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The original article expressed the special values of the zeta function of a variety over a
finite field in terms of thebZ-cohomology of the variety. As the article was being completed,1

Lichtenbaum conjectured the existence of complexes of sheaves Z.r/ extending the sequence
Z, GmŒ�1�,. . . . The complexes given by Bloch’s higher Chow groups are known to satisfy
most of the axioms for Z.r/. Using Lichtenbaum’s Weil-étale topology, we can now give a
beautiful restatement of the main theorem of the original article in terms of Z-cohomology
groups.

Notations

We use the notations of Milne 1986. For example,

M .n/
DM=nM; TM D lim

 �
n

Ker.nWM !M/; z.f /D
ŒKer.f /�
ŒCoker.f /�

;

and �s.r/ denotes the sheaf of logarithmic de Rham-Witt differentials on Xét (ibid., p. 307).
The symbol l denotes a prime number, possibly p.

Review of abelian groups
In this subsection, we review some elementary results on abelian groups. An abelian group
N is said to be bounded if nN D 0 for some n � 1, and a subgroup M of N is pure if
M \mN DmM for all n� 1.

LEMMA 1. (a) Every bounded abelian group is a direct sum of cyclic groups.
(b) Every bounded pure subgroup M of an abelian group N is a direct summand of N .

PROOF. (a) Fuchs 1970, 17.2.
(b) Kaplansky 1954, Theorem 7, p. 18, or Fuchs 1970, 27.5. 2

LEMMA 2. Let M be a subgroup of N; and let ln be a prime power. If M \ lnN D 0 and
M is maximal among the subgroups with this property, then M is a direct summand of N .

PROOF. The subgroup M is bounded because lnM �M \ lnN D 0. To prove that it is
pure, one shows by induction on r � 0 that M \ lrN � lrM . See Fuchs 1970, 27.7. 2

1It was submitted in September 1983. This addendum was originally posted on the author’s website in 2009.
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NOTES. (Fuchs 1970, 9.8.) LetB andC be subgroups of an abelian groupA. Assume thatC \B D 0
and that C is maximal among the subgroups of A with this property. Let a 2A. If pa 2 C (p prime),
then a 2 BCC .

Proof: We may suppose that a … C . Then hC;ai contains a nonzero element b of B , say,
bD cCma with c 2C andm2Z. Here .m;p/D 1 because otherwise bD cCm0.pa/2B\C D 0:
Thus rmC sp D 1 for some r;s 2 Z, and

aD r.ma/C s.pa/D rb� rcC s.pa/ 2 BCC:

(Fuchs 1970, 27.7). We prove that M \ lrN � lrM for all r � 0. This being trivially true
for r D 0, we may apply induction on r . Let m D lrC1a ¤ 0, m 2M , a 2 N . Then r � n� 1,
because otherwise lrC1a 2M \ lnN D 0. By (9.8), lra 2 lnN CM , say, lraD lncCd with c 2N ,
d 2M . Then d D lra� lnc 2M \ lrN , which equals lrM by the induction hypothesis. From
mD lrC1aD lnC1cC ld , we find that .m� ld/ 2M \ lnC1N D 0, and so mD ld 2 lrC1M .

Every abelian group M contains a largest divisible subgroup Mdiv, which is obviously
contained the first Ulm subgroup of M , U.M/

def
D
T
n�1nM . Note that U.M=U.M//D 0.

NOTES. A sum of divisible subgroups is obviously divisible. For the last statement, let x 2M
map to the first Ulm subgroup of M=U.M/. Then, for each n � 1, there exists a y 2M such that
ny�x 2 U.M/, and so ny�x D ny0 for some y0 2M . Now x D n.y�y0/, and so x is divisible by
n in M , i.e., x 2 U.M/.

PROPOSITION 3. If M=nM is finite for all n� 1, then U.M/DMdiv.

PROOF. (Cf. Milne 1988, 3.3.) If U.M/ is not divisible, then there exists a prime l such
that U.M/¤ lU.M/. Fix such an l , and let x 2 U.M/X lU.M/. For each n � 1, there
exists an element xn of M such that lnxn D x. In fact xn has order exactly ln in M=U.M/,
and so M=U.M/ contains elements of arbitrary high l-power order.

Let S be a finite l-subgroup of M=U.M/. As U.M=U.M//D 0 and S is finite, there
exists an n such that S \ ln.M=U.M//D 0. By Zorn’s lemma, there exists a subgroupN of
M=U.M/ that is maximal among those satisfying (a)N � S and (b)N \ ln.M=U.M//D 0.
Moreover, N is maximal with respect to (b) alone. Therefore N is a direct summand of
M=U.M/ (Lemma 2). As N is bounded (in fact, lnN D 0), it is a direct sum of cyclic
groups (Lemma 1). We conclude that S is contained in a finite l-subgroup S 0 of M=U.M/

that is a direct summand of M=U.M/. Note that

S 0.l/ ,! .M=U.M//.l/ 'M .l/;

and so dimFl
M .l/ � dimFl

S 0.l/. But is clear (from the first paragraph) that dimFl
S 0.l/ is

unbounded, and so this contradicts the hypothesis on M . 2

NOTES. Cf. Fuchs, Vol II, 65.1.

COROLLARY 4. If TM D 0 and all quotients M=nM are finite, then U.M/ is uniquely
divisible (= divisible and torsion-free = a Q-vector space).

PROOF. The first condition implies that Mdiv is torsion-free, and the second that U.M/D

Mdiv. 2

For an abelian group M , we let Ml denote the completion of M with respect to the
l-adic topology. Every continuous homomorphism from M into a complete separated group
factors uniquely through Ml . In particular, the quotient maps M !M=lnM extend to
homomorphisms Ml !M=lnM , and these induce an isomorphism Ml ! lim

 �n
M=lnM .

The kernel of M !Ml is
T
n l
nM . See Fuchs 1970, �13.
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LEMMA 5. Let N be a torsion-free abelian group. If N=lN is finite, then the l-adic
completion of N is a free finitely generated Zl -module.

PROOF. Let y1; : : : ;yr be elements of N that form a basis for N=lN . Then

N D
P

Zyi C lN D
P

Zyi C l.
P

Zyi C lN /D �� � D
P

Zyi C lnN;

and so y1; : : : ;yr generate N=lnN . As N=lnN has order lnr , it is in fact a free Z=lnZ-
module with basis fy1; : : : ;yrg. Let a 2 Nl , and let an be the image of a in N=lnC1N .
Then

an D cn;1y1C�� �C cn;ryr

for some cn;i 2 Z=lnC1Z. As an maps to an�1 in N=lnN and the cn;i are unique, cn;i
maps to cn�1;i in Z=lnZ. Hence .cn;i /n2N 2 Zl , and it follows that fy1; : : : ;yrg is a basis
for Nl as a Zl -module. 2

PROPOSITION 6. Let �WM �N ! Z be a bi-additive pairing of abelian groups whose
extension �l WMl �Nl ! Zl to the l-adic completions has trivial left kernel. If N=lN is
finite and

T
n l
nM D 0, then M is free and finitely generated.

PROOF. We may suppose that N is torsion-free. As
T
n l
nM D 0, the map M !Ml is

injective. Choose elements y1; : : : ;yr of N that form a basis for N=lN . According to the
proof of Lemma 5, they form a basis for Nl as a Zl -module. Consider the map

x 7! .�.x;y1/; : : : ;�.x;yr//WM ! Zr :

If x is in the kernel of this map, then �l.x;y/D 0 for all y 2Nl , and so x D 0. Therefore
the map M injects into Zr , which completes the proof. 2

Review of Bloch’s complex
Let X be a smooth variety over a field k. We take Z.r/ to be the complex of sheaves on X
defined by Bloch’s higher Chow groups. For the definition of Bloch’s complex, and a review
of its basic properties, we refer the reader to the survey article Geisser 2005.

The properties of Z.r/ that we shall need are the following.
(A)n0

For all integers n0 prime to the characteristic of k, the cycle class map�
Z.r/

n0
�! Z.r/

�
! �˝rn0

Œ0�

is a quasi-isomorphism (Geisser and Levine 2001, 1.5).
(A)p For all integers s � 1, the cycle class map�

Z.r/
ps

�! Z.r/
�
! �s.r/Œ�r �1�

is a quasi-isomorphism (Geisser and Levine 2000, Theorem 8.5).
(B) There exists a cycle class map CHr.X/!H 2r.Xét;Z.r// compatible (via (A)) with

the cycle class map into H 2r.Xét;bZ.r//. Here CHr.X/ is the Chow group.
(C) There exist pairings

Z.r/˝LZ.s/! Z.rC s/
compatible (via (A)n) with the natural pairings

�˝rn ��
˝s
n ! �˝rCsn ; gcd.n;p/D 1:

When k is algebraically closed, there exists a trace map H 2d .Xét;Z.d//! Z com-
patible (via (A)n) with the usual trace map in étale cohomology.
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Values of zeta functions
Throughout this section,X is a smooth projective variety over a finite field k with q elements,
r is an integer, and �r is the rank of the group of numerical equivalence classes of algebraic
cycles of codimension r on X .

We list the following conjectures for reference.
T r.X/ (Tate conjecture): The order of the pole of the zeta function Z.X;t/ at t D q�r is

equal to �r .
T r.X; l/ (l-Tate conjecture): The map CHr.X/˝Ql !H 2r. NXét;Ql.r//� is surjective.
Sr.X; l/ (semisimplicity at 1/: The map H 2r. NXét;Ql.r//� !H 2r. NXét;Ql.r//� induced

by the identity map is bijective.
The statement T r.X/ is implied by the conjunction of T r.X; l/, T d�r.X; l/, and Sr.X; l/
for a single l , and implies T r.X; l/, T d�r.X; l/, Sr.X; l/, Sd�r.X; l/ for all l (see Tate
1994, 2.9; Milne 2007, 1.11).

Let V be a variety over a finite field k. To give a sheaf on Vét is the same as giving a
sheaf on NVét together with a continuous action of � def

D Gal. Nk=k/. Let �0 be the subgroup of
� generated by the Frobenius element (so �0 ' Z). The Weil-étale topology is defined so
that to give a sheaf on VWét is the same as giving a sheaf on NVét together with an action of
�0 (Lichtenbaum 2005). For example, for V D Speck, the sheaves on Vét are the discrete
� -modules, and the sheaves on VWét are the �0-modules. In the Weil-étale topology, the
Hochschild-Serre spectral sequence becomes

H i .�0;H
j . NVét;F // H) H iCj .VWét;F /: (1)

Since
H i .�0;M/DM�0 ; M�0

; 0; 0; : : : for i D 0;1;2;3; : : : ; (2)

this gives exact sequences

0!H i�1. NVét;F /�0
!H i .VWét;F /!H i . NVét;F /

�0 ! 0; all i � 0:

If F is a sheaf on Vét such that the groups H j . NVét;F / are torsion, then the Hochschild-Serre
spectral sequence for the étale topology gives exact sequences

0!H i�1. NVét;F /� !H i .Vét;F /!H i . NVét;F /
�
! 0; all i � 0:

The two spectral sequences are compatible, and so, for such a sheaf F , the canonical maps
H i .Vét;F /!H i .VWét;F / are isomorphisms.

Let X be a smooth projective variety over a finite field, and let

e2r WH 2r.XWét;Z.r//!H 2rC1.XWét;Z.r//

denote cup-product with the canonical element of H 1.�0;Z/DH 1.kWet;Z/, and let

�.XWét;Z.r//D
Y

i¤2r;2rC1
ŒH i .XWét;Z.r//�.�1/

i

z.e2r/

when all terms are defined and finite. Let

�.X;OX ; r/D
X

i�r;j
.�1/iCj .r � i/dimH j .X;˝iX=k/.

We define �0.XWét;Z.r// as for �.XWét;Z.r//, but with each group H i .XWét;Z.r// re-
placed by its quotient

H i .XWét;Z.r//0
def
D

H i .XWét;Z.r//
U.H i .XWét;Z.r///

:
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THEOREM 7. Let X be a smooth projective variety over a finite field such that the Tate
conjecture T r.X/ is true for some integer r � 0. Then �0.XWét;Z.r// is defined, and

lim
t!q�r

Z.X;t/ � .1�qr t /�r D˙�0.XWét;Z.r// �q�.X;OX ;r/: (3)

In particular, the groups H i .XWét;Z.r//0 are finite for i ¤ 2r;2rC 1. For i D 2r;2rC 1,
they are finitely generated. For all i , U.H i .XWét;Z.r/// is uniquely divisible.

PROOF. We begin with a brief review of Milne 1986. For an integer n D n0ps with
gcd.p;n0/D 1,

H i .Xét; .Z=nZ/.r//
def
DH i .Xét;�

˝r
n0
/�H i�r.Xét;�s.r//, and

H i .Xét;bZ.r// def
D lim
 �n

H i .Xét; .Z=nZ/.r//

(ibid. p. 309). Let
�2r WH 2r.Xét;bZ.r//!H 2rC1.Xét;bZ.r//

denote cup-product with the canonical element of H 1.�;bZ/'H 1.két;bZ/, and let

�.X;bZ.r// def
D

Y
i¤2r;2rC1

ŒH i .Xét;bZ.r//�.�1/i z.�2r/
when all terms are defined and finite (ibid. p.298). Theorem 0.1 (ibid. p.298) states that
�.X;bZ.r// is defined if and only if Sr.X; l/ holds for all l , in which case

lim
t!q�r

Z.X;t/ � .1�qr t /�r D˙�.X;bZ.r// �q�.X;OX ;r/: (4)

In particular, if Sr.X; l/ holds for all l , then the groups H i .Xét;bZ.r// are finite for all
i ¤ 2r , 2rC1.

For each n� 1 and i � 0, property (A) of Z.r/ gives us an exact sequence

0!H i .XWét;Z.r//.n/!H i .Xét; .Z=nZ/.r//!H iC1.XWét;Z.r//n! 0:

The middle term is finite, and so H i .XWét;Z.r//.n/ is finite for all i and n. On passing to
the inverse limit, we obtain an exact sequence

0!H i .XWét;Z.r//ˆ!H i .Xét;bZ.r//! TH iC1.XWét;Z.r//! 0 (5)

in which the middle term is finite for i ¤ 2r;2rC1. As TH iC1.XWét;Z.r// is torsion-free, it
must be zero for i ¤ 2r;2rC1. In other words, TH i .XWét;Z.r//D 0 for i ¤ 2rC1;2rC2:

So far we have used only conjecture Sr.X; l/ (all l) and property (A) of Z.r/. To
continue, we need to use T r.X; l/ (all l) and the property (B) of Z.r/. The l-Tate conjecture
T r.X; l/ for all l implies that the cokernel of the map CHr.X/˝ZbZ!H 2r.Xét;bZ.r// is tor-
sion. As this map factors throughH 2r.XWét;Z.r//ˆ, it follows that TH 2rC1.XWét;Z.r//D
0 and H 2r.XWét;Z.r//ˆ'H 2r.Xét;bZ.r//. Consider the commutative diagram

H 2r.XWét;Z.r//ˆ H 2r.Xét;bZ.r//
H 2rC1.XWét;Z.r//ˆ H 2rC1.Xét;bZ.r//:

'

de2r �2r
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As �2r has finite cokernel, so does the bottom arrow, and so TH 2rC2.XWét;Z.r//D 0. We
have now shown that

TH i .XWét;Z.r//D 0 for all i

and so ((5) and Corollary 4)�
H i .XWét;Z.r//ˆ'H i .Xét;bZ.r//
U.H i .XWét;Z.r// is uniquely divisible

for all i:

In particular, we have proved the first statement of the theorem except that each group
H i .XWét;Z.r//0 has been replaced by its completion. It remains to prove thatH i .XWét;Z.r//0
is finite for i ¤ 2r;2rC1 and is finitely generated for i D 2r;2rC1 (for thenH i .XWét;Z.r//ˆ'
H i .XWét;Z.r//0˝bZ).

The kernel of H i .XWét;Z.r//0!
�
H i .XWét;Z.r//0

�
ˆ is U.H i .XWét;Z.r//0/D 0, and

so H i .XWét;Z.r//0 is finite for i ¤ 2r;2rC1.
It remains to show that the groups H 2r.XWét;Z.r//0 and H 2rC1.XWét;Z.r//0 are

finitely generated. For this we shall need property (C) of Z.r/. For a fixed prime l ¤ p, the
pairings in (C) give rise to a commutative diagram

H 2r.XWét;Z.r//0=tors �H 2d�2rC1.XWét;Z.d � r//0=tors Z

H 2r.Xét;Zl.r//=tors � H 2d�2rC1.Xét;Zl.d � r//=tors Zl

to which we wish to apply Proposition 6. The bottom pairing is nondegenerate, the
group U.H 2r.XWét;Z.r//0/ is zero, and the group H 2d�2rC1.XWét;Z.d � r//.l/ is finite,
and so the proposition shows that H 2r.XWét;Z.r//0=tors is finitely generated. Because
U.H 2r.XWét;Z.r//0/D 0, the torsion subgroup ofH 2r.XWét;Z.r//0 injects into the torsion
subgroup of H 2r.Xét;bZ.r//, which is finite (Gabber 1983). Hence H 2r.XWét;Z.r//0 is
finitely generated. The group H 2rC1.XWét;Z.r//0 can be treated similarly. 2

REMARK 8. In the proof, we didn’t use the full force of T r.X/.

We shall need the following standard result.

LEMMA 9. Let A be a (noncommutative) ring and let NA be the quotient of A by a nil ideal
I (i.e., a two-sided ideal in which every element is nilpotent). Then:

(a) an element of A is invertible if it maps to an invertible element of NA;
(b) every idempotent in NA lifts to an idempotent in A, and any two liftings are conjugate

by an element of A lying over 1 NA;
(c) let a 2 A; every decomposition of Na into a sum of orthogonal idempotents in NA lifts to

a similar decomposition of a in A.

NOTES. We denote aCI by Na.
(a) It suffices to consider an element a such that NaD 1 NA. Then .1�a/N D 0 for some N > 0,

and so
a‚ …„ ƒ

.1� .1�a//
�
1C .1�a/C .1�a/2C�� �C .1�a/N�1

�
D 1:

(b) Let a be an element of A such that Na is idempotent. Then .a�a2/N D 0 for some N > 0,
and we let a0 D .1� .1�a/N /N . A direct calculation shows that a0a0 D a0 and that Na0 D Na.
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Let e and e0 be idempotents in A such that Ne D Ne0. Then a def
D e0eC .1� e0/.1� e/ lies above 1 NA

and satisfies e0aD e0e D ae.
(c) Follows easily from (b).

PROPOSITION 10. Let X be a smooth projective variety over a finite field k, and let r be an
integer. Assume that for some prime l the ideal of l-homologically trivial correspondences
in CHdimX .X �X/Q is nil. Then H i .Xet;Z.r// is torsion for all i ¤ 2r , and the Tate
conjecture T r.X/ implies that H 2r.Xet;Z.r// is finitely generated modulo torsion.

PROOF. This is essentially proved in Jannsen 2007, pp. 131–132, and so we only sketch the
argument. Set d D dimX and let k D Fq .

According to Lemma 9, there exist orthogonal idempotents �0; : : : ;�2d in CHdimX .X �

X/Q lifting the Künneth components of the diagonal in the l-adic topology. Let hiX D
.hX;�i / in the category of Chow motives over k. Let Pi .T / denote the characteristic
polynomial det.T �$X jH i . NXet;Ql/ of the Frobenius endomorphism $X of X acting
on H i . NXet;Ql/. Then Pi .$X / acts as zero on the homological motive hihomX , and so
Pi .$X /

N acts as zero on hiX for some N � 1 (from the nil hypothesis). We shall need
one last property of Bloch’s complex, namely, that H i .XWKet;Z.r//Q 'K2r�i .X/.r/ where
K2r�i .X/

.r/ is the subspace of K2r�i .X/Q on which the nth Adams operator acts as nr for
all r .

The qth Adams operator acts as the Frobenius operator, and so$X acts as multiplication
by qr on K2r�i .X/.r/. Therefore H i .XWKet;Z.r//Q is killed by Pi .qr/N , which is nonzero
for i ¤ 2r (by the Weil conjectures), and so H i .XWKet;Z.r// is torsion for i ¤ 2r .

The Tate conjecture implies that P2r.T /DQ.T / � .T �qr/�r where Q.qr/¤ 0, and so

1D q.T /Q.T /N Cp.T /.T �qr/N�r ; some q.T /, p.T / 2QŒT �:

As before, P2r.!X /N acts as zero on h2rX for some N � 1. Therefore q.$X /Q.$X /N

and p.$X /.$X � qr/N�r are orthogonal idempotents in End.h2rX/ with sum 1, and
correspondingly h2rX DM1˚M2. Now H 2r.M1;Z.r//Q D 0 because Q.$X /N is zero
on M1 and Q.qr/ ¤ 0. On the other hand, M2 is isogenous to .L˝r/�r where L is the
Lefschetz motive (Jannsen 2007, p. 132), and so H 2r.M2;Z.r// differs from

H 2r.L˝r ;Z.r//�r 'H 2r.Pd ;Z.r//�r ' Z�r

by a torsion group. 2

NOTES. When k D Fq , the qth Adams operator acts as $ (Hiller 1981, �5; Soulé 1985, 8.1), and
so Ki .X/.j / is the subspace on which $ acts as qj (because the mi -eigenspace of the mth Adams
operators is independent of m, Seiler 1988, Theorem 1).

THEOREM 11. Let X be a smooth projective variety over a finite field such that the Tate
conjecture T r.X/ is true for some integer r � 0. Assume that, for some prime l , the ideal of
l-homologically trivial correspondences in CHdimX .X �X/Q is nil. Then �.XWét;Z.r// is
defined, and

lim
t!q�r

Z.X;t/ � .1�qr t /�r D˙�.XWét;Z.r// �q�.X;OX ;r/: (6)

In particular, the groups H i .XWét;Z.r// are finite for i ¤ 2r;2rC 1. For i D 2r;2rC 1,
they are finitely generated.
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PROOF. This will follow from Theorem 7 once we show that the groupsU i def
DU.H i .XWét;Z.r///

are zero. Because H i .XWét;Z.r// is finitely generated modulo torsion (Proposition 10), it
does not contain a nonzero Q-vector space, and so U i D 0 (Corollary 4). 2

REMARK 12. For a smooth projective algebraic variety X whose Chow motive is finite-
dimensional, the ideal of l-homologically trivial correspondences in CHdimX .X �X/Q is nil
for all prime l (Kimura). It is conjectured (Kimura and O’Sullivan) that the Chow motives of
algebraic varieties are always finite-dimensional, and this is known for those in the category
generated by the motives of abelian varieties. On the other hand, Beilinson has conjectured
that, over finite fields, rational equivalence with Q-coefficients coincides with with numerical
equivalence, which implies that the ideal in question is always null (not merely nil).
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