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Introduction. This article surveys what is known to be true, or is conjectured,
concerning the rationality properties over Q of automorphic functions, holomorphic
automorphic forms, and the Fourier-Jacobi series of automorphic forms.

The first chapter reviews the theory of abelian varieties with potential complex
multiplication over Q and the motives that are built out of them. The constructions
and results in this chapter are the basis of the statements in the succeeding chapters.

The second chapter reviews the definition and basic properties of Shimura va-
rieties, and then states the main results: every Shimura variety has a canonical
model over its reflex field, and the conjugate of the canonical model by an element of
Gal(Qal/Q) is again the canonical model of a Shimura variety.

Holomorphic automorphic forms can be interpreted as the sections of certain vec-
tor bundles, called automorphic vector bundles, on a Shimura variety. These bundles
are defined in the Chapter III, and the main theorems for them, which parallel those
for Shimura varieties, are stated. In particular, every automorphic vector bundle has
a canonical model over a specific number field, and we can define a holomorphic au-
tomorphic form to be rational over a field if it is a section of the canonical model of
the vector bundle over that field.

As one approaches the boundary of a Hermitian symmetric domain, Hodge struc-
tures degenerate into mixed Hodge structures, and as one approaches the boundary
of a Shimura variety, abelian varieties degenerate into one-motives. The theories of
mixed Hodge structures and of one-motives are reviewed in Chapter IV.

In contrast to the Baily-Borel compactification of a Shimura variety, the method
of toroidal compactification provides smooth compactifications of Shimura varieties.
In Chapter V we describe these compactifications, and suggest how the various iso-
morphisms constructed in Chapters II and III should extend to the compactified
varieties.

The study of the boundary of a Shimura variety suggests the introduction of a new
object, generalizing that of a Shimura variety, which we here call a mixed Shimura
variety. These varieties are defined in Chapter VI, and we indicate there how the
results in Chapters II and III should extend to them. To give the reader some idea of
how the notion of a mixed Shimura variety relates to that of a Shimura variety, we
list some of the objects attached to a Shimura variety and the corresponding object
attached to a mixed Shimura variety:

Shimura variety Mixed Shimura variety
bounded symmetric domain Siegel domain (of the third kind)
Hodge structure mixed Hodge structure
reductive group algebraic group with 3-step filtration
abelian variety one-motive
motive mixed motive

Roughly speaking, everything that is true for Shimura varieties should also be true for
mixed Shimura varieties. For example, it will probably turn out to be most natural
to study Hasse-Weil zeta functions in the context of mixed Shimura varieties rather
than Shimura varieties. Lest the reader fear an unending hierachy, I mention that
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the study of the boundary of a mixed Shimura variety leads only to mixed Shimura
varieties, not to some higher order object.

In the last chapter, we give a formal-algebraic definition of Fourier-Jacobi series,
and suggest a theory for them also over Q.

The contents of the second and third chapters will eventually be part of a book
that I am currently writing1 on Shimura varieties. Once the theory outlined in the
last four chapters is complete, a second book will be appropriate. Lest the reader
think that that will then be the end of the subject, I point out that the theory for a
general Shimura variety will then be in roughly the same happy state as the theory for
elliptic modular curves was at the time of the publication of Shimura’s book, Shimura
(1971b), and that 1971 was the start of an explosion of interest in elliptic modular
curves that continues to this day.

One of my goals in this article has been to write out the implications of Deligne’s
vision that Shimura varieties should be thought of as moduli varieties of motives and
mixed Shimura varieties as the moduli varieties of mixed motives. I wish to thank
Deligne for his patient explanation of his ideas to me over the years, and I mention
specifically that the definition of a mixed Shimura variety in Chapter VI and the
formal-algebraic definition of Fourier-Jacobi series in Chapter VII were suggested to
me by him.

In this article, I have not attempted to describe in detail the origins of theorems,
but have largely confined myself to listing the most recent work. Thus it is appropriate
to mention that most of the questions discussed in this article first arose in the work
of Shimura, and were often answered by him (or his students) in key cases. See in
particular his talks to the International Congresses (Shimura 1968, 1971a, 1978a).

Finally I wish to thank Don Blasius and Michael Harris for many enjoyable and
illuminating discussions on these questions; also I would like to thank them, Greg
Anderson, and Pierre Deligne for their comments on parts of earlier drafts of this
manuscript.

Conventions

All vector spaces and locally free sheaves are of finite rank. We use the same letter
for a vector bundle and its associated locally free sheaf of sections.

A variety Y is a geometrically reduced scheme of finite-type over a field (it is not
necessarily connected). For a variety Y over a field k and a homomorphism σ : k ↪→ k′,
we write σY for Y ×Spec(k),σ Spec(k′) (the polynomials defining σY are obtained from
those defining Y by applying σ to their coefficients). When it is not necessary to
mention σ, we write Yk′ for σY .

The following construction will be often used: let G be an algebraic group over Q
acting on a variety Y on the left, and let P be a right principal homogeneous space
for G; then P ×G Y , the variety obtained from Y “by twisting by P”, is the variety
over Q such that, as a Gal(Qal/Q)-set,

(P ×G Y )(Qal) = P (Qal)× Y (Qal)/∼, (pg, y) ∼ (p, gy), g ∈ G(Qal).

1Added 22.06.01: Not so!
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For an algebraic group G over R, G(R)+ is the identity component of the
topological group G(R) and G(R)+ is the inverse image of Gad(R)+ in G(R); also
G(Q)+ = G(Q)∩G(R)+ and G(Q)+ = G(Q)∩G(R)+. An algebraic group is said to
be simple when all its proper normal closed subgroups are finite. When an algebraic
group G is defined over a field k, then all statements are relative to k; for example,
“simple” means “k-simple”, subgroups are defined over k, and representations take
values in k-vector spaces.

When k is a field, kal is an algebraic closure of k, ksep is a separable algebraic
closure, and kab is a maximal abelian extension of k. We always take Qal to be the
algebraic closure of Q in C.

For a number field E, AE is the ring of adèles of E and Ê the ring of finite
adèles. We write A for AQ, Af for Q̂, and A′ for C × Af . The reciprocity law
recE : A×E → Gal(Eab/E) is normalized so that a local uniformizing element maps
to the inverse of the usual (number-theorists) Frobenius automorphism. Complex
conjugation is denoted by ι or by a 7→ ā, and [∗] is the equivalence class of ∗ .

Except in Chapter V, the symbol T F denotes the restriction of scalars (in the
sense of Weil) of Gm from F to Q.

When V is a vector space over a field k, and k′ is an extension of k, we sometimes
denote V ⊗k k′ by V (k′) or Vk′ .



CHAPTER I

Abelian varieties with complex multiplication

In this chapter we review the theory of abelian varieties with potential complex
multiplication over Q, the category of motives they generate, and their periods.

1. Tannakian categories

The Pontryagin duality theorem allows one to recover a locally compact abelian
group from its character group. Tannaka (1938) showed that a compact group can
be recovered from the category of continuous finite-dimensional real representations
of the group. The theory of Tannakian categories allows one to recover an affine
group scheme from its category of finite-dimensional representations, and it gives an
axiomatic characterization of the categories that arise in this fashion. It therefore
provides a way of realizing certain abstractly defined categories as the category of
representations of an affine group scheme.

A tensor category (C,⊗) is a category C together with a functor ⊗ : C×C → C
and sufficient constraints so that the tensor product of any finite unordered set of
objects is well-defined up to a unique isomorphism. In particular, there is an identity
object 11, defined to be the tensor product of the empty set of objects, which has the
property that

X ⊗ 11 ∼= X ∼= 11⊗X

for all objects X of C.

A tensor category (C,⊗) is said to be abelian when C is abelian and ⊗ is bi-
additive. Then k =df End(11) is a commutative ring which acts on all objects of C
in such a way that all morphisms of C are k-linear and ⊗ is bilinear; we call (C,⊗)
a k-linear abelian tensor category (in an alternative terminology, (C,⊗) is called an
abelian tensor category with coefficents k). For example, Veck is a k-linear abelian
tensor category.

A tensor category is said to be rigid if every object X of C has a dual X̌ and
these duals have certain natural properties, for example,

Hom(T ⊗ X̌, Y ) ∼= Hom(T, X ⊗ Y ).

A functor from one tensor category to a second is called a tensor functor if
it carries tensor products into tensor products (including the identity object to the
identity object). A morphism of tensor functors c : F → F ′ is a morphism of functors
commuting with tensor products, i.e., such that the diagrams

8
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11′
≈−−−→ F (11)∥∥∥

yc11

11′ ≈−−−→ F ′(11)

F (X⊗Y )
≈−−−→ F (X)⊗F (Y )ycX⊗Y

ycX⊗cY

F ′(X⊗Y )
≈−−−→ F ′(X)⊗F ′(Y )

commute. (The horizontal isomorphisms are part of the data that F and F ′ are tensor
functors.)

Let k be a field. A k-linear neutral Tannakian category is a rigid k-linear abelian
tensor category for which there exists an exact k-linear tensor functor ω : C → Veck.
Such a functor is called a fibre functor for (C,⊗). Since we shall never need to
consider non-neutral Tannakian categories, from now “Tannakian category” means
“neutral Tannakian category”.

Example 1.1. For any affine group scheme G over a field k, the category Repk(G)
of finite-dimensional representations of G on k-vector spaces is a k-linear Tannakian
category with an obvious fibre functor, namely (V, ξ) 7→ V . (An affine group scheme
over k is an affine scheme G over k together with morphisms G×G → G (multiplica-
tion), G → G (inverse), Spec k → G (identity element) satisfying the usual axioms.
Thus G is an algebraic group if it is of finite-type. Every affine group scheme is a
projective limit of algebraic groups, and conversely every projective system of affine
algebraic groups has an affine group scheme as limit.)

If ω is a fibre functor for the k-linear Tannakian category (C,⊗) and R is a k-
algebra, we define ωR to be the tensor functor X 7→ ω(X) ⊗k R from (C,⊗) to the
category of R-modules. When ω′ is a second fibre functor, Isom⊗(ω, ω′) denotes the
functor from the category of k-algebras to that of sets,

R 7→ Isom⊗(ωR, ω′R) (isomorphisms of tensor functors).

Also Aut⊗(ω) denotes Isom⊗(ω, ω).

Theorem 1.2. Let (C,⊗) be a Tannakian category with fibre functor ω. The
functor Aut⊗(ω) is represented by an affine group scheme G over k, and ω defines an
equivalence of tensor categories

(C,⊗) → (Repk(G),⊗).

If ω′ is a second fibre functor, then the functor Isom⊗(ω, ω′) is represented by an
affine scheme P (ω, ω′), which is a principal homogeneous space for G. The affine
group scheme G′ representing Aut⊗(ω′) is the inner form of G obtained from G by
twisting by P (ω, ω′).

Proof. See for example Deligne and Milne 1982, 2.11, 3.2. ¤

The picture to keep in mind when thinking of Tannakian categories is the follow-
ing. Let X be a connected topological manifold, and let C be the category of local
systems of Q-vector spaces on X (= locally constant sheaves of Q-vector spaces).
When endowed with its usual tensor structure, this category is Tannakian. The
choice of a point x of X determines a fibre functor ωx : V 7→ Vx (stalk of V at x) for
C, and the fundamental group π1(X, x) acts on Vx; moreover ωx defines an equiva-
lence from (C,⊗) to the tensor category of rational representations of the abstract
group π1(X, x). If y is a second point, then the set P (x, y) of paths from x to y (taken
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up to homotopy) is a principal homogeneous space for π1(X, x), and π1(X, y) is the
inner form of π1(X, x) obtained from π1(X, x) by twisting by P (x, y).

Example 1.3. To give a grading on a vector space is the same as to give a
representation of Gm on V : the grading V = ⊕V n corresponds to the representation
for which Gm acts on V n through the character χn = (t 7→ tn). The category of
graded vector spaces over k has an obvious k-linear Tannakian structure, and our
observation shows that the associated affine group scheme is Gm.

Example 1.4. Let C be the category of continuous representations of Gal(ksep/k)
on vector spaces over Q. This is a Q-linear Tannakian category with the forgetful
functor as fibre functor. Write Gal(ksep/k) as a limit lim←−Gal(K/k) of finite Galois
groups, and give each group Gal(K/k) the structure of a constant algebraic group
of dimension zero. Then Gal(ksep/k) acquires the structure of a pro-algebraic group,
and this is the affine group scheme attached to C.

Remark 1.5. (a) A homomorphism f : G → G′ of affine group schemes over k
defines a tensor functor F : Repk(G

′) → Repk(G). Conversely, a tensor functor of
k-linear Tannakian categories F : (C,⊗) → (C′,⊗) carrying a fibre functor ω′ into
a fibre functor ω defines a homomorphism of affine group schemes f : Aut⊗(ω′) →
Aut⊗(ω). Moreover, f is injective if and only if the image of F generates Repk(G)
as a Tannakian category1, and f is surjective if and only if F is fully faithful and the
essential image is stable under the formation of subquotients.

(b) Let (C,⊗) be a k-linear Tannakian category, and let k′ be a finite separable
extension of k. The category Ck′ is defined to be the pseudo-abelian envelope2 of the
category whose objects are those of C and whose morphisms are given by

HomCk′ (X, Y ) = HomC(X,Y )⊗k k′.

It is a k′-linear Tannakian category. Any fibre functor ω of C extends in a natural
way to a fibre functor ω′ of Ck′ , and the affine group scheme attached to (Ck′ , ω

′) is
Gk′ .

Graded Tannakian categories.

Definition 1.6. A grading of a k-linear Tannakian category C can be described
as either:

(a) a grading X = ⊗m∈ZXm on each object of C that depends functorially on X
and is compatible with tensor products in the sense that (X⊗Y )m = ⊕r+s=mXr⊗Y s;
or

(b) a central homomorphism w : Gm → G, G = Aut⊗(ω), for some fibre functor
ω.

1We say that a set of objects S in a Tannakian category C generates C if there is no full
Tannakian subcategory of C containing all objects of S and their subquotients other than C itself.

2An additive category is pseudo-abelian or (Karoubian) if, for every morphism p : X → X such
that p2 = p, the kernel of p − 1 exists. For any additive category C, there is a pseudo-abelian
category PC and a functor C → PC that is universal among functors from C into pseudo-abelian
categories. The objects of PC are pairs (X, p) with p as above, and the morphisms are defined so
as to make (X, p) the image of p in the enlarged category.
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Central means that the image is contained in the centre of G. Note that, by (1.2),
the centre of G is independent of the choice of ω. A grading of C defines a grading
on ω(X) for each object X and fibre functor ω; we have ω(X)n = ω(Xn), which is
the subspace of ω(X) on which w(z) acts as zn.

Filtrations of Repk(G). Let V be a vector space. A homomorphism µ : Gm →
GL(V ) defines a filtration

· · · ⊃ F pV ⊃ F p+1V ⊃ · · · , F pV = ⊕i≥pV
i,

of V , where V = ⊕V i is the grading defined by µ.

Let G be an algebraic group over a field k of characteristic zero. A homomorphism
µ : Gm → G defines a filtration F • on V for each representation (V, ξ) of G, namely,
that corresponding to ξ ◦ µ. These filtrations are compatible with the formation of
tensor products and duals, and they are exact in the sense that V 7→ Gr•F (V ) is exact.
Conversely, any functor (V, ξ) 7→ (V, F •) from representations of G to filtered vector
spaces compatible with tensor products and duals which is exact in this sense arises
from a (nonunique) homomorphism µ : Gm → G. We call such a functor a filtration
F • of Repk(G), and a homomorphism µ : Gm → G defining F • is said to split F •.
We write Filt(µ) for the filtration defined by µ.

For each p, we define F pG to be the subgroup of G of elements acting as the iden-
tity map on ⊕iF

iV/F i+pV for all representations V of G. Clearly F pG is unipotent
for p ≥ 1, and F 0G is the semi-direct product of F 1G with the centralizer Z(µ) of
any µ splitting F •.

Proposition 1.7. Let G be a reductive group over a field k of characteristic zero,

and let F • be a filtration of Repk(G). From the adjoint action of G on g
df
= Lie(G),

we acquire a filtration of g.

(a) F 0G is the subgroup of G respecting the filtration on each representation of G;
it is a parabolic subgroup of G with Lie algebra F 0g.

(b) F 1G is the subgroup of F 0G acting trivially on the graded module
⊕(F pV/F p+1V ) associated with each representation of G; it is the unipotent radi-
cal of F 0G, and Lie(F 1G) = F 1g.

(c) The centralizer Z(µ) of any µ splitting F • is a Levi subgroup of F 0G; therefore,

Z(µ)
≈→ F 0G/F 1G, and the composite µ̄ of µ with F 0G → F 0G/F 1G is central.

(d) Two cocharacters µ and µ′ of G define the same filtration of G if and only if
they define the same group F 0G and µ̄ = µ̄′; µ and µ′ are then conjugate under F 1G.

Proof. See Saavedra 1972, especially IV 2.2.5. ¤
Remark 1.8. It is sometimes more convenient to work with ascending filtrations.

To turn a descending filtration F • into an ascending filtration W•, set Wi = F−i; if
µ splits F •, then z 7→ µ(z)−1 splits W•. With this terminology, we have W0G =
W−1Go Z(µ).

Notes. The essentials of the theory of Tannakian categories are due to
Grothendieck. A full account of the theory can be found in Saavedra 1972 and a
more succinct account in Deligne and Milne 1982. The paper Deligne 1989 fills an
important gap in the theory of non-neutral Tannakian categories.
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2. Hodge structures

A real Hodge structure is a real vector space V together with a decomposition

V ⊗ C = ⊕V p,q

such that the complex conjugate of V p,q is V q,p, all p, q. The category of such
structures has a natural Tannakian structure, and the affine group scheme attached
to the category and the forgetful fibre functor is S =df ResC/RGm. According to
Deligne’s convention, z ∈ S(R) = C× acts on V p,q as multiplication by z−pz̄−q. A
Hodge structure is said to be of weight n if p+ q = n for all (p, q) with V p,q 6= 0. The
type of a Hodge structure is the set of pairs (p, q) for which V p,q 6= 0.

The Hodge filtration defined by a Hodge structure is

· · · ⊃ F p ⊃ F p+1 ⊃ · · · , F p = ⊕r≥pV
r,s.

If V has weight n, then

F̄ q = (⊕s≥qV
s,r

) = ⊕s≥qV
r,s = ⊗r≤n−qV

r,s,

and so VC is the direct sum of F p and F̄ q whenever p + q = n + 1. Conversely, if F •

is a finite descending filtration of VC such that VC = F p⊕ F̄ q whenever p+ q = n+1,
then F • defines a Hodge structure of weight n on VC by the rule V p,q = F p ∩ F̄ q.

From now on, we shall regard a real Hodge structure as being a pair (V, h) consist-
ing of a real vector space V and a homomorphism h : S→ GL(V ). We identify SC with
Gm×Gm in such a way that S(R) ↪→ S(C) becomes z 7→ (z, ιz). The Hodge filtration
on V is then the descending filtration defined by µh : Gm → GL(VC), µh(z) = hC(z, 1),
and the weight grading is defined by wh : Gm → GL(V ), wh(r) = h(r−1), r ∈ R×.

For any k ⊂ R, a Hodge k-structure is a vector space V over k together with
a Hodge structure on V ⊗k R such that the weight grading is defined over k. The
category of such structures is a k-linear Tannakian category Hdgk. A Hodge Q-
structure will simply be called a Hodge structure. The Mumford-Tate group MT (V, h)
of a Hodge structure is the smallest Q-rational algebraic subgroup of GL(V ) × Gm

such that MT (V, h)C contains the image of (µh, 1) : Gm → GL(V ) × Gm. It is a
connected subgroup of GL(V )×Gm.

Example 2.1. (a) For any smooth projective variety X over C, Hodge theory
provides Hn(X(C),Q) with a Hodge structure of weight n. Since Hn(X(C),Q) is
dual to Hn(X(C),Q), it acquires a Hodge structure of weight −n.

(b) Giving a Hodge structure of type {(−1, 0), (0,−1)} on a real vector space
V corresponds to giving a complex structure on V : given the complex structure,
define h(z) to be multiplication by z; given the Hodge structure, define the complex
structure by the isomorphism V → VC/F 0.

(c) For each integer n, Q(n) denotes the vector space (2πı)nQ with the Hodge
structure of type {(−n,−n)}.

A polarization of a Hodge k-structure (V, h) of weight n is a morphism of Hodge
structures ψ : V (R) ⊗ V (R) → R(−n) such that the real-valued form (x, y) 7→
(2πı)nψ(x, h(i)y) is symmetric and positive-definite. The Mumford-Tate group of
a polarizable Hodge structure is reductive.
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Example 2.2. For an abelian variety A over C, H1(A,Q) is a polarizable Hodge
structure of type {(0,−1), (−1, 0)}, and A 7→ H1(A,Q) defines an equivalence be-
tween the category of abelian varieties over C, considered up to isogeny, and the
category of polarizable Hodge structures of type {(0,−1), (−1, 0)}. The Mumford-
Tate group MTA of A is defined to be the Mumford-Tate group of H1(A,Q).

Hodge structures of CM-type. A Hodge structure is said to be of CM-type if
it is polarizable and its Mumford-Tate group is commutative (and hence a torus).

Example 2.3. A field E of finite degree over Q is said to be a CM-field if there
is a nontrivial involution ι of E that becomes complex conjugation under every em-
bedding E ↪→ C. A finite product of CM-fields is called a CM-algebra. An abelian
variety A is said to have complex multiplication (or be of CM-type) if there is a faith-
ful homomorphism E → End(A) ⊗ Q (mapping 1 to 1) with E a CM-algebra of
degree [E : Q] = 2 dim(A), and it is said to have potential complex multiplication if it
acquires complex multiplication over some extension of the ground field. With these
definitions, an abelian variety over C is of CM-type if and only if the Hodge structure
H1(A,Q) is of CM-type.

The category of Hodge structures of CM-type is Tannakian. Let S be the affine
group scheme attached to it and the forgetful fibre functor. The functor sending a
Hodge structure (V, h) to the real Hodge structure (V ⊗R, h) defines a homomorphism
hcan : S→ SR, and hence a cocharacter µcan of SC.

Proposition 2.4. (a) The group scheme S is a pro-torus. The map

ξ 7→ nχ, nχ(τ) = 〈χ, τµcan〉,
identifies the character group of S with the group of all functions n : Gal(Qal/Q) → Z
which factor through Gal(F/Q) for some CM-field F and which have the property that

n(ισ) + n(σ) = constant.

(b) The pair (S, µcan) has the following universal property: for any torus T over
Q and µ ∈ X∗(T ) satisfying

(τ − 1)(ι + 1)µ = 0 = (ι + 1)(τ − 1)µ, all τ ∈ Gal(Qal/Q), (*)

there is a unique homomorphism ρµ : S → T (defined over Q) such that (ρµ)C◦µcan =
µ.

The pro-torus S is called the Serre group, and the condition (*) is called the Serre
condition.

Remark 2.5. (a) For a field F of finite degree over Q, define SF to be the quotient
of T F =df ResF/QGm whose character group X∗(SF ) is the subgroup of X∗(T F ) of
elements satisfying the Serre condition. The norm map induces a homomorphism
SF ′ → SF for any F ′ containing F , and it is easily seen that S = lim←−SF (limit over

F ⊂ Qal). In fact, it suffices to take the limit over all CM-fields F ⊂ Qal.

(b) Let F ⊂ Qal be a finite Galois extension of Q. The action of Gal(Qal/Q)
on T F defined by its action on F induces an action of Gal(Qal/Q) on SF . In the
limit we obtain an action of Gal(Qal/Q) on S (rational over Q). There are therefore
two distinct actions of Gal(Qal/Q) on S(Qal): the first arises from the action of
Gal(Qal/Q) on S, and the second from its action on Qal.
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Example 2.6. Let E be a CM-algebra. A CM-type for E is a subset Φ of
Hom(E,C) such that Hom(E,C) = Φ∪ ιΦ (disjoint union). Let A be an abelian vari-
ety over C with complex multiplication i : E → End(A)⊗Q by E. For σ ∈ Hom(E,C),
write Cσ for C with E acting through σ. Then Tgt0(A) ≈ ∏

ϕ∈ΦCϕ with Φ a CM-type

for E, and (A, i) is said to be of CM-type (E, Φ). By assumption, V = H1(A,Q) is
a free E-module of rank one, and we can regard TE as a subtorus of GL(V ). Define
µΦ : Gm → (TE)C to be the cocharacter such that

σ ◦ µΦ =

{
1 if σ ∈ Φ
0 otherwise

and let hΦ be the associated homomorphism hΦ : S → (TE)R. When regarded as a
homomorphism S → GL(VR), hΦ is the representation of S defined by the Hodge
structure on H1(A,Q).

Since µΦ satisfies the Serre condition, it determines a homomorphism ρΦ : S →
TE ⊂ GL(V ); ρΦ is the representation of S defined by the CM-Hodge structure
H1(A,Q).

The field of definition of µΦ (contained in C) is called the reflex field E∗(Φ) of
(E, Φ). For any number field F ⊃ E∗(Φ), µΦ defines a homomorphism NΦ

T F
ResF/Q(µΦ)−−−−−−−→ ResF/Q(TE)

NormF/Q−−−−−→ TE

called the reflex norm.

For any isomorphism σ : E → E ′ of CM-fields and automorphism τ of Qal, τΦσ−1

denotes the CM-type {τφσ−1|φ ∈ Φ} of E ′; for any CM-field E ′ ⊃ E, Φ extends to a
CM-type Φ′ = {φ ∈ Hom(E ′,Qal) | φ|E ∈ Φ}. We shall need the following formulas:

ρΦ ◦ τ = ρτ−1Φ, σ ◦ ρΦ = ρΦσ−1 , NE′/E ◦ ρΦ′ = ρΦ.

Hodge tensors. Let V be a Hodge structure. A Hodge element in V is an
element of type (0, 0) in V . For example, the Hodge elements in V̌ ⊗W are precisely
the elements corresponding to homomorphisms V → W that are morphisms of Hodge
structures. According to the Hodge conjecture, the Hodge elements of H2p(X,Q(p))
should be linear combinations of the classes of algebraic cycles. A Hodge tensor of V
is an element of type (0, 0) in

T V
df
= ⊕V ⊗r ⊗ V̌ ⊗s ⊗Q(m) (sum over (r, s,m) ∈ N× N× Z).

We let GL(V ) act on T V through its actions on V and V̌ , and we let Gm act on T V
through its action on Q(1).

Proposition 2.7. The Mumford-Tate group of a Hodge structure (V, h) is the
subgroup of GL(V )×Gm of elements fixing all the Hodge tensors of V .

Proof. See Deligne 1982a, pp. 40-45. ¤
Proposition 2.8. Let C be the Tannakian subcategory of HdgQ generated by V

and Q(1). The affine group scheme attached by (1.2) to C and the forgetful fibre
functor is MT (V, h).

Proof. Since V and Q(1) generate C, the affine group scheme is a subgroup of
GL(V )×Gm, and it consists of those elements of GL(V )×Gm that commute with all
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morphisms of Hodge structures. But every morphism of Hodge structures in C can
be interpreted as a Hodge tensor of V . ¤

Notes. The Mumford-Tate group was introduced in Mumford 1966, and the Serre
group in Serre 1968, pII-2. They are discussed in more detail in Deligne 1982a, § 3,
and Milne and Shih 1982a.

3. Hodge cycles

A theorem of Deligne shows that Hodge cycles on an abelian variety have some
of the properties of algebraic cycles; in particular, it will enable us to define Hodge
cycles on an abelian variety over any field of characteristic zero.

We review the first homology groups attached to an abelian variety A over a field
k of characteristic zero.

When k = C, we have the usual “Betti” homology group HB(A)
df
= H1(A(C),Q).

This is a vector space of dimension 2 dim A over Q, and, as we noted in §2, it has a
Hodge structure of type {(−1, 0), (0,−1)}. For any field k and embedding τ : k ↪→ C,
we set Hτ (A) = HB(τA). When k is a subfield of C, we sometimes write HB(A) for
HB(AC).

For any choice of an algebraic closure kal of k, we define the `-adic homology
group H`(A) to be the dual of the étale cohomology group H1

et(Akal ,Q`). This is a
vector space of dimension 2 dim A over Q`. In more down-to-earth terms, we could set
H`(A) = T`(A)⊗Q, where T`(A) is the Tate module lim←−A(kal)`n of A. An embedding

of kal into an algebraically closed field K defines an isomorphism H`(Akal) → H`(AK);
in particular, Gal(kal/k) acts on H`(A). We set Q`(1) = T`(Gm) ⊗ Q, and Q`(n) =
Q`(1)⊗n, n ∈ Z.

We define HdR(A) to be the dual of the de Rham cohomology group H1
dR(A) =df

H1(A, Ω•
A/k). It is a vector space of dimension 2 dim A over k, and if K ⊃ k, then

HdR(AK) = HdR(A)⊗k K. We sometimes write H∞(A) for HdR(A).

When k = C, there are canonical comparison isomorphisms

HB(A)⊗Q` → H`(A), HB(A)⊗ C→ HdR(A).

The second of these can be obtained as follows: the map

γ 7→ (ω 7→
∫

γ

ω),

identifies HB(A) ⊗ C with the dual of the space of differential forms of the first or
second kind on A, which equals Ȟ1

dR(A) = HdR(A). Thus the map is defined by the
periods of A.

We extend these notations as follows:

TB(A) = T (HB(A)) (case that k = C);

Tτ (A) = T (HB(τA)) (where τ is an embedding of k into C);

T`(A) = ⊕H`(A)⊗r ⊗ Ȟ`(A)⊗s ⊗Q`(m);

T∞(A) = TdR(A) = ⊗HdR(A)⊗r ⊗ ȞdR(A)⊗s;

Tf (A) = Π′T`(A) (restricted product over finite primes `).
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When k = C, the comparison isomorphisms extend to canonical isomorphisms

TB(A)⊗Q` → T`(A), TB(A)⊗ C→ TdR(A).

Thus, for any abelian variety A over k and inclusion τ : kal ↪→ C, there are canonical
maps

TB(τA) −−−→ T`(τA) ←−−− T`(A)

for each ` (including ` = ∞).

When A is an abelian variety over C, a Hodge tensor s for the Hodge structure
HB(A) is called a Hodge cycle on A; thus s is an element of type (0, 0) in TB(A). The
images of s under the comparison isomorphisms are called the local components s` of
s for each ` (including ∞).

Let A be an abelian variety over an algebraically closed field k. A family (s`)`

with s` ∈ T`(A) (` = ∞ included) is called a Hodge cycle on A relative to τ : k ↪→ C
if there is a Hodge cycle s on τA whose local components are the images of the s` in
T`(τA) for all `. Equivalently, we can say that (s`) is a Hodge cycle on A relative to
τ if

(a) s∞ ∈ F 0T∞;

(b) the image of (s`) in Tf (τA)× T∞(τA) lies in the Q-subspace TB(τA).

Theorem 3.1. Let A be an abelian variety over an algebraically closed field k of
characteristic zero. If s is a Hodge cycle on A relative to one embedding τ : k ↪→ C,
then it is a Hodge cycle relative to every such embedding.

Proof. This is the main theorem of Deligne 1982a. ¤

Of course, the theorem says nothing if there are no embeddings of k into C.
When k is an algebraically closed field of finite transcendence degree over Q, we
write CH(A) for the subspace of Tf (A) × T∞(A) of elements that are Hodge cycles
relative to some embedding of k into C. It is a vector space over Q, and an inclusion
k ↪→ K of algebraically closed fields of finite transcendence degree over Q induces
an isomorphism CH(A) → CH(AK). This remark allows us to define CH(A) for an
abelian variety over any algebraically closed field K of characteristic zero: choose an
algebraically closed subfield k of K of finite transcendence degree over Q such that
A has a model Ak over k and set CH(A) = CH(Ak).

An embedding k ↪→ K of algebraically closed fields defines a map CH(A) →
CH(AK). In particular, when A has a model A0 over subfield k0 of k, Gal(k/k0) acts
on CH(A). In this case, we define CH(A0) to be the subspace of CH(A) of elements
fixed by Gal(k/k0).

Much of the above discussion extends to arbitrary smooth projective varieties X.
In particular, it is possible to define the notion of a Hodge cycle on X relative to
an embedding τ : k ↪→ C (see Deligne 1982a, §2), and it is reasonable to expect that
(3.1) will hold also for X.

Conjecture 3.2. For any smooth projective variety X over an algebraically
closed field k of characteristic zero, a cycle s that is a Hodge cycle relative to one
embedding τ : k ↪→ C will be a Hodge cycle relative to every such embedding.
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This conjecture is implied by the Hodge conjecture. In the absence of a proof of
(3.2), Deligne makes the following definition: when X is defined over an algebraically
closed field k of finite transcendence degree over Q, an absolute Hodge cycle on X is a
cycle that is Hodge relative to every embedding k ↪→ C. The definition is extended
to other ground fields by the same procedure as for Hodge cycles on abelian varieties.
This gives a notion of an absolute Hodge cycle on any smooth projective variety over
a field of characteristic zero, which, when the variety is an abelian variety, coincides
with that of a Hodge cycle.

Remark 3.3. Let A be an abelian variety over C. Proposition 2.7 provides the
following description of MTA: for any Q-algebra R, MTA(R) is equal to the group
of automorphisms HB(A)⊗R fixing all elements of CH(A).

Notes. This section summarizes part of Deligne (1982a).

4. Motives

Let k be a field of characteristic zero, and let V/k be a category of smooth
projective varieties over k. The aim of the theory of motives is to attach to V/k a Q-
linear Tannakian category Mot/k and a “universal cohomology functor” h : V/k →
Mot/k (see Saavedra 1972, VI.4).

Example 4.1. Let V0/k be the category of varieties of dimension zero over k.
For a variety X = Spec R of dimension zero and τ : k ↪→ C, we have the (zeroth)
cohomology groups,

Hτ (X) = Hom(X(C),Q), H`(X) = Hom(X(kal),Q`), HdR(X) = R.

Fix an algebraic closure kal of k, and let Art/k be the Tannakian category defined
in (1.4). For a representation M = (V, ξ) of Gal(kal/k), define

Hτ (M) = V, H`(M) = V ⊗Q`, HdR(M) = (V ⊗ kal)Gal(kal/k) (diagonal action).

Set hX = Hom(X(kal),Q) for X in V0; then Art/k is generated (as a Tannakian
category) by the objects hX, and H∗(hX) = H∗(X) for ∗ = τ , `, or dR. Thus
h : V0 → Art/k is the universal cohomology functor for V0/k. The objects of Art/k
are called Artin motives.

Unfortunately, not enough is known about algebraic cycles to construct a Tan-
nakian category of motives for all varieties using them3. Instead, we use Hodge
cycles. Assume k is algebraically closed, and let V/k be the category of abelian vari-
eties over k. If A and B are objects of V/k, define Hom(hA, hB) to the set of families
(f` : H`(A) → H`(B))` (` = ∞ included) such that, when we regard f` as an element
of Ȟ`(A)⊗H`(B) ⊂ T`(A×B), then (f`)` is a Hodge cycle on A×B. Define CV/k
to be the category with objects hA, one for each A ∈ ob(V/k), and the morphisms
just defined. Adjoin the images of projectors p to the set of objects of CV/k, and

3Surprisingly, the difficulty is in adjusting the commutativity constraint (the functorial isomor-
phism X ⊗ Y ≈ Y ⊗ X). For this one needs to use Grothendieck’s “standard conjectures”–see
Saavedra (1972), VI.4.

Added 22.06.01: There is also the problem that the category will not be abelian unless the equiv-
alence relation is numerical equivalence, in which case one doesn’t know that the usual cohomology
theories define fibre functors.
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so embed CV/k into its pseudo-abelian envelope CV+/k (cf. 1.5a). Next adjoin
to CV+/k all powers of the Tate motive Q(1). Finally modify the commutativity
constraint (the identification of M ⊗N with N ⊗M) to obtain the category AV/k of
motives of abelian varieties over k (for the details, see Deligne and Milne 1982, §6).

Theorem 4.2. The category AV/k is a semisimple Q-linear Tannakian category.
It is generated (as a Tannakian category) by the motives hA with A an abelian va-
riety over K. The functors Hτ , H`, and HdR on V/k extend to Mot/k, as do the
comparison isomorphisms.

Variants 4.3. (a) Drop the condition that k is algebraically closed, and take V/k
to be the category of abelian varieties and varieties of dimension zero over k. We then
obtain a semisimple Q-linear Tannakian category AV/k with the properties in (4.2)
except that AV/k is now generated by the motives of abelian varieties and the Artin
motives.

(b) Drop the condition that k is algebraically closed, and take V/k to be the
category of all smooth projective varieties over k. Replace “Hodge cycle” with “abso-
lute Hodge cycle” in the definition of CV/k. We then obtain a semisimple Q-linear
Tannakian category Mot/k, the category of motives over k, with the properties in
(4.2), except that it is now generated by the motives of smooth projective varieties.

Proposition 4.4. The functor HB : AV/C→ HdgQ is fully faithful.

Proof. In this case, Hom(hA, hB) consists of the maps HB(A) → HB(B) given
by Hodge tensors. These are morphisms of Hodge structures. ¤

Motives of CM-type. Define CM/k to be the Tannakian subcategory of AV/k
generated by the motives of abelian varieties of potential CM-type over k and the
Artin motives. Objects of CM/k will be called motives of CM-type or CM-motives
over k.

Proposition 4.5. The functor HB : CM/C → HdgQ is fully faithful, with es-
sential image the category of Hodge structures of CM-type. Therefore the affine group
scheme attached to the Tannakian category CM/C and the Betti fibre functor is the
Serre group S.

Proof. That HB is fully faithful follows from (4.4). If we let S′ be the affine
group scheme attached to CM/C, then (1.5a) shows that there is a surjective homo-
morphism S → S′. To prove that this homomorphism is injective, it suffices to show
that the intersection of the kernels of the homomorphisms ρA : S → GL(HB(A)),
A an abelian variety A of CM-type over C, is trivial. This follows from the next
lemma. ¤

Lemma 4.6. Let F ⊂ Qal be a CM-field, Galois over Q. The intersection of the
kernels of the homomorphisms (see 2.6) ρΦ : SF → T F defined by the CM-types Φ on
F is trivial.

Proof. It suffices to show that X∗(SF ) is generated by the images of the
maps X∗(ρΦ) : X∗(T F ) → X∗(SF ). But, by definition, X∗(SF ) consists of the sums∑

n(σ) σ, σ ∈ Hom(F,C), with n(σ) + n(ισ) constant, and one sees easily that the
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image of X∗(ρΦ) contains
∑

ϕ∈Φ ϕ. Thus the proof is an easy combinatorial exercise

(see Lang 1983, p175). ¤

The functor A 7→ AC defines an equivalence between the category of abelian
varieties of CM-type over Qal and the corresponding category over C. Thus the base-
change functor CM/Qal → CM/C is an equivalence of categories, and the affine
group scheme attached to CMQal and the Betti fibre functor is again the Serre group
S.

Notes. The concept of a motive is due to Grothendieck. The definition adopted
in this article is a variant of his. Most of the material in this section is from Deligne
and Milne (1982), §6.

5. The main theorem of complex multiplication

Let (A, i) be an abelian variety with complex multiplication over Qal. The theorem
of Shimura and Taniyama (Lang 1983, p84) describes how those automorphisms of
Qal fixing the reflex field of (A, i) act on the torsion points of A. Work of Deligne and
Langlands extends the result to the full Galois group of Qal over Q. In this section,
we give a statement and proof of this result in terms of abelian varieties, and in the
next section, we re-interpret it in terms of motives.

Definition of the Taniyama element fΦ(τ). Let E be a CM-field. For each
σ ∈ Hom(E,Qal), choose an element vσ ∈ Hom(Eab,Qal) in such a way that vσ|E = σ
and vισ = ιvσ. For any τ ∈ Gal(Qal/Q), τ ◦ vσ and vτσ have the same action on
elements of E, and so differ by an element of Gal(Eab/E). For a CM-type Φ for E,
define

VΦ(τ) =
∏
ϕ∈Φ

v−1
τϕ · τ ◦ vϕ ∈ Gal(Eab/E).

It is easily checked that VΦ(τ) is independent of the choice of the elements vσ.

The cyclotomic character χcyc : Gal(Qal/Q) → Ẑ× is defined by the condition that
σζ = ζχcyc(σ) for every root of unity ζ in Qal. With our conventions, recQ(χcyc(σ)) =
σ|Qab.

Proposition 5.1. There is a unique element fΦ(τ) ∈ Ê×/E× such that

(a) recE(fΦ(τ)) = VΦ(τ), and
(b) fΦ(τ) · ιfΦ(τ) = χcyc(τ)E×.

Proof. See Tate (1981) (also Lang 1983, p168). ¤

We call fΦ(τ) the Taniyama element for (E, Φ) and τ . With the notations of
(2.6), we we have the following result.

Proposition 5.2. (a) fΦ(στ) = fτΦ(σ) · fΦ(τ), σ, τ ∈ Gal(Qal/Q).

(b) σfΦ(τ) = fΦσ−1(τ), σ an isomorphism E → E ′, τ ∈ Gal(Qal/Q).

(c) fΦ(ι) = 1.

(d) If Φ′ is the extension of Φ to E ′ ⊃ E, then fΦ(τ) = fΦ′(τ) (in Ê ′×/E ′×).

(e) If τ fixes E∗, then fΦ(τ) = NΦ(s) · E× for any s ∈ Ê∗ such that recE∗(s) =
τ |Eab.
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Proof. See Tate (1981) (also Lang 1983, VII). ¤

First statement of the main theorem. Let (A, i) be an abelian variety over
Qal of CM-type (E, Φ), and let τ ∈ Gal(Qal/Q). Define τi to be the map

E → End(τA)⊗Q, a 7→ τ(i(a)).

Then (τA, τi) is an abelian variety of CM-type (E, τΦ).

Theorem 5.3. (Main theorem, first form). Let (A, i) be of CM-type (E, Φ). For

each f ∈ Ê× representing fΦ(τ), there is a unique E-linear isomorphism α : HB(A) →
HB(τA) such that τx = α(fx) for all x ∈ Hf (A).

Proof. We explain in (5.10) below how to obtain a stronger result. ¤

Remark 5.4. (a) It is obvious that α is uniquely determined by the choice of f
representing fΦ(τ), and that if f is replaced by af (a ∈ E×), then α must be replaced
by αa−1.

(b) Let α be as in the theorem, and let ψ be a polarization of (A, i), that is, ψ
is a polarization of HB(A) such that ψ(ax, y) = ψ(x, āy) for a ∈ E. Then, for x,
y ∈ Hf (A)

(τψ)(τx, τy) = τ(ψ(x, y)) = χcyc(τ) · ψ(x, y)

because ψ(x, y) ∈ Af (1). Thus if α is as in the theorem, then

χcyc(τ) · ψ(x, y) = (τψ)(fα(x), fα(y)) = (τψ)(ff̄α(x), α(y))

and so

ψ(cx, y) = (τψ)(αx, αy),

with c = χcyc(τ)/ff̄ ∈ E×.

Now assume that A has complex multiplication by the full ring of integersOE of E.
The choice of a basis element e0 for HB(A) determines an isomorphism E → HB(A),
and hence an isomorphism CΦ = E ⊗Q R → HB(A) ⊗ R = Tgt0(A) (see 2.6). On
composing this with the exponential map Tgt0(A) → A(C), we obtain an OE-linear
isomorphism θ : CΦ/a → A(C) for some ideal a in E. Moreover, the choice of e0

allows us to write a polarization ψ of (A, i) in the form

ψ(xe0, ye0) = 2πı TrE/Q(txȳ)

for some t ∈ E. The triple (A, i, ψ) is then said to be of type (E, Φ; a, t) with respect
to the parametrization θ. The type determines (A, i, ψ) up to isomorphism. If e0 is
replaced by a−1e0, then θ is replaced by θa−1, and (A, i, ψ) is of type (E, Φ; aa, t/aā)
with respect to θa−1.

Corollary 5.5. Let (A, i, ψ) be a polarized abelian variety over C of CM-type
(E, Φ; a, t) with respect to a parametrization θ : CΦ → A(C), and let τ be an automor-

phism of C. For each f ∈ Ê× representing fΦ(τ |Qal), there is a unique parametriza-
tion θ′ : CτΦ → (τA)(C) of τA such that:

(a) τ(A, i, ψ) has type (E, τφ; fa, tχcyc(τ)/ff̄) with respect to θ′;
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(b) the diagram

E/a
θ−−−→ A(C)torsyf

yτ

E/fa
θ′−−−→ (τA)(C)tors,

commutes.

Proof. If θ is defined by e0 ∈ HB(A), take θ′ to be the parametrization of τA
defined by α(e0) ∈ HB(τA), where α is the map in the theorem. ¤

Remark 5.6. If τ fixes the reflex field and s ∈ Ê is such that recE(s) = τ |Eab,
then NΦ(s) ∈ fΦ(τ) by (5.2e) and (5.5) becomes the theorem of Shimura and
Taniyama referred to earlier.

Definition of the universal Taniyama element f(τ). Let T be a torus over
Q. For any Galois splitting field L of T , we set

℘(T ) = (T (L̂)/T (L))Gal(L/Q).

This is easily seen to be independent of the choice of L. Moreover, if

H1(Q, T ) →
∏

` finite

H1(Q`, T )

is injective, then ℘(T ) = T (Q̂)/T (Q). In particular, ℘(TE) = Ê×/E×. Define

℘(S) = lim←−℘(SF ).

Proposition 5.7. There is a unique element f(τ) ∈ ℘(S) such that for each

CM-field E and type Φ, ρΦ(f(τ)) = fΦ(τ) in ℘(TE) = Ê×/E×. The map τ 7→ f(τ)
is a continuous reversed one-cocycle for Gal(Qal/Q) with values in ℘(S), that is,
fF (στ) = τ−1fF (σ) · fF (τ).

Proof. The uniqueness follows from (4.6). It is possible to prove the existence
of f(τ) by verifying compatibilities between the fΦ(τ) for different Φ, but I prefer use
Langlands’s original construction of f(τ).

Let F be a finite Galois extension of Q contained in Qal. The Weil group WF/Q
of F fits into an exact commutative diagram,

1 −−−→ A×F /F× −−−→ WF/Q −−−→ Gal(F/Q) −−−→ 1yrecF

y
∥∥∥

1 −−−→ Gal(F ab/F ) −−−→ Gal(F ab/Q) −−−→ Gal(F/Q) −−−→ 1

in which all the vertical arrows are surjective (see Tate 1979). If we assume further
that F is a totally imaginary, then (F ⊗ R)× is contained in the kernel of recF , and
so we can divide out by it and its image in WF/Q to obtain an exact commutative
diagram

1 −−−→ F̂×/F× −−−→ W f
F/Q −−−→ Gal(F/Q) −−−→ 1yrecF

y
∥∥∥

1 −−−→ Gal(F ab/F ) −−−→ Gal(F ab/Q) −−−→ Gal(F/Q) −−−→ 1.
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For each τ ∈ Gal(Qal/Q), choose an element τ̃ ∈ W f
F/Q whose image in Gal(F ab/Q)

is τ |F ab. Choose elements wσ ∈ W f
F/Q, one for each σ ∈ Gal(F/Q), such that wσ 7→ σ

and wισ = ι̃wσ. Then wτσ and τ̃wσ have the same image in Gal(F/Q), and so

w−1
τσ · τ̃wσ ∈ F̂×/F×. ¤

Lemma 5.8. If F is a CM-field and Φ is a CM-type for F , then

fΦ(τ) =
∏
ϕ∈Φ

w−1
τϕ · τ̃wϕ.

Proof. Write f ′φ(τ) for the right hand side of the equation. It is obvious that the

image of f ′Φ(τ) in Gal(F ab/F ) is VΦ(τ). Moreover, f ′Φ(τ) · ιf ′Φ(τ) = f ′Φ(τ) · f ′Φι(τ) =

Ver(τ̃) where Ver is the transfer map (W f
F/Q)ab → F̂×/F× defined by the inclusion

at top-left of the above diagram. But Ver(τ̃) = χcyc(τ) · F×, and so f ′Φ(τ) has the
properties characterizing fΦ(τ). ¤

The canonical cocharacter µF of SF is defined over F , and therefore gives rise to
a homomorphism R× → SF (R) for any F -algebra R. Define

fF (τ) =
∏

σ∈Gal(F/Q)

(σ−1µF )(w−1
τσ τ̃wσ) ∈ SF (F̂ )/SF (F ).

Lemma 5.9. Let E be a CM-field and Φ a CM-type for E. Assume that F is large
enough to contain all conjugates of E in C. Then ρΦ(fF (τ)) = fΦ(τ) as elements of

TE(F̂ )/TE(F ) ⊃ TE(Q̂)/TE(Q) = Ê×/E×.

Proof. Let ρ : E ↪→ F ⊂ Qal be an embedding of E. Then ρ defines a character
ρ of TE, and it suffices to show that ρ(ρΦ(fF (τ))) = ρ(fΦ(τ)) in F̂×/F×. First note
that, by (5.2),

ρ(fΦ(τ)) = ρ(fΦ(τ)) = fΦρ−1(τ) = fΦ′(τ),

where Φ′ is the CM-type on F extending the CM-type Φρ−1 on ρE ⊂ F . Next

ρ(ρΦ(fF (τ)) = ρ(
∏
σ

ρΦ(σ−1µF )(w−1
τσ τ̃wσ)) (definition of fE(τ))

= ρ(
∏
σ

σ−1(ρΦ ◦ µF )(w−1
τσ τ̃wσ)) (as ρΦ is defined over Q)

= ρ(
∏
σ

σ−1(µΦ)(w−1
τσ τ̃wσ)) (definition of ρΦ)

=
∏
σ

(ρ ◦ σ−1(µΦ)(w−1
τσ τ̃wσ)

=
∏
σ

(w−1
τσ τ̃wσ)〈�,σ−1(µΦ)〉

where 〈., .〉 is the usual pairing X∗(T ) × X∗(T ) → Z. But we have 〈ρ, σ−1µΦ〉 =
〈σ ◦ ρ, µΦ〉, and from the definition of µφ in (2.6), we see that 〈σ ◦ ρ, µΦ〉 = 1 if
σρ ∈ Φ, and is 0 otherwise. Therefore the last product is

∏
σ∈Φ′ w

−1
τσ τ̃wσ, which (5.8)

shows to equal fΦ′(τ). ¤

We now complete the proof of (5.7). The elements fF (τ) have the following
properties:
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(a) fF (τ) is independent of all choices;
(b) fF is a reversed one-cocycle;
(c) σfF (τ) = fF (τ), all σ ∈ Gal(F/Q);
(d) if F ′ ⊃ F , then NF ′/F (fF ′(τ)) = fF (τ).

Statement (a) follows from (4.6). The remainder can be proved by applying ρΦ to
both sides and using (5.2) and the formulas in (2.6). Statements (a), (c), and (d)
show that f(τ) =df (fF (τ)) is a well-defined element of ℘(S). As ρΦ(f(τ)) = fΦ(τ),
this completes the proof of the first statement in (5.7). The second statement follows
from (b).

We call f(τ) the (universal) Taniyama element .

Statement of the main theorem. Let A be an abelian variety of CM-type over
Q. On applying the homomorphism ρA : S → MTA to f(τ), we obtain an element
fA(τ) ∈ ℘(MTA).

Theorem 5.10. (Main theorem of complex multiplication) Let F be a splitting

field of MTA. For each f ∈ MTA(F̂ ) representing fA(τ), there is a unique F - linear
isomorphism α : HB(A)⊗ F → HB(τA)⊗ F such that

(a) α(t) = τt for all Hodge cycles on A;
(b) τx = α(fx) for all x ∈ Hf (A)⊗ F .

Remark 5.11. (a) It is possible to replace A in the theorem with any CM-motive
over Q— it makes sense to speak of Hodge cycles on a CM-motive, and we can define
the Mumford-Tate group of a CM-motive to be the image of S in GL(HB(M))×Gm.
The proof we describe below also applies to this more general case.

(b) Endomorphisms of A are Hodge cycles on A, and so (a) implies that α com-
mutes with the action of all endomorphisms of A.

(c) It is again obvious that α is uniquely determined by the choice of f representing
fA(τ), and that if f is replaced by af (a ∈ MTA(F )), then α must be replaced with
αa−1.

(d) To see that (5.10) implies (5.3), let (A, i) be as in (5.3), and let f ′ represent
fΦ(τ). Note that MTA ⊂ TE. The definition of f(τ) shows that there is an element
a ∈ TE(F ) such that f ′ = af . Then α′ = α ◦ a−1 satisfies the conditions of (5.3).

Proof of the main theorem of complex multiplication. We first define an
element g(τ) such that Theorem 5.10 holds (tautologically) with f replaced by g.

Lemma 5.12. Let A be an abelian variety over Qal of CM -type, and let F be a
splitting field for MTA. There exists an F -linear isomorphism α : HB(A) ⊗ F →
HB(τA)⊗ F such that α(t) = τt for all Hodge cycles t on A.

Proof. For any Q-algebra R, let

P (R) = {α : HB(A)⊗R → HB(τA)⊗R |α(t) = τt, all t ∈ CH(A)}.
From (3.3) it is obvious that P is a torsor for MTA unless it is empty. The com-
parison isomorphisms show that P (C) 6= 0. Because MTA is a torus split by F , the
cohomology class of P in H1(Q, MTA) becomes trivial in H1(F,MTA), which means
that P (F ) is nonempty. ¤
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Let (A, i) be of CM-type (E, Φ), and choose an element α ∈ P (F̂ ). We can regard
α as an isomorphism α : Hf (A)⊗F → Hf (τA)⊗F sending t to τt, for all Hodge cycles
t. The map x 7→ α−1(τx) is an automorphism of Hf (A)⊗ F fixing all Hodge cycles,

and so (3.3) shows that it is multiplication by an element g ∈ MTA(F̂ ). Write gA(τ)

for the image of g in MTA(F̂ )/MTA(F ). Then gA(τ) is independent of the choice of
α, and it is fixed under the action of Gal(F/Q). It therefore lies in ℘(MTA). For
varying A, the elements gA(τ) form a projective system. As S = lim←−MTA, they

define an element g(τ) ∈ ℘(MTA). Obviously (5.10) becomes true when f(τ) is
replace by g(τ), and so, to prove (5.10), it suffices to show that f(τ) = g(τ). Let
e(τ) = g(τ)/f(τ) and, for each CM-type (E, Φ), let eΦ(τ) = ρΦ(e(τ)). The next two
lemmas prove that eΦ(τ) = 1.

Lemma 5.13. The elements eΦ(τ) have the following properties:

(a) eΦ(στ) = eτΦ(σ) · eΦ(τ), τ1, τ2 ∈ Gal(Qal/Q).
(b) σeΦ(τ) = eΦσ−1(τ), σ an isomorphism E → E ′, τ ∈ Gal(Qal/Q).
(c) eΦ(ι) = 1.
(d) If E ′ ⊃ E and Φ′ is the extension of Φ to E ′, then eΦ(τ) = eΦ′(τ).
(e) If τΦ = Φ, then eΦ(τ) = 1.
(f) If

∑
niΦi = 0, then

∏
eΦi

(τ)ni = 1.

Proof. Parts (b), (d), and (f) are automatic consequences of the fact that
eΦ(τ) = ρΦ(e(τ)) for an e(τ) in ℘(S). Part (a) follows from the fact that f(τ)
and g(τ), and hence e(τ), are reversed one-cocycles. Part (c) holds for both fΦ and
gΦ. For (e) note that τΦ = Φ if and only if τ fixes the reflex field, and so the theorem
of Shimura and Taniyama (see 5.6) shows that in this case gΦ(τ) = NΦ(s) ·E× where
s is such that recE(s) = τ |Eab. Therefore (5.2e) implies (e). ¤

Lemma 5.14. Let (eΦ(τ)) be a family of elements satisfying the conditions of
(5.13). Then eΦ(τ) = 1 for all Φ and τ .

Proof. See Deligne 1981 (also Lang 1983, VII.4). ¤

Remark 5.15. If f(τ) is a reversed one-cocycle, then τ 7→ τf(τ) and τ 7→
f(τ−1)−1 are both one-cocycles. It would have been possible to work throughout
with one-cocycles rather than reversed one-cocycles, but the reversed one-cocycles
are more consistent with the notations used in the literature.

Notes. See the end of the next section.

6. CM-motives over Q; the Taniyama group

In this section we study CM/Q, the category of CM -motives over Q. It is a
semisimple Q-linear Tannakian category with additional structure, to which the Tan-
nakian formalism attaches certain objects.

(6.1a) To CM/Q and the Betti fibre functor HB, Theorem 1.2 attaches an affine
group scheme T.

(6.1b) To the fully faithful tensor functor Art/Q ↪→ CM/Q, (1.5a) attaches a
surjective homomorphism π : T → Gal(Qal/Q).
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(6.1c) HB is an essentially surjective functor from CM/Q to the category of Hodge
structures of CM-type; it therefore defines a injective homomorphism i : S → T.

(6.1d) The action of τ ∈ Gal(Qal/Q) on H`(M) sends s` to τs` for each Hodge
cycle s. Therefore, each τ ∈ Gal(Qal/Q) defines an automorphism sp`(τ) of the fibre
functor HB ⊗Q` whose image in Gal(Qal/Q) is τ . The map sp` is a homomorphism
sp` : Gal(Qal/Q) → T(Q`) which is continuous for the Krull and `-adic topologies,
and the product of the sp`’s defines a homomorphism

sp : Gal(Qal/Q) → T(Af ).

Proposition 6.2. The sequence of affine group schemes

1 −−−→ S
i−−−→ T

π−−−→ Gal(Qal/Q) −−−→ 1

is exact. In particular, i identifies S with the identity component of T. Moreover,
the action of Gal(Qal/Q) on S defined by the sequence is that described in (2.5b).

Proof. See Deligne (1982b). ¤

Symbolically, we have a diagram

1 > S
i

> T
π
> Gal(Qal/Q) > 1

ª¡
¡

¡
sp

T(Af ).
∨

The group T, together with the structure (π, i, sp), is called the Taniyama group.
A CM-motive M over Q corresponds to a representation ρ : T → GL(V ); then
HB(M) = V , and its Hodge structure of CM-type is determined by ρ ◦ i; the `-
adic cohomology group H`(M) is V ⊗Q` with Gal(Qal/Q) acting through ρ◦sp`; and
M is an Artin motive if and only if ρ factors through π. The Taniyama group does
not enable us to construct HdR(M) from (V, ρ) (we discuss what is needed for this in
the next section).

Remark 6.3. (a) It is possible to interpret the exact sequence in (6.2) in the
following way: a representation ρ of S determines a CM-motive M overQal; extending
ρ to T corresponds to giving a descent datum on M , and descent is effective for CM-
motives.

(b) For each τ ∈ Gal(Qal/Q), M 7→ Hτ (M) = HB(τM) is a fibre functor for
CM/Qal with values in VecQ. Therefore Isom(HB, Hτ ) is a torsor for S. It is repre-
sented by τS =df π−1(τ).

An explicit description of (T, π, i, sp). In this subsection, we let (T, π, i, sp)
denote any quadruple for which (6.2) is true. Let S′ be a quotient of S of finite-type
over Q, and let T′ be the quotient of T by the kernel of S → S′:

1 −−−→ S
i−−−→ T

π−−−→ Gal(Qal/Q) −−−→ 1y
y

∥∥∥
1 −−−→ S′ i′−−−→ T′ π′−−−→ Gal(Qal/Q) −−−→ 1.
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If L is a finite Galois extension of Q (contained in Qal) splitting S′, then H1(L,S′) =
0, and so each of the S′-torsors π′−1(τ) has a point in L. Therefore, we can choose

a section a : Gal(Qal/Q) → T′(L) to π′. Identify T′(L) and T′(Q̂) with subgroups of

T′(L̂), and write

sp(τ) = a(τ) · h′(τ), h′(τ) in S′(L̂).

The class of h′(τ) in S′(L̂)/S′(L) is independent of the choice of a(τ).

Lemma 6.4. The map h′ : Gal(Qal/Q) → S′(L̂)/S′(L) has the following proper-
ties:

(a) h′ is a reversed one-cocycle;

(b) σh′(τ) = h′(τ) for all σ ∈ Gal(L/Q); thus h′(τ) ∈ ℘(S′).

Proof. Straightforward. ¤

Recall that ℘(S) = lim←−℘(S′). The h′’s therefore define a continuous reversed

one-cocycle h : Gal(Qal/Q) → ℘(S).

Proposition 6.5. Every quadruple (T, π, i, sp) satisfying the conditions of (6.2)
defines a continuous reversed one-cocycle

h : Gal(Qal/Q) → ℘(S)

and h determines the quadruple (T, π, i, sp) uniquely up to a unique isomorphism;
moreover every reversed one-cocycle arises from a quadruple (T, π, i, sp) satisfying
the conditions of (6.2).

Proof. We have already shown how to derive h from the quadruple. Obviously
h determines the isomorphism class of (T, π, i, sp), but such a quadruple is rigid:
any automorphism of T compatible with (π, i, sp) is the identity map. Finally, it is
straightforward to construct the quadruple out of h (see for example Milne and Shih
1982a, §2). ¤

The next result provides an explicit description of the Taniyama group.

Theorem 6.6. The reversed one-cocycle corresponding to the Taniyama group is
τ 7→ f(τ), where f(τ) is the universal Taniyama element defined in §5.

Proof. Let h be the reversed one-cocycle corresponding to the Taniyama group.
After the main theorem of complex multiplication (5.10) (more specifically, 5.14), we
know that f = g, and so we have to prove that h = g. Let A be an abelian variety
of CM-type over Q, and let hA(τ) = ρA(h(τ)). One sees immediately from their
constructions that hA(τ) = gA(τ) in ℘(MTA). Since S = lim←−MTA, this proves the
theorem. ¤

Application to the zeta functions of CM-motives. It is possible to attach
an L-series L(ρ, s) to a complex representation ρ : WQ → GL(V ) of the Weil group.
Moreover, it is known that L(ρ, s) extends to a meromorphic function on the whole
complex plane and satisfies a functional equation (see Tate 1979). These L-series
generalize both Hecke L-series and Artin L-series, and so are usually referred to as
Artin-Hecke L-series.
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Proposition 6.7. There is a homomorphism WQ → T(C) making the following
diagram commute:

WQ

ª¡
¡

¡

1 > S(C) > T(C) > Gal(Qal/Q)
∨

> 1

Proof. See for example Milne and Shih (1982a), 3.17. ¤

Theorem 6.8. For any CM-motive M , the system of `-adic representations
H`(M) is strictly compatible (in the sense of Serre 1968). Therefore the zeta function
of M is defined, and it is an Artin-Hecke L-series.

Proof. This follows directly from (6.7) (see Schappacher 1988). ¤

Remark 6.9. There is in fact a one-to-one correspondence between the set of
isomorphism classes of CM-motives with coefficients in Qal defined over Q and the
set of isomorphism classes of representations of WQ of type A0.

Algebraic Hecke characters. Let F be a finite extension of Q, and let F T be
the inverse image of Gal(Qal/F ) in T:

1 > S > F T > Gal(Qal/F ) > 1

1 > S

=

> T
∨

∩

> Gal(Qal/Q)
∨
∩

> 1

Then F T is the affine group scheme attached to the CM/F . A homomorphism
χ : F T → TE is called an algebraic Hecke character for F with values in E. The
restriction of χ to S is the infinity type of χ, and for each prime `,

sp` ◦ χ : Gal(Qal/Q) → TE(Q`) = (E ⊗Q`)
×

is the `-adic representation attached to χ.

Notes. The reversed one-cocycle f (the universal Taniyama element of §5) was
defined by Langlands in order to be able to describe the conjugate of a Shimura
variety (Langlands 1979). Deligne recognized that it should define the affine group
scheme attached to CM/Q, and proved that this was the case in (Deligne 1982b).
The implications of Langlands’s construction for abelian varieties of CM-type were
also made explicit in Milne and Shih (1981a). Tate gave the construction of fΦ(τ)
described in the first subsection of §5 in (Tate 1981). The relation between the
constructions of Langlands and Tate has not previously been elucidated in print.

Deligne first proved the main theorem of complex multiplication in the form (6.6),
expressing it in terms of extensions (Deligne 1982b). He then re-expressed the proof
in terms of the functions eΦ, as we did in § 5 (Deligne 1981). It is also possible to
express the proof directly in terms of the function e (Milne 1981).
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7. Periods of CM-motives

After the last section, it remains to describe the de Rham fibre functor on CM/Q.
This is again a Q-linear fibre functor, and so (see 1.2) P = Isom⊗(HB, HdR) is a
principal homogeneous space for T — we call it the period torsor. The comparison
isomorphisms HB(M) ⊗ C → HdR(M ⊗ C) preserve Hodge cycles, and so define a
canonical point p ∈ P(C).

When M is the CM-motive corresponding to the representation ρ : T → GL(V )
of T, P enables us to construct the de Rham cohomology of M : HdR(M) = P×T,ρ V .
The point p gives us the comparison isomorphism HB(M)⊗ C→ HdR(MC).

The next conjecture, which is a variant of a conjecture of Grothendieck, predicts
that the only restrictions on the transcendence of the periods of CM-motives come
from Hodge cycles.

Conjecture 7.1. The point p is generic in the sense that it is not contained in
the set of complex points of any proper Q-rational subscheme of P.

Remark 7.2. Let Q[P] be the affine algebra of P. Then the point p corresponds
to a homomorphism Q[P] → C, and the conjecture is equivalent to this map’s being
injective (because P is irreducible).

Remark 7.3. Let F ⊂ Qal be a number field. On CM/F , HdR is an F -linear
fibre functor, and so the comparison isomorphism gives us a period torsor F P for
(F T)F =df

F T×Spec Q Spec F . One sees easily that F P is the inverse image of i under
PF → Hom(F,Qal), where i is the given inclusion F ↪→ Qal. The canonical point p
of P(C) lies in F P(C).

Let χ : F T → TE be an algebraic Hecke character for F with values in E. Then
χ∗(F P) = Pχ is a principal homogeneous space for (TE)F with a distinguished com-
plex point pχ. As H1(F, TE) = 0, Pχ will have an F -rational point p0, and any two
such points differ by multiplication by an element of TE(F ). Write pχ = p0 · p(χ);
then p(χ) is a well-defined element of (E⊗F )×\(E⊗C)× called the period of χ. For
example, if χ is the algebraic Hecke character attached to an abelian variety A over
F with complex multiplication by E, then p(χ) is the family of periods attached to
A in the usual sense. The period p(χ) determines (Pχ, pχ) up to isomorphism.

Since many of the results in the following chapters will be expressed in terms of
the pair (P, p), we would like to have a description of it that is as explicit as the
description in §6 of the Taniyama group. Unfortunately, this is probably not possible
since such a description would, in particular, include an explicit description of all
periods of all abelian varieties with potential complex multiplication which, as (7.1)
suggests, tend to be transcendental numbers. Thus the best we can hope for is an
explicit characterization of the pair (P, p) that does not involve CM-motives (or
abelian varieties).

It is easy to describe the period torsor Q attached to the category of Artin motives:
Q is Spec Qal regarded as a principal homogeneous space for Gal(Qal/Q), and its
canonical C-valued point q is that defined by the given inclusion of Qal into C. This
follows from the description of HdR(X) given in (4.1).

This suggests that we should consider the pair (P, ϕ), with ϕ the equivariant
map ϕ : P → Q. Blasius has found a description of the isomorphism class of (P, ϕ).
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Before explaining his result, we need to review a little of the theory of a Hodge-Tate
modules. Write T` = T× Spec Q` and P` = P× Spec Q` = Isom(H`, HdR ⊗Q`).

Fix a prime `, and let D` = Gal(Qal
` /Q`). The `-adic cyclotomic character is

the map χcyc : D` → Z×` such that σ(ζ) = ζχcyc(σ) for each root of unity ζ in Qal
` of

`-power order. The action of D` on Qal
` extends by continuity to the completion C`

of Qal
` . Let V be a Q`-vector space with a continuous action of D`. We extend the

action of D` on V to C` ⊗ V by the rule:

σ(c⊗ v) = σc⊗ σv, σ ∈ D`, c ∈ C`, v ∈ V.

For m ∈ Z, write V {m} for the set of v ∈ C` ⊗ V such that

σ(v) = χcyc(σ)m · v.

It is a Q`-subspace of C` ⊗ V . The inclusions of the V {m} into C` ⊗ V define a
C`-linear map

C` ⊗ (⊕m∈ZV {m}) → C` ⊗ V,

which a theorem of Tate (Serre 1967) shows to be injective. When this map is an
isomorphism, the D`-module V is said to be Hodge-Tate.

Let BHT be the ring C`[T, T−1] with D` acting according to the rule σ(T ) =
χcyc(σ)T . It is an immediate consequence of the definitions that ⊕V {m} = (V ⊗Q`

BHT )D` .

The D`-module H`(A) is known to be Hodge-Tate for all abelian varieties, and
it follows that H`(M) is Hodge-Tate for all CM -motives over Q. Therefore we can
define a new fibre functor H ′

` on CM/Q with values in VecQ`
by setting

H ′
`(M) = (H`(M)⊗BHT )D` .

Let P′
` be the T`-torsor Isom⊗(H`, H

′
`). It is represented by

Spec(Q`[T`]⊗BHT )D` (diagonal action of D`).

These definitions can be extended to ` = ∞ by replacing BHT with C and D`

with D∞ = Gal(C/R).

Theorem 7.4. (a) P` is (canonically) isomorphic to P′
` for each prime ` (includ-

ing ∞).

(b) The isomorphisms4 in (a) uniquely determine the isomorphism class of (P, ϕ).

Proof. (a) Let HHg(M) = Gr(HdR(M)). A Hodge cycle s on an abelian vari-
ety A has components s` in H ′

`(A) and sHg in HHg(A), and Blasius shows that the
isomorphism of Tate-Faltings H ′

`(A) → HHg(A) ⊗ Q` maps one component to the
other, and so defines an isomorphism of fibre functors H ′

` → HHg. Since there is a
canonical isomorphism of fibre functors HdR⊗Q` → HHg⊗Q`, this shows that there
is a canonical isomorphism

Isom⊗(H`, H
′
`) ≈ Isom⊗(H`, HdR ⊗Q`),

as required.

417.08.02. This statement is probably not correct — the isomorphism class of (P, ϕ) is de-
termined by its class in the flat cohomology group H1(Q,S′), not the inverse limit of the Galois
cohomology groups. See my paper “Periods of Abelian Varieties”, 2002.
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(b) Let S′ be the affine group scheme obtained from S by twisting by Q according
to the action of Gal(Qal/Q) on S defined in (2.5b). Thus S′(Qal) = S(Qal) with
Gal(Qal/Q) acting through its action on both S and Qal. There is a natural action of
S′ on (P, ϕ): if s′ ∈ S′(Qal) is represented by (s, q), then s′ acts on the fibre over q
by multiplication by s. Moreover, for a second pair (P′, ϕ′), Isom⊗((P, ϕ), (P′, ϕ′))
is a principal homogeneous space for S′. Thus the set of isomorphism classes of
pairs (P′, ϕ′) is a principal homogeneous space for H1(Q,S′), and Blasius shows that
H1(Q, S′) satisfies the Hasse principle. ¤

Theorem 7.4 satisfactorily characterizes (P, ϕ). It remains to characterize the
canonical complex point p. This can be done in terms of the periods of Hecke char-
acters.

Proposition 7.5. Let p′ be a point of P(C) mapping to q. If p′ maps to pχ in
Pχ(C) for all algebraic Hecke characters χ, then p′ = p.

Proof. We can write p′ = p · s with s ∈ S(C), and the condition implies that
χ(s) = 1 for all characters χ of S. ¤

Remark 7.6. (a) It suffices to assume that the condition in (7.5) holds for enough
Hecke characters χ so that their infinity types generate X∗(S); for example, it suffices
to take the Hecke characters arising from abelian varieties with complex multiplica-
tion. Thus the combination of (7.4) and (7.5) characterizes the periods of abelian
varieties over Q of potential CM-type in terms of the periods of abelian varieties
defined over a number field and with complex multiplication defined over that field.

(b) Blasius (1986) shows that certain products of the periods of the motives at-
tached to Hecke characters are equal to critical values of the L-series of the Hecke
character. If it could be shown that (P, p) is characterized by the property in (7.4)
and the critical values of Hecke L-series, this would be the characterization sought.

Notes. Theorem 7.4 is proved in Blasius 1989. The monograph Schappacher 1988
provides a detailed introduction to the periods of motives of CM-type.



CHAPTER II

Shimura varieties

In this chapter, we define Shimura varieties and state the main theorems on
canonical models: every Shimura variety Sh(G,X) has a (unique) canonical model
Sh(G,X)E over its reflex field E(G,X); for each τ ∈ Gal(Qal/Q), τ Sh(G,X)E

is the canonical model over τE(G,X) of an explicitly determined Shimura variety
Sh(τG, τX).

1. Connected Shimura varieties over C

A bounded symmetric domain is a bounded open connected subset D of Cm,
some m, that is symmetric in the sense that, for each point x ∈ D, there is an
involutive automorphism sx of D (the symmetry with respect to x) having x as an
isolated fixed point. The simplest bounded symmetric domain is the open unit disk
{z ∈ C | |z| < 1}.

A complex manifold isomorphic to a bounded symmetric domain will be called
a symmetric Hermitian domain. The simplest example of a symmetric Hermitian
domain is the complex upper-half-plane,

H+ = {z ∈ C | |Im(z) > 0}.
The Bergmann metric on a bounded symmetric domain provides it with a natural
structure of a Hermitian manifold. Thus every symmetric Hermitian domain D has
a Hermitian structure which is invariant under all automorphisms; in particular, D
is symmetric as a Hermitian manifold.

Let D be a symmetric Hermitian domain. The group Aut(D) of automorphisms
of D (as a complex manifold) is a real semisimple Lie group with only finitely many
connected components, and trivial centre. If G is a connected simple real algebraic
group with trivial centre such that D = G(R)+/K for some maximal compact sub-
group K of G(R)+, then Aut(D) ∩ G(R) = G(R)+, and G(R) has either one or two
connected components.

Locally symmetric varieties. Let D be a symmetric Hermitian domain, and let
G be a semisimple algebraic group over Q such that D = G(R)+/K with K a maximal
compact subgroup of G(R)+. Let Γ be an arithmetic subgroup in G(Q), which we
suppose to be torsion-free. Then S =df Γ\D will again be a complex manifold.

Theorem 1.1. The complex manifold S has a canonical structure of an alge-
braic variety. With this structure, every holomorphic map V an → S from a complex
algebraic variety V (viewed as an analytic space) to S is a morphism of algebraic
varieties.

31
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Proof. The first statement is the theorem of Baily and Borel (1966). It can also
be regarded as a special case of the more general theorem of Nadel and Tsuji (1988).
The second statement is proved in Borel (1972), 3.10. ¤

The second statement shows that the algebraic structure on S is not only canonical
but is also unique. With this structure, S is called a locally symmetric variety.

Remark 1.2. If D is has no factors isomorphic to the unit disk, then the algebraic
structure on S can be described as follows. Let Ω1 be the sheaf of holomorphic
differentials on S (regarded as a complex manifold), and let ω = ∧dΩ1, d = dim S.
Then A = ⊕n≥0Γ(S, ω⊗n) is a graded ring, and there is a canonical map S → Proj A,
which identifies S with an open subvariety of Proj A. Since Proj A is a projective
algebraic variety, this shows that S is a quasi-projective algebraic variety.

This description extends to the case where D has factors isomorphic to the unit
disk provided Γ(S, ω⊗n) is replaced with the group of sections of ω⊗n having at worst
logarithmic poles along the boundary in some smooth compactification of S (see Iitaka
1982, XI, for the definitions).

Let S̄ be the closure of S in Proj A. Then Borel (1972) shows that S̄ has the
following property: for any nonsingular algebraic variety V containing S as an open
subvariety and such that the complement of S in V has only normal crossings as
singularities, there is a unique morphism V → S̄ whose restriction to S is the identity
map. For this reason, S̄ is called the minimal compactification of S (alternatively,
the Satake-Baily-Borel compactification of S).

The axioms for a connected Shimura variety. A connected Shimura variety
is a projective system of locally symmetric varieties. The datum needed to define it
is a pair (G,X+) comprising a semisimple group G over Q and a Gad(R)+-conjugacy
class X+ of homomorphisms S→ GadR satisfying the following conditions:

(1.3.1) when composed with GadR → GL(g), each h in X+ defines a Hodge structure
on g; this Hodge structure is required to be of type {(−1, 1), (0, 0), (1,−1)};

(1.3.2) for each h in X+, adh(i) is a Cartan involution of GR;
(1.3.3) Gad has no factor defined over Q whose real points form a compact group.

Remark 1.4. (a) It suffices to check the conditions in (1.3.1) and (1.3.2) for a
single h ∈ X+.

(b) Axiom (1.3.1) implies that the Hodge structure on g defined by h has weight
zero. Hence the weight map wh (see I 2) is trivial, and so h factors through S→ S/Gm.

(c) Since h(i)2 = h(−1) = 1, adh(i) is an involution of GR. To say that it is
a Cartan involution means that the corresponding real form G′ of G, with complex
conjugation g 7→ h(i) · ḡ · h(i)−1, is compact. Equivalently, for every representation
(V, ξ) of G, the Hodge structure (V, ξ ◦ h) admits a G-invariant polarization (see
Deligne 1972, 2.8).

(d) Axiom (1.3.3) is included for the sake of convenience. It has the following
consequence: let H be a simple factor of the simply connected covering group Gsc of
G; then H(R) is not compact, and so the strong approximation theorem shows that
H(R) · H(Q) is dense in H(A). This implies that H(Q) is dense in H(Af ). Thus
Gsc(Q) is dense in Gsc(Af ).
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Example 1.5. Let G = SL2, and let X+ be the set of PGL2(R)+ conjugates of

h0 : S→ GR; a + ib 7→
(

a −b
b a

)
.

Then (G,X+) satisfies the axioms (1.3). If we write
(

a b
c d

)
· z =

az + b

cz + d
,

then ad(g) ◦ h0 7→ g · i identifies X+ with H+, the complex upper-half-plane.

The complex structure on X+. Let (G,X+) satisfy the axioms (1.3). Fix a
point o ∈ X+, and let Ko be the subgroup of G(R)+ fixing o. Then the action of
G(R)+ on X+ defines a bijection

(*) G(R)+/Ko → X+

Since Ko is fixed by ad ho(i), axiom (1.3.2) implies that it is compact; moreover

g = ko + po, g = Lie G, ko = Lie Ko

where ko and po are the +1 and −1 eigenspaces for adh(i) acting on g. When we use
(*) to endow X+ with a real analytic structure, then (*) identifies po with Tgto(X

+).
There is a unique homogeneous complex structure on X+ such that the action of i on
Tgto(X

+) corresponds to the action of h(e2πi/8) on po, and relative to this structure,
X+ becomes a symmetric Hermitian domain.

Since I prefer to regard X+ as a symmetric Hermitian domain rather than a
conjugacy class of homomorphisms, I write x for a point of X+ (thought of as a
domain) and hx for the corresponding homomorphism S→ GadR ; thus hg·x = ad(g)◦hx

for g ∈ Gad(R)+ and x ∈ X+. Also µx denotes the cocharacter z 7→ hx,C(z, 1) attached
to hx (see I 2).

The connected Shimura variety. We now construct the connected Shimura
variety associated with a pair (G,X+). A congruence subgroup of G(Q) is a subgroup
of the form Γ = K∩G(Q) with K a compact open subgroup of G(Af ). Endow Gad(Q)
with the topology for which the images of the congruence subgroups in G(Q) form a
fundamental system of neighbourhoods of the identity element, and let Gad(Q)+ˆ be
the completion of Gad(Q)+ relative to this topology. The connected Shimura variety
Sh0(G,X+) will be a scheme with a continuous right action of Gad(Q)+ˆ in the sense
of §10 below.

Let Σ(G) be the set of torsion-free arithmetic subgroups of Gad(Q)+ that con-
tain the image of a congruence subgroup of G(Q). For Γ ∈ Σ(G), Γ\X+ is a lo-
cally symmetric algebraic variety. The group Gad(Q)+ acts on the projective system
(Γ\X+)Γ∈Σ(G) as follows: for each Γ ∈ Σ(G) and g ∈ Gad(Q)+, g defines a map

Γ\X+ → g−1Γg\X+, [x] 7→ [g−1x].

This map is holomorphic, and hence algebraic by (1.1). The action of Gad(Q)+ on
(Γ\X+)Γ∈Σ(G) extends by continuity to Gad(Q)+ˆ. The connected Shimura variety

Sh0(G,X) is defined to be the projective system (Γ\X+)Γ∈Σ(G) (or its limit) together

with the continuous right action of Gad(Q)+ˆ just defined.
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When G is simply connected, some simplifications occur. Then G(R) is connected,
and (1.4d) shows that G(Q)·K = G(Af ). For any congruence subgroup Γ = G(Q)∩K
of G(Q),

[x] 7→ [x, 1], Γ\X+ 7→ G(Q)\X+ ×G(Af )/K

is an isomorphism (on the right, [qx, qak] = [x, a], for q ∈ G(Q), k ∈ K).

In the limit,

Sh0(G,X)(C) = lim←−Γ\X+ = G(Q)\X+ ×G(Af ),

(apply 10.1 below). The semi-direct product G(Af )oGad(Q)+ acts on this scheme:

[x, a](g, q) = [q−1x, ad(q−1)(ag)], x ∈ X+, a, g ∈ G(Af ), q ∈ Gad(Q)+.

The homomorphism q 7→ (q−1, ad q) identifies G(Q) with a normal subgroup G(Af )o
Gad(Q)+, and the quotient group G(Af )∗G(Q)G

ad(Q)+ continues to act on Sh0(G, X+).
In this case

G(Af ) ∗G(Q) Gad(Q)+ = Gad(Q)+ˆ

(Deligne 1979, 2.1.6.2), and the action just described agrees with that defined in the
preceding paragraph.

Example 1.6. If Γ is an arithmetic subgroup of PGL2(Q) containing the image
of a congruence subgroup in SL2(Q), then Γ\H+ is (by definition) an elliptic modular
curve. Thus Sh0(SL2, H

+) is the projective system of elliptic modular curves equipped
with a continuous right action of PGL2(Q)+ˆ. This is the object of study of Shimura
1971b.

Etale coverings and automorphisms of connected Shimura varieties.
Connected Shimura varieties behave as though they are simply connected: a finite
étale equivariant morphism from one connected Shimura variety to a second is an
isomorphism (Milne 1983, 2.1). It is possible to compute the group of Gad(Q)+ˆ-
equivariant automorphisms of Sh0(G,X+); for example, if G = Gad, then this group
is zero (ib., 2.4). The full group of (not necessarily equivariant) automorphisms of
Sh0(G,X+) contains Gad(Q)+ˆ as a subgroup of finite index (Milne and Shih 1981b,
1.3).

Notes. The axioms for a connected Shimura variety are those of Deligne (1979),
2.1.8.

2. Shimura varieties over C

For many reasons, for example, in order to have models over number fields of
finite degree, it is necessary to consider nonconnected Shimura varieties. They are
defined by reductive groups rather than semisimple groups. The connected Shimura
varieties occur as the connected components of Shimura varieties.
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The axioms for a Shimura variety. The datum needed to define a Shimura
variety is a pair (G,X) comprising a reductive group G over Q and a G(R)-conjugacy
class X of homomorphisms S→ GR satisfying the following conditions:

(2.1.1) for each x ∈ X, the Hodge structure on g defined by hx is of type
{(−1, 1), (0, 0), (1,−1)};

(2.1.2) for each x ∈ X, ad hx(i) is a Cartan involution on GadR ;

(2.1.3) Gad has no factor defined over Q whose real points form a compact group;

(2.1.4) the identity component Z(G)0 of the centre of Z(G) of G splits over a
CM-field.

Simplifications occur when (2.1.2) is replaced by a stronger axiom:

(2.1.2*) let Z0(G) be the maximal subtorus of Z(G) split over Q; then ad hx(i) is
a Cartan involution on G/Z0(G).

We say that (G,X) satisfies (2.1) when it satisfies (2.1.1) – (2.1.4); when it also
satisfies (2.1.2*), we say that it satisfies (2.1*).

Remark 2.2. (a) Again it suffices to check (2.1.1) and (2.1.2) for a single x ∈ X.

(b) Let X+ be a connected component of X, and for each x ∈ X+, let h′x be
the composite of hx with GR → GadR . Then x 7→ h′x identifies X+ with a Gad(R)+-
conjugacy class of homomorphisms S→ GadR , which satisfies the axioms (1.3). There-
fore X+ acquires from §1 a natural structure of a symmetric Hermitian domain,
and so X is a finite disjoint union of symmetric Hermitian domains (indexed by
G(R)/G(R)+).

(c) Axiom (2.1.1) implies that the Hodge structure on g defined by ad ◦ hx has
weight zero. Hence the weight map wx is central, and so it is independent of x — we
write it wX .

(d) Axiom (2.1.4) is not in Deligne’s list of axioms (Deligne 1979, 2.1.1), but it
is harmless to impose it since, in practice, all examples satisfy it, and it allows some
simplifications; for example, it implies that wX is defined over a totally real field.

(e) Axiom (2.1.2*) is very restrictive; it excludes many important Shimura vari-
eties, for example, all Hilbert modular varieties of dimension greater than one.

Example 2.3. Let V be a vector space of dimension 2 over Q. Let G = GL(V ),
and let X be the set of complex structures on V ⊗R. With each x ∈ X we associate the
homomorphism hx : S→ GR such that hx(z) acts on V ⊗R as z for all z ∈ S(R) = C×.
Then x 7→ hx identifies X with a G(R)-conjugacy class of homomorphisms S→ GR,
and the pair (G,X) satisfies the axioms (2.1). The choice of a basis for V identifies
G with GL2 and X with C r R = {z ∈ C | R(z) 6= 0}, the union of the upper and
lower half-planes.

The Shimura variety. Let (G,X) satisfy the conditions (2.1). For K a compact
open subgroup in G(Af ), consider the double coset space

ShK(G,X) = G(Q)\X ×G(Af )/K,

where
q(x, a)k = (qx, qak), q ∈ G(Q), x ∈ X, a ∈ G(Af ), k ∈ K.

Let C be a set of representatives for the finite set G(Q)+\G(Af )/K, and, for each
g ∈ C, let Γg be the image in Gad(R)+ of the subgroup Γ′g = gKg−1 ∩ G(Q)+ of
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G(Q)+. Then

ShK(G, X) =
⋃

Γg\X+ (disjoint union over g ∈ C)

for any connected component X+ of X. When K is sufficiently small, Γg will be
torsion-free, and we conclude from (1.1) that ShK(G,X) will then be a finite disjoint
union of locally symmetric varieties. It therefore has a unique structure of an algebraic
variety. Let

Sh(G,X) = lim←− ShK(G,X).

This is a scheme over C whose complex points are

Sh(G,X) = G(Q)\X ×G(Af )/Z(Q)−,

where Z(Q)− is the closure of Z(Q) in Z(Af ) (to prove this, apply (10.1) below with
E = G(Q)\X × G(Af )/Z(Q)−). When the maximal R-split subtorus of Z(G) is
Q-split, Z(Q) is closed in Z(Af ), and so

Sh(G,X) = G(Q)\X ×G(Af ).

There is a continuous action of G(Af ) on Sh(G,X), given by

[x, a]g = [x, ag], x ∈ X, a ∈ G(Af ), g ∈ G(Af ).

The scheme Sh(G, X) together with this continuous action of G(Af ) is called the
Shimura variety defined by (G,X). We write (g) or T (g) for the operation of
g ∈ G(Af ) on Sh(G,X) — it is often called the Hecke operator defined by g.

Example 2.4. (a) A symplectic space over Q is a vector space V over Q together
with a nondegenerate skew-symmetric form ψ on V . The group G = GSp(V, ψ) of
symplectic similitudes of (V, ψ) has rational points

G(Q) = {α ∈ GL(V ) | ∃ q ∈ Q× s.t. ψ(αv, αw) = qψ(v, w), ∀v, w ∈ V }.
Let S± be the set of all Hodge structures of type {(−1, 0), (0,−1)} on V for which
±2πiψ is a polarization. Then S± is a G(R)-conjugacy class of homomorphisms
S→ GR, and the pair (G, S±) satisfies the conditions (2.1). The space S±, regarded
as a disjoint union of two Hermitian symmetric domain, is the Siegel double space,
and the variety Sh(G,S±) is the Siegel modular variety.

(b) Let F be a totally real number field, and let G = GL2,F , so that G(R) =∏
Hom(F,R) GL2(R). Let X be the set of G(R)-conjugates of

h0 : S→ GR, a + ib 7→
((

a −b
b a

)
, . . . ,

(
a −b
b a

))
.

Then X is a product of [F : Q] copies of CrR, and (G,X) satisfies the axioms (2.1).
The variety Sh(G,X) is the Hilbert modular scheme.

Remark 2.5. The semi-direct product G(Af )/Z(Q)−oGad(Q)+ acts on Sh(G,X).
Moreover, the quotient

G(G)
df
= (G(Af )/Z(Q)−) ∗G(Q)+/Z(Q) Gad(Q)+

of this group by its normal subgroup

{(q−1, ad q) | q ∈ G(Q)+/Z(Q)}
continues to act. The Shimura variety Sh(G, X) is a scheme with a continuous action
of G(G) in the sense of § 10 below.
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The reflex field. The reflex field is the natural field of definition of the Shimura
variety. It is defined purely in terms of G and X.

For any field k of characteristic zero, letM(k) be the set of G(k)-conjugacy classes
of homomorphisms Gm → Gk. The map M(k1) → M(k2) defined by an inclusion
k1 ↪→ k2 of algebraically closed fields is bijective. In particular, M(Qal) ≈M(C).

The cocharacters µx for x in X lie in a single class MX ∈ M(C), which we can
regard as an element of M(Qal). The reflex field E(G, X) is the fixed field of the
subgroup {σ | σMX = MX} of Gal(Qal/Q); it is therefore the field of definition of the
conjugacy class MX . With our axiom (2.1.4), E(G,X) will be contained in a CM -
field (see Deligne 1971c, 3.8), which means that it is either a CM-field or a totally
real field.

Special points. A point x ∈ X is special if there is a maximal Q-rational torus
T ⊂ G such that hx factors through TR (equivalently, T (R) fixes x). Then

µad
x

df
= (Gm

µx→ T → T/Z(G) ⊂ Gad)

satisfies the Serre condition, and so there is a unique homomorphism ρad
x : S → Gad

such that µcan ◦ (ρad
x )C = µad

x (see I 2.4b). There always exist many special points in
X (Deligne 1971c, 5.1).

When µx itself satisfies the Serre condition, we call x a CM-point. In this case there
exists a unique Q-rational homomorphism ρx : S → G such that µcan ◦ (ρx)C = µx. A
Q-linear representation (V, ξ) of G attaches a CM-motive over Qal to each CM-point
x, namely, that corresponding to the representation (V, ξ ◦ ρx) of g (see I 4). The
existence of a single CM-point implies that the weight wX is defined over Q, and
conversely, if wX is defined over Q, then every special point is CM (under our axiom
(2.1.4); see Milne (1988), A.3).

A pair (T, x) comprising a point x of X (necessarily special) and a maximal torus
T ⊂ G such that hx factors through TR will be called a special pair in (G,X). When
x is a CM-point, we refer to a CM-pair.

A point [x, g] of Sh(G,X) is said to be special (or CM ) if x is special (or CM) in
X. There is always a special point in X, and for any special point x, [x, 1] ·G(Af ) is
dense in Sh(G, X) for the Zariski topology (Deligne 1971c, 5.1).

Shimura varieties defined by tori. Let T be a torus over Q split by a CM-field.
A pair (T, x), hx : S → TR, automatically satisfies the axioms (2.1). The associated
Shimura variety

Sh(T, x) = lim←− T (Q)\T (Af )/K = T (Af )/T (Q)−

has dimension zero. The reflex field E(T, x) of (T, x) is the field of definition of µx.

For example, let E be a CM-field and Φ a CM-type for E. Then (TE, hΦ) defines
a Shimura variety whose reflex field is E∗(Φ), the reflex field of (E, Φ). (Notations as
in I 2.6.)

Morphisms of Shimura varieties. Let (G,X) and (G′, X ′) be pairs satisfying
(2.1). By a morphism f : (G,X) → (G′, X ′), we mean a homomorphism f : G → G′

mapping X into X ′. Such an f defines a morphism of schemes

Sh(f) : Sh(G,X) → Sh(G′, X ′), [x, a] 7→ [f(x), f(a)]
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which is equivariant for f : G(Af ) → G′(Af ), that is,

Sh(f) ◦ T (g) = T (f(g)) ◦ Sh(f), for g ∈ G(Af ).

If f : G → G′ is a closed immersion, then so also is Sh(f) (Deligne 1971c, 1.15).

Proposition 2.6. Let (G,X) and (G′, X ′) be two pairs satisfying (2.1), and
suppose given

(i) a morphism f1 : (G,X) → (G′, X ′);

(ii) a continuous homomorphism f2 : G(Af ) → G′(Af );

(iii) an element a ∈ G1(Af ) such that f1 ◦ ad a−1 = f2.

Then the morphism ϕ
df
= Sh(f1) ◦ T (a) : Sh(G1, X1) → Sh(G2, X2) maps [x, a−1]

to [f1(x), 1] for all x ∈ X1, and is equivariant:

ϕ ◦ T (g) = T (f2(g)) ◦ ϕ for all g ∈ G1(Af ).

Moreover, ϕ is unchanged when f1 is replaced with f1 ◦adq, q ∈ G(Q), and a with aq.

Proof. Straightforward. ¤

The relation between connected and nonconnected Shimura varieties.
Let X+ be a connected component of X, and let Sh(G,X)0 be the connected compo-
nent of Sh(G,X) containing the image of X+. As we observed in (2.2b), X+ can be
identified with a Gad(R)+-conjugacy class of homomorphisms S → GadR . It is an im-
portant observation of Deligne that Sh(G,X)0 can be described solely in terms of Gder

and X+; in particular, it is independent of the centre of G (except for Z(G) ∩Gder).

Proposition 2.7. Let (G,X) be a pair satisfying (2.1), and let X+ be a connected
component of X. When X+ is regarded as a conjugacy class of maps S → Gad(R)+,
the pair (Gder, X+) satisfies the axioms (1.3), and

[x] 7→ [x, 1] : Sh0(G,X+) → Sh(G,X)

defines an equivariant isomorphism of Sh0(G,X+) onto Sh(G,X)0 . The stabilizer of
Sh0(G,X) in G(G) is Gad(Q)+ˆ.

Proof. Deligne 1979, 2.1.16. ¤

In the language of §10 below, the proposition says that Sh(G,X) is obtained from
Sh0(Gder, X+) by induction from Gad(Q)+ˆ to G(G). This result will enable us to re-
late statements about connected Shimura varieties to statements about nonconnected
Shimura varieties. To this end, the following result, which shows that each connected
Shimura variety occurs as a connected component of a particularly good Shimura
variety, is useful.

Proposition 2.8. For any pair (G,X+) defining a connected Shimura variety,
there is a pair (G1, X1) defining a Shimura variety and such that:

(a) (Gder
1 , X+

1 ) = (G,X+);

(b) the weight wX1 is defined over Q.

Moreover, G1 can be chosen so that either:

(c) H1(k, Z(G1)) = 0 for all fields k ⊃ Q; or

(d) adh(i) is a Cartan involution on G1/wX1(Gm) (hence (2.1.2*) holds).
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Proof. See the Appendix to Milne 1988. ¤

The minimal compactification of Sh(G,X). Assume that Gad has no factors
of dimension 3, and let

A = ⊕n≥0Γ(Sh(G,X), ω⊗n), ω = ΛdΩ1, d = dim X.

There is a canonical inclusion Sh(G,X) → Proj A, the closure of whose im-

age, Sh(G,X), is called the minimal (or Satake-Baily-Borel) compactification of
Sh(G,X). When Gad has factors of dimension 3, we must replace Γ(S, ω⊗n) with
the group of sections having at worst logarithmic singularities along the boundary of
some smooth compactification of Sh(G,X) (cf. 1.2).

Automorphisms of Shimura varieties. It is possible to use the results in §1
on automorphisms of connected Shimura varieties to compute the group of G(Af )-
equivariant automorphisms of a Shimura variety. Clearly the Hecke operator T (g)
associated with any g ∈ Z(Af ) is such an automorphism of Sh(G, X), and con-
versely one can show that when Z(G) satisfies the Hasse principle for finite primes,
that is, H1(Q, Z(G)) ↪→ ∏

finite primes H1(Q`, Z(G)), then all G(Af )-automorphisms of

Sh(G,X) are of this form. Thus, in this case,

AutG(Af ) Sh(G,X) = Z(Af )/Z(Q)−.

See Milne 1983, 2.7.

Notes. The axioms for a Shimura variety were introduced in Deligne 1971c and,
in slightly revised form, in Deligne 1979. They were suggested by the work of Shimura.
This section summarizes parts of the two articles of Deligne.

3. Shimura varieties as moduli varieties for motives

In this section, we explain how the choice of a representation ξ : G → GL(V ), V
a Q-vector space, endows Sh(G,X) with all the additional structure that a family
of motives over Sh(G,X) would give. This suggests that, under some restrictions on
(G,X), Sh(G,X) should be a fine moduli space for motives.

Review of local systems and flat vector bundles. Let S be an algebraic
variety over k, and let V be a vector bundle on S. A connection on V is a k-linear
homomorphism

∇ : V → Ω1
S ⊗ V (V regarded as a sheaf )

satisfying the Leibniz identity,

∇(fv) = df · v + f · ∇v

for all local sections f of OS and v of V . A vector field Z on S defines a mapping
∇Z : V → V by the rule: for a section v of V on an open subset U of S,

∇Z(v) = 〈∇v, Z〉 ∈ Γ(U,V).

A connection is said to be flat (or integrable) if its curvature tensor is zero, that is,

∇Y · ∇Z −∇Z · ∇Y = ∇[Y,Z], all Y and Z.
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A local section v of V is said to be horizontal for ∇ if ∇v = 0. A vector bundle with
a flat connection can be regarded as a D-module, where D is the ring of differential
operators — see Borel et al. 1987, Chapter VI.

These definition carry over mutatis mutandis to a complex manifold S. Let
π1(S, s) be the fundamental group of S regarded as the group of covering trans-
formations of the universal covering space S̃ of S (acting on the right). A complex
representation ξ : π1(S, s) → GL(V ) defines a vector bundle on S

V(ξ) = S̃ × V/∼, (sγ, v) = (s, γv), s ∈ S̃, γ ∈ π1(S, s), v ∈ V,

having a canonical flat connection ∇(ξ). Conversely, if V is a vector bundle on S with

a flat connection ∇, then V
df
= V∇ is a local system of C-vector spaces on S, and for

any such system, there is an natural representation of π1(S, s) on the stalk Vs of V
at s ∈ S.

We refer to Borel et al. 1987, Chapter IV, for the notion of a flat connection being
regular at infinity.

Proposition 3.1. Let S be a complex manifold. The above constructions define
equivalences between:

(a) the category of vector bundles with flat connection (V,∇) on S;
(b) the category of local systems of C-vector spaces;
(c) the category of complex representations of π1(S, s).

When X is a smooth algebraic variety, the functor (V,∇) 7→ (Van,∇an) is an equiv-
alence from the category of algebraic vector bundles with a flat connection regular at
infinity to that of analytic vector bundles with a flat connection.

Proof. Except for the last statement, this is a standard result. The last state-
ment can be found in (Deligne 1970) and (Borel et al. 1987, IV 7.2.1). ¤

Variations of Hodge structures. A variation of Hodge structures on a complex
manifold S is a local system of Q-vector spaces V on S together with a continuously
varying family of Hodge structures on the stalks Vs of V such that

(a) the Hodge filtration on (C ⊗Q V )s varies holomorphically with s, that is, it
defines a filtration of the vector bundle V =df OS ⊗Q V ;

(b) (axiom of transversality): ∇(F pV) ⊂ Ω1
S ⊗ F p−1V .

When Q is replaced by k ⊂ R, we speak of a variation of Hodge k-structures. All
families of Hodge structures arising naturally in algebraic geometry are variations of
Hodge structures.

X as a parameter space for Hodge structures. As a first step to realizing
Sh(G,X) as a moduli variety for motives, we show how to realize X as a parameter
space for Hodge structures; in fact, the axioms (2.1) are virtually forced on us by
our wish that this be so. Let G be a connected algebraic group over R, and let X+

be a connected component of the space of homomorphisms S → GR. Then X+ is a
G(R)+-conjugacy class of homomorphisms. Choose a faithful representation (V, ξ) of
G. For each x ∈ X+, we obtain a real Hodge structure ξ ◦ hx on V . We assume that
the corresponding weight gradation is independent of x (equivalently, ξ ◦ hx(R×) is
contained in the centre of G(R)+ for all x).
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Proposition 3.2. Let V (ξ) be the constant sheaf of R-vector spaces on X+ defined
by V .

(a) There is a unique complex structure on X+ such that the Hodge filtrations on
the stalks of C⊗ V (ξ) vary holomorphically.

(b) The Hodge structures ξ ◦ hx make V (ξ) into a variation of real Hodge
structures if and only if the Hodge structure on g defined by hx is of type
{(−1, 1), (0, 0), (1,−1)} for all x ∈ X+.

(c) Let G1 be the smallest algebraic subgroup of G through which all the hx,
x ∈ X+, factor, and let Vn be the component of V of weight n. There exists
a bilinear form ψ : Vn ⊗ Vn → R(−n) that is a polarization of (Vn, ξ ◦ hx) for
all x ∈ X+ if and only if G1 is reductive and adhx(i) is a Cartan involution
on Gad

1 , all x.

Proof. This is proved in Deligne 1979, 1.1.14. We merely note that the Hodge
filtrations on the stalks of C⊗ V (ξ) define a map from X into a Grassman manifold,
and (a) is equivalent to this map being holomorphic. Moreover, that if Z is a vector
field on X corresponding to an element of F r

x (Lie G) then ∇Z(F sVx) ⊂ F r+sVx; the
condition implies that Lie G = F−1

x (Lie G). Finally, the result noted in (1.4c) implies
the existence of ψ. ¤

Now assume that (G,X) is a pair satisfying (2.1). The structure on X that we
defined in §2 is the unique complex structure such that every real representation (V, ξ)
of G defines a variation of real polarizable Hodge structures on X. If the weight wX

is defined over Q, then every rational representation (V, ξ) of G defines a rational
polarizable variation of Hodge structures on X. We can extend V (ξ) to X ×G(Af ),
and when (2.1.2*) holds we can pass to the quotient to obtain a polarizable variation
of Hodge structures (rational or real) on Sh(G,X). In the rational case, this variation
of Hodge structures is a candidate to be the family of Betti cohomology groups of a
family of motives over Sh(G,X).

Local systems of Q`-adic vector spaces. Let S be a scheme. By a local system
of Q`-vector spaces on Set I mean a twisted-constant constructible (or smooth) Q`-
sheaf; see, for example, Milne 1980, p. 165. When S is connected and s is a geometric
point of S, the map V 7→ Vs (stalk of V at s) defines an equivalence from the category
of local systems of Q`-vector spaces on S to that of continuous representations of
πet

1 (S, s) on Q`-vector spaces. More generally, if X → S is a Galois covering of S
with Galois group G (see 10.2), then

V 7→ lim−→V (XH) (limit over the open subgroups H of G),

defines an equivalence from the category of local systems of Q`-vector spaces on S
whose pull-back to X is constant to that of continuous representations of G.

Now take S to be a smooth connected variety over C, and let s ∈ S(C). In
this case, s is also a geometric point of S, and πet

1 (S, s) is the profinite completion
of π1(S, s). A local system of Q-vector spaces V on S(C) defines a representation
ξ : πet

1 (S, s) → GL(Vs ⊗ Q`) if and only if it is continuous relative to the `-adic
topology on V and the profinite topology on π1(S, s). In this case, we abuse notation,
and write V ⊗Q` for the local system of Q`-vector spaces on Set associated with ξ`.
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The systems attached to a rational representation of G.

Proposition 3.3. Assume that (G,X) satisfies (2.1*). A representation (V, ξ)
of G defines (in a natural way):

(a) a local system of Q-vector spaces V (ξ) on Sh(G, X);
(b) a local system of Q`-vector spaces V`(ξ) on Sh(G,X)et, each `;
(c) a vector bundle V(ξ) on Sh(G,X) together with a (regular) flat connection

∇(ξ).

These are related by canonical isomorphisms:

(i) V (ξ)⊗Q` → V`(ξ);

(ii) V (ξ)⊗ C→ V(ξ)∇(ξ).

When the weight wX is defined over Q, the maps ξ ◦ hx define on V (ξ) the structure
of a variation of polarizable Hodge structures.

Proof. Let K be compact open subgroup of G(Af ). Then (see §2) ShK(G,X) is
a finite union ∪Γg\X+, where Γg is the image of Γ′g = gKg−1 ∩ G(Q)+ in Gad(Q)+.
When K is sufficiently small, Γg will be the fundamental group of ΓgX

+. The con-
dition (2.1.2*) implies that Z(Q) is discrete in Z(Af ), and so we can take K to be
sufficiently small so that K ∩ Z(Q) = {1}. Since the kernel of Γ′g → Γg is con-
tained in Z(Q), this shows that we can assume that Γ′g = Γg. Now each of V (ξ) and
(V (ξ),∇(ξ)) is defined on Γg\X+ by the restriction of ξ to Γ′g. The sheaf V`(ξ) can be
defined to be V (ξ)⊗Q` or, better, we can proceed as follows. The above discussion
shows that when K is sufficiently small, Γ′g will act without fixed points on X+. Under
the same hypothesis, K will act without fixed points on Sh(G,X) = G(Q)\X×G(Af ).
Then Sh(G, X) will be a Galois covering of ShK(G,X), and we can take V`(ξ) to be
sheaf associated with the representation of K on V ⊗Q` defined by ξ. ¤

The motives attached to the points of Sh(G,X). Our discussion in this and
the next subsection is predicated on the assumption of (I 3.2), so that there is a
theory of motives over any field of characteristic zero, and the Betti fibre functor
Mot/C→ HdgQ is fully faithful (see I 4). Let (G,X) be a pair satisfying (2.1*), and
assume that wX is defined over Q. To simplify the discussion, we assume there is a
homomorphism t : G → Gm such that t ◦ wX(z) = z−2. Fix a faithful representation
(V, ξ) of G.

Hope 3.4. 1Each (V, ξ ◦ hx) is the rational Hodge stru cture attached to a motive
Mx over C (uniquely determined, because of our assumption of I 3.2).

As we noted in §2, when x is a CM -point we know that Mx exists, and it is a
motive of CM-type. Let t = (tα)α∈I be a family of tensors for V such that G is the
subgroup of GL(V )×Gm fixing the tα. Consider the set of triples (M, s, η) consisting
of a motive M over C, a family s = (sα)α∈I of Hodge cycles on M , and an isomorphism
η : V (Af ) → Hf (M) such that:

(3.5a) there exists an isomorphism i : HB(M) → V mapping each sα to tα and
such that (z 7→ i ◦ hM(z) ◦ i−1) ∈ X;

1Added 22.06.01: For Shimura varieties of abelian type, Hopes 3.4, 3.9, and 3.10 are proved
(without any assumptions) in J.S. Milne, Shimura varieties and motives. In: Motives (Eds. U.
Jannsen, S. Kleiman, J.-P. Serre), Proc. Symp. Pure Math., AMS, 55, 1994, Part 2, pp447–523.
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(3.5b) η maps each sα to tα.

An isomorphism from one such triple (M, s, η) to a second (M ′, s′, η′) is an isomor-
phism γ : M → M ′ sending each sα to s′α and such that γ ◦ η = η′. Write M(G,X, ξ)
for the set of isomorphism classes of such triples.

Proposition 3.6. Under the above assumptions, there is a canonical bijection

Φξ : M(G,X, ξ) → Sh(G,X).

Proof. Given (M, s, η), choose an isomorphism i : HB(M) → V as in (3.5a), and
let x ∈ X be such that hx(z) = i ◦ hM(z) ◦ i−1. Because iAf

◦ η : V (Af ) → V (Af )
preserves Hodge cycles, it is multiplication by ξ(a), some a ∈ G(Af ). The map i is
uniquely determined up to an element of G(Q), and so the class of (x, a) in Sh(G,X) is
well-defined: we set Φξ(M, s, η) = [x, a]. Conversely, given (x, a) ∈ X×G(Af ), let Mx

be the motive determined by (3.4), and define tα to be sα and η to be multiplication
by ξ(a). ¤

Remark 3.7. It is possible to recover (G,X) from the triple (M, s, η) attached
to a single point of Sh(G,X): by definition G is the subgroup of GL(HB(M))×Gm

fixing the sα; because sα is a Hodge cycle, hM(S) fixes it, and so hM factors through
GR; X is the G(R)-conjugacy class of hM .

Families of motives. We define a family of motives over a scheme S to be a
motive over the generic point “with good reduction everywhere”.

Definition 3.8. Let S be a smooth connected variety over C with generic point
η, and let η̄ be a geometric point lying over η. A motive M over S is a motive Mη over
C(η) such that the action of Gal(C(η)al/C(η)) on H`(Mη) factors through πet

1 (S, η̄),
all `.

Write H`(M) for the local system of Q`-vector spaces on Set defined by the rep-
resentation of πet

1 (S, η̄) on H`(Mη). Let S0 be a model of S over a subfield k0 of C of
finite transcendence degree over Q, and let η0 be the generic point of S0; assume k0 is
sufficiently large that Mη has a model M0 over η0. For any sufficiently general closed
point t of S, there will be a k-morphism η0 → S with image t, and M0 will define a
motive Mt over t. There is a local system of Q-vector spaces HB(M) on S such that
HB(M)t = HB(Mt) ⊂ H`(M)t for every such t. From (3.1) we then obtain a pair
(HdR(M),∇) such that HdR(M)∇ = C⊗HB(M).

A motive on a nonconnected smooth scheme S over C is defined to be a motive
on each of the connected components of S.

Hope 3.9. For any representation (V, ξ) of G, there exists a motive M on
Sh(G,X) such that

HB(M) = V (ξ), H`(M) = V`(ξ) each `, HdR(M) = V(ξ).

Take ξ to be faithful, and let M be the family of motives given by (3.9). There
will be a family t = (tα) of tensors for V such that G is the subgroup of GL(V )×Gm

fixing the tα. For each α, tα defines a global section sα ofHB(M), and we let s = (sα).
By construction, there is an isomorphism η : Vf (ξ) → Hf (M) sending tα to sα.
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Hope 3.10. The triple (M, s, η) is universal: let S be a smooth C-scheme with
a continuous action of G(Af ), and let (M′, s′, η′) be a triple over S such that
(M′, s′, η′)s ∈ M(G,X, ξ) for all closed points s of S; then there is a unique G(Af )-
morphism Ψ: S → Sh(G,X) such that Ψ∗(M, s, η) = (M′, s′, η′).

Shimura varieties as moduli varieties for abelian varieties. We now drop
all assumptions on motives. Let (G,X) be a pair satisfying (2.1), and assume that
there is an inclusion ξ : (G,X) ↪→ (GSp, S±), where GSp and S± are as in (2.4a). In
this case, (3.4) is true; in fact, (V, ξ◦hx) is the Hodge structure of an abelian variety A
over C, uniquely determined up isogeny. Thus M(G,X, ξ) consists of isogeny classes
of triples (A, s, η) satisfying (3.5), with A an abelian variety. (We say (A, s, η) and
(A′, s′, η′) are isogenous if there is an isogeny γ : A → A′ sending sα to s′α, each α,
and such that γ ◦ η = η′.)

Theorem 3.11. (a) The map Φξ : M(G,X, ξ) → Sh(G,X) realizes Sh(G,X) as
the coarse moduli scheme for the set M(G,X, ξ) of isogeny classes of triples (A, s, η).

(b) When (G, X) satisfies (2.1.2*), Sh(G,X) is a fine moduli scheme; in partic-
ular, it carries a universal family (A, s, η).

Proof. This follows from the main theorem of Mumford 1965. ¤

A Shimura variety Sh(G,X) is said to be of Hodge type when there is an embedding
(G,X) ↪→ (GSp(V, ψ), S±). As we have just seen, every such Shimura variety is a
(coarse) moduli scheme for abelian varieties with Hodge-cycle and level structure.
When each of the Hodge cycles defining the moduli problem is an endomorphism or
a polarization then the Shimura variety is said to be of PEL-type.

Notes. This section makes more explicit the philosophy underlying Deligne
(1979).

4. Conjugates of Shimura varieties

Let τ be an automorphism of C. We want to identify τ Sh(G,X) with the Shimura
variety defined by a possibly different pair (G′, X ′). Fix a faithful representation
(V, ξ) of G, and assume (3.4), so that attached to each point s of Sh(G,X), there
is a triple (M, s, η)s satisfying the conditions (3.5). The triple attached to τs ∈
τ Sh(G,X) = Sh(G′, X ′) should be τ(M, s, η)s. As we noted in (3.7) it is possible
to recover (G′, X ′) from τ(M, s, η)s. This gives us a description of (G′, X ′), but only
in terms of a conjectural theory of motives. A key observation in Langlands 1979 is
that, when we take s to be a CM-point, Ms becomes a CM-motive, and so we can
apply the theory of the Taniyama group to define (G′, X ′).

Now drop all assumptions, and choose a special point x ∈ X. Then x defines a
homomorphism ρad

x : S → Gad (see §2), and hence an action of S on G. Write τ,xG
for the inner twist of G defined by τS : τ,xG = τS× SG. The point sp(τ) ∈ τS(Af )
defines an isomorphism

G(Af ) → τ,xG(Af ), g 7→ τ,xg
df
= sp(τ) · g.
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Let T ⊂ G be a maximal torus such that T (R) fixes x. The action of S on T is
trivial, and so T = τ,xT ⊂ τ,xG. Thus τµx can be regarded as a homomorphism

Gm → T = τ,xT ↪→ τ,xG.

Since τµx commutes with its complex conjugate, it defines a homomorphism hτX
: S→

τ,xG, and when we take τ,xX to be the set of G(R)-conjugates of τ,xh, the pair
(τ,xG, τ,xX) satisfies the axioms (2.1).

Remark 4.1. (a) If x is a CM-point and (V, ξ) is a faithful representation of G,
then, as we observed in §2, (V, hx◦ξ) is HB(M) for a well-defined CM -motive M over
C. Let t be a family of Hodge tensors for V such that G is the subgroup of GL(V )×Gm

fixing the elements of t. Then τ,xG is the subgroup of GL(HB(τM)) × Gm fixing τt

for each t ∈ t. Moreover, hτ x = hτM , and g 7→ τ,xg is defined by Hf (M)
τ→ Hf (τM).

(b) The group τ,xG is obtained from G by twisting at infinity. For example, if G =
GL1(B) with B a quaternion algebra over a totally real field F , then τ,xG = GL1(B

′)
where B′ ⊗Q Q` ≈ B ⊗Q Q`, all `, and B′ ⊗F,σ R ≈ B ⊗F,τ◦σ R, all σ : F ↪→ R.

The next result is the main theorem of the chapter: it shows that the choice of
a special point x determines a realization of τ Sh(G,X) as the Shimura variety of
(τ,xG, τ,xX); the following Theorem 4.4 then shows that the realization is essentially
independent of the choice of x.

Theorem 4.2. For each τ ∈ Aut(C) and special point x ∈ X, there is a unique
isomorphism

ϕτ,x : τ Sh(G,X) → Sh(τ,xG, τ,xX)

such that

(a) τ [x, 1] 7→ [τx, 1], and
(b) ϕτ,x ◦ τT (g) = T (τ,xg) ◦ ϕτ,x, all g ∈ G(Af ).

Proof. The uniqueness is obvious from the fact that [x, 1] · G(Af ) is dense in
Sh(G,X). We discuss the proof of the existence in §9 below. (If we knew (3.10),
ϕτ,x would be the map given by the family of motives τM over τ Sh(G,X) and the
universality of Sh(τ,xG,τ,x X).) ¤

Let x and x′ be CM-points of X (supposed to exist). A calculation shows that
ρx∗(τS) and ρx′∗(τS) have the same class in H1(Q, G). The choice of an isomorphism
f : ρx∗(τS) → ρx′∗(τS) determines an isomorphism f1 : τ,xG → τ,x′G, and there is an
a ∈ τ,xG(Af ) such that f1(a

−1 ·τ,x′g) = τ,x′g. If f is replaced by f ◦q, q ∈ τ,xG(Q), then
f1 is replaced by f1 ◦ adq and a with aq. Therefore (see 2.6), there is a well-defined
isomorphism

ϕ(τ ; x′, x) : Sh(τ,xG,τ,x X) → Sh(τ,x′G,τ,x′ X).

Proposition 4.3. Let τ ∈ Aut(C). For each pair (G,X) defining a Shimura
variety and special points x and x′ of X, there is an isomorphism

ϕ(τ ; x′, x) : Sh(τ,xG,τ,x X) → Sh(τ,x′G,τ,x′ X)

such that ϕ(τ ; x′, x) ◦ T (τ,xg) = T (τ,x′g) ◦ ϕ(τ ; x′, x), all g ∈ G(Af ). These isomor-
phisms are uniquely determined by the following properties:

(a) when x and x′ are CM-points, ϕ(τ ; x′, x) is as defined above;
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(b) if (G,X)+ = (G′, X ′)+ and x and x′ ∈ X+ (= X ′+), then

ϕ(τ ; x′, x)| Sh(G,X)0 = ϕ(τ ; x′, x)| Sh(G′, X ′)0.

Proof. When the weight wX is defined over Q, every special point is CM and
the map is as above. Next check that

ϕ(τ ; x′, x)| Sh(G,X)0 = ϕ(τ ; x′, x)| Sh(G′, X ′)0

when (Gder, X+) = (Gder, X ′+), x and x′ both lie in X+, and wX and wX′ are defined
over Q. In the general case, after possibly replacing x′ by gx′ with g ∈ G(Q), we
can assume that x and x′ lie in the same connected component X+ of X. Now (2.8)
provides us with a pair (G′, X ′) such that (G′, X ′)+ = (G,X)+ and wX′ is defined over
Q. Take ϕ(τ ; x′, x) to be the unique equivariant map whose restriction to Sh(G,X)0

is ϕ(τ ; x′, x)| Sh(G′, X ′)0. ¤

Theorem 4.4. For any pair of special points x and x′, we have ϕ(τ ; x′, x)◦ϕτ,x =
ϕτ,x′:

Sh(τ,xG, τ,xX)

¡
¡

¡ϕτ,x µ

τ Sh(G,X)

@
@

@ϕτ,x′ R

Sh(τ,x′G, τ,x′X)

ϕ(τ ;x′,x)

∨

Proof. We discuss the proof in Section 9. ¤

Remark 4.5. Let I be an index set. To give a family of objects (Si)i∈I and
isomorphisms ϕji : Si → Sj, one for each pair (i, j), such that ϕkj ◦ϕji = ϕki for all i,
j, k, is essentially the same as to give a single object: the inverse limit of the family
is an object S together with isomorphisms ϕi : S → Si such that ϕji ◦ ϕi = ϕj. From
this point of view, Theorems 4.2 and 4.4 realize τ Sh(G, X) as the inverse limit of the
Shimura varieties Sh(τ,xG, τ,xX), x running over the special points of X.

Remark 4.6. Let K be a compact open subgroup of G(Af ), and let K ′ be the
image of K in τ,xG(Af ) under g 7→ τ,xg. Then ϕτ,x induces an isomorphism

τ ShK(G,X) → ShK′(τ,xG, τ,xX).

Let f be a rational function on ShK(G,X) that is defined at the special point [x, 1].
Then (4.2) associates with f a function

τf
df
= τ ◦ f ◦ τ−1 ◦ ϕ−1

τ,x on ShK′(τ,xG, τ,xX)

such that

(i) τf([τx, 1]) = τ(f([x, 1]))

(ii) f 7→ τf commutes with the Hecke operators.

This leads to a reciprocity law, which can be made more explicit (see Milne and Shih
1981b, §5).
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Notes. Theorems (4.2) and (4.4) were conjectured by Langlands (Langlands
1979), who was motivated by the problem of computing the zeta function of a Shimura
variety. For Shimura varieties of abelian type (see §9 for a definition of this class),
they were proved in Milne and Shih 1982b, where also the proof of the general case
was reduced to a statement about connected Shimura varieties defined by simply-
connected simple groups. This statement was proved in Milne 1983 using a theorem
of Kazhdan 1982 (whose proof is completed in Clozel 1986) and theorems of Margulis
1977. See also Borovoi 1983/4 (completed in Borovoi 1987) and the notes to §9 below.

5. Canonical models

By a model of Sh(G,X) over a subfield E of C, we mean a scheme S over E
endowed with an action of G(Af ) (defined over E) and an equivariant isomorphism
(over C) ψ : Sh(G,X) → S ⊗E C. Note that ψ can also be regarded as morphism
Sh(G,X) → S over E inducing an isomorphism Sh(G,X) → S ⊗E C.

Let (T, x) be a special pair in (G,X). The field of definition of the cocharacter µx

of T is the reflex field E(T, x). As in (I 2.6), µx defines a Q-rational homomorphism
Nx : TE → T for any field E ⊃ E(T, x). The reciprocity map2

rE(T, x) : Gal(Eab/E) → T (Af )/T (Q)−

is defined as follows: let τ ∈ Gal(Eab/E), and let s ∈ A×E be such that recE(s) = τ−1;

write s = s∞ ·sf with s∞ ∈ E∞ and sf ∈ Ê; then rE(T, x)(τ) = Nx(sf ) (mod T (Q)−).

Definition 5.1. A model Sh(G,X)E of Sh(G,X) over E = E(G,X) is
said to be canonical if each special point [x, a] is rational over E(T, xab) and
Gal(E(T, x)ab/E(T, x)) acts on [x, a] according to the rule:

τ [x, a] = [x, r(τ) · a], where r = rE(T, x).

Proposition 5.2. Consider a morphism f : (G,X) → (G′, X ′). If Sh(G,X) and
Sh(G′, X ′) have canonical models, then the morphism Sh(f) : Sh(G,X) → Sh(G′, X ′)
is defined over any field E containing the reflex fields of (G,X) and (G′, X ′), that
is, there exists a (unique) morphism Sh(f)E : Sh(G,X)E → Sh(G′, X ′)E making the
following diagram commute:

Sh(f) : Sh(G,X) −−−→ Sh(G′, X ′)yψ

yψ′

Sh(f)E : Sh(G,X)E −−−→ Sh(G′, X ′)E.

Proof. See Deligne 1971c, 5.4. ¤
Corollary 5.3. The canonical model of Sh(G,X) (if it exists) is uniquely de-

termined up to a unique isomorphism.

Proof. This is an immediate consequence of the proposition. ¤
2Added 22.06.01: In the definition of the reciprocity map, one should take recE(s) = τ (not

τ−1). For a discussion of this, see 1.10 of J.S. Milne, The points on a Shimura variety modulo a
prime of good reduction. In: The Zeta Function of Picard Modular Surfaces, Publ. Centre de Rech.
Math., Montreal (Eds. R. Langlands and D. Ramakrishnan), 1992, pp151–253.
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Example 5.4. (a) Let T be a torus. Since Sh(T, x) is of dimension zero, it is
completely described by its set of points (with the profinite topology), and so it has
a unique model over Qal. Giving a model of Sh(T, x) over E = E(T, x) corresponds
to giving an action of Gal(Qal/E) on Sh(T, x)(Qal) = T (Af )/T (Q)−. If the model is
to be the canonical model, this action must be that given by r(T, x).

(b) When (G,X) is of Hodge type, it follows from the theorem of Shimura and
Taniyama (see I 5.6) that a solution to the moduli problem over E(G,X) will be a
canonical model.

Theorem 5.5. Let (G,X) be a pair satisfying (2.1), and write E = E(G,X).

(a) The Shimura variety Sh(G,X) has a canonical model Sh(G,X)E.
(b) For any τ ∈ Gal(Qal/Q), τE(G,X) = E(τ,xG,τ,x X), and τ Sh(G,X)E is the

canonical model of Sh(τ,xG, τ,xX).

Proof. This follows from (4.2) and (4.4). Suppose first that wX is defined over
Q. A calculation shows that if τ fixes E(G,X), then the class of ρx∗(τS) in H1(Q, G)
is trivial. The choice of a point p ∈ ρx∗(τS) determines an isomorphism f1 : G → τ,xG.
Write p = sp(τ) · β. Then (2.6) give us a well-defined equivariant isomorphism

ϕx : Sh(G,X) → Sh(τ,xG, τ,xX).

A similar argument to that in the proof of (4.3) allows us to extend the definition of
ϕx to any Shimura variety. For each τ , let

fτ = ϕ−1
x ◦ ϕτ,x : τ Sh(G, X) → Sh(G,X).

Then fστ = fσ ◦σ(fτ ), and so the fτ define a descent datum3 for Sh(G,X) which gives
us a model Sh(G, X)E over E(G,X). When applied to a pair (T, x), this procedure
leads directly to the canonical model of Sh(T, x); thus [x, a] is rational over E(T, x)ab,
and the action of the Galois group on it is as required. Now (4.4) can be used
to show that the model obtained is independent of the special point x, and so it
fulfills the condition for every special point. This completes the proof of (a). The
statement in (b) about the reflex fields is obvious from the definitions. Moreover, it
is straightforward to check that

(τ Sh(G,X)E)⊗τE C = τ Sh(G,X)
ϕτ,x→ Sh(τ,xG, τ,xX)

realizes τ Sh(G,X)E as the canonical model of Sh(τ,xG, τ,xX). ¤

3Added 22.06.01: The original source for this argument is pp. 233-234 of Langlands 1979, which
sketches the derivation of a descent datum from the conjugation conjecture and says that “one
applies the Weil criterion for descent of the field of definition”. In Milne and Shih 1982b the sketch
is made more detailed. In neither reference is there a proof that the descent datum satisfies the
continuity condition necessary before one can apply Weil’s criterion, although there is no reason
(that I know of) to think that Langlands did not in fact check the continuity. The fact that the
continuity was not explicitly proved anywhere in the literature has achieved a certain notoriety with
authors stating “this argument is flawed” and referring to a “gap in the argument” and to the need
to “correct the proof”. One author went so far as to claim as a “new result” the statement that had
been proved 17 years earlier. In fact the descent datum does satisfy the continuity condition, and it
is relatively easy to verify this. Moreover, the proof requires nothing that was not available in 1977
when Langlands wrote his article. See J.S. Milne, Descent for Shimura varieties. Michigan Math.
J., 46 (1999), pp. 203–208.
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Corollary 5.6. Let E = E(G,X). Then
∏

τ∈Hom(E,C)

Sh(τ,xG, τ,xX)

has a canonical model over Q.

Proof. In fact, the maps ϕτ,x define an isomorphism

(ResE/Q Sh(G,X)E)C →
∏

Sh(τ,xG, τ,xX).

¤

For any field L containing E(G,X), Sh(G,X)E gives rise to a model Sh(G,X)L of
Sh(G,X) over L. This model will be referred to as the canonical model of Sh(G,X)
over L.

Notes. Canonical models (in the above sense) were introduced, and shown to
be unique in Deligne 1971c. Again, the notion was suggested by a similar notion
introduced by Shimura (see the next section). They were shown to exist for Shimura
varieties of abelian type (see §9) in Deligne (1979). That (4.2) and (4.4) imply the
existence of canonical models was already noted in Langlands (1979).

6. Canonical models in the sense of Shimura

According to Shimura’s original definition, the canonical model of a Shimura vari-
ety should be a projective system of connected varieties. We explain how such models
can be constructed from the canonical models of the preceding section.

Let (G,X) be a pair satisfying (2.1), and choose a connected component X+ of
X. The canonical model (in the sense of Shimura) will be defined in terms of the
pair (G,X+) — note that this is not a pair satisfying (1.3) — G is a reductive group.
Write Sh(G,X)0 for the connected component of Sh(G,X) containing the image of
X+, and let E be the reflex field of (G,X). Since Sh(G,X) has a canonical model
over E, there is a homomorphism ` : Gal(Qal/E) → π0(Sh(G, X)) giving the action
of the Galois group on the set of connected components of Sh(G,X) (see Deligne
1979, 2.6.2.1, for an explicit description of `). According to (2.7), there is an exact
sequence

1 → Gad(Q)+ˆ → G(G) → π0(Sh(G,X)) → 1.

On pulling back by `, we obtain a sequence

1 → Gad(Q)+ˆ → E(G,X)
σ→ Gal(k/E) → 1

with Gal(k/E) the image of Gal(Qal/E) in π0(Sh(G,X)) and E(G,X) the subgroup
of G(G) of elements mapping to Gal(k/E)). From Sh(G,X)E we obtain a canonical
model Sh(G,X)0

k of Sh(G,X)0 over k.

Let z be the set of compact open subgroups of E(G,X). For any S in z, set

ΓS = S ∩Gad(Q)+;

kS = the subfield of k fixed by σ(S);

VS = S\ Sh(G,X)0; it is defined over kS, and there is an isomorphism
ϕS : ΓS\X+ → (VS)C. Let α ∈ E(G,X); if αSα−1 ⊂ T , then the action of α on
Sh(G,X)0 induces a map JTS(α) : VS → σ(α)−1VT .
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Theorem 6.1. (a) For each S ∈ z, (VS, ϕS) is a model of ΓS\X+ over kS.

(b) Let α ∈ E(G,X); for any S, T ∈ k such that αSα−1 ⊂ T , JTS(α) : ΓS\X+ →
σ(α)−1ΓT\X+ is defined over kS. Moreover

JSS(α) is the identity map if α ∈ S;

(σ(α)−1JTS(β)) ◦ JSR(α) = JTR(βα);

JTS(α) ◦ ϕS = ϕT ◦ α for all α ∈ G(Q)+ such that αSα−1 ⊂ T .

(c) Let x ∈ X+ be special; for each S ∈ z, ϕS(z) is rational over E(x)ab, and for

every ν ∈ Ê(x)×,

recE(ν)(ϕS(x)) = JST (Nx(ν))ϕT (x), T = Nx(ν)−1 · S ·Nx(ν)

where Nx : TE(x) → G is defined by µx.

Proof. This can be deduced from (5.5a), using results about the automorphism
groups of Sh(G,X) and its function field. See Milne and Shih 1981b. ¤

Notes. Theorem 6.1 says that canonical models exist in the sense of Shimura
1971a. It was proved in various cases in Shimura 1970, Miyake 1971, and Shih 1978.
It was shown to follow from Theorem 5.5 in Milne and Shih 1981b (the restriction to
classical groups in that paper is unnecessary).

7. The action of complex conjugation on a Shimura variety with a real
canonical model

Let Sh(G, X) be a Shimura variety whose reflex E(G,X) is real. Then Sh(G,X)
has a canonical model Sh(G,X)R over R, and so complex conjugation defines an
involution of Sh(G,X). In order to be able to compute the factor of the zeta function
of Sh(G,X) corresponding to the (given) infinite prime of E(G,X), it is necessary to
have an explicit description of this involution.

Lemma 7.1. Let x be a special point of X. There is a unique G(R)-equivariant
antiholomorphic map X → X such that η(x) = ιx, where ιx is the point in X such
that µιx = ιµx.

Proof. The uniqueness is obvious. Let T be a maximal torus in G such that
T (R) fixes x, and let N be the normalizer of T in G. There is an n ∈ N(R) such that
n · x = ιx (Milne and Shih 1982b, 4.3), and we can define η to be g · x 7→ gn · x. ¤

Theorem 7.2. Let Sh(G,X) be a Shimura variety whose reflex field is real. The
involution of Sh(G,X) defined by complex conjugation is [x, g] 7→ [η(x), g].

Proof. Since both maps are continuous and equivariant, it suffices to show that
they agree at the single point [x, 1]. The action of ι on Sh(G,X) (relative to Sh(G,X)E

is

Sh(G,X)
ι→ ι Sh(G,X)

ϕι,x→ Sh(ι,xG, ι,xX)
ϕ−1

x→ Sh(G,X).

From §5 and §6, we see that

[x, 1] 7→ ι[x, 1] 7→ [ιx, 1] 7→ [η(x), 1]

under these maps. ¤
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Notes. Theorem 7.2 was conjectured in Langlands 1979. An equivalent statement
for connected Shimura varieties defined by groups G of type C was proved in Shih
1976, and this result was extended to all Shimura varieties of abelian type in Milne
and Shih 1981a. That Theorem 7.2 follows from Theorems 4.2 and 4.4 was noted in
Langlands 1979.

8. The minimal compactification

Let Sh(G,X)− be the minimal compactification of Sh(G,X). Because Sh(G,X)−

can be constructed out of Sh(G,X) by a canonical algebraic method (see §2), all the
maps ϕτ,x, ϕ(τ ; x′, x), and ϕx have unique extensions to Sh(G,X)−. In particular,
we see that all the theorems in this chapter remain valid when the Shimura varieties
are replaced by their minimal compactifications. (We shall discuss the boundary
components of Sh(G,X)− in more detail in Chapter V.)

9. The strategy for proving the main theorems

The proofs of Theorems 4.2 and 4.4 are too long to describe in detail. Instead
I outline the strategy for proving them, and other theorems, on Shimura varieties.
Recall that in §3 we defined the notion of a Shimura variety of Hodge type and noted
that the choice of a faithful representation of G realizes such a variety as a moduli
variety (over C) for abelian varieties with Hodge cycle and level structure. The class
of connected Shimura varieties of abelian type is the smallest containing:

(a) the connected component of every Shimura variety of Hodge type;
(b) a product of connected Shimura varieties if it contains the factors;
(c) Sh(G,X+) if it contains Sh(G′, X+) with G′ a finite covering group of G.

Deligne 1979 gives a classification of connected Shimura varieties of abelian type
based on Satake’s classification of symplectic embeddings (Satake 1965). A (noncon-
nected) Shimura variety is of abelian type if a connected component of it is of abelian
type. Note that a Shimura variety of abelian type will not in general be a moduli
variety for abelian varieties, contrary to some assertions in the literature.

Let P (G,X) be a statement about the Shimura variety Sh(G, X). The first step in
proving P for all Shimura varieties is to prove it for those of Hodge type by identifying
the Shimura variety with a moduli variety for abelian varieties. The second step is to
find a statement P+(G,X+) for connected Shimura varieties, and to prove that

P (G,X) is true ⇔ P+(Gder, X+) is true.

As a consequence, one finds that if P (G′, X ′) is true and (Gder, X+) = (G′der, X ′+),
then P (G,X) is true. The third step (usually easy) is to prove:

P+(Gi, X
+
i ) true for all i ⇒ P+(

∏
Gi,

∏
X+

i ) true;

P+(G′, X+) true for G′ a finite covering of G ⇒ P+(G,X+) is true.

This then implies that P+ is true for all connected Shimura varieties of abelian
type, and hence (by the previous step) that P is true for all Shimura varieties of
abelian type. Moreover, it shows that in order to prove P for all Shimura varieties, it
suffices to prove P+(G,X+) in the case that G is a simply connected Q-simple group.
Then G is of the form G = ResF/QG′ for some absolutely simple group G′ over a
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totally real field F . For a totally real field F ′ containing F , set G∗ = ResF ′/QG and
define X+

∗ so that (G, X+) ⊂ (G∗, X+
∗ ). When F ′ is chosen sufficiently large, there

will be many embeddings (Gα, X+
α ) ↪→ (G,X+) with Gα a group of type A1 (thus

Gα is an algebraic group associated with a quaternion algebra, possibly split, over a
totally real field). We have

Sh(G,X+) ↪→ Sh(G∗, X+
∗ ) ←↩ Sh(Gα, X+

α ).

The final step is to exploit these inclusions, and the fact that the statement
P+(Gα, X+

α ) is known (the associated Shimura variety is of abelian type), to prove
P+(G,X+).

One final note: several authors have criticized the above approach for its depen-
dence on abelian varieties and their moduli. In defence I point out that, in the case
that the weight is defined over Q, all of the results in this and the next chapter would
be an immediate consquence of the existence of a sufficiently strong theory of motives
and their moduli; moreover, this is the only heuristic argument I know for them.
Also, the approach does not use the classification of semisimple algebraic groups (at
present, the only place where this is used is in Kazhdan 1982, but the author has
shown4 that it is unnecessary there). Finally, this is the only approach that gives
strong results.

Notes. For the existence of canonical models, the first three steps were carried
out in Deligne 1979. For Langlands’s conjecture (theorems 4.2 and 4.4) they were
carried out in Milne and Shih 1982b. The embedding of Sh(G,X) into Sh(G∗, X∗) was
used in Piatetski-Shapiro 1971 in the case the group G is of type An to obtain a pair
(G∗, X∗) for which G∗(Q`) has no compact factors. Borovoi suggested (in 1981) using
the embeddings (Gα, Xα) ↪→ (G∗, X∗) to prove the existence of canonical models for
Shimura varieties not of abelian type. (Obtaining canonical models using embeddings
of Shimura varieties of type A1 was also an unstated object of Garrett (1982, 1984).)

10. Appendix: Schemes with a continuous action of a locally profinite
group

A locally profinite group is a locally compact totally disconnected group. In such
a group G, the compact open subgroups K form a fundamental system of neighbour-
hoods of the identity element, and ∩K = 1.

Lemma 10.1. Let G be a locally profinite group, and let E be a separated topological
space with a continuous action E ×G → E of G. For each compact open subgroup K
in G, set EK = E/K. Then5 (EK) is a projective system, and E = lim←− E/K.

Proof. Apply Bourbaki 1960, III.7.2, Cor 1 to the groups K acting on E, and
observe that lim←− K = ∩K = 1. ¤

To give E together with the action of G is the same as to give the family (EK)
together with the maps

x 7→ xg : EK → EL, L ⊃ g−1Kg.

4Added 22.06.01: J.S. Milne, Kazhdan’s theorem on arithmetic varieties . 42pp, March 28, 1984.
Available soon at www.jmilne.org.

5Added 22.06.01: Need to assume that each EK is separated.
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These remarks motivate the following definitions.

For the remainder of this section, “scheme” will mean “quasi-projective scheme
over a field k”, or a projective limit of such schemes.

Let G be a locally profinite group, and consider a family (SK) of schemes, indexed
by the open compact subgroups K of G. Suppose that for each g ∈ G and each K
and L with L ⊃ g−1Kg, there is given a morphism

ρL,K(g) : SK → SL

satisfying the conditions:

(i) ρK,K(k) = id if k ∈ K;

(ii) ρM,L(g) ◦ ρL,K(h) = ρM,L(gh);

(iii) whenever K is normal in L, so that ρK,K defines an action of the finite group
L/K on SK , SL is isomorphic to the quotient of SK by the finite group L/K.

We then call the family (SK , ρL,K) a scheme with a continuous right action of G.

For each K ⊂ L, there is a map ρL,K(1) : SK → SL. In this way we get a projective
system of schemes whose limit S has a right action by G such that SK = S/K for
all compact open subgroups K of G. We shall also refer to S as a scheme with a
continuous right action of G.

Example 10.2. Suppose G is compact and S is smooth. If G acts continuously on
S in such a way that the isotropy group of each geometric point of S is trivial, then
S → S/G is a Galois covering with Galois group G. Conversely, if S → S0 is a Galois
covering with Galois group G, then G acts on S in such a way that the isotropy group
of each geometric point is trivial.

For example, let S0 be a connected scheme, and fix a geometric point s → S0.
Take S to be the projective system of commutative triangles

s > S ′

@
@

@R

S0

π

∨

with π finite and étale. Then S is a Galois covering of S0 with Galois group the étale
fundamental group πet

1 (S0, s).

Let S be a scheme over k with a continuous action of G. For a scheme Y over k, we
set Hom(Y, S) = lim−→Hom(Y, SK). To give a scheme Y over S is the same as to give a
scheme YK over SK , each K sufficiently small, such that YK = YL×SL

SK for K ⊂ L.
Fix a locally profinite group G and a profinite set π with a continuous right action
of G. Assume that the action is transitive, and that the orbits of a compact open
subgroup are open: for any e ∈ π, the bijection G/Ge → π (Ge = isotropy group at e)
is a homeomorphism. Consider systems consisting of a scheme S with a continuous
right action of G together with a continuous equivariant map S → π. For e ∈ π, the
fibre Se over e is endowed with a continuous action of Ge.

Proposition 10.3. The functor S 7→ Se is an equivalence from the category of
schemes S, endowed with a continuous action of G and a continuous equivariant map
S → π, to the category of schemes Se endowed with a continuous action of Ge.
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Proof. See Deligne 1979, 2.7.3. ¤

In particular, there is a reverse functor, Se 7→ S. The scheme S will be said to
have been obtained from Se by induction from Ge to G.



CHAPTER III

Automorphic vector bundles

Just as automorphic functions are sections of the sheaf of germs of functions on a
Shimura variety, holomorphic automorphic forms are sections of certain vector bun-
dles, called automorphic vector bundles, on a Shimura variety. The main theorems
for automorphic vector bundles parallel those for Shimura varieties: every automor-
phic vector bundle V(J ) has a canonical model V(J )E over its reflex field E, and
for each τ ∈ Gal(Qal/Q), τV(J )E is the canonical model over τE of an explicitly
determined automorphic vector bundle V(τJ ). In particular, this allows us to define,
in complete generality, the notion of a holomorphic automorphic form being rational
over a number field.

Throughout this chapter (G,X) is a pair satisfying (II 2.1). We write Zs(G) for
the largest subtorus of Z(G) that is split over R but which has no subtorus split over
Q; thus Zs(G) is the largest subtorus of Z(G) such that

{
X∗(Zs)

Gal(Qal/Q) = 0
ι acts as + 1 on X∗(Zs)

We write Gc for G/Zs(G). Note that (G,X) satisfies (II 2.1.2*) if and only if G = Gc.

1. The compact dual symmetric Hermitian space X̌

For each x ∈ X, µx defines a decreasing filtration Filt(µx) of RepC(G) (see I 1),
and we define X̌ to be the G(C)-conjugacy class of filtrations of RepC(G) containing
Filt(µx). If (V, ξ) is a faithful representation of GC, then X̌ can be identified with a
G(C)-conjugacy class of filtrations of V .

Fix a point o of X, and let Po be the subgroup of GC fixing Filt(µo). Then Po is
a parabolic subgroup of GC (see I 1.7) and there is a bijection

G(C)/Po(C) → X̌,

which endows X̌ with the structure of a smooth projective variety over C. We call
X̌ the compact dual symmetric Hermitian space of X. For any connected component
X+ of X, X̌ is the dual of X+ in the sense of Helgason 1978, V.2.

Interpretation of X̌ as a classifying space. Let V be a vector bundle on a
connected complex variety S. The type of a filtration

V ⊃ S1 ⊃ · · · ⊃ Sn = 0

is the sequence of numbers, di = rank Si. Fix a vector space V over C and a filtration
F •

o of V of type d = (d1, . . . , dn). Then the functor of complex varieties

F(S) = {filtrations of VS
df
= S × V of type d}

55
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is represented by the Grassman variety GL(V )/Qo, where Qo is the subgroup of
GL(V ) stabilizing F •

o . When V is defined over Q, so also is the Grassman variety.

Fix a family of tensors t = (tα)α∈I for V , and let G be the subgroup of GL(V )
fixing the tα. Then each tα defines a global tensor of VS, and the functor

Fo(S) = {filtrations F • of VS s.t. (Vs, F
•
s , t) ≈ (V, F •

o , t) all s ∈ S}
is represented by the subvariety G/Po of the Grassman variety, where Po is now the
stabilizer of F •

o in G.

We apply these remarks to (G,X). Choose a faithful representation ξ : G →
GL(V ) of G, and let t = (tα) be a family of tensors of V such that G is the subgroup
of GL(V ) fixing the tα. Choose a point o ∈ X, and let F •

o be the corresponding Hodge
filtration of V (C). Then X̌ represents the functor Fo described above: the F •

x for

x ∈ X̌ define a filtration of the vector bundle V df
= X̌ × V (C) and the triple (V , F •, t)

is universal.

In particular, we see that X̌ is realized as a subvariety of a Grassman variety
GL(V (C))/Qo. As in (II 2), we let MX be the G(C)-conjugacy class of homomor-
phisms Gm → GC containing µx for x ∈ X, and we let E(G,X) be the field of
definition of MX . The map

µx 7→ Filt(µx) : MX → X̌

is surjective, from which it is clear that X̌, regarded as a subvariety of GL(V )/Qo,
is stable under the action of any automorphism τ fixing E(G,X). Therefore X̌ is
defined over E(G,X).

The Borel embedding.

Proposition 1.1. The map

β : X → X̌, x 7→ Filt(µx)

embeds X as an open complex submanifold of X̌. For o ∈ X, let Ko be the isotropy
group at o in G(R), and let Po be the isotropy group at o ∈ X̌ in G(C); then Ko =
Po ∩ G(R), and the inclusion of Ko into Po identifies (Ko)C with a Levi subgroup of
Po; we have

G(R)/Ko
⊂ > G(C)/Po(C)

X

≈
∨

⊂ > X̌
∨≈

Proof. The fact that β is holomorphic is a restatement of (II 3.2a). For the rest,
we merely note that the injectivity of X → X̌ follows from the fact that the Hodge
filtration determines the Hodge decomposition (I 2). (See Helgason 1978, VIII 7 for
the details.) ¤

The map β is the Borel embedding of X into X̌.

Example 1.2. Let (V, ψ) be a symplectic space, and let (G,S±) be as in (II
2.4a). Thus G = GSp(V, ψ) and S± is the space of Hodge structures on V of type
{(−1, 0), (0,−1)} for which±(2πı)ψ is a polarization. In this case, X̌ can be identified
with the set of maximal isotropic subspaces of V (C) and β with the map x 7→ F 0

xV .
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Conjugates of X̌. As X̌ is an algebraic variety, τX̌ is defined for any τ ∈ Aut(C).
Recall from (I 7) that the period torsor P is a torsor for T having a canonical point
p ∈ P(C). Define z∞(τ) ∈ T(C) by:

τp = p · z∞(τ).

Then z∞(τ) ∈ τS(C), and so it defines an isomorphism

g 7→ τ,xg
df
= [z∞(τ) · g] : G(C) → τ,xG(C).

Proposition 1.3. (a) Let x be a special point of X, and let τ,xX̌ be the dual
Hermitian symmetric space associated with (τ,xG, τ,xX). There is a unique
isomorphism

ϕ̌τ,x : τX̌ → τ,xX̌

such that
(i) the point τx is mapped to τx, and
(ii) ϕ̌τ,x ◦ (τg) = (τ,xg) ◦ ϕ̌τ,x, for all g in G(C).

(b) Let x′ be a second special point; then the isomorphism

τ,xg 7→ τ,x′g : τ,xG(C) → τ,x′G(C)

induces an isomorphism ϕ̌(τ ; x′, x) : τ,xX̌ → τ,x′X̌ such that

ϕ̌(τ ; x′, x) ◦ ϕ̌τ,x = ϕ̌τ,x′.

Proof. Straightforward. ¤
Remark 1.4. Let x be a CM-point of X, and let (V, ξ) be a faithful representation

of G. Then (V, ξ ◦ ρx) defines a CM-motive M over Qal with V = HB(M). There are
Hodge cycles tα on M such that G is the subgroup of GL(V )×Gm fixing the tα, and we
noted in (II 4.1) that τ,xG is the subgroup of GL(HB(τM))×Gm fixing the tensors τtα.
The comparison isomorphisms between Betti and de Rham cohomology allow us to
interprete GC and τ,xGC as subgroups of GL(HdR(MC))×Gm and GL(HdR(τMC))×Gm

respectively. If we regard τ as an embedding of Qal into C, then the map G(C) →
τ,xG(C) is induced by the isomorphism

H
dR

(M)⊗Qal,τ C→ HdR(τM).

2. Automorphic vector bundles

Let S be an algebraic variety over a field k with an action G × S → S of an
algebraic group. By a G-vector bundle on S we mean a vector bundle (V , p) on S
together with an action of G on V (as an algebraic variety) such that

(a) p(g · v) = g · p(v) for all g ∈ G, v ∈ V ;
(b) the maps g : Vs → Vgs are linear for all s ∈ S.

We shall be interested in GC vector bundles J on X̌. As we saw in (1.1), the map
β : X ↪→ X̌ embeds X as an open submanifold of X̌, and the action of G(C) on X̌
extends that of G(R) on X. Therefore such a vector bundle J restricts to a G(R)-
vector bundle β−1(J ) on X. If the action of GC on J factors through GcC, and K is
sufficiently small, then, as in the proof of (II 3.3), we can pass to the quotient and
obtain a vector bundle

VK(J ) = G(Q)\β−1(J )×G(Af )/K
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on Sh(G,X). (In §8 we discuss what happens when we no longer require that the
action factors through Gc.) For each g ∈ G(Af ) and pair of open compact subgroups
K and L of G(Af ) such that L ⊃ g−1Kg, there is a morphism

ρL,K(g) : VK(J ) → VL(J ), [x, a] 7→ [x, ag].

Proposition
2.1. (a) The vector bundles VK(J ), and the maps ρL,K(g) : VK(J ) → VL(J ), are
algebraic.

(b) If X+ has no factors isomorphic to the unit disk, then every analytic section
of VK(J ) is algebraic, and the space of such sections is finite-dimensional over C.

Proof. (a) When the boundary of Sh(G,X) in its minimal compactification has
codimension ≥ 3, the proposition is a consequence of the following general lemma.
We omit the proof in the remaining case (but see (3.6) below).

(b) The hypothesis implies that the codimension of the boundary is ≥ 2, and so
the next lemma applies. ¤

Lemma 2.2. Let S be a nonsingular algebraic variety over C, embedded as an
open subvariety of a complete algebraic variety S̄. If S̄ r S has codimension ≥ 2,
then the functor V 7→ Van taking an algebraic vector bundle on S to its associated
analytic vector bundle is fully faithful; moreover Γ(S,V) = Γ(S,Van) and these spaces
are finite-dimensional. If S̄rS has codimension ≥ 3, then V 7→ Van is an equivalence
of categories.

Proof. This follows from theorems of Serre, Grothendieck, Siu, and Trautmann;
see Hartshorne 1970, p222. ¤

The family V(J ) = (VK(J ))K is a scheme with a right action of G(Af ), in the
sense of (II 10). A vector bundle of the form VK(J ), J a GC-vector bundle on X̌, will
be called an automorphic vector bundle, and a section f of V(J )K over ShK(G,X)
will be called a (holomorphic) automorphic form1 of type J and level K. (When the
boundary of Sh(G,X) in its minimal compactification has codimension one we must
also require that f be “holomorphic at infinity”.)

Remark 2.3. (a) Fix a point o ∈ X̌, and let Po be the (parabolic) subgroup of
GC fixing o. For any GC-vector bundle J on X̌, Po acts on the fibre Jo, and the
map J 7→ Jo defines an equivalence from the category of GC-vector bundles on X̌ to
RepC(Po).

(b) From (a) we see that, in particular, every complex representation (V, ξ) of
Gc defines a Gc-vector bundle on X̌, and hence an automorphic vector bundle V(ξ).
There is a local system V (ξ) of C-vector spaces underlying V(ξ), which can be de-
scribed as follows: for K sufficiently small, the fundamental group of Γg\X+ is the
image Γc

g of gKg−1 ∩G(Q)+ in Gc(Q)+ (notation as in II 2); the restriction of VK(ξ)
to Γg\X+ is defined by the representation of Γc

g on V given by ξ. It follows from

1Added 22.06.01. Sometime in the early 80’s, I became puzzled that, while there were dozens of
papers and books in which some class of functions was defined and its members called “automorphic
forms”, there was no definition of “automorphic form”, so I asked Deligne, who told me the above
definition. As Larry Breen says, one should get credit for knowing the right question to ask Deligne.
The name “automorphic vector bundle” arose in a conversation with Michael Harris.
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(II 3.1) that V(ξ) in this case has a natural flat connection and that it is algebraic.
(Note that a representation (V, ξ) of Gc defined over a subfield L of C gives rise, in
the same way, to an L-local system on Sh(G,X) contained in V(ξ)∇(ξ).)

(c) There is an infinite-dimensional version of the above construction: (g, Po)-
modules (not necessarily finite-dimensional) correspond to GC-equivariant quasi-
coherent D-modules on X̌, and the same construction as above defines a functor
from the category of GcC-equivariant quasi-coherent D-modules on X̌ to the category
of G(Af )-equivariant quasi-coherent D-modules on Sh(G,X). Recall that a (g, Po)-
module is a Po-module with an action of g whose restriction to po coincides with the
differential of the Po-action. In the case that the module is finite-dimensional, the
action of g can be integrated to an action of G extending that of P , and the corre-
sponding D-module is coherent; it is therefore locally free (Borel et al. 1987, p. 211),
and the D-module structure on the module corresponds to a flat connection. Thus
this case reverts to that discussed in (b).

Example 2.4. Let (G,X) be the pair, as in (II 2.4), associated with a symplectic
space (V, ψ). There is a naturally defined abelian scheme A over Sh(G,X) (cf. II
3.11). A point o ∈ X̌ corresponds to a maximal isotropic subspace W of V (C), and Po

is the subgroup of G stabilizing W . Write S for Sh(G, X), and 2g for the dimension
of V .

(a) The automorphic vector bundle associated with the natural representation of
Po on V/W is the tangent space of A/S.

(b) The line bundle ω(A/S) is the dual of the automorphic vector bundle asso-
ciated with the determinant of the natural representation of Po on V/W .

(c) The canonical line bundle on S is the automorphic vector bundle associated
with the (g + 1)st-power of the determinant of the natural representation of
Po on V/W .

(d) The automorphic vector bundle associated with the standard representation
of G on V is HdR(A), and the flat connection on it is the Gauss-Manin
connection.

Relation to automorphic forms in the classical sense. The above discussion
also makes sense for connected Shimura varieties Sh0(G,X+): β defines an embedding
X+ ↪→ X̌, and a GC-vector bundle J on X̌ defines an automorphic vector bundle
V0(J ) on Sh0(G,X+). We now explain how to interprete sections of such bundles as
holomorphic automorphic forms in the classical sense.

Let Γ be a discrete subgroup of Aut(X+). Classically, one defines an automorphy
factor for (Γ, X+) with values in a complex vector space V to be a mapping j : Γ ×
X+ → GL(V ) such that:

(a) for each γ ∈ Γ, x 7→ j(γ, x) is holomorphic on X+;
(b) j(γγ′, x) = j(γ, γ′x) · j(γ′, x), all γ, γ′ ∈ Γ, x ∈ X+.

An automorphic form for Γ of type j is then a function f : X+ → V such that

(a) f is holomorphic;
(b) f(γx) = j(γ, x)f(x);
(c) f is “holomorphic at infinity”.
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Let J be a GC-vector bundle on X̌; choose a point o ∈ X+, and let V = Jβ(o). Because
X+ is simply connected, the isomorphism V → β−1(J )o extends to an isomorphism
X+ × V ≈ β−1(J ), and we can transfer the action of G(R)+ on β−1(J ) to X+ × V .
Write

γ(x, v) = (γx, j(γ, x)v) for γ ∈ G(R)+, x ∈ X+, and v ∈ V.

Then j : G(R)+ × V → V satisfies the conditions (a) and (b), and so its restriction
to ΓK × V is an automorphy factor. A section of V0(J )K on Sh0

K(G,X+) can then
be identified with an automorphic form for ΓK of type j.

Example 2.5. Let G = SL2, and let X+ be the complex upper-half-plane (see II
1.5). The map z 7→ z−i

z+i
is an isomorphism from X+ to D = {z ∈ C | |z| < 1}. In

this case X̌ is the Riemann sphere, and X ↪→ X̌ is an isomorphism of X with the
upper hemisphere. If we take o = i (in the upper-half-plane), then

Po =

{(
cos θ − sin θ
sin θ cos θ

)}

If χk is the 2kth power of the obvious character of P0 and Vk is the corresponding
automorphic vector bundle, then the sections of Vk holomorphic at infinity are elliptic
modular forms of weight k.

3. The standard principal bundle

The functor J 7→ V(J ) takes one algebraic object to a second, but passes through
the intermediary of the non-algebraic object X. In order to understand the rationality
properties of the functor, we need to replace X by an algebraic object — this we call
the standard principal bundle.

Review of principal bundles. Let S a complex manifold, and let G be a
complex Lie group. A flat structure on a principal G-bundle P is given by a covering
Uα of S for which the transition maps are constant.

Assume S is connected, and let S̃ be the universal covering space of S. A homo-
morphism ξ : π1(S, s) → G defines a principal G-bundle

P (ξ) = S̃ ×G/∼, (sγ, g) ∼ (s, ξ(γ)g), s ∈ S̃, γ ∈ π1(S, s), g ∈ G,

on S, and there is a canonical flat structure on P (ξ). Every principal G-bundle P
over S admitting a flat structure arises in this way. In the case that G = GL(V ), V a
C-vector space, P (ξ) is the frame bundle of V(ξ): the sections of P (ξ) over an open

subset U of S can be identified with the isomorphisms a : U×V
≈→ V|U (trivializations

of V over U). Now suppose that ξ factors through a reductive algebraic subgroup G
of GL(V ). Then P (ξ) can be interpreted as the bundle of frames of V(ξ) respecting
certain tensors. When S is a complex algebraic variety and V(ξ) and the tensors are
algebraic, then P (ξ) is also algebraic: it is a G-torsor over S.

Lemma 3.1. Let G be an algebraic group over a field k, and let π : P → S be a
torsor for G over an algebraic k-variety S.

(a) The functor V 7→ π−1V defines an equivalence between the category of vector
bundles on S and the category of G-vector bundles on P .
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(b) If P has a flat structure, then to give a (flat) connection on V is the same as
to give a (flat) connection in π−1(V).

Proof. This is a standard consequence of descent theory. ¤

Define
P (G,X) = G(Q)\X ×Gc(C)×G(Af )/Z(Q)−,

q(x, c, a)z = (qx, qc, qaz), q ∈ G(Q), z ∈ Z(Q)−.

Then P (G, X) is a principal Gc(C)-bundle on Sh(G,X)an, which we call the standard
principal bundle. The group G(A′) =df G(C)× G(Af ) acts on P (G,X) according to
the rule

[x, z, a](c, g) = [x, zc, ag], x ∈ X, z, c ∈ G(C), a, g ∈ G(Af ).

Write π for the projection map P (G, X) → Sh(G,X).

Proposition 3.2. The bundle P (G, X) is algebraic, and the action of G(A′) is
algebraic.

Proof. For any faithful representation (V, ξ) of GcC, P (G,X) is the bundle of
frames, respecting certain tensors, of the vector bundle V(ξ). Now apply (II 3.1). ¤

Remark 3.3. Let ξ be as in the above proof. The functor represented by P (G,X)
can be described as follows: for any morphism γ : T → Sh(G, X), the liftings of γ to
P (G, X) correspond to the trivializations T ×V → γ−1(V(ξ)) of γ−1(V(ξ)) respecting
certain tensors.

For example, suppose (G,X) satisfies (II 2.1*) and is of Hodge type. Correspond-
ing to a symplectic representation ξ : G ↪→ GSp(V, ψ) there is an abelian scheme A
over Sh(G,X) such that HB(A) = V (ξ). For any point s ∈ Sh(G,X), π−1(s) is equal
to the set of morphisms HB(As)⊗ C→ HdR(As) respecting certain Hodge cycles on
As.

Proposition 3.4. There is a canonical G(C)-equivariant map γ : P (G,X) → X̌.

Proof. Choose a faithful representation ξ : GcC ↪→ GL(V ), as before. The last
remark shows that a complex point p of P (G,X) corresponds to an isomorphism
V → V(ξ)π(p) respecting certain tensors. The Hodge filtration on V(ξ)π(p) pulls back

to a filtration on V , and we can map p to the corresponding point of X̌. That this is
a morphism of algebraic varieties follows from the universal property of X̌ described
in §1. ¤

Proposition 3.5. Let J be a GC- vector bundle on X̌. Then V(J ) is the unique
vector bundle on Sh(G,X) such that π−1(V(J )) = γ−1(J ) (as a Gc-vector bundle).

Proof. This follows directly from (3.3) and the definitions. ¤

The following diagram summarizes the situation:

V(J )
π−1(V(J ))
= γ−1(J )

J
Sh(G,X) <

π
P (G,X)

γ
> X̌

I@
@

@ ¡
¡

¡µ

X

∧
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Remark 3.6. Proposition 3.5 provides an alternative proof that the vector bun-
dles V(J ) are algebraic.

4. Canonical models of standard principal bundles

The key result that allows us to construct canonical models is the following.

Theorem 4.1. Let τ ∈ Aut(C).

(a) For any special point x ∈ X, ϕτ,x lifts canonically to an equivariant morphism

ϕP
τ,x : τP (G,X) → P (τ,xG, τ,xX).

(b) If x′ is a second special point, then ϕ(τ ; x′, x) lifts canonically to an equivari-
ant morphism

ϕP (τ ; x′, x) : P (τ,xG, τ,xX) → P (τ,x′G, τ,x′X)

and
ϕP (τ ; x′, x) ◦ ϕP

τ,x = ϕP
τ,x′ .

Proof. The strategy is that outlined in (II 9); see the notes at the end of the
Chapter. ¤

Example 4.2. (a) Suppose that (G,X) is of Hodge type, and that it satisfies (II
2.1.2*). Then the choice of a faithful representation (V, ξ) of G defines an abelian
scheme A (with additional structure) on Sh(G,X). From a CM-point x, we obtain a
representation of (τ,xV, τ,xξ) of τ,xG, and therefore an abelian scheme (with additional
structure) τ,xA on Sh (τ,xG, τ,xX). Under our hypotheses, Sh (τ,xG, τ,xX) is a fine
moduli variety and τ,xA is the universal abelian scheme over it. The universality
implies the existence of a commutative diagram:

τA −−−→ τ,xAy
y

τ Sh(G,X) −−−→ Sh (τ,xG, τ,xX).

Since V(ξ) = HdR(A) and V(τ,xξ) = HdR(τ,xA), and P (G,X) and P (τ,xG, τ,xX) are
the frame bundles of V (ξ) and V(τ,xξ), the diagram gives ϕP

τ,x.

(b) For the Shimura variety defined by a CM-pair (T, x), it is possible to give an
explicit description of ϕP

τ,x in terms of the period torsor.

Theorem 4.3. (a) The standard principal bundle P (G,X) has a canonical model
P (G, X)E over E = E(G,X).

(b) For any τ ∈ Gal(Qal/Q), τP (G, X)E is a canonical model of P (τ,xG, τ,xX).

Proof. This can be deduced from (4.1) in the same way as (II 5.5) is deduced
from (II 4.2) and (II 4.4). ¤

Example 4.4. (a) In the situation of (4.2a), A is defined over the canonical model
Sh(G,X)E, and for any point s ∈ Sh(G,X)E, π−1(s) is equal to the set of morphisms
HB(As)⊗ E → HdR(As/E) respecting certain Hodge cycles on As.

(b) In the situation of (4.2b), it is possible to give an explicit description of
P (T, x)E in terms of the period torsor.
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Remark 4.5. The following properties of ϕP
τ,x provide justification for calling it

canonical.

(i) A morphism (G,X) → (G′, X ′) and a special point x ∈ X give rise to a
commutative diagram,

ϕP
τ,x : τP (G,X) −−−→ P (τ,xG, τ,xX)y

y
ϕP

τ,x′ : τP (G′, X ′) −−−→ P (τ,x′G′, τ,x′X ′).

Here x′ is the image of x in X ′.
(ii) Consider two pairs (G, X) and (G′, X ′) together with an identification

(Gder, X+) = (G′der, X ′+). Let x be a special point of X+, and let x′ be the cor-
responding point of X ′+. Then there is an equivariant commutative diagram:

τP (G,X) ←−−− τP 0(Gder, X+) −−−→ τP (G′, X ′)yϕP
τ,x

y
yϕP

τ,x′

P (τ,xG, τ,xX) ←−−− P 0(τ,xGder, τ,xX+) −−−→ P (τ,x′G′, τ,x′X ′)

where P 0(Gder, X+) is a principal bundle for Gder on Sh0(Gder, X+) and

P 0(τ,xGder, τ,xX+) is a certain principal bundle for τ,xGder on Sh0 (τ,xGder, τ,xX+).

The family of maps (ϕP
τ,x) is uniquely determined by the properties (i) and (ii)

and that mentioned in (4.2b).

So far as the canonical model of P (G, X) is concerned all one can say in general is
that it is constructed in a canonical fashion using the (canonical) maps ϕP

τ,x. However,
if one is prepared to confine one’s attention to Shimura varieties whose weight is
defined over Q, it is possible to give a characterization similar to that for canonical
models of Shimura varieties: the map P (G,X) → P (G′, X ′) defined by a morphism
(G,X) → (G′, X ′) is defined over any field containing the reflex fields of (G,X) and
(G′, X ′); for a pair (T, x) as in (4.2b), there is an explicit description of the canonical
model of P (T, x) in terms of the period torsor; the canonical model of P (G,X)
is uniquely determined by the condition that, for each CM-pair (T, x) ⊂ (G,X),
P (T, x) → P (G, X) is defined over E(T, x).

Theorem 4.6. (a) The map γ : P (G,X) → X̌ is rational over E(G,X).

(b) For any τ ∈ Gal(Qal/Q), the diagram

τP (G, X)E −−−→ τX̌Ey
y

P (τ,xG, τ,xX)τE −−−→ τ,xXτE

commutes.

Proof. See the notes at the end of the Chapter. ¤

5. Canonical models of automorphic vector bundles

From the results in §4 on the standard principal bundle, it is possible to read off
similar results for automorphic bundles.
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Theorem 5.1. Let J be a Gc-vector bundle on X̌, and assume that J is defined
over a number field E ⊃ E(G,X).

(a) The automorphic vector bundle V(J ) has a canonical model V(J )E over E.
(b) Let τ be an automorphism of C, and let τ,xJ be the vector bundle on τ,xX̌

corresponding to τJ under the isomorphism of (1.3). There is a canonical
commutative diagram

τV(J )E −−−→ V(τ,xJ )τEy
y

τ Sh(G,X)E −−−→ Sh (τ,xG, τ,xX)τE;

that is, τV(J )E is isomorphic to the canonical model of V(τ,xJ ).

When J is defined by a representation (V, ξ) of Gc, then the flat connection ∇(ξ)
descends to the canonical model V(J )E and the isomorphism in (b) respects the flat
connections on τV(J )E and V(τ,xJ )τE.

Proof. According to (4.3) and (4.5), the maps

Sh(G,X)
π←−−− P (G,X)

γ−−−→ X̌

are defined over E. We define V(J )E to be the vector bundle on Sh(G,X)E such
that π−1(V(J )E) = γ−1(JE) (see 4.4). Part (b) can be proved using the diagram:

τ Sh(G,X)E ←−−− τP (G,X)E −−−→ τX̌Ey
y

y
Sh (τ,xG, τ,xX)τE ←−−− P (τ,xG, τ,xX)τE −−−→ τ,xXτE.

¤
Remark 5.2. Any equivariant differential operator D : J → J ′ between GC-

vector bundles on X̌ induces a differential operator V(D) : V(J ) → V(J ′) between the
G(Af )-vector bundles on Sh(G,X). If D, J , and J ′ are defined over E ⊃ E(G,X),
then so also is V(D).

Remark 5.3. It would be of interest to re-interprete the above results in the
context of (II 6), and to extend (II 7.2) to the standard principal bundle.

6. The local systems defined by a rational representation

We examine in more detail the various local systems defined by a representation
(V, ξ) of Gc. As is explained above and in Chapter II, attached to such a representation
we have:

(a) a local system of Q-vector spaces V (ξ) on Sh(G,X);
(b) a local system of Q`-vector spaces V`(ξ) on Sh(G,X);
(c) a vector bundle V(ξ) with a flat connection ∇(ξ) on Sh(G,X).

These are related by canonical comparison isomorphisms:

(i) V (ξ)⊗Q` → V`(ξ);

(ii) V (ξ)⊗ C→ V(ξ)∇(ξ).
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All these objects have an action of G(Af ), and the comparison isomorphisms are
compatible with the actions.

Remark 6.1. It is an elementary result that V`(ξ) has a canonical model over
E(G,X). For K sufficiently small, Sh(G,X) is Galois over ShK(G,X) with Galois
group the image Kc of K in Gc(Af ), and V`(ξ) is the sheaf on ShK(G,X) correspond-
ing to the representation of Kc on V ⊗Q` defined by ξ. This construction works over
E(G,X), and gives us the canonical model of V`(ξ). Moreover, when the weight wX

is defined over Q, the local system τV`(ξ) on τ Sh(G, X) corresponds under ϕτ,x to
V`(

τ,xξ), where τ,xξ is the representation of τ,xG obtained from ξ by twisting by τS.

The objects in (b) and (c) are algebraic, and we can think of V (ξ) as providing a
rational structure to the family (V`(ξ), (V(ξ),∇(ξ)). The next result shows that the
family (τV`(ξ), τ(V(ξ),∇(ξ)) on τ Sh(G,X) also has a canonical rational structure.

Theorem 6.2. Let τ be an automorphism of C, and let (V, ξ) be a representation
of Gc. Assume that the composite of the weight map wX with G → Gc is defined over
Q. Then there is a canonical local system τV (ξ) of Q-vector spaces on τSh(G,X)
such that

(a) τV (ξ)⊗Q` = τV`(ξ), for all primes `;
(b) τV (ξ)⊗ C = (τV(ξ))τ∇(ξ).

Proof. We can use τS and the map ρx : S → Gc to twist the representation
(V, ξ), and so obtain a representation (τ,xV, τ,xξ) of τ,xGc. Define τV (ξ) to be the
local system of Q-vector spaces on τSh(G,X) corresponding to V (τ,xξ) under the
isomorphism ϕτ,x. Theorem 4.4 implies that τV (ξ) is independent of the choice of x,
and it follows directly from its construction that τV satisfies (a) and (b). ¤

If we assume (II 3.9, 3.10), then (V, ξ) defines a family of motives on Sh(G,X),
and we should have

τV (ξ) = HB(τM) (τM on τ Sh(G,X));

V`(ξ)E = H`(ME), ME the canonical model of over Sh(G,X)E;

(V(ξ),∇(ξ))E = HdR(ME) with its Gauss-Manin connection.

7. Automorphic forms rational over a subfield of C

Definition 7.1. Let J be a GC-vector bundle on X̌, rational over a number field
E, with E(G,X) ⊂ E ⊂ C. An automorphic form f of type J and level K is rational
over E if it arises from a section of VK(J )E over ShK(G, X)E.

Write AK(J )E = AK(G,X,J )E for the space of such forms; it is a vector space
over E.

Proposition 7.2. With the above notations:

AK(J )E ⊗E C = AK(J )C.

Proof. In general, if V is a vector bundle on a variety S over a field E, and C is
an extension field of E, then Γ(S,V)⊗E C = Γ(SC ,VC). ¤

Corollary 7.3. The vector space Ak(J )E is finite-dimensional over E.
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Proof. This follows from (2.1b). ¤

We now discuss rationality criteria in terms of special values. Assume that the
weight wX is defined over Q and that (G,X) satisfies (II 2.1*). Consider the auto-
morphic vector bundle V(ξ) defined by a representation (V, ξ) of G. For each CM-pair
(T, x) ⊂ (G,X), there is a unique homomorphism ρx : S → T such that µcan◦ρx = µx

(see II 2.4). From the representation (ξ|T ) ◦ ρx we obtain a CM-motive M over Qal

with HB(M) = V , and from the model ME of M over the canonical model of Sh(T, x),
we obtain an E(T, x)-structure VE,x =df HdR(ME) on V (C). It is also possible to con-
struct VE,x directly from the period torsor. There is a canonical identification of VE,x

with the fibre V(ξ)E,x. Thus, if an automorphic form f is defined over E(G,X), then
f(x), regarded as an element of V(ξ)x = V (C) lies in the subspace VE,x; conversely,
when this condition holds for all CM-points, then f is defined over E(G, X).

8. Automorphic stacks

Throughout this chapter we have insisted that the action of GC on a vector bundle
J on X̌ factor through GcC, and that a representation ξ of G factor through Gc . We
now explain why we have made these assumptions, and why it would be better to
avoid them. Then we explain how to do this.

Consider the case of a representation ξ : G → GL(V ), and let K be a compact
open subgroup of G(Af ). The connected components of ShK(G,X) are of the form

Γg\X+ where Γg is the image of Γ′g
df
= gKg−1 ∩ G(Q)+ in Gad(Q+; here g ∈ G(Af )

and X+ is a connected component of X. When ξ factors through Gc we define V(ξ)
to be the vector bundle whose restriction to Γg\X+ is Γc

g\X+×V (C) where Γc
g is the

image of Γ′g in Gc(Q). This makes sense because, when K is is sufficiently small, the
map Γc

g → Γg is an isomorphism, the fibre of Γc
g\X+×V (C) → Γg\X+ over any point

is isomorphic to V (C), and V(ξ) is a vector bundle. When we drop this condition,
V(ξ) will no longer be a vector bundle. Consider for example the pair (G, X) in (II
2.4b) defining the Hilbert modular variety, and assume F 6= Q. The centre Z of G
is F×. For g = 1, the kernel of Γ′g → Γg is K ∩ Z(Q), which is equal to the set of
elements of F× congruent to 1 modulo some ideal. This will be of finite index in the
group of units of F×, and so is never trivial. The fibre of Γ′g\X × V (C) → Γg\X will
be the quotient of V (C) by the action of this kernel, and so we do not get a vector
bundle by this construction. This same problem also occurs when trying to define
the universal family of abelian varieties over Sh(G,X) (van der Geer 1988, Chapter
X).

So why not simply do as have done in this chapter and exclude them? Classically,
one defines automorphic forms as functions on the universal covering space X trans-
forming in certain ways relative to the group Γ. The reason we wish to consider them
as sections of a vector bundle on Sh(G,X) is so that we can apply the methods of
algebraic geometry. From the classical point of view, it is unnatural to exclude them.

So how do we handle them? Just as in the case of the universal abelian scheme
over the Hilbert moduli variety, we should use stacks. Briefly, the idea is to pass
to a partial quotient of X which makes sense algebraically, and on which V(ξ) is an
equivariant vector bundle. In this way we obtain the notion of an automorphic stack.
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In the case that the weight is defined over Q, it is possible to consider a concrete
realization of the stack. Let G′ be the smallest subgroup of G such that all h factor
through G′R. Then Zs(G

′) = 0. Consider

Sh′(G,X)
df
= G′(Q)\X ×G(Af ) = lim←− G′(Q)\X ×G(Af )/K.

It is a covering of Sh(G, X), and every GC-vector bundle on X̌ defines a vector bundle
on Sh′(G,X).

All results in the chapter continue to hold mutandis mutatis for automorphic
stacks. In fact, since the proofs proceed via connected Shimura varieties, where this
problem doesn’t arise, there is little extra difficulty in working with stacks rather than
vector bundles.

Notes. The principal theme of this chapter has been the problem of making sense
of what it means for an automorphic form to be defined over a number field. In the
case of elliptic modular functions, there is no difficulty: a modular form is defined
over a number field if and only if its Fourier coefficients lie in the field. Unfortunately,
in higher dimension, Fourier-Jacobi series are much more difficult to work with (see
Chapter VII); moreover this method can only apply to noncompact Shimura varieties.

There are basically four approaches to defining rationality of automorphic forms:

(a) using Fourier-Jacobi series (or their null-values...)
(b) in terms of the special values of the forms (that is, values at the special

points);
(c) pulling-back to sub-Shimura varieties of type A1;
(d) directly defining a canonical model of the automorphic vector bundle.

Of course these approaches are not independent, and all should give the same answer
when they apply.

Shimura used special values (and periods) to define the notion of an automorphic
form being rational over Qal — see Shimura 1979. For applications of his results, see
Shimura 1980, 1981. He studies Fourier-Jacobi series in Shimura 1978a, 1978b. For
certain Shimura varieties Garrett 1983 shows that (a), (b), and (c) lead to consistent
notions of rationality.

Under the hypothesis that the weight wX is defined over Q and (G, X) satisfies
(2.1.2*), Harris 1985 defined a functor J 7→ V(J )E from GC-vector bundles on X̌
to vector bundles on Sh(G,X)E, but did not show that the functor was canonical.
This result was the inspiration for Milne 1988, which proves the major statements in
this section in the context of connected Shimura varieties. They can be extended to
(nonconnected) Shimura varieties by “induction” (in the sense of (II 10)). Full details
will be given2 in the book mentioned in the introduction. See also Harris 1986 where
the relation between (a) and (d) is investigated.

2Added 22.06.01: Alas, not.



CHAPTER IV

One-motives

A mixed Hodge structure on a vector space is an increasing filtration of the vector
space together with a Hodge structure on each of the quotients. Hodge structures de-
generate into mixed Hodge structures. The cohomology groups of a complex algebraic
variety (not necessarily smooth or complete) carry mixed Hodge structures.

Just as abelian varieties provide an algebro-geometric realization of certain Hodge
structures, one-motives provide an algebro-geometric realization of certain mixed
Hodge structures.

1. Mixed Hodge structures

A mixed Hodge structure is

(a) a finite-dimensional vector space V over Q,
(b) a finite increasing (weight) filtration W• on V , and
(c) a finite decreasing (Hodge) filtration F • on V ⊗ C such that, for each n, F •

induces a Hodge structure of weight n on

GrW
n (V )

df
= WnV/Wn−1V.

When Q in the definition is replaced by k ⊂ R, we obtain the notion of a mixed
k-Hodge structure.

Example 1.1. (a) A Hodge structure (V, F •) of weight n can be made into a
mixed Hodge structure by setting WnV = V and Wn−1V = 0.

(b) The cohomology groups Hn(X,Q) of any variety X over C (not necessarily
nonsingular or complete) have natural mixed Hodge structures. This is the main
theorem in Deligne 1975.

(c) Let (V, ψ) be a symplectic space over Q, and endow V ⊗ R with a Hodge
structure of type {(−1, 0), (0,−1)} for which ψ is a Riemann form (i.e., such that
(2πi)ψ is a polarization of the Hodge structure). Write F • for the corresponding
filtration of V ⊗ C. Let W be a totally isotropic subspace of V , and let W⊥ be the
orthogonal complement of W in V . Then we have a filtration

0 ⊂ W ⊂ W⊥ ⊂ V
|| || || ||

W−3V W−2V W−1V W0V,

and one can check (V, W•, F •) is a mixed Hodge structure (see Brylinski 1983, 4.2.1).

The level of a mixed Hodge structure is the length of the shortest interval [c, d]
such that

F p/F p+1 6= 0 ⇒ c ≤ p ≤ d.

68
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A morphism of mixed Hodge structures F : V → V ′ is a linear map V → V ′ respecting
the weight filtrations on V and V ′ and the Hodge filtrations on V ⊗C and V ′⊗C. The
category of mixed Hodge structures has a natural structure of a Tannakian category.
The Mumford-Tate group MT (V ) of a mixed Hodge structure V is defined to be
the affine group scheme attached to the sub-Tannakian category generated by V and
Q(1).

The canonical bigrading. Let V be a mixed Hodge structure. For integers p
and q, set Ṽ p,q equal to

(Wn(V ) ∩ F p(V )) ∩
(

Wn(V ) ∩ F̄ q(V ) +
∑
2≤i

Wn−i(V ) ∩ F̄ q−i+1(V ))

)
,

where n = −p− q. Then

(a) V = ⊕p,qṼ
p,q;

(b) the projection of Wn(V ) onto GrW
n (V ) induces an isomorphism

Ṽ p,q → Hp,q(GrW
n (V ))

for all p, q with p + q = n;
(c) Wn(V ) =

∑
p+q≤n Ṽ p,q;

(d) If W is a second mixed Hodge structure, then

(V ⊗̃W )m,n =
⊗

p+p′=m
q+q′=n

Ṽ p,q ⊗ W̃ p′,q′ .

(e) A morphism of mixed Hodge structures respects the bigrading.

For the proof, see Deligne 1971a, 1.2.10, 1.2.11. We may visualize (c) and (d) as
[diagram omitted].

Clearly, an element of V (R) is in Ṽ 0,0 if and only if it is in both W0V and F 0V . An
element of a space T = V ⊗m ⊗ V̌ ⊗n ⊗Q(r) lying in H̃0,0 (or a sum of such elements)
will be called a Hodge tensor of V . As before, we let Gm act on T through its action
on Q(1). Define

h̃ : SC → GL(V (C)), h̃(z1, z2) · v = z−p
1 z−q

2 · v, v ∈ Ṽ p,q,

and define h̃′ : SC → GL(V (C))×Gm to be (z1, z2) 7→ (h̃(z1, z2), z1z2). Then t ∈ T is
a Hodge tensor if and only if it is fixed by the image of h′.

Proposition 1.2. (a) The Mumford-Tate group of V is the subgroup of GL(V )×
Gm of elements fixing all Hodge tensors of V .

(b) The Mumford-Tate group of V is the smallest subgroup of GL(V )×Gm whose

complex points contain the image of h̃′.

Proof. (a) With any t ∈ V ⊗m ⊗ V̌ ⊗n ⊗ Q(r) we can associate an α(t) ∈
Hom(V ⊗n, V ⊗m(r)), and t will be a Hodge cycle if and only if α(t) is a morphism of
Hodge structures. From this it follows that Hodge tensors are fixed by GL(V )×Gm,

and that Im(h̃′) ⊂ MT (V )(C). Thus the tensors fixed by MT (V ) are precisely the
Hodge tensors.

Let M ′ be the subgroup of GL(V ) × Gm fixing the Hodge tensors. According to
Deligne 1982a, 3.1c, in order to prove that M ′ = MT (V ), it suffices to show that every
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Q-rational character of MT (V ) extends to GL(V )×Gm. Let χ : MT (V ) → GL(W )
be such a character. Then W acquires a mixed Hodge structure, and since it has
dimension one, we must have W ≈ Q(r) for some r. It is now obvious that χ extends
to GL(V )×Gm.

(b) Let H be the smallest subgroup of GL(V )×Gm such that H(C) contains the

image of h̃′. Then an element of some subquotient S of V ⊗m ⊗ V̌ ⊗n ⊗ Q(r) is in
S̃0,0 if and only if it is fixed by H. Thus MT (V ) and H fix the same tensors in all
such subquotients, and this shows that the two groups are equal (see Deligne 1982a,
3.2a). ¤

Proposition 1.3. Let G be an algebraic group over R, and let W• and F • be
filtrations of Rep(G). Suppose that for some family (Vi, ξi) of representations of G
such that ∩Ker(ξi) is finite, (W•, F •) defines a mixed Hodge structure on Vi for all
i; then (W•, F •) defines a mixed Hodge structure on V for all representations (V, ξ)
of G.

Proof. See Deligne 1973, III 1.11. ¤

Variations of mixed Hodge structures. A variation of mixed Hodge structures
on a complex manifold S is

(a) a local system of Q-vector spaces V on S,
(b) a filtration W• of V by local systems WiV ,
(c) a holomorphic filtration F • of V =def OS ⊗ V such that

(H1) ∇(F pV) ⊂ Ω1 ⊗ F p−1V
(H2) for all s ∈ S, (Vs,W•s, F •

s ) is a mixed Hodge structure.

WhenQ in the definition is replaced by k ⊂ R, then we obtain the notion of a variation
of mixed k-Hodge structures. The families of mixed Hodge structures arising naturally
in algebraic geometry are variations of mixed Hodge structures.

Notes. Mixed Hodge structures were introduced by Deligne in order to be able
to state the theorem quoted in (1.1b). See Deligne 1971a, 1971b, 1975.

2. One-motives

A semi-abelian variety over a field k is an extension of an abelian variety by a
torus:

0 → T → G → A → 0.

When k is algebraically closed, a character χ of T then defines (by pushout) an
element of Ext1(A,Gm) = Ǎ(k); conversely, a homomorphism X∗(T ) → Ǎ(k) defines
an extension of A by T .

A one-motive M over an algebraically closed field k is a triple (GM , XM , u) com-
prising a semi-abelian variety GM over k, a finitely generated torsion-free abelian
group XM , and a homomorphism u : XM → GM(k). The definition when k is not
algebraically closed is the same except that XM is a Gal(kal/k)-module and u is
required to be an equivariant homomorphism XM → GM(kal). We often drop the
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subscripts M , and write M = (X
u→ G). We regard it as a complex of length one.

Thus a morphism of one-motives is a commutative square:

X
u−−−→ Gyα

yβ

X ′ u′−−−→ G′.
A morphism (α,β ) is an isogeny if the cokernel of α and the kernel of β are both
finite1. A one-motive has a filtration:

W0M = (X → G)
∪ ∪ Gr0(M) = X

W−1M = (0 → G)
∪ ∪ Gr−1(M) = A

W−2M = (0 → T )
∪ ∪ Gr−2(M) = T
0 → 0

Betti homology. The Betti homology group of a one-motive M over C is a
mixed Hodge structure (HB(M), F •,W•) of type {(0, 0); (0,−1), (−1, 0); (−1,−1)}
such that

Gr0HB(M) = X ⊗Q
Gr−1HB(M) = H1(AM ,Q)

Gr−2HB(M) = H1(TM ,Q) ≈ X∗(T )⊗Q.

To construct it, pull-back the top row of the following diagram by X → G,

0 −−−→ H1(G) −−−→ Lie(G)
exp−−−→ G −−−→ 0∥∥∥

x
x

0 −−−→ H1(G) −−−→ HB(M,Z) −−−→ X −−−→ 0

and define HB(M) = HB(M,Z)⊗Q.

Theorem 2.1. The functor M 7→ HB(M) defines an equivalence between the
category of one-motives over C, considered up to isogeny, and the category of mixed
Hodge structures of level ≤ 1 for which Gr−1HB(M) is polarizable.

Proof. Deligne 1975, 10.1.3. ¤
Corollary 2.2. Let (V, h) be a Hodge structure of type {(−1, 0), (0,−1)}, and let

ψ be a polarization for (V, h). Let W ⊂ V be a totally isotropic subspace. There is a
unique one-motive M (up to isogeny) such that HB(M) is the mixed Hodge structure
defined in (1.1c).

Remark 2.3. The theorem explains the one in “one-motive”. Note that one-
motives are not motives but mixed motives (the Betti homology of a motive is a sum
of (pure) Hodge structures).

The Mumford-Tate group MTM of M is defined to be the Mumford-Tate group
of the mixed Hodge structure HB(M).

1Added 22.06.01: and α is injective and β is surjective.
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de Rham homology. Let M = (X → G) be a one-motive over a field k. The
exact sequence

0 → X → G → M → 0,

gives rise to an exact sequence of vector groups,

0 → Hom(X,Ga) → Ext1(G,Ga) → Ext1(M,Ga) → 0.

There is an extension M \ = (X → G\) of M by Ext1(M,Ga)
∨, which fits into a

diagram,
X

ª¡
¡

¡

0 > Ext1(M,Ga)
∨ > G\ > G

∨
> 0,

and which is universal among extensions of M by vector groups (Deligne 1975, 10.1.7).
Define HdR(M) = Lie(G\). The map M 7→ HdR(M) is functorial in M , and so the
weight filtration on M defines a filtration W• on HdR(M). The Hodge filtration is
defined by

F−1HdR(M) = HdR(M),

F 0HdR(M) = Ext1(M,Ga)
∨ = Ker(Lie G\ → Lie G),

F 1HdR(M) = 0.

Proposition 2.4. When k = C, there is a canonical isomorphism

(HdR(M), F •,W•) → (HB(M)⊗ C, F •,W•).

Proof. See Deligne 1975, 10.1.8. ¤

`-adic homology. Let M = (X
u→ G) be a one-motive over an algebraically

closed field k, which, for simplicity, we take to be of characteristic zero. Define

Mm = H0(M ⊗L (Z/mZ)).

Thus Mm is the zeroth cohomology group of the simple complex associated with the
double complex:

X
u−−−→ Gxm

x−m

X
u−−−→ G,

so that

Mm = {(x, g) ∈ X ×G(k) | u(g) = mg}/{(mx, u(x)) | x ∈ X}.
Define

H`(M) = (lim←−M`n)⊗Z`
Q`,

Hf (M) = Π′H`(M) (restricted product).

When k is not algebraically closed, we set H`(M) = H`(M ⊗k kal).

Proposition 2.5. When k = C there is a canonical isomorphism HB(M)⊗Q` →
H`(M).
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Proof. This amounts to checking that HB(M,Z)⊗ (Z/mZ) = Mm. ¤

The dual one-motive. There is a functor sending a one-motive M to its dual
M̌ . Set

X̌ = X∗(T ) = Hom(T,Gm),

Ǎ = the dual abelian variety of A, Ext1(A,Gm),

Ť = Hom(X,Gm).

Define Ǧ to be Ext1(M/W−2M,Gm). The sequence

0 → X → A → M/W−2M → 0

gives rise to an exact sequence

0 → Ť → Ǧ → Ǎ → 0.

As M is an extension of M/W−2M by T , from each x ∈ X̌ we get an extension of
M/W−2M by Gm, and hence an element ǔ(k) of Ǧ(k). This defines the map ǔ, and
completes the construction of M̌ . There are the following formulas:

HB(M̌) = Hom(HB(M),Q(1)),

H`(M̌) = Hom(H`(M),Q`(1)),

HdR(M̌) = Hom(HdR(M), k).

Symmetric one-motives. A polarization of a one-motive M is an isogeny
λ : M → M̌ such that Gr−1(λ) : A → Ǎ is a polarization of A. A one-motive to-
gether with a polarization, is called a symmetric one-motive.

Proposition 2.6. Giving a symmetric one-motive over k is equivalent to giving
the following data:

(a) a polarized abelian variety (A, λ) over k;
(b) a finitely generated torsion-free abelian group X with an action of Gal(kal/k);
(c) a Gal(kal/k)-homorphism v : X → A(kal); let v̌ = λ ◦ v;
(d) a trivialization ψ of the inverse image by (v, v̌) of the Poincaré biextension of

A; ψ is required to be symmetric, i.e., invariant under (x, x′) 7→ (x′, x) : X ×
X → X ×X.

Proof. In fact2, (M, λ) 7→ (Gr−1(M), Gr−1(λ), v) can be made into an equiva-
lence of categories; cf. Deligne 1975, 10.2.14. ¤

We explain (d). The Poincaré line bundle is the line bundle on A × Ǎ which ex-
presses the duality between A and Ǎ (Mumford 1970, §13). The Poincaré biextension
is the Gm torsor on A× Ǎ obtained by removing the zero section from the Poincaré
line bundle. Its inverse image by (v, v̌) is a Gm-torsor L on X × X regarded as a
scheme of dimension zero. If ψ is one trivialization, then any other is of the form ψ◦g,
with g an element of Gm(X ×X) invariant under the symmetry X ×X → X ×X.
Consequently, we have the following result.

2Added 22.06.01: Should be (M,λ) 7→ (A, λ, X, . . .) ...
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Corollary 2.7. The symmetric one-motives with (A, λ, v : X → A) fixed form
a torsor under Homsym(X ×X,Gm) = Hom(S2(X),Gm).

Hodge cycles. When M is a one-motive over C, we define a Hodge cycle on M
to be a Hodge tensor for the mixed Hodge structure HB(M). Propositions 2.4 and 2.5
show that such a cycle has realizations in the de Rham and `-adic homology groups
of M . When M is defined over an algebraically closed field k, we say that a family
s = (sdR, (s`)) is a Hodge cycle relative to an embedding τ : k ↪→ C if the components
of s become the components of a Hodge cycle s0 on τM .

Proposition 2.8. Let M be a one-motive over an algebraically closed field k. If
s is a Hodge cycle on M relative to one embedding of k in C, then it is a Hodge cycle
for every embedding.

Proof. The proof of (I 3.1) can be extended to one-motives; see Brylinski 1983,
2.2.5. ¤

The procedure of (I 3) now allows us to define the notion of a Hodge cycle for a
one-motive over any field of characteristic zero.

One-motives of CM-type. A one-motive M = (X
u→ G) over a field k is said to

be rationally decomposed if the image of u is finite and the class of G in Ext1(A, T ) is

of finite order. It is then isogenous to the one motive X
0→ T ×A. When k = C, M is

rationally decomposed if and only if the mixed Hodge structure HB(M) is isomorphic
to the direct sum of the pure Hodge structures HB(T ), HB(A), and X⊗Q (these are of
types {(−1,−1)}, {(−1, 0), (0,−1)}, and {(0, 0)} respectively). To such a one-motive
M , we attach a motive

hM = h(X∗(T )⊗Q)⊕ h(A)⊕ h(X ⊗Q)

in AV/k (the first and last summands are elements of Art/k; see I 4.1). A one-motive
M is said to be of CM-type if it is rationally decomposed and AM is of CM-type. Then
hM lies in CM/k. In particular, when M is defined over C, its Mumford-Tate group
is a quotient of S, and when M is defined over Q, it corresponds to a representation
of the Taniyama group.

Moduli of one-motives. Let M be a one-motive over C, and write (H, W•, F •)
for HB(M) with its mixed Hodge structure. As in (I 1), the Mumford-Tate group P
of M acquires a filtration

1 = W−3P ⊂ W−2P ⊂ W−1P ⊂ W0P = P

from the weight filtration on H:

W−iP = {p ∈ P | (1− p)(WmHB(M)) ⊂ Wm−iHB(M), all m}.
The group W−1P is unipotent, and the quotient P/W−1P is the Mumford-Tate group
of Gr−1(M) = A. Therefore P/W−1P is reductive, and W−1P is the unipotent radical
of P .

Lemma 2.9. (a) For all p ∈ P (R) ·W−1P (C), the filtration p ·F • of H⊗C defines
a mixed Hodge structure on (H, W ).

(b) There exists a p ∈ W−1P (C) such that the mixed Hodge structure (H, W•, p·F •)
is rationally decomposed.



3. DEGENERATING FAMILIES OF SYMMETRIC ONE-MOTIVES 75

Proof. Brylinski 1983, 2.2.8 (see also VI 1). ¤

Lemma 2.10. The mixed Hodge structure on LieP defined by (W•, p · F •) is of
type {(−1,−1); (−1, 0), (0,−1); (−1, 1), (0, 0), (1,−1)}. [diagram omitted]

It follows that F 0P ∩W−1P is commutative, because,

[F 0P ∩W−1P, F 0P ∩W−1P ] ⊂ F 0P ∩W−2P = 0.

Choose a lattice H(Z) in H. The family of one-motives p ·M , p ∈ P (R) ·W−1P (C)
is parametrized by the space

V = Γ\P (R) ·W−1P (C)/F 0P (C)

where Γ is the subgroup of P (Q) respecting the lattice.

Theorem 2.11. When Γ is replaced by a sufficiently small congruence subgroup,
the variety V has a natural structure of an algebraic variety, and the analytic family
of one-motives over it also has a natural structure of an algebraic variety.

Proof. Brylinski 1983, 2.3.2.1 (see also Chapter VI). ¤

By introducing level structures and Hodge cycles, it is possible to strengthen the
theorem in order to obtain a universal family of one-motives.

Notes. The concept of a one-motive is due to Deligne 1975.

3. Degenerating families of symmetric one-motives

Understanding the boundaries of Shimura varieties of Hodge type is closely re-
lated to understanding the degeneration of abelian varieties and one-motives. The
degeneration theorem we state below is an algebraic analogue of the following ana-
lytic statements. Let D be the unit disk and let D′ = D − {0}. Consider functions
fi : D → C such that fi(z) 6= 0 for z 6= 0 and fi(0) = 0 for 1 ≤ i ≤ r. Let T , G, and
A be the complex manifolds over D whose fibres over z ∈ D are:

Tz = C×r,

Gz = C×m/ 〈fr+1(z), . . . , fm(z)〉 ,
Az = C×m−r/ 〈fr+1(z), . . . , fm(z)〉 .

Here 〈fr+1(z), . . . , fm(z)〉 is the abelian subgroup generated by fr+1(z), . . . , fm(z).
There is an exact sequence

0 −−−→ T −−−→ G −−−→ A −−−→ 1.

The functions f1, . . . , fr define a map u : X → G where X is the constant local system
Zr on D. Let A = G/u(X). Then A is the complex-analytic analogue of a semi-abelian
variety, the map G → A is a local isomorphism, and the fibre of A over 0 is equal to
the fibre of G over 0.

Let R a Noetherian, excellent, normal ring that is complete with respect to a
radical ideal I; let
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S = SpecR;

η = generic point of S = SpecK;

S0 = SpecA/I.

Intuitively, a degenerating one-motive over S is a one-motive over S r S0 whose
period group degenerates totally along S0. It is most convenient to state the definition
in terms of the quadruple considered in (2.6).

Definition 3.1. A degenerating family of symmetric one-motives over S is:

(a) an abelian scheme p : A → S and a polarization λ : A → Ǎ;
(b) a morphism v : X → A(S), where X is a free Z-module of finite rank; let

v̌ = λ ◦ v;
(c) a symmetric trivialisation ψ of the inverse image by (v, v̌) of the Poincaré

biextension of AK and ǍK by Gm.

There is also a degeneracy condition for whose statement we refer to Brylinski
1983, 3.1.1.

From the data in (a) and (b), we can construct a semi-abelian variety G over S:
let T be the constant split torus over S with X∗(T ) = X; then G is an extension
of A by T , such that, for all characters χ of T , χ∗(G) is an element of Ext1(A,Gm)
representing v̌(χ).

Theorem 3.2. There exists a semi-abelian scheme A over S, arising in a natural
way from a degenerating one-motive, such that

(a) the formal completion of A is the quotient of the formal completion of G by
the group of periods u(X);

(b) the restrictions to S0 of the semi-abelian schemes A and G are canonically
isomorphic.

Proof. In the case that G = T this was proved by Mumford 1972. Apparently,
he also proved the general case, but never published it. There is a sketch of a proof
in Brylinski 1983 and a detailed proof in Chai 1985. ¤

Remark 3.3. In Faltings 1985 there is an important converse to (3.2).

Notes. The theorems in this section are due to Mumford 1972, Brylinski 1983,
Faltings 1985, and Chai 1985. The most complete account is in Chai and Faltings
1989.



CHAPTER V

Toroidal compactification

We explain the how to construct (smooth) toroidal compactifications of Shimura
varieties, and suggest how the isomorphisms of Chapters II and III extend to these
compactifications.

1. Torus embeddings

We review (without proofs) the construction in algebraic geometry on which the
method of toroidal compactifications is based. Throughout this section, k will be
an algebraically closed field, and “variety” will mean a reduced irreducible separated
scheme locally of finite-type over k. All semigroups have zero elements and a sub-
semigroup of a (semi-) group contains the zero element of the (semi-) group.

Definitions. Let T be a d-dimensional torus over a field k. Write M = X∗(T ) ⊂
Γ(T,OT ) and N = X∗(T ). For r ∈ M let χr be the corresponding element of Γ(T,OT ),
and for a ∈ N , let µa : Gm → T be the corresponding cocharacter. We have a pairing

〈 , 〉 : M ×N → Z, χr(µa(t)) = t〈r,a〉.

As a k-algebra, Γ(T,OT ) is generated by {χr | r ∈ M}. Moreover, if r1, . . . , rd is a
basis for M , then

Γ(T,OT ) = k[χr1 , χ
−1
r1

, . . . , χrd
, χ−1

rd
].

A torus embedding of T is an open immersion T ↪→ X of varieties together with
an action of T on X whose restriction to T is the multiplication map. A morphism
of torus embeddings is a homomorphism f : X → X ′ whose restriction to T is a
homomorphism T → T ′ and which makes

T ×X −−−→ X

(F |T )×f

y
yf

T ′ ×X ′ −−−→ X ′

commute. The torus embedding is said to be affine if X is affine.

Affine torus embeddings. Let S ⊂ M be a finitely generated semigroup, and
let k[S] be the subalgebra of Γ(T,OT ) generated by {χr | r ∈ S}. It is a finitely
generated k-subalgebra of Γ(T,OT ), and its field of fractions is k(T ) if and only if S
generates M (as a group). In this case, T acts on XS =def Spec k[S], and T ↪→ XS is
an affine torus embedding. We have

XS(k) = Hom∗(S, k)
df
= {x : S → k | x(0) = 1, x(s + s′) = x(s)x(s′)}.

77
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Example 1.1. Let T = Gd
m, so that M = Zd and the coordinate ring of T ,

k[T ] = k[χ1, χ
−1
1 , . . . ]. Let

S = {(mi, . . . , md) | m1 ≥ 0, i = 1, . . . , s}.
Then Speck[S] = ks × (k×)d−s.

Let ϕ be a morphism A1r{0} → X; when ϕ extends to a morphism ϕ̃ : A1 → X,
we say that limt→0 ϕ(t) exists and equals ϕ̃(a). With this definition, it is possible to
describe XS as the variety obtained from T by adding certain limit points: for each
a ∈ N , limt→0 µa(t) exists in XS if and only if 〈a, S〉 ≥ 0.

Proposition 1.2. (a) The map S 7→ (T ↪→ XS) defines a one-to-one correspon-
dence between the set of finitely generated semigroups S in M generating M as a
group and the set of isomorphism classes of affine torus embeddings of T .

(b) An inclusion S ⊂ S ′ defines a morphism XS′ ↪→ XS

(c) XS is a normal variety if and only if S is a saturated in M , i.e., m ∈ S
whenever rm ∈ S for some r ∈ N, r 6= 0.

We want to patch affine torus embeddings together; for this it is convenient use
different combinatorial data, so that the functor attaching a torus embedding to the
data is covariant. A subset σ ⊂ NR is called a convex polyhedral cone if there exist
vectors n1, . . . , ns in NR such that

σ =

{∑
i≥1

aini | ai ∈ R, ai ≥ 0

}
.

It is rational if the ni can be chosen in N , and it is strongly convex if further σ∩(−σ) =
0 (equivalently, σ contains no nonzero subspace of NR). The dimension of the subspace
generated by σ is called the dimension of σ.

Let σ =
∑
R≥0ni be a strongly convex rational polyhedral cone. If we remove

redundant ni’s and require each to be primitive (that is, such that rni /∈ N , r ∈ Z,
r > 1), then the set {n1, . . . , nr} is uniquely determined. These ni are called the
fundamental generators of σ.

The dual of σ is the convex rational polyhedral cone σ̌ in MR:

σ̌ = {r = MR | 〈r, a〉 ≥ 0, all a ∈ σ}.
Proposition 1.3. The map σ 7→ σ̌ ∩ M defines a one-to-one correspondence

between the set of strongly convex rational polyhedral cones in NR and the set of
finitely generated semigroups S ⊂ M generating M and saturated in M .

For a convex rational polyhedral cone σ in NR, write Xσ for Spec k[σ̌ ∩M ]. Note
that for the cone σ0 = {0}, Xσ0 = T . On combining the last two propositions, we
obtain the following result.

Corollary 1.4. The map σ 7→ Xσ defines a one-to-one correspondence between
the set of strongly convex rational polyhedral cones in NR and the set of affine normal
torus embeddings of T .

Remark 1.5. The following criterion allows us to reconstruct σ from Xσ: an
element a of N lies in σ ⇔ limt→0 µa(t) exists in Xσ.
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Proposition 1.6. The variety Xσ is nonsingular if and only if the fundamental
generators of σ form part of a Z-basis of N .

A strongly convex rational polyhedral cone satisfying the condition in the propo-
sition is said to be nonsingular.

The intersection of a strongly convex rational polyhedral cone σ with a hyperplane
that does not meet the interior of σ is called a face, τ ≺ σ, of σ. There is then an r0

in σ̌ ∩M such that
τ = {x ∈ σ | 〈r0, x〉 = 0},

and τ is again a strongly convex rational polyhedral cone. The semigroup τ̌ ∩ M
associated with τ is σ̌ ∩M + N(−r0).

Proposition 1.7. If τ and σ are strictly convex rational polyhedral cones and
τ ⊂ σ, then there is a natural morphism Xτ → Xσ of torus embeddings; the morphism
is an open immersion if and only if τ is a face of σ.

On points, the map is the natural inclusion

Hom∗(τ̌ ∩M, k) ↪→ Hom∗(σ̌ ∩M, k)

induced by σ̌ ∩M ↪→ τ̌ ∩M .

General torus embeddings. The last result suggests how to patch together Xσ

for different σ.

Definition 1.8. A fan (formerly, rational partial polyhedral decomposition) of
NR is a nonempty collection ∆ = {σ} of strongly convex rational polyhedral cones
such that:

(i) every face of a cone in ∆ is also in ∆;

(ii) if σ and σ′ are in ∆, then σ ∩ σ′ is a face of both σ and σ′ .

The set |∆| = ∪σ∈∆σ is called the support of ∆, and ∆ is said to be complete if
|∆| = NR.

For example, the set of all faces of a strongly convex rational polyhedral cone is
a fan. Let ∆ be a fan in NR, and let

X∆ = {(σ, π) | σ ∈ ∆, π ∈ Hom∗(σ̌ ∩M, k)}/∼,

where (σ, π) ∼ (σ′, π′) if and only if π and π′ are restrictions of a single element of
Hom∗((σ ∩ σ′)∨ ∩M,k).

Proposition 1.9. The space X∆ has a unique structure of an algebraic variety
for which the maps Xσ ↪→ X∆ are open immersions for all σ ∈ ∆. In particular,
T = Xσ0 ↪→ X∆ is an open immersion. There is a unique action of T on X∆

extending its action on each Xσ.

To summarize: we have attached to each fan in NR a normal torus embedding
T ⊂ X∆.

Example 1.10. Let N = Z, σ = R≥0 ⊂ NR, ∆ = {σ,−σ, {0}}; then X∆ = P1.

Theorem 1.11. (a) X∆ is of finite-type if and only if ∆ is finite.
(b) X∆ is nonsingular if and only each Xσ is nonsingular.
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(c) X∆ is complete if and only if ∆ is a finite and complete fan.
(d) X∆ is quasi-projective if and only if ∆ is finite and there is a continuous

real-valued convex function on the convex hull of |∆| such that
(i) f |σ is R-linear, all σ ∈ ∆;
(ii) f takes integer values on N ∩ |∆|;
(iii) for each σ ∈ ∆, there is an rσ ∈ M and an nσ > 0 such that nσf ≥ rσ

on |∆| and

σ = {a ∈ NR | 〈rσ, a〉 = nσf(a)}.

The function f in (iii) is called a polar function. It defines a T -equivariant ample
invertible sheaf on X∆.

Remark 1.12. (a) The Xσ for σ ∈ ∆ are the T -stable affine open subsets of X∆.
In particular, X∆ is affine if and only if there is a σ ∈ ∆ such that ∆ coincides with
the set of faces of π.

(b) The description given above for the k-points of X∆ extends to a description
of the functor of k-schemes defined by X∆ (see Ash et al. 1975, p. 10, except note
that they forget to pass to the equivalence classes).

Proposition 1.13. Each torus embedding T ⊂ X with X normal is isomorphic to
the torus embedding defined by a fan ∆ in X∗(T )⊗R, and ∆ is uniquely determined.

Equivariant maps. A map of fans ϕ : (N ′, ∆′) → (N, ∆) is a homomorphism
ϕ : N ′ → N such that the image under ϕR of each σ′ ∈ ∆′ is contained in a σ ∈ ∆.

Proposition 1.14. Let ϕ : (N ′, ∆′) → (N, ∆) be a map of fans; the map
TN ′ → TN defined by ϕ extends uniquely to a morphism ϕ∗ : X∆′ → X∆, and φ∗
is equivariant. Each morphism of torus embeddings X∆′ → X∆ arises in this way
from a unique map of fans.

Proposition 1.15. The morphism ϕ∗ is proper and birational if and only if
ϕ : N ′ → N is an isomorphism and ∆′ is a locally finite subdivision of ∆.

Rationality of torus embeddings over subfields. Let τ : k ↪→ k′ be an inclu-
sion of k into a second algebraically closed field k′. Then τ defines an isomorphism
X∗(T ) → X∗(τT ), and a fan ∆ in X∗(T )⊗R is mapped to a fan τ∆ in X∗(τT )⊗R.
Clearly, τ(X∆) = Xτ∆ as torus embeddings of τT .

Now suppose that T is defined over a subfield k0 of k over which k is Galois.
Then Gal(k/k0) acts on N (through its action on T ), and descent theory shows that
a quasi-projective normal torus embedding T ↪→ X∆ is defined over k0 if and only if
∆ is stable under the action of Gal(k/k0) on NR.

Toroidal embeddings. Let Y be a normal variety, and let U be a smooth open
subset of Y . We say that U ⊂ Y is a toroidal embedding if it is a torus embedding
locally for the étale topology. We mean by this that for every closed point y of Y
there is an open neighbourhood Y ′ of y, a normal affine torus embedding T ⊂ X, and
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an étale map π : Y ′ → X such that π−1(T ) = U ∩ Y ′:

Y <
open ⊃ Y ′ étale

> X

U
∪

∧

< ⊃ U ∩ Y ′
∪

∧

> T
∪

∧

Compactification of torsors. Let V be a variety, and let P be a T -torsor over
V . For any torus embedding T ↪→ X we can define:

P × T X = (P ×X)/∼, (pt, x) ∼ (p, tx), p ∈ P, x ∈ X, t ∈ T.

This is a variety over X. The choice of a point p in the fibre Pv of P over a closed
point v ∈ V defines an isomorphism

T ⊂ > X

Pv

≈
∨

⊂ > (P ×T X)v

≈∨

A similar construction can be made when V is a complex manifold. In this case,
P × T X is a fibre bundle over V with standard fibre X (see Kobayashi and Nomizu,
1963).

Notes. Detailed proofs of the results in this section can be found in Kempf et al.
1972 and Oda 1978, 1987.

2. Study of the boundary of symmetric Hermitian domains

There is a very elaborate theory concerning the boundaries of Hermitian symmet-
ric domains. We can include only a very brief sketch.

Rational boundary components. Let D be a symmetric Hermitian domain.
Since we are interested in its boundary, we assume D to be noncompact. There then
exists a semisimple group G over Q such that G(R)+ = Aut(D)+.

As was explained in (III 1), there is a canonical embedding β : D ↪→ Ď of D into
its compact dual. The closure D̄ of D in Ď is called the natural compactification of D.
The action of G(R)+ on D extends to a continuous action on D̄. The space D̄ can be
decomposed according to the equivalence relation generated by the following relation:
x ∼ y if there is a holomorphic map λ : D1 → Ď from the unit disk D1 into Ď such
that {x, y} ⊂ λ(D1) ⊂ D̄. The equivalence classes are called the boundary components
of D. Note that this definition allows D itself to be an boundary component of D̄
(called the improper boundary component).

The normalizer of a boundary component F is the subgroup N of G(R)+ con-
taining those g such that gF = F . The component F is said to be rational if there is
a subgroup NF ⊂ G (defined over Q such that N+ = NF (R)+.

Proposition 2.1. (a) When G is simple, the map F 7→ NF is a bijection from
the set of proper rational boundary components of D to the set of maximal parabolic
subgroups of G.
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(b) Suppose G = G1 × · · · ×Gm with each Gi simple, and let D = D1 × · · · ×Dm

be the corresponding decomposition of X. The rational boundary components F of D
are products F1 × · · · × Fm with each Fi a rational boundary component of Di, and
the normalizer of such an F is the product of the normalizers of the Fi.

Proof. See Baily and Borel 1966, 3.7. ¤

From now on, we assume G to be simple (over Q).

Example 2.2. Let (V, ψ) be a symplectic space, let G = Sp(V, ψ), and let D
be the corresponding Siegel upper-half-space. For any totally isotropic subspace W
of V , the stabilizer N of W in V is a maximal parabolic subgroup of G, and all
such subgroups are of this form. The boundary component F corresponding to N is
isomorphic to the Siegel upper-half-space defined by the symplectic space (W⊥/W, ψ̄).

For example, if dim V = 2, then the totally isotropic subspaces are the (rational)
lines in V . They are in one-to-one correspondence with the points of P1(Q). When
D is realized as the open unit disk, then the rational boundary components are the
points on the circle that lie on a line through the origin with rational slope.

Cayley filtrations. For each point x ∈ D, there is homomorphism hx : S→ GR
such that hx(z) fixes x and acts on Tgtx(D) as multiplication by z2. The map x 7→ hx

identifies D with a G(R)+-conjugacy class of maps. For a representation (V, ξ) of GR,
ξ◦hx defines a Hodge structure on V and a (decreasing) Hodge filtration F •

x on V (C).

Definition 2.3. A filtration W• of RepQ(G) is said to be Cayley if for all x ∈ D
and all representations ξ : G → GL(V ), the filtrations W• and F •

x of V define a mixed
Hodge structure on V .

Proposition 2.4. If W• is a Cayley filtration, then W0G is a maximal parabolic
subgroup of G, and every maximal parabolic subgroup of G is associated in this way
with a unique Cayley filtration.

Proof. See Deligne 1973, 3.1.13. ¤

Thus each rational boundary component F defines a Cayley filtration W• of
RepQ(G). Deligne (ibid. 3.1.14) shows that for each F , there is a unique cocharacter
wF of G splitting the corresponding Cayley filtration and such that (ad h(i)) ◦ wF =
w−1

F .

Theorem 2.5. Fix a base point o ∈ D and a rational boundary component F of
D̄. Then there exists a unique homomorphism

ϕF : U1 × SL(2,R) → G(R)

such that

(i): ϕF (eiθ, r(θ)) = ho(e
iθ), r(θ) =

(
cos θ − sin θ
sin θ cos θ

)
,

(ii): ϕF (1,

(
λ 0
0 λ−1

)
) = wF (λ), λ ∈ U1.

Proof. Deligne 1973, 3.1.14. ¤



2. STUDY OF THE BOUNDARY OF SYMMETRIC HERMITIAN DOMAINS 83

Remark 2.6. (a) Let H be the upper-half-plane. There is a holomorphic map
fF : H → D that is equivariant for ϕF and such that fF (i) = o and fF (∞) ∈ F (Ash
et al. 1975, p. 199).

(b) Since G is simple it can be written G = ResF/QG′ with G′ an absolutely simple
group over a totally real field F . Choose a point o ∈ D such that ho factors through
T (R) with T a maximal torus in G. If E is a CM-field splitting T ′, then ϕF is defined
over the maximal totally real subfield of E (because both h0 and wF are).

The structure of NF . Fix a base point o ∈ D and a rational boundary compo-
nent F . The Hodge structure on g defined by ho is of type {(−1, 1), (0, 0), (1,−1)} (cf.
II 1). It follows that the nonzero Hodge numbers hpq of the mixed Hodge structure
(g,W•, F •

o ) satisfy |p|, |q| ≤ 1. The action of wF therefore defines a grading:

g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2.

There are attached to F the following algebraic groups over Q:

– NF = W0G; Lie NF = g−2 ⊕ g−1 ⊕ g0.
– W F = W−1G = unipotent radical of NF ; Lie W F = g−2 ⊕ g−1.
– UF = W−2G = centre of W F ; this is an abelian group, which we can

identify with its Lie algebra g−2.
– Z(wF ) = centralizer of wF in NF ; Lie(wF ) = g0, and NF = W F o

Z(wF ).
– V F = W F /UF ; this is an abelian group, which we can identify with its

Lie algebra g−1. Write g` = [g2, g−2], and gh = orthogonal complement
[g2, g−2] in g0. The decomposition g0= g` + gh can be integrated to an
isogeny Gh ×G` → Z(wF ). In summary:

W F o Z(wF ) = NF

| ∼ Gh ×G`

W F

| V F

UF

|
{1}

Proposition 2.7. (a) F is a symmetric Hermitian domain; Gh is semisim-
ple, and

Gh(R)+/(maximal compact subgroup) = Aut(F )+.

(b) The morphism ϕW sends U1 into Gh, and it sends SL2(R) into G`; moreover,
ϕW |U1 : U1 → Gh(R) defines the complex structure on F .

(c) G` is reductive without compact factors.
(d) The centralizer of F , Z = {g ∈ G(R) | gx = x all x ∈ F}, has identity

component G` ×W F .
(e) Gh ·W F centralizes UF .

Proof. Ash et al. 1975, III.3. ¤
Example 2.8. With the notations of (2.2), Gh = Sp(W⊥/W, ψ̄), G` = GL(W ),

and MF = 0. Moreover, UF is the space of symmetric bilinear forms on V (R).
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The canonical self-dual open cone in UF (R). In addition to the closed cones
of §1, we shall need to consider open cones in real vector spaces. Such a cone C in a
real space V is said to be self-dual if there exists a positive-definite inner form 〈 , 〉 on
V with the property that x ∈ C if and only if 〈x, y〉 > 0 whenever 0 6= y ∈ C̄ (closure
of C). The cone is said to be homogeneous if the group Aut(V, C) of automorphisms
of V stabilizing C acts transitively on C.

Example 2.9. Every homogeneous self-adjoint cone can be written as a product
of indecomposable cones. Apart from one family of semi-classical cones and one
exceptional cone, every indecomposable homogeneous self-adjoint cone is isomorphic
to a cone in the following list:

(i) the cone of positive-definite real symmetric matrices;

(ii) the cone of positive-definite Hermitian complex matrices;

(iii) the cone of positive-definite Hermitian quaternion matrices.

The Killing form B defines a Hermitian form on gC,

B′(x, y) = −B(x, ιy), x, y ∈ gC,

which restricts to a positive-definite form on uF . The isomorphism exp: uF → UF

allows us to transfer this to UF .

Define ΩF to be the point ϕF (1,

(
1 1
0 1

)
) of UF . Then the orbit of ΩF in UF (R)

under G`(R),

C(F ) = {gΩF g−1 | g ∈ G`(R)},
is a homogeneous open cone in UF (R), which is self-dual relative to B′.

Example 2.10. In the situation of (2.2), C(F ) is the cone of all positive-definite
bilinear forms on W .

Definition of Siegel domains.

Definition 2.11. Let U be a real vector space and let C be an open convex cone
in U whose closure does not contain an entire straight line. Then

S = {z ∈ U(C) | Im(z) ∈ C} = U + iC

is a tube domain (or Siegel domain of the first kind).

Let U be a real vector space and V a complex vector space; a real-bilinear map
V × V → U(C) is said to be semi-Hermitian if it can be written as the sum of a
symmetric complex-bilinear map and a Hermitian map.

Definition 2.12. Let U be a real vector space, let V be a complex vector space,
and let D be a bounded domain in some space Ck; let C ⊂ U be a cone satisfying
the conditions of (2.11). Suppose that for each t ∈ D there is given a nondegenerate
semi-Hermitian form Lt on V with values in U . Then

S = {w = (z, v, t) ∈ U × V ×D | Im(z)−<(Lt(v, v)) ∈ C}
is a Siegel domain (of the third kind). Thus a Siegel domain can be thought of as a
family of tube domains parametrized by V ×D.
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Realization of D as a Siegel domain. We now describe the realization of D
as a Siegel domain of the third kind, attached to the component F . Let

D(F ) = UF (C) ·D =
⋃

g∈UF (C)

gD ⊂ Ď.

Example 2.13. In the situation of 2.2, D(F ) is the set of maximal isotropic
subspaces F 0 ⊂ V such that (V, W•, F •) is a mixed Hodge structure and ψ̄ is a
polarization of W/W⊥. Here W• and F • are the filtrations:

0 ⊂ W ⊂ W⊥ ⊂ V, V = F−1V ⊃ F 0 ⊃ F 1V = 0.

There is a NF (R) · UF (C)-equivariant map ΦF : D(F ) → UF (C) such that D =

Φ−1
F (C). The space D(F ) can be decomposed by means of two successive fibrations:

D(F )
| ↓ π1

πF | D(F )′ = UF (C)\D(F )
↓ ↓ π2

F

Moreover,

D(F ) is a fibre bundle over D(F )′ for the complex group UF (C);

D(F )′ → F is a principal C∞-fibration for the group V F (R).

Both fibrations can be trivialized,

D(F ) ≈ UF (C)×D(F )′ ≈ UF (C)× V F (C)× F,

and with the choice of such a decomposition, ΦF can be expressed

ΦF (z, v, t) = Im(z)− ht(v, v), z ∈ UF (C), v ∈ V F (C), z ∈ F

with ht a real bilinear form V F (R)× V F (R) → UF depending real-analytically on t.
Thus D is equal to

{(z, v, t) | z ∈ UF (C), v ∈ V F (C), t ∈ F, Im(z)− ht(v, v) ∈ C(F )},
which realizes it as a Siegel domain.

Algebraicity of the quotient of D(F ) by a discrete group. An arithmetic
subgroup Γ of G(R) is said to be neat if it consists of elements g such that, for one
(hence every) faithful complex representation ξ of G, the subgroup of C× generated
by the eigenvalues of ξ(g) is torsion-free. In particular, a neat subgroup is torsion-free.

Choose a neat arithmetic subgroup Γ of G(R) (every arithmetic subgroup contains
a subgroup of finite index that is neat), and define:

Γ(F ) = Γ ∩N ; it is a discrete subgroup of NF ;

Γ′(F ) = subgroup of Γ(F ) of elements acting trivially (by conjugation) on UF ;

Γh(F ) = image of Γ(F ) in Gh(Q); it is a neat subgroup of Gh(Q), and so Γh(F )\F
is a locally symmetric variety.

The quotient UF (C)/(UF (C) ∩ Γ) is compact, and UF (C) ∩ Γ is discrete in UF (C);
therefore UF (C)∩� is a lattice in UF (C), and T F = UF (C)/(UF (C)∩Γ) is a complex
torus.
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Theorem 2.14. The quotient Γ′(F )\D(F ) has a canonical structure of an alge-
braic variety for which the map Γ′(F )\D(F ) → Γh(F )\F is a morphism of algebraic
varieties. In fact, Γ′F\DF is a torus bundle (with fibres T F (C)) over an abelian
scheme over Γh(F )\F .

Proof. This is proved in Brylinski 1979. (See also Brylinski 1983, 2.3.2.5, and
Chapter VI below.) ¤

Remark 2.15. The algebraic structure in (2.14) is canonical, but it is not unique:
there is no analogue of the Borel extension theorem (cf. II 1.1).

Example: the Siegel case. We return to the situation of (2.2). Choose a lattice
V (Z) in V such that ψ takes integral values and has discriminant one on V (Z), and
let Sp(Z) be the subgroup of Sp(V, ψ) preserving V (Z). The quotient Sp(Z)\D is the
moduli variety for polarized abelian varieties in the principal series. Fix an isotropic
subspace W of V , and define the filtration W• as in (2.13). The form ψ induces on
Gr−1(V (Z)) a skew-symmetric form ψ̄ of discriminant 1. Set dim Gr−1V = 2g0. We
have:

(a) F is the space of Hodge structures of type {(−1, 0), (0,−1)} on Gr−1(V ) for
which ψ̄ is a polarization.

(b) D(F ) is the space of maximal isotropic subspaces F 0 of V (C) such that
(V,W•, F •) is a mixed Hodge structure and ψ is a polarization of Gr−1(V ).
Let Γ′ be the subgroup of Sp(Z) of elements that respect the filtration and
act trivially on Gr0(V ).

(c) The quotient Γ′\D(F ) is the (coarse) moduli variety for symmetric one-
motives (A, λ,X, v, δ) with (A, λ) a principally polarized abelian variety of di-
mension 2g0, X the abelian group Gr0(V (Z)), v a homomorphism X → A(C),
and δ a symmetric trivialization of the Poincaré biextension (see IV 2.6).

(d) The quotient Γ′\D(F )′ is the (coarse) moduli variety for the quadruples
(A, λ, X, v).

(e) The quotient Γ′\F is the (coarse) moduli variety for principally polarized
abelian varieties of dimension g0.

The maps

Γ′\D(F ) → Γ′\D′(F ) → Γ′\F
correspond to

(A, λ, X, v, δ) 7→ (A, λ,X, v) 7→ (A, λ).

Notes. Piatetski-Shapiro 1966 showed how to realize all the classical symmetric
Hermitian domains as Siegel domains of the third kind. Wolf and Korányi 1965
gave a more uniform treatment that includes the nonclassical domains. There are
expositions of (parts of) the material in this section in Baily and Borel 1966, Deligne
1973, Ash et al. 1975, Satake 1980, and Brylinski 1983.

3. Toroidal compactification of locally symmetric varieties

The results of the last two sections, allow us to construct toroidal compactifications
of locally symmetric varieties.
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We use the same notations as in §2 (except that we no longer require G to be
Q-simple). Thus D is a symmetric Hermitian domain, G is an algebraic group over
Q with G(R)+ = Aut(D)+, F is a rational boundary component of D, and NF , W F ,
and UF are certain subgroups of G attached to F . Recall that we have a canonical
self-adjoint open cone C(F ) in UF (R). We choose a neat arithmetic subgroup Γ of
G(R)+, and define Γ̄(F ) to be the image of Γ(F ) in Aut(UF ). As in §2, T F is the

torus over C with X∗(T ) = UF (Z)
df
= UF (C) ∩ Γ. Finally, we write S for the locally

symmetric variety Γ\D.

Definition 3.1. A fan ∆ in UF (R) is said to be Γ̄(F )-admissible if

(a) γ ∈ Γ̄(F ), σ ∈ ∆ ⇒ γσ ∈ ∆;
(b) the number of classes of cones mod Γ̄(F ) is finite;
(c) C(F ) ⊂ |∆| ⊂ C(F )− (closure of C(F )).

Note that X∗(T ) ⊗ R = UF (R). Therefore a �̄(F )-admissible fan gives a torus
embedding T F ⊂ XF

∆. As UF (Z)\D(F ) is a principal bundle for T F over D(F )′, we
can construct a partial compactification,

(UF (Z)\D(F ))∆ = (UF (Z)\D(F ))×T F

XF
∆,

as at the end of §1. This is a fibre bundle over D(F )′ with fibres XF
∆. Define

(UF (Z)\D)∆ to be the interior of the closure of UF (Z)\D in (UF (Z)\D(F ))∆. Be-
cause ∆ is invariant under Γ̄(F ), Γ(F ) acts on (UF (Z)\D(F ))∆, and it can be shown
that Γ(F ) acts properly discontinuously on (UF (Z)\D)∆.

Definition 3.2. A family of fans ∆ = (∆F ), F running over the rational bound-
ary components of D, is Γ-admissible if

(a) each ∆F is Γ̄(F )-admissible;
(b) for γ ∈ Γ, γ∆F = ∆γF (note that γ defines an isomorphism γ : C(F ) →

C(γF ));
(c) if F ⊃ F ′, ∆F ′ = {σ ∩C(F ′) | σ ∈ ∆} (note that C(F ′)− = C(F )− ∩U(F ′)).

Theorem 3.3. For every Γ-admissible family of fans ∆ = (∆F ), there is a unique
normal separated complex analytic variety (Γ\D)∆ containing Γ\D as an open dense
set and such that:

(a) for every rational boundary component F of D, there is an open analytic
morphism πF making the following diagram commute:

UF (Z)\D ⊂ > (UF (Z)\D)∆F

Γ\D
∨

⊂ > (Γ\D)∆;

πF∨

(b) (Γ\D)∆ = ∪Im(πF ). Moreover, (Γ\D)∆ has a unique structure of a complete
algebraic space compatible with its analytic structure, and there is a natural
morphism (Γ\D)∆ → (�\D)− that restricts to the identity map on Γ\D.

Proof. This is the main theorem of Ash et al. 1975 (ibid. p. 253). ¤

The algebraic space (Γ\D)∆ in the theorem is called the toroidal compactification
of Γ\D defined by ∆.
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An algebraic space is the quotient of a scheme by an étale equivalence relation (see
Knutson 1971 for a full account of the theory of algebraic spaces). In this article, the
distinction between a scheme and an algebraic space will not be important, and we
shall ignore it. The next two results show that ∆ can be chosen so that the toroidal
compactification is in fact a projective variety.

Let U = ∪UF and C = ∪C(F ) (unions over the rational boundary components of
D).

Definition 3.4. Let ∆ = (∆F )F be a Γ-admissible family of fans.

(a) ∆ is nonsingular if every cone in every ∆F is nonsingular (see 1.6);
(b) ∆ is projective if there exists a Γ-invariant continuous convex piecewise linear

function f : C → R such that f |UF is a polar function for each F (see 1.11).

Theorem 3.5. (a) If ∆ is nonsingular, then (Γ\D)∆ is nonsingular.

(b) If ∆ is projective, then (Γ\D)∆ → (Γ\D)− is the normalization of the blowing
up of (Γ\D) along a sheaf of ideals I such that O/I has support on (Γ\D)− r Γ\D.
In particular, (Γ\D)∆ is projective.

Proof. The first statement follows from (1.11). The second is a theorem of Tai
(see Ash et al. 1975, IV 2.1). ¤

Proposition 3.6. (a) There exist projective Γ-admissible families of fans.

(b) Every Γ-admissible fan has a refinement that is nonsingular.

Proof. (a) See Ash et al. 1975, p. 310.

(b) In Kempf et al. 1972, p. 32, this is proved for torus embeddings of finite type,
but essentially the same proof works in the present context. ¤

One can show, more precisely, that every toroidal compactification is dominated
by a nonsingular toroidal compactification whose boundary is a divisor with normal
crossings—we shall refer to such a compactification as a smooth toroidal compactifi-
cation.

Remark 3.7. (a) The sheaf of ideals I in (3.5b) has a precise description in terms
of the function f (see Ash et al. 1975, p. 312).

(b) In Ash et al. 1975, p. 287, there is a more intrinsic statement of the main
theorem.

Notes. Toroidal compactification were introduced independently by Mumford
and Satake (see Mumford 1975 and Satake 1973). The theory was worked out in
detail by Mumford and his collaborators, Ash, Kempf, Knudsen, Rapoport, Saint-
Donat, and Tai, in Kempf et al. 1972 and Ash et al. 1975.

4. Toroidal compactification of Shimura varieties

We extend the results of the last section to Shimura varieties.
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Toroidal compactification of connected Shimura varieties. Let (G,X+)
be a pair satisfying the axioms (II 1.3). The group Gad plays the role of G in the
previous section. Let Γ be a neat arithmetic subgroup of Gad(Q+ containing the image
of a congruence subgroup of G(Q)+. A Γ-admissible fan ∆ will also be Γ′-admissible
for any arithmetic subgroup Γ′ ⊂ Γ, and the morphism Γ′\X+ → Γ\X+ extends to
a morphism (Γ′\X+)∆ → (Γ\X+)∆. We write Sh0(G,X)∆ for the projective system
(Γ\X+)∆, where Γ runs over the neat arithmetic subgroups containing the image of a
congruence subgroup. Unfortunately, the action of Gad(Q)+ˆ on Sh0(G,X) does not
extend to Sh0(G,X)∆. However, we have the following observation of Faltings and
Stuhler.

Lemma 4.1. Let Γ and Γ′ be neat arithmetic subgroups of Gad(Q+ containing the
image of a congruence subgroup, and let γ1, . . . , γn ∈ G(Q)+ be such that γ−1

i Γγi ⊂ Γ′;
then for any pair of smooth toroidal compactifications (Γ\X+)∆ and (Γ′\X+)∆′ of
Γ\X+ and Γ′\X+, there exists a smooth compactification (Γ\X+)∆′′ of Γ\X+ and
maps:

(Γ\X+)∆′′ → (Γ\X+)∆ restricting to id on Γ\X+, and
(Γ\X+)∆′′ → (Γ′\X+

∆′ restricting to γi on Γ\X+.

Proof. Stated in Faltings 1984. ¤

Thus, if we define Sh0(G,X)∗ to be the projective system (Γ\X+)∆, where Γ runs
over the neat arithmetic subgroups of Gad(Q)+ containing the image of a congruence
subgroup of G(Q)+ and (for each Γ) ∆ runs over the Γ-admissible families of fans for
which (Γ\X+)∆ is a smooth toroidal compactification, then the action of Gad(Q)+ on
Sh0(G,X) extends to Sh0(G,X)∗. By continuity, we obtain an action of Gad(Q)+ˆ
on Sh0(G,X)∗.

Toroidal compactification of Shimura varieties. Let (G,X) be a pair defin-
ing a Shimura variety, and assume that the weight wX is defined over Q (this is true
for all naturally occurring Shimura varieties with boundary). Choose a connected
component X+ of X. Corresponding to a boundary component F of X+, we obtain a
Cayley filtration wF of Gad. It follows from results in Deligne 1973 that wF lifts to a
filtration w of GC, and that w can be normalized so that (wX ·w−1)(Gm) ⊂ Gder (i.e.,
w and wX become equal when composed with GC → (G/Gder)C). Because the map
G → Gad× (G/Gder) has finite kernel, w is uniquely determined, and because wF and
wX are defined over Q, so also is w. Moreover, for any representation (V, ξ) of G, the
filtrations defined by w and F •

x form a mixed Hodge structure on V (according to (IV
1.3), this has to be checked only for representations factoring through Gad×(G/Gder),
and for these it is obvious). These remarks suggest the following definition.

Definition 4.2. A Cayley filtration W• on G is admissible if the filtration on
G/Gder is that defined by wX .

Now fix an admissible Cayley filtration W F
• of G. Here the F is simply an index.

Set

NF = W F
0 (G), W F = W F

−1(G), UF = W F
−2(G).

Note that Z(G) ⊂ Z(w) for any w splitting W F
• , and so Z(G)∩W F = {1}. Therefore

W F and UF are mapped isomorphically onto their images in Gad.
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Choose a connected component X+ of X, and let K be a compact open subgroup
of G(Af ). For any g ∈ G(Af ), let Γg be the image in Gad(Q)+ of the group gKg−1 ∩
G(Q)+. As in §3, associated with Γg we have groups Γg(F ), Γ′g(F ), and Γ̄g(F ), and

we have a canonical cone C(F ) ⊂ UF (C). Let C be a set of representatives for the
finite set G(Q)+\G(Af )/K (see II 2).

Definition 4.3. A fan ∆ ⊂ C(F ) is said to be Γ̄(F )-admissible if it is �̄g(F )-
admissible for all g ∈ C.

From such a fan, we obtain a partial toroidal compactification

ShK(G,X)∆ = ∪(Γg\X+)∆·

Definition 4.4. A family of fans (∆F ), with wF running over the admissible
Cayley filtrations of G, is K-admissible if

(a) each ∆F is Γ̄(F )-admissible;
(b) for all g ∈ C and all γ ∈ Γg, we have γ∆F = ∆γF where W γF

• =df ad(γ) ·W F
• ;

(c) if NF ⊂ NF ′ , then ∆(F ′) = {σ ∩ C(F ′) | σ ∈ ∆F}.

A K-admissible family of fans ∆ = (∆F ) defines a toroidal embedding
Sh(G,X) ↪→ Sh(G,X)∆. We say that Sh(G,X)∆ is a smooth toroidal compactifi-
cation if Sh(G,X)∆ is smooth and the boundary is a divisor with normal crossings,
and we write Sh(G,X)∗ for the projective system of smooth toroidal compactifications
of Sh(G,X). The actions of G(Af ) and G(G) on Sh(G,X) extend to Sh(G,X)∗.

Notes. There is a more detailed discussion, from a somewhat different point of
view, of toroidal compactifications of nonconnected Shimura varieties in Harris (1989),
§2.

5. Canonical models of toroidal compactifications

Connected Shimura varieties. Let (G,X+) be a pair defining a connected
Shimura variety. Let x be a special point of X+, and let τ be an automorphism of C.
Recall from (II 4.2) that there is a unique isomorphism

ϕ0
τ,x : τSh0(G,X+) → Sh0(τ,xG, τ,xX+)

sending τ [x] to [τx] and such that ϕ0
τ,x ◦ τT (g) = T (τ,xg) ◦ ϕ0

τ,x. It would be very
surprising if the following statement were not true:

Conjecture 5.1. The isomorphism ϕ0
τ,x extends uniquely to an isomorphism

ϕ0 ∗
τ,x : τSh0(G,X+)∗ → Sh0(τ,xG, τ,xX+)∗.

Moreover, the following diagram commutes:

ϕ0 ∗
τ,x : τSh0(G,X+)∗ −−−→ Sh0(τ,xG, τ,xX+)∗y

y
ϕ0−

τ,x : τSh0(G,X+)− −−−→ Sh0(τ,xG, τ,xX+)−.

(The vertical arrows are the natural maps from the toroidal compactification to the
minimal compactification.)
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Note that, because Sh0(τ,xG, τ,xX+)∗ is separated and Sh0(G,X+) is dense in
Sh0(G,X+)∗, ϕ0,∗

τ,x will certainly be unique if it exists. It appears likely that the fol-

lowing argument will suffice to prove the existence of ϕ0
τ,x. For connected Shimura va-

rieties of Hodge type, the existence of ϕτ,x follows from the description of Sh0(G,X+)∆

as a moduli space of degenerating abelian varieties (see Chai and Faltings 1989 and
Brylinski 1983, §4). To apply the strategy of II 9, the following statement will be
needed:

(*) an inclusion (G,X+) ↪→ (G′, X ′+) induces a closed immersion
Sh0(G,X)∗ ↪→ Sh0(G′, X ′+)∗.

Note that we already know that the map Sh0(G,X+) ↪→ Sh0(G′, X ′+) is a closed im-
mersion (cf. Deligne 1971c, 1.15), and so (*) comes down to a combinatorial question
about fans. Let Γ ⊂ Gad(Q)+ and Γ′ ⊂ G′ad(Q)+ be such that Γ\X+ ↪→ Γ′\X ′+ is a
closed immersion; when ∆ is a Γ-admissible fan, we wish to find a Γ′-admissible fan ∆′

such that the preceding map extends to a closed immersion (Γ\X+)∆ ↪→ (Γ′\X ′+)∆′

(after possibly replacing ∆ by a refinement ∆′′). For this we can take ∆′ to be any
Γ′-admissible fan refining the image of ∆, and apply (Harris 1989, §3) to obtain a ∆′′

for which (Γ\X+) ↪→ (Γ′\X ′+) extends to a map (Γ\X+)∆′′ ↪→ (Γ′\X ′+)∆′ .

Now assume G = ResL/QG′ with G′ absolutely simple. After extending L we can
suppose that there is an inclusion (Gα, X+

α ) ↪→ (G,X+) with Gα of type A1 and such
that a boundary point of Sh0(Gα, Xα) maps into any particular boundary component
of Sh0(G,X+)− we choose (see 2.6b). Then the domain of definition of the rational
map

τSh0(G,X+)∗ → Sh0(τ,xG, τ,xX)∗

includes at least one point of the boundary component in question, and the Hecke
operators then allow us to show that it will contain all points.

In practice, conjecture (5.1) is probably all one will need — in most situations
where toroidal compactifications are needed, exactly which toroidal compactification
is being used is irrelevant. In fact, the usual procedure is to choose a toroidal compact-
ification and then show that the statements or objects one arrives at are independent
of the choice. Nevertheless, it would be interesting to have a more precise result than
(5.1) where, starting from a fan ∆, one constructs a fan ∆′ for which ϕ0

τ,x extends to
an isomorphism

τSh0(G, X)∆ → Sh(τ,xG, τ,xX)∆′ .

It is easy to guess what ∆′ should be. For simplicity, assume G to be simply connected.
Let F be a rational boundary component of X+, and let ∆ be a Γ̄(F )-admissible fan.
We wish to identify τSh0(G,X)∆ with a partial compactification of Sh0(τ,xG, τ,xX).
Choose a faithful representation (V, ξ) of Gad. Associated with this data, we have
a one-motive M = (XM → GM) such that UF = Hom(S2XM ,C). The fan ∆
corresponds to a torus embedding T ↪→ X∆ of T = Hom(S2XM ,Gm). Then τM
is the motive attached to τx ∈ τ,xX, and we can choose ∆′ ⊂ Hom(S2XτM ,C) to be
the fan corresponding to the torus embedding τT ↪→ τX∆.

Conjecture 5.2. The isomorphism ϕ0
τ,x extends uniquely to an isomorphism

(ϕ0
τ,x)∆ : τSh0(G,X)∆ → Sh0(τ,xG, τ,xX)∆′ .

compatible with the maps to the minimal compactification.
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Shimura varieties. Let (G,X) be a pair defining a Shimura variety.

Theorem 5.3. Assume (5.1). For any τ ∈ Aut(C) and special point x ∈ X,
the isomorphism ϕτ,x : τSh(G, X) → Sh(τ,xG, τ,xX) of (II 4.2) extends uniquely to an
isomorphism ϕ∗τ,x : τSh(G,X)∗ → Sh(τ,xG, τ,xX+)∗; moreover, the diagram

τSh(G,X)∗ −−−→ Sh(τ,xG, τ,xX)∗y
y

τSh(G,X)− −−−→ Sh(τ,xG, τ,xX)−

commutes.

Proof. This can be obtained by induction from (5.1). ¤
Corollary 5.4. (Assuming 5.1.)

(a) Sh(G,X)∗ has a canonical model over E(G,X).
(b) For any τ ∈ Gal(Qal/Q), τSh(G,X)∗ is canonically isomorphic to the canon-

ical model of Sh(τ,xG, τ,xX)∗ over τE(G,X).

Conjecture 5.2 has an obvious analogue for nonconnected Shimura varieties.

Remark 5.5. So far we have not mentioned Eisenstein series. Briefly, Eisenstein
series attach an automorphic form on the whole Shimura variety to a cusp form
on a boundary component. This construction should be compatible with all the
isomorphisms in this article. In particular, an Eisenstein series should be defined
over a field E when the cusp form is.

Notes. As we noted (3.7a) a smooth projective toroidal compactification is ob-
tained from the minimal compactification by blowing it up at certain ideals, described
by the polarizing function f , and then normalizing. Brylinski 1983 uses this and
Fourier-Jacobi series to prove the existence of canonical models of projective toroidal
compactifications of Shimura varieties of Hodge type. Harris 1989, 2.8, suggests that
the results in Harris 1986 can be used to generalize this result. (I understand that
Richard Pink1 will also examine the question of the existence of canonical models of
toroidal compactifications in his Bonn thesis.)

6. Canonical extensions of automorphic vector bundles

First we note that automorphic vector bundles extend to toroidal compactifica-
tions.

Theorem 6.1. Let (G,X) be a pair defining a Shimura variety, and let Sh(G,X)∆

be a smooth toroidal compactification of Sh(G, X). There is an exact faithful functor
J 7→ V∆(J ) from the category of GcC-vector bundles on X̌ to that of vector bundles
on Sh(G,X)∆ such that

(a) V(J )∆|Sh(G,X) = V(J ) (notation as in III 2);

1Added 22.06.01: Pink, Richard Arithmetical compactification of mixed Shimura varieties. Dis-
sertation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, 1989. Bonner Mathematische
Schriften [Bonn Mathematical Publications], 209. Universität Bonn, Mathematisches Institut, Bonn,
1990. xviii+340 pp.
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(b) J 7→ V(J )∆ commutes with tensor products and duals (i.e., it is a morphism
of tensor categories);

(c) equivariant differential operators between the V(J )’s extend to the V∆(J )’s.

Moreover, V∆(J ) is uniquely determined by the properties (a), (b), and (c).

Proof. Let o ∈ X̌. Then GC-vector bundles correspond to representations of Po

(see III 2.3a). For the J corresponding to irreducible representations of Po, the result
is essentially proved in Mumford 1977.

For Siegel modular varieties, the theorem is proved in Chai and Faltings 1989,
VI.4. Briefly, their proof proceeds as follows. Using the structure of Sh(G,X) near
the boundary, it is possible to construct the extension of V(J )∆ locally; the problem is
to show that the local extensions patch. It is clear that the category of representations
of Po for which this is true is closed under tensor products, duals, and subquotients. It
therefore suffices to construct V(Jo)∆ for a single faithful representation of Po. Chai
and Faltings take Jo to be the standard representation G, and show that V(Jo)∆

can be obtained from the de Rham cohomology of the universal semi-abelian scheme
that they have already constructed. Harris 1989 shows that by applying Deligne’s
existence theorem Deligne 1970 it is possible to avoid using the universal semi-abelian
scheme. ¤

Theorem 6.2. Let Sh(G,X)∆ be a smooth toroidal compactification of a Shimura
variety having a canonical model over E ⊃ E(G,X). If J is defined over E, then so
also is V(J )∆.

Proof. The descent datum on V(J ) extends to V(J )∆. ¤

Once general results on canonical models have been obtained, essentially all the
results in Chapter III will extend to vector bundles on the toroidal compactifications.

Notes. See the references in the proof of (6.1).



CHAPTER VI

Mixed Shimura varieties

In this chapter, we suggest how the results of Chapter II should generalize to
mixed Shimura varieties.

1. Definition of a mixed Shimura variety

Let P be a connected algebraic group over Q. Recall from (I 1) that we have the
notion of a filtration W• of RepQ(P ). Moreover, P = W0P if and only if P preserves
the filtration on each representation of P , and W−1P is the (unipotent) subgroup of
W0P acting trivially on GrW

• (V ) for all representations of P . For any cocharacter w
of P splitting the filtration, W0P = W−1 o Z(w), where Z(w) is centralizer of w.

The axioms for a mixed Shimura variety. The datum needed to define a
mixed Shimura variety is a triple (P,W•, Y ) comprising a connected algebraic group
P over Q, an ascending filtration W• of RepC(P ), and a P (R) ·(W−2P (C))-conjugacy
class Y of descending filtrations of RepC(P ). For y ∈ Y , write F •

y for the filtration
defined by y ∈ Y . The filtration W• is defined over some totally real number field, and
the filtration it induces on RepC(P/Z(P )) is defined over Q. The triple is required
to satisfy the following conditions:

1.1.0: for any representation (ξ, V ) of P , W• and F •
y define a real mixed Hodge

structure on V (R), all y ∈ Y ;
1.1.1: Lie(PC) = W0Lie(PC) = F−1

y Lie(PC) for each y ∈ Y ;

1.1.2: for any µy splitting the filtration F •
y , µy(i) · µy(i) is a Cartan involution

on (GrW
0 P )ad;

1.1.3: (GrW
0 P )ad has no Q-rational factors that are anisotropic over R;

1.1.4: Z(P )0 is a torus, splitting over a CM-field;
1.1.5: the (adjoint) action of GrW

0 P on GrW
−1Lie P factors through GrW

0 (P )c

(notation as in the introduction to Chapter III).

Simplifications occur when we strengthen some of the axioms:

1.1.0*: the filtration W• is defined over Q, and W• and F •
y define a rational

mixed Hodge structure on V for any representation (V, ξ) of P ;

1.1.2*: for any µy splitting the filtration F •
y , µy(i) ·µy(i) is a Cartan involution

on P/(W−1P · w(Gm));
1.1.4*: (1.1.4) holds and there is a one-dimensional representation V0 of P such

that (V0,W•, F •
y ) is the pure Hodge structure Q(1) for all y.

We usually drop the W from the notation GrW
r . For each y ∈ Y , there is a

homomorphism h̃y : Gm × Gm → PC such that, for every representation (V, ξ) of P ,

ξ ◦ h̃y provides V (C) with the bigrading associated with the mixed Hodge structure

94
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(see IV 1). It is important to note, however, that in general h̃py 6= (ad p) ◦ h̃y unless
p ∈ P (R).

Remark 1.2. (a) Axiom (1.1.5) has been imposed only so that the mixed Shimura
variety exists as a scheme rather than a stack. Probably this condition should be
dropped. In any case, the axioms should be viewed as tentative.

(b) Axiom (1.1.2) implies that (Gr0P )ad is semisimple, and (1.1.4) implies that
the connected centre of Gr0P is a torus. Therefore Gr0P is a reductive group, W−1PC
is the unipotent radical of PC, and, for any w splitting W•, Z(w) is a Levi subgroup
of PC. Note that if Gr0P = 0, then w(Gm) = 0, which implies that W−1P = 0 and
that P = 0.

(c) Let Lie(P )C = ⊕H̃p,q be the decomposition of Lie(P )C corresponding to the
mixed Hodge structure (W•, F •y) some y ∈ Y . Then (1.1.1) implies that H̃p,q = 0
for p + q > 0 and p < −1. Hence

Gr0(Lie P ) has a Hodge structure of type {(−1, 1), (0, 0), (1,−1)};
Gr−1(Lie P ) has a Hodge structure of type {(−1, 0), (0,−1)};
Gr−2(Lie P ) has a Hodge structure of type {(0, 0)};

(see the picture in IV 2.10). Thus

(1.2.1) Lie PC = Lie PR + F 0
y Lie PC + W−2Lie PC.

From the last equality it follows that Y can also be regarded as a P (R) ·W−1P (C)-
conjugacy class.

(d) It suffices to check (1.1.0) for a single y ∈ Y (cf. Brylinski 1983, 2.3.1.2), and
for a finite family of representations (Vi, ξi) such that ∩Ker(ξi) is finite (see IV 1.3).

The complex structure on Y .

Proposition 1.3. Let Y̌ be the P (C)-conjugacy class of filtrations of RepC(P )
containing F •

y for all y ∈ Y . Then Y̌ is a Grassman variety, and the map

β : Y ↪→ Y̌ , y 7→ F •
y ,

identifies Y with an open complex submanifold of Y̌ . The induced complex structure on
Y is the unique structure such that, for all representations (V, ξ) of P , the filtrations
F •

y on V(ξ) =df Y × V (C) vary holomorphically.

Proof. Fix a point o ∈ Y . Then Y̌ = P (C)/F 0
o P (C), which is a Grassman

variety, and β is the map

g · o 7→ g (mod F 0
o P (C)) : Y → P (C)/F 0

o P (C).

This is obviously injective, and (1.2.1) shows that it identifies Y with an open (almost)
complex submanifold Y̌ . ¤

Proposition 1.4. Let ξ : P → GL(V ) be a rational representation of P , and
let VR = ⊕V (i) be the decomposition of VR under the action of Z(P )0R; then y 7→
(V (i),W•, F •

y ) is a variation of real mixed Hodge structures on Y .

Proof. On Grn(V (i)), we have a representation of Gr0(P ); apply (II 3.2) to
see that it defines a variation of real Hodge structures. The transversality axiom
(condition (H1) of (IV 1)) follows from the fact that Lie PC = F−1

y (Lie PC). ¤
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Define Y ′ to be the (P/W−2P )(R)-conjugacy class of filtrations of RepC(P/W−2P )
containing the image of Y , and define X to be the (Gr0P )(R)-conjugacy class of
filtrations of RepC(Gr0P ) containing the image of Y ′. Proposition 1.3 shows that
both Y ′ and X also have natural complex structures.

Proposition 1.5. The natural maps Y
π1→ Y ′ π2→ X are both holomorphic. More-

over,

X is a symmetric Hermitian domain;

Y ′ → X is a fibre bundle with structure group V (R), V = Gr−1(P );

Y → Y ′ is a fibre bundle with structure group U(C), U = Gr−2(P ).

Proof. Straightforward from the definitions (and II 3.2). ¤

Write π for the composite Y → X.

The mixed Shimura variety. For any compact open subgroup K of P (Af ),
define

MK(P, W•, Y ) = P (Q)\Y × P (Af )/K.

It is a complex manifold if K is sufficiently small; in fact, it is a disjoint union of
varieties of the form Γ\Y + with Y + a connected component of Y and Γ a discrete
subgroup of P (R)+. Each g ∈ P (Af ) defines a holomorphic map,

T (g) : MK(P, W•, Y ) → Mg−1Kg(P, W•, Y ), [y, p] 7→ [y, pg].

Theorem 1.6. (a) The complex manifold MK(P, W•, Y ) has a natural structure
as an algebraic variety. More precisely, it is a torus bundle over a polarizable abelian
scheme over a Shimura variety.

(b) For each g ∈ P (Af ), T (g) is algebraic.

Proof. For any quotient P ′ of P by a subgroup of Z(P ), we have a triple
(P ′,W ′

•, Y
′) satisfying the axioms (1.1), and for each pair of open compact subgroups

K ⊂ P (Af ) and K ′ ⊂ P ′(Af ) such that K ′ contains the image of K, there is a
morphism

MK(P, W•, Y ) → MK′(P ′,W ′
•, Y

′).

Each connected component of MK(P, W•, Y ) is a finite covering of a connected compo-
nent of MK′(P ′,W ′

•, Y
′). Thus, if we can prove (a) for (P ′,W ′

•, Y
′), then the Riemann

existence theorem will show that it is also true for (P, W•, Y ). A similar remark
applies to (b). This allows us to assume that conditions (1.1.0*) and (1.1.2*) hold.
Later in this section we outline a proof of the theorem in this case. ¤

We obtain a scheme M(P, W•, Y ) with a continuous action of P (Af ), which we
call the mixed Shimura variety defined by (P, W•, Y ).

Special points. A point y ∈ Y is said to be special if for one faithful (hence
every) representation (V, ξ) of P ad, the mixed Hodge structure (V,W•, F •

y ) decomposes
into a sum of pure Hodge structures, each of CM-type. We say that y is a CM-point if
the same condition holds for the representations of P itself. A mixed Hodge structure
is said to be rationally decomposed if it is a direct sum of pure Hodge structures.
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Proposition 1.7. (a) Let x = π(y); then y is special if and only if x is special
and (V, W•, F •

y ) is rationally decomposed for each representation of P ad.

(b) For each special x ∈ X, there is a y ∈ π−1(X) such that (V, W•, F •
y ) is

rationally decomposed for each representation of P ad.

Proof. Part (a) is obvious. We outline a proof of (b) later in this section. ¤

For each special point y, there is a unique homomorphism ρy : S → P ad such that
ρy ◦ µcan = µy. When y is a CM-point, ρy is a homomorphism S → P .

Connected mixed Shimura varieties. Let (P, W•, Y ) define a mixed Shimura
variety, and let (G,X) = (Gr0P, Y (mod W−1P )). The fibres of the map
M(P, W•, Y ) → Sh(G,X) are connected, and so the inverse image of Sh(G,X)0

is connected. Let P ′ be the inverse image of Gder in P , let W ′
• be the filtration of

Rep(P ad) defined by W•, and let Y + be a connected component of Y . Assume Gder

to be simply connected. Then

M(P, W•, Y )0 = lim
←−

P ′(Q)\Y + × P ′(Af )/K
′.

In particular, M(P, W•, Y )0 depends only on (P ′,W ′
•, Y

+). Just as in the case of
(pure) Shimura varieties, there is a theory of connected mixed Shimura varieties,
which we will not discuss this further.

Examples. Mixed Shimura varieties abound.

Example 1.8. (W−1P = 0; Shimura varieties). Let (G,X) be a pair satisfying
(II 2.1). Set

P = G; W• = Filt(wX); Y = {Filt(µx) | x ∈ X}.
The triple (P, W•, Y ) satisfies the axioms (1.1) (use II 3.2), and the variety
M(P, W•, Y ) = Sh(G,X). Conversely, if (P, W•, Y ) satisfies (1.1) and W−1P = 0,

then P is a reductive group and the pair (P, X), X = {z 7→ h̃y(z, z̄) | y ∈ Y } satisfies
the axioms (II 2.1). Thus mixed Shimura varieties defined by triples (P, W•, Y ) with
W−1P = 0 are Shimura varieties, and every Shimura variety is of this form.

Example 1.9. (Gr−1P = 0; automorphic vector bundles). Consider a triple
(P, W•, Y ) satisfying (1.1) and (1.1.0*), and assume that Gr−1P = 0. Write U =
W−2P . It is commutative, and so the exponential map allows us to identify it with its
Lie algebra. The adjoint action defines a representation ξ of P on U , factoring through
G =df Gr0P . Then MK(P,W•, Y ) = VK(ξ)/(lattice), where VK(ξ) is the automorphic
vector bundle on ShK(G,X) defined by (V, ξ). The fibre of MK(P,W•, Y ) over a point
of ShK(G, X) is V (C)/Λ for some lattice Λ in V , and the exponential map shows that
this is isomorphic to a product of copies of C×. In particular, M(P, W•, Y ) is algebraic
(by III 2.1).

Conversely, let (G,X) be a pair satisfying (II 2.1*), and let (U, ξ) be a faithful

representation of G. Define P = U o G =

{(
1 0
u g

)}
in the obvious way. Define

a filtration of V by

0 = W−3V ⊂ U ⊕ 0 = W−2V ⊂ V = W0V,



98 VI. MIXED SHIMURA VARIETIES

and give P the induced filtration W•. Define Y to be the set of filtrations of RepC(P )
inducing on RepC(G) the Hodge filtration corresponding to some x ∈ X. Then
(P, W•, Y ) defines a mixed Shimura variety, which is a quotient of the automorphic
vector bundle V(ξ) on Sh(G,X).

Example 1.10. (W−2P = 0; Kuga varieties). Consider a triple (P, W•, Y ) sat-
isfying (1.1) and (1.1.0*), and assume that Gr−2P = 0. Write V = W−1P . It is a
commutative algebraic group over Q, and so the exponential map allows us to re-
gard it as a vector space. The adjoint action defines a representation ξ of P on V ,
factoring through G =df Gr0P . Each y ∈ Y defines a Hodge structure on V of type
{(−1, 0), (0,−1)}, which, according to (II 3.2), is polarizable. The choice of a com-
pact open subgroup K ′ of P (Af ) defines a lattice in V , and consequently we obtain
a family of abelian varieties A over ShK(G,X), where K is the image of K ′ in GAf

(cf. II 3.11). We have MK′(P,W•, Y ) = A. In particular, M(P,W•, Y ) is algebraic.

The simplest example of such a mixed Shimura variety is the universal elliptic
curve over Sh(GL2, X). This (rather, a connected component of it) has been exten-
sively studied; see for example Eichler and Zagier 1985 and Berndt 1983.

A more interesting case is that where the base Shimura variety is defined by a
quaternion algebra over a totally real field (not necessarily totally indefinite, so the
Shimura variety is not a moduli variety; see Deligne 1979, §6, Modèles étranges).
These mixed Shimura varieties (rather, their connected components) have been ex-
tensively studied by students of Kuga; see for example Addington 1987 and Petri
1989.

We have noted that a connected component of a mixed Shimura varieties with
W−2P = 0 is a Kuga fibre variety, but the converse is not true: there are “nonrigid”
Kuga fibre varieties that move in families and do not have models over number fields.

Example 1.11. (Mixed Shimura varieties arising from boundary components).
Consider a Shimura variety Sh(G,X), and let W• be an admissible Cayley filtration
of G (see V 4.2). Define P to be the subgroup of W0G acting trivially on U =df W−2G.
Then there is a natural way to attach to W• a family Y of filtrations of RepC(P )
so that (P, W•, Y ) defines a mixed Shimura variety. The base Shimura variety is
Sh(Gr0(P ), F ), where F is the rational boundary component of X corresponding to
W•.

Example 1.12. (Mixed Shimura varieties of Hodge type). Let M be a one-motive
over Q, and let P be the Mumford-Tate group of M . The weight and Hodge filtrations
on HB(M) define filtrations W• and F •

o on RepC(P ). Let Y be the P (R) ·W−2P (C)-
conjugacy class of F •

o . Then (P,W•, Y ) satisfies the stronger axioms (1.1*) (see IV
2.9). A mixed Shimura variety M(P, W•, Y ) will be said to be of Hodge type if there
is a one-motive M and a representation (V, ξ) of P such that

(a) for some o ∈ Y , (HB(M),W•, F •) = (V, W•, F •
0 );

(b) P is the subgroup of GL(HB(M))×Gm fixing a family of Hodge tensors.

Such a mixed Shimura variety is a (coarse) moduli variety for a family of one-
motives with Hodge cycle and level structures. Note that the total space of a fine
moduli variety for abelian varieties is a moduli variety for one-motives of the form
(Z→ A).
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Outline for proofs of 1.6 and 1.7. Since it suffices to prove both statements
for a triple (P, W•, Y ) satisfying (1.1.0*) and (1.1.2*), we henceforth assume this. We
have already verified the statements when:

(i) P = Gr0(P ); then M(P, W•, Y ) is a Shimura variety;

(ii) W−2P = 0; then M(P, W•, Y ) is the total space of an abelian scheme over
Sh(G,X);

(iii) Gr−1(P ) = 0; then both statements reduce to statements about automorphic
vector bundles.

The next lemma is slightly stronger than (1.7b).

Lemma 1.13. Let (P, W•, Y ) be as above, and let x ∈ X. For every representation
(V, ξ) of P , there exists a y ∈ π−1(x) such that the mixed Hodge structure (V, W•, F •

y )
is rationally decomposed.

Proof. Fix a y ∈ π−1(x). We have to show that there is a p ∈ W−1P (C) such
that (V,W•, pF •

y ) is rationally decomposed. The proof proceeds by induction on the
length of the filtration W• of V (see Brylinski 1983, 2.3.1.5). ¤

Under our assumptions, a representation (V, ξ) of P defines a variation of mixed
Hodge structures V on M(P, W•, Y ). Let K be a compact open subgroup of P (Af ),
and write K also for its image in G(Af ), G = Gr0P .

Lemma 1.14. There exists a section s : ShK(G,X) → MK(P, W•, Y ) to π such
that s∗(V) is rationally decomposed (after possibly replacing K by a subgroup).

Proof. See Brylinksi 1983, 2.3.1.7. ¤

Thus we get a canonical section s : Sh(G,X) → M(P,W•, Y ) to π.

We now come to the proof of (1.6). First, the sheaf Rπ1∗Z is constant. Thus
it splits up (analytically) under the characters of T , where T is the algebraic torus
W−2P (C)/W−2Γ, W−2Γ = K ∩ (W−2P (C)). Let ρ be such a character.

Lemma 1.15. There exists on each Lρ a unique algebraic structure such that

(i) L2ρ is isomorphic (algebraically) to σ∗(L2ρ) (σ is the map x 7→ −x on A);

(ii) The restriction of Lρ to the zero section of A is trivial.

Moreover, Lρ|(zero section) is canonically trivial.

Proof. Brylinski 1983, 2.3.2.4. ¤

Lemma 1.16. M(P, W•, Y ) has a unique algebraic structure such that

(i) σ : A → C is algebraic;

(ii) the section s : Sh(G,X) → M(P, W•, Y ) is algebraic.

Proof. See Brylinski 1983, 2.3.2.5. ¤

Remark 1.17. If M(P, W•, Y ) is of Hodge type, then a representation of P defines
an algebraic family of one-motives over M(P, W•, Y ), except that the family may only
exist as a stack (cf. III 8).
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Notes. The general notion of a mixed Shimura variety is due to Deligne. A
slightly restricted form can be found in Brylinski’s thesis (Brylinski 1983), where the
varieties are called generalized Shimura varieties. The proofs of (1.6) and (1.7) are
adapted from this source.

2. Canonical models of mixed Shimura varieties

Let y be a special point of Y . Then we get a homomorphism ρy : S → P ad.
Thus the S-torsor τS can be used to twist P to give a group τ,yP , and the canonical
element sp(τ) defines an isomorphism g 7→ τ,yg : P (Af ) → τ,yP (Af ). Define τ,yY to
be the conjugacy class containing τF •

y for y a special point of Y . Then the triple
(τ,yP, τ,yW•, τ,yY ) satisfies the axioms for a mixed Shimura variety.

Conjecture 2.1. For each τ ∈ Aut(C), there exists a unique isomorphism

ϕτ,y : τM(P, W•, Y ) → M(τ,yP, τ,yW•, τ,yY )

such that

(i) ϕτ,y(τ [y, 1]) = [τy, 1];

(ii) ϕτ,y ◦ τT (g) = T (τ,yg) ◦ ϕτ,y for all g ∈ G(Af ).

Moreover, when y′ is a second special point in Y , then there is a canonical map

ϕ(τ ; y′, y) : M(τ,yP, τ,yW•, τ,yY ) → M(τ,y ′P, τ,y ′W•, τ,y ′Y ),

and we have the identity

ϕ(τ ; y′, y) ◦ ϕτ,y = ϕτ,y′ .

Remark 2.2. We know the above result in several cases:

(i) W−1P = 0. Here the mixed Shimura variety is a (pure) Shimura variety, and
the conjecture is (II 4.2) and (II 4.4).

(ii) Gr−1P = 0. Here the conjecture follows from the results on automorphic
vector bundles in Chapter III.

(iii) W−2P = 0; assume (1.1.0*). Here the mixed Shimura variety is an abelian
scheme over a Shimura variety. To give an abelian scheme over Sh(G, X) is the same
as to give a polarizable variation of integral Hodge structures on Sh(G,X). In this
case the conjecture follows from (III 6.2).

(iv) Mixed Shimura varieties of Hodge type. Here the conjecture follows from the
fact that the mixed Shimura variety is a moduli variety for one-motives (see Brylinski
1983, 2.3.3.1).

Thus to complete the proof of the conjecture, it remains

(i) to lift the isomorphism

τM(P/W−2P, W•, Y ′) → M(τ,y(P/W−2P ), τ,yW•, τ,yY ′)

to the covering τM(P,W•, Y ) (equivalently, to the sheaves τLρ on τM(P,W•, Y )) in
the case that (1.1.0*) holds, and

(ii) to remove the condition (1.1.0*).

Probably the best approach to (i) will be to deduce it from an extension of the
theorems in Chapter III to automorphic vector bundles on mixed Shimura varieties
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(see §4 below). It should be possible to prove (ii) by using connected mixed Shimura
varieties.

Just as for Shimura varieties, the conjecture will imply that a mixed Shimura
variety has a canonical model over a reflex field (suitably defined), and that the
conjugate of a canonical model by τ ∈ Gal(Qal/Q) is the canonical model of the
mixed Shimura variety defined by the conjugate data.

3. Partial compactification of mixed Shimura varieties

Consider a mixed Shimura variety MK(P, W•, Y ). Let U = W−2P , and let T be
the torus U(C)/U(Z), where U(Z) = U(Q) ∩K. For a fan ∆ ⊂ X∗(T ) ⊗ R = U(R)
satisfying suitable conditions, the construction in Chapter V can be mimicked to give
a partial compactification

π1∆ : M(P, W•, Y )∆ → M(P/W−2P,W•, Y ′)

of the map π1 : MK(P,W•, Y ) → M(P/W−2P, W•, Y ′) (cf. Brylinski 1983, §4)). The
isomorphism in (2.1) should extend to an isomorphism

τM(P,W•, Y )∆ → M(τ,yP, τ,yW•, τ,yY )∆′

for a suitable fan ∆′ in τ,yU(R).

4. Automorphic vector bundles

As we saw in (1.3), there is an embedding β : Y ↪→ Y̌ from Y into a variety of
filtrations of Rep(PC), and the action of PC on Y̌ extends that of P (R) ·W−2P (C) on
Y . Let J be an PC-vector bundle on Y̌ . If β∗(J ) defines a vector bundle VK(J ) on
the quotient MK(P, W•, Y ) of Y , then we call VK(J ) an automorphic vector bundle.
The theorems in Chapter III for automorphic vector bundles on Shimura varieties
should extend to mixed Shimura varieties.

5. Toroidal compactification of mixed Shimura varieties

Consider a mixed Shimura variety,

M(P, W•, Y )
π1→ M(P/W−2P, W•, Y ′)

π2→ Sh(G,X).

Form a toroidal compactification Sh(G,X)∆ of Sh(G,X). It should be possible to
compactify successively the morphisms π2 and π1. The compactifications of the total
space of the Siegel modular variety by Namikawa over C (Namikawa 1976, 1979) and
Chai over Z (Chai and Faltings 1989), should serve as models for the compactification
π2.



CHAPTER VII

Fourier-Jacobi series

Fourier-Jacobi series play a central role in the theory of holomorphic automorphic
forms. In this chapter, we briefly indicate how they fit into the schema described in
the first six chapters.

For elliptic modular forms, there are three different approaches to defining Fourier
series: the (classical) analytic approach; the modular approach, based on the moduli
of elliptic curves; and the formal-algebraic approach, based on analyzing the structure
of the elliptic modular curve at its cusps. The first is available for a general Shimura
variety, but is badly adapted for studying rationality questions. The second applies
only to Shimura varieties of Hodge type. Therefore, it is the third approach that will
be most important.

The q-expansion principal asserts that an automorphic form is determined by
(certain of) its Fourier-Jacobi series. Since there should be the notion of the conjugate
of a Fourier-Jacobi series by an automorphism of C, and hence the notion of a Fourier-
Jacobi series being rational over a field, this means that it will be possible to read
off the field of rationality of an automorphic form from the coefficients of its Fourier-
Jacobi series. Since these live on lower dimensional (mixed Shimura) varieties, this
will be a useful tool.

1. Elliptic modular forms

An elliptic modular function f of level N satisfies

f(z + N) = f(z), z ∈ H+.

It therefore has a Fourier expansion

f(z) =
∑

anqn
N , qN = e2πiz/N

corresponding to the cusp at infinity, and a similar expansion at the other cusps. It
is known that f is rational over a subfield L ⊂ C (in the sense of Chapter III) if and
only if the coefficients of these series lie in L.

We next explain the moduli definition (for details, see Katz 1973). Let

KN = {α ∈ GL2(Ẑ) | α ≡ I (mod N)}.
Write SN for the corresponding modular curve ShK(N)(GL2, H

+), and A for the uni-
versal elliptic curve over SN . On SN we have the line bundle ω = ωA/S, and a modular
form of weight k and level N is a section of ω⊗k holomorphic at the cusps. It is possi-
ble to re-write this definition so that it makes sense over any ring R containing 1/N .
Briefly, a modular form f of weight k and level N over R is a rule assigning to each
triple (A, η, κ) consisting of an elliptic curve A over Spec R′, a basis η for ωA/R′ , and a
level structure κ, an element of R′; here R′ is an R-algebra. When we apply f to the

102
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Tate curve and its canonical differential over R[[q]], then the element of R[[q]] that
we obtain is the Fourier series of f .

For the final approach, one computes the formal completion at a cusp of the
compactification of SN . It is the formal spectrum of a power series ring over C in one
variable. By extending the modular form f to the compactification, and using the
computation, one obtains the Fourier series of f .

2. The analytic definition of Fourier-Jacobi series

Piatetski-Shapiro 1966 (especially §12, §15) associates a Fourier-Jacobi series with
any automorphic form (or function) on a Siegel domain. In order to apply the con-
struction to an automorphic form f on a bounded symmetric domain D, we use the
realization of D as a Siegel domain of the third kind corresponding to a rational
boundary component F of X (see V 2). The Fourier-Jacobi series attached to f and
the boundary component F is then of the form

FJF (f) =
∑

ρ

ψρ(u, t)e2πi(ρ,z).

Here ρ runs over a finitely generated abelian group, t runs over the symmetric Her-
mitian domain F , and, for a fixed ρ and t, ψρ(u, t) is a theta function. Recall that
a theta function can be regarded as a section of a line bundle on an abelian variety.
Since a mixed Shimura variety is, roughly speaking, a sum of line bundles (with the
zero sections removed) over an abelian scheme over a Shimura variety, a function on
it can be written (ψρ(u, t))ρ where t is a point of the Shimura variety and ψρ(u, t) is
a section of the line bundle indexed by ρ on the abelian variety over t. The similarity
of two expressions is not a coincidence.

3. The modular definition of Fourier-Jacobi series

There is a very complete discussion of Fourier-Jacobi series for Siegel modular
forms in Chai and Faltings 1989, and a briefer discussion for automorphic forms on a
Shimura variety of Hodge type in Brylinski 1983, §5.

4. A formal-algebraic definition of Fourier-Jacobi series

Let (G,X) be a pair defining a Shimura variety, and let W F
• be a Cayley filtration

on G. In (VI 1.11) above, we derived from these data a triple (P, W·, Y ) defining
a mixed Shimura variety. Let K be a compact open subgroup of G(Af ), and let
Γ = G(Q) ∩ K and ΓP = P (Q) ∩ K. Then W−2P (C) contains a canonical self-
adjoint homogeneous cone C. Choose a �̄(F )-admissible fan ∆ in C. Then we can
form the partial compactification ShK(G,X)∆ of ShK(G, X) along F . Assume that
ShK(G,X)∆ is smooth, and that the boundary of ShK(G,X) in it is a divisor with
normal crossings. We then write ShK(G,X)b∆ for the formal completion of ShK(G,X)
along the boundary. We can also form the partial compactification MKP

(P, W•, Y )∆

of MKP
(P,W•, Y ), and the formal completion MKP

(P, W•, Y )b∆ of MKP
(P,W•, Y )

along its boundary in MKP
(P, W•, Y )∆.
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Conjecture 4.1. There is a canonical isomorphism

ShK(G,X)b∆ → G`(Z)\MKP
(P, W•, Y )b∆

The isomorphism should correspond to the isomorphism on the level of analytic spaces.

The statement should be regarded as giving a precise description of the structure
of Sh(G,X) near the boundary component F . For Siegel modular varieties, it is
proved in Chai and Faltings 1989, IV.

A GC-equivariant vector bundle J on X̌, defines automorphic vector bundles V(J )
and VM(J ) on Sh(G,X) and M(P, W•, Y ) respectively; extend the vector bundles to
the partial compactifications; the isomorphism in (3.1) will give an isomorphism of the
formal completions: V(J )b∆ ≈ VM(J )b∆. A section f of V(J ) will extend to a section
of V(J )∆, and map to a section of FJF (f) of VM(J )b∆ — this is the Fourier-Jacobi
series of f along F .

5. Conjugates of Fourier-Jacobi series

The map f 7→ FJF (f) should be compatible with the various maps φ∗τ,x (see V
5.1 and VI 4). The q-expansion principle should then allow us to deduce that an
automorphic form is rational over a field L if and only if its Fourier-Jacobi series are.

Note that for noncompact Shimura varieties, this will give another description
of the canonical model of minimal compactification: it is the Proj of the graded
ring generated by automorphic forms whose Fourier-Jacobi series have coefficients in
the reflex field. We mention that Baily and Karel have been attempting to give a
totally different approach to some of the results in this article by directly constructing
automorphic forms whose Fourier-Jacobi series are rational (in a suitable sense) over
E(G,X) and then showing that the Proj of the graded ring they define is the canonical
model of the Shimura variety (see for example Baily 1985 and Karel 1986).

6. Automorphic forms of half-integral weight

Just as modular forms of half-integral weight for GL2 correspond in a natural way
to automorphic forms of integral weight on the mixed Shimura variety defined in (2.3)
(see Eichler and Zagier 1985), so should all automorphic forms of half-integral weight
on a Shimura variety correspond to automorphic forms of integral weight on a mixed
Shimura variety.

Notes. There is an enormous literature on Fourier-Jacobi series. Apart from
those referred to in the text, the following papers are most closely related to the
main theme of this Chapter: Shimura 1978b, 1978c; Garrett 1981, 1983; and Harris
1986. I understand that Richard Pink’s Bonn thesis will examine the question of the
formal-algebraic definition of Fourier-Jacobi series.
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Siegel de 3ème espèce, provenant d’un espace hermitien symétrique,info manuscript,
1979.

Brylinski, J.L. , “1-motifs” et formes automorphes (Théorie arithmétiques des
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