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1. Statements.

Let K be a number field or a function field in one variable with finite field
of constants, and let V be respectively the spectrum of the ring of integers in
K or the complete smooth curve with function field K. We write V° for the
set of finite primes of V (identical to the set of closed points of V), V= for the
set of infinite primes, and V for V°UV> The completion of K at veV is
denoted by K.

Let X be a regular connected scheme of dimension 2, and let z: X—V be
a proper morphism such that

(1.1a) the generic fibre of 7, Xg A xx yspec K, is a smooth, geometrically
connected curve over K, and

(1.1b) for all ve 17, the curve XKvg XX yspec K, has index 1.

Recall that the index of a curve C over a field k is the greatest common divisor
of the degrees of the fields &’ over k such that C has a k’-rational point.
Equivalently, it can be described as the least positive degree of a divisor on C.

Let A be the Jacobian variety of Xx. When = has a section, so that in
particular Xy has index 1, M. Artin has shown (see [12, §3]) that the Tate-
Safarevi group LI(A) of A is isomorphic to the group of elements in the
Brauer group Br (X) of X becoming trivial on Xk, for all ve V=:ie, if we set

Br (X)'=Ker (Br (X) — & Br (Xg,))

H(A)=Ker (H{K, A) — @ H'(K,, A))

then Br (X)'-=51(A). The purpose of this paper is to extend this result to
the case that Xy has index 6>1, and to draw some conclusions concerning the
conjectures of Artin and Tate and of Birch and Swinnerton-Dyer.

THEOREM 1.2. Assume, with the above notations, that 1U(A) has no nonzero

*) Partially supported by N.S.F.
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infinitely divisible elements; then there is an exact sequence
0 — Br (X)) — W(A)/T,—> T, —>0
in which Ty and T, are finite groups of orders

[T,]=0
[T.]=0/p", r=0, p=characteristic exponent of K.

COROLLARY 1.3. If one of W(A) or Br(X) is finite, so is the other, and
their orders are related by

0*[Br (X)]=[1(A)] (number field case)
0*[Br (X)]=p"TI(A)] (function field case).

REMARK 14. Everything except the information on the order of 7, can
be found in [4, §4]. Our proof of that part of the theorem uses in an essential
way Tate’s duality theorem for abelian varieties over global fields, and it is
because the p-torsion part of Tate’s theorem has not been proved in character-
istic p (although the techniques seem to be available to do so) that we are
unable to show that [T,]=4¢ in this case.

REMARK 1.5. Under the hypotheses of the theorem, W. Gordon [3] has
shown (in the function field case) that the conjecture of Artin and Tate for X
[12, Conj. C] is equivalent to the conjecture of Birch and Swinnerton-Dyer for
A [12, Conj. B] if and only if ¢°[Br (X)]=[1lI(A)]. Thus our theorem demon-
strates the equivalence of the conjectures when p}d (and without restriction
on 0 if Tate’s theorem is assumed). Cf. Conjecture (d) of [12].

REMARK 1.6. Let K be a function field and let A be an abelian variety
over K arising, as above, from a map = : X—V for which p Jé (or else assume
Tate’s theorem). On combining (1.5) with the main theorem of [7], we find
that the following statements are equivalent :

(@) The L-series L(A, s) of A has a zero s=1 of order equal to the rank

of A(K);

(b) for some prime [ (/=p is allowed), the [-primary component of II(A)
is finite;

(c) I(A) is finite, and the conjecture of Birch and Swinnerton-Dyer is true
for A.

REMARK 1.7. Let X and V be as above, and assume 7 : X—V is a proper
map satisfying (1.1a).
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(a) The conditions imply that = is surjective, and it follows that the fibres
X‘,E—f-ar‘i(v) of = all have dimension 1 and that = is flat [6, III Ex. 10.9]. Con-
sequently 7,0y is a torsion-free O,-module which (1.1a) shows to have rank 1:

therefore Oyi»x,.,ox, and all X, are connected [6, III, 11.37.

(b) For veV?®, let X,=3 m;C; (as a divisor on X), and let I'(C,, O¢,) have
degree n; over the residue field k(v) at v. Then the index of Xk, is g.c.d.
(ming) (see [3, 6.2]), and so (1.1b) implies that X has no multiple fibres and
(because of [9, 7.2.1]) is cohomologically flat in dimension zero. Thus (in the
function field case) the conditions (L1) imply that (X, V, x) is a “fibration” in
the sense of [3, 2.17.

§2. Proofs.

For the rest of the paper K and V will be as in the first paragraph, and
m: X—V will satisfy the conditions (1.1). We shall also use the following
notations : The separable algebraic closure of a field b is denoted by k. For
any regular connected scheme Y, R(Y) denotes the field of rational functions
on Y, and ® the sheaf U— R(U) for the étale topology on Y'; also Div (V)
denotes the group of Weil divisors of Y, and 9iv the sheaf U/ Diy (U). The
set of points y of ¥ on dimension 7 (i.e., such that dim T}}zz‘) is denoted Y,
We use I, to denote Gal (K,/K,) and I to denote Gal (K/K) (although not ex-

clusively). All cohomology groups will be with respect to the étale topology
or will be Galois cohomology groups.

We begin by listing some exact sequences, several of which are well-known.

LEMMA 2.1. Let Y be a regular scheme; then HYY, =0 and there is
an exact sequence

0 — HY, 0j) — HYY, ") —> @ H¥y, Z)
]
where the sum is over the points y of Y of codimension 1.

Proor. This follows from studying the cohomology sequence of

0-——)-0;-—:-3{’———}_@;3)—)0;

see [8, III 2.227.

LEMMA 22. Let C be a complete smooth curve over a Jield k, and let
C=CRk and I'=Gal (k/k); then there are exact sequences

(@) 0—>Br(C) — HXI", R(C)") —> H*I, Div(C)), and



738 J.S. MILNE

(b) 0 —> Pic (C) —> Pic (C)" —> Br (k) —> Br (C) — H(I; Pic (C))
—> HXT, k).

PrOOF. (a) On applying (2.1) to C and C, we get the rows of the following
diagram,
0 — Br(C) — H*C, &%) — & H¥x, Z)
TEC
L K |7
0 —> Br(C) — H¥C, &*) — © Hx, Z).

zeC’

As Br(C)=0 [4, Cor. 58] and H¥x, Z)=0 for x=C°, we see that Ker(a)

=Br(C) and Ker (y)=@®HXx, Z)=@ H*Gal (k(x)/k(x)), Z). Shapiro’s lemma
shows that this last group equals H([, Div (C)), and so it remains to show that
Ker (B)=HXI, R(C)*). But, as HYC, 8*)=0 the Hochschild-Serre spectral
sequence for C/C,

H(I, H(C, ) > H™(C, &)

gives rise to an exact sequence,
0 —> HXI, R(C)*) —> HXC, ®*) —> H¥C, ®").
(b) Since H¥(C, 05=0 for s=2, the Hochschild-Serre spectral sequence

H(I', H(C, 03) > H™(C, 0¢)
immediately yields the required sequence.

REMARK 2.3. One can also construct the sequence in (2.2b) using the exact
sequence of [-modules

0 —> F* —> R(C)* —> Div (C) —> Pic (C) — 0.

On splitting this sequence into two short exact sequences and forming their
cohomology sequences, we obtain the following diagram:

H¥(I', Div (C))

7

Br (k) —> H¥I, R(C)*) —> HXT, R(CY*/k*) —> HXT, k)

f

HX(I, Pic (C))

0=HYTI, Div(C))
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From this diagram and (2.2a) it is easy to derive most of (2.2b). This approach
has the advantage that it gives us an explicit description of the map ¢ : Br (C)
—HYI, Pic(C)): let BeBr(C), and let the image of B in H*[I, R(C)*) be
represented by the 2-cocycle be Z*I', R(C)*); the image (b) of b in ZXI", Div (C))
is a coboundary, say (b)=db, b=C(I", Div (C)); the image of b in CI", Pic (C))
is a cocycle, and represents ¢(j).

LEMMA 24. There is an exact sequence

O—rBr(K)—rv@} Br(K,) — Q/Z — 0

(,Bv) — 2 invu(}gu)

Proor. This statement is a major part of class field theory ; see [2, VIL 11].

We now write P for Pic y.,x, the Picard scheme of Xy;/K. The degree
map deg: P(K)—Z has kernel A, and the image of deg: P(K)—Z is, by defini-
tion, 6’Z where 4’ is the period of X,

ProPOSITION 2.5. The period of Xx equals its index, 6'=0d.

Proor. The degree map on Div(Xx) factors into

Div (Xx) —> P(K) %5 7,

and so 6ZCd'Z ; therefore d'|d.
As Div (Xx)—Pic (Xx) is surjective and Pic(Xz) =P(K) =P(K), we can
extract from (2.2b) the following diagram

Div(Xyg) — P(K) — Br(K)

l l [

SDIV (Xx,) —> OP(Ky) —> @Br (K,) —> @Br (Xg,)  (weV).

The map Br (K,)—Br (Xg,) is injective because X, has index 1, and therefore
P(K,)—Br (K, is the zero map. Moreover, (2.4) shows that Br(K)—@EBr(K,)
is injective, and an easy diagram chase shows that Div (Xx)—P(K) is surjective;
therefore d=d’.

LEMMA 2.6. There is an exact sequence,

0 — Br(X) — Br (Xg) —> E'BQBI'(XKB).

TEV

h . .
Proor. Consider Xz X. I claim that R"hG,=0 for »>0. For this it
suffices to show that, for any geometric point ¥—X with image x& Xg, the
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stalk (R"hxGn)s=0, r>0. Let B be the strictly local ring at % and let t€B
be a local uniformizing parameter at v==(x). Then spec BX y Xx=spec By, K
=sgpec B[t™'], and so

(R™h4Gn):=H'(spec B[t™'], Gn).

The groups H'(spec B[t"'], Gn) are torsion for »>0, and the purity theorem in
étale cohomology shows that they are zero except possibly for p-torsion in
characteristic p [4, §6]. The possibility of p-torsion can be eliminated by
making a direct calculation using the second exact sequence of [8, p 129].
(The reader should ignore this p case, since it plays no role in the final result.)

It follows that H"(X, h*Gm)irH"(XK, Gn) for all », and so the exact

sequence

0— G —>heGp, —> >, Z—0
=X, nixysv?

gives rise to the first row of

0—Br(X) —>Br(Xe) — @ H¥x,2) (xX))

l TR

0 —> Br (Xg,) —> Br (Xg,) — x(@= H¥x, Z) (xeX").

The second row is constructed the same way as the first starting from Xp,
—gpec R,, where R, is the ring of integers in K, for some v=V". Artin’s
theorem [4, 3.1] shows that Br (Xg )=Br(C) where C is the reduced curve over
k(v) associated with X,. When C is smooth, it is well-known that Br (C)=0.
Otherwise we consider its normalization f: C—C. There is an exact sequence
of sheaves on C,

0—> 0 —> f+x05 —> DiexG. —> 0

in which the sum is over the singular points of C and G. is a connected
algebraic group on ¢. Since H'(c, G.)=0 for >0, we see that again

Br (C) = H¥(C, fx0%) — Br ({)=0.

Thus Br (Xg,)=0, and so an element 3&Br(X) maps to zero in Br (Xg,) if and
only if it maps to zero in H¥x, Z) for all x€X* with n(x)=v; we conclude
that Br (X)=Ker (Br (Xx)—@Br (Xg,)).
Define
HI(P)=Ker (HYK, P) — u@p HYK,, P)

PROPOSITION 2.7. There is an exact sequence
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0 —> Br(X) —> LLI(P) %> Q/Z.

PROOF. On applying (2.2b) to Xx and X k,» W€ obtain a diagram
Br(K) —> Br(Xx) — H'I}, P(K)) —>0

l l l 2.7.1)

0 —>@Br (K,) —@Br (Xx,) —OHXT, P(K,) we?).

The zero at upper-right comes from the fact that HI K =0 ([2, VII. 11.4],
[10, I 4]), and the zero at lower-left is a consequence of our assumption (1.1b).
On applying the serpent lemma, we get an exact sequence

0 — Br (X)) — lI{P) — Q
where Q < Coker (Br (K)—@Br (K,))=~Q/Z.

REMARK 2.8. A section to 7 splits the rows in (2.7.1), and so in this case
Br (X)’LIJJ(P); moreover P=APZ, and so II(A)=UI(P): we have recovered
Artin’s theorem that Br (X )/—z—>LLI(A).

REMARK 2.9. Using (2.3), we can give an explicit description of the map ¢.
Write S for the map Div(X)—P(K). Represent a<lI(P) by a cocycle
acZ¥I', P(K)), and let aceCYI, Div (Xg)) be such that S(a)=a. Then &(a)
eZ¥I', R(Xg)*/K") and, because H3([ K*):O, it can be lifted to an element
fezXI, R(Xg)*). On the other hand, a=6d(a,) with a,=C* (I, P(K,); let a,
be such that S(a,)=a,; then a=da,+(f,) with foeC, R(Xg,)"), and f/df,
SYAIM K;). Let 7, be the class of f/df, in Br(K,); then dla)=2]Invy(7p).

Note that if ¢ is any divisor of degree 1 on X k, such that neither f nor
df, has a zero or a pole in the support of ¢, then fO/ofL)=Ff/0fn As /)
=0(fc)) with f(0)eCI}, K;), we see that 7, is represented by f(c).

We next define a canonical pairing

¢ 0 (A XII(A) — Q/Z .

Let a<lli(4) be represented by a=Z'I, A(K)), and let a=da, with a,=
2T, AK,). Write
a=S(a), acsCY[I, Divi(Xg))

a,=5(a,),  a,=C*(I}, Div(Xg,).

Then a=da,+(f,) in C'([, Div’(Xg,)) with f,eCY([,, R(Xg,)*). Moreover, da
=(f), feZ*I, R(Xg)*). Let B be a second element of 1I(A) and define b, b,
g g as for a. Set
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{a, Br=2invyrs), 7o=class of g,\Ja—b,Uf,

where U denotes the cup-product pairing induced by (f, a)—f(a), fe R(Xg)*,
aeDiv (Xz). One shows without serious difficulty that f, b,, g,, and a can be
chosen so that f(b,) and g, a) are defined, that <«, 5> is independent of the
choices, and that <8, a)=—<a, 3.

THEOREM 2.10. The pairing
<, 0 A XI(A) — Q/Z

annihilates only the divisible part of WI(A) (except possibly on the p-primary
component in characteristic p).

PROOF. A proof in the one-dimensional case can be found in [1]. As Tate
explains in [11], the general case can be proved similarly, once one knows [11,
3.17; a proof of this last result can be found in [5].

Consider the diagram

deg

Vowg v v

@PK) —= O,Z —> QH'K,, A)—> OH(K,, P)—= 0  (we?)

in which the rows are the cohomology sequences of
0—A—P—7Z—0
over K and K, By assumption P(K,—Z% is surjective, and so the serpent
lemma provides us with an exact sequence
. 4
0—Z/0'Z — UI(A) — UI(P) —> 0.

Let T, be the image of Z/¢’Z in LI(A), and let T, be the image of the map
¢:I(P)—Q/Z in (2.7). Then we have an exact sequence,

0 — Br (XY —1I(A)/T, — T,—>0.

According to (2.5), T; has order g, and the next lemma (together with (2.10))
shows that T, has the order asserted by theorem.

LEMMA 2.11. Let B be a generator of T,CUI(A). Then the composite

¢
11(4) 5 11P) > @/ 2
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is a—<a, B.

ProOOF. Let a=ll(A) and define a, a,, fy, and f as in the discussion pre-
ceding (2.10); then (2.9) shows that ¢(p(a))=2 invr,) where 7, is represented
by f(¢,) for any divisor ¢, of degree 1 on Xg,.

On the other hand, we can choose S<ll(A) to be represented by b=S(b)
where 0=¢P, P any point (prime divisor) on Xg. Moreover, we can choose
b,=P—c, with ¢, as above; this forces g,=0. Therefore <{a, f>=—2]invyrs)
where 7, is represented by f(P—c,)=f(P)/f(¢,). Let 7 be the class of f(P) in
Br (K). Then {a, By=—Sinv,p)=—Sinvy7/ro)=Sinv,i)— Sinvy7)=¢(p(a)
because X inv,(7)=0.
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