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Abstract

Let 𝐺 be the pro-algebraic group attached to the tannakian category of polariz-
able rational Hodge structures. We show that the quotient of 𝐺 by its derived group
is the Serre group, its derived group is the simply connected covering of its adjoint
group, and its adjoint group is a product of specific simple algebraic groups. As the
Mumford–Tate groups are exactly the algebraic quotients of 𝐺, this also describes
them. 1
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Mumford and Tate originally defined their algebraic groups for complex abelian
varieties. However, the group depends only on the Hodge structure attached to the
abelian variety, and the notion was soon extended to all rational Hodge structures. The
groups are of most interest when the Hodge structure is polarizable.

0.1. TheMumford–Tate group of a rational Hodge structure is an algebraic group𝐺 over
ℚ equipped with a cocharacter 𝜇∶ 𝔾𝑚 → 𝐺ℂ. The weight 𝑤(𝜇) of 𝜇 is the cocharacter
−𝜇− �̄� of 𝐺ℂ. In §3, we obtain the following criterion: a pair (𝐺, 𝜇) is the Mumford–Tate
group of a polarizable rational Hodge structure if and only if it satisfies the following
conditions:

mt1: the weight 𝑤(𝜇) of 𝜇 is defined over ℚ and is central;

mt2: ad𝜇(−1) is a Cartan involution of (𝐺∕𝑤(𝔾𝑚))ℝ;
mt3: 𝜇 generates 𝐺 (i.e., if𝐻 ⊂ 𝐺 is such that 𝜇(ℂ×) ⊂ 𝐻(ℂ), then𝐻 = 𝐺).

1v1, posted 27.12.20. v2, posted 09.05.23 improvements to exposition; v2.1, posted 10.05.23 minor fixes.
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1 DEFINITIONS 2

0.2. The polarizable rational Hodge structures form a tannakian category 𝖧𝖽𝗀ℚ over ℚ
with a canonical (forgetful) fibre functor. The corresponding Tannaka group 𝐺Hg is the
pro-algebraic group over ℚ having the Mumford–Tate groups as its algebraic quotients.
Thus understanding the Mumford–Tate groups amounts to understanding 𝐺Hg. We
obtain the following results:

⋄ the quotient of 𝐺Hg by its derived group is the (well-known) Serre protorus 𝑆;
⋄ the derived group of 𝐺Hg is simply connected, and hence is the simply connected

covering of the adjoint group of 𝐺Hg;
⋄ the simple factors of the adjoint group of 𝐺Hg are the groups of the form (𝐺)𝐹∕ℚ,

where 𝐹 is a totally real number field and 𝐺 is a geometrically simple algebraic
group over 𝐹 such that (𝐺)𝐹∕ℚ(ℝ) has a compact maximal torus.

The article is largely expository because all of the intermediate results have long been
available in the literature.

Notation and terminology
All vector spaces are finite dimensional. Complex conjugation on ℂ is denoted by 𝑧 ↦ �̄�
or 𝑧 ↦ 𝜄𝑧. The terminology concerning algebraic groups is that of Milne 2017. In
particular, semisimple and reductive algebraic groups are connected, and an adjoint
algebraic group is a semisimple group with trivial centre. The centre of 𝐺 is denoted by
𝑍(𝐺). When 𝐾∕𝑘 is a finite extension of fields and 𝐺 is an algebraic group over 𝐾, we let
(𝐺)𝐾∕𝑘 denote the algebraic group over 𝑘 obtained from 𝐺 by restriction of scalars.

1 Definitions
The Deligne torus 𝕊 is defined to be (𝔾𝑚)ℂ∕ℝ. Thus

𝕊(ℝ) = ℂ×, 𝕊ℂ ≃ 𝔾𝑚 × 𝔾𝑚.

The map 𝕊(ℝ)→ 𝕊(ℂ) induced by ℝ→ ℂ is 𝑧 ↦ (𝑧, �̄�). There are homomorphisms

𝔾𝑚 𝕊 𝔾𝑚, 𝑡◦𝑤 = −2,
ℝ× ℂ× ℝ×.

← →𝑤 ← →𝑡

← →𝑎↦𝑎−1 ← →𝑧↦𝑧�̄�

We denote the kernel of 𝑡 by 𝕊1. Thus 𝕊1 is a one-dimensional torus over ℝ with

𝕊1(ℝ) = {𝑧 ∈ ℂ× ∣ 𝑧�̄� = 1} = circle group 𝑆1.

There is a canonical isomorphism

𝕊∕𝑤(𝔾𝑚)→ 𝕊1, 𝑧 (modℝ×)↦ 𝑧∕�̄�,

with inverse 𝑢 ↦
√
𝑢 (modℝ×).

A homomorphism ℎ∶ 𝕊→ 𝐺 of real algebraic groups gives rise to cocharacters

𝜇ℎ ∶ 𝔾𝑚 → 𝐺ℂ, 𝑧 ↦ ℎℂ(𝑧, 1), 𝑧 ∈ 𝔾𝑚(ℂ) = ℂ×,
𝑤ℎ ∶ 𝔾𝑚 → 𝐺, 𝑤ℎ = ℎ◦𝑤 (weight homomorphism).
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The following formulas are useful,

ℎℂ(𝑧1, 𝑧2) = 𝜇ℎ(𝑧1) ⋅ �̄�ℎ(𝑧2); ℎ(𝑧) = 𝜇ℎ(𝑧) ⋅ 𝜇ℎ(𝑧)
ℎ(𝑖) = 𝜇ℎ(−1) ⋅ 𝑤ℎ(𝑖); 𝑤ℎ = 𝑤(𝜇ℎ).

A Hodge structure on a real vector space 𝑉 is a homomorphism ℎ∶ 𝕊→ GL𝑉 . Such
a homomorphism determines a decomposition 𝑉 ⊗ ℂ = ⨁𝑉𝑝,𝑞, where 𝑉𝑝,𝑞 is the
subspace on which ℎ(𝑧) acts as 𝑧−𝑝 ⋅ 𝜄𝑧−𝑞. A rational Hodge structure (𝑉, ℎ) is aℚ-vector
space 𝑉 together with a Hodge structure ℎ on 𝑉 ⊗ ℝ such that 𝑤ℎ is defined over ℚ.
The Tate Hodge structure ℚ(𝑚) is the ℚ-subspace (2𝜋𝑖)𝑚ℚ of ℂ with ℎ(𝑧) acting as
multiplication by (𝑧�̄�)𝑚.

A polarization of a rational Hodge structure (𝑉, ℎ) of weight 𝑚 is a morphism of
Hodge structures

𝜓∶ 𝑉 ⊗ 𝑉 → ℚ(−𝑚), 𝑚 ∈ ℤ,
such that

(𝑥, 𝑦)↦ (2𝜋𝑖)𝑚𝜓ℝ(𝑥, 𝐶𝑦)∶ 𝑉ℝ × 𝑉ℝ → ℝ
is symmetric and positive definite. Here 𝐶 def= ℎ(𝑖) is the Weil operator.
Notes. The conventions are those of Deligne 1979.

2 Cartan involutions and polarizations
Let 𝐺 be a connected algebraic group over ℝ, and let 𝜎0∶ 𝑔 ↦ �̄� denote complex
conjugation on 𝐺(ℂ) with respect to 𝐺. A Cartan involution of 𝐺 is an involution 𝜃
of 𝐺 (as an algebraic group over ℝ) such that the group

𝐺(𝜃)(ℝ) = {𝑔 ∈ 𝐺(ℂ) ∣ 𝑔 = 𝜃(�̄�)}

is compact. Then 𝐺(𝜃) is a compact real form of 𝐺ℂ, and 𝜃 acts on 𝐺(ℂ) as 𝜎0𝜎 = 𝜎𝜎0,
where 𝜎 is complex conjugation on 𝐺(ℂ) with respect to 𝐺(𝜃).

A connected algebraic group 𝐺 over ℝ has a Cartan involution if and only if it has
a compact real form, which is the case if and only if 𝐺 is reductive. Any two Cartan
involutions of 𝐺 are conjugate by an element of 𝐺(ℝ).

Let 𝐶 be an element of 𝐺(ℝ) whose square is central, so ad(𝐶) def= (𝑔 ↦ 𝐶𝑔𝐶−1) is an
involution. A 𝐶-polarization on a real representation 𝑉 of 𝐺 is a 𝐺-invariant bilinear
form 𝜑∶ 𝑉×𝑉 → ℝ such that the form 𝜑𝐶 ∶ (𝑥, 𝑦)↦ 𝜑(𝑥, 𝐶𝑦) is symmetric and positive
definite.

Theorem 2.1. If ad(𝐶) is a Cartan involution of 𝐺, then every finite dimensional real
representation of 𝐺 carries a 𝐶-polarization; conversely, if one faithful finite dimensional
real representation of 𝐺 carries a 𝐶-polarization, then ad(𝐶) is a Cartan involution.

Proof. An ℝ-bilinear form 𝜑 on a real vector space 𝑉 defines a sesquilinear form
𝜑′∶ (𝑢, 𝑣)↦ 𝜑ℂ(𝑢, 𝑣) on 𝑉(ℂ), and 𝜑′ is hermitian (and positive definite) if and only if
𝜑 is symmetric (and positive definite).

Let 𝐺 → GL𝑉 be a representation of 𝐺. If ad(𝐶) is a Cartan involution of 𝐺, then
𝐺(ad𝐶)(ℝ) is compact, and so there exists a 𝐺(ad𝐶)-invariant positive definite symmetric
bilinear form 𝜑 on 𝑉. Then 𝜑ℂ is 𝐺(ℂ)-invariant, and so

𝜑′(𝑔𝑢, (𝜎𝑔)𝑣) = 𝜑′(𝑢, 𝑣), for all 𝑔 ∈ 𝐺(ℂ), 𝑢, 𝑣 ∈ 𝑉ℂ,
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where 𝜎 is the complex conjugation on 𝐺ℂ with respect to 𝐺(ad𝐶). Now 𝜎𝑔 = ad(𝐶)(�̄�) =
ad(𝐶−1)(�̄�), and so, on replacing 𝑣 with 𝐶−1𝑣 in the equality, we find that

𝜑′(𝑔𝑢, (𝐶−1�̄�𝐶)𝐶−1𝑣) = 𝜑′(𝑢, 𝐶−1𝑣), for all 𝑔 ∈ 𝐺(ℂ), 𝑢, 𝑣 ∈ 𝑉ℂ.

In particular, 𝜑(𝑔𝑢, 𝐶−1𝑔𝑣) = 𝜑(𝑢, 𝐶−1𝑣) when 𝑔 ∈ 𝐺(ℝ) and 𝑢, 𝑣 ∈ 𝑉. Therefore, 𝜑𝐶−1
is 𝐺-invariant. As (𝜑𝐶−1)𝐶 = 𝜑, we see that 𝜑 is a 𝐶-polarization.

For the converse, one shows that, if 𝜑 is a 𝐶-polarization on a faithful representation,
then 𝜑𝐶 is invariant under 𝐺(ad𝐶)(ℝ), which is therefore compact. ■

2.2. Let 𝐺 be an algebraic group over ℚ, and let 𝐶 be an element of 𝐺(ℝ) whose square
is central. A 𝐶-polarization on a ℚ-representation 𝑉 of 𝐺 is a 𝐺-invariant bilinear form
𝜑∶ 𝑉 × 𝑉 → ℚ such that 𝜑ℝ is a 𝐶-polarization on 𝑉ℝ. In order to show that a ℚ-
representation 𝑉 of 𝐺 is polarizable, it suffices to check that 𝑉ℝ is polarizable. We
prove this when 𝐶2 acts as +1 or −1 on 𝑉, which are the only cases we shall need. Let
𝑃(ℚ) (resp. 𝑃(ℝ)) denote the space of 𝐺-invariant bilinear forms on 𝑉 (resp. on 𝑉ℝ)
that are symmetric when 𝐶2 acts as +1 or skew-symmetric when it acts as −1. Then
𝑃(ℝ) = 𝑃(ℚ ⊗ℚ ℝ). The 𝐶-polarizations of 𝑉ℝ form an open subset of 𝑃(ℝ), whose
intersection with 𝑃(ℚ) consists of the 𝐶-polarizations of 𝑉.

Notes. Theorem 2.1 is Deligne 1972, 2.8. The exposition follows Milne 2005, 1.20.

3 Mumford–Tate groups
Let (𝑉, ℎ) be a rational Hodge structure. Following Deligne 1972, 7.1, we define the
Mumford–Tate group of (𝑉, ℎ) to be the smallest algebraic subgroup 𝐺 of GL𝑉 such that
𝐺ℝ ⊃ ℎ(𝕊). We usually regard the Mumford–Tate group as a pair (𝐺, ℎ). Note that 𝐺 is
connected, because otherwise we could replace it with its neutral component.

The rational Hodge structures form a tannakian category over ℚ. Let (𝑉, ℎ) be a
rational Hodge structure, and let ⟨𝑉, ℎ⟩⊗ be the tannakian subcategory generated by
(𝑉, ℎ). The Mumford–Tate group of (𝑉, ℎ) is the algebraic group attached to ⟨𝑉, ℎ⟩⊗ and
the forgetful fibre functor.

The special Mumford–Tate group of (𝑉, ℎ) is defined to be the smallest algebraic
subgroup 𝐺1 of GL𝑉 such that 𝐺1

ℝ ⊃ ℎ(𝕊1). It is a subgroup of the Mumford-Tate group
𝐺, and 𝐺 = 𝐺1 ⋅ 𝑤ℎ(𝔾𝑚).

Let 𝐺 be a connected algebraic group over ℚ and ℎ a homomorphism 𝕊 → 𝐺ℝ.
Consider the following conditions2 on ℎ:
MT1: the map 𝑤ℎ ∶ 𝔾𝑚ℝ → 𝐺ℝ is defined over ℚ and 𝑤ℎ(𝔾𝑚) ⊂ 𝑍(𝐺);
MT2: ad(ℎ(𝑖)) is a Cartan involution of (𝐺∕𝑤ℎ(𝔾𝑚))ℝ.
Note that (MT1) implies that 𝐺∕𝑤ℎ(𝔾𝑚) is an algebraic group over ℚ and that (MT2)
implies that 𝐺 is reductive.

Theorem 3.1. A pair (𝐺, ℎ) as above is the Mumford–Tate group of a polarizable rational
Hodge structure if and only if it satisfies (MT1,2) and ℎ generates 𝐺.

2These are the conditions SV4 and SV2* of Milne 2005, which, for a reductive group, coincide with the
conditions (2.1.1.4) and (2.1.1.5) of Deligne 1979.
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This combines the next two propositions.

Proposition 3.2. A pair (𝐺, ℎ) as above is the Mumford–Tate group of a rational Hodge
structure if and only if ℎ satisfies (MT1) and ℎ generates 𝐺.

Proof. If (𝐺, ℎ) is the Mumford–Tate group of a Hodge structure (𝑉, ℎ), then certainly
ℎ generates 𝐺. The weight homomorphism 𝑤ℎ is defined over ℚ because (𝑉, ℎ) is a
rational Hodge structure. Let 𝑍(𝑤ℎ) denote the centralizer of 𝑤ℎ in 𝐺. For any 𝑎 ∈ ℝ×,
𝑤ℎ(𝑎)∶ 𝑉ℝ → 𝑉ℝ is a morphism of real Hodge structures, and so it commutes with the
action of ℎ(𝕊). Hence ℎ(𝕊) ⊂ 𝑍(𝑤ℎ)ℝ. As ℎ generates 𝐺, this implies that 𝑍(𝑤ℎ) = 𝐺.

Conversely, suppose that (𝐺, ℎ) satisfies the conditions. For any faithful representa-
tion 𝜌∶ 𝐺 → GL𝑉 of 𝐺, the pair (𝑉, ℎ◦𝜌) is a rational Hodge structure, and (𝐺, ℎ) is its
Mumford–Tate group. ■

Proposition 3.3. Let (𝐺, ℎ) be the Mumford–Tate group of a rational Hodge structure
(𝑉, ℎ). Then (𝑉, ℎ) is polarizable if and only if ℎ satisfies (MT2).

Proof. Let𝐶 = ℎ(𝑖). For notational convenience, assume that (𝑉, ℎ) has a single weight
𝑚. Let 𝐺1 be the special Mumford–Tate group of (𝑉, ℎ). Then 𝐶 ∈ 𝐺1(ℝ), and a pairing
𝜓∶ 𝑉×𝑉 → ℚ(−𝑚) is a polarization of the Hodge structure (𝑉, ℎ) if and only if (2𝜋𝑖)𝑚𝜓
is a 𝐶-polarization of 𝑉 for 𝐺1 in the sense of §2. It follows from (2.1) and (2.2) that a
polarization 𝜓 for (𝑉, ℎ) exists if and only if ad(𝐶) is a Cartan involution of 𝐺1

ℝ. Now
𝐺1 ⊂ 𝐺 and the quotient map 𝐺1 → 𝐺∕𝑤ℎ(𝔾𝑚) is an isogeny, and so ad(𝐶) is a Cartan
involution of 𝐺1 if and only if it is a Cartan involution of 𝐺∕𝑤ℎ(𝔾𝑚). ■

Corollary 3.4. The Mumford–Tate group of a polarizable rational Hodge structure is
reductive.

Proof. Immediate consequence of Proposition 3.3. ■

There is a canonical homomorphism ℎHg∶ 𝕊→ (𝐺Hg)ℝ corresponding to the functor
−⊗ℝ from polarizable rational Hodge structures to polarizable real Hodge structures.

Corollary 3.5. For any reductive group 𝐺 over ℚ and homomorphism ℎ∶ 𝕊 → 𝐺ℝ
satisfying (MT2,4), there is a unique homomorphism 𝜌∶ 𝐺Hg → 𝐺 such that 𝜌ℝ◦ℎHg = ℎ.

Proof. Immediate consequence of Theorem 3.1. ■

Remark 3.6. Let (𝑉, ℎ) be a rational Hodge structure, and let 𝜇 = 𝜇ℎ. Then ℎ(𝑧) =
𝜇ℎ(𝑧) ⋅ 𝜇ℎ(𝑧) and so 𝜇ℎ determines ℎ. A cocharacter 𝜇 of 𝐺ℂ is of the form 𝜇ℎ if and
only if 𝜇 commutes with �̄�. The Mumford–Tate group of (𝑉, ℎ) is the smallest algebraic
subgroup 𝐺 of GL𝑉 such that 𝐺ℂ ⊃ 𝜇ℎ(𝔾𝑚). As ℎ(𝑖) = 𝜇(−1) ⋅𝑤ℎ(𝑖), we see that (0.1) is
simply a restatement of Theorem 3.1.

From now on, we say “(𝐺, ℎ) or (𝐺, 𝜇) is a Mumford–Tate group” to mean that the
pair is the Mumford–Tate group of a polarizable rational Hodge structure. We say that 𝐺
is a Mumford-Tate group if there exists an ℎ such that (𝐺, ℎ) is a Mumford–Tate group.
Notes. Theorem 3.1 is Proposition 1.6 of Milne 1994. The exposition follows Milne 2013, §6.
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4 Tori as Mumford–Tate groups
A number field 𝐸 is a CM field if it is a totally imaginary quadratic extension of a totally
real field. Letℚcm be the union of the CM-subfields ofℚal. Thenℚcm is the largest Galois
extension of ℚ in ℚal such that complex conjugation is in the centre of Gal(ℚcm∕ℚ).

Lemma 4.1. Let 𝑇 be a torus over ℚ and 𝜇 a cocharacter of 𝑇 over ℚal. The following
conditions on 𝜇 are equivalent:
(a) the weight of 𝜇 is defined overℚ and 𝜇 is defined over a CM field;

(b) for all 𝜎 ∈ Gal(ℚal∕ℚ),

(𝜎 − 1)(𝜄 + 1)𝜇 = 0 = (𝜄 + 1)(𝜎 − 1)𝜇.

Proof. The first equality in (b) says that the weight of 𝜇 is defined overℚ, and then the
second says that 𝜎𝜄𝜇 = 𝜄𝜎𝜇 for all 𝜎 ∈ Gal(ℚal∕ℚ), i.e., that 𝜇 is defined over ℚcm. ■

The equivalent conditions of the lemma are called the Serre condition. When 𝑇 is
split by a CM field, the Serre condition simply says that the weight of 𝜇 is defined over
ℚ.

A rational Hodge structure (𝑉, ℎ) is said to be of CM-type if it is polarizable and its
Mumford–Tate group is commutative (hence a torus). When (𝑉, ℎ) is simple, this means
that End(𝑉, ℎ) is either a CM-field or ℚ.

We have the following criterion.

Proposition 4.2. Let 𝑇 be a torus overℚ and 𝜇 a cocharacter of 𝑇 overℚal. Then (𝑇, 𝜇)
is a Mumford–Tate group if and only if

(a) the weight of 𝜇 is defined overℚ,
(b) 𝑇 is split by a CM field,

(c) 𝜇 generates 𝑇.

Proof. When 𝜇 generates 𝑇, the condition (a)+(b) is equivalent to (a) of Lemma 4.1;
on the other hand, the condition (mt1)+(mt2) is equivalent to (b) of Lemma 4.1. Thus,
the proposition is a restatement of Theorem 3.1 for the case of tori. ■

Let 𝐸 be a CM subfield of ℚal. Then (𝔾𝑚)𝐸∕ℚ is a torus with character group
ℤHom(𝐸,ℚal), and we define 𝑆𝐸 to be the quotient of (𝔾𝑚)𝐸∕ℚ such that

𝑋∗(𝑆𝐸) = {𝜆 ∈ ℤHom(𝐸,ℚal) ∣ 𝜆(𝜎) + 𝜆(𝜄◦𝜎) = constant, 𝜎 ∈ Hom(𝐸,ℚal)}.

Define 𝜇𝐸 to be the cocharacter of 𝑆𝐸 such that

⟨𝜆, 𝜇𝐸⟩ = 𝜆(𝜎0), all 𝜆 ∈ 𝑋∗(𝑆𝐸),

where 𝜎0 is the given embedding of 𝐸 into ℚal. If 𝐸 ⊂ 𝐸′ ⊂ ℚal, then the norm map
defines a homomorphism 𝑆𝐸′ → 𝑆𝐸 carrying 𝜇𝐸′to 𝜇𝐸 . We set

(𝑆, 𝜇can) = lim←,,(𝑆
𝐸 , 𝜇𝐸).
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The pair (𝑆, 𝜇can) is called the Serre group. Note that𝑋∗(𝑆) is the set of all locally constant
functions 𝜆∶ Gal(ℚcm∕ℚ)→ ℤ such that

𝜆(𝜎) + 𝜆(𝜄◦𝜎) = −𝑚

for some integer𝑚 (called the weight of 𝜆).

Theorem 4.3. (a) The cocharacter 𝜇𝐸 of 𝑆𝐸 satisfies the Serre condition.
(b) Let 𝑇 be a torus over ℚ and 𝜇 a cocharacter satisfying the Serre condition. Then

there is a unique homomorphism 𝜌𝜇 ∶ 𝑆 → 𝑇 such that (𝜌𝜇)ℚ◦𝜇can = 𝜇.
(c) We have

(𝑆, 𝜇can) = lim←,,(𝑇, 𝜇), (1)

where the limit runs over the pairs (𝑇, 𝜇) such that 𝜇 satisfies the Serre condition and
generates 𝑇.

Proof. (a) The weight of 𝜇 is defined over ℚ and 𝑇 is split by a CM field.
(b) For 𝜒 ∈ 𝑋∗(𝑇) and 𝜎 ∈ Gal(ℚal∕ℚ), define

𝑓𝜒(𝜎) = ⟨𝜎−1𝜒, 𝜇⟩.

Then
𝜒 ↦ 𝑓𝜒 ∶ 𝑋∗(𝑇)→ 𝑋∗(𝑆) (2)

is a Gal(ℚal∕ℚ)-equivariant homomorphism, and so corresponds to a homomorphism

𝜌∶ 𝑆 → 𝑇.

For 𝜎0 the given inclusion of 𝐸 intoℚal, 𝑓𝜒(𝜎0) = ⟨𝜇, 𝜒⟩, i.e., ⟨𝜇can, 𝑓𝜒⟩ = ⟨𝜇, 𝜒⟩, which
shows that (𝜌𝜇)ℚ◦𝜇can = 𝜇.

(c) For every (𝑇, 𝜇), we have defined an injective homomorphism (2), and 𝑋∗(𝑆) is
union of their images. ■

Corollary 4.4. The polarizable rational Hodge structures of CM-type form a tannakian
category, and 𝑆 is the pro-algebraic group attached to the forgetful fibre functor.

Proof. For any rational Hodge structures 𝑋 and 𝑌, MT(𝑋 ⊕ 𝑌) ⊂ MT(𝑋) × MT(𝑌),
and so 𝑋 ⊕ 𝑌 is of CM type if 𝑋 and 𝑌 are. The category of polarizable rational Hodge
structures of CM-type is the directed union of the categories ⟨𝑋⟩⊗ with 𝑋 of CM-type,
and is therefore tannakian. Correspondingly, the pro-algebraic group attached to the
forgetful fibre functor is lim←,,(MT(𝑋), 𝜇𝑋), which, according to 4.2 and (1), is equal to(𝑆, 𝜇can). ■

The functor sending a rational Hodge structure (𝑉, ℎ) to the real Hodge structure
(𝑉 ⊗ℝ, ℎ) defines a homomorphism ℎcan∶ 𝕊→ 𝑆; its associated cocharacter is 𝜇can.
Notes. Everything in this section has been known to the experts since the 1960s — see, for
example, Serre 1968. For a detailed account, see my notes Complex Multiplication.
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5 Semisimple groups as Mumford-Tate groups
Let 𝐺 be an algebraic group over ℝ and ℎ∶ 𝕊→ 𝐺 a homomorphism of weight 0. Then
𝜄𝜇ℎ = −𝜇ℎ, and so 𝜇ℎ ∶ (𝔾𝑚)ℂ → 𝐺ℂ arises from a homomorphism 𝑢∶ 𝔾𝑚 → 𝐺 over ℝ.
As ℎ has weight 0, it factors through 𝕊∕𝑤(𝔾𝑚), and 𝑢 is the composite

𝕊1 ≃ 𝕊∕𝑤(𝔾𝑚)
ℎ,→ 𝐺.

In this way we get a one-to-one correspondence between homomorphisms ℎ∶ 𝕊→ 𝐺
of weight 0 and homomorphisms 𝑢∶ 𝕊1 → 𝐺. If ℎ ↔ 𝑢, then

ℎ(𝑧) = 𝑢(𝑧∕�̄�), 𝑧 ∈ ℂ×,
𝑢(𝑧) = ℎ(

√
𝑧), 𝑧 ∈ 𝑈1.

Note that ℎ(𝑖) = 𝑢(−1), so (MT2) becomes the condition that ad𝑢(−1) is a Cartan
involution.

Lemma 5.1. Let 𝐺 be a simple algebraic group overℝ (so, in particular, adjoint). If 𝐺 is
an inner form of its compact form, then it is geometrically simple.

Proof. If 𝐺ℂ is not simple, say, 𝐺ℂ = 𝐺1 × 𝐺2, then 𝐺 = (𝐺1)ℂ∕ℝ and any inner form
of 𝐺 is also the restriction of scalars of a complex group, but such a group cannot be
compact (look at a subtorus). ■

Proposition 5.2. Let 𝐺 be a simple algebraic group overℝ. Then 𝐺 admits a homomor-
phism 𝑢∶ 𝕊1 → 𝐺 such that ad𝑢(−1) is a Cartan involution if and only if 𝐺 contains a
compact maximal torus (in which case, 𝐺 is geometrically simple).

Proof. ⇐⇒: Any maximal torus containing 𝑢(𝕊1) is compact.
⇐⇐: Let 𝑇 be a compact maximal torus of 𝐺ℝ. Choose a maximal compact subgroup

of 𝐺ℝ containing 𝑇, and let 𝜃 be the corresponding Cartan involution. A root of (𝐺, 𝑇) is
compact or noncompact according as 𝜃 acts as −1 or +1 on it. A homomorphism 𝑢 such
that ⟨𝛼, 𝑢⟩ is even or odd according as 𝛼 is compact or noncompact has the property that
ad(𝑢(−1)) is a Cartan involution of 𝐺ℝ. ■

Remark 5.3. It is possible to read off from the classification of geometrically simple
algebraic groups over ℝ, a list of the groups satisfying the equivalent conditions of
Proposition 5.2.

Theorem 5.4. An adjoint algebraic group 𝐺 overℚ is a Mumford–Tate group if and only
if 𝐺ℝ contains a compact maximal torus.

Proof. As 𝐺 is adjoint, to give a homomorphism ℎ∶ 𝕊→ 𝐺ℝ satisfying (MT1,2) is the
same as giving a homomorphism 𝑢∶ 𝕊1 → 𝐺ℝ such that ad𝑢(−1) is a Cartan involution.
If 𝐺ℝ contains a maximal torus, then the proof of 5.2 shows how to construct such a
𝑢. A general 𝑢 will generate 𝐺, and so 𝐺 is a Mumford–Tate group by Theorem 3.1.
Conversely, if 𝐺 is a Mumford–Tate group, then Proposition 5.2 shows that 𝐺ℝ contains
a compact maximal torus. ■
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Remark 5.5. Let 𝐺 be an adjoint algebraic group over ℚ. Then 𝐺 has a canonical
decomposition

𝐺 = (𝐺1)𝐹1∕ℚ ×⋯ × (𝐺𝑛)𝐹𝑛∕ℚ,
where each 𝐹𝑖 is a subfield ofℚal and𝐺𝑖 is geometrically simple (Milne 2017, 24.4). If the
simple factors of (𝐺𝑖)𝐹𝑖∕ℚ over ℝ are geometrically simple, then 𝐹𝑖 is totally real. Thus,
𝐺 is a Mumford-Tate group if and only if its simple factors (over ℚ) are the groups of
the form (𝐻)𝐹∕ℚ, where 𝐹 is a totally real number field and𝐻 is a geometrically simple
group over 𝐹 such that, for every 𝜌∶ 𝐹 → ℝ, 𝜌𝐻 is on the list hinted at in 5.3.

Notes. In their 2012 monograph, Green, Griffiths, and Kerr (IV.A.3) claim to show that an
adjoint group overℚ is a Mumford–Tate group if and only if it has an anisotropic maximal torus.
Patrikis pointed out that this statement is false and gave the correct statement.

6 The classification
We describe the structure of the pro-algebraic group 𝐺Hg attached to the tannakian
category of polarizable rational Hodge structures and the forgetful fibre functor.

Lemma 6.1 (Mumford 1969, p. 348). Let 𝐺 be a connected algebraic group overℚ and
𝑇 a maximal torus in 𝐺ℝ. Then there exists a maximal torus 𝑇0 in 𝐺 and an 𝑎 ∈ 𝐺(ℝ)
such that 𝑇0ℝ = 𝑎𝑇𝑎−1.

Proof. According to the real approximation theorem (Milne 2017, 25.70),𝐺(ℚ) is dense
in 𝐺(ℝ). If 𝑎 ∈ 𝑇(ℝ) is a regular element, then 𝑇 is the centralizer of 𝑎, and 𝑎 has an
open neighbourhood 𝑈 in 𝐺(ℝ) such that the centralizer of every 𝑎′ ∈ 𝑈 is a conjugate
of 𝑇. If 𝑎′ ∈ 𝑈 ∩ 𝐺(ℚ), then the centralizer of 𝑎′ is a conjugate of 𝑇 defined over ℚ, as
required. ■

Proposition 6.2 (Mumford 1969, p. 348). Let𝐺 be anadjoint group overℚandℎ∶ 𝕊→
𝐺ℝ a homomorphism satisfying (MT1,2). There exists a 𝑔 ∈ 𝐺(ℝ) and a torus 𝑇0 ⊂ 𝐺 such
that ad(𝑔)◦ℎ factors through 𝑇0ℝ.

Proof. Let 𝐾 be the centralizer of ℎ in 𝐺ℝ (so 𝐾 is an algebraic subgroup of 𝐺ℝ). Let
𝑇 be a maximal torus of 𝐾. As ℎ(𝕊) is contained in the centre of 𝐾, ℎ(𝕊) ⊂ 𝑇. If 𝑇′ is a
torus in 𝐺ℝ containing 𝑇, then 𝑇′ centralizes ℎ and so 𝑇′ ⊂ 𝐾; therefore 𝑇 is maximal in
𝐺ℝ. According to the lemma, there exists a maximal torus 𝑇0 of 𝐺such that 𝑇0ℝ = 𝑔𝑇𝑔−1
for some 𝑔 ∈ 𝐺(ℝ). Now ad(𝑔)◦ℎ factors through 𝑇0ℝ. ■

Proposition 6.3. Let 𝐺 be a reductive group over a field 𝑘 of characteristic zero, and let 𝐿
be a finite Galois extension of 𝑘 splitting 𝐺. Let 𝐺′ → 𝐺der be a finite covering of the derived
group of 𝐺. Then there exists a central extension

1→ 𝑁 → 𝐺1 → 𝐺 → 1

such that 𝐺1 is reductive,𝑁 is a product of copies of (𝔾𝑚)𝐿∕𝑘, and

(𝐺der
1 → 𝐺der) = (𝐺′ → 𝐺der).

Proof. See Milne and Shih 1982, 3.1. ■
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Theorem 6.4 (Milne 1994, 1.28). Let 𝐻 be a semisimple algebraic group over ℚ and
ℎ̄∶ 𝕊∕𝔾𝑚 → 𝐻ad

ℝ a homomorphism such that ad(ℎ̄(𝑖)) is a Cartan involution. Then there
exists a reductive group 𝐺 with 𝐺der = 𝐻 and a homomorphism ℎ∶ 𝕊→ 𝐺ℝ lifting ℎ̄ and
satisfying (MT1,2).

Proof. Assume first that ℎ̄ is “special”, i.e., that it factors through 𝑇ℝ for some maximal
torus 𝑇 in𝐻ad. The hypothesis on ℎ implies that 𝑇ℝ is anisotropic, and so 𝑇 splits over
a CM-field 𝐿, which we may choose to be Galois over ℚ. According to Proposition 6.3,
there exists a central extension defined over ℚ

1 ,→ 𝑁 ,→ 𝐺 ,→ 𝐻ad ,→ 1

such that 𝐺der = 𝐻 and 𝑁 is a product of copies of (𝔾𝑚)𝐿∕ℚ. There is a maximal torus
𝑇′ ⊂ 𝐺 mapping onto 𝑇 (Milne 2017, 17.20). Since 𝑇′ is its own centralizer, it contains
𝑁, which is therefore the kernel of 𝑇′ → 𝑇. Hence 𝑋∗(𝑇′)→ 𝑋∗(𝑇) is surjective, and we
can choose 𝜇 ∈ 𝑋∗(𝑇′)mapping to 𝜇ℎ̄ ∈ 𝑋∗(𝑇). The weight 𝑤(ℎ)

def= −𝜇 − 𝜄𝜇 of 𝜇 lies in
𝑋∗(𝑁). Because 𝑋∗(𝑁) is an induced Galois module, its cohomology groups are zero; in
particular, the zeroth Tate group

𝐻0
Tate(Gal(ℂ∕ℝ), 𝑋∗(𝑁))

def= 𝑋∗(𝑁)Gal(ℂ∕ℝ)
(𝜄 + 1)𝑋∗(𝑁)

= 0.

Clearly 𝜄𝑤 = 𝑤, and so there exists a 𝜇0 ∈ 𝑋∗(𝑁) such that (𝜄 + 1)𝜇0 = 𝑤. When we
replace 𝜇 with 𝜇+ 𝜇0, then we find that the weight becomes 0; in particular, it is defined
over ℚ. Choose ℎ so that ℎ(𝑧) = 𝜇(𝑧) ⋅ 𝜇(𝑧).

For a general ℎ̄, there will exist a �̄� ∈ 𝐻ad(ℝ) such that ad �̄�◦ℎ̄ is special (6.2).
Construct𝐺 and ℎ as in the last paragraph corresponding to ad �̄�◦ℎ̄. Because𝐻1(ℝ, 𝑁) =
𝐻1(𝐿 ⊗ℚ ℝ,𝔾𝑚) = 0, the element �̄� will lift to an element 𝑔 ∈ 𝐺(ℝ), and we take the
pair (𝐺, ad(𝑔−1)◦ℎ).

For the pair (𝐺, ℎ) we have constructed, the centre of 𝐺 is split by a CM-field, ℎ
satisfies (MT1), and ad(ℎ(𝑖)) is a Cartan involution on 𝐺ad. Let 𝑇 be the subtorus of
𝐺∕𝐺der generated by ℎ. Then 𝑇ℝ is anisotropic, and when we replace 𝐺 with the inverse
image of 𝑇, we obtain a pair (𝐺, ℎ) satisfying (MT1,2). ■

Theorem 6.5. (a) The quotient of 𝐺Hg by its derived group is the Serre group.
(b) A semisimple algebraic group 𝐺 over ℚ is a quotient of 𝐺der

Hg if and only if 𝐺ad is a
Mumford–Tate group.

(c) The adjoint group of 𝐺Hg is a product of groups of the form (𝐺)𝐹∕ℚ with 𝐹 a totally
real number field and 𝐺 an algebraic group over 𝐹 such that, for all embeddings 𝜌 of
𝐹 intoℝ, 𝜌𝐺 is a simple algebraic group overℝ with a compact maximal torus.

Proof. (a) A polarizable rational Hodge structure is of CM-type if and only if 𝐺der
Hg acts

trivially on it. Now 4.4 implies that the inclusion of the category of CMHodge structures
into the full category of polarizable rational Hodge structures induces an isomorphism
𝐺∕𝐺der → 𝑆.

(b) Let 𝐺 be a quotient of 𝐺der
Hg . The image of 𝑍(𝐺der

Hg ) in 𝐺 is of multiplicative type,
and therefore is central (Milne 2017, 12.38). Thus 𝐺ad is a quotient of (𝐺der

Hg )ad = 𝐺ad
Hg,

and so is a Mumford–Tate group. Conversely, suppose that 𝐺ad is a Mumford–Tate group,
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and let ℎ̄∶ 𝕊→ 𝐺ad
ℝ be a homomorphism satisfying (MT1,2). According to Proposition

6.4, there exists a reductive group 𝐺′ with 𝐺′der = 𝐺 and a homomorphism ℎ′∶ 𝕊→ 𝐺′
ℝ

lifting ℎ̄ and satisfying (MT1,2). Let 𝜌∶ 𝐺Hg → 𝐺′ be the homomorphism given by
Corollary 3.5. Then 𝜌maps (𝐺Hg)der onto (𝐺′)der = 𝐺.

(c) Apply 5.4 and 5.5. ■
Corollary 6.6. The pro-algebraic group 𝐺der is simply connected.

Proof. Immediate consequence of (b) of the theorem. ■
Remark 6.7. The group 𝐺Hg is not a product of 𝐺der

Hg and 𝑆 because this would imply
that, for a semisimple algebraic group 𝐻 over ℚ, every homomorphism ℎ∶ 𝕊 → 𝐻ad

ℝ
satisfying (MT1,2) lifts to a homomorphism 𝕊→ 𝐻ℝ satisfying the same conditions, but
this is not true.

Remark 6.8. No description, even conjectural, is known for the essential image of the
functor from the category of motives overℂ to the category of polarizable rational Hodge
structures. However, when one replaces the category of all motives with the subcategory
generated by the motives of abelian varieties such a description is known (Theorem 1.27
of Milne 1994). Note that these Hodge structures need be neither of CM-type nor of
weight 1. The proof of Theorem 6.5 is a (simpler) variant of the proof of that theorem.
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