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Abstract

These notes collect the basic results in commutative algebra used in the rest of my
notes and books. Although most of the material is standard, the notes include a few
results, for example, the affine version of Zariski’s main theorem, that are difficult to

find in books.
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Notations and conventions

Our convention is that rings have identity elements,! and homomorphisms of rings respect
the identity elements. A unit of a ring is an element admitting an inverse. The units of a ring
A form a group, which we denote by?> A*. Throughout “ring” means “commutative ring”.
Following Bourbaki, we let N = {0, 1,2, ...}. Throughout, k is a field and k% is an algebraic
closure of k.

X CY X isasubsetof Y (not necessarily proper).

def

X =Y X isdefined to be Y, or equals Y by definition.
X ~Y X isisomorphicto Y.
X ~Y X andY are canonically isomorphic

(or there is a given or unique isomorphism).

Prerequisites

A knowledge of the algebra usually taught in advanced undergraduate or first-year graduate
courses.

References

A reference to monnnn is to question nnnn on mathoverflow.net.

Historical Notes

Sometime I'll add these. For the moment, I refer the reader to Bourbaki AC, Historical Note;
Matsumura 1986, Introduction; Nagata 1962, Appendix A2.
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'An element e of aring A is an identity element if ea = a = ae for all elements a of the ring. It is usually
denoted 14 or just 1. Some authors call this a unit element, but then an element can be a unit without being a
unit element. Worse, a unit need not be the unit.

2This notation differs from that of Bourbaki, who writes A* for the multiplicative monoid A ~ {0} and A*
for the group of units. We shall rarely need the former, and * is overused.
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1 Rings and algebras

A ring is an integral domain if it is not the zero ring and if ab = 0 in the ring implies that
a=0o0rb=0.

Let A be aring. A subring of A is a subset that contains 1 4 and is closed under addition,
multiplication, and the formation of negatives. An A-algebra is a ring B together with a
homomorphism ip: A — B. A homomorphism of A-algebras B — C is a homomorphism
of rings ¢: B — C such that ¢(ip(a)) = ic(a) forall a € A.

Elements x1,...,x, of an A-algebra B are said to generate it if every element of B
can be expressed as a polynomial in the x; with coefficients in i g(A). This means that the
homomorphism of A-algebras A[X1,...,X,] — B acting as i on A and sending X; to x;
is surjective.

When A C B and x1,...,x, € B, we let A[xy,...,X,] denote the A-subalgebra of B
generated by the x;.

A ring homomorphism A — B is of finite type, and B is a finitely generated A-algebra,
if B is generated by a finite set of elements as an A-algebra. This means that B is a quotient
of a polynomial ring A[X1,..., X,]. An A-algebra B is finitely presented if it is the quotient
of a polynomial ring A[X1,..., X,] by a finitely generated ideal.

A ring homomorphism A — B is finite, and B is a finite® A-algebra, if B is finitely
generated as an A-module. If A — B and B — C are finite ring homomorphisms, then so
also is their composite A — C.

Let k be a field, and let A be a k-algebra. If 14 # 0, then the map k — A is injective,
and we can identify k£ with its image, i.e., we can regard k as a subring of A. If 1 4 = 0, then
the ring A is the zero ring {0}.

Let A[X] be the ring of polynomials in the symbol X with coefficients in A. If 4 is an
integral domain, then deg( fg) = deg( f) + deg(g), and so A[X] is also an integral domain;
moreover, A[ X = A*.

Let A be both an integral domain and an algebra over a field k. If A is finite over k, then
it is a field. To see this, let a be a nonzero element of A. Because A is an integral domain,
the k-linear map x — ax: A — A is injective, and hence is surjective if A is finite, which
shows that a has an inverse. More generally, if every element a of A is algebraic over k,
then k[a] is finite over k, and hence contains an inverse of a; again A is a field.

An A-module M is faithful if aM =0, a € A, implies a = 0.

Exercises

EXERCISE 1.1. Letk be an infinite field, and let f be a nonzero polynomial in k[X1q,..., X,].
Show that there exist aq,...,a, € k such that f(ay,...,a,) # 0.

2 Ideals

Let A be aring. Anideal a in A is a subset such that
¢ ais asubgroup of A regarded as a group under addition;
¢ a€aq,reAd — raca.

3This is Bourbaki’s terminology (AC V §1, 1). Finite homomorphisms of rings correspond to finite maps of
varieties and schemes. Some other authors say “module-finite”.
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The ideal generated by a subset S of A is the intersection of all ideals a containing S — it
is easy to verify that this is in fact an ideal, and that it consists of all finite sums of the form
> ris; withr; € A, 5; € S. The ideal generated by the empty set is the zero ideal {0}. When
S ={a,b,...}, we write (a,b,...) for the ideal it generates.

An ideal is principal if it is generated by a single element. Such an ideal (@) is proper if
and only if a is not a unit. Thus a ring A4 is a field if and only if 14 # 0 and the only proper
ideal in A is (0).

Let a and b be ideals in A. The set {a +b | a € a, b € b} is an ideal, denoted a + b. The
ideal generated by {ab | a € a, b € b} is denoted by ab. Clearly ab consists of all finite
sums Y a;b; with a; € a and b; € b, and if a = (ay,...,am) and b = (by,...,by), then
ab=(aib1,...,a;ibj,...,amby). Note that ab C a4 = a and ab C Ab = b, and so

ab Canb. @))]

The kernel of a homomorphism A — B is an ideal in A. Conversely, for every ideal a
in a ring A, the set of cosets of a in A (regarded as an additive group) forms a ring A/a,
and @ > a + a is a homomorphism ¢: A — A/a whose kernel is a. There is a one-to-one
correspondence
b>¢(b)

{ideals of A containing a} «—— {ideals of A/a}. 2)
o~ L(b)<b

For an ideal b of A, ¢ 1p(b) = a+b.

The ideals of A x B are all of the form a x b with a and b ideals in A and B. To see
this, note that if ¢ is an ideal in A X B and (a,b) € ¢, then (a,0) = (1,0)(a,b) € ¢ and
(0,b) = (0,1)(a,b) € c. Therefore, c = a x b with

a=1{a|@0)ec, b=1{h](0b)ecc.

An ideal p in A is prime if p # A and ab € p = a € p or b € p. Thus p is prime if and
only if the quotient ring A/p is nonzero and has the property that

ab=0=—= a=0o0rb=0,

i.e., A/p is an integral domain. In particular, the zero ideal is prime if and only if the ring is
an integral domain. When p is prime, we write « (p) for the field of fractions of A4 /p.

LEMMA 2.1. Letp be a prime ideal in A.
(a) Ifp contains a product of elements of A, then it contains one of the elements.
(b) Ifp contains a finite product of ideals, then it contains one of the ideals.

PROOF. (a) In the integral domain A/p, a finite product of elements is 0 only if one of its
terms is zero.

(b) Suppose that p D aj ---a,. If p contains none of the a;, then there exist a; € p~a;,
i=1,...,ay. Butthena;---a, €p, which is a contradiction.

An ideal m in A4 is maximal if it is a maximal element of the set of proper ideals in A.
Therefore an ideal m is maximal if and only if the quotient ring A/m is nonzero and has no
nonzero proper ideals (by (2)), and so is a field. Note that

m maximal = m prime.
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A multiplicative subset of a ring A is a subset S with the property:
1eS, abeS — abes.

For example, the following are multiplicative subsets:
the multiplicative subset {1, f,..., f”,...} generated by an element f of A;
the complement of a prime ideal (or of a union of prime ideals);
1—|—ad=ef{l+a | a € a} for any ideal a of A.

PROPOSITION 2.2. Let S be a subset of a ring A, and let a be an ideal disjoint from S.
The set of ideals in A containing a and disjoint from S contains maximal elements (i.e., an
element not properly contained in any other ideal in the set). If S is multiplicative, then
every such maximal element is prime.

PROOF. The set X' of ideals containing a and disjoint from § is nonempty (it contains a).
If A is noetherian (see §3 below), X' automatically contains maximal elements. Otherwise,
we apply Zorn’s lemma. Let by C by C --- be a chain of ideals in X, and let b = b;.
Then b € X', because otherwise some element of S lies in b, and hence in some b;, which
contradicts the definition of X. Therefore b is an upper bound for the chain. As every chain
in X has an upper bound, Zorn’s lemma implies that X' has a maximal element.

Now assume that S is a multiplicative subset of A, and let ¢ be maximal in X'. Let
bb' € ¢. If b is not in ¢, then ¢ + (b) properly contains ¢, and so it is not in X'. Therefore
there S contains an element in ¢ + (), say,

f=c+ab, cec, acA.
Similarly, if 5’ is not in ¢, then S contains an element
f'=c+ab, ec, aeA.

Now
ff' =cc'+abc’ +a'b'c +aa'bb’ €,
which contradicts

ffes.

Therefore, at least one of b or b is in ¢, which is therefore prime.
COROLLARY 2.3. Every proper ideal in a ring is contained in a maximal ideal.
PROOF. Apply the proposition with § = {1}.

An element f of a ring is nilpotent if f” = 0 for some r > 1. A ring is reduced if it has
no nonzero nilpotents. The radical rad(a) of an ideal a in a ring A4 is

{feA|f €asomer>1}.

An ideal a is said to be radical if it equals its radical. Thus an ideal a is radical if and only
if A/a is reduced. Since integral domains are reduced, prime ideals (a fortiori, maximal
ideals) are radical. The radical of (0) consists of the nilpotent elements of A — it is called
the nilradical of A.

If b <> b’ under the one-to-one correspondence (2) between ideals of A and ideals of
A/a, then A/b ~ (A/a)/b’, and so b is prime (resp. maximal, radical) if and only if b’ is
prime (resp. maximal, radical).
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PROPOSITION 2.4. Let a be an ideal in a ring A.
(a) The radical of a is an ideal.
(b) rad(rad(a)) = rad(a).

PROOF. (a)If f erad(a), then clearly af € rad(a) forall a € A. Suppose that a,b € rad(a),
with say a” € a and b® € a. When we expand (a + b)"** using the binomial theorem, we
find that every term has a factor a” or *, and so lies in a.

(b) If " e rad(a), then a”™* = (")’ € a for some s > 0, and so a € rad(a).

Note that (b) of the proposition shows that rad(a) is radical. In fact, it is the smallest
radical ideal containing a.

If a and b are radical, then a N b is radical, but a + b need not be: consider, for example,
a=(X2-Y)and b = (X2 +7Y); they are both prime ideals in k[X, Y] (by 4.11 below), but
a+b = (X2,Y), which contains X2 but not X.

PROPOSITION 2.5. The radical of an ideal is equal to the intersection of the prime ideals
containing it. In particular, the nilradical of a ring A is equal to the intersection of the prime
ideals of A.

PROOF. If a = A, then the set of prime ideals containing it is empty, and so the intersection
is A. Thus we may suppose that a is a proper ideal of A. Then rad(a) C ﬂpjap because
prime ideals are radical and rad(a) is the smallest radical ideal containing a.

For the reverse inclusion, let f ¢ rad(a). According to Proposition 2.2, there exists a
prime ideal containing a and disjoint from the multiplicative subset {1, f,...}. Therefore

S EMNpoab

DEFINITION 2.6. The Jacobson radical JJ of a ring is the intersection of the maximal ideals
of the ring:

J(A4) = ﬂ{m | m maximal in A4}.

A ring A is local if it has exactly one maximal ideal m. For such a ring, the Jacobson
radical is m.

PROPOSITION 2.7. An element ¢ of A is in the Jacobson radical of A if and only if 1 —ac
is a unit for all a € A.

PROOF. We prove the contrapositive: there exists a maximal ideal m such that ¢ ¢ m if and
only if there exists an a € A such that 1 —ac is not a unit.

=>: Suppose that ¢ is not in the maximal ideal m. Then m+ (¢) = 4, and so 1 =m +ac
for some m e mand a € A. Now 1 —ac € m, and so it is not a unit.

«<: If 1 —ac is not a unit, then it lies in some maximal ideal m of 4 (by 2.3). Now
¢ ¢ m, because otherwise 1 = (1 —ac)+ac e m.

PROPOSITION 2.8 (PRIME AVOIDANCE). Letpi,...,pr, ¥ > 1, beidealsin A withp,,...,p;,
prime. If an ideal a is not contained in any of the p;, then it is not contained in their union.

PROOF. When r = 1, there is nothing to prove, and so we may assume that » > 1. Suppose
thata C{J; <, p; and thatno p ; can be deleted from the union. In particular, a  {J ;2 b,



2 IDEALS 7

and so there exists ana; € a~ Uj# p;. Thena; € p;, because otherwise a; € a\Ulﬁjﬁr pj.
Consider
a=aj--dr—1+dar €.

I claim that a belongs to no p;, which is a contradiction. Because none of the elements
ai,...,ar— lies in p, and p, is prime, their product does not lie in p, (2.1); but a, € p,,
and so a ¢ p,. Next consider an ideal p; with i <r —1. In this case a1 ---a,—1 € p; because
the product involves a;, but a, ¢ p;, and so again a ¢ p;.

ASIDE 2.9. *In general, the condition in (2.8) that the ideals p,,...,p, be prime is necessary: the
ideal (x, y) in F5[x, y] is the union of three proper nonprime ideals. However, when A contains an
infinite field k, the condition can be dropped. In the above proof, let V' be the (finite-dimensional)
k-vector space generated by the a;, and let V; = p; NV. Then V C | J,;, Vi, but the V; are proper
subspaces of V/, and so this is impossible as k is infinite. o

Extension and contraction of ideals

Let ¢: A — B be a homomorphism of rings.

NOTATION 2.10. For an ideal b of B, ¢ ~1(b) is an ideal in A, called the contraction of b
to A, which is often denoted b¢. For an ideal a of A, the ideal in B generated by ¢(a) is
called the extension of a to B, and is often denoted a®. When ¢ is surjective, ¢(a) is already
an ideal, and when A is a subring of B, b = bN A.

2.11. There are the following equalities (a,a’ ideals in A; b, b’ ideals in B):
(a+a) =a*+da% (ad)®=ad?, (bNbH)°  =b°Nb", rad(b) =rad(b).

2.12. Let a be an ideal of A and b an ideal of B. Obviously (i) a C a¢ and (ii) b¢ C b. On
applying e to (i), we find that a® C a®“®, and (ii) with b replaced by a® shows that a®“¢ C a®;
therefore a® = a®“®. Similarly, b¢¢¢ = b¢. It follows that extension and contraction define
inverse bijections between the set of contracted ideals in A and the set of extended ideals in
B:
. . a—>a’ . .
{6 C A| b anidealin B} o {a® C B | aanideal in A}
C ey

Note that, for every ideal b in B, the map A/b — B/b is injective, and so b€ is prime (resp.

radical) if b is prime (resp. radical).

The Chinese remainder theorem

Recall the classical form® of the theorem: let d1, ..., d, be integers, relatively prime in pairs;
then for any integers xy, ..., X5, the congruences

x = x; mod d;

have a simultaneous solution x € Z; moreover, if x is one solution, then the other solutions
are the integers of the form x +md withm € Z and d =[] d;.

4 Asides can be ignored.
50ften credited to Qin Jiushao (1208-1261), one of the greatest mathematicians of his era (Notices AMS,
May 2013, p.596).
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We want to translate this into a statement about ideals. Integers m and n are relatively
prime if and only if (m,n) = Z, i.e., if and only if (m) + (n) = Z. This suggests defining
ideals a and b in a ring A to be relatively prime (or coprime) if a +b = A.

If my,...,my are integers, then (\(m;) = (m) where m is the least common multiple of
the m;. Thus (\(m;) D ([ [mi), which equals [ [(m;). If the m; are relatively prime in pairs,
then m = [[m;, and so we have (\(m;) = [ [(m;). Note that in general,

ap-az---a, CarNaxN...Nay,

but the two ideals need not be equal.
These remarks suggest the following statement.

THEOREM 2.13 (CHINESE REMAINDER THEOREM). Letay,...,a, be ideals in a ring A.
If a; is relatively prime to a; whenever i # j, then the map

ar>(...,a+a;,...);A—> A/ay x---x A/ay 3)
is surjective with kernel [[a; (so[]a; = a;).

PROOF. Suppose first that n = 2. As a; + ap = A, there exist a; € a; such thata; +a, = 1.
Then ajxz + azx1 maps to (x; moday,xp moday), which shows that (3) is surjective.
Moreover, for ¢ € a; Nay, we have

c=ajic+azcea;-ay
which proves that a; Nap = ajap. Thus
A/a1a2 x>~ A/a1 XA/Clz.

We now use induction to prove the theorem for n > 2. For i > 2, there exist elements
a; € aj and b; € q; such that
ai+b; =1.

The product ]—[izz(ai + b;) lies in ay 4+ a5 ---a, and equals 1, and so
ar+az---a, = A.
Therefore,

Afar---ap = Afar-(az---an)
Alay x Ajay---ay by the n = 2 case
Ajay xAJapy x---x A/ap by induction.

[

12

Exercises
EXERCISE 2.14. Let M be an A-module. Define the product of two elements of A & M by
(a,m)(a’,m’) = (aa’,am’ +a'm).

Show that this makes A & M into a ring. Show that the ideals of A © M contained in M are
exactly the A-submodules of A @ M .°

OThis construction shows that modules over 4 and their submodules can be realized as ideals in the ring
A @® M, which is useful for deducing results about modules from results about ideals. Nagata calls this the
“principle of idealization” (Nagata 1962, p.2).
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3 Noetherian rings

PROPOSITION 3.1. The following three conditions on a ring A are equivalent:
(a) every ideal in A is finitely generated;
(b) every ascending chain of ideals a; C a C --- eventually becomes constant, i.e.,
O = Q1 = -+ for some m.
(c) every nonempty set of ideals in A has a maximal element.

PROOF. (a) = (b): If a; C a C --- is an ascending chain, then a =  Ja; is an ideal, and
hence has a finite set {a1,...,a,} of generators. For some m, all the a; belong a,,, and then

am = am-l,-] =---=4a.

(b) = (c): Let X be a nonempty set of ideals in A. If X' has no maximal element, then
the axiom of dependent choice’ shows that there exists a strictly ascending sequence of
ideals in X', which contradicts (b).

(c) = (a): Let a be an ideal in A, and let X' be the set of finitely generated ideals
contained in a. Then X' is nonempty because it contains the zero ideal, and so it contains
a maximal element ¢ = (a1,...,d,). If ¢ # a, then there exists an element ¢ € a~ ¢, and
(ay,...,ar,a) will be a finitely generated ideal in a properly containing c. This contradicts
the definition of ¢, and so ¢ = «a.

A ring A is noetherian if it satisfies the equivalent conditions of the proposition. For
example, fields and principal ideal domains are noetherian. On applying (c) to the set of all
proper ideals containing a fixed proper ideal, we see that every proper ideal in a noetherian
ring is contained in a maximal ideal. We saw in (3.6) that this is, in fact, true for every ring,
but the proof for non-noetherian rings requires Zorn’s lemma.

A quotient A/a of a noetherian ring A is noetherian, because the ideals in A/a are all of
the form b/a with b an ideal in A, and every set of generators for b generates b/a.

PROPOSITION 3.2. Let A be a ring. The following conditions on an A-module M are
equivalent:
(a) every submodule of M is finitely generated (in particular, M is finitely generated);
(b) every ascending chain of submodules M1 C M, C --- eventually becomes constant.
(c) every nonempty set of submodules of M has a maximal element.

PROOF. Essentially the same as that of (3.1).

An A-module M is noetherian if it satisfies the equivalent conditions of the proposition.
Let 4 A denote A regarded as a left A-module. Then the submodules of 4 A are exactly the
ideals in A, and so 4 A4 is noetherian (as an A-module) if and only if A is noetherian (as a

ring).
PROPOSITION 3.3. Let A be a ring, and let
B

0>M S M-S M50

be an exact sequence of A-modules.

"This says: Let R be a binary relation on a nonempty set X, and suppose that, for each a in X, there exists
a b such that a Rb; then there exists a sequence (ap),en of elements of X such that a, Ray 41 for all n. Tt is
strictly stronger than the axiom of countable choice but weaker than the axiom of choice. See the Wikipedia
(axiom of dependent choice).
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(a) If N C P are submodules of M such thata (M')NN =a(M’)N P and B(N) =
B(P),then N = P.

(b) If M" and M" are finitely generated, so also is M .

(¢) M is noetherian if and only if M’ and M" are both noetherian.

PROOF. (a) Let p € P. The second condition implies that there exists an n € N such that
B(n) = B(p). Then B(p —n) =0, and so p —n lies in aM’, and hence in aM' N P =
aM'NN CN.Thus p=(p—n)+neN.

(b) Let S’ be a finite set of generators for M, and let S” be a finite subset of M such
that BS” generates M”. The submodule N of M generated by S’ U S” is such that
aM’' NN =aM’ and BN = M". Therefore (a) shows that N = M.

(c) =: An ascending chain of submodules of M’ or of M” gives rise to an ascending
chain in M, and therefore becomes constant.

<: Consider an ascending chain of submodules of M. As M" is Noetherian, the image
of the chain in M"” becomes constant, and as M is Noetherian, the intersection of the chain
with M’ becomes constant. Now the (a) shows that the chain itself becomes constant.

For example, a direct sum
M =M & M,

of A-modules is noetherian if and only if M; and M, are both noetherian.

PROPOSITION 3.4. Every finitely generated module over a noetherian ring is noetherian.

PROOF. Let M be a module over a noetherian ring A. If M is generated by a single element,
then M =~ A/a for some ideal a in A, and the statement is obvious. We argue by induction on
the minimum number n of generators of M. Clearly M contains a submodule N generated
by n — 1 elements such that the quotient M/ N is generated by a single element, and so the
statement follows from (3.3¢).

Hence, every submodule of a finitely generated module over a noetherian ring is finitely
generated. This statement is false for nonnoetherian rings, as any non finitely generated ideal
in the ring demonstrates.

PROPOSITION 3.5. Every finitely generated module M over a noetherian ring A contains a
finite chain of submodules M D M, D --- D M; D 0 such that each quotient M; / M;_ is
isomorphic to A/p; for some prime ideal p;.

PROOF. The annihilator of an element x of M is

ann(x) = {a € A | ax = 0}.
It is an ideal in A, which is proper if x # 0.

Let a = ann(x) be maximal among the annihilators of nonzero elements of M. I claim
that a is prime. Let ab € a, so that abx = 0. Then a C (a) + a C ann(bx). If b ¢ a, then
bx # 0, and so a = ann(bx) by maximality, which implies that a € a.

We now prove the proposition. Note that, for every x € M, the submodule Ax of
M is isomorphic to A/ann(x). If M is nonzero, then there exists a nonzero x such that
ann(x) is maximal among the annihilators of nonzero elements of M, and so M contains
a submodule M; = Ax isomorphic to A/p; with p; prime. Similarly, M/M; contains
a submodule M, /M, isomorphic A/p, for some prime ideal p,, and so on. The chain
0C My C M, C --- terminates because M is noetherian (by 3.4).
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ASIDE 3.6. The proofs of (2.2) and (3.5) are two of many in commutative algebra in which an ideal,
maximal with respect to some property, is shown to be prime. For a general examination of this
phenomenon, see Lam and Reyes, J. Algebra 319 (2008), no. 7, 3006-3027.

THEOREM 3.7 (HILBERT BASIS THEOREM). Every finitely generated algebra over a noethe-
rian ring is noetherian.

PROOF. Let A be a noetherian ring, and let B be a finitely generated A-algebra. We
argue by induction on the minimum number of generators for B. As A[x1,...,x,] =
Alx1,...,Xn—1][xn], it suffices to prove the theorem for » = 1. But then B is a quotient of
A[X], and so it suffices to prove that A[X] is noetherian.

Recall that for a polynomial

fX)=coX " +c1 X"Vt €A, co#0,

cg is called the leading coefficient of f.

Let a be an ideal in A[X], and let a(i) be the set of elements of A that occur as the leading
coefficient of a polynomial in a of degree i (we also include 0). Then a(i) is obviously an
ideal in 4, and a(i — 1) C a(i) because, if cX'~! 4 .- € a, then X(c X' "1 +--) € a.

Let b be an ideal of A[X] contained in a. Then b(i) C a(i), and if equality holds for all
i, then b = a. To see this, let f be a polynomial in a of degree i. Because b(i) = a(7), there
exists a g € b such that deg(f — g) < deg(f). In other words, f = g+ f; with g € b and
deg( f1) < deg(f). Now f1 = g1 + f> with g; € b and deg( f>)< deg( f1). Continuing in
this fashion, we find that f =g+ g1 +g>+---€b.

As A is noetherian, the sequence of ideals

a(l) Ca(2) C---Ca(i) C -

becomes constant, say, a(d) = a(d + 1) = ... (and a(d) contains the leading coefficient of
every polynomial in a). For each i < d, there exists a finite generating set {c;1,¢;2,...} for
a(7), and for each (i, j ), there exists a polynomial f;; € a of degree i with leading coefficient
cij. The ideal b of A[X] generated by the f;; is contained in a and has the property that
b(i) = a(i) for all i. Therefore b = a, and a is finitely generated.

COROLLARY 3.8. When A is noetherian, every finitely generated A-algebra is finitely
presented.

PROOF. Every finitely generated A-algebra B is of the form A[X,..., X]/a for some n
and ideal a in A[X1,..., X,]. Because A[X1,..., X,] is noetherian, the ideal a is finitely
generated, and so B is finitely presented.

In particular, the polynomial ring k[X1,..., X] over a field k is noetherian. This is the
original theorem of Hilbert.

NAKAYAMA’S LEMMA 3.9. Let A be a ring, let a be an ideal in A, and let M be an A-
module. Assume that a is contained in all maximal ideals of A and that M is finitely
generated.

(@) If M =aM, then M = 0.

(b) If N is a submodule of M such that M = N +aM, then M = N.
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PROOF. (a) Suppose that M # 0. Choose a minimal set of generators {ey,...,e,} for M,
n > 1, and write
ey =ayey+---+aney, a;c€a.

Then
(1—ay)ey = azez +---+aney

and, as 1 —a lies in no maximal ideal, it is a unit. Therefore e, ..., e, generate M, which
contradicts the minimality of the original set.
(b) The hypothesis implies that M/N = a(M/N), and so M/N = 0.

Recall (2.6) that the Jacobson radical J of A is the intersection of the maximal ideals of
A, and so the condition on a is that a C J. In particular, the lemma holds with a = J; for
example, when 4 is a local ring, it holds with a the maximal ideal in A4.

COROLLARY 3.10. Let A be a local ring with maximal ideal m and residue field k = A/m,
and let M be a finitely generated module over A. The action of A on M /mM factors through
k, and elements ay,...,a, of M generate it as an A-module if and only if the elements

ai+mM,...,a, +mM
generate M /mM as k-vector space.

PrROOF. Ifay,...,a, generate M, then it is obvious that their images generate the vector
space M /mM . Conversely, suppose that a; +mM,...,a, +mM span M/mM, and let N
be the submodule of M generated by ay,...,a,. The composite N - M — M/mM is
surjective, and so M = N +mM . Now Nakayama’s lemma shows that M = N.

COROLLARY 3.11. Let A be a noetherian local ring with maximal ideal m. Elements
ai,...,a, of m generate m as an ideal if and only ifa; +m?,...,a, +m? generate m/m? as
a vector space over A/m. In particular, the minimum number of generators for the maximal
ideal is equal to the dimension of the vector space m/m?.

PROOF. Because A is noetherian, m is finitely generated, and we can apply the preceding
corollary with M = m.

EXAMPLE 3.12. Nakayama’s lemma may fail if M is not finitely generated. For example,
let Z,y = {5 | p does not divide n} and consider the Z,)-module Q. Then Z(,) is a local
ring with maximal ideal (p) (see §5 below) and Q = pQ but Q # 0.

DEFINITION 3.13. Let A be a noetherian ring.
(a) The height ht(p) of a prime ideal p in A is the greatest length d of a chain of distinct
prime ideals
pP=Ppg DPg—12:D Po. 4)

(b) The (Krull) dimension of A is sup{ht(p) | p C A, p prime}.
Thus, the Krull dimension of a ring A is the supremum of the lengths of chains of prime

ideals in A (the length of a chain is the number of gaps, so the length of (4) is d). It is
sometimes convenient to define the Krull dimension of the zero ring to be —1.
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Let A be an integral domain. Then
dim(A) =0 <= (0) is maximal <= A is a field.

The height of a nonzero prime ideal in a principal ideal domain is 1, and so such a ring has
Krull dimension 1 (unless it is a field).

We shall see in §21 that the height of every prime ideal in a noetherian ring is finite.
However, the Krull dimension of the ring may be infinite, because it may contain a sequence
of prime ideals whose heights tend to infinity (Krull 1938).8

LEMMA 3.14. In a noetherian ring, every set of generators for an ideal contains a finite
generating set.

PROOF. Let S be a set of generators for a, and let a’ be maximal among the ideals generated
by finite subsets of S. Then a’ contains every element of S (otherwise it wouldn’t be
maximal), and so equals a.

THEOREM 3.15 (KRULL INTERSECTION THEOREM). Let a be an ideal in a noetherian
ring A. If a is contained in all maximal ideals of A, then ﬂnzl a” = {0}.

PROOF. We shall show that, for every ideal a in a noetherian ring,

ﬂnzlan =a-ﬂnzla". (5)

When a is contained in all maximal ideals of A, Nakayama’s lemma then shows that

Letay,...,a, generate a. Then a” consists of finite sums
Z Ci1-~-iralil cealr, ciyd, € A.
i1+etip=n

In other words, a” consists of the elements of A of the form g(ay,...,a,) for some homoge-
neous polynomial g € A[X1,..., X;] of degree n.

Let Sy, denote the set of homogeneous polynomials f(X1q,..., X;) of degree m such
that f(ai,...,ar) € ﬂnzl a”, and let ¢ be the ideal in A[X1,..., X,] generated by | J,,, Sm.
Because A[X1,..., X;] is noetherian, ¢ is finitely generated, and so ¢ is generated by a finite

set { f1,..., fs} of elements of | J,, S, (3.14). Let d; = deg f;, and let d = maxd;.

Let b € (),~, 0" then b € a1 and so b = f(ay,...,a,) for some homogeneous
polynomial f of degree d + 1. By definition, f € Sy1; C ¢, and so there exist g; €
A[X1,..., X;] such that

f=gifi++gsfs inAXy1,...,X.]

As f and the f; are homogeneous, we can omit from each g; all terms not of degree
deg f —deg f;, since these terms cancel out. In other words, we can choose the g; to be
homogeneous of degree deg f —deg f; = d + 1 —d; > 0. In particular, the constant term of
gi is zero, and so g;(ay,...,ar) € a. Now

b= f(ai,...,ay) :Zigi(al,...,ar)-ﬁ(al,...,ar)ea-mna”,

which completes the proof of (5).

8In Nagata 1962, p.203, there is the following example. Let N = Io LI /1 Li.... be a partition of N into finite
sets with strictly increasing cardinality. Let A = k[X¢, X1,...] be the polynomial ring in a set of symbols
indexed by N, and let p; be the prime ideal in A generated by the X ; with j in /;. Let § be the multiplicative
set A~|Jp;. Then S~! 4 is noetherian and regular, and the prime ideal S~!p; has height |I;|.
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The equality (5) can also be proved using primary decompositions — see (19.14).

PROPOSITION 3.16. In a noetherian ring, every ideal contains a power of its radical; in
particular, some power of the nilradical of the ring is zero.

PROOF. Let ay,...,a, generate rad(a). For each i, some power of a;, say a;i, lies in a.
Then every term of the expansion of

(Clal +"'+Cnan)rl+“.+rn, Cl EA,
has a factor of the form ;' for some i, and so lies in a. Thus rad(a)" 7™ C a.

ASIDE 3.17. In a noetherian ring, every ideal is finitely generated, but there is little that one can say
in general about the number of generators required. For example, in k[X] every ideal is generated by
a single element, but in k[ X, Y] the ideal (X, Y )" requires at least n + 1 generators.

ASIDE 3.18. The following example shows that the Krull intersection theorem fails for nonnoethe-
rian rings. Let A be the ring of germs® of C > functions at 0 on the real line. Then 4 is a local ring
with maximal ideal m equal to the set of germs zero at 0, and ﬂnzl m” consists of the germs whose

. . . . . . _ 2
derivatives at zero are all zero. In particular, it contains the nonzero function e 1/x=,

Exercises
EXERCISE 3.19. Consider the subalgebra
A=k+k[X,Y]X =k[X,XY,XY2,..]

of k[X,Y]. Show that A is not noetherian (hence subrings of noetherian rings need not be
noetherian, and subalgebras of finitely generated algebras need not be finitely generated).

4 Unique factorization

Let A be an integral domain. An element a of A is said to be irreducible if it is neither zero
nor a unit and admits only trivial factorizations, i.e.,

a=bc = borcisaunit.
The element a is said to be prime if it is neither zero nor a unit and (a) is a prime ideal, i.e.,
albc = alboralc.

An integral domain A is called a unique factorization domain (or a factorial domain)
if every nonzero nonunit @ in A can be written as a finite product of irreducible elements in
exactly one way up to units and the order of the factors. The uniqueness condition means

that if
a= l_[iel ai = 1_[./'61 bj

with each a; and b; irreducible, then there exists a bijection i — j(i):/ — J such that
by = a; x unit for each i. Every principal ideal domain is a unique factorization domain
(proved in most algebra courses).

9 A germ of a function at 0 is represented by a function f on an open neighbourhood U of 0; two pairs (£, U)
and (f’,U’) represent the same germ if and only if f and f” agree on some neighbourhood of 0in U NU”.
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PROPOSITION 4.1. Let A be an integral domain, and let a be an element of A that is neither
zero nor a unit. If a is prime, then a is irreducible, and the converse holds when A is a
unique factorization domain.

Thus, (a) is a prime ideal if a is irreducible and A is a unique factorization domain.

PROOF. Assume that a is prime. If a = bc, then a divides bc and so a divides b or c.
Suppose the first, and write b = ag. Now a = bc = aqc, which implies that g¢ = 1 because
A is an integral domain, and so c¢ is a unit. We have shown that a is irreducible.

For the converse, assume that a is irreducible and that A is a unique factorization domain.
If albc, then bc = aq for some g € A. On writing each of b, ¢, and ¢ as a product of
irreducible elements, and using the uniqueness of factorizations, we see that a differs from
one of the irreducible factors of b or ¢ by a unit. Therefore a divides b or c.

COROLLARY 4.2. Let A be an integral domain. If A is a unique factorization domain, then
every prime ideal of height 1 is principal.

PROOF. Let p be a prime ideal of height 1. Then p contains a nonzero element, and hence
an irreducible element a. We have p D (a) D (0). As (a) is prime and p has height 1, we
must have p = (a).

The converse is true for noetherian integral domains (21.4).

PROPOSITION 4.3. Let A be an integral domain in which every nonzero nonunit element is
a finite product of irreducible elements. If every irreducible element of A is prime, then A is
a unique factorization domain.

PROOF. We have to prove the uniqueness of factorizations. Suppose that
ay+-am = by by (©6)

with the a; and b; irreducible elements in A. As a; is prime, it divides one of the b;, which
we may suppose to be by, say by = aju. As by is irreducible, u is a unit. On cancelling a
from both sides of (6), we obtain the equality

azam = (ubz)bz -+ by.

Continuing in this fashion, we find that the two factorizations are the same up to units and
the order of the factors.

PROPOSITION 4.4. Let A be an integral domain in which every ascending chain of principal
ideals becomes constant (e.g., a noetherian integral domain). Then every nonzero nonunit
element in A is a finite product of irreducible elements.

PROOF. The hypothesis implies that every nonempty set of principal ideals has a maximal
element (cf. the proof of 3.1). Assume that A has nonfactorable elements, and let (a) be
maximal among the ideals generated by such elements. Then a is not itself irreducible, and
s0 a = bc with neither b nor ¢ units. Now (b) and (c) both properly contain (@), and so b
and ¢ are both factorable, which contradicts the nonfactorability of a.
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PROPOSITION 4.5. Let A be a unique factorization domain with field of fractions F. If an
element f of A[X] factors into the product of two nonconstant polynomials in F[X], then it
factors into the product of two nonconstant polynomials in A[X].

In other words, if f is not the product of two nonconstant polynomials in A[X], then it
is irreducible in F[X].
PROOF. Let f = ghin F[X]. For suitable ¢,d € A, the polynomials g =cg and h; = dh
have coefficients in A, and so we have a factorization
cdf = g1hy in A[X].
If an irreducible element p of A divides cd, then, looking modulo (p), we see that

0=gr-h1in (4/(p))[X].

According to Proposition 4.1, the ideal (p) is prime, and so (A/(p))[X] is an integral
domain. Therefore, p divides all the coefficients of at least one of the polynomials g1, 41,
say g1, so that g1 = pg» for some g, € A[X]. Thus, we have a factorization

(cd/p)f = g2hy in A[X].

Continuing in this fashion, we can remove all the irreducible factors of c¢d, and so obtain a
factorization of f in A[X].

The proof shows that every factorization f = gh in F[X] of an element f of A[X]
arises from a factorization f = (cg)(c™'h) in A[X] withc € F.
Let A be a unique factorization domain. A nonzero polynomial

f =a0+a1X+--~+ame

in A[X] is said to be primitive if the coefficients a; have no common factor other than units.
Every polynomial f in F[X] can be written f = c(f)- f1 withc(f) € F and fj primitive.
The element ¢ ( f'), which is well-defined up to multiplication by a unit, is called the content
of f. Note that f € A[X]if and only if ¢(f) € A.

PROPOSITION 4.6. Let A be a unique factorization domain. The product of two primitive
polynomials in A[X] is primitive.

PROOF. Let

f=at+ar X+-+anX™
g=bo+b1 X +--+b X",

be primitive polynomials, and let p be a prime element of A. Let a;, be the first coefficient
of f not divisible by p and b, the first coefficient of g not divisible by p. Then all the
termsin ), . J=io+Jo a;b; are divisible by p, except a;,b j,, which is not divisible by p.
Therefore, p doesn’t divide the (ip + jo)th-coefficient of fg. We have shown that no prime
element of A divides all the coefficients of fg, which must therefore be primitive.

Each of the last two propositions is referred to as Gauss’s lemma (Gauss proved them
with A = 7).
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PROPOSITION 4.7. Let A be a unique factorization domain with field of fractions F, and
let f,g € F[X]. Then
c(fg) =c(f)-c(g).

Hence every factor in A[X] of a primitive polynomial is primitive.
PROOF. Let f =c(f)f1 and g = c(g)g1 with fi and g; primitive. Then

fg=c(f)e(g) fign
with f1 g1 primitive, and so c( fg) = c(f)c(g).

COROLLARY 4.8. The irreducible elements in A[X] are the irreducible elements ¢ of A
and the nonconstant primitive polynomials f such that f is irreducible in F[X].

PROOF. Obvious from (4.5) and (4.7).
THEOREM 4.9. If A is a unique factorization domain, then so also is A[X].

PROOF. Let f € A[X], and write f = ¢(f) f1. Then c(f) is a product of irreducible
elements in A. If f7 is not irreducible, then it can be written as a product of two polynomials
of lower degree, which are necessarily primitive (4.7). Continuing in this fashion, we find
that f7 is a product of irreducible primitive polynomials, and hence that f is a product of
irreducible elements in A[X].

It remains to show that each irreducible element of A[X] is prime (see 4.3). There are
two cases (4.8).

Let ¢ be an irreducible element of A. If a divides the product gh of g,h € A[X], then it
divides ¢(gh) = c(g)c(h). As a is prime, it divides c¢(g) or ¢(h), and hence also g or A.

Let f be a nonconstant primitive polynomial in A[X] such that f is irreducible in F[X].
If f divides the product gh of g,h € A[X], then it divides g or & in F[X]. Suppose the
first, and write fg = g with ¢ € F[X]. Because f is primitive, c¢(q) = c¢(f)c(q), and
c(f)e(q) =c(fq) =c(g) € A,and so g € A[X]. Therefore f divides g in A[X].

Let k be a field. A monomial in X1,..., X, is an expression of the form
Xfl e Xgn, ajeN.

The total degree of the monomial is ) a;. The degree, deg(f), of a nonzero polyno-
mial f(Xy,...,Xy) is the largest total degree of a monomial occurring in f with nonzero
coefficient. Since

deg(fg) = deg(f) +deg(g),

k[X1,...,Xy]is an integral domain and k[X71,..., X,|* = k™. Therefore, an element f of
k[X1,...,Xy] is irreducible if it is nonconstant and f = gh = g or h is constant.

THEOREM 4.10. The ring k[X1,..., X»] is a unique factorization domain.

PROOF. Note that

A[X],...,Xn]=A[X1,...,Xn_1][Xn]. (7)
This simply says that every polynomial f in#z symbols X1,..., X, can be expressed uniquely
as a polynomial in X, with coefficients in k[ X1, ..., Xp—1],

SX1,o . Xn) = ao(X1..... Xp—D) X, -+ ar (X1, Xp—1).

The theorem is trivially true when n = 0, and (7) allows us to deduce it from (4.9) for all n.



5 RINGS OF FRACTIONS 18

COROLLARY 4.11. A nonzero proper principal ideal (f) ink[X1,..., Xn] is prime if and
only f is irreducible.

PROOF. Special case of (4.1).

S Rings of fractions

Recall that a multiplicative subset of a ring is a nonempty subset closed under the formation
of finite products. In particular, it contains 1 (the empty product).
Let S be a multiplicative subset of a ring A. Define an equivalence relation on A x S by

(a,s) ~ (b,t) <= u(at—bs)=0forsomeu € S.
Write £ for the equivalence class containing (a, s), and define addition and multiplication of

equivalence classes according to the rules:

g+g __ at+bs

b _ab
s - t

a
s st *

t st

It is easily checked these do not depend on the choices of representatives for the equivalence
classes, and that we obtain in this way a ring

ST'A={%]acA s€eS}

and a ring homomorphism a + 7: 4 5, §~1 4 whose kernel is
{a € A|sa =0 forsomes € S}.

If S contains no zero-divisors, for example, if A4 is an integral domain and 0 ¢ S, then ig is
injective. At the opposite extreme, if 0 € S, then S~! A4 is the zero ring.

A homomorphism A — B factors through A 25, s 14ifand only if the image of S in
B consists of units. More formally:

PROPOSITION 5.1. The pair (S'A,ig) has the following universal property:

is
A—— 85714
every element of S maps to a unit in S~' A, and S |
any other ring homomorphism o: A — B with this \x 3 al
property factors uniquely through ig é

PROOF. Leta:A — B be such a homomorphism, and let 8: S~! A — B be a homomorphism
such that B oig = «. Then

15=9 = BHBE) =) = a@)B(5) =a(a)
and so
B(%) = a(a)a(s)”". (8)

This shows that there can be at most one 8 such that § oig = «. We define 8 by the formula
(8). Then

%=? = u(at—bs) =0someu € S
— a(a)a(t)—a(b)a(s) =0 because a(u) € B,

which shows that 8 is well-defined, and it is easy to check that it is a homomorphism.



5 RINGS OF FRACTIONS 19

As usual, this universal property determines the pair (S~ A4,ig) uniquely up to a unique
isomorphism.'”

When 4 is an integral domain and S = A ~ {0}, the ring S~ A4 is the field of fractions
F of A. In this case, for any other multiplicative subset 7" of A not containing 0, the ring
T~! A can be identified with the subring of F consisting of the fractions ¢ witha € 4 and
teT.

EXAMPLE 5.2. Leth € A. Then S, = {1,h,h?,.. }isa multiplicative subset of A4, and we
let A, =S 1 4. Thus every element of A, can be written in the form a/h™, a € A, and

a _ b hN (ah™ —bh™) =0, some N.

If & is nilpotent, then Ay = 0, and if A is an integral domain with field of fractions F' and
h # 0, then Ay, is the subring of F of elements that can be written in the form a/h™, a € A,
m € N.

PROPOSITION 5.3. For every ring A and h € A, the map Y a; X' > ZZ—; defines an
isomorphism
A[X]/(1—=hX) — Ap.

PROOF. If & = 0, both rings are zero, and so we may assume /i 7 0. In the ring
Alx] = A[X]/(1=hX),

1 = hx, and so & is a unit. Let @: A — B be a homomorphism of rings such that a(h) is a
unit in B. The homomorphism

ZiaiXi — Zia(ai)a(h)_i:A[X] — B

factors through A[x] because 1 —hX +— 1 —a(h)a(h)~! = 0, and this is the unique extension
of o to A[x]. Therefore A[x] has the same universal property as Ay, and so the two are
(uniquely) isomorphic by an A-algebra isomorphism that makes 4~ ! correspond to x.

Let S be a multiplicative subset of a ring A, and let S~! A be the corresponding ring of
fractions. For every ideal a in A, the ideal generated by the image of ain S™! 4 is

S_la:{%|aea, seSt.

If a contains an element of S, then S ~!a contains 1, and so is the whole ring. Thus some of
the ideal structure of A is lost in the passage to S™! A, but, as the next proposition shows,
some is retained.

10Recall the proof: let (A1,i1) and (As,i») have the universal property in the proposition; because every
element of S maps to a unit in A, there exists a unique homomorphism «: A; — A, such that woi; =ip
(universal property of A7,i1); similarly, there exists a unique homomorphism o’: A, — A1 such thata’ oiy = iy;
now
o oaocii =d oir =iy = idg, oiy,
and so o’ oo = id4, (universal property of Ay,i1); similarly, @ oo’ =idy4,, and so « and &’ are inverse
isomorphisms (and they are uniquely determined by the conditions « 0i; = ip and &’ 0ip = i7).
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PROPOSITION 5.4. Let S be a multiplicative subset of the ring A, and consider extension
ar a® = S~ la and contraction a > a° ={a € A | ¢ € a} of ideals with respect to the
homomorphismig: A — S™'A. Then

a® =a for all ideals of S~ A
a*“=a if a is a prime ideal of A disjoint from S.

Moreover, the map p — p° is a bijection from the set of prime ideals of A disjoint from S
onto the set of all prime ideals of S 1 A; the inverse map is p — pc.

PROOF. Let a be an ideal in S~! A. Certainly a® C a. For the reverse inclusion, let b € a.
We can write b = & witha € A,s € S. Then § =5(%) €a,andsoa € a¢. Thus b = % € a®®,
and so a C a®®.

Let p be a prime ideal of A disjoint from S. Clearly p¢¢ D p. For the reverse inclusion,
let a € p¢ so that ¢ = %/ for some a’ € p, s € S. Then t(as —a’) = 0 for some 7 € S, and
so ast € p. Because st ¢ p and p is prime, this implies that a € p, and so p¢¢ C p.

Let p be a prime ideal of A disjoint from S, and let S be the image of S in A/p.
Then (S71A4)/p¢ ~ S~1(A4/p) because S~! 4/p® has the correct universal property, and
S~1(A/p) is an integral domain because A/p is an integral domain and S doesn’t contain
0. Therefore p¢ is prime. From (2.12) we know that p€ is prime if p is, and so p — p¢ and
p — p€ are inverse bijections on the two sets.

COROLLARY 5.5. If A is noetherian, then so also is S~! A for any multiplicative set S.
PROOF. As b€ is finitely generated, so also is (b€)¢ = b.
Let spec(A) denote the set of prime ideals in A. Then (5.4) says that
spec(S1A) ~ {p e spec(4) | pN S = @}.

PROPOSITION 5.6. Let ¢: A — B be a ring homomorphism. A prime ideal p of A is the
contraction of a prime ideal in B if and only it p = p®¢.

PROOF. Suppose p = q¢ with q prime. Then p¢¢ = q°¢¢ L q¢ = p. Conversely, suppose
that p = p®“, and let S = A~p. Let s € S; if p(s) € p¢, then s € p¢¢ = p, contradicting the
definition of S. Therefore ¢(.S) is disjoint from p®. It is a multiplicative subset of B, and
so there exists a prime ideal q in B containing p¢ and disjoint from ¢(.S) (apply 2.2). Now
¢~ 1(q) contains p and is disjoint from S, and so it equals p.

EXAMPLE 5.7. Let p be a prime ideal in A. Then S, ZA~ p is a multiplicative subset of
A, and welet Ay = S~ 1 4. Thus each element of Ay can be written in the form %, ¢ ¢p,and

%:3 < s(ad —bc) =0, some s ¢ p.

A prime ideal of is disjoint from S}, if and only if it is contained p, and so
spec(Ap) > {q € spec(A4) | g D p}.

Therefore, Ay, is a local ring with maximal ideal m = p® = {$ [a € p, s ¢ p}.
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PROPOSITION 5.8. Letm be a maximal ideal of a ring A, and let n = mA,, be the maximal
ideal of Ay,. For all n, the map

a+m"—>a+n"A/m" - Ay, /"
is an isomorphism. Moreover, it induces isomorphisms
m’/m” —n" /0"
for all pairs (r,n) withr <n.

PrROOF. The second statement follows from the first, because of the exact commutative
diagram (r < n):

00— m"/m" —— A/m" —— A/m" —— 0

LR L

0——n" /0" —— Ay/n" —— Ap/n" —— 0.

We consider extension and contraction with respect to a > $: 4 — Ay. Note that
n" = (m")¢, and so the kernel of A/m”" — A, /n" is (m™)¢¢/m”". Let a € (m")¢“. Then
% = ﬁ—’ with b € m" and s € S, and so tsa € m” for some ¢t € S. Therefore tsa = 0 in
A/m". Every maximal ideal of A containing m contains rad(m”) = m, and so equals m.
Therefore the only maximal ideal in A/m” is m/m™. But s is not in m/m”, and so it must
be a unit in A/m”. Therefore a = 0 in A/m”, which means that a € m”. We deduce that
A/m" — Ay /n” is injective.

It remains to prove that A — Ay /n” is surjective. Let & € Ay, a € A, s € A~m. As
we just showed, the only maximal ideal of A containing m” is m, and so no maximal ideal
contains both s and m”. Therefore (s) + m” = A, and so sb + g = 1 for some b € A and
g € m". Hence

s(ha) =a(l—gq). &)
On passing to Ay, and multiplying by s~1, we find that

ba
1

N ENY

aq

-

As % € n", this shows that ¢ mod n” is in the image of A — Ay /n".

PROPOSITION 5.9. In a noetherian ring A, only 0 lies in all powers of all maximal ideals:
ﬂ{m” | m maximal, n € N} = {0}.

PROOF. Leta be an element of a noetherian ring A. If a # 0, then its annihilator {b | ba = 0}

is a proper ideal in A, and so it is contained in some maximal ideal m. Then ¢ is nonzero in

A, and so § ¢ (mAy)" for some n (by the Krull intersection theorem 3.15), which implies
that a ¢ m” (by 5.8).
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Modules of fractions

Let S be a multiplicative subset of the ring A, and let M be an A-module. Define an
equivalence relation on M x S by

(m,s) ~(n,t) < u(tm—sn)=0forsomeu € S.

Write % for the equivalence class containing (m,s), and define addition and scalar multipli-
cation by the rules:

m , n _ mttns am am
st T =5 5T , mmneM, steS, acA.

It is easily checked these do not depend on the choices of representatives for the equivalence
classes, and that we obtain in this way an S~! A-module

STIM={Z|meM,seS}

and a homomorphism m — 5: M 5, =M of A-modules whose kernel is
{a € M | sa =0 for some s € S}.

A homomorphism M — N of A-modules factors through M — S~ M if and only if
every element of S acts invertibly on N. More formally:

PROPOSITION 5.10. The pair (S™'M,ig) has the following universal property:

the elements of S act invertibly on S™' M, and M-S sy
every homomorphism M — N from M to an A- 1
module N on which the elements of S act invert- \ f!
ibly factors uniquely through i g N.

PROOF. Similar to that of Proposition 5.1.

In particular, for any homomorphism a: M — N of A-modules, there is a unique
homomorphism S~ 'a: S™!M — S™IN such that S~ lacig = igoa:

M5 51y

L

N S, s-1pN.

In other words, S~ '« is the unique homomorphism of S~! A-modules S™!M — STIN
such that
(STla)() =2 meM,

N

In this way, M ~> S~!M becomes a functor from A-modules to S~! A-modules.

PROPOSITION 5.11. The functor M ~> S™'M is exact. In other words, if the sequence of

A-modules

YR VAN YL,

is exact, then so also is the sequence of S ~1 A-modules

—1 —1
s ST gy 5P gy
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PROOF. Because Boa =0, wehave 0= S~ (Boa) =S 1B0S la. Therefore Im(S o) C
Ker(S~!B). For the reverse inclusion, let % e Ker(S~!B) wherem € M and s € S. Then

B(m) _ — — —
Tm =0 and so, for some ¢ € S, we have t (8(m)) = 0. Then S(tm) =0, and so tm = a(m’)
for some m’ € M’. Now

—tm _ a(m) -1
T == clm(S ).

EXAMPLE 5.12. Let M be an A-module. For / € A, let M), = Sh_lM where Sj =

{l,h,hz, ...}. Then every element of M}, can be written in the form Zl—r, meM,r eN,and
= hﬂr/, if and only if A (h""m —h"m’) = 0 for some N € N.

PROPOSITION 5.13. Let M be a finitely generated A-module. If S~'M = 0, then there
exists an h € S such that My, = 0.

PROOF. To say that S ~IM = 0 means that, for each x € M, there exists an s, € S such

that syx = 0. Let xq,...,x, generate M. Then h e Sx, -+ Sx, lies in S and has the property
that 1M = 0. Therefore My, = 0.

PROPOSITION 5.14. Let M be an A-module. The canonical map
M — 1_[{Mm | m a maximal ideal in A}
is injective.

PROOF. Let m € M map to zero in all My,. The annilator a = {a € A | am = 0} of m is
an ideal in A. Because m maps to zero My,, there exists an s € A ~m such that sm = 0.
Therefore a is not contained in m. Since this is true for all maximal ideals m, a = A (by 2.3),
and so it contains 1. Now m = 1m = 0.

COROLLARY 5.15. An A-module M = 0 if M, = 0 for all maximal ideals m.
PROOF. Immediate consequence of the lemma.

PROPOSITION 5.16. A sequence

M L m (10)
is exact if and only if
M= My 2 M) (11)

is exact for all maximal ideals m.

PROOF. The necessity is a special case of (5.11). For the sufficiency, let N = Ker(8)/Im(x).
Because the functor M ~> M., is exact,

Ny = Ker(Bn)/Im(am).

If (11) is exact for all m, then Ny, = 0 for all m, and so N = 0 (by 5.15). But this means
that (10) is exact.

COROLLARY 5.17. A homomorphism M — N of A-modules is injective (resp. surjective)
if and only if M, — Ny, is injective (resp. surjective) for all maximal ideals m.
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PROOF. Apply the propositionto 0 - M — N (resp. M — N — 0).

PROPOSITION 5.18. Let O be the nilradical of A. For any multiplicative subset S of A,
S~ is the nilradical of S~ A.

PROOF. Leta € Aand s € S. If ()" =0, then 1a” =0 for some 7 € S, and so £ = ¢ ¢
S—IN. Conversely, if a € 9, then clearly $ is in the nilradical of S —14.

COROLLARY 5.19. A ring A is reduced if and only if Ay, is reduced for all maximal ideals
minA.

PROOF. Combine (5.18) with (5.15).

Exercises

EXERCISE 5.20. (Bourbaki AC, II, §2, Exercise 1.) A multiplicative subset S of a ring A4 is
said to be saturated if
abeS = aandb e S.

(a) Show that the saturated multiplicative subsets of A are exactly the subsets .S such that
A~ S is a union of prime ideals.

(b) Let S be a multiplicative subset of 4, and let S be the set of a € A such that ab € S
for some b € A. Show that S is a saturated multiplicative subset of A (hence it is the
smallest such subset containing S), and that A4 ~ S is the union of the prime ideals
of A not meeting S. Show that for any A-module M, the canonical homomorphism
S™IM - § M is bijective. In particular, S™1A4 ~ S1A.

EXERCISE 5.21. Let A — B be a homomorphism of rings, and let p be a prime ideal of A.
Show that the prime ideals of B lying over p are in natural one-to-one correspondence with
the prime ideals of B ® 4 k (p).

6 Integral dependence

Let A be a subring of a ring B. An element « of B is said to be integral over A if it is a root
of a monic!!' polynomial with coefficients in A, i.e., if it satisfies an equation

a"+a " '+ ta, =0, a;€A.

More generally, an element of an A-algebra B is integral over A if it is integral over the
image of A in B. If every element of B is integral over A, then B is said to be integral over
A.

In the next proof, we shall need to apply a variant of Cramer’s rule. We define the
determinant of an m x m matrix C = (c;;) with coefficients c;; in a ring A by the usual
formula

det(C) = Z sign(0)C1o(1) " * Cmo (m)-

geSy

LA polynomial is monic if its leading coefficient is 1, i.e., f(X) = X"+ terms of degree less than 7.
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Clearly, det(C) is linear in each column, and det(C) = 0 if two columns are equal because
then each term occurs twice but with opposite signs. If x1,..., Xz, is a solution to the system
of linear equations

m
E cijx; =0, i=1,...,m,
Jj=1

with coefficients in a ring A4, then

det(C)-x; =0, j=1,....m, (12)
where C is the matrix of coefficients. To prove this, expand out the left hand side of
C11 ... Clj—1 2.;CliXi Clj+1 --- Cim
det : : : -0
Cml oo Cmj—1 D iCmiXi Cmj+1 --- Cmm

using the properties of determinants mentioned above.

PROPOSITION 6.1. Let A be a subring of a ring B. An element « of B is integral over A
if and only if there exists a faithful A[a]-submodule of B that is finitely generated as an
A-module.

PROOF. =>: Suppose that
" +a1 " '+ ta,=0, a€A.

Then the A-submodule M of B generated by 1, , ..., @” ! has the property that «M C M,
and it is faithful because it contains 1.

«: Let M be an A-module in B with a finite set {eq,...,e,} of generators such that
aM C M and M is faithful as an A[«]-module. Then, for each i,

oe; =) ajje;,somea;; € A.
We can rewrite this system of equations as

(¢ —ai1)er —aizea—agzez—---=0

—az1e1+ (x—anp)es —arzez —-+- =

Let C be the matrix of coefficients on the left-hand side. Then Cramer’s rule (12) tells
us that det(C)-e; =0 for all i. As M is faithful and the e; generate M, this implies that
det(C) = 0. On expanding out det(C), we obtain an equation

"+ Ve 24ty =0, ¢ €A

PROPOSITION 6.2. An A-algebra B is finite if it is generated as an A-algebra by a finite
number of elements, each of which is integral over A.

PROOF. We may replace A with its image in B. Suppose that B = A[w;,..., o] and that
alf —i—ailocl'.”_l +-4aip, =0, ajje€A i=1,...,m.

Any monomial in the «; divisible by some a;” is equal (in B) to a linear combination of
monomials of lower degree. Therefore, B is generated as an A-module by the monomials
Ot’{l ---Otrr,;", 1<r <n;.
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COROLLARY 6.3. An A-algebra B is finite if and only if it is finitely generated and integral
over A.

PROOF. «: Immediate consequence of (6.2).

=: We may replace A with its image in B. Then B is a faithful A[«x]-module for all
a € B (because 13 € B), and so (6.1) shows that every element of B is integral over A. As
B is finitely generated as an A-module, it is certainly finitely generated as an A-algebra.

PROPOSITION 6.4. Consider rings A C B C C. If B is integral over A and C is integral
over B, then C is integral over A.

PROOF. Let y € C. Then
Y by T e by =0

for some b; € B. Now A[by,...,by] is finite over A (see 6.2), and A[by,...,b,][y] is finite
over A[by,...,by], and so it is finite over A. Therefore y is integral over A by (6.1).

THEOREM 6.5. Let A be a subring of a ring B. The elements of B integral over A form an
A-subalgebra of B.

PROOF. Let « and 8 be two elements of B integral over A. As just noted, A[«, ] is finitely
generated as an A-module. It is stable under multiplication by @ + 8 and 8 and it is faithful
as an Ao £ B]-module and as an A[«f]-module (because it contains 14). Therefore (6.1)
shows that & + 8 and a8 are integral over A.

DEFINITION 6.6. Let A be a subring of the ring B. The integral closure of A in B is the
subring of B consisting of the elements integral over A. When 4 is an integral domain, the
integral closure of A in its field of fractions is called the integral closure of A (tout court).

PROPOSITION 6.7. Let A be an integral domain with field of fractions F, and let E be a
field containing F. If « € E is algebraic over F, then there exists a nonzero d € A such that
do is integral over A.

PROOF. By assumption, « satisfies an equation
o +ad™ ' +--+a, =0, a; €F.

Let d be a common denominator for the a;, so that da; € A for all i, and multiply through
the equation by d":

d™e™ +a1d™d™ N 4+ apd™ = 0.
We can rewrite this as

(da)™ +a1d(da)™ ' + -+ aud™ =0.
Asaid,...,and™ € A, this shows that du is integral over A.

COROLLARY 6.8. Let A be an integral domain and let E be an algebraic extension of the
field of fractions of A. Then E is the field of fractions of the integral closure of A in E.
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PROOF. In fact, the proposition shows that every element of E is a quotient §/d with
integral over A and d € A.

DEFINITION 6.9. An integral domain A is is said to be integrally closed or normal if it is
equal to its integral closure in its field of fractions F, i.e., if

a € F, ointegralover A = «o € A.
PROPOSITION 6.10. Every unique factorization domain is integrally closed.

PROOF. Let A be a unique factorization domain. An element of the field of fractions of
A not in A can be written a/b with a,b € A and b divisible by some prime element p not
dividing a. If a /b is integral over A, then it satisfies an equation

(a/b)" +ai(a/b)" '+ +a, =0, a;€A.
On multiplying through by 5", we obtain the equation
a*+a1d® b+ +ayb"” =0.

The element p then divides every term on the left except a”, and hence must divide a”.
Since it doesn’t divide a, this is a contradiction (as A is a unique factorization domain).

Let F C E be fields, and let & € E be algebraic over F. The minimum polynomial of
a over F' is the monic polynomial in F[X] of smallest degree having « as a root. Then f is
the (unique) monic generator of the kernel of the homomorphism X +— «: F[X] — F|«],
and so this map defines an isomorphism F[X]/(f) — F[«], i.e.,

Flx] ~ Fla], x<a.

A conjugate of « is an element ¢’ in some field containing F such that f(a’) = 0. Then f
is the minimum polynomial of &’ over F, and so there is an isomorphism

Fla]~ Flo'], a<ad.

PROPOSITION 6.11. Let A be a normal integral domain, and let E be a finite extension of
the field of fractions F of A. An element of E is integral over A if and only if its minimum
polynomial over F has coefficients in A.

PROOF. Let « be integral over A4, so that
a™ —i—alozm_l +---4+a, =0, somea;€ A, m>0.

Let f be the minimum polynomial of o over F, and let L a field containing F and splitting
f . For any conjugate ¢’ of « in L, there is an isomorphism ¢ F[«] — F[c/] sending « to
«’. On applying o to the above equation we obtain an equation

a/”’+a1a/’"_1+--~+am=0

demonstrating that «’ is integral over A. As the coefficients of f are polynomials in the
conjugates of « in L, it follows from (6.5) that the coefficients of f are integral over A.
They lie in F, and A is integrally closed in F', and so they lie in A. This proves the “only if”
part of the statement, and the “if” part is obvious.



6 INTEGRAL DEPENDENCE 28

COROLLARY 6.12. Let A be a normal integral domain with field of fractions F, and let f

be a monic polynomial in A[X]. Then every monic factor of f in F[X] has coefficients in
A.

PROOF. Tt suffices to prove this for an irreducible monic factor g of f in F[X]. Let o be a
root of g in some extension field of F. Then g is the minimum polynomial of o over F. As
« is aroot of f, it is integral over A, and so g has coefficients in A.

We shall need a more general form of (6.12).

LEMMA 6.13. Let A be a ring, and let B be an A-algebra. Let f,g € B[T]| be monic
polynomials such that g divides f . If the coefficients of f are integral over A, then so also
are those of g.

PROOF. There exists a ring B’ containing B such that f splits in B’[T]. This can be
constructed in the same as way as the splitting field of a polynomial over a field.'? The roots
of f in B’ are integral over the A-subalgebra of B generated by the coefficients of f, and
hence over A (see 6.4). As the roots of g are also roots of f, they are integral over A. The
coefficients of g are polynomials in its roots, and hence are integral over A (see 6.5).

PROPOSITION 6.14. Let A C B be rings, and let A’ be the integral closure of A in B. For
any multiplicative subset S of A, S~ A’ is the integral closure of S~1 A in S™1B.

PROOF. Leth/s € S™1 A’ withb € A’ and s € S. Then

" +aih" '+ tay =0

b\" ay (b\" an
(E) +T(E) +"'+s—n—0.

Therefore b/s is integral over S~!A. This shows that S~! A’ is contained in the integral
closure of S71A.
For the converse, let b/s (b € B, s € S) be integral over S~1 A. Then

b\" ay (b -l an
(E) +E(E) +"'+§—0.

for some a; € A and s5; € S. On multiplying this equation by s"s1---5,, we find that
s1---spb € A’, and therefore that b/s = s1+-5,b/ss1 -5, € ST1A’.

for some a; € A, and so

COROLLARY 6.15. Let A C B be rings, and let S be a multiplicative subset of A. If A is
integrally closed in B, then S—1 A is integrally closed in S™! B.

PROOF. Special case of the proposition in which A" = A.

121f deg(f) < 1, we take B’ = B. Otherwise, let By = B[T]/(f). As f is monic, deg( fg) = deg(f) +
deg(g) for any polynomial g € B[T], and so (f) N B = {0}. Therefore the map B — Bj is injective. On the
other hand, f hasaroot b =T mod(f) in By, and so f = (T —b) f1 in B{[T] with f1 monic. If deg(f1) > 1,
apply the same argument to it and B;. Continuing in this fashion, we eventually arrive at the required ring B’.
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PROPOSITION 6.16. The following conditions on an integral domain A are equivalent:
(a) A is integrally closed;
(b) A, is integrally closed for all prime ideals p;
(c) An is integrally closed for all maximal ideals m.

PROOF. The implication (a)=>(b) follows from (6.15), and (b)=>(c) is obvious. For (c)=>(a),
let A" be the integral closure of A in its field of fractions F. Then (A’),, is the integral
closure of Ay, in F (by 6.14). If (¢) holds, then A, — (A")n is surjective for all maximal
ideals m in A, which implies that A — A’ is surjective (by 5.17), and so A is integrally
closed.

We shall need to use the next statement in the proof of Zariski’s main theorem (Chapter
17).

PROPOSITION 6.17. Every polynomial ring over a normal integral domain is a normal
integral domain.

PROOF. It suffices to prove that if A is a normal integral domain, then A[T'] is a normal
integral domain. Let F be the field of fractions of A. If an element of the field of fractions
F(T) of A[T] is integral over A[T'], then it is integral over F[T'], and so lies in F[T] (see
6.10). We can now apply the next proposition with B = F.

PROPOSITION 6.18. Let B be an A-algebra. If a polynomial in B[T] is integral over A[T],
then each of its coefficients is integral over A.

PROOF. We may replace A with its image in B. Suppose that P € B[T] is a root of the
polynomial

gX)=X"+ fiX" '+t fu, fi€A[T).
Let r be greater than the degrees of the polynomials P, f1,..., f4. Let P1(T) = P(T)—-T",
and let

def

X)) =qX+T)=X"+a X"+t gu,  gi€A[T].
Then P; is aroot of g1(X),

Pl”+g1P1”_1—|—---+gn =0,

and so
gn=—P1- (PP '+ g P24+ 4 gu).

The choice of r implies that both P and g, are monic (as polynomials in 7). As g, has
coefficients in A, Lemma 6.13 shows that the coefficients of P; are integral over A. This
implies that the coefficients of P are integral over A.

Exercises

EXERCISE 6.19. A ring A is said to be normal if A, is a normal integral domain for all
prime ideals p in A. Show that a noetherian ring is normal if and only if it is a finite product
of normal integral domains.

EXERCISE 6.20. Prove the converse of (6.18).

EXERCISE 6.21. Let A be an integral domain, and let A’ be its integral closure. Show that
the integral closure of A[T]is A’[T].
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7 The going-up and going-down theorems

The going-up theorem

PROPOSITION 7.1. Let A C B be integral domains, with B integral over A. Then B is a
field if and only if A is a field.

PROOF. Suppose that A is a field, and let b be a nonzero element of B. Then
P"+ab" ' ta, =0

for some a; € A, and we may suppose that n is the minimum degree of such a relation. As
B is an integral domain, a, # 0, and the equation

b-(b" ' +a1h" 4 tag_y)a; = —1

shows that b has an inverse in B.
Conversely, suppose that B is a field, and let @ be a nonzero element of A. Then a has
an inverse a1 in B, and

a"+aa V4. qa,=0
for some a; € A. On multiplying through by a” !, we find that
a'+ar+aza--+aza"! =0,

and so

a = —(a1+aza--- +ana”_1) € A.

REMARK 7.2. The second part of the proof shows that AN B> = A*.

COROLLARY 7.3. Let A C B be rings with B integral over A. Let q be a prime ideal of B,
and letp = qN A. Then q is maximal if and only if p is maximal.

PROOF. Apply the propositionto A/p C B/q.

COROLLARY 7.4 (INCOMPARABILITY). Let A C B be rings with B integral over A, and
let q C g be prime ideals of B. IfqNA=q N A, thenq=¢'.

In other words, if B D A is integral over A, then there is no containment relation between
the prime ideals of B lying over a given prime ideal of A.

PROOF. Let p =qNA =q NA. Then A, C By, and B, is integral over A,. The ideals
qBy C q’ By are both prime ideals of By, lying over p A, which is maximal, and so qB, = q' B,
(by 7.3). Now

c 5. 12

q.

Iy

92 (4By)° = (a'By)

PROPOSITION 7.5. Let A C B be rings with B integral over A, and let p be a prime ideal
of A. Then there exists a prime ideal ¢ of B such thatp = qN A.
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PROOF. We have A, C By, and B, is integral over A,. Let n be a maximal ideal in B,
(which exists by 2.3), and let q be the inverse image of n in B. We claim that N 4 = p.

The ideal nN A, is maximal (7.3), but p A, is the unique maximal ideal of Ay, and so
nN A, = pAy,. From the commutative diagram

B —— B,

T

A—— A,

we see that g N A is the inverse image of pA, in A. But the inverse image of pA, in A is p
(as p¢¢ = p; see 5.4).

THEOREM 7.6. Let A C B be rings with B integral over A. Letp C p’ be prime ideals of
A, and let q be a prime ideal of B such that ¢\ A = p. Then there exists a prime ideal q' of
B containing q and such thatq’' N A = p’:

B

q
A p C p.

PROOF. We have A/p C B/q, and B/q is integral over A/p. According to the (7.5), there
exists a prime ideal q” in B/q such that ¢” N (A/p) = p’/p. The inverse image ¢’ of ¢ in B
has the required properties.

COROLLARY 7.7. Let A C B be rings with B integral over A, and let p; C --- C p,, be
prime ideals in A. Let
qC--Cldm (m<n) 13)

be prime ideals in B such that q; N A = p; for alli < m. Then (13) can be extended to a
chain of prime ideals

q1 C - Cdn
such that q; N A =p; foralli <n:
q1 C C  dm
pl C ces C pm C cee C pn

PROOF. Immediate consequence of Corollary 7.6.

Theorem 7.6 and its corollary 7.7 are known as the going-up theorem (of Cohen and
Seidenberg).

ASIDE 7.8. The going-up theorem (7.6) fails for the rings Z C Z[X]: consider the prime ideals
(0) C (2) of Z, and the prime ideal q = (1 +2X) of Z[X]; then ¢ N Z = (0), but a prime ideal q’ of
Z[X] containing q and such that g’ N Z = (2) would have to contain (2,14 2X) = Z[X] (mo159544).
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The going-down theorem

Before proving the going-down theorem, we need to extend some of the definitions and
results from earlier in this section.

Let A C B be rings, and let a be an ideal of A. An element b of B is said to be integral
over a if it satisfies an equation

P"+ab" ' ta, =0 (14)

with the a; € a. The set of elements of B integral over a is called the integral closure of a in
B. The proof of Proposition 6.1 shows that b € B is integral over a if there exists a faithful
A[b]-submodule M of B, finitely generated as an A-module, such that bM C aM .

Note that if 5™ is integral over a, so also is b (the equation (14) for b’ can be read as a
similar equation for b).

LEMMA 7.9. Let A be the integral closure of A in B. Then the integral closure of a in B is
the radical of aA’.

PROOF. Let b € B be integral over a. From (14) we see that b € A" and that b" € aA’, and
s0 b is in the radical of aA4’.
Conversely, let b be in the radical of aA4’, so that

bm:E ajx;, somem>0, a;ca, x;cA.
l

As each x; is integral over A, M o A[x1,...,X,] is a finite A-algebra (see 6.2). As b" M C
aM , we see that b” is integral over a, which implies that b is integral over a.

In particular, the integral closure of a in B is an ideal in A’, and so it is closed under the
formation of sums and (nonempty) products.

PROPOSITION 7.10. Let A be a normal integral domain, and let E extension of the field
of fractions F of A. If an element of E is integral over an ideal a in A, then its minimum
polynomial over F has coefficients in the radical of a.

PROOF. Let « be integral over a, so that
" +ad” M+ ta, =0

for some n > 0 and a; € a. As in the proof of (6.11), the conjugates of « satisfy the same
equation as «, and so are also integral over a. The coefficients of the minimum polynomial
of o over F are polynomials without constant term in its conjugates, and so they are also
integral over a. As these coefficients lie in F', they lie in the integral closure of a in F', which
is the radical of a (by 7.9).

THEOREM 7.11. Let A C B be integral domains with A normal and B integral over A. Let
p D p’ be prime ideals in A, and let q be a prime ideal in B such that N A = p. Then q
contains a prime ideal ' in B such thatq' N A = p’:

B

q
A p D p.
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PROOF. The prime ideals of B contained in q are the contractions of prime ideals in B (see
5.4), and so we have show to that p’ is the contraction of a prime ideal of B, or, equivalently
(see 5.6), that

AN(p'By) =y
Letb € p’B,;. Then b = y/s with y € p’B and s € B~ q. By (7.9), y is integral over p’,
and so (by 7.10) the minimum equation

ym_{_alym_l_*_‘..—{—amzo (15)

of y over the field of fractions F of A has coefficients a; € p’.
Suppose that b € A Np’B,. Then b~1 € F, and so, on replacing y with bs in (15) and
dividing through by ™, we obtain the minimum equation for s over F'

s™ 4+ (ar/b)s"™ -+ (am/B™) = 0. (16)

But s is integral over A4, and so (by 6.11), each coefficient a; /b’ € A. Suppose that
b ¢ p’. The coefficients a; /b’ € p’, and so (16) shows that s € p’B C pB C q,and so s € q,
which contradicts its definition. Hence b € p’, and so ANp'B, = p’ as required.

COROLLARY 7.12. Let A C B be integral domains with A normal and B integral over A.
Letpy D -+ Dy, be prime ideals in B, and let

g1 2O Dqm (m<n) (17)

be prime ideals in B such that q; N A = p; for alli. Then (17) can be extended to a chain of
prime ideals

qir oD dn
such that q; N A =p; foralli:
q1 ) 2 dm
p1 D D Pm ) D Pn

PROOF. Immediate consequence of the theorem.

Theorem 7.11 and its corollary 7.12 are known as the going-down theorem (of Cohen
and Seidenberg). The going-down theorem also holds for flat A-algebras — see (11.15).

8 Noether’s normalization theorem

THEOREM 8.1 (NOETHER NORMALIZATION THEOREM). Every finitely generated alge-
bra A over a field k contains a polynomial algebra R such that A is a finite R-algebra.

In other words, there exist elements y1,..., y, of A that are algebraically independent over
k and such that A is finite over k[y1,...,yr].

Let A = k[x1,...,x,]. If the x; are algebraically independent, then there is nothing
to prove. Otherwise, the next lemma shows that 4 is finite over a subring k[x],...,x,_,].
Continuing in this fashion, we arrive at a proof.
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LEMMA 8.2. Let A = k[x1,...,X,] be a finitely generated k -algebra, and let {x1,...,x;}
be a maximal algebraically independent subset of {x1,...,xn}. If n > d, then there exist an
m € N such that A is finite over its subalgebra k[x; —x)',..., x4 —x,’1”d,xd+1 yees Xn—1].

PROOF. By assumption, the set {x1,...,X4,Xp} is algebraically dependent, and so there
exists a nonzero f € k[X1,..., X4, T] such that

f(x1,...,xq,xn) =0. (18)

Because the set {x1,...,x4} is algebraically independent, 7 occurs in f, and so we can
write
f(X1,....X4.T) =aoT" —{—alTr_l +-tay

witha; € k[X1,...,X4], a0 # 0, and r > 0.

If ag € k, then (18) shows that x,, is integral over k[x1,...,x4]. Hence x1,...,x, are
integral over k[x1,...,X,—1], and so A is finite over k[x1,...,Xx,—1] (see 6.3). Thus the
lemma holds with with m = 0.

If ag ¢ k, then we make a change of variables so that it becomes constant. Specifically,
for a suitable m € N, the polynomial

def

e(X1,  Xg T)E F(Xy+T™ X+ T™ .. Xy +T™ . T)

takes the form
g(X1.... X0, T)=coT" +c1T" 1 - 4e,

with ¢g € kK (see the next lemma). As

d
gx1—x,',....xg =X, ,Xn) =0, (19)
. .. d .
this shows that x,, is integral over k[x; —x]",...,xg —x};* ]. The elements x;,i <d, are too,
. . d
because x; = (x; —x,;')+x),', and so A is finite over k[x1 —x)", ..., Xg —X)' ,Xg+1+---»Xn—1]

LEMMA 8.3. Let f € k[Xy,...,X4,T]. For a suitable m € N,
FX AT X+ T Xg+ T, T)
takes the form coT" +c1T" 1 +---+ ¢, withcg € k.

PROOF. Let _ . '
SXuo Xg T) =Y gy X{t - X2 T, (20)

Let S be the set of (d + 1)-tuples (j1,..., j4,jn) such that ¢, ;, # 0, and choose m so
that m > max; j; for all (ji,...,j;) € S. Note that

(X1 +T™)0 (X g+ T™")Jd T g
= pmivtm® pttm®jatin 4 terms of lower degree in T.
When (j1,..., jn) runs over the elements of S, the exponents
mjv+m?ja+-4m? ja+ jn 1)
are distinct, because they are distinct base-m expansions of natural numbers. Now
g(X1,....Xg, T) =coT{ +c1 TN 71 4.

with ¢ € k™ and N equal to the largest value of (21).
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REMARK 8.4. When £ is infinite, it is possible to prove a somewhat stronger result: let
A =k[x1,...,xn]; then there exist algebraically independent elements f1,..., f, that are
linear combinations of the x; such that A is finite over k[ f1,..., fr]. See my Algebraic
Geometry notes.

ASIDE 8.5. The map k[y1,...,y,] & A in (8.1) is flat if and only if A is Cohen-Macaulay (for
example, regular). See (23.10).

Let X be the variety obtained by removing the origin from C? and identifying the points (1,1)
and (—1,—1). Then G = Z/2 acts on by (x, y) +— (—x,—y) and the quotient is smooth, but X is not
Cohen-Macaulay (two planes intersecting in a point is not Cohen-Macaulay). Therefore the quotient
map. See mo173538.

9 Direct and inverse limits

Direct limits

DEFINITION 9.1. A partial ordering < on a set / is said to be directed, and the pair (/, <)
is called a directed set, if for all i, j € I there existsa k € [ such thati,j <k.

DEFINITION 9.2. Let (1, <) be a directed set, and let A be a ring.

A direct system of A-modules indexed by (7, <) _ My,
is a family (M;);e; of A-modules together with a @

family (oz’j :M; — M);<; of A-linear maps such o}

that o = idpy, and o} oo, = o alli < j <k.
An A-module M together with a family (o’ : M; —
M);ey of A-linear maps satisfying o' = o/ ot’;

i M
J i
all i < j is said to be a direct limit of the sys- 2 |
tem ((M;), (alj)) if it has the following universal ol |

property: for any other A-module N and fam- M; — o - M; A Lo

ily (B':M; — N) of A-linear maps such that K |

B' =B/ oa’; alli < j, there exists a unique mor- P v
N

phism a: M — N such that « oo’ = B for all
i.

As usual, the universal property determines the direct limit (if it exists) uniquely up to a
unique isomorphism. We denote it li_r)n(Mi ,Otl-j ), or just h_r)nM,

CRITERION

An A-module M together with A-linear maps o’: M; — M such that o’ = o/ oaj for all

i < j is the direct limit of a system (Mi,al.j ) if and only if
(@) M ={J;er' (M), and
(b) if m; € M; maps to zero in M, then it maps to zero in M ; for some j > i.

CONSTRUCTION

Consider the direct sum €D, c; M; of the modules M;. Thus, the elements of €, .; M; are
the families (m;); ey with m; = 0 for all but finitely many i. We can identify M;, with the
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submodule of @ie 7 M; of elements (m;); with m; = 0 fori # ip. Then every element of
D,y M; is a finite sum ) ; .y m; withm; € M;. Let M be the quotient of @, .y M; by the
A-submodule M’ generated by the elements

mi—aé(mi), mieM;, i<j.

Let o (m;) = m; + M. Then certainly o' = o/ oaj foralli < j. For every A-module N
and A-linear maps 8/: M j — N, there is a unique map

P u: - n.

iel

namely, > m; — Y B’ (m;), sending m; to B (m;), and this map factors through M and is
the unique A-linear map with the required properties.
Direct limits of A-algebras, etc., are defined similarly.

AN EXAMPLE

PROPOSITION 9.3. For every multiplicative subset S of aring A, S™'A ~ lim A;,, where
h runs over the elements of S (partially ordered by division).

PROOF. An element % of a ring that divides a unit is itself a unit (if ¥ = hqg, then 1 =
h(qu_l)). Therefore, if |h’ in A, say, i’ = hq, then h becomes a unit in A/, and so
(see 5.1) there is a unique homomorphism A; — Ay respecting the maps A — Ay and
A — Ay, namely, % — ‘;l—‘?. In this way, the rings Ay, form a direct system indexed by the
set S. When & € S, the homomorphism A — S~! A extends uniquely to a homomorphism
g 5iAp—>S ~1 4, and these homomorphisms are compatible with the maps in the direct
system (apply 5.1 again). The criterion p. 35 shows that S~1 A4 is the direct limit of the Ay,.

EXACTNESS

PROPOSITION 9.4. The direct limit of a system of exact sequences of modules is exact.

This means the following: suppose that (Ml-,ozi.), (N,-,,B;), and (Pl-,y;-) are direct
systems with repect to the directed set 7, and let

. (a;) . (bi) i
(Mo 2 (N ) 22 (P

be a sequence of maps of direct systems; if the sequences
a; b;
M; — N; — P;
are exact for all i, then the direct limit sequence
li_r)na,‘ li_r)nbl'
IimM; — limN; — lim P;
— — —
is exact.
PROOF. Let (n;) € l_iIE)lNl'. If (bj (n;)) = 0, then there exists an iy such that b; (n;) = 0 for

alli >ip. Let m; = O unless i > ip, in which case we let m; be the unique element of M;
such that a; (m;) = n;. Then (m;) maps to (n;). This proves the exactness.
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Inverse limits

Inverse limits are the same as direct limits except that the directions of the arrows is reversed.
Thus, formally, the theory of inverse limits is the same as that of inverse limits. However, in
concrete categories, they behave very differently. For example, the inverse limit of a system
of exact sequences of modules need not be exact.

We shall consider inverse limits only in the case that the indexing set if N with its usual
ordering. In this case, an inverse system of A-modules is nothing more than a sequence of

modules and A-homomorphisms
oo o Up—1 %
My — M; «— - <& M, <~ ...

A homomorphism (M, a,) — (Ny, Brn) of inverse systems is a sequence of A-homomorphisms
Yn: My — Ny such that 8, 0 yp4+1 = ynoay foralln € N,
Given an inverse system (My,,o,) of A-modules, we define lim M,, and lim! M, to be
. <~ <~
the kernel and cokernel of the A-module homomorphism

(..omy,..)—~>(...,my —an(mn+1),...):l_[Mn — l_[Mn.

PROPOSITION 9.5. For any inverse system (My,a,) and A-module N,

Hom(l(gan, N) >~ 1(£1H0H1(M,,, N).
PROOF. This is easy to check directly.
PROPOSITION 9.6. Every inverse system of exact sequences

0— (My,,an) > (N, Brn) = (Py,yn) — 0,
gives rise to an exact sequence
0 — limM, — lim N, — lim P, — lim' M,, — lim' N,, > lim! P, — 0.
«— «— <« — <~ <«

PROOF. The sequence

0> [[Mu—[Ne—=]]P—0
is exact, and so this follows from the snake lemma.

COROLLARY 9.7. If the maps an: M, +1 — M, are all surjective, then 1<i£11 M, =0.

PROOF. Let (m;) € [ [;e Mi. We have show that there exists an infinite sequence (x;);en.,
x; € M;, such that

Xi — i (Xj41) =m; (22)
for all i € N. We consider finite sequences {xg,..., X}, Xj € M;, satisfying (22) for i < n.
For example, {0} is such a sequence. Such a sequence {xo, ..., X, } can always be extended:

use the surjectivity of o, 41 to find an x,+1 € M, 41 such that

Now the axiom of dependent choice shows that there exists a sequence (X;)nen, X; € M,
satisfying (22) for all n.

ASIDE 9.8. Direct (resp. inverse) limits are also called inductive (resp. projective) limits or colimits
(resp. limits).
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10 Tensor Products

Tensor products of modules

Let A be aring, and let M, N, and P be A-modules. A map ¢: M x N — P of A-modules
is said to be A-bilinear if

d(x+x,y)=d(x,y)+o(x", ), x,x’eM, yeN

P,y +y) = (x,y)+¢(x, ), xeM, yy'eN
dlax,y) =ap(x,y), acA, xeM, yeN
¢(x,ay) =ag(x,y), acA, xeM, yeN,

i.e., if ¢ is A-linear in each variable.
An A-module T together with an A-bilinear map

¢:MxN—>T MxN 2T

is called the tensor product of M and N over A if it has the N 3! linear

following universal property: every A-bilinear map v

T'.
¢ "MxN—=T
factors uniquely through ¢.

As usual, the universal property determines the tensor product uniquely up to a unique
isomorphism. We write it M ® 4 N. Note that

HomA-bilinear(M S N’ T) i HomA—linear(M X4 N’ T)

CONSTRUCTION

Let M and N be A-modules, and let A *N) be the free A-module with basis M x N. Thus
each element A >*N) can be expressed uniquely as a finite sum

Zai(x,-,yi), a; €A, x;eM, y; € N.
Let P be the submodule of AM>*N) generated by the following elements

(x+x" )=, »)-("y), x.x'eM, yeN
(x,y+y) =)= (x.y), xeM, yyenN
(ax,y)—a(x,y), aeA, xeM, yeN
(x,ay)—a(x,y), ac€A, xeM, yeN,
and define

M®qN =AMN)/p
Write x ® y for the class of (x,y) in M ® 4 N. Then

X, )P xQ@Yy MXN ->M@qN
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is A-bilinear — we have imposed the fewest relations necessary to ensure this. Every element
of M ® 4 N can be written as a finite sum'?

Zai(x,- ®y,-), a; €A, x;eM, Vi € N,
and all relations among these symbols are generated by the following relations
(x+x)®@y=x®@y+x'®y

xR +yY)=x®@y+x®y
ax®y)=(ax)®y =xQay.

The pair (M ® 4 N, (x,y) — x ® y) has the correct universal property because any bilinear
map ¢':M x N — T’ defines an A-linear map AM*N) _ T’ which factors through
AMXN) /K and gives a commutative triangle.

SYMMETRIC MONOIDAL STRUCTURE

PROPOSITION 10.1. Let M, N, P be modules over a ring A.
(a) (Existence of an identity object) There is a unique isomorphism

ALMAQM — M

such that A(a @ m) = am foralla € A,m e M.
(b) (Associativity) There is a unique isomorphism

aMRINQRP)—-(MRIN)R P

such thata(m® (n® p)) =a((mn)Q p) forallme M,ne N, p € P.
(¢c) (Symmetry) There is a unique isomorphism

yMON —->NQM
such that y(m®n) =nQ®m forallme M,n e N.

PROOF. We prove (b). The uniqueness is obvious because the elements m ® (n ® p) generate
M ® (N ® P) as an A-module. The map

mn,p)>mInp)MxNxP->MK(NQP) (23)

is A-trilinear. Let B: M x N x P — Q be a second A-trilinear map. For a fixed m € M,
the map (n, p) — B(m,n, p): N x P — Q is A-bilinear, and so it extends uniquely to an
A-linear map B,,: N® P — Q. Nowthemap m,n®@ p) = Brn(n®@p): M x (N ® P) —> Q
is A-bilinear, and so it extends uniquely to an A-linear map M ® (N ® P) — Q. This shows
that (23) is universal among A-trilinear maps from M x N x P to an A-module. Similarly,
the A-trilinear map

mn,p)—> MmN QQpMxXNXP—->(MON)QP

is universal, from which the statement follows (see the footnote p.19).
The proofs of (a) and (c) are similar, but easier.

13¢«An element of the tensor product of two vector spaces is not necessarily a tensor product of two vectors,
but sometimes a sum of such. This might be considered a mathematical shenanigan but if you start with the
state vectors of two quantum systems it exactly corresponds to the notorious notion of entanglement which so
displeased Einstein.” Georges Elencwajg on mathoverflow.net.
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EXTENSION OF SCALARS

Let A be a commutative ring and let B be an A-algebra (not necessarily commutative) such
that the image of A — B lies in the centre of B. Then M ~ B ® 4 M is a functor from
left A-modules to left B-modules. Let M be an A-module and N a B-module; an A-linear
map o: M — N defines a B-linear map 8: B ®4 M — N such that b ® m +— b -«(m), and
« <> f is an isomorphism:

HomA—linear(M, N) = HomB-linear(B X4 M, N) (24)

If (eq)qey is a family of generators (resp. basis) for M as an A-module, then (1 ® eq)qey is

a family of generators (resp. basis) for B ® 4 M as a B-module.
def

The functor M »» Mp = B ® 4 M commutes with taking tensor products:
M 1N)p ~Mp®p Np. 25)
To see this, note that

Mp®pNp=(BR®4M)®p(B®4N) (definition)
~ (B®aM)®p B)®4 N (associativity)
~(B®4M)®4 N (obvious)
~B®R4(M®4N) (associativity)
=(M®4N)p (definition).

BEHAVIOUR WITH RESPECT TO DIRECT LIMITS

PROPOSITION 10.2. Direct limits commute with tensor products:
lim M; i i~ i ; B
am 1®Ah_r)an h_r)n MI®ANJ
iel jeJ (i,j)elxJ

PROOF. Using the universal properties of direct limits and tensor products, one sees easily
that li_n)l(M i ® 4 N ) has the universal property to be the tensor product of li_n)lM ; and h_ng Nj.

Tensor products of algebras

Let k be aring, and let A and B be k-algebras. A k-algebra C together with homomorphisms
i:A— C and j:B — C is called the tensor product of A and B if it has the following
universal property:

i J

for every pair of homomorphisms (of k-algebras) A C B
f:A— R and g: B — R, there exists a unique a1 :(f 2)
homomorphism ( f,g):C — R such that (f,g) o s L ’ i
i=aand (f.g)oj =B, R

If it exists, the tensor product, is uniquely determined up to a unique isomorphism by this
property. We write it A ®; B. Note that the universal property says that

Hom(A ®; B, R) ~ Hom(A, R) x Hom(B, R) (26)

(k-algebra homomorphisms).
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CONSTRUCTION

Regard A and B as k-modules, and form the tensor product A ® B. There is a multiplication
map A ®y Bx AQ®y B — A®j B for which

(a®b)(d' ®b")=ad’ ®bb’, alla,a’ € A, b,b' €B.
This makes A ®j B into a ring, and the homomorphism
c—c(l®e)=cl=1®c
makes it into a k-algebra. The maps
a—~a®l:A—-> AR Bandb— 1®b:B —> AQ; B

are homomorphisms, and they make A ®; B into the tensor product of A and B in the above
sense.

EXAMPLE 10.3. The algebra A, together with the maps
k— A <id—A A,

is k ® A (because it has the correct universal property). In terms of the constructive
definition of tensor products, the map ¢ ® a — ca:k ®; A — A is an isomorphism.

EXAMPLE 10.4. Thering k[X1,..., Xm, Xm+1,..., Xm+n], together with the obvious in-
clusions

k[Xl,...,Xm] — k[Xl,...,Xm+n] <~ k[Xm+1,...,Xm+n]

is the tensor product of the k-algebras k[X1,..., X;n] and k[ Xm+1,..., Xm+n]. To verify
this we only have to check that, for every k-algebra R, the map

Hom(k[X1,..., Xm+n]. R) > Hom(k[Xy,...],R) x Hom(k[Xm+1,...]. R)
induced by the inclusions is a bijection. But this map can be identified with the bijection
R™TM . R™ x R".
In terms of the constructive definition of tensor products, the map
kK[ X1,.o. Xm] Qi k[ Xm+1s---s Xm+n] = k[ X1, Xm+nl
sending f ® g to fg is an isomorphism.
REMARK 10.5. (a) Let k < k’ be a homomorphism of rings. Then
K @rk[X1.....Xn) 2K [1® X1,....1® X,,] ~k'[X1..... Xn].

If A=k[X1,...,X4]/(g1,...,8m), then

K @rA~k'[X1,....Xn)/(g1.-...8m)-

(b) If A and B are algebras of k-valued functions on sets S and T respectively, then the
definition

(f®g)x,y)=f(x)g(y), fe€AgeB,xeS, yeT,

realizes A ®j. B as an algebra of k-valued functions on S x T'.
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The tensor algebra of a module

Let M be a module over a ring A. For each A > 0, set
T"M=MQ®4g---QuM (r factors),

sothat T°M = A and T'M = M, and define

T™ = @rZOT’M.

This can be made into a noncommutative A-algebra, called the tensor algebra of M, by
requiring that the multiplication map

T"MxTSM — T" M

send (M1 - Qmy, M1 Q- @Mypys) tOM] Q-+ QMy4s.
The pair (TM, M — TM) has the following universal prop-
erty: every A-linear map from M to an A-algebra R (not neces-

. . . M—TM
sarily commutative) extends uniquely to an A-algebra homomor- |
. |
phism TM — R. A-linear ! 31 A-algebra
If M is a free A-module with basis x1,...,x,, then TM is Y
the (noncommutative) polynomial ring over A in the noncommut- R

ing symbols x; (because this A-algebra has the same universal
property as TM).

The symmetric algebra of a module

The symmetric algebra Sym(M') of an A-module M is the quotient of TM by the ideal
generated by all elements of T2M of the form

men—nm@m, mneM.

Itis a graded algebra Sym(M) = P, o Sym’ (M) with Sym" (M) equal to the quotient of
M ®T by the A-submodule generated by all elements of the form

Mm@ Q@my—mg1) Q- @Mgy(y), mi €M, o0 € By (Symmetric group).

The pair (Sym(M), M — Sym(M)) has the following
universal property: every A-linear map M — R from M

M —— Sym(M
to a commutative A-algebra R extends uniquely to an ym(M)

A-algebra homomorphism Sym(M) — R (because it ex- A-line\ i 31 A-algebra
tends to an A-algebra homomorphism TM — R, which 9
factors through Sym(M ) because R is commutative). R

If M is a free A-module with basis xi,..., x5, then

Sym(M ) is the polynomial ring over A in the (commut-
ing) symbols x; (because this A-algebra has the same universal property as TM ).

Exercises

EXERCISE 10.6. Look up “symmetric monoidal category” in the Wikipedia and show that
the category of A-modules equipped with the bifunctor ® and the maps A, «, and y in (10.1)
is such a category.
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11 Flatness

PROPOSITION 11.1. Let M be an A-module, and let 0 — N’ —> N i) N"” — 0 be an
exact sequence of A-modules. Then the sequence

1®
MaN 2N 2 Mo N =0

1s exact.

PROOF. The surjectivity of 1 ® B is obvious. Let M ® 4 N i) O be the cokernel of 1 ® .
Because
(1®p)o(1®a)=1®(Boa)=0,

there is a unique A-linear map f:Q — M ® 4 N” such that f o¢p = 1 ® 8. We shall
construct an inverse g to f.

Letm e M,andletn € N. If B(n) =0, thenn = a(n’) for some n’ € N’; hence m @n =
m®a(n’), and so ¢(m ® n) = 0. It follows by linearity that ¢(m @ ny) = ¢ (m Q ny) if
B(n1) = B(ny), and so the A-bilinear map

MxN—Q, (mn)—¢(men)

factors through M x N”. It therefore defines an A-linear map g:M ® 4 N” — Q. To
show that f and g are inverse, it suffices to check that go f =idp on elements of the
form ¢ (m @n) and that f og =idp g , N~ on elements of the form m ® B(n) — both are
obvious.

The map M ® 4 N’ —> M ® 4 N in (11.1) need not be injective. For example, when we
tensor the exact sequence of Z-modules

0727 —7/mZ—0

with Z/mZ, only the sequence

x—>mx=0

z2/mZ " 1 ymZ 2 7 mZ — 0

is exact.
Moreover, M ® 4 N may be zero even when neither M nor N is nonzero. For example,

7.)27.®7,7/3Z = 0

because it is killed by both 2 and 3.'* In fact, M ® 4 M may be zero without M being zero.
For example,

Q/Z®zQ/Z =0.

To see this, let x, y € Q/Z; then nx = 0 for some n € Z, and y = ny’ for some y’ € Q/Z;
now
X®y=x®ny =nx®y =0®y =0.

141t was once customary in certain circles to require a ring to have an identity element 1 # 0 (see, for example,
Northcott 1953, p.3). However, without the zero ring, tensor products don’t always exist. Bourbaki’s first
example of a ring is the zero ring.
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DEFINITION 11.2. An A-module M is flat if
N’ — N injective = M ® 4N — M ®4 N injective.
It is faithfully flat if, in addition,
M®qN=0=— N=0.

A homomorphism of rings A — B is said to be flat (resp. faithfully flat) when B is flat
(resp. faithfully flat) as an A-module.

Thus, an A-module M is flat if and only if the functor M ® 4 — takes short exact
sequences to short exact sequences. In other words, M is flat if and only if M ® 4 — is an
exact functor, i.e.,

N - N—>N"exact = M@4N - M4N —> M4 N" exact.
An A-algebra B is said to be flat if B is flat as an A-module.

EXAMPLE 11.3. The functor M ® 4 — takes direct sums to direct sums, and direct sums of
exact sequences are exact; in particular, direct sums of injective maps are injective. Therefore
direct sums of flat modules are flat, and direct summands of flat modules are flat. All free
A-modules are flat. Therefore all vector spaces over a field are flat, and nonzero vector
spaces are faithfully flat.

EXAMPLE 11.4. Quotient maps A — A/a are rarely flat. If A is a product, A = A; x A,
then the projection map A — A; is obviously flat. When A is noetherian, all flat quotient
maps are of this form (Exercise 23.12).

PROPOSITION 11.5. Let A — B be a faithfully flat homomorphism of rings. A sequence
of A-modules
0N —-N->N"=0 (27)

is exact if
0—>B®4N - BR4N —->BR4N"—0 (28)

is exact.

PROOF. Let Ny be the kernel of N’ — N. Because A — B is flat, B ® 4 Np is the kernel of
B®4 N — B®y4 N, which is zero by assumption; because A — B is faithfully flat, this
implies that No = 0. We have proved the exactness at N, and the proof of the exactness
elsewhere is similar.

REMARK 11.6. There is a converse to the proposition: suppose that
(27) is exact < (28) is exact;

then A — B is faithfully flat. The implication “=>" shows that A — B is flat. Now let N be
an A-module, and consider the sequence

0—-0—->N—-0—0.

If B®4 N =0, then this sequence becomes exact when tensored with B, and so is itself
exact, which implies that N = 0. This shows that A — B is faithfully flat.
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COROLLARY 11.7. Let A — B be faithtully flat. An A-module M is flat (resp. faithfully
flat) it B ® 4 M is flat (resp. faithfully flat) as a B-module.

PROOF. Assume that Mg = B ®4 N is flat, and let N’ — N be an injective map of
A-modules. The functor B ® 4 — from A-modules to B-modules commutes with tensor
products, and so

B®A(M®AN,—>M®AN)2MB®B(N)§—>NB).

The map at right is injective because A — B is flat and Mp is flat. Now (11.5) shows that
M®q4N — M R4 N is injective. Thus M is flat.

Assume that M p is faithfully flat, and let N be an A-module. If M ® 4 N = 0, then
Mp ®p Np is zero because it is isomorphic to (M ® 4 N)pg. Now Np = 0 because Mp is
faithfully flat, and so N = 0 because A — B is faithfully flat.

PROPOSITION 11.8. Leti: A — B be a faithfully flat homomorphism. For every A-module
M, the sequence

d d
0>M-5BRIAM--"5BRuBRIuM (29)
with
do(m) = 1Q@m,
dib@®m) = 1b@m—->bR1Q@m
is exact.

PROOF. Assume first that there exists an A-linear section to A — B, i.e., an A-linear map
f:B — Asuchthat f oi =idy, and define

ko:B®aM — M, ko(b®m) = f(b)m
k1:BR4BR4M — B4 M, ki(b@b' @m) = f(b)b'@m.

Then kody = idps, which shows that dj is injective. Moreover,
kl Odl +d00k0 == idB@AM

which shows that, if d; (x) = 0, then x = dy(ko(x)), as required.

We now consider the general case. Because A — B is faithfully flat, it suffices to prove
that the sequence (29) becomes exact after tensoring in B. But the sequence obtained from
(29) by tensoring with B is isomorphic to the sequence (29) for the homomorphism of rings
b—1®b:B — B®4 B and the B-module B ® 4 M, because, for example,

B®A(BRaM)~(BR4B)®B(BR4M).

Now B — B ® 4 B has an B-linear section, namely, /(b ® b’) = bb’, and so we can apply
the first part.

COROLLARY 11.9. If A — B is faithfully flat, then it is injective with image the set of
elements on which the maps

b —» 1®b

b > bel :B—>B®yB

agree.
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PROOF. This is the special case M = A of the Proposition.

PROPOSITION 11.10. Let A — A’ be a homomorphism of rings. If A — B is flat (or
faithfully flat), then so alsois A’ — B®4 A'.

PROOEF. For any A’-module M,
BRgAYQ4 M ~BRu(A Q4 M)~BRsM,
from which the statement follows.
PROPOSITION 11.11. For every multiplicative subset S of a ring A and A-module M,
ST'A®aM ~S7'M.
The homomorphism a + 4: A — S™' A is flat.

PROOF. To give an S ~! A-module is the same as giving an A-module on which the elements
of S act invertibly. Therefore S™! A ® 4 M and S~! M satisfy the same universal property
(see §10, especially (24)), which proves the first statement. As M ~> S ~1M is exact (5.11),
soalsois M ~ S~1A® 4 M, which proves the second statement.

PROPOSITION 11.12. A homomorphism of rings ¢: A — B is flat if A,—1(,) — By is flat
for all maximal idealsn in B.

PROOF. Let N’ — N be an injective homomorphism of A-modules, and let n be a maximal
ideal of B. Then p = ¢~!(n) is a prime ideal in A, and Ay ®4 (N’ — N) is injective (11.11).
Therefore, the map

Bi®4A(N' = N)~ B, ®4, (A4, ®4 (N — N))

is injective, and so the kernel M of B ® 4 (N’ — N) has the property that M, = 0. Let
x € M,andleta={b € B | bx = 0}. For each maximal ideal n of B, x maps to zero in M,
and so a contains an element not in n. Hence a = B, and so x = 0.

PROPOSITION 11.13. The following conditions on a flat homomorphism ¢: A — B are
equivalent:

(a) ¢ is faithfully flat;

(b) for every maximal ideal m of A, the ideal p(m)B # B;

(c) every maximal ideal m of A is of the form ¢~ (n) for some maximal ideal n of B.

PROOF. (a) = (b): Let m be a maximal ideal of A4, and let M = A/m; then
B4 M ~ B/p(m)B.

As B®4 M # 0, we see that ¢(m)B # B.

(b) = (c): If p(m)B # B, then ¢(m) is contained in a maximal ideal n of B. Now
¢~ 1(n) is a proper ideal in A containing m, and hence equals m.

(c) = (a): Let M be a nonzero A-module. Let x be a nonzero element of M, and let
a = ann(x) e {a € A|ax =0}. Then a is an ideal in A, and M’ < Ax ~ A/a. Moreover,
B®4M' ~ B/¢(a)- B and, because A — B is flat, B ® 4 M’ is a submodule of B ® 4 M .
Because a is proper, it is contained in a maximal ideal m of A, and therefore

¢(a) Co(m) Cn
for some maximal ideal n of A. Hence ¢(a)-B Cn# B,andso B4 M D B4 M’ #0.
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Let spm(A) denote the set of maximal ideals in A (see Chapter 15). In more geometric
terms, the proposition says that a flat homomorphism ¢: A — B is faithfully flat if and only
if the map spm(p):spm (B) — spm (A) is surjective. In fact, as we now prove, spec(B) —
spec (A) is also surjective.

PROPOSITION 11.14. Let ¢: A — B be a faithtully flat homomorphism. Every prime ideal
p of A is of the form ¢~ 1 (q) for some prime ideal q of B.

PROOF. The prime ideals of B lying over p are in natural one-to-one correspondence with
the prime ideals of B ® 4 k(p) (5.21). But the ring B ® 4 k(p) is nonzero because A — B is
faithfully flat, and so it has a prime (even maximal) ideal.

PROPOSITION 11.15. Let A — B be a flat homomorphism. Let p’ C p be prime ideals in
A, and let q be a prime ideal in B such that ¢ = p. Then there exists a prime ideal ¢’ C q in
B such that ¢ =p’.

PROOF. The homomorphism A, — B, is faithfully flat, and p’ A4, is prime (5.4), and so
there exists a prime ideal P8 of Bj, lying over p’A, (by 11.14). The contraction of 3 to B is
contained in q and lies over p’.

The proposition says that the going-down theorem (7.11), hence also its corollary (7.12),
holds for flat homomorphisms. The going-up theorem fails for flat homomorphisms (7.8).

THEOREM 11.16 (GENERIC FLATNESS). Let A a noetherian integral domain, and let B
be a finitely generated A-algebra. Then for some nonzero elements a of A and b of B, the
homomorphism A, — By is faithfully flat.

PROOF. Let F be the field of fractions of A. We first assume that B C F ® 4 B.

As F ® 4 B is a finitely generated F-algebra, the Noether normalization theorem (8.1)
shows that there exist elements x1,...,xX, of F ® 4 B such that F[xy,...,X;] is a poly-
nomial ring over F and F ® 4 B is a finite F[xq,...,xy]-algebra. After multiplying each
x; by an element of A, we may suppose that it lies in B. Let by,...,b, generate B as an
A-algebra. Each b; satisfies a monic polynomial equation with coefficients in F[x1,...,X;].
Let a € A be a common denominator for the coefficients of these polynomials. Then each b;
is integral over A,. As the b; generate B, as an A,-algebra, this shows that By is a finite
Aglx1,...,xm]-algebra (by 6.2). Therefore, after replacing A with A, and B with B,, we
may suppose that B is a finite A[x1,..., X, ]-algebra.

injective

B FR®4B ———— EQyx,,...,

finite Tﬁnne Tﬁnite

Alx1,...,Xm] —— Flx1,...,Xm] —— EdZEfF(xl,...,xn)

T

A F.

Let E = F(x1,...,X,) be the field of fractions of A[x1,...,x,], and let by,...,b, be
elements of B that form a basis for £ ® 4[x, ,....x,,] B as an E-vector space. Each element
of B can be expressed as a linear combination of the b; with coefficients in E. Let ¢ be
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a common denominator for the coefficients arising from a set of generators for B as an
A[x1,...,xp]-module. Then by,...,b, generate By as an A[x1,...,X;]q-module. In other
words, the map

(c1,...,cr)HZcibi:A[xl,...,xm]fI—>Bq 30)

is surjective. This map becomes an isomorphism when tensored with E over A[x1,...,Xm]q,
which implies that each element of its kernel is killed by a nonzero element of A[x1,...,Xmlq
and so is zero (because A[X1,...,X,]q is an integral domain). Hence the map (30) is an
isomorphism, and so By, is free of finite rank over A[xy,...,Xxm]q. Let a be some nonzero
coefficient of the polynomial g, and consider the maps

Ag — Aalx1,....Xm) = Aalx1,....Xmlq = Bag.

The first and third arrows realize their targets as nonzero free modules over their sources,
and so are faithfully flat. The middle arrow is flat by (11.11). Let m be a maximal ideal in
Ag. Then mAg[x1,...,X,] does not contain the polynomial g because the coefficient a of ¢
is invertible in A,. Hence mA4[x1,...,Xm]q is a proper ideal of A4[x1, ..., Xm]q, and so the
map Ag — Ag[xX1.....Xm]q is faithfully flat (apply 11.13). This completes the proof when
BCF®uB.

We now prove the general case. Note that F' ® 4 B is the ring of fractions of B with
respect to the multiplicative subset A ~ {0} (see 11.11), and so the kernel of B — F ® 4 B is
the ideal

n=1{b € B |ab = 0 for some nonzero a € A}.

This is finitely generated (Hilbert basis theorem 3.7), and so there exists a nonzero ¢ € 4
such that ¢b = 0 for all b € n. I claim that the homomorphism B, — F ® 4, B, is injective.
If f—, lies in its kernel, then C‘I—SC% = 0 in B, for some nonzero % € A, and so cNab=0
in B for some N ; therefore b € n, and so cb = 0, which implies that cﬁr = 0 already in B,.
Therefore, after replacing A, B, and M with A, B., and M., we may suppose that the map
B — F ®4 B is injective. On identifying B with its image, we arrive at the situation of the

theorem.

Exercises

EXERCISE 11.17. Let f1,..., fm be elements of a ring A. Show that the canonical homo-
morphism A — []; A, is faithfully flat if and only if (f1,..., fin) = A. Let f1...., fm
satisfy this condition, and let M be an A-module. Deduce from (11.8) that the sequence

0->M— [] My— J] Mpy

1<i<m 1<i,j<m

is exact (the first map sends m to (n;) with n; equal to the image of m in M,, and the
second map sends (m; ) to (n;;) with

nij = (image of m; in My, y;) — (image of m; in M, s,)).

EXERCISE 11.18. Let (A,-,a;) be a direct system of rings, and let (M,-,,B;) be a direct
system of abelian groups with the same indexing set. Suppose that each M; has the structure
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of an A;-module, and that the diagrams

Al'XMi — M;

o< |

A./'XM/'—>Mj

commute foralli < j.Let A =1imA; and M = h_I)nM,
(a) Show that M has a unique structure of an A-module for which the diagrams

Al'XM,' — M;

J{ai Xﬂi J{ﬂt

AXM — M

commute for all ;.
(b) Show that M is flat as an A-module if each M; is flat as an A;-module.
(Bourbaki AC, I, §2, Prop. 9.)

12 Finitely generated projective modules

In many situations, the correct generalization of “finite-dimensional vector space” is not
“finitely generated module” but “finitely generated projective module”. From a different per-
spective, finitely generated projective modules are the algebraist’s analogue of the differential
geometer’s vector bundles (see 12.8).

Projective modules

DEFINITION 12.1. An A-module P is projective if, for each surjective A-linear map
f:M — N and A-linear map g: P — N, there exists an A-linear map h: P — M (not
necessarily unique) such that f oh = g:

In other words, P is projective if every map from P onto a quotient of a module M lifts to a
map to M. Equivalently, P is projective if the functor

M ~> Hom(P,M) (A-linear maps)

is exact.
As
Hom(&p; P;. M) ~ &, Hom(P;, M)
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we see that a direct sum of A-modules is projective if and only if each summand is projective.
As A itself is projective, this shows that free A-modules are projective and every direct
summand of a free module is projective. Conversely, let P be a projective module, and write
it as a quotient of a free module,

S

F—P—0;
because P is projective, there exists an A-linear map h: P — F such that f oh = idp; then
F ~Im(h)®Ker(f) >~ P ®Ker(f),

and so P is a direct summand of F'. We conclude: the projective A-modules are exactly the
direct summands of free A-modules.

Finitely presented modules

DEFINITION 12.2. An A-module M is finitely presented if there exists an exact sequence
A™ - A" - M — 0, some m,n € N.

A finite family (e;);ey of generators for an A-module M defines a homomorphism
(aj) > ;craiei: AT — M. The elements of the kernel of this homomorphism are called
the relations between the generators. Thus, M is finitely presented if it admits a finite family
of generators whose module of relations is finitely generated. Obviously

finitely presented = finitely generated,

and the converse is true when A is noetherian (by 3.4).

PROPOSITION 12.3. If M is finitely presented, then the kernel of every surjective homo-
morphism A™ — M, m € N, is finitely generated.

In other words, if M is finitely presented, then the module of relations for every finite
generating set is finitely generated.

PROOF. Let A" — M be a surjective homomorphism with finitely generated kernel N. We
have to show that the kernel N of every other surjective homomorphism A” — M is finitely
generated. Consider the diagram:

0 N A" M 0
i f 3 g idps
v v

0 N’ A™ M 0

The map g exists because A” is projective, and it induces the map f. From the diagram, we
get an exact sequence

N R N — A" /gA" — 0,
either from the snake lemma or by a direct diagram chase. The image of N in N is finitely

generated, and so N’ is an extension of finitely generated modules. Therefore it is finitely
generated (3.3(b)).
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PROPOSITION 12.4. A finitely generated projective module is finitely presented.

PROOF. Let M be finitely generated and projective. There exists a surjective homomorphism
A" — M (because M is finitely generated), whose kernel N is a direct summand of A"
(because M is projective). As N is a quotient of A”, it is finitely generated.

Finitely generated projective modules

According to the above discussion, the finitely generated projective modules are exactly the
direct summands of free A-modules of finite rank.

THEOREM 12.5. The following conditions on an A-module are equivalent:
(a) M is finitely generated and projective;
(b) M is finitely presented and M, is a free Ay,-module for all maximal ideals m of A;
(c) there exists a finite family ( f;);ey of elements of A generating the ideal A and such
that, for alli € I, the A r,-module M, is free of finite rank;
(d) M is finitely presented and flat.
Moreover, when A is an integral domain and M is finitely presented, they are equivalent to:
(e) dimy () (M ® 4 k(p)) is the same for all prime ideals p of A (here k(p) denotes the
field of fractions of A/p).

PROOF. (a)=(d). Free modules are flat, and direct summands of flat modules are flat (11.3).
Therefore, projective modules are flat, and we know (12.4) that finitely generated projective
modules are finitely presented.

(b)=(c). Let m be a maximal ideal of A, and let xq, ..., x, be elements of M
whose images in M, form a basis for My, over A,. The kernel N’ and cokernel N of the
homomorphism

a: A" —> M, gy, ..., ar)=Zaix,~,

are both finitely generated, and N, = 0 = Ny,. Therefore, there exists an f € A~ m such
that N, =0 = Ny (5.13). Now a becomes an isomorphism when tensored with A 7.

The set T of elements f arising in this way is contained in no maximal ideal, and so
generates the ideal A. Therefore, 1 = ), ; a; f; for certaina; € Aand f; € T.

(c)=(d). Let B =[[;c; Af,. Then B is faithfully flat over A (Exercise 11.17), and
B®4 M =][[Mjy, whichis clearly a flat B-module. It follows that M is a flat A-module
(apply 11.7).

(¢c)=(e). This is obvious.

(e)=(c). Fix a prime ideal p of A. For some f ¢ p, there exist elements x1, ..., x, of
M y whose images in M ® 4 k(p) form a basis. Then the map

(x:A} — My, alay, ..., ar) =) a;iXxi,

defines a surjection A — M, (Nakayama’s lemma; note that k (p) ~ A, /pAp). The cokernel
N of « is finitely generated, and so gN = 0 for some g € A~p. The map o becomes
surjective once f has been replaced fg. For any prime ideal q of 4 7, the map k(q)" —
M ® 4 k(q) defined by « is surjective, and hence is an isomorphism because dim(M ® 4
k(q)) = r. Thus Ker(x) C qA? for every q, which implies that it is zero as A4 y is reduced.
Therefore M y is free. As in the proof of (b), a finite set of such f”’s will generate A.
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To prove the remaining implications, (d)=(a) and (b) we shall need the following
lemma.

LEMMA 12.6. Let
O—>N—->F—->M-—0 (31)

be an exact sequence of A-modules with N a submodule of F.
(@) If M and F are flat over A, then N NaF = aN (inside F') for all ideals a of A.
(b) Assume that F is free with basis (y;);cy and that M is flat. If the element n =
Zie[ a;y; of F lies in N, then there existn; € N such thatn = Zie[ ain;.
(c) Assume that M is flat and F is free. For every finite set {ny, ..., n,} of elements of
N, there exists an A-linear map f:F — N with f(n;)=n;, j=1,...,r.

PROOF. (a) Consider

AQN —— aQ®F —— a®@ M

LT

0—— NNaF aF aM

The first row is obtained from (31) by tensoring with a, and the second row is a subsequence
of (31). Both rows are exact. On tensoring a — A with F' we getamap a® F — F, which is
injective because F' is flat. Therefore a ® F — aF is an isomorphism. Similarly, a@ M —
aM is an isomorphism. From the diagram we get a surjective map a® N — N NaF, and
so the image of a® N in aF is N NalF. But this image is aN.

(b) Let a be the ideal generated by the a;. Thenn € N NaF = aN, and so there are
n; € N such thatn =) a;n;.

(c) We use induction on r. Assume first that » = 1, and write

ny = Zieloaiyi
where (y;)ier is a basis for F' and [y is a finite subset of /. Then
ny = Zié]oain;

for some n; € N (by (b)), and f may be taken to be the map such that f(y;) =n fori € Io
and f(y;) = 0 otherwise. Now suppose that » > 1, and that there are maps f1, f»: F —> N
such that f1(n1) =n; and

fa(ni— fi(ny)) =n;— fi(n;), i=2, ...

3

Then
fiF—>N, f=fi+fa—=faofi

has the required property.

We now complete the proof of the theorem.
(d)=(a). Because M is finitely presented, there is an exact sequence

O—-N—->F—>M-—0
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in which F is free and N and F are both finitely generated. Because M is flat, (c) of the
lemma shows that this sequence splits, and so M is projective.

(d)=(b). We may suppose that A itself is local, with maximal ideal m. Let x1, ..., x, €
M be such that their images in M/mM form a basis for this over the field A/m. Then the
x; generate M (by Nakayama’s lemma 3.9), and so there exists an exact

0—>N—>Fi>M—>0

in which F is free with basis {y1, ..., y,} and g(y;) = x;. According to (a) of the lemma,
mN = N N(mF), which equals N because N C mF . Therefore N is zero by Nakayama’s
lemma 3.9.

EXAMPLE 12.7. (a) When regarded as a Z-module, Q is flat but not projective (it is not
finitely generated, much less finitely presented, and so this doesn’t contradict the theorem).

(b) Let R be a product of copies of I, indexed by N, and let a be the ideal in R consisting
of the elements (@ )nen such that a, is nonzero for only finitely many values of # (so ais a
direct sum of copies of F, indexed by N). The R-module R/a is finitely generated and flat,
but not projective (it is not finitely presented).

ASIDE 12.8. The equivalence of (a) and (c) in the theorem has the following geometric interpretation:
for an affine scheme X, the functor M ~> M (X) is an equivalence from the category of locally free
Ox-modules of finite rank to the category of finitely generated Oy (X)-modules. (See Section 50 of
J.-P. Serre, Ann. of Math. (2) 61 (1955), 197-278. This is also where Serre asked whether a finitely
generated projective k[X1,..., X, ]-module is necessarily free. That it is was proved (independently)
by Quillen and Suslin. For a beautiful exposition of Quillen’s proof, see A. Suslin, Quillen’s solution
of Serre’s problem. J. K-Theory 11 (2013), 549-552.)

ASIDE 12.9. Nonfree projective finitely generated modules are common: for example, the ideals
in a Dedekind domain are projective and finitely generated, but they are free only if principal. The
situation with modules that are not finitely generated is quite different: if A4 is a noetherian ring with
no nontrivial idempotents, then every nonfinitely generated projective A-module is free (Bass, Hyman.
Big projective modules are free. Illinois J. Math. 7 1963, 24-31, Corollary 4.5). The condition on the
idempotents is needed because, for a ring A4 x B, the module AY) x B() is not free when the sets /
and J have different cardinalities.

Duals
The dual Hom 4_jinear (M, A) of an A-module M is denoted M V.

PROPOSITION 12.10. For any A-modules M, S, T with M finitely generated and projec-
tive, the canonical maps

Hom 4 jinear(S. T ® 4 M) — Hom g jincar (S @4 MY, T) (32)
T ®4 M — Hom gjinear(M Y, T) (33)

MYRTY - (M®T)Y (34

M= MY (35)

are isomorphisms.
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PROOF. The canonical map (32) sends f:S - T ®4 M tothe map f:SQq4 MY - T
such that f/(s ® g) = (T ® g)(f(s)). It becomes the canonical isomorphism

HomA-linea_r(S, Tn) - HomA—linear(Sn ’ T)

when M = A”". It follows that (32) is an isomorphism whenever M is a direct summand of
a finitely generated free module, i.e., whenever M is finitely generated and projective.

The canonical map (33) sends t ® m to the map f +— f(m)t. It is the special case of
(32) in which S = A.

The canonical map (34) sends f @ g€ MY QT tothemapm @t — f(m)Q@g(t): M ®
T — A, and the canonical map (35) sends m to the map f +— f(m): MY — A. Again, it is
obviously an isomorphism if one of M or T is free of finite rank, and hence also if one is a
direct summand of such a module.

We letev: MY ® 4 M — A denote the evaluation map f @ m > f(m).

LEMMA 12.11. Let M and N be modules over commutative ring A, and lete: N @ 4 M —
A be an A-linear map. There exists at most one A-linear map §: A — M ® 4 N such that the

composites

SQM M
m 2% wenem M2 M

N®S§ N
N X Nemen 2N N

(36)

are the identity maps on M and N respectively. When such a map exists,
T ®4 N =~ Homgjinear(M, T) (37)
for all A-modules T'. In particular,
(N,e) ~ (M"Y ,ev). (38)
PROOF. From e we get an A-linear map
TRe:TQUNQQUM —T,
which allows us to define an A-linear map
Xt fx:T®4 N — Homygjn(M, T) 39)

by setting
fxm) =T e)(x®m), x€TQRQ4N,meM.

An A-linear map f: M — T definesamap f QN:M @4 N — T ® 4 N, and so a map
0:A— M ®4 N defines an A-linear map

f = (f®@N)(6(1)):Homgjin(M.T) > T @4 N. (40)

When the first (resp. the second) composite in (36) is the identity, then (40) is a right
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(resp. a left) inverse to (39).!> Therefore, when a map § exists with the required properties,

the map (39) defined by e is an isomorphism. In particular, e defines an isomorphism
Xt fxr:M®4 N - Homg;,(M, M),

which sends §(a) to the endomorphism x — ax of M. This proves that § is unique.
To get (38), take T = M in (37).

Let A — B be aring homomorphism. Lete: N ® 4 M — A be an A-linear map. Because
the functor M ~ Mp “B ®4 M commutes with tensor products (see p.40), §:4 —
M ® 4 N satisfies the conditions of (12.11) relative to e, then §g: B — Mp ® p Np satisfies
the conditions of (12.11) relative to ep.

PROPOSITION 12.12. An A-module M is finitely generated and projective if and only if
there exists an A-linear map §: A — M ® MV such that

(M ®ev)o(6Q@ M) =idy @l

(MY ®8)o(evMY) =idpyv .
PROOF. <—: On taking T = M in (37), we see that MY ® 4 M ~ End(M) (A-linear
endomorphisms). If ) °; ., fi ® m; corresponds to idps, so that ) ;; fi (m)m; = m for all
m € M, then

M m—>(f; (m)) Al (a2 aim; M

is a factorization of idps. Therefore M is a direct summand of a free module of finite rank.

= : Suppose first that M is free with finite basis (e;);c7, and let (e;);c7 be the dual
basis of M. The linear map §:4 - M @ MV, 1 = Xe; ® e;, satisfies the conditions (41).
Moreover, it is the unique map satisfying (41) — see (12.11). In particular, it is independent
of the choice of e;.

For the general case, we choose a family ( f;)1<i<m as in (12.5¢). In particular, My, is
a free A f,-module, and so § is defined for each module M f;> the uniqueness assertion in
Lemma 12.11 then implies that the ¢ for the different M ¢, patch together to give a § for M.

15 Assume § satisfies the condition in the statement of the lemma.

Let x € T ® 4 N; by definition, (fx ® N)(§(1)) = (T ® e ® N)(x ® §(1)). On tensoring the second sequence
in (36) with 7', we obtain maps

TN QS T N
TRAN~T R AN @A TRUN @AM YN —2s TR 4N

whose composite is the identity mapon 7 ® 4 N. As x = x ® 1 maps to x ® §(1) under T ® N ® §, this shows
that (fx ® N)(6(1)) = x.

Let f € Hom g4, (M, T), and consider the commutative diagram

T®AN®AM&>T

Tf ®N®M Tf

MM o N M My

For m € M, the two images of §(1) ® m in T are f(m) and f( ren)5(1))(M)> and so [ = f(renN)@E1))-
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In more detail, consider the diagram

1_[ Ay, 1_[ Afifj

1<i<m 1<i,j<m

[ |

MeMY —— J] MeMY)y, —— [ MMy

1<i<m 1<i,j<m

A

In the top row, the first arrow sends a to (a;) with a; equal to the image of @ in A £, and the
upper arrow (resp. lower arrow) sends (a;) to (a;,;) with a; ; equal to the image of a; in
Ay, ; (resp. the image of aj in A, ¢;). The bottom row is obtained from the top row by
tensoring with M ® M. The vertical map (§;) is the product of the (unique) maps satisfying
(41). The vertical map at right can be described as the extension of scalars of (§;) via the
upper arrow [ [; Az, — []; ; Ay, s, or the extension of scalars of (6;) via the lower arrow
— they are the same because they both equal the unique Hi, ;j A f; f;-linear map satisfying
the condition (41). As A and M are the submodules of [[; A s, and [[; M r, on which the
pairs of arrows agree (Exercise 11.17), the map (8;) induces an A-linear A — M @ MV,
which satisfies (41). [This argument becomes more transparent when expressed in terms of
sheaves.]

ASIDE 12.13. A module M over aring A is said to be reflexive if the canonical map M — MV is
an isomorphism. We have seen that for finitely generated modules “projective” implies “reflexive”,
but the converse is false. In fact, for a finite generated module M over an integrally closed noetherian
integral domain A, the following are equivalent (Bourbaki AC, VII, §4, 2):

(a) M is reflexive;

(b) M is torsion-free and equals the intersection of its localizations at the prime ideals of A of

height 1;
(c) M is the dual of a finitely generated module.
For noetherian rings of global dimension < 2, for example, for regular local rings of Krull

dimension < 2, every finitely generated reflexive module is projective: for every finitely generated
module M over a noetherian ring A, there exists an exact sequence

A" - A" > M —0
with m,n € N; on taking duals and forming the cokernel, we get an exact sequence
0->MY > A" > A" > N - 0;
if A has global dimension < 2, then MV is projective, and if M is reflexive, then M ~ (M V)V,

ASIDE 12.14. For a finitely generated torsion-free module M over an integrally closed noetherian
integral domain A, there exists a free submodule L of M such that M/ L is isomorphic to an ideal a in
A (Bourbaki AC, VII, §4, Thm 6). When A is Dedekind, every ideal is projective, and so M >~ L @ a.
In particular, M is projective. Therefore, the finitely generated projective modules over a Dedekind
domain are exactly the finitely generated torsion-free modules.

SUMMARY 12.15. Here is a summary of the assumptions under which the canonical mor-
phisms of A-modules below are isomorphisms. If P is finitely generated projective:

P =5 pVV
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A module P is finitely generated projective if and only if the following canonical map is an
isomorphism

PV ® P —> End(P).

If P or P’ is finitely generated projective:
PV ® P’ s Hom(P, P)).
If both P and P’ or both P and M or both P’ and M’ are finitely generated projective
Hom(P, M) ® Hom(P', M') —> Hom(P ® P',M @ M").
In particular, for P or P’ finitely generated projective
PY®P"Y = (P®P)V.

(Georges Elencwajg on mathoverflow.net).

13 Zariski’s lemma and the Hilbert Nullstellensatz

Zariski’s lemma

In proving Zariski’s lemma, we shall need to use that the ring k[ X ] contains infinitely many
distinct monic irreducible polynomials. When k is infinite, this is obvious, because the
polynomials X —a, a € k, are distinct and irreducible. When £ is finite, we can adapt Euclid’s
argument: if pi,..., p, are monic irreducible polynomials in k[X], then py---p, + 1 is
divisible by a monic irreducible polynomial distinct from py,..., pr.

THEOREM 13.1 (ZARISKI’S LEMMA). Letk C K be fields. If K is finitely generated as a
k-algebra, then it is algebraic over k (hence finite over k, and it equals k if k is algebraically
closed).

PROOF. We shall prove this by induction on r, the smallest number of elements required to
generate K as a k-algebra. The case r = 0 being trivial, we may suppose that

K =k[x1,...,x] withr > 1.

If K is not algebraic over k, then at least one x;, say x1, is not algebraic over k. Then, k[x1]
is a polynomial ring in one symbol over k, and its field of fractions k(x) is a subfield of
K. Clearly K is generated as a k(x1)-algebra by x», ..., x,, and so the induction hypothesis
implies that x5, ..., x, are algebraic over k(x1). According to Proposition 6.7, there exists a
¢ € k[x1] such that cx,,...,cx, are integral over k[x1].

Let f € k(x1). Then f € K = k[x1,...,x,] and so, for a sufficiently large N, ¢V f €
k[x1,cx2,...,c¢xy]. Therefore cNf is integral over k[x1] by (6.5), which implies that
eV f € k[x1] because k[x1] is integrally closed in k(x1) (6.10). But this contradicts the
fact that k[x1] (>~ k[X]) has infinitely many distinct monic irreducible polynomials that can
occur as denominators of elements of k(x1). Hence K is algebraic over k.

COROLLARY 13.2. Let A be a finitely generated k-algebra. Every maximal ideal in A is
the kernel of a homomorphism from A into a finite field extension of k.
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PROOF. Indeed, A/m itself is a finite field extension of k.

COROLLARY 13.3. Letk C K C A be k-algebras with K a field and A finitely generated
over k. Then K is algebraic over k.

PROOF. Let m be a maximal ideal in A. Then mN K = (0), and so k C K C A/m. The
theorem shows that the field A/m is algebraic over k, and hence K is also.

ASIDE 13.4. There is a very short proof of Zariski’s lemma when k is uncountable. Let k C K be
fields. If K is finitely generated as a k-algebra, then its dimension as a k-vector space is countable.
On the other hand, if x € K is transcendental over k, then the elements xic, ¢ € k, are linearly
independent (assume a linear relation, and clear denominators). When k is uncountable, this gives a
contradiction.

Alternative proof of Zariski’s lemma

The following is a simplification of Swan’s simplication'® of a proof of Munshi.

LEMMA 13.5. For an integral domain A, there does not exist an f € A[X] such that A[X] r
is a field.

PROOF. Suppose, on the contrary, that A[X] s is a field. Then f ¢ A, and we can write
(f =1)"l=g/f" with g € A[X] and n > 1. Then

(f=Dg=/"=0+(f-1)"=1+(f—-Dh

with h € A[X],and so (f —1)(g—h) = 1. Hence f — 1 is a unit in A[X], which is absurd
(it has degree > 1).

PROPOSITION 13.6. Let A be an integral domain, and suppose that there exists a maximal
ideal m in A[X1,..., Xy] such that ANm = (0). Then there exists a nonzero a € A such
that A, is a field and A[X1,..., Xn]/m is a finite extension of Ag.

Note that the condition A Nm = (0) implies that A (hence also A,) is a subring of the field

K = A[X1,..., Xy]/m, and so the statement makes sense.

PROOF. We argue by induction on n. When n = 0, the hypothesis is that (0) is a maximal
ideal in A; hence A is a field, and the statement is trivial. Therefore, suppose that n > 1, and
regard A[X1,..., X,] as a polynomial ring in n — 1 symbols over A[X;] for some fixed i. If
m N A[X;] = (0), then, by induction, there exists an f € A[X;] such that A[X;] s is a field,
contradicting Lemma 13.5. We conclude that, for each i, there exists a nonzero element

a; Xlnl + e
inmN A[X;]. The image x; of X; in K satisfies the equation
aixf 4o =0,

and so K is integral over its subring Ag,...q,. This implies that A, ...q, is a field (see 7.1),
and K is finite over it because it is integral and finitely generated (6.3).

We now prove Zariski’s lemma. Let m be a maximal ideal in k[X1,..., X,]. Then
k Nm = (0) because k is a field. According to the proposition, there exists a nonzero a € k
such that k[ X1,..., X,]/m is a finite extension of k,, but, because k is a field, k, = k.

16For a leisurely exposition of Munshi’s proof, see May, J. Peter, Munshi’s proof of the Nullstellensatz. Amer.
Math. Monthly 110 (2003), no. 2, 133-140.
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The Nullstellensatz

Recall that k' denotes an algebraic closure of the field k.

THEOREM 13.7 (NULLSTELLENSATZ). Every proper ideal a in k[X1,..., Xy] has a zero
in (k*)", i.e., there exists a point (ay,...,a,) € (k®)" such that f(ai,...,a,) = 0 for all

fea

PROOF. We have to show that there exists a k-algebra homomorphism k[X1,..., X,] — k&
containing a in its kernel. Let m be a maximal ideal containing a. Then k[X71,..., X,]/m is
a field, which is finitely generated as a k-algebra. Therefore it is finite over k by Zariski’s
lemma, and so there exists a k-algebra homomorphism k[X1,..., X,]/m — k¥. The com-
posite of this with the quotient map k[X1,...,X,] = k[X1,...,Xn]/m contains a in its
kernel.

COROLLARY 13.8. When k is algebraically closed, the maximal ideals in k[X1,..., Xp]
are exactly the ideals (X1 —ay, ..., Xn—an), (a1,...,an) € k™.

PROOF. Clearly, k[X1,..., Xn]/(X1 —a1,....,Xn—an) >~ k, and so (X1 —ay,..., Xy —
ay) is maximal. Conversely, because k is algebraically closed, a maximal ideal m of
k[X1,...,Xn] has a zero (ai,...,a,) ink™. Let f € k[Xq,..., Xy]; when we write f asa
polynomial in X1 —ay,..., X, —ay, its constant term is f(ay,...,an). Therefore

fem = fe(X1—ai,...,Xn—an),
andsom = (X1 —ay,..., X, —an).

THEOREM 13.9 (STRONG NULLSTELLENSATZ). Foranidealaink[Xy,...,Xy], let Z(a)
be the set of zeros of a in (k®)". If a polynomial h € k[X1,..., X,] is zero on Z(a), then
some power of h lies in a.

PROOF. '"We may assume h # 0. Let g1,...,gm generate a, and consider the system of
m + 1 equations in n 4 1 variables, X1,..., X5, 7Y,

gi(X1,....X,) = 0, i=1,....m
1-Yh(Xy,....X,) = 0.

If (ay,...,an,b) satisfies the first m equations, then (aq,...,a,) € Z(a); consequently,
h(ai,...,an) =0, and (ay,...,an,b) doesn’t satisfy the last equation. Therefore, the equa-
tions are inconsistent, and so, according to the Nullstellensatz (13.7), the ideal

(8152 8m,1=Yh) =k[X1,....Xpn,Y].

17 This argument is known as Rabinowitsch’s trick (J. L. Rabinowitsch, “Zum Hilbertschen Nullstellensatz”,
Math. Ann. 102 (1930), p.520). Rabinowitsch simplified his name to Rainich. He was a faculty member
at the University of Michigan from 1925-1956, where the following story is folklore: Rainich was giving a
lecture in which he made use of a clever trick which he had discovered. Someone in the audience indignantly
interrupted him pointing out that this was the famous Rabinowitsch trick and berating Rainich for claiming to
have discovered it. Without a word Rainich turned to the blackboard and wrote RABINOWITSCH. He then
began erasing letters. When he was done what remained was RA IN I CH. He then went on with his lecture. See
also mo45185.
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This means that there exist f; € k[X1,..., Xy, Y] such that
m
1= fi-&i+ fmt1-(1=Yh). (42)
i=1
On applying the homomorphism

{ X Xi X X Y] > k(X1s.. X))

Y h!

to (42), we obtain the identity

1=§:,f,-(Xl,...,Xn,h—l).g,-(xl,...,xn) (43)
1
ink(X1,...,Xy). Clearly

polynomial in X7q,..., X},
hNi

fi(X1,.... Xn, b7 =

for some N;. Let N be the largest of the N;. On multiplying (43) by 4"V we obtain an
identity
N = Z (polynomial in X1,...,X,)-gi (X1,..., Xn),
4

which shows that 4V € a.

PROPOSITION 13.10. The radical of an ideal a in a finitely generated k -algebra A is equal

to the intersection of the maximal ideals containing it: rad(a) = [),,~, M. In particular, if A
is reduced, then )

mDa

m maximal ™ = 0.

PROOF. Because of the correspondence between the ideals in a ring and in a quotient of the
ring ((2), p. 4), it suffices to prove this for 4 = k[X1,..., Xy].

The inclusion rad(a) C (1),,5, ™ holds in any ring (because maximal ideals are radical
and rad(a) is the smallest radical ideal containing a).

For the reverse inclusion, let / lie in all maximal ideals containing a, and let (ay,...,a,) €
Z(a). The image of the evaluation map

f fai,....an):k[X1,..., Xn] = k¥

is a subring of k¥ which is algebraic over k, and hence is a field (see §1). Therefore,
the kernel of the map is a maximal ideal, which contains a, and therefore also contains /.
This shows that h(ay,...,a,) = 0, and we conclude from the strong Nullstellensatz that
h € rad(a).

14 The spectrum of a ring

Definition
Let A be aring, and let V' be the set of prime ideals in A. For an ideal a in 4, let

Vi) ={peV|pDal.
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PROPOSITION 14.1. There are the following relations:
(a) aCb = V(a) D V(b);
b) VO)=V; V(A)=0;
(¢) V(ab) =V(anb) = V(a)UV(b);
(d) V(O ;s i) =(\ies V(a;) for every family of ideals (a;);er .-

PROOF. The first two statements are obvious. For (c), note that
abCanbCab = V(ab) D V(anb) D V(a)UV(b).

For the reverse inclusions, observe that if p ¢ V(a) U V(b), then there exist an f € a~p and
a g e€b~p;butthen fg € ab~p,and so p ¢ V(ab). For (d) recall that, by definition, ) a;
consists of all finite sums of the form ) f;, fi € a;. Thus (d) is obvious.

Statements (b), (c), and (d) show that the sets V' (a) satisfy the axioms to be the closed
subsets for a topology on V: both the whole space and the empty set are closed; a finite
union of closed sets is closed; an arbitrary intersection of closed sets is closed. This topology
is called the Zariski topology on V. We let spec(A) denote the set of prime ideals in A
endowed with its Zariski topology.

For h € A, let

D(h)=1{peV|h¢p}

Then D(h) is open in V', being the complement of V((4)). If S is a set of generators for an
ideal a, then

VsV =|J

and so the sets D(#) form a base for the topology on V. Note that

heS D(h)’

D(hy-hy) = D(h1) N0 D(hn).

For every element /1 of A, spec(Ay) >~ D(h) (see 5.4), and for every ideal ain A, spec(A4)/a ~
V(a) (isomorphisms of topological spaces).

Idempotents and decompositions of spec(A)

An element e of aring A is idempotent if > = e. For example, 0 and 1 are both idempotents
— they are called the trivial idempotents. Idempotents ey, ..., e, are orthogonal if e;e; =0
for i # j. Every sum of orthogonal idempotents is again idempotent. A set {e1,...,ex}
of orthogonal idempotents is complete if e1 +--- + e, = 1. Every finite set of orthogonal
idempotents {ej,...,e,} can be made into a complete set of orthogonal idempotents by
adding the idempotent e = 1 —(e1 + -+ ep).

LEMMA 14.2. The topological space spec (A) is disconnected if and only if A contains a
nontrivial idempotent e, in which case

spec(A) = D(e) U D(1—e).

PROOF. Let e be a nontrivial idempotent, and let f/ = 1 —e. For a prime ideal p, the map
A — A/p must send exactly one of e or f to a nonzero element. This shows that spec A is a
disjoint union of the sets D(e) and D( f), each of which is open. If D(e) = spec A4, then
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e would be a unit (2.3), and hence can be cancelled from ee = e to give e = 1. Therefore
D(e) # spec A, and similarly, D( 1) # spec A.

Conversely, suppose that spec A is disconnected, say, the disjoint union of two nonempty
closed subsets V(a) and V(b). Because the union is disjoint, no prime ideal contains both
aand b,andsoa+b=A. Thusa+b=1forsomeacaandb €b. Asab e anhb, all
prime ideals contain ab, which is therefore nilpotent (2.5), say (ab)™ = 0. Any prime ideal
containing @™ contains «a; similarly, any prime ideal containing 5™ contains b; thus no prime
ideal contains both ¢ and 5™, which shows that (a™,b™) = A. Therefore, 1 = ra™ + sb™
for some r,s € A. Now

(ra™)(sb™) =rs(ab)™ =0,
(ra™? = (ra™)(1—sb™) = ra™,
(sb™)? = sb™

ra™ +sb™ =1,

and so {ra™,sb™} is a complete set of orthogonal idempotents. Clearly V(a) C V(ra™)
and V(b) C V(sb™). As V(ra™) NV (sb™) = 0, we see that V(a) = V(ra™) and V(b) =
V(sb™), and so each of ra™ and sb™ is a nontrivial idempotent.

Let U be an open and closed subset of spec(A4). The proof of the lemma shows that
U = D(e) for some idempotent e € A. Let U’ = spec(A4) ~ U. The image of ¢ in O(U’)
lies in all prime ideals of O(U"); hence is nilpotent; hence is 0. The image e of e in O(U)
lies in no prime ideals of O(U); hence 1 —e = 0; hence e = 1. As spec(4) = U UU’, this
shows that e is uniquely determined by U.

PROPOSITION 14.3. Let X = spec(A). There are natural one-to-one correspondences
between the following objects.
(a) Decompositions
X=X1U...UuX,

of X into a finite disjoint union of open subsets.
(b) Decompositions
A=A1 XX Ay
of A into a finite product of rings (A; C A).
(c) Decompositions
l=e;+--+ey
of 1 into the sum of a complete sets {eq,...,e,} of orthogonal idempotents in A.

The sets X; in (a) are connected <= no ring A; in (b) has a nontrivial idempotent <= no
idempotent e; in (c) can be written as a sum of two nontrivial idempotents.

PROOF. (b)<>(c). If A = Ay x---x A, (direct product of rings), then the elements

ei =(0,...,1,...,0), 1<i<n,

form a complete set of orthogonal idempotents in A. Conversely, if {eq,...,e,} is a complete
set of orthogonal idempotents in A, then Ae; becomes a ring'® with the addition and
multiplication induced by that of A, and A >~ Ae; X -+ X Aey.

18But Ae; is not a subring of A if n # 1 because its identity element is e; # 1 4. However, the map a +—
aej: A — Ae; realizes Ae; as a quotient of A.
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(c)<>(a). Let {eq,...,e,} be a complete set of orthogonal idempotents, and let p be a
prime ideal in A. Because A/p is an integral domain, exactly one of the ¢;’s maps to 1 in
A/p and the remainder map to zero. This proves that spec (A) is the disjoint union of the
sets D(e;).

Now consider a decomposition

spec(4) = X U...UXy,

with each X; open. We use induction on n to show that it arises from a unique complete set
of orthogonal idempotents. When n = 1, there is nothing to prove, and when n > 2, we write

specA = X1 U(XoU...UXy).

From Lemma 14.2 et seq. we know that there exist unique orthogonal idempotents ey, e] € A
such that e; + e} = 1 and

X1 = D(e1)
XoU...U X, = D(e}) = spec Ae].

By induction, there exist unique orthogonal idempotents e, ..., e, in the ring Ae/ such that
ex+---+e, =e)and X; = D(e;) fori =2,...,n. Now {eq,...,e,} is a complete set of
orthogonal idempotents in A such that X; = D(e;) forall ;.

(b)<>(a). The ideals in a finite product of rings A = A; X --- X A, are all of the form
ap x---x a, with a; an ideal in A; (cf. p.8). As [[; 4i/[[; &; ~[]; A/a;, we see that the
prime ideals are those of the form

Ay XX Aj_y xa; X Aj41 X+ X Ay

with a; prime. It follows that spec(A4) = |_|; spec(A4;) (disjoint union of open subsets).
Let spec(A4) = X1 U...U X}y, and let 1 = e +--- + ey be the corresponding decompo-
sition of 1. Then Ox (X;) >~ Ox(X)e;, and so Ox(X) ~[[; Ox(X;).

Properties of spec(A)

We study more closely the Zariski topology on spec(A4). For each subset S of A, let V(.S)
denote the set of prime ideals containing S, and for each subset W of spec(A4), let 1(W)
denote the intersection of the prime ideals in W':

S CA, V(S) = {p €spec(A) | § Cp}.
W C spec(A), (W)= ﬂpeWp.

Thus V(S) is a closed subset of spec(A) and (W) is a radical ideal in A. If V(a) D W, then
aC I(W),and so V(a) D VI(W). Therefore VI(W) is the closure of W (smallest closed
subset of spec(A) containing W); in particular, VI(W) = W if W is closed.

PROPOSITION 14.4. Let V be a closed subset of spec(A).
(a) There is an order-inverting one-to-one correspondence W <> [ (W) between the closed
subsets of spec(A) and the radical ideals in A.
(b) The closed points of V' are exactly the maximal ideals in V.
(c) Every open covering of V' has a finite subcovering.
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(d) If A is noetherien, then every ascending chain of open subsets Uy C Uy C -+- of V
eventually becomes constant; equivalently, every descending chain of closed subsets
of V eventually becomes constant.

PROOF. (a) and (b) are obvious.

(c) Let (U;)jes be an open covering of spec(4). On covering each U; with basic
open subsets, we get a covering (D(h;)) jey of spec(A) by basic open subsets. Because
spec(A4) = J; D(h;), the ideal generated by the /1 is A, and so | = a1hj, +---+amhj,
for some ay,...,am € A. Now spec(A4) = |J; <;<,, D(h},), and it follows that spec(A) is
covered by finitely many of the sets U; . o

(d) We prove the second statement. A sequence V; D V5 D --- of closed subsets of V
gives rise to a sequence of ideals /(1) C 1(V2) C ..., which eventually becomes constant.
If I(Viy) = I(Vipt1), then VI(Vy) = VIVip+1), 1€, Vin = Ving1.

A topological space V' having property (c) is said to be quasi-compact (by Bourbaki at
least; others call it compact, but Bourbaki requires a compact space to be Hausdorff). A
topological space V' having the property in (d) is said to be noetherian. This condition is
equivalent to the following: every nonempty set of closed subsets of V' has a minimal element.
Clearly, noetherian spaces are quasi-compact. Since an open subspace of a noetherian space
is again noetherian, it will also be quasi-compact.

DEFINITION 14.5. A nonempty topological space is said to be irreducible if it is not the
union of two proper closed subsets.

Equivalent conditions: any two nonempty open subsets have a nonempty intersection;
every nonempty open subset is dense.

If an irreducible space W is a finite union of closed subsets, W = W; U...U W,, then
W = Wi or Wy U...UW,; if the latter, then W = W, or W3 U...U W,, etc.. Continuing in
this fashion, we find that W = W; for some i.

The notion of irreducibility is not useful for Hausdorff topological spaces, because the
only irreducible Hausdorff spaces are those consisting of a single point — two points would
have disjoint open neighbourhoods.

PROPOSITION 14.6. A closed subset W of spec(A) is irreducible it and only if (W) is
prime. In particular, the spectrum of a ring A is irreducible if and only if the nilradical of A
is prime.

PROOF. =>: Let W be an irreducible closed subset of spec(A), and suppose that fg € I(W).
Then fg lies in each p in W, and so either f € por g € p; hence W C V(f)U V(g), and so

W=Wwnv()HuWwnrg)).

As W is irreducible, one of these sets, say W N V( f), must equal W. But then f € I(W).
We have shown that /(W) is prime.

<: Assume I(W) is prime, and suppose that W = V(a) U V(b) with a and b radical
ideals — we have to show that W equals V' (a) or V(b). Recall that V(a) U V(b) = V(aNb)
(see 14.1¢c) and that aN b is radical; hence I(W) = anNb (by 15.3). If W £ V(a), then there
existsan f € a~I(W). Forall g €b,

fgeanb=I1(W).
Because /(W) is prime, this implies that b C I(W); therefore W C V (b).
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Thus, in the spectrum of a ring, there are one-to-one correspondences

radical ideals <> closed subsets
prime ideals <> irreducible closed subsets

maximal ideals <> one-point sets.

EXAMPLE 14.7. Let f € k[X1,...,X,]. According to Theorem 4.10, k[X1,...,X,] is a
unique factorization domain, and so ( f) is a prime ideal if and only if f is irreducible (4.1).
Thus

V(f) isirreducible <= f isirreducible.

On the other hand, suppose that f factors as
f= l_[ flm’ fi distinct irreducible polynomials.
Then

() =AK").  (f™) distinct ideals,
rad((f)) = ﬂ(fi), (f;) distinct prime ideals,
V(f)= U V(fi), V(f;) distinct irreducible algebraic sets.

PROPOSITION 14.8. Let V be a noetherian topological space. Then V' is a finite union of
irreducible closed subsets, V = Vi U...UV,,. If the decomposition is irredundant in the
sense that there are no inclusions among the V;, then the V; are uniquely determined up to
order. The V; are exactly the maximal irreducible subsets of V.

PROOF. Suppose that V' can not be written as a finite union of irreducible closed subsets.
Then, because V is noetherian, there will be a closed subset W of V that is minimal
among those that cannot be written in this way. But W itself cannot be irreducible, and so
W = W; U W,, with each W; a proper closed subset of W. Because W is minimal, both W
and W, can be expressed as finite unions of irreducible closed subsets, but then so can W'.
We have arrived at a contradiction.
Suppose that
V=WVu..uV,=wu...uw,

are two irredundant decompositions. Then V; = j(V,' N W;), and so, because V; is
irreducible, V; = V; N W; for some j. Consequently, there exists a function f:{1,...,m} —
{1,....n} such that V; C Wy(;) for each i. Similarly, there is a function g:{1,...,n} —
{1,....m} such that W; C Vg (;) for each j. Since V; C Wy(;) C Vg r(;)» we must have
gf(i)=1i and V; = Wy(;); similarly fg = id. Thus f and g are bijections, and the
decompositions differ only in the numbering of the sets.

Let W be a maximal irreducible subset of V. Then

W=WinW)U...UVmNW).

Eachset V; N W is closedin W,andso W = V; N W for some i, i.e., W C V; for some i.
Because W is maximal, it equals V;.

The V; given uniquely by the proposition are called the irreducible components of V.
In Example 14.7, the V( f;) are the irreducible components of V' ( f).
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COROLLARY 14.9. Every radical ideal a in a noetherian ring A is a finite intersection of
prime ideals, a = p; N ...Np,; if there are no inclusions among the p;, then the p; are
uniquely determined up to order. Every prime ideal of A containing a contains some p; .

PROOF. In view of the correspondence between radical (resp. prime) ideals in A and closed
(resp. irreducible closed) subsets in Spec(A), this is a restatement of the proposition.

In particular, a noetherian ring has only finitely many minimal prime ideals, and their
intersection is the radical of the ring.

COROLLARY 14.10. A noetherian topological space has only finitely many connected
components (each of which is open).

PROOF. Each connected component is closed, hence noetherian, and so is a finite union of
its irreducible components. Each of these is an irreducible component of the whole space,
and so there can be only finitely many.

REMARK 14.11. (a) Anirreducible topological space is connected, but a connected topolog-
ical space need not be irreducible. For example, Z (X X>) is the union of the coordinate axes
in k2, which is connected but not irreducible. A closed subset V' of spec(A) is not connected
if and only if there exist proper ideals a and b such thatanb = I(V) and a4+ b = A.

(b) A Hausdorff space is noetherian if and only if it is finite, in which case its irreducible
components are the one-point sets.

(c) In a noetherian ring, every proper ideal a has a decomposition into primary ideals:
a={q; (see §19). For radical ideals, this becomes a simpler decomposition into prime
ideals, as in the corollary. For an ideal (f) in k[X1,..., X,] with f = ]_[fl.mi, it is the
decomposition (f) = [)( fim" ) noted in Example 14.7.

Maps of spectra

Let ¢: A — B be a homomorphism of rings, and let p be a prime ideal of B. Then B/pB
is an integral domain and the map A/¢~!(p) — B/p is injective, and so ¢! (p) is a prime
ideal in A. Therefore ¢ defines a map

¢“%:Spec(B) — Spec(A).

This map is continuous because (%)~ 1 (D(f)) = D(¢(f)). In this way, Spec becomes a
contravariant functor from the category of commutative rings to the category of topological
spaces.

DEFINITION 14.12. A subset C of a noetherian topological space X is constructible if it
is a finite union of subsets of the form U N Z with U open and Z closed.

The constructible subsets of A” are those that can be defined by a finite number of
statements of the form
f(X1,....,X») =0

combined using only “and”, “or”, and “not”. This explains the name.

PROPOSITION 14.13. Let C be a constructible set whose closure C is irreducible. Then C
contains a nonempty open subset of C.
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PROOF. We are given that C = | J(U; N Z;) with each U; open and each Z; Cl_osed. We
may assume that each set U; N Z; in this decomposition is nonempty. Clearly C C UZi,
and as C is irreducible, it must be contained in one of the Z;. For this i

COUNZD>UNCOUNCOUNUNZ)=U;NZ;.
Thus U; N Z; = U; N C is a nonempty open subset of C contained in C.

THEOREM 14.14. Let A be a noetherian ring, and let ¢: A — B be a finitely generated
A-algebra. The map ¢“:Spec(B) — Spec(A) sends constructible sets to constructible sets.
In particular, if U is a nonempty open subset of Spec(B), then 9% (U) contains a nonempty
open subset of its closure in Spec(A).

PROOF. The “in particular” statement of the theorem is proved for finitely generated k-
algebras in (15.8) below and for noetherian rings in (21.11) below.

We now explain how to deduce the main statement of the theorem from the “in particular
statement. Let X = Spec(A) and Y = Spec(B), and let C be a constructible subset of Y.
Let Y; be the irreducible components of Y. Then C NY; is constructible in Y;, and ¢4(Y') is
the union of the ¢?(C N Y;); it is therefore constructible if the ¢ (C N Y;) are. Hence we
may assume that Y is irreducible. Moreover, C is a finite union of its irreducible components,
and these are closed in C; they are therefore constructible. We may therefore assume that C
also is irreducible; C is then an irreducible closed subvariety of Y.

We shall prove the theorem by induction on the dimension of Y. If dim(Y') = 0, then the
statement is obvious because Y is a point. If C # Y, then dim(C) < dim(Y’), and because
C is constructible in C, we see that ¢ (C) is constructible (by induction). We may therefore
assume that C = Y. But then C contains a nonempty open subset of ¥, and so we know
that ¢?(C') contains an nonempty open subset U of its closure. Replace X with the closure
of p?(C), and write

99

9% (C) =U Up*(CN(p")~ (X ~U)).
Then (¢%)~1(X ~ U) is a proper closed subset of Y (the complement of X — U is dense in

X and ¢ is dominant). As C N (¢%)~1(X ~U) is constructible in (¢%)~1 (X ~U), the set
©%(C N (%)~ (X ~U)) is constructible in X by induction, which completes the proof.

Let p and p’ be prime ideals in aring A. If p C p’ (i.e., p’ € V(p)), then we say that p’ is
a specialization of p and that p is a generalization of p’.

PROPOSITION 14.15. Let A be a noetherian ring, and let X = Spec(A). A constructible
subset Z of X is closed if it is closed under specialization.

PROOF. Let W be an irreducible component of Z, and let p = I(W); then W = V(p), i.e.,
W consists of the specializations of p. Then W N Z is constructible and it is dense in W,
and so it contains a nonempty open subset U of W (14.13). Hence p € U and, because Z
is closed under specialization, W C Z. As Z contains all irreducible components of Z, it
contains Z.

PROPOSITION 14.16. Let A be a noetherian ring, and let ¢: A — B be a finitely generated
A-algebra. If ¢ satisfies the going-down theorem, then the map ¢%:Spec(B) — Spec(A) is
open (i.e., sends open subsets to open subsets).

PROOF. Let U be an open subset of Spec(B), Then ¢4 (U) is constructible (14.14), and the
going-down theorem says that it is closed under generalization. Therefore Spec(A) ~ p?(U)
is constructible and closed under specialization, and hence closed.
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15 Jacobson rings and max spectra

DEFINITION 15.1. A ring A is Jacobson if every prime ideal in A is an intersection of
maximal ideals.

A field is Jacobson. The ring Z is Jacobson because every nonzero prime ideal is
maximal and (0) =) » 1Drime( p). A principal ideal domain (more generally, a Dedekind
domain) is Jacobson if it has infinitely many maximal ideals.!® A local ring is Jacobson if
and only if its maximal ideal is its only prime ideal.

PROPOSITION 15.2. Every finitely generated algebra over a field is Jacobson.
PROOF. Apply (13.10).

PROPOSITION 15.3. In a Jacobson ring, the radical of an ideal is equal to the intersection
of the maximal ideals containing it. In particular, an element is nilpotent if it is contained in
all maximal ideals.

PROOF. Proposition 2.5 says that the radical of an ideal is an intersection of prime ideals,
and so this follows from the definition of a Jacobson ring.

ASIDE 15.4. Every ring of finite type over a Jacobson ring is a Jacobson ring (EGA 1V, 10.4.6).

Max spectra

Let A be ring. The set spm(A) of maximal ideals in A acquires a topology in exactly the
same way as spec(A4). Namely, the closed sets for the topology are the subsets

V@) ={m|m>Da}

of spm(A) with a an ideal in A.

Everything in §14 holds, with essentially the same proofs, for the max spectra of Jacobson
rings. For example, in the proof of (14.2), we used that an element of A is nilpotent if it
is contained in all prime ideals. The is true with “maximal” for “prime” provided A is
Jacobson.

In particular, for a Jacobson ring A4, there are natural one-to-one correspondences between

¢ the decompositions of spm(A) into a finite disjoint union of open subspaces,
¢ the decompositions of A into a finite direct products of rings, and
¢ the complete sets of orthogonal idempotents in A.

ASIDE 15.5. By definition, spm(A) is the subspace of spec(A4) consisting of the closed points.
When A is Jacobson, the map U — U Nspm(A) is a bijection from the set of open subsets of spec(A4)
onto the set of open subsets of spm(A); therefore spm(A4) and spec(A) have the same topologies —
only the underlying sets differ.

1911 a principal ideal domain, a nonzero element a factors as a = up{l ... pi* with u a unit and the p; prime.
The only prime divisors of a are py,..., ps, and so a is contained in only finitely many prime ideals. Similarly,
in a Dedekind domain, a nonzero ideal a factors as a = p{‘ ---p5* with the p; prime ideals (cf. 20.7 below), and
p1,...,pr are the only prime ideals containing a. On taking a = (a), we see that again a is contained in only
finitely many prime ideals.
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ASIDE 15.6. Letk =R or C. Let X be a set and let A be a k-algebra of k-valued functions on X.
In analysis, X is called the spectrum of A if, for each k-algebra homomorphism ¢: A — k, there
exists a unique x € X such that ¢(f) = f(x) forall f € A, and every x arises from a .

Let A be a finitely generated algebra over an arbitrary algebraically closed field k, and let
X = spm(A). An element f of A defines a k-valued function

me f modm

on X. When A4 is reduced, Proposition 13.10 shows that this realizes A4 as a ring of k-valued functions
on X. Moreover, because (45) is an isomorphism in this case, for each k-algebra homomorphism
¢: A — k, there exists a unique x € X such that ¢(f) = f(x) for all f € A. In particular, when
k = C and A is reduced, spm(A) is the spectrum of A in the sense of analysis.

The max spectrum of a finitely generated k-algebra

Let k be a field, and let A be a finitely generated k-algebra. For any maximal ideal m of A,
the field x (m) £ A /m s a finitely generated k-algebra, and so « (m) is finite over k (Zariski’s
lemma, 13.1). In particular, it equals x (m) = k when k is algebraically closed.

Now fix an algebraic closure k. The image of any k-algebra homomorphism A — k¥
is a subring of k! which is an integral domain algebraic over k and therefore a field (see
§1). Hence the kernel of the homomorphism is a maximal ideal in 4. In this way, we get a
surjective map

Homk_alg(A,kal) — spm(A). (44)

Two homomorphisms A — k? with the same kernel m factor as
A — k(m) — k¥,

and so differ by an automorphism? of k. Therefore, the fibres of (44) are exactly the orbits
of Gal(k®/ k). When k is perfect, each extension k(m)/k is separable, and so each orbit
has [k(m): k] elements, and when k is algebraically closed, the map (44) is a bijection.

Set A = k[X1,...,Xn]/a. Then to give a homomorphism A — k® is the same as giving
an n-tuple (ai,...,a,) of elements of k¥ (the images of the X;) such that f(ay,...,a,) =0
for all f € a,i.e., an element of the zero-set V(a) of a. The homomorphism corresponding
to (ai,...,an) maps k(m) isomorphically onto the subfield of k¥ generated by the a;’s.
Therefore, we have a canonical surjection

V(a) — spm(A) (45)

whose fibres are the orbits of Gal(k®/k). When the field k is perfect, each orbit has
kla1,...,an] : k]-elements, and when k is algebraically closed, V(a) ~ spm(A).

Maps of max spectra

Let ¢: A — B be a homomorphism of rings, and let p be a prime ideal of B. Then B/p is an
integral domain and A/¢~!(p) — B/p is injective, and so ¢! (p) is a prime ideal in A. In
this way, spec becomes a functor from rings to topological spaces. Unfortunately, when p is

201 et f and g be two k-homomorphisms from a finite field extension k’ of k into k. We consider the set
of pairs (K, o) in which o is a k-homomorphism from a subfield K of k2! containing f(k’) into k2 such that
ao f = g. The set is nonempty, and Zorn’s lemma can be applied to show that it has a maximal element (K', ).
For such an element K’ will be algebraically closed, and hence equal to k.
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maximal, ¢! (p) need not be maximal — consider for example the inclusion map Z — Q
and the ideal (0) in Q. Therefore, spm is not a functor on the category of all rings, but it is a
functor on the category of finitely generated over a fixed field.

LEMMA 15.7. Let ¢: A — B be a homomorphism of k -algebras, and let m be a maximal
ideal in B. If B is finitely generated over k, then the ideal ¢! (m) is maximal in A.

PROOF. Because B is finitely generated over k, its quotient B/m by any maximal ideal m
is a finite field extension of k (Zariski’s lemma, 13.1). Therefore the image of 4 in B/m is
an integral domain finite over k, and hence is a field (see §1). As this image is isomorphic to
A/@~1(m), this shows that the ideal ¢! (m) is maximal in A.

Therefore ¢ defines a map
@™ :spm(B) — spm(A), mi> g~ (m),

which is continuous because (¢*)~1(D(f)) = D(¢(f)). In this way, spm becomes a
functor from finitely generated k-algebras to topological spaces.

THEOREM 15.8. Let ¢: A — B be a homomorphism of finitely generated k -algebras. Let
U be a nonempty open subset of spm(B), and let ¢*(U)~ be the closure of its image in
spm(A). Then ¢*(U) contains a nonempty open subset of each irreducible component of

e*(U)".

PROOF. Let W = spm(B) and V = spm(A), so that ¢™* is a continuous map W — V.

We first prove the theorem in the case that ¢ is an injective homomorphism of integral
domains. For some b # 0, D(b) C U. According to Proposition 15.9 below, there exists
a nonzero element a € A such that every homomorphim «: A — k2 such that a(a) # 0
extends to a homomorphism B: B — k? such that 8(b) # 0. Let m € D(a), and choose o to
be a homomorphism 4 — k® with kernel m. The kernel of B is a maximal ideal n € D(b)
such that ¢ ~1(n) = m, and so D(a) C ¢*(D(b)).

We now prove the general case. If Wy,..., W, are the irreducible components of W,
then ¢* (W)~ is a union of the sets ¢*(W;)~, and any irreducible component C of ¢*(U)~
is contained in one of ¢* (W;) ™, say ¢*(W;)~. Let q = I(W;) and let p = ¢! (q). Because
W is irreducible, they are both prime ideals. The homomorphism ¢: A — B induces an
injective homomorphism ¢: A/p — B/q, and ¢* can be identified with the restriction of ¢*
to Wy. From the first case, we know that ™* (U N Wj) contains a nonempty open subset of
C, which implies that ¢*(U) does also.

In the next two statements, A and B are arbitrary commutative rings — they need not be
k-algebras.

PROPOSITION 15.9. Let A C B be integral domains with B finitely generated as an algebra
over A, and let b be a nonzero element of B. Then there exists an element a # 0 in A
with the following property: every homomorphism «: A — 2 from A into an algebraically
closed field §2 such that a(a) # 0 can be extended to a homomorphism 8: B — §2 such that

B(b) # 0.

We first need a lemma.
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LEMMA 15.10. Let B D A be integral domains, and assume B = A[t] = A[T]/a. Letc C A
be the ideal of leading coefficients of the polynomials in a. Then every homomorphism
a: A — 2 from A into an algebraically closed field §2 such that a(c) # 0 can be extended
to a homomorphism of B into §2.

PROOF. If a = 0, then ¢ = 0, and every « extends. Thus we may assume a # 0. Let « be a
homomorphism A — £2 such that a(c) # 0. Then there exist polynomials a,, T™ +--- + ag
in a such that a(a,,) # 0, and we choose one, denoted f, of minimum degree. Because
B # 0, the polynomial f is nonconstant.

Extend & to a homomorphism A[T| — §2[T], again denoted «, by sending T to 7', and
consider the subset «(a) of 2[T].

FIRST CASE: o(a) DOES NOT CONTAIN A NONZERO CONSTANT. If the £2-subspace
of 22[T] spanned by a(a) contained 1, then so also would e(a),?' contrary to hypothesis.
Because

T-Y cia(gi) =Y cia(giT), ci€f2, gie€a,
this §£2-subspace an ideal, which we have shown to be proper, and so it has a zero c in £2.
The composite of the homomorphisms

A[T]L.Q[T]—).Q, T—Trc,

factors through A[T']/a = B and extends «.
SECOND CASE: o(a) CONTAINS A NONZERO CONSTANT. This means that a contains a
polynomial

g(T)=0b,T" +---+by suchthat a(bg) #0, «(by)=a(by)="---=0.
On dividing f(T) into g(T') we obtain an equation
alg(T)=q(T)f(T)+r(T), deN, q.reA[T], degr<m.
When we apply «, this becomes

a(am)? a(bo) = a(qg)a(f) +a(r).

Because o( /') has degree m > 0, we must have «(¢) = 0, and so «(r) is a nonzero constant.
After replacing g(T') with r(T'), we may suppose that n < m. If m = 1, such a g(T) can’t
exist, and so we may suppose that m > 1 and (by induction) that the lemma holds for smaller
values of m.

For h(T) = ¢;T" +cr—1T" "' 44 o, let B'(T) = ¢y + -+ +coT". Then the A-
module generated by the polynomials 7*4’(T'), s > 0, h € a, is an ideal a’ in A[T']. Moreover,
a’ contains a nonzero constant if and only if a contains a nonzero polynomial ¢ 7", which
implies t = 0 and A = B (since B is an integral domain).

When a’ does not contain a nonzero constant, we set B’ = A[T]/a’ = A[t]. Then o
contains the polynomial g’ = b, +--- 4+ boT", and a(bg)# 0. Because degg’ < m, the
induction hypothesis implies that « extends to a homomorphism B’ — £2. Therefore, there
exists a ¢ € £2 such that, forall A(T) =c, T +c, 1 T" 14+~ 4co€aq,

B (c) = a(cr) +alcr—1)c+---+coc” = 0.

On taking & = g, we see that ¢ = 0, and on taking 2 = f, we obtain the contradiction
alay,) =0.

21Use that, if a system of linear equation with coefficients in a field k has a solution in some larger field, then
it has a solution in k.
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PROOF (OF 15.9). Suppose that we know the proposition in the case that B is generated by
a single element, and write B = A[t1,...,1,]. Then there exists an element b,,—1 such that any
homomorphism «: A[t1,...,t,—1] — §2 such that a(b,—1) # 0 extends to a homomorphism
B: B — £2 such that 8(b) # 0. Continuing in this fashion (with b,_; for b), we eventually
obtain an element a € A with the required property.

Thus we may assume B = A[t]. Let a be the kernel of the homomorphism 7 > ¢,
A[T] — Alt].

Case (i). The ideal a = (0). Write

b= f(t)=aot" +ait" ' +--+an, a; €A,

and take a = ag. If a: A — £2 is such that a(ag) # 0, then there exists a ¢ € £2 such that
f(c) # 0, and we can take B to be the homomorphism Y d;t" Y a(d;)c'.

Case (ii). The ideal a # (0). Let f(T) = amT™ +---+ ag, am # 0, be an element of
a of minimum degree. Let h(T') € A[T] represent b. Since b # 0, h ¢ a. Because f is
irreducible over the field of fractions of A, it and 4 are coprime over that field. In other
words, there exist u,v € A[T'| and a nonzero ¢ € A such that

uh+vf =c.

It follows now that ca,, satisfies our requirements, for if «(caz,) # 0, then « can be extended
to B: B — £2 by the lemma, and B(u(t)-b) = p(c) # 0, and so B(b) # 0.

REMARK 15.11. In case (ii) of the last proof, both b and h~! are algebraic over A, and so
there exist equations

aobm+...+am:(), ai €A, ag#O0;

agh™ +--+an=0, a, €A, ay#0.

One can show that a = agay, has the property required by the proposition (cf. Atiyah and
Macdonald 1969 5.23, p.66).

ASIDE 15.12. Let A be a noetherian ring, and let ¢: A — B be a finitely generated A-algebra. Then
the statement of (15.8) holds for ¢*: spm(B) — spm(A4) with much the same proof.

ASIDE 15.13. Let A be aring and ¢: A — B a finitely generated A-algebra. If A is Jacobson, so
also is B, and ¢ induces a map spm(B) — spm(A4).

ASIDE 15.14. In general, the map A — A[X] does not induce a map spm(A[X]) — spm(A). Con-
sider for example a discrete valuation ring A with maximal ideal () (e.g., Z(p) with maximal ideal
(p))- The ideal (X — 1) is maximal, because A[X]/(wrX —1) is the field of fractions of A4 (by 5.3),
but (7X —1) N A = (0), which is not maximal.

Exercises

EXERCISE 15.15. Let A denote the polynomial ring Q[X1, X2,...] in countably many
symbols.
(a) Show that A4 is not a Jacobson ring (consider the kernel of a surjective homomorphism
from A to a countable local domain, e.g., Q[X](x)).
(b) Show that (0) = (){m | m a maximal ideal in A}.
See mo151011.
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16 Artinian rings

A ring A is artinian if every descending chain of ideals a; D a; D --- in A eventually
becomes constant; equivalently, if every nonempty set of ideals has a minimal element.
Similarly, a module M over aring A is artinian if every descending chain of submodules
N1 D Ny D --- in M eventually becomes constant.

PROPOSITION 16.1. An artinian ring has Krull dimension zero; in other words, every prime
ideal is maximal.

PROOF. Let p be a prime ideal of an artinian ring 4, and let A’ = A/p. Then A’ is an
artinian integral domain. Let a be a nonzero element of A’. The chain (a) D (a?) D ---
eventually becomes constant, and so a” = a"T1p for some b € A’ and n > 1. We can cancel
a™ to obtain 1 = ab. Thus a is a unit, and so A’ is a field, and p is maximal.

COROLLARY 16.2. In an artinian ring, the nilradical and the Jacobson radical coincide.

PROOF. The first is the intersection of the prime ideals (2.5), and the second is the intersec-
tion of the maximal ideals (2.6).

PROPOSITION 16.3. An artinian ring has only finitely many maximal ideals.

PROOF. Let m; N...Nm, be minimal among finite intersections of maximal ideals in an
artinian ring, and let m be another maximal ideal in the ring. If m is not equal to one of the
m;, then, for each i, there exists an ¢; € m; ~m. Now aj---a, lies in mq N... N'm, but not
in m (because m is prime), contradicting the minimality of m; N...Nm,.

PROPOSITION 16.4. In an artinian ring, some power of the nilradical is zero.

PROOF. Let 91 be the nilradical of the artinian ring 4. The chain 91 D 92 O --- eventually
becomes constant, and so 9" = N"*1 = ... for some n > 1. Suppose that D" # 0. Then
there exist ideals a such that a- 91" # 0, for example 91, and we choose an a that is minimal
among such ideals. There exists an a € a such that a -9" # 0, and so a = («) (by minimality).
Now (@)N" = aN?* = aN™ # 0 and aN” C (a), and so aM”* = (a) (by minimality
again). Hence a = ax for some x € M. Now a = ax = ax? =--- = a0 = 0 because x € N.
This contradicts the definition of a, and so 91" = 0.

LEMMA 16.5. Let A be a ring in which some finite product of maximal ideals is zero. Then
A is artinian if and only if it is noetherian.

PROOF. Suppose that m; ---m, = 0 with the m; maximal ideals (not necessarily distinct),
and consider

ADmpD--Dmy-mp_g Dmy-oemy Dee-Dmype-emy, =0,

The action of A on the quotient M, = my---my_1/my ---m, factors through the field 4/m;,
and the subspaces of the vector space M, are in one-to-one correspondence with the ideals
of A contained between my ---m,—_1 and my ---m,. If A4 is either artinian or noetherian, then
M, satisfies a chain condition on subspaces and so it is finite-dimensional as a vector space
and both artinian and noetherian as an A-module. Now repeated applications of Proposition
3.3 (resp. its analogue for artinian modules) show that if A4 is artinian (resp. noetherian),
then it is noetherian (resp. artinian) as an A-module, and hence as a ring.
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THEOREM 16.6. A ring is artinian if and only if it is noetherian of dimension zero.

PROOF. =-: Let A4 be an artinian ring. After (16.1), it remains to show that A is noetherian,
but according to (16.2), (16.3), and (16.4), some finite product of maximal ideals is zero,
and so this follows from Lemma 16.5.

«: Let A be a noetherian ring of dimension zero. Because A is noetherian, its radical 1
is a finite intersection of prime ideals (14.9), each of which is maximal because dim A = 0.
Hence N is a finite intersection of maximal ideals (2.5), and since some power of 1 is zero
(3.16), we again have that some finite product of maximal ideals is zero, and so can apply
Lemma 16.5.

THEOREM 16.7. Every artinian ring is (uniquely) a product of local artinian rings.

PROOF. Let A be artinian, and let mq, ..., m, be the distinct maximal ideals in 4. We saw
in the proof of (16.6) that some product my"'---m;” = 0. For i # j, the ideal m" + m;l:’ is
not contained in any maximal ideal, and so equals A. Now the Chinese remainder theorem
2.13 shows that

A~ A/m! X x A/mll",

and each ring A/ ml'.” is obviously local.

PROPOSITION 16.8. Let A be a local artinian ring with maximal ideal m. If m is principal,
so also is every ideal in A; in fact, if m = (t), then every ideal is of the form (") for some
r=>0.

PROOF. Because m is the Jacobson radical of A, some power of m is zero (by 16.4); in
particular, (0) = (¢") for some r. Let a be a nonzero ideal in A. There exists an integer r > 0
such that a C m” but a ¢ m”T1. Therefore there exists an element @ of a such that a = ct”
for some ¢ € A buta ¢ (t"1). The second condition implies that ¢ ¢ m, and so it is a unit;
therefore a = (a).

EXAMPLE 16.9. Thering A =k[X1, X2, X3,...]/ (X1, X22, X;’, ...) has only a single prime
ideal, namely, (x1,x2,X3,...), and so has dimension zero. However, it is not noetherian
(hence not artinian).

ASIDE 16.10. Every finitely generated module over a principal Artin ring is a direct sum of cyclic
modules (see mo22722).

17 Quasi-finite algebras and Zariski’s main theorem.

In this section we prove a fundamental theorem of Zariski.>> Throughout, k is a field and A
is a commutative ring.

22Qur exposition of the proof follows those in Raynaud 1970 and in Hochster’s course notes from Winter,
2010.
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Quasi-finite algebras

PROPOSITION 17.1. Let B be a finitely generated k-algebra. A prime ideal q of B is an
isolated point of spec(B) if and only if By is finite over k.

PROOF. To say that q is an isolated point of spec(B) means that there exists an f € B~
such that spec(Bs) = {q}. Now By is noetherian with only one prime ideal, namely,
m = qB r, and so it is artinian (16.6). The quotient By /m is a field which is finitely
generated as a k-algebra, and hence is finite over k (Zariski’s lemma 13.1). Because B is
artinian,
ByoOm>Dm? D

can be refined to a finite filtration whose quotients are one-dimensional vector spaces over
B ¢ /m. Therefore By is a finite k-algebra. As f ¢ q, we have By = (B )y, which equals

B because B is local. Therefore By is also a finite k-algebra.
For the converse, suppose that By is finite over k, and consider the exact seqence

0O—>M—B—B;—N-—0 (46)

of B-modules. When we apply the functor S~ ! to (46), it remains exact (5.11), but the
middle arrow becomes an isomorphism, and so M; = 0 = N;. Because B is noetherian,
the B-module M is finitely generated, with generators eq,...,ep, say. As My = 0, there

exists, for each i, an f; € B~ q such that fje; = 0. Now [’ < f1... fm has the property
that f'M =0, and so M s, = 0.

Because By is a finite k-algebra, N is finitely generated as a k-module, and therefore
also as a B-module. As for M, there exists an f” € B ~q such that M s» = 0. Now

f £ f'f" € B~q has the property that M =0 = Ny. When we apply the functor S;l
to (46), we obtain an isomorphism By >~ B, and so spec(B s) = spec(By) = {q}, which
shows that g is an isolated point.

PROPOSITION 17.2. Let B be a finitely generated k -algebra. The space spec(B) is discrete
if and only if B is a finite k -algebra.

PROOF. If B is finite over k, then it is artinian and so (16.7)
B = ]_[{Bm | m maximal} (finite product),

and
spec(B) = |_| spec(By) = |_| {m} (disjoint union of open subsets).
m m

Therefore each point is isolated in spec(B).
Conversely, if spec(B) is discrete then it is a finite disjoint union,

spec(B) = |_| spec(Byr,), fi € B,

1<i<n

with spec(By,) = {q;}. Hence B = [[,;, By, (by 14.3) with B, = By,. According to
Proposition (17.1), each k-algebra By, is finite over k, and so B is finite over k.

DEFINITION 17.3. Let B be a finitely generated A-algebra.
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(a) Let g be a prime ideal of B, and let p = q°. The ring B is said to be quasi-finite over
Aat qif By/pBy is afinite k (p)-algebra.

(b) The ring B is said to be quasi-finite over A if it is quasi-finite over A at all the prime
ideals of B.

PROPOSITION 17.4. Let B be a finitely generated A-algebra. Let q be a prime ideal of B,
and let p = q°. Then B is quasi-finite over A at q if and only if q is an isolated point of

spec(B ® 4« (p)).

PROOF. As
Bq/qu i~ (B/pB)q/p >~ (B®4y K(p))q/p ,
this is an immediate consequence of (17.1) applied to the x (p)-algebra B ® 4 x (p).

The prime ideals of B/pB correspond to the prime ideals of B whose contraction to A
contains p, and the prime ideals of B ® 4 x(p) correspond to the prime ideals of B whose
contraction to A is p. To say that B is quasi-finite over A at q means that q is both maximal
and minimal among the prime ideals lying over p (i.e., that each point of spec(B ® 4 K (p))
is closed).

PROPOSITION 17.5. A finitely generated A-algebra B is quasi-finite over A if and only if,
for all prime ideals p of A, B ® 4 k(p) is finite over k (p).

PROOF. Immediate consequence of (17.2).

EXAMPLE 17.6. Let C be a finitely generated A-algebra. If C is finite over A, then
C ® 4 k(p) is finite over «(p) for all prime ideals p of A, and so C is quasi-finite over A.
In particular, spec(C ® 4 k(p)) is discrete for all primes p of A, and so if B is a finitely
generated C -algebra such that the map spec(B) — spec(C) is an open immersion, then B
is also quasi-finite over A. Zariski’s main theorem says that all quasi-finite A-algebras arise
in this way.

The next two lemmas will be used in the proof of Zariski’s main theorem.

LEMMA 17.7. Let A — C — B be homomorphisms of rings such that the composite
A — B is of finite type, and let q be a prime ideal of B. If B is quasi-finite over A at q, then
it is quasi-finite over C at q.

PROOF. Letp 4 and pc be the inverse images of q in A and C respectively. Then spec(B ® ¢
k(pc)) is subspace of spec(B ® 4 k(p4)), and so if q is an isolated point in the second space,
then it is an isolated point in the first space.

LEMMA 17.8. Let A C C C B berings. Let q be a prime ideal of B, and lett = qN C and
p=qnNA.
(a) If q is minimal among the primes lying over p and there exists au € C ~ q such that
Cy = By, then v is minimal among the primes lying over p.
(b) If B is integral over a finitely generated A-subalgebra By and q is maximal among the
prime ideals lying over p, then v is maximal among the prime ideals lying over p.
(c) Assume that B is integral over a finitely generated A-subalgebra By, and that there
exists au € C ~q such that C, = B,,. If B is quasi-finite over A at q, then C is
quasi-finite over A at t.
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PROOF. (a) If ¢/ is a prime ideal of C lying over p and strictly contained in t, then by
extending v’ to C,, = By, and then contracting the result to B, we obtain a prime ideal q’ of
B lying over p and strictly contained in g.

(b) We may replace A, C, and B with their localizations at p, and so assume that A is
local with maximal ideal p. Then

A/pCC/rC B/q

and we also have
A/p C By/t' C B/t

where t/ = q N By. As  is maximal among the prime ideals lying over p, B/q is a field. As
B/q is integral over Bg/v/, the latter is also a field (see 7.1), and it is finitely generated as an
A /p-algebra. Zariski’s lemma (13.1) now shows that By /t’ is a finite algebraic extension of
A/p, and so B/q is an algebraic extension of A/p. It follows that C /v is a field, and so t is
maximal among the prime ideals in C over p.

(c) Combine (a) and (b) (with the remark following (17.3)).

ASIDE 17.9. Geometrically, to say that A — B is quasi-finite means that the map Spec B — Spec 4
has finite fibres. The condition that A — B be finite is much stronger: it not only requires that
Spec B — Spec A have finite fibres but also that it be universally closed. See, for example, my notes
on algebraic geometry.

Statement of Zariski’s main theorem

THEOREM 17.10. Let B be a finitely generated A-algebra, and let A’ be the integral closure
of A in B. Then B is quasi-finite over A at a prime ideal q if and only if A’, ~ B for some

fed ~q.

The sufficiency is obvious; the proof of the necessity will occupy the rest of this section.
First, we list some consequences.

COROLLARY 17.11. Let B be a finitely generated A-algebra. The set of prime ideals of B
at which B is quasi-finite over A is open in spec(B).

PROOF. Let q be a prime ideal of B such that B is quasi-finite over A at q. The theorem
shows that there exists an f € A~ q such that A", >~ B . Write A’ as the union of the

finitely generated A-subalgebras A; of A’ containing f:

A= 4

Because A’ is integral over A, each A; is finite over A4 (see 6.3). We have

By~ 4 =] Air.

Because B is a finitely generated A-algebra, By = A; for all sufficiently large A4;. As the
Aj are finite over A, By is quasi-finite over A4, and spec(B ¢) is an open neighbourhood of q
consisting of quasi-finite points.

COROLLARY 17.12. Let B be a finitely generated A-algebra, quasi-finite over A, and let
A’ be the integral closure of A in B. Then
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(a) the map Spec B — Spec A’ is an open immersion, and
(b) there exists an A-subalgebra A” of A’, finite over A, such that Spec B — Spec A” is
an open immersion.

PROOF. (a) Because B is quasi-finite over A at every point of spec(B), the theorem implies
that there exist f; € A’ such that the open sets spec(B s, ) cover spec(B) and A’f ~ By, for
all i. As spec(B) quasi-compact, finitely many sets spec(B f,) suffice to cover spec(B), and
it follows that spec(B) — spec(A4’) is an open immersion.

(b) We have seen that spec(B) = |, <i<n SPeC(B ;) for certain f; € A’ such that A’fi ~
B #,. The argument in the proof of (17.11) shows that there exists an A-subalgebra A” of A’,
finite over A, which contains fi,..., f, and is such that B s, ~ A’}i for all i. Now the map
spec(B) — spec(A”) is an open immersion.

Theorem 17.10, its corollary 17.12, and various global versions of these statements are
referred to as Zariski’s main theorem.

A variant of Zariski’s main theorem

PROPOSITION 17.13. Let A C C C B be rings such that A integrally closed in B, C is
finitely generated over A, and B is finite over C. If B is quasi-finite over A at a prime ideal
q, then B, = A, withp = qN A.

PROOF THAT 17.13 IMPLIES 17.10

Let A, A, and B be as in the Theorem 17.10. We apply the proposition to A’ C B = B —
Lemma 17.7 shows that the ring B is quasi-finite over A’ at q. The proposition shows that
By = A;/ with p’ = qN A’. Let by,...,b, generate B as an A’-algebra, and let b; denote
the image of b; in By = A"J,. Then b} = a;/f for some a; € A" and f € A’ ~p’. The b; are
in the image of the map A’f — B s, which is therefore surjective. But A/f — B is injective
because A C B, and so the map is an isomorphism. This completes the proof of the theorem.

Proof of Proposition 17.10

We proceed by proving four special cases of Proposition 17.10.

LEMMA 17.14. Let A C A[x] = B be rings such that A is integrally closed in B. If B is
quasi-finite over A at a prime ideal q, then B, = A, withp = qN A.

PROOF. The hypotheses remain true when we invert the elements of § ~ p to obtain A, C
Ap[x] = By. Thus, we may suppose that A4 is local with maximal ideal p, and we have to
prove that B = A. As A is integrally closed in B and B = A[x], it suffices to show that x is
integral over A.

Let kK = A/p and consider the k-algebra

def

kix] = Alx]®@ak = B®4k(p).

By assumption, q is an isolated point in spec(k[x]). Consequently, X is algebraic over k,
because otherwise k[x] would be a polynomial ring over k, and its spectrum would have no
isolated points. Therefore there exists a polynomial F' € A[X] with nonconstant image in
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k[X] such that F(x) € pA[x]. Now F — F(x) is a polynomial in A[X] that vanishes on x
and has at least one coefficient not in p. Choose such a polynomial A of minimum degree

m, and write it
H(X)=auX"+---+ay.

The equation ¢! H(x) = 0 can be written
(@mx)™ + am—1(@mx)™ 1 +--- —i—aoa%_l =0.
It shows that a,, x is integral over A, and so lies in A. Now the polynomial
(amXx +am—1) X" V- +ap

lies in A[X] and vanishes on x. As it has degree < m, all of its coefficients must lie in
p. In particular, a;,x 4+ am—1 € p. If a,, is a unit, then x is integral over A, as required.
Otherwise, a,, € p and a,,—1 is a unit (because otherwise all coefficients of H lie in p);
hence a,,—1 € pB, which is contradiction because pB C g.

LEMMA 17.15. Let B be an integral domain containing a polynomial ring A[ X ] and integral
over it. Then B is not quasi-finite over A at any prime ideal q.

PROOF. Let q be a prime ideal of B, and let p = qN A. If B is quasi-finite over A at ¢, then
q is both maximal and minimal among the prime ideals lying over p. We shall assume that q
is maximal and prove that it can’t then be minimal.

Suppose first that A is integrally closed, and let t = g N A[X]. If ¢t were not maximal
among the prime ideals of A[X] lying over p, then the going-up theorem (7.6) would imply
that q is not either. Therefore v is maximal among the prime over p, and it follows that its
image T in x (p)[X] is maximal. In particular, T # 0, and so t strictly contains the prime ideal
pA[X]in A[X]. As A is integrally closed, A[X] is also (6.17), and the going down theorem
(7.11) shows that q strictly contains a prime ideal lying over pA[X]. Therefore, q is not
minimal among the prime ideals lying over p.

In the general case, we let B’ denote the integral closure of B in its field of fractions.
Then B’ contains the integral closure A’ of A, and is integral over A’[T]. Let q’ be a prime
ideal of B’ lying over q (which exists by 7.5), and let p’ = g’ N A”. As q is maximal among
the primes lying over p, ¢’ is maximal among those lying over p’ (apply 7.4 to B C B’). But,
according to the preceding paragraph, q’ is not minimal, which implies that q is not minimal
(apply 7.4 again).

LEMMA 17.16. Let A C A[x] C B be rings such that B is integral over A[x] and A is
integrally closed in B. If there exists a monic polynomial F € A[X] such that F(x)B C A[x],
then A[x] = B.

PROOF. Let b € B be arbitrary. By assumption F(x)b € A[x], and so F(x)b = G(x) for
some polynomial G in A[X]. As F is monic, we can divide F into G to get

G=QF+R, degR<degF, Q,RceA[X].

Now
F(x)b=G(x) = Q(x)F(x)+ R(x).

Forc =b— Q0(x),
F(x)c = R(x). 47)
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To show that b € A[x], it suffices to show that ¢ € A4, and for this it suffices to show that ¢ is
integral over A.

Let A’ be the image of A in B.. As deg R < deg F, the equality (47) shows that x /1, as
an element of B, is integral over the subring A’.. As B is integral over A[x], this implies that
B, is integral over A.. In particular, c¢/1 is integral over A, and so it satisfies an equation
whose coefficients we can assume to have a common denominator ¢ :

a a
/D" + /)" ok T =0, a4,
(equality in B.). Therefore
MIm g™ 4 tay,

is an element of B whose image in B, is zero, and so is killed by a power of ¢. This shows
that ¢ is integral over A, as required.

Let B be a finite A-algebra. The conductor of B in A is
f(B/A)={aec A|aB C A}.

This is an ideal of both A and B. In fact, it is the largest ideal in A that is also an ideal
in B, because every element a of such an ideal has the property that a B C A. For any
multiplicative subset S of 4,

f(S~'B/S'A) = S~'§(B/A). (48)

LEMMA 17.17. Let A C A[x] C B berings such that B is finite over A[x] and A is integrally
closed in B. If B is quasi-finite over A at a prime ideal q, then B, = A, withp = qN A.

PROOF. Let f=f(B/A[x]), so
f={a € Alx]|aB C Alx]}.

We first consider the case that f ¢ q. Let v = q N A[x]. For any u € §f~ q, we have
A[x]y = By, and so Lemma 17.8 shows that A[x] is quasi-finite over 4 at v.>> Now Lemma
17.14 shows that A[x], = A,. But B is finite over A[x], and therefore By is finite over
Alx], = Ap. As A is integrally closed in B, Ay is integrally closed in By, and therefore
Ay = By, as required.

It remains to consider the case f C q. We choose a prime ideal n C q of B minimal
among those containing f. Let ¢ denote the image of x in the ring B/n, and let m = nN A.
Now

A/m C (A/m)[t] C B/n,

and B/n is integral over (A/m)[t]. As B is quasi-finite over A at g, the quotient B/n is
quasi-finite over A/m at q/n. Now Lemma 17.15 implies that ¢ is algebraic over A/m. We
shall complete the proof by obtaining a contradiction, which will show that this case doesn’t
occur.

After making an extension of scalars A — A, we may assume that A is a local ring
with maximal ideal m. Let n’ = nN A[x]. Because 7 is algebraic over A/m, the integral

23Here we follow Hochster. Raynaud simply states that A[x] is quasi-finite over A at t.
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domain A[x]/n’ is a finite A/m-algebra, and hence a field (see §1). Therefore, n’ is maximal
in A[x], and it follows from (7.3) that n is maximal in B. Thus B/n is a field.

Because ¢ is algebraic over A/m, there exists a monic polynomial F in A[X] such
that F(x) € n. But n is minimal among the prime ideals of B containing §, and so nB,, is
minimal among the prime ideals of B, containing f,. In fact, nB,, is the only prime ideal
containing f,, and so nBy, is the radical of f,. Therefore, there exists an integer » > 0 such
that (F(x))" € fy, and a y € B ~nsuch that yF(x)" € {.

We therefore have yF(x)" B C A[x]. On applying Lemma 17.16 with A C A[x] C B/,
B’ = A[x][yB], and F’ = F", we deduce that B’ = A[x] and therefore that yB C A[x].
Hence y € f C n, which contradicts the definition of y.

PROOF OF PROPOSITION 17.10

We use induction on the number n of generators of the A-algebra C. If n = 0, then B is
integral over A, and so B = A. Assume that n > 0 and that the proposition has been proved
when C is generated by n — 1 elements.
Write C = A[xy,...,xy], and let A’ be the integral closure of A[xy,...,x;—1] in B.
Then
A’ c A'[x,] C B,

and B is finite over A’[x,]. The ring B is finite over A’[x,] and it is quasi-finite over A at q,
and so B is quasi-finite over A’ at q (by 17.7). From Lemma 17.17 we deduce that A;/ = By
withp’ = A" Nq.

As A’ is integral over A[xy,...,X,—1], it is a union of its finite subalgebras,

A = Ul_ A;, A finite over A[x1,...,Xp—1].

Letp; = qN A} =p’NA’. As B is finitely generated over A[x1,...,X,—1], the canonical
homomorphism
(A;)p; —> Bp;

is an isomorphism for all sufficiently large i. For such an i, we have a fortiori that
(A;)p; ~ Bq,

and so A is quasi-finite over A at p;. On applying the induction hypothesis to A, A[x1,...,Xp—1],
and A}, we deduce that
Ap >~ (A))p =~ (A:-)p;,

and consequently that A, >~ By,. This completes the proof of Proposition 17.13 and hence of
Theorem 17.10.

18 Dimension theory for finitely generated k-algebras

Except in the final subsection, A is an integral domain containing a field k and finitely
generated as a k-algebra. We define the transcendence degree of A over k, trdeg; A4, to be
the transcendence degree over k of the field of fractions F(A) of A (see §9 of my notes
Fields and Galois Theory). Thus A has transcendence degree d if it contains an algebraically
independent set of d elements, but no larger set (ibid. 8.12).
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PROPOSITION 18.1. For any linear forms £1,...,¢,, in X1,..., X,, the quotient ring
k[ X1,....Xnl/(E1,....4m)

is an integral domain of transcendence degree equal to the dimension of the subspace of k"
defined by the equations

PROOF. This follows from the more precise statement:

Let ¢ be an ideal in k[X1,..., X,] generated by linearly independent linear
forms £1,...,¢,, and let X;,,..., X;,_, be such that

o e Xiyy oo Xiy )}
is a basis for the linear forms in Xq,..., X;,. Then

k(X1,....Xn)/c =~ k(X .....Xi,_,]

This is obvious if the forms ¢; are Xy,..., X,. In the general case, because {X1,..., X}
and {{1,..., 4. X;,..... Xj,_, } are both bases for the linear forms, each element of one set
can be expressed as a linear combination of the elements of the other. Therefore,

k[X1,....Xn]=kll1,....0r. Xy oo Xipp )
and so

KIX1..... Xpl/e=K[C1,... b Xiyo oo X ]/
~k[Xi,..... X, ]

PROPOSITION 18.2. For any irreducible polynomial f ink[X1,..., Xy], the quotient ring
k[X1,...,Xn]/(f) has transcendence degree n — 1.

PROOF. Let
klxi,....,xn]l =k[X1,.... Xal/(f),  xi = Xi +(f),

and let k(x1,...,x,) be the field of fractions of k[x1,...,x,]. Since f is not zero, some X,
say, Xp, occurs in it. Then X, occurs in every nonzero multiple of £, and so no nonzero
polynomial in X1,..., X,—1 belongs to (f). This means that x1,...,x,—; are algebraically
independent. On the other hand, x;, is algebraic over k(x1,...,x,—1), and so {X1,...,Xn—1}
is a transcendence basis for k(xy,...,x,) over k.

PROPOSITION 18.3. For every nonzero prime ideal p in a k-algebra A,
trdegy (A/p) < trdeg; (A).
PROOF. We may suppose that
A=k[X1,...,Xn]/a=k[x1,...,Xxn].

For f € A, let f denote the image of f in A/p, so that A/p = k[X1,...,Xn]. Letd =
trdeg; A/p, and number the X; so that Xy, ..., X  are algebraically independent (for a proof
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that this is possible, see 8.9 of my notes Fields and Galois Theory). I shall show that, for
any nonzero f € p, the d + 1 elements x1,...,xy, f are algebraically independent, which
shows that trdeg; A > d + 1.

Suppose otherwise. Then there is a nontrivial algebraic relation, which we can write

ao(x1,....xg) fM4+ar(xi,....xg) " 4o Fam(x,...,xg) =0,

with a; € k[X1,...,X4] and a¢ # 0. Because 4 is an integral domain, we can cancel a
power of f if necessary to make a,,(x1,...,xgz) nonzero. On applying the homomorphism
A — A/p to the above equality, we find that

am(x1,...,X3) =0,
which contradicts the algebraic independence of X1,...,X .

PROPOSITION 18.4. Let A be a polynomial ring. If p is a prime ideal in A such that
trdeg; A/p = trdegg A — 1, thenp = (f') for some f € A.

PROOF. The ideal p is nonzero because otherwise A and A/p would have the same tran-
scendence degree. Therefore p contains a nonzero polynomial, and even an irreducible
polynomial f, because it is prime. According to (4.1), the ideal ( f) is prime. If (f) # p,
then

trdeg; A/p 1&3 trdeg, A/(f) 182 trdeg, A —1,

which contradicts the hypothesis.

THEOREM 18.5. Let f € A be neither zero nor a unit, and let p be a prime ideal that is
minimal among those containing ( f'); then

trdeg; A/p = trdegp A — 1.

We first need a lemma.

LEMMA 18.6. Let A be an integrally closed integral domain, and let L be a finite extension
of the field of fractions K of A. If a € L is integral over A, then Nmy /ga € A, and o
divides Nmp ) x « in the ring Alc].

PROOF. Let X7 +a,_1X"~! +... 4+ ag be the minimum polynomial of « over K. Then

r divides the degree n of L/K, and Nmy, /g (o) = :I:ag (see 5.40 of my notes Fields and
Galois Theory). Moreover, ag lies in A by (6.11). From the equation

0=a(@ ' +a,_1a" % +---+a1)+ao
we see that o divides ag in A[«], and therefore it also divides Nmy, /g a.

PROOF (OF THEOREM 18.5). Write rad( /) as an irredundant intersection of prime ideals
rad(f) =p1 N...Npy (see 14.9). Then V(a) = V(p1)U---U V(p;) is the decomposition
of V(a) into its irreducible components. There exists an mg € V(p1) ~|J;~, V(p;) and an
open neighbourhood D(h) of mg disjoint from | -, V(p;). The ring Ay, (resp. Ap/S™1p)
is an integral domain with the same transcendance degree as A (resp. A/p) — in fact, with
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the same field of fractions. In Ay, rad(%) =rad(f)® = p{. Therefore, after replacing A
with Ay, we may suppose that rad( /) is prime, say, equal to p.

According to the Noether normalization theorem (8.1), there exist algebraically inde-
pendent elements x1,...,x4 in A such that A4 is a finite k[x1,...,x ]-algebra. Note that
d = trdeg; A. According to the lemma, fo e Nm( f) lies in k[x1,...,x4], and we shall
show that p N k[x1,...,x4] = rad(fp). Therefore, the homomorphism

klxi.....xq]/rad(fo) = A/p

is injective. As it is also finite, this implies that

trdeg, A/p = trdegik[x1,...,x4]/rad( fo) B2 1,
as required.

By assumption A4 is finite (hence integral) over its subring k[x1,...,x4]. The lemma
shows that f divides fp in A, and so fo € (f) C p. Hence (fo) C pNk[xy,...,x4], which
implies

rad( fo) CpNklxy,...,x4]
because p is radical. For the reverse inclusion, let g € pNk[x1,...,x4]. Then g € rad(f),
and so g™ = fh for some h € A, m € N. Taking norms, we find that

g™ =Nm(fh) = fo-Nm(h) € (fo),
where e is the degree of the extension of the fields of fractions, which proves the claim.

COROLLARY 18.7. Let p be a minimal nonzero prime ideal in A; then trdeg; (A/p) =
trdegy (A)—1.

PROOF. Let f be a nonzero element of p. Then f is not a unit, and p is minimal among the
prime ideals containing f .

THEOREM 18.8. The length d of any maximal (i.e., nonrefinable) chain of distinct prime
ideals

Pa D Ppa—12:-Dpo (49)
in A is trdegy, (A). In particular, every maximal ideal of A has height trdegy, (A), and so the
Krull dimension of A is equal to trdegy, (A).

PROOF. From (18.7), we find that
trdegy () = trdegy (A/p1) + 1 = - = trdegy (4 /pg) + d.

But p; is maximal, and so A/p is a finite field extension of k. In particular, trdeg; (4/py) =
0.

EXAMPLE 18.9. Let f(X,Y) and g(X,Y) be nonconstant polynomials with no common
factor. Then k[X,Y]/(f) has Krull dimension 1, and so k[X,Y]/(f, g) has dimension zero.

EXAMPLE 18.10. We classify the prime ideals p in A = k[X,Y]. If A/p has dimension
2, then p = (0). If A/p has dimension 1, then p = (f) for some irreducible polynomial
f of A (by 18.4). Finally, if A/p has dimension zero, then p is maximal. Thus, when k
is algebraically closed, the prime ideals in k[ X, Y] are exactly the ideals (0), ( f) (with f
irreducible), and (X —a,Y —b) (with a,b € k).
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REMARK 18.11. Let A be a finitely generated k-algebra (not necessarily an integral do-
main). Every maximal chain of prime ideals in A ending in fixed prime ideal p has length
trdegy (A/p), and so the Krull dimension of A is max(trdegy (A/p)) where p runs over the
minimal prime ideals of A. In the next section, we show that a noetherian ring has only
finitely many minimal prime ideals, and so the Krull dimension of A is finite.

If x1,...,xm is an algebraically independent set of elements of 4 such that 4 is a finite
k[x1,...,xm]-algebra, then dim A = m.

REMARK 18.12. Let A be a discrete valuation ring A with maximal ideal (;r). Then A[X]
is a noetherian integral domain of Krull dimension 2, and (7 X — 1) is a maximal ideal in
A[X] of height 1 (cf. 15.14).

A short proof that the Krull dimension equals the transcendence de-
gree

The following proof shortens that in Coquand and Lombardi, Amer. Math. Monthly 112
(2005), no. 9, 826-829.

Let A be an arbitrary commutative ring. Let x € A, and let Sy, denote the multiplicative
subset of A consisting of the elements of the form

x"(1—ax), neN, acA.

The boundary Ay, of A at x is defined to be the ring of fractions S x 1}A.
We write dim(A) for the Krull dimension of A.

PROPOSITION 18.13. Let A be aring and letn € N. Then
dim(A) <n <= forallx € A, dim(Ag) <n—1.

PROOF. Recall (5.4) that Spec(S~1A4) ~ {p € Spec(4) | pNS = @#}. We shall need the
following statements.
(a) For every x € A and maximal ideal m C A, m N Sy # . Indeed, if x € m, then
x € mN S; otherwise x is invertible modulo m, and so there exists an @ € 4 such that
l—ax em.
(b) Let m be a maximal ideal, and let p be a prime ideal contained in m; for every
x €m~p, mN S,y =0. Indeed, if x"* (1 —ax) € p, then 1 —ax € p (as x ¢ p); hence
1 —ax € m, and so 1 € m, which is a contradiction.
Statement (a) shows that every chain of prime ideals beginning with a maximal ideal is
shortened when passing from A to Ay, while statement (b) shows that a maximal chain of
length n is shortened only to # — 1 when x is chosen appropriately. From this, the proposition
is follows.

PROPOSITION 18.14. Letk C F C E be fields. Then
trdegy £ = trdegy FF + trdegp E.

PROOF. More precisely, if B and C are transcendence bases for F/k and E/ F respectively,
then B U C is a transcendence basis for E/k. This is easy to check (see, for example,
Jacobson, Lectures in Abstract Algebra III, 1964, Exercise 3, p.156).
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PROPOSITION 18.15. Let A be an integral domain with field of fractions F(A), and let k
be a subfield of A. Then
tr degy F(A) > dim(A).

PROOF. Iftrdeg F(A) = oo, there is nothing to prove, and so we assume that tr degy F'(A) =
n € N. We argue by induction on n. We can replace k with its algebraic closure in A without
changing tr degy F/(A). Let x € A. If x ¢ k, then it is transcendental over k, and so

tr deg(x) F(A) =n—1

by (18.14); since k(x) C Ay, this implies (by induction) that dim(Ayyy) <n—1.If x € k,
then0=1—x"1x e Sixy» and so A¢xy = 0; again dim(A4yy) <n—1. Now (18.13) shows
that dim(A4) < n.

COROLLARY 18.16. The polynomial ring k[X1,..., X,] has Krull dimension n.
PROOF. The existence of the sequence of prime ideals
(X1,--,Xn) D (X1,...,. Xp—1) D--- D (X1) D (0)
shows that k[X1,..., Xj] has Krull dimension at least n. Now(18.15) completes the proof.

THEOREM 18.17. Let A be an integral domain containing a field k and finitely generated
as a k-algebra. Then
tr degy F(A) = dim(A).

PROOF. According to the Noether normalization theorem (8.1), A4 is integral over a poly-
nomial subring k[x1,...,x,]. Clearly n =tr degy F'(A). From the going-up theorem (7.7),
dim(A) > dim(k[x1,...,Xx,]) = n, and so dim(A) = n (18.15).

19 Primary decompositions

DEFINITION 19.1. Anideal qin A is primary if it is # A and
abeq,b¢q = a" € qforsomen > 1.

Thus, a proper ideal q in A is primary if and only if every zero-divisor in A/q is nilpotent.
Therefore, a radical ideal is primary if and only if it is prime, and an ideal (m) in Z is primary
if and only if m is a power of a prime.

PROPOSITION 19.2. The radical of a primary ideal q is a prime ideal containing ¢, and
it is contained in every other prime ideal containing q (i.e., it is the smallest prime ideal
containing p).

PROOF. Suppose that ab € rad(q) but b ¢ rad(q). Some power, say a™™b™, of ab lies xin q,
but b™ ¢ q, and so (a™)" € q for some n. Hence, a € rad(q). Therefore rad(q) is prime.

Let p be a second prime ideal containing q, and let ¢ € rad(q). For some n, a” € q C p,
which implies that a € p. Therefore p D rad(q).

When q is a primary ideal and p is its radical, we say that q is p-primary. Note that this
means that if ab € q, then either a € q or b € p (or both).
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PROPOSITION 19.3. Every ideal q whose radical is a maximal ideal m is primary (in fact,
m-primary); in particular, every power of a maximal ideal m is m-primary.

PROOF. Every prime ideal containing ¢ contains its radical m, and therefore equals m. This
shows that A4/q is local with maximal ideal m/q. Therefore, every element of A/q is either
a unit, and hence is not a zero-divisor, or it lies in m/q, and hence is nilpotent.

PROPOSITION 19.4. Let ¢: A — B be a homomorphism of rings. If q is a p-primary ideal
in B, then q° = ¢~1(q) is a p¢-primary ideal in A.

PROOF. The map A/q° — B/q is injective, and so every zero-divisor in A/¢¢ is nilpotent.
This shows that g€ is primary, and it remains to show that rad(q¢) = p€. But

rad(q) 2’ rad(q)° = p¢
as claimed.

LEMMA 19.5. Letq andy be ideals in A such that
(a) q Cp Crad(q) and
(by abeq = acporbeq.

Then p is a prime ideal and q is p-primary.

PROOF. Clearly q is primary, hence rad(q)-primary, and rad(q) is prime. By assumption
p C rad(q), and it remains to show that they are equal. Let ¢ € rad(q), and let n be the
smallest positive integer such that a” € q. If n = 1, then a € q C p; on the other hand, if
n>1,thena” =aa"" ' € qand a”! ¢ q, and so a € p by (b).

PROPOSITION 19.6. A finite intersection of p-primary ideals is p-primary.

PROOF. Let q1,...,q, be p-primary, and let ¢ = q; N...N q. We show that the pair of
ideals q C p satisfies the conditions of (19.5).
Leta € p. Then some power of a, say, @™, lies in q;, and a™*"i) ¢ (1 4; = q. Therefore

p C rad(q).
Letab eq,soabeq; alli.Ifa ¢ p,thenb € g; alli,and so b € q.

The minimal prime ideals of an ideal a are the minimal elements of the set of prime
ideals containing a.

DEFINITION 19.7. A primary decomposition of an ideal a is a finite set of primary ideals
whose intersection is a. Such a decomposition S of a is minimal if

(a) the prime ideals rad(q), q € S, are distinct, and

(b) no element of S can be omitted, i.e., fornoq e S doesq D ({q' |q €S, q #q}.

If a admits a primary decomposition, then it admits a minimal primary decomposition,
because Proposition 19.6 can be used to combine primary ideals with the same radical, and
any q that fails (b) can simply be omitted. The prime ideals occurring as the radical of an
ideal in a minimal primary decomposition of a are said to belong to a.

PROPOSITION 19.8. Suppose thata = q1 N---Nq, where q; is p;-primary fori = 1,...,n.
Then the minimal prime ideals of a are the minimal elements of the set {p1,...,pn}.
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PROOF. Let p be a prime ideal containing a. Then p is a prime ideal containing qg ---qj,
and so p contains one of the ideals g; (2.1b). Now (19.2) shows that p contains p; .

In particular, if a admits a primary decomposition, then it has only finitely many minimal
prime ideals, and so its nilradical is a finite intersection of prime ideals (which is always the
case for noetherian rings, see 14.9).

For an ideal a in A and an element x € A4, we let

(x)={ac A|ax €a}.
It is again an ideal in A, which contains a, and equals A4 if x € a.

LEMMA 19.9. Let q be a p-primary ideal and let x € A~ q. Then (q: x) is p-primary.

PROOF. Leta € (q:x); then ax € g and x ¢ q, and so a € p. Therefore p D (q:x) DO g. On
taking radicals, we find that rad(q: x) = p.

Let ab € (q:x), so that abx € q. If a ¢ p, then bx € q, and so b € (q:x). Therefore,
(9:x) is primary, and hence p-primary.

THEOREM 19.10. Leta = q1N...Nq, be a minimal primary decomposition of a, and let
p; =rad(q;). Then

{p1,-..,pn} ={rad(a:x) | x € A, rad(a:x) prime}.

In particular, the set {p1,...,pn} is independent of the choice of the minimal primary
decomposition.

PROOF. Foranya € A,
(a:a) = (Naiza) =((qi:a),
and so
rad(a:a) =rad(((g;:a)) = (\rad(q;:a).

Now rad(g;:a) = p; or A according as a ¢ q; or a € q; (19.9), and so

rad(a:a) = ﬂ pi. 50)

i such that a¢q;

If rad(a: @) is prime, then it contains one of the p; (2.1), and hence equals it, i.e.,

rad(a:a) € {p1,...,Pn}.

On the other hand, for each i, there exists an a € [ j=i 9; > 9i because the decomposition
is minimal, and (50) shows that rad(a:a) = p;.

An ideal a is said to be irreducible if it cannot be expressed as the intersection of two
strictly large ideals, i.e., if

a=bNc(b,cideals) =— a=bora=c.

THEOREM 19.11. In a noetherian ring A, every ideal admits a primary decomposition.
More precisely:
(a) Every ideal in A can be expressed as a finite intersection of irreducible ideals.



19 PRIMARY DECOMPOSITIONS 89

(b) Every irreducible ideal in A is primary.

PROOF. (a) Let S be the set of ideals for which (a) fails. If S is empty, then (a) is true.
Otherwise, it contains a maximal element a. Then a itself is not irreducible, and soa =bN¢
with b and ¢ properly containing a. As a is maximal in S, both b and ¢ can be expressed as
finite intersections of irreducible ideals, but then so can a.

(b) Let a be irreducible in A, and consider the quotient ring A’ =4 /a. Let a be a
zero-divisor in A’, say, ab = 0 with b # 0. We have to show that a is nilpotent. As A’ is
noetherian, the chain of ideals

((0):a) C ((0):a®) C -+
becomes constant, say,
((0):a™) = ((0):a™* 1)) =---.
Let ¢ € (b) N (a™). Because ¢ € (b), ca = 0, and because ¢ € (a™), ¢ = da™ for some

d € A. But
(da™a=0=d € (0:a™"!) = (0:a™) = c =0,
and so (b) N (a™) = (0). Because a is irreducible, the zero ideal in A’ is irreducible, and it
follows that a™ = 0.
A p-primary ideal q in a noetherian ring contains a power of p by Proposition 3.16. The
next result proves a converse when p is maximal.
PROPOSITION 19.12. Let m be a maximal ideal of a noetherian ring. Any proper ideal a of

A that contains a power of a maximal ideal m is m-primary.

PROOF. Suppose that m” C a, and let p be a prime ideal belonging to a. Thenm” C a C p,
so that m C p, which implies that m = p. Thus m is the only prime ideal belonging to a,
which means that a is m-primary.

EXAMPLE 19.13. We give an example of a power of a prime ideal p that is not p-primary.
Let
A=k[X,Y.Z])(Y?>-XZ) =k][x,y.z].

The ideal (X,Y) in k[X,Y, Z] is prime and contains (Y2 — X Z), and so the ideal p = (x, y)
in A is prime. Now xz = y? € p2, but one checks easily that x ¢ p? and z ¢ p, and so p? is
not p-primary.

REMARK 19.14. Let a be an ideal in a noetherian ring, and let b = ﬂnzl a”. We give
another proof that ab = b (see p. 13). Let

ab=qiN...Nqs, rad(q;)=p;,

be a minimal primary decomposition of ab. We shall show that b C ab by showing that
b C q; foreachi.
If there exists a b € b~ q;, then

ab C ab C q;,
from which it follows that a C p;. We know that p! C q; for some r (see 3.16), and so
b:ﬂa"CaGCqui,

which is a contradiction. This completes the proof.
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Primary decompositions for modules

Let M be a module over a ring A. The statements for modules below can be proved as for
ideals, or deduced from them by considering the ring A @ M (see 2.14).
For a submodule N of M, let

(N:M)={aeAlaM C N}.
Itis an ideal in A. Let
ru(N)=rad(N:M))={ae€ A|a"M C N for some n > 0}.

An element a of A is a zero divisor of M if ax = 0 for some nonzero x € M, and it
is nilpotent on M if a" M = 0 for some n. A submodule Q of M is primary if every zero
divisor of M/ Q is nilpotent on M/ Q.

PROPOSITION 19.15. If Q is a primary submodule of M, then (Q: M) is a primary ideal,
and so rps(Q) is a prime ideal p. We say that Q is p-primary in M .

For simplicity, we now assume that A is noetherian and that M is finitely generated.
A prime ideal of A is an associated prime ideal of M if it is the annihilator ann(x) of
an element of M. We write Ass(M ) for the set of associated prime ideals of M.

PROPOSITION 19.16. A submodule Q of M is primary if and only if Ass(M/ Q) consists
of a single element p, in which case p = rps(Q).

PROPOSITION 19.17. A finite intersection of p-primary submodules is p-primary.

A primary decomposition of a submodule N is a finite set of primary submodules whose
intersection is N. A primary decomposition S is minimal if
(a) the prime ideals rps (Q), O € S, are distinct, and
(b) no element of S can be omitted, i.e., forno Q € S does Q D({Q'| Q'€ S, Q' # 0}.
If N admits a primary decomposition, then it admits a minimal primary decomposition,
because (19.17) can be used to combine submodules with the same p, and any Q that fails
(b) can simply be omitted.
A submodule of M is irreducible it cannot be expressed as the intersection of two strictly
larger submodules.

THEOREM 19.18. Every submodule of M (as above) admits a primary decomposition.
More precisely:
(a) Every submodule of M can be expressed as a finite intersection of irreducible sub-
modules.
(b) Every irreducible submodule in M is primary.

THEOREM 19.19. Let N be a submodule of M. Let N = Q1N ...N Q, be a minimal
primary decomposition of N, and let p; = rps(Q;). Then

{P1,....pn} = Ass(M/N).

In particular, the set {pi,...,pn} is independent of the choice of the minimal primary
decomposition. Its elements are called the prime ideals belonging to N (in M).
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20 Dedekind domains

Discrete valuation rings

It follows from the elementary theory of principal ideal domains that the following conditions
on a principal ideal domain A are equivalent:

(a) A has exactly one nonzero prime ideal;

(b) A has exactly one prime element up to associates;

(c) Aislocal and is not a field.
A ring satisfying these conditions is called a discrete valuation ring.

EXAMPLE 20.1. The ring Z ) = {%; € Q| n not divisible by p} is a discrete valuation ring
with (p) as its unique nonzero prime ideal. The units in Z,) are the nonzero elements m /n
with neither m nor n divisible by p, and the prime elements are those of the form unitx p.

In a discrete valuation ring A with prime element &, nonzero elements of A can be
expressed uniquely as uz” with u a unit and m > 0 (and m > 0 unless the element is a unit).
Every nonzero ideal in A is of the form (7™) for a unique m € N. Thus, if a is an ideal in
A and p denotes the (unique) maximal ideal of A, then a = p™ for a well-defined integer
m > 0.

Recall that, for an A-module M and an m € M, the annihilator of m

ann(m) ={a € A |am = 0}.

It is an ideal in A, which is proper if m # 0. Suppose that A4 is a discrete valuation ring,
and let ¢ be a nonzero element of A. Let M = A/(c). What is the annihilator of a nonzero
element b + (¢) of M ? Fix a prime element 7 of A4, and let ¢ = un™, b = vx™ with u and
v units. Then n < m (else b+ (¢) = 0in M), and

ann(b + (¢)) = (#™7").

Thus, a b for which ann(b + (c)) is maximal, is of the form vz™~1, and for this choice
ann(b + (c)) is a prime ideal generated by ;. We shall exploit these observations in the
proof of the next proposition, which gives a criterion for a ring to be a discrete valuation
ring.

PROPOSITION 20.2. An integral domain A is a discrete valuation ring if and only if
(a) A is Noetherian,
(b) A is integrally closed, and
(c) A has exactly one nonzero prime ideal.

PROOF. The necessity of the three conditions is obvious, and so let A be an integral domain
satisfying (a), (b), and (c). We have to show that every ideal in A is principal. As a first step,
we prove that the nonzero prime ideal is principal. Note that (c) implies that A is a local ring.

Choose an element ¢ € A, ¢ # 0, ¢ # unit, and consider the A-module M “A /(c). For
each nonzero element m of M,

ann(m) ={a € A|am =0}
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is a proper ideal in A. Because A4 is Noetherian, we can choose an m so that ann(m) is
maximal among these ideals. Write m = b + (¢) and p = ann(b + (c)). Note that ¢ € p, and
so p # 0, and that

p={ae€A|clab}.

I claim that p is prime. If not there exist elements x, y € A such that xy € p but neither x
nor y € p. Then yb + (c) is a nonzero element of M because y ¢ p. Consider ann(yb + (¢)).
Obviously it contains p and it contains x, but this contradicts the maximality of p among
ideals of the form ann(m). Hence p is prime.

I claim that % ¢ A. Otherwise b = ¢ -% €(c),and m =0 (in M).

I claim that 7 € A, and p = (3). By definition, pb C (c), and so p ~% C A, and it is an
idealin A. If p- % C p, then % is integral over A (by 6.1, since p is finitely generated), and
SO é—’ € A (because of condition (b)), but we know % ¢ A. Thus p- é—’ = A (by (¢)), and this
implies that p = (7).

Letm = %, so that p = (7). Let a be a proper ideal of A, and consider the sequence

2

aCar ‘car2cC--

r r

If ar™" = ax~"~! for some r, then 7~ (azr ") = ax ", and 7! is integral over A (by
6.1), and so lies in A — this is impossible (7 is not a unit in A). Therefore the sequence
is strictly increasing, and (again because A is Noetherian) it can’t be contained in A. Let
m be the smallest integer such that az ™ C A but ar ™! ¢ A. Then ar ™™ < p, and so
ar~™ = A. Hence a = (7).

Dedekind domains

DEFINITION 20.3. A Dedekind domain is an integral domain A, not equal to a field, such
that

(a) A is Noetherian,

(b) A is integrally closed, and

(c) every nonzero prime ideal is maximal (i.e., A has Krull dimension 1).

Thus Proposition 20.2 says that a local integral domain is a Dedekind domain if and only
if it is a discrete valuation ring.

PROPOSITION 20.4. Let A be a Dedekind domain, and let S be a multiplicative subset of
A. Then S~ A is either a Dedekind domain or a field.

PRrROOF. Condition (c) says that there is no containment relation between nonzero prime
ideals of A. If this condition holds for A, then (5.4) shows that it holds for S ~! 4. Conditions
(a) and (b) follow from the next lemma.

PROPOSITION 20.5. Let A be an integral domain, and let S be a multiplicative subset of A.
(a) If A is Noetherian, then so also is ST A.
(b) If A is integrally closed, then so also is S™' A.

PROOF. (a)Let abe anidealin S™'A. Then a =S~ (an A) (see 5.4), and so a is generated
by any (finite) set of generators for an 4.
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(b) Let  be an element of the field of fractions of A (= field of fractions of S~ A) that
is integral over S~ A. Then

o +ad™ M+ +a, =0, somea; € STLA.

For each i, there exists an s; € S such that s;a; € A. Sets = s1---5,, € S, and multiply
through the equation by s :

(sa)™ +say(sa)™ 1 4+ 5™a,, = 0.

This equation shows that s« is integral over A, and so lies in A. Hence o = (sa)/s € ST A.
(See also 6.15.)

COROLLARY 20.6. For any nonzero prime ideal p in a Dedekind domain A, the localization
Ay is a discrete valuation ring.

PROOF. We saw in (5.7) that Ay, is local, and the proposition implies that it is Dedekind.

The main result concerning Dedekind domains is the following.

THEOREM 20.7. Every proper nonzero ideal a in a Dedekind domain can be written in the
form
a= p;l e ;S

with the p; distinct prime ideals and the r; > 0; the ideals p; are exactly the prime ideals
containing a, and the exponents r; are uniquely determined.

PROOF. The primary ideals in a Dedekind domain are exactly the powers of prime ideals,
and so this follows from the preceding section. (For an elementary proof, see my notes on
algebraic number theory.)

REMARK 20.8. Note that
ri >0 < ady, # Ap;, < aCp;.
COROLLARY 20.9. Let a and b be ideals in A; then
aCb < ad, CbA,

for all nonzero prime ideals p of A. In particular, a = b if and only if aA, = bA, for all p.
PROOF. The necessity is obvious. For the sufficiency, factor a and b

a=ploepm b=plleeptn. rps > 0.
Then ad,, = p.’ Ay, and ad,, = p.' Ay,

ady,, CbAy,, < ri =si,

(recall that Ay, is a discrete valuation ring) and r; > s; all i implies a C b.

COROLLARY 20.10. Let A be an integral domain with only finitely many prime ideals;
then A is a Dedekind domain if and only if it is a principal ideal domain.
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PROOF. Assume A is a Dedekind domain. After (20.7), to show that A is principal, it
suffices to show that the prime ideals are principal. Let p1,...,p;, be these ideals. Choose
an element x; € p1 ~ p%. According to the Chinese Remainder Theorem (2.13), there is an
element x € A such that

x=x; modp?, x=1 modp;, i#]l.

Now the ideals p; and (x) generate the same ideals in Ay, for all 7, and so they are equal in
A (by 20.9).

COROLLARY 20.11. Leta D b # 0 be two ideals in a Dedekind domain; then a = b+ (a)
for somea € A.

PROOF. Let b =p}'---py" and a = p}' -+ ppr’ with r;,s; > 0. Because b C a, s; < r; for
all i. For 1 <i <m, choose an x; € A such that x; € p;’, x; ¢ pfiJrl. By the Chinese
Remainder Theorem, there is an a € A such that

a=x; modp;,foralli.
Now one sees that b + (@) = a by looking at the ideals they generate in A, for all p.

COROLLARY 20.12. Let a be an ideal in a Dedekind domain, and let a be any nonzero
element of a; then there exists ab € a such that a = (a,b).

PROOF. Apply (20.11) to a D (a).

COROLLARY 20.13. Let a be a nonzero ideal in a Dedekind domain; then there exists a
nonzero ideal a* in A such that aa™ is principal. Moreover, a* can be chosen to be relatively
prime to any particular ideal ¢, and it can be chosen so that aa® = (a) with a any particular
element of a (but not both).

PROOF. Leta € a,a # 0; then a D (a), and so we have

(@) =py -ppranda=pi'-ppr, s <7
If a* = p}' o opp ", then aa™ = ().

We now show that a® can be chosen to be prime to ¢. We have a D ac, and so (by 20.11)
there exists an a € a such that a = ac+ (a). As a D (a), we have (a) = a-a™* for some ideal
a* (by the above argument); now, ac + aa™ = a, and so ¢ + a* = A. (Otherwise ¢ +a* C p
some prime ideal, and ac+ aa* = a(c+a*) Cap # a.)

In basic graduate algebra courses, it is shown that
A a principal ideal domain = A is a unique factorization domain.

The converse is false because, for example, k[X, Y] is a unique factorization domain in
which the ideal (X, Y') is not principal, but it is true for Dedekind domains.

PROPOSITION 20.14. A Dedekind domain that is a unique factorization domain is a princi-
pal ideal domain.
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PROOF. In a unique factorization domain, an irreducible element 7 can divide a product
bc only if & divides b or ¢ (write bc = wq and express each of b, ¢, and ¢ as a product of
irreducible elements). This means that (;7) is a prime ideal.

Now let A be a Dedekind domain with unique factorization. It suffices to show that each
nonzero prime ideal p of A is principal. Let a be a nonzero element of p. Then a factors into
a product of irreducible elements (see 4.4) and, because p is prime, it will contain one of
these irreducible factors 7. Now p D (1) D (0), and, because (r) is a nonzero prime ideal,
it is maximal, and so equals p.

Modules over Dedekind domains.

The structure theorem for finitely generated modules over principal ideal domains has an
interesting extension to modules over Dedekind domains. Throughout this subsection, A4 is a
Dedekind domain.

First, note that a finitely generated torsion-free A-module M need not be free. For
example, every fractional ideal is finitely generated and torsion-free but it is free if and only
if it is principal. Thus the best we can hope for is the following.

THEOREM 20.15. Let A be a Dedekind domain.
(a) Every finitely generated torsion-free A-module M is isomorphic to a direct sum of
fractional ideals,
M~ad---Pay.

(b) Two finitely generated torsion-free A-modules M ~ a1 ®---®a,, and N ~b; - D
b, are isomorphic if and only if m = n and [[a; = [ | b; modulo principal ideals.

Hence,
M~a1 P Pay,~AD--- DADa; .

Moreover, two fractional ideals a and b of A are isomorphic as A-modules if and only if they
define the same element of the class group of A.

PROOF. (a) Let A be a Dedekind domain, and let M be finitely generated torsion-free
A-module. Then A, ® M is free, hence projective, for every nonzero prime ideal p in A
(because Ay is principal ideal domain), and so M is projective (12.5). From a surjective
homomorphism A” — M, we get a homomorphism M — A" whose composite with some
projection A” — A will be nonzero, and hence have image a nonzero ideal a in A. As
a is projective, there exists a section to the map M —» a, and so M ~ a @ M; for some
submodule M, of M. Now M is projective because it is a direct summand of a projective
module, and so we can repeat the argument with M. This process ends because M is
noetherian.
(b) Omitted.

The rank of a module M over an integral domain R is the dimension of K ® g M as a
K-vector space, where K is the field of fractions of R. Clearly therank of M ~ a1 ®--- P a,,
ism.

These remarks show that the set of isomorphism classes of finitely generated torsion-free
A-modules of rank 1 can be identified with the class group of A. Multiplication of elements
in CI(A) corresponds to the formation of tensor product of modules. The Grothendieck
group of the category of finitely generated A-modules is C1(A4) & Z.
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THEOREM 20.16 (INVARIANT FACTOR THEOREM). Let M D N be finitely generated torsion-
free A-modules of the same rank m. Then there exist elements e1,...,e, of M, fractional
ideals ay, ..., ay,, and integral ideals by D by D ... D by, such that

M=aie1P---®aypem, N =a1bie1® - ®abmem.
PROOF. Omitted.

The ideals by, by, ..., by, are uniquely determined by the pair M D N, and are called the
invariant factors of N in M.
The last theorem also yields a description of finitely generated torsion A-modules.

ASIDE 20.17. The Jordan-Holder and Krull-Schmidt theorems fail for finitely generated projective
modules over non-principal Dedekind domains. For example, suppose that A has a nonprincipal ideal
a of order 2 in the class group. Then a @ a ~ A @ A, contradicting both theorems.

21 Dimension theory for noetherian rings

Let A be a noetherian ring and let p be a prime ideal in A. Let A, = S~1A where S = A~p.

We begin by studying extension and contraction of ideals with respect to the homomorphism
e def

A — Ap (cf. 2.10). Recall (5.7) that Ay is a local ring with maximal ideal p¢ = pA,. The
ideal
(pn)ec ={a € A|sacyp” forsomes e S}

is called the nth symbolic power of p, and is denoted p@. If m is maximal, then m® = m”
(see 5.8).

LEMMA 21.1. The ideal p™ is p-primary.

PROOF. According to Proposition 19.3, the ideal (p¢)” is p®-primary. Hence (see 19.4),
((p®)™)€ is (p®)€-primary. But p¢¢ = p (see 5.4), and

()¢ 2 ((pMe)e L p™. (51)

LEMMA 21.2. Consider ideals a C p’ C p with p’ prime. If p’ is a minimal prime ideal of a,
then p’¢ is a minimal prime ideal of a® (extension relative to A — Ay).

PROOF. If not, there exists a prime ideal p” # p’® such that p’¢ D p” D a®. Now, by (5.4),
p/ — p/@C and p//(,‘ # p/ec’ and SO

p/ — p/ec 2 p//C ») aec Da
contradicts the minimality of p’.

THEOREM 21.3 (KRULL’S PRINCIPAL IDEAL THEOREM). Let A be a noetherian ring. For
any nonunit b € A, the height of a minimal prime ideal p of (b) is at most one.
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PROOF. Consider A — Ap. According to Lemma 21.2, p¢ is a minimal prime ideal of
h)¢ = (%), and (5.4) shows that the theorem for A, D p® D (%) implies it for A D p D (b).
Therefore, we may replace A with A, and so assume that A is a noetherian local ring with
maximal ideal p.

Suppose that p properly contains a prime ideal p;: we have to show that p; D p, —
p1 =p2.

Let pgr) be the rth symbolic power of p;. The only prime ideal of the ring A/(b) is
p/(b), and so A/(b) is artinian (apply 16.6). Therefore the descending chain of ideals

(05" + @) /@) 2 (657 +®) /) > (17 + @) /) > -
eventually becomes constant: there exists an s such that
i+ =p T+ 0 =P 1 0) = (52)
We claim that, for any m > s,
pi™ C @™+, (53)

and so x = ab + x" witha € A and x’ € p§m+1). As pgm) is pp-primary (see 21.1) and

ab=x—x"¢€ p(lm) but b ¢ py, we have thata € pgm). Now x =ab+x" € (b)pgm) -HngH)
as claimed.
We next show that, for any m > s,

1
pgm) _ p§m+ ).

As b € p, (53) shows that pgm)/pgmﬂ) =p- (p(lm)/pgmﬂ)), and so pgm)/pierl) =0 by
Nakayama’s lemma (3.9).
Now

on = =g =

and $0 P} C (=g pgm). Note that

(m) 31 eymye _ exmyc 315 ¢
(e, P17 = (), (D™ = (), D™= O,
and so for any x € pj, there exists an a € A ~py such thatax = 0. Let x € py; thenax® =0
for some a € A~p; C A~p», and so x € p, (because p; is prime). We have shown that
p1 = P2, as required.

COROLLARY 21.4. A noetherian integral domain A is a unique factorization domain if
every prime ideal of height 1 is principal.

PROOF. After (4.1) and (4.3), it suffices to show that every irreducible element a of A4 is
prime. Let p be minimal among the prime ideals containing (a). According to the principal
ideal theorem (21.3), p has height 1, and so is principal, say p = (b). As (a) C (b), b divides
a, and so a = bxunit. Hence (a) = (b) = p, and p is prime.
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In order to extend Theorem 21.7 to non principal ideals, we shall need a lemma.

LEMMA 21.5. Let p be a prime ideal in a noetherian ring A, and let S be a finite set of
prime ideals in A, none of which contains p. If there exists a chain of distinct prime ideals

pOPg—1 O Po,

then there exists such a chain with p; not contained in any ideal in S

PROOF. We first prove this in the special case that the chain has length 2. Suppose that
p D p1 D po are distinct prime ideals and that p is not contained in any prime ideal in S.
According to Proposition 2.8, there exists an element

aep~(poUlUip €S}).

As p contains (a) + po, it also contains a minimal prime ideal p} of (a) + po. Now p/ /po
is a minimal prime ideal of the principal ideal ((a) + po) /po in A/pg, and so has height 1,
whereas the chain p/po D p1/Po D Po/Po shows that p/pg has height at least 2. Therefore
p D p D po are distinct primes, and p); ¢ S because it contains a. This completes the proof
of the special case.

Now consider the general case. On applying the special case to p D pg—_1 D Pg—2, We
see that there exists a chain of distinct prime ideals p D p’d_l D pg—p such that p;_l is not
contained in any ideal in S. Then on applying the special case to p/d_l DPd—2 DPg—1, We
we see that there exists a chain of distinct prime ideals p D p&_l D p/d—z D pg—p such that
pil—z is not contained in any ideal in S. Repeat the argument until the proof is complete.

THEOREM 21.6. Let A be a noetherian ring. For any proper ideal a = (ay,...,an), the
height of a minimal prime ideal of a is at most m.

PROOF. For m = 1, this was just proved. Thus, we may suppose that m > 2 and that the
theorem has been proved for ideals generated by m — 1 elements. Let p be a minimal prime
ideal of a, and let p,...,p; be the minimal prime ideals of (a2, ...,a,). Each p} has height
at most m — 1. If p is contained in one of the p;., it will have height < m — 1, and so we may
suppose that it isn’t.

Let p have height d. We have to show that d < m. According to the lemma, there exists
a chain of distinct prime ideals

p=psDpi-1D-Dpo, d=1,
with p; not contained in any p’, and so Proposition 2.8 shows that there exists a

We next show that p is a minimal prime ideal of (b,as,...,a,). Certainly p contains a
minimal prime ideal p’ of this ideal. As p’ D (az,....am), p contains one of the p’s, but, by
construction, it cannot equal it. If p # p’, then

pOp D]

are distinct ideals, which shows that p g_p /(as,...,am) has height at least 2 in 4 =
A/(az,...,ay). Butp is a minimal ideal in A of the principal ideal (a1,...,a,)/(az,....a,),
which contradicts Theorem 21.3. Hence p is minimal, as claimed.
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But now p/(b) is a minimal prime ideal of (b,az,...,a,) in R/(b), and so the height
of p/(b) is at most m — 1 (by induction). The prime ideals

p/(b) =pa/(b) Dpa—1/(b) > - Dp1/(D)

are distinct, and so d — 1 < m — 1. This completes the proof that d = m.

The height of an ideal a in a noetherian ring is the minimum height of a prime ideal
containing it,
ht(a) = min  ht(p).
pDa, p prime
The theorem shows that ht(a) is finite.
The following provides a (strong) converse to Theorem 21.6.

THEOREM 21.7. Let A be a noetherian ring, and let a be a proper ideal of A of height r.
Then there exist r elements ay,...,a, of a such that, foreachi <r, (ay,...,a;) has height
i.

PROOF. If r = 0, then we take the empty set of a;s. Thus, suppose that r > 1. There are
only finitely many prime ideals of height 0, because such an ideal is a minimal prime ideal
of (0), and none of these ideals can contain a because it has height > 1. Proposition 2.8
shows that there exists an

ai € a~|J{prime ideals of height 0}.

By construction, (a1) has height at least 1, and so Theorem 21.3 shows it has height exactly
1.

This completes the proof when r = 1, and so suppose that r > 2. There are only finitely
many prime ideals of height 1 containing (a;) because such an ideal is a minimal prime
ideal of (a1), and none of these ideals can contain a because it has height > 2. Choose

ap € a~ | J{prime ideals of height 1 containing (a1)}.

By construction, (a1,a») has height at least 2, and so Theorem 21.6 shows that it has height
exactly 2.

This completes the proof when r = 2, and when r > 2 we can continue in this fashion
until it is complete.

COROLLARY 21.8. Every prime ideal of height r in a noetherian ring arises as a minimal
prime ideal for an ideal generated by r elements.

PROOF. According to the theorem, an ideal a of height r contains an ideal (a1,...,a,) of
height r. If a is prime, then it is a minimal ideal of (a1,...,a;).

COROLLARY 21.9. Let A be a commutative noetherian ring, and let a be an ideal in A that
can be generated by n elements. For any prime ideal p in A containing a,

ht(p/a) < ht(p) <ht(p/a) +n.
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PROOF. The first inequality follows immediately from the correspondence between ideals
in Aandin A/a.

Denote the quotient map A — A’ = A/a by a > a’. Let ht(p/a) = d. Then there
exist elements a1,...,a4 in A such that p/a is a minimal prime ideal of (a/l, ... ,a/d). Let
bi,...,by generate a. Then p is a minimal prime ideal of (a1,...,a4,b1,...,bs), and hence
has height < d +n.

We now use dimension theory to prove a stronger version of “generic flatness” (11.16).

THEOREM 21.10 (GENERIC FREENESS). Let A be a noetherian integral domain, and let
B be a finitely generated A-algebra. For any finitely generated B-module M, there exists a
nonzero element a of A such that M, is a free A;-module.

PROOF. Let F be the field of fractions of A. We prove the theorem by induction on the
Krull dimension of F ® 4 B, starting with the case of Krull dimension —1. Recall that this
means that F ® 4 B = 0, and so al g = 0 for some nonzero a € A. Then M, = 0, and so
the theorem is trivially true (M, is the free A;-module generated by the empty set).

In the general case, an argument as in (11.16) shows that, after replacing A, B, and M
with A,, B,, and M, for a suitable a € A, we may suppose that the map B — F ®4 B
is injective — we identify B with its image. The Noether normalization theorem (8.1)
shows that there exist algebraically independent elements x1,...,x; of FF®4 B such that
F ® 4 B is a finite F[xy,...,Xx;]-algebra. As in the proof of (11.16), there exists a nonzero
a € A such that B, is a finite A4[x1,...,X;,]-algebra. Hence M, is a finitely generated
Aglx1,...,xm]-module.

As any extension of free modules is free’*, Proposition 3.5 shows that it suffices to
prove the theorem for M, = Ag4[x1,...,Xm]/p for some prime ideal p in Ag[x1,...,xn]. If
p =0, then M, is free over A, (with basis the monomials in the x;). Otherwise, F ® 4
(Ag[x1,...,xm]/p) has Krull dimension less than that of F ® 4 B, and so we can apply the
induction hypothesis.

COROLLARY 21.11. Let A be a noetherian ring, and let ¢: A — B be a finitely generated
A-algebra. If U is a nonempty open subset of Spec(B), then ¢*(U) contains a nonempty
open subset of its closure in Spec(A).

PROOF. We may replace A with its image in B, and B with By for some f such that
D(f) C U. Then we have to show that the image of ¢%:Spec(B) — Spec(A4) contains a
nonempty open subset of Spec(A4). According to (21.10), there exists an a € A such that B,
is a nonzero free A,-module. For any prime ideal p of A not containing a, B®4 A/p =~
Ba®a,A/p #0. As B®4 A/p is nonzero, it contains a prime ideal, but the prime ideals
in B® 4 A/p correspond to prime ideals ¢ in B such that N A = p. Therefore the image of
@? contains D(a).

22 Regular local rings

Throughout this section, A is a noetherian local ring with maximal ideal m and residue field
k. The Krull dimension d of A is equal to the height of m, and

QL6 Gl . 2
ht(m) < minimum number of generators of m "="dimg (m/m~).

241f M is a submodule of M such that M" & M/ M’ is free, then M ~ M’ & M.
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When equality holds, the ring A is said to be regular. In other words, dimy (m/m?) > d,
and equality holds exactly when the ring is regular.

For example, when A has dimension zero, it is regular if and only if its maximal ideal
can be generated by the empty set, and so is zero. This means that A is a field; in particular,
it is an integral domain. The main result of this section is that all regular rings are integral
domains.

LEMMA 22.1. Let A be a noetherian local ring with maximal ideal m, and let ¢ € m~m?.

Denote the quotient map A — A’ = A/(c) by a > a’. Then
dimg m/m? = dimg m’/m’? + 1

where ' = m/(c) is the maximal ideal of A'.

PROOF. Letey,...,e, be elements of m such that {¢/,... e} } is a k-linear basis for m’/m'2.
We shall show that {ey,...,e,,c} is a basis for m/m?2.

Asel,...,e, spanm’/m’2, they generate the ideal m’ (see 3.11), and som = (ey, ..., en) +
(c), which implies that {eq,...,e,,c} spans m/m?2.

Suppose that ay,...,a,+1 are elements of A such that

ajey +---+anen +any1c =0 mod m2. (54)
Then
ajel +-+al e, =0mod m?,

and so af,...,a, € m'. It follows that ay,...,a, € m. Now (54) shows that a,ic € m2.

Ifay4+1 ¢ m, thenitis aunitin A, and ¢ € m2, which contradicts its definition. Therefore,
an+1 € m, and the relation (54) is the trivial one.

PROPOSITION 22.2. If A is regular, then so also is A/(a) for any a € m ~m?; moreover,

dimA =dimA/(a)+ 1.
PROOF. With the usual notations, (21.9) shows that
ht(m’) < ht(m) < ht(m’) + 1.
Therefore
dimg (m’/m’?) > ht(m’) > ht(m) — 1 = dimy (m/m?) — 1 = dimy (m’/m’?).
Equalities must hold throughout, which proves that A’ is regular with dimension dim A — 1.
THEOREM 22.3. Every regular noetherian local ring is an integral domain.

PROOF. Let A be a regular local ring of dimension d. We have already noted that the
statement is true when d = 0.

We next prove that A is an integral domain if it contains distinct ideals a D p with a = (a)
principal and p prime. Let b € p, and suppose that b € a” = (") for some n > 1. Then
b = a"c for some ¢ € A. As a is not in the prime ideal p, we must have that ¢ € p C a, and
so b € a"*1. Continuing in this fashion, we see that b € (), a” D {0}. Therefore p = {0},
and so 4 is an integral domain.
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We now assume d > 1, and proceed by induction on d. Let a € m~m?. As A/(a) is
regular of dimension d — 1, it is an integral domain, and so (a) is a prime ideal. If it has
height 1, then the last paragraph shows that A is an integral domain. Thus, we may suppose
that, for all @ € m ~m?, the prime ideal (@) has height 0, and so is a minimal prime ideal
of A. Let S be the set of all minimal prime ideals of A — recall (§19) that S is finite. We
have shown that m~m? C [ J{p | p € S}, and som C m?> U | J{p | p € S}. It follows from
Proposition 2.8 that either m C m? (and hence m = 0) or m is a minimal prime ideal of A,
but both of these statements contradict the assumption that d > 1.

COROLLARY 22.4. A regular noetherian local ring of dimension 1 is a principal ideal
domain (with a single nonzero prime ideal).

PROOF. Let A be a regular local ring of dimension 1 with maximal ideal m, and let a be
a nonzero proper ideal in A. The conditions imply that m is principal, say m = (¢). The
radical of a is m because m is the only prime ideal containing a, and so a D m’” for some
r (by 3.16). The ring A/m” is local and artinian, and so a = () +m” for some s > 1 (by
16.8). This implies that a = (z%) by Nakayama’s lemma (3.9).

THEOREM 22.5. Let A be a regular noetherian local ring.
(a) For any prime ideal p in A, the ring Ay is regular.
(b) The ring A is a unique factorization domain (hence is integrally closed).

PROOF. Omitted for the moment.

The best proof uses homological methods. See May, RegularLocal.pdf or Matsumura
1986 19.3, 20.3.

DEFINITION 22.6. Let (A, m) be a noetherian local ring of dimension d. A system of

parameters of A is a set of elements {aj,...,a;} such that (ay,...,az) D m” for some n.
If (a1,...,ag) = m, then {ay,...,ay} is called a regular system of parameters.
In other words, {a1,...,az} is a system of parameters if the ideal (aq,...,ay) is m-

primary. A system of parameters always exists, and a regular system of parameters exists if
and only if A4 is regular.

23 Flatness and fibres

Recall that, for a prime ideal p in a ring A, the field of fractions of A/p is denoted « (p). For
example, for a maximal ideal m, k (m) = A/m; more generally, k() = A, /pA,.

Let ¢: A — B be a homomorphism of rings. We say that the going-down theorem holds
for ¢ if the statement (7.12) holds with q; N A interpreted as gy :

q1 ) ) qm
pi =qy.
pl D cee D pm D cee D pn

THEOREM 23.1. Let ¢: A — B be a homomorphism of noetherian rings. Let q be a prime
ideal of B, and let p = ¢°.


http://www.math.uchicago.edu/~may/MISC/RegularLocal.pdf
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(a) We have dim (By) < dim(A,) + dim(B; ® k(p)).
(b) If the going-down theorem holds for ¢, then equality holds in (a).

PROOF. The statement depends only on the homomorphism of local rings A, — B, defined
by ¢. Thus, we can replace A and B with A, and By, and q and p with the maximal ideals
n = qB; and m = pA,. Then the inequality becomes

dim(B) < dim(A4) +dim(B/mB).

(a) Let{ay,...,a,} be a system of parameters for A4, so that
m” C (ay,...,ar).
for some n. Let by,...,bs be elements of B whose images in B/mB form a system or

parameters for B/mB, so that
0" C (by,....bs) +mB

for some n’. Now
n'C (bl,...,bs)+(a1,...,a,)B

and so {ay,...,ar,b1,...bs} generates an n-primary ideal in B. Hence
dim(B) <r +s = dim(A) +dim(B/mB).
(b) Let m = dim(B/mAB), and let
n=qo>o " 2dm

be a chain of distinct prime ideals in B containing mB. Clearly qf = m for all i. Let
m’ = dim A4, and let
m=po -2 Pm

be a chain of distinct prime ideals in A. By the going-down theorem, there exists a chain of
ideals

qm D.qu_'_m,

such that q;,, , . = p; for all i. The existence of the chain

qo 2+ O Gm+m’
of distinct prime ideals in B shows that dim(B) > m’ +m = dim A + dim(B/mB).
THEOREM 23.2. The going-down theorem holds for every flat homomorphism ¢: A — B.

PROOF. Let p’ C p be prime ideals in A, and let q be a prime ideal in B such that g = p.
We have to show that there exists a prime ideal ¢’ C q in B such that ¢’ = p’. Because ¢ is
flat, Ay — B is faithfully flat (11.13), and so there exists a prime ideal in B, contracting to
p’Ap in Ay (11.14). The contraction of this ideal to B has the required properties.

COROLLARY 23.3. Let¢: A — B be a homomorphism of rings, and let q be a prime ideal
of B. If ¢ is flat, then

ht(q) = ht(p) +dim(B; ®«(p)), p=q° .
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PROOF. According to the theorem, @ satisfies the going-down theorem, and so we can apply
(23.1).

COROLLARY 23.4. Let A be a noetherian ring, and let ¢: A — B be a homomorphism of
rings. If ¢ is flat of finite type, then the map ¢%:Spec(B) — Spec(A) is open.

PROOF. According to the theorem, @ satisfies the going-down theorem, and so we can apply
(14.16).

Let ¢: A — B be a homomorphism of rings such that all maximal ideals in A have the
same height and similarly for B. If ¢ is flat and spm(g) is surjective, then (23.3) says that

dim(B) = dim(A4) + dim(B ® 4 k (m))
for all maximal ideals of A. In other words, the dimension of the fibre
spm(B) — spm(A)

over m € spm(A) is dim(spm(B)) —dim(spm(A)).
Corollary 23.3 has a converse.

THEOREM 23.5. Let ¢: A — B be a local homomorphism of noetherian local rings, and let
m be the maximal ideal of A. If A is regular, B is Cohen-Macaulay, and

dim(B) = dim(A4) 4+ dim(B ® k(m)),
then ¢ is flat.
PROOF. Matsumura 1986, 23.1.

We don’t define notion of being Cohen-Macaulay here (see ibid. p.134), but merely list
some of its properties.

23.6. A noetherian ring A is Cohen-Macaulay if and only if A, is Cohen-Macaulay for
every maximal ideal m of A (this is part of the definition).

23.7. Zero-dimensional and reduced one-dimensional noetherian rings are Cohen-Macaulay
(ibid. p.139).

23.8. Regular noetherian rings are Cohen-Macaulay (ibid. p.137).

23.9. Let ¢: A — B be a flat local homomorphism of noetherian local rings, and let m be
the maximal ideal of A. Then B is Cohen-Macaulay if and only if both 4 and B ® 4 k(m)
are Cohen-Macaulay (ibid. p.181).

PROPOSITION 23.10. Let ¢: A — B be a finite homomorphism noetherian rings with A
regular. Then ¢ is flat if and only if B is Cohen-Macaulay.

PROOF. Note that dim(B ® «(m)) is zero-dimensional, hence Cohen-Macaulay, for every
maximal ideal m of A4 (23.7), and that ht(n) = ht(n¢) for every maximal ideal n of B. If ¢ is
flat, then B is Cohen-Macaulay by (23.9). Conversely, if B is Cohen-Macaulay, then ¢ is
flat by (23.5).

ASIDE 23.11. In contrast to the going-down theorem, the going-up theorem fails for flat homomor-
phisms — it even fails for Z — Z[X] (see 7.8).
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Exercises

EXERCISE 23.12. Show that the only flat surjective homomorphisms from a noetherian
ring are the projection maps Ay X A, — Aj.

24 Completions

Let A be aring and a an ideal in A. For any A-module, we get an inverse system of quotient
maps
M/aM <~ M/a*>M « - < M/ad"M <« ---

whose limit we define to be the a-adic completion M of M:

def

M Z1limM/d" M.
<~
For example, the a-adic completion of A is

AZlimA/d",
<«

n

We now explain why this is called the completion. Let M be an A-module. A filtration
on M is a sequence of submodules

M=My>DMy>D-

LEMMA 24.1. Let (My),en be a filtration on an A-module M . There is a unique topology
on M such that, for each x € M, the set {x + M, | n € N} is a fundamental system of
neighbourhoods for x. The completion M of M relative to this topology is canonically
isomorphic to 1<i£1M/Mn.

PrROOF. The first statement is obvious. For the second, recall that M consists of the
equivalence classes of Cauchy sequences in M. Let (my),en be a Cauchy sequence. For
each n, the image of m; in M/ M,, becomes constant for large i — let /71, denote the constant
value. The family (71,),en depends only on the equivalence class of the Cauchy sequence

(Mn)nen, and
[(mn)] > () M — Tim M/ My

is an isomorphism.

Let A be aring and let a be an ideal in A. A filtration (M}),en on an A-module M is
an a-filtration if aM,, C My, for all n. An a-filtration is stable if aM, = M, for all
sufficiently large n.

LEMMA 24.2. Any two stable a-filtrations on an A-module M define the same topology on
M.

PROOF. It suffices to show that a stable a-filtration (M}, ), en defines the a-adic topology
on M. As aM, C My, for all n, we have that a" M C M, for all n. For some ng,
aM, = My forall n > ng, and so My 4, = a" My, Ca"M.
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LEMMA 24.3 (ARTIN-REES). If A is noetherian and M is finitely generated, then, for any
A-submodule M’ of M , the filtration (M’ Na" M), <y on M’ is a stable a-filtration.

PROOF. Omitted for the moment.

PROPOSITION 24.4. For every noetherian ring A and ideal a, the functor M ~> M is exact
on finitely generated A-modules.

PROOF. Let
0O->M >M-—->M'"—0

be an exact sequence of A-modules. For each n, the sequence
0—->MnNa"M—d"M—ad"M'"—0
is exact, and so
0> M/ M Nd"M)—> M/a"M - M"/a"M" -0
is exact. On passing to the inverse limit, we obtain an exact sequence

O—>1<iLnM'/(M’ﬂa"M)—>A7I—>A7I”—>O,

n

but the last three lemmas show that l(lnn M’/(M’Na"M) is the a-adic completion of M’.

PROPOSITION 24.5. For every ideal a in a noetherian ring A and finitely generated A-
module M, the homomorphism

a@mi—>am:AQqM — M
is an isomorphism.

PROOF. In other words, when A is noetherian, the functors M ~> A Q@M and M ~> M
agree on finitely generated A-modules M. This is obvious for M = A, and it follows for
finitely generated free A-module because both functors take finite direct sums to direct sums.
Choose a surjective homomorphism A” — M, and let N be its kernel. The exact sequence

0>N—->A">M—>0

gives rise to a exact commutative diagram
AR AN
a

/’fm
| =
N s Am

Because the middle vertical arrow is an isomorphism, the arrow b is surjective. But M
is arbitrary, and so the arrow a is also surjective, which implies that the arrow b is an
isomorphism.

0
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PROPOSITION 24.6. For every noetherian ring A and ideal a, the a-adic completion Aof A
is a flat A-algebra.

PROOF. It follows from (24.4) and (24.5) that A® A4 — 1s exact on finitely generated A-
modules, but this implies that it is exact on all A-modules.

ASIDE 24.7. Let m be a maximal ideal of a ring A4, and let 4 — A denote the m-adic completion
of A. Then A/m" — A/m" is the m-adic completion of A/m", but A/m" is discrete, and so
A/m" — /f/fﬁ” is an isomorphism. Similarly, Ay, /m};, — /fm/ﬁiﬁl ~ Izl\/ﬁi” is an isomorphism. On
combining these statements, we obtain a conceptual proof of (5.8).

Sections to be added.

25. Henselian rings.

26. Graded rings.

27. Hilbert polynomials.

28. Homological methods.

29. Regular local rings revisited.

30. Connections with geometry.

31. Computational commutative algebra.

A Solutions to the exercises.

1.1. For n =1, use that a nonzero polynomial in one variable has only finitely many
roots (which follows from unique factorization, for example). Now suppose n > 1, and
assume the statement for polynomials in < n — 1 symbols. Write f = > g; X ,’1 with each
gi €k[X1,...,Xn—1]. If f is not the zero polynomial, then some g; is not the zero poly-
nomial, and there exist (a1,...,a,—1) € k"~ such that f(ay,...,an—1,Xp) is not the zero
polynomial. Now, by the degree-one case, there exists a b such that f(ay,...,an—1,b) # 0.

6.20. Let f =Y b;T™ ', b; € B. If the coefficients b; of f are integral over A, then they
are integral over A[T’] (as elements of B[T]). Certainly T is integral over A[T], and so this
implies that f =) _b; T" is integral over A (see 6.5).

11.17. The set spm(As,) consists of the maximal ideals in A not containing f;, and
spm([[; A7) = [[; spm(A4 r,). Therefore the map spm([[; A 5,) — spm(A) is surjective
if and only if (f1,..., fm) = A. Now apply (11.13). For the second statement, it is only
a question of showing that the sequence in (11.8) becomes the sequence in (11.17) when
i:A— Bistakentobe A — [[; Ay,.

15.15. (a) Let B be a countable local domain, and number its elements b1, b5, .... Consider
the homomorphism A — B sending X; to b;. It is surjective, and its kernel is a prime ideal
p of A. The ideal p is not an intersection of maximal ideals because the only maximal ideal
of A containing p is the inverse image of the maximal ideal in B.

(b) Let f be a nonzero element of A4, say, f = f(X1,...,X,). Choose ay,...,ane Q
such that f(ay,...,a,) # 0 (Exercise 1.1). The kernel of the homomorphism 4 — Q
sending X; to a; fori <n and X; to 0 for i > n is a maximal ideal in 4 not containing f.

23.12. Consider surjective homomorphism A — A/a. The set V(a) is closed in spec(A4) (by
definition of the topology on spec(A4)). If A — A/a is flat, then V() is also open. Therefore
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A = A1 X Ay and a is of the form b x A, with b an ideal in A; such that V(b) = spec(A41).
On tensoring
0—>bxA; >A;1xAy > A1/b—0

with A;/b we get an exact sequence

0—b/b% — A1 /b - 4, /b — 0.

Therefore b = b2, but b is contained in all prime ideals of A, and so this implies that b = 0
(Nakayama’s lemma, 3.9).
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