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Abstract
Shimura varieties are initially defined as complex manifolds (quotients of Hermitian sym-

metric domains by congruence groups), but is known that they are algebraic varieties defined
in a natural way over number fields. The oldest examples are the elliptic modular curves (quo-
tients of the complex upper half plane by congruence subgroups of SL.2;Z/). In the talk, I’ll
explain these two sentences, and also why Langlands was so interested in Shimura varieties.
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1 Shimura varieties as complex manifolds

a. Shimura curves

Every simply connected Riemann surfaces is isomorphic to the Riemann sphere, the complex plane,
or the complex upper half plane (isomorphic to the open unit disk), and so every Riemann surface is
a quotient of one of these by a discrete group. The Shimura curves are the quotients of the complex
upper half plane by a congruence group, and so it remains for me to explain what I mean by a
congruence group.

ELLIPTIC MODULAR CURVES

The group SL2.R/ acts on D def
D fz 2 C j =.z/ > 0g by�

a b

c d

�
z D

azCb

czCd
;

and SL2.R/=f˙I g ' Hol.D/ (the group of holomorphic automorphisms of D). The most obvi-
ous discrete subgroup of SL2.R/ is SL2.Z/. The next most obvious is the principal congruence
subgroup of level N ,

� .N/D

��
a b

c d

�
2 SL2.Z/

ˇ̌̌̌�
a b

c d

�
�

�
1 0

0 1

�
modN

�
:

A congruence subgroup of SL2.Z/ is a subgroup containing a principal congruence subgroup. Let
� be a congruence subgroup whose x� in Hol.D/ is torsion-free. Then x� acts freely on D and
x� nD is a complex manifold, called an elliptic modular curve. This is a Shimura curve, but the

elliptic modular curves aren’t the only Shimura curves.

QUATERNIONIC SHIMURA CURVES

A quaternion algebra over a field F is an algebra of the form

B.a;b/D F CF iCFj CFk;

i2 D a; j 2 D b; ij D k D�j i; ab ¤ 0:

WhenF DR, there are exactly two quaternion algebras, namely,B.1;1/�M2.R/ andB.�1;�1/D
Hamilton’s quaternion algebra, which is a division algebra. The conjugate of a quaternion ˛ D
wCxiCyj Czk is x̨ D w� xi �yj �zk, and its norm is

Nm.˛/D ˛ x̨ D w2�ax2�by2Cabz2:

Let B be a quaterion algebra over a totally real number field1 F of degree ŒF WQ�D d . There is
an algebraic group G over Q such that, for any Q-algebra R,

G.R/D f˛ 2 B˝QR j Nm.˛/D 1g.

By assumption F ˝QR� Rd . Correspondingly, B˝QR�Hd�r �M2.R/r , and

GR � .compact group/�SL2.R/r :
1By this I mean a field of the form F DQŒ˛� where ˛ is a root of polynomial in QŒX� whose roots are all real.
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Therefore, when r D 1, there is a surjective homomorphism

G.R/! Hol.D/

with compact kernel. The Shimura curves are exactly the quotients x� nD where � is a congruence
subgroup of G.Q/ whose image x� in Hol.D/ is torsion-free.2

When B DM2.Q/ we get back the elliptic modular curves. Otherwise B is a division algebra,
and the curves are compact — they are called the quaternionic Shimura curves.

b. Congruence subgroups

Let G be a algebraic group over Q. Choose an embedding of G into GLn, and let G.Z/DG.Q/\
GLn.Z/. A subgroup of G.Q/ is arithmetic if it is commensurable3 with G.Z/, and an arithmetic
subgroup is a congruence subgroup if it contains

� .N/DG.Q/\fA 2 GLn.Z/ j A� 1 modN g

for some N . These definitions are independent of the choice of the embedding of G into GLn.

Remarks

1.1. For any homomorphismG!G0 of algebraic groups, the mapG.Q/!G0.Q/ sends arithmetic groups
to arithmetic groups, but the similar statement is far from true for congruence subgroups. In particular,
the image in PSL2.Q/ of a congruence subgroup of SL2.Q/ is an arithmetic subgroup, but not usually a
congruence subgroup.

1.2. The congruence subgroups define a topology on G.Q/. When G is a simply connected4 semisimple
algebraic group, the completion of G.Q/ with respect to this topology is G.Af / where Af is the ring of
finite adèles,

Af DQ˝ yZ; yZD lim
 �
n

Z=nZ.

Using this, one can show that the congruence subgroups of G.Q/ are exactly the subgroups of the form

G.Q/\ .compact open subgroup of G.Af //:

1.3. The reason we allow only congruence subgroup is for the arithmetic — it doesn’t matter over C.

1.4. Let X be a nonsingular projective over C. Then X has a model5 over Qal (algebraic closure of Q in
C) if and only if there exists a subgroup � of SL2.Z/ of finite index such that X.C/ contains � nD as the
complement of a finite set (Belyi). So if we allowed all arithmetic subgroups, we would be allowing all curves
defined over Qal.

1.5. Most arithmetic subgroups of SL2.Z/ are not congruence. To see this, note that SL2.Z/=� .N / '
SL2.Z=NZ/ has a filtration with uncomplicated quotients; in particular, the only simple quotients of SL2.Z=NZ/
are the groups PSL2.Z=pZ/ where p is a prime dividing N . On the other hand, SL2.Z/=f˙I g is the free
group generated by an element of order 2 and an element of order 3, namely, Namely by S and ST where
S D

�
0 �1
1 0

�
and T D

�
1 1
0 1

�
. Therefore, any group generated by an element of order 2 and an element of order

3 is a quotient of SL2.Z/=f˙I g. Most finite simple groups, including the monster, satisfy this condition.

2For technical reasons, we also allow quotients � 0nD where � 0 is a torsion-free subgroup of Hol.D/ containing x�
as a subgroup of finite index.

3Two subgroups � and � 0 of a group are said to be commensurable if � \� 0 is of finite index in both. For example,
the subgroups aZ and bZ of R are commensurable if and only if a=b 2Q. Commensurability is an equivalence relation.

4A connected algebraic group G is simply connected if there does not exist a connected algebraic group G0 and a
surjective homomorphism G0! G with finite nontrivial kernel. For example, SL2 is simply connected as an algebraic
group even though SL2.R/ is not simply connected as a Lie group.

5Let X be an algebraic variety over C; by a model of X over a subfield L of C, I mean an algebraic variety over L
that gives back X by extension of scalars L! C.



1 SHIMURA VARIETIES AS COMPLEX MANIFOLDS 4

c. Hermitian symmetric domains

A bounded symmetric domain is a bounded connected open subset of some space Cn such that
every point is an isolated fixed point of an involution (holomorphic automorphism of order 2). A
hermitian symmetric domain is any complex manifold isomorphic to a bounded symmetric domain.
Bounded symmetric domains are simply connected.

For example, the open unit disk is a bounded symmetric domain, and the complex upper half
plane is a hermitian symmetric domain (in fact, up to isomorphism, it is the only one-dimensional
such domain).

Remark

1.6. There is a better (equivalent) definition of hermitian symmetric domain. A hermitian space is a smooth
manifold M endowed with a riemannian structure g and a complex structure J that are compatible in the
sense that g.Jx;Jy/D g.x;y/ for all m 2M and all x;y 2 TmM .6 A hermitian space is symmetric if every
point is an isolated fixed point of an involution. A hermitian symmetric domain is a hermitian symmetric
space with negative (sectional) curvature. 7

CLASSIFICATION OF HERMITIAN SYMMETRIC DOMAINS

Every hermitian symmetric domain decomposes as a product of simple (irreducible) hermitian sym-
metric domains D whose automorphism groups Hol.D/ are simple Lie groups. The type of the do-
main is defined to be the type of the Lie group Hol.D/. The number of simple hermitian symmetric
domains of each type is given by the following table:

An Bn Cn Dn E6 E7 E8 F4 G2
n 1 1 3 2 1 0 0 0

d. Shimura varieties

Let D be a hermitian symmetric domain, and let Hol.D/C be the identity component of Hol.D/.
Then Hol.D/C is a connected semisimple Lie group with trivial centre. Consider a simply con-
nected semisimple algebraic group G over Q and a surjective homomorphism

G.R/! Hol.D/C

with compact kernel (such pairs always exist, and are classified). Let � be a congruence subgroup
in G.Q/ whose image x� in Aut.D/C is torsion-free. Then x� acts freely D, and so the quotient
x� nD is a complex manifold. We’ll see shortly that it is, in fact, an algebraic variety. The Shimura

varieties are the algebraic varieties that arise in this way. In other words, an algebraic variety
over C is a Shimura variety if its universal covering space (in the topological sense) is a hermitian
symmetric domain, and its fundamental group is the image of a congruence group as above.

DEFINITION 1.7. A Shimura datum8 is a triple .G;D;G.R/! Aut.D/C/ with G a semisimple
algebraic group G over Q, D a hermitian symmetric domain, and G.R/! Aut.D/C a surjective
homomorphism with compact kernel.

6The reason for the name is that g is the real part of a hermitian form on the complex tangent space.
7A bounded symmetric domain has a hermitian metric that is invariant under all holomorphic automorphisms, namely,

the Bergman(n) metric. This metric has negative curvature, and so every complex manifold isomorphic to a bounded
symmetric domain is a hermitian symmetric domain in the sense of (1.6). Conversely, if D is a hermitian symmetric
domain in the sense of (1.6), then the Harish-Chandra embedding realizes it as a bounded symmetric domain.

8Strictly speaking, this is a connected Shimura datum.
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In what follows � will always be a subgroup of G.Q/ (arithmetic or congruence) and x� will be
its image in Hol.D/. Also I usually write .G;D/ for a Shimura datum.

2 Shimura varieties as algebraic varieties over C
a. Chow’s theorem

For a nonsingular variety X over C, the set X.C/ of points of X has a natural structure of complex
manifold. The functorX X.C/ is faithful, but it is far from surjective on arrows or on objects. For
example, A1.C/D C, and there are many nonpolynomial holomorphic maps C! C, for example,
the exponential functions. Moreover, a Riemann surface arises from an algebraic curve if and only
if it can be compactified by adding a finite number of points. In particular, if a Riemann surface is
an algebraic curve, then every bounded function is constant so, for example, the upper half plane is
not an algebraic curve.

THEOREM 2.1 (CHOW 1949). The functor X  X.C/ from nonsingular projective algebraic va-
rieties to projective complex manifolds is an equivalence of categories.

A complex manifold is projective if it can be realized as a closed submanifold of Pn.C/ for
some n, and similarly for algebraic varieties. Chow’s theorem remains true when singularities are
allowed.

b. The Baily-Borel theorem

THEOREM 2.2 (BAILY-BOREL 1966). Let X D x� nD be the quotient of a hermitian symmetric
domain by a torsion-free arithmetic group x� . Then X is an algebraic variety.

The theorem is more precise. Its proof shows that the holomorphic automorphic forms on X
define an embedding X ,! Pn.C/ for some n, and that the closure of the image is an algebraic
variety containing the image as a Zariski open subset. The Baily-Borel theorem says that x� nD has
a canonical structure as an algebraic variety; the next theorem implies that the algebraic structure is
unique.

c. Borel’s theorem

THEOREM 2.3 (BOREL 1972). Let X be as in the preceding theorem, and let f WV.C/! X.C/
be a holomorphic map of complex manifolds where V is a nonsingular algebraic variety. Then f
arises from a regular map V !X (i.e., a morphism of algebraic varieties).

I prove Borel’s theorem when V is a curve andX is the elliptic modular curve � .N/nD withN
even. By Chow’s theorem, it suffices to show that f extends to a map on the compactifications, and
for this is suffices to show that f doesn’t have an essential singularity at a point on the boundary of
V.C/. Consider the composite

C.C/
f
�! � .N/nD �! � .2/nD:

The Riemann surface � .2/nD has genus zero and there are three cusps (boundary points). There-
fore � .2/nD �Cr f2 pointsg, and so f can’t have an essential singularity at a point of the bound-
ary because this would violate the big Picard theorem (if f has an essential singularity at a point P ,
then it omits at most one value in any neighbourhood of P /:
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The big Picard theorem implies that any homomorphic map from a punctured disk to P1.C/r
fthree pointsg extends to a holomorphic map from the whole disk to P1.C/. Resolution of singular-
ities (Hironaka) shows that V can be embedded in a nonsingular projective variety xV in such a way
that the boundary xV rV is a divisor with normal crossings. This means that xV .C/rV.C/ is locally
a product of disks and punctured disks. Thus Borel’s theorem generalizes the big Picard theorem
in two respects: the punctured disk is replaced by a product of punctured disks and disks, and the
target space is generalized from P1r fthree pointsg.

3 Abelian class field theory and complex multiplication
Let Qal be an algebraic closure of Q, for example, the algebraic closure of Q in C, and let Gal.Qal=Q/
be the group of automorphisms of Qal endowed with the Krull topology (that for which the open
subgroups are exactly those fixing a finite extension of Q). Then Galois theory tells us that the in-
termediate fields correspond to the closed subgroups of Gal.Qal=Q/. Unfortunately, we don’t have
a good description of Gal.Qal=Q/.

a. Abelian class field theory

However, we do have a good description of the largest Hausdorff abelian quotient Gal.Qal=Q/ab

of Gal.Qal=Q/. More generally, abelian class field theory provides us with a good description of
Gal.Qal=F /ab for any algebraic number field F (i.e., finite extension of Q contained in Qal). Let F ab

be the composite of all finite abelian9 extensions of F in Qal. Then Gal.Qal=F /ab ' Gal.F ab=F /.
The ring of adèles of F is

AF D F ˝Q .R˝Af /:
It contains F as a subring (embedded diagonally). The idèle group of F is A�F . With the correct
topology, it is a locally compact group.10

THEOREM 3.1. There is a canonical surjective homomorphism

A�F ! Gal.F ab=F /

whose kernel is the closure of F � �
Q
v complexlF

�
v �
Q
v real.F

�
v /
C.

The homomorphism is called reciprocity or Artin map. In particular, the finite abelian exten-
sions of F in Qal are in one-to-one correspondence with the open subgroups of A�F containing the
kernel of the Artin map. Unfortunately, we don’t have an explicit way of constructing the field
corresponding to an open subgroup, except in special cases.

For example, when F DQ, then A�Q=.kernel/' yZ�, and the field corresponding to the subgroup
N yZ of yZ is QŒ�N �, �N D e2�i=N . Hilbert in the twelfth of his famous problems (ICM 1900) asked
whether, for every number field F , there exist functions whose special values generate the finite
abelian extensions of F .

This is still very open, but the theory of complex multiplication for elliptic curves provides a
solution for quadratic imaginary fields (i.e., for fields of the form QŒ

p
�d� ; d 2 Z, d > 0, d a

nonsquare).
9An extension E of a field F is said to be abelian if it is Galois with abelian Galois group.

10Equivalently, let Fv be the completion of F at a prime v, and let Ov be the ring of integers in Fv when v is finite.
Then

A�F D
Y

v
.F�v WO�v /

def
D f.av/ 2

Y
F�v j av 2O�v for almost all vg:

endowed with the topology for which
Q
vO�v is an open subgroup with the product topology.
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b. Complex multiplication for elliptic curves

Recall that the functor C  C.C/ defines an equivalence from the category of complete nonsingular
curves over C onto the category of compact Riemann surfaces. The elliptic curves over C (curves
of genus 1 with a distinguished point) are exactly the curves E such that E.C/ � C=� for some
lattice � in C. Let E.�/D C=�. The Weierstrass }-function for � defines an embedding

z 7! .}.z/W}0.z/W1/WE.�/ ,! P2.C/

whose image is the curve
Y 2Z D 4X3�g2XZ

2
�g3Z

3:

Let

j D
1728g32

g32 �27g
2
3

:

Then E.�/�E.�0/ if and only if j.�/D j.�0/.
One shows that

Hom.E.�/;E.�0//D fz 2 C j z���0g:

From this it follows that End.E.�//D Z unless �D Z1CZz where z generates a quadratic imag-
inary extension F of Q. Then End.E.�// is a subring R of OF of rank 2 over Z, and E is said to
have complex multiplication by the elements of R.

Let F be a quadratic imaginary extension of Q, and let E have complex multiplication by OF .
Then j.E/ generates the Hilbert class field of F (largest abelian extension of F in which all primes
are unramified). Moreover, E is defined over F.j /, and, when F has no roots of 1 other than ˙1,
F ab is generated over F.j / by the x-coordinates of the points of finite order on E.

We can restate this analytically. Let j.z/D j.Z1CZz/ for =.z/ > 0. Then j is a holomorphic
function on D invariant under � .1/, and it defines an isomorphism � .1/nD! P1.C/. The Hilbert
class field of F is generated over F by the value j.�/ of j at a generator � of OF as a Z-algebra,
and, when F has no roots of 1 other than˙1, F ab is generated over F Œj.�/� by the values }.z=N/
with z 2�.

Let E.N / be the set of isomorphism classes of pairs .E;e/ with E an elliptic curve over Qal

with complex multiplication by OE and e D .e1; e2/ a basis for the group of points of order N on
E.11 Then E.N / is a finite set, and the action of Gal.Qal=F/ on it factors through a finite abelian
quotient. From the Artin map we get an action of A�F on E.N /, and the main theorem of complex
multiplication for elliptic curves describes this action explicitly. From this theorem, the statements
in the preceding paragraphs follow.

c. Complex multiplication for abelian varieties

The theory of complex multiplication was extended to abelian varieties by Shimura, Taniyama, and
Weil in the 1950s.12

A CM (complex multiplication) fieldF is a quadratic totally imaginary extension of a totally real
field. Let ŒF WQ�D 2g. An abelian variety A of dimension g is said to have complex multiplication
by OF if there is an injective homomorphism of rings OF ! End.A/.

11The points of order N on E form a free Z=NZ-module of rank 2. The isomorphisms are required to respect the
action of OE .

12In his collected works, Weil describes how, when he arrived at the famous Tokyo-Nikko conference in 1955 planning
to speak on complex multiplication, he was disconcerted to find that two young Japanese mathematicians, Shimura and
Taniyama, were planning to speak on the same topic.
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The theory of complex muliplication attaches to F and A, a second CM-field F 0, called the
reflex field. Let A.N / be the set of isomorphism classes of pairs .A;e/ where A is an abelian
variety over Qal and e is a basis for group of points of order N on A. Then A.N / is a finite set and
the action of Gal.Qal=F 0/ on it factors through a finite abelian quotient. From the Artin map we get
an action of A�F 0 on A.N /, and the main theorem of complex multiplication describes this action
explicitly.

(Add on one paragraph on Hilbert 12th problem).

4 Shimura varieties as algebraic varieties over number
fields

Fix a Shimura datum .G;D/.

a. The base field

There is a base field E D E.G;D/ that always has an obvious definition. For example, suppose
that G is defined by a quaternion algebra B over a totally real field F . The set of embeddings of
F into R is partitioned into two sets depending on whether B˝F R is M2.R/ or H. Let L be a
Galois extension of Q in C containing all conjugates of F . Then Gal.L=Q/ acts on Hom.F;R/D
Hom.F;L/, and E.G;D/ is the fixed field of the subgroup of Gal. xF=Q/ preserving the partition.

Each congruence subgroup of � defines an open subgroup of A�E , and X.� /D � nD is to be
defined over the corresponding abelian extension of E.

b. Uniqueness

An algebraic variety over C may have no model over a subfield, or it may have many. For example,
the distinct real curves

X2CY 2 D 1; X2�Y 2 D 1; X2CY 2 D 1

become isomorphic over C. This is only a problem with nonalgebraically closed fields, so that
X DX.� / will have at most one model over Qal.

A model Y of X.� / over E.� / will be uniquely determined by the action of Gal.Qal=E.� //

on Y.Qal/DX.� /.Qal/. However, we can’t specify such an action because we don’t know how to
name the elements of Gal.Qal=E.� //. Instead, we define certain special points of X.� /.Qal/ and
require that the model satisfies a condition of the following form:

each special point P 2 Y.Qal/ lies in an abelian extension of a specific field E.P / and
Gal.E.P /ab=E.P / acts on it according to a specific rule.

The special points are Zariski dense, and it is known that the condition determines the canonical
model uniquely.

For Shimura varieties that parametrize, in a natural way, abelian varieties with additional struc-
ture, the theory of complex multiplication shows that the moduli variety satisfies the condition.

c. Existence

There are three cases.
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(a) The Shimura variety is, in a natural way, a moduli variety for abelian varieties with additional
structure.

(b) The Shimura variety is a moduli variety for abelian varieties with additional structure, but not
in any natural or obvious way.

(c) The Shimura variety is not a moduli variety for abelian varieties (and is not known to be a
moduli variety at all).

Shimura varieties of types A;B;C and some of type D lie in case (a,b); the remainder lie in case
(c).

In case (a,b), X.� / represents a functor on schemes over C. The functor is defined over E.� /,
and so is represented by a model of X.� / over E.� / by descent theory (Shimura, Deligne).

Case (c) is more difficult, but the canonical models are known to exist in this case also (Borovoi,
Milne).

SHIMURA CURVES

The general strategy is to choose a representation G ,! GL.V / over Q. Then each point x of D
defines a Hodge structure on V ˝R, and one hopes that the V together with this Hodge structure is
the H1 of an abelian variety. For curves defined by quaternion algebras over F ¤Q, this is not true
but, miraculously, when you tensor the Hodge structure with another Hodge structure (also not the
H1 of an abelian variety), it becomes the H1 of an abelian variety (Shimura).

d. Conclusion

For each Shimura datum .G;D/ and each congruence subgroup of G.Q/, there is a well-defined
algebraic variety X.� / over well-defined number field E.� / such that X.� /.C/' x� nD. Usually
one now calls X.� / the Shimura variety attached to .G;D;� /.

(Expand this section by about a page.)

5 Shimura varieties in the work of Langlands
Langlands was interested Shimura varieties for a number of reasons, of which I will mention only
two.

a. Nonabelian class field theory (the global Langlands conjecture)

Recall that abelian class field theory for Q provides us with a surjective homomorphism GL1.A/!
Gal.Qab=Q/. A homomorphism Gal.Qal=Q/! GL1.C/ D C� factors through Gal.Qab=Q/, and
so defines a homomorphism GL1.A/! C�. In other words, the homomorphisms Gal.Qal=Q/!
GL1.C/ parametrize the characters of GL1.A/. Roughly speaking,13 the global Langlands con-
jecture says that the homomorphisms Gal.Qal=Q/! GLn.C/ should parametrize the irreducible
automorphic representations of GLn.A/. More generally, for a reductive group G over Q, it says
that the homomorphisms Gal.Qal=Q/! G_.C/ should parametrize the irreducible automorphic
representations of G.A/ (G_ is the “Langlands dual” of G). This can be regarded as the long-
sought nonabelian class field theory.

How could one prove such a correspondence? Let G D Gal.Qal=Q/. How can we show that the
representations of G parametrize certain of the representations of G.A/? An easy case would be if

13This subsection is an over simplification; nothing in the Langlands program is as simple as one would like.
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there is a homomorphism G.A/! G. That can’t happen our case (except when G DGL1) because,
for example, the representations of Gal.Qal=Q/ are finite-dimensional whereas the automorphic
representations are infinite-dimensional. Another idea is to find a very large vector space V on
which G �G.A/ acts. Then given a representation � of G, we can define V.�/ D Hom.�;V / —
this will be stable under G.A/, and so will be a representation of G.A/.

Where can we find such V ? Fix a Shimura datum .G;D/. For each congruence group � , we
get a Shimura variety X.� / over a finite extension of Q. We can regard X.� / as a variety over Q,
and take the étale cohomology of X.� /Qal . This a vector space on which G acts. The group G.Q/
doesn’t act on the individual varieties X.� /, but it does act on the whole family (if g 2G.Q/, then
g�g�1 is also a congruence group, and x 7! gxWD!D defines a holomorphic (hence algebraic)
map � nD! g�g�1nD). This action on the family .X.� // is defined over Q, and so gives an
action on V def

D lim
�!�

H�et .X.� // which commutes with G. In fact, this action is continuous for the
topology defined by the congruence subgroups, and so extends to the completion, which is G.Af /.
So we have a large vector space on which G�G.Af / acts.

(To be continued.)
When F is replaced a global field of nonzero characteristic, Drinfeld defined analogues of

Shimura varieties (Drinfeld modular varieties) and proved the Langlands correspondence for GL2
in this way, and Lafforgue extended his results to GLn (both received the Fields medal for their
work). When F is replaced by a local field, Harris and Taylor proved in 1998 that the Langlands
local correspondence for GLn can indeed be realized in the étale cohomology of Shimura varieties.

b. Zeta functions

Recall that Riemann’s zeta function is

�.s/D
Y
p prime

1

1�p�s
; s 2 C; <.s/ > 1:

The product converges for <.s/ > 1, and it is known that �.s/ extends to a meromorphic function
on the whole complex plane with a simple pole at s D 1. Moreover, it satisfies a functional equation
relating �.s/ and �.1� s/.

To any algebraic variety X over Q, one can attach a zeta function �.X;s/. Loosely speaking,
it can be thought of as a generating function for the number of points of X in any finite field. It is
known that

�.X;s/D
Y
p prime

�.Xp; s/ (1)

where each �.Xp; s/ is finite product of factors .1�ap�s/˙1 with jaj � pdimX . For example, when
X is a point, �.X;s/ is exactly Riemann’s zeta function. By comparing �.X;s/ with �.s/, one
sees that (1) converges for <.s/ > dimX C 1. The Hasse-Weil conjecture asserts that �.X;s/ can
be continued analytically to the whole complex plane and satisfies a functional equation relating
�.X;s/ to �.X;d C1� s/.

This is known in the following main cases:
˘ Abelian varieties with complex multiplication (Shimura and Taniyama in the 1950s). In this

case, one shows that the zeta function is an alternating product Hecke L-functions.
˘ Elliptic modular curves (Eichler and Shimura). In this case, the zeta function is the Mellin

transform of a modular form.
˘ Elliptic curves (Wiles et al). In this case, the zeta function was shown to be a factor of the zeta

function of an elliptic modular curve (hence again the Mellin transform of a modular form).
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In each case, the Hasse-Weil conjecture is proved by identifying the zeta function with another
function about which one knows something.

Langlands attaches to each reductive group over Q an array of “automorphic L-functions”.
The above results say that the zeta functions of abelian varieties with complex multiplication are
alternating products of automorphicL-functions for GL1 and that those of elliptic curves and elliptic
modular curves are automorphic L-functions for GL2.

It is part of Langlands’s philosophy that the zeta function of every algebraic variety over Q
should be an alternating product of automorphic L-functions. However, for an arbitrary variety one
has no idea how to approach this problem. Since a Shimura variety is defined by an algebraic group,
one at least has a candidate for the group to which the L-functions are attached. Langlands has
a conjecture that expresses the zeta function of the Shimura variety defined by G in terms of the
automorphic L-functions of G and of certain auxiliary groups (the endoscopic groups of G).

With Ngo’s proof of the Fundamental Lemma, there appears to some hope of proving this con-
jecture for compact Shimura varieties (at least, if one ignores the factors of the zeta function corre-
sponding to bad primes), and also the Hasse-Weil conjecture for the same varieties.

(Not to be continued.)
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