of hermitian type.

Using Theorem 3.6.3 and Mumford’s generalization of the Hirze-
bruch Proportionality Theorem [34], we may obtain a proof of a
somewhat weaker version of (7.3.1), in the hermitian symmetric case,
when X is sufficiently regular. Although our result is considerably
less general than Savin’s, it provides some information on the error
term, and may thus be of some interest. In this connection, it should
be mentioned that the error terms have been extensively studied by
Satake [39] as functions of A.
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80. INTRODUCTION

There is a growing number of examples of p-adic L-functions for
modular forms on GL(2) whose domain of (p-adic) continuation is
given by the spectrum of the p-adic nearly ordinary Hecke algebras.
At the conference, we discussed several examples of such L-functions
including those of standard L-functions of GL(2) due to Mazur and
Kitagawa [Ki] and Rankin product L-functions [H1]. Here we would
like to present another example of such p-adic interpolation. In fact,
we treated in [H3,84] and [H5], as a first example of such L-functions
on the spectrum of the ordinary Hecke algebra (and hence of one vari-
able), the symmetric square L-functions attached to the base change
lift established by Jacquet and Gelbart [G-J] of modular forms on
GL(2) /Q to GL(3);q. However, the p-adic L-function given there is
a priori a characteristic power series of the module of congruence of
each irreducible component of the Hecke algebra and hence has a de-
fect that it is defined only up to multiple of units in the Hecke algebra,
although it has, as a merit, direct connection to the arithmetic object
(see also [M-TY). In this paper, we present another (analytic) method
for the p-adic interpolation of this type of L-functions which even
yields p-adic interpolation on the spectrum of nearly ordinary Hecke
algebra (hence of two variable) including a variable corresponding to
cyclotomic twists (or p-adic derivatives) of modular forms. This re-
sult (for L-functions given by Shimura integrals [Sh2], see Theorem
5.1 in the text) actually goes back to 1983 and the author gave a
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series of lectures about this first at Université de Paris VII in May
of 1985 and later at the Ecole Normale in January 1986. The delay
of publication is due to the author’s inability of proving the expected
holomorphy for the primitive p-adic L-functions exactly correspond-
ing to the lift to GL(3). Such holomorphy result for the cyclotomic
continuation was recently supplied by Schmidt [Sch]. Although there
is some restriction for the result in [Sch], a small trick is sufficient to
remove this restriction and to prove the expected holomorphy even
for the two variable L-function outside the congruence primes. The
nearly ordinary Hecke algebras do not play explicit role in the course
of proof, because over the base field Q it coincides with the profinite
completion of the tensor product over Z, of the ordinary Hecke alge-
bra and the Iwasawa algebra Z,[[X]]. This fact is true only for Q,
and we need the full strength of the theory of nearly ordinary Hecke
algebras to carry out the same objectives in the case of totally real
fields, which is yet to come. The two variable L-function is supposed
to have an arithmetic tie with the projective limit of congruence mod-
ules of Hecke algebras over layers of the cyclotomic Z,-extension (as
already discussed in part in [H6, Remark 5.6]). The author hopes to
clarify this point in near future.

Our analytic method of obtaining two variable interpolation is the
p-adic Rankin convolution method developed in [H1]. In this sense,
this paper is a continuation of [H1]. We first summarize some ba-
sic notation and terminology given in [H1] and then state the exact
result. Throughout the paper, we fix a prime p > 5 and two pos-
itive integers N and J prime to p. We take the algebraic closure
Q in C and also fix an algebraic closure 61, of the p-adic field Q,,.

We fix once and for all a field embedding of Q into Qp and hence
one can consider any algebraic number as a complex number and a
p-adic number simultaneously. The normalized p-adic absolute value
of z € Q, will be written as |z|,- We take a finite extension K of
Q, in Q_p and let O denote its p-adic integer ring. Let A be the con-
tinuous group algebra over O of the topological group I' = 1 4 pZ,,.
We fix a topological generator u of I' and identify A with the one
variable power series ring O[[X]] via u — 1+ X. Let h°™(N;0)
be the (universal) ordinary Hecke algebra of (prime-to-p) level N de-
fined in [H1, I1,§4], [H2,82] and [H3,§1], which is an algebra finite
flat over A. We fix an irreducible component of Spec(h®*4(N;0) ),
which is thus the spectrum of an integral domain I’ finite over A. Let
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I be the integral closure of I’ in its quotient field, which is known
to be finite flat over A (e.g. [H1, II, Lemma 3.1]). We denote by
A : hord (N;0) — I the A-algebra homomorphism which is the pro-
jection to the irreducible component. We may assume that Spec(I) is
defined over O, i.e., IN QP = O replacing O by its finite extension if
necessary. We denote by X = X'(I) the (p-adic) space of all Q,-valued
points of Spec(I),p, i.e. X = Homo_alg(l,ap). The subset A = A(I)
of arithmetic points in X" is defined to be the set of all O-algebra ho-
momorphisms ¢ : I — Qp which coincide, on a small neighborhood in
I’ of the identity, with the group homomorphism ¢4 : I' — Z; given
by ¢x(7y) = ¥* for some k > 0. For each P € A, the integer k as above
will be denoted by k(P) and is called the weight of P. The charac-

ter P(}S;(lp) is then a finite order character of I'. This character will

be written as e p and its order is denoted by p™(F)=1. Of course, A is

Zariski dense in Spec(I) and any algebraic functions, i.e., functions on
Spec(I) in the global section I of the structure sheaf on Spec(I), are
determined by its value on A. Combining each P € X’ with A, we get
an (O-algebra homomorphism Ap = P o A : h°™(N; 0) — Q,. Then
the formal q-expansion fp = 3 " Ap(T(n))q" € Q,[[¢]] has a mean-
ing as a p-adic ordinary modular form of (prime-to-p) level N which
satisfies fp|T'(n) = Ap(T(n))fp for all n > 0. Especially when P € A
and k(P) > 2, then fp is known to be classical; i.e., the g-expansion of
fp actually falls in Q[[q]] and gives the g-expansion of a complex cusp
form in Sk(p)(FO(NpT(P)),€p¢w_k(P)), where ¥ is a Dirichlet char-
acter modulo Np independent of P (and only depending on A) and w
is the Teichmiiller character. Write the restriction of ¢ to (Z/pZ)*
(resp. (Z/NZ)* ) as 1, (resp. ¥') and put ¢p = € p1pw %), which
is a finite order character of Z;. Let fp be the primitive form associ-
ated with fp for P € A and 7(P) be the automorphic representation
of GLy(A) spanned by the right shifts of f3. There is a unique base
change lift #(P) of #(P) to GL3(A) shown in [G-J]. The L-function
L(s,®(P)) is an Euler product of degree 3 whose Euler factor is given
for almost all prime ! by D;(I7*+1=%)~1 for

(0.1)

Di(X) = (1=9'vp(1) 10 X)(1=9/$p (1)~ aBX) (14 p (1)~ B2X),

where a and 8 are two roots of X2 — \p(T(1)) X + 'y p(D)IFP)~1 = 0.
The explicit Euler factors of L(s, #(P)) are computed in [G-J, §1] and
a summary of them can be found [Sch, §1]. The L-function we are
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concerned is defined by
L(s, fp,x) = L(s = K(P) + 1,#(P) ® x),

where in the left-hand side we consider x as a Dirichlet character
and in the right-hand side, we regard it as an idele character so that
for almost all primes ! the value of the idele character at the prime
element [ is given by the value of the Dirichlet character x at [. This
L-function is independent of the twist of fp by Dirichlet characters
(see §1, i6 in the text for the twisting by characters) and its Euler
factor is given for almost all prime ! by D;(x(I)I=%)~!. Thus we may
assume that X is minimal in the sense of [H5, §7] without losing much
generality. Thus fp is minimal (i.e. having the minimal conductor
among its twists) of condictor N or Np™¥) for all P € A. We write
the conductor of ¥p as p™(F). Then ro(P) = r(P) if ¢p is non-
trivial but ro(P) = 0 if 4 is trivial. As for the explicit Euler factors
of L(s, fp, x) valid for all I, see again [G-J, §1] and [Sch, §1]. The
L-function L(s, fp,x) is critical at integers 1 < n < k(P) — 1 with
x(—1) = (—1)**! (there is another half of the range of critical values
in the interval [k(P),2k(P) — 2] but they are essentially equal to the
values in [1,k(P) — 1] by the functional equation). By the work of
Sturm [St1], [St2] (see also [Sch, Th.2.3]), we have the algebraicity

property: ( )
L n, fpa X ray
(P <%

where Q(P) = (20)5(P)+172(f2, f2) as in [H1, II, (4.13)).

Now let us define several Euler p-factors which appear as modifi-
cation factors for the p-adic interpolation. For each Dirichlet char-
acter 7, hereafter if not otherwise indicated, n stands for the primi-
tive Dirichlet chracter associated with 7 and thus n(n) stands for the
value of the primitive Dirichlet character 5. We also always write
C(n) (resp. G(n), n' and n;) for the conductor (the Gauss sum, the
prime-to-p part and the p-part) of 7. We fix a Dirichlet character
modulo Jp whose conductor is divisible by J. Then we define, writing
n=yypng' and ng = fequ' M for (Q, P) € A(A) x A(T),
with

By(@P) = (1 -7 ¢'dp(p)rp (T(p) > )

Q)

(Ve e @en?)
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and

EQ(Q’P) =
(1 = p(p)pHPI~k(@-1)

(1= ne'bp(Ap (T(p) > pPPHO-H@2) | it fp # 3,

b if fo=Fp-
and we define
(0.2b)

-1 if yp =1and fp= fp (then k(P)=2)
P EATEN*? P (| e ()
S(P) = ( pE(P) ) (1 Ar(T(p))2 )
(1 _ w'wp(p)p"“’>—2>
Ap(T(p))

if either ¢ p is nontrivial or fp # fp,

where p denotes complex conjugation and p’(? gives the conductor of
the p-part of ng. Finally, let Co(X;I) be the congruence module over
I for the natural extension A : h™(N; O) ®4 I — I defined in [H5,
86|, which is a torsion module over I of finite type. Then our result is

THEOREM. Let A : h™(N;0) — I be the primitive and minimal
A-algebra homomorphism as above. Let £ be a Dirichlet character
with £(—1) = 1 modulo Jp whose conductor is divisible by J. Then,
unless £'1)'~! is imaginary quadratic and \ has complex multiplication
under the imaginary quadratic field corresponding to &'¢/'~! in the
sense of [H3, Proposition 2.3, there exists a unique element L in the
quotient field of A®oI such that

(i) for any 0 # H € 1 which annihilates Co();1), HL € AQo],

(ii) For all pairs of points (Q, P) € A(A) x A(I) satisfying 1 < k(Q) <
k(P) -1,

L(k(Q), fp,¥'¥png")
Cr)R@-20(P)

(0.3) L(Q,P)=c(Q,P)S(P)"'E(Q,P)
where

(@, P) =T (k(Q))(C(ng))H !
G(ng)N~HPIPW! (fp) ' G(ypp) ™ ' (p)*(?).



98 HARUZO HIDA

Moreover the above evaluation formula holds for almost all @} with

k(Q) = k(P) — 1.

This theorem will be proven in §6. The restriction L, of L to X(A) x
P for P € A(I) gives essentially the distribution x in [Sch, Th.5.3] for
f=fpand A =¢/¢’~1, which is in fact a measure (i.e., holomorphic
everywhere) by the above theorem. Thus we can now remove the
assumption made in [Sch] for p to be a measure on the conductor of fp
and the prime p. (Note here that the L-function Lp has a pole if £/¢'~!
is imaginary quadratic and A has complex multiplication under the
field corresponding to the character £'3p'~!). The evaluation formula
(0.3) is expected to hold for all (@, P) in A(A) x A(I) satisfying
1 < k(Q) < k(P) — 1, but this remains to be an open question in
general for (Q, P) with k(Q) = k(P) — 1.

Here is a summary of this paper. In §1, we collect for our later
use some results from the theory of p-adic modular forms of integral
weight. In §2, these results valid for integral weight (given in §1) will
be generalized to the case of half integral weight. Then in §3, we will
construct the p-adic Eisenstein measure of half integral weight, which
is a key to carry out the p-adic Rankin convolution in our half integral
case. In §4, we state and prove the interpolation theorem for any
arithmetic measure having values in the space of p-adic modular forms
of half integral weight. In §5, the result in §4 will be specialized to the
theta measure of one variable. This yields two variable meromorphic
interpolation of L-functions as in the theorem. Finally, in §6, we will
show the holomorphy of L as in the theorem by adopting an idea of
Schmidt in [Sch, §§4 and 5] in our two variable case. Besides this,
we shall make in §6 some corrections to misstatements given in [H3]
and [H5].

At the conference, the author presented a survey of results concern-
ing p-adic interpolation of modular L-functions on the spectrum of
Hecke algebras, including those of standard L-functions due to Mazur
and Kitagawa [Ki] and Rankin product type L-functions [H1]. Since
these results have already been or will be published, we have taken this
opportunity to add a new example to our class of p-adic L-functions.
In addition to this, we dicussed at the conference the generalization
of our methods to totally real fields. This generalization will be dis-
cussed in our subsequent papers. One of the reasons for not including
the results for totally real fields in the present account is that the full
theory of nearly ordinary Hecke algebras and p-adic modular forms
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of half integral weight is not yet written down and we depend very
much on it over totally real fields to develop the theory like the one
presented here.

Notation. We follow the notation introduced in the introduction
and [H1, II] (we quote the second part of [H1] as [H1, II]). However
as already done, the (universal) ordinary p-adic Hecke algebra will
be denoted by h°™(N,0) (it is denoted as h°(N,0) in [H1, II)).
As already mentioned, if not otherwise indicated, Dirichlet characters
are always assumed to be primitive. We denote by x,, for any integer
m, the quadratic (or trivial) character corresponding to the extension
Q(v/m)/Q. Thus, strictly speaking, according to our convention, we
denote by x,, the primitive character corresponding to this extension.
For each character x and an integer L, we denote by Lp(s,x) the
L-function obtained from the Dirichlet L-function L(s, x) excluding
Euler [-factors for primes ! dividing L. We always denote by py the
group of N-th roots of unity in Q and write w : Z: — pip—1 for the
Teichmiiller character; hence, the projection of z € Z; tol' = 14pZ,
is given by (z) = w(z)71z.

§1. p-ADIC MODULAR FORMS OF INTEGRAL WEIGHT

We refer to our previous paper [H1, I, I, §1] for the notation and
the definition for p-adic modular forms (of integral weight) and p-adic
Hecke algebras. Especially, for each extension K/Q, (inside ap) and
for each subgroup A of SL2(Z) containing the principal congruence
subgroup I'(N) of level N, the space M(A; K) of modular forms of
weight k over I (with respect to A) is by definition the subspace of
Kllgn]] (gnv = exp(27iz/N)) spanned over I{ by usual modular forms
on A of weight k with coefficients in QN K. Suppose that N is prime
to p and write A(p”) = ANT,(p"). We take the inductive limit inside
Kllaw]}:

Mi(A(p™); K) = U2 M (A(p"); K)
and define, inside K[[gn]],
M(A(p"); K)

:ZMk(A(pT);K) (r=0,1,...,00).

k=0



100 HARUZO HIDA

Writing Y00 s a(n/N, f)g% for the g-expansion of each f €
M(A(p™); K), we define the uniform norm:

(1.1) 71y =swp e (5. 7)] -

“

This norm is well defined, and we denote by adding “-” the completion
of these spaces inside K[[gn]]. It is well known (e.g. [H2, §1], [H4,
Cor.5.4]) that

(1.2) Mi(A(p™); K) fork > 2 and M(A(p"); K) are independent
ofk and r

as a subspace of K[[gn]] (e.g. [H4, Th.3.2, Cor.5.4] and [G, IIL.3]).
We thus write M(A(p™); K) for the spaces in (1.2) and put, for the
p-adic integer ring O of K,

M(A(p™); 0) = M(A(Pp™); K) N Ollgw]],

Mi(A(p™); 0) = Mi(A(p"); K) 0 O[[gn]]-

Similarly we define S(A(p*); 0) and Sp(A(p"); O) out of the spaces
of cusp forms (see for details [H1 II.1]). When A =T'1(NV), we write
M(N;O) and S(N; O) for M(A(p*®); O) and S(A(p™); O) .

As is summarized in [H1, II.1], we have the following operators
acting on M(A(p>); O):
il. The action of Z).

Let Ag(p™) = ANTe(p") for A D I'(N) with N prime to p. Then
Ag(p™)/A(p™) is isomorphic to (Z/p"Z)* via

i b ™
Ao(pT) 3 (Z d) —d (mod p").
Thus we can let lim Ao(p™)/A(p") = Z) (2 +— 2, € Z;) act on
[ € Mp(A(pT); O) via

(1.3a) flz = z';f[kvz,
-1

0

action extends to a continuous action of Z: on M(A(p™=); O) and is
independent of k. When A =T'1(N) for N prime to p, we can extend

where o, € Ag(p") is such that o, = (z :) (mod p"). This
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this action to z € Zy = lim(Z/Np"Z)* = Z; x (Z/NZ)* by (1.3a),

0

zp for the projection of z to Z;. We can consider (Z/NpZ)>
subgroup of Z,, naturally. Then we define

M(N; 0)[4]
={f e M(N;0) | fIC=4(C) for ¢e€(Z/NpZ)*},

where ¢ : (Z/NpZ)* — O* is a Dirichlet character. Then by [H1,
I1.1.1], we know that for each character € : (14pZ,)/(1+p"Z,) — O

M(N;0)[9)] D Mi(To(NpT),evpw™; 0),

taking o € To(Np") with o, = (z :) (mod Np") and writing

where w is the Teichmiiller character of Z: .

i2. The Hecke operator T(n).
We have an operator T(n) for each integer n > 0 acting on

Mi(T1(Np); ©) and M(N, Q) which is given by
(1.3b) a(m, fIT(n)) = Y g 'a(mn/q,flg),

0<g|m,
qn
(g,Np)=1

where f|g is the image of f under the action of ¢ € Zy.

i3. The operator [¢] for O <teQ*.
Write t = n/m with (m,n) =1 and put

e (5 2)a(3 2)nsnen

); 0) = M(A'(p™); 0) is given by
=Y a () (=)
n=1

i4. The action of SL.(Z/NZ).

For f € Mi(T(N)(p"); O), we define f|y € Mi(T(N)(p");O) for
¥ € SLy(Z/NZ) by fl|ey where v € T'i(p") lifting 7, i.e.,, v = ¥
mod N. This action is defined independently of the choice of vy and
extends to a continuous action of SLy(Z/NZ) on M(T(N)(p=);O)
(which is also independent of k).

Then [t] : M(A(p>®
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i5. The twisted trace operator Ty y..
Let L be a positive integer prime to p and N be a divisor of L.
Then we have a continuous operator

Tpyn : M(L; O)[] — M(N;0)[¢]

for each character ¢ : (Z/NpZ)* — O*, which is characterized by
the following commutative diagram:

M(L; O) )] > Mi(To(Lp™), eypw¥; O)

TL/Nl l(L/N)[Fo(LP )(0 L,,\,)ro(lvpf)]
M(N; O) ] DM (To(Np™), epw™*; O)

r—1

for each character € of 1+ pZ, of order p"~* and each positive integer

k.

i6. The twisting operator for each Dirichlet character.
Let x : (Z/Mp"Z)* — O be a Dirichlet character for a positive
integer M prime to p. Then we can define an operator

X : M(N;0) = S(NM?;0)

by a(n, flx) = x(n)a(n, f) for all n > 0, where we agree that x(n) =0
if n has a non-trivial common divisor with Mp. The cuspidality of
flx follows from [H1, I1.2.2] (see also the proof of [H1, I1.2.3]).

i7. Differential operators.
We have a differential operator

d: M(N;0) = S(N;0)

given by a(n,df) = na(n, f) for all n. The cuspidality of df follows
from [H1, 11.2.3].

i8. Ordinary projection e.
There is a continuous operator

e: M(N,0) - M(N;0)

O) is stable under e for all r and £ > 0,

such that (i) Mg(T1(Np");
(T1(Np"); O), there exists an integer m > 0

(ii) e = €? and on My
such that

e= lim T(p)?" "~ in Endo(M(T1(Np"); O)).

n—o0
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For each subspace X of M(N; K) stable under e, we write X° for

—ord

eX. Then M~ (NV;O) is the maximal subspace of M(N; O) on which
T(p) is invertible. Then the following fact is known (see [H1, I1.2]):

(1.4) xod=doyx, ndoT(n)=T(n)od, do[t]=1t[t]jod
and  z3d(flz) = (df)|z for z € Zy.

§2. p-ADIC MODULAR FORMS OF HALF INTEGRAL WEIGHT

In this section, we define the space of p-adic modular forms of half
integral weight and generalize results in §1 in the case of half integral
weight.

We first consider the theta series

[e o}

O(z) = Z e(n?z) (e(z) = exp(27iz) = q)

n=—00

associated with the quadratic form: z — 22

(Z Z) € ['4(4) an automorphic factor

on Z. Define for v =

(2.1a) 3(v,2) = ©(x(2))/0(2)-

Then j(v, z) is a holomorphic function on H satisfying

(2.1b) (7, 2)? = x-1(d)(ez + d),

where Y., for m € Q¥ is the Dirichlet character corresponding to
the extension Q (v/m)/Q. We refer to [Sh1] for the details of these
facts and for the transformation formula of ©. Let A be a congruence
subgroup of I'g(4). Then for each odd positive integer k, the space
Gk/2(4; C) of modular forms of weight k/2 consists of holomorphic
functions f : H — C satisfying

(2.2)  flejor(z) = fF(v(2))i(7,2) ez + d)~ k=172

= f(2) for all y = (‘; g) €A

(2.2b) f is holomorphic at all cusps of A
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in the sense of [Sh1, §1]. Replacing (2.2b) by the cuspidal condition:
(2.2¢) f vanishes at every cusp of A

we define the space of cusp forms Py/o(A; C). Under the Fourier
expansion at oo, which we write as g-expansion (by replacing
exp(27inz/N) by g% = ¢™/N), we consider Gi/2(A; C) as a subspace
of the power series ring Cl[gn]] if A D (V) (this means that 4|N).
We define, for a subring A4 of C,

Gr2(A5 A) = Grya(A; C) N Al[gw]],
Prj2(A5 A) = Pija(A; C) N Al[gn]].

We then define gk/z(A;Qp) as the linear span of Gy/2(A; Q) in
Qp[[qN]]; i.e., we have

gk/Z(Ay Qp) = gk/Z(Av Q) ®Q Qp in Qp[[qN]]’
Prs2(85Q,) = Pry2(A;Q) ®g Q, in Q,[[gn]]-

Then we define Gi/2(A; A) and Py yo(A; A) for each subring A of Qp
replacing C in (2.3) by Qp. If A is a subfield in Qp or C, we have:

(2.5) Gry2(D1(N); A) = G y2(T1(NV); Q) ®q A,
Gr2(Lo(N), & A) = Grya(To(N), & Q(E)) ®qey A if A D Q(),

where

(2.3)

(2.4)

Gijo(To(N), 6 A) = {f € Guja(T1(N); A)| flk/2<a ”) £(d)f

for (‘; Z) € To(NV)}

for each Dirichlet character £ modulo N. This fact is shown by [Sh4,
Lemma 4] or can be proven similarly to [H4, Cor.4.5] (using the result
in [Sh3, Th.1.2)).

Let I be an extension of Q,, (inside Q) and O be its p-adic integer
ring. We then put (for I'¢(4) D A D T'(NV))

(2.6) Grja(A(P™®); K) U Gr2(A(P™); K) in K[[gn]],
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Grj2(A(p™); O) = G2 (A(P™); ) N Ollgn]],

GAP ) K) =Y Gmrq/n(AP); K),

m=0

g(A(pr); O) = g(A(pr); I() 0 O[[QN]] (T =12,..., OO)

Actually, G(A(p™); K) is the direct sum: @®%5_Gmi(1/2)(AQP"); K).
Hereafter suppose that K is a finite extension of Q, and hence is com-
plete under the p-adic topology. By adding “-”, we denote the com-
pletion of these spaces under the norm (1.1). Especially G(A(p*); K)
denotes the space of p-adic modular forms of half integral weight.
Similarly we define the spaces Pi/2(A(p"); O) and P(A(p™®); O), etc.,

out of cusp forms.

THEOREM 2.1. Let A be one of the rings K and O, and suppose that
I'o(4) D A D T(N) for an integer N prime to p. Then, as a subspace
of A[[gn]], G(A(p7); A) and P(A(p™); A) are independent of r > 1 and
coincide with G(A(p>); A) and P(A(p>); A) respectively.

As in (1.2), one may conjecture that

Grj2(A(p™); A)

and B
Pk/z(A(Poo)§ A)

coincide respectively with
G(AP™); 4)

and

P(A(P™); A)
if £ > 3, but what we know from the above theorem is the inclusion
of the former space in the latter.
PROOF: We prove the assertion only for A = O, r = 1 and for mod-
ular forms. The other cases can be dealt with in a similar fashion.
Note that

(1) © as a power series in Z[[g]] is a unit in the ring Z[[g]],
(i) © has no zeros inside H.

The assertion (ii) follows from the well known infinite product ex-
pansion of @ (for example in [W, (30), p.31]) convergent on ‘H. We
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write M for M(A(p*>); O), which is an integral domain, and A for
the quotient field of M(A(p™); ©). Let

G = G(A(p™); 0) and Go = G(A(p); O).

It is known by Serre and Katz (see [H2, §1]) that M is also the comple-
tion under the norm (1.1) of the ring Mg = (3 oo_, M (A(p); K))N
Ollgn]] in K[[gs]]- Then naturally Gy (resp. G) is a module over M
(resp. M) under the multiplication in O[[gn]]. We consider ©72M,
inside A. By (i), ©72M is embedded into O[[gn]] and is the com-
pletion of ©~2M, under the norm (1.1). Let Y, = A(p")\H and X,
be the smooth compactification of Y,.. Then C, = X, — Y, is the
set of cusps of X,, which is a finite set. A cusp P € C, is called
unramified if it is unramified over Xy. Let S, (for r > 0) be the
subset of unramified cusps in C,. If we denote by A the natural
image of A in SLy(Z/NZ) and put U = {:i: ((1) lf) lu € Z/NZ},
then Cy & A\SLy(Z/NZ)/U and either S, = Cy x (Z/p"Z)* or
S, 2 Cox(Z/p"Z)* [{£1} naturally according as -1 ¢ A or —1 € A.
Let C(Sp x Z;; O) be the space of all continuous functions on Sy x Z;
with values in O. Since we have natural action of SLy(Z/NZ) and
Z} on M(A(p™); O) (il and i4 in §1), we can consider an embedding

L:07IM = C(Sp % Z;;O)((qN))
such that the n-th coeflicient of ¢(f) is the function:
So x Z) 3 (s,2) = a(n, f|sz) € O,
where C(Co x Z5; O)((gn)) is the ring of Laurent series of indetermi-
nate gy with coefficients in C(Sp x Z:; O) For any point s € Sy, we
put
vs(f) = min{n|z — a(n, f|sz) is non-zero as a function on Z}
and define
X ={f €02 M|v,(f) > —vs(0?)/2 for all s € Sy},

Xo = {f € XNO2My|f is holomorphic at all t € C; — Si}.
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As already seen in [H1, II] in the proof of Theorem 2.1,

(2.7) there exzists a modular form G, € M.(Lo(p)) for each positive
integer n such that (i) r = p"~1(p - 1), (i) G, = 1 (mod p)"~¢
for 0 < € € Z independent of n and (iii) a(0,G,ly) = 0 if v €
SLy(Z) — To(p)-

Namely for all t € C; — S, the function z +— a(0,Gy|tz) on Z) is
identically zero. Thus if f € X and f = lim f, with f, € @72 M,,
then for sufficiently large m (which may depend on f,.), GI'f, € X
and |G fa — ful, < p°7". Namely f = lim f, = lim G7'fn, and

X, is dense in X. Then, for any g € G, we have by (ii), g0~ ! € X.
Thus ©X D G. On the other hand, by definition, Gy D ©X, and
hence G = ©X = G(A(p); O), which finishes the proof.

We simply write G(N; O) for G(T'1(N)(p); ©). We then have the
following operations defined on G(N;O).

hl. The action of Z.

Suppose that I's(4) D A D I'(N) for N prime to p. It is known
(see [Sh3, Th.1.2]) that the action: f — flg/p0 for o € T'o(4) pre-
serves Gr/2(A; Q) if o normalizes A. Thus this operator induces an
action of o on Gi/2(A;Q,,) which we again write as f + fi/20. We
now define two kinds of action of z € Z; by

(2.8a) fllz = 250200, flz= 25702 )00
= . z71 0
for f € Gi/2(A(P7); Q,), where o € T'y(4) with o = 0

(mod p") and 0 = 1 mod N. When A = I'1(N) or I'y(N), we can
extend this action to (z,() € Zy = Z; x (Z/NZ)* by

(2.8b)  fll(z,¢) = x(Q)2*FV2 f|, 50, fi(z,0)
= kD2 f) e = x(O)z7 1 |2,

where x : (Z/NZ)* — {£1} is the Legendre symbol corresponding

-1
to Q(v~1)/Q and ¢ = o(, ¢y € [o(N) such that o = (20 2)

-1
(mod p") and 0 = (CO 2) (mod N). We then extend these ac-

tions to G(A(p");Q,) (0 < r < oo) diagonally; for example, for
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f=Yk fe with fi € Gt (1/2)(T1(NP); Qp), we have

flz =Y 252 i s0,
k

since G(A(p"); Q,) is actually the direct sum

@ﬁ:ogm+(1/2)(A(Pr)? Qp)'

THEOREM 2.2. The action (2.8a) (resp. (2.8b)) preserves G(A(p”); A)
(0 <7 < 00) and G2(A(pT); A) (resp. G(I'1(Np™); A) (0 < 7 < o0)
and Gy o(T'1(Np"); A)) for A = K and O and hence extends to its
completion under the norm (1.1).

ProOOF: We only prove the result for the action: f — f|(2,() in
(2.8b) and G(I'1(Np"); O), since the other cases can be treated simi-

larly. Because of the formula: j(o,2)? = x({)(cz +d) if 0 = (‘cl Z) ,
for f € Gij2(T1(NpP"); Q), we see, with the notation of (2.8b),

(fll(z,¢))®
= x(Q)z**V2 f(0(2))j(o,2) 7"
(ez +d)"*"D20(0(2))j(0, 2) ™
= (fO)l(z,0),
where at the left-hand side, (z,{) acts via the action in (il) in
§1. Thus generally for f € G(T'1(Np");O), we have f||(z,())© =
(f©)|(z,¢). Since the action of (z,{) on M(N;Q,) preserves

M(N;0), (fli(2,¢))© € O[[g]]- Since © is a unit in Z[[q]], f[|(2,{) €
Ollq]], which proves the assertion.

h2. The module structure of G(N;0) over M(N;0)..

Picking an integer x and an odd k, we have a product
M(A(p7); O) X Giy2(A(P7); O) = Grtry2)(A(P7); O)
induced by the multiplication in O[[gn]]. This induces a product
M(A(PT); 0) x G(A(P); O) = G(A(P"); O)

which is uniformly continuous under the norm (1.1). Thus by conti-
nuity, we obtain the product:

(2.9) M(A(p™); 0) x G(A(p™); O) = G(A(p™); 0),
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which of course coincides with the usual multiplication in O[[gn]] and
satisfies

(2.92) (fg)lz = (fl2)(gl|z) for all z € Z) or z € Zy if A =T1(N).

The product (2.9) also induces a module structure on P(N;O) over
M(N;O). Similarly, the multiplication in O[[gn]] induces a product

G(N;0) x G(N; 0) = M(N;0),
which again satisfies

(2.9b) (f9)lz = (g]2)(f]l2) (f,9 € G(N;0)),

where the action of z € Zy on the right-hand side is the one given in
(1.3a).

h3. The action of [t] for 0 < t € Z.
As shown in [Sh1, Prop.1.3], we can define a linear operator

[1:T(V:0) — BNEO) by fll = - aln, f

and especially [t] induces

[t] : Gry2(To(ND"), & O) — Giy2 (Lo (NtpT), Ex1; O),

where x; is the Dirichlet character corresponding to the extension
Q (V) /Q.

h4. The involution 7.
We can define as in [Sh1, 1.4] the involution 7 = 7(Np") on
Giy2(T1(Np™); C) and M (I'1(Np"); C) as follows:

(2.10a) f|r = { f(=1/Nprz)(Np")~F/4(~iz)*/2 for f € Gyjo

f(=1/Np"z)(Np")=</2z=* for f € M.

This action preserves the space of modular forms over Q and thus
induces an action on those over Q,. We especially have

(210b) 7_2 _ { (—1)" on MK,
1 on Gg/a.
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h5. Twisting operator.

Let ¢ : (Z/Mp°Z) — O be a function, where M is an integer prime
to p. In the same manner as in [Sh1, 3.6] (see also [H1, 1.8.1]), we
can define an operator

é:G(N;0) = G(NM?;0)
which is given by

(2.11) a(n, fl¢) = ¢(n)a(n, f) for all n > 0.

This can be generalized to any continuous function ¢ on Z, x (Z/MZ)
with values in O. In fact, by taking locally constant functions ¢, :
Z, x Z/MZ — O uniformly converging to ¢, we can define f|¢ =
nlLr{:o flpn in G(NM?;0). Especially, taking as ¢ the identity map
: Z, = Z,, we have the differential operator
(2.12)

d: G(n; 0) — G(N;O) such that a(n,df) = na(n, f) for alln > 0.

The same proof as in [H1, I1.2.4] gives

((2.13))  e(f(glx)) = x(=De((f1x)9) e(fdg) = —e(gdf)

for f,g € G(N;O), where x : (Z/Mp°Z)* — O is a Dirichlet char-
acter. Here we agree to put x(n) = 0 if n is not prime to Mp®.

§3. EISENSTEIN MEASURE OF HALF INTEGRAL WEIGHT

For any compact topological space T, we write C(T;O) (resp.
LC(T; O) for the normed space of all continuous (resp. locally con-
stant) functions ¢ : T — O with the uniform norm:

oI, = Sgp(|¢(t)lp)-

For each positive integer L divisible by 4, we now define an O-linear
map

E:C(Z;0) = G(L;0)

with the following properties:

(E1) E(¢)|z = zE(¢|2) for z € Z1,
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where (¢|2)(2") = ¢(z2');
(E2.) For each character § : (Z/Lp"Z)* — O* and for each odd
integer k > 3,

/ £(2)2-I12dE € Gy pa(To(Lp™), €)
Zy

(Especially, this implies F(¢) = 0 if ¢(—z) = ¢(2));
(E3.) For each ¢ € C(Z1;0), a(n,E(¢)) =0 tf p divides n. FEspe-

ctally we have

a(0, E(¢)) = 0 and E(¢), = E(¢)

where v, : Z/pZ — {0,1} is the trivial Dirichlet character modulo p;
i.e. tp(n) = 0 or 1 according as n is divisible by p or not.

Before constructing E explicitly, we recall the result in [Sh2,
Prop.1] on the Fourier coefficients of Eisenstein series of half inte-
gral weight. We define, for each odd integer £ > 0 and for a character

£:(Z/Lp"Z)* — Q™ with £(-1) = (-1)(k=1/2,
(31) EI:/Z(Z»S;E)
=Lrp,(2s+ k- 1,£6%)

ST XTIy ) (s 2) 7
YET \To(Lp™)

Eij2(z,m;€)
— (27r)(m—lc)/2(Lpr)(k—2m)/4

k—m

r (552 {2 Bt -} e

where 7 = 7(Lp") as in h4 in §2, f((z Z)) = &(d) for

<Ccl Z) € T'o(Lp™), we have written z = z + iy (z,y € R) and

e = {:i: ((1) ?) In € Z}. Then E;/Q(z,s;f) is absolutely and lo-

cally uniformly convergent if the real part of s is sufficiently large and
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can be continued as a meromorphic function on the whole complex
s-plane. By [Sh2, Prop.1] combined with the well known formula [HI,
I1, (6.4a,b,c)], we have

(3.2a) Er/2(&) = Exja(2,2 — k;€) € Gry2(To(Lp"), € Q),

(3.2b)
Ek/2(€) = LLP(2 - k’fz)

= 3—k
+ anLLp (T7£Xn)
n=1

x Y ) (ut)xa(u)t(ut?)ED2,
u2t2[n,
(Ut,Lp)zl,

u>0,
>0

where p is the Mobius function and x, is the primitive character such
that x,(m) = (%) if m is prime to n. Moreover we have

(3.2¢) ‘

Ey2(z,m;€) = 6;-/2Ej/2(z,2—j;§) ifm e [(k—1)/2,k] and m is odd,

where i = k"Tm —1,7=2m+4—k and &7 is the Shimura’s differential

operator defined by

1 s d -
bs = 2mi (ﬂ * E) A bs+26s

for s € C and 0 < r € Z. We need the following variant of the well
known result of Kubota-Leopoldt and Mazur (cf. [L, Chapter 4]):

LEMMA 3.1. Let a: (Z/Cp"Z)* — O* be a primitive character (of
conductor Cp"™ for C prime to p). For each integer b > 1 prime to p,
there exists a unique O-linear map (% : C(Z1;0) — O such that for
each finite order character £ : Z; — O and for each integer n > 0

/Z £(2)2n1d¢ = (1 - £100 (B)P™) Ly (1 — 1, £a),
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where {1 ay Is the restriction of £ to Z)).

A sketch of proof: As in [L, Chap.4], we have a distribution ¢ on
Zcr such that

g £(z)zp71d¢ = Lor(1 - n,§)

for all Dirichlet characters £ on Z¢ and positive integer n. (In partic-
ular, this implies f, &(2)zp1d( =0if{(-1) = (—=1)""1). Moreover,
for each z € Z¢, if we define (* : LC(Z¢r; O) — O by

KOO /Z (6(2) — 2pd(x2))d((2),

then (* extends uniquely to a measure (* : C(Zcr; O) — O. Decom-
posing Zcr, = ZY x (Z/CLZ)* naturally, we put = = (b, 1) for b € Z;
and 1 € (Z/CLZ)*. Then writing 7 : Z¢y — Zj, for the projection
map, we define

M) = [ al)a(r(:)dc (),
ZL ZcL
Especially, for £ and n in the lemma,

n—1 b _
LL E(Z)Zp d(a -
/Z (2)E(2)21deT = (1 - Eron (BB Lozp(1 — n, €0)

Here note that the conductor of £« is divisible by all prime factors of
C outside L because « is primitive of conductor Cp”. Hence we have

LC’Lp(1 - n,fa) = LLp(]- - n,f,a),
which proves the desired assertion.

Hereafter, we fix b > 1 prime to Lp and define an O-linear map

E:C(Z1;0) — O[[q]] by

g3 [ = Y o Y st [ (ou)act,.

s uztzln,

(p,n)=1 (ut,Lp)=1,
u>0,
t>0
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We now compute the value of E when ¢(z) = {(z)z,(,k_e')/2 for an odd
integer k > 3 and a character £ : (Z/Lp"Z)* — Q with £(-1) =
(—=1)(*=1)/2; By definition, we have, for o = y,

[ @luttyact = a9 [ e)afp-r2ace
ZL ZL

= E(ut?)(ut®)*I2 (1 — G (0)p* V)L, ((3 - K)2,€xn),

because the restriction to Z: of £, is trivial since p > 5 and n is
prime to p. Since x,(-1) = 1, fZL {(z)z,(,k_s)/zd(gn = 0if §(-1) =
(=1)(5=1/2_ Thus we have

(3.3b) /Z (2)2F¥2dE =

(1= &OPEDE (), i E(-1) = (=1)H7172
0 if (1) = (—1)(+D/2,

By this fact, for any ¢ € LC(Z1; O),
g #(2)z;dE € Gry(3/2y(T1(Lp™); O)
L

because any locally constant ¢ is a linear combination of characters

€ € LC(Z1;Q). Since LC(Zy;0) is dense in C(Z1;0), E can be
extended on C(Zr;O) by continuity to an O-linear map with values
in G(L; 0)). Then we can easily check the properties E1 to E3 for
this E.

By using the differential operator in (2.12), we can extend E to a
two variable measure & : C(Z) x Z; O) — G(L; O) as follows:

) [ o, N, ) = (/ L £ dB(:)) ).

where 77 € C(Z:;O), 0 < m,n € Z and d is the differential operator
in (2.12).
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§4. ARITHMETIC MEASURES OF HALF INTEGRAL WEIGHT

In [H1, IL.5], we have defined arithmetic measures with values in
M(J;0) for an integer J prime to p. Here we extend the definition
to those with values in G(J;O). Let T be a p-adic space; hence, T is
a product of Z; and a finite set Tp. An O-linear map p : C(T;0) —

G(J; O) is called arithmetic if p satisfies the following three conditions:
Al. There exists a positive (odd) integer k such that

/T¢d/1 € Gry2(T1(Jp™); Q)

for all ¢ € LC(T; Q) (This half integer k/2 will be called the weight
of p),

A2. There exists a finite order character ¢ : Zy; — O* and a contin-
wous action:Zy x T — T such that

()2 = 25D 2p(2)u(gl2) for ¢ € C(T;0),

where ¢|2(t) = ¢(zt) fort € T and z € Z,

A3. There exists a continuous function v : T — Z, such that

(vlz)(t) = 22v(t) for z € Z; and d(u()) = p(v - ¢)

for the differential operator d in (2.12).

-We say that p is super-singularif i,op = p (i.e. a(n, p(¢)) = 0 for all
¢ if p divides n). We say that p is cuspidal if p has values in P(J; O).

LEMMA 4.1. Suppose p to be arithmetic of weight k/2. Then p is
cuspidal if p is super singular.

Proor: By [Shl, 1.5], we can define a Hecke operator T(p) :
G(J;0) — G(J;0) by a(n, fIT(p)) = a(np, f) for all n > 0. Thus
p is super singular if and only if u(¢)|T(p) = 0 for all ¢ € C(T; O).
If ¢ € LC(T;0), then pu(¢) € Giyo(T1(Jp™); O) for some r. Since

WOTE)™ = p() 1| T(p)™ for suffciently large m if 5 € To(p")
(see the proof of [H1, 11.2.2]), we have

a(0, 1(@)|v) = 0 if v € To(p").
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We can find for each n > 0, a modular form G}, € M (T'o(p"); O) such
that r = p"~1(p—1), G. =1 (mod p") and G, vanishes at all ramified
cusps for I'; (Jp™). In fact, it is easy to check these properties for G, =
G.|[p""!], where G, is the modular form in (2.7). Then G,u(¢) €
Prtey2yT1(JIp"); O) and Grpu(é) = p(4) (mod p*). Namely u(¢) =
nlimoo G'1u(¢) € P(J;0) for all $ € LC(T; ©). Then by the continuity
of p and the density of LC(T; O) in C(T; ©), u has values in P(J; O).

We now define the Rankin product zeta function between a modular
form of half integral weight and another of integral weight. Let

f= Z a(n)q™ € Si(To(Np?),¥)

n=1
and -
g=>_bn)q" € Giy2(To(Jp"),8).
n=0

Then we define according to [Sh2] and [St1, Addendum, p.782],

[e <]

DLP(sa f’ g) = LLP(2S —2k—-1+3, (1/){)2) Z a(n‘)b(n)n_slza

n=1

where L is the least common multiple of N and J.

To state an interpolation theorem for Dp,(m, fp, u(¢)|7), we re-
call some symbols introduced in [H1, II, §5]: Let f be a normalized
common eigen form of weight k of all Hecke operators and fy be the
primitive form associated to f. Let 0 < C € Z be the conductor of f.
Then the root number W(f) € C with |[W(f)| =1 is defined by

(4.1a) fole(C) = W(£)fF,

where 7(C') is as in (2.10a) and p denotes complex conjugation. Then
W(f) is an algebraic number and can be decomposed as in [H1, IL.5]
into the product W(f) = W,(f)W'(f) of the p-part W,(f) and the
prime-to-p part W'(f). Similarly, for any Dirichlet character £, writ-
ing & for the associated primitive character of conductor C = C(§),
we define the Gauss sum by

C-1

(4.1b) G(&) =) _ &(r)exp(27ir/C).

r=1
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Let I be the integral closure of A in a finite extension K of the
quotient field L of A. Let A : h™(N;0) — I be a primitive A-
algebra homomorphism and fp € Sk(To(Np™),¢¥'tpp) be the classical
cusp form belonging to A at P € A(I) as defined in the introduction.
Here ¢ : (Z/NpZ)* — O is the character of A as in the introduction,
¥; (resp. ') is the restriction of ¢ to (Z/pZ)* (resp. (Z/NZ)*)
and ¥p = epyp1w*. We recall here the definition of the congruence
module Co();I) of X given in [H5, §80 and 6]: Since A is primitive, A
induces an algebra decomposition: h°4(N;0) @)y K = K @ B. Let
h(K) (resp. h(B)) be the projection of h®4(N;0) @4 I to K (resp.
B). Then we define

Co(M1) = h(K) ® h(B)/h°™(N; 0) ®4 1,

which is a torsion I-module of finite type. Let u : C(T; 0) — G(J;O)
be a supersingular arithmetic measure of weight [/2 and with charac-
ter ¥ : Z; — O*. We denote by L the least common multiple of J
and N.

Now we state

THEOREM 4.2. Let b€ Z. Fix an element 0 # H € I which annihi-
lates the congruence module Cy(A;I) of A. Then there exists a unique
generalized measure & € Meas(T; O)®1 in the sense of [H1, IL3],
which is characterized by the following interpolation property: For
each pair (P,m) (P € A(1) andm € Z) with0 < 2m < k(P)—(l+1)/2
(and H(P) #0), if ¢ € LC(T; O) satisfies ¢(zt) = £(2)¢(t) for a finite
order character € : Zy — O, then

(1—1/)p€1'1<p1"1(b)b'“(P)'(’+1)/2‘2m)‘IS(P)H(P)"l/T¢(t)'/(t)'"d<I’P

= o(l, m)W'(fp) " G(¥p) " a(p, fp) PPN/

D1+ 2m, fp, u(4)|T(Jp?))
(27Ti)2m-1+((1—1)/2)Q(P) )

c(l,P,m) — Jm+(l/4)N—k(P)/2
11—
(Pm + D+ (1/2))/v2r) (V=) 77,
where ®p is the image of ® under the natural map

id @ P : Meas(T; O)®o1 — Meas(T; 0')
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for O = P(I), Q(P) = (20)FP+1g2(fs, f2), S(P) is the Eu-
ler factor given in (0.2b), and j is the positive integer such that
() € G172(To(JP?), Ep).

Before proving the theorem, we shall give some examples of arith-
metic measures and also several lemmas concerning the holomorphic
projection of nearly holomorphic modular forms. As a first example,
we can offer the Eisenstein measure

£:C(2) x Z1;0) = G(L; 0)

defined in the previous section. Especially, by E1-3 and (3.4), we have

(4.2) £ 1is supersingular and arithmetic of weight 3/2 and with the
trivial character. The function v : Z; x Z — Zp, in A3 is given by
v(w, z) = w and the action of Zy on Z: x Z 1s given by

2

Sw, 22")

z(w,2") = (2

for z € Zy.

Next we shall construct arithmetic measures by using theta series:
Let V be a Q-vector space of odd dimension { and v : V — Q be a
positive definite quadratic form. The corresponding Q-bilinear form
S:V xV — Q is given by

S(z,y) =v(z+y) - v(z) - v(y).
Choose a lattice L in V such that Z D v(L), and put
L*={zeV|Z D S(z,L)}
Then L* D L. We write A for [L* : L] and put
W = {z € L*|v(z) € Z}.
Let M be the smallest positive integer such that Z O M, (L*). It

is known that 4|M. Then for any function ¢ : W/p"L — Q, it is
classically known that

(43) 0@ =5 3 dw)™ € Gya(T1 (M) Q)

weW
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(see [Sh1, §2]). Thus if we define W = lim W/p"L, then W is a p-adic

space and the measure § : C(W;0) — O[[q]] given by the formula
(4.3) has values in G(M;0O). The function v : W — Z extends to
v : W — Z, by continuity. Note that the natural multiplication:
Z x W — W gives by continuity the action of Zp; on W. We put

W* ={z e Wly(z) € Z,}.

Then we can easily verify by [Sh1, Prop.2.1] that

(4.4a) the restriction of 0 to WX is supersingular and arithmetic of
weight 1/2. The character ¢ : (Z/MZ)* — {£1} of 8 is given by
—1)=D/29A

Moreover, if n : V — Q is a spherical function of order « in the
sense of [Sh1, §2] (see also [H1, 1.1]), then 7 induces by continuity a
polynomial function n : W — Q,. Then we have

(4.4b) n -6 : C(W*;0) — G(M;0O) given by n - 6(¢) = 0(nd) is
supersingular and arithmetic of weight o+ (1/2) and with character ¢
as in ({.4a).

When V = Q (ie. [ = 1), v(z) = 2% and L = JZ with an integer J
prime to p, we see easily

(4.4c) ¢=idand M =4J% and W* = Z;.

We record here the speci al case of Theorem 4.2 when u = 6.

COROLLARY 4.3. When p = 6 as above in Theorem 4.1, then we have
the following evaluation formula: if 0 < 2m < k(P) — o — (I +1)/2
and if n: W — O is a spherical function of order «, then

(1 —p&Ttpr? (b)bk(P)—a—((l+1)/2)—2m)—1

S(P)H(P)™ /Wx nv™d p

= c(l + 20, P,m)W'(fp) " G(pp)La(p, fp)PpP /D tat2m)/2

Dip(l+ 2+ 2m, £, 0(n)|at 1727 (MPpP))
(2mi)ot2mH((-1)/2)~1Q(P) ’
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where

c(4, P,m)
= MPHGO NP2 (D 4 DD (m + (5/2)/V2r) (V1) 977

Here, if I = 1, then
(4.5)

Hm+1ﬁ(m+a+ )AF {2”W%w! if =0

272m=12m 4+ 1)l fa=1.

Now we recall some result from [H1, IL.6]. Let N™(A) (0 < m € Z)
for any subring A of C be the space of functions on ‘H with Fourier
expansion of the following form:

h
f= Za(ny ( niz + )) forsome 0 < M €Z and 0 < h <1,

where a(n,y) is a polynomial in (47y)~! with coeficients in A of
degree less than or equal to m; thus, f is nearly holomorphic (and
A-integral) in the sense of Shimura. Let A be a congruence subgroup
of SLy(Z). For an integer or a half integer 0 < k € 1Z, we write
NTH(A; A) (tesp. NJ™(A,4; A) for a finite order character ¢ : A —
A*) for a subspace of N, (A) consisting of functions F' : H — C such
that

() F(r(2))e(s)? € N (AC) (resp. N (Kex(1); ©)) for all y =
3) € SLy(Z) and for all holomorphic functions ¢ : H — C with
p?(2) = cz + d,
(%) fley = f (resp. fley =v¥(y)f) for ally € A.

When 2m < k € Z, we define the holomorphic projection according
to Shimura [Sh3, Lemma 7]

H : N (A; A) — M (A A)

as in [H1,II, §6]. Then we have



p-ADIC L-FUNCTIONS 121

LEMMA 4.4. (i) (Shimura). If f € Sk(To(N),; C) with k € Z (for
a character ¢ : (Z/NZ)* — C*), then (f,g)n = (f, H(g))n for
all g € N*(To(N),¢; C) with 2m < k € Z. Moreover, H sends
N (To(N) 45 Q) 10 Me(To(N). 5 Q) if k > 2m.

(i) If h € Gi2(T'1(N); C) and g € G2(T'1(N); C) then

H(gb/oh) = (—1)"H(h8}}59)-

(iii) If g € G1/2(T1(NpP); Q) and h € Gij2(T'1(Np®); Q), then
e(H(gb;/oh)) = e(gd"h),

where d Is the differential operator in (2.12).

We omit the proof since we can prove this in exactly the same
way as the proof of [H1, II, Lemma 6.5]. Here we quote a lemma
from [St1, Addendum, p.782]:

LEMMA 4.5. Suppose f = Y oo a(n)q” € Sp(To(Lp?), ) and g =
T2, b(n)q"™ € Giy2(To(Lp?), &) for k > 1/2. Then, we have
(4m)~*/0(5/2)D1p(s, £, 9)
= (f2,9B;_(1j2)(2,5 + 2 — 2k; € x 0 )y D FY
= (“\/—_1)k (fleT,glijar
(E/:—(z/z)(z’ s+2- 2k§€¢X-Lpﬂ)y(s/2)+l_k) lk=(1/2)T) Lo

where 7 = T(Lp®) as in (2.10a).

The first equality in the lemma follows from [St1] and the second is

a consequence of the following formulae:
> -

(fle7, kle) = (f, k) and (glyy2T)(Elk-q/2)7) = (V=1)" (9B)lir
for g as above and E € Gr_(1/2)(T1(Lp?)).

PrOOF OF THEOREM 4.2: We shall apply the result in [H1, II.§]
in the following situation: With the notation introduced there, we
take G(L; ©) as U* and P(L; ©O) as V*, where L is the least common
multiple of N and J. We let Zp act on M* = C(T; O) by

(4.6a) o|l=(t) = z,(,l+1)/2¢"(z)¢(zﬁ),
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where ¢''(m) = ¢(m) (:%-n/—i) and z; € Zy is the natural projection
of z € Zp to Z;. Then pt = [L/J)op : C(R;0) — P(L;0) is
compatible with the action of Z; i.e., we have

(4.6b) pH(®)z = p*(¢||2) for 2 € Z1 and ¢ € C(T; O).

We take pul : M* = C(T;0) - P(L;O0) = V* as p : M* — V*
in [H1, I1.8]. We let Zp act on C(Zr; O) by ¢|2(z") = ¢(z2'). Then
for b € Z; as in the theorem, we take the Eisenstein measure

E:C(Z1;0)— G(L;O) as in §3.
We take this measure as F in [H1, I1.8].

We now show that ® = L~Y(E %, ul) defined in [HI, II, (8.5)]
satisfies the requirement of the theorem. By [H1, II, Th.8.5], we have

(4.7) H(P)‘IL/TgbydeI)p
=LlpoTn oe(/TL eww”k(z)z;f_l(qbym)l[z_l(t)dE(z)d,uL(t)),

where ¢ : (Z/NpZ)* — Ox is the character of X as in [H1, II, §4],
k= k(P), e = ep and £p : S™(To(Np"),eppw™*;0) — O is the
linear form defined in [HI1, II, (7.6)]. Similarly to the computation
done in [H1, II, (9.3)], we know from (4.6a), (4.7) is equal to

(4.8) LpoTpnoe (/ pvmdut / n(z)zz(,%_j_:})/sz(z)) ,
T Zy

where j = L+4m and n = ez/zX_L/J(gofwk)‘l. By h3 and h4 and A3,
we have

d(u"(6)) = (L/T)u"(¢v).

As seen in (2.13), we have

e(hdf) = —e(fdh) and e(h(f|c)) = e((h|ep) f),

where ¢, : Z/pZ — {1,0} such that ¢y,(2) = 1 if and only if z €
(Z/pZ)*. Applying these formulae to (4.8) in order and keeping in
mind the fact: p(¢)|e, = p(¢), we know that (4.8) is equal to

(4.9)

(=L/J)"™poTrnoe (,ﬂ((p) d™ (/

ZL

U(Z)Z;(,Qk_j_g)/sz)>
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Then, by applying (3.3b), Lemma 4.4 (iii) and (3.2c) in order, under
the assumption that 0 < 2m < (2k — 1 — 1)/2 we reduce (4.9) to

(4.10) (=J/L)™ (1 — (BB F=ITDI2Y g o Ty

oe (H (uL(¢)5("z’k—j)/2E<2k—i)/2(’7)))) '

We write g for H (uL(qS)&(’gk_j)ﬂE(zk_j)/?(n)) and assume the level
of g is LpP for B > 0. We can compute £p by [H1, 11, (7.6)] as

(411)  H(P)"'L(1 -y (b)b(2k — j — 1)/2)"} /quymd@p

= (=J/L)™a(p, fp)r—ﬂp(ﬁ—r)(k—l)

(hp|IP°~"), 9| Tryn ) Nps /{hP, FP) Nprs

where 7 is the exponent of p in the conductor of ¥p and hp =
fpIT(Np™). Moreover, according to the computation done between
(9.4) and (9.5) in [H1, II}], we have

(hpllp?~7), 91T n) Nps
= (L/NYF PR =P (L1 (LpP), 1 (D)5 5 2y Br=(iy2) (M) Lpo
and
ph(9) = (L))" (u(#))1)2m(TP°) 1y (LD7)).

Applying these formulae and (3.2c), we know from Lemma 4.5 that if
0<2m < k—((I+1)/2),

(4.12) (fplt(Lpﬁ)’:UL(¢)5I::n—(j/2)Ek—(j/2)(77)>Lpﬂ
= (V=1)* 2= 012k =G/D=1p (1 4 1)
T(m + (1/2))(LpP) 01O~ */DH (1) 1)~
X DLP(l + Qm? f’ P’(¢)|U2T(‘]pﬁ))'

On the other hand, by [H1, II, (5.5b), (9.5)], we have, for S(P) in
(0.2b)

(hp, fPYNp [(fps fP) Npr
= (=D*W'(fr)alp,(£,)")7"S(P)p*"/*G(¢p)
if fp = f3 and ¥p # id,
(hp, fPYNpr [(fps FP) Ny~
= (=1)*W'(fp)p*~""%a(p, fp)S(P)
if either fp = fp and ¢¥p =id or fp # fp.

(4.13)
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We then apply (4.13) and (4.12) to (4.10) and obtain the desired
formula in the theorem.

§5. A SPECIAL CASE OF A QUADRATIC FORM OF ONE VARIABLE

We fix a A-algebra homomorphism A : h°rd(N ; O) — I with charac-
ter ¢ : (Z/NpZ)* — C* as in Theorem 4.2, to which we can attach
the congruence module Cy(A;I). We suppose that I is defined over O
(i.e. the integral closure of O in I coincides with O). Then A ®o I
is still a local ring having the unique maximal ideal m. We consider
the profinite completion A ®p I of A®e I, which is the completion of
A®o I under the m-adic topology. Thus AQA is a subring of A®oI
. We fix a topological generator u of 1+ pZ, and identify A with
O[[X]] via u — 1+ X. Thus we can identify AQoA with O[[X,Y]].
For each z € Z), we define a power series 4,(X) € Z,[[X]] by

AL(X) = (14 X)losl{z)/ log(x)

where (1 + X)* = E:’O( >X for s € Z, and log(1 + X) =

Yom ((=1)*1z"/n is the p-adic logarithm map. We now define (pos-
sibly imprimitive) L-function which can be given by the Shimura in-
tegral: We put

fp,X HDl

where [ runs all primes and D;(X) is the cubic polynomial defined
in (0.1). We prove in this section the following weaker version of
Theorem I:

THEOREM 5.1. Let the notation be as in Theorem 4.2. Let £ :
(Z/JpZ)* — O* be a Dirichlet character for a positive integer J
prime to p. Suppose that £(—1) = —1 and that the conductor of £ is
divisible by J. Then there exists an element L in the quotient field of
A®ol such that:

(i) Define D € AQo]I as follows:

(X = Y)(A2(X)(2) — Ao(Y)) i Y1 = 10, and Y€~ w(2) =
+1 and N is odd,
D = (Ax(X)(2) — A2(Y)) if Y€~ 1w™2(2) = £1 and N is odd but
¢1 # £1w7
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D= (X-Y) ify = &w but either p€~1w™2(2) # £1 or N is even
and D = 1, otherwise.

Then we have, for any element H € I in the annihilator of Co(X; 1),
DHL € AQol;

(i) if 1 < n < k(P) (n € Z) for P € A(I) and if either n # k(P) -1
or ¥2(2) # £2w*(2), then

L(Pu, P) = c(Py,e, P)S(P) " E(n,¢'yppe ™€ w™ )

L(n, fg, ' Ype~te 1wt
(2r1)"2Q(P) ’

where, writing C(ew™"%!) = Jp® for J prime to p,

c(Py e, P)
= (n—1)! (C(etw ™))"
G(&.Ew—n+1)N—k(P)/ZWI(fP)—lG(wp)—lwl(p)é

and E(n,n) = E\(n,n)Ey(n,n) with

Ei(n,n) = (1 -0~ Y'¢¥p(p)alp, fr) 20" )@ (p) alp, fr) 2)°,

E2(‘Tl, 77)
= (1=n(p)p* " 11 - n¢'¥p(palp, fp)2p*"7%) if fp # f3,

and Ex(n,n) =1 1if fp = fp.

The idea to prove this theorem is to specialize Corollary 4.3 to the
case where [ = 1. Before starting the proof, we review some formulae
for theta series. Let 7 be a Dirichlet character of (Z/Jp® Z)* with
values in O for a positive integer J prime to p. Write Cp® for the
conductor of n for C prime to p. We consider the quadratic form
v : Q — Q given by v(z) = z? and the lattice L = JZ. Then by
(4.4a), the character of the corresponding #-measure is trivial, the
level M of L is equal to 4J2, and W* = Z;. Let 1y : Z — O be the
primitive Dirichlet character associated with 7, and we put

0;(n) = /WX n(w)wydf for = 0,1 with n(-1) = (-1)*
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1 2
Oc(n) =3 > mo(n)ng" .
n€zZ

Then, the following formula is easy:

(5.1a) ()= Y wd)mo(d)d0c(n)|[d?],
0<d|(7p/C)

where y is the Mobius function. We also know from [Sh1, Prop.2.2]
(5.1b) 8 (n)|r(4C%p*)

= (-v=1)" V3P G(mbc(n™).
Thus if C = J, we have

(5.1¢) 8.(n)|T(4C%p*") =
—no(p)(Ip)~ 2 (—v/=T)" G(m){bc(n™)
—pttengt(p)c(n~1)|ip?}, if6=0and § =1
(=v=1)% (Jp®)"2G(n)bc(n~1), if6=86>0.

Now we start proving Theorem 5.1. Let £ : (Z/JpZ)* — O be
the Dirichlet character as in the theorem. Therefore, the conduc-
tor of £ is equal either to J or Jp. Let ® € O[[W*]|®o1 be the
generalized measure as in Corollary 4.3 for 6 as above. We com-
pute [, efw ™ (w)w*T2™d®p, writing, for 0 < n < k(P) - 1,
n = o (mod2) for a = 0orland a+n = 2a + 2m with
0 < 2m < k(P) — « — 1; namely, we shall compute
(5.2)

P <1 Fatm e, /Wx 6(<w>)(w)af(“’)de|<>z+(1/2)T(4']21??26’)> ;

where € : (1 + pZ,) — ppo is a character with Ker(e) =1 + %7,
(thus 8’ > 1) and (w) is the projection in 1+ pZ, of w € WX. Then
by (5.1c) applied to n = efw™" (thus C(efw™™) is written as Jp?)
and by an easy computation, (5.2) is equal to, if C'(¢fw™") is prime
to p (i.e. 6 =0),

(5.3a)

(—v=D)" (Jp)~*p "a(p, fr)*G(e€w™™)(1 — e€w™ " (p)a(p, f)"*p")

(1= (Ypy'(2)e™ €7 W™ (2)22F 42 L(n + 1, fp, PppeT €T IWT).
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If p|C(eéw™™), then (5.2) can be rewritten as
(5.3b)
(_\/_—1)0‘ (Jpé)—l/QG(é_gw—n)(l _ (¢P¢/(2)8—1£—1wn(2))222k-4—2n)
x L(n+1, fp, ¢ e e 1wm).
This combined with Corollary 4.3 (see also (4.5)) yields
(54) (1= urlw tepet )(B)F1-m)
(1= (pep(2)e1 w™2(2))2(2)" 27!

x S(P)H(P)™! / Ew)e((w)) (w)"dDp

= C(Pn-f—l,e»P)E(n + 1a¢,d)P€_1£_lwn)
L{n+1, fy,P'Ppe e w")
(2r)"10(P)

Now we define, for ¢ € C(T'; O), an element ¥ € A®oI so that
/ H(w)d¥ p = % E(w)p({w)){w)~1d®p for all P € X(I).
r Zy

Then choosing b € Z,' so that b generate topologically Z and (b) = u
we put

)

H =1-9: 0™ (0)(1+Y)(1+ X)7,
Hy =1- (46w ™%(2))*(2) 7 Ax(Y)? A2(X) 7%,
and £ = (HH.H)™ 0.
Then L satisfies the assertion of Theorem 5.1 by (5.4) because H,
(resp. Hs) is non-unit if and only if ¥ = §iw (resp. Y& 1w™1(2) =
+1) and H is a unit multiple of A2(X)(2) — A2(Y) if Y€~ 1w™1(2) =
+1.

Here we add another result for our later use:

PROPOSITION 5.2. Let the notation be as in Theorem 5.1. Then L is
finite at X —Y unless 1/'¢'~! is imaginary quadratic and A has complex
multiplication under the imaginary quadratic field corresponding to
¢I£I—1 .

PrROOF: We may assume that ¢ = £ w (ie. Y€ lw™! = ¢/¢'~1),
because otherwise the desired assertion is already contained in Theo-
rem 5.1. We may also assume that A is minimal in the sense of [H5,
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p.380]. Let L be the least common multiple of N and 4J2, where the
conductor of £’ is given by J. We consider the theta measure § on Z;
of level 4J2 used in the proof of the above theorem. Now we replace,
in the formula (4.8), £ by e€w*~1, ¢ by the identity character, j by
14 2a+4m and 2k — 1 by 2n+ 1. Then what we need to show is the
vanishing of

(*) LpoTpnoe (OL(qb) -d™ ( /Z ) ¢'§"IX_L(z)z;1dE)) .

Write L = %M for a positive integer z and a square-free M. Since
fZL n(z)z; 'dE = 0 if 5 is neither real quadratic nor the identity by
the following well known formula:

/Z n(z)z;ldgg — { —{p(C(a)Lp)/C(a)Lp}log((b)) ifa=n~"1

0 otherwise

for the Euler function ¢, we may assume that ¢'¢'~! = x_p/ for a
divisor t of M. Hence, we know

(5.5) a (n,/z z;ldE) =0 unless n/t is a square.
L

On the other hand, a(n,8%(#)) = 0 unless n = m?L/4J? for some in-
teger m. Then we see that a (n,@L(qS) o (fZL z;ldE)) = 0 unless

n is of the form Ma? + tb? for integers a and b; namely,

(5.6) a (n,9(¢) -d™ (/Z z;ldE>)

= 0 unless n/t is a norm of an integer in Q ( —M/t) .

Thus if A does not have complex multiplication by £ = Q (\ /—M/ t) ,

then there exists a prime [ such that ! remains prime in F and fpo
T(l) = alp with a # 0 (cf. [R, Th.2.3]). On the other hand, (5.6)

implies that 8L(¢) - d™ (fZL zp‘ldE) is annihilated by T'(!). Thus we

know even in this case (*) vanishes.
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§6. PRIMITIVE p-ADIC L-FUNCTIONS AND PROOF OF THEOREM I

Before starting the proof of Theorem I, we want to make correction
to [H3, Lemma 10.3] and [H5, Proposition 7.3 and Corollary 7.12].
At the same time, we shall show the identity of two primitive L-
functions: the one introduced in [C-S] and the one constructed by
Gelbart-Jacquet [G-J] (see also [H3] and [Sch, §1]). Of course, these
two L-functions must coincide because they have the same Euler factor
at almost all primes and satisfy the functional equation of the same
type. However, the point here is to show the identity directly without
using the analytic continuation and the functional equation. For a
minimal primitive form f of conductor C and for its automorphic
representation m, the L-function for the base change lift 7 (of 7 to
G L3 introduced in §0) is given by

L(s, f) = L(s+k—1,7) = [Ja+F17) T (1=1"179) 72 L(s, f),

lex les’

where ¥ (resp. ¥') is the set of all primes ! # p at which the local
factor m; of 7 is supercuspidal and satisfies m; & 7; ® 1 for the non-
trivial unramified quadratic character  of Q, (resp. is principal but
not spherical). For the above result, we refer [G-J, §1] and [H3,
Lemma 10.3]. However, there is a misstatement in [H3, Lemma 10.3].

Namely, the Euler factor in (iii) of Lemima 10.3 there should read

Difs, f) = [(1 =5 (ad1=*) (1 = 1717%) (1 = 45 571)]

although it is written as

Dl(s»f) =
[(1 =45 (Daf1™*) (1= g " (Dl ™) (1 = 4 (DBFI™°)]

This is clear from the description of Dy(s, f) below (10.1) in p.604
of [H3]. This mistake caused a trouble in [H5, Prop.7.3 and Cor.7.12),
and all the result there is valid if we replace Hy in [H5, Cor.7.12] by
[LiesQ+171) " jesy (1 =171 H and D(s, f) in [H5, Prop.7.3] by
L(s, f) defined above. Now we shall prove

PROPOSITION 6.1. Let f be a minimal form of conductor C' and of
character 1. Let C(y) be the conductor of ¢ and write C/C(y) =
I, 1°D) for primes . Then, we have

-1

-1

E ={l: prime| e(l) >0 and e(l) =0 (mod 2)},
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Y ={l: prime |l | C but e(l) = 0}.

By this result, the question raised in [H5, 7.13] is solved affirma-

tively, and the result in [H5, Cor.7.12] is true for all arithmetic point
P with k(P) > 2 after the above correction that Hy there should be
replaced by [];e5(1+171) " [[jex (1 = 171) 71 H.
ProoF: The assertion about ¥’ is obvious from [H3, Lemma 10.1].
Thus we shall prove the assertion concerning ¥. Let ¥ be the set
defined by the right-hand side of the above formula about ¥. Let =
be a supercuspidal representation of GLy(Q,;) and K be the unique
unramified quadratic extension of Q;. Then, by [La, Lemma 7.17],
T ®n = 7 for the unramified quadratic character n of Q) if and
only if there exists a ramified quasi-character 8 of K* such that =
corresponds to # via the Langlands correspondence [K3, §2]. Then
if the conductor of 4 is equal to [™, then the conductor of 7 is given
by I?™ = Nijq,(I™). Namely £y O . On the other hand, there is
a classification due to Kutzko (in our case of GL(2) [K1],[K2] and
due to Carayol [C] for general GL(n)) of supercuspidal (minimal)
representation of GL2(Q,;) using induction from subgroups compact
modulo the center. Namely let

Kn = { GLa(Z) tm=0 = " M(2y).

1+1mMy(Z)) ifm >0,
Then Ky 1/Km & Ap1/Am f m > 2 viay — v —1, and the
character group (A,,—1/Am)* of the finite group A,,—1/An, is given
by A_n/A1—m via the natural pairing (z,y) = Tr(zy). Thus we can
naturally identify (Kp,—1/Km)* (m > 2) with A_,,/A1—m. Thus each
character of K,_1/K,, corresponds to an element of A_,,. A char-
acter of K,,_1/I,, is called cuspidal if for the corresponding element
u, the characteristic polynomial of I"™u modulo [ is irreducible over F,
(especially, Q,(u) is the unique unramified extension K of Q;). A rep-
resentation of Q) GL2(Z;) is called very cuspidal of type m > 2 if it is
trivial over I, and its restriction to K,,_1/I ., is decomposed into
the sum of cuspidal characters. Then every irreducible super cuspidal
and minimal representation 7 of conductor [*™ of GL2(Q;) is induced
from a very cuspidal representation of type m (see [C, Th.8.1]). On
the other hand, by [K2] (see also [K3, §3, (3.10) Remark 3] and [C,
3.6]), there exists a character 6 of K such that = as above corresponds
to 6 in the sense of Langlands. This shows in particular, ¥ D ¥.
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We now prove Theorem L Let A : h*™¢(N; 0) — I be a A-algebra
homomorphism as in Theorem I. Let A : h®™4(N; O)®4 I — I be the I-
algebra homomorphism naturally induced from A. Thus Ais primitive
and minimal in the sense of [H5, §7]. Let fp be the cusp form belong-
ingtolat P € A(I). Then the primitive form fp associated with fp
is a minimal form in the sense of [H5, 7.2]. Let n(P) = @ (P), be the
automorphic representation associated with f5. Write o = £wyp~? for
a given character £ modulo Jp whose conductor is divisible by J (J is
an integer prime to p). When o? is unramified but q; itself ramifies at
I, we denote by p; the quadratic character of Q; such that p;(I) =1
and #llz; = o zx- Then define sets of prime factors of NV as follows:

¥ = {l|=(P), is super cuspidal}
o = {l € E|; is unramified, and #(P); & =(P), ® ;i },

21(P) = {l € £|of is unramified but o, is ramified and
7(P); =2 n(P); ® u but n(P); & n(P) ® pum},

X2(P) = {l € T|a} is unramified but ¢, is ramified and
m(P) = n(P); ® pm but 7(P); 2 7(P) @ pu}

¥3(P) = {l € £|a} is unramified but o, is ramified and
7(P) & m(P); ® w but 7(P); = «(P); @ pum},

Z = {I|N|x(P), is principal} = {I{|N|(N/C(4,),1) = 1}.

where 7; is the unique unramified quadratic character of Q. Here
we think of £ as an idele character in the way that £(&;) is equal to
the value £(I) of the Dirichlet character £ for the prime element @, of
Z,; for each prime [ outside Jp. The sets &, ¥y and = are independent
of P as already remarked. We can show the independence of ¥;(P)
from P as follows. By [La, Lemma 7.17], the base change lift of super
cuspidal 7(P); to the quadratic extension F;/Q, corresponding to a
quadratic character a becomes principal if and ounly if 7(P); ® a =
7(P);. Thus taking a real quadratic extension F; (resp. Fy) whose
l-adic completion corresponds to & (resp. &) for all | € L,;(P) U



132 HARUZO HIDA

Y2(P)UX3(P). Then we can think of the global lift A; of A to the
p-adic ordinary Hecke algebra h°™ (N;O)/F, for F; as in [H6, Remark
5.6] (the author hopes to discuss the base change lift of A in detail in
a future occasion). Let

== {l|N| the lift of 7(P); to F; is principal}.

Then, we see Z; is independent of P by the same reasoning in the
beginning of this section. Then L3(P) = (E1 N =) — E, Z1(P) =
Z) — Zg, X2(P) = Z2 — E;. In order to prove the independence of
2i(P) for almost all P, we can do it in the similar manner as in the
proof of [H5, Th.7.11] without introducing the lift. Hereafter we write
¥; for T;(P). Note that A,(X) stands for (1 4 X)os({z)/log(w)  Now
we put, as an element of AQol, E = EyE FEyE=, E' = E,E|E,EL
with

(6.1)
Ey = H (T+ ¢ w2 ()0 AY) JAl(X)),
1€,
Ey= [ 1+ 97 ) A(X)/A(Y)),
leX,
E, = H (1= w2 (M) A(Y) /A X))
leX,UX3U=Z
Ei= ] Q-9 'ew®AX)/AY),
leX,uX;uz
Ey= [ Q+¢¢ w00 A(Y)/A(X)),
leX, U,
Ey= J] (+¢76w®A(X)/AY)),
leEX,UE;
E= = H(l — P2 ) TPAY) T /INT (D) A( X)),
le=
Ez = H(l — &N T AX)/NT (1)),
le=

where (1) is the value at [ of the primitive Dirichlet character asso-
ciated to . Then, as computed in [Sch, §1], the special values of the
primitive L-function L(s, fp,§) is given by

L(n, fp,'Ype 7w ) = E(Ppe, P) " L(n, fp, ¢ Ype™ ¢
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if E(Pn,e,P) # 0 and 1 < n < k(P). We now fix P € A(I) and
consider fp and the minimal form fp. We write Ep(Q) = E(Q, P)
and Lp = £(Q, P), which are elements of the quotient field L of A.
Then we define an element L in the quotient field of AQoI by E~1L.
Its specialization Lp at P is given by E5'Lp (note that Ep is always
non-zero for P € A(I)). Thus if Ep(P, )D(Ppe, P) # 0 for D as in
Theorem 5.1,

LP(Pn,e)

= C(Pn,s, P)E(n, '(/),'(/)Pg-lf_lw"—l)L(n” f;” d)ld)Pf_lf_lwn_l)

(2m1)"—2Q(P) ’

where, writing C(e€w™™*!) = Jp® for J prime to p,
¢(Pre, P) = (n — DI(C(ebw™ ™))"
Glegw ™ N=MPORW! (£p)71G(yp) T ¥ (p)°

and E(n,n) = Ei(n,n)E2(n,n) with

Ex(n,n) = (1 — n7 "' ¥p(p)alp, fr) 720" )’ () talp, fr) %),

EZ(nv 7])
= (1 - n(P)p* "1 — n'vp(p)alp, fp)?p** " 7?) if fp # f3,
and
Ea(n,n) = 1if fp = f3.
Now define a unit U € AQol by
Y1 61e(CG(H' 1N (CC) A (X)
&L(C)G(E)Ac(X)Ac(Y) 7

where C' = C(y'~1¢’) and C = C(¢’). Then, if ¢p is trivial, we see
easily that

UX,Y) =

9 6e(C)G(w g (Cym R
U(Pn,saP) - Elf(c)G(€/)<C)n"l .

and thus ULp satisfies, if ¥p is trivial,

U(Pue, P)Lp(Pn ) = (-1)F 12222 N=KD2W ! (1)1 S(P) 7
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% F(n)C(I/)Ifl_l)n_k+l
Em e ¢ W DIn—k+1, fp, /e 0™,

where I(m, fp,n) with n(—1) = (=1)™** (@ = 0 or 1) is defined as
in [Sch, Cor.2.6] as follows:
=] G -1 1+a 0 - o o

I(m7fP777):<(2(7?—1)m)) L(m'*'k—l,fpa’?)/Wk 1<vafP)
for2—k(P)<m<0isa=0and1<m<k-—1if o« =1. Writing
j¢ the measure given in [Sch, Th.5.3] for A = ¢/~1¢" and f = f3, we
have, if the level of f is prime to p,

U(Pn,e, P)Lp(Py ) = (-1)F 1222 N=KPI2yy ! (£p) =1 5(P)~?
X / ebw T (z)z" " F  dp(z).
z}

Here, perhaps, the following two remarks may help the reader to un-
derstand this formula: (i) Although the measure p is given in [Sch,
Th.5.3] only when p is not exceptional in the sense described in [Sch,
p.627], the distribution y as an element of the total quotient ring of
the algebra of p-adic measures on Z;f always exists and the above
formula remains true except for finitely many &’s; (ii) There is a mis-
print in the formula (3.15) in [Sch] and /2 in the formula should
read (—1)Px(—i)}/2 = (=1)™*+¥(=4)1/2, This causes a little trouble
there. In fact, one has to multiply (—1)™**~1i to u!, defined there
to have [Sch, Th.3.8] to be true. Since 7 does not depend on m and
k, to fix it, we have actually divided u!, by (—=1)™**~! and written
the divided measure p!,. Then we go on to construct the measure p,,
and p as in [Sch, Th.5.3]. Then, replacing Q.. » in p.608 of [Sch| by
(—1)m+k=1Q,, , we have the evaluation formula [Sch, (5.10)]. Then
every result in [Sch] stands well without additional change for this
definition of p. Now we put, for f = fp with trivial ¥p,

I(m, f,g'e7 e 0™ )
= F(k+m— 1)C(¢,€_1£_1w"_1)m"}'(m_l)‘sl(m’f’ wlf_lf_lwn_l)).

Then the following inversion formula is deduced from the functional
equation of [G-J] in [Sch, Prop.2.7):

I(m, f, e te 1w )
=C(R QY& M) e e W T H M (Y'ETT)
x 20(1 = m)I(1 — m, f,9' " ebw' ™),
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where 7 is the base change lift to GL(3) given in [G-J] of the auto-
morphic representation 7 attached to fp,

G(y/1¢) )3
/d)l—lgl(_l)c(d)/—lgl)

for the e-factor, (s, # ® ¥'¢'~1) normalized as in [Sch, p.601] and

C(ﬁ'@ wlfi_l) — 6(0,7? ®¢/£/—1) <

M(wl&l—l) — C(d)lfl-l)—sc(fr)-
Here we made a change of sign for
M(i,b,f/_l)

and
I(m, f,g'e~te 71wt

and the one given in [Sch] are

_M(d)la{l_l)

and
(_1)mi(m, f, I/JIE_IE_lwn_l)

with our notation here. This sign change does not alter the form of
the inversion formula. This shows that, if ¥ p is trivial, then

U(Pn,ea P)LP(Pn,e)
— 22k(P)_2N—k(P)/2WI(fp)_1S(P)_lE(n, ¢/€_lf_1wn_1)
x I(n—k+1, f,¢/e7 0™

— 22k(P)_1N_k(P)/2WI(fP)_1S(P)_IE(TL, ’(/),é‘_lf_lu)n_l)
% C(fr ® d)'f'_l)M(Ql)/fl_l)_H'k—n&_lfl_lwn_l(M(’(f)'f'_l))
x T(k —n)I(k —n, f,9/'tetw? ™).

Namely, the numbers:

E(?k _1_ n, zp'_lefwl—")M(d)'f’_l)_1+k-"€_1£1_1wn—1(M(I/)’f’_l))
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xT(k — n)I(k - n, f,9'~1e€w! )

depends p-adic meromorphically on n and e. Since p is prime to
2NC(7t @ '€'71), we can find a unit V(X,Y) € Z,[[X,Y]] such that

V(Pn o P) — 22k(P)—1N—k(P)/20(7AT ® Q/),é,_l)
M(Q/}lfl—l)_l+k_n€_1fl_lw"_1(M(I/J'fl_l))
= 27T (M(PET)C(F @ y'E' )
M(t/)'f’_l)_2{4N_1/2M(’¢)’§,_1)}k(P)
X (M) e (ME)
whenever ¢p is trivial and fp # fp (this condition holds if ¢p is
trivial and k(P) > 2), because k(P) for P with ¢p = 1 stays in one
residue class modulo p—1, i.e. the class of a when 9! = w®. Thus for
L' =V-lUL,
L(P,.,P)
— Wl(fp)_IS(P)_lE(n, ¢I€—1€—1wn—l)
D(k = )Tk — n, f, $/ e ™™,
Then, defining L, in the quotient field of O[[X]] by L'»(Q) = L'(Q, P),

it has been shown in [Sch, Th.4.1] that there exists a non-zero con-
stant Cp, € I such that

CrnEpLp € O[X]]

if either ¢’¢~! is not a quadratic character with ¥/§71(-1) = —=1 or
&1w # 1y, and otherwise

(1-(1+Y)/(1+X))CpnEpLp € O[[X]].

We shall say that we are in Case I if either ¢'¢ 1 is not a quadratic
character with ¥/¢71(—1) = —1 or {;w # 9 and in Case II otherwise.
Then there exists 0 # H' € I such that

H'E'L' € A®olin Case I and (1-(14Y)/(1+X))H'EpL € AQolL

In fact, for example, in Case I, writing the ideal (E'L’) = D;VD, for

mutually prime divisors Dy, D; and N of A®QelI so that Dg is an
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ideal in T and D; does not have such prime factors. As we will see
in the proof of the next lemma, the prime divisor of D; is of the
form (1 + X) — « for a € I, and hence the specialization (D; +
P)/P in A®o(I/P) is prime to p. Then for almost all P € A(T), the
images N(P) and D;(P) in A®o(I/P) are mutually prime divisors
in A®o(I/P). In fact, if /D; + N contains P ® A for all P € A(I)
with k(P) > 2 (i.e. Dy + N+ P®A/P ® A is of height 1 for all
P € A(I)), then vD; + N contains m® A for the maximal ideal m of
I. Thus (D + N)/(P® A) for any P € A(I) has common factor with
pA, because m@A/PRA = mp@®A for the maximal ideal mp of I/P.
Namely (D; + N)/(P®A) contains p™ for m large. On the other
hand, (D; + N)/(P®A) contains an element prime to p and hence
any prime ideal containing (D; + N)/(P®A) is of height 2, which is
a contradiction. This shows that if D; is non-trivial, then D;(P) is
prime to N(P) for almost all P € A(I) and EpLp € O[[X]]® Q, a
contradiction. Thus D, is trivial. Since L' = V~1UL, we may assume
that H' = H for H € I as in Theorem 5.1. Note that

E"'A®0l 3 HL = V-"'UHL € ET'D " 'A®oI in Case 1
and
(X -Y)'E7'AQoI > HL' = V'UHL € ET' D 'A®0I in Case II
for D as in Theorem 5.1. Thus we now know

E''A®ol> HL =V 'UHL € E"'D7'A®pI in Case I
and

(X -Y)'E7'A®0I > HL
=V WWHL € (X - Y) 'AQ®ol in Case II.

Thus if E and E’ are mutually prime in A®oI we have HL € AQoI
in Case  and HL € (X — Y) " 'A®o]l in Case I

LEMMA 6.2. (A2(X) — (2)7'A2(y))E and (X — Y)E{E{E} (resp.
(A2(X) - (2)"1A3(Y)) EyE, E, and E') are mutually prime in AQo1

ProOF: First we suppose that E= has a factor @ for the prime element
@ in O. Namely suppose that

(1 =927 w™ () T2 AY)?/XT (1)) Al(X))
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has a factor @ for I € =. Then, writing a for 2§~ 1w=3(1)(1) 72,
AY(X) = aA(Y)?/NMT (1)) (mod @).

Note that 4;(X) € O[[X]] and 4;(Y)?/A\(T(1))? € 1. Thus as a power
series in F[[X]] for the residue field F of O, 4;(X) (mod @) must be a
constant, which is well known to be impossible (because the functions
s (Z) for s € Z, span the space of continuous functions on Z,).
Thus @ cannot divide E=. Similarly F and E’ are not divisible by @.
For any P € A(I) with 9p is trivial and fp # fp, the specialization
of DEyE 1 Fs and EJE(E} at P are mutually prime away from @
as already shown in the proof of [Sch, Th.5.1]. In fact, the prime
factor @ of D, E;, and E! is of the form (1 + X) — 2(1 +Y) for
some z € D = {z € Q,||z — 1|, <1}, and z € iy 0r 2 € U™} pee
according as Q|E{E]EN(X —Y) or Q|EoE1 E2(A2(X) — (2) 71 A2(Y)).
On the other hand, the prime factor of Ez and EL is of the form
(14+ X) — oY) with «(Y) € I which is obviously prime to 1+
X)—2(14Y) unless oY) = 2(1+Y). Now suppose that P =
(14 X) — oY) divides Ez and show that P is prime to EgE{E5(X —
Y). Then, z € ppe and for a prime g € Z, 2°(1 +Y)* = o(Y)* =
Clg)72A4,(Y)2A(T(g))~2 for s = log({g))/log(u) and a root of unity
¢. Namely A(T(q))? = 27°¢{q)~2(1 + Y)*. If one specilaize it at P €
A(T), then M\(T(q))%(P) = ¢'¢*")~2 with a root (' of unity. Note that
the complex absolute value of A(T(q))(P) is given by |)\(T(q))2(P)| =
g*P)=1_ Thus this is impossible and P does not divide EyE; E5(X —
Y). Next suppose that P = (1+ X ) — «(Y) divides EZ and show that
P is prime to EqE; Ea(A2(X) —(2)71A2(Y)). Then, z € u™ ! ppe and
writing z = (u™?! for { € ppeo,

CuT(1+Y) = aY)* = ({MT(e))

for s = log({¢))/log(u) and roots of unity { and ¢’. Namely
MT(9))? =("{(q)~ (1 + Y)*® for a root of unity ¢”. If one specializes
it at P € A(I), t |)\ T(q))Q(P)I = ¢®P)=2 This again contra-
dicts to the fact: |/\(T ] = ¢*P)~1, Namely P does not divide
EoE1E2(A2(X) —(2)~ 1A2 (Y)) This finishes the proof of the lemma.

COROLLARY 6.3. (i) EL (resp. E=) has no prime factors of the form:

(1+X)—2(1+Y) with 2 € u™" pryoo (Tesp.z € ppeo ).
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(ii) The zeros in A(A) of

E=(X, P)Eo(X, P)Ey(X, P)Ey(X, P)(42(X) = (2) 7" Ax(P))
for P € A(I) with k(P) > 2 are not of the form (u™ for integers
n < k(P)-1,
(iii) If a factor (1 — ¢¥2€~ 1w =3 ({1 ~2A(Y)2/MT(1))2A(X)) of E=
(resp. (1 — &(g){q) "1 A44(X)/ A(T(q))?) of E'xi) is not a unit, then
zt/)h‘sz:;('l)/\(lfljg)); = f(Imod m) and £(¢)\(T(g))? = 1 (mod m) for

The assertions (i) and (iii) follows from the proof of the lemma
given above. As for the assertion (ii), it is obvious for the factors
Eo(X,P)E|(X,P)Ey(X, P)(A2(X) - (2) "1 A2(P)). If Cu™ is a zero of
)™ = ¢'(1)%*=2 Ja(l, f,)? for some | € = with roots of unity ¢ and
¢', which is only possible when n = k(P) — 1 because of la(l, fp)2| =
Jk(p)—1

By the lemma, we know that HL € C"'A®eI in Case I and HL €
(X —Y) 'C7'A®oI in Case II, where C is the greatest common
divisor of E= and EFZ. We now show that HL € A®eI in Case I and
HL € (X - Y) 'A®0]I in Case II. By Cor.6.3, (i), it is sufficient to
prove that HL have singularity possibly only at prime factors of C of
the form (14X )—Cu~!(1+Y) for ¢ € pp=. By the above argument, we
know that for T = EgE1E,, T"'HL is in AQoI in Case I and T71L
isin (X — Y) "'A®oeI in Case II. Since £ is constructed out of X and
&, we write L) ¢ to indicate this dependence. We now number primes
in Z as E = {q1,¢2,...,4-} and let ¢; be the restriction of 9 to Z;.
Let 2= be the set of all subsets of =. For J € 2%, define ¢y = [Lics ¥
Ay = /\®1/)J_1 and &) = {1/)52. Here Ay = A®¢J_1 is a primitive algebra
homomorphism which is the twist by ¥; of A defined in [H5, 7.8].
This process does not affect the conductor, and the conductor of A;
is equal to that of A, and A is still minimal (cf. [H5, Cor.7.10], [H3,
Lemma 10.1] and the proof of [Sch, Prop.5.2]). Now we write L, for
T-YHLy,¢,, fp|J for the cusp form belonging to A; at P and Q;(P)
for the period Q(P) for Aj, ¢j(Pn,e, P) for the constant ¢(P, ., P) as
in Theorem 5.1 for A; and &y and L for Ly. Then we have, writing
Clew™™+1) = Jp?,
¥'$5°(p)°a(p, fp|T)* cy(Pa,e, Py (P)

¢/(p)6a(p> fP)2écJ(Pn,sv P)Q¢(P)
_ GEOW'(frl))Qs(P)
GEv3* W' (£r)20(P)’

D;'L/D, ' Ly(Py e, P) =
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where

Dy = [[( - ¢ 0™ (@:) (@) T Ae (V) /NT(9:))* Agi (X)),
ieJ

Dy = [T - €7 0™ (@)MT(4:))*/Aq. (X))

i€J

Here, to simplify the right-hand side of the above formula, we have
used the facts:

a(p, frlJ)¢a(p) = a(p, fp)

and
G(eqw™™ ) = G(E'7%)G(e&iw™ ™ ebrw™ (1)€Y (p)°.

Therefore, the quotient D;lL / D'J_IL J is independent of the variable
X, and hence, it is a unit in AQoI ®1 K. For any element A, B in
AQol, we write A ~ B if A/B is a unit in A®oI®1 K. By the same
argument, we now know that Dj_lLI = Df,_lLIUJ fINJ=0.IfP
is a prime factor of D;, then P is of the form:

1+X - u_2(1 + Y)z/{C/\i(T(Qi))}z log(u)/ log({q:})

with a root of unity (, and if P is a prime factor of D, then P is of
the form:

1+X— {()‘i(T(qi))}NOg(u)/log((qz)).

Thus if P is a common prime factor of D; and D!, then P is of the
form (1+X)—(u~(1+Y) for € ppeo. Let P be the set of all prime
divisor of AQ eI of the form:

(14 X)=Cu ' (14Y) for ¢ € ppo,

Then, by D 'Ly =~ Dg_lL{i}UJ, D;'L; (i ¢ J) has only singularity
at PU{X —Y}. Then we see D{_i}j}L ~ D7'Di'L & Dg_lDi'le
has only singularity at P U {X — Y}, because this fact is true for
DL and D;'L; and because D; and D’ has only common factors
in P. Now supposing that D' L has only singularity at PU{X - Y}
for all subset J with #(J) < n and all subset I disjoint from J, we
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shall prove that D;& {Z.}L 7 has only singularity at P in Case I and at

PU{X —Y} in Case Il for ¢ ¢ JU I. We know that
;Ll.l{i}LI ~ Di_lelLI = DZ-—ID;lL;U{i} forig JUI.

Since we already know that D;lL 1 and D;lL ru{i} has no singularity
outside P in Case I and P U {X — Y}, we have the desired assertion
because D; and D’ has common zeros only in P. Thus HL = DZ'L
has only singularity at P and hence by Corollary 6.3, (i), HL € AQel
in Case [ and HL € (X — Y) !A®oI in Case II.

Now let us prove that HL € A®ol even in Case II unless &'’ -1
is imaginary quadratic and A has complex multiplication by the field
corresponding to €4y’ . By Lemma 6.2 and Corollary 6.3, (i), we
know that F is prime to X — Y. Thus we only needs to prove that
L is finite at X — Y under the above condition, but this has already
been seen in Proposition 5.2. This finishes the proof of Theorem I.
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Exterior square L-functions

HERVE JACQUET AND JOSEPH SHALIKA

1. INTRODUCTION

Let 7 be an automorphic irreducible representation of G(Fn) ,
where G = GL(n) and F is a number field. The corresponding L-
group LGP is just the group GL(n,C); let p be the natural represen-
tation of degree n of LG°®. Then L(s,r, p) is the standard L-function
attached to 7, also noted L(s,n), and L(s, 7, p® p) the “convolution”
of this L-function with itself; it is also noted L(s,n x 7). In turn, the
representation

pP®p

decomposes into the direct sum
pRp=0@T,

where ¢ is the representation of GL(n,C) on the space of symmet-
ric tensors and T the representation on the space of antisymmetric
tensors. The L-function L(s, 7, p® p) decomposes accordingly into a
product:

L{s,m,p® p) = L(s,m,0)L(s, 7, T).

Now suppose 7 is self contragredient. Then L(s, 7, p® p) has a simple
pole at s = 1 ([J-S I]). Thus one of the two functions on the right
has a pole at s = 1. They cannot both have a pole, otherwise the L-
function on the left would have a double pole. Furthemore, the results
of Shahidi (see [G-S]) show that the L-functions on the right do not
vanish at s = 1; thus if one of the two functions has a pole at s =1,
the L-function on the left has also a pole and 7 is self contragredient
(13-5 ).

The self contragredient representations are precisely those which
are invariant under the outer automorphism g —?g~!; thus they can
be studied via the twisted trace formula. One hopes then to show
they are the functorial image of certains automorphic representations
of classical groups.

In this paper we discuss an integral representation for the function
L(s,n,7), that is, the exterior square L-function. In particular, if n
is even, this L-function (or rather the partial version of it) has a pole

Automorphic Forms, Shimura Copyright © 1990 by Academic Press, Inc.
Varieties, and L-Functions All rights of reproduction in any form reserved.
ISBN 0-12-176652-9
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at s = 1 if and only if certain period integrals—which are residues of
the integral representation—are non-zero. This is the main result of
this paper (Theorem 1 in Section 8).

In more detail, the representation = is attached to an irreducible
representation r of a certain large group H into “G?; for the purpose
of this heuristic introduction, we may as well take for H the Galois
group of F. Then L(s,n) is the L-function L(s,r) and similarly:

L(s,n,7) = L(s,Tor).

Now suppose that L(s, 7, 7) has a pole at s = 1. Thus L(s, 7 or) has
a pole at s = 1. This means that the representation 7 o r contains
the trivial representation of H, or, what amounts to the same, the
image of r is contained in a conjugate of the symplectic group. This
then suggests that 7 is the functorial image of some automorphic
representation 7’ of the group G’ whose L-group is the symplectic
group.

When n = 4 one can use the Weil representation to carry out this
idea; the group G’ is then the group GSp(4) and the groups G and
G’ form a dual reductive pair. A forthcoming paper with Piatetski-
Shapiro will contain the details. See also [So]. The result has been
used in an essential way in [B-C-R] I and II.

A model for an alternate approach can be found in [J]. There we
reprove a result of Waldspurger: roughly speaking, the forms on GL(2)
whose associated L-function does not vanish at one half are those
in the functorial image of the correspondance with the metaplectic
group. We use a form of the trace formula that we call the relative
trace formula. There is evidence that a similar method will work in
the present context. The advantage of such a method is that it is not
limited to the case n = 4.

An integral representation for L(s,n, 7) was discussed in [Sh] and
[G-J] for n = 2 and more recently by Patterson and Piatetski-Shapiro
for n = 3 ([P-P.S.]).

The paper is arranged as follows. Section 2 contains the combina-
torics needed to compute the local integral in the unramified situation.
Section 3 contains elementary material on certain spaces of meromor-
phic functions. It is used in Section 4 to establish convenient estimates
on Whittaker functions. We study a global integral in Sections 5 and
6. In particular it is shown that it is a product of local integrals which
are studied in Section 7. The main theorem is then proved in section
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8. Finally, in Section 9 we briefly discuss the case where n is odd. We
show that the L-function is then holomorphic at s = 1.

The authors are happy to acknowledge the support of the N.S.F. for
this work, the bulk of which was done a long time ago. They are also
grateful to the organizers of the Michigan Conference, in particular
L. Clozel, for the publication of this paper in the Proceedings of the
conference.

2. LOCAL COMBINATORICS
2.1. If B is a square matrix then
det(1 - zB)™' = > 2"Tx(SPB),
p20

where S?B denotes the p-th symmetric power of B. Now we fix an
integer n and apply the previous identity to B = /\2A, where A is an
n x n matrix and A’ means the exterior square. We have:

det(1 — zA\A) ™! = Zx”ap,

p20
where
a, = Tr(SPA’A).

The purpose of this section is to compute the numbers a,. In order

to do that we need to decompose the representation SP /\2 r, where r
is the standard representation of GL(n,C), into a sum of irreducible
representations.

To that end, we introduce the following notations: if

a; 2 as 2az... 2 4y

is an increasing n-tuple of integers, we denote by r(aj,as2,as3,...,a,)
the irreducible representation r’ of GL(n,C) having a vector e’ such
that:

r'(p)e’ = 7115215 - - tene’ |

if p is an upper triangular matrix with eigenvalues
t17t27t37"'7tn-

Such a vector is said to be dominant of weight (a;,az,as,...,a,).
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ProrosiTioN 1. With the above notations, if n is even and n = 2m,
then the representation of GL(n,C) on

SPA%r
is the sum with multiplicity one of the irreducible representations
r{ai,a1,a2,02,"  Qm,Am) ,
where
ajt+az+---+ap=panda; > az 2 ---am 20.
If n is odd and n = 2m + 1, then the representation
SPA%r
is the sum with multiplicity one of the irreducible representations
r(a,a1,a2,a2,...,0m,08m,0),
where
a1 +ay+---+anp=panda; > az > --a, > 0.

Let V be the space C™ and consider the space ®”V. Then GL(n,C)
operates on this space by the representation ®Pr. The symmetric
group &, operates on ®”V by permuting the factors of a pure tensor.
The two representations commute with eachother. In particular we
may identify A’V with the space of tensors v such that

ov = xp(o)v,

for all o in &,, where we denote by x, the signature character of &,.
Similarly, we may identify SPV to the space of tensors v such that

oV =10,

for all o in &,,.
Now the irreducible representations of GL(n,C) contained in ®?r
are exactly the representations of the form:

m=r(ay,as,...,a,)
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with
012a22~--an>0

and
ai+az+---tap,=p

We now apply these notions to the case of an even integer
2p. We regard &, as the group of permutations of the set
{1,-1,2,-2,...,p, —p} and we imbed &, x &, into &4, by the rule:

(0,7)(2) = 0(8), (o,7)(=7) = —7(5).

We denote by & the diagonal in &, x &,; it is isomorphic to &,,.
We denote by (4,7) the element of &, which permutes ¢ and j and
leaves all other elements invariant. Then we let Hy be the subgroup
generated by the permutations

(1,-1), (2,-2),...,(p,—p)-
It is isomorphic to the product

62X62X"'X62.

g

p

Clearly © normalises Hy so that H = G Hy is a subgroup. Furthe-
more, an element (0,0) may be regarded as the product of the two
elements (0,1) and (1,0), which have the same signature. It follows
that the signature character x;, of &y, is trivial on the diagonal &.
We index the components of a pure temsor in ®2%?V by
1,-1,2,-2,...,p, —p and we define a linear operator P on ®??V by

Poi®@v_1 ®u2Qu_g---Qup ®V_p)

= 27 T oen Xor(9)vg01) ® vg(-1)
Rg(2) ® Vg(-2) "+ @ Vg(p) ® Vg(—p)-

If we set

w; = —(’U,‘ Ru_; —v_; ®vi)7

2

then this antisymmetric tensor is an element of /\2V and the previous
element can be written as:

1

%S D Wh(1) @ Waez) ® W) »

hes
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so that we may view SPA%(V) as the range of P, or, what amounts
to the same, as the space of tensors v such that

hv = x2,(h)v
for all h € H. Thus we may view
Nz

as a subspace of:

SPA2V .

We denote by ey, es,... e, the canonical basis in V. Then, for every
i with ¢ < s = [§], the vector

€, =eiNeg A---Neg;
is a dominant vector in S‘A2(V). The vector (symmetric product)
is thus also a dominant vector in S? A2V, provided
2m; +4ma 4 --- + 2sms = 2p.
Its weight has the form:
(m1,m1,0,0,...) + (mge,ma, ma, mo,0,0,...) + -
It follows that the representation
r(ai,a1,a2,a2...,0m,am),
if n = 2m and the representation
r(a1,a1,02,a2 ..., Qm, A, 0),
if n =2m + 1, where
ay>ay>-+am>0anda; +as+---a, =p,

is contalned In

SPA2V.
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To complete the proof we use an argument communicated to us
by S. Rallis. Let SymA?V the symmetric algebra of A?V. Thus
GL(n,C) operates on this algebra and we have proved that the irre-
ducible representations

r(ay,a1,a2,02...,0m,am),

or
7'.(a17a'1$(12'1a2 ...,am,am,()) 1]

where
ay >2ay 2 -0y 20

occur. We have to show no other representation occurs and the mul-
tiplicity is one. To that end we let T be the vector space of skew
symmetric forms on V. We regard GL(n,C) as acting on the right on
T. We may view SymA?V as the algebra C[T] of polynomial func-
tions on T'. Let €2 be the Zariski open set formed by the skew bilinear
forms of maximal rank. Then GL(n, C) is transitive on 2. Thus if u is
any form of maximal rank and H its isotropy group in G = GL(n,C),
we may identify the algebraic varieties @ and H\G. In particular, the
restriction from T to 2 allows us to identify C[T'] with a subalgebra
of C[QY] or C[H\G].

In addition, if n is even, then Q is the affine open set where the dis-
criminant A (with respect to a basis of V') does not vanish. Thus we
may identify C[H\G] with the localization of C[T] at A. In this iden-
tification, the discriminant becomes the square of the determinant. It
follows that all representations of the form

r{a;,a1,a2,a2...,0m,am),

where
a; 2az 2+ Qm,
occur in the representation of G (by right shifts) on C[H\G]. If n is
odd, then all representations of the form
T(alaalva2’a2 >am3am$0) 3
where
ay > a2 - @yn >0

occur in the representation of G on C[H\G]. It will suffice to show no
other representation occur and the multiplicity is one. To that end
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we choose for u the form with the following matrix (with respect to
the canonical basis). If n = 2m the matrix has the form:

0 1 0 0 0 0
-1 0 0 O 0 0
0 0 0O 1 0 0
0 0 -1 0 0 0 ,
0 O 0 -1 0
If n = 2m 4+ 1 the matrix has the form:
0 1 0 o 0 0 0 \
-1 0 0 0 0 0 O
0 0 0 1 0 0 0
0 0 -1 0 0 0 0
o 0 0 0 .. 0 1 0
0 0O 0 o0 ... -1 0 O
0 0 0 o0 0 0 0 /

Let B be the group of triangular matrices in G and A the group
of diagonal matrices. Then HB is a Zariski open set in G and the
intersection of H and A consists of all diagonal matrices of the form

diag(t1, 17"ttty e ooy tms t1),
if n is even and of the form
- -1 -1 -1
dlag(tl,tl I 2T P S ,tm+1) s

if m is odd. Now suppose that 7 is an irreducible represenation of g
which occurs in

CIH\G].

Then evaluation on H provides us with a non zero linear form v on
the space of = invariant under H. Let e be the dominant vector in the
space of m. Then the matrix coeflicient (7(g)e, v) is determined by its
values on H B thus by (e, v). This already shows that v is unique, that
is, the multiplicity is one. Also (7(a)e,v) = (e,v) # 0 for a € HN A.
This forces the dominant weight to have the required form and we are
done.
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2.2. We now transcribe the previous results in terms of local integrals.
Accordingly, we let F' be a local, non-archimedean field, R its ring
of integers, ¢ the cardinality of its residual field, w a uniformizer,
and v an additive character of conductor R. Let G, be the group
GL(n), regarded as an algebraic group, and K, the compact group
GL(n,R). Let 7 be an irreducible representation of GL(n, F') with a
K, -fixed vector. Then to # is associated a certain conjugacy class A
in GL(n,C), its Langlands class. By definition:

L(s,, /\21“) = det(1 — x/\zA)—1 ,

where z = ¢~% and q is the cardinality of the residual field of F.

Let A, be the group of diagonal matrices in G,, N, the group
of upper triangular matrices with diagonal entries equal to one and
B, = A,N, the group of upper triangular matrices. Let 3 be an
additive character of F whose conductor is R. Define a character 8 of
N, by the formula:

0(u) = ] ¥(uji41) -

Assume 7 is generic. Then the Whittaker model W(r, ) is the unique
space of functions transforming on the left under 6, invariant under
right shifts, the representation of G, (F) on W(w, ) being equivalent
to 7. It contains a unique vector W taking the value 1 on K,. The
value of W on the diagonal matrix with eigenvalues

W we LW
where
a; > as >

.2 an
is
8X%(a)Tr(r(ay, az,...an)(A4)),
where &, is the module of B,. If the above inequality is not satis-
fied then the value of W on the diagonal matrix is 0 (see [C-S] for

instance).
Say n is even with n = 2m. By Proposition 1, we have:

L(s,m, A%r)
=me Z Tr(r(ai,a1,az2,a2,...am,am)(4)),

p>0 ajtaz+--+ac=p
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where it is understood that the sum is for

a1 >a3>...>2a,2>0.

This can also be written as

Z z®z% ...z Tr(r(a1,a1,02,a2,...,0m, am)(A4)).
a12a32...26,, 20

By the results we have just recalled, this can be written as an integral
of W, namely:

L(s,7r,/\2r):

by 0 0 0 0 0

0 b 0 0 0 0

0 0 b 0 0 0
/ we-1/2] 0 0 0 b 0 0
pal<t .

0 0 0 0 ... by O

0 0 0 0 0 bm

| biby ... b |* d¥b1d%ba...d" by .

If n is odd and n = 2m + 1 the formula reads:

L(s,m, \r) =
by 0 0 O 0 0 o\
0 b 0 0 0 0 0
0 0 b, O 0 0 0
/W5—1/2 0 0 0 b 0 0 0
0O 0 0 0 b, 0 O
O 0 0 0 ... 0 b, O
0O 0 0 O 0 0 0 1

| biba .. b |* d¥byd*by ... d"bm .
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3. MELLIN TRANSFORMS

In this section F' is a local field and we review elementary facts
about Mellin transforms (see also [I] Chapter I ). A finite function,
on an locally compact abelian group, is a continuous function whose
translates span a finite dimensional vector space. For instance, the
finite functions on F'* are the finite linear combinations of functions
of the form

f(z)=x(=) |z [* (log | z )",

where x is a character of module 1, u is real and n > 0 is an integer.

3.1. We first discuss the archimedean case. We set | z |p=| z | if
F=Rand |z |p= 2T if F = C. Whenever convenient, we also write:

ap(z)=lz|F .
We also sct xo(z) = @ | @ |1 if F = R and xo(x) = 2(e7)"/2 if
F = C. Then any character of F* has the form:
x(z) =]z |F x0' (%),

where s is complex and m is an integer. In the real case we may
take m to be 0 or 1, or to be an integer modulo 2. We often write
x = (s,m) and R(x) = R(s). The set of characters is thus a complex
manifold of dimension one, with two connected components in the
real case, and infinitely many in the complex case.

The Mellin transform of a function f on F'* is defined by the inte-
gral

0 = / f(@)x(a)d¥a.

If n is an integer, we also define:
foam) = [ f@p(@(og [a le)d*a.
If x = (s, m) we also write f(s,m) for f(x) and f(s,m;n) for f(x;n).

3.2. For convenience we recall the formal properties of the Mellin
transform. In the real case, we have:

if f(a) = ag(a) then f(s,m; n)=g(s+1,m+1;n).
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In the complex case, we have the following formulas:

if f(a) = agla) then f(s,min) = d(s + 5,m + Lin);

if f(a) = ag(a) then f(s,m;n) = g(s + %,m - 1;n).

We also introduce the Euler operator:
Df(a) = 2 f(ae)
B dt 4 =0

In the real case we have

df

Df(a) = az-,

and:
Ey(s,m; n) = —sf(s,m;n) - nf(s,m;n -1).

In the complex case we have

and
l/)\f(s,m;n) = —2sf(s,m;n) — 2nf(s,m;n —1).

In the real case the Lie algebra of F* is generated by the differential
operator D. In the complex case, the Lie algebra of F* (regarded
as a real Lie group) is generated by the operator D and by another
operator R, defined by:

Rf(a) = 35 flac®)

t=0

We have:

and
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3.3. We now review the analytic properties of the Mellin transform.
Let ¢ be a Schwartz function on F. Suppose F is real. Then é(s, m;n)
has poles of order (at most) n at the points —2k — m, where k£ > 0 is
an integer. Furthermore, the coeflicient of
1
(s+2k+m)n

in the Laurent expansion at —2k — m is proportional to

d2k+m¢
ez )

Now suppose F' is complex. Then (;AS(s,m;n) has poles of order n at
the points S L k, where k > 0 is an integer. Furthermore, the

2
coefficient of ]

(s+ 3+ )
in the Laurent expansion at —J%l — k is proportional to

3p+q¢
dardal 0),

where
p=k+m‘,q:k+m+.

In particular, for a, b given, there are only finitely many m for which
the functions f(s,m; n) has a pole in the strip a < Rs < b.

The function f (x;n) decays rapidly in any vertical strip. In a pre-
cise way, let P(x) be a function on the set of characters of the following
form:

P(x) = Pn(s)if x = (s,m),
where P,, is a polynomial of degree < d and d is independent of
m. Choose a norm on the vector space of polynomials of degree <
p. Suppose furthermore that the norm of P, is 0(m”) and that
P(X)f(x,n) has no pole for a < Ry < b. Then there is a constant C
such that
| P(x)f(xin) |< Cfora < Rx <b.

Indeed our assertion is clear for ¢ > 0 and P = 1, for the integral
defining f is then absolutely convergent. The general case follows
from the formal properties of the Mellin transform.
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3.4. We will need an extension of the previous remarks. Recall the
standard L-function L(x). Up to exponential factors it is given by:

s+14+m

L(x) = Lfs,m) = T(E),

if F isreal, x = (s,m) with m = 0,1. If F is complex and x = (s, m),
up to exponential factors, it is given by

L(x) = L(s,m) =T(s + %I-)

For any finite-dimensional semi-simple representation ¢ of F'* we can
define a function L(x, o) on the set of characters by the rule:

L(x,0)=1,

and
L(x,m) = L(x()L(x,7) ifo = (@ 7,
where ( is one-dimensional. We will define a certain space M{o) of

meromorphic functions on the set of characters of F'*. These functions
have the form

M(x) = L(x,9)h(x)
where h is an entire function on the set of characters. They are to

satisfy a certain growth condition which we now explain. Suppose
a < b are given. Let P(x) be a function of the form

P(X) ZPm(S),

where P, is a polynomial of degree < d. Suppose that the norm
of Py, in the space of polynomials of degree < d is O(m"). Finally
suppose that P(x)L(x,o) has no pole in the strip a < £x < b. Then
the product P(x)M(x) is bounded in a < Ry < b. Note that the
function L(x, o) belongs to M(o).

Now suppose that X is a finite set of finite functions on F*. Then
there is a representation o of F* with the following property: consider
a function of the form:

fla)=">" ¢e(a)é(a)
(eX

where each ¢¢ is a Schwartz function on F; then the Mellin transform

of f belongs to M(o).



EXTERIOR SQUARE L-FUNCTIONS 157

3.5. We are going to prove the converse. To that end we introduce a
space S(F'*) of functions on F'*. We set:

lall=lal™+]a'/?,

where | a | means the usual absolute value. Then the elements of our
space are the indefinitely differentiable functions f on F'* such that
for any p,q, N the product

ortaf
OaP0a? (a)
is uniformly bounded. We can view S(F'*) as a subspace of the

Schwartz space S(F); it is then the subspace of Schwartz functions
which are divisible by any power of a or a.

la ™

PROPOSITION 1. If ¢ is zero-dimensional then M(c) is the space of
the Mellin transforms of the functions in S(F*). If o has positive
dimension, then there is a finite set X of finite functions on F'* such
that any M in M(o) is the Mellin transform of a function f of the

form:

fla) =3 ¢c(a)€(a),

£eX

where each ¢¢ is a Schwartz function on F'.
Consider first the case of a zero-dimensional representation. A func-
tion M in the space is then entire and the Mellin transform of a
bounded continuous function f on F*. The product of f by any
power of a, positive or not, has the same property. Also, by the for-
mal properties of the Mellin transform, f is differentiable on F'* and
Rf and Df have the same properties as f. It follows that f is in
S(F*). Note that given any character x we may write f in the form
f = ¢x where ¢ is a Schwartz function.

Now we prove the proposition by induction on the degree d of o.
We have proved our assertion for d = 0. We assume it is true for a
representation of degree less than d and prove it for a representation
o of degree d. We write 0 = xo @ 7 where xp is one-dimensional. At
a pole of L(xxo) a function M in the space has a pole of order at
most d. We claim there is a sequence of smooth functions of compact
support on F', say ¢; with 0 < j < d, such that the Mellin transform

f(x) of the function

fla) = Z ¢i(a)xo(a)(log | a |F)’
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has the same polar part as M, at all poles of L(xxo). Indeed, by the
analytic properties of the Mellin transform, the required properties
of f are equivalent to a triangular sytem of linear equations for the
derivatives of the functions ¢; at zero. However, by the Borel lemma,
these derivatives are arbitrary. The existence of the functions follows.
Now the difference M — f(x) is then in L(7) and our assertion follows
from the induction hypothesis (and the remark that the functions in
S(F*) can be written in the above form for any X).

3.6. We will need a complement to the proposition. We will write
Ro > a if all the one-dimensional components x of ¢ satisfy Ry > a.

PROPOSITION 2. Suppose that the Mellin transform of a function f is
in M(o). Suppose furthemore that f(x) is holomorphic for ®s > 0.
Then f(x) is in some space M(r) with R7 > 0. Furthemore, we can
write f in the form

f(a) = 3~ 65n(@)xi(a) log(l a D},

where the sum is finite and Rx; > 0.
It is easily verified that there is 7 with 7 > 0 such that

fO0) = Lx,7)h(x) »

where h is entire. Let us check that f belongs to M(7). We only
need to verify the required growth condition is satisfied. Accord-
ingly, let us consider a,b, P(x) satisfying the conditons of 1.4. for
the representation 7. In particular P(x)L(x,7) has no pole in the
strip a < Ry < b. Let Q(x) be a polynomial function of x, equal
to one in almost all connected components, such that the product
P(x)Q(x)L(x, o) is holomorphic in the same strip. Then the product

FOOP(X)Q(x)

is uniformly bounded in the same strip. At the cost of slightly enlarg-
ing the strip, we may assume that L(x,7) and L(x, o) have no pole
on the boundary of the strip. Choose C' > 0 so large that Q(x) has
no zero for Jx >| C' |. Then Q(x) is bounded below in the following
three regions

Ix2|C,
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Ry =a,

Rx=0b.
Thus the product

FOOP()

is uniformly bounded above in the same regions. By the maximum
principle, it is then uniformly bounded in the whole strip.

The remaining assertion of the proof is a consequence of the proof
of the previous proposition.

3.7. We now discuss a multivariate generalization. Accordingly, let
r be an integer and o1,09,...,0, a sequence of representations of
F*. We define a space of meromorphic functions M in the variables
X1,X2,---,Xr- Lhey have the form:

HL(vagj)h(XlaXQa" '7XT‘)’
J

where h is entire. They satisfy a condition of decay in a multi-strip
which we now describe. For 1 < j < r, let a; < b; and let P; be
a function on the set of characters which satisfies the condtions of
section 1.4 with respect to a;,b;,0;. Then the product

MPP,---P,
is bounded in the multistrip:
a; <Rx; <b;.

We denote this space by M(o1,02,---0,).
We will consider the multivariate Mellin transform of a function f
on (F*)". It will be noted

f(XhX?r-er)-

Suppose that X is a finite set of finite functions on (F*)". Then
we can choose finite-dimensional representations o;, 1 < j <r, of F'*
with the following property. Consider a function of the form:

F= ¢,
fex

where the functions ¢¢ are Schwartz functions on F'". Then the Mellin
transform of f is in M(o1,09,---0,).
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3.8. We wish to prove the converse:

ProPOSITION 3. Given representations gy, 09,---0, of F'* there is
a finite set X of finite functions on (F*)" such that any element of
M(oy,09,--0,) Iis the Mellin transform of a function f of the form:

f=Z¢§€7

feX

where the functions ¢, are Schwartz functions on F".

In order to prove the proposition conveniently we introduce certain
spaces of functions. If G is an algebraic linear group, we define a norm
on G to be any function of the form || g || + || g || ~! where || g || is the
norm in a faithful finite dimensional representation. We will denote
by || g || such a function. Following Casselman ([C]) we will denote
by S(G) the space of indefinitely differentiable functions f on G(F)
such that, for any left-invariant differential operator D on G(F') and
any N, the product

g 1Y (Df)g)

is bounded. We remark that in the definition we may replace left-
invariant operators by right-invariant differential operators. We will
apply these notions to the abelian groups (FX)? x FTJ. If j = 0 the
space we just defined is simply the Schwartz space S(F"). In general
the space S((F*)? x FT7) may be viewed as a subspace of S(F").

The proposition will be a consequence of the following more precise
proposition:

PROPOSITION 4. Suppose 01,02, --0, Is a sequence of representa-
tions of F'*; suppose further that the first j representations are zero-
dimensional and the others are not. Then there is a finite set X of
finite functions on F"~J such that any element of M(c1,09,--0,) is
the Mellin transform of a function f of the form:

F=Y &,

EeXx

where the functions £ are regarded as functions on (F'*)" depending
only on the last r — j variables, and the ¢, are in

S((F*)? x FT79),
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The proof is by induction on r. We have proved the assertion of
the proposition for r = 1. We assume r > 1 and the assertion true
for r — 1 and prove it for r. Next, we remark that the assertion of
the proposition is elementary for j = r. We therefore assume 7 < r
and the assertion true for j and we prove it for j — 1. Let Y be a
finite set associated with M(0,0,...,0,0j41,---0,). A function f on
(F*)" will be written as a function of two variables f(aj,b) where
bis in (F*)""!. Similarly, a function M of the set or r-tuples of
characters will be written as M(x;, p), where p is an (r — 1)-tuple of
characters. Finally, the functions n in Y will be viewed as functions
n(b) depending only the last r — j coordinates.

We shall first prove there is a finite set Z of finite functions on F'*
such that for any M in M(oy,02,---0,), there exist functions ¢¢ , in
S(F*j —1x Fr—3+1) with ( € Z and n € Y, such that the difference
between M and the Mellin transform of

> beam(ass b)¢(as)n(b)

¢

has no singular hyperplane of the form x; = (z,p). To that end we
consider, as before, a one-dimensional representation yo contained in
o;. Then the poles of L(x;,0;) which are poles of L(x;xo) have order
< d. We claim there is a function f of the form

flazb) = Y bim(a;,b)xo(a;)(log | aj [F)Yn(b),
0<j<dney
with ¢; , as above, such that the difference between M and the Mellin
transform of f has no singular hyperplane of the form x; = (z,p),
where (z,p) is a pole of L(x;xo)-

Let us show the existence of such an f, say in the complex case.
After a translation, we may assume xo = 1. Consider a pole (z,t)
of L(x;). Thus z = —k— | t | /2 where k > 0 is an integer. For
x; = (8,t) we claim we can write:

h.
M(x;0) = 3 (;%§§%; + 9(x);
1<j<d

here ¢ is a meromorphic function of the form

| J RIS ALY

k>j
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where h is entire but g does not have the hyperplane x; = (z,p) as a
singular hyperplane; the h; are in

M(0,...,0,0j41,...,0.).
N e’

j-1

The Weirstrass division theorem shows the existence of g and the h;,
except for the growth condition that the h; have to satisfy. However
the h; may be obtained as residues, thus by integration over a compact
path, and that can be used to prove the required estimates. Of course,
outside the connected component defined by the integer ¢ the formula
is to be interpreted as saying that g = M. By the induction hypothesis
for r — 1, each hj; is the Mellin transform of a function of the form:

Y Yia(®)n(b),

n€yY

where each function v;, is in the space
S((F*Y =1 x Fr9).,
The condition required of the ¢; , is simply that the derivatives

8p+q¢j’n

where
p:k+t_aq:k+t+v

satisfy a triangular system of linear equations, with right hand side
expressed in terms of the 9, ,. The relative Borel lemma shows that
the system can be solved.

Repeating the argument for each character contained in o, we can
prove there is a set X of finite functions on (F*)"~/*! and a function
f of the form prescribed by the proposition such that the difference
M — f has no singular hyperplane of the form x; = (z,p). The
difference M — f is then in some space

«yUnp

M(0,...,0,0%,4,...,07),

j
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where the representations o; are determined by the finite sets ¥ which
appear in the proof. Indeed it is clear these differences have the form

H L(Xk» O';C)h s

k>j

where h is entire. To prove they satisfy the required growth condition
we use the maximum principle (in one variable) just as in the proof
of Proposition 2. Finally we may apply the induction hypothesis for
j to the differences; thus they have the form:

> éc(a)(a)
¢

where the ¢¢ are in S((F*)? x F"~7) and the ((a) are finite functions
depending only on the r — j last variables. To conclude we simply
remark that every function ¢ is divisible by an arbitrary character
depending only on a;.

3.9. Just as in the case r = 1, we can prove that if the Mellin tranform
of f is in one of the spaces M and this Mellin transform is holomorphic
in the multi-half-plane defined by ®x; > 0 for all j, then the Mellin
transform of f is in a space M(01,09,...,0,) with Ro; > 0 for each
7. Furthermore, we can choose the finite functions in the expression
for f to be products of logarithmic terms with characters whose real
parts are positive. In particular, f is then square-integrable on the
group (F*)".
We will prove a (partial) converse:

PROPOSITION 5. Suppose that the Mellin transform of f is in one of
the spaces M. Suppose further that f (resp. the product of f and any
polynomial in aj,a; if F is archimedean) is square-integrable on the
group (F*)". Then f is holomorphic in the multi-half-plane defined
by the inequalities:

Rx; > 0forallj.

For simplicity, let us prove the proposition in the complex case. We
set

g=1frf.
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Then g has an expression of the form:

Y

where Y is a suitable set of finite functions and the ¢, are Schwartz
functions. In particular, § belongs to another space M. We choose
an integer z > 0, larger than the opposite of the real part of the char-
acters appearing in Y. Then § is holomorphic in the product of the
half-planes Rx; > x. We claim that the integral defining the Mellin
transform of g converges absolutely in the product of the following
half-planes:
Ry >0, Ry; > forj # 1,

uniformly in any multistrip of finite width. To see that we decompose
the integral into the sum of two integrals, one over the set | a; |[> 1
and the other over the set | a; |[< 1. The first integral is finite because
of the choice of  and the decomposition of g. In the second integral,
the factor x;(a;) is bounded by one. The second integral is thus finite,
because the product of f by any polynomial is square integrable. Since
g is in some space M, this implies that § is actually holomorphic in
a product of half-planes of the form

Rx1>—c, Ry;>zforj#1,

with ¢ > 0. It follows from Hartogs'lemma that § is actually holo-
morphic in a product of half-planes of the form:

Rx; > —cforall 7,

with ¢ > 0. We will show that f (x) is holomorphic in the product of
the half-planes defined by

C
Ry; > —=
Xi> =35

which will prove the proposition.
To that end, we fix a character  of module one, we set

u= (uj)’

and we consider the function

fu(@) = f@ ] a5 1% n(a).

J



EXTERIOR SQUARE L-FUNCTIONS 165

Suppose z is larger than the opposite of the real part of the characters
appearing in the decomposition of f. Then for Ru; > = and p of

module one, f,(p) is defined and is a square-integrable function on
the set of characters of module one. Let us denote it by h,. Let 'H
be the Hilbert space of the square integrable functions on the dual
group of (F*)". Then u — h, is an holomorphic function of u, in the
product of the half planes Ru; > x, with values in H. It will suffice to
show it extends to an holomorphic function, with values in the same
space, in the product of the half planes ®u; > —5 For then, by a
lemma of Warner and Osborn ([0O.W.], Theorem p.113) the Mellin
transform f(a*n;) will be holomorphic (as a scalar function), in the
same domain.

At this point let us assume r = 2. The general case is only nota-
tionally more difficult. Let a and b be complex numbers with Ra > z
and ®b > z. Let P and @ be the largest discs of center a and b
contained in the half-plane ®s > —£. Consider the scalar product
B(uy,ug : vy,v2) = (hy, hy). A priori, it is defined for

Ru; >z, Rv; > .

However, it can expressed in terms of the Mellin tranform of g and
has thus an analytic continuation to the product of the half-planes

c c
%uj>—§,§}ivj>—§.

In the polydisc P x P x @ x @ we have therefore a convergent power
series:

Z (u1 — a)'(v2 — a) /(ug — b)*(vy — @)
BRPT
Hi+ith+l
Oul 8v7 1 9uk 605 ¢

A fortiori, the series

B

uy=a,vy=b,us=a,vy=b

an-}-m

ul—a"uz—bm2
ZI( 72( )"

[ [—
1212 Juloul’ “lur=a,uy=b

converges absolutely in P x Q. Then the series

ufur ontm bl
Z nlm! Juloul} vlur=a,uy=b

n,m
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converges absolutely, in the space H, for (uy,us) in P x Q. This does
imply that h, has an holomorphic extension to the product of the half
planes Ru; > —£ and Ruy > —5. So we are done.

3.10. Let us say a representation 7 of F'* is generic if it has form:

= @ni,

where the functions L(xx;) have no common pole. If 7 is generic, let
X be the set of finite functions of the form x;(a)log(] a |r)* with
0 < k < nj. Let also Kx be the space of functions of the form:

> e,

£eX

where the ¢, are Schwartz functions. Then the Mellin transform
defines a bijection of Kx onto M(7).

Let 71, 72,...,7, be a sequence of generic representations and X;
the corresponding sets of finite functions. Let X be the functions on
(F*)™ which are products of functions in the sets X;. Finally, let Kx
be the set of functions of the form:

> 4k,

(e X

where the ¢ are Schwartz functions. Then the Mellin transform
defines a bijection of K x onto the space

M1, Ty oy Tr)

The space Kx is a quotient of a direct sum of finitely many copies of

the Schwartz-space
S(FT).

As such, it has a natural topology. The space M(71,72,...,7,) has
also a natural toplogy, imposed by the condition of growth at infinity.
The closed graph theorem shows the bijection is an homeomorphism.
We also remark that, in the decomposition:

= ¢,

£eX
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the functions ¢¢ may be chosen to depend continuously on f. More
precisely, the space Kx is a closed direct factor of a direct sum of
copies of the Schwartz-space S(F7).

We remark that if L(xx1) and L(xx2) have a common pole, then
one of the two functions is equal to the product of the other by an
entire function. It follows that, given o, there is a generic representa-
tion 7 such that L(x, o) = L(x, 7)h(x) where h is entire. Then M(c)
is contained in M(7). Similarly, given 01,09, ...,0, there are generic
representations 7, 7s, ..., 7, such that M(oy,09,...,0,) is contained
in M(71,72,...,7).

3.11. We need a complement to Proposition 5. If o is a representation
of FX, let us write R0 > a if all the one-dimensional components
of o satisfy Rx > a. Similarly, if € is a finite function on F'* let us
write RE > a if all the character components of € satisfy the same
inequality.

PROPOSITION 6. Suppose that 1,09,...,0, Is a sequence of generic
representations of F'*. Then there are finite sets of finite functions
X;, 1 <j<r, with RX; > 0 and the following property. Let X be
the finite functions which are products of the functions in the X;. Let
f be a function whose Mellin transform f 1$In 01,09, ...,0,; Suppose
[ is holomorphic in the product of the half-planes Rx; > 0. Then f
can be written in the form:
= ¢,

(eX

where the functions ¢¢ are Schwartz functions.
As in the one-dimensional case, we first prove that the Mellin trans-
form of f is in a space:

M(, 7oy 00y Tr)

with 7; > 0. Then we use Proposition 4 (or rather its proof). We
remark that we may choose the ¢¢ to depend continuously on f.

3.12. The previous definitions extend to the case of a non-archime-
dean field F. Every character x has the form:

x(a) =l a|* xo(a),
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where u is real and xp has module one. We write u = Ry. We define
the function L(x) by:

if x is ramified and
Lix)=(1-¢)7",

if x(a) = a(a)®. Here « denotes the absolute value and ¢ the cardi-
nality of the residual field. We can then define the functions L(x, o)
as before. If 01,09,...,0, is a sequence of finite-dimensional repre-
sentations of F'* we can define the space:

M(o1,09,...,0.).

It consists of all functions m of the form:

HL(Xj,Uj)h(Xl,X2""’Xr);

J

here h vanishes on all but finitely many connected components and,
for each x1,x2,--- Xr

h(Xlasl 7X2a82,' .- ,Xrasr)

is a polynomial in the variables

—S1 —$1

7q ?"'?q

—8r

q

and their reciprocals. Finally, the space S((F*)? x F"~7) is simply
the space of locally constant functions of compact support on (F*)7 x
Fr=i,

All the previous propositions extend to the non-archimedean case.
We leave the proof to the reader.

4. ESTIMATES FOR THE WHITTAKER FUNCTIONS

In this section we let F' be a local field and ¥ a non-trivial addi-
tive character of F.. We derive the estimates that we need for the
Whittaker functions. We use in an essential way results and ideas of
Casselman and Wallach ([C], [W]I, [W]II). In a precise way, we let 7
be an irreducible unitary generic representation of G,.(F') = GL(r, F).
We denote by K, the standard maximal compact subgroup of G.(F),
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by V the space of smooth vectors for 7 and by V; the space of K-
finite vectors in V. We let 6 be the character of N.(F') defined by

6(n) = [[¥(nii+1) -
There is a linear form A # 0 on V such that for any v € V:
A(m(n)v) = 6(n)\(v) for n € N.(F).
We denote by W(m, ) the space of functions of the form:
W(g) = A(n(g)v),

with v € V and by Wy(7, ) the subspace of those W for which v is
in Vy.

We also denote by A, the group of diagonal matrices, by B, the
group of upper triangular matrices, by N, the group of upper triangu-
lar matrices with unit diagonal and by Z, the center of G,.. Let w be

the central character of #. In what follows, we will consider functions

on G.(F),B.(F) and A,(F) which transform under the character w.
The matrix

a = diag(aiasas-+-a,_1,02a3 - -Qr_1,...,Gr_28r_1,Qr_1, 1),

will also be denoted

m{ai,azy...,0p_1).

Note that that «;(a) = a;, where a; denote the simple roots of A,
with respect to B,.

4.1. PROPOSITION 1. Fix an irreducible unitary representation T.
There is a finite set X of finite functions on F™~! with the following
property: for any W in Wy(r, ¢), there are Schwartz-Bruhat functions
in v — 1 variables, ¢¢ , £ € X, such that:

W(a) = Z ¢f(a1$a2a .. 'aar—l)f(alva23- .. 7ar—1)7
Eex

for
a =m(ay,as,...,ar_1).
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We will prove this result in the complex case. The proof in the real
case is similar. The non-archimedean case has already be treated in
[J-P-S] (Proposition 2.2).

Fix an index 1 < j < r and let P be the parabolic subgroup of type
(4,7 —j)- Let U be its unipotent radical, u the Lie algebra of U (as a
real Lie-group), M the standard Levi-factor of P, m the Lie algebra
of M. Then the group A; of matrices of the form:

diag(aj,aj,aj, <.y Qj, 1, vy 1)
N————
J

is contained in the center of M. The lie algebra of A; is generated by
the following elements:

H; = diag(1,1,...,1,0...,0)
R',_/
J
and )
K; = -diag(4,4,...,1,0...,0),
3 \_N__/
j
where ¢ = v/—1. The Lie algebra m operates by an admissible rep-
resentation on the quotient Vy/uVy ([W] II 4.1). In particular, there

is a finite set X of complex numbers and an integer n such that any
vector v in the quotient can be written as a finite sum

V= E Vg,

where

(Hj —z)"vy =

Similarly, there is a finite set M; of integers such that any v can be
written as a sum of eigenvectors of K; with eigenvalues m € M;.
Let W be in Wy(7,1) and ¢ the function on (F*)"! determined
by )
¢(a1,a27 LR 7a1'-1) = W(Cl) 3
where, as above,

a=m(a;,az,...,ar-1).

We have
H;W(a) = Dj¢(ay,aq,...,ar_1),
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where D; is the Euler operator:

o _ 0
D] = GJ%; + (],Ja—a; .
Similarly:
0 0
I(JW((I) = EC—L; (al,ag, e ,ar_l) - B_quﬁ(al,ag, e ,a,._l) .

Finally, suppose that « is a root whose root space is contained in
u. Then for any X in that root space, we have XW{(a) = 0 unless «
is the simple root «j. On the other hand, there is a basis X,Y of the
root space for «; such that:

XW(a) =a;W(a) and YW (a) =a;W(a).

Let K be the space spanned by the functions ¢ corresponding to the
functions W. Thus K is a space of C*-functions on (F*)"~!. The
previous observations have the folloing consequences for the space K.

It is stable under the action of the operators D; and R;, and under
multiplication by a; and @;. Furthemore, for each j we can write each
element ¢ of K as a finite sum

¢ = Z bz,
z€X;

where ¢, has the following property: there are two elements #; and

85 of K such that
(Dj — .’lt)nd)x = ajal +Ej02 .

Every ¢ can be written as finite sum of eigenvectors for R;. Suppose
that ¢ is an eigenvector with an eigenvalue not in the finite set M;.
Then there are two elements #; and 6, of K such that

¢ = Clj91 + 6192 .

As before, we denote by || g || the norm of g in a faithful represen-
tation of PGL(r,C). Then, ([J.P.S.] lemma 8.3.1), there is N > 0
and for any W € W(w,v¢) a constant C such that

[W(g)I<Clgl" .
It follows that any ¢ in K is bounded by a multiple of

11 +aja; + (a;3)7"]"
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4.2. Let us check that the previous properties of K imply that the
Mellin transforms of the functions in K belong to one of the spaces M
defined in the previous section. This will establish the proposition.
Indeed, applying the previous majorization to the product of a func-
tion ¢ in the space by a suitable power of the a;a;, we see that each
¢ is majorized, for each M > 0 by a constant multiple of a product:

[T ma(a)(aa) " + ma(aj)(asa) =]

where my, mo is a partition of unity on F* with m; = 1 near 0.
Consider the multivariate Mellin transform of a function ¢ in X. The
previous majorization shows that the Mellin transform is defined by
a convergent integral in a product of half-planes of the form Ry; >
A. Furthermore the Mellin transform is bounded in any product of
vertical strips of the form

A<ajS§RXijj.

Finally, the Mellin transform vanishes in all but a finite number of
connected components.

Fix an index j. We are going to fix the characters yj for k # j
and study the Mellin transform as a function of x; = (s,m). We will

suppress the other variables from the notation and write ¢(s,m) for
this Mellin tansform. We see that any ¢ in the space can be written

as a finite sum
¢= > ¢,
TEX;

where the Mellin transform of each ¢, satisfies a difference equation:

- - 1 ~ 1
(25 4+ )" Pz (s,m) =0 (s + §,m+ 1)+ 02(s + 3 Mm 1),

where the 8; are in K.

On the other hand, we may assume the finite set M; contains 0 and
furthermore that —M; = M;. Now suppose that ¢ is an eigenvector
of R; with an eigenvalue not in M;. Then we have :

qg(s,q) = O unless g = —m,,

and ) )
é(s, —m) =0 (s + E,l—m)—f-él(s-{- 5,—1 —m),
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where ; is an eigenvector with eigenvalue m+1 and 6, an eigenvector
with eigenvalue m — 1. An easy inductive argument shows that the
Mellin transform of ¢ has the form

q@(s, -m) = H ['(2s+z+p)"H(s),
z€X;

where n is the distance from m to the set M; and H is entire. It is
then easy to show that there is a finite-dimensional representation o;
of F* such that, for each ¢ € K,

d;(s, m) = L(x;,0)H(s,m),

where H(s, m) is entire. In fact H depends on all the variables x4 and,
as such, it is holomorphic in the region defined by the inequalities:

Rxr > A for k#£7.

Applying this result for all j and Hartogs’ theorem we conclude that
for each ¢ € K the Mellin transform ¢ is the product of

HL(XJ’Uj)

and an entire function.

It remains to check that the Mellin transforms satisfy the growth
condition which defines the space M(o1,09,...,0,-1). Here the
Mellin transforms vanish on all but a finite number of connected com-
ponents of the space of (r — 1)-tuples of characters. Thus, we need
only check that for x; = (s;,m;) with m; fixed, the following cond-
tion is satisfied: for each j, let P;(s;) be a polynomial such that the
product

P;(s;)L(x;,05) ,
is bounded in the strip a; < Rs; < b;; then for each ¢ € K the

product
¢ Pilss)
J

is bounded in the product of the strips. This is certainly so for P; =1
and A < Ra;. The general case follows from the recurrence relations
satisfied by ¢.
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4.3. We now assume F is real or complex. The previous results ex-
tends to the larger space W(m,v). We sketch a proof; the method is
due to Casselman.

At the cost of enlarging the space M(o1,0,...,0,_1), we may
assume that the representations o; are generic (see 3.10). We let
X; be the finite set of finite functions attached to o; and X the set
of finite functions on (F*)" which are products of functions in the
various X;. We also let Vx be the space of linear combinations of
functions in X. It is invariant under translations.

Recall we have fixed a character w of the center of G,.(F). If Vis a
space of functions on (F*)"~! invariant under translations, we define
a representation of B,.(F) on V as follows: the center operates by w;
a diagonal matrix b of the form

b= m(bl,bz,. .. ,b,-_l)
operates by translations:
bf(al,az’ s ’ar—l) = f(a'lblva‘Zb?’ s $ar—lbr’—1) .

A matrix n in N.(F') operates by multiplication:

nf(ay,az,...,6,-1) = f(al,ag,...,ar_l)Hw(ajn]-’jH).

We may view V as a space of functions on A,.(F') transforming under
w. The group A.(F) operates then by translations on V and the
previous representation is formally a representation induced to B,(F')
by the character 6.

For instance, we can take for V the space of Schwartz functions, with
w trivial. It is then easy to see that the corresponding representation
is continuous and differentiable. Furthemore, it satisfies the condition
of slow growth introduced by Casselman ([C]): let as before || g || be
a norm on PGL(r, F), that is, the norm of the matrix g in a faithful
representation of PGL(r, F'). Then, for any continuous semi-norm 3
on V, there is an integer N and a constant C such that:

Blgv) < C |l g|I¥ B(v),

for any v € V.
We may also view Vx as a space of functions on A.(F), trans-
forming under the character w. We have then a finite dimensional
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representation of B.(F) on the space Vx, the diagonal matrices op-
erating by translations and N,.(F') operating trivially. Clearly, this
representation satisfies the condition of Casselman. The same is true
for its tensor product with the previous representation.

Now let K be the space of functions of the form:

> ek,

£eX

where the ¢ are Schwartz functions. We may view K as a quotient of
the tensor product V ® Vx, with the quotient topology. In particular,
the representation of B,.(F') on K satisfies the condition of Casselman.

Next we consider the space U of all smooth functions f on G such
that, for any k € K, and any X in the Lie algebra of K., the function:

b (f * X)(bk)

belongs to K. Because K is a closed direct factor of the tensor product
V ® Vx, it is easy to see that any element f of {{ has the form:

F=>fe,
¢

where
fe(nak) = 6(n)de(a, k)é(a),

and the functions ¢, are in the space S(F™~! x K.) (viewed as a space
a functions on A, x K, ); in addition the functions ¢, verify:

¢¢(ah, k)E(h) = ¢¢(a, hk)

for h € A, N K,. We can view U as a space of smooth functions
from K, to K. As such, it has a natural topology. Furthemore, the
space U is invariant under right translations and the representation
of G.(F) on U is differentiable and satisfy the slow growth condition
of Casselman.

By construction the space Wy(m,¥) is contained in Y. Let U be
its closure. By the usual argument, each element W of Wy(r,v) is
an analytic vector in U. Thus its right translates also belong to U,
and it follows that I, is invariant under right translations. Thus it
is a smooth representation of slow growth, infinitesimally equivalent
to m. By a fundamental result of Casselman and Wallach ([C]) U/ is
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homeomorphic to the space of smooth vectors for m. It follows that
Uy = W(m,v). We have thus proved the following proposition:

PROPOSITION 2. For each j there is a finite set C; of characters, and,
for each x in the set C;, an integer n, with the following property:
let X; be the set of finite functions of the form x(a)(log | a |F)™ with
x € Cj andn < nj and let X be the finite functions on (F*)"~! which
are products of functions in the X;. Then for any W in W(r, ) there
are functions ¢¢ in S((F™1) x K,.) such that:

W(g) = Z¢E(alaa2a'-"ar—hk)f(al,a@’---7ar—1)
4

for g = ak and
a=m(ay,az,...,ar-1).

4.4. Let us go back to the case where F is an arbitrary local field.
Let 6, be the module of the group B.(F). We may view the function
8-—1 as a function on A.(F) invariant under the center. Recall ([J.S.
I] 3.8) that for any W we have:

v|(8 )]

Suppose W is K,.-finite and consider the function:

2
dg < +00.

/1vr_1<F>\Gr_1<F)

(alaa'Qa R 70’7‘—1) = 6:_11/2(a)W(a) ’

where
a=m(ay,az,...,qr-1).

Then this function is square-integrable on the group (F*)"~1. More-
over, if F' is archimedean, replacing W by appropriate transforms of
W under the Lie algebra of N,.(F'), we see its product by any polyno-
mial in a;,@; is also square-integrable. Then by Proposition 5 of the
previous section, the Mellin transform of this function is holomorphic
in the product of the halfplanes

Rx; > 0.

It follows that the same is true for an arbitrary W. We now appeal
to Proposition 6 of the previous section (or rather to a version of this
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proposition with parameters). After a change of notation, we arrive
at the following proposition:

PROPOSITION 3. For each j there is a finite set C; of characters with
positive real parts, and, for each x in the set C;, an integer n, with
the following property: let X; be the set of finite functions of the
form x(a)(log | a |F)™ with x € C; and n < n; and let X be the finite
functions on (F*)"~! which are products of functions in the X;. Then
for any W in W(r,v) there are functions ¢¢ in S((F™™!) x K) such
that:

W —51/2 Z¢§ ai,az,. ar—hk)g(al»ab"-’ar—l)

for g = ak and
a=m(a,as,...,ar_1).

5. GLOBAL MAJORIZATIONS

The results of Section 2 suggest the existence of a global integral
representation for the exterior square L-function. We discuss it in this
section and the next.

We let F' be a number field, ¥ a non-trivial additive character of
Fa/F. We consider an automorphic unitary cuspidal representation
7 of GL(r,Fa). We demote by w, its central character and we let
¢ be a form in the space of 7. Finally, we let x be an idele-class
character of F', of module one.

5.1. From now on we assume r = 2n is an even integer. The case of
an odd integer is treated in section 9. We let P,,_; , be the parabolic
subgroup of type (n —1,1) in G, = GL(n), A, the group of diagonal
matrices, B, the group of upper triangular matrices, IV,, the group
of upper triangular matrices with unit diagonal and Z,, the center of
G . We consider the group V;, of matrices of the form:

v = 1, X
[ O R P A
where X is in M, the ring of n X n matrices. Then

6(v) = ¥(TrX)
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is a character of Vy(Fa) trivial on V4(F), fixed by the conjugation by
elements of the form:

(g 2>,g€Gn(FA).

We let @ be a Schwartz-Bruhat function in n variables. We define
an Eisenstein series on G,, as follows. We first set:

£0,) = [ 0letg) 111" xPaon(t) ¥t x(detg) | detg

A

where

Then we set:

E(g,s) = Zf g, s

the sum over P,_1 »,(F)\G,(F).
The integral we want to consider is then:

I=I(S7X?¢7®)7

://¢[U<g 2)]0(v)dvE(g,3)d9;

the integral in v is over Vp(F)\Vo(Fa) and the integral in g over

Gn(F)\Gn(FA)/Zn(FA) .

In this section, we establish the various majorizations which will be
needed to show that I is an Eulerian integral.

where

5.2. We first prove the integral I converges for all s. To that end we

R G [CH)]

where X is in a compact set, g in a Siegel set of G,(Fa)/Zn(Fa). We
may as well assume
g=am,
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where m is in a compact set and a is a diagonal matrix of the form:
a = diag(a;,az,...,0n-1,8n);

here the a; are ideles whose finite components are one and whose
infinite components are all equal to some postive real number; fur-
thermore:

t; =| a;faiy1 |[> ¢ and a, =1,

where ¢ is a constant. We write
X=Y+72,

where the last column of Y is 0 and all columns of Z are 0 except the
last one, the entries of which we denote by z1,29,...,2,. Then the
previous expression can also be written:

(5 1) (5 0) (o a2 )

where m is another matrix in some compact set. The non-zero entries
of a=!Za are the quantities

-1 -1 -1
a; 21,09 22,...,0,_12pn—-1,%n -

They remain in a compact set. Thus the above expression has the

form:
af(3 )]

where m is again in a compact set and h is a matrix in G,._; with
determinant equal to (deta)?. For all N > 0 this is majorized by a
constant multiple of

inf(| deth ||| deth |V)
([J-S] II p.799) hence by a constant multiple of:

tl—th2—4N o tr—lg(ln—l)N .
Since the Eisenstein series is slowly increasing ([J-S] I Lemma (4.2))
this estimate implies the convergence of the integral I.
As a consequence, the singularities of the integral are those of the
Eisenstein series. We will study the behavior at s = 1. We recall the
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properties of the Eisenstein series ([J-S] I §4). The Eisenstein series is
holomorphic at s = 1 if x"w, # 1. If on the contrary x"w. = 1, then
the Eisenstein series has a pole of order (at most) 1 with a residue
proportional to

®(0)x(detg) .

This implies at once the following result:

ProposITION 1. The integral I is holomorphic at s = 1 if x"w, # 1.
If on the contrary x"w, = 1, then the integral I has a pole of order
(at most) 1 with residue proportional to

//¢[v( 0 2 )]B(U)dvx(detg)dg;

the integral in v is over Vo(F)\Vy(Fa) and the integral in g over
Gr(F)\Gn(Fa)/Zn(Fa).

We remark that our estimates also implies the convergence of the
integral in the proposition. We also remark that similar results are
true in the function field case.

5.3. In order to show that I is an Eulerian integral which represents
the exterior square L-function we introduce auxiliary subgroups and
integrals. For 0 < a < n we denote by P, , the parabolic subgroup of

type
(a,l,l,...,l)

n—a

in G, and by U, , its unipotent radical. We also denote by p, , and
U, , the Lie algebras of these two groups. We remark that p, , is ac-
tually an associative algebra (for the ordinary matrix multiplication)
and u, , an ideal in this algebra. In particular, P, = By, = B,
and Uy, = Uy, = N,,. Also P, , = G,, and U, ,, = 1. The notations
Pon,Uan, Pa,ns Ua,n denote the opposed subgroups and subalgebras,
that is, the images under transposition. If 0 < &k < n we will often

identify G with the subgroup of G, formed of the matrices of the

typE:
0 17L—k‘ ’ ko
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Similarly, we can view P, i and U, 4 as subgroups of GG, and g and
U, i as subalgebras of M.
For 0 < j < n— 1 we will denote by V; the subgroup of G, of

matrices of the form
_ ny oy
v= ( t no ) ’

n1,n2 € Un—jn, Y € Pa—jin, L€ Un_jn.

where

We will denote by Ts(t) the sum of the entries of the matrix ¢ which
are just above the diagonal. Then

6(v) = $(Tx(s) + Ts(t))

is a character of V;(Fp) trivial on V;(F).

The group V; is the group introduced previously. The group V,,_;
is a maximal unipotent subgroup. In fact let 0 € &5, be the permu-
tation which changes the sequence

(1,2,3,...,n,n+1,n+2,n+3,...,2n)
into the sequence
(1,3,5,...,2n —1,2,4,6,...,2n).
We also denote by o the corresponding permutation matrix. Then:
Nop =0V,_1o07 L.
Furthemore o transforms the character 8 of V,,_; into the character

8 of N, defined by:
0(u) = [ w(ujj+1) -

We consider the following integrals:

we [ [l (s 2)(85)]
0(v)dvp(TrX )dz f (g, 5)dg .

Here v is integrated over

Vi(FO\Vi(Fa),
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and X is integrated over
Prjn(FA)\Mn(Fa).
Finally, g is integrated over the quotient:
Grnjm1(F)Un—j-1,0(F)Un—jn(FA)\Gn(Fa)/Zn(Fa) -

The integral exists only as an iterated integral; in a precise way, we
shall see that:

ST el (s ) (85 ) o

dX | f(g,s) | dg < +oo.

5.4. In order to establish the convergence of the integrals I; we first
establish a partial result.

PROPOSITION 2. Given ¢ and a compact set M of G,(Fn) there is a
constant C > 0 such that:

[Ife(s 2 )

for g € M. Here v is integrated over:

Vi(EN\V;(Fa),

dz < C,

and Z over the quotient
pn—],n(FR)\Mn(FA) 3

or, what amounts to the same, over:
Tnjn(Fa).

We let V' be the subgroup of V; of matrices of the following form:
_{ ¥
v= ( t Ug ) ’

U, U2 € Un—j,n , LEUn_n, YEP1n -

where
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We also let V" be the subgroup of matrices of the form:
— In y
v ( 0 1, ) )

y € u n—j-
Then V; is the semi-direct product of V' and V", with V' normal.
Furthemore V" normalizes the subgroup of matrices of the form:

where

1, Z —
( 0 1n ) ,ZE un—j,n(FA)-

Thus it suffices to majorize the integral

JIfeloCs ) oo

where v is integrated over:

dz,

V(F)\V'(Fa).
Set V =0V’'c~! and

Uz =0 L, 2 ot
Z= 0 1, '
We remark that V' is contained in N, and the conjugate under o of

the restriction of the character # to V' is the restriction to V of the
character 6 of N, introduced previously. Set

Wig) = [ dugto)an,

the integral over
V(F\V(Fa).

It will then suffice to majorize

[ Wtz az

for g in a compact set. Now we may assume that ¢ is a convolution:

#(g) = / do(gh) F(R)dh,
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where ¢ is also in the space of 7 and f is a smooth function of
compact support on G.(Fn). Indeed, in general, ¢ is a finite sum
of such convolutions ([D-M]). For the corresponding function W we
have:

W(g) = / Wo(gh) f(R)dh.
We introduce the Iwasawa decomposition of uz:
uz =tznzkz,

with ¢z diagonal. We remark that V contains the unipotent radical
U of the parabolic subgroup of type

(n—2j+1,1,1,...,1).
2j-1
We have:
W (uzg) = / Wo(tznzh) f(g= k5 h)dh.

We can break up the integral in h into an integral for u € U(Fa)
followed by an integral for

h € U(FA)\Gn(Fn).

Using the fact that tz and uz normalize U, we find:
W(uzg) = / Wo(tznzh) f(g~ k5 uh)dub(t zut;")dh

Since the cusp form ¢q is bounded uniformly, the same is true of Wj.
Thus the previous expression is bounded by a constant multiple of the
absolute value of

/f(g—lkgluh)dué(tzutgl)dh.

Regard

(g7 kz uh)
as a Schwartz-Bruhat function of the entries of u above the diagonal.
As g and kz remain in compact sets, this Schwartz-Bruhat function
remains in a bounded set. In the previous integral, we can integrate
first with respect to the entries of u corresponding to root spaces for
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non-simple roots of A,; the resulting function is a Schwartz-Bruhat
function of the remaining variables,the ones corresponding to the sim-
ple root spaces. The integral of this function can be interpreted as a
Fourier transform. It follows that we have a bound:

ton—2; ton_2i ton_1
I”’(ng)I S @( 2n 2]+1’ 2n 2]+2,..-’ n ),
tan—2j4+2 l2n—2j43 ton

where ® > 0 is a fixed Schwartz-Bruhat function and the ¢, are the
diagonal entries of the diagonal matrix tz. Thus, we need only prove
that the following integral is finite:

ton—2; ton—2; top—
/@( 2n 2]+1, 2n 2J+2,'.-, 2n I)dZ
ton—2j+2 toan—2j+3 tan

We may assume that ® is a product of local functions. Then the
integral is itself the product of local analogous integrals. We will prove
in the next subsection that each one of the local integrals converges,
and, furthermore, that almost all of them are equal to one. This will
imply the above integral is finite and complete the proof of Proposition
2. We will need also the convergence of a slightly different integral.
Let W; be the subgroup of V; formed of the matrices of the type:

_ u y
v_(t Ug)’

Ui, Uz € Un—j,n 3 te Up—jt+1in, Y € pn—j,n .

where

PROPOSITION 3. Given ¢ and a compact set M of G,(FR) there is a
constant C > 0 such that:

JIf el (s o]

for g € M. Here v is integrated over:

Wi(F)\W;(Fa),

dz < C,

and Z over the quotient

Pr—jn(Fa)\Mr(Fa),

or, what amounts to the same, over:

Uy jn(Fa)-
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The proof is the same: indeed the group W; is the semi-direct
product of V" and V' N W; and the conjugate of the later group
under o contains U.

5.5. For this subsection we go back to a local situtation. We let F
be a local field. We again set

u—oan'l
2000 1. )7 >

where at first Z is in Uy ,, that is, is a lower triangular matrix. We
consider the Iwasawa decomposition of uz:

uz =nztzkz,
and denote by t; the entries of the matrix 7.

PROPOSITION 4. With the previous notations, we have:

| tx [>1 for kodd
|t |<1 for keven

Furthemore:
tl =1andt2n:1.

It will be helpful to vizualize the shape of the matrix uz. We illustrate
the case n = 4:

SO OoOOo OO+
O * O * O ¥ = O
[N Nl o Ne i il o)
O ¥ O * O OO
OCOOHHOOOO
O ¥ HFOOODOOO
O OO0 0O
HOOoOOooOoOOo o

Let e, with 1 < k < 2n be the canonical basis of the space of row
vectors. Then we have for k odd:

h
€Uz = € + E Ip€p.
h<k,he2Z
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On the other hand, for &k even:
€Uz = €.

Similarly:

-1 h
exn, =er+ E Y Ch -
h>k

It follows that for k odd:

-1
exny Uz =€k + E Zpep .
h#k

In other words, the odd diagonal entries of the product
n}luz
are one. Thus the odd diagonal entries of
ty'ng uz =kz

are the numbers t;l with k odd. Since the entries of k7 must be less
than one in absolute value, we already get our assertion for k odd.

For simplicity, let us finish the proof in the case where F' is real
or non-archimedean. The complex case diffrs only in notation. To
continue we use the formula:

| tetks1 - - tan |= |[(e2nuz) A (e2n—1uz) A+ A(exuz)|.

Here we have for k even
eptiz = €.

Now it is clear that for any vector v in any exterior power:
llv Aell < o]

Our assertion for k£ even follows at once.
Before going back to our integral, we prove one more proposition:

PROPOSITION 5. Set

m(2) = I+ 2]
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if F is archimedean, and
m(Z) = sup(L, || Z]|)

if F' is not archimedean. Fix j. Then there is a constant « > 0 such
that for Z € U,_j

1I |tk |2 m(Z2)*.
2n—2j+1<k,k odd

Again we disregard the complex case. Set:

Sk =| tktkg1 - tan |;

this is the norm of a tuple whose entries are the number 1 and certain
minors of the matrix uz. Now each entry of uz appears as a minor
in at least one s, with k > 2n — 2j + 1. It follows that

I sc>m2).
E>2n—2j41

On the other hand, by the previous proposition, we have:

[ad

H |tk |Z H Sk )

2n—2j+1<k,kodd E>2n—2j+1

for some « > 0. The proposition follows.
We now go back to our integral:

top—2; ton—2; ton—
/<I>( 2n 2]'+1’ 2n 2].-*-2’...’ 2n l)dZ.
ton—2j+2 ton—2j43 ton

where Z is integrated over U,_;,(F). Suppose first that F' is non
archimedean and that ® is the appropriate characteristic function of
the integers. Then, if the integrand is non-zero, we must have:

1 <[ ton—2j41 I<| ton—2j42 |<| ton—gjys |< - <[ top_1 |< 1.

Thus the t; with 2n — 25 + 1 < k < 2n are actually units if the
integrand is non-zero. By the previous proposition the entries of Z are
then integral. It follows that the integral is one. A similar argument
shows that the integral converges for F' non-archimedean.
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Suppose that F is real. Then we have by the previous propositions:

11 (1 + [te/tesa]) 2 II | te |2 m(Z2)".

2n—2j4+1<k<2n—1 2n—2j+1<k<2n—1,k0dd

Thus for any N > 0, the integrand is bounded by a constant multiple
of m(Z)~N. It follows that the integral converges. This concludes the
proof of Proposition 2.

5.6. We now prove the convergence of the integral I,,_;:

PROPOSITION 6. For s > 1+ 2(n — 1) we have:

SISl (s 2) (8 9o

dX | f(g,s) | dg < 0.

We will replace V,,_; by N,, its conjugate under o. Let us set:
W(o) = [ ugpidu,
where the integral is over
N-(F)\N:(Fa) .
We have to establish the finiteness of the following integral:
JIW (s 2) (664

where é,, denotes the module of the Borel subgroup P , and

671(a) | deta [* dadZdk,

a = diag(ai,az,...,a,-1,1).
Here k is integrated over the standard maximal compact subgroup;

each a; is integrated over F{ and Z is integrated over U ,(Fa). Sim-
ple formal manipulations bring this integral into the form:

/]W(buzk)] 6,(a)”? | deta |* dadZdk,
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where
b = diag(a1, a1, az,a2,...,8n-1,an-1,1,1),

_ ln. Z\ -1
Uz—O'(O 1n>0' .

We again introduce the Iwasawa decomposition of uz:

and, as before:

Uz = nztzkz .

Then the previous integral can be written:
/ W (bt k)| 6n(a) 2 | deta |* dadZdk .
Just as before, we can write W as a convolution product:
W(g) = [ Wolgh) sy,

where f is a smooth function of compact support. Then we can write:

W (btzk)| =

/Wo(btzh)f(k-lh)dh :

The integral in h can be broken into an integral over u € N,.(Fa)
followed by an integral over the quotient:

h € NT(FA)\GT(FA) .

We get in this way for the previous expression:

/Wo(btzh) U¢(k‘1uh)§(btzutglb‘1)du] dh) .
Since Wy is bounded, this is bounded by:

o (bltl boto bon_1ton—1 )
3 bR | 3
baty " bats bantan

where ® > 0 is a fixed Schwartz-Bruhat function. Of course the b;
are the diagonal entries of b. Finally, we see that we have to show the
following integral is finite:

bity bats b‘2n—1t2n—l> _9
P , s dnla deta |° dadZ .
/ (bztz bsts bantan ()| |
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As before, we may assume ® is a product of local functions. The
integral is then a product of local integrals. In the next subsection,
we show that each local integral is finite and, furthermore, that almost
all local integral are ones.

5.7. In this subsection we go back to a local situation. Thus F' is now
a local field. We consider the following integral:

bit; baty bzn—1t2n—1) 9
P , e bn(a deta |° dadZ ,
/ (bztz bsts bantan ()| |

Here @ is a Schwartz-Bruhat function, the ¢; are the diagonal entries
of tz, the diagonal component of the Iwasawa decomposition of uz.
Finally:

b= diag(al,al’a‘ZaG% ey One1,8n-1,1, 1) .

After suitable translations in the variables a; and under the additional
assumption that the local function @ is a product of functions of each
coordinate, we find the local integral is a product of two integrals:

t1 t 1on—
/@1 (_17_3’"'7 2 1) us(tZ)dZ$
te 14 ton

/@2 (9_1_ 92 _.,,an_l) 6n(a)™? | deta |* dadZ .

b 3
az dag

and

Here ®; and @, are Schwartz-Bruhat functions. In addition, ug is a
certain character, depending only on the absolute values of the diag-
onal entries of tz.

Let us consider the first integral. Suppose first that F' is non-archi-
medean and @, the characteristic function of the integers. Just as in
section 4, if the integrand is non-zero, Proposition 3 shows the entries
t; are unit. By Proposition 4, this implies that the entries of Z are
integers. The integral is then one. If F' is non-archimedean, a similar
argument shows the integrand is compactly supported. Now assume
F is real. Then by Propositions 3 and 4 we have:

II (1+Itt—’° )2 [T 1tl> M(2)=.
xodd k1 kodd
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On the other hand, we can express p(tz) in terms of the quantities:

14

izk

which are of polynomial growth in Z. It follows that the first integral
converges. A similar argument applies to the complex case.

As for the second integral, a simple change of variables puts it in
the form:

/Qg(al,ag,...,an_l)n | a; [js_zi("_j) da.

J

This multiple Tate integral converges for s > 2(n—1). Their product,
over all places, converges absolutely for s > 1+ 2(n — 1). Proposition
5 is thus proved.

6. GLOBAL COMPUTATIONS

In this section, our goal will be to prove the equality of the integrals
I; defined in the previous section (for Rs sufficiently large). Since the
original integral I is clearly equal to Iy this will show that I is actually
equal to I,_1: this will give the integral representation of the exterior
square L-function we were looking for.

6.1. In this subsection and the next we prove preliminaries results.
Recall the group Vj. Its elements are the matrices of the form:

_ uy 0y
U_(tU2)’

Uy, Uz € Un—j,n » Y € pn—j,na te un—j,n .

where

Recall also the subgroup W; of V;. It is the subgroup of matrices v
for which

tEUn_jiin.

It will be convenient to denote by V;* the quotient
Vi(F)\Vi(Fa),

and to use a similar notation for other nilpotent groups.
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ProrosiTion 1. We have:
g 0
Z/.qﬁ[v( 0 p )g]@(v)dv
u F]

= [ stwgpto)an,
W
the sum for
1€ G j1 (F)Un—j-1,n(FN\Gr—;(F) .

The expression on the left converges in the sense that:

3R ERA LS

u
We first remark that W; is a normal subgroup of V;. Furthermore the

element
_(#r 0
5—(0 u)

normalizes V;. Indeed, we have:

-1 -1
1o [ pTlup pTlyp
&t = ( p it p T rugp ) ’

< Fo00.

and p, being in P,_; ,, normalizes the unipotent radical Un_;, as
well as the Lie algebras p,_;, and u,_;,. If in addition v is in W;,
then t is in u,_j;4; , and

pltp=1t.

Thus & normalizes W;. Furthermore £ fixes the restriction of the
character 6 to the subgroup W;. The left hand side of the equality
can thus be written:

S [ ot vtapian,

or, after changing variables:

> [ dtooiere v,
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Now let U be the subgroup of V; of matrices of the form:

ue 1o O
Ut o1, )

where ¢ € Up,_j ,_j+1. In other words, ¢ has the form:

On—j a 0
t= 0 0 O ),
0 0 0;-;

where 0 is the 0 matrix in the ring of k x k matrices and a is a column
of size n — j. Then V; is the semi-direct product of U and W;. Thus
the previous expression can be written as:

s,

Now we have:

¢(wug)9(w)dw] O(cu1)du .
w;

0(u) = ¥(ea),
where
e=(0,0,...,0,1).
N——
n—j—1
Similarly:

B(EuE™) = (epa).
Thus the previous expression can be written as the sum of the Fourier
coefficients, except the constant one, of the function

Fla) = /W’ d(wug)f(w)dw .

This already establishes the second assertion of the proposition. The
first assertion will be proved if we show that the function F has a zero
constant Fourier coefficient. In other words, let 8’ be the character of
V; equal to one on W; and to one on U; we have to show that:

#(vg)8' (v)dw = 0.
Vs

Now it is easily checked that V; contains the group U’, conjugate
under 0! of the unipotent radical of the parabolic subgroup of type
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(24,2n — 2j), and that 8 is trivial on U’. Since V; is unipotent,
it is contained in a maximal unipotent subgroup. Thus in fact the
unipotent radical of a parabolic subgroup contained in V; is normal
in V;. Hence U’ is normal in V;. It follows that the above integral
factors trough the integral of ¢ on U’*, which is zero because ¢ is
cuspidal. This completes the proof of the proposition.

6.2. PROPOSITION 2. Let 7 > 1. Then:

/{/Wj'(ﬁ[zl)( 15 1Zn>9] H(w)dw}dz:
JUL b (s 2) (5 0 ) o] o bz

Here Z is integrated over

ﬁn_.7vn(1:1}‘) )
Z' is integrated over
ﬁn—j+1,n(FA) 3

u over
Un—jin—j+1(F)\Un—jn—j+1(Fa) -

We first remark that by Propositions 2 and 3 of Section 5, both
integrals exist, as iterated integrals. Since u isin G,_ ;41 it normalizes
P, _;41,n, its unipotent radical U,_j4+1, the Lie algebras of these two
groups and U,_j41,,. It follows that an element:

u 0
0 wu
normalizes the group of matrices of the form:
1, 7'
0 1, /-

and the group V;_;. It also fixes the character 8 of V;_;. This gives
a meaning to the second integral.



196 HERVE JACQUET & JOSEPH SHALIKA

We remark that we can write
Z2=72'4Y

with Y € u,_;,_;+1(Fa) and break up the integral in Z into an
integral in Z’ and an integral in Y. Thus it suffices to prove the
following equality:

ProposiTioN 3. With the previous notations:

J{le ()t
T{L el (5 2) e

We again remark that by (the proof of) Proposition 3 in Section
5, the integral on the left exists, as an interated integral. In order
to establish this proposition, we break the integration in Y into a
summation in

€ Un_jnj+1(F)
followed by an integration in
Yeu, ;. -

The integral on the left hand side takes then the form:

1, Y
Lo ol(s 1 )ears
u
where we have set:

Jg) =3 /W, $(wEg)B(w)duw

1,
(% 1),

Next we remark that W; is the semi-direct product of two subgroups
W and U, with W normal: the group W is the group of matrices of

the form:
_ ur Yy
v= < t U2 ) ’

and
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with
Uy, Uz € Un—j+1,n, t€EUs—jt1n, Y E Prnjn-

The group U is the group of matrices of the form:
_ Ui 0
v= ( 0 U9 ) ’

U EUp_jn_jt1-

with

Thus we can write:

0
J(g) = Z/‘ / ) ] [w ( 181 " ) fgjl 6(w)dwdu .
n
Now write:
1n—j v; 0
u; = ( 0 1 0 > )
0 0 1,4

Oy 0 O
n = A 01 0 .
0 0 0

Vi _Ul/\v2 0
wnuyl=1 A =Xy 0 .
0

Similarly write:
Then:

It follows that

1, =z ¢ u; 0
0 ln 0 U9 ’
where z € p,_; , and

Trz = /\(U1 - 1)2) .

Using this identity in the expression for J and changing variables, we
find:

I =3 Lo elue( 0 )a]ptwrtun-re: - vapau,
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Now & normalizes W and fixes the restriction of § to W. Thus we
may finally write:

I9=3 Lo alo(e S )] otrunrm - vy

By Fourier analysis, this reduces to:

J(g) = //W‘qﬁ [w( '5 2 )g} 8(w)dwdu ,

the integral in u being over

*
n—j,n—j+1-°

The original integral we had to transform was:

1, Y
o1 8 )o)r
It is thus equal to:

0 1, Y
///d)[w(g u)(() 1n)g:|dwdudY.
We now have the following commutation relation:
u 0 1, Y\
0 u o 1, /
1, Z 1. Y u 0
0 1, 0 1, 0 u J°
where z € pp_jn_j41 and TrZ = 0. The first matrix on the right

hand side is thus in W and 6 trivial on it. Finally V;_; is the semi-
direct product of the group W and the group of matrices of the form:

1, Y
0 1, }’

where Y € U,,_j ,_j41. Thus we finally find our integral is actually

equal to:
/{/V_ ¢[u( u ) )g] O(v)du}du7

as required. This concludes the proof of Proposition 3 and 2.
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6.3. We now state the main result of this section. Recall the integrals
I; defined in 5.2.

PROPOSITION 4. For j > 1 we have I; = I;_;.

We first compute formally and justify our steps later, in particular
the convergence of the integrals I; for j < n — 1. We have (we write
1 for 1,):

I;
_ //f(g, 5 {/¢ [v ((1) f) ( 50 )} H(U)dv} dg(TeZ)dZ,

where
veVy,
and
Z € pn—j,n(FA)\Mn(FA) )
and

9 € G j-1t(F)Un—j—1,n(F)Un—jn(FA)\Gn(FR)/Zn(FR).
We can view the Z integration as an integration over
Uy_jn(FA).
On the other hand the group:
G j-1(F)Un—j-1,n(F)Un—;n(Fa)
is the semi-direct product of
Un—jn(Fa)

and
Grj-1(F)Un—j1n-j(F).

With an abuse of notation, this allows us to write:

Ij=ff(g,s);{/{/¢
[v< 0 ) < hg ;?g )} O(v)dv}dZ}dg,



200 HERVE JACQUET & JOSEPH SHALIKA

where
ve V',
VAS ﬁn—j,n(F’F\) s
# € G jo1 (F)Un—j-1,n-j(F)\Gn-;(F),
and

9 € Gnj(F)Un_jn(FA)\Gn(Fa)/Zn(Fa).
Using the fact that the matrix

(52)

normalizes the group of matrices of the form:

(5 7)

we can interchange the integration in Z and the summation in p to
arrive at the following expression:

/f(g,S){/Z{/cb
[v( " 2 ) ( N ) ( g 2 )]G(U)dv}dZ}dg.
By Proposition 1, this is equal to:

froa{f{feb (3 7)(3 $)Joon} o

where v is now integrated over W}. Now we apply Proposition 2.
This is also equal to:

/f(g,S){/{/V;laﬁ
[U( » ) ( “ fg )g] 9(v)dv}dudZ’}dg.
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Here Z’ is integrated over

ﬁn—j-{-l,n(-FF\) 3

u over
Un—jn—i+1(F)\Un—jn—j+1(Fa) -

and g over

9 € Gnj(F)Un_jn(FA)\Gn(Fa)/Zn(Fn)-

We can now combine the integration in u and the integration in g to
obtain an integration in g over:

9 € Gnj(F)Un—jn(F)Un—jt1,n(FA)\Gn(Fa)/Zn(Fn) .

The resulting integration is I;_; and we are done. However, we have
to justify the formal manipulations.

6.4. We prove by descending induction on j with n —1 > 5 > 0 that
the folloving integral is finite:

/If(g,s)liqS[v(é f)(g 2)]0(U)dvd2|dg.

In Proposition 5 of section 5, we have proved this integral is finite
for j = n — 1. We may therefore assume j < n — 1 and the above
integral is finite for j. We have to show the analogous integral with
J replaced by j — 1 is finite. Let us write G,(Fa) as the union of a
sequence of compact sets (5. Let my be the product of | f(g,s) | and
the characteristic function of the set

G i (F)Un—jn(FA)Q2%Zn(Fa) -

Then the sequence of formal manipulations of the previous subsection
can be used to prove the following inequality:

/ mk(g)\qs B0 T)(8 0 )]9<v>dvdz|dgz
/mk(g) I [v( 2 ) ( g 2 )] 6(v)dvdz] dg.
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Here the integral on the left is for:
ve vy,

Ze En—j,n(FA) )
9 € Gaejt (F)Un—j1(F)Un n(FA)\Gr (FR)/Zn(Fi) .
The integral on the right is for:

v € Vj*_l,

Ze En—j+1,n(FA) )
9 € Gnj(F)Un—j(F)Un—j41,n(FA)\Gn(Fa)/Zn(FA) -

We should remark that by Proposition 2 of section 5, the expression
on the right is meaningful and is finite. Now the integral on the left
is majorized by the integral obtained by replacing my by the absolute
value of f(g,s), which is finite by the induction hypothesis. Letting
k tends to infinity, we obtain our conclusion for j — 1.

6.5. Let us now consider the integral

I'=1I(s,x,¢,®)

defined in 5.1. Taking s sufficiently large and replacing the Eisenstein
series by its expression as a series, we obtain that I = I;. By the
previous propostion we have therefore I = I,,_;. Now in the integral
I,_, we will replace the group V,_; by its conjugate under o, namely
the group Na,. Set, as before:

W(g) = $(ug)f(u)du.

/Nzn(F)\Nzn(FA)
We recall that 6 is the character of Ny,(Fa) defined by:

6(u) = H¢(Uj,j+1) -

Introduce the integral:

J=J(s,x,9,9),
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where

J=/W [a( T 1Zn ) ( g 2 )] W(TeZ)dZ f(g, s)dg .

Here Z is integrated over the quotient:
uo,n(FA)\Mn(Fa),
and g over the quotient
No(Fa)\Gn(Fa)/Zn(Fn) -

Replacing f by its definition (given in 1.1) we find:

_ 1, Z g 0
=l (s £)(85)]
Y(TrZ)dZd(eg)x(detg) | detg |° dg,
where ¢ is now integrated over
N (FA)\Gp(Fn).

Proposition 5 of section 5 shows this integral converges absolutely for
Rs sufficiently large. We have proved:

PROPOSITION 5. For Rs sufficiently large:
I(s,x,¢,9) = J(s,x,9,®).

7. LOCAL COMPUTATIONS

In this section we go back to a local situation. We let F' be a local
field, ¥ a non-trivial additive character, r = 2n an even integer, T a
unitary irreducible generic representation of G.(F'), x a character of
module 1. We denote by W(r, ) the Whittaker model of w. Let W
be in W(m,4¢) and & a Schwartz-Bruhat function in n variables. We
consider the integral:

J=J(s,x,W,®)
defined by

= fwl (5 2 )(8 )]

Y(=TrZ)dZP(eg)x(detg) | detg |* dg,
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where Z is integrated over the quotient:

Po.n(F\Mn(F),

and g over the quotient
No(FN\GA(F),

and we have set:

We recall M, is the space of n x n matrices, pg n the space of upper
triangular matrices and N,, the group of upper triangular matrices
with unit diagonal. In what follows, we often write G,, for G,,(F) and
use a similar notation for other groups and vector spaces.

7.1. We will need to know this integral converges absolutely for Rs >
0:

ProPoOSITION 1. Given 7 there is n > 0 such that the integral J
converges absolutely for s > 1 — 1.

The proof is similar to the proof of Proposition 5 in section 5. We
have to see that for a suitable > 0 and s > 1 — 5 the following
integral is finite:

il (s 2) (6 o)

where, as before, §, denotes the module of the Borel subgroup F ,
and

dZ | deta |* 6,(a) " 'dadk,

a = diag(a,az2,...,an-1,1).

The variables a; are integrated over the multiplicative group F'* and
Z over Uy, the space of lower triangular matrices. As before we
introduce the element

Uz =0 . 2 ot
zZ= 0 1, :

Then the integral can be written:

/ |W (buzk)| 8,(a)"2dadZdk ,
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where we have set:
b = diag(ai,a1,a2,82,...,8n-1,8n-1,1,1).
Next we introduce the Iwasawa decomposition of uz:
u, =nzgtzkz,

and we denote by t; the diagonal entries of the diagonal component
tz. Then the previous integral can be written:

/ (W (bt k)| Sn(a)2 | deta |* dadZdk.

Now by Proposition 3 of section 4, there is a finite set X of finite
functions in n — 1 variables such that:

[W (bt zk)|

is bounded by a finite sum of expressions of the form:
6711/_21(th))<@ (bltl baty b2n—1t2n—1) ’

oty byts” " bantan
where y is the absolute value of some element of X and & > 0 is
a fixed Schwartz-Bruhat function. Of course the b; are the diagonal
entries of b. Thus it suffices to prove that the integral obtained by
replacing W by this estimate is finite. Next we remark that:

812 (0)67%(a) =| a1, a9, ... an_1 | 7' .

Finally, we see it suffices to show the following integral is finite:

/X‘I) (bltl boty b2n—1t2n—1>
bota” bats’ 7 bonten

| a1ag - "Qp_1 ‘s—l 61/_21(tz)dadZ .

n

Now recall the definition of b in terms of the a;:
b = diag(a, a1, az2,a2,...,an_1,an-1,1,1).

After suitable translations in the variables a; and under the additional
assumption that the function @ is a product of functions of each coor-
dinate, we find the above integral is a sum of products of two integrals

of the form:
ty 13 ton—1
P =, =,... tz)dZ
/ 1(t2’t4’ ) t2n >N( Z) )
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ai az s—1
x®2 | —,—,...,an-1 ) |Q102--an_1| da .
az asg

Here ®; and &, are Schwartz-Bruhat functions and x belongs to X. In
addition, p is the absolute value of a certain finite function (depending
on s).

As in 5.6, the first integral converges. As for the second integral, a
simple change of variables shows it is a sum of integrals of the form:

and

/Xéz(al,az,...,an_l)n | a; lj(s—l) da .
Jj

Now by Proposition 4 of section 3, we can choose X so that any x
in it is the product of a polynomial in the logarithms of the absolute
values of the variables, times a character of the form:

X1(01)X2(a2) ce Xn—1(an—1) s

with ®x; > 0, for each j. It follows that this multiple Tate integral
converges in some strip s > 1 — 5, with > 0. This completes the
proof of the proposition.

7.2. In the unramified situation, the integral J is equal to the local
L-factor for the exterior square:

PROPOSITION 2. Assume F is local, non archimedean. Assume 1 has
for conductor the ring of integers and the Haar measures are normal-
ized in the usual way. Suppose x is unramified and the representation
7 contains the unit representation of the maximal compact K,. As-
sume ® is the characteristic function of the integers, W the Whittaker

function which is invariant under K, and takes the value one on K,.
Then:

J = L(s,m, (/\2,0) ® X)-

Taking in account the invariance of W under K., we get that J is
equal to the following expression, where we write 1 for the matrix 1,:

JrleCo 1)(6 2))

67 (a)x(deta) | deta |* ®(ea,)dayy(—TrZ)dZ,
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with
a = diag(al, ag,... ,an_l,an) .

After a formal manipulation this becomes
J = /W(buz)égnlﬂ(b)x(deta) | deta |* ®(ean)dadZ ,

where we have set
b= dla‘g(alaalaa27a27 v 7an—17an—l’an>an> 3

and used the relation

2
6(a) = ,2(b).
Let us once more introduce the Iwasawa decomposition of uz:
Uy, = nztzkz .

We have then
J = /W(th)B(anb_l)62_7}(b)x(deta) | deta |° ®(ean,)dadZ .

Now if W (bt,) # O then the diagonal entries of b and ¢tz must satisfy
| b5t 1 < | bjsatjpn |
This gives in fact
[ 5 1<[tj41 |
for j odd. However, by Proposition 4 of section 3, we have

| t; |[>1for jodd,

| t; |<1for jeven.

It follows that W (bt,) # 0 implies that the ¢; are units and then, by
Proposition 5 of section 5, that the entries of Z are integers. We may
take then t; = nz = 1 and we obtain finally:

J = /W(b)é;nl/z(b)x(deta) | deta |* ®(ea,)da .

By the results of Section 3 this integral is equal to the required L-
factor.
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7.3. We will need one more local result:

ProPOSITION 3. There are ® and W such that:
J(1,x,®,W)#0.

Assume on the contrary that J = 0 for all choices of W and @. Then

we get:
1, Z 0
forl (s £)(85)]
$(—TrZ)dZx(detg) | detg | ®(eng)dg =0,

for all ¢, where we have set:

e, =(0,0,...,0,1).
N e’

n—-1
As before Z is integrated over
pO,n\Mn >

and g over

No\Gh -

We can choose for ® a function whose support is contained in the orbit
of €, under G.,. Then g — ®(e,g) is arbitary among the functions
invariant on the left under the subgroup

Gn—lUn—l,n )

of compact support modulo that subgroup. It follows that

[wie (% &)

where Z is integrated as before and g is now integrated over

PY(—-TrZ)dZ x(detg)dg =0,

coow
SO~ O
v OO
— O OO

Nn—l\Gn—l .

We will show by descending induction on k with 0 < k¥ <n—1 that
the following integral:
I, =
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lepr O Z 0
0 1ok O 0
/”’” 0 0 leggr O
0 0 0 lp k-1
g 0 0 0
0 In.p O O
0 0 g 0
0 0 0 lnk

Y(—TrZ)dZ x(detg) | detg [2kF1=m) dg

is zero for all W. Here Z is integrated over

Pok+1\Mis1,

and ¢ over

Nk\Gk .

We have just seen that I, _; = 0. We may therefore assume k <n -1
and I, = 0 for all W. We have to show that I,_; = 0 for all W.

To that end, in the definition of Iy, we replace the matrix on the
left by the following matrix:

1, O 0 Z 0 0

0 1 0 Y O 0

0 0 1,_k-1 0 O 0

0 O 0 1, O 0

0 0O 0 0 1 0

0 0 0 0 0 lp_g—1
The integration is now for

Z € por\My
and
Y € Fk,

in other words, Y is a row of size k. After simple matrix multiplica-
tions and the change of Y to Yg~!, we find for the integral I the

expression:
1 0 z 0 g 0 0 0
0 1, O 0 0 1, O 0
_/W Lo 0o 1, o0 0 0 g O
0 0 0 1,—& 0 0 0 1,-&
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1 O 0 0 0 0
0 1 0 Y 0O 0
0 0 1o O O 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 l._k_y

Y(=TrZ)dZx(detg) | detg [P*="* dg.

This expression is thus 0 for all W. We apply this fact to the function
W, defined by:

. 6 0 0 0 O
01 0 00 0
0 0 1,4-1 0O 0 0O
Wl(g)z/W 9100 "0 1w 0 ®(u)du,
00 o0 0 1 0
00 0 0 0 1,4

where u is a column of size k¥ and ® a smooth function of compact
support. After simple matrix multiplications, we see that the integral
can be written in the form:

L, 0 0 0 0 0
01 0 0 Yu O
0 0 Inky 0 0 O
/W L' o0 "0 1 gu O
00 0 0 1 0
00 0 0 0 Lo
. 0 Z 0 g 0 0 0
0 1ok 0 O 0 1ok 0 O
0 0 1 0 0 0 g 0
0 0 0 I,x/ \0O 0 0 1.
L, 0 0 00 0 \]
01 0 Y 0 0
0 0 loker 0 0 0
00 0 10 0
00 0 01 0
00 0 0 0 Lo/

Y(=TrZ)dZdY ®(u)dux(detg) | detg [2(’“_")"'1 dg .

The conjugate under o of the last matrix on the left is in Ny,. Taking
into account the fact that W transforms under the character 8 of Ny,
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we find for the previous integral the alternate expression:

L, 0 Z 0
0 lox 0 O

/ Wiel o 00 1, o
0 0 0 lus

I 0 0 00 0
g 0 0 0 01 0 Y 0 o0
0 1.k 0 O 0 0 laokes O O O
0 0 g O 00 0 1, 0 0
0 0 0 1o 00 O 01 0

00 0 0 0 ln_k_

W(=TrZ)dZB(Y)dY x(detg) | detg [2*-"+1 gg |

where ® denotes the Fourier transform of &:
B(Y) = / ®(u)p(Yu)du.

This expression is thus zero for all W and for any function ® which is
the Fourier transform of a smooth function of compact support. By
(the proof of) Proposition 1, this integral converges if we replace & by
one. It follows that we can replace ® by any Schwartz-Bruhat function
and still obtain a zero integral. In particular, we may replace it by
a smooth function of compact support. It follows that the following
integral is zero:

., 0 Z 0 g 0 0 0
0 Ink 0 O 0 1., O O

/W T o 0o 1 o0 0 0 g O
0 0 0 1, 0 0 0 I,k

Y(=TrZ)dZx(detg) | detg [F~™+1 dg
Next, we apply this relation to the function W, defined by:

Wi(g) = / W g ®(u)du,

coocco
coce ~RrOoO
HFoOOoOoO OO



212 HERVE JACQUET & JOSEPH SHALIKA

where u is a column of size k£ and ® a smooth function of compact
support. After simple matrix multiplications, we obtain the following
expression for the previous integral:

1g 0 Zgu O 0 0

0 lpxs O 0 O O

0 0 1 0 0 0

/W °l' 0 0 gu 1, 0 0
0 0 0 0 1y, O

0 0 0 0 1

L. 0 Z 0 g 0 0 0
0 1,6 0 0 0 1,6 0 O
0 0 1x O 6 0 g O

0 0 0 1, 0 0 0 1.

Y(—TrZ)dZ®(u)dux(detg) | detg |Pe—m)+1 gg

Again the conjugate of the last matrix on the left under o is in Nay,.
Using the invariance property of W, we obtain the following alternate
expression for the previous integral:

., 0 Z 0 g 0 0 0
0 loxk O O 0 1ot O O

/W [ o o 1 o 0 0 g 0
0 0 0 I,x/\0 0 0 l.s

W(—TrZ)dZ®(erg)x(detg) | detg [2F~™*1 dg.

where & denotes the Fourier transform of ®: for a row t of size k,
&(t) = / ®(u)p(tu)du.
This expression is thus zero for all ® and all W. We can again replace

in this integral & by any Schwartz-Bruhat function and still obtain a
zero integral. This implies then that the following integral is zero:

., 0 Z 0 g 0 0 0
0 1,0, 0 O 0 lnk41 O O

/W T o o 1, o o 0 g O
0 0 0 1,k 0 0 0 lp—gs

Y(—TrZ)dZx(detg) | det?(k—™) | dg;
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here Z is integrated over

po.k\ Mk

and g over
Nie—1\Gr-1 -

However, this integral is precisely the integral Iy_; and we are done.
For k = 0 the relation Iy = 0 reads W(e) = 0 for all W, a contra-
diction. This proves Proposition 3.

8. THE GLOBAL PERIOD INTEGRAL

In this section, we go back to a global situation. We let F' be a
number field, ¥ a non-trivial character of Fa/F. We consider the
exterior square L-function attached to an automorphic cuspidal (uni-
tary) representation 7 of G,.(Fa) with central character w,. We let S
be a finite set of places containing all places at infinity and all places
where the representation m ramifies. We also assume that for v ¢ S
the character v, has the ring of integers for conductor. We consider
an idele-class character y of module 1, unramified outside S, and we
set

L¥(s,m, (N*p) ® x) = [ ] L(s,m0, (A*P) ® xu) -

vgS
We will write simply L°(s) for this partial L-function. Our main

result is the following theorem:

THEOREM 1. The function L® extends as a meromorphic function to
a half plane ®s > 1 — n withn > 0. It has a pole at s = 1 if and only
if x"w, = 1 and there is a K -finite vector ¢ in the space of m such
that the following integral is not zero:

/ ¢[( v (s ) )] wmnaxxaesag

Here g is integrated over
Gn(FN\Gn(Fn)/Z(Fa),

and X over

M (F)\My(Fa) .
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8.1. Let ¢ be a smooth vector in the space of 7. Assume that the
corresponding Whittaker function W is a product of local ones (no-
tations are as in 6.5). Let also ® be a Schwartz-Bruhat function in
n variables which is a product of local functions. Assume that @,
is the characteristic function of the lattice of integral points for all
v ¢ S. According to the results of Sections 5 and 6, the global in-
tegral I(s,x,®,®) can be written, for Rs sufficiently large, as the
product:

I(s,x,$,®) = L5(s) [ ] (5, x0, W, ®) -
vES

By Proposition 1 in 7.1, we can choose 7 > 0 such that the local
integrals J (for v € S) converge and are holomorphic in the half-plane
Rs > 1 — 5. Furthemore the local integrals are not identically zero
for at least one choice of the local data (for instance by Proposition
3 in 7.3). It follows that L°(s) extends to a meromorphic function to
that half-plane. Of course from the results of Shahidi ([S]) we know
it actually extends to the whole complex plane.

If x"w; # 1 the global integral is holomorphic at s = 1 for all
choices of ® and ¢ (Proposition 1 in 5.1). Choose ¢ and @ as before,
but, in addition, choose the local data W, and ®, for v € S in such
a way that the local integrals (for v € S) do not vanish at s = 1
(Proposition 3 in 7.3). Then the previous relation shows that L
must be holomorphic at s = 1.

Now assume that y"w, = 1. The period integral of the theorem
converges for any smooth ¢ and depends continuously on ¢ (for the
topology of the smooth vectors in the unitary representation 7). It
follows that the period integral vanishes for all smooth ¢ if and only
if it vanishes for all K .-finite ¢.

If the period integral in the theorem is zero for all ¢, then the global
integral I is actually holomorphic at s = 1 for all choices of the data.
Again this implies that L¥ is holomorphic at s = 1.

Finally, suppose that the integral of the theorem is non-zero for at
least one choice of ¢. By linearity and continuity, it must be non-zero
for a function ¢ whose associated function W is a product. Then W, is
K, invariant for all v ¢ T where T' D S. Let ® be a Schwartz-Bruhat
function which is a product of local functions; assume ®,(0) # 0 for
all v and @, is the characteristic function of the lattice of integral
points for all v ¢ T. The global integral I(s, x, ¢, ®) has a pole at
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s = 1. Since

I(s,x,6,®) = L7 (s) [] (s, X0, Wi, ),
veT

and the local integrals are holomorphic at s = 1 the function LT(s)
has a pole at s = 1.

Suppose the order of this pole is higher than one. Then we can
choose a ¢ whose associate function W is a product and a function @
which is a product satisfying the following conditions: for v € T the
function W, is K, invariant and the function &, the characteristic
function of the lattice of integral points; for v € T the local integral
J (8, Xvs Wy, ®y) is not zero at s = 1. Then, by the previous relation,
the global integral has a pole of order higher than 1, a contradiction.
Thus the function L7 has a pole of order 1 at s = 1. Now we have:

LS(S> = LT(S) H L(s, o, (/\2P) ® Xv) -

veT-S

In this formula the local L-factors are non-zero and holomorphic at
s = 1, because of the convergence of the local integral. It follows that
L® must have a simple pole at s = 1. This concludes the proof of the
theorem.

9. THE ODD CASE

In this section we briefly discuss the exterior square L-function for
the group G, where r = 2n+1 is an odd integer. We simply indicate
what changes must be made in the proofs we have given in the case
of an even integer r.

9.1. Let us discuss the global situation first. Thus we let 7 be a cus-
pidal unitary representation of G.(Fa) and x an idele-class character
of module one. For ¢ in the space of 7, we define an integral

I=1I(s,x9¢)

=fel(8 5 9

as follows:

—

n

N
—_o

— oo
N—”’
_—

oow
o O
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Y(TrZ)dZdY x(detg) | detg |*~! dg,

where the matrix Z is integrated over
My (F)\\Mn(Fa),
the column Y is integrated over
F™\Fg,

and g over

Gn(F)\Gn(FR) -

PROPOSITION 1. The following integral is finite for all real s:

1, ZY g 00
//rﬁ[(o 1n0>(0 g 0>]¢(I}Z)dZdY
0 01 00 1

We will first show that for s < 1 the following integral is finite:

., Z Y g 0 0
JRICE 5 o) (B e o))
0 0 1 00 1

To that end, we replace the integral in g by an integral over a Siegel
domain. Thus, it will suffice to show that, given a compact set M,
there is a constant C' such that:

1, Z2 Y az 0 0
/(ﬁ[(() 1, O)(O az O>m:|l
0 0 1 0 0 1

dZdY | deta |*7!| 2z |27 §,(a) " dadz < C,

| detg |*~t dg.

dZdY | detg |*7! dg.

for m € M. Here
a = diag(ai, ag,...,an-1,0n),

z is a scalar; the a; and z are ideles whose finite components are 1 and
whose infinite components are all equal to the same positive number;
in addition:

| ai/ais1 |[> canda, =1,
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where ¢ > 0 is some constant. Let us write
Z=U+V,

where V' is upper triangular and U lower triangular with 0 diagonal
entries. Then a~!Va remains in a fixed compact set. At the cost of
enlarging the compact set M, we see it suffices to prove our asser-
tion for the integral obtained by replacing the integration in Z by an
integration in U. Now let 7 be the following permutation matrix:

0 0 10
_ |0 s 00
=11 0o oo
0o 0 01

Then

1, Z Y
r<0 1, 0)7—1:((1)0),
0 0 1 .

where u € G5, and detu = 1. On the other hand,

az 0 0 1 0 0
T( 0 az 0)7_1:z 0 b O ,
0 0 1 0 0 27!

where b is a diagonal matrix with detb = deta®. Altogether, using the
invariance properties of ¢, we see that the integral takes the form:

/I¢ [( (1) 2 ) Tm] ‘ dUdY | deta |*1 6,(a)™" | z |25~V dadz,

where h is in G,_; and
deth = z71deta”.

We appeal again to [J.S] II p.799: the integrand is majorized, for all
N > 0, by a constant multiple of

| deta 7] 2 [2*(*=D §-1(a) inf (| deta |2V | z |7V, | deta |72V] 2 |V) .
If we integrate this estimate over z we find a constant multiple of:

[deta I(4n+1)(s—1) 6;1(0,) )
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Thus it will suffice to show the following integral is finite:
/ | deta |47tV 6-1(a)da.

However if we express the determinant in terms of the simple roots
a; we have:

deta = Ha?" (a),
where r; > 0. Thus the factor

| deta |(4n+1)(8—1)

is bounded over the range of integration and this implies our assertion.
To prove the proposition for arbitrary s we will establish an identity

which gives the functional equation for the integral I; in the functional

equation s goes to 1 — s and ¢ to the function ¢ defined by:

$(g) = ¢(*97").

The identity we have in mind is the following one:

1. 2 Y . 0 O
/{g&{( 0 1, 0 ) ( 0 1, 0 )g z/)(TrZ)dZdY} X
0 0 1 0 X 1
1, Z 0
= /d) |:< 0 1, O )g Y(TrZ)dZdXdY .
0 X 1

Here Z and Y are integrated as before; the row X is integrated over
FR in the left hand side, and over the quotient F™\Fg in the right
hand side.

To prove our identity, we start with the left hand side. We decom-
pose the integration in X into a summation in £ € F™ followed by an
integration in X € F™\Fg. Because of the matrix identity:

1, 0 O 1. Z2 Y 1, 0 O
( 0 1, 0)( 0 1, 0)( 0 1, 0>:
0 -¢ 1 0 0 1 0 & 1

l, Z4Y¢ Y
(o 1, 0),
0 0 1
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we find, after a change of variables, that the integral on the left hand
side of the equality is equal to:

DY
] U On 1 0 )? 1
Y(TrZ)dZyY(—€Y)dY dX .

By Fourier analysis this is equal to the right hand side of our identity.

We will use a variant of this identity. Let ® be a Schwartz-Bruhat
function in n variables; we view ® as a function on the space of rows
vectors. Its Fourier transform is the function on the space of columns
vectors defined by:

d(Y) = /(I)(—X)q/)(XY)dY.

Define functions ¢; and ¢4 by:

1 0 0
¢1(g)=/¢{g(8 )1{ (l)ﬂé(X)dX

1 0 Y\7].
¢2(g)=/¢{g<8 (1) ?)]@(Y)dY.

Because we can view ¢ as a smooth vector in a unitary representation,
¢1 and ¢- are also smooth vectors in the space of 7. We have then:

/1, 2 Y g 00
/¢1 0 1, 0 090):|
\No o0 1 00 1

$(TcZ)dZdY =

/1, Z O g 0 0
P ER(E
[\ 0 X 1 0 0 1

Y(TrZ)dZdX | detg | .

and

Here Z is integrated as before, the column Y and the row .X over
F™\F}.
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Let us introduce the permutation matrix p € G, defined by:
o0 --- 01

=161 o
1 0 0 0

and the permutation matrix 7 € G, defined by:

0, p O
T = p 0, 0 |.
0 0 1

The previous identity may also be written:

1, Z Y g 0 0
f¢1[(0 uo)(ogoﬂ
0 0 1 0 0 1

$(TeZ)dZdY =

N l, Z Y plg'p 0 0
/¢2 0 1, 0 0 plg™tp 0O >
0 0 1 0 0 1

Y(-TrZ)dZdY | detg | .

This identity implies the functional equation:
I(S7X3 ¢1) = I(l - SaX_17¢’) )

where ¢' is a suitable translate of ¢,. It follows from the previous
discussion applied to ¢’ that the integral I(s, x, ¢1) converges for s > 0
(in the sense indicated in the proposition). Now by the lemma of [D-
M] ¢ can be written as a sum of functions of the form ¢; (with &
smooth of compact support). The proposition follows.

9.2. Next we compute the global integral I in terms of an integral
which is a product of local ones. As before, we consider the character
# of N, and then the Whittaker function W attached to ¢. We let o
be the permutation which changes the sequence

(1,2,3,...,n,n+1,n+2,n+3,...,2n,1)
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into the sequence
(1,3,5,...,2n — 1,2,4,6,...,2n,1).

We also denote by o the corresponding permutation matrix. Then
the integral we have in mind is the following one:

J=J(s,x, W),

1nzo g 0 0
Jz/Wa(Oln 0 g 0
0 0 00 1

Y(TrZ)dZx(detg) | detg |°~* dg.

Here Z is integrated over

uo,n(FA)\Ma(Fa),

where

and g over

No(Fa)\Gn(Fa).

ProrosSITION 2. The integral J converges absolutely for Rs large
enough and is then equal to the integral I.

We only indicate the starting point. The function F (of a column
vector) defined by:

1, Z Y
I ED)
0 0 1

has a zero constant Fourier coefficient, because of the cuspidality of
¢. Thus its Fourier series reads:

F(0) = > / FU)p(epyU)dU

YEPn_1,n (FN\Ga(F)

L Z Y\ (700
-y / [( U) (0 N 0)} W(TrZ)dZdY (e U)dU

$(TeZ)dZdY

001 001

where, as before,
e, =(0,0,...,0,1).
N e’

n—1
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Using this identity inside the expression for I we find:

1, Z Y g 0 0O
{50 ()
0 0 1 0 0 1

Y(TrZ)dZdY (e, U)dUx(detg) | detg [*~" dg.

Here g is integrated over the quotient
Pn_y1 o(F)\Gn(FRa).

9.3. We now discuss the local situation. Accordingly, we let F be a
local field and 7 a unitary irreducible generic representation of G.(F).
For each W in the Whittaker model W(w,¢) of @ we define a local
integral J = J(s, x, W) by:

1, Z 0 g 0 O
J=/WU 0 1n0>(0g0>}
0 0 1 0 0 1

Y(-TrZ)dZx(detg) | detg |°~' dg.
Here Z is integrated over
and g over

Nu(FN\GA(F).

ProPOSITION 3. There is 7 > 0 such that the integral J converges
absolutely for ®s > 1 — 1.

The proof is similar to the proof of proposition 1 in section 1.1: we
are reduced to proving the convergence of the integral

/ | W (btzk) | 62(a)~2 | deta [*~! dadZdk,

where we have set:

b = diag(a;, a1, a2,a9,...,an,0n,1)

. Z 0
uz=c| 0 1, 0 Jo !,
0 0 1
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and tz denotes the diagonal part of the Iwaswa decomposition of Z.
At this point we note the relation:

8;12(b) = 62(a).

Thus the above integral can be written:
/ | W(btzk) | 69n(b)"Y/? | deta [*~! dadZdk,
and the rest of the proof is unchanged.

9.4. We now examine the unramified situation. Accordingly, we let
F be a local non-archimedean field. We assume the conductor of ¥
is the ring of integers and the character x is unramified. We assume
7 contains the unit representation of the maximal compact subgroup
I(, and we let W be the Whittaker function which is invariant under
I, and takes the value 1 on K,.

ProPOSITION 4. Under the above assumptions

T(s,%, W) = L(s,7,(A*p) ® x)

With the same notations as in the previous subsection, we use the
relation

83051(b) = 62(a) | deta | .
We have then:

J= / | W(btz) | bans1(B) " *x(deta) | deta |* dadZ,

and the rest of the proof is similar to the proof of Proposition 2 in
section 7.2.

9.5. Now we go back to the general local situation: We have the
following analogue of Proposition 3 in section 7.3:

ProrosiTION 5. There is a W such that:

J(s,x, W) #0.
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We assume that on the contrary J(s,x, W) = 0 for all choices of W.
We apply this relation to the function defined by:

l, 0 0
Wl(g):/W[g( 0 1, U )]@(U}dU,
0 0 1

where ® is a smooth function of compact support on the space of
column vectors. Using matrix multiplications we find the following
integral vanishes:

1, 0 ZgU 1. Z 0
/W {0( 0 1, gU ) ( o 1, 0O )
0 0 1 0 0 1

g 0 0
( 0 g O )jl Y(TrZ)dZ x(detg)®(U)dU .
0 01

Taking in account the invariance property of W this gives:

1, Z 0 g 0 0
/W[a(() 1, 0)(090)]
0 0 1 0 0 1
Y(TrZ)dZ x(detg)d(eng)dg = 0,

where & is the Fourier transform of ®. Just as before this implies
that:

1. Z 0 g 0 O
/W[o(O 1, 0O 0 g O)
0 0 1 0 01

Y(TrZ)dZx(detg) | detg |~ dg =0,

where ¢ is now integrated over N,,_1(F)\Gn-1(F). The rest of the
proof is not changed.

9.6. Going back to a global situation we can now prove the following
result. We let 7 be a unitary cuspidal representation of G.(Fr). We
let S be a finite set of places containing all the places at infinity and
all places where the representation 7 ramifies. We set

L5(s) = [] Lis: 7 (A*D) ® x)-

vgS

THEOREM 2. The function L5(s) is holomorphic at s = 1.
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Problems Arising from the Tate
and Beilinson Conjectures
in the context of Shimura Varieties

DINAKAR RAMAKRISHNAN

The object of this paper is to briefly highlight some of the problems
raised in the setting of Shimura varities X by the general conjectures
of Tate, Beilinson, Deligne, Bloch, et al, relating the poles and zeros
of L-functions of X to the existence of algebraic cycles and “motivic
cohomology” classes on X. Certain simple examples are mentioned
on the way, and there is no pretension whatsoever of being exhaustive
in the choice of the questions raised or the works cited.

A lot of beautiful arithmetic, and geometry, is encoded in the (mys-
terious) nature of special values of L-functions. Shimura varieties
(and associated objects), owing to their rich structural relationship
to reductive groups and to the moduli of abelian varieties and Hodge
structures, and their deep (conjectural) relationship ([La]) to auto-
morphic forms, provide an interesting testing ground. We refer to
[De2] and [Mill] for the basic facts used on Shimura varieties, to
[Sem] and [Ko] for some recent results on their zeta functions, and
to [Ral] and [RSS] for two very different, detailed introductions to
the conjectures for general varieties. There is very little overlap be-
tween the material treated here and in [Ral]; in fact, this article is
intended to complement the other, while begin self-contained. We
also refer to the recent preprint [BIKa] for a Tamagawa number con-
jecture for motifs with Q-coeflicients, which gives an interpretation of
the rational numbers involved.

1. PRELIMINARIES ON MOTIFS AND L-FUNCTIONS

Depending on the type of correspondences one uses, there are (at
least) three good candidates for the category of (pure) motifs, and
important invention of A. Grothendieck.

For any field k, let V(k) denote the category of smooth projective
varieties X over k, with morphisms being maps of algebraic vari-
eties. For every integer m > 0, denote by C™(X) the group of k-
rational algebraic cycles of codimension m on X. By definition, every

Supported by and A. P. Sloan Fellowship and by a grant from the NSF

Automorphic Forms, Shimura Copyright © 1990 by Academic Press, Inc.
Varieties, and L-Functions All rights of reproduction in any form reserved.
ISBN 0-12-176652-9
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Z in C™(X) is a finite (formal) Z-linear combination, invariant under
Gal(k/k), of closed irreducible subvarieties of codimension m. By an
algebraic correspondence from X to Y one means an algebraic cycle
on X x Y of codimension d = dim(Y’). Say that two codimension m
cycles Z, Z' on X are rationally (or linearly) equivalent if there exist
(a finite set of) closed irreducible subvarieties Y; of X of codimen-
sion m — 1, and functions of f; on Y;, such that Z — Z’ is the cycle
defined by the sum of div(f;). The m-th Chow group CH™(X) of
X is the quotient of C™(X) by rational equivalence over k, so that
CHY(X) = Pic(X), which equals: Pic(X)G2(¥/k) For arbitrary m,
one has Galois descent only after tensoring with Q. Define the group
of motivic correspondences (from X to Y in V.(k)) to be:

(1.1) Hom,(X,Y)=CHYX xY)®Q, withd=dim(Y)

There is a product structure, defined by intersection of cycles (see
[Fu]), on the Chow ring CH*(—). Given a correspondence Z from
X to Y, we can then associate to any cycle U on X a cycle (modulo
rational equivalence) Z(U) on Y by taking it to be po, (pi(U).2),
where p; (resp. p2) signifies the projection of X x Y onto X (resp.
Y).

The category of correspondences C,.(k) (relative to rational equiv-
alence) is obtained from V (k) by replacing maps by motivic corre-
spondences. The category of effective motifs M, .(k) is the result
of formally splitting (in C,.(k)) idempotent correspondences. When
X = P!, if we fix a k-rational point @, there are two obvious idem-
potents, namely P! x  and @ x P!, and the effective motif /k repre-
senting P! decomposes into a direct sum of the trivial (effective) motif
@ = Q,., which represents a point (/k) and another object (=Lefschetz
motif), denoted by @(—1). Set: @(—n)=Q(-1)®", for n > 0, which
is a sub-object of (P!)". By definition, the Tate motif is the formal
inverse, denoted by Q(1), of @(—1). The category of motifs M (k) is
what one obtains by adjoining to M, .(k) the Tate motif (and its
tensor powers). For any motif M and integer n, its n-th “Tate twist”
M(n) is defined to be M ® @(n).

For fields k with parameters, the Chow groups of an X in V (k) can
be very large ((Mum],[BI1],[Sch]). However, one hopes that if k is a
global field, then CH™(X) ® Q is finite-dimensional, for m > 0.

We will take k from now on to be a finitely generated field. For
every X in V(k), denote by h,(X) the object in M, (k) representing
X.



TATE AND BEILINSON CONJECTURES 229

Let H* be a good cohomology theory, satisfying Poincaré duality,
etc. Principal examples are the étale cohomology with Q, coefficients,
singular (Betti) cohomology with @ coefficients, algebraic de Rham
cohomology and cristalline cohomology. Then H* defines in a natural
way a contravariant functor on M, (k), with motivic correspondences
being associated to homological correspondences defined by the cycle
classes in H?*(—)(x). We note in particular the cycle class maps:

1. : m — m
(L3) ey : CH(X) | —  Hg"(X(C)

= HF"(X(C), Q(m))n H™™(X(C))
and

ly: CH™(X T7M(X
ce ( )(when;jhar(k)) Z( )

— Heztm(X ® I_C,Qg)Gal(E/k)

The classes in Hg™(X(C)) and T;*(X) are respectively called the
Hodge cycles and the (k-rational) Tate cycles of codimension m. In
the former setting, Q(m) denotes (27i)™Q, the rational Tate Hodge
structure of rank 1 and pure bidegree (—m,—m), while in the lat-
ter, @¢(m) denotes the one-dimensional f-adic Galois representation

(@n M") Oz, Qe-

CONJECTURE 1.4.

(H) (Hodge) Every Hodge cycle on X(C) belongs to clpg(CH*(X ®
k")) ® Q, for some finite extension of k' of k; and
(T'1) (Tate) Every (k-rational) Tate cycle on X belongs to
c1(CH* (X)) ® Qq.

CoNJECTURE 1.5. Ker(cly) ® Q is independent of €(# char(k)).

If £ ¢ C, then there is a comparison isomorphism between
HE(X(C),Q(m))®qQe with H} (X ®C, Q¢(m)), which by the proper
base change theorem is isomorphic to H*,(X ® k, Q¢(m)); and cf, fac-
tors (minus the Galois action) through ¢fp. Hence the conjecture 1.5
holds in characteristic zero. Set:

(1.6)
(1) CH™(X)? = Ker(ct,), CM(X)=(CH™(X)/CH™(X)")® Q;
and
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(i) For XY in V(k), Homx(X,Y)=Ci™M(X xY)

We call the classes in CH™(X)° the (k-rational) homologically trivial
cycles (of codimension m), and those in Hom(X,Y') correspondences
modulo homological equivalence. Clearly, in characteristic p > 0, for
1.6 to make sense, one needs the conjecture 1.5.

We get a different category of motifs M, (k), say, by repeating the
construction of M .(k) with Hom,.(X,Y") replaced by Hom,(X,Y). In
his original definition (see [Gro], [K] and [Ma]), Grothendieck used
correspondences modulo numerical equivalence. Recall that two cycles
(of the same codimension) are numerically equivalent if they have
the same intersection number with all the cycles of complementary
dimension, meeting them properly. Standard conjectures predict that
the numerical and homological equivalences coincide (upto torsion),
and so the objects of M (k) are morally Grothendieck motifs.

For X in V(k), let hy(X) be the corresponding object in M, (k), and
let A be the diagonal correspondence on X x X. Then the Kiinneth
components of clg(A) (resp. cfg(A)) are all easily seen to be Hodge
(resp. Tate) classes. An important special case of Conjecture 1.4
asserts that the K{inneth components of the diagonal are algebraic.
If this holds, then they define idempotents e;,0 < j < 2d, d =
dim(X), such that H(e;(hn(X))) = H(X), for every j, with H de-
noting Hp, He; or Hgp. This will lead to a decomposition:

(1.7) hi(X) = Bo<j<oa B (X),

where each h/(X) is pure of weight j. There should be and analogous
decomposition of h.(X) as well. For dim(X) < 2, 1.7 is known to
hold (see [Ma] and [K] for hy and [Mur] for h,).

Suppose k is of characteristic zero. Then, for every embedding o of
k in C, we have a comparison isomorphism:

(1.8) I': Hy(X(C),€) — Hip(X/) Ok C,

which does not preserve the rational structures. Call, following
Deligne ([Del]), a class Z in H>2(X/k)(m) x H2™(X ® k,As(m)),
Ay = I1,Q¢, absolutely Hodge (of codimension m) if, for every imbed-
ding o of k in C, its image in HF™(X(C), @(m))®(k x A¢) is a Hodge

class. Set:

(1.9) Hom,x(X,Y) = {absolutely Hodge classes on X x Y
of codim. = dim.Y}
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CONJECTURE 1.10 [Del]. Every Hodge class is absolutely Hodge.

It is known to hold for abelian varieties ((DMOS]) in every codimen-
sion, while the Hodge and Tate conjectures are open for m > 1. The
Hodge conjecture is known for divisors on any X by Lefschetz ([GH]),
while the Tate conjecture for divisors on any abelian variety is known
by the work of Faltings ([Fa]).

Define a category C, (k) by replacing the varieties X in V (k) by
the set of their “realizations” in the Betti, de Rham, ¢-adic (and
cristalline) cohomology, with comparison isomorphisms, and by re-
placing maps (of varieties) by absolutely Hodge correspondences.
Then, after formally inverting idempotent morphisms and inserting
Tate twists, we get a third candidate M,y (k) for the category of
(sums of pure) motifs over k. (One can get another variant by using
absolutely Hodge, Hodge-Tate correspondences.) It can be checked
that the Kiinneth components of the diagonal are absolutely Hodge,
and so one gets a decomposition of an M in M (k) as a sum of its
components of pure weight.

In all three settings, one conjectures, following Grothendieck, that
the category of motifs is semi-simple and (@-linear) Tannakian, with
a fiber functor over k. Hence it should be the category of semi-simple
representations of a pro-reductive group gas/k, called the motivic
Galois group /k.

The disadvantage of working with absolutely Hodge correspon-
dences, or with algebraic correspondences modulo homological equiv-
alence, is that they do not act on the Chow groups, or on the motivic
cohomology groups, defined for any X in V (k) (and m,n > 0) to be:

(1.10) H3(X,Q(m)) = Gri*Kom_n(X) ® @,

where K,(X) denotes the algebraic K-theory of X, and Grl' the
m-th graded piece relative to the y-filtration [So]. A theorem of
Grothendieck gives an isomorphism:

(L.11) H37(X,@(m)) = CH™(X) © @

One can evidently define H?, (M, Q(m)) for any M in M (k), and
H*(—,Q(**)) should presumably be the universal Tate-twisted coho-
mology theory on M (k).

Let k be a number field. Then, for a motif M (in either of the for-
malisms, there is, for every j > 0, an associated L-function LU (M, s),
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which is an Euler product over the finite places of k, with the unram-
ified factors given by the characteristic polynomials of the geomet-
ric Frobenii F, on H},(M ® Q,Q,) [Del]. If M is pure of weight
w, we write L(M,s) for L(*")(M,s), which converges absolutely in
{Re(s) > 1+ (w/2)} by Deligne ([De3]). (We assume here that bad
Euler factors do not have a pole in this region.) The Hasse- Weil-
Serre hypothesis is that L(M,s) extends to a meromorphic function
in the whole s-plane with no pole outside the “edge of absolute con-
vergence”: s = 1 +w/2, and that there is a functional equation (with
L*(M,s) = L{M,s)Loo(M,s)):

(1.12)

L*(M",s) =e(M,s)L*(M,1+w — s), with e(M,s) # 0,00, Vs.

CONJECTURE 1.12. Let M be pure of weight w. Then ([T])

(T2)(Tate)
- Ol’ds:m+1L(M, S)
= dimg, Homg,y g/ (1, H(M ® Q, Q¢)(m)), ifw=2m
and
(T3)
0rd,_y w2 L(M,5) =0, ifw=2m+1

In conjunction with (T1), (T2) says that the order of pole of L(M, s)
at s = m is the dimension of C;*(M). Since @(r) is, for any r, of even
weight, no Tate twist of an odd weight motif can contain the trivial
motif, and this is the moral basis for (T3). We get, using [JS1],
[JPSS2:

ProPOSITION 1.13. Let M be a (semi-simple) motif [k of rank n
and weight w such that L(M,s) = L(w,s—w/2) for an isobaric ([La])
automorphic form © of GL(n,Ay). Then (T2), (T3) hold for M.

For a number field T', the category of motifs /k with coeflicients in T
is constructed as above, with Hom,(X,Y") replaced by Hom,(X,Y)®
T and with @(—1) replaced by T'(—1), the non-trivial direct factor
of TP!. The associated L-functions are (T' ® C)-valued. One often
works in this enlarged setup.

Langlands conjectures ([La]) that the category of isobaric auto-
morphic forms on GL(Ag) should be Tannakian, equivalent to the
category of completely reducible representations of a pro-reductive
group ga/k, and that there is a surjective morphism /Q : g4 — gum.
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(For important insight into the structure of non-tempered automor-
phic representations, see [Ar1].) Thus motifs should be attached to
automorphic forms of arithmetic type (see [Cl1], [B3]), but the au-
tomorphic theory is not sensitive to coeflicients and so there is no
satisfactory bijection over k.

Denoting by Hji,(Mz,Q(xx)) a suitable integral structure of
H3 (M, Q(*x)) ([Bel]), Beilinson makes the following

CONJECTURE 1.14. For0<j<2m -1, and M in M ,.(k),

ords—jy1-m LY(M,s) = dimHﬁl(ML Q(m), ifj<2m-2

ordy— 1 L™ %(M, s) = dim H2 " (Mgz, Q(m)) + dim CJ*~} (M)
and

ordsem L™ D(M, s) = dim H27(Mz, Q(m))°

Furthermore, the leading coefficient of LU)(M, s) at the respective
point is expected to be a rational multiple of the volume of a requlator
(in the first two cases) or a height pairing (in the last case) involving
the corresponding group on the right (cf. [Bel],[B12],[Ral],[RSS]).
All of this extends to motifs with coeflicients, and is consistent with
Deligne’s conjectures at critical points. When M is, for example,
defined by spec k or by an algebraic Hecke character, there are positive
results (cf. [Bo],[Bel],[B1],[B2],[HaS], [Den1],[Den2]).

The groups H7 (M, Q(m)) are expected to be Ext™ (M, @(m)), with
the extensions taking place in a convenient category of mized motifs,
i.e., motifs which admit an increasing (weight) filtration with succes-
sive quotients being pure. So the philosophy (of Beilinson, Deligne
et al.) is that, even if one wants to restrict oneself to pure motifs
M, the special values of the associated L-functions are controlled by
suitable groups of extensions of M by Tate motifs. It is this author’s
hope that (more general than isobaric) automorphic forms of arith-
metic type should be associated to mixed motifs, having in general a
complicated weight filtration, with splittings governed by the vanish-
ing of certain associated L-functions. This should be done in a way
consistent with the programs of Arthur ([Arl],[Ar2]) and Harder
((Ha1],[Ha2]). We wish for a formalism over local fields F' as well;
for instance the Steinberg representation of GL(2, F') should (presum-
ably) correspond to a generator of Ext'(@, @(1)). We hope to try and
come back to this question elsewhere.
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See [De2], [Jal] and [Be2] for different approaches to the (conjec-
tural) category of mixed motifs, and [BeMS], [BeGSV], [BI2], [Li]
and [Mil2] for various candidates for motivic cohomology.

2. QUESTIONS CONCERNING SHIMURA VARIETIES

Let G be a connected reductive (algebraic) group /Q, admitting a
non-trivial R-morphism h : C* — Gg satisfying the axioms of [De2],
and let K, be the centralizer of h in G(R). Then X = G(R)/Kq
is of hermitian symmetric type, and for K : a (neat) open compact
subgroup of Gy = G(Ay), Ay = (lim Z/nZ) ® Q, there is an asso-
ciated Shimura variety Sk defined over a canonical number field E
(see [Mill]) such that Sg(C) identifies with: G(Q)\X x Gf/K =
Ui<i<h(k)Ti\Xt where each T'; is a congruence subgroup of G4(Q).
If we write he = (p, it), then F'is the field determined by the stabilizer
of the conjugacy class of g in Aut C. Let S} be the (often singular)
Baily-Borel-Satake compactivifcation /E of Sg. Denote by Sk(C)
a smooth toroidal compactification of S} (C) ([AMRT]). When Sk
is a curve, this is canonical, and when it is a (non-rational) surface,
there is a minimal one such as the Hirzebruch compactification in the
Hilbert modular case. In general, there is no way of choosing one
in a natural way among a family of such compactifications. How-
ever, the rational polyhedral cone decompositions ) defining Sk (C)
can be chosen compatibly with the action of Aut(C/FE) on S} (C) to
obtain: For a suitable (infinite family of) }’s there is a smooth reso-
lution S = Sk U D of S} over E, where D is a divisor with normal
crossings ([H2]).

QUESTION 1. Is there a motivic splitting (x) h(Sk) = [IS%] ® [SE],
for h = h,., hy, or hay, such that, for any good cohomology theory H
(such as Hg or H;) : H([IS3]) = IH(SY)) and H(*) is given by
the decomposition theorem of [BeBD]?

Here I H denotes the intersection cohomology of Goresky MacPher-
son and Deligne. If such a splitting exists with A = h,., then the mo-
tivic cohomology decomposes accordingly. Note that the action of the
Hecke algebra H(Gy, K) on Sk (by correspondences) extends to S,
but not (in general) to Sk, for any choice of the cone decomposition
>". (One of the exceptions is the case of a quasi-split unitary group
G with G(R) = U(2,1), Sk is a Picard modular surface on which the
Hecke algebra acts because there is a unique decomposition of R} —
[Sem]). However, in general, we can choose a projective family of
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Y ’s such that H(Gy, K') acts on the inverse limit Sk of the S (3)’s.
Taking the limit over K, we get a G action on the double projec-
tive limit § ([Ra2]), and we get a weak splitting (even in M, ). It
will be very interesting to determine, already at the Betti or étale co-
homological level, what possible intertwining (as G g-modules) there
can be between (the limits of) H([IS%]) and H([S%]). For exam-
ple, let G denote the restriction of scalars to Q of GL(2) over a real
quadratic field F. Then Sk is a finite set of points (“cusps”). More-
over, Sk = Sk U D, with D being a finite union of cycles of rational
curves, and Aut C acts on the cusps via its abelian quotient. Conse-
quently, [S$]®, which is H? of Sk with supports in S5, decomposes
into a sum of H{w(—1))’s, with each w a Dirichlet character of Q. On
the other hand, TH?(S}) = Im(H?(Sk) — H?*(Sk)) is spanned by
cusp forms of weight two and by one-dimensional automorphic forms
corresponding to cyclotomic motifs ((HLR], [Ra3]).

(QUESTION 2. Assume a positive answer to Question 1. Then does the
decomposition (1.7) hold for [IS%:]? More reasonably, can it be proven
that the primitive part PH?(Sk) of the intersection cohomology (in
the middle degree d = dim(Sk)) corresponds to a split submotif of
[1S5]?

Note that the decomposition (1.7) is shown in [KaM] for any
smooth projective variety over F, as a consequence of Deligne’s proof
of the Weil conjectures. It is natural to wonder if the Hecke corre-
spondences can be used globally (in the context of Shimura varieties)
to separate out the different weight pieces. (Can one use the rela-
tionship between Hecke and Frobenius?) By the proof of Zucker’s
conjecture ([Lo], [SS]), the (Betti) intersection cohomology (with C-
coefficients) can be replaced by the L?-cohomology of Sx(C), which
can be described in terms of the (Lie G¢, K )-cohomology with co-
efficients in discrete automorphic forms ([BoW]). (One wishes that
the whole cohomology of Sk(C) is automorphic; it will be interest-
ing to try and prove that, if this wish were granted, then there can
be no ghost classes.) The restriction to the primitive part comes in
because of the compounding problem that an automorphic represen-
tation m = T ® 7y (of G(A) = G(R) x Gy) can contribute in more
than one degree (by cupping with the hyperplane section.) Of par-
ticular importance are those n’s with 74, in the discrete series, which
do not contribute in any degree but d.

When Sk parametrizes abelian varieties of PEL type, one can con-
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sider the question of motivic splitting also for the fiber products of
the universal family over Sg. When Sk is a modular curve, the forms
of higher weight enter, and for a proof that they split off motifs, see
[Ja] (in M, j) and [Sc].

QUESTION 3. Let 7y be an irreducible admissible G f-module,
admitting a K-fixed vector, and let S(ms) denote the “motif”
Homg (s, [18*]),[IS*] = limg[IS}], cut out by the Hecke corre-
spondences. Can it be proven, when S(ns) is pure of even weight, that
it contains a Tate motif as a direct summand whenever L(S(7¢),s)
has a pole at an integral point? When S(n¢) is of odd weight w, can it
be shown that L(S(wy),s) is entire and invertible at the critical edge
s=14w/2?

An example, in the even weight case, is supplied by an infinite
dimensional 7 contributing to IH? of a Hilbert modular surface Sj
(for K such that the space of 7y admits a K-fixed vector). There is a
unique 7., namely the discrete series of weight (2,2) of GL(2, F ®R),
such that 7 = 7o, ® 75 occurs in the space of cusp forms, and S(7y)
has rank 4/Q, of Hodge type (2,0), (1,1), (0,2). One knows that
L(S(7y¢),s)is an Asai L-function L(w,r,s) ((HLR]), which has a pole
at the edge when 7 is a base change of a cuspidal 7 (of GL(2,Ay)).
(For general Shimura varieties, the automorphic L-functions which
should intervene in the explication of the Zeta function of [IS%] are
associated to the representation r of LG determined by the coweight
pu—see [La].) Using the involution which flips the two factors of X,
it can be proved (in the base change situation) that S(ms) splits as
a motif (in M,) into a sum of @(—1) and the symmetric square of
the motif S(’;) (occurring in the degree 1 piece of a modular curve.)
([Ra2]). For general G, it will be interesting to devise a procedure
for m¢’s which come by lifting from a smaller group.

It is useful to observe that S(7y) is in general not the conjectural
motif, say M(7y), attached to ;s (of arithmetic type.) In the Hilbert
modular case (of GL(2)) over a totally real number field F', the étale,
resp. Grothendieck, realization of M(7y) is constructed in [Tay], resp.
[BRo1l]. In the weight 2 case, M(n;) has weight one, and it is still
an (important) open problem to associate an abelian variety A(ws)/F
such that M(r;) = h'(A(7f)). When F is of odd degree /Q, there is
a construction of A(ns) as a factor of a Shimura curve ([Cal]).

In the odd weight case, suppose m = 7o, @ 77 is a globally generic,
cuspidal representation of some G(A) contributing to the middle prim-
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itive cohomology of Sk(C) in some degree. Suppose further that
S(mys) is a multiple of some M with L(M, s) the standard L-function
of 7. Then (by [Shah]) L(S(7y),s) has no zero at the critical edge.
An example to think of is the unitary group /@ of signature (2m—1,1)
at infinity defined by a division algebra with an involution of the sec-
ond kind over an imaginary quadratic field ([Ko]), with 7 being in
the (generic) discrete series (contributing to H?>™~!). (In this case
Sk(C) is a finite union of compact arithmetic quotients of the unit
ball in C".) In general, if 7 lifts to a cusp form on some GL(n)/Q,
then we can appeal to Proposition 1.13.

QUESTION 4. Given an arbitrary Shimura variety of dimension d,
can one construct non-trivial, primitive algebraic cohomology classes
in TH*™(S), for every m not ruled out by the vanishing theorems,
by means of the Hecke translates of Shimura subvarieties? Can these
classes be chosen to not come from G(R)-invariant forms on X? If
2m # d, then do all such classes arise this way? In the middle di-
mension (when d = 2m), are all the Tate classes over E*® exhausted
this way? Is there any additional contribution from the cycle classes
of non-congruence quotients of sub-hermitian domains of X'?

We note first that the relevant cohomology vanishes below the real
rank of G ([BoW]). Better, if G is R-simple, then there is a precise
integer r(G) > rkr(G) below which one has vanishing (see [Kuml],
[VZ].) If G(R) = SU(p,q) or SO(2,n), there exists in every even di-
mension outside the vanishing range a non-trivial class, not associated
to an invariant differential form, represented by a sub-Shimura variety
attached to a sub-group H, with H(R) being of the form SU(k,q) or
SO(2,k). The construction of such “geodesic” cycles is addressed from
the Weil representation point of view in [Kul] and [KuM]. A differ-
ent construction of Hodge classes on (compact) unitary Shimura va-
rieties comes from (suitable) algebraic Hecke characters, and is given
by combining [CI1] and [CI2].

It is in general fruitful to study cycles coming from a subgroup
defined by the fixed points of an involution. Suppose we are in
the Hilbert modular surface case. Then one knows [HLR] that the
Hirzebruch-Zagier cycles, i.e., the Hecke translates of embeddings of
modular curves ([HZ]), exhaust all the Tate classes over Q=>, but not
over Q. Even though the Tate conjectures ((T1) and (T2)) are known
in the remaining (CM) cases ((MuRal], [K1]), the problem of explicit
construction of these exotic divisors is very much open. This problem,
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if solved, will have important consequences, because then one can in-
tersect these exotic curves with the diagonal (modular) curve X and
get interesting algebraic points on X. When G is a quasi-split group
with G(R) = U(2, 1), the Tate conjectures ((T1) for all number fields
k, and (T2) for k/E abelian) for H? has been proved in [BRo2]. It is
also shown that there are no exotic classes in this case. If 7 = 71 ® 7y
is a globally generic, cuspidal representation of G(A) contributing to
H?, with m,, in the discrete series, then it seems reasonable to expect
to prove, as in the Hilbert case, that S(7¢) has a class represented
by a curve coming from U(1,1). The complications here arise from
L-indistinguishability ([Ro]). Finally, when G = GSp(4)/Q, it has
been shown in [Wei] that all of H? of the threefold Sk is algebraic,
represented by cycles coming from translates of embedded modular
surfaces.

QUESTION 5. Let G,G’ be inner forms such that G(R) = G'(R), with
Shimura varieties S, S’ respectively. In case 7y, n¢' are cuspidals of
Gy, G'; such that their L-packets correspond (by an instance of the
principle of functoriality), what is the relationship between S(7s) and
S'(m4")? When are they multiples of isomorphic motifs (in M., M, or
M,y )? What about when G,G' are inner forms, but G(R) % G'(R)?

When ¢, 7f' correspond as above, we get an identity of the relevant
L-functions. The Galois representations on the étale realizations of
S(ms) and S’'(7¢’) should be semisimple, so that (by the Tate conjec-
tures) there should be an algebraic correspondence between Sk and
g’K, which induces an isomorphism of the appropriate pieces of the
¢-adic cohomology of Sk ® @ and Sk ® Q. It is already a (forbid-
dingly) difficult task to exhibit a Hodge correspondence, which, when
the L-values coincide, is tantamount to proving certain period rela-
tions, which are predicted by the conjectures of Shimura ([Sh1]) and
Deligne ([De]). (See [Sh2], [Sh3], [H] for a sample of positive results
on preiod relations). An important case is when G,G’ are defined by
the multiplicative groups of quaternion algebras B, B’ over a totally
real number field F. When B is ramified at r infinite places with
0 <r < [F:@Q] -1, there is also this problem of not knowing the
truth of Langlands’s conjecture for the computation of the points of
Sk over F,. For the surfaces defined by a totally indefinite B over
a real quadratic F, the Tate conjectures ((T1) for arbitrary k& and
(T2) for abelian number fields k) have been proved in [MuRa2] by
transferring, using period relations, the problem to Hilbert modular
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surfaces (defined by a split B’/F), where one knows the algebraicity
of Tate classes ((HLR]+[MuRal] or [Kl]). If B = By ®q F, for
some By /Q, this was proved earlier by [Lai] using the relative trace
formula developed in [JaLai]. (The Shimura curve associated to By
defines an analog of the Hirzebruch-Zagier cycle in this situation, with
no similar fact known when B does not come from By.) When B is
a quaternion algebra over a totally real F', which is split at exactly
one infinite place, and B’ = M(2, F), S is a Shimura curve /F and
S’ is a Hilbert modular variety /@ of dimension d = [F' : Q). When
(weight 2) ¢ and 7f' correspond, one expects there to be an isomor-
phism: S(7¢) = ®,S(nf)?, o € Hom(F,C). (The CM aspect of
this is discussed in [MuRa3].) In the case of a quasi-split G with
G(R) = U(2,1), the relative trace formula method should help nail
down a basis of the Néron-Severi group C}(Sk ® @), by comparing
the period integrals of generic and non-generic forms over (algebraic
1-cycles coming from) different forms of U(1,1).

For general G,G’ (with G(R) = G'(R)), when there is an algebraic
correspondence T between Sg and S’K,, for suitable £ C Gy and
K' C G’ it induces maps (for every n > 0) between the motivic

cohomology of n-fold self products of Sk and Sg/. For example, let
G = B*, with B an indefinite quaternion division algebra /Q, and let
G’ = GL(2)/Q. Then S(ry) (resp. S'(ny)) is attached to a factor of
the Jacobian of a Shimura (resp. modular) curve /Q. In this case,
by [Ri] or by [Fa], there is an isogeny over @ from S(7f) to S'(n '),
which gives rise to an isomorphism, for every n > 0 and (j, m): (see
[Ras))

H)((S(mp)®", Q(m)) = Hp(S'(n;")®", Q(m))

This allows us, for instance, to deduce part of Beilinson’s conjectures
(the inequality < in 1.14 4 volume of the regulator) for Sk (at
all the non-positive integers) and for Sx x Sk (at s = 1) from the
corresponding theorems for modular curves ([Bell], [Be3], [ScSc]).
The situation for Shimura curves over totally real F' # Q is completely
open.

QUESTION 6. For any Shimura variety S, let Am(S'K) denote, for
every m > 0, the algebraic part of the m-th intermediate Jacobian
J™(Sk(C)). Can one determine the types of abelian varieties |E
which occur as factors of Am(S'K) ? More concretely, is there a simple
non-C M abelian variety factor (of some A™(Sy)) which is not a factor
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(possibly over a finite extension) of the Jacobian of a modular or
Shimura curve? If S is attached to a unitary group G with G(R) =
U(p,q),p < q, then is every simple factor of A™(Sk), for 2m—1 < pq,
isogenous to a factor of A™(SY%.), where S, is a sub-Shimura variety
attached to and endoscopic group G' with G'(R) = U(p,q—1)xU(1)?

Recall that, for any smooth projective variety X /E of dimension
d, the m-th (Griffiths) intermediate Jacobian is:

J™MX(C))
= (®p2d-m+1 HP? 72" H72(X(C))) "/ Had-2m41(X(C), Z(m)),

which is a complex torus. There is an (Abel-Jacobi) homomorphism
ab: CH™(X)? — J™(X(C)),

given by representing a homologically trivial cycle Z of codimension
m by the linear form defined by integrating over a 2d — 2m + 1-chain
C with boundary (27:)™Z. (If C' is another such chain, then C' — C’
represents a class in Hog—om4+1(X(C),Z(m))). Let Alg™(X) denote
the subgroup of CH™(X)° consisting of cycles which are algebraically
trivial. Then it is known ([Murl]) that ab(Alg™(X¢)) is an abelian
variety, which we denote by A™(X )¢, admitting a model A™(X) over
E. For divisors (and zero cycles) algebraic and homological equiva-
lences coincide, and thus A'(X) (resp. A?%(X)) identifies with the
Picard (resp. Albanese) variety of X.

For Shimura varieties Sk attached to unitary groups G with no
U(1,1) factors at infinity, it is proven in [MuRa4] (using [Ro] and
ideas from [Od]) that the Albanese variety (and hence its dual, the
Picard variety) of Sk is of (potential) CM type. More precisely,
it is shown there that every factor {(over an explicitly determinable
finite extension) of the Jacobian of a Shimura curve ((MuRa3]). As
remarked by Blasius and Rogawski, we can then conclude, using the
classification of G’s with real rank 1 (and with a little work at infinity),
that the tensor category /@ of Abelian varieties generated by the
Albaneses of all the Shimura varieties coincides with that generated
by Jacobians of modular and Shimura curves and by CM abelian
varieties. It is this author’s fond hope that the conjectural abelian
varieties attached to Hilbert modular cusp forms of weight two occur
as factors of suitable A™(Sk)’s.
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Let £ be a CM elliptic curve /E occurring as a factor S(7y) (up
to isogeny) of the Albanese of a Picard modular surface Sk. (There
exist such £’s—see [MuRa4]| & [Ro].) A natural question to ask is
whether the special (C M) points on Sk (@), not lying on a modular
curve C Sk ®Q, can be used to construct some new rational zero cycles
on £7 Let Sk be a proper scheme over O, regular outside a finite set
of primes, such that Sk ® @ = Sk. If Z; is a zero cycle of degree zero
on Sk, then its scheme-theoretic closure Z, say, in Sk is an arithmetic
1-cycle, representing a class in CH2(Sk)° ® Q. If Z’ is another such,
then we get a linking number < Z,Z’ > € R, where <, > is a height
pairing ([Bel], [Be4], [B14]), defined as a sum of local terms <, >,
as v runs over all the places of E. 1t is known that this pairing factors
through the Néron-Tate height pairing (between the Albanese and
Picard). Conjecturally, the determinant of <, > relative to a m¢-basis
of Z’s modulo rational, or Albanese (see below), equivalence should
be a rational multiple of (the inverse of a Deligne period times) the
leading coefficient of L(S(my),s) at the critical center. To compute
< Z,Z' > explicitly, in a manner analogous to the (groundbreaking)
treatment of Heegner points in [GrZ], however, one needs a better
hold on the bad fibers of Sg. A model with many of the desired
properties has been constructed by M. Larsen ([Lar]).

QUESTION 7. For F/E finite, let B™(Sk /F') denote the subgroup of
CH™([IS}] @k F) generated by the F-rational classes coming from
the Hecke translates of Shimura subvarieties of Sg ® Q. Then is
B™(Sk/F)®Q finite dimensional /@7 Is the torsion subgroup of the
integral part of B™(Sk /F) finite, and, if so, what is its structure?

The first part is a (hopefully more accesible) special case of what
one expects from Beilinson’s conjecture 1.14 (and the expectation that
CHm(S'K) Q= CHm(SK) ® @ for a proper model Sy over O as
above). A weaker thing one can ask for is the finite dimensionality
over @ of ab(B™(Sk)%) ® Q. Recall that the algebraically trivial
cycles /E get mapped by ab into the E-rational points of the abelian
variety Am(g' k). Hence, by the Mordell-Weil theorem, the question
“reduces” to one about the rank of the Abel-Jacobi image of (part of
the “Griffiths group” of ) homologically trivial cycles modulo algebraic
equivalence coming from Shimura subvarieties.

The expectation underlying the second part is parallel to a general

conjecture of H. Bass which asserts the finite generation of K-groups
of any scheme of finite type /Z. Recall from (1.10) that CH™(-) is
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up to torsion the weight m piece, for the v-filtration, of Ko(—).)

Of special importance is the case of zero cycles (m = d = dim Sg),
and the contribution of the special CM points (defined by embeddings
of anisotropic tori in G). Neither part of the question is clear in this
setup, except for special geometric types of Sk where one know a pri-
ori that CH?(Sk ® C)° is isomorphic to Alb(X¢) (see [B15], [CoS]),
for example), and even then not much is known about the structure
of the torsion group. (The best result known in the non-rational situ-
ation is the famous theorem of B. Mazur [Maz] on the modular curve
Xo(N).) Can one at least prove a weak Mordell Weil type theorem
for BY(Sk/F)? As a small step in the positive direction, it can be
shown ([Ra6]) that for certain Hilbert modular surfaces Sk /Q, the
Q@-subspace of B™(Sk/Q) generated by special points corresponding
to compositums of pairs of imaginary quadratic fields is zero. (The
first Betti number of such Sk is zero, and hence the Albanese is triv-
ial.) Of use in the proof is the fact that every such very special point
is at the intersection of Hirzebruch-Zagier cycles. The Neron-Severi
groups of Hilbert-Blumenthal surfaces are (often) torsion-free, and it
will be interesting to determine the torsion subgroup of B%(Sk) in
terms of modular information. (See [Ras]| for a survey of results on
the torsion in Chow groups.)

It is useful to note the following consequence of the Bloch-Beilinson
conjecture for zero cycles of degree zero. By (1.1.4), we must have,
for every F/E finite: dimCHYSx ® F)° ® @ = ord,—¢ L{D(Sk ®
F,s) = ord;—; LY(Sk ® F,s), which is expected, by the Birch and
Swinnerton-Dyer conjecture [T], to be the rank of the group of F-
rational points of the Picard variety of Sg. By duality, it should
also be the rank of the F-rational points of the Albanese. Using the
surjectivity of the Albanese map and the fact ([Roi]) that the torsion
subgroups of CH(Sk ® Q) and Alb(Sk ® @), are isomorphic, one
is led to the expectation that CH4(Sx ® F) ® @ is isomorphic to
Alb(Sk ® F) ® Q, for every number field F D E.

QUESTION 8. Is there a general procedure to construct, for F/E:
finite, classes in H(Sk ® F,Q(m)) (resp. H27 " (Sk ® F,Q(m))),
by making use of functions with divisorial support in B}(Skg ® F)
(resp. cycles in B™"(Sk ® F) and functions thereon?) Do they
generate a finite dimensional space /Q? When do they come from an
integral model of Sy ?

If fi1,fe,...fm are functions in F(S’K)*, they define a symbol
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{f1, f2y..- fm} in KM(F(Sk)), which is by definition the quotient
of the m-fold tensor product of F(Sk)* (with itself) modulo the
group generated by the relations: z; ® --- ® z,, = 0, whenever
zj = 1 — x;, for some i # j. By [Su], HY(F(Sk),Q(m)) equals:
KM(F(Sk))®Q. If D is the union of divisors of the f;, then a multiple
of {f1, fa,..., fm} defines a class s(f1,..., fm), say, in H (U, Q(m)),
where U is the complement of D in Sk ® F. It globalizes to a class in
H7(Sk @ F,Q(m)) if d(s(f1,. .., fm)) = 0, where 8 is the boundary
map: H(U,Q(m)) — H/'C,_l(D,Q(m — 1)). For instance, let m = 2
and dim S = 1. In this case, 3 is T®Q, where T is the familiar tame
symbol taking values in diVO(S KkQF)® Q*. A very useful construc-
tion of Bloch is the following: Suppose every divisor of degree zero
supported on D is torsion of order r in the Jacobian. Then, after mod-
ifying by an “elementary” symbol of the form {h,a} with h € F(Sg)*
and a € Q*, {f1, f2}" globalizes to K,(Sk ® F). This construction
is used to great effect in Beilinson’s work on modular curves ([Bel],
[ScSc]), where he takes D to lie in the cusps, satisfying Bloch’s hy-
pothesis by the Manin-Drinfeld theorem. The question is what one
can say when D lies in the CM points. (For Shimura curves over
totally real F' # @, there is no recourse but to try and make use
of the special points. Even for modular curves, since the cusps are
all defined over @, there is no known construction for non-abelian
fields.) Let = be a holomorphic cuspidal representation of GL(2,Agq)
of conductor N with Q-coeflicients. Then S(7) is a rank 2 motif oc-
curring in the modular curve Xo(N)/Q. Suppose L(7y, s) vanishes to
odd order > 1 at the critical center s = 1. Then, by [GrZ], there is a
special zero cycle Z of degree zero, whose class in the 7 ¢-component
of Jac(Xo(V)) ® @ is trivial. (If £ is the elliptic curve factor /Q of
Xo(N)) determined by 7 upto Q-isogeny, then Z determines a ratio-
nal point P on £(Q) which is torsion.) It will be interesting to try to
understand the symbols made up of functions with support in such
special cycles. Recent work of R. Ross ([Rs]) has exhibited the fol-
lowing instructive example where one can use special points of infinite
order: Let £ be the elliptic curve /Q defined by: y? = *+z, which has
conductor 64 and CM by Z[i]. Set: 0 = point at infinity, P» = (0,0),
P, = (u,—u) for u = (14iv/3)/2, and P; = (@, —a). If f(z,y) =z—y
and g(z,y) = z, then div(f) = Po+P,+ Pz —30, and div(g) = 2P, —20.
It turns out that {f, ¢}% is in Ker(T). On the other hand, P, is not
a torsion point, because any torsion in E over @(iv/3) divides 4 and
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4P, # 0. (Note that 2P, = (—3/4,*).) Let p: Xo(IN) — & denote the
modular parametrization /Q. Then p~!(P,) is a CM point. Further-
more, if r denotes the regulator map: K»(€) — H(£(C),R(1))T ¥R,
the image under r of (the class < f,g > defined by {f,¢}°) is non-
trivial in H3,(£,Q(2)) = K»(€) ® Q. It may also be useful to remark
here that, since £ has CM and thus has no split multiplicative re-
duction, < f,g > comes from any regular model ([BIG]) of £ over Z.
We hope that r(< f,g >) can be (at least numerically) checked to be
a rational multiple of L'(£,0), as it should be; if not the conjectures
will have to be revised.

Incidentally, for any smooth projective curve X over Q, we conjec-
ture that the regulator map r is injective on H3,(X,Q(2)), not only
on the integral subspace. For underlying theoretical reasons (which
are consistent with [BIG]) see [Ral], sec.4.7, and for evidence in the
case of modular curves see [ScSc].

It is known ([Q], [Ral]) that, for every m > 0, the classes in
H27™=2(Sk,Q(m)) are represented by Gal(Q/E)-invariant formal lin-
ear combinations: Y (Z;, f;), i € finite set, with each Z;: irreducible
subvariety of codimension m — 1, and f; a function invertible at the
generic point of Z;, such that: (*)div(f;) is zero as a codimension m
cycle on Sg. A simple way to satisfy (%) is to take constants for f;,
and this induces a natural map g : H27"%(Sk,Q(m — 1)) ® E* —
H37 1 (Sk,Q(m)). It will be useful to construct classes in coker(g)
which come from Shimura subvarieties. This setup can be enlarged
to include products of Sk’s and also the univeral families of abelian
varieties A over Sk (for G’s of symplectic type). Suppose, for exam-
ple, X is the 2-fold product of a modular curve Sk with itself. Then,
with P and @ being two distinct rational cusps on Sk, Beilinson
considers the sum: b(P,Q) = (Sk x P, f) + (A, f~1) +(Q x Sk, f),
wehre A is the diagonal curve, and f is the function on Sk with
div(f) = k((P) — (Q)), for some k > 0. Then (*) is satisfied, and
we get a class in H3,(Sk,Q(2)) not in the image of g. Let r denote
the regulator map, which takes values in H'!'(X(C),R(1))*. If we
denote by [,] the self-dual pairing on H'!(X(C)), then for w,w’ in
HY(Sk(C)), noting: w ® W5, xp=wWRW|gxs, =0 we get:

[r(b(P,Q),wAw'] = (1/271'2')/ log|f] wAw'.

Sk(C

Writing w (resp. w’) as the differential attached to a cusp form =
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(resp. 7’) on GL(2)/Q of weight 2, Beilinson interprets the regula-
tor integral as an explicit multiple of the Rankin L-function of (7, 7")
at s = 2. When S(nf) # S(74') ® x, one then deduces the conjec-
tured relationship to the derivative at s = 1, and the non-vanishing
of the integral shows the non-triviality of b(P, @) for some (P,Q). It
should be noted that Beilinson’s proof of integrality of b(P, Q) is not
quite correct as given in [Bel], due to the problem found in [ScSc].
However, the argument can be modified to give the same final re-
sult by closely analyzing hte boundary map. There are analogous
results for Hilbert modular surfaces (m = 2,s = 1) ([Ra2]; see [Ra3],
[Ra4] for a sketch) and for a product of two elliptic modular surfaces
(m = 3,s = 3) ([Ra6)).

QUESTION 9. For m : odd > 0, can one give criteria for cycles
in B™(Sk) to be homologically trivial? For w; contributing to
H?™-1([1S%]), can one find examples where L2™~1)(S(n),s) van-
ishes at the critical center s = m? Can they sometimes be matched
with cycles in B™(Sk)® having infinite order in the w¢-component
of J™(Sk(C))? Can the height pairing be evaluated on any (one)
of these special cycles for m > 17 Can one try to understand sys-
tematically the analytic expressions for the derivatives of the relevant
L-functions?

Clearly, when 2m is in the vanishing range, one gets homologi-
cally trivial cycles for free. More interesting examples arise when
one knows enough about the intersection numbers with the algebraic
classes in H2¢~2™_ Such a situation arises, for example, for divisors on
Hilbert modular, resp. Picard modular, surfaces in [HZ], resp. [Kul],
where the intersection numbers arise as coefficients of certain modular
forms. It will be interesting to understand systematically the inter-
section numbers of algebraic 1-cycles Z lying on a Siegel modular
threefold Sk (attached to GSp(4)Q) relative to the modular surfaces
with non-trivial classes in H?. Some examples of Z are the Shimura
curves /Q (which parametrize abelian surfaces with multiplication by
an indefinite quaternion algebra /Q) and the modular curves via the
embedding of GL(2) x GL(1) in GSp(4). Here are two examples of
cuspidal []’s contributing to H®, both making use of the character-
ization ([JPSS1], [JS2]) of the forms on GL(4) which descend to
GSp(4):

(i) Let 7 be a holomorphic cuspidal representation of GL(2) over a
real quadratic field F' of weight (2,4) at infinity. Then there exists
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a cuspidal J] of GSp(4)/Q such that (the degree 4/Q L-function—
[PS]) L([], s) coincides upto a finite number of factors with L(~,s),
and such that [ corresponds to a generic discrete series contributing
to H3.

(ii) Let £ be an elliptic curve /@ with CM corresponding to a
Hecke character x of weight 1 of an imaginary quadratic field K.
Then there exists a cuspidal [] of GSp(4)/Q such that L(]],s) =
L(Sym*(HY(£)),s) = L(x®,s)L(x*x*), p : non-trivial automorphism
of K, with []_ the same type as in (i).

In either case, root number calculations give examples where the
L-function vanishes at the critical center. The generic forms give
the ((2,1),(1,2))-part of H*, while the L-equivalent holomorphic ones,
when they exist as they are expected to for stable forms ([Arl]), give
the {((3,0),(0,3))-part. When there is no holomorphic contribution
for a specific 7y, then the intermediate Jacobian becomes algebraic,
isogenous in case (ii) to £(—1). It will be exciting to get modular
examples (in codimension > 1) of homologically trivial cycles of in-
finite order modulo algebraic equivalence as in [BI2], [Harr]. One
wonders if the see-saw pairs formalism of [Ku2] could be used to un-
derstand the Abel-Jacobi periods. On the analytic side, one has an
understanding of the L-functions on GSp(4)x GL(2) when the form on
GSp(4) is generic or of special Bessel type ([PSSo], [GePS]), but one
wishes for an integral representation when [] is holomorphic. (It is not
clear if every holomorphic form has a special Bessel model globally.)
See [GeSh] for a survey of automorphic L-functions and their inte-
gral representations. Finally, for elliptic cusp forms of higher (even)
weight 2k, the derivative formula of {GrZ] provides good support for
conjecture (1.14) at the critical center (s = k), and a theory of heights
in local systems is developed in [Br] to interpret this formula. It will
be striking to gain a further understanding in terms of the height of
(algebraic) Heegner cycles in the fiber product of the universal elliptic
curve over the modular curve.

We have completely ignored here the spectacular successes achieved
in the context of the Birch and Swinnerton-Dyer conjecture for differ-
ent class of modular elliptic curves /Q. For results in this direction,
see, for example, [CW], [G], [GrZ], [GrKZ], [Ru], [Ko], (and also
[BFH]| and [MuMaul]).
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On the Bad Reduction of Shimura Varieties

M. RAPOPORT
INTRODUCTION

In this survey article we are concerned with the reduction behaviour
and the local zeta function of Shimura varieties at primes of bad reduc-
tion. More specifically we are interested in the structure of a Shimura
variety S(G, X)c, where C C G(Ay) is a (sufficiently small, i.e. neat)
compact open subgroup and C, C G(Q,) a parahoric subgroup, and
its reduction behaviour at primes dividing p. Naturally, the rational
prime number p is fixed throughout.

The case “T'g(p)” for G = GLs has a long history which probably
starts with Kronecker and involves the names of Eichler, Shimura
and (more to the point) Igusa, but it was Deligne who determined
completely the structure at p of this simplest Shimura variety. The
next significant step was taken in 1975 by Cherednik who proved
that for G' the multiplicative group of a quaternion algebra over @
which is unramified at the infinite prime and ramified in p the corre-
sponding Shimura variety possesses a p-adic uniformization. Drinfeld,
in 1976, gave a direct and conceptual proof of Cherednik’s theorem
which opened the way to various generalizations. In the first section
we review some of the structure theorems obtained so far. This sec-
tion which also presents results of Langlands, Zink and myself is by no
means exhaustive and in various places only gives glimpses of the full
truth. Its main purpose, besides recording some of the progress made
in this direction since the time of the Corvallis meeting, is to convince
the reader that the global geometric structure of the reduction is in
general so complicated that it cannot be effectively used to calculate
the local factor of the zeta function.

We turn to the problem of the determination of the local zeta function
and its semi-simple variant in the second section. We explain the
relation of the two which relies on Deligne’s conjecture on the purity
of the monodromy filtration and make some remarks on its connection
with the Ramanujan conjecture.

The rest of the article is concerned with a class of specific examples,
namely the “fake” unitary groups defined by a division algebra with

Automorphic Forms, Shimura Copyright © 1990 by Academic Press, Inc.
Varieties, and L-Functions All rights of reproduction in any form reserved.
ISBN 0-12-176652-9
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involution of the second kind which stays a division algebra after lo-
calization at p. In the third section we explain the moduli problem
connected with this Shimura variety and reduce the problem of de-
termining the local structure of its reduction to a problem on formal
groups. We also introduce here the concept of a local model of the
Shimura variety which is supposed to describe the singularities arising
in the reduction. In an appendiz to this section we focus our attention
on a special class of these examples which we call the Drinfeld case
since this class possesses a p-adic uniformization by Drinfeld’s upper
half space Q). This establishes a connection between the conjecture
of Drinfeld giving a geometric construction based on the cohomology
of Q) of the “Langlands correspondence” between representations of
the general linear groups, central division algebras and Galois repre-
sentations on the one hand, and the determination of the local zeta
function of the Shimura variety on the other hand. (This conjecture
is considered in more detail also in Carayol’s contribution to this con-
ference). I also state a conjecture on the vanishing of holomorphic
cohomology up to the middle dimension for certain Shimura varieties
arising from unitary groups. This conjecture can be proved in some
cases.

The fourth section breaks up the points in the reduction into “isogeny
classes”. There is a conjectural description of those, due to Langlands
and myself. However, a conjecture in local harmonic analysis which
plays here the role of the “fundamental lemma” on spherical func-
tions in the case of good reduction implies that only the basic isogeny
classes yield a non-zero contribution to the Lefschetz fixed point for-
mula. In the fifth section we explain how one can use an important
observation of Kottwitz on the nature of L-indistinguishability in the
groups involved to deduce the local zeta function from the various
conjectures and assumptions made along the way. In particular we
recover the result of Zink and myself on the local factor of the zeta
function of a quaternionic Shimura surface. At the end of this last
section I have defined some explicit functions in the Iwahori algebra
of GL4. 1 conjecture that their non-elliptic twisted orbital integrals
vanish. If this conjecture could be proved then the program outlined
in these notes very likely could be turned into a solid theorem. STOP
PRESS: J.-L. Waldspurger has just proved this conjecture (see note
at the end of the last section).

Proofs in these notes are very sketchy and sometimes entirely omitted
but I hope that the reader can follow the line of development and
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nourish a sympathy for my excitement. In dealing with the problems
posed by bad reduction one is indeed confronted with fascinating ques-
tions in algebraic geometry (and here of two sorts, the ones on abelian
varieties, the others in £-adic cohomology), in global harmonic analy-
sis (Selberg trace formula), in local harmonic analysis (calculation of
orbital and twisted orbital integrals), in continuous cohomology and
probably some more — and it is wonderful how they all blend.

In writing these notes I have incorporated many ideas of others. Lang-
lands’ ideas on the zeta function of a Shimura variety in general and
on the Selberg trace formula have been decisive. No less important
were the influence of Drinfeld and T. Zink on the analysis of the va-
rieties obtained by reduction modulo p, and Kottwitz’s ideas on the
combinatorial problems arising in the theory of Shimura varieties. All
these influences should be obvious. It may be less obvious how much
I learned from conversations with others, and I particularly wish to
record my gratitude to R.P. Langlands, T. Zink and R.E. Kottwitz. I
also thank L. Clozel for his help with some problems in local harmonic
analysis.

These notes have their origin in a series of lectures which I gave in
March 1983 at the Ecole Normale Superieure des Jeunes Filles (Paris).
I wish to thank J. Coates and M.-F. Vigneras for inviting me to give
these lectures, as well as L. Clozel and J. Milne for organizing this
conference which gave me an occasion to think once again about this
material.

81 The geometry of the reduction in some examples . . . . . 255
§2 The local factor of the Hasse-Weil zeta function . . . . . 261
§3 Presentation of the examples . . . . . . . . . . . . . . 271
Appendix to §3: The Drinfeld case . . . . . . . . . . . . 286
84 Description of isogeny classes . . . C e e e ... 292
§5 Comparison with the Selberg Trace Formula - (1)
Bibliography . . . . . . . . . . .. ... ... .. .. 319

§1 THE GEOMETRY OF THE REDUCTION IN SOME EXAMPLES

To put things into perspective we start with Deligne’s result which
concerns

G=GL,, C,= {z [3 :] modp} C GLy(Z,) C G(Q,) ,
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(and where the conjugacy class X of homomorphisms h: S — GR is
the usual one). Then the Shimura variety S(G,X )¢ for C = C? - C,
is the parameter space of alternatively

elliptic curves together with a (cyclic) subgroup of order p
or

a (cyclic) isogeny of degree p between two elliptic curves,
together with a level structure prime to p (depending on C? which, as
always, is assumed sufficiently small). This moduli problem possesses
a solution M¢ over Spec Z,. A first version of Deligne’s theorem is
the following [9], V, 1.16.

1.1 THEOREM. The scheme Mc¢ is a regular 2-dimensional scheme
with special fibre a reduced divisor with normal crossings. The singu-
larities in the special fibre occur precisely in the points corresponding
to the supersingular isogeny class.

A refined version of this theorem describes the global structure of the
special fibre. Let

C, = GLy(Z,) C G(Q,) and C' =C?-C, .

To C' there corresponds the moduli problem which parametrizes el-
liptic curves with a level structure depending on C? (no additional
structure at p). A refinement of the statement above is ([9], V. 1.18).

1.2 THEOREM. The scheme M¢ ® F, is obtained by glueing two
copies of M @ F, along the supersingular points, where the super-
singular point = of the second copy is identified with the point z(P
(image of  under Frobenius) of the first copy.

We note that this particular Shimura variety is not compact but that
there is a complete and explicit description of a compactification of
Mc (loc. cit.).

We next turn to Cherednik’s result. Let D be a quaternion algebra
over @ which is unramified at the infinite prime and ramified at p. Let
G be the multiplicative group of D considered as an algebraic group
over @ equipped with a conjugacy class X as in Deligne’s example.

Let

C, = unique maximal compact subgroup of G(Q;),
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and C = CP - C, as before. Then the Shimura variety S(G,X)c
is again the parameter space of a moduli problem, namely roughly
speaking
abelian varieties of dimension 4 together with an action of a cer-
tain fixed order in D which is maximal in p such that the trace
of an element of this order operating on the Lie algebra equals
its reduced trace,
together with a level structure prime to p. As such it has a model M¢
over Spec Z(p). To state Cherednik’s result we need Drinfeld’s upper
half space 2 for @, ([12]). For further remarks on this (formal)
Z,-scheme compare the appendix to §3. Here we only mention that
PGL,(Q,) acts on 2. We denote by K the completion of the maximal
unramified extension of @, and by O its ring of integers.

1.3 THEOREM. There exists an inner form G_ of G with isomor-
phisms
G_aa(Q,) ~ PGL2(Q,)
G_(A’}) ~ G(A’})

and such that G_,4(R) is compact, such that if C? is the image of C?
under the above isomorphism, there is an isomorphism of Z,-schemes

Mc® Z, ~ G_(Q\[G-(AF)/C? x (*RO)] .

Here the action of G_(Q) is diagonal; the action on the second factor
is through its p-component via

G_(Q,) — PGLy(Q,) xZ — Aut(Q2Q0)
g +—  (gaa,ordodet)
(g,v) — g®o~

v

[Here o denotes the Frobenius substitution].

Here the right side of the isomorphism may be identified with a dis-
joint sum of schemes of the form ['\Q2®© where I is a discrete sub-
group of GL2(Q,) with compact quotient, a formal scheme which may

be algebraicized. The local structure of 02 implies the consequence.

1.4 COROLLARY. M is a regular scheme with special fibre a re-
duced divisor with normal crossings. Furthermore, M¢c ® Iy is the
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union of two closed smooth subschemes Mc ;, i € Z /2, whose inter-
section, which is transversal, is the set of double points and which are
permuted under the action of Gal(F,: /F,).

We mention that Cherednik [5] has also given a generalization to the
case where G comes from a quaternion algebra over a totally real field
in which p is inert which is unramified at precisely one of the infinite
primes and ramified at p. [Experience has shown that the cases where
p is allowed to split in the totally real field (but is still required to be
unramified) behave essentially like products of copies of the varieties
for inert p.]

We next come to the result of Langlands [24] and T.Zink [50]. They
consider the following generalization of Cherednik’s situation. Let D
be a quaternion algebra over a totally real field F of degree n in which
p stays prime. Assume that D is unramified at all infinite primes of
F and ramified in p. Let S(G, X)¢ be the associated Shimura variety
(again Cp C G(Q,) is the unique maximal compact subgroup). Again
there is a moduli problem entirely analogous to the one considered in
Cherednik’s case which is solved by this Shimura variety and which
defines a model M over Spec Zp. Its structure is dictated by the
representation of the maximal order Op, on the Lie algebra of the
abelian varieties parametrized by M¢c ® F,. The global structure
of M¢ for higher n is combinatorially so difficult that we content
ourselves with stating the precise result in the case n = 2 only. In
the statement there appear subsets S C Z/2nZ such that for all 7 at
least one element of {i,i+n} liesin S. Such S are called admissible.

1.5 THEOREM. Let n = 2. (i) Mc @ Fps is the union of closed
subschemes M ¢ g, for S ranging over the admissible subsets of ZL/47,
with

MC,S C Mc,sr 85> F5

McesNMces = Mc sus

The scheme M s has dimension 4 — |S|. The subschemes Mc g
intersect transversely. If t € Mc ® Oq " is a closed point and S, is
the maximal admissible subset S with x G Mc.s, then Mc® OQ L Is
locally in z for the étale topology isomorphic to a product of |S, | -
ordinary double points and a smooth scheme of dimension 4 — |Sx|.
The Frobenius element in Gal(IF 4 /F,) takes Mc,s to Mc s41.

(ii) There are morphisms m; : Mc (iiv1y — Meqiit1,ive} With
smooth generic fibre and whose reduced geometric fibres are non-
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singular rational curves. The restriction of m; to M¢ (i iy1,i42} IS an
isomorphism and the restriction of m; to Mc fi—1ii+1} is a purely
inseparable morphism of degree p.

(iii) There are universal homeomorphisms

Me tiit1,iv2y — M ®oq,, F o

where M is a twisted form of a Shimura variety with good reduction
associated to a quaternion algebra over F which splits at p and is
ramified at precisely one of the two infinite primes (depending on i)
and has the same ramification behaviour as D elsewhere.

Here we have denoted by Q,« the unramified extension of degree 4 of
Q, and by 0“2,,4 its ring of integers. Roughly speaking, the curves
M (iix1,i+2) are good reductions of Shimura varieties closely related
to M. Something similar is true for the zero-dimensional subscheme
M zjaz- In the case of arbitrary n the statement (i) of the above
theorem which describes the local structure of M ¢ continues to hold
with the obvious modifications. As to the global structure, Zink [50]
introduces the concept of a saturated admissible subset S C Z/2nZ
(for n = 2, any S with |S| > 3 is saturated) and proves that the
corresponding subschemes M ¢ ¢ are homeomorphic to twisted forms
of the good reduction of Shimura varieties associated to quaternion
algebras split at p, with a certain prescribed ramification behaviour
at the infinite primes (depending on S) and with the same ramifi-
cation behaviour as D elsewhere. (For S = Z/2nZ this statement
needs qualification.) He furthermore proves that if S is an arbitrary
admissible subset and S’ = SU {i1,...,im} is a minimal saturated
subset which contains S then there is a sequence of morphisms

Mcs — Mc sugiy — - — Mce sufis,.im}

which are IP!-fiberings similar to the morphisms 7 above (again for
S’ = Z/2nZ this statement needs qualification). Roughly speaking,
all M¢ g are (IP!)™-fiberings over good reductions of Shimura vari-
eties. The enumeration of the saturated subsets of Z/2nZ is for n > 2
a combinatorially complicated business.

As the final example we consider a fake unitary group in 3 variables
over Q. (I obtained these results almost 10 years ago, cf. [33]).
Let E C € be an imaginary-quadratic field in which p splits into
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two primes p and p. Let D be a central division algebra of degree 9
over E and let 7 be an involution of the second kind. We make the
assumption that the signature of 7 (relative to the complex embedding
of E) is (1,2) and that D stays a division algebra at p with invariants

. 1 . 2

invy,D = 3 invgD = 3

We let G be the associated unitary group over @,
G(Q)={deD* |d-d" € Q}

and X the canonical conjugacy class of homomorphisms h : S — GR.
The associated Shimura variety S(G,X)c where C, is the unique
maximal compact subgroup of G(Q,) (note that G,4(Q,) is anisotro-
pic), is defined over E. Again it is the moduli space of abelian varieties
with additional structures (for details compare §3) and as such has
a model Mc¢ over Spec O, ,,. Interestingly enough, the structure of
M at the primes p and P (note that they are well-distinguished by
the conditions above) are quite distinct.

1.6 THEOREM. (structure in p): There exists an inner form G_ of G
with isomorphisms

G-2a(Qp) ~ PGL3(Q,)
G_(A’f’) ~ G(A’})

and with G_,4(R) compact such that if C? is the image of C? un-
der the above isomorphism, there is an isomorphism of schemes over
SpecOg,,

Mc ® O, ~ G_(Q)\ [G-(A})/C? x (¥°B0)|

Here 03 is Drinfeld’s upper half space for @, of dimension one higher
than in 1.3. The explanation for 1.3. applies here as well; also the
corollary 1.4. has an obvious analogue (here M¢ ® IFps is a union of
three closed subsets permuted by Gal(F s /IF,)).

1.7 THEOREM. (structure in p): (i) Mc®F 3! is the union of closed
subschemes M ¢ s for S ranging over the non-empty subsets of Z/3Z

1Here the homomorphism O — Fps is supposed to factor through OE;.
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with the inclusion and intersection properties as in 1.5. The closed
subschemes Mc (i} (i € Z/3) are divisors in Mc ® Oq U crossing
transversely. The Frobenius carries M¢,s into Mc s41.

(i) There are morphisms 7; : M¢ iy — Mg qii+1y which are P!
fiberings as in 1.5 (ii) and whose restriction to Mc (; ;413 is an iso-
morphism and whose restriction to Mc (;_1 ;) is purely inseparable
of degree p.

It should be pointed out that whereas the zero-dimensional scheme
M z /3 can be identified with the good reduction of a Shimura vari-
ety, a similar identification (or any other) of the curves Mc (i 41} is
not known. Also, a global structure theorem for such unitary groups
in 3 variables over a totally real field F' (instead of @) is not known.
However, T. Zink does have a generalization to the case where the
signature of T at one infinite prime of F is (1,2) and is (0,3) at the
remaining infinite primes.

This concludes our review of some of the cases where the global struc-
ture of the reduction has been investigated. For a more general result
on p-adic uniformization compare the appendix to §3. Finally, I wish
to mention that these geometric descriptions have spectacular appli-
cations (spectacular even in the public domain) to the construction
of Goppa codes ([46], [51]).

§2 THE LOCAL FACTOR OF THE HASSE-WEIL
ZETA FUNCTION
We now turn to the problem of the determination of the local factor
of the zeta function. In this present section we make some general
remarks on the methods used and Shimura varieties will not appear
explicitly.

Let K be a number field and X a smooth projective variety over K
(not necessarily connected). The Hasse-Weil zeta function is at first
defined as a product over almost all places of K (all except for a finite
set S, containing the infinite places)

(21) Z(s)(5, X/K) = [[ Zo(s, X/K) .
€S

If p is a non-archimedian place where X has good reduction X () the
local factor at p is the zeta function of X (p).
Zo(T, X (9)) = exp()_ —2T7)

j=1
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(2.2)
N; = card X(p)(Kpi) -

Here k; denotes the extension of degree j of the residue field at
p. We obtain a function of the complex variable s by substituting
T=Np~°.

The product (2.1) is convergent for all s with Re s> dim X+1 and
is in this domain a holomorphic Dirichlet series with integer coefli-
cients. The Hasse-Weil conjecture states that, with a suitable defi-
nition of the local factors at the missing places, the Hasse-Weil zeta
function possesses an analytic continuation as a meromorphic function
to the whole complex plane and admits a functional equation of the
usual sort relating Z(s, X/K) with Z(dim X +1— s, X/K). Tanyama
suggested dividing this problem into two. The first is to prove that
Z(s,X/K) is a product of automorphic L-functions. The second
is to prove for these L-functions analytic continuation and functional
equation. We shall be concerned here only with the first problem in
the case of Shimura varieties, and even only with the local factor at
a non-archimedian bad prime. The local factor at an arbitrary
non-archimedian prime p is defined [38] through the ¢-adic represen-
tation. It mimics Artin’s definition [2] of his non-abelian L-series. Fix
an algebraic closure K, of the local field of K at p and let K o be
the maximal unramified subfield. The Galois group is an extension
by the inertia subgroup.

23)  1—1— Ga(K,/K,) — Gal(K*"/K,) — 1 .

The Galois group acts by transport of structure on the étale cohomol-
ogy groups H*(X x g K, Q). We form

(2.4)
2dim X ' "
Zo(T,X/K)= [] det(—-T-o* | H (X xg K, Q)™
i=0

Here 0 € Gal(K,/K,,) denotes an arbitrary lifting of the inverse of
the Frobenius substitution in Gal(K2"/K,) and the upper index I
signifies the invariants under the inertia subgroup. Again, to obtain
a function of the complex variable s we make the substitution T' =
Np™*. If pis a good prime, I acts trivially on all cohomology groups,
we have HY (X X g K, Q¢) = H'(X(p)®x, K, Qe), and (2.4) is simply
Grothendieck’s cohomological expression of the zeta function (2.2).



BAD REDUCTION OF SHIMURA VARIETIES 263

In the general case, even though it is not known whether (2.4) is
independent of the prime number £ used to form f-adic cohomology,
it is expected that this is the correct definition of the local factors.
Recall that, if o is an endomorphism of a finite-dimensional vector
space over a field of characteristic zero, we have

oc T j )
(2.5) logdet(1-T -0 |V) ==Y rj" LT

i=1

Thus the determination of the local factor at p is equivalent with the
determination of the alternating trace of 0*/ on the I-invariants in the
cohomology for all j = 1,2,... This problem is approached through
the method of vanishing cycles. I shall recall briefly the essence of
this method [39], as it motivates much of what follows.

We consider a diagram as follows in which all squares are cartesian.

7
X — x+ 4L x &5 x,
! ! L !

D — D* < D «— s

In the classical case D is the unit disc, s is the origin and D* is its
complement in D, and D* is the universal covering of D* which may
be identified with the upper half plane via the map 2z + exp(27iz).
The arrows are morphisms of analytic spaces and one assumes that
the morphism f is proper and that its restriction to X* is smooth.
Then X is a deformation retract of X and the fibering of X* over the
contractible topological space D* is topologically trivial. We consider
the Leray spectral sequence for the morphism j, H? (X, R‘G'*Q) =
H p+q(5{: *,Q). Using the facts mentioned above we may rewrite this
spectral sequence as follows

HP(X,,.*R.Q) = H**(X*,Q) .

The sheaves on the special fibres are the vanishing cycle sheaves
for the constant sheaf @,

RV = .*R9;,Q
Their stalks at a point z € X, are calculated as follows:

RV, = HY(X(;) N X;,Q) .
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Here X(,) is a small open neighbourhood of z in X and )Z't* is the

fibre of X* over a point t € D* which is mapped to a point close to
the origin in D*.

In the abstract case, D is the spectrum of a henselian discrete valu-
ation ring, s is its special point and D* its general point 7. By D* we
denote the spectrum of a geometric point 77 over 1. The morphism f is
now a morphism of schemes about which we make the same assump-
tion as in the classical case. Replacing the coefficient field Q@ by Q.
and the topological arguments used in the classical case by theorems
in f-adic cohomology we obtain the spectral sequence of vanishing
cycles in étale cohomology.

(26) Hp(Xg, Rq\I/) — Hp+q(Xﬁ, Qg) .

Here 5 denotes the geometric point over s determined by 7. This
spectral sequence is equivariant with respect to the action of Gal(7j/7).
For our purposes it is enough, instead of going up all the way to the
(spectrum of the) algebraic closure 77/ to pass instead to the maximal
tame extension 7;. Therefore if the residue field s is finite there is an
exact sequence

1— [] Z(1) — Gal(ni/n) — Z —1 .
#p

If P C I denotes the kernel of the map to Gal(r:/n), then, with
obvious notation (tame vanishing cycles)

R, = (RY)F

(taking P-invariants is an exact functor). The calculation of the
sheaves of tame vanishing cycles has been effected in a few cases only.
Here is one of them.

2.7 THEOREM. Suppose that the special fibre is a reduced divisor
with normal crossings. Assume also for simplicity that X5 is globally

the union of smooth irreducible divisors. Let x € X, and let S, be
the set of irreducible components of X3 passing through x. Then

R'T,, = Ker (GB Qe(-1) = Qe(—l))
S

RV, = AIR'V,_ . (exterior power)
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In particular the inertia group operates trivially on the sheaves RY,.

This statement is a consequence of Grothendieck’s purity conjecture
for the inclusion of each of the irreducible components of the special
fibre in X. In the equicharacteristic case, and when S is excellent,
this is a classical theorem [40] in étale cohomology, and then in fact
an arbitrary divisor with normal crossings can be treated (then the
inertia group acts through a finite group on R?¥). In the unequal
characteristic case multiplicities divisible by p create an obstacle to
the proof in [33] in the general case. However, under certain finiteness
hypotheses which are satisfied in all reasonable cases, R. Thomason
[44] has proved the purity conjecture in general so that the theorem
above may be formulated also in the case of arbitrary multiplicities.

The existence of the spectral sequence of vanishing cycles leads
naturally to the following concepts. We first recall some general facts
about f-adic representations ([43], [7]). Let F be a non-archimedian
local field, and Wy C Gal(F/F) its Weil group. There are three kinds
of “representations” in a finite-dimensional ®,-vector space that one
may consider.

(i) an f-adic representation g : Wrp — GL(V) (i.e. continuous for
the f-adic topology).

(i) a pair o' = (o, N), where p: Wr — GL(V) is continuous when V
is given the discrete topology, and where N is a nilpotent endo-
morphism of V such that

o(w)-N-p(w) ' =w]|-N , weWp .

Such a pair ¢ is called o-semisimple if p(o) is a semi-simple au-
tomorphism of V for one and hence all 0 € Wr \ I. There is a
functor ¢’ — ¢'** (o-semi-simplification).

(iii) a homomorphism g : Wr x SL2(Q,) — GL(V) which is semi-
simple and whose restriction to the SLo-factor is algebraic.

Then there is a bijection between isomorphism classes of
objects of type (i) and (ii), given by

oe(o™ - 7) = p(0" - T) -exp(te(T)-N) , T€Il .

where ty : I — Z; is a fixed non-zero homomorphism, and ¢ a fixed
geometric Frobenius (cf. [7], 4.1.9).

o-semi-simple objects of type (ii) and objects of type (iii),
given by integrating N into a representation of SL, (Jacobson-Moro-
sov).
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The nilpotent endomorphism N defines the associated Schmid
filtration (increasing), characterized by the following two properties:

(i) NWi, C Wi_s

(ii) N* induces an isomorphism
gV — gV .

In terms of the integrated SL,-representation and the eigenvalues of
the diagonal matrices,

Wy = X eigenspaces of eigenvalue <k .

In case N comes from an f-adic representation, N is called the mon-
odromy operator (or rather its logarithm) and the filtration W. the
monodromy filtration. In this case the Weil group Wy acts on the
associated graded, grYV and hence we may speak of weights. More
precisely if ¢ : @, — C is a homomorphism, and if (V, g,) is an ¢-adic
representation of W it is called -pure of -weight s, € R if
|(a0)| = ¢*/?

for every eigenvalue a, of o(o). [This definition is independent of the
choice of the lifting of the geometric Frobenius o]. The representation
is called pure of weight s if it is ¢-pure of (-weight s for every ¢. The
following conjecture is central to the subject.

2.8. CoNJECTURE. (Deligne) Suppose that the ¢-adic representation
0¢ comes from H'(X5,Q,), where the notations are as in the beginning
of this section. Then the associated monodromy filtration W. is pure
of weight 1, i.e. the Galoismodule gr]VVHi(Xﬁ, Q,) is pure of weight
i+

If X is smooth over D, then the monodromy filtration is trivial and
the conjecture is true by Deligne’s solution of the Weil conjectures.
The following cases are solved.

2.9. THEOREM. a) [8]. In the equal characteristic case the conjecture
is true.

b) [33]. Assume that the relative dimension of X over D is at most 2
and that the special fibre is a reduced divisor with normal crossings.
Then the conjecture is true.
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c) Assume that the special fibre is a reduced divisor with normal
crossings which can be deformed into a smooth projective variety in
char s. Then the conjecture is true.

The proof of b) is an imitation of the proof by Steenbrin¢k [41] of an
analogue in Hodge theory. In fact, if £ is prime to the multiplicities
occurring in the special fibre, and making use of the remarks after
2.7., the assumption made here that the multiplicities all be one may
be dropped.

Returning again to an arbitrary £-adic representation V of Wp, we
call an increasing filtration W on V admissible, if it is stable under
the action of Wr and such that I operates through a finite quotient
group on the associated graded gr¥¥(V). We define the semi-simple
L-function
(2.10) L*(T,V) = Hdet(l —o-T;gri(V)H™?

k
Determining the semi-simple L-function is equivalent to determining
the semi-simple traces of all powers of the Frobenius, i.e.

(2.11) Tr*(o; V) ZTT(J’,grk i .

It is easy to see that the serm—sxmple zeta function is independent of
the choice of W. Similarly we define in the situation of the begin-
ning of this section the semi-simple zeta function Z**(s, X/K) as
the alternating product of the semi-simple L-functions associated to
the various H (X5, Q¢), as well as Tr**(c*/; H*(X7, Q¢)). The semi-
simple zeta function is not the correct local factor for the functional
equation but lends itself more easily to calculation. Indeed, let us as-
sume that the inertia group I operates through a finite quotient group
on the sheaves of vanishing cycles. Then the filtration on H*(X37, Q)
induced by the spectral sequence of vanishing cycles is admissible. We
obtain, using the fact that invariants under a finite group in a vector
space over a field of characteristic zero is an exact functor,

> (-1)Tres(o*" | HY(X5,Q0)

=3 (=11 Y (~)PTr(o*" | HP (X5, R7D))

= 3 (-1)7- S (~1)PTr(o*" | HP (X5, RITY)) .

q=0 p=0
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We may apply to every summand indexed by ¢ on the right the Lef-
schetz fixed point formula on the special fibre, so that at least in
principle these summands are accessible to explicit computation.

Note that by 2.7. and the remarks following it the assumptions are
satisfied in a large number of cases. In the case of a reduced divisor
with normal crossings the upper index I may be dropped on the right
since then I operates trivially on the sheaves of vanishing cycles.

How can one recover the true local factor from the semi-simple zeta
function? It is for this problem that one would like to apply Deligne’s
conjecture on the purity of the monodromy filtration. Indeed, assume
that the monodromy filtration on V = H*(Xz, ®,) is pure of weight
i, and let W be any admissible filtration on V. Here is how one can
recover the trace Tr(o*; V1) from Tr**(o*7; V). Let

EVy = EV ={a;« generalized eigenvalue of o*¥ on
(gr”"V)T}
(counted with multiplicity).

Define inductively for £ = 0,1,...

EVi min = {a € EVy; weight (@) minimal among
those for a € EVj }

EViy1 = EVi\{a € EV;a = ¢" - § for some
Be€EV i, andr € Z }

Then, using the avatar (iii) of the f-adic representation V' and in
particular the explicit description of the monodromy filtration in
terms of SLo-weights mentioned earlier, we obtain using the fact that
VI=(KerN),

Tr(or*j;VI):z Z o .

k=0 a€ EVy nmin

We omit the proof of the following lemma.

2.12. LEMMA. Let p and o' be two f-adic representations with
L**(s,p) = L**(s,0’). We assume that the sets of i-weights of o
and o' (with multiplicities) are identical. Then under either of the
following hypotheses we may conclude that L(s, ) = L(s, ¢').
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(1) o and ¢’ have -pure monodromy filtrations.

(ii) We have
L**(s,0) = L**(5,0 ) = L(5,7Q (™ & ... D a°"))

with 7 irreducible and where the s; are real numbers.

Here « denotes the cyclotomic character. Note that (i) is a variant
of a result of Deligne, [7], 8.9.. We thus see that the purity of the
monodromy filtration helps us to recover the zeta function from the
semi-simple zeta function. The semi-simple version of an L-function
may also be introduced on the automorphic forms side. This is done
as follows.

Let F be a non-archimedian local field. Let {ny,...,n,} be a parti-
tion of n and =y, ..., 7, essentially square-integrable representations
of GL(n;, F) (= square-integrable modulo center after twisting with
a quasi-character). If w; denotes the central character of m; we write

lwi(2)| = |2,z € F*

for some real number s;. Changing the order of the partition we sup-
pose that s; > ... > s,. The partition defines a standard parabolic
subgroup P of GL(n,F) and the 7; define an essentially square-
integrable representation ¢ = ®m; of its Levi component. The in-
duced representation I, of GL(n, F') may not be irreducible but has
a unique irreducible quotient which we denote by 7; BB...H 7. Ev-
ery irreducible admissible representation of GL(n, F') is of this form,
and this in an essentially unique way. The collection of real num-
bers (2s1,...,2s,) is called the weight of m; E...EH 7. There is a
standard L-function L(s,7) that comes with 7 [14]. The above con-
struction suggests introducing the semi-simple L-function of which
L(s, ) is a factor. We put

L*(s,m BH...Bn,) = L**(s,n1)-...- L*(s,7,) .

We still have to define the semi-simple L-function of an essentially
square-integrable representation. Such a representation 7 is the quo-
tient of an induced representation I, where 0 = 0, ® ... ®0; is a
representation of the standard parabolic corresponding to the parti-
tion {m,...,m} of n of the following sort:

oi41 =0;® || , o1 supercuspidal ; i=1,...,5 -1
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We then put
Jj
L*(s,m) = [[ L(s,00) .
i=1

Conjecturally at least, the irreducible admissible representations of
GL(n, F) are classified by the (equivalence classes of) representations
0: WpxSLy(Q,) — GL(V) of the type encountered earlier of degree
n. Here it is convenient to regard via an isomorphism ¢ the represen-
tation of GL(n, F) as taking place in a @ ,-vector space. Irreducible
o correspond to essentially square-integrable 7, and the monodromy
filtration of p is t-pure of weight equal to the weight of . In the
general case, when g decomposes as a direct sum of irreducible repre-
sentations, the weight of 7 is the collection of ¢-weights of the Schmid
filtrations of the various constituents of p.

We finally indicate the connection between the Ramanujan conjec-
ture and Deligne’s conjecture on the purity of the monodromy filtra-
tion. Let now F be a number field. An automorphic representation
m = @m, of GL(n,AF) is called isobaric [25] if the weight of 7, is
independent of the place v. The Ramanujan conjecture states that a
cuspidal automorphic representation is isobaric with single weight 2s
if wo(2)| = |2]®. If this were true then all other isobaric automorphic
representations would arise by an induction procedure entirely anal-
ogous to the local case. The corresponding uniqueness result in the
global case is proved by Jacquet and Shalika.

To return to algebraic geometry, let X be a smooth projective va-
riety over a number field I{. What we are trying to suggest is to
establish an expression of the semi-simple zeta function of X as a
product of semi-simple automorphic L-functions.

(2.13) Z**(s,X/K) = [[ L**(s,m)

™

Here the left hand side should be amenable to explicit calculation
through the Lefschetz fixed point formula, whereas the right hand
side should be accessible to the Selberg trace formula. Ounce this is
accomplished we still have to pass from the semi-simple zeta function
resp. L-function to the true Euler products. On the right hand side
this corresponds to the passage from an automorphic form to an iso-
baric automorphic form, a process which is only poorly understood
[25]. The corresponding problem on the left hand side is also non-
trivial, even if we assume the purity of the monodromy filtration, but
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this is the impact of lemma 2.12 above. Summarizing, we see that the
Ramanujan conjecture (in the formulation above) is the “auto-
morphic version” of the purity of the monodromy conjecture.
To conclude this section I refer to Clozel’s contribution to these pro-
ceedings for further information on the automorphic side, and also to
Kottwitz’s article [22] where a conjectural formula of the type (2.13)
is given in the case of a Shimura variety. More precisely, Kottwitz
formulates a conjecture for the partial Euler products ranging over
all good primes. It seems reasonable to extend the conjecture to all
non-archimedian primes by simply adding the suffix “ss” to both sides
of the identity.

§3 PRESENTATION OF THE EXAMPLES

Fix a totally real extension F' of degree n over @ in which p stays
prime. Let K be a purely imaginary quadratic extension of F' in which
p splits into two primes, p = p-p. Let D be a central division algebra
of degree d? over K and * a positive involution on D which is then
necessarily of the 2°¢ kind. We demand that D ® Q, be a product
of division algebras. We fix a free D-module of rank 1, V, and a
non-degenerate alternating F'-bilinear form

Y:VxV —F
satisfying
P(dz,y) = ¢(z,d*y) , d€D .

As customary we let @ stand for - the field of algebraic numbers in C.
We fix a Langlands diagram ¢ : Q — @

C\@/?’“
|
Q

We fix embeddings o; : K — Q,i = 1,...,n such that
01,01,...,04,0, forms a complete set of embeddings of I{ and such
that all n p-adic embeddings ¢ 0 o; determine one and the same place
p of K.
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Let 0 = 0; € {01,...,0,}. There is an isomorphism
D@K,a C~ Md(C)

such that the involution * becomes the standard involution on My(C) :
X — 'X. We may choose such a generator of V that the bilinear form
® is written as

Y(z,y) = Trpyp(a™ -2* - y)

(i1, 0
=\ 0 —i-I,

The integer r = r, is independent of these normalizations. We shall
suppose that the integers r,,,i = 1,...,n, are all identical and satisfy

with

1<r,, <d-1.

We denote by r their common value. Let S = R¢/rGm be Deligne’s
pet-group and define for o € {01,...,0,} a homomorphism

he: S — GV ®Fs R)

by sending R* C C* into the center in the obvious way and ¢ € C*
into the matrix a = a, above. It may be verified that the bilinear form
Y(z, hy(%)y) is symmetric and positive definite and that h, defines on
V ®r. R a Hodge structure of type (—1,0) + (0, —1). We have

Ti(d |V @rpo ©/VO7Y) =1 0(Trp k(d) + (d = 1) - 5(Trhx(d))
We introduce the algebraic group over F

G' ={g € Glp(V) | ¥(gz,gy) = u(g) - ¥(z,y) , pulg) € F'} .

Using restriction of scalars we obtain an algebraic group G over Q.
It is easy to see that Ggq, is anisotropic modulo center. The collec-
tion of homomorphisms h,, above may be interpreted as one single
homomorphism

hy:S — Gr ,

whose G(R)-conjugacy class X is independent of all choices. The
pair (G, X) satisfies the axioms defining a Shimura variety. There is a
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canonical model of S(G, X) (in the sense of the Shimura conjecture)

over the following subfield E = E(G, X) of C:

E = Q(Z To; 0i(k)+ (d—rs,)-Ti(k) | k € K)
:{Q(Eioi(kaEK) if 2r #£d

Thus F is either the field @ or an imaginary quadratic field in which
p splits into two primes. The Langlands diagram distinguishes one of
these at most two primes above p. If we denote it by g;, then in all
cases E, = Q,. Let C C G(Ay) be an open compact subgroup.

3.1 THEOREM. S¢(G, X) is the set of complex points of the coarse
moduli scheme of the following moduli problem.
M1: The points with values in a C-scheme T consist of isomorphism
classes of quadruples (A,t, A, 7).

a) A is an abelian scheme over T up to isogeny and ¢ is an injection

t: D — End(A)°
such that
Tr(u(d) | Lie A) = Tr(d | Ve /VO (ko)) , d€D .

b) X is a F-homogeneous polarization of A such that the Rosati-
involution of X induces on D via ¢ the given involution *.

c) 7 Is an equivalence class modulo C' of D ® A y-linear symplectic
similitudes

J[Ta)eQ ->VeA, .
)

Implicit in the statement of this theorem is the assertion that this
moduli problem does indeed possess a coarse moduli scheme. By the
very definition of E the trace on the right side of the identity above
lies in E. The moduli problem may be formulated and solved over
SpecE.

We let Op resp. O stand for the rings of integers. We fix an order
Op which contains O g and such that Op ® Z, is the product of the
maximal orders Op_ and Op_ in the central division algebras D, and
Dg over F,. Let Vg be a lattice in V which is preserved under the
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action of O p and such that ¥ | Vg x Vg takes values in O and indeed
yields a perfect bilinear form

YRLy: (Ve @Zy) x (Vg 8L,) — Or %, .
Let C, be the maximal compact subgroup of G(Q,),

Co=1{9€GQy)|9-Va, CVa,} -

We shall consider only subgroups C = C? - C,, of G(Ay) where C, is
the group fixed above and where C? takes Vz ® Z into itself. We may
formulate another moduli problem, this time over Spec(O E(p))' Here
Og,,, denotes the ring extension of Og where all elements prime to p
are made invertible.

M2: The points with values in a scheme T over SpecOf,,, are the
isomorphism classes of quadruples (B,t, A, 7P).

a) B is an abelian scheme over T and ¢ is an injection

t:0p — End B

such that for all geometric points Speck — T the representation of
Op ® k on Lie B ® k satisfies the following condition. Let F' C D
be a field extension of I{ of degree d which is unramified at p and
let O’ be an order of F' containing Ok and contained in Op and
maximal at p. Then in Lie B® k any character of O' inducing o; on
Ok (i=1,...,n) occurs precisely r times and any character inducing
7; on Ok occurs precisely d — r times.

b) X is an F-homogeneous polarization containing in its class a
polarization of degree prime to p and such that the Rosati-involution
of X induces through ¢ on D the given involution *.

¢) 7P is an equivalence class modulo C? of Op-linear symplectic
similitudes R

w:[[TB) = Ve &' .
I#p
3.2 THEOREM. There is a coarse moduli scheme M for the moduli
problem M2. It is a projective scheme over Spec O, ,, whose set of
complex points is the Shimura variety Sc(G, X). If CP is sufficiently
small, then M¢ is a fine moduli scheme.

1 should point out that I have been unable to give an explicit con-
gruence condition on CP? to turn M¢ into a fine moduli scheme. This
can be done for the fibre of M in characteristic zero.
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We shall take M for our model of S¢(G, X). The analysis of
the reduction behaviour of this model will proceed along the lines of
Drinfeld [12] and Zink [50]. We sketch the main points. We shall use
Cartier theory. Let us briefly summarize some of the results of this
theory (compare [29], [36]; but most importantly the book by T. Zink
[49]). For an arbitrary Z,-algebra R we let Cart R be the Cartier-ring

Cart R ={ Z VT [z,s|F° | zrs € R ; for fixed r,z,, =0
r,s>0
for almost all s} .

The Z,-algebra structure on Cart R is given by functoriality and the
following relations:

1=1[1]
F-V=p
Flz] = [zP]- F
2]V = V- 27

[2] - [v] = [= - 9]

2]+ ] =le+y]+> V7 [z]- F"
r>1

for certain elements z, € R.

The “diagonal elements” Y V"[z.]F" form the subring of Witt vec-
tors W(R).

A (left) Cart R-module M is called reduced, if V operates injec-
tively on M, if M/V M is a projective R-module of finite rank and
if M is V-complete, i.e. M = limM/V*M. There is an equivalence

of categories of the category of ‘commutative, smooth formal groups
over Spec R and the category of reduced Cartier modules. Under
this equivalence the Lie-algebra of the formal group may be identified
with M/V M. The equivalence comes about as follows. Let W be the
formal Witt group “scheme”. Then if X is a formal group,

My = Hom(W, X)

is a left module under the ring End W. One may identify this ring with
Cart R and then Mx becomes a reduced Cartier module. Conversely,
to a reduced Cartier module M one associates the formal group

X=‘i/®CartRM .
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To apply this to the study of M we change notations slightly. We
shall now let F stand for an unramified extension of degree n over
Q,. Let D be a central division algebra of degree d over F and
with invariant s/d. We describe this algebra explicitly. Let F’ be an
unramified extension of degree d of F contained in D. We let s’ mod d
be such that s-s’ = 1modd. We can write

sl

Op=0p[M]:M=p , H-a=a" -1 .

Here 7 € Gal(F’/F) denotes the Frobenius substitution. We have
denoted by Of, Of+, Op the rings of integers.

3.3 DEFINITION. Fix an integer r with 0 < r < d. A formal Op-
module of type r (r-formal Op-module) over a Z,-scheme T is a
formal group X (always smooth and commutative) of dimension r-n-d,
together with an embedding ¢ : Op — End X such that in the action
of O+ on Lie X, at each geometric point of T, every one of the n -d
characters appears exactly r times.

This definition generalizes a concept introduced by T.Zink [50], which
in turn generalizes the original definition of Drinfeld [12]. We shall
comment on this in the appendix to this section. The Cartier modules
of r — f. Op-modules are described by the following theorem.

3.4 THEOREM. Let R be an Opi-algebra. The category of r — f.
Op-modules over Spec R is equivalent to the category of Z/n - d-

graded reduced Cartier modules M = @ M;, equipped with an
i€Z/nd

endomorphism II of degree n - s’ with II¢ = p such that
i)degV =41 , degF =-1 , deg[z] =0 forz € R.
i) M;/V M;_, is a projective R-module of rank r for all i € Z/nd.

This is proved as follows (comp. [50]). Let M be the Cartier module of
an r — f. Op-module. Since R is an O pv-algebra, there is a canonical
homomorphism O — Cart R. We now put

Mi={meM|ua) - m=a® -mforallacOp} .

Here 0 € Gal(F'/Q,) denotes the Frobenius substitution. The ele-
ment IT induces by functoriality an endomorphism of M. One checks
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easily that the conditions i) and ii) are satisfied. The converse is
proved similarly.

Suppose that in the above theorem R is a perfect field L of char-
acteristic p. Over a perfect field Cartier theory becomes Dieudonné
theory. The next statement describes the r — f. O p-modules of finite
height h{= dim M /pM).

3.5 PrROPOSITION. Let X be an r — f. Op-module of height h over
L. There is an integer v such that h = v -n - d? and

i) All M; are free W(L)-modules of rank v - d.

i) p- Migns CIIM; C Miyns and [Miyns : IIM;] = v for all i.

One shows that ii) is satisfied with an integer v independent of :.
Since I1¢ = p, this concludes the proof (comp. [50]).

We are interested in the case v = 1. To visualize the possible
configurations of the M; we use the Bruhat-Tits building. Let X =
K(L) be the fraction field of W(L). We fix an embedding v, : My —
K¢. We propagate this into o*-linear embeddings v; fori = 0,...,n—1
via the following commutative diagram

M, -, M, AN N n—1
¢ol ¢1l ¢n—1l
K¢ = K¢ = ... = K

We define o¢-linear embeddings ¥ yin : Miskn — K¢ through the
following commutative diagram:

I I
— Mi — Mi+s'n —

lwi l”b"'*‘”"

_—_ Kd = Kd =

We note that V : M,,_; — M, induces a 0~ "-linear endomorphism
U:K¢— K¢ We put A}'c = Im¢;4ks'n, for i =0,...,n — 1 and any
k € Z, and let ai be the class of the lattice AL in the Bruhat-Tits-
building of PGL4(K). It only depends on the class of k¥ modulo d.
We fix a number s with 1 < s < d — 1 such that s/d is the invariant
of D.

3.6. PROPOSITION. Let X be an r — f. Op-module of height n - d?
over L. We fix an embedding 1o : My — K®. Then U and {al} satisfy
the following conditions:

iJorddetU=mn-r—s
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ii) For every i = 0,...,n — 1, A* = {a}}; is a simplex of maximal
dimension. ’
iii) a}, is a neighbour of a}c“ and the type is given by

[ait! :al] = rmodd .
Similarly Ua}~! and a2+s are neighbours and
[akys : Uar ™' = rmodd .

Conversely, let U and A’(i = 0,...,n — 1) be given and number the
vertices aj, of each simplex A* in such a way that [a},; : a}] = 1modd.
Suppose that the conditions i)-iii) are satisfied. Then thereisar — f.
Op-module X of height n-d? over L and an embedding v, : My — K¢,
giving rise to U, {a}'c}. Furthermore, X is unique up to isomorphism
and 1y is unique up to a scalar. If U is given, then two gadgets {ai}
and {b}} determine isomorphic r — f. Op-modules if and only if there
is a matrix A € GL4(K) such that UA = A U and Aa}, = b}.

This is almost obvious (comp. [50]). To visualize the possibilities
for the positions of the simplices let us consider the case n = 1. The
first case is d = 2. There are 3 possibilities. We omit the upper index
t. We denote Uaj by b;.

L’Jo
(1)
Qs =b
L,

(I

Qo= oy a,
()

Ay = by a,= kb

For d = 3 there are already 7 possibilities. We put them all into one
“simultaneous” diagram.
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Here we have put the simplex {ag, aj, a2} in the center and have num-

bered from I to VII the possible positions of the simplex {by, b1, b2}
For instance, in possibility II we have if s = 1, that a; = by, ag = be,
by = north-east vertex. The cases where r = 1 are more or less under-
stood; indeed, one can enumerate all possibilities in this case (see end
of §5). Drinfeld [12] has studied the case where n = r = s = 1. All
of his results are based on the observation that in this case all r — f.
O p-modules are isogenous (O p-linear isogeny, see appendix to this
section). In fact, this is the deeper reason why in this case one can
parametrize the r — f. O p-modules by the p-adic upper half-space. I
have found that, essentially, in no other case is there a similar phe-
nomenon to be observed. To determine the isogeny classes one uses
the following addendum to the proposition above.

3.7 ProPOSITION. In the notation of 3.6, the isogeny class of X is
uniquely determined by (Mo ® K,V*"II™!), or equivalently by the
o~ "-linear operator U on K¢ up to a change of basis.

We now return to our moduli problem. Recall that we fixed a
Langlands diagram so that one of the at most two prime ideals of F
over p, namely g, is distinguished. Also, by virtue of our choice of the
half system o1,...,0,, a prime ideal p of K over p is distinguished.

3.8 THEOREM. Let L be a perfect field of characteristic p which is
an O E,, -algebra. Let B be an abelian variety over L and + : Op —
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End B an injection which satisfies the trace-condition formulated in
M2. Then B has p-rank zero. Let X be the formal group of B and
let X = X, x Xg be the decomposition corresponding to the action
of

OD@Z}):OD‘, XODF .
Then X, isanr— f. Op,-module and Xg is a (d—r)— f. O p_-module.

The last assertion follows immediately from the definitions. To prove
the first assertion we have to show that equality holds in the following
relation between height and dimension:

ht(X)<2-dimB=2-n-d* .

This follows since, by 3.5, ht X, = v - nd? and ht Xz = ¥ - nd® with
v,v > 0.

3.9 COROLLARY. In the notation of the previous theorem, ht X, =
ht XE = nd>.

We next determine the local structure of Mg ®o, O E,, - Let T be
an O, -scheme on which p is locally nilpotent. Let (B,:) be an
abelian scheme over T with O p-action as above. The Barsotti-Tate-
group X of B decomposes as X = X, x Xg, this decomposition being
induced by the splitting

OD®%p:0DpX0DF .

3.10 THEOREM. Let T and T be Og,, -schemes on which p is locally

nilpotent and let T C T be a nilembedding. Let (B,1) be an abelian
scheme over T with an action of Op as above. Let A be a polarization
which is principal at p and whose associated Rosati involution induces
on D the given involution *. _

To lift the Barsotti-Tate-group X, to T (with its Op,-action) is

equivalent to lifting the triple (B,¢,A) to T.

Since Cartier theory is not capable of dealing effectively with duality
this is proved using crystalline theory [30]. We may clearly assume
that T C T admits divided powers. Let M = MT,T be the value
of the crystal associated to B. This is an Op ® Ox-module which

decomposes as usual
M=M,®M; .
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The polarization A defines an alternating bilinear form ® : M x M —
Oz which satisfies

®(dm,m’) = &(m,d*m’) , d€Op .

This implies that M, and Mg are isotropic w.r.t. ®. Hence ® deter-
mines and is determined by a linear map

p: M, — M

which is equivariant with respect to the actions of Op, on M, and of
O D, on the dual module M%:

p(d-m) = d* - p(m) .

The hypothesis that A be principal at p signifies that ¢ is an iso-
morphism. By the theorem of Serre and Tate, the liftings of the
abelian variety B correspond precisely to liftings of the p-divisible
group which in turn, by the theorem of Grothendieck and Messing,
correspond precisely to liftings of the Hodge filtration. However, a
lifting of the Hodge filtration corresponding to (E ,A) decomposes as
F = F,® Fg and the second summand is determined by the first, via
F5 = Ker(Mg — ¢(Fg)*). Therefore, the liftings of (B, A) correspond
precisely to liftings of F,, i.e. to liftings of X,,.

We thus have reduced the problem of determining the local struc-
ture of M¢ to a question in the deformation theory of r — f. Op-
modules, which in turn may be translated into a problem in Cartier
theory. This problem is far from being trivial; in fact, only the case
r = 1 can be explicitly solved.

3.11 THEOREM. We supposer = 1. Let t € Mc ® O, be a point
with values in an algebraically closed field L of characteristic p. Let
X be the corresponding r — f. Op-module and M = ®;ez/naM;, 11
be its Cartier module. Let

S={ieZ/nd|:M; — M;;s, factors through VM sn_1} .
We partition S into n subsets Sy,

Sy={i€eS|i=kmodn} .
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Then every one of the Sy, is non-empty. The formal completion of the
local ring at z is isomorphic to the following W (L)-algebra:

Oz = W(L)[| X:|liemna/( H Xi —Pkem/n -
€Sk

For the first statement one merely has to remark that II¢ = p induces
the zero map on the Lie algebra of X but factors as a composition of
maps between L-vector spaces of dimension 1,

Mi/VMi—l — Mi+s'n/VMi+s'n—1 - ... Mi/VMi—l

The second assertion is proved using the structure theorem of Cartier
theory (compare [50]). The theorem implies that the special
fibre locally is the product of n singularities with reduced
normal crossings.

We have stated the result only for geometric points of the special
fibre, but it is in fact easy to analyze the general case. We then obtain
the following result.

3.12 THEOREM. In the situation of 3.11, let z € Mc ® O, be a
point with values in IFy, with ¢ = p. Then the set S C Z/nd is stable
under the translation T : ¢ — i + j. Define a twisted action F of the
Frobenius (over F,;) on G5, and on GEIn by composing the standard
action with the shift operator (z;) — (Z4;).

The alternating trace of the geometric Frobenius over Iy on the
sheaves of vanishing cycles in z is equal to

_ Te(F | H(G3, Q)
Te(F | H(GR/™, Q1))

z’q

If j is divisible by n - d, this expression equals

l1-¢
Trz’q = H —1——
k€EL[n q

[Sk|

The proof of this theorem uses the calculation of the sheaves of van-
ishing cycles in the case of a divisor with normal crossings (2.7) and
an appropriate Kiinneth formula.

When r > 1 the local structure of M is not explicitly known. In
fact, it seems hopeless to calculate the vanishing cycles through an
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explicit description by equations of the special fibre. We may however
reformulate the problem.

Let F be the unramified extension of degree n of Q,. The algebraic
group Ggq, arises by restriction of scalars from the algebraic group

G’. Let A’ be the unique simplex in the Bruhat-Tits building of
G ,(K(F},)) invariant under Gal(Q3"/F). Then A is a simplex of
maximal dimension in the Bruhat-Tits building of PGL; which we
may represent by a chain of inclusions of O p-lattices in F'¢,

1
...cAocA1c...Ad_lc;Aoc...cF" X

Define as follows a functor on (Sch/OF):
To an Op-scheme T associate the set of isomorphism classes of com-
mutative periodic diagrams of the following type

C A C Ay C ... C ;A C
wl el por
— & — &y — . = & — ,

such that the &; are vector bundles of rank r over T and such that o;
are Op-linear maps such that a; ® Ot is surjective for every 1.

It is easy to see that this functor is representable by a projective
scheme M (ZI, X"} over Spec Op, which is in fact a closed subscheme
of the relative cartesian product over Spec Of of the Grassmannians
of r-dimensional quotient spaces,

MA XYc x Gro(4;) .
( ) 1€Z/d 7‘( )

The generic fibre of M (Z', X') is a twisted form of the Grassmannian
Gr.(F?%). Roughly speaking the twisted action of the Frobenius in
Gal(Q2"/F) on Gr.(F4)(Q™) differs from the standard action by
translation by a matrix in GL4 whose dth power is central and which
carries A; into A;;s. Via restriction of scalars from Of to Z, we
obtain the Z,-scheme

M(B,X) = Ropjz,M(&,X') .

This Z,-scheme may also be constructed directly, starting with the
unique polysimplex A in the Bruhat-Tits building of G.a(KX(F,)) sta-
ble under Gal(Q;"/Q,), by a construction entirely analogous to that
of M(A', X").
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3.13 DEFINITION. The Z,-scheme M(A,X) is called the local
model of the Shimura variety Sc(G, X).

The idea behind this definition is that the local structure of the local
model contains all the information on the singularities appearing in
the special fibre of M. Therefore it would be very important to
better understand the local model. If r = 1, this is quite easy.

3.14 PROPOSITION. Assume r = 1. Then M(A',X') is the join of
IP(A;), i € Z/d (i.e. the closure of the common generic fibre in
xIP(A;)). The special fibre of this Op-scheme is a reduced divisor

with normal crossings. Therefore the local model M(A, X) is locally
a product of n singularities with reduced normal crossings.

This proposition is related to matters which will be touched upon
in the appendix to this section. It is connected with the works of
Mumford [32], Mustafin [31], Kurihara [23] and Drinfeld [12].

For general r virtually nothing is known, not even whether
M (ZI, X') is flat over O (which would be the case if one could also
identify M(A', X’) as a join).

Let z € Mc ® Og,, be a point with values in Iy with ¢ = .
Assume first that n = 1 and that d | j. Let M = ©M; be its Cartier
module. There is such an embedding 1 : My — K(IF,)¢ that the
lattices A} C K(F,)¢ obtained by the procedure appearing before
3.6 form the simplex A in the Bruhat-Tits building of G (K(F,)).
Then the residue class maps

oy Ay — AYJUAY

form a point z¢ of the functor represented by M (ZI, X'"). We therefore

obtain a point .
zo € M(A, X)(Fy) .

This point is only well-determined up to the action of G4q(Z,). This
procedure extends to the case where d doesn’t divide j by first extend-
ing scalars from IF; to IF ¢« and then taking invariants. The procedure
also extends to arbitrary n. For this one has to observe in particular
that an IF;-valued point of a scheme obtained by restriction of scalars
from Fy» to IF, is the same as a collection of n g -valued points of
the original scheme. This is of course also implicit in the formulation
of 3.6.. We call 23 an associated point in the local model.
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For the next statement we shall formulate a hypothesis. The first
part of this hypothesis is quite speculative. The second part is one of
the standard tenets of ¢-adic cohomology, applied to this case.

3.15 HYPOTHESIS. Let z€Mc ® O, (Fq) resp. zoeM(A, X)(F,).
Then the inertia group acts through a finite factor group on the
sheaves of vanishing cycles at x resp. zo and the alternating trace
of the Frobenius over F, on the inertia invariants in the sheaves of
vanishing cycles in = resp. xo only depends on the formal completion

of M¢ in x resp. of M(A, X) in zy.

We note that by 3.11 resp. 3.14 together with 2.7 and the Kinneth
formula, this hypothesis is satisfled when r = 1. We can now make
precise the motivating remarks made earlier.

3.16 PROPOSITION. Let e M¢®OE, (F) and let zoe M(A, X)(F,)
be an associated point. Assume hypothesis 3.15. Then the alternating
traces of the Frobenius over Iy on the inertia invariants in the sheaves
of vanishing cycles in z resp. zo of the two Z,-schemes Mc ® Og,,,
and M (A, X) coincide,

Trr,q = Trl'o »q

Even though outside the case r = 1 explicit formulae for Tr;, , are
lacking we can calculate their sum.

3.17 PROPOSITION. Assume hypothesis 3.15. Let ¢ = p?. Then

Te(o" H (M8, X)g Q) = Y, Tra,
z€M(A,X)(F,)

There is an abuse of notation on the left side of this identity since the
Frobenius o doesn’t lie in the Galois group Gal(Q,/Q,). However,

the generic fibre M(A, X )g, is an unramified form of the Grassman-

nian and has therefore good reduction. Therefore the cohomology
of M(A, X )5 is an unramified Galois module. The assertion of the

proposition is an immediate consequence of the existence of the spec-
tral sequence of vanishing cycles.

The alternating sum on the left may be explicitly calculated. We
first note that the representations of the Galois group over F on the
Grassmannian and its twisted form are equivalent:
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3.18 LEMMA. Let j be divisible by n. Then
Tr(o™ | H (M(A, X)g,, Q) = Te(o™ | H*(Gr:(F)g , Q) -

Indeed, the standard action of the Frobenius and the exotic one dif-
fer by an element of the Weyl group of GLy. A routine homotopy
argument [11] using the fact that GL4 is a connected algebraic group
immediately yields the assertion.

The representation of the full Galois group Ga,l(@p /®,) is obtained
from H *(Gr,(Fd)@p,Q 1) by forming the n-fold tensor product and

letting o* act as follows
(21 ®...Qz,) =(0""Tn,T1,...,Tn-1) -

The identity appearing in 3.17 will turn out in section 5 to yield the
calculation of one twisted orbital integral.

APPENDIX TO §3:
THE DRINFELD CASE

Of the formal groups encountered in the previous section Drinfeld
[12] singled out the case where n = r = 1 and where s/d = 1/d. We
shall call these formal groups special formal (s.f.) Op-modules.
Drinfeld’s discovery was that sf. Op-modules may be classified
through “p-adic uniformization”. The purpose of this appendix is to
explain briefly what is meant by this and deduce some consequences
from this fact. The following lemma is critical.

A.3.1 LEMMA. All s.f. Op-modules over an algebraically closed field
of characteristic p are isogenous to one another (O p-linearly isoge-
nous).

We apply the criterion 3.7. However, U has orddet U = 0, as follows
from 3.6 and U fixes a vertex in the Bruhat-Tits-building. Indeed,
this follows from the fact (proved in the same fashion as the non-
emptyness of S; in 3.11) that there is an index ¢ with I[IM; = VM.
All such o~1-linear operators are equivalent.

In fact, for the previous argument we didn’t need that the ground
field is algebraically closed; all that was needed was that it is an Op:-
algebra where F’ denotes the unramified extension of degree d of Q,.
It is easy to see that there is a s.f. Op-module ® over SpecF,. We
now define a functor M on the category of Z,-schemes on which p is
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locally nilpotent. If S is such a scheme, we denote by S its reduction
modulo p. Then N(S) consists of the isomorphism classes of triples
(v, X, p) where:

1) 4 is a homomorphism ¢ : F, — Os.

2) X is a s.f. Op-module over S.

3) p:4.(®) = X ®s S is an O p-quasi-isogeny of height zero.

We write O = W(F,). Drinfeld’s theorem is

A.3.2 THEOREM. The functor N is representable by the formal
scheme Q4Q0.

Here Q! = Q¢ is Drinfeld’s upper half space over Z,. It is a formal
scheme, only locally of finite type but with all irreducible components
of its special fibre proper over I, which has the remarkable property
that for every finite extension K of Q,

Q(0K) =P K\ |J HE) -
H/Qyp

The union on the right is over all hyperplanes of P41 defined over
Q,. Clearly the point set on the right cannot be the set of K-valued
points of a scheme. There are several ways to construct Q.

One way [31] is to start with projective (d — 1)-space over Z, and
to blow up all rational points in its special fibre, then to blow up the
inverse images of all rational lines in its special fibre and so on. One
checks that the special fibre of the scheme thus obtained is a union
of blown-up copies of IP?~!. To each of these irreducible components
one again applies the previous procedure. Continuing indefinitely
we obtain a scheme 2 locally of finite type over Z, which is regular,
with general fibre IPle_'D1 and with special fibre a reduced divisor with
normal crossings. To make sense of this construction one shows that
1 is the union of open subschemes each of which is contained in
one of the Z,-schemes after a finite number of operations above. The
completion of ) along its special fibre is Q.

Another way of describing this construction uses the Bruhat-Tits-
building of PGL4(Q,). To a vertex represented by a lattice M C Qg
there is a well-defined projective space IP(M) over Z, whose generic
fibre is equal to IPfiQ_pl. For every finite convex subcomplex A in the
Bruhat-Tits-building we may form the join (compare 3.14)

MYEA PM) -
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Letting A grow indefinitely we obtain . To see the relation to the

previous construction note that after the first stage in that construc-

tion we have obtained VIP(M), where o is a simplex of maximal
(o4

dimension.

The next construction, due to Deligne, is the most useful one in
connection with proving A.3.2. Let o be a simplex in the Bruhat-
Tits-building of PGL4(Q,) which we may represent as an infinite
cyclic chain of lattices in Qz:

1
...cM,-cM;+1C...C]—)M,~C...

Define as follows a functor F, on the category of Z,-schemes on which
p is locally nilpotent. F, associates to S the set of isomorphism classes
of commutative “periodic” diagrams:

C M; C My, C ... C M C
| | |
{ oG } it % pa;
1 L ] 1

— ;Ci i" i+1 C,_+1) ve. T ;C,' —_—

where the £; are invertible Og-modules and the «a; are Z,-linear maps
with a; ® Og surjective, such that

(%) for all points s, denoting by x(s) the residue field of s,
Ker(a; : M;/pM; — L; @ K(s)) C M;_,
Note that if c; is invertible then it follows from (*) that

Ker(a;y1 : Mig1/pMip1 — Liy1 @ K(s))
C Im(Ker o; : M;/pM; — L; ® K(s)).

Thus if 7 is a face of o obtained by dropping the lattices M;_, then
F.(S) is the part of F,(S) with ¢;, invertible. We thus have for any
two faces 7/, 7" of ¢

F-,-I(S) ﬂ F-,-H(S) = FTInTII(S) .

Putting Fp = @, this remains true if 7/ N 7" = @ since not all ¢; can
be invertible, their product being equal to p.
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For every simplex o the functor F, is representable by a formal
scheme §),. For instance, if o consists of a single vertex given by a
lattice M, then

Q{M} ~ P(M)\ H/UIF,,H (completion of) .

The union on the right is over all hyperplanes in the special fibre
defined over F,. Using the intersection property above we may define

Q=uQ,

One checks that {2 is a separated formal scheme, and is indeed the
same formal scheme that was defined before. Drinfeld uses the follow-
ing functor description of ). The points of ) with values in a scheme
S on which p is locally nilpotent consists in the isomorphism classes
of commutative periodic? diagrams:

77]i — Nig1 — ... — Niyd-1 — Thitd
| ! }
; (221 % Qi % oifd-1 { Qitd
1 4 1 1
< Cit41
Ei —_— i+1 —_— P — ["i-*-d—l _—_ £i+d

(note that here the index set ranges over all of Z), where the 7;
are locally constant flat Z,-sheaves for the Zariski topology on S
and the £; are invertible Og-modules and where the o; are Z,-linear
homomorphisms with o; @O surjective, together with a Z,-linear
injection r : gy — Qg such that the following conditions hold.

a) Let S; C S be the set of zeros of ¢;. Then 7; | S; is a constant
sheaf with fibre isomorphic to Zg and, denoting by r(7;) the image of
7n; under the rational extension of r, we have

[Zz : r(m)] = —1

(index of lattices in Q).
b) for all points s € S,

Ni/Mi-1 — (Li/Li-1) @ K(s)

Zthat is, 544 = 7 and L;4+4 = L;, and the d-fold composition of horizontal
arrows is equal to p.
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is injective.

To see that this is the correct description of ) take a point of
this functor over a scheme S such that all 7; are constant sheaves.
Via r they define lattices M; in Qg. The condition b) implies that
M;_y = M; if ¢;_, is invertible. We obtain a simplex o, not necessarily
of maximal dimension, in the Bruhat-Tits building. Identifying 7;
with M;, the condition b) tells us that we are given a point of f)a.

Let L be an algebraically closed field of characteristic p. We show
how to pass from an object (¥, X, p) € N(L) to a point of QRO(L).
The “second coordinate” of the point is given by 1.

Let ®M;,II be the Cartier module of X. Trivializing once and for
all the Cartier module of @, the quasi-isogeny p defines an embedding
Yo : My — K(L)¥. We thus have defined the o~!-linear operator U
and the lattices Ay C K(L)¢ (we drop the second index i = 0). It is
easy to see that k € Z/d lies in the set S of critical indices (compare
3.11) if and only if UAx = Ak (k is a representant of k¥ modulo d).
Hence the vertices {ax}, k € S, define a simplex ¢ in the Bruhat-Tits
building of PGL4(Q,) (invariants under U). The homomorphisms

oA — Ly = Ak/Ak_l , keS

define (by restriction to the invariants under U in Aj) what is needed
to have a point of §2, with values in L. It is straightforward to see
that this construction in fact defines a bijection

N(L) — QRO(L) .

To see, however, that the functor A is representable and that there
is an isomorphism as claimed in A.3.2 is still a long way off. Indeed,
Drinfeld’s proof of these assertions which takes him two pages is a
technical masterpiece. The isomorphism that he constructs is equiv-
ariant w.r.t. the action GL4(Q,) which acts in a natural way on the
two functors in question (compare [12]). Here Glg(®,) acts on Q®O
through its obvious action on the first factor and through

ar— o0 Y(a) , v=orddetg

on the second factor.

We now return to the global case, i.e. to the Shimura varieties
considered in §3. We suppose that n = r = 1 and that the invariant
of D at the distinguished prime p of K is 1/d.
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A.3.3 THEOREM. There is an inner twisting G_ of G over Q together
with isomorphisms

G_(A’}) ~ G(A’})
G-ad(Q,) ~ PGL4(Q,)

such that G_.q4(R) is compact. We use the first isomorphism to define
C? C G_(A%) as the inverse image of C?. There is an isomorphism
(compatible with changes of C?)

Me ®Or,, = G_(@)\ [G_(A7)/C? x o

Here we have identified E,,, with Q,. The action of G_(Q) on
QR0 is through G_(Q,): On the first factor G_(Q,) acts through
G_4d(Q,) = PGL4(Q,). On the second factor g € G_(Q,) acts
through a — o~¥(a) with v = ord, x(g) where £k : G/Gger — K*
is the canonical isomorphism. The isomorphism above may be inter-
preted as an isomorphism between the formal scheme on the right and
the completion along its special fibre of the scheme on the left.

This theorem is a consequence of Drinfeld’s theorem A.3.2 and 3.10.
The case d = 2 is (essentially) the discovery of Cherednik [5] (compare
section 1), and the proof above mimics Drinfeld’s proof in that case.

Note that the scheme on the right may be written as a finite disjoint
sum of unramified forms of quotients which may be algebraicized

r'\Q .
Here I' C G_(Q,) is a discrete cocompact group. For such quotients
Mustafin [31] has proved, using the vanishing theorem for the coho-
mology of discrete subgroups of p-adic groups, due to Casselman and
Garland, that for the cohomology of the structure sheaf
H{(T\Q)g,,0)=0 for 0<i<d-1 .

We thus obtain the following consequence of A.3.3.
A.3.4 COROLLARY. In the situation of A.3.3,

H"(Sc(G,X)(€))=0 for 0<i<d—1 .
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On the left there appear the spaces of harmonic forms of type (z,0) on
the compact Kahler variety S¢(G, X)(C). We thus have obtained a
purely transcendental vanishing theorem by means of an investigation
of the p-adic structure of the Shimura variety. Since cohomology
should not depend in an essential way on such subtle information as
the invariant of D we are led to the following conjecture.

A.3.5 CONJECTURE. Assume r = 1, but let n be arbitrary. Then
H™(Sc(G,X)(C)) =0 for 0<i<n-(d—1)=dimSc(G,X) .

Here, as a single exception, C stands for an arbitrary open com-
pact subgroup in G(A ) (not necessarily maximal compact in p). Ex-
cept for ¢ = 1 this conjecture says nothing about the vanishing of
H(Sc(C), Q). This conjecture has been proved by Langlands and
Rogawski in the case that d = 3 and ¢ = 1. I don’t know what to ex-
pect when 7 > 1. To understand what this conjecture says one should,
as a first step, try to decide what distinguishes a unitary representa-
tion of G(R) having continuous cohomology of type (¢,0) from all
others. The unitary representations with cohomology are all known
[48], [4], and it may be profitable to contemplate their list.

In conclusion I mention that Drinfeld formulates and proves his
theorem for an arbitrary local field of characteristic 0, not just Q.
He advances the very deep conjecture that the cohomology of certain
sheaves on  should yield all discrete series representations of GLg.
Using theorem A.3.3 and the naive conjecture [26] on the zeta function
of a Shimura variety one could even write down a precise version of
the resulting “Langlands correspondence” between representations of
GL4(Q,),D* and Gal(@p/Qp). More about this may be found in
Carayol’s contribution to these proceedings [6].

Finally I should mention that the formal scheme Q) was first con-
structed (in the case d = 2) by Mumford [32] and that it was he who
taught us that formal schemes are better than rigid-analytic spaces
(compare also [35]). Yet another construction of ), using toroidal
concepts, is due to Kurihara [23].

§4 DESCRIPTION OF ISOGENY CLASSES
AND THEIR CONTRIBUTION
TO THE SEMI-SIMPLE ZETA FUNCTION

We form the logarithm of the semi-simple zeta function at the prime
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©1 of E.

oo —js
(4.1) log 22 (5,5¢) = Y N - pj
i=1
According to §2 and, assuming hypothesis 3.15, as we shall always do,
we may use the Lefschetz fixed point formula to write

(4.2) N; = Z Try pi
zeMC@OEp] (FPj)

We shall group the points appearing in the index set into “isogeny
classes over IF,,” and describe the set of points in a given isogeny class
with the action of the Frobenius on them, together with the sheaves
of vanishing cycles. In fact, there is a conjectural description of these
data in purely group theoretical terms [28]. Except in special cases
[34] this conjecture is completely open. It turns out, however, that it
is not really necessary to know the truth of this conjecture to proceed
further. Indeed, modulo a conjecture stated in the next section, it
turns out that almost all isogeny classes contribute zero to the sum in
(4.2) and that the contribution of the few remaining isogeny classes
can be written in a way which may be compared with the Selberg
trace formula. This will be done in section 5. In the present section
we shall first give a description of the set of points in an isogeny class
and then express its contribution to (4.2).

We shall call two points of M¢ over F,, represented by quadru-
ples (B,:,\,77) and (B/,L/,X,,ﬁpl) isogenous if there is an isogeny
between B and B’ which respects the Op-actions and the polariza-
tion classes. There is no condition on the level structures. We fix an
isogeny class J and introduce the group of self-isogenies

IJ(Q) = I(Q) = End(Bg, Lo,Ao)é

where (By, tg, Ao, 7?) is a point in J. This group only depends on J
and not on the choice of this base point. It is the group of rational
points of an algebraic group over Q.

4.3. THEOREM. There is a bijection between the set of points in the
isogeny class J of M¢(IF,) and the set

I(@)\ [G(A)/CP x X,
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The action of the Frobenius in Gal(F,/F,) on J corresponds to the
operation M — V1M on the Xp-component of this coset space.

This statement requires some explanations. The existence of the
relative Frobenius

(B> L, Xa ﬁp) — (B7 L’X, ﬁp)(p)

shows that the Frobenius indeed operates on J. Fix a level structure
nh € Mh. Any element g € G(A’f’) defines a quasi-isogeny of degree
prime to p, a : (By,t0, X0) = (B,t, ), such that « induces an iden-
tification of [] Te(B) with g(Vz ® Z’), via nf. The resulting point
t#p

(B,1, \, 7P ) in J is independent of the choice of 5 and only depends
on the class of g in G(A%)/C?. The set X, is the set of quasi-isogenies
with source (B, tg, Xo) of degree a power of p, or what amounts to the
same by Dieudonné theory, the set of Dieudonné submodules M of the
rational Dieudonné module My ® K(IF,) stable under the operation
of O p which induces a representation of Op on M/V M satisfying the
familiar trace condition appearing before 3.2. and such that the dual
module with respect to any Ao € \g satisfies

M*=c- M, ce FRW(F,) .

Any self-isogeny in I(®) induces the identity of J which explains
why we divide out by its action. The assertion of the theorem is that
conversely if two isogenies a and o' given by elements g resp. ¢’ and
M resp. M’ define the same element of J they differ by an element of
I(@Q). This is not difficult to show (e.g. [28]). The assertion that the
Frobenius induces the indicated operation on the set of Dieudonné
modules is a consequence of Dieudonné theory.

We now wish to give an expression for the contribution of the
isogeny class J to (4.2). We note that the procedure of the previ-
ous section associates to a point z € X, a point zg € M(A, X )(F,).
In fact, if an element of J with X,-component z yields a point of
M over F,;, then the associated point on the local model of the
Shimura variety is also defined over F,; and we have equality of the
alternating traces of the Frobenius on the inertia invariants on the
sheaves of vanishing cycles,

Tropi =Tregpi



BAD REDUCTION OF SHIMURA VARIETIES 295

One further piece of notation will be needed. We let
(4.4.) J=J(Q,) = End(M, ® K(F,),t0, %)™

with the obvious inclusion I(Q) — J(@Q,). It should be pointed out
that J is the group of rational points of an algebraic group defined
over Q, and that it coincides, up to an algebraic torus, with the group
appearing in the statement of 3.6., the centralizer of the o~ "-linear
operator U in GL4(K(F,)). Clearly, J(Q,) operates on X,,.

After these preliminary remarks we are now ready to imitate the
procedure that Kottwitz [18] used in the case of good reduction.

Suppose that
(9,7) € G(A}) x X,

represents a point of J lying in Mc ® Og,,, (F,i). There is thus an
h € I(Q) and a k € C? such that
g=h-g-k , (V'Yz=he

For small enough C? [26, p. 1171] the conjugacy class {h} of h in
Z(Q)NC\I(Q) is well-determined by the point in Mc ® Op,, . Here
Z(Q) is the center of G(Q) which is contained in I{Q). We gather the
contributions of all fixed points yielding a given {h}. Let ch = ch(¥
be the characteristic function of the set

{(9,2) € J(Qp) x Xp | g- 2= (V™) a} .

Define for h € J = J(Q,):

. 1 . d
(R = Z . ) g
o9 (h) = “Try pi / ch¥(h,gz)— .
2€X, mod J vol J MRV dgn

Here J, is the stabilizer of £ in J. The expression depends on the
Haar measure dg,, on the centralizer J;, but not on the Haar measure
on J.

4.5 LEMMA. Let fP = —l=5 - char C? and O,(f?) be the orbital
integral over g € G(A%). Let Zc = Z(Ay) N C. The contribution of
h to the contribution of J to (4.2) is equal to

vol(Zc - In(@)\In(Ay))
vol Z¢

On(£?) - ¢ I(R) .
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For this we have to take CP? sufliciently small. This lemma is stated
in a slightly different form in [26, p.1172].

To appeal to the result stated there, we have to convince ourselves
that if the expression above is non-zero, then

(%) In(A%) = Gr(AR)
(“) Ih(Qp) = J(Qp) .

However, the assertion (i) follows from Tate’s theorem [42] character-
izing I(A%) inside G(A%) as the centralizer of the Frobenius endomor-
phism and the fact that the centralizer of h in G(A%) and the common
centralizer of h and the Frobenius endomorphism in G(A?) coincide,
as follows from the second defining equation for h. The assertion (ii)
is proved in a similar way using the analogue of Tate’s theorem for
Dieudonné modules.

In the case of good reduction Kottwitz [18] has shown how to ex-
press p{9)(h) as a twisted orbital integral. His method carries over to
the case under consideration.

4.6 LEMMA.
. 1 )
() = - Ty _i-chY(n
) 7z pi - ch/(h,z) .
sEXomod J. VOldgh (Jh N Jx) p
Indeed,
1 dg 1
. ch(h,gr)— = ch(h,y) -
vol Jx  Jy\J (h.g )dgh Z (h.y) volgg, (Ja N J2)

y€J\Jz

Multiplying both sides with T, ,; and summing over X mod J we
obtain the result.

The next lemma is critical. Let K = K(TF,) and denote by C,(K) C
G(K) the corresponding Iwahori subgroup.

4.7. LEMMA. Let g € C,(K). There is an h € Cp(K) with
g= h-aj(h_l) .

This follows from Lang’s theorem since C,(K) may be interpreted as
the set of integral points of a smooth group scheme with connected
fibres over Spec W (IF,).
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We denote by Q,; the unramified subfield of @p of degree j over
Q,. We shall define a function in the Hecke-algebra with respect to
the Iwahori subgroup,

¢ € H(G(Qyps ), Cp(Qps)) -
Its support is to be contained in the set of elements
(4.8.) {g | Ix(g)l, = p~<¥*> for all characters x of G} .

Here p = pp, denotes the cocharacter of G¢ defined by the first
component of hy. Note that if G/Gger is identified with (the algebraic
group defined by) KJ x Kg, this set consists of those elements in
G(Qps) whose valuation at p equals 1 and at p equals 0. If g lies
in the set (4.8) let T = g - To where Ty = A is similarly to section
3 the unique polysimplex in the Bruhat-Tits building of Gaq(Q i)
stabilized by the Galois group Gal(Q,;/Qp). If then T and Z, are in
such relative position that T defines a point Z(g) of the local model
M(A, X) (then necessarily with values in F,;), we put

(49) ¢(g) = Tr?(g),pj

Otherwise we put ¢(g) = 0.

We illustrate this in the examples appearing after 3.6. In particular
let n = 1. Let us first consider the case d = 2. In the notations
introduced in loc. cit., let To = A = (ag,a1) and T = g - To = (bo, b1).
Then only if 7 is in position (I), (II), or (III) can we have ¢(g) # 0.
If however g is in the set (4.8) and Z is in position (I), (II), or (III)
then we have the following table of values for ¢.

jo\r|1r| 1r

even (1| 1 |1-p/

odd | /| / |1+p

Here we have incorporated the fact that for odd j the positions (I) and
(II) don’t occur. Similar remarks apply to the case d = 3. Here the
value of ¢ is equal to (1 — p/)™~1 where m is the number of vertices
common to T and To (supposed to be # 0; otherwise the value is zero)
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provided that j is divisible by 3. If j is prime to 3, only position (III)
can occur and then the value is equal to (1 + p’ + p%/).

To give a group theoretical expression for ¢)(h) we fix an isomor-
phism of My ® K(F,) with V ® K(F,) which respects the actions of
D and the symplectic forms and such that the Dieudonné modules of
elements of J lie in the orbit under G(K) of the lattice Vz @ W (F,).
This allows us to identify X, with a subset of G(K)/C,(K). We write
T = g - xo where zy is the base “point”. The image Ty of z¢ in the
Bruhat-Tits building of G,4 may be interpreted as a polysimplex A
as above. Using the fixed isomorphism we write the o-linear operator
V=1 in the form

V7l =bxo€G(K)x Gal(Qy"/®Q,) .

4.10. LEMMA. Suppose that h = N;b=b-0(b)...07~1(b), whereo €
Gal(Q,; /Q,) denotes the Frobenius substitution. Then b € G(Q,;)
and

Jh=JNG(Q,) .
Furthermore

. 1
D (h) =

dg
S d(g~ b 0(g))—=
vol Cp(Qpi) JinGa,;) (9 ( ))dgh

PROOF: Tt is best to do these calculations in the semi-direct product
G(K) x Gal(Q¥"/Q,). Then (b-0)? = N;b- 0. By hypothesis
Rl (b-o) =07 .

But b- o commutes with k, hence also with 67. So b € G(Q,;). Simi-
larly, an element of J(Q,) commutes with h precisely if it commutes
with o7, that is, if it lies in G(Q,s). A point z € X, can yield a
non-zero contribution to the sum in 4.6 only if

hoz=(b-o) -z,
i.e. by the first part of the proof, only if
ol r=zx .

Because of 4.7. this means € G(Q,i)/Cp(Qps). If now z =g - x0
then z € X, precisely if g lies in the set (4.8.) and if

g-Zgp and b-o-g-Tg
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are in the correct relative position (cf. previous section) and the
coefficient T'r,, ,; then equals ¢(g~! - b- o(g)). Since

1
vol(Jh N gCp(Qys)g~1)

Vol(Ja\Jh - g - Cp(Qps)) = vol Cp(Qys) -

we see that

. 1 .
() = ) (5)
©9(h) = Z ——————— T, pi - chV'(h, )
z€EX, mod J VOI(Jh n Jx)
-
vol Cp(Q )
)y 897 b0 (g)) - vol(Ta\Ji - g - Cp(@y0))
9EJIR\G(RQ,;)/Cp(RQ ;)
1 - dg
- . ¢ pe — . Q.E.D.
vol Cp(ij) ING(Q,;) (g (g))dgh

We now obtain the following theorem.

4.11 THEOREM. If ™' - (V~1) has no fixed point in X,, then

@ (h) = 0. Otherwise, there is an element ¢ € G(K) such that if
we put

§ = cbo(c)™?
we have 6 € G(Q,;) and N;6 = chc™!. Let

5(Qp) ={9€G(Qp) [g-6=6-0(g)} .
Then G¢(Q,) = cJc™! and

1

J z
vol Co(Qps)  Jog@,nae,;)

dg;,

oW (h) = #(g™"bo(g))

PROOF: Suppose that d~'z; is the fixed point,
dh™t - (b-o))d™ ' zg =0
i.e. since o7 fixes xg,

d- (h_l - N;b) - Uj(d—l) € Cp(Qyps) -
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By Lemma 4.7 we find a k € C,(K) with
kE-oi(k™Y)y=d-(h™'-N;b)-o(d?) .
Setting ¢ = k=1 - d we obtain
cl-agi(c)=h"1-N;b .
In the semi-direct product G(K) x Gal(Q;"/®,) this says
c-hte(bo)y -cl=0' .

Put § = cbo(c)~L. It follows that

N;6 = N;(cbo(c)™!) = ¢(N;b)o?(c™) = che™! .

Then lemma 4.10, applied to § instead of b shows that 6 € G(Q,i).
The final formula follows from 4.10.

We note that the o-conjugacy class of § € G(Q,;) is uniquely deter-
mined by h. Indeed, if

cboc™t =60 and wucboc luTl =60 |

and
N;6 = che™!  and N;8' = uche lu~t |

then ¢7(u) = u, i.e., u € G(Q,;). Abbreviating the twisted orbital
integral occurring in the expression in 4.11 into TOs(¢), we may there-
fore write the contribution of an element h € I(Q), provided it does
not vanish, as

vol(Zc - In(Q)\In(Ay))

(4.12.) vol Z¢ - vol Cp(Q,5)

-Ow(f?)-TOs(9) -

To conclude this section we single out certain isogeny classes by
looking at the isogeny class of the corresponding Dieudonné module
or, what comes to the same, the isogeny class of the corresponding
r—f. Op,_-module X, i.e., equivalently, the ¢~ "-linear operator U on
K4, up to a change of basis (cf. 3.7.). Namely, we call the isogeny class
of X, isoclinic or basic ([19]) if all slopes of the Newton polygon of
U are identical (and then equal to (n-r — s)/d). We call an isogeny
class J isoclinic or basic if its “p-component” is so.
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4.13. CorOLLARY. Let J be an isogeny class and assume that there
exists an h € I(Q) with p(h) # 0. Let § € G(Q,s) be the twisted
conjugacy class given by the previous theorem. Consider its norm N;6
as a conjugacy class of G(K) stable under the Galois group. If there
exists an element of G(Q,) in this conjugacy class then J is isoclinic.

PROOF: We have to show that the element of B(G) (= set of o-
conjugacy classes in G(K)) given by é is basic. Let

N;§=cec™! |, ce G(K)

with ¢ € G(Q,). Then ([28], p. 183) the element b = ¢~ 'éo(c)
centralizes € and defines an element of B(G.) which is basic (loc. cit.,
5.15). Therefore [19], 5.3., this element lies in the image of the map
B(T) — B(G.), where T C G, is an elliptic torus over Q,. Since
G(Q,) is anisotropic modulo center, the torus T is elliptic in G as
well. Therefore, by [19], 5.3. again, b defines an element of B(G)
which is basic.

§5 COMPARISON WITH THE SELBERG TRACE FORMULA

To formulate the result we are aiming for, we introduce the local
L-group of G “at gp;” (where we identify as before E, with Q,),

LG = {(zi,y:) € HGLd(C) X GL4(C) 5 z;=piyi , ps €C*} .
1

The product is over all embeddings o; : F, — @p. Then
LG =LG° x Gal(F,/Q,) .

The action of Gal(F,/Q,) is by permutation of the factors. We denote
by r the natural representation of dimension n-r(d—r) which on LG°
is the tensor product of the n representations

(zi,yi) — ANz

and which is extended to Gal(F,/Q,) in the obvious way. The degree
of r is equal to the dimension of the Shimura variety S(G, X). In the
statements below there appears the local factor at p of a (semi-simple
version of a) Langlands L-function. Such a local factor makes sense in
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our situation, as we shall now explain. Any representation of G(Q,)
with a C)p-invariant vector is of the form

_ .0
7r,,—7rp®x y

where 7r2 is the trivial representation and y is an unramified character
of K} = (K ®Qp)*. To 7rg there is associated the homomorphism

o(n2) : Wq, x SLy(C) — G

whose restriction to the second factor is the n-fold tensor power (over
the index set appearing in the definition of ZGP) of the representation

oXp:S8Ly — GL; x GLy

where g is the irreducible representation of degree d of SLs, and whose
restriction to the first factor maps an element w € Wgq, projecting
to 7 € Gal(F,/Q,) to the permutation matrix corresponding to 7.
The homomorphism ¢(,) for 7, = 79 ® x is obtained from @(73) by
twisting. We may therefore introduce the L-functions

Ly(s,m,r) = L(s,r o p(m,))
and
L;s(s, m,1r) = L**(s,r o p(m,)) ,

as well as their shifts.

Let now 7y be an irreducible admissible representation of G(Ay)
which we assume realized in a vector space over § and which occurs
in the action of the Hecke algebra H(G(Ay)//C) (with coefficients in
Q) on the cohomology H*(Sc(G, X)(C),®). Let m(ny) = dimﬂ?.
Kottwitz [21] has defined a “stable version” of a multiplicity at in-
finity (which also incorporates the multiplicity with which an au-
tomorphic representation 7 with finite component 7y occurs in the
discrete spectrum). This definition uses his important observation
that for the group with which we are dealing, even though there are
locally phenomena connected with L-indistinguishability this is can-
celled globally in a certain sense. We shall use his notation a(7y)
for this integer. Kottwitz’s result for the places of good reduction
suggests the following formula (compare section 2).

1
51) Z:2(s,S¢(G,X)E) = [ Ls*(s — = dim S, m, )™ m{ms),
1 p 9
s
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As explained in section 2 we develop the loga.rithms of both sides in
power series of p~°. The coeflicients in front of J—p; of the left hand
side is calculated through the Lefschetz fixed point formula. The
coefficient in front of —p— of the right hand side is calculated through
the Selberg trace formula for a certain function f = foo - f?- f,i. We
shall not explain the correct choice of fo. The function f? equals
fP = =5 -char CP. 1t is the choice of f,; € H(G(Q,)//C,) which is
of interest to us. In contrast to the case of good reduction where the
analogue of f,; is not given directly but rather is described through

its Satake transform, here the function can be defined explicitly.

5.2. LEMMA. Let

5=ox (p;}s po%) € Wg, x SLy(C)

be the image of the geometric Frobenius under the natural homomor-
phism ([25])
VVQp —_— VVQP X SLQ(C) .

v
Let X be the compact dual of X, a projective algebraic variety defined
over Q. Then

Tr(o™;H* (XQ ,Qe)) = p7 I X T (r 0 () (57)).

Proor: To simplify notations assume that F' = Q. In the general
case the proof uses restriction of scalars to reduce to a case which is
virtually the same as this special case. When F = @, the compact
dual is the Grassmanian Gr,.(Q%). Its cohomology is all algebraic and
has a basis consisting of Schubert cycles (e.g. [13], p. 196), which
are defined over Q. Each such cycle in codimension d contributes
a summand Q,(—d) in degree 2d to cohomology. Therefore the left
hand side is equal to

1

q—%q"(r—l) Ty A"
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Here A™ denotes the r-th exterior power of the matrix, and we abbre-
viated p’ into gq. The right hand side equals
g~ 3(d-1)
—1d-1+1
q%-r(d—r)TT AT q°: ' ,

g3d-D)
hence we have equality.

5.3. Remark. There is an obvious generalization of the assertion of
this lemma to any Shimura variety, where <p(7r2)(5j ) is replaced by
n x ol € LG, where n € LGP is the principal unipotent element. I
have not understood the significance of this assertion, but it certainly
must be related to J.Arthur’s and R.Kottwitz’s contributions to these

proceedings.
We can now define the function f,;. We use the exact sequence
(5.4.) 1—C,—GQ,) —ZdZ —0

The copies of Z correspond to the primes p and p in K. Let II =
II, be a uniformizing element at p, i.e. an element of G(Q,) which
maps to 1 € Z in the copy corresponding to p and to 0 in the copy
corresponding to p. We put

(5.5.) fpi = 9 - char C,IIVC,

where ¢(9) is the number appearing in the statement of lemma 5.2