
A Primer of Commutative Algebra

James S. Milne

March 23, 2020, v4.03

Abstract
These notes collect the basic results in commutative algebra used in the rest of my

notes and books. Although most of the material is standard, the notes include a few
results, for example, the affine version of Zariski’s main theorem, that are difficult to
find in books. (Minor fixes from v4.02.)
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Notations and conventions

Our convention is that rings have identity elements,1 and homomorphisms of rings respect
the identity elements. A unit of a ring is an element admitting an inverse. The units of a ring
A form a group, which we denote by2 A�. Throughout, “ring” means “commutative ring”.
Following Bourbaki, we let ND f0;1;2; : : :g. Throughout, k is a field and kal is an algebraic
closure of k.

X � Y X is a subset of Y (not necessarily proper).
X

def
D Y X is defined to be Y , or equals Y by definition.

X � Y X is isomorphic to Y .
X ' Y X and Y are canonically isomorphic

(or there is a given or unique isomorphism).

Prerequisites
A knowledge of the algebra usually taught in advanced undergraduate or first-year graduate
courses.

References
A reference to monnnn is to question nnnn on mathoverflow.net.

Historical Notes
Sometime I’ll add these. For the moment, I refer the reader to Bourbaki AC, Historical Note;
Matsumura 1986, Introduction; Nagata 1962, Appendix A2.
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1An element e of a ring A is an identity element if eaD aD ae for all elements a of the ring. It is usually
denoted 1A or just 1. Some authors call this a unit element, but then an element can be a unit without being a
unit element. Worse, a unit need not be the unit.

2This notation differs from that of Bourbaki, who writes A� for the multiplicative monoid AXf0g and A�

for the group of units. We shall rarely need the former, and � is overused.



1 RINGS AND ALGEBRAS 3

1 Rings and algebras
A ring is an integral domain if it is not the zero ring and if ab D 0 in the ring implies that
aD 0 or b D 0.

Let A be a ring. A subring of A is a subset that contains 1A and is closed under addition,
multiplication, and the formation of negatives. An A-algebra is a ring B together with a
homomorphism iB WA! B . A homomorphism of A-algebras B! C is a homomorphism
of rings 'WB! C such that '.iB.a//D iC .a/ for all a 2 A.

Elements x1; : : : ;xn of an A-algebra B are said to generate it if every element of B
can be expressed as a polynomial in the xi with coefficients in iB.A/. This means that the
homomorphism of A-algebras AŒX1; : : : ;Xn�! B acting as iB on A and sending Xi to xi
is surjective.

When A � B and x1; : : : ;xn 2 B , we let AŒx1; : : : ;xn� denote the A-subalgebra of B
generated by the xi .

A ring homomorphism A! B is of finite type, and B is a finitely generated A-algebra,
if B is generated by a finite set of elements as an A-algebra. This means that B is a quotient
of a polynomial ring AŒX1; : : : ;Xn�. An A-algebra B is finitely presented if it is the quotient
of a polynomial ring AŒX1; : : : ;Xn� by a finitely generated ideal.

A ring homomorphism A! B is finite, and B is a finite3 A-algebra, if B is finitely
generated as an A-module. If A! B and B! C are finite ring homomorphisms, then so
also is their composite A! C .

Let k be a field and A a k-algebra. If 1A ¤ 0, then the map k! A is injective, and we
can identify k with its image, i.e., we can regard k as a subring of A. If 1A D 0, then the
ring A is the zero ring f0g.

Let AŒX� be the ring of polynomials in the symbol X with coefficients in A. If A is an
integral domain, then deg.fg/D deg.f /Cdeg.g/, and so AŒX� is also an integral domain;
moreover, AŒX�� D A�.

Let A be both an integral domain and an algebra over a field k. If A is finite over k, then
it is a field. To see this, let a be a nonzero element of A. Because A is an integral domain,
the k-linear map x 7! axWA! A is injective, and hence is surjective if A is finite, which
shows that a has an inverse. More generally, if every element a of A is algebraic over k,
then kŒa� is finite over k, and hence contains an inverse of a; again A is a field.

An A-module M is faithful if aM D 0, a 2 A, implies aD 0.

Exercises
EXERCISE 1.1. Let k be an infinite field, and let f be a nonzero polynomial in kŒX1; : : : ;Xn�.
Show that there exist a1; : : : ;an 2 k such that f .a1; : : : ;an/¤ 0.

2 Ideals
Let A be a ring. An ideal a in A is a subset such that
˘ a is a subgroup of A regarded as a group under addition;
˘ a 2 a, r 2 A H) ra 2 a:

3This is Bourbaki’s terminology (AC V �1, 1). Finite homomorphisms of rings correspond to finite maps of
varieties and schemes. Some authors say “module-finite”.



2 IDEALS 4

The ideal generated by a subset S of A is the intersection of all ideals a containing S — it
is easy to verify that this is in fact an ideal, and that it consists of all finite sums of the formP
risi with ri 2A, si 2 S . The ideal generated by the empty set is the zero ideal f0g. When

S D fa;b; : : :g, we write .a;b; : : :/ for the ideal it generates.
An ideal is principal if it is generated by a single element. Such an ideal .a/ is proper if

and only if a is not a unit. Thus a ring A is a field if and only if 1A ¤ 0 and the only proper
ideal in A is .0/.

Let a and b be ideals in A. The set faCb j a 2 a; b 2 bg is an ideal, denoted aCb. The
ideal generated by fab j a 2 a; b 2 bg is denoted by ab. Clearly ab consists of all finite
sums

P
aibi with ai 2 a and bi 2 b, and if a D .a1; : : : ;am/ and b D .b1; : : : ;bn/, then

abD .a1b1; : : : ;aibj ; : : : ;ambn/. Note that ab� aAD a and ab� AbD b, and so

ab� a\b: (1)

The kernel of a homomorphism A! B is an ideal in A. Conversely, for every ideal a
in a ring A, the set of cosets of a in A (regarded as an additive group) forms a ring A=a,
and a 7! aCa is a homomorphism 'WA! A=a whose kernel is a. There is a one-to-one
correspondence

fideals of A containing ag
b7!'.b/
 �����!
'�1.b/ [b

fideals of A=ag: (2)

For an ideal b of A, '�1'.b/D aCb.
The ideals of A�B are all of the form a� b with a and b ideals in A and B . To see

this, note that if c is an ideal in A�B and .a;b/ 2 c, then .a;0/ D .1;0/.a;b/ 2 c and
.0;b/D .0;1/.a;b/ 2 c. Therefore, cD a�b with

aD fa j .a;0/ 2 cg; bD fb j .0;b/ 2 cg:

An ideal p in A is prime if p¤ A and ab 2 p) a 2 p or b 2 p. Thus p is prime if and
only if the quotient ring A=p is nonzero and has the property that

ab D 0 H) aD 0 or b D 0;

i.e., A=p is an integral domain. In particular, the zero ideal is prime if and only if the ring is
an integral domain. When p is prime, we write �.p/ for the field of fractions of A=p.

LEMMA 2.1. Let p be a prime ideal in A.
(a) If p contains a product of elements of A, then it contains one of the elements.
(b) If p contains a finite product of ideals, then it contains one of the ideals.

PROOF. (a) In the integral domain A=p, a finite product of elements is 0 only if one of its
terms is zero.

(b) Suppose that p� a1 � � �an. If p contains none of the ai , then there exist ai 2 aiXp,
i D 1; : : : ;an. But then a1 � � �an 2 p, which is a contradiction. 2

An ideal m in A is maximal if it is a maximal element of the set of proper ideals in A.
Therefore an ideal m is maximal if and only if the quotient ring A=m is nonzero and has no
nonzero proper ideals (by (2)), and so is a field. Note that

m maximal H) m prime.
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A multiplicative subset of a ring A is a subset S with the property:

1 2 S; a;b 2 S H) ab 2 S:

For example, the following are multiplicative subsets:
the multiplicative subset f1;f; : : : ;f r ; : : :g generated by an element f of A;
the complement of a prime ideal (or of a union of prime ideals);
1Ca

def
D f1Ca j a 2 ag for any ideal a of A.

PROPOSITION 2.2. Let S be a subset of a ring A and a an ideal disjoint from S . The set of
ideals in A containing a and disjoint from S contains maximal elements (i.e., an element
not properly contained in any other ideal in the set). If S is multiplicative, then every such
maximal element is prime.

PROOF. The set ˙ of ideals containing a and disjoint from S is nonempty (it contains a).
If A is noetherian (see �3 below), ˙ automatically contains maximal elements. Otherwise,
we apply Zorn’s lemma. Let b1 � b2 � �� � be a chain of ideals in ˙ , and let bD

S
bi .

Then b 2˙ , because otherwise some element of S lies in b, and hence in some bi , which
contradicts the definition of ˙ . Therefore b is an upper bound for the chain. As every chain
in ˙ has an upper bound, Zorn’s lemma implies that ˙ has a maximal element.

Now assume that S is a multiplicative subset of A, and let c be maximal in ˙ . Let
bb0 2 c. If b is not in c, then cC .b/ properly contains c, and so it is not in ˙ . Therefore
there S contains an element in cC .b/, say,

f D cCab; c 2 c; a 2 A:

Similarly, if b0 is not in c, then S contains an element

f 0 D c0Ca0b; c0 2 c; a0 2 A:

Now
ff 0 D cc0Cabc0Ca0b0cCaa0bb0 2 c;

which contradicts
ff 0 2 S:

Therefore, at least one of b or b0 is in c, which is therefore prime. 2

COROLLARY 2.3. Every proper ideal in a ring is contained in a maximal ideal.

PROOF. Apply the proposition with S D f1g. 2

An element f of a ring is nilpotent if f r D 0 for some r � 1. A ring is reduced if it has
no nonzero nilpotents. The radical rad.a/ of an ideal a in a ring A is

ff 2 A j f r 2 a some r � 1g:

An ideal a is said to be radical if it equals its radical. Thus an ideal a is radical if and only
if A=a is reduced. Since integral domains are reduced, prime ideals (a fortiori, maximal
ideals) are radical. The radical of .0/ consists of the nilpotent elements of A — it is called
the nilradical of A.

If b$ b0 under the one-to-one correspondence (2) between ideals of A and ideals of
A=a, then A=b' .A=a/=b0, and so b is prime (resp. maximal, radical) if and only if b0 is
prime (resp. maximal, radical).
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PROPOSITION 2.4. Let a be an ideal in a ring A.
(a) The radical of a is an ideal.
(b) rad.rad.a//D rad.a/.

PROOF. (a) If f 2 rad.a/, then clearly af 2 rad.a/ for all a 2A. Suppose that a;b 2 rad.a/,
with say ar 2 a and bs 2 a. When we expand .aCb/rCs using the binomial theorem, we
find that every term has a factor ar or bs , and so lies in a.

(b) If ar 2 rad.a/, then ars D .ar/s 2 a for some s > 0, and so a 2 rad.a/. 2

Note that (b) of the proposition shows that rad.a/ is radical. In fact, it is the smallest
radical ideal containing a.

If a and b are radical, then a\b is radical, but aCb need not be: consider, for example,
aD .X2�Y / and bD .X2CY /; they are both prime ideals in kŒX;Y � (by 4.11 below), but
aCbD .X2;Y /, which contains X2 but not X .

PROPOSITION 2.5. The radical of an ideal is equal to the intersection of the prime ideals
containing it. In particular, the nilradical of a ring A is equal to the intersection of the prime
ideals of A.

PROOF. If aD A, then the set of prime ideals containing it is empty, and so the intersection
is A. Thus we may suppose that a is a proper ideal of A. Then rad.a/ �

T
p�a p because

prime ideals are radical and rad.a/ is the smallest radical ideal containing a.
For the reverse inclusion, let f … rad.a/. According to Proposition 2.2, there exists a

prime ideal containing a and disjoint from the multiplicative subset f1;f; : : :g. Therefore
f …

T
p�a p. 2

DEFINITION 2.6. The Jacobson radical J of a ring is the intersection of the maximal ideals
of the ring:

J.A/D
\
fm jm maximal in Ag:

A ring A is local if it has exactly one maximal ideal m. For such a ring, the Jacobson
radical is m.

PROPOSITION 2.7. An element c of A is in the Jacobson radical of A if and only if 1�ac
is a unit for all a 2 A.

PROOF. We prove the contrapositive: there exists a maximal ideal m such that c …m if and
only if there exists an a 2 A such that 1�ac is not a unit.
): Suppose that c is not in the maximal ideal m. Then mC .c/DA, and so 1DmCac

for some m 2m and a 2 A. Now 1�ac 2m, and so it is not a unit.
(: If 1�ac is not a unit, then it lies in some maximal ideal m of A (by 2.3). Now

c …m, because otherwise 1D .1�ac/Cac 2m. 2

PROPOSITION 2.8 (PRIME AVOIDANCE). Let p1; : : : ;pr , r � 1, be ideals inAwith p2; : : : ;pr
prime. If an ideal a is not contained in any of the pi , then it is not contained in their union.

PROOF. When r D 1, there is nothing to prove, and so we may assume that r > 1. Suppose
that a�

S
1�j�r pj and that no pj can be deleted from the union. In particular, a 6�

S
j¤i pj ,
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and so there exists an ai 2 aX
S
j¤i pj . Then ai 2 pi , because otherwise ai 2 aX

S
1�j�r pj .

Consider
aD a1 � � �ar�1Car 2 a:

I claim that a belongs to no pi , which is a contradiction. Because none of the elements
a1; : : : ;ar�1 lies in pr and pr is prime, their product does not lie in pr (2.1); but ar 2 pr ,
and so a … pr . Next consider an ideal pi with i � r �1. In this case a1 � � �ar�1 2 pi because
the product involves ai , but ar … pi , and so again a … pi . 2

ASIDE 2.9. 4In general, the condition in (2.8) that the ideals p2; : : : ;pr be prime is necessary. For
example, the ideal .x;y/ in F2Œx;y� is the union of three proper nonprime ideals. However, when
A contains an infinite field k, the condition can be dropped. In the above proof, let V be the (finite-
dimensional) k-vector space generated by the ai , and let Vi D pi \V . Then V �

S
1�i�r Vi , but the

Vi are proper subspaces of V , and so this is impossible as k is infinite.

Extension and contraction of ideals
Let 'WA! B be a homomorphism of rings.

NOTATION 2.10. For an ideal b of B , '�1.b/ is an ideal in A, called the contraction of b
to A, which is often denoted bc . For an ideal a of A, the ideal in B generated by '.a/ is
called the extension of a to B , and is often denoted ae . When ' is surjective, '.a/ is already
an ideal, and when A is a subring of B , bc D b\A.

2.11. There are the following equalities (a;a0 ideals in A; b;b0 ideals in B):

.aCa0/e D aeCa0e; .aa0/e D aea0e; .b\b0/c D bc \b0c ; rad.b/c D rad.bc/:

2.12. Let a be an ideal of A and b an ideal of B . Obviously (i) a� aec and (ii) bce � b. On
applying e to (i), we find that ae � aece , and (ii) with b replaced by ae shows that aece � ae;
therefore ae D aece. Similarly, bcec D bc : It follows that extension and contraction define
inverse bijections between the set of contracted ideals in A and the set of extended ideals in
B:

fbc � A j b an ideal in Bg
a7!ae

 ��!
bc [b

fae � B j a an ideal in Ag

Note that, for every ideal b in B , the map A=bc! B=b is injective, and so bc is prime (resp.
radical) if b is prime (resp. radical).

The Chinese remainder theorem

Recall the classical form5 of the theorem: let d1; :::;dn be integers, relatively prime in pairs;
then for any integers x1; :::;xn, the congruences

x � xi mod di

have a simultaneous solution x 2 Z; moreover, if x is one solution, then the other solutions
are the integers of the form xCmd with m 2 Z and d D

Q
di :

4Asides can be ignored.
5Often credited to Qin Jiushao (1208-1261), one of the greatest mathematicians of his era (NAMS, 2013).
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We want to translate this into a statement about ideals. Integers m and n are relatively
prime if and only if .m;n/D Z, i.e., if and only if .m/C .n/D Z. This suggests defining
ideals a and b in a ring A to be relatively prime (or coprime) if aCbD A.

If m1; :::;mk are integers, then
T
.mi /D .m/ where m is the least common multiple of

the mi . Thus
T
.mi /� .

Q
mi /, which equals

Q
.mi /. If the mi are relatively prime in pairs,

then mD
Q
mi , and so we have

T
.mi /D

Q
.mi /. Note that in general,

a1 �a2 � � �an � a1\a2\ :::\an;

but the two ideals need not be equal.
These remarks suggest the following statement.

THEOREM 2.13 (CHINESE REMAINDER THEOREM). Let a1; : : : ;an be ideals in a ring A.
If ai is relatively prime to aj whenever i ¤ j , then the map

a 7! .: : : ;aCai ; : : :/WA! A=a1� � � ��A=an (3)

is surjective with kernel
Q

ai (so
Q

ai D
T

ai ).

PROOF. Suppose first that nD 2. As a1Ca2 DA, there exist ai 2 ai such that a1Ca2 D 1.
Then a1x2C a2x1 maps to .x1 moda1;x2 moda2/, which shows that (3) is surjective.
Moreover, for c 2 a1\a2, we have

c D a1cCa2c 2 a1 �a2

which proves that a1\a2 D a1a2. Thus

A=a1a2 ' A=a1�A=a2:

We now use induction to prove the theorem for n > 2. For i � 2, there exist elements
ai 2 a1 and bi 2 ai such that

ai Cbi D 1:

The product
Q
i�2.ai Cbi / lies in a1Ca2 � � �an and equals 1, and so

a1Ca2 � � �an D A:

Therefore,

A=a1 � � �an D A=a1 � .a2 � � �an/
' A=a1�A=a2 � � �an by the nD 2 case
' A=a1�A=a2� � � ��A=an by induction. 2

Exercises
EXERCISE 2.14. Let M be an A-module. Define the product of two elements of A˚M by

.a;m/.a0;m0/D .aa0;am0Ca0m/:

Show that this makes A˚M into a ring. Show that the ideals of A˚M contained in M are
exactly the A-submodules of M .6

6This construction shows that modules over A and their submodules can be realized as ideals in the ring
A˚M , which is useful for deducing results about modules from results about ideals. Nagata calls this the
“principle of idealization” (Nagata 1962, p.2).
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3 Noetherian rings
PROPOSITION 3.1. The following three conditions on a ring A are equivalent:

(a) every ideal in A is finitely generated;
(b) every ascending chain of ideals a1 � a2 � �� � eventually becomes constant, i.e.,

am D amC1 D �� � for some m.
(c) every nonempty set of ideals in A has a maximal element.

PROOF. (a)) (b): If a1 � a2 � �� � is an ascending chain, then aD
S

ai is an ideal, and
hence has a finite set fa1; : : : ;ang of generators. For some m, all the ai belong am, and then

am D amC1 D �� � D a:

(b)) (c): Let ˙ be a nonempty set of ideals in A. If ˙ has no maximal element, then
the axiom of dependent choice7 shows that there exists a strictly ascending sequence of
ideals in ˙ , which contradicts (b).

(c) ) (a): Let a be an ideal in A, and let ˙ be the set of finitely generated ideals
contained in a. Then ˙ is nonempty because it contains the zero ideal, and so it contains
a maximal element cD .a1; : : : ;ar/. If c¤ a, then there exists an element a 2 aX c, and
.a1; : : : ;ar ;a/ will be a finitely generated ideal in a properly containing c. This contradicts
the definition of c, and so cD a. 2

A ring A is noetherian if it satisfies the equivalent conditions of the proposition. For
example, fields and principal ideal domains are noetherian. On applying (c) to the set of all
proper ideals containing a fixed proper ideal, we see that every proper ideal in a noetherian
ring is contained in a maximal ideal. We saw in (3.6) that this is, in fact, true for every ring,
but the proof for non-noetherian rings requires Zorn’s lemma.

A quotient A=a of a noetherian ring A is noetherian, because the ideals in A=a are all of
the form b=a with b an ideal in A, and every set of generators for b generates b=a.

PROPOSITION 3.2. Let A be a ring. The following conditions on an A-module M are
equivalent:

(a) every submodule of M is finitely generated (in particular, M is finitely generated);
(b) every ascending chain of submodules M1 �M2 � �� � eventually becomes constant.
(c) every nonempty set of submodules of M has a maximal element.

PROOF. Essentially the same as that of (3.1). 2

An A-module M is noetherian if it satisfies the equivalent conditions of the proposition.
Let AA denote A regarded as a left A-module. Then the submodules of AA are exactly the
ideals in A, and so AA is noetherian (as an A-module) if and only if A is noetherian (as a
ring).

PROPOSITION 3.3. Let A be a ring and

0!M 0
˛
�!M

ˇ
�!M 00! 0

an exact sequence of A-modules.
7This says: Let R be a binary relation on a nonempty set X , and suppose that, for each a in X , there exists

a b such that aRb; then there exists a sequence .an/n2N of elements of X such that anRanC1 for all n. It is
strictly stronger than the axiom of countable choice but weaker than the axiom of choice. See the Wikipedia
(axiom of dependent choice).
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(a) If N � P are submodules of M such that ˛ .M 0/\N D ˛ .M 0/\P and ˇ .N /D
ˇ .P /, then N D P .

(b) If M 0 and M 00 are finitely generated, so also is M .
(c) M is noetherian if and only if M 0 and M 00 are both noetherian.

PROOF. (a) Let p 2 P . The second condition implies that there exists an n 2N such that
ˇ.n/ D ˇ.p/. Then ˇ.p� n/ D 0, and so p� n lies in ˛M 0, and hence in ˛M 0\P D
˛M 0\N �N . Thus p D .p�n/Cn 2N .

(b) Let S 0 be a finite set of generators for M , and let S 00 be a finite subset of M such
that ˇS 00 generates M 00. The submodule N of M generated by ˛S 0 [ S 00 is such that
˛M 0\N D ˛M 0 and ˇN DM 00. Therefore (a) shows that N DM .

(c)): An ascending chain of submodules of M 0 or of M 00 gives rise to an ascending
chain in M , and therefore becomes constant.
(: Consider an ascending chain of submodules of M . As M 00 is Noetherian, the image

of the chain in M 00 becomes constant, and as M 0 is Noetherian, the intersection of the chain
with ˛M 0 becomes constant. Now the (a) shows that the chain itself becomes constant. 2

For example, a direct sum
M DM1˚M2

of A-modules is noetherian if and only if M1 and M2 are both noetherian.

PROPOSITION 3.4. Every finitely generated module over a noetherian ring is noetherian.

PROOF. LetM be a module over a noetherian ring A. IfM is generated by a single element,
thenM �A=a for some ideal a inA, and the statement is obvious. We argue by induction on
the minimum number n of generators of M . Clearly M contains a submodule N generated
by n�1 elements such that the quotient M=N is generated by a single element, and so the
statement follows from (3.3c). 2

Hence, every submodule of a finitely generated module over a noetherian ring is finitely
generated. This statement is false for nonnoetherian rings, as any non finitely generated ideal
in the ring demonstrates.

PROPOSITION 3.5. Every finitely generated module M over a noetherian ring A contains a
finite chain of submodules M �Mr � �� � �M1 � 0 such that each quotient Mi=Mi�1 is
isomorphic to A=pi for some prime ideal pi .

PROOF. The annihilator of an element x of M is

ann.x/ def
D fa 2 A j ax D 0g:

It is an ideal in A, which is proper if x ¤ 0.
Let aD ann.x/ be maximal among the annihilators of nonzero elements of M . I claim

that a is prime. Let ab 2 a, so that abx D 0. Then a � .a/Ca � ann.bx/. If b … a, then
bx ¤ 0, and so aD ann.bx/ by maximality, which implies that a 2 a.

We now prove the proposition. Note that, for every x 2 M , the submodule Ax of
M is isomorphic to A=ann.x/. If M is nonzero, then there exists a nonzero x such that
ann.x/ is maximal among the annihilators of nonzero elements of M , and so M contains
a submodule M1 D Ax isomorphic to A=p1 with p1 prime. Similarly, M=M1 contains
a submodule M2=M1 isomorphic A=p2 for some prime ideal p2, and so on. The chain
0�M1 �M2 � �� � terminates because M is noetherian (by 3.4). 2
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ASIDE 3.6. The proofs of (2.2) and (3.5) are two of many in commutative algebra in which an ideal,
maximal with respect to some property, is shown to be prime. For a general examination of this
phenomenon, see Lam and Reyes, J. Algebra 319 (2008), no. 7, 3006–3027.

THEOREM 3.7 (HILBERT BASIS THEOREM). Every finitely generated algebra over a noethe-
rian ring is noetherian.

PROOF. Let A be a noetherian ring, and let B be a finitely generated A-algebra. We
argue by induction on the minimum number of generators for B . As AŒx1; : : : ;xn� D
AŒx1; : : : ;xn�1�Œxn�, it suffices to prove the theorem for nD 1. But then B is a quotient of
AŒX�, and so it suffices to prove that AŒX� is noetherian.

Recall that for a polynomial

f .X/D c0X
r
C c1X

r�1
C�� �C cr ; ci 2 A; c0 ¤ 0;

c0 is called the leading coefficient of f .
Let a be an ideal inAŒX�, and let a.i/ be the set of elements ofA that occur as the leading

coefficient of a polynomial in a of degree i (we also include 0). Then a.i/ is obviously an
ideal in A, and a.i �1/� a.i/ because, if cX i�1C�� � 2 a, then X.cX i�1C�� �/ 2 a.

Let b be an ideal of AŒX� contained in a. Then b.i/ � a.i/, and if equality holds for
all i , then bD a. Suppose otherwise, and let f be a polynomial in a of least degree i not
in b. Because b.i/D a.i/, there exists a g 2 b such that deg.f �g/ < deg.f /D i . Now
f �g 2 b, and so f D .f �g/Cg 2 b.

As A is noetherian, the sequence of ideals

a.1/� a.2/� �� � � a.i/� �� �

becomes constant, say, a.d/D a.d C1/D : : : (and a.d/ contains the leading coefficient of
every polynomial in a). For each i � d , there exists a finite generating set fci1; ci2; : : :g for
a.i/, and for each .i;j /, there exists a polynomial fij 2 a of degree i with leading coefficient
cij . The ideal b of AŒX� generated by the fij is contained in a and has the property that
b.i/D a.i/ for all i . Therefore bD a, and a is finitely generated. 2

COROLLARY 3.8. When A is noetherian, every finitely generated A-algebra is finitely
presented.

PROOF. Every finitely generated A-algebra B is of the form AŒX1; : : : ;Xn�=a for some n
and ideal a in AŒX1; : : : ;Xn�. Because AŒX1; : : : ;Xn� is noetherian, the ideal a is finitely
generated, and so B is finitely presented. 2

In particular, the polynomial ring kŒX1; : : : ;Xn� over a field k is noetherian. This is the
original theorem of Hilbert.

NAKAYAMA’S LEMMA 3.9. Let A be a ring, let a be an ideal in A, and let M be an A-
module. Assume that a is contained in all maximal ideals of A and that M is finitely
generated.

(a) If M D aM , then M D 0:
(b) If N is a submodule of M such that M DN CaM , then M DN .
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PROOF. (a) Suppose that M ¤ 0. Choose a minimal set of generators fe1; : : : ; eng for M ,
n� 1, and write

e1 D a1e1C�� �Canen, ai 2 a:

Then
.1�a1/e1 D a2e2C�� �Canen

and, as 1�a1 lies in no maximal ideal, it is a unit. Therefore e2; : : : ; en generate M , which
contradicts the minimality of the original set.

(b) The hypothesis implies that M=N D a.M=N/, and so M=N D 0. 2

Recall (2.6) that the Jacobson radical J of A is the intersection of the maximal ideals of
A, and so the condition on a is that a � J. In particular, the lemma holds with aD J; for
example, when A is a local ring, it holds with a the maximal ideal in A.

COROLLARY 3.10. Let A be a local ring with maximal ideal m and residue field k def
D A=m,

and letM be a finitely generated module over A. The action of A onM=mM factors through
k, and elements a1; : : : ;an of M generate it as an A-module if and only if the elements

a1CmM;: : : ;anCmM

generate M=mM as k-vector space.

PROOF. If a1; : : : ;an generate M , then it is obvious that their images generate the vector
space M=mM . Conversely, suppose that a1CmM;: : : ;anCmM span M=mM , and let N
be the submodule of M generated by a1; : : : ;an. The composite N !M !M=mM is
surjective, and so M DN CmM . Now Nakayama’s lemma shows that M DN . 2

COROLLARY 3.11. Let A be a noetherian local ring with maximal ideal m. Elements
a1; : : : ;an of m generate m as an ideal if and only if a1Cm2; : : : ;anCm2 generate m=m2 as
a vector space over A=m. In particular, the minimum number of generators for the maximal
ideal is equal to the dimension of the vector space m=m2.

PROOF. Because A is noetherian, m is finitely generated, and we can apply the preceding
corollary with M Dm. 2

EXAMPLE 3.12. Nakayama’s lemma may fail ifM is not finitely generated (but see the next
remark). For example, let Z.p/ D fmn j p does not divide ng and consider the Z.p/-module
Q. Then Z.p/ is a local ring with maximal ideal .p/ (see �5 below) and QD pQ but Q¤ 0.

REMARK 3.13. Let A be a ring and a a nilpotent ideal in A, say ar D 0. Let M be an A-
module (not necessarily finitely generated). If M D aM , then M D aM D �� � D arM D 0.
Therefore, if N is a submodule of M such that M D N C aM , then M D N (because
M=N D a.M=N/).

DEFINITION 3.14. Let A be a noetherian ring.
(a) The height ht.p/ of a prime ideal p in A is the greatest length d of a chain of distinct

prime ideals
pD pd � pd�1 � �� � � p0: (4)

(b) The (Krull) dimension of A is supfht.p/ j p� A; p primeg.
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Thus, the Krull dimension of a ring A is the supremum of the lengths of chains of prime
ideals in A (the length of a chain is the number of gaps, so the length of (4) is d ). It is
sometimes convenient to define the Krull dimension of the zero ring to be �1.

Let A be an integral domain. Then

dim.A/D 0 ” .0/ is maximal ” A is a field.

The height of a nonzero prime ideal in a principal ideal domain is 1, and so such a ring has
Krull dimension 1 (unless it is a field).

We shall see in �21 that the height of every prime ideal in a noetherian ring is finite.
However, the Krull dimension of the ring may be infinite, because it may contain a sequence
of prime ideals whose heights tend to infinity (Krull 1938).8

LEMMA 3.15. Every set of generators for a finitely generated ideal contains a finite gener-
ating set.

PROOF. Let S be a set of generators for an ideal a, and suppose that a is generated by a
finite set fa1; :::;ang. Each ai lies in the ideal generated by a finite subset Si of S , and so a
is generated by the finite subset

S
Si of S . 2

The lemma applies also to algebras, groups, modules, . . . , not just ideals.

THEOREM 3.16 (KRULL INTERSECTION THEOREM). Let a be an ideal in a noetherian
ring A. If a is contained in all maximal ideals of A, then

T
n�1 a

n D f0g:

PROOF. We shall show that, for every ideal a in a noetherian ring,\
n�1

an D a �
\

n�1
an: (5)

When a is contained in all maximal ideals of A, Nakayama’s lemma then shows thatT
n�1 a

n D 0.
Let a1; : : : ;ar generate a. Then an consists of finite sumsX

i1C���CirDn

ci1���ira
i1
1 � � �a

ir
r ; ci1���ir 2 A:

In other words, an consists of the elements of A of the form g.a1; : : : ;ar/ for some homoge-
neous polynomial g 2 AŒX1; : : : ;Xr � of degree n.

Let Sm denote the set of homogeneous polynomials f .X1; : : : ;Xr/ of degree m such
that f .a1; : : : ;ar/ 2

T
n�1 a

n, and let c be the ideal in AŒX1; : : : ;Xr � generated by
S
mSm.

Because AŒX1; : : : ;Xr � is noetherian, c is finitely generated, and so c is generated by a finite
set ff1; : : : ;fsg of elements of

S
mSm (3.15). Let di D degfi , and let d Dmaxdi .

Let b 2
T
n�1 a

n; then b 2 adC1, and so b D f .a1; : : : ;ar/ for some homogeneous
polynomial f of degree d C 1. By definition, f 2 SdC1 � c, and so there exist gi 2
AŒX1; : : : ;Xr � such that

f D g1f1C�� �Cgsfs in AŒX1; : : : ;Xr �:

8In Nagata 1962, p.203, there is the following example. Let ND I0tI1t : : : be a partition of N into finite
sets with strictly increasing cardinality. Let A D kŒX0;X1; : : :� be the polynomial ring in a set of symbols
indexed by N, and let pi be the prime ideal in A generated by the Xj with j in Ii . Let S be the multiplicative
set AX

S
pi . Then S�1A is noetherian and regular, and the prime ideal S�1pi has height jIi j.
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As f and the fi are homogeneous, we can omit from each gi all terms not of degree
degf � degfi , since these terms cancel out. In other words, we can choose the gi to be
homogeneous of degree degf �degfi D d C1�di > 0. In particular, the constant term of
gi is zero, and so gi .a1; : : : ;ar/ 2 a. Now

b D f .a1; : : : ;ar/D
X

i
gi .a1; : : : ;ar/ �fi .a1; : : : ;ar/ 2 a �

\
n
an;

which completes the proof of (5). 2

The equality (5) can also be proved using primary decompositions — see (19.14).

PROPOSITION 3.17. In a noetherian ring, every ideal contains a power of its radical; in
particular, some power of the nilradical of the ring is zero.

PROOF. Let a1; : : : ;an generate rad.a/. For each i , some power of ai , say ari

i , lies in a.
Then every term of the expansion of

.c1a1C�� �C cnan/
r1C���Crn ; ci 2 A;

has a factor of the form a
ri

i for some i , and so lies in a. Thus rad.a/r1C���Crn � a. 2

ASIDE 3.18. In a noetherian ring, every ideal is finitely generated, but there is little that one can say
in general about the number of generators required. For example, in kŒX� every ideal is generated by
a single element, but in kŒX;Y � the ideal .X;Y /n requires at least nC1 generators.

ASIDE 3.19. The following example shows that the Krull intersection theorem fails for nonnoethe-
rian rings. Let A be the ring of germs9 of C1 functions at 0 on the real line. Then A is a local ring
with maximal ideal m equal to the set of germs zero at 0, and

T
n�1m

n consists of the germs whose

derivatives at zero are all zero. In particular, it contains the nonzero function e�1=x
2
.

Exercises
EXERCISE 3.20. Consider the subalgebra

AD kCkŒX;Y �X D kŒX;XY;XY 2; : : :�

of kŒX;Y �. Show that A is not noetherian (hence subrings of noetherian rings need not be
noetherian, and subalgebras of finitely generated algebras need not be finitely generated).

4 Unique factorization
Let A be an integral domain. An element a of A is said to be irreducible if it is neither zero
nor a unit and admits only trivial factorizations, i.e.,

aD bc H) b or c is a unit.

The element a is said to be prime if it is neither zero nor a unit and .a/ is a prime ideal, i.e.,

ajbc H) ajb or ajc:

9A germ of a function at 0 is represented by a function f on an open neighbourhood U of 0; two pairs .f;U /
and .f 0;U 0/ represent the same germ if and only if f and f 0 agree on some neighbourhood of 0 in U \U 0.
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An integral domain A is called a unique factorization domain (or a factorial domain)
if every nonzero nonunit a in A can be written as a finite product of irreducible elements in
exactly one way up to units and the order of the factors. The uniqueness condition means
that if

aD
Y

i2I
ai D

Y
j2J

bj

with each ai and bj irreducible, then there exists a bijection i 7! j.i/WI ! J such that
bj.i/ D ai �unit for each i . Every principal ideal domain is a unique factorization domain
(proved in most algebra courses).

PROPOSITION 4.1. Let A be an integral domain, and let a be an element of A that is neither
zero nor a unit. If a is prime, then a is irreducible, and the converse holds when A is a
unique factorization domain.

Thus, .a/ is a prime ideal if a is irreducible and A is a unique factorization domain.

PROOF. Assume that a is prime. If a D bc, then a divides bc and so a divides b or c.
Suppose the first, and write b D aq. Now aD bc D aqc, which implies that qc D 1 because
A is an integral domain, and so c is a unit. We have shown that a is irreducible.

For the converse, assume that a is irreducible and that A is a unique factorization domain.
If ajbc, then bc D aq for some q 2 A. On writing each of b, c, and q as a product of
irreducible elements, and using the uniqueness of factorizations, we see that a differs from
one of the irreducible factors of b or c by a unit. Therefore a divides b or c. 2

COROLLARY 4.2. Let A be an integral domain. If A is a unique factorization domain, then
every prime ideal of height 1 is principal.

PROOF. Let p be a prime ideal of height 1. Then p contains a nonzero element, and hence
an irreducible element a. We have p� .a/� .0/. As .a/ is prime and p has height 1, we
must have pD .a/. 2

The converse is true for noetherian integral domains (21.4).

PROPOSITION 4.3. Let A be an integral domain in which every nonzero nonunit element is
a finite product of irreducible elements. If every irreducible element of A is prime, then A is
a unique factorization domain.

PROOF. We have to prove the uniqueness of factorizations. Suppose that

a1 � � �am D b1 � � �bn (6)

with the ai and bi irreducible elements in A. As a1 is prime, it divides one of the bi , which
we may suppose to be b1, say b1 D a1u. As b1 is irreducible, u is a unit. On cancelling a1
from both sides of (6), we obtain the equality

a2 � � �am D .ub2/b3 � � �bn:

Continuing in this fashion, we find that the two factorizations are the same up to units and
the order of the factors. 2

PROPOSITION 4.4. LetA be an integral domain in which every ascending chain of principal
ideals becomes constant (e.g., a noetherian integral domain). Then every nonzero nonunit
element in A is a finite product of irreducible elements.
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PROOF. The hypothesis implies that every nonempty set of principal ideals has a maximal
element (cf. the proof of 3.1). Assume that A has nonfactorable elements, and let .a/ be
maximal among the ideals generated by such elements. Then a is not itself irreducible, and
so aD bc with neither b nor c units. Now .b/ and .c/ both properly contain .a/, and so b
and c are both factorable, which contradicts the nonfactorability of a. 2

PROPOSITION 4.5. Let A be a unique factorization domain with field of fractions F . If an
element f of AŒX� factors into the product of two nonconstant polynomials in F ŒX�, then it
factors into the product of two nonconstant polynomials in AŒX�.

In other words, if f is not the product of two nonconstant polynomials in AŒX�, then it
is irreducible in F ŒX�.

PROOF. Let f D gh in F ŒX�. For suitable c;d 2A, the polynomials g1 D cg and h1 D dh
have coefficients in A, and so we have a factorization

cdf D g1h1 in AŒX�.

If an irreducible element p of A divides cd , then, looking modulo .p/, we see that

0D g1 �h1 in .A=.p// ŒX�.

According to Proposition 4.1, the ideal .p/ is prime, and so .A=.p// ŒX� is an integral
domain. Therefore, p divides all the coefficients of at least one of the polynomials g1;h1,
say g1, so that g1 D pg2 for some g2 2 AŒX�. Thus, we have a factorization

.cd=p/f D g2h1 in AŒX�.

Continuing in this fashion, we can remove all the irreducible factors of cd , and so obtain a
factorization of f in AŒX�. 2

The proof shows that every factorization f D gh in F ŒX� of an element f of AŒX�
arises from a factorization f D .cg/.c�1h/ in AŒX� with c 2 F .

Let A be a unique factorization domain. A nonzero polynomial

f D a0Ca1XC�� �CamX
m

in AŒX� is said to be primitive if the coefficients ai have no common factor other than units.
Every polynomial f in F ŒX� can be written f D c.f / �f1 with c.f / 2 F and f1 primitive.
The element c.f /, which is well-defined up to multiplication by a unit, is called the content
of f . Note that f 2 AŒX� if and only if c.f / 2 A.

PROPOSITION 4.6. Let A be a unique factorization domain. The product of two primitive
polynomials in AŒX� is primitive.

PROOF. Let

f D a0Ca1XC�� �CamX
m

g D b0Cb1XC�� �CbnX
n;

be primitive polynomials, and let p be a prime element of A. Let ai0 be the first coefficient
of f not divisible by p and bj0

the first coefficient of g not divisible by p. Then all the
terms in

P
iCjDi0Cj0

aibj are divisible by p, except ai0bj0
, which is not divisible by p.

Therefore, p doesn’t divide the .i0Cj0/th-coefficient of fg. We have shown that no prime
element of A divides all the coefficients of fg, which must therefore be primitive. 2
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Each of the last two propositions is referred to as Gauss’s lemma (Gauss proved them
with AD Z).

PROPOSITION 4.7. Let A be a unique factorization domain with field of fractions F , and
let f;g 2 F ŒX�. Then

c.fg/D c.f / � c.g/.

Hence every factor in AŒX� of a primitive polynomial is primitive.

PROOF. Let f D c.f /f1 and g D c.g/g1 with f1 and g1 primitive. Then

fg D c.f /c.g/f1g1

with f1g1 primitive, and so c.fg/D c.f /c.g/. 2

COROLLARY 4.8. The irreducible elements in AŒX� are the irreducible elements c of A
and the nonconstant primitive polynomials f such that f is irreducible in F ŒX�.

PROOF. Obvious from Propositions 4.5 and 4.7. 2

THEOREM 4.9. If A is a unique factorization domain, then so also is AŒX�.

PROOF. Let f 2 AŒX�, and write f D c.f /f1. Then c.f / is a product of irreducible
elements in A. If f1 is not irreducible, then it can be written as a product of two polynomials
of lower degree, which are necessarily primitive (4.7). Continuing in this fashion, we find
that f1 is a product of irreducible primitive polynomials, and hence that f is a product of
irreducible elements in AŒX�.

It remains to show that each irreducible element of AŒX� is prime (see 4.3). There are
two cases (4.8).

Let c be an irreducible element of A. If a divides the product gh of g;h 2 AŒX�, then it
divides c.gh/D c.g/c.h/. As a is prime, it divides c.g/ or c.h/, and hence also g or h.

Let f be a nonconstant primitive polynomial in AŒX� such that f is irreducible in F ŒX�.
If f divides the product gh of g;h 2 AŒX�, then it divides g or h in F ŒX�. Suppose the
first, and write f q D g with q 2 F ŒX�. Because f is primitive, c.q/ D c.f /c.q/, and
c.f /c.q/D c.f q/D c.g/ 2 A, and so q 2 AŒX�. Therefore f divides g in AŒX�. 2

Let k be a field. A monomial in X1; : : : ;Xn is an expression of the form

X
a1

1 � � �X
an
n ; aj 2 N:

The total degree of the monomial is
P
ai . The degree, deg.f /, of a nonzero polyno-

mial f .X1; : : : ;Xn/ is the largest total degree of a monomial occurring in f with nonzero
coefficient. Since

deg.fg/D deg.f /Cdeg.g/;

kŒX1; : : : ;Xn� is an integral domain and kŒX1; : : : ;Xn�� D k�. Therefore, an element f of
kŒX1; : : : ;Xn� is irreducible if it is nonconstant and f D gh H) g or h is constant.

THEOREM 4.10. The ring kŒX1; : : : ;Xn� is a unique factorization domain.
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PROOF. Note that
AŒX1; : : : ;Xn�D AŒX1; : : : ;Xn�1�ŒXn�: (7)

This simply says that every polynomial f in n symbolsX1; : : : ;Xn can be expressed uniquely
as a polynomial in Xn with coefficients in kŒX1; : : : ;Xn�1�,

f .X1; : : : ;Xn/D a0.X1; : : : ;Xn�1/X
r
nC�� �Car.X1; : : : ;Xn�1/:

The theorem is trivially true when nD 0, and (7) allows us to deduce it from (4.9) for all n.2

COROLLARY 4.11. A nonzero proper principal ideal .f / in kŒX1; : : : ;Xn� is prime if and
only f is irreducible.

PROOF. Special case of Proposition 4.1. 2

5 Rings of fractions
Recall that a multiplicative subset of a ring is a nonempty subset closed under the formation
of finite products. In particular, it contains 1 (the empty product).

Let S be a multiplicative subset of a ring A. Define an equivalence relation on A�S by

.a;s/� .b; t/ ” u.at �bs/D 0 for some u 2 S:

Write a
s

for the equivalence class containing .a;s/, and define addition and multiplication of
equivalence classes according to the rules:

a
s
C
b
t
D

atCbs
st

; a
s
b
t
D

ab
st
:

It is easily checked these do not depend on the choices of representatives for the equivalence
classes, and that we obtain in this way a ring

S�1AD fa
s
j a 2 A; s 2 Sg

and a ring homomorphism a 7! a
1
WA

iS
�! S�1A whose kernel is

fa 2 A j saD 0 for some s 2 Sg:

If S contains no zero-divisors, for example, if A is an integral domain and 0 … S , then iS is
injective. At the opposite extreme, if 0 2 S , then S�1A is the zero ring.

A homomorphism A! B factors through A
iS
�! S�1A if and only if the image of S in

B consists of units. More formally:

PROPOSITION 5.1. The pair .S�1A;iS / has the following universal property:

every element of S maps to a unit in S�1A, and
every other ring homomorphism ˛WA! B with
this property factors uniquely through iS

A S�1A

B:

iS

˛
9Š
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PROOF. Let ˛WA!B be such a homomorphism, and let ˇWS�1A!B be a homomorphism
such that ˇ ı iS D ˛. Then

s
1
a
s
D

a
1
H) ˇ. s

1
/ˇ.a

s
/D ˇ.a

1
/ H) ˛.s/ˇ.a

s
/D ˛.a/

and so
ˇ.a
s
/D ˛.a/˛.s/�1: (8)

This shows that there can be at most one ˇ such that ˇ ı iS D ˛. We define ˇ by the formula
(8). Then

a
s
D

b
t
H) u.at �bs/D 0 some u 2 S

H) ˛.a/˛.t/�˛.b/˛.s/D 0 because ˛.u/ 2 B�;

which shows that ˇ is well-defined, and it is easy to check that it is a homomorphism. 2

As usual, this universal property determines the pair .S�1A;iS / uniquely up to a unique
isomorphism.10

When A is an integral domain and S D AXf0g, the ring S�1A is the field of fractions
F of A. In this case, for every other multiplicative subset T of A not containing 0, the ring
T �1A can be identified with the subring of F consisting of the fractions a

t
with a 2 A and

t 2 T .

EXAMPLE 5.2. Let h 2 A. Then Sh D f1;h;h2; : : :g is a multiplicative subset of A, and we
let Ah D S�1h A. Thus every element of Ah can be written in the form a=hm, a 2 A, and

a
hm D

b
hn ” hN .ahn�bhm/D 0; some N:

If h is nilpotent, then Ah D 0, and if A is an integral domain with field of fractions F and
h¤ 0, then Ah is the subring of F of elements that can be written in the form a=hm, a 2 A,
m 2 N:

PROPOSITION 5.3. For every ring A and h 2 A, the map
P
aiX

i 7!
P ai

hi defines an
isomorphism

AŒX�=.1�hX/! Ah:

PROOF. If hD 0, both rings are zero, and so we may assume h¤ 0. In the ring

AŒx�
def
D AŒX�=.1�hX/;

1D hx, and so h is a unit. Let ˛WA! B be a homomorphism of rings such that ˛.h/ is a
unit in B . The homomorphismP

i aiX
i 7!

P
i ˛.ai /˛.h/

�i WAŒX�! B

factors throughAŒx� because 1�hX 7! 1�˛.h/˛.h/�1D 0, and this is the unique extension
of ˛ to AŒx�. Therefore AŒx� has the same universal property as Ah, and so the two are
(uniquely) isomorphic by an A-algebra isomorphism that makes h�1 correspond to x. 2

10Recall the proof: let .A1; i1/ and .A2; i2/ have the universal property in the proposition; because every
element of S maps to a unit in A2, there exists a unique homomorphism ˛WA1! A2 such that ˛ ı i1 D i2
(universal property ofA1; i1/; similarly, there exists a unique homomorphism ˛0WA2!A1 such that ˛0 ı i2D i1;
now

˛0 ı˛ ı i1 D ˛
0
ı i2 D i1 D idA1

ıi1;

and so ˛0 ı ˛ D idA1
(universal property of A1; i1); similarly, ˛ ı ˛0 D idA2

, and so ˛ and ˛0 are inverse
isomorphisms (and they are uniquely determined by the conditions ˛ ı i1 D i2 and ˛0 ı i2 D i1).
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Let S be a multiplicative subset of a ringA and S�1A the corresponding ring of fractions.
For every ideal a in A, the ideal generated by the image of a in S�1A is

S�1aD fa
s
j a 2 a; s 2 Sg:

If a contains an element of S , then S�1a contains 1, and so is the whole ring. Thus some of
the ideal structure of A is lost in the passage to S�1A, but, as the next proposition shows,
some is retained.

PROPOSITION 5.4. Let S be a multiplicative subset of the ring A, and consider extension
a 7! ae D S�1a and contraction a 7! ac D fa 2 A j a

1
2 ag of ideals with respect to the

homomorphism iS WA! S�1A. Then

ace D a for all ideals of S�1A

aec D a if a is a prime ideal of A disjoint from S:

Moreover, the map p 7! pe is a bijection from the set of prime ideals of A disjoint from S

onto the set of all prime ideals of S�1A; the inverse map is p 7! pc .

PROOF. Let a be an ideal in S�1A. Certainly ace � a. For the reverse inclusion, let b 2 a.
We can write bD a

s
with a 2A, s 2 S . Then a

1
D s.a

s
/ 2 a, and so a 2 ac . Thus bD a

s
2 ace ,

and so a� ace.
Let p be a prime ideal of A disjoint from S . Clearly pec � p. For the reverse inclusion,

let a 2 pec so that a
1
D

a0

s
for some a0 2 p, s 2 S . Then t .as�a0/D 0 for some t 2 S , and

so ast 2 p. Because st … p and p is prime, this implies that a 2 p, and so pec � p.
Let p be a prime ideal of A disjoint from S , and let xS be the image of S in A=p.

Then .S�1A/=pe ' xS�1.A=p/ because S�1A=pe has the correct universal property, and
xS�1.A=p/ is an integral domain because A=p is an integral domain and xS doesn’t contain
0. Therefore pe is prime. From (2.12) we know that pc is prime if p is, and so p 7! pe and
p 7! pc are inverse bijections on the two sets. 2

COROLLARY 5.5. If A is noetherian, then so also is S�1A for every multiplicative set S:

PROOF. As bc is finitely generated, so also is .bc/e D b. 2

Let spec.A/ denote the set of prime ideals in A. Then Proposition 5.4 says that

spec.S�1A/' fp 2 spec.A/ j p\S D ;g.

PROPOSITION 5.6. Let 'WA! B be a ring homomorphism. A prime ideal p of A is the
contraction of a prime ideal in B if and only if pD pec .

PROOF. Suppose pD qc with q prime. Then pec D qcec
2.12
D qc D p. Conversely, suppose

that pD pec , and let S D AXp. Let s 2 S ; if '.s/ 2 pe , then s 2 pec D p, contradicting the
definition of S . Therefore '.S/ is disjoint from pe. It is a multiplicative subset of B , and
so there exists a prime ideal q in B containing pe and disjoint from '.S/ (apply 2.2). Now
'�1.q/ contains p and is disjoint from S , and so it equals p. 2
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EXAMPLE 5.7. Let p be a prime ideal in A. Then Sp
def
D AXp is a multiplicative subset of

A, and we let Ap D S
�1
p A. Thus each element of Ap can be written in the form a

c
, c … p, and

a
c
D

b
d
” s.ad �bc/D 0, some s … p:

A prime ideal is disjoint from Sp if and only if it is contained p, and so

spec.Ap/' fq 2 spec.A/ j q� pg.

Therefore, Ap is a local ring with maximal ideal mD pe D fa
s
j a 2 p; s … pg.

PROPOSITION 5.8. Let m be a maximal ideal of a ring A, and let nDmAm be the maximal
ideal of Am. For all n, the map

aCmn 7! aCnnWA=mn! Am=n
n

is an isomorphism. Moreover, it induces isomorphisms

mr=mn! nr=nn

for all pairs .r;n/ with r � n.

PROOF. The second statement follows from the first, because of the exact commutative
diagram .r < n/:

0 mr=mn A=mn A=mr 0

0 nr=nn Am=n
n Am=n

r 0:

' '

We consider extension and contraction with respect to a 7! a
1
WA! Am. Note that

nn D .mn/e, and so the kernel of A=mn! Am=n
n is .mn/ec=mn. Let a 2 .mn/ec . Then

a
1
D

b
s

with b 2 mn and s 2 S , and so tsa 2 mn for some t 2 S . Therefore tsa D 0 in
A=mn. Every maximal ideal of A containing m contains rad.mn/D m, and so equals m.
Therefore the only maximal ideal in A=mn is m=mn. But ts is not in m=mn, and so it must
be a unit in A=mn. Therefore a D 0 in A=mn, which means that a 2 mn. We deduce that
A=mn! Am=n

n is injective.
It remains to prove that A! Am=n

n is surjective. Let a
s
2 Am, a 2 A, s 2 AXm. As

we just showed, the only maximal ideal of A containing mn is m, and so no maximal ideal
contains both s and mn. Therefore .s/Cmn D A, and so sbCq D 1 for some b 2 A and
q 2mn. Hence

s.ba/D a.1�q/: (9)

On passing to Am and multiplying by s�1, we find that
ba
1
D

a
s
�
aq
s
:

As aq
s
2 nn, this shows that a

s
mod nn is in the image of A! Am=n

n. 2

PROPOSITION 5.9. In a noetherian ring A, only 0 lies in all powers of all maximal ideals:\
fmn jm maximal, n 2 Ng D f0g:

PROOF. Let a be an element of a noetherian ringA. If a¤ 0, then its annihilator fb j baD 0g
is a proper ideal in A, and so it is contained in some maximal ideal m. Then a

1
is nonzero in

Am, and so a
1
… .mAm/

n for some n (by the Krull intersection theorem 3.16), which implies
that a …mn (by 5.8). 2
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Modules of fractions
Let S be a multiplicative subset of the ring A, and let M be an A-module. Define an
equivalence relation on M �S by

.m;s/� .n; t/ ” u.tm� sn/D 0 for some u 2 S:

Write m
s

for the equivalence class containing .m;s/, and define addition and scalar multipli-
cation by the rules:

m
s
C
n
t
D

mtCns
st

; a
s
m
t
D

am
st
; m;n 2M; s; t 2 S; a 2 A:

It is easily checked these do not depend on the choices of representatives for the equivalence
classes, and that we obtain in this way an S�1A-module

S�1M D fm
s
jm 2M; s 2 Sg

and a homomorphism m 7! m
1
WM

iS
�! S�1M of A-modules whose kernel is

fa 2M j saD 0 for some s 2 Sg:

A homomorphism M !N of A-modules factors through M ! S�1M if and only if
every element of S acts invertibly on N . More formally:

PROPOSITION 5.10. The pair .S�1M;iS / has the following universal property:

the elements of S act invertibly on S�1M , and
every homomorphism M ! N from M to an A-
module N on which the elements of S act invert-
ibly factors uniquely through iS

M S�1M

N:

iS

9Š

PROOF. Similar to that of Proposition 5.1. 2

In particular, for every homomorphism ˛WM ! N of A-modules, there is a unique
homomorphism S�1˛WS�1M ! S�1N such that S�1˛ ı iS D iS ı˛:

M S�1M

N S�1N:

iS

˛ S�1˛

iS

In other words, S�1˛ is the unique homomorphism of S�1A-modules S�1M ! S�1N

such that
.S�1˛/.m

s
/D ˛.m/

s
; m 2M;

In this way, M  S�1M becomes a functor from A-modules to S�1A-modules.

PROPOSITION 5.11. The functor M  S�1M is exact. In other words, if the sequence of
A-modules

M 0
˛
�!M

ˇ
�!M 00

is exact, then so also is the sequence of S�1A-modules

S�1M 0
S�1˛
����! S�1M

S�1ˇ
����! S�1M 00:
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PROOF. Because ˇı˛D 0, we have 0DS�1.ˇı˛/DS�1ˇıS�1˛. Therefore Im.S�1˛/�
Ker.S�1ˇ/. For the reverse inclusion, let m

s
2 Ker.S�1ˇ/ where m 2M and s 2 S . Then

ˇ.m/
s
D 0 and so, for some t 2S , we have t .ˇ.m//D 0. Then ˇ.tm/D 0, and so tmD ˛.m0/

for some m0 2M 0. Now

m
s
D

tm
ts
D

˛.m0/
ts
2 Im.S�1˛/: 2

EXAMPLE 5.12. Let M be an A-module. For h 2 A, let Mh D S�1
h
M where Sh D

f1;h;h2; : : :g. Then every element of Mh can be written in the form m
hr , m 2M , r 2 N, and

m
hr D

m0

hr0
if and only if hN .hr

0

m�hrm0/D 0 for some N 2 N.

PROPOSITION 5.13. Let M be a finitely generated A-module. If S�1M D 0, then there
exists an h 2 S such that Mh D 0.

PROOF. To say that S�1M D 0 means that, for each x 2M , there exists an sx 2 S such
that sxx D 0. Let x1; : : : ;xn generate M . Then h def

D sx1
� � �sxn

lies in S and has the property
that hM D 0. Therefore Mh D 0. 2

PROPOSITION 5.14. Let M be an A-module. The canonical map

M !
Y
fMm jm a maximal ideal in Ag

is injective.

PROOF. Let m 2M map to zero in all Mm. The annilator aD fa 2 A j amD 0g of m is
an ideal in A. Because m maps to zero Mm, there exists an s 2 AXm such that smD 0.
Therefore a is not contained in m. Since this is true for all maximal ideals m, aDA (by 2.3),
and so it contains 1. Now mD 1mD 0. 2

COROLLARY 5.15. An A-module M D 0 if Mm D 0 for all maximal ideals m.

PROOF. Immediate consequence of the lemma. 2

PROPOSITION 5.16. A sequence

M 0
˛
�!M

ˇ
�!M 00 (10)

is exact if and only if
M 0m

˛m
�!Mm

˛m
�!M 00m (11)

is exact for all maximal ideals m.

PROOF. The necessity is a special case of Proposition 5.11. For the sufficiency, let N D
Ker.ˇ/= Im.˛/. Because the functor M  Mm is exact,

Nm D Ker.ˇm/= Im.˛m/:

If (11) is exact for all m, then Nm D 0 for all m, and so N D 0 (by 5.15). But this means
that (10) is exact. 2
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COROLLARY 5.17. A homomorphism M !N of A-modules is injective (resp. surjective,
zero) if and only if Mm!Nm is injective (resp. surjective, zero) for all maximal ideals m:

PROOF. Apply the proposition to 0!M !N (resp. M !N ! 0, M
id
�!M !N ). 2

PROPOSITION 5.18. Let N be the nilradical of A. For every multiplicative subset S of A,
S�1N is the nilradical of S�1A.

PROOF. Let a 2 A and s 2 S . If .a
s
/n D 0, then tan D 0 for some t 2 S , and so a

s
D

ta
ts
2

S�1N. Conversely, if a 2N, then clearly a
s

is in the nilradical of S�1A. 2

COROLLARY 5.19. A ring A is reduced if and only if Am is reduced for all maximal ideals
m in A.

PROOF. Combine Proposition 5.18 with Corollary 5.15. 2

EXAMPLE 5.20. Let p be a prime ideal in a ring A. When we apply Proposition 5.11 to the
exact sequence

0! p! A! A=p! 0

with S D Sp, we obtain an isomorphism

Ap=pAp ' �.p/

where �.p/ is the field of fractions of A=p.

Exercises
EXERCISE 5.21. (Bourbaki AC, II, �2, Exercise 1.) A multiplicative subset S of a ring A is
said to be saturated if

ab 2 S H) a and b 2 S:

(a) Show that the saturated multiplicative subsets of A are exactly the subsets S such that
AXS is a union of prime ideals.

(b) Let S be a multiplicative subset of A, and let zS be the set of a 2 A such that ab 2 S
for some b 2 A. Show that zS is a saturated multiplicative subset of A (hence it is the
smallest such subset containing S ), and that AX zS is the union of the prime ideals of
A not meeting S . Show that for every A-module M , the canonical homomorphism
S�1M ! zS�1M is bijective. In particular, S�1A' zS�1A.

EXERCISE 5.22. Let A! B be a homomorphism of rings, and let p be a prime ideal of A.
Show that the prime ideals of B lying over p are in natural one-to-one correspondence with
the prime ideals of B˝A �.p/.

EXERCISE 5.23. Show that a ring A is reduced if and only if it can be realized as a subring
of a product of fields. (Hint: Consider the map A!

Q
p �.p/ where p runs over the minimal

prime ideals of A.)
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6 Integral dependence
Let A be a subring of a ring B . An element ˛ of B is said to be integral over A if it is a root
of a monic11 polynomial with coefficients in A, i.e., if it satisfies an equation

˛nCa1˛
n�1
C�� �Can D 0; ai 2 A:

More generally, an element of an A-algebra B is integral over A if it is integral over the
image of A in B . If every element of B is integral over A, then B is said to be integral over
A.

In the next proof, we shall need to apply a variant of Cramer’s rule. We define the
determinant of an m�m matrix C D .cij / with coefficients cij in a ring A by the usual
formula

det.C /D
X
�2Sm

sign.�/c1�.1/ � � �cm�.m/:

Clearly, det.C / is linear in each column, and det.C /D 0 if two columns are equal because
then each term occurs twice but with opposite signs. If x1; : : : ;xm is a solution to the system
of linear equations

mX
jD1

cijxj D 0; i D 1; : : : ;m;

with coefficients in a ring A, then

det.C / �xj D 0; j D 1; : : : ;m; (12)

where C is the matrix of coefficients. To prove this, expand out the left hand side of

det

0B@ c11 : : : c1j�1
P
i c1ixi c1jC1 : : : c1m

:::
:::

:::
:::

:::

cm1 : : : cmj�1
P
i cmixi cmjC1 : : : cmm

1CAD 0
using the properties of determinants mentioned above.

PROPOSITION 6.1. Let A be a subring of a ring B . An element ˛ of B is integral over A
if and only if there exists a faithful AŒ˛�-submodule of B that is finitely generated as an
A-module.

PROOF. )W Suppose that

˛nCa1˛
n�1
C�� �Can D 0; ai 2 A:

Then the A-submodule M of B generated by 1, ˛, ..., ˛n�1 has the property that ˛M �M ,
and it is faithful because it contains 1.
(W Let M be an A-module in B with a finite set fe1; : : : ; eng of generators such that

˛M �M and M is faithful as an AŒ˛�-module. Then, for each i ,

˛ei D
P
aij ej , some aij 2 A:

11A polynomial is monic if its leading coefficient is 1, i.e., f .X/DXnC terms of degree less than n.



6 INTEGRAL DEPENDENCE 26

We can rewrite this system of equations as

.˛�a11/e1�a12e2�a13e3�� � � D 0

�a21e1C .˛�a22/e2�a23e3�� � � D 0

� � � D 0:

Let C be the matrix of coefficients on the left-hand side. Then Cramer’s rule (12) tells
us that det.C / � ei D 0 for all i . As M is faithful and the ei generate M , this implies that
det.C /D 0. On expanding out det.C /, we obtain an equation

˛nC c1˛
n�1
C c2˛

n�2
C�� �C cn D 0; ci 2 A: 2

PROPOSITION 6.2. An A-algebra B is finite if it is generated as an A-algebra by a finite
number of elements, each of which is integral over A.

PROOF. We may replace A with its image in B . Suppose that B D AŒ˛1; : : : ;˛m� and that

˛
ni

i Cai1˛
ni�1
i C�� �Caini

D 0; aij 2 A; i D 1; : : : ;m.

Every monomial in the ˛i divisible by some ˛ni

i is equal (in B) to a linear combination of
monomials of lower degree. Therefore, B is generated as an A-module by the monomials
˛
r1

1 � � �˛
rm
m , 1� ri < ni . 2

COROLLARY 6.3. An A-algebra B is finite if and only if it is finitely generated and integral
over A.

PROOF. (: Immediate consequence of (6.2).
): We may replace A with its image in B . Then B is a faithful AŒ˛�-module for all

˛ 2 B (because 1B 2 B), and so (6.1) shows that every element of B is integral over A. As
B is finitely generated as an A-module, it is certainly finitely generated as an A-algebra. 2

PROPOSITION 6.4. Consider rings A � B � C . If B is integral over A and C is integral
over B , then C is integral over A.

PROOF. Let  2 C . Then
nCb1

n�1
C�� �Cbn D 0

for some bi 2 B . Now AŒb1; : : : ;bn� is finite over A (see 6.2), and AŒb1; : : : ;bn�Œ� is finite
over AŒb1; : : : ;bn�, and so it is finite over A. Therefore  is integral over A by (6.1). 2

THEOREM 6.5. Let A be a subring of a ring B . The elements of B integral over A form an
A-subalgebra of B .

PROOF. Let ˛ and ˇ be two elements of B integral over A. As just noted, AŒ˛;ˇ� is finitely
generated as an A-module. It is stable under multiplication by ˛˙ˇ and ˛ˇ and it is faithful
as an AŒ˛˙ˇ�-module and as an AŒ˛ˇ�-module (because it contains 1A). Therefore (6.1)
shows that ˛˙ˇ and ˛ˇ are integral over A. 2

DEFINITION 6.6. Let A be a subring of the ring B . The integral closure of A in B is the
subring of B consisting of the elements integral over A. When A is an integral domain, the
integral closure of A in its field of fractions is called the integral closure of A (tout court).
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PROPOSITION 6.7. Let A be an integral domain with field of fractions F , and let E be a
field containing F . If ˛ 2E is algebraic over F , then there exists a nonzero d 2 A such that
d˛ is integral over A.

PROOF. By assumption, ˛ satisfies an equation

˛mCa1˛
m�1
C�� �Cam D 0; ai 2 F:

Let d be a common denominator for the ai , so that dai 2 A for all i , and multiply through
the equation by dm:

dm˛mCa1d
m˛m�1C�� �Camd

m
D 0:

We can rewrite this as

.d˛/mCa1d.d˛/
m�1
C�� �Camd

m
D 0:

As a1d; : : : ;amdm 2 A, this shows that d˛ is integral over A. 2

COROLLARY 6.8. Let A be an integral domain and let E be an algebraic extension of the
field of fractions of A. Then E is the field of fractions of the integral closure of A in E.

PROOF. In fact, the proposition shows that every element of E is a quotient ˇ=d with ˇ
integral over A and d 2 A. 2

DEFINITION 6.9. An integral domain A is is said to be integrally closed or normal if it is
equal to its integral closure in its field of fractions F , i.e., if

˛ 2 F; ˛ integral over A H) ˛ 2 A:

PROPOSITION 6.10. Every unique factorization domain is integrally closed.

PROOF. Let A be a unique factorization domain. An element of the field of fractions of
A not in A can be written a=b with a;b 2 A and b divisible by some prime element p not
dividing a. If a=b is integral over A, then it satisfies an equation

.a=b/nCa1.a=b/
n�1
C�� �Can D 0; ai 2 A:

On multiplying through by bn, we obtain the equation

anCa1a
n�1bC�� �Canb

n
D 0:

The element p then divides every term on the left except an, and hence must divide an.
Since it doesn’t divide a, this is a contradiction (as A is a unique factorization domain). 2

Let F �E be fields, and let ˛ 2E be algebraic over F . The minimum polynomial of
˛ over F is the monic polynomial in F ŒX� of smallest degree having ˛ as a root. Then f is
the (unique) monic generator of the kernel of the homomorphism X 7! ˛WF ŒX�! F Œ˛�,
and so this map defines an isomorphism F ŒX�=.f /! F Œ˛�, i.e.,

F Œx�' F Œ˛�; x$ ˛:

A conjugate of ˛ is an element ˛0 in some field containing F such that f .˛0/D 0. Then f
is the minimum polynomial of ˛0 over F , and so there is an isomorphism

F Œ˛�' F Œ˛0�; ˛$ ˛0.
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PROPOSITION 6.11. Let A be a normal integral domain and E a finite extension of the
field of fractions F of A. An element of E is integral over A if and only if its minimum
polynomial over F has coefficients in A.

PROOF. Let ˛ be integral over A, so that

˛mCa1˛
m�1
C�� �Cam D 0; some ai 2 A; m > 0.

Let f be the minimum polynomial of ˛ over F , and let L a field containing F and splitting
f . For every conjugate ˛0 of ˛ in L, there is an isomorphism � WF Œ˛�! F Œ˛0� sending ˛ to
˛0. On applying � to the above equation we obtain an equation

˛0mCa1˛
0m�1

C�� �Cam D 0

demonstrating that ˛0 is integral over A. As the coefficients of f are polynomials in the
conjugates of ˛ in L, it follows from Theorem 6.5 that the coefficients of f are integral over
A. They lie in F , and A is integrally closed in F , and so they lie in A. This proves the “only
if” part of the statement, and the “if” part is obvious. 2

COROLLARY 6.12. Let A be a normal integral domain with field of fractions F , and let f
be a monic polynomial in AŒX�. Then every monic factor of f in F ŒX� has coefficients in
A.

PROOF. It suffices to prove this for an irreducible monic factor g of f in F ŒX�. Let ˛ be a
root of g in some extension field of F . Then g is the minimum polynomial of ˛ over F . As
˛ is a root of f , it is integral over A, and so g has coefficients in A. 2

We shall need a more general form of Corollary 6.12.

LEMMA 6.13. Let A be a ring and B an A-algebra. Let f;g 2 BŒT � be monic polynomials
such that g divides f . If the coefficients of f are integral over A, then so also are those of g.

PROOF. There exists a ring B 0 containing B such that f splits in B 0ŒT �. This can be
constructed in the same as way as the splitting field of a polynomial over a field.12 The roots
of f in B 0 are integral over the A-subalgebra of B generated by the coefficients of f , and
hence over A (see 6.4). As the roots of g are also roots of f , they are integral over A. The
coefficients of g are polynomials in its roots, and hence are integral over A (see 6.5). 2

PROPOSITION 6.14. Let A� B be rings, and let A0 be the integral closure of A in B . For
every multiplicative subset S of A, S�1A0 is the integral closure of S�1A in S�1B .

PROOF. Let b=s 2 S�1A0 with b 2 A0 and s 2 S . Then

bnCa1b
n�1
C�� �Can D 0

for some ai 2 A, and so �
b
s

�n
C
a1
s

�
b
s

�n�1
C�� �C

an
sn
D 0:

12If deg.f / � 1, we take B 0 D B . Otherwise, let B1 D BŒT �=.f /. As f is monic, deg.fg/D deg.f /C
deg.g/ for any polynomial g 2 BŒT �, and so .f /\B D f0g. Therefore the map B! B1 is injective. On the
other hand, f has a root b D T mod.f / in B1, and so f D .T �b/f1 in B1ŒT � with f1 monic. If deg.f1/ > 1,
apply the same argument to it and B1. Continuing in this fashion, we eventually arrive at the required ring B 0.
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Therefore b=s is integral over S�1A. This shows that S�1A0 is contained in the integral
closure of S�1A.

For the converse, let b=s (b 2 B , s 2 S ) be integral over S�1A. Then�
b
s

�n
C
a1
s1

�
b
s

�n�1
C�� �C

an
sn
D 0:

for some ai 2 A and si 2 S . On multiplying this equation by snsn1 � � �s
n
n , we find that

s1 � � �snb 2 A
0, and therefore that b=s D s1 � � �snb=ss1 � � �sn 2 S�1A0. 2

COROLLARY 6.15. LetA�B be rings and S a multiplicative subset ofA. IfA is integrally
closed in B , then S�1A is integrally closed in S�1B .

PROOF. Special case of the proposition in which A0 D A. 2

PROPOSITION 6.16. The following conditions on an integral domain A are equivalent:
(a) A is integrally closed;
(b) Ap is integrally closed for all prime ideals p;
(c) Am is integrally closed for all maximal ideals m.

PROOF. The implication (a))(b) follows from (6.15), and (b))(c) is obvious. For (c))(a),
let A0 be the integral closure of A in its field of fractions F . Then .A0/m is the integral
closure of Am in F (by 6.14). If (c) holds, then Am! .A0/m is surjective for all maximal
ideals m in A, which implies that A! A0 is surjective (by 5.17), and so A is integrally
closed. 2

We shall need to use the next statement in the proof of Zariski’s main theorem (Chapter
17).

PROPOSITION 6.17. Every polynomial ring over a normal integral domain is a normal
integral domain.

PROOF. It suffices to prove that if A is a normal integral domain, then AŒT � is a normal
integral domain. Let F be the field of fractions of A. If an element of the field of fractions
F.T / of AŒT � is integral over AŒT �, then it is integral over F ŒT �, and so lies in F ŒT � (see
6.10). We can now apply the next proposition with B D F . 2

PROPOSITION 6.18. Let B be an A-algebra. If a polynomial in BŒT � is integral over AŒT �,
then each of its coefficients is integral over A.

PROOF. We may replace A with its image in B . Suppose that P 2 BŒT � is a root of the
polynomial

q.X/DXnCf1X
n�1
C�� �Cfn; fi 2 AŒT �:

Let r be greater than the degrees of the polynomials P;f1; : : : ;fn. Let P1.T /D P.T /�T r ,
and let

q1.X/
def
D q.XCT r/DXnCg1X

n�1
C�� �Cgn; gi 2 AŒT �:

Then P1 is a root of q1.X/,

P n1 Cg1P
n�1
1 C�� �Cgn D 0;



7 THE GOING-UP AND GOING-DOWN THEOREMS 30

and so
gn D�P1 � .P

n�1
1 Cg1P

n�2
1 C�� �Cgn�1/:

The choice of r implies that both P1 and gn are monic (as polynomials in T ). As gn has
coefficients in A, Lemma 6.13 shows that the coefficients of P1 are integral over A. This
implies that the coefficients of P are integral over A. 2

Exercises
EXERCISE 6.19. A ring A is said to be normal if Ap is a normal integral domain for all
prime ideals p in A. Show that a noetherian ring is normal if and only if it is a finite product
of normal integral domains.

EXERCISE 6.20. Prove the converse of Proposition 6.18.

EXERCISE 6.21. Let A be an integral domain and A0 its integral closure. Show that the
integral closure of AŒT � is A0ŒT �.

7 The going-up and going-down theorems

The going-up theorem
PROPOSITION 7.1. Let A � B be integral domains, with B integral over A. Then B is a
field if and only if A is a field.

PROOF. Suppose that A is a field, and let b be a nonzero element of B . Then

bnCa1b
n�1
C�� �Can D 0

for some ai 2 A, and we may suppose that n is the minimum degree of such a relation. As
B is an integral domain, an ¤ 0, and the equation

b � .bn�1Ca1b
n�2
C�� �Can�1/a

�1
n D�1

shows that b has an inverse in B .
Conversely, suppose that B is a field, and let a be a nonzero element of A. Then a has

an inverse a�1 in B , and

a�nCa1a
�.n�1/

C�� �Can D 0

for some ai 2 A. On multiplying through by an�1, we find that

a�1Ca1Ca2a � � �Cana
n�1
D 0,

and so
a�1 D�.a1Ca2a � � �Cana

n�1/ 2 A: 2

REMARK 7.2. The second part of the proof shows that A\B� D A�.
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COROLLARY 7.3. Let A� B be rings with B integral over A. Let q be a prime ideal of B ,
and let pD q\A. Then q is maximal if and only if p is maximal.

PROOF. Apply the proposition to A=p� B=q. 2

COROLLARY 7.4 (INCOMPARABILITY). Let A� B be rings with B integral over A, and
let q� q0 be prime ideals of B . If q\AD q0\A, then qD q0.

In other words, if B � A is integral over A, then there is no containment relation between
the prime ideals of B lying over a given prime ideal of A.

PROOF. Let p D q\A D q0\A. Then Ap � Bp, and Bp is integral over Ap. The ideals
qBp� q0Bp are both prime ideals ofBp lying over pAp, which is maximal, and so qBpD q0Bp

(by 7.3). Now
q

5.4
D .qBp/

c
D
�
q0Bp

�c 5.4
D q0: 2

PROPOSITION 7.5. Let A� B be rings with B integral over A, and let p be a prime ideal
of A. Then there exists a prime ideal q of B such that pD q\A.

PROOF. We have Ap � Bp, and Bp is integral over Ap. Let n be a maximal ideal in Bp

(which exists by 2.3), and let q be the inverse image of n in B . We claim that q\AD p.
The ideal n\Ap is maximal (7.3), but pAp is the unique maximal ideal of Ap, and so

n\Ap D pAp. From the commutative diagram

B Bp

A Ap;

we see that q\A is the inverse image of pAp in A. But the inverse image of pAp in A is p
(as pec D p; see 5.4). 2

THEOREM 7.6. Let A� B be rings with B integral over A. Let p� p0 be prime ideals of
A, and let q be a prime ideal of B such that q\AD p. Then there exists a prime ideal q0 of
B containing q and such that q0\AD p0:

B q � q0

A p � p0:

PROOF. We have A=p� B=q, and B=q is integral over A=p. According to the (7.5), there
exists a prime ideal q00 in B=q such that q00\ .A=p/D p0=p. The inverse image q0 of q00 in B
has the required properties. 2

COROLLARY 7.7. Let A � B be rings with B integral over A, and let p1 � �� � � pn be
prime ideals in A. Let

q1 � �� � � qm .m < n/ (13)
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be prime ideals in B such that qi \AD pi for all i �m. Then (13) can be extended to a
chain of prime ideals

q1 � �� � � qn

such that qi \AD pi for all i � n:

q1 � �� � � qm � �� � � qn

p1 � �� � � pm � �� � � pn

PROOF. Immediate consequence of Corollary 7.6. 2

Theorem 7.6 and its corollary 7.7 are known as the going-up theorem (of Cohen and
Seidenberg).

ASIDE 7.8. The going-up theorem (7.6) fails for the rings Z � ZŒX�: consider the prime ideals
.0/� .2/ of Z, and the prime ideal qD .1C2X/ of ZŒX�; then q\ZD .0/, but a prime ideal q0 of
ZŒX� containing q and such that q0\ZD .2/ would have to contain .2;1C2X/D ZŒX� (mo159544).

The going-down theorem
Before proving the going-down theorem, we need to extend some of the definitions and
results from earlier in this section.

Let A� B be rings, and let a be an ideal of A. An element b of B is said to be integral
over a if it satisfies an equation

bnCa1b
n�1
C�� �Can D 0 (14)

with the ai 2 a. The set of elements of B integral over a is called the integral closure of a in
B . The proof of Proposition 6.1 shows that b 2 B is integral over a if there exists a faithful
AŒb�-submodule M of B , finitely generated as an A-module, such that bM � aM .

Note that if bm is integral over a, so also is b (the equation (14) for bm can be read as a
similar equation for b).

LEMMA 7.9. Let A0 be the integral closure of A in B . Then the integral closure of a in B is
the radical of aA0.

PROOF. Let b 2 B be integral over a. From (14) we see that b 2 A0 and that bn 2 aA0, and
so b is in the radical of aA0.

Conversely, let b be in the radical of aA0, so that

bm D
X

i
aixi ; some m> 0, ai 2 a; xi 2 A

0:

As each xi is integral over A, M def
D AŒx1; : : : ;xn� is a finite A-algebra (see 6.2). As bnM �

aM , we see that bn is integral over a, which implies that b is integral over a. 2

In particular, the integral closure of a in B is an ideal in A0, and so it is closed under the
formation of sums and (nonempty) products.

PROPOSITION 7.10. Let A be a normal integral domain, and let E extension of the field
of fractions F of A. If an element of E is integral over an ideal a in A, then its minimum
polynomial over F has coefficients in the radical of a.
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PROOF. Let ˛ be integral over a, so that

˛nCa1˛
n�1
C�� �Can D 0

for some n > 0 and ai 2 a. As in the proof of Proposition 6.11, the conjugates of ˛ satisfy
the same equation as ˛, and so are also integral over a. The coefficients of the minimum
polynomial of ˛ over F are polynomials without constant term in its conjugates, and so they
are also integral over a. As these coefficients lie in F , they lie in the integral closure of a in
F , which is the radical of a (by 7.9). 2

THEOREM 7.11. Let A� B be integral domains with A normal and B integral over A. Let
p � p0 be prime ideals in A, and let q be a prime ideal in B such that q\AD p. Then q
contains a prime ideal q0 in B such that q0\AD p0:

B q � q0

A p � p0:

PROOF. The prime ideals of B contained in q are the contractions of prime ideals in Bq (see
5.4), and so we have show to that p0 is the contraction of a prime ideal of Bq, or, equivalently
(see 5.6), that

A\
�
p0Bq

�
D p0.

Let b 2 p0Bq. Then b D y=s with y 2 p0B and s 2 B Xq. By (7.9), y is integral over p0,
and so (by 7.10) the minimum equation

ymCa1y
m�1
C�� �Cam D 0 (15)

of y over the field of fractions F of A has coefficients ai 2 p0.
Suppose that b 2 A\p0Bq. Then b�1 2 F , and so, on replacing y with bs in (15) and

dividing through by bm, we obtain the minimum equation for s over F :

smC .a1=b/s
m�1
C�� �C .am=b

m/D 0: (16)

But s is integral over A, and so (by 6.11), each coefficient ai=bi 2 A. Suppose that
b … p0. The coefficients ai=bi 2 p0, and so (16) shows that sm 2 p0B � pB � q, and so s 2 q,
which contradicts its definition. Hence b 2 p0, and so A\p0Bq D p0 as required. 2

COROLLARY 7.12. Let A� B be integral domains with A normal and B integral over A.
Let p1 � �� � � pn be prime ideals in A, and let

q1 � �� � � qm (m< n) (17)

be prime ideals in B such that qi \AD pi for all i . Then (17) can be extended to a chain of
prime ideals

q1 � �� � � qn

such that qi \AD pi for all i :

q1 � �� � � qm � �� � � qn

p1 � �� � � pm � �� � � pn

PROOF. Immediate consequence of the theorem. 2

Theorem 7.11 and its corollary 7.12 are known as the going-down theorem (of Cohen
and Seidenberg). The going-down theorem also holds for flat A-algebras — see (11.20).
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8 Noether’s normalization theorem
THEOREM 8.1 (NOETHER NORMALIZATION THEOREM). Every finitely generated alge-
bra A over a field k contains a polynomial algebra R such that A is a finite R-algebra.

In other words, there exist elements y1; : : : ;yr of A that are algebraically independent over
k and such that A is finite over kŒy1; : : : ;yr �.

Let A D kŒx1; : : : ;xn�. If the xi are algebraically independent, then there is nothing
to prove. Otherwise, the next lemma shows that A is finite over a subring kŒx01; : : : ;x

0
n�1�.

Continuing in this fashion, we arrive at a proof.

LEMMA 8.2. Let AD kŒx1; : : : ;xn� be a finitely generated k-algebra, and let fx1; : : : ;xd g
be a maximal algebraically independent subset of fx1; : : : ;xng. If n > d , then there exist an
m 2 N such that A is finite over its subalgebra kŒx1�xmn ; : : : ;xd �x

md

n ;xdC1; : : : ;xn�1�.

PROOF. By assumption, the set fx1; : : : ;xd ;xng is algebraically dependent, and so there
exists a nonzero f 2 kŒX1; : : : ;Xd ;T � such that

f .x1; : : : ;xd ;xn/D 0: (18)

Because the set fx1; : : : ;xd g is algebraically independent, T occurs in f , and so we can
write

f .X1; : : : ;Xd ;T /D a0T
r
Ca1T

r�1
C�� �Car

with ai 2 kŒX1; : : : ;Xd �, a0 ¤ 0, and r > 0.
If a0 2 k, then (18) shows that xn is integral over kŒx1; : : : ;xd �. Hence x1; : : : ;xn are

integral over kŒx1; : : : ;xn�1�, and so A is finite over kŒx1; : : : ;xn�1� (see 6.3). Thus the
lemma holds with mD 0.

If a0 … k, then we make a change of variables so that it becomes constant. Specifically,
for a suitable m 2 N, the polynomial

g.X1; : : : ;Xd ;T /
def
D f .X1CT

m;X2CT
m2

; : : : ;Xd CT
md

;T /

takes the form
g.X1; : : : ;Xd ;T /D c0T

r
C c1T

r�1
C�� �C cr

with c0 2 k� (see the next lemma). As

g.x1�x
m
n ; : : : ;xd �x

md

n ;xn/D 0, (19)

this shows that xn is integral over kŒx1�xmn ; : : : ;xd �x
md

n �. The elements xi , i � d , are too,
because xi D .xi�xmn /Cx

m
n , and soA is finite over kŒx1�xmn ; : : : ;xd�x

md

n ;xdC1; : : : ;xn�1�.2

LEMMA 8.3. Let f 2 kŒX1; : : : ;Xd ;T �. For a suitable m 2 N,

f .X1CT
m;X2CT

m2

; : : : ;Xd CT
md

;T /

takes the form c0T
rC c1T

r�1C�� �C cr with c0 2 k�:
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PROOF. Let
f .X1; : : : ;Xd ;T /D

X
cj1���jn

X
j1

1 � � �X
jd

d
T jn
n : (20)

Let S be the set of .d C1/-tuples .j1; : : : ;jd ;jn/ such that cj1:::jn
¤ 0, and choose m so

that m>maxi ji for all .j1; : : : ;jd / 2 S . Note that

.X1CT
m/j1 � � �.Xd CT

md

/jdT jn
n

D Tmj1Cm
2j2C���Cm

d jdCjnC terms of lower degree in T:

When .j1; : : : ;jn/ runs over the elements of S , the exponents

mj1Cm
2j2C�� �Cm

djd Cjn (21)

are distinct, because they are distinct base-m expansions of natural numbers. Now

g.X1; : : : ;Xd ;T /D c0T
N
1 C c1T

N�1
1 C�� �

with c0 2 k� and N equal to the largest value of (21). 2

REMARK 8.4. When k is infinite, it is possible to prove a somewhat stronger result: let
AD kŒx1; : : : ;xn�; then there exist algebraically independent elements f1; : : : ;fr that are
linear combinations of the xi such that A is finite over kŒf1; : : : ;fr �. See my Algebraic
Geometry notes.

ASIDE 8.5. The map kŒy1; : : : ;yr �! A in (8.1) is flat if and only if A is Cohen-Macaulay (for
example, regular). See (23.10).

Let X be the variety obtained by removing the origin from C2 and identifying the points .1;1/
and .�1;�1/. Then G D Z=2 acts on by .x;y/ 7! .�x;�y/ and the quotient is smooth, but X is not
Cohen-Macaulay (two planes intersecting in a point is not Cohen-Macaulay). Therefore the quotient
map. See mo173538.

9 Direct and inverse limits

Direct limits
DEFINITION 9.1. A partial ordering � on a set I is said to be directed, and the pair .I;�/
is called a directed set, if for all i;j 2 I there exists a k 2 I such that i;j � k.

DEFINITION 9.2. Let .I;�/ be a directed set, and let A be a ring.

A direct system of A-modules indexed by .I;�/
is a family .Mi /i2I of A-modules together with a
family .˛ij WMi !Mj /i�j of A-linear maps such

that ˛ii D idMi
and ˛j

k
ı˛ij D ˛

i
k

all i � j � k.

Mk

Mi Mj

˛i
k

˛i
j

˛
j

k

AnA-moduleM together with a family .˛i WMi!

M/i2I of A-linear maps satisfying ˛i D ˛j ı˛ij
all i � j is said to be a direct limit of the sys-
tem ..Mi /; .˛

i
j // if it has the following univer-

sal property: for every other A-module N and
family .ˇi WMi !N/ of A-linear maps such that
ˇi D ˇj ı˛ij all i � j , there exists a unique mor-
phism ˛WM ! N such that ˛ ı ˛i D ˇi for all
i .

M

Mi Mj

N

˛i

˛i
j

˛j

ˇ i

ˇj

˛
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As usual, the universal property determines the direct limit (if it exists) uniquely up to a
unique isomorphism. We denote it lim

�!
.Mi ;˛

j
i /, or just lim

�!
Mi .

CRITERION

An A-module M together with A-linear maps ˛i WMi !M such that ˛i D ˛j ı˛ij for all

i � j is the direct limit of a system .Mi ;˛
j
i / if and only if

(a) M D
S
i2I ˛

i .Mi /, and
(b) if mi 2Mi maps to zero in M , then it maps to zero in Mj for some j � i .

CONSTRUCTION

Consider the direct sum
L
i2IMi of the modules Mi . Thus, the elements of

L
i2IMi are

the families .mi /i2I with mi D 0 for all but finitely many i . We can identify Mi0 with the
submodule of

L
i2IMi of elements .mi /i with mi D 0 for i ¤ i0. Then every element ofL

i2IMi is a finite sum
P
i2I mi with mi 2Mi . Let M be the quotient of

L
i2IMi by the

A-submodule M 0 generated by the elements

mi �˛
i
j .mi /, mi 2Mi ; i < j .

Let ˛i .mi /Dmi CM 0. Then certainly ˛i D ˛j ı˛ij for all i � j . For every A-module N
and A-linear maps ˇj WMj !N , there is a unique mapM

i2I

Mi !N;

namely,
P
mi 7!

P
ˇi .mi /, sending mi to ˇi .mi /, and this map factors through M and is

the unique A-linear map with the required properties.
Direct limits of A-algebras, etc., are defined similarly.

AN EXAMPLE

PROPOSITION 9.3. For every multiplicative subset S of a ring A, S�1A' lim
�!

Ah, where
h runs over the elements of S (partially ordered by division).

PROOF. An element h of a ring that divides a unit is itself a unit (if u D hq, then 1 D
h.qu�1/). Therefore, if hjh0 in A, say, h0 D hq, then h becomes a unit in Ah0 , and so
(see 5.1) there is a unique homomorphism Ah! Ah0 respecting the maps A! Ah and
A! Ah0 , namely, a

h
7!

ag
h0

. In this way, the rings Ah form a direct system indexed by the
set S . When h 2 S , the homomorphism A! S�1A extends uniquely to a homomorphism
a
h
7!

a
h
WAh! S�1A, and these homomorphisms are compatible with the maps in the direct

system (apply 5.1 again). The criterion p. 36 shows that S�1A is the direct limit of the Ah.2

EXACTNESS

PROPOSITION 9.4. The direct limit of a system of exact sequences of modules is exact.
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This means the following: suppose that .Mi ;˛
i
j /, .Ni ;ˇ

i
j /, and .Pi ; ij / are direct

systems with repect to the directed set I , and let

.Mi ;˛
i
j /

.ai /
�! .Ni ;ˇ

i
j /

.bi /
�! .Pi ;

i
j /

be a sequence of maps of direct systems; if the sequences

Mi
ai
�!Ni

bi
�! Pi

are exact for all i , then the direct limit sequence

lim
�!

Mi

lim
�!
ai

�! lim
�!

Ni

lim
�!
bi

�! lim
�!

Pi

is exact.

PROOF. Let .ni / 2 lim
�!

Ni . If .bi .ni //D 0, then there exists an i0 such that bi .ni /D 0 for
all i � i0. Let mi D 0 unless i � i0, in which case we let mi be the unique element of Mi

such that ai .mi /D ni . Then .mi / maps to .ni /. This proves the exactness. 2

Inverse limits
Inverse limits are the same as direct limits except that the directions of the arrows is reversed.
Thus, formally, the theory of inverse limits is the same as that of inverse limits. However, in
concrete categories, they behave very differently. For example, the inverse limit of a system
of exact sequences of modules need not be exact.

We shall consider inverse limits only in the case that the indexing set if N with its usual
ordering. In this case, an inverse system of A-modules is nothing more than a sequence of
modules and A-homomorphisms

M0
˛0
 �M1

˛1
 � �� �

˛n�1
 � Mn

˛n
 � �� � :

A homomorphism .Mn;˛n/! .Nn;ˇn/ of inverse systems is a sequence ofA-homomorphisms
nWMn!Nn such that ˇn ınC1 D n ı˛n for all n 2 N.

Given an inverse system .Mn;˛n/ of A-modules, we define lim
 �

Mn and lim
 �

1Mn to be
the kernel and cokernel of the A-module homomorphism

.: : : ;mn; : : :/ 7! .: : : ;mn�˛n.mnC1/; : : :/W
Y
Mn!

Y
Mn:

PROPOSITION 9.5. For every inverse system .Mn;˛n/ and A-module N ,

Hom.lim
 �

Mn;N /' lim
 �

Hom.Mn;N /:

PROOF. This is easy to check directly. 2

PROPOSITION 9.6. Every inverse system of exact sequences

0! .Mn;˛n/! .Nn;ˇn/! .Pn;n/! 0;

gives rise to an exact sequence

0! lim
 �

Mn! lim
 �

Nn! lim
 �

Pn! lim
 �

1Mn! lim
 �

1Nn! lim
 �

1Pn! 0:
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PROOF. The sequence

0!
Y
Mn!

Y
Nn!

Y
Pn! 0

is exact, and so this follows from the snake lemma. 2

COROLLARY 9.7. If the maps ˛nWMnC1!Mn are all surjective, then lim
 �

1Mn D 0.

PROOF. Let .mi / 2
Q
i2NMi . We have show that there exists an infinite sequence .xi /i2N,

xi 2Mi , such that
xi �˛i .xiC1/Dmi (22)

for all i 2 N. We consider finite sequences fx0; : : : ;xng, xi 2Mi , satisfying (22) for i < n.
For example, f0g is such a sequence. Such a sequence fx0; : : : ;xng can always be extended:
use the surjectivity of ˛nC1 to find an xnC1 2MnC1 such that

˛n.xnC1/D xn�mn:

Now the axiom of dependent choice shows that there exists a sequence .xi /n2N, xi 2Mi ,
satisfying (22) for all n. 2

ASIDE 9.8. Direct (resp. inverse) limits are also called inductive (resp. projective) limits or colimits
(resp. limits).

10 Tensor Products

Tensor products of modules
Let A be a ring, and let M , N , and P be A-modules. A map �WM �N ! P of A-modules
is said to be A-bilinear if

�.xCx0;y/D �.x;y/C�.x0;y/; x;x0 2M; y 2N

�.x;yCy0/D �.x;y/C�.x;y0/; x 2M; y;y0 2N

�.ax;y/D a�.x;y/; a 2 A; x 2M; y 2N

�.x;ay/D a�.x;y/; a 2 A; x 2M; y 2N;

i.e., if � is A-linear in each variable.

M �N T

T 0:

�

�0 9Š linear

An A-module T together with an A-bilinear map

�WM �N ! T

is called the tensor product of M and N over A if it has the
following universal property: every A-bilinear map

�0WM �N ! T 0

factors uniquely through �.
As usual, the universal property determines the tensor product uniquely up to a unique

isomorphism. We write it M ˝AN . Note that

HomA-bilinear.M �N;T /' HomA-linear.M ˝AN;T /:
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CONSTRUCTION

LetM andN be A-modules, and let A.M�N/ be the free A-module with basisM �N . Thus
each element A.M�N/ can be expressed uniquely as a finite sumX

ai .xi ;yi /; ai 2 A; xi 2M; yi 2N:

Let P be the submodule of A.M�N/ generated by the following elements

.xCx0;y/� .x;y/� .x0;y/; x;x0 2M; y 2N

.x;yCy0/� .x;y/� .x;y0/; x 2M; y;y0 2N

.ax;y/�a.x;y/; a 2 A; x 2M; y 2N

.x;ay/�a.x;y/; a 2 A; x 2M; y 2N;

and define
M ˝AN D A

.M�N/=P:

Write x˝y for the class of .x;y/ in M ˝AN . Then

.x;y/ 7! x˝yWM �N !M ˝AN

isA-bilinear — we have imposed the fewest relations necessary to ensure this. Every element
of M ˝AN can be written as a finite sum13X

ai .xi ˝yi /; ai 2 A; xi 2M; yi 2N;

and all relations among these symbols are generated by the following relations

.xCx0/˝y D x˝yCx0˝y

x˝ .yCy0/D x˝yCx˝y0

a.x˝y/D .ax/˝y D x˝ay:

The pair .M ˝AN;.x;y/ 7! x˝y/ has the correct universal property because every bilinear
map �0WM �N ! T 0 defines an A-linear map A.M�N/ ! T 0, which factors through
A.M�N/=K, and gives a commutative triangle.

SYMMETRIC MONOIDAL STRUCTURE

PROPOSITION 10.1. Let M;N;P be modules over a ring A.
(a) (Existence of an identity object) There is a unique isomorphism

�WA˝M !M

such that �.a˝m/D am for all a 2 A, m 2M .
(b) (Associativity) There is a unique isomorphism

˛WM ˝ .N ˝P /! .M ˝N/˝P

such that ˛.m˝ .n˝p//D ˛..m˝n/˝p/ for all m 2M , n 2N , p 2 P .
13“An element of the tensor product of two vector spaces is not necessarily a tensor product of two vectors,

but sometimes a sum of such. This might be considered a mathematical shenanigan but if you start with the
state vectors of two quantum systems it exactly corresponds to the notorious notion of entanglement which so
displeased Einstein.” Georges Elencwajg on mathoverflow.net.
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(c) (Symmetry) There is a unique isomorphism

 WM ˝N !N ˝M

such that .m˝n/D n˝m for all m 2M , n 2N .

PROOF. We prove (b). The uniqueness is obvious because the elementsm˝.n˝p/ generate
M ˝ .N ˝P / as an A-module. The map

.m;n;p/ 7!m˝ .n˝p/WM �N �P !M ˝ .N ˝P / (23)

is A-trilinear. Let ˇWM �N �P !Q be a second A-trilinear map. For a fixed m 2M ,
the map .n;p/! ˇ.m;n;p/WN �P !Q is A-bilinear, and so it extends uniquely to an
A-linear map ˇmWN ˝P !Q. Now the map .m;n˝p/ 7! ˇm.n˝p/WM �.N ˝P /!Q

is A-bilinear, and so it extends uniquely to an A-linear mapM ˝ .N ˝P /!Q. This shows
that (23) is universal among A-trilinear maps from M �N �P to an A-module. Similarly,
the A-trilinear map

.m;n;p/ 7! .m˝n/˝pWM �N �P ! .M ˝N/˝P

is universal, from which the statement follows (see the footnote p.19).
The proofs of (a) and (c) are similar, but easier. 2

EXTENSION OF SCALARS

Let A be a commutative ring and let B be an A-algebra (not necessarily commutative) such
that the image of A! B lies in the centre of B . Then M  B˝AM is a functor from
left A-modules to left B-modules. Let M be an A-module and N a B-module; an A-linear
map ˛WM !N defines a B-linear map ˇWB˝AM !N such that b˝m 7! b �˛.m/, and
˛$ ˇ is an isomorphism:

HomA-linear.M;N /' HomB-linear.B˝AM;N/. (24)

If .e˛/˛2I is a family of generators (resp. basis) for M as an A-module, then .1˝e˛/˛2I is
a family of generators (resp. basis) for B˝AM as a B-module.

The functor M  MB
def
D B˝AM commutes with taking tensor products:

.M ˝AN/B 'MB˝B NB : (25)

To see this, note that

MB˝B NB D .B˝AM/˝B .B˝AN/ (definition)

' ..B˝AM/˝B B/˝AN (associativity)

' .B˝AM/˝AN (obvious)

' B˝A .M ˝AN/ (associativity)

D .M ˝AN/B (definition).
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BEHAVIOUR WITH RESPECT TO DIRECT LIMITS

PROPOSITION 10.2. Direct limits commute with tensor products:

lim
�!
i2I

Mi ˝A lim
�!
j2J

Nj ' lim
�!

.i;j /2I�J

Mi ˝ANj :

PROOF. Using the universal properties of direct limits and tensor products, one sees easily
that lim
�!
.Mi ˝ANj / has the universal property to be the tensor product of lim

�!
Mi and

lim
�!

Nj . 2

Tensor products of algebras
Let k be a ring, and letA andB be k-algebras. A k-algebra C together with homomorphisms
i WA! C and j WB ! C is called the tensor product of A and B if it has the following
universal property:

for every pair of homomorphisms (of k-algebras)
f WA! R and gWB ! R, there exists a unique
homomorphism .f;g/WC ! R such that .f;g/ ı
i D ˛ and .f;g/ıj D ˇ,

A C B

R

i j

f g9Š .f;g/

If it exists, the tensor product, is uniquely determined up to a unique isomorphism by this
property. We write it A˝k B . Note that the universal property says that

Hom.A˝k B;R/' Hom.A;R/�Hom.B;R/ (26)

(k-algebra homomorphisms).

CONSTRUCTION

RegardA andB as k-modules, and form the tensor productA˝kB . There is a multiplication
map A˝k B �A˝k B! A˝k B for which

.a˝b/.a0˝b0/D aa0˝bb0; all a;a0 2 A; b;b0 2 B:

This makes A˝k B into a ring, and the homomorphism

c 7! c.1˝1/D c˝1D 1˝ c

makes it into a k-algebra. The maps

a 7! a˝1WA! A˝k B and b 7! 1˝bWB! A˝k B

are homomorphisms, and they make A˝kB into the tensor product of A and B in the above
sense.

EXAMPLE 10.3. The algebra A, together with the maps

k �! A
idA
 � A,

is k˝k A (because it has the correct universal property). In terms of the constructive
definition of tensor products, the map c˝a 7! caWk˝k A! A is an isomorphism.
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EXAMPLE 10.4. The ring kŒX1; : : : ;Xm;XmC1; : : : ;XmCn�, together with the obvious in-
clusions

kŒX1; : : : ;Xm� ,! kŒX1; : : : ;XmCn�  - kŒXmC1; : : : ;XmCn�

is the tensor product of the k-algebras kŒX1; : : : ;Xm� and kŒXmC1; : : : ;XmCn�. To verify
this we only have to check that, for every k-algebra R, the map

Hom.kŒX1; : : : ;XmCn�;R/! Hom.kŒX1; : : :�;R/�Hom.kŒXmC1; : : :�;R/

induced by the inclusions is a bijection. But this map can be identified with the bijection

RmCn!Rm�Rn:

In terms of the constructive definition of tensor products, the map

kŒX1; : : : ;Xm�˝k kŒXmC1; : : : ;XmCn�! kŒX1; : : : ;XmCn�

sending f ˝g to fg is an isomorphism.

REMARK 10.5. (a) Let k ,! k0 be a homomorphism of rings. Then

k0˝k kŒX1; : : : ;Xn�' k
0Œ1˝X1; : : : ;1˝Xn�' k

0ŒX1; : : : ;Xn�:

If AD kŒX1; : : : ;Xn�=.g1; : : : ;gm/, then

k0˝k A' k
0ŒX1; : : : ;Xn�=.g1; : : : ;gm/:

(b) If A and B are algebras of k-valued functions on sets S and T respectively, then the
definition

.f ˝g/.x;y/D f .x/g.y/; f 2 A, g 2 B , x 2 S , y 2 T;

realizes A˝k B as an algebra of k-valued functions on S �T .

The tensor algebra of a module
Let M be a module over a ring A. For each A� 0, set

T rM DM ˝A � � �˝AM (r factors),

so that T 0M D A and T 1M DM , and define

TM D
M

r�0
T rM:

This can be made into a noncommutative A-algebra, called the tensor algebra of M , by
requiring that the multiplication map

T rM �T sM ! T rCsM

send .m1˝�� �˝mr ; mrC1˝�� �˝mrCs/ to m1˝�� �˝mrCs .
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M TM

R

A-linear 9ŠA-algebra

The pair .TM;M ! TM/ has the following universal prop-
erty: every A-linear map from M to an A-algebra R (not neces-
sarily commutative) extends uniquely to an A-algebra homomor-
phism TM !R.

If M is a free A-module with basis x1; : : : ;xn, then TM is
the (noncommutative) polynomial ring over A in the noncommut-
ing symbols xi (because this A-algebra has the same universal
property as TM ).

The symmetric algebra of a module
The symmetric algebra Sym.M/ of an A-module M is the quotient of TM by the ideal
generated by all elements of T 2M of the form

m˝n�n˝m; m;n 2M:

It is a graded algebra Sym.M/D
L
r�0Symr.M/ with Symr.M/ equal to the quotient of

M˝r by the A-submodule generated by all elements of the form

m1˝�� �˝mr �m�.1/˝�� �˝m�.r/; mi 2M; � 2 Br (symmetric group).

M Sym.M/

R

A-linear 9ŠA-algebra

The pair .Sym.M/;M ! Sym.M// has the following
universal property: every A-linear mapM !R fromM

to a commutative A-algebra R extends uniquely to an
A-algebra homomorphism Sym.M/!R (because it ex-
tends to an A-algebra homomorphism TM !R, which
factors through Sym.M/ because R is commutative).

If M is a free A-module with basis x1; : : : ;xn, then
Sym.M/ is the polynomial ring over A in the (commut-
ing) symbols xi (because this A-algebra has the same universal property as TM ).

Exercises
EXERCISE 10.6. Look up “symmetric monoidal category” in the Wikipedia and show that
the category of A-modules equipped with the bifunctor˝ and the maps �, ˛, and  in (10.1)
is such a category.

11 Flatness

PROPOSITION 11.1. Let M be an A-module and 0! N 0
˛
�! N

ˇ
�! N 00! 0 an exact

sequence of A-modules. Then the sequence

M ˝AN
0 1˝˛
�!M ˝AN

1˝ˇ
�!M ˝AN

00
! 0

is exact.
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PROOF. The surjectivity of 1˝ˇ is obvious. Let M ˝AN
�
�!Q be the cokernel of 1˝˛.

Because
.1˝ˇ/ı .1˝˛/D 1˝ .ˇ ı˛/D 0;

there is a unique A-linear map f WQ! M ˝AN
00 such that f ı � D 1˝ˇ. We shall

construct an inverse g to f .
Let m 2M and n 2N . If ˇ.n/D 0, then nD ˛.n0/ for some n0 2N 0; hence m˝nD

m˝˛.n0/, and so �.m˝n/D 0. It follows by linearity that �.m˝n1/D �.m˝n2/ if
ˇ.n1/D ˇ.n2/, and so the A-bilinear map

M �N !Q; .m;n/ 7! �.m˝n/

factors through M �N 00. It therefore defines an A-linear map gWM ˝AN 00 ! Q. To
show that f and g are inverse, it suffices to check that g ıf D idQ on elements of the
form �.m˝n/ and that f ıg D idM˝AN 00 on elements of the form m˝ˇ.n/ — both are
obvious. 2

The map M ˝AN 0!M ˝AN in (11.1) need not be injective. For example, when we
tensor the exact sequence of Z-modules

0! Z
m
�! Z! Z=mZ! 0

with Z=mZ, only the sequence

Z=mZ
x 7!mxD0
�������! Z=mZ

x 7!x
���! Z=mZ! 0

is exact.
Moreover, M ˝AN may be zero even when neither M nor N is nonzero. For example,

Z=2Z˝ZZ=3ZD 0

because it is killed by both 2 and 3.14 In fact, M ˝AM may be zero without M being zero.
For example,

Q=Z˝ZQ=ZD 0.

To see this, let x;y 2Q=Z; then nx D 0 for some n 2 Z, and y D ny0 for some y0 2Q=Z,
and so

x˝y D x˝ny0 D nx˝y0 D 0˝y0 D 0:

DEFINITION 11.2. An A-module M is flat if

N 0!N injective H) M ˝AN
0
!M ˝AN injective.

It is faithfully flat if, in addition,

M ˝AN D 0 H) N D 0:

A homomorphism of rings A! B (or A-algebra B) is said to be flat (resp. faithfully flat) if
B is flat (resp. faithfully flat) as an A-module.

14It was once customary in certain circles to require a ring to have an identity element 1¤ 0 (see, for example,
Northcott 1953, p.3). However, without the zero ring, tensor products don’t always exist. Bourbaki’s first
example of a ring is the zero ring.
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Thus, an A-module M is flat if and only if the functor M ˝A � takes short exact
sequences to short exact sequences, i.e.,

0!N 0!N !N 00! 0 exact H) 0!M ˝AN
0
!M ˝AN !M ˝AN

00
! 0 exact.

In other words, M is flat if and only if the functor M ˝A� is exact.

EXAMPLE 11.3. The functor M ˝A� takes direct sums to direct sums, and direct sums of
exact sequences are exact; in particular, direct sums of injective maps are injective. Therefore
direct sums of flat modules are flat, and direct summands of flat modules are flat. All free
A-modules are flat. Therefore all vector spaces over a field are flat, and nonzero vector
spaces are faithfully flat.

EXAMPLE 11.4. Quotient maps A! A=a are rarely flat. If A is a product, AD A1�A2,
then the projection map A! A1 is obviously flat. When A is noetherian, all flat quotient
maps are of this form (Exercise 23.12).

EXAMPLE 11.5. Let A D kŒX�. Then M D kŒX;X�1� is a flat A-module, but M D
kŒX�=.X/ is not flat.

EXAMPLE 11.6. Since tensor products commute with direct limits, and direct limits are
of exact sequences are exact, direct limits of flat A-modules are flat. In fact, every flat
A-module is a direct limit of free A-modules of finite rank (Lazard, Bull. SMF 97, 81–128,
1969).

PROPOSITION 11.7. Let P be a faithfully flat A-module. A sequence of A-modules

.N /W N 0
˛
�!N

ˇ
�!N 00 (27)

is exact if and only if

P ˝A .N /W P ˝AN
0 1˝˛
�! P ˝AN

1˝ˇ
�! P ˝AN

00 (28)

is exact.

PROOF. Consider the exact sequence

N 0
˛
�! Ker.ˇ/ �! C �! 0:

As P is flat, the sequence

P ˝AN
0 1˝˛
�! Ker.1˝ˇ/ �! P ˝AC �! 0

is exact. Now

.N / is exact ” C D 0 ” P ˝AC D 0 ” P ˝A .N / is exact. 2
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REMARK 11.8. There is a converse to the proposition: suppose that

.N / is exact ” P ˝A .N / is exact;

then P is a faithfully flat A-module. The implication “)” shows that P is flat. Now let N
be an A-module, and consider the sequence

0!N ! 0.

If P ˝AN D 0, then this sequence becomes exact when tensored with P , and so is itself
exact, which implies that N D 0. Thus P is faithfully flat.

COROLLARY 11.9. Let A! B be faithfully flat. An A-module M is flat (resp. faithfully
flat) if M˝A B is flat (resp. faithfully flat) as a B-module.

PROOF. We test with the sequence .N / WN 0!N !N 00. If M˝A B is flat, then

.N / is exact ” B˝A .N / is exact H) ..N /˝AB/˝B .M ˝AB/ is exact.

But this last is isomorphic to ..N /˝AM/˝AB , which is exact if and only if .N /˝AM
is exact. Thus M is flat. If B˝AM is faithfully flat, then the argument shows that .N / is
exact if and only if .N /˝AM is exact, and so M is faithfully flat. 2

COROLLARY 11.10. Let A! B be faithfully flat, and let M be an A-module. Then M is
finitely generated if B˝AM is finitely generated.

PROOF. Let 1˝m1; : : : ;1˝mr generate B ˝AM , and let N be the submodule of M
generated by the mi . The sequence N !M ! N=M ! 0 remains exact when tensored
with B . Now B˝N=M D 0, and so N=M D 0. 2

PROPOSITION 11.11. Let i WA! B be a faithfully flat homomorphism. For every A-
module M , the sequence

0!M
d0
�! B˝AM

d1
�! B˝AB˝AM (29)

with �
d0.m/ D 1˝m;

d1.b˝m/ D 1˝b˝m�b˝1˝m

is exact.

PROOF. Assume first that there exists an A-linear section to A! B , i.e., an A-linear map
f WB! A such that f ı i D idA, and define

k0WB˝AM !M; k0.b˝m/D f .b/m

k1WB˝AB˝AM ! B˝AM; k1.b˝b
0
˝m/D f .b/b0˝m:

Then k0d0 D idM , which shows that d0 is injective. Moreover,

k1 ıd1Cd0 ık0 D idB˝AM

which shows that, if d1.x/D 0, then x D d0.k0.x//, as required.
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We now consider the general case. Because A! B is faithfully flat, it suffices to prove
that the sequence (29) becomes exact after tensoring in B . But the sequence obtained from
(29) by tensoring with B is isomorphic to the sequence (29) for the homomorphism of rings
b 7! 1˝bWB! B˝AB and the B-module B˝AM , because, for example,

B˝A .B˝AM/' .B˝AB/˝B .B˝AM/:

Now B! B˝AB has an B-linear section, namely, f .b˝b0/D bb0, and so we can apply
the first part. 2

COROLLARY 11.12. If A! B is faithfully flat, then it is injective with image the set of
elements on which the maps�

b 7! 1˝b

b 7! b˝1
WB! B˝AB

agree.

PROOF. This is the special case M D A of the Proposition. 2

PROPOSITION 11.13. Let A! A0 be a homomorphism of rings. If A! B is flat (or
faithfully flat), then so also is A0! B˝AA

0.

PROOF. For every A0-module M ,

.B˝AA
0/˝A0M ' B˝A .A

0
˝A0M/' B˝AM;

from which the statement follows. 2

PROPOSITION 11.14. For every multiplicative subset S of a ring A and A-module M ,

S�1A˝AM ' S
�1M:

The homomorphism a 7! a
1
WA! S�1A is flat.

PROOF. To give an S�1A-module is the same as giving an A-module on which the elements
of S act invertibly. Therefore S�1A˝AM and S�1M satisfy the same universal property
(see �10, especially (24)), which proves the first statement. As M  S�1M is exact (5.11),
so also is M  S�1A˝AM , which proves the second statement. 2

COROLLARY 11.15. If M is a flat (resp. faithfully flat) A-module, then S�1M is a flat
(resp. faithfully flat) S�1A-module.

PROOF. If N 0! N ! N 00 is an exact sequence of S�1A-modules, then it is exact as a
sequence of A-modules, and so

S�1A˝AM ˝AN
0
! S�1A˝AM ˝AN ! S�1A˝AM ˝AN

00

is exact. But

S�1A˝AM ˝AN ' S
�1M ˝AN ' S

�1M ˝S�1AN;

and so S�1M is flat. The proof for faithful flatness is similar. 2
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COROLLARY 11.16. An A-module M is flat (resp. faithfully flat) if and only if the Am-
module Mm is flat (resp. faithfully flat) for all maximal ideals m in A:

PROOF. The necessity follows from (11.15). The sufficiency is an immediate consequence
of (5.15, 5.16). 2

PROPOSITION 11.17. A homomorphism of rings 'WA! B is flat if A'�1.n/! Bn is flat
for all maximal ideals n in B .

PROOF. Let N 0!N be an injective homomorphism of A-modules, and let n be a maximal
ideal of B . Then pD '�1.n/ is a prime ideal in A, and Ap˝A .N

0!N/ is injective (11.14).
Therefore, the map

Bn˝A .N
0
!N/' Bn˝Ap .Ap˝A .N

0
!N//

is injective, and so the kernel M of B˝A .N 0! N/ has the property that Mn D 0. Let
x 2M , and let aD fb 2B j bx D 0g. For each maximal ideal n of B , x maps to zero in Mn,
and so a contains an element not in n. Hence aD B , and so x D 0. 2

PROPOSITION 11.18. The following conditions on a flat homomorphism 'WA! B are
equivalent:

(a) ' is faithfully flat;
(b) for every maximal ideal m of A, the ideal '.m/B ¤ B;
(c) every maximal ideal m of A is of the form '�1.n/ for some maximal ideal n of B .

PROOF. (a)) (b): Let m be a maximal ideal of A, and let M D A=m; then

B˝AM ' B='.m/B:

As B˝AM ¤ 0, we see that '.m/B ¤ B .
(b)) (c): If '.m/B ¤ B , then '.m/ is contained in a maximal ideal n of B . Now

'�1.n/ is a proper ideal in A containing m, and hence equals m.
(c)) (a): Let M be a nonzero A-module. Let x be a nonzero element of M , and let

aD ann.x/ def
D fa 2 A j ax D 0g. Then a is an ideal in A, and M 0 def

D Ax ' A=a. Moreover,
B˝AM

0 ' B='.a/ �B and, because A! B is flat, B˝AM 0 is a submodule of B˝AM .
Because a is proper, it is contained in a maximal ideal m of A, and therefore

'.a/� '.m/� n

for some maximal ideal n of A. Hence '.a/ �B � n¤B , and so B˝AM �B˝AM 0¤ 0.2

Let spm.A/ denote the set of maximal ideals in A (see Chapter 15). In more geometric
terms, the proposition says that a flat homomorphism 'WA! B is faithfully flat if and only
if the image of the map spec.'/Wspec.B/! spec.A/ contains spm.A/. In fact, as we now
prove, if ' is flat, then spec.B/! spec.A/ is surjective.

PROPOSITION 11.19. Let 'WA! B be a faithfully flat homomorphism. Every prime ideal
p of A is of the form '�1.q/ for some prime ideal q of B .

PROOF. The prime ideals of B lying over p are in natural one-to-one correspondence with
the prime ideals of B˝A �.p/ (5.22). But the ring B˝A �.p/ is nonzero because A! B is
faithfully flat, and so it has a prime (even maximal) ideal. 2
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PROPOSITION 11.20. Let A! B be a flat homomorphism. Let p0 � p be prime ideals in
A, and let q be a prime ideal in B such that qc D p. Then there exists a prime ideal q0 � q in
B such that q0c D p0.

PROOF. Because A! B is flat, the homomorphism Ap! Bq is flat, and because pAp D

.qBq/
c , it is faithfully flat (11.18). The ideal p0Ap is prime (5.4), and so there exists a prime

ideal of Bq lying over p0Ap (by 11.19). The contraction of this ideal to B is contained in q
and contracts to p0 in A. 2

The proposition says that the going-down theorem (7.11), hence also its corollary (7.12),
holds for flat homomorphisms. The going-up theorem fails for flat homomorphisms (7.8).

THEOREM 11.21 (GENERIC FLATNESS). Let A a noetherian integral domain, and let B
be a finitely generated A-algebra. Then for some nonzero elements a of A and b of B , the
homomorphism Aa! Bb is faithfully flat.

PROOF. Let F be the field of fractions of A. We first assume that B � F ˝AB .
As F ˝AB is a finitely generated F -algebra, the Noether normalization theorem (8.1)

shows that there exist elements x1; : : : ;xm of F ˝AB such that F Œx1; : : : ;xm� is a poly-
nomial ring over F and F ˝AB is a finite F Œx1; : : : ;xm�-algebra. After multiplying each
xi by an element of A, we may suppose that it lies in B . Let b1; : : : ;bn generate B as an
A-algebra. Each bi satisfies a monic polynomial equation with coefficients in F Œx1; : : : ;xm�.
Let a 2A be a common denominator for the coefficients of these polynomials. Then each bi
is integral over Aa. As the bi generate Ba as an Aa-algebra, this shows that Ba is a finite
AaŒx1; : : : ;xm�-algebra (by 6.2). Therefore, after replacing A with Aa and B with Ba, we
may suppose that B is a finite AŒx1; : : : ;xm�-algebra.

B F ˝AB E˝AŒx1;:::;xm�B

AŒx1; : : : ;xm� F Œx1; : : : ;xm� E
def
D F.x1; : : : ;xn/

A F:

injective

finite finite finite

Let E D F.x1; : : : ;xm/ be the field of fractions of AŒx1; : : : ;xm�, and let b1; : : : ;br be
elements of B that form a basis for E˝AŒx1;:::;xm�B as an E-vector space. Each element
of B can be expressed as a linear combination of the bi with coefficients in E. Let q be
a common denominator for the coefficients arising from a set of generators for B as an
AŒx1; : : : ;xm�-module. Then b1; : : : ;br generate Bq as an AŒx1; : : : ;xm�q-module. In other
words, the map

.c1; : : : ; cr/ 7!
P
cibi WAŒx1; : : : ;xm�

r
q! Bq (30)

is surjective. This map becomes an isomorphism when tensored with E over AŒx1; : : : ;xm�q ,
which implies that each element of its kernel is killed by a nonzero element ofAŒx1; : : : ;xm�q
and so is zero (because AŒx1; : : : ;xn�q is an integral domain). Hence the map (30) is an
isomorphism, and so Bq is free of finite rank over AŒx1; : : : ;xm�q . Let a be some nonzero
coefficient of the polynomial q, and consider the maps

Aa! AaŒx1; : : : ;xm�! AaŒx1; : : : ;xm�q! Baq:



11 FLATNESS 50

The first and third arrows realize their targets as nonzero free modules over their sources,
and so are faithfully flat. The middle arrow is flat by (11.14). Let m be a maximal ideal in
Aa. Then mAaŒx1; : : : ;xm� does not contain the polynomial q because the coefficient a of q
is invertible in Aa. Hence mAaŒx1; : : : ;xm�q is a proper ideal of AaŒx1; : : : ;xm�q , and so the
map Aa! AaŒx1; : : : ;xm�q is faithfully flat (apply 11.18). This completes the proof when
B � F ˝AB .

We now prove the general case. Note that F ˝AB is the ring of fractions of B with
respect to the multiplicative subset AXf0g (see 11.14), and so the kernel of B! F ˝AB is
the ideal

nD fb 2 B j ab D 0 for some nonzero a 2 Ag:

This is finitely generated (Hilbert basis theorem 3.7), and so there exists a nonzero c 2 A
such that cb D 0 for all b 2 n. I claim that the homomorphism Bc! F ˝Ac

Bc is injective.
If b
cr lies in its kernel, then a

cs
b
cr D 0 in Bc for some nonzero a

cs 2 Ac , and so cNab D 0
in B for some N ; therefore b 2 n, and so cb D 0, which implies that b

cr D 0 already in Bc .
Therefore, after replacing A, B , and M with Ac , Bc , and Mc , we may suppose that the map
B! F ˝AB is injective. On identifying B with its image, we arrive at the situation of the
theorem. 2

Exercises
EXERCISE 11.22. Let f1; : : : ;fm be elements of a ring A. Show that the canonical homo-
morphism A!

Q
i Afi

is faithfully flat if and only if .f1; : : : ;fm/ D A. Let f1; : : : ;fm
satisfy this condition, and let M be an A-module. Deduce from (11.11) that the sequence

0!M !
Y

1�i�m

Mfi
!

Y
1�i;j�m

Mfifj

is exact (the first map sends m to .ni / with ni equal to the image of m in Mfi
, and the

second map sends .mi / to .nij / with

nij D .image of mi in Mfifj
/� .image of mj in Mfifj

)).

EXERCISE 11.23. Let .Ai ;˛ij / be a direct system of rings, and let .Mi ;ˇ
i
j / be a direct

system of abelian groups with the same indexing set. Suppose that each Mi has the structure
of an Ai -module, and that the diagrams

Ai �Mi Mi

Aj �Mj Mj

˛i
j
�ˇ i

j
ˇ i

j

commute for all i � j . Let AD lim
�!

Ai and M D lim
�!

Mi .
(a) Show that M has a unique structure of an A-module for which the diagrams

Ai �Mi Mi

A�M M

˛i�ˇ i ˇ i

commute for all i .
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(b) Show that M is flat as an A-module if each Mi is flat as an Ai -module.
(Bourbaki AC, I, �2, Prop. 9.)

EXERCISE 11.24. Let A be an integrally closed integral domain, and let G be a finite group
acting on A by ring homomorphisms. Show that AG def

D fa 2 A j gaD a for all g 2Gg is an
integrally closed integral domain.

12 Finitely generated projective modules
In many situations, the correct generalization of “finite-dimensional vector space” is not
“finitely generated module” but “finitely generated projective module”. From a different per-
spective, finitely generated projective modules are the algebraist’s analogue of the differential
geometer’s vector bundles (see 12.12).

Projective modules
DEFINITION 12.1. An A-module P is projective if, for each surjective A-linear map
f WM ! N and A-linear map gWP ! N , there exists an A-linear map hWP !M (not
necessarily unique) such that f ıhD g:

P

M N 0:
f

g9h

In other words, P is projective if every map from P onto a quotient of a module M lifts to a
map to M . Equivalently, P is projective if the functor

M  Hom.P;M/ (A-linear maps)

is exact.
As

Hom.
L
i Pi ;M/'

L
i Hom.Pi ;M/

we see that a direct sum of A-modules is projective if and only if each summand is projective.
As A itself is projective, this shows that free A-modules are projective and every direct
summand of a free module is projective. Conversely, let P be a projective module, and write
it as a quotient of a free module,

F
f
�! P �! 0I

because P is projective, there exists an A-linear map hWP ! F such that f ıhD idP ; then

F ' Im.h/˚Ker.f /' P ˚Ker.f /;

and so P is a direct summand of F . We conclude: the projective A-modules are exactly the
direct summands of free A-modules.
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Finitely presented modules
DEFINITION 12.2. An A-module M is finitely presented if there exists an exact sequence
Am! An!M ! 0, some m;n 2 N.

A finite family .ei /i2I of generators for an A-module M defines a homomorphism
.ai / 7!

P
i2I aiei WA

I !M . The elements of the kernel of this homomorphism are called
the relations between the generators. Thus,M is finitely presented if it admits a finite family
of generators whose module of relations is finitely generated. Obviously

finitely presented ) finitely generated,

and the converse is true when A is noetherian (by 3.4).

PROPOSITION 12.3. If M is finitely presented, then the kernel of every surjective homo-
morphism Am!M , m 2 N, is finitely generated.

In other words, if M is finitely presented, then the module of relations for every finite
generating set is finitely generated.

PROOF. Let An!M be a surjective homomorphism with finitely generated kernel N . We
have to show that the kernelN 0 of every other surjective homomorphism Am!M is finitely
generated. Consider the diagram:

0 N An M 0

0 N 0 Am M 0

idMf g

The map g exists because An is projective, and it induces the map f . From the diagram, we
get an exact sequence

N
f
�!N 0! Am=gAn! 0,

either from the snake lemma or by a direct diagram chase. The image of N in N 0 is finitely
generated, and so N 0 is an extension of finitely generated modules. Therefore it is finitely
generated (3.3(b)). 2

COROLLARY 12.4. Let A! B be faithfully flat, and let M be an A-module. Then M is
finitely presented if B˝AM is finitely presented.

PROOF. From Corollary 11.10 we know thatM is finite generated, and so there is a surjective
map ˛WAr !M for some r 2 N. The kernel of ˛ is finitely generated because it becomes
finitely generated when tensored with M . Hence M is finitely presented. 2

PROPOSITION 12.5. A finitely generated projective module is finitely presented.

PROOF. LetM be finitely generated and projective. There exists a surjective homomorphism
An!M (because M is finitely generated), whose kernel N is a direct summand of An

(because M is projective). As N is a quotient of An, it is finitely generated. 2
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Finitely generated projective modules
According to the above discussion, the finitely generated projective modules are exactly the
direct summands of free A-modules of finite rank.

THEOREM 12.6. The following conditions on an A-module are equivalent:
(a) M is finitely generated and projective;
(b) M is finitely presented and Mm is a free Am-module for all maximal ideals m of A;
(c) there exists a finite family .fi /i2I of elements of A generating the unit ideal A and

such that, for all i 2 I , the Afi
-module Mfi

is free of finite rank;
(d) M is finitely presented and flat.

Moreover, when A is an integral domain and M is finitely presented, they are equivalent to:
(e) dimk.p/.M ˝A �.p// is the same for all prime ideals p of A (here �.p/ denotes the

field of fractions of A=p).

PROOF. (a))(d). Free modules are flat, and direct summands of flat modules are flat (11.3).
Therefore, projective modules are flat, and we know (12.5) that finitely generated projective
modules are finitely presented.

(b))(c). Let m be a maximal ideal of A, and let x1; : : : ; xr be elements of M
whose images in Mm form a basis for Mm over Am. The kernel N 0 and cokernel N of the
homomorphism

˛W Ar !M; g.a1; : : : ; ar/D
X

aixi ;

are both finitely generated, and N 0m D 0DNm. Therefore, there exists an f 2 AXm such
that N 0

f
D 0DNf (5.13). Now ˛ becomes an isomorphism when tensored with Af .

The set T of elements f arising in this way is contained in no maximal ideal, and so
generates the ideal A. Therefore, 1D

P
i2I aifi for certain ai 2 A and fi 2 T .

(c))(d). Let B D
Q
i2I Afi

. Then B is faithfully flat over A (Exercise 11.22), and
B˝AM D

Q
Mfi

, which is clearly a flat B-module. It follows that M is a flat A-module
(apply 11.9).

(c))(e). This is obvious.
(e))(c): Fix a prime ideal p of A. For some f … p, there exist elements x1; : : : ; xr of

Mf whose images in M ˝A k.p/ form a basis. Then the map

˛WArf !Mf ; ˛.a1; : : : ; ar/D
P
aixi ;

defines a surjectionArp!Mp (Nakayama’s lemma; note that �.p/'Ap=pAp). The cokernel
N of ˛ is finitely generated, and so gN D 0 for some g 2 AX p. The map ˛ becomes
surjective once f has been replaced fg. For every prime ideal q of Af , the map k.q/r !
M ˝A k.q/ defined by ˛ is surjective, and hence is an isomorphism because dim.M ˝A
k.q//D r . Thus Ker.˛/� qAr

f
for every q, which implies that it is zero as Af is reduced.

Therefore Mf is free. As in the proof of (b), a finite set of such elements f will generate
A. 2

To prove the remaining implications, (d))(a) and (b) we shall need the following
lemma.

LEMMA 12.7. Let
0!N ! F !M ! 0 (31)

be an exact sequence of A-modules with N a submodule of F .
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(a) lf M and F are flat over A, then N \aF D aN (inside F ) for all ideals a of A.
(b) Assume that F is free with basis .yi /i2I and that M is flat. If the element n DP

i2I aiyi of F lies in N , then there exist ni 2N such that nD
P
i2I aini :

(c) Assume that M is flat and F is free. For every finite set fn1; : : : ; nrg of elements of
N , there exists an A-linear map f WF !N with f .nj /D nj ; j D 1; : : : , r .

PROOF. (a) Consider

a˝N a˝F a˝M

0 N \aF aF aM

' '

The first row is obtained from (31) by tensoring with a, and the second row is a subsequence
of (31). Both rows are exact. On tensoring a!A with F we get a map a˝F !F , which is
injective because F is flat. Therefore a˝F ! aF is an isomorphism. Similarly, a˝M !
aM is an isomorphism. From the diagram we get a surjective map a˝N !N \aF , and
so the image of a˝N in aF is N \aF . But this image is aN .

(b) Let a be the ideal generated by the ai . Then n 2 N \ aF D aN , and so there are
ni 2N such that nD

P
aini :

(c) We use induction on r . Assume first that r D 1, and write

n1 D
P
i2I0

aiyi

where .yi /i2I is a basis for F and I0 is a finite subset of I . Then

n1 D
P
i2I0

ain
0
i

for some n0i 2N (by (b)), and f may be taken to be the map such that f .yi /D n0i for i 2 I0
and f .yi /D 0 otherwise. Now suppose that r > 1, and that there are maps f1; f2 : F !N

such that f1.n1/D n1 and

f2.ni �f1.ni //D ni �f1.ni /; i D 2; : : : r:

Then
f WF !N; f D f1Cf2�f2 ıf1

has the required property. 2

We now complete the proof of the theorem.
(d))(a). Because M is finitely presented, there is an exact sequence

0!N ! F !M ! 0

in which F is free and N and F are both finitely generated. Because M is flat, (c) of the
lemma shows that this sequence splits, and so M is projective.

(d))(b):We may suppose that A itself is local, with maximal ideal m. Let x1; : : : ; xr 2
M be such that their images in M=mM form a basis for this over the field A=m. Then the
xi generate M (by Nakayama’s lemma 3.9), and so there exists an exact

0!N ! F
g
�!M ! 0

in which F is free with basis fy1; : : : ; yrg and g.yi /D xi . According to (a) of the lemma,
mN DN \ .mF /, which equals N because N �mF . Therefore N is zero by Nakayama’s
lemma 3.9.
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DEFINITION 12.8. A ring is semilocal if it has only finitely many maximal ideals.

Let A be a semilocal ring with maximal ideals m1; : : : ;mn. Then

A=m1 � � �mn ' A=m1� � � ��A=mn

by the Chinese remainder theorem 2.13. This says that the quotient of A by its Jacobson
radical is a finite product of fields.

PROPOSITION 12.9. A locally free module M of finite constant rank over a semilocal ring
A is free

PROOF. The statement is obvious when A is a finite product of fields, and the general case
then follows from the next lemma. 2

LEMMA 12.10. Let A be a ring and a an ideal of A contained in all maximal ideals. A
finitely presented flat A-module M is free if M=aM is a free A=a-module.

PROOF. Let e1; : : : ; er be elements of M whose images xe1; : : : ;xer in M=aM form a basis.
The map .ai / 7!

P
aiei WA

r !M is surjective by Nakayama’s lemma (3.9), and it remains
to show that its kernel N is 0. For this, it suffices to show that aN DN (by 3.9 again).

Consider the commutative diagram

a˝N a˝Ar a˝M 0

0 N Ar M 0

a b c a˝x 7! ax:

The rows are exact (see 11.1 for the top row), and the map c is injective because M is flat.
Therefore the sequence of cokernels

0! Coker.a/! Coker.b/! Coker.c/! 0

is exact by the snake lemma. But Coker.a/DN=aN and the map Coker.b/! Coker.c/ is
the isomorphism

.ai / 7!
X

aixei W.A=a/
r
!M=aM;

and so N D aN as required. 2

EXAMPLE 12.11. (a) When regarded as a Z-module, Q is flat but not projective (it is not
finitely generated, much less finitely presented, and so this doesn’t contradict the theorem).

(b) LetR be a product of copies of F2 indexed by N, and let a be the ideal inR consisting
of the elements .an/n2N such that an is nonzero for only finitely many values of n (so a is a
direct sum of copies of F2 indexed by N). The R-module R=a is finitely generated and flat,
but not projective (it is not finitely presented).

ASIDE 12.12. The equivalence of (a) and (c) in the theorem has the following geometric interpre-
tation: for an affine scheme X , the functor M M.X/ is an equivalence from the category of
locally free OX -modules of finite rank to the category of finitely generated OX .X/-modules. (See
Section 50 of J.-P. Serre, Ann. of Math. (2) 61 (1955), 197–278. This is also where Serre asked
whether a finitely generated projective kŒX1; : : : ;Xn�-module is necessarily free. That it is was proved
(independently) by Quillen and Suslin. For a beautiful exposition of Quillen’s proof, see A. Suslin,
Quillen’s solution of Serre’s problem. J. K-Theory 11 (2013), 549–552.)
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ASIDE 12.13. Nonfree projective finitely generated modules are common: for example, the ideals
in a Dedekind domain are projective and finitely generated, but they are free only if principal. The
situation with modules that are not finitely generated is quite different: if A is a noetherian ring with
no nontrivial idempotents, then every nonfinitely generated projective A-module is free (Bass, Hyman.
Big projective modules are free. Illinois J. Math. 7 1963, 24–31, Corollary 4.5). The condition on the
idempotents is needed because, for a ring A�B , the module A.I /�B.J / is not free when the sets I
and J have different cardinalities.

Duals

The dual HomA-linear.M;A/ of an A-module M is denoted M_.

PROPOSITION 12.14. For all A-modulesM , S , T withM finitely generated and projective,
the canonical maps

HomA-linear.S;T ˝AM/! HomA-linear.S˝AM
_;T / (32)

T ˝AM ! HomA-linear.M
_;T / (33)

M_˝T _! .M ˝T /_ (34)

M !M__ (35)

are isomorphisms.

PROOF. The canonical map (32) sends f WS ! T ˝AM to the map f 0WS ˝AM_! T

such that f 0.s˝g/D .T ˝g/.f .s//. It becomes the canonical isomorphism

HomA-linear.S;T
n/! HomA-linear.S

n;T /

when M D An. It follows that (32) is an isomorphism whenever M is a direct summand of
a finitely generated free module, i.e., whenever M is finitely generated and projective.

The canonical map (33) sends t˝m to the map f 7! f .m/t . It is the special case of
(32) in which S D A.

The canonical map (34) sends f ˝g 2M_˝T _ to the mapm˝ t 7! f .m/˝g.t/WM˝

T ! A, and the canonical map (35) sends m to the map f 7! f .m/WM_! A. Again, it is
obviously an isomorphism if one of M or T is free of finite rank, and hence also if one is a
direct summand of such a module. 2

We let evWM_˝AM ! A denote the evaluation map f ˝m 7! f .m/.

LEMMA 12.15. LetM and N be modules over commutative ring A, and let eWN ˝AM !
A be an A-linear map. There exists at most one A-linear map ıWA!M ˝AN such that the
composites

M
ı˝M
����! M ˝N ˝M

M˝e
����! M

N
N˝ı
���! N ˝M ˝N

e˝N
���! N

(36)

are the identity maps on M and N respectively. When such a map exists,

T ˝AN ' HomA-linear.M;T / (37)

for all A-modules T . In particular,

.N;e/' .M_;ev/. (38)
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PROOF. From e we get an A-linear map

T ˝ eWT ˝AN ˝AM ! T;

which allows us to define an A-linear map

x 7! fx WT ˝AN ! HomA-lin.M;T / (39)

by setting
fx.m/D .T ˝ e/.x˝m/; x 2 T ˝AN , m 2M .

An A-linear map f WM ! T defines a map f ˝N WM ˝AN ! T ˝AN , and so a map
ıWA!M ˝AN defines an A-linear map

f 7! .f ˝N/.ı.1//WHomA-lin.M;T /! T ˝AN: (40)

When the first (resp. the second) composite in (36) is the identity, then (40) is a right
(resp. a left) inverse to (39).15 Therefore, when a map ı exists with the required properties,
the map (39) defined by e is an isomorphism. In particular, e defines an isomorphism

x 7! fx WM ˝AN ! HomA-lin.M;M/;

which sends ı.a/ to the endomorphism x 7! ax of M . This proves that ı is unique.
To get (38), take T DM in (37). 2

LetA!B be a ring homomorphism. Let eWN ˝AM !A be anA-linear map. Because
the functor M  MB

def
D B ˝AM commutes with tensor products (see p.40), ıWA!

M ˝AN satisfies the conditions of (12.15) relative to e, then ıB WB!MB˝B NB satisfies
the conditions of (12.15) relative to eB .

PROPOSITION 12.16. An A-module M is finitely generated and projective if and only if
there exists an A-linear map ıWA!M ˝M_ such that�

.M ˝ ev/ı .ı˝M/D idM

.M_˝ ı/ı .ev˝M_/D idM_ :
(41)

15Assume ı satisfies the condition in the statement of the lemma.
Let x 2 T ˝AN ; by definition, .fx˝N/.ı.1//D .T ˝e˝N/.x˝ı.1//. On tensoring the second sequence

in (36) with T , we obtain maps

T ˝AN ' T ˝AN ˝AA
T˝N˝ı
������! T ˝AN ˝AM ˝AN

T˝e˝N
������! T ˝AN

whose composite is the identity map on T ˝AN . As x D x˝1 maps to x˝ ı.1/ under T ˝N ˝ ı, this shows
that .fx˝N/.ı.1//D x.

Let f 2 HomA-lin.M;T /, and consider the commutative diagram

T ˝AN ˝AM T

M M ˝AN ˝AM M:

T˝e

ı˝M M˝e

f˝N˝M f

For m 2M , the two images of ı.1/˝m in T are f .m/ and f.f˝N/.ı.1//.m/, and so f D f.f˝N/.ı.1//.
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PROOF. (H: On taking T DM in (37), we see that M_˝AM ' End.M/ (A-linear
endomorphisms). If

P
i2I fi ˝mi corresponds to idM , so that

P
i2I fi .m/mi Dm for all

m 2M , then

M
m7!.fi .m//
��������! AI

.ai / 7!
P
aimi

���������!M

is a factorization of idM . Therefore M is a direct summand of a free module of finite rank.
H) : Suppose first that M is free with finite basis .ei /i2I , and let .e0i /i2I be the dual

basis of M_. The linear map ıWA!M ˝M_, 1 7!˙ei ˝ e
0
i , satisfies the conditions (41).

Moreover, it is the unique map satisfying (41) — see (12.15). In particular, it is independent
of the choice of ei .

For the general case, we choose a family .fi /1�i�m as in (12.6c). In particular, Mfi
is

a free Afi
-module, and so ı is defined for each module Mfi

; the uniqueness assertion in
Lemma 12.15 then implies that the ı for the different Mfi

patch together to give a ı for M .
In more detail, consider the diagram

A
Y

1�i�m

Afi

Y
1�i;j�m

Afifj

M ˝M_
Y

1�i�m

.M ˝M_/fi

Y
1�i;j�m

.M ˝M_/fifj
:

.ıi /

In the top row, the first arrow sends a to .ai / with ai equal to the image of a in Afi
, and the

upper arrow (resp. lower arrow) sends .ai / to .ai;j / with ai;j equal to the image of ai in
Afifj

(resp. the image of aj in Afifj
). The bottom row is obtained from the top row by

tensoring withM˝M_. The vertical map .ıi / is the product of the (unique) maps satisfying
(41). The vertical map at right can be described as the extension of scalars of .ıi / via the
upper arrow

Q
i Afi

!
Q
i;j Afifj

or the extension of scalars of .ıi / via the lower arrow
— they are the same because they both equal the unique

Q
i;j Afifj

-linear map satisfying
the condition (41). As A and M are the submodules of

Q
i Afi

and
Q
iMfi

on which the
pairs of arrows agree (Exercise 11.22), the map .ıi / induces an A-linear A!M ˝M_,
which satisfies (41). [This argument becomes more transparent when expressed in terms of
sheaves.] 2

ASIDE 12.17. A module M over a ring A is said to be reflexive if the canonical map M !M__ is
an isomorphism. We have seen that for finitely generated modules “projective” implies “reflexive”,
but the converse is false. In fact, for a finite generated module M over an integrally closed noetherian
integral domain A, the following are equivalent (Bourbaki AC, VII, �4, 2):

(a) M is reflexive;
(b) M is torsion-free and equals the intersection of its localizations at the prime ideals of A of

height 1;
(c) M is the dual of a finitely generated module.

For noetherian rings of global dimension � 2, for example, for regular local rings of Krull
dimension � 2, every finitely generated reflexive module is projective: for every finitely generated
module M over a noetherian ring A, there exists an exact sequence

Am! An!M ! 0

with m;n 2 N; on taking duals and forming the cokernel, we get an exact sequence

0!M_! An! Am!N ! 0I

if A has global dimension � 2, then M_ is projective, and if M is reflexive, then M ' .M_/_.
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ASIDE 12.18. For a finitely generated torsion-free module M over an integrally closed noetherian
integral domain A, there exists a free submodule L ofM such thatM=L is isomorphic to an ideal a in
A (Bourbaki AC, VII, �4, Thm 6). When A is Dedekind, every ideal is projective, and so M 'L˚a.
In particular, M is projective. Therefore, the finitely generated projective modules over a Dedekind
domain are exactly the finitely generated torsion-free modules.

SUMMARY 12.19. In the following, all maps are canonical. If P is finitely generated
projective, then

P
'
�! P__:

A module P is finitely generated projective if and only if the following canonical map is an
isomorphism

P_˝P
'
�! End.P /:

If P or P 0 is finitely generated projective, then

P_˝P 0
'
�! Hom.P;P 0/:

If both P and P 0 or both P and M or both P 0 and M 0 are finitely generated projective, then

Hom.P;M/˝Hom.P 0;M 0/
'
�! Hom.P ˝P 0;M ˝M 0/:

In particular, if P or P 0 is finitely generated projective, then

P_˝P 0_
'
�! .P ˝P 0/_:

(mo56255, Georges Elencwajg).

13 Zariski’s lemma and the Hilbert Nullstellensatz

Zariski’s lemma
In proving Zariski’s lemma, we shall need to use that the ring kŒX� contains infinitely many
distinct monic irreducible polynomials. When k is infinite, this is obvious, because the
polynomialsX�a, a 2 k, are distinct and irreducible. When k is finite, we can adapt Euclid’s
argument: if p1; : : : ;pr are monic irreducible polynomials in kŒX�, then p1 � � �pr C 1 is
divisible by a monic irreducible polynomial distinct from p1; : : : ;pr .

THEOREM 13.1 (ZARISKI’S LEMMA). Let k �K be fields. If K is finitely generated as a
k-algebra, then it is algebraic over k (hence finite over k, and it equals k if k is algebraically
closed).

PROOF. We shall prove this by induction on r , the smallest number of elements required to
generate K as a k-algebra. The case r D 0 being trivial, we may suppose that

K D kŒx1; : : : ;xr � with r � 1:

If K is not algebraic over k, then at least one xi , say x1, is not algebraic over k. Then, kŒx1�
is a polynomial ring in one symbol over k, and its field of fractions k.x1/ is a subfield of
K. Clearly K is generated as a k.x1/-algebra by x2; : : : ;xr , and so the induction hypothesis
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implies that x2; : : : ;xr are algebraic over k.x1/. According to Proposition 6.7, there exists a
c 2 kŒx1� such that cx2; : : : ; cxr are integral over kŒx1�.

Let f 2 k.x1/. Then f 2K D kŒx1; : : : ;xr � and so, for a sufficiently large N , cNf 2
kŒx1; cx2; : : : ; cxr �. Therefore cNf is integral over kŒx1� by (6.5), which implies that
cNf 2 kŒx1� because kŒx1� is integrally closed in k.x1/ (6.10). But this contradicts the
fact that kŒx1� (' kŒX�) has infinitely many distinct monic irreducible polynomials that can
occur as denominators of elements of k.x1/. Hence K is algebraic over k. 2

COROLLARY 13.2. Let A be a finitely generated k-algebra. Every maximal ideal in A is
the kernel of a homomorphism from A into a finite field extension of k.

PROOF. Indeed, A=m itself is a finite field extension of k. 2

COROLLARY 13.3. Let k �K � A be k-algebras with K a field and A finitely generated
over k. Then K is algebraic over k.

PROOF. Let m be a maximal ideal in A. Then m\K D .0/, and so k � K � A=m. The
theorem shows that the field A=m is algebraic over k, and hence K is also. 2

REMARK 13.4. Let A be a finitely generated k-algebra. It follows from (13.2) that the
maximal ideals m in A are exactly the kernels of k-algebra homomorphisms 'WA! ka. If
mD Ker.'/, then m has residue field k if and only if the image of ' is k. In this way, we
get a one-to-one correspondence between the maximal ideals of A with residue field k and
the k-algebra homomorphisms from A to k.

ASIDE 13.5. There is a very short proof of Zariski’s lemma when k is uncountable. Let k �K be
fields. If K is finitely generated as a k-algebra, then its dimension as a k-vector space is countable.
On the other hand, if x 2 K is transcendental over k, then the elements 1

x�c
, c 2 k, are linearly

independent (assume a linear relation, and clear denominators). When k is uncountable, this gives a
contradiction.

Alternative proof of Zariski’s lemma

The following is a simplification of Swan’s simplication16 of a proof of Munshi.

LEMMA 13.6. For an integral domain A, there does not exist an f 2AŒX� such that AŒX�f
is a field.

PROOF. Suppose, on the contrary, that AŒX�f is a field. Then f … A, and we can write
.f �1/�1 D g=f n with g 2 AŒX� and n� 1. Then

.f �1/g D f n D .1C .f �1//n D 1C .f �1/h

with h 2 AŒX�, and so .f �1/.g�h/D 1. Hence f �1 is a unit in AŒX�, which is absurd
(it has degree � 1). 2

PROPOSITION 13.7. Let A be an integral domain, and suppose that there exists a maximal
ideal m in AŒX1; : : : ;Xn� such that A\mD .0/. Then there exists a nonzero a 2 A such
that Aa is a field and AŒX1; : : : ;Xn�=m is a finite extension of Aa.

16For a leisurely exposition of Munshi’s proof, see May, J. Peter, Munshi’s proof of the Nullstellensatz. Amer.
Math. Monthly 110 (2003), no. 2, 133–140.
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Note that the condition A\mD .0/ implies that A (hence also Aa) is a subring of the field
K

def
D AŒX1; : : : ;Xn�=m, and so the statement makes sense.

PROOF. We argue by induction on n. When nD 0, the hypothesis is that .0/ is a maximal
ideal in A; hence A is a field, and the statement is trivial. Therefore, suppose that n� 1, and
regard AŒX1; : : : ;Xn� as a polynomial ring in n�1 symbols over AŒXi � for some fixed i . If
m\AŒXi �D .0/, then, by induction, there exists an f 2 AŒXi � such that AŒXi �f is a field,
contradicting Lemma 13.6. We conclude that, for each i , there exists a nonzero element

aiX
ni

i C�� �

in m\AŒXi �. The image xi of Xi in K satisfies the equation

aix
n
i C�� � D 0;

and so K is integral over its subring Aa1���an
. This implies that Aa1���an

is a field (see 7.1),
and K is finite over it because it is integral and finitely generated (6.3). 2

We now prove Zariski’s lemma. Let m be a maximal ideal in kŒX1; : : : ;Xn�. Then
k\mD .0/ because k is a field. According to the proposition, there exists a nonzero a 2 k
such that kŒX1; : : : ;Xn�=m is a finite extension of ka, but, because k is a field, ka D k.

The Nullstellensatz

Recall that kal denotes an algebraic closure of the field k.

THEOREM 13.8 (NULLSTELLENSATZ). Every proper ideal a in kŒX1; : : : ;Xn� has a zero
in .kal/n, i.e., there exists a point .a1; : : : ;an/ 2 .kal/n such that f .a1; : : : ;an/D 0 for all
f 2 a.

PROOF. We have to show that there exists a k-algebra homomorphism kŒX1; : : : ;Xn�! kal

containing a in its kernel. Let m be a maximal ideal containing a. Then kŒX1; : : : ;Xn�=m is
a field, which is finitely generated as a k-algebra. Therefore it is finite over k by Zariski’s
lemma, and so there exists a k-algebra homomorphism kŒX1; : : : ;Xn�=m! kal. The com-
posite of this with the quotient map kŒX1; : : : ;Xn�! kŒX1; : : : ;Xn�=m contains a in its
kernel. 2

COROLLARY 13.9. When k is algebraically closed, the maximal ideals in kŒX1; : : : ;Xn�
are exactly the ideals .X1�a1; : : : ;Xn�an/, .a1; : : : ;an/ 2 kn.

PROOF. Clearly, kŒX1; : : : ;Xn�=.X1 � a1; : : : ;Xn � an/ ' k, and so .X1 � a1; : : : ;Xn �
an/ is maximal. Conversely, because k is algebraically closed, a maximal ideal m of
kŒX1; : : : ;Xn� has a zero .a1; : : : ;an/ in kn. Let f 2 kŒX1; : : : ;Xn�; when we write f as a
polynomial in X1�a1; : : : ;Xn�an, its constant term is f .a1; : : : ;an/. Therefore

f 2m H) f 2 .X1�a1; : : : ;Xn�an/,

and so mD .X1�a1; : : : ;Xn�an/. 2

THEOREM 13.10 (STRONG NULLSTELLENSATZ). For an ideal a in kŒX1; : : : ;Xn�, letZ.a/
be the set of zeros of a in .kal/n. If a polynomial h 2 kŒX1; : : : ;Xn� is zero on Z.a/, then
some power of h lies in a.



13 ZARISKI’S LEMMA AND THE HILBERT NULLSTELLENSATZ 62

PROOF. 17We may assume h¤ 0. Let g1; : : : ;gm generate a, and consider the system of
mC1 equations in nC1 variables, X1; : : : ;Xn;Y;�

gi .X1; : : : ;Xn/ D 0; i D 1; : : : ;m

1�Yh.X1; : : : ;Xn/ D 0:

If .a1; : : : ;an;b/ satisfies the first m equations, then .a1; : : : ;an/ 2 Z.a/; consequently,
h.a1; : : : ;an/D 0, and .a1; : : : ;an;b/ doesn’t satisfy the last equation. Therefore, the equa-
tions are inconsistent, and so, according to the Nullstellensatz (13.8), the ideal

.g1; : : : ;gm;1�Yh/D kŒX1; : : : ;Xn;Y �:

This means that there exist fi 2 kŒX1; : : : ;Xn;Y � such that

1D

mX
iD1

fi �gi CfmC1 � .1�Yh/. (42)

On applying the homomorphism�
Xi 7!Xi
Y 7! h�1

WkŒX1; : : : ;Xn;Y �! k.X1; : : : ;Xn/

to (42), we obtain the identity

1D
X

i
fi .X1; : : : ;Xn;h

�1/ �gi .X1; : : : ;Xn/ (43)

in k.X1; : : : ;Xn/. Clearly

fi .X1; : : : ;Xn;h
�1/D

polynomial in X1; : : : ;Xn
hNi

for some Ni . Let N be the largest of the Ni . On multiplying (43) by hN we obtain an
identity

hN D
X

i
(polynomial in X1; : : : ;Xn/ �gi .X1; : : : ;Xn/;

which shows that hN 2 a. 2

PROPOSITION 13.11. The radical of an ideal a in a finitely generated k-algebra A is equal
to the intersection of the maximal ideals containing it: rad.a/D

T
m�am. In particular, if A

is reduced, then
T

m maximalmD 0.

PROOF. Because of the correspondence between the ideals in a ring and in a quotient of the
ring ((2), p. 4), it suffices to prove this for AD kŒX1; : : : ;Xn�.

17This argument is known as Rabinowitsch’s trick (J. L. Rabinowitsch, “Zum Hilbertschen Nullstellensatz”,
Math. Ann. 102 (1930), p.520). When he emigrated to the United States, Rabinowitsch simplified his name to
Rainich. He was a faculty member at the University of Michigan from 1925–1956, where the following story is
folklore: Rainich was giving a lecture in which he made use of a clever trick which he said he had discovered.
Someone in the audience indignantly interrupted him pointing out that this was the famous Rabinowitsch trick
and berating Rainich for claiming to have discovered it. Without a word Rainich turned to the blackboard and
wrote RABINOWITSCH. He then began erasing letters. When he was done what remained was RA IN I CH. He
then went on with his lecture. See also mo45185.
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The inclusion rad.a/�
T

m�am holds in every ring (because maximal ideals are radical
and rad.a/ is the smallest radical ideal containing a).

For the reverse inclusion, let h lie in all maximal ideals containing a, and let .a1; : : : ;an/2
Z.a/. The image of the evaluation map

f 7! f .a1; : : : ;an/WkŒX1; : : : ;Xn�! kal

is a subring of kal which is algebraic over k, and hence is a field (see �1). Therefore, the
kernel of the map is a maximal ideal, which contains a, and so also contains h. This shows
that h.a1; : : : ;an/D 0, and we conclude from the strong Nullstellensatz that h 2 rad.a/. 2

14 The spectrum of a ring

Definition
Let A be a ring, and let V be the set of prime ideals in A. For an ideal a in A, let

V.a/D fp 2 V j p� ag:

PROPOSITION 14.1. There are the following relations:
(a) a� b H) V.a/� V.b/I
(b) V.0/D V ; V.A/D ;I

(c) V.ab/D V.a\b/D V.a/[V.b/I
(d) V.

P
i2I ai /D

T
i2I V.ai / for every family of ideals .ai /i2I .

PROOF. The first two statements are obvious. For (c), note that

ab� a\b� a;b H) V.ab/� V.a\b/� V.a/[V.b/:

For the reverse inclusions, observe that if p … V.a/[V.b/, then there exist an f 2 aXp and
a g 2 bXp; but then fg 2 abXp, and so p … V.ab/. For (d) recall that, by definition,

P
ai

consists of all finite sums of the form
P
fi , fi 2 ai . Thus (d) is obvious. 2

Statements (b), (c), and (d) show that the sets V.a/ satisfy the axioms to be the closed
subsets for a topology on V : both the whole space and the empty set are closed; a finite
union of closed sets is closed; an arbitrary intersection of closed sets is closed. This topology
is called the Zariski topology on V . We let spec.A/ denote the set of prime ideals in A
endowed with its Zariski topology.

For h 2 A, let
D.h/D fp 2 V j h … pg.

Then D.h/ is open in V , being the complement of V..h//. If S is a set of generators for an
ideal a, then

V XV.a/D
[

h2S
D.h/;

and so the sets D.h/ form a base for the topology on V . Note that

D.h1 � � �hn/DD.h1/\� � �\D.hn/:

For every element h ofA, spec.Ah/'D.h/ (see 5.4), and for every ideal a inA, spec.A=a/'
V.a/ (isomorphisms of topological spaces).



14 THE SPECTRUM OF A RING 64

Idempotents and decompositions of spec.A/

An element e of a ring A is idempotent if e2D e. For example, 0 and 1 are both idempotents
— they are called the trivial idempotents. Idempotents e1; : : : ; en are orthogonal if eiej D 0
for i ¤ j . Every sum of orthogonal idempotents is again idempotent. A set fe1; : : : ; eng
of orthogonal idempotents is complete if e1C�� �C en D 1. Every finite set of orthogonal
idempotents fe1; : : : ; eng can be made into a complete set of orthogonal idempotents by
adding the idempotent e D 1� .e1C�� �C en/.

LEMMA 14.2. The topological space spec.A/ is disconnected if and only if A contains a
nontrivial idempotent e, in which case

spec.A/DD.e/tD.1� e/:

PROOF. Let e be a nontrivial idempotent, and let f D 1� e. For a prime ideal p, the map
A! A=p must send exactly one of e or f to a nonzero element. This shows that specA is a
disjoint union of the sets D.e/ and D.f /, each of which is open. If D.e/D specA, then
e would be a unit (2.3), and hence can be cancelled from ee D e to give e D 1. Therefore
D.e/¤ specA, and similarly, D.f /¤ specA.

Conversely, suppose that specA is disconnected, say, the disjoint union of two nonempty
closed subsets V.a/ and V.b/. Because the union is disjoint, no prime ideal contains both a
and b, and so aCbDA. Thus aCb D 1 for some a 2 a and b 2 b. As ab 2 a\b, all prime
ideals contain ab, which is therefore nilpotent (2.5), say .ab/m D 0. Every prime ideal
containing am contains a; similarly, any prime ideal containing bm contains b; thus no prime
ideal contains both am and bm, which shows that .am;bm/DA. Therefore, 1D ramC sbm

for some r;s 2 A. Now

.ram/.sbm/D rs.ab/m D 0;

.ram/2 D .ram/.1� sbm/D ram,

.sbm/2 D sbm

ramC sbm D 1;

and so fram; sbmg is a complete set of orthogonal idempotents. Clearly V.a/ � V.ram/
and V.b/� V.sbm/. As V.ram/\V.sbm/D ;, we see that V.a/D V.ram/ and V.b/D
V.sbm/, and so each of ram and sbm is a nontrivial idempotent. 2

Let U be an open and closed subset of spec.A/. The proof of the lemma shows that
U DD.e/ for some idempotent e 2 A. Let U 0 D spec.A/XU . The image of e in O.U 0/
lies in all prime ideals of O.U 0/; hence is nilpotent; hence is 0. The image xe of e in O.U /
lies in no prime ideals of O.U /; hence 1�xe D 0; hence xe D 1. As spec.A/D U [U 0, this
shows that e is uniquely determined by U .

PROPOSITION 14.3. Let X D spec.A/. There are natural one-to-one correspondences
between the following objects.

(a) Decompositions
X DX1t : : :tXn

of X into a finite disjoint union of open subsets.
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(b) Decompositions
AD A1� � � ��An

of A into a finite product of rings (Ai � A).
(c) Decompositions

1D e1C�� �C en

of 1 into the sum of a complete sets fe1; : : : ; eng of orthogonal idempotents in A.
The sets Xi in (a) are connected ” no ring Ai in (b) has a nontrivial idempotent ” no
idempotent ei in (c) can be written as a sum of two nontrivial idempotents.

PROOF. (b)$(c). If AD A1� � � ��An (direct product of rings), then the elements

ei D .0; : : : ;
i

1; : : : ;0/; 1� i � n;

form a complete set of orthogonal idempotents in A. Conversely, if fe1; : : : ; eng is a complete
set of orthogonal idempotents in A, then Aei becomes a ring18 with the addition and
multiplication induced by that of A, and A' Ae1� � � ��Aen.

(c)$(a). Let fe1; : : : ; eng be a complete set of orthogonal idempotents, and let p be a
prime ideal in A. Because A=p is an integral domain, exactly one of the ei ’s maps to 1 in
A=p and the remainder map to zero. This proves that spec.A/ is the disjoint union of the
sets D.ei /.

Now consider a decomposition

spec.A/DX1t : : :tXn

with each Xi open. We use induction on n to show that it arises from a unique complete set
of orthogonal idempotents. When nD 1, there is nothing to prove, and when n� 2, we write

specADX1t .X2t : : :tXn/.

From Lemma 14.2 et seq. we know that there exist unique orthogonal idempotents e1, e01 2A
such that e1C e01 D 1 and

X1 DD.e1/

X2t : : :tXn DD.e
0
1/D specAe01:

By induction, there exist unique orthogonal idempotents e2; : : : ; en in the ring Ae01 such that
e2C�� �C en D e

0
1 and Xi DD.ei / for i D 2; : : : ;n. Now fe1; : : : ; eng is a complete set of

orthogonal idempotents in A such that Xi DD.ei / for all i .
(b)$(a). The ideals in a finite product of rings AD A1� � � � �An are all of the form

a1� � � ��an with ai an ideal in Ai (cf. p.8). As
Q
i Ai=

Q
i ai '

Q
i A=ai , we see that the

prime ideals are those of the form

A1� � � ��Ai�1�ai �AiC1� � � ��An

with ai prime. It follows that spec.A/D
F
i spec.Ai / (disjoint union of open subsets).

Let spec.A/DX1t : : :tXn, and let 1D e1C�� �C en be the corresponding decompo-
sition of 1. Then OX .Xi /'OX .X/ei , and so OX .X/'

Q
iOX .Xi /. 2

18But Aei is not a subring of A if n¤ 1 because its identity element is ei ¤ 1A: However, the map a 7!
aei WA! Aei realizes Aei as a quotient of A.
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Properties of spec.A/
We study more closely the Zariski topology on spec.A/. For each subset S of A, let V.S/
denote the set of prime ideals containing S , and for each subset W of spec.A/, let I.W /
denote the intersection of the prime ideals in W :

S � A; V.S/D fp 2 spec.A/ j S � pg;

W � spec.A/; I.W /D
\

p2W
p:

Thus V.S/ is a closed subset of spec.A/ and I.W / is a radical ideal in A. If V.a/�W , then
a� I.W /, and so V.a/� VI.W /. Therefore VI.W / is the closure of W (smallest closed
subset of spec.A/ containing W ); in particular, VI.W /DW if W is closed.

PROPOSITION 14.4. Let V be a closed subset of spec.A/.
(a) There is an order-inverting one-to-one correspondenceW $ I.W / between the closed

subsets of spec.A/ and the radical ideals in A.
(b) The closed points of V are exactly the maximal ideals in V .
(c) Every open covering of V has a finite subcovering.
(d) If A is noetherien, then every ascending chain of open subsets U1 � U2 � �� � of V

eventually becomes constant; equivalently, every descending chain of closed subsets
of V eventually becomes constant.

PROOF. (a) and (b) are obvious.
(c) Let .Ui /i2I be an open covering of spec.A/. On covering each Ui with basic

open subsets, we get a covering .D.hj //j2J of spec.A/ by basic open subsets. Because
spec.A/D

S
j D.hj /, the ideal generated by the hj is A, and so 1D a1hj1

C�� �Camhjm

for some a1; : : : ;am 2 A. Now spec.A/D
S
1�l�mD.hjl

/, and it follows that spec.A/ is
covered by finitely many of the sets Ui .

(d) We prove the second statement. A sequence V1 � V2 � �� � of closed subsets of V
gives rise to a sequence of ideals I.V1/� I.V2/� : : :, which eventually becomes constant.
If I.Vm/D I.VmC1/, then VI.Vm/D VI.VmC1/, i.e., Vm D VmC1. 2

A topological space V having property (c) is said to be quasi-compact (by Bourbaki at
least; others call it compact, but Bourbaki requires a compact space to be Hausdorff). A
topological space V having the property in (d) is said to be noetherian. This condition is
equivalent to the following: every nonempty set of closed subsets of V has a minimal element.
Clearly, noetherian spaces are quasi-compact. Since an open subspace of a noetherian space
is again noetherian, it will also be quasi-compact.

DEFINITION 14.5. A nonempty topological space is said to be irreducible if it is not the
union of two proper closed subsets.

Equivalent conditions: any two nonempty open subsets have a nonempty intersection;
every nonempty open subset is dense.

If an irreducible space W is a finite union of closed subsets, W DW1[ : : :[Wr , then
W DW1 or W2[ : : :[Wr ; if the latter, then W DW2 or W3[ : : :[Wr , etc.. Continuing in
this fashion, we find that W DWi for some i .

The notion of irreducibility is not useful for Hausdorff topological spaces, because the
only irreducible Hausdorff spaces are those consisting of a single point — two points would
have disjoint open neighbourhoods.
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PROPOSITION 14.6. A closed subset W of spec.A/ is irreducible if and only if I.W / is
prime. In particular, the spectrum of a ring A is irreducible if and only if the nilradical of A
is prime.

PROOF. ): LetW be an irreducible closed subset of spec.A/, and suppose that fg 2 I.W /.
Then fg lies in each p in W , and so either f 2 p or g 2 p; hence W � V.f /[V.g/, and so

W D .W \V.f //[ .W \V.g//:

As W is irreducible, one of these sets, say W \V.f /, must equal W . But then f 2 I.W /.
We have shown that I.W / is prime.
(: Assume I.W / is prime, and suppose that W D V.a/[V.b/ with a and b radical

ideals — we have to show that W equals V.a/ or V.b/. Recall that V.a/[V.b/D V.a\b/
(see 14.1c) and that a\b is radical; hence I.W /D a\b (by 15.3). If W ¤ V.a/, then there
exists an f 2 aXI.W /. For all g 2 b,

fg 2 a\bD I.W /:

Because I.W / is prime, this implies that b� I.W /; therefore W � V.b/. 2

Thus, in the spectrum of a ring, there are one-to-one correspondences

radical ideals $ closed subsets

prime ideals $ irreducible closed subsets

maximal ideals $ one-point sets:

EXAMPLE 14.7. Let f 2 kŒX1; : : : ;Xn�. According to Theorem 4.10, kŒX1; : : : ;Xn� is a
unique factorization domain, and so .f / is a prime ideal if and only if f is irreducible (4.1).
Thus

V.f / is irreducible ” f is irreducible.

On the other hand, suppose that f factors as

f D
Y
f
mi

i ; fi distinct irreducible polynomials.

Then

.f /D
\
.f

mi

i /; .f
mi

i / distinct ideals,

rad..f //D
\
.fi /; .fi / distinct prime ideals,

V.f /D
[
V.fi /; V .fi / distinct irreducible algebraic sets.

PROPOSITION 14.8. Let V be a noetherian topological space. Then V is a finite union of
irreducible closed subsets, V D V1[ : : :[Vm. If the decomposition is irredundant in the
sense that there are no inclusions among the Vi , then the Vi are uniquely determined up to
order. The Vi are exactly the maximal irreducible subsets of V .

PROOF. Suppose that V can not be written as a finite union of irreducible closed subsets.
Then, because V is noetherian, there will be a closed subset W of V that is minimal
among those that cannot be written in this way. But W itself cannot be irreducible, and so
W DW1[W2, with each Wi a proper closed subset of W . Because W is minimal, both W1
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and W2 can be expressed as finite unions of irreducible closed subsets, but then so can W .
We have arrived at a contradiction.

Suppose that
V D V1[ : : :[Vm DW1[ : : :[Wn

are two irredundant decompositions. Then Vi D
S
j .Vi \Wj /, and so, because Vi is

irreducible, Vi D Vi \Wj for some j . Consequently, there exists a function f W f1; : : : ;mg!
f1; : : : ;ng such that Vi � Wf .i/ for each i . Similarly, there is a function gW f1; : : : ;ng !
f1; : : : ;mg such that Wj � Vg.j / for each j . Since Vi � Wf .i/ � Vgf .i/, we must have
gf .i/ D i and Vi D Wf .i/; similarly fg D id. Thus f and g are bijections, and the
decompositions differ only in the numbering of the sets.

Let W be a maximal irreducible subset of V . Then

W D .V1\W /[ : : :[ .Vm\W /:

Each set Vi \W is closed in W , and so W D Vi \W for some i , i.e., W � Vi for some i .
Because W is maximal, it equals Vi . 2

The Vi given uniquely by the proposition are called the irreducible components of V .
In Example 14.7, the V.fi / are the irreducible components of V.f /.

COROLLARY 14.9. Every radical ideal a in a noetherian ring A is a finite intersection of
prime ideals, a D p1\ : : :\ pn; if there are no inclusions among the pi , then the pi are
uniquely determined up to order. Every prime ideal of A containing a contains some pi .

PROOF. In view of the correspondence between radical (resp. prime) ideals in A and closed
(resp. irreducible closed) subsets in spec.A/, this is a restatement of the proposition. 2

In particular, a noetherian ring has only finitely many minimal prime ideals, and their
intersection is the radical of the ring.

COROLLARY 14.10. A noetherian topological space has only finitely many connected
components (each of which is open).

PROOF. Each connected component is closed, hence noetherian, and so is a finite union of
its irreducible components. Each of these is an irreducible component of the whole space,
and so there can be only finitely many. 2

REMARK 14.11. (a) An irreducible topological space is connected, but a connected topolog-
ical space need not be irreducible. For example,Z.X1X2/ is the union of the coordinate axes
in k2, which is connected but not irreducible. A closed subset V of spec.A/ is not connected
if and only if there exist proper ideals a and b such that a\bD I.V / and aCbD A.

(b) A Hausdorff space is noetherian if and only if it is finite, in which case its irreducible
components are the one-point sets.

(c) In a noetherian ring, every proper ideal a has a decomposition into primary ideals:
aD

T
qi (see �19). For radical ideals, this becomes a simpler decomposition into prime

ideals, as in the corollary. For an ideal .f / in kŒX1; : : : ;Xn� with f D
Q
f
mi

i , it is the
decomposition .f /D

T
.f

mi

i / noted in Example 14.7.
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Maps of spectra
Let 'WA! B be a homomorphism of rings, and let p be a prime ideal of B . Then B=pB
is an integral domain and the map A='�1.p/! B=p is injective, and so '�1.p/ is a prime
ideal in A. Therefore ' defines a map

'aWspec.B/! spec.A/:

This map is continuous because .'a/�1 .D.f //DD.'.f //. In this way, spec becomes a
contravariant functor from the category of commutative rings to the category of topological
spaces.

DEFINITION 14.12. A subset C of a noetherian topological space X is constructible if it
is a finite union of subsets of the form U \Z with U open and Z closed.

The constructible subsets of An are those that can be defined by a finite number of
statements of the form

f .X1; : : : ;Xn/D 0

combined using only “and”, “or”, and “not”. This explains the name.

PROPOSITION 14.13. Let C be a constructible set whose closure xC is irreducible. Then C
contains a nonempty open subset of xC .

PROOF. We are given that C D
S
.Ui \Zi / with each Ui open and each Zi closed. We

may assume that each set Ui \Zi in this decomposition is nonempty. Clearly xC �
S
Zi ,

and as xC is irreducible, it must be contained in one of the Zi . For this i

C � Ui \Zi � Ui \ xC � Ui \C � Ui \ .Ui \Zi /D Ui \Zi :

Thus Ui \Zi D Ui \ xC is a nonempty open subset of xC contained in C . 2

THEOREM 14.14. Let A be a noetherian ring, and let 'WA! B be a finitely generated
A-algebra. The map 'aWspec.B/! spec.A/ sends constructible sets to constructible sets.
In particular, if U is a nonempty open subset of spec.B/, then 'a.U / contains a nonempty
open subset of its closure in spec.A/.

PROOF. The “in particular” statement of the theorem is proved for finitely generated k-
algebras in (15.8) below and for noetherian rings in (21.11) below.

We now explain how to deduce the main statement of the theorem from the “in particular”
statement. Let X D spec.A/ and Y D spec.B/, and let C be a constructible subset of Y . Let
Yi be the irreducible components of Y . Then C \Yi is constructible in Yi , and 'a.Y / is the
union of the 'a.C \Yi /; it is therefore constructible if the 'a.C \Yi / are. Hence we may
assume that Y is irreducible. Moreover, C is a finite union of its irreducible components,
and these are closed in C ; they are therefore constructible. We may therefore assume that C
also is irreducible; xC is then an irreducible closed subvariety of Y .

We shall prove the theorem by induction on the dimension of Y . If dim.Y /D 0, then the
statement is obvious because Y is a point. If xC ¤ Y , then dim. xC/ < dim.Y /, and because
C is constructible in xC , we see that 'a.C / is constructible (by induction). We may therefore
assume that xC D Y . But then xC contains a nonempty open subset of Y , and so we know
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that 'a.C / contains an nonempty open subset U of its closure. Replace X with the closure
of 'a.C /, and write

'a.C /D U ['a.C \ .'a/�1.X XU//:

Then .'a/�1.X XU/ is a proper closed subset of Y (the complement of X �U is dense in
X and 'a is dominant). As C \ .'a/�1.X XU/ is constructible in .'a/�1.X XU/, the set
'a.C \ .'a/�1.X XU// is constructible in X by induction, which completes the proof. 2

Let p and p0 be prime ideals in a ring A. If p� p0 (i.e., p0 2 V.p/), then we say that p0 is
a specialization of p and that p is a generalization of p0.

PROPOSITION 14.15. Let A be a noetherian ring, and let X D spec.A/. A constructible
subset Z of X is closed if it is closed under specialization.

PROOF. Let W be an irreducible component of xZ, and let pD I.W /; then W D V.p/, i.e.,
W consists of the specializations of p. Then W \Z is constructible and it is dense in W ,
and so it contains a nonempty open subset U of W (14.13). Hence p 2 U and, because Z
is closed under specialization, W �Z. As Z contains all irreducible components of xZ, it
contains Z. 2

PROPOSITION 14.16. Let A be a noetherian ring, and let 'WA! B be a finitely generated
A-algebra. If ' satisfies the going-down theorem, then the map 'aWspec.B/! spec.A/ is
open (i.e., sends open subsets to open subsets).

PROOF. Let U be an open subset of spec.B/, Then 'a.U / is constructible (14.14), and the
going-down theorem says that it is closed under generalization. Therefore spec.A/X'a.U /
is constructible and closed under specialization, and hence closed. 2

15 Jacobson rings and max spectra
DEFINITION 15.1. A ring A is Jacobson if every prime ideal in A is an intersection of
maximal ideals.

A field is Jacobson. The ring Z is Jacobson because every nonzero prime ideal is
maximal and .0/ D

T
p prime.p/. A principal ideal domain (more generally, a Dedekind

domain) is Jacobson if it has infinitely many maximal ideals.19 A local ring is Jacobson if
and only if its maximal ideal is its only prime ideal.

PROPOSITION 15.2. Every finitely generated algebra over a field is Jacobson.

PROOF. Apply (13.11). 2

PROPOSITION 15.3. In a Jacobson ring, the radical of an ideal is equal to the intersection
of the maximal ideals containing it. In particular, an element is nilpotent if it is contained in
all maximal ideals.

19In a principal ideal domain, a nonzero element a factors as aD upr11 � � �p
rs
s with u a unit and the pi prime.

The only prime divisors of a are p1; : : : ;ps , and so a is contained in only finitely many prime ideals. Similarly,
in a Dedekind domain, a nonzero ideal a factors as aD p

r1
1 � � �p

rs
s with the pi prime ideals (cf. 20.7 below), and

p1; : : : ;pr are the only prime ideals containing a. On taking aD .a/, we see that again a is contained in only
finitely many prime ideals.
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PROOF. Proposition 2.5 says that the radical of an ideal is an intersection of prime ideals,
and so this follows from the definition of a Jacobson ring. 2

ASIDE 15.4. Every ring of finite type over a Jacobson ring is a Jacobson ring (EGA IV, 10.4.6).

Max spectra
Let A be ring. The set spm.A/ of maximal ideals in A acquires a topology in exactly the
same way as spec.A/. Namely, the closed sets for the topology are the subsets

V.a/D fm jm� ag

of spm.A/ with a an ideal in A.
Everything in �14 holds, with essentially the same proofs, for the max spectra of Jacobson

rings. For example, in the proof of (14.2), we used that an element of A is nilpotent if it
is contained in all prime ideals. The is true with “maximal” for “prime” provided A is
Jacobson.

In particular, for a Jacobson ringA, there are natural one-to-one correspondences between
˘ the decompositions of spm.A/ into a finite disjoint union of open subspaces,
˘ the decompositions of A into a finite direct products of rings, and
˘ the complete sets of orthogonal idempotents in A.

ASIDE 15.5. By definition, spm.A/ is the subspace of spec.A/ consisting of the closed points.
When A is Jacobson, the map U 7!U \spm.A/ is a bijection from the set of open subsets of spec.A/
onto the set of open subsets of spm.A/; therefore spm.A/ and spec.A/ have the same topologies —
only the underlying sets differ.

ASIDE 15.6. Let k D R or C. Let X be a set and let A be a k-algebra of k-valued functions on X .
In analysis, X is called the spectrum of A if, for each k-algebra homomorphism 'WA! k, there
exists a unique x 2X such that '.f /D f .x/ for all f 2 A, and every x arises from a '.

Let A be a finitely generated algebra over an arbitrary algebraically closed field k, and let
X D spm.A/. An element f of A defines a k-valued function

m 7! f modm

onX . When A is reduced, Proposition 13.11 shows that this realizes A as a ring of k-valued functions
on X . Moreover, because (45) is an isomorphism in this case, for each k-algebra homomorphism
'WA! k, there exists a unique x 2 X such that '.f /D f .x/ for all f 2 A. In particular, when
k D C and A is reduced, spm.A/ is the spectrum of A in the sense of analysis.

The max spectrum of a finitely generated k-algebra
Let k be a field, and let A be a finitely generated k-algebra. For every maximal ideal m
of A, the field �.m/ def

D A=m is a finitely generated k-algebra, and so �.m/ is finite over k
(Zariski’s lemma, 13.1). In particular, it equals �.m/D k when k is algebraically closed.

Now fix an algebraic closure kal. The image of any k-algebra homomorphism A! kal

is a subring of kal which is an integral domain algebraic over k and therefore a field (see
�1). Hence the kernel of the homomorphism is a maximal ideal in A. In this way, we get a
surjective map

Homk-alg.A;k
al/! spm.A/: (44)
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Two homomorphisms A! kal with the same kernel m factor as

A! k.m/! kal;

and so differ by an automorphism20 of kal. Therefore, the fibres of (44) are exactly the orbits
of Gal.kal=k/. When k is perfect, each extension k.m/=k is separable, and so each orbit
has Œk.m/Wk� elements, and when k is algebraically closed, the map (44) is a bijection.

Set AD kŒX1; : : : ;Xn�=a. Then to give a homomorphism A! kal is the same as giving
an n-tuple .a1; : : : ;an/ of elements of kal (the images of the Xi ) such that f .a1; : : : ;an/D 0
for all f 2 a, i.e., an element of the zero-set V.a/ of a. The homomorphism corresponding
to .a1; : : : ;an/ maps k.m/ isomorphically onto the subfield of kal generated by the ai ’s.
Therefore, we have a canonical surjection

V.a/! spm.A/ (45)

whose fibres are the orbits of Gal.kal=k/. When the field k is perfect, each orbit has
ŒkŒa1; : : : ;an� W k�-elements, and when k is algebraically closed, V.a/' spm.A/.

Maps of max spectra
Let 'WA! B be a homomorphism of rings, and let p be a prime ideal of B . Then B=p is an
integral domain and A='�1.p/! B=p is injective, and so '�1.p/ is a prime ideal in A. In
this way, spec becomes a functor from rings to topological spaces. Unfortunately, when p is
maximal, '�1.p/ need not be maximal — consider for example the inclusion map Z!Q
and the ideal .0/ in Q. Therefore, spm is not a functor on the category of all rings, but it is a
functor on the category of finitely generated over a fixed field.

LEMMA 15.7. Let 'WA! B be a homomorphism of k-algebras, and let m be a maximal
ideal in B . If B is finitely generated over k, then the ideal '�1.m/ is maximal in A.

PROOF. Because B is finitely generated over k, its quotient B=m by any maximal ideal m
is a finite field extension of k (Zariski’s lemma, 13.1). Therefore the image of A in B=m is
an integral domain finite over k, and hence is a field (see �1). As this image is isomorphic to
A='�1.m/, this shows that the ideal '�1.m/ is maximal in A. 2

Therefore ' defines a map

'�Wspm.B/! spm.A/; m 7! '�1.m/;

which is continuous because .'�/�1.D.f // D D.'.f //. In this way, spm becomes a
functor from finitely generated k-algebras to topological spaces.

THEOREM 15.8. Let 'WA! B be a homomorphism of finitely generated k-algebras. Let
U be a nonempty open subset of spm.B/, and let '�.U /� be the closure of its image in
spm.A/. Then '�.U / contains a nonempty open subset of each irreducible component of
'�.U /�.

20Let f and g be two k-homomorphisms from a finite field extension k0 of k into kal. We consider the set
of pairs .K;˛/ in which ˛ is a k-homomorphism from a subfield K of kal containing f .k0/ into kal such that
˛ ıf D g. The set is nonempty, and Zorn’s lemma can be applied to show that it has a maximal element .K0;˛0/.
For such an element K0 will be algebraically closed, and hence equal to kal.
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PROOF. Let W D spm.B/ and V D spm.A/, so that '� is a continuous map W ! V .
We first prove the theorem in the case that ' is an injective homomorphism of integral

domains. For some b ¤ 0, D.b/ � U . According to Proposition 15.9 below, there exists
a nonzero element a 2 A such that every homomorphim ˛WA! kal such that ˛.a/ ¤ 0
extends to a homomorphism ˇWB! kal such that ˇ.b/¤ 0. Let m 2D.a/, and choose ˛ to
be a homomorphism A! kal with kernel m. The kernel of ˇ is a maximal ideal n 2D.b/
such that '�1.n/Dm, and so D.a/� '�.D.b//.

We now prove the general case. If W1; : : : ;Wr are the irreducible components of W ,
then '�.W /� is a union of the sets '�.Wi /�, and any irreducible component C of '�.U /�

is contained in one of '�.Wi /�, say '�.W1/�. Let qD I.W1/ and let pD '�1.q/. Because
W1 is irreducible, they are both prime ideals. The homomorphism 'WA! B induces an
injective homomorphism x'WA=p! B=q, and x'� can be identified with the restriction of '�

to W1. From the first case, we know that x'�.U \W1/ contains a nonempty open subset of
C , which implies that '�.U / does also. 2

In the next two statements, A and B are arbitrary commutative rings — they need not be
k-algebras.

PROPOSITION 15.9. Let A�B be integral domains with B finitely generated as an algebra
over A, and let b be a nonzero element of B . Then there exists an element a ¤ 0 in A
with the following property: every homomorphism ˛WA!˝ from A into an algebraically
closed field ˝ such that ˛.a/¤ 0 can be extended to a homomorphism ˇWB!˝ such that
ˇ.b/¤ 0.

We first need a lemma.

LEMMA 15.10. LetB �A be integral domains, and assumeB DAŒt�DAŒT �=a. Let c�A
be the ideal of leading coefficients of the polynomials in a. Then every homomorphism
˛WA!˝ from A into an algebraically closed field ˝ such that ˛.c/¤ 0 can be extended
to a homomorphism of B into ˝.

PROOF. If aD 0, then cD 0, and every ˛ extends. Thus we may assume a¤ 0. Let ˛ be a
homomorphism A!˝ such that ˛.c/¤ 0. Then there exist polynomials amTmC�� �Ca0
in a such that ˛.am/¤ 0, and we choose one, denoted f , of minimum degree. Because
B ¤ 0, the polynomial f is nonconstant.

Extend ˛ to a homomorphism AŒT �!˝ŒT �, again denoted ˛, by sending T to T , and
consider the subset ˛.a/ of ˝ŒT �.

FIRST CASE: ˛.a/ DOES NOT CONTAIN A NONZERO CONSTANT. If the ˝-subspace
of ˝ŒT � spanned by ˛.a/ contained 1, then so also would ˛.a/,21 contrary to hypothesis.
Because

T �
P
ci˛.gi /D

P
ci˛.giT /; ci 2˝; gi 2 a;

this ˝-subspace an ideal, which we have shown to be proper, and so it has a zero c in ˝.
The composite of the homomorphisms

AŒT �
˛
�!˝ŒT � �!˝; T 7! T 7! c;

factors through AŒT �=aD B and extends ˛.

21Use that, if a system of linear equation with coefficients in a field k has a solution in some larger field, then
it has a solution in k.
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SECOND CASE: ˛.a/ CONTAINS A NONZERO CONSTANT. This means that a contains a
polynomial

g.T /D bnT
n
C�� �Cb0 such that ˛.b0/¤ 0; ˛.b1/D ˛.b2/D �� � D 0:

On dividing f .T / into g.T / we obtain an equation

admg.T /D q.T /f .T /C r.T /; d 2 N; q;r 2 AŒT �; degr < m:

When we apply ˛, this becomes

˛.am/
d˛.b0/D ˛.q/˛.f /C˛.r/:

Because ˛.f / has degree m> 0, we must have ˛.q/D 0, and so ˛.r/ is a nonzero constant.
After replacing g.T / with r.T /, we may suppose that n < m. If mD 1, such a g.T / can’t
exist, and so we may suppose thatm> 1 and (by induction) that the lemma holds for smaller
values of m.

For h.T / D crT r C cr�1T r�1C �� � C c0, let h0.T / D cr C �� � C c0T r . Then the A-
module generated by the polynomials T sh0.T /, s � 0, h2 a, is an ideal a0 inAŒT �. Moreover,
a0 contains a nonzero constant if and only if a contains a nonzero polynomial cT r , which
implies t D 0 and AD B (since B is an integral domain).

When a0 does not contain a nonzero constant, we set B 0 D AŒT �=a0 D AŒt 0�. Then a0

contains the polynomial g0 D bnC �� �C b0T n, and ˛.b0/¤ 0. Because degg0 < m, the
induction hypothesis implies that ˛ extends to a homomorphism B 0!˝. Therefore, there
exists a c 2˝ such that, for all h.T /D crT rC cr�1T r�1C�� �C c0 2 a,

h0.c/D ˛.cr/C˛.cr�1/cC�� �C c0c
r
D 0:

On taking h D g, we see that c D 0, and on taking h D f , we obtain the contradiction
˛.am/D 0. 2

PROOF (OF 15.9). Suppose that we know the proposition in the case that B is generated by
a single element, and write B D AŒt1; : : : ; tn�. Then there exists an element bn�1 with the
property that every homomorphism ˛WAŒt1; : : : ; tn�1�!˝ such that ˛.bn�1/¤ 0 extends
to a homomorphism ˇWB!˝ such that ˇ.b/¤ 0. Continuing in this fashion (with bn�1
for b), we eventually obtain an element a 2 A with the required property.

Thus we may assume B D AŒt�. Let a be the kernel of the homomorphism T 7! t ,
AŒT �! AŒt�.

Case (i). The ideal aD .0/. Write

b D f .t/D a0t
n
Ca1t

n�1
C�� �Can; ai 2 A;

and take a D a0. If ˛WA!˝ is such that ˛.a0/¤ 0, then there exists a c 2˝ such that
f .c/¤ 0, and we can take ˇ to be the homomorphism

P
di t

i 7!
P
˛.di /c

i .
Case (ii). The ideal a¤ .0/. Let f .T /D amTmC�� �Ca0, am ¤ 0, be an element of

a of minimum degree. Let h.T / 2 AŒT � represent b. Since b ¤ 0, h … a. Because f is
irreducible over the field of fractions of A, it and h are coprime over that field. In other
words, there exist u;v 2 AŒT � and a nonzero c 2 A such that

uhCvf D c:

It follows now that cam satisfies our requirements, for if ˛.cam/¤ 0, then ˛ can be extended
to ˇWB!˝ by the lemma, and ˇ.u.t/ �b/D ˇ.c/¤ 0, and so ˇ.b/¤ 0. 2
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REMARK 15.11. In case (ii) of the last proof, both b and b�1 are algebraic over A, and so
there exist equations

a0b
m
C�� �Cam D 0; ai 2 A; a0 ¤ 0I

a00b
�n
C�� �Ca0n D 0; a0i 2 A; a00 ¤ 0:

One can show that aD a0a00 has the property required by the proposition (cf. Atiyah and
Macdonald 1969 5.23, p.66).

ASIDE 15.12. Let A be a noetherian ring, and let 'WA! B be a finitely generated A-algebra. Then
the statement of (15.8) holds for '�Wspm.B/! spm.A/ with much the same proof.

ASIDE 15.13. Let A be a ring and 'WA! B a finitely generated A-algebra. If A is Jacobson, so
also is B , and ' induces a map spm.B/! spm.A/.

ASIDE 15.14. In general, the map A! AŒX� does not induce a map spm.AŒX�/! spm.A/. Con-
sider for example a discrete valuation ring A with maximal ideal .�/ (e.g., Z.p/ with maximal ideal
.p/). The ideal .�X �1/ is maximal, because AŒX�=.�X �1/ is the field of fractions of A (by 5.3),
but .�X �1/\AD .0/, which is not maximal.

ASIDE 15.15. There exists a local integral domain A whose prime ideals form a single infinite chain
.0/D p0 � p1 � p2 � �� � �m. The open subscheme spec.A/Xfmg of spec.A/ has no closed points.

Exercises
EXERCISE 15.16. Let A denote the polynomial ring QŒX1;X2; : : :� in countably many
symbols.

(a) Show that A is not a Jacobson ring (consider the kernel of a surjective homomorphism
from A to a countable local domain, e.g., QŒX�.X/).

(b) Show that .0/D
T
fm jm a maximal ideal in Ag.

See mo151011.

16 Artinian rings
A ring A is artinian if every descending chain of ideals a1 � a2 � �� � in A eventually
becomes constant; equivalently, if every nonempty set of ideals has a minimal element.
Similarly, a module M over a ring A is artinian if every descending chain of submodules
N1 �N2 � �� � in M eventually becomes constant.

PROPOSITION 16.1. An artinian ring has Krull dimension zero; in other words, every prime
ideal is maximal.

PROOF. Let p be a prime ideal of an artinian ring A, and let A0 D A=p. Then A0 is an
artinian integral domain. Let a be a nonzero element of A0. The chain .a/ � .a2/ � �� �
eventually becomes constant, and so an D anC1b for some b 2A0 and n� 1. We can cancel
an to obtain 1D ab. Thus a is a unit, and so A0 is a field, and p is maximal: 2

COROLLARY 16.2. In an artinian ring, the nilradical and the Jacobson radical coincide.
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PROOF. The first is the intersection of the prime ideals (2.5), and the second is the intersec-
tion of the maximal ideals (2.6). 2

PROPOSITION 16.3. An artinian ring has only finitely many maximal ideals.

PROOF. Let m1\ : : :\mn be minimal among finite intersections of maximal ideals in an
artinian ring, and let m be another maximal ideal in the ring. If m is not equal to one of the
mi , then, for each i , there exists an ai 2mi Xm. Now a1 � � �an lies in m1\ : : :\mn but not
in m (because m is prime), contradicting the minimality of m1\ : : :\mn. 2

PROPOSITION 16.4. In an artinian ring, some power of the nilradical is zero.

PROOF. Let N be the nilradical of the artinian ring A. The chain N�N2 � � � � eventually
becomes constant, and so Nn DNnC1 D �� � for some n� 1. Suppose that Nn ¤ 0. Then
there exist ideals a such that a �Nn ¤ 0, for example N, and we choose an a that is minimal
among such ideals. There exists an a 2 a such that a �Nn¤ 0, and so aD .a/ (by minimality).
Now .aNn/Nn D aN2n D aNn ¤ 0 and aNn � .a/, and so aNn D .a/ (by minimality
again). Hence aD ax for some x 2Nn. Now aD ax D ax2D �� � D a0D 0 because x 2N.
This contradicts the definition of a, and so Nn D 0. 2

LEMMA 16.5. Let A be a ring in which some finite product of maximal ideals is zero. Then
A is artinian if and only if it is noetherian.

PROOF. Suppose that m1 � � �mn D 0 with the mi maximal ideals (not necessarily distinct),
and consider

A�m1 � �� � �m1 � � �mr�1 �m1 � � �mr � �� � �m1 � � �mn D 0:

The action of A on the quotient Mr
def
Dm1 � � �mr�1=m1 � � �mr factors through the field A=mr ,

and the subspaces of the vector space Mr are in one-to-one correspondence with the ideals
of A contained between m1 � � �mr�1 and m1 � � �mr . If A is either artinian or noetherian, then
Mr satisfies a chain condition on subspaces and so it is finite-dimensional as a vector space
and both artinian and noetherian as an A-module. Now repeated applications of Proposition
3.3 (resp. its analogue for artinian modules) show that if A is artinian (resp. noetherian), then
it is noetherian (resp. artinian) as an A-module, and hence as a ring. 2

THEOREM 16.6. A ring is artinian if and only if it is noetherian of dimension zero.

PROOF. ): Let A be an artinian ring. After (16.1), it remains to show that A is noetherian,
but according to (16.2), (16.3), and (16.4), some finite product of maximal ideals is zero,
and so this follows from Lemma 16.5.
(: Let A be a noetherian ring of dimension zero. Because A is noetherian, its radical N

is a finite intersection of prime ideals (14.9), each of which is maximal because dimAD 0.
Hence N is a finite intersection of maximal ideals (2.5), and since some power of N is zero
(3.17), we again have that some finite product of maximal ideals is zero, and so can apply
Lemma 16.5. 2

THEOREM 16.7. Every artinian ring is (uniquely) a product of local artinian rings.
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PROOF. Let A be artinian, and let m1; : : : ;mr be the distinct maximal ideals in A. We saw
in the proof of (16.6) that some product mn1

1 � � �m
nr
r D 0. For i ¤ j , the ideal mni

i Cm
nj

j is
not contained in any maximal ideal, and so equals A. Now the Chinese remainder theorem
2.13 shows that

A' A=mn1

1 � � � ��A=m
nr
r ,

and each ring A=mni

i is obviously local. 2

PROPOSITION 16.8. Let A be a local artinian ring with maximal ideal m. If m is principal,
so also is every ideal in A; in fact, if mD .t/, then every ideal is of the form .tr/ for some
r � 0.

PROOF. Because m is the Jacobson radical of A, some power of m is zero (by 16.4); in
particular, .0/D .tr/ for some r . Let a be a nonzero ideal in A. There exists an integer r � 0
such that a�mr but a 6�mrC1. Therefore there exists an element a of a such that aD ctr

for some c 2 A but a … .trC1/. The second condition implies that c …m, and so it is a unit;
therefore aD .a/. 2

EXAMPLE 16.9. The ringAD kŒX1;X2;X3; : : :�=.X1;X22 ;X
3
3 ; : : :/ has only a single prime

ideal, namely, .x1;x2;x3; : : :/, and so has dimension zero. However, it is not noetherian
(hence not artinian).

ASIDE 16.10. Every finitely generated module over a principal Artin ring is a direct sum of cyclic
modules (see mo22722).

17 Quasi-finite algebras and Zariski’s main theorem.

In this section we prove a fundamental theorem of Zariski.22 Throughout, k is a field and A
is a commutative ring.

Quasi-finite algebras
PROPOSITION 17.1. Let B be a finitely generated k-algebra. A prime ideal q of B is an
isolated point of spec.B/ if and only if Bq is finite over k.

PROOF. To say that q is an isolated point of spec.B/ means that there exists an f 2 B Xq
such that spec.Bf / D fqg. Now Bf is noetherian with only one prime ideal, namely,
m

def
D qBf , and so it is artinian (16.6). The quotient Bf =m is a field which is finitely

generated as a k-algebra, and hence is finite over k (Zariski’s lemma 13.1). Because Bf is
artinian,

Bf �m�m2 � �� �

can be refined to a finite filtration whose quotients are one-dimensional vector spaces over
Bf =m. Therefore Bf is a finite k-algebra. As f … q, we have Bq D .Bf /q, which equals
Bf because Bf is local. Therefore Bq is also a finite k-algebra.

22Our exposition of the proof follows those in Raynaud 1970 and in Hochster’s course notes from Winter,
2010.
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For the converse, suppose that Bq is finite over k, and consider the exact seqence

0!M ! B! Bq!N ! 0 (46)

of B-modules. When we apply the functor S�1q to the sequence (46), it remains exact
(5.11), but the middle arrow becomes an isomorphism, and so Mq D 0D Nq. Because B
is noetherian, the B-module M is finitely generated, with generators e1; : : : ; em say. As
Mq D 0, there exists, for each i , an fi 2 B Xq such that fiei D 0. Now f 0

def
D f1 : : :fm has

the property that f 0M D 0, and so Mf 0 D 0.
Because Bq is a finite k-algebra, N is finitely generated as a k-module, and therefore

also as a B-module. As for M , there exists an f 00 2 B X q such that Mf 00 D 0. Now
f

def
D f 0f 00 2 B Xq has the property that Mf D 0DNf . When we apply the functor S�1

f

to (46), we obtain an isomorphism Bf ' Bq, and so spec.Bf /D spec.Bq/D fqg, which
shows that q is an isolated point. 2

PROPOSITION 17.2. Let B be a finitely generated k-algebra. The space spec.B/ is discrete
if and only if B is a finite k-algebra.

PROOF. If B is finite over k, then it is artinian and so (16.7)

B D
Y
fBm jm maximalg (finite product),

and
spec.B/D

G
m

spec.Bm/D
G

m
fmg (disjoint union of open subsets).

Therefore each point is isolated in spec.B/.
Conversely, if spec.B/ is discrete then it is a finite disjoint union,

spec.B/D
G

1�i�n

spec.Bfi
/; fi 2 B;

with spec.Bfi
/D fqig. Hence B D

Q
1�i�nBfi

(by 14.3) with Bfi
D Bqi

. According to
Proposition 17.1, each k-algebra Bqi

is finite over k, and so B is finite over k. 2

DEFINITION 17.3. Let B be a finitely generated A-algebra.
(a) Let q be a prime ideal of B , and let pD qc . The ring B is said to be quasi-finite over

A at q if Bq=pBq is a finite �.p/-algebra.
(b) The ring B is said to be quasi-finite over A if it is quasi-finite over A at all the prime

ideals of B .

PROPOSITION 17.4. Let B be a finitely generated A-algebra. Let q be a prime ideal of B ,
and let pD qc . Then B is quasi-finite over A at q if and only if q is an isolated point of
spec.B˝A �.p//.

PROOF. As
Bq=pBq ' .B=pB/q=p ' .B˝A �.p//q=p ;

this is an immediate consequence of (17.1) applied to the �.p/-algebra B˝A �.p/. 2
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The prime ideals of B=pB correspond to the prime ideals of B whose contraction to A
contains p, and the prime ideals of B˝A �.p/ correspond to the prime ideals of B whose
contraction to A is p. To say that B is quasi-finite over A at q means that q is both maximal
and minimal among the prime ideals lying over p (i.e., that each point of spec.B˝A �.p//
is closed).

PROPOSITION 17.5. A finitely generated A-algebra B is quasi-finite over A if and only if,
for all prime ideals p of A, B˝A �.p/ is finite over �.p/.

PROOF. Immediate consequence of Proposition 17.2. 2

EXAMPLE 17.6. Let C be a finitely generated A-algebra. If C is finite over A, then
C ˝A �.p/ is finite over �.p/ for all prime ideals p of A, and so C is quasi-finite over A.
In particular, spec.C ˝A �.p// is discrete for all primes p of A, and so if B is a finitely
generated C -algebra such that the map spec.B/! spec.C / is an open immersion, then B
is also quasi-finite over A. Zariski’s main theorem says that all quasi-finite A-algebras arise
in this way.

The next two lemmas will be used in the proof of Zariski’s main theorem.

LEMMA 17.7. Let A! C ! B be homomorphisms of rings such that the composite
A! B is of finite type, and let q be a prime ideal of B . If B is quasi-finite over A at q, then
it is quasi-finite over C at q.

PROOF. Let pA and pC be the inverse images of q inA and C respectively. Then spec.B˝C
�.pC // is subspace of spec.B˝A �.pA//, and so if q is an isolated point in the second space,
then it is an isolated point in the first space. 2

LEMMA 17.8. Let A� C � B be rings. Let q be a prime ideal of B , and let rD q\C and
pD q\A.

(a) If q is minimal among the primes lying over p and there exists a u 2 C Xq such that
Cu D Bu, then r is minimal among the primes lying over p.

(b) If B is integral over a finitely generated A-subalgebra B0 and q is maximal among the
prime ideals lying over p, then r is maximal among the prime ideals lying over p.

(c) Assume that B is integral over a finitely generated A-subalgebra B0, and that there
exists a u 2 C X q such that Cu D Bu. If B is quasi-finite over A at q, then C is
quasi-finite over A at r.

PROOF. (a) If r0 is a prime ideal of C lying over p and strictly contained in r, then by
extending r0 to Cu D Bu and then contracting the result to B , we obtain a prime ideal q0 of
B lying over p and strictly contained in q.

(b) We may replace A, C , and B with their localizations at p, and so assume that A is
local with maximal ideal p. Then

A=p� C=r� B=q

and we also have
A=p� B0=r

0
� B=r

where r0 D q\B0: As q is maximal among the prime ideals lying over p, B=q is a field. As
B=q is integral over B0=r0, the latter is also a field (see 7.1), and it is finitely generated as an
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A=p-algebra. Zariski’s lemma (13.1) now shows that B0=r0 is a finite algebraic extension of
A=p, and so B=q is an algebraic extension of A=p. It follows that C=r is a field, and so r is
maximal among the prime ideals in C over p.

(c) Combine (a) and (b) (with the remark following (17.3)). 2

ASIDE 17.9. Geometrically, to say that A!B is quasi-finite means that the map SpecB! SpecA
has finite fibres. The condition that A! B be finite is much stronger: it not only requires that
SpecB! SpecA have finite fibres but also that it be universally closed. See, for example, my notes
on algebraic geometry.

Statement of Zariski’s main theorem

THEOREM 17.10. Let B be a finitely generated A-algebra, and let A0 be the integral closure
of A in B . Then B is quasi-finite over A at a prime ideal q if and only if A0

f
' Bf for some

f 2 A0Xq.

The sufficiency is obvious; the proof of the necessity will occupy the rest of this section.
First, we list some consequences.

COROLLARY 17.11. Let B be a finitely generated A-algebra. The set of prime ideals of B
at which B is quasi-finite over A is open in spec.B/.

PROOF. Let q be a prime ideal of B such that B is quasi-finite over A at q. The theorem
shows that there exists an f 2 A0X q such that A0

f
' Bf . Write A0 as the union of the

finitely generated A-subalgebras Ai of A0 containing f :

A0 D
[

i
Ai :

Because A0 is integral over A, each Ai is finite over A (see 6.3). We have

Bf ' A
0
f D

[
i
Aif :

Because Bf is a finitely generated A-algebra, Bf DAif for all sufficiently large Ai . As the
Ai are finite over A, Bf is quasi-finite over A, and spec.Bf / is an open neighbourhood of q
consisting of quasi-finite points. 2

COROLLARY 17.12. Let B be a finitely generated A-algebra, quasi-finite over A, and let
A0 be the integral closure of A in B . Then

(a) the map SpecB! SpecA0 is an open immersion, and
(b) there exists an A-subalgebra A00 of A0, finite over A, such that SpecB! SpecA00 is

an open immersion.

PROOF. (a) Because B is quasi-finite over A at every point of spec.B/, the theorem implies
that there exist fi 2 A0 such that the open sets spec.Bfi

/ cover spec.B/ and A0
fi
' Bfi

for
all i . As spec.B/ quasi-compact, finitely many sets spec.Bfi

/ suffice to cover spec.B/, and
it follows that spec.B/! spec.A0/ is an open immersion.

(b) We have seen that spec.B/D
S
1�i�n spec.Bfi

/ for certain fi 2A0 such that A0
fi
'

Bfi
. The argument in the proof of (17.11) shows that there exists an A-subalgebra A00 of A0,

finite over A, which contains f1; : : : ;fn and is such that Bfi
' A00

fi
for all i . Now the map

spec.B/! spec.A00/ is an open immersion. 2

Theorem 17.10, its corollary 17.12, and various global versions of these statements are
referred to as Zariski’s main theorem.
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A variant of Zariski’s main theorem
PROPOSITION 17.13. Let A � C � B be rings such that A integrally closed in B , C is
finitely generated over A, and B is finite over C . If B is quasi-finite over A at a prime ideal
q, then Bp D Ap with pD q\A.

PROOF THAT 17.13 IMPLIES 17.10

Let A, A0, and B be as in the Theorem 17.10. We apply the proposition to A0 � B D B —
Lemma 17.7 shows that the ring B is quasi-finite over A0 at q. The proposition shows that
Bp0 D A

0
p0 with p0 D q\A0. Let b1; : : : ;bn generate B as an A0-algebra, and let b0i denote

the image of bi in Bp0 DA
0
p0 . Then b0i D ai=f for some ai 2A0 and f 2A0Xp0. The b0i are

in the image of the map A0
f
!Bf , which is therefore surjective. But A0

f
!Bf is injective

because A� B , and so the map is an isomorphism. This completes the proof of the theorem.

Proof of Proposition 17.10
We proceed by proving four special cases of Proposition 17.10.

LEMMA 17.14. Let A� AŒx�D B be rings such that A is integrally closed in B . If B is
quasi-finite over A at a prime ideal q, then Bp D Ap with pD q\A.

PROOF. The hypotheses remain true when we invert the elements of S Xp to obtain Ap �

ApŒx�D Bp. Thus, we may suppose that A is local with maximal ideal p, and we have to
prove that B D A. As A is integrally closed in B and B D AŒx�, it suffices to show that x is
integral over A.

Let k D A=p and consider the k-algebra

kŒxx�
def
D AŒx�˝A k D B˝A �.p/:

By assumption, q is an isolated point in spec.kŒxx�/. Consequently, xx is algebraic over k,
because otherwise kŒxx� would be a polynomial ring over k, and its spectrum would have no
isolated points. Therefore there exists a polynomial F 2 AŒX� with nonconstant image in
kŒX� such that F.x/ 2 pAŒx�. Now F �F.x/ is a polynomial in AŒX� that vanishes on x
and has at least one coefficient not in p. Choose such a polynomial H of minimum degree
m, and write it

H.X/D amX
m
C�� �Ca0:

The equation am�1H.x/D 0 can be written

.amx/
m
Cam�1.amx/

m�1
C�� �Ca0a

m�1
m D 0:

It shows that amx is integral over A, and so lies in A. Now the polynomial

.amxCam�1/X
m�1
C�� �Ca0

lies in AŒX� and vanishes on x. As it has degree < m, all of its coefficients must lie in
p. In particular, amxCam�1 2 p. If am is a unit, then x is integral over A, as required.
Otherwise, am 2 p and am�1 is a unit (because otherwise all coefficients of H lie in p);
hence am�1 2 pB , which is contradiction because pB � q. 2
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LEMMA 17.15. LetB be an integral domain containing a polynomial ringAŒX� and integral
over it. Then B is not quasi-finite over A at every prime ideal q.

PROOF. Let q be a prime ideal of B , and let pD q\A. If B is quasi-finite over A at q, then
q is both maximal and minimal among the prime ideals lying over p. We shall assume that q
is maximal and prove that it can’t then be minimal.

Suppose first that A is integrally closed, and let rD q\AŒX�. If r were not maximal
among the prime ideals of AŒX� lying over p, then the going-up theorem (7.6) would imply
that q is not either. Therefore r is maximal among the prime over p, and it follows that its
image xr in �.p/ŒX� is maximal. In particular, xr¤ 0, and so r strictly contains the prime ideal
pAŒX� in AŒX�. As A is integrally closed, AŒX� is also (6.17), and the going down theorem
(7.11) shows that q strictly contains a prime ideal lying over pAŒX�. Therefore, q is not
minimal among the prime ideals lying over p.

In the general case, we let B 0 denote the integral closure of B in its field of fractions.
Then B 0 contains the integral closure A0 of A, and is integral over A0ŒT �. Let q0 be a prime
ideal of B 0 lying over q (which exists by 7.5), and let p0 D q0\A0. As q is maximal among
the primes lying over p, q0 is maximal among those lying over p0 (apply 7.4 to B � B 0). But,
according to the preceding paragraph, q0 is not minimal, which implies that q is not minimal
(apply 7.4 again). 2

LEMMA 17.16. Let A � AŒx� � B be rings such that B is integral over AŒx� and A is
integrally closed inB . If there exists a monic polynomial F 2AŒX� such that F.x/B �AŒx�,
then AŒx�D B .

PROOF. Let b 2 B be arbitrary. By assumption F.x/b 2 AŒx�, and so F.x/b D G.x/ for
some polynomial G in AŒX�. As F is monic, we can divide F into G to get

G DQF CR; degR < degF; Q;R 2 AŒX�:

Now
F.x/b DG.x/DQ.x/F.x/CR.x/:

For c D b�Q.x/;
F.x/c DR.x/: (47)

To show that b 2 AŒx�, it suffices to show that c 2 A, and for this it suffices to show that c is
integral over A.

Let A0 be the image of A in Bc . As degR < degF , the equality (47) shows that x=1, as
an element of Bc , is integral over the subringA0c . As B is integral over AŒx�, this implies that
Bc is integral over A0c . In particular, c=1 is integral over A0c , and so it satisfies an equation
whose coefficients we can assume to have a common denominator cM :

.c=1/mC
a1

cM
.c=1/m�1C�� �C

am

cM
D 0; ai 2 A,

(equality in Bc). Therefore

cMCmCa1c
m�1
C�� �Cam

is an element of B whose image in Bc is zero, and so is killed by a power of c. This shows
that c is integral over A, as required. 2
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Let B be a finite A-algebra. The conductor of B in A is

f.B=A/D fa 2 A j aB � Ag:

This is an ideal of both A and B . In fact, it is the largest ideal in A that is also an ideal
in B , because every element a of such an ideal has the property that aB � A. For every
multiplicative subset S of A,

f.S�1B=S�1A/D S�1f.B=A/: (48)

LEMMA 17.17. LetA�AŒx��B be rings such thatB is finite overAŒx� andA is integrally
closed in B . If B is quasi-finite over A at a prime ideal q, then Bp D Ap with pD q\A.

PROOF. Let fD f.B=AŒx�/, so

fD f˛ 2 AŒx� j ˛B � AŒx�g:

We first consider the case that f 6� q. Let rD q\AŒx�. For every u 2 fX q, we have
AŒx�u D Bu, and so Lemma 17.8 shows that AŒx� is quasi-finite over A at r.23 Now Lemma
17.14 shows that AŒx�p D Ap. But B is finite over AŒx�, and therefore Bp is finite over
AŒx�p D Ap. As A is integrally closed in B , Ap is integrally closed in Bp, and therefore
Ap D Bp, as required.

It remains to consider the case f � q. We choose a prime ideal n � q of B minimal
among those containing f. Let t denote the image of x in the ring B=n, and let mD n\A.
Now

A=m� .A=m/Œt �� B=n,

and B=n is integral over .A=m/Œt �. As B is quasi-finite over A at q, the quotient B=n is
quasi-finite over A=m at q=n. Now Lemma 17.15 implies that t is algebraic over A=m. We
shall complete the proof by obtaining a contradiction, which will show that this case doesn’t
occur.

After making an extension of scalars A! Am, we may assume that A is a local ring
with maximal ideal m. Let n0 D n\AŒx�. Because t is algebraic over A=m, the integral
domain AŒx�=n0 is a finite A=m-algebra, and hence a field (see �1). Therefore, n0 is maximal
in AŒx�, and it follows from (7.3) that n is maximal in B . Thus B=n is a field.

Because t is algebraic over A=m, there exists a monic polynomial F in AŒX� such
that F.x/ 2 n. But n is minimal among the prime ideals of B containing f, and so nBn is
minimal among the prime ideals of Bn containing fn. In fact, nBn is the only prime ideal
containing fn, and so nBn is the radical of fn. Therefore, there exists an integer r > 0 such
that .F.x//r 2 fn, and a y 2 B Xn such that yF.x/r 2 f.

We therefore have yF.x/rB � AŒx�. On applying Lemma 17.16 with A� AŒx�� B 0,
B 0 D AŒx�ŒyB�; and F 0 D F r , we deduce that B 0 D AŒx� and therefore that yB � AŒx�.
Hence y 2 f� n, which contradicts the definition of y. 2

PROOF OF PROPOSITION 17.10

We use induction on the number n of generators of the A-algebra C . If nD 0, then B is
integral over A, and so B D A. Assume that n > 0 and that the proposition has been proved
when C is generated by n�1 elements.

23Here we follow Hochster. Raynaud simply states that AŒx� is quasi-finite over A at r.
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Write C D AŒx1; : : : ;xn�, and let A0 be the integral closure of AŒx1; : : : ;xn�1� in B .
Then

A0 � A0Œxn�� B;

and B is finite over A0Œxn�. The ring B is finite over A0Œxn� and it is quasi-finite over A at q,
and so B is quasi-finite over A0 at q (by 17.7). From Lemma 17.17 we deduce that A0p0 DBp0

with p0 D A0\q.
As A0 is integral over AŒx1; : : : ;xn�1�, it is a union of its finite subalgebras,

A0 D
[

i
A0i ; A0i finite over AŒx1; : : : ;xn�1�:

Let p0i D q\A0i D p0\A0i . As B is finitely generated over AŒx1; : : : ;xn�1�, the canonical
homomorphism

.A0i /p0i
! Bp0

i

is an isomorphism for all sufficiently large i . For such an i , we have a fortiori that

.A0i /p0i
' Bq;

and soA0i is quasi-finite overA at p0i . On applying the induction hypothesis toA; AŒx1; : : : ;xn�1�,
and A0i , we deduce that

Ap ' .A
0
i /p ' .A

0
i /p0i

;

and consequently that Ap ' Bp. This completes the proof of Proposition 17.13 and hence of
Theorem 17.10.

18 Dimension theory for finitely generated k-algebras
Except in the final subsection, A is an integral domain containing a field k and finitely
generated as a k-algebra. We define the transcendence degree of A over k, trdegkA, to be
the transcendence degree over k of the field of fractions F.A/ of A (see �9 of my notes
Fields and Galois Theory). Thus A has transcendence degree d if it contains an algebraically
independent set of d elements, but no larger set (ibid. 8.12).

PROPOSITION 18.1. For all linear forms `1; : : : ; `m in X1; : : : ;Xn, the quotient ring

kŒX1; : : : ;Xn�=.`1; : : : ; `m/

is an integral domain of transcendence degree equal to the dimension of the subspace of kn

defined by the equations
`i D 0; i D 1; : : : ;m:

PROOF. This follows from the more precise statement:

Let c be an ideal in kŒX1; : : : ;Xn� generated by linearly independent linear
forms `1; : : : ; `r , and let Xi1 ; : : : ;Xin�r

be such that

f`1; : : : ; `r ;Xi1 ; : : : ;Xin�r
g

is a basis for the linear forms in X1; : : : ;Xn. Then

kŒX1; : : : ;Xn�=c' kŒXi1 ; : : : ;Xin�r
�:
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This is obvious if the forms `i are X1; : : : ;Xr . In the general case, because fX1; : : : ;Xng
and f`1; : : : ; `r ;Xi1 ; : : : ;Xin�r

g are both bases for the linear forms, each element of one set
can be expressed as a linear combination of the elements of the other. Therefore,

kŒX1; : : : ;Xn�D kŒ`1; : : : ; `r ;Xi1 ; : : : ;Xin�r
�;

and so

kŒX1; : : : ;Xn�=cD kŒ`1; : : : ; `r ;Xi1 ; : : : ;Xin�r
�=c

' kŒXi1 ; : : : ;Xin�r
�: 2

PROPOSITION 18.2. For every irreducible polynomial f in kŒX1; : : : ;Xn�, the quotient ring
kŒX1; : : : ;Xn�=.f / has transcendence degree n�1.

PROOF. Let
kŒx1; : : : ;xn�D kŒX1; : : : ;Xn�=.f /; xi DXi C .f /;

and let k.x1; : : : ;xn/ be the field of fractions of kŒx1; : : : ;xn�. Since f is not zero, some Xi ,
say, Xn, occurs in it. Then Xn occurs in every nonzero multiple of f , and so no nonzero
polynomial in X1; : : : ;Xn�1 belongs to .f /. This means that x1; : : : ;xn�1 are algebraically
independent. On the other hand, xn is algebraic over k.x1; : : : ;xn�1/, and so fx1; : : : ;xn�1g
is a transcendence basis for k.x1; : : : ;xn/ over k. 2

PROPOSITION 18.3. For every nonzero prime ideal p in a k-algebra A,

trdegk.A=p/ < trdegk.A/:

PROOF. We may suppose that

AD kŒX1; : : : ;Xn�=aD kŒx1; : : : ;xn�:

For f 2 A, let xf denote the image of f in A=p, so that A=p D kŒxx1; : : : ; xxn�. Let d D
trdegkA=p, and number the Xi so that xx1; : : : ; xxd are algebraically independent (for a proof
that this is possible, see 8.9 of my notes Fields and Galois Theory). I shall show that, for
any nonzero f 2 p, the d C1 elements x1; : : : ;xd ;f are algebraically independent, which
shows that trdegkA� d C1.

Suppose otherwise. Then there is a nontrivial algebraic relation, which we can write

a0.x1; : : : ;xd /f
m
Ca1.x1; : : : ;xd /f

m�1
C�� �Cam.x1; : : : ;xd /D 0;

with ai 2 kŒX1; : : : ;Xd � and a0 ¤ 0. Because A is an integral domain, we can cancel a
power of f if necessary to make am.x1; : : : ;xd / nonzero. On applying the homomorphism
A! A=p to the above equality, we find that

am.xx1; : : : ; xxd /D 0;

which contradicts the algebraic independence of xx1; : : : ; xxd . 2

PROPOSITION 18.4. Let A be a polynomial ring. If p is a prime ideal in A such that
trdegkA=pD trdegkA�1, then pD .f / for some f 2 A.
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PROOF. The ideal p is nonzero because otherwise A and A=p would have the same tran-
scendence degree. Therefore p contains a nonzero polynomial, and even an irreducible
polynomial f , because it is prime. According to (4.1), the ideal .f / is prime. If .f /¤ p,
then

trdegkA=p
18.3
< trdegkA=.f /

18.2
D trdegkA�1;

which contradicts the hypothesis. 2

THEOREM 18.5. Let f 2 A be neither zero nor a unit, and let p be a prime ideal that is
minimal among those containing .f /; then

trdegkA=pD trdegkA�1:

We first need a lemma.

LEMMA 18.6. Let A be an integrally closed integral domain, and let L be a finite extension
of the field of fractions K of A. If ˛ 2 L is integral over A, then NmL=K˛ 2 A, and ˛
divides NmL=K ˛ in the ring AŒ˛�.

PROOF. Let Xr Car�1Xr�1C�� �Ca0 be the minimum polynomial of ˛ over K. Then

r divides the degree n of L=K, and NmL=K.˛/D˙a
n
r

0 (see 5.40 of my notes Fields and
Galois Theory). Moreover, a0 lies in A by (6.11). From the equation

0D ˛.˛r�1Car�1˛
r�2
C�� �Ca1/Ca0

we see that ˛ divides a0 in AŒ˛�, and therefore it also divides NmL=K ˛. 2

PROOF (OF THEOREM 18.5). Write rad.f / as an irredundant intersection of prime ideals
rad.f /D p1\ : : :\pr (see 14.9). Then V.a/D V.p1/[ � � �[V.pr/ is the decomposition
of V.a/ into its irreducible components. There exists an m0 2 V.p1/X

S
i�2V.pi / and an

open neighbourhood D.h/ of m0 disjoint from
S
i�2V.pi /. The ring Ah (resp. Ah=S�1p)

is an integral domain with the same transcendance degree as A (resp. A=p) — in fact, with
the same field of fractions. In Ah, rad.f

1
/D rad.f /e D pe1. Therefore, after replacing A

with Ah, we may suppose that rad.f / is prime, say, equal to p.
According to the Noether normalization theorem (8.1), there exist algebraically inde-

pendent elements x1; : : : ;xd in A such that A is a finite kŒx1; : : : ;xd �-algebra. Note that
d D trdegkA. According to the lemma, f0

def
D Nm.f / lies in kŒx1; : : : ;xd �, and we shall

show that p\kŒx1; : : : ;xd �D rad.f0/. Therefore, the homomorphism

kŒx1; : : : ;xd �=rad.f0/! A=p

is injective. As it is also finite, this implies that

trdegkA=pD trdegkkŒx1; : : : ;xd �=rad.f0/
18.2
D d �1;

as required.
By assumption A is finite (hence integral) over its subring kŒx1; : : : ;xd �. The lemma

shows that f divides f0 in A, and so f0 2 .f /� p. Hence .f0/� p\kŒx1; : : : ;xd �, which
implies

rad.f0/� p\kŒx1; : : : ;xd �
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because p is radical. For the reverse inclusion, let g 2 p\kŒx1; : : : ;xd �. Then g 2 rad.f /,
and so gm D f h for some h 2 A, m 2 N. Taking norms, we find that

gme D Nm.f h/D f0 �Nm.h/ 2 .f0/;

where e is the degree of the extension of the fields of fractions, which proves the claim. 2

COROLLARY 18.7. Let p be a minimal nonzero prime ideal in A; then trdegk .A=p/ D
trdegk .A/�1.

PROOF. Let f be a nonzero element of p. Then f is not a unit, and p is minimal among the
prime ideals containing f . 2

THEOREM 18.8. The length d of every maximal (i.e., nonrefinable) chain of distinct prime
ideals

pd � pd�1 � �� � � p0 (49)

in A is trdegk .A/. In particular, every maximal ideal of A has height trdegk .A/, and so the
Krull dimension of A is equal to trdegk .A/.

PROOF. From Corollary 18.7, we find that

trdegk.A/D trdegk.A=p1/C1D �� � D trdegk.A=pd /Cd:

But pd is maximal, and soA=pd is a finite field extension of k. In particular, trdegk.A=pd /D
0. 2

EXAMPLE 18.9. Let f .X;Y / and g.X;Y / be nonconstant polynomials with no common
factor. Then kŒX;Y �=.f / has Krull dimension 1, and so kŒX;Y �=.f;g/ has dimension zero.

EXAMPLE 18.10. We classify the prime ideals p in AD kŒX;Y �. If A=p has dimension
2, then pD .0/. If A=p has dimension 1, then pD .f / for some irreducible polynomial
f of A (by 18.4). Finally, if A=p has dimension zero, then p is maximal. Thus, when k
is algebraically closed, the prime ideals in kŒX;Y � are exactly the ideals .0/, .f / (with f
irreducible), and .X �a;Y �b/ (with a;b 2 k).

REMARK 18.11. Let A be a finitely generated k-algebra (not necessarily an integral do-
main). Every maximal chain of prime ideals in A ending in fixed prime ideal p has length
trdegk.A=p/, and so the Krull dimension of A is max.trdegk.A=p// where p runs over the
minimal prime ideals of A. In the next section, we show that a noetherian ring has only
finitely many minimal prime ideals, and so the Krull dimension of A is finite.

If x1; : : : ;xm is an algebraically independent set of elements of A such that A is a finite
kŒx1; : : : ;xm�-algebra, then dimADm.

REMARK 18.12. Let A be a discrete valuation ring A with maximal ideal .�/. Then AŒX�
is a noetherian integral domain of Krull dimension 2, and .�X �1/ is a maximal ideal in
AŒX� of height 1 (cf. 15.14).
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A short proof that the Krull dimension equals the transcendence de-
gree
The following proof shortens that in Coquand and Lombardi, Amer. Math. Monthly 112
(2005), no. 9, 826–829.

Let A be an arbitrary commutative ring. Let x 2A, and let Sfxg denote the multiplicative
subset of A consisting of the elements of the form

xn.1�ax/; n 2 N; a 2 A:

The boundary Afxg of A at x is defined to be the ring of fractions S�1
fxg
A.

We write dim.A/ for the Krull dimension of A.

PROPOSITION 18.13. Let A be a ring and let n 2 N. Then

dim.A/� n ” for all x 2 A, dim.Afxg/� n�1:

PROOF. Recall (5.4) that Spec.S�1A/ ' fp 2 Spec.A/ j p\S D ;g. We shall need the
following statements.

(a) For every x 2 A and maximal ideal m � A, m\Sfxg ¤ ;. Indeed, if x 2 m, then
x 2m\Sfxg; otherwise x is invertible modulo m, and so there exists an a 2 A such
that 1�ax 2m.

(b) Let m be a maximal ideal, and let p be a prime ideal contained in m; for every
x 2 mX p, we have p\Sfxg D ;. Indeed, if xn.1� ax/ 2 p, then 1� ax 2 p (as
x … p/; hence 1�ax 2m, and so 1 2m, which is a contradiction.

Statement (a) shows that every chain of prime ideals beginning with a maximal ideal is
shortened when passing from A to Afxg, while statement (b) shows that a maximal chain of
length n is shortened only to n�1 when x is chosen appropriately. From this, the proposition
follows. 2

PROPOSITION 18.14. Let k � F �E be fields. Then

tr degkE D tr degkF C tr degFE:

PROOF. More precisely, if B and C are transcendence bases for F=k and E=F respectively,
then B [C is a transcendence basis for E=k. This is easy to check (see, for example,
Jacobson, Lectures in Abstract Algebra III, 1964, Exercise 3, p.156). 2

PROPOSITION 18.15. Let A be an integral domain with field of fractions F.A/, and let k
be a subfield of A. Then

tr degkF.A/� dim.A/:

PROOF. If tr degkF.A/D1, there is nothing to prove, and so we assume that tr degkF.A/D
n 2N. We argue by induction on n. We can replace k with its algebraic closure in A without
changing tr degkF.A/. Let x 2 A. If x … k, then it is transcendental over k, and so

tr degk.x/F.A/D n�1

by (18.14); since k.x/� Afxg, this implies (by induction) that dim.Afxg/� n�1. If x 2 k,
then 0D 1�x�1x 2 Sfxg, and so Afxg D 0; again dim.Afxg/� n�1. Now (18.13) shows
that dim.A/� n. 2
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COROLLARY 18.16. The polynomial ring kŒX1; : : : ;Xn� has Krull dimension n.

PROOF. The existence of the sequence of prime ideals

.X1; : : : ;Xn/� .X1; : : : ;Xn�1/� �� � � .X1/� .0/

shows that kŒX1; : : : ;Xn� has Krull dimension at least n. Now(18.15) completes the proof.2

THEOREM 18.17. Let A be an integral domain containing a field k and finitely generated
as a k-algebra. Then

tr degkF.A/D dim.A/:

PROOF. According to the Noether normalization theorem (8.1), A is integral over a poly-
nomial subring kŒx1; : : : ;xn�. Clearly nDtr degkF.A/. From the going-up theorem (7.7),
dim.A/� dim.kŒx1; : : : ;xn�/D n, and so dim.A/D n (18.15). 2

19 Primary decompositions
DEFINITION 19.1. An ideal q in A is primary if it is¤ A and

ab 2 q, b … q H) an 2 q for some n� 1:

Thus, a proper ideal q in A is primary if and only if every zero-divisor in A=q is nilpotent.
Therefore, a radical ideal is primary if and only if it is prime, and an ideal .m/ in Z is primary
if and only if m is a power of a prime.

PROPOSITION 19.2. The radical of a primary ideal q is a prime ideal containing q, and
it is contained in every other prime ideal containing q (i.e., it is the smallest prime ideal
containing q).

PROOF. Suppose that ab 2 rad.q/ but b … rad.q/. Some power, say ambm, of ab lies xin q,
but bm … q, and so .am/n 2 q for some n. Hence, a 2 rad.q/. Therefore rad.q/ is prime.

Let p be a second prime ideal containing q, and let a 2 rad.q/. For some n, an 2 q� p,
which implies that a 2 p. Therefore p� rad.q/. 2

When q is a primary ideal and p is its radical, we say that q is p-primary. Note that this
means that if ab 2 q, then either b 2 q or a 2 p (or both).

PROPOSITION 19.3. Every ideal q whose radical is a maximal ideal m is primary (in fact,
m-primary); in particular, every power of a maximal ideal m is m-primary.

PROOF. Every prime ideal containing q contains its radical m, and therefore equals m. This
shows that A=q is local with maximal ideal m=q. Therefore, every element of A=q is either
a unit, and hence is not a zero-divisor, or it lies in m=q, and hence is nilpotent. 2

PROPOSITION 19.4. Let 'WA! B be a homomorphism of rings. If q is a p-primary ideal
in B , then qc

def
D '�1.q/ is a pc-primary ideal in A.
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PROOF. The map A=qc! B=q is injective, and so every zero-divisor in A=qc is nilpotent.
This shows that qc is primary, and it remains to show that rad.qc/D pc . But

rad.qc/ 2.11
D rad.q/c D pc

as claimed. 2

LEMMA 19.5. Let q and p be ideals in A such that
(a) q� p� rad.q/ and
(b) ab 2 q H) a 2 p or b 2 q.

Then p is a prime ideal and q is p-primary.

PROOF. Clearly q is primary, hence rad.q/-primary, and rad.q/ is prime. By assumption
p � rad.q/, and it remains to show that they are equal. Let a 2 rad.q/, and let n be the
smallest positive integer such that an 2 q. If nD 1, then a 2 q � p; on the other hand, if
n > 1, then an D aan�1 2 q and an�1 … q, and so a 2 p by (b). 2

PROPOSITION 19.6. A finite intersection of p-primary ideals is p-primary.

PROOF. Let q1; : : : ;qr be p-primary, and let q D q1\ : : :\ qr . We show that the pair of
ideals q� p satisfies the conditions of (19.5).

Let a 2 p. Then some power of a, say, ani , lies in qi , and amax.ni / 2
T

qi D q. Therefore
p� rad.q/.

Let ab 2 q, so ab 2 qi all i . If a … p, then b 2 qi all i , and so b 2 q. 2

The minimal prime ideals of an ideal a are the minimal elements of the set of prime
ideals containing a. They correspond to the minimal prime ideals of A=a.

DEFINITION 19.7. A primary decomposition of an ideal a is a finite set of primary ideals
whose intersection is a. Such a decomposition S of a is minimal if

(a) the prime ideals rad.q/, q 2 S , are distinct, and
(b) no element of S can be omitted, i.e., for no q 2 S does q�

T
fq0 j q0 2 S , q0 ¤ qg.

If a admits a primary decomposition, then it admits a minimal primary decomposition,
because Proposition 19.6 can be used to combine primary ideals with the same radical, and
any q that fails (b) can simply be omitted. The prime ideals occurring as the radical of an
ideal in a minimal primary decomposition of a are said to belong to a.

PROPOSITION 19.8. Suppose that aD q1\� � �\qn where qi is pi -primary for i D 1; : : : ;n.
Then the minimal prime ideals of a are the minimal elements of the set fp1; : : : ;png.

PROOF. Let p be a prime ideal containing a. Then p is a prime ideal containing q1 � � �qn,
and so p contains one of the ideals qi (2.1b). Now Proposition 19.2 shows that p contains
pi : 2

In particular, if a admits a primary decomposition, then it has only finitely many minimal
prime ideals, and so its nilradical is a finite intersection of prime ideals (which is always the
case for noetherian rings, see 14.9).

For an ideal a in A and an element x 2 A, we let

.aWx/D fa 2 A j ax 2 ag:

It is again an ideal in A, which contains a, and equals A if x 2 a.
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LEMMA 19.9. Let q be a p-primary ideal and let x 2 AXq. Then .qWx/ is p-primary.

PROOF. Let a 2 .qWx/; then ax 2 q and x … q, and so a 2 p. Therefore p� .qWx/� q. On
taking radicals, we find that rad.qWx/D p.

Let ab 2 .qWx/, so that abx 2 q. If a … p, then bx 2 q, and so b 2 .qWx/. Therefore,
.qWx/ is primary, and hence p-primary. 2

THEOREM 19.10. Let aD q1\ : : :\qn be a minimal primary decomposition of a, and let
pi D rad.qi /. Then

fp1; : : : ;png D frad.aWx/ j x 2 A; rad.aWx/ primeg.

In particular, the set fp1; : : : ;png is independent of the choice of the minimal primary
decomposition.

PROOF. For every a 2 A,

.aWa/D .
T

qi Wa/D
T
.qi Wa/;

and so
rad.aWa/D rad.

T
.qi Wa//D

T
rad.qi Wa/:

Now rad.qi Wa/D pi or A according as a … qi or a 2 qi (19.9), and so

rad.aWa/D
\

i such that a…qi

pi . (50)

If rad.aWa/ is prime, then it contains one of the pi (2.1), and hence equals it, i.e.,

rad.aWa/ 2 fp1; : : : ;png.

On the other hand, for each i , there exists an a 2
T
j¤i qj Xqi because the decomposition

is minimal, and (50) shows that rad.aWa/D pi . 2

An ideal a is said to be irreducible if it cannot be expressed as the intersection of two
strictly large ideals, i.e., if

aD b\ c (b, c ideals) H) aD b or aD c:

THEOREM 19.11. In a noetherian ring A, every ideal admits a primary decomposition.
More precisely:

(a) Every ideal in A can be expressed as a finite intersection of irreducible ideals.
(b) Every irreducible ideal in A is primary.

PROOF. (a) Let S be the set of ideals for which (a) fails. If S is empty, then (a) is true.
Otherwise, it contains a maximal element a. Then a itself is not irreducible, and so aD b\ c
with b and c properly containing a. As a is maximal in S , both b and c can be expressed as
finite intersections of irreducible ideals, but then so can a.

(b) Let a be irreducible in A, and consider the quotient ring A0 def
D A=a: Let a be a

zero-divisor in A0, say, ab D 0 with b ¤ 0. We have to show that a is nilpotent. As A0 is
noetherian, the chain of ideals

..0/Wa/� ..0/Wa2/� �� �



19 PRIMARY DECOMPOSITIONS 92

becomes constant, say,
..0/Wam/D ..0/WamC1//D �� � :

Let c 2 .b/\ .am/. Because c 2 .b/, ca D 0, and because c 2 .am/, c D dam for some
d 2 A. But

.dam/aD 0) d 2 .0WamC1/D .0Wam/) c D 0;

and so .b/\ .am/D .0/. Because a is irreducible, the zero ideal in A0 is irreducible, and it
follows that am D 0. 2

A p-primary ideal q in a noetherian ring contains a power of p by Proposition 3.17. The
next result proves a converse when p is maximal.

PROPOSITION 19.12. Let m be a maximal ideal of a noetherian ring. Every proper ideal a
of A that contains a power of a maximal ideal m is m-primary.

PROOF. Suppose that mr � a, and let p be a prime ideal belonging to a. Then mr � a� p,
so that m � p, which implies that mD p. Thus m is the only prime ideal belonging to a,
which means that a is m-primary. 2

EXAMPLE 19.13. We give an example of a power of a prime ideal p that is not p-primary.
Let

AD kŒX;Y;Z�=.Y 2�XZ/D kŒx;y;z�:

The ideal .X;Y / in kŒX;Y;Z� is prime and contains .Y 2�XZ/, and so the ideal pD .x;y/
in A is prime. Now xz D y2 2 p2, but one checks easily that x … p2 and z … p, and so p2 is
not p-primary.

REMARK 19.14. Let a be an ideal in a noetherian ring, and let b D
T
n�1 a

n. We give
another proof that abD b (see p. 13). Let

abD q1\ : : :\qs; rad.qi /D pi ;

be a minimal primary decomposition of ab. We shall show that b � ab by showing that
b� qi for each i .

If there exists a b 2 bXqi , then

ab � ab� qi ,

from which it follows that a� pi . We know that pri � qi for some r (see 3.17), and so

bD
\

an � ar � pri � qi ,

which is a contradiction. This completes the proof.

Primary decompositions for modules
Let M be a module over a ring A. The statements for modules below can be proved as for
ideals, or deduced from them by considering the ring A˚M (see 2.14).

For a submodule N of M , let

.N WM/D fa 2 A j aM �N g.
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It is an ideal in A. Let

rM .N /D rad..N WM//D fa 2 A j anM �N for some n� 0g:

An element a of A is a zero divisor of M if ax D 0 for some nonzero x 2M , and it
is nilpotent on M if anM D 0 for some n. A submodule Q of M is primary if every zero
divisor of M=Q is nilpotent on M=Q.

PROPOSITION 19.15. If Q is a primary submodule of M , then .QWM/ is a primary ideal,
and so rM .Q/ is a prime ideal p. We say that Q is p-primary in M .

For simplicity, we now assume that A is noetherian and that M is finitely generated.
A prime ideal of A is an associated prime ideal of M if it is the annihilator ann.x/ of

an element of M . We write Ass.M/ for the set of associated prime ideals of M .

PROPOSITION 19.16. A submodule Q of M is primary if and only if Ass.M=Q/ consists
of a single element p, in which case pD rM .Q/.

PROPOSITION 19.17. A finite intersection of p-primary submodules is p-primary.

A primary decomposition of a submoduleN is a finite set of primary submodules whose
intersection is N . A primary decomposition S is minimal if

(a) the prime ideals rM .Q/, Q 2 S , are distinct, and
(b) no element of S can be omitted, i.e., for noQ 2 S doesQ�

T
fQ0 jQ0 2 S ,Q0¤Qg.

If N admits a primary decomposition, then it admits a minimal primary decomposition,
because Proposition 19.17 can be used to combine submodules with the same p, and any Q
that fails (b) can simply be omitted.

A submodule ofM is irreducible it cannot be expressed as the intersection of two strictly
larger submodules.

THEOREM 19.18. Every submodule of M (as above) admits a primary decomposition.
More precisely:

(a) Every submodule of M can be expressed as a finite intersection of irreducible sub-
modules.

(b) Every irreducible submodule in M is primary.

THEOREM 19.19. Let N be a submodule of M . Let N DQ1\ : : :\Qn be a minimal
primary decomposition of N , and let pi D rM .Qi /. Then

fp1; : : : ;png D Ass.M=N/.

In particular, the set fp1; : : : ;png is independent of the choice of the minimal primary
decomposition. Its elements are called the prime ideals belonging to N (in M/.

20 Dedekind domains

Discrete valuation rings
It follows from the elementary theory of principal ideal domains that the following conditions
on a principal ideal domain A are equivalent:



20 DEDEKIND DOMAINS 94

(a) A has exactly one nonzero prime ideal;
(b) A has exactly one prime element up to associates;
(c) A is local and is not a field.

A ring satisfying these conditions is called a discrete valuation ring.

EXAMPLE 20.1. The ring Z.p/
def
D f

m
n
2Q j n not divisible by pg is a discrete valuation ring

with .p/ as its unique nonzero prime ideal. The units in Z.p/ are the nonzero elements m=n
with neither m nor n divisible by p, and the prime elements are those of the form unit�p.

In a discrete valuation ring A with prime element � , nonzero elements of A can be
expressed uniquely as u�m with u a unit and m� 0 (and m> 0 unless the element is a unit).
Every nonzero ideal in A is of the form .�m/ for a unique m 2 N. Thus, if a is an ideal in
A and p denotes the (unique) maximal ideal of A, then aD pm for a well-defined integer
m� 0.

Recall that, for an A-module M and an m 2M , the annihilator of m

ann.m/D fa 2 A j amD 0g:

It is an ideal in A, which is proper if m¤ 0. Suppose that A is a discrete valuation ring,
and let c be a nonzero element of A. Let M D A=.c/. What is the annihilator of a nonzero
element bC .c/ of M ? Fix a prime element � of A, and let c D u�m, b D v�n with u and
v units. Then n < m (else bC .c/D 0 in M ), and

ann.bC .c//D .�m�n/:

Thus, a b for which ann.bC .c// is maximal, is of the form v�m�1, and for this choice
ann.bC .c// is a prime ideal generated by c

b
. We shall exploit these observations in the

proof of the next proposition, which gives a criterion for a ring to be a discrete valuation
ring.

PROPOSITION 20.2. An integral domain A is a discrete valuation ring if and only if
(a) A is Noetherian,
(b) A is integrally closed, and
(c) A has exactly one nonzero prime ideal.

PROOF. The necessity of the three conditions is obvious, and so let A be an integral domain
satisfying (a), (b), and (c). We have to show that every ideal in A is principal. As a first step,
we prove that the nonzero prime ideal is principal. Note that (c) implies that A is a local ring.

Choose an element c 2 A, c ¤ 0, c ¤ unit, and consider the A-module M def
D A=.c/. For

each nonzero element m of M ,

ann.m/D fa 2 A j amD 0g

is a proper ideal in A. Because A is Noetherian, we can choose an m so that ann.m/ is
maximal among these ideals. Write mD bC .c/ and pD ann.bC .c//. Note that c 2 p, and
so p¤ 0, and that

pD fa 2 A j cjabg:

I claim that p is prime. If not there exist elements x, y 2A such that xy 2 p but neither x
nor y 2 p. Then ybC .c/ is a nonzero element ofM because y … p. Consider ann.ybC .c//.
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Obviously it contains p and it contains x, but this contradicts the maximality of p among
ideals of the form ann.m/. Hence p is prime.

I claim that b
c
… A. Otherwise b D c � b

c
2 .c/, and mD 0 (in M ).

I claim that c
b
2 A, and pD . c

b
/. By definition, pb � .c/, and so p � b

c
� A, and it is an

ideal in A. If p � b
c
� p, then b

c
is integral over A (by 6.1, since p is finitely generated), and

so b
c
2 A (because of condition (b)), but we know b

c
… A. Thus p � b

c
D A (by (c)), and this

implies that pD . c
b
/:

Let � D c
b

, so that pD .�/. Let a be a proper ideal of A, and consider the sequence

a� a��1 � a��2 � �� � :

If a��r D a��r�1 for some r , then ��1.a��r/D a��r , and ��1 is integral over A (by
6.1), and so lies in A — this is impossible (� is not a unit in A). Therefore the sequence
is strictly increasing, and (again because A is Noetherian) it can’t be contained in A. Let
m be the smallest integer such that a��m � A but a��m�1 ª A. Then a��m ª p, and so
a��m D A. Hence aD .�m/: 2

Dedekind domains
DEFINITION 20.3. A Dedekind domain is an integral domain A, not equal to a field, such
that

(a) A is Noetherian,
(b) A is integrally closed, and
(c) every nonzero prime ideal is maximal (i.e., A has Krull dimension 1).

Thus Proposition 20.2 says that a local integral domain is a Dedekind domain if and only
if it is a discrete valuation ring.

PROPOSITION 20.4. Let A be a Dedekind domain, and let S be a multiplicative subset of
A. Then S�1A is either a Dedekind domain or a field.

PROOF. Condition (c) says that there is no containment relation between nonzero prime
ideals of A. If this condition holds for A, then Proposition 5.4 shows that it holds for S�1A.
Conditions (a) and (b) follow from the next lemma. 2

PROPOSITION 20.5. Let A be an integral domain, and let S be a multiplicative subset of A.
(a) If A is Noetherian, then so also is S�1A:
(b) If A is integrally closed, then so also is S�1A:

PROOF. (a) Let a be an ideal in S�1A. Then aD S�1.a\A/ (see 5.4), and so a is generated
by any (finite) set of generators for a\A:

(b) Let ˛ be an element of the field of fractions of A (D field of fractions of S�1A/ that
is integral over S�1A. Then

˛mCa1˛
m�1
C�� �Cam D 0, some ai 2 S�1A:

For each i , there exists an si 2 S such that siai 2 A. Set s D s1 � � �sm 2 S , and multiply
through the equation by sm W

.s˛/mC sa1.s˛/
m�1
C�� �C smam D 0:

This equation shows that s˛ is integral over A, and so lies in A. Hence ˛ D .s˛/=s 2 S�1A.
(See also 6.15.) 2
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COROLLARY 20.6. For every nonzero prime ideal p in a Dedekind domain A, the localiza-
tion Ap is a discrete valuation ring.

PROOF. We saw in Example 5.7 that Ap is local, and the proposition implies that it is
Dedekind. 2

The main result concerning Dedekind domains is the following.

THEOREM 20.7. Every proper nonzero ideal a in a Dedekind domain can be written in the
form

aD pr1

1 � � �p
rs
s

with the pi distinct prime ideals and the ri > 0; the ideals pi are exactly the prime ideals
containing a, and the exponents ri are uniquely determined.

PROOF. The primary ideals in a Dedekind domain are exactly the powers of prime ideals,
and so this follows from the preceding section. (For an elementary proof, see my notes on
algebraic number theory.) 2

REMARK 20.8. Note that

ri > 0 ” aApi
¤ Api

” a� pi :

COROLLARY 20.9. Let a and b be ideals in A; then

a� b ” aAp � bAp

for all nonzero prime ideals p of A. In particular, aD b if and only if aAp D bAp for all p.

PROOF. The necessity is obvious. For the sufficiency, factor a and b

aD pr1

1 � � �p
rm
m ; bD ps11 � � �p

sm
m ; ri ; si � 0:

Then aApi
D pri

i Api
and aApi

D pri

i Api

aApi
� bApi

” ri � si ;

(recall that Api
is a discrete valuation ring) and ri � si all i implies a� b. 2

COROLLARY 20.10. Let A be an integral domain with only finitely many prime ideals;
then A is a Dedekind domain if and only if it is a principal ideal domain.

PROOF. Assume A is a Dedekind domain. After Theorem 20.7, to show that A is principal,
it suffices to show that the prime ideals are principal. Let p1; : : : ;pm be these ideals. Choose
an element x1 2 p1Xp21. According to the Chinese Remainder Theorem (2.13), there is an
element x 2 A such that

x � x1 mod p21; x � 1 mod pi ; i ¤ 1:

Now the ideals p1 and .x/ generate the same ideals in Api
for all i , and so they are equal in

A (by 20.9). 2
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COROLLARY 20.11. Let a� b¤ 0 be two ideals in a Dedekind domain; then aD bC .a/
for some a 2 A:

PROOF. Let bD pr1

1 � � �p
rm
m and aD ps11 � � �p

sm
m with ri ; sj � 0. Because b � a, si � ri for

all i . For 1 � i � m, choose an xi 2 A such that xi 2 psii , xi … psiC1i . By the Chinese
Remainder Theorem, there is an a 2 A such that

a� xi mod pri

i , for all i:

Now one sees that bC .a/D a by looking at the ideals they generate in Ap for all p: 2

COROLLARY 20.12. Let a be an ideal in a Dedekind domain, and let a be any nonzero
element of a; then there exists a b 2 a such that aD .a;b/:

PROOF. Apply Corollary 20.11 to a� .a/: 2

COROLLARY 20.13. Let a be a nonzero ideal in a Dedekind domain; then there exists a
nonzero ideal a� in A such that aa� is principal. Moreover, a� can be chosen to be relatively
prime to any particular ideal c, and it can be chosen so that aa� D .a/ with a any particular
element of a (but not both).

PROOF. Let a 2 a, a¤ 0; then a� .a/, and so we have

.a/D pr1

1 � � �p
rm
m and aD ps11 � � �p

sm
m ; si � ri :

If a� D pr1�s1
1 � � �prm�sm

m , then aa� D .a/:
We now show that a� can be chosen to be prime to c. We have a� ac, and so (by 20.11)

there exists an a 2 a such that aD acC .a/. As a� .a/, we have .a/D a �a� for some ideal
a� (by the above argument); now, acCaa� D a, and so cCa� D A. (Otherwise cCa� � p
some prime ideal, and acCaa� D a.cCa�/� ap¤ a:/ 2

In basic graduate algebra courses, it is shown that

A a principal ideal domain) A is a unique factorization domain.

The converse is false because, for example, kŒX;Y � is a unique factorization domain in
which the ideal .X;Y / is not principal, but it is true for Dedekind domains.

PROPOSITION 20.14. A Dedekind domain that is a unique factorization domain is a princi-
pal ideal domain.

PROOF. In a unique factorization domain, an irreducible element � can divide a product
bc only if � divides b or c (write bc D �q and express each of b, c, and q as a product of
irreducible elements). This means that .�/ is a prime ideal.

Now let A be a Dedekind domain with unique factorization. It suffices to show that each
nonzero prime ideal p of A is principal. Let a be a nonzero element of p. Then a factors into
a product of irreducible elements (see 4.4) and, because p is prime, it will contain one of
these irreducible factors � . Now p� .�/� .0/, and, because .�/ is a nonzero prime ideal,
it is maximal, and so equals p. 2
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Modules over Dedekind domains.
The structure theorem for finitely generated modules over principal ideal domains has an
interesting extension to modules over Dedekind domains. Throughout this subsection, A is a
Dedekind domain.

First, note that a finitely generated torsion-free A-module M need not be free. For
example, every fractional ideal is finitely generated and torsion-free but it is free if and only
if it is principal. Thus the best we can hope for is the following.

THEOREM 20.15. Let A be a Dedekind domain.
(a) Every finitely generated torsion-free A-module M is isomorphic to a direct sum of

fractional ideals,
M � a1˚�� �˚am:

(b) Two finitely generated torsion-free A-modulesM � a1˚�� �˚am andN � b1˚�� �˚
bn are isomorphic if and only if mD n and

Q
ai �

Q
bi modulo principal ideals.

Hence,
M � a1˚�� �˚am � A˚�� �˚A˚a1 � � �am:

Moreover, two fractional ideals a and b of A are isomorphic as A-modules if and only if they
define the same element of the class group of A.

PROOF. (a) Let A be a Dedekind domain, and let M be finitely generated torsion-free
A-module. Then Ap˝M is free, hence projective, for every nonzero prime ideal p in A
(because Ap is principal ideal domain), and so M is projective (12.6). From a surjective
homomorphism Ar !M , we get a homomorphism M ! Ar whose composite with some
projection Ar ! A will be nonzero, and hence have image a nonzero ideal a in A. As
a is projective, there exists a section to the map M � a, and so M � a˚M1 for some
submodule M1 of M . Now M1 is projective because it is a direct summand of a projective
module, and so we can repeat the argument with M1. This process ends because M is
noetherian.

(b) Omitted. 2

The rank of a module M over an integral domain R is the dimension of K˝RM as a
K-vector space, whereK is the field of fractions ofR. Clearly the rank ofM � a1˚�� �˚am
is m:

These remarks show that the set of isomorphism classes of finitely generated torsion-free
A-modules of rank 1 can be identified with the class group of A. Multiplication of elements
in Cl(A) corresponds to the formation of tensor product of modules. The Grothendieck
group of the category of finitely generated A-modules is Cl.A/˚Z.

THEOREM 20.16 (INVARIANT FACTOR THEOREM). LetM �N be finitely generated torsion-
free A-modules of the same rank m. Then there exist elements e1; :::; em of M , fractional
ideals a1; :::;am, and integral ideals b1 � b2 � ::. � bm such that

M D a1e1˚�� �˚amem; N D a1b1e1˚�� �˚ambmem:

PROOF. Omitted. 2

The ideals b1, b2, ..., bm are uniquely determined by the pair M �N , and are called the
invariant factors of N in M:

The last theorem also yields a description of finitely generated torsion A-modules.
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ASIDE 20.17. The Jordan-Hölder and Krull-Schmidt theorems fail for finitely generated projective
modules over non-principal Dedekind domains. For example, suppose that A has a nonprincipal ideal
a of order 2 in the class group. Then a˚a� A˚A, contradicting both theorems.

21 Dimension theory for noetherian rings

Let A be a noetherian ring and let p be a prime ideal in A. Let Ap D S
�1A where S DAXp.

We begin by studying extension and contraction of ideals with respect to the homomorphism
A! Ap (cf. 2.10). Recall (5.7) that Ap is a local ring with maximal ideal pe def

D pAp. The
ideal �

pn
�ec
D fa 2 A j sa 2 pn for some s 2 Sg

is called the nth symbolic power of p, and is denoted p.n/. If m is maximal, then m.n/ Dmn

(because the first map in 5.8 is injective).

LEMMA 21.1. The ideal p.n/ is p-primary.

PROOF. The radical of .pe/n is the maximal ideal pe, and so it is pe-primary (19.3) Hence
..pe/n/c is .pe/c-primary (19.4). But .pe/c D p (see 5.4), and

...pe/n/c
2.11
D ..pn/e/c

def
D p.n/: (51)

2

LEMMA 21.2. Consider ideals a� p0 � p with p0 prime. If p0 is a minimal prime ideal of a,
then p0e is a minimal prime ideal of ae (extension relative to A! Ap).

PROOF. If not, there exists a prime ideal p00 such that p0e ¥ p00 � ae . By (5.4), p0 D p0ec and
p00c is a prime ideal properly contained in p0ec , and so

p0 D p0ec § p00c � aec � a

contradicts the minimality of p0. 2

THEOREM 21.3 (KRULL’S PRINCIPAL IDEAL THEOREM). LetA be a noetherian ring, and
let b 2 A be a nonunit. Every minimal prime ideal of .b/ has height at most one.

PROOF. Let p be a minimal prime ideal of .b/, and consider the map A!Ap. According to
Lemma 21.2, pe is a minimal prime ideal of .b/e D .b

1
/, and Proposition 5.4 shows that the

theorem for Ap � pe � .b
1
/ implies it for A� p� .b/. Therefore, we may replace A with

Ap, and so assume that A is a noetherian local ring with maximal ideal p.
Suppose that p properly contains a prime ideal p1: we have to show that p1 � p2 H)

p1 D p2.
Let p.r/1 be the r th symbolic power of p1. The only prime ideal of the ring A=.b/ is

p=.b/, and so A=.b/ is artinian (16.6). Therefore the descending chain of ideals�
p
.1/
1 C .b/

�
=.b/�

�
p
.2/
1 C .b/

�
=.b/�

�
p
.3/
1 C .b/

�
=.b/� �� �

eventually becomes constant: there exists an s such that

p
.s/
1 C .b/D p

.sC1/
1 C .b/D p

.sC2/
1 C .b/D �� � : (52)
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We claim that, for every m� s,

p
.m/
1 � .b/p

.m/
1 Cp

.mC1/
1 : (53)

Let x 2 p.m/1 . Then

x 2 .b/Cp
.m/
1

(52)
D .b/Cp

.mC1/
1 ;

and so x D abC x0 with a 2 A and x0 2 p
.mC1/
1 . As p

.m/
1 is p1-primary (see 21.1) and

abD x�x0 2 p
.m/
1 but b … p1, we have that a 2 p.m/1 . Now xD abCx0 2 .b/p.m/1 Cp

.mC1/
1

as claimed.
We next show that, for every m� s,

p
.m/
1 D p

.mC1/
1 .

As b 2 p, (53) shows that p.m/1 =p
.mC1/
1 D p �

�
p
.m/
1 =p

.mC1/
1

�
, and so p

.m/
1 =p

.mC1/
1 D 0 by

Nakayama’s lemma (3.9).
Now

ps1 � p
.s/
1 D p

.sC1/
1 D p

.sC2/
1 D �� �

and so ps1 �
T
m�s p

.m/
1 . Note that\

m�s
p
.m/
1

(51)
D

\
m�s

..pe1/
m/c D .

\
m�s

.pe1/
m/c

3.16
D .0/c ;

and so for any x 2 ps1, there exists an a 2AXp1 such that ax D 0. Let x 2 p1; then axs D 0
for some a 2 AXp1 � AXp2, and so x 2 p2 (because p2 is prime). We have shown that
p1 D p2, as required. 2

COROLLARY 21.4. A noetherian integral domain A is a unique factorization domain if
every prime ideal of height 1 is principal.

PROOF. After Propositions 4.3 and 4.4, it suffices to show that every irreducible element a
of A is prime. Let p be minimal among the prime ideals containing .a/. According to the
principal ideal theorem (21.3), p has height at most 1, and so is principal, say pD .b/. As
.a/� .b/, b divides a, and so aD b�unit. Hence .a/D .b/D p, and so a is prime. 2

In order to generalize Theorem 21.3 to non principal ideals, we shall need a lemma.

LEMMA 21.5. Let p be a prime ideal in a noetherian ring A, and let S be a finite set of
prime ideals in A, none of which contains p. If there exists a chain of distinct prime ideals

p� pd�1 � �� � � p0;

then there exists such a chain with p1 not contained in any ideal in S .

PROOF. We first prove this in the special case that the chain has length 2. Suppose that
p� p1 � p0 are distinct prime ideals. As p is not contained in p0 or any ideal in S , it is not
contained in their union (2.8), and so there exists an

a 2 pX .p0[
S
fp0 2 Sg/:



21 DIMENSION THEORY FOR NOETHERIAN RINGS 101

As p contains .a/C p0, it contains a minimal prime ideal p01 of .a/C p0. Now p01=p0 is
a minimal prime ideal of the principal ideal ..a/Cp0/=p0 in A=p0, and so it has height
at most 1. The chain p=p0 � p1=p0 � p0=p0 shows that p=p0 has height at least 2, and so
p� p01 � p0 is a chain of distinct prime ideals. The ideal p1 is not contained in any ideal in
S because it contains a. This completes the proof of the level 2 case.

Now consider the general case. On applying the special case to p� pd�1 � pd�2, we
see that there exists a chain of distinct prime ideals p� p0

d�1
� pd�2 such that p0

d�1
is not

contained in any ideal in S . Then on applying the special case to p0
d�1
� pd�2 � pd�1,

we see that there exists a chain of distinct prime ideals p� p0
d�1
� p0

d�2
� pd�1 such that

p0
d�2

is not contained in any ideal in S . Repeat the argument until the proof is complete. 2

THEOREM 21.6. Let A be a noetherian ring, and let aD .a1; : : : ;am/ be a proper ideal of
A. Every minimal prime ideal of a has height most m.

PROOF. For mD 1, this was just proved. Thus, we may suppose that m � 2 and that the
theorem has been proved for ideals generated by m�1 elements. Let p be a minimal prime
ideal of a, and let p01; : : : ;p

0
r be the minimal prime ideals of .a2; : : : ;am/. Each p0i has height

at most m�1. If p is contained in one of the p0i , it will have height �m�1, and so we may
suppose that it isn’t.

Let p have height d . We have to show that d �m. According to the lemma, there exists
a chain of distinct prime ideals

pD pd � pd�1 � �� � � p0; d � 1;

with p1 not contained in any p0i , and so Proposition 2.8 shows that there exists a

b 2 p1X
Sr
iD1 p

0
i :

We next show that p is a minimal prime ideal of .b;a2; : : : ;am/. Certainly p contains a
minimal prime ideal p0 of this ideal. As p0 � .a2; : : : ;am/, p0 contains one of the p0i s, but, by
construction, it cannot equal it. If p¤ p0, then

p� p0 � p0i

are distinct ideals, which shows that xp def
D p=.a2; : : : ;am/ has height at least 2 in xA def

D

A=.a2; : : : ;am/. But xp is a minimal ideal in xA of the principal ideal .a1; : : : ;am/=.a2; : : : ;am/,
which contradicts Theorem 21.3. Hence p is minimal, as claimed.

But now p=.b/ is a minimal prime ideal of .a2; : : : ;am/=.b/ in R=.b/, and so the height
of p=.b/ is at most m�1 (by induction). The prime ideals

p=.b/D pd=.b/� pd�1=.b/� �� � � p1=.b/

are distinct, and so d �1�m�1. This completes the proof that d �m. 2

The height of an ideal a in a noetherian ring is the minimum height of a prime ideal
containing it,

ht.a/D min
p�a, p prime

ht.p/:

The theorem shows that ht.a/ is finite.
The following provides a converse to Theorem 21.6.
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THEOREM 21.7. Let A be a noetherian ring, and let a be a proper ideal of A of height r .
Then there exist r elements a1; : : : ;ar of a such that, for each i � r , .a1; : : : ;ai / has height i .

PROOF. If r D 0, then we take the empty set of ai . Thus, suppose that r � 1. There are only
finitely many prime ideals of height 0, because such an ideal is a minimal prime ideal of .0/,
and none of these ideals can contain a because it has height � 1. Proposition 2.8 shows that
there exists an

a1 2 aX
S
fprime ideals of height 0g:

By construction, .a1/ has height at least 1, and so Theorem 21.3 shows it has height exactly 1.
This completes the proof when r D 1, so suppose that r � 2. There are only finitely

many prime ideals of height 1 containing .a1/ because such an ideal is a minimal prime
ideal of .a1/, and none of these ideals can contain a because it has height � 2. Choose

a2 2 aX
S
fprime ideals of height 1 containing .a1/g:

By construction, .a1;a2/ has height at least 2, and so Theorem 21.6 shows that it has height
exactly 2.

This completes the proof when r D 2, and when r > 2 we can continue in this fashion
until it is complete.

COROLLARY 21.8. Every prime ideal of height r in a noetherian ring arises as a minimal
prime ideal for an ideal generated by r elements.

PROOF. According to the theorem, an ideal a of height r contains an ideal .a1; : : : ;ar/ of
height r . If a is prime, then it is a minimal ideal of .a1; : : : ;ar/. 2

COROLLARY 21.9. Let A be a commutative noetherian ring, and let a be an ideal in A that
can be generated by n elements. For every prime ideal p in A containing a,

ht.p=a/� ht.p/�ht.p=a/Cn:

PROOF. The first inequality follows immediately from the correspondence between ideals
in A and in A=a.

Denote the quotient map A! A0
def
D A=a by a 7! a0. Let ht.p=a/ D d . Then there

exist elements a1; : : : ;ad in A such that p=a is a minimal prime ideal of .a01; : : : ;a
0
d
/. Let

b1; : : : ;bn generate a. Then p is a minimal prime ideal of .a1; : : : ;ad ;b1; : : : ;bn/, and hence
has height � d Cn. 2

We now use dimension theory to prove a stronger version of “generic flatness” (11.21).

THEOREM 21.10 (GENERIC FREENESS). Let A be a noetherian integral domain, and let
B be a finitely generated A-algebra. For every finitely generated B-module M , there exists
a nonzero element a of A such that Ma is a free Aa-module.

PROOF. Let F be the field of fractions of A. We prove the theorem by induction on the
Krull dimension of F ˝AB , starting with the case of Krull dimension �1. Recall that this
means that F ˝AB D 0, and so a1B D 0 for some nonzero a 2 A. Then Ma D 0, which is
the free Aa-module generated by the empty set.
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In the general case, an argument as in Theorem 11.21 shows that, after replacing A,
B , and M with Aa, Ba, and Ma for a suitable a 2 A, we may suppose that the map
B ! F ˝AB is injective — we identify B with its image. The Noether normalization
theorem (8.1) says that there exist algebraically independent elements x1; : : : ;xm of F ˝AB
such that F ˝AB is a finite F Œx1; : : : ;xm�-algebra. As in the proof of Theorem11.21, there
exists a nonzero a 2A such that Ba is a finite AaŒx1; : : : ;xm�-algebra. HenceMa is a finitely
generated AaŒx1; : : : ;xm�-module.

As every extension of free modules is free24, Proposition 3.5 shows that it suffices to
prove the theorem for Ma D AaŒx1; : : : ;xm�=p with p a prime ideal in AaŒx1; : : : ;xm�. If
p D 0, then Ma is free over Aa (with basis the monomials in the xi ). Otherwise, F ˝A
.AaŒx1; : : : ;xm�=p/ has Krull dimension less than that of F ˝AB , and so we can apply the
induction hypothesis. 2

COROLLARY 21.11. Let A be a noetherian ring, and let 'WA! B be a finitely generated
A-algebra. If U is a nonempty open subset of Spec.B/, then 'a.U / contains a nonempty
open subset of its closure in Spec.A/.

PROOF. We may replace A with its image in B , and B with Bf for some f such that
D.f / � U . Then we have to show that the image of 'aWSpec.B/! Spec.A/ contains a
nonempty open subset of Spec.A/. According to (21.10), there exists an a 2 A such that Ba
is a nonzero free Aa-module. For any prime ideal p of A not containing a, B˝AA=p'
Ba˝Aa

A=p¤ 0. As B˝AA=p is nonzero, it contains a prime ideal, but the prime ideals
in B˝AA=p correspond to prime ideals q in B such that q\AD p. Therefore the image of
'a contains D.a/. 2

22 Regular local rings
Throughout this section, A is a noetherian local ring with maximal ideal m and residue field
k. The Krull dimension d of A is equal to the height of m, and

ht.m/
(21.6)
� minimum number of generators of m

(3.11)
D dimk.m=m

2/:

When equality holds, the ring A is said to be regular. In other words, dimk.m=m2/ � d ,
and equality holds exactly when the ring is regular.

For example, when A has dimension zero, it is regular if and only if its maximal ideal
can be generated by the empty set, and so is zero. This means that A is a field; in particular,
it is an integral domain. The main result of this section is that all regular local rings are
integral domains.

LEMMA 22.1. Let A be a noetherian local ring with maximal ideal m, and let c 2mXm2.
Denote the quotient map A! A0

def
D A=.c/ by a 7! a0. Then

dimkm=m
2
D dimkm

0=m02C1

where m0
def
Dm=.c/ is the maximal ideal of A0.

24If M 0 is a submodule of M such that M 00 def
DM=M 0 is free, then M �M 0˚M 00.
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PROOF. Let e1; : : : ; en be elements of m such that fe01; : : : ; e
0
ng is a k-linear basis for m0=m02.

We shall show that fe1; : : : ; en; cg is a basis for m=m2.
As e01; : : : ; e

0
n span m0=m02, they generate the ideal m0 (see 3.11), and so mD .e1; : : : ; en/C

.c/, which implies that fe1; : : : ; en; cg spans m=m2.
Suppose that a1; : : : ;anC1 are elements of A such that

a1e1C�� �CanenCanC1c � 0 mod m2. (54)

Then
a01e
0
1C�� �Ca

0
ne
0
n � 0 mod m02,

and so a01; : : : ;a
0
n 2 m

0. It follows that a1; : : : ;an 2 m. Now (54) shows that anC1c 2 m2.
If anC1 …m, then it is a unit in A, and c 2m2, which contradicts its definition. Therefore,
anC1 2m, and the relation (54) is the trivial one. 2

PROPOSITION 22.2. If A is regular, then so also is A=.a/ for any a 2 mXm2; moreover,
dimA=.a/D dimA�1.

PROOF. With the usual notations, Corollary 21.9 shows that

ht.m0/� ht.m/� ht.m0/C1:

Therefore

dimk.m
0=m02/� ht.m0/� ht.m/�1D dimk.m=m

2/�1D dimk.m
0=m02/:

Equalities must hold throughout, which proves that A0 is regular with dimension dimA�1.2

THEOREM 22.3. Every regular noetherian local ring is an integral domain.

PROOF. Let A be a regular local ring of dimension d . We have already noted that the
statement is true when d D 0.

We next prove thatA is an integral domain if it contains distinct ideals a� p with aD .a/
principal and p prime. Let b 2 p, and suppose that b 2 an D .an/ for some n � 1. Then
b D anc for some c 2 A. As a is not in the prime ideal p, we must have that c 2 p� a, and
so b 2 anC1. Continuing in this fashion, we see that b 2

T
n a
n 3.16
D f0g. Therefore pD f0g,

and so A is an integral domain.
We now assume d � 1, and prove the theorem by induction on d . Let a 2mXm2. As

A=.a/ is regular of dimension d �1 (see 22.1), it is an integral domain, and so .a/ is a prime
ideal. If it has height 1, then it properly contains a prime ideal, and the last paragraph shows
that A is an integral domain. Thus, we may suppose that, for all a 2mXm2, the prime ideal
.a/ has height 0, and so is a minimal prime ideal of A. Let S be the set of all minimal prime
ideals of A — recall (�19) that S is finite. We have shown that mXm2 �

S
fp j p 2 Sg,

and so m � m2[
S
fp j p 2 Sg. It follows from Proposition 2.8 that either m � m2 (and

hence mD 0) or m is a minimal prime ideal of A, but both of these statements contradict the
assumption that d � 1: 2

COROLLARY 22.4. A regular noetherian local ring of dimension 1 is a principal ideal
domain (with a single nonzero prime ideal).
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PROOF. Let A be a regular local ring of dimension 1 with maximal ideal m, and let a be
a nonzero proper ideal in A. The conditions imply that m is principal, say mD .t/. The
radical of a is m because m is the only prime ideal containing a, and so a� mr for some
r (by 3.17). The ring A=mr is local and artinian, and so aD .ts/Cmr for some s � 1 (by
16.8). This implies that aD .ts/ by Nakayama’s lemma (3.9). 2

THEOREM 22.5. Let A be a regular noetherian local ring.
(a) For every prime ideal p in A, the ring Ap is regular.
(b) The ring A is a unique factorization domain (hence is integrally closed).

PROOF. Omitted for the moment. 2

The best proof uses homological methods. See May, RegularLocal.pdf or Matsumura
1986 19.3, 20.3.

DEFINITION 22.6. Let .A;m/ be a noetherian local ring of dimension d . A system of
parameters of A is a set of elements fa1; : : : ;ad g such that .a1; : : : ;ad /� mn for some n.
If .a1; : : : ;ad /Dm, then fa1; : : : ;ad g is called a regular system of parameters.

In other words, fa1; : : : ;ad g is a system of parameters if the ideal .a1; : : : ;ad / is m-
primary. A system of parameters always exists, and a regular system of parameters exists if
and only if A is regular.

23 Flatness and fibres
Recall that, for a prime ideal p in a ring A, the field of fractions of A=p is denoted �.p/. For
example, for a maximal ideal m, �.m/D A=m; more generally, �.p/D Ap=pAp.

Let 'WA! B be a homomorphism of rings. We say that the going-down theorem holds
for ' if the statement (7.12) holds with qi \A interpreted as qci :

q1 � �� � � qm � �� � � qn

p1 � �� � � pm � �� � � pn

pi D qci :

THEOREM 23.1. Let 'WA! B be a homomorphism of noetherian rings. Let q be a prime
ideal of B , and let pD qc .

(a) We have ht.q/� ht.p/Cdim.Bq˝�.p//:
(b) If the going-down theorem holds for ', then equality holds in (a).

PROOF. The statement depends only on the homomorphism of local rings Ap! Bq defined
by '. Thus, we can replace A and B with Ap and Bq, and q and p with the maximal ideals
nD qBq and mD pAp. Then the inequality becomes

dim.B/� dim.A/Cdim.B=mB/:

(a) Let fa1; : : : ;arg be a system of parameters for A, so that

mn � .a1; : : : ;ar/:

http://www.math.uchicago.edu/~may/MISC/RegularLocal.pdf
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for some n. Let b1; : : : ;bs be elements of B whose images in B=mB form a system of
parameters for B=mB , so that

nn
0

� .b1; : : : ;bs/CmB

for some n0. Now
nn
0n
� .b1; : : : ;bs/C .a1; : : : ;ar/B

and so fa1; : : : ;ar ;b1; : : :bsg generates an n-primary ideal in B . Hence

dim.B/� rC s D dim.A/Cdim.B=mB/:

(b) Let mD dim.B=mB/, and let

nD q0 � �� � � qm

be a chain of distinct prime ideals in B containing mB . Clearly qci D m for all i . Let
m0 D dimA, and let

mD p0 � �� � � pm0

be a chain of distinct prime ideals in A. By the going-down theorem, there exists a chain of
ideals

qm � �� � � qmCm0

such that qcmCi D pi for all i . The existence of the chain

q0 � �� � � qmCm0

of distinct prime ideals in B shows that dim.B/�m0CmD dimACdim.B=mB/. 2

THEOREM 23.2. The going-down theorem holds for every flat homomorphism 'WA! B .

PROOF. Let p0 � p be prime ideals in A, and let q be a prime ideal in B such that qc D p.
We have to show that there exists a prime ideal q0 � q in B such that q0c D p0. Because ' is
flat, Ap! Bq is faithfully flat (11.18), and so there exists a prime ideal in Bq contracting to
p0Ap in Ap (11.19). The contraction of this ideal to B has the required properties. (See also
11.20.) 2

COROLLARY 23.3. Let 'WA! B be a homomorphism of rings, and let q be a prime ideal
of B . If ' is flat, then

ht.q/D ht.p/Cdim.Bq˝�.p//; pD qc :

PROOF. According to the theorem, ' satisfies the going-down theorem, and so we can apply
Theorem 23.1. 2

COROLLARY 23.4. Let A be a noetherian ring, and let 'WA! B be a homomorphism of
rings. If ' is flat of finite type, then the map 'aWSpec.B/! Spec.A/ is open.

PROOF. According to the theorem, ' satisfies the going-down theorem, and so we can apply
Proposition 14.16. 2
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Let 'WA! B be a homomorphism of rings such that all maximal ideals in A have the
same height and similarly for B . If ' is flat and spm.'/ is surjective, then Corollary 23.3
says that

dim.B/D dim.A/Cdim.B˝A �.m//

for all maximal ideals of A. In other words, the dimension of the fibre

spm.B/! spm.A/

over m 2 spm.A/ is dim.spm.B//�dim.spm.A//:
Corollary 23.3 has a converse.

THEOREM 23.5. Let 'WA! B be a local homomorphism of noetherian local rings, and let
m be the maximal ideal of A. If A is regular, B is Cohen-Macaulay, and

dim.B/D dim.A/Cdim.B˝�.m//;

then ' is flat.

PROOF. Matsumura 1986, 23.1. 2

We don’t define the notion of being Cohen-Macaulay here (see ibid. p.134), but merely
list some of its properties.

23.6. A noetherian ring A is Cohen-Macaulay if and only if Am is Cohen-Macaulay for
every maximal ideal m of A (this is part of the definition).

23.7. Zero-dimensional and reduced one-dimensional noetherian rings are Cohen-Macaulay
(ibid. p.139).

23.8. Regular noetherian rings are Cohen-Macaulay (ibid. p.137).

23.9. Let 'WA! B be a flat local homomorphism of noetherian local rings, and let m be
the maximal ideal of A. Then B is Cohen-Macaulay if and only if both A and B˝A �.m/
are Cohen-Macaulay (ibid. p.181).

PROPOSITION 23.10. Let 'WA! B be a finite homomorphism noetherian rings with A
regular. Then ' is flat if and only if B is Cohen-Macaulay.

PROOF. Note that dim.B=mB/ is zero-dimensional, hence Cohen-Macaulay, for every
maximal ideal m of A (23.7), and that ht.n/D ht.nc/ for every maximal ideal n of B . If ' is
flat, then B is Cohen-Macaulay by (23.9). Conversely, if B is Cohen-Macaulay, then ' is
flat by (23.5). 2

ASIDE 23.11. In contrast to the going-down theorem, the going-up theorem fails for flat homomor-
phisms — it even fails for Z! ZŒX� (see 7.8).

Exercises
EXERCISE 23.12. Show that the only flat surjective homomorphisms from a noetherian
ring are the projection maps A1�A2! A1.
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24 Completions
Let A be a ring and a an ideal in A. For any A-module, we get an inverse system of quotient
maps

M=aM  M=a2M  �� �  M=anM  �� �

whose limit we define to be the a-adic completion yM of M :

yM
def
D lim
 �

M=anM:

For example, the a-adic completion of A is

yA
def
D lim
 �
n

A=an.

We now explain why this is called the completion. Let M be an A-module. A filtration
on M is a sequence of submodules

M DM0 � �� � �Mn � �� � :

LEMMA 24.1. Let .Mn/n2N be a filtration on an A-module M . There is a unique topology
on M such that, for each x 2M , the set fxCMn j n 2 Ng is a fundamental system of
neighbourhoods for x. The completion yM of M relative to this topology is canonically
isomorphic to lim

 �
M=Mn.

PROOF. The first statement is obvious. For the second, recall that yM consists of the
equivalence classes of Cauchy sequences in M . Let .mn/n2N be a Cauchy sequence. For
each n, the image ofmi inM=Mn becomes constant for large i — let xmn denote the constant
value. The family . xmn/n2N depends only on the equivalence class of the Cauchy sequence
.mn/n2N, and

Œ.mn/� 7! . xmn/W yM ! lim
 �

M=Mn

is an isomorphism. 2

Let A be a ring and let a be an ideal in A. A filtration .Mn/n2N on an A-module M is
an a-filtration if aMn �MnC1 for all n. An a-filtration is stable if aMn DMnC1 for all
sufficiently large n.

LEMMA 24.2. Any two stable a-filtrations on an A-module M define the same topology on
M .

PROOF. It suffices to show that a stable a-filtration .Mn/n2N defines the a-adic topology
on M . As aMn � MnC1 for all n, we have that anM � Mn for all n. For some n0,
aMn DMnC1 for all n� n0, and so MnCn0

D anMn0
� anM . 2

LEMMA 24.3 (ARTIN-REES). If A is noetherian and M is finitely generated, then, for
every A-submodule M 0 of M , the filtration .M 0\anM/n2N on M 0 is a stable a-filtration.

PROOF. Omitted for the moment. 2

PROPOSITION 24.4. For every noetherian ring A and ideal a, the functor M  yM is exact
on finitely generated A-modules.
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PROOF. Let
0!M 0!M !M 00! 0

be an exact sequence of A-modules. For each n, the sequence

0!M 0\anM ! anM ! anM 00! 0

is exact, and so

0!M 0=.M 0\anM/!M=anM !M 00=anM 00! 0

is exact. On passing to the inverse limit, we obtain an exact sequence

0! lim
 �
n

M 0=.M 0\anM/! yM ! yM 00! 0,

but the last three lemmas show that lim
 �n

M 0=.M 0\anM/ is the a-adic completion of M 0.2

PROPOSITION 24.5. For every ideal a in a noetherian ring A and finitely generated A-
module M , the homomorphism

a˝m 7! amW yA˝AM ! yM

is an isomorphism.

PROOF. In other words, when A is noetherian, the functors M  yA˝M and M  yM

agree on finitely generated A-modules M . This is obvious for M D A, and it follows for
finitely generated free A-module because both functors take finite direct sums to direct sums.
Choose a surjective homomorphism Am!M , and let N be its kernel. The exact sequence

0!N ! Am!M ! 0

gives rise to a exact commutative diagram

yA˝AN yAm yA˝AM 0

0 yN yAm yM 0

a ' b

Because the middle vertical arrow is an isomorphism, the arrow b is surjective. But M
is arbitrary, and so the arrow a is also surjective, which implies that the arrow b is an
isomorphism. 2

PROPOSITION 24.6. For every noetherian ring A and ideal a, the a-adic completion yA of A
is a flat A-algebra.

PROOF. It follows from Propositions 24.4 and 24.5 that yA˝A� is exact on finitely generated
A-modules, but this implies that it is exact on all A-modules. 2

ASIDE 24.7. Let m be a maximal ideal of a ring A, and let A! yA denote the m-adic completion
of A. Then A=mn ! yA=ymn is the m-adic completion of A=mn, but A=mn is discrete, and so
A=mn! yA=ymn is an isomorphism. Similarly, Am=m

n
m!

yAm=ym
n
m '

yA=ymn is an isomorphism. On
combining these statements, we obtain a conceptual proof of Proposition 5.8.
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Sections to be added.
25. Henselian rings.
26. Graded rings.
27. Hilbert polynomials.
28. Homological methods.
29. Regular local rings revisited.
30. Connections with geometry.
31. Computational commutative algebra.

A Solutions to the exercises.

1.1. For n D 1, use that a nonzero polynomial in one variable has only finitely many
roots (which follows from unique factorization, for example). Now suppose n > 1, and
assume the statement for polynomials in � n�1 symbols. Write f D

P
giX

i
n with each

gi 2 kŒX1; : : : ;Xn�1�. If f is not the zero polynomial, then some gi is not the zero poly-
nomial, and there exist .a1; : : : ;an�1/ 2 kn�1 such that f .a1; : : : ;an�1;Xn/ is not the zero
polynomial. Now, by the degree-one case, there exists a b such that f .a1; : : : ;an�1;b/¤ 0.

6.20. Let f D
P
biT

m�i , bi 2 B . If the coefficients bi of f are integral over A, then they
are integral over AŒT � (as elements of BŒT �). Certainly T is integral over AŒT �, and so this
implies that f D

P
biT

i is integral over A (see 6.5).

11.22. The set spm.Afi
/ consists of the maximal ideals in A not containing fi , and

spm.
Q
i Afi

/D
`
i spm.Afi

/. Therefore the map spm.
Q
i Afi

/! spm.A/ is surjective if
and only if .f1; : : : ;fm/D A. Now apply (11.18). For the second statement, it is only a
question of showing that the sequence in (11.11) becomes the sequence in (11.22) when
i WA! B is taken to be A!

Q
i Afi

.

15.16. (a) Let B be a countable local domain, and number its elements b1;b2; : : :. Consider
the homomorphism A! B sending Xi to bi . It is surjective, and its kernel is a prime ideal
p of A. The ideal p is not an intersection of maximal ideals because the only maximal ideal
of A containing p is the inverse image of the maximal ideal in B .

(b) Let f be a nonzero element of A, say, f D f .X1; : : : ;Xn/. Choose a1; : : : ;an2Q
such that f .a1; : : : ;an/ ¤ 0 (Exercise 1.1). The kernel of the homomorphism A! Q
sending Xi to ai for i � n and Xi to 0 for i > n is a maximal ideal in A not containing f .

23.12. Consider surjective homomorphism A! A=a. The set V.a/ is closed in spec.A/ (by
definition of the topology on spec.A/). If A!A=a is flat, then V.a/ is also open. Therefore
AD A1�A2 and a is of the form b�A2 with b an ideal in A1 such that V.b/D spec.A1/.
On tensoring

0! b�A2! A1�A2! A1=b! 0

with A1=b we get an exact sequence

0! b=b2! A1=b
id
�! A1=b! 0:

Therefore bD b2, but b is contained in all prime ideals of A1, and so this implies that bD 0
(Nakayama’s lemma, 3.9).
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Chap. I–IV Masson 1985; Chap. V–VII Hermann 1975; Chap. VIII-IX Masson 1983; Chap. X
Masson 1998.

KRULL, W. 1938. Dimensionstheorie in stellenringen. J. Reine Angew. Math. 179:204–226.

MATSUMURA, H. 1986. Commutative ring theory, volume 8 of Cambridge Studies in Advanced
Mathematics. Cambridge University Press, Cambridge.

NAGATA, M. 1962. Local rings. Interscience Tracts in Pure and Applied Mathematics, No. 13.
Interscience Publishers, New York-London.

NORTHCOTT, D. G. 1953. Ideal theory. Cambridge Tracts in Mathematics and Mathematical Physics,
No. 42. Cambridge, at the University Press.
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