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Introduction:

In the first section it is shown how to introduce on an
abstract category operations of tensor products and duals having
properties similar to the familiar operations on the category
Vec, of finite-dimensional vector spaces over a field k . What
complicates this is the necessity of including enough constraints
so that, whenever an obvious isomorphism (e.g.,

UB (Ve W = (V& U 8W exists in Vec, , a unique isomorphism
is constrained to exist also in the abstract setting.

The next section studies the category ngk(G) of finite-
dimensional representations of an affine group scheme G over k
and demonstrates necessary and sufficient conditions for a category
C with a tensor product to be isomorphic to gggk(G) for G ;:

such a category C is then called a neutral Tannakian category.
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A fibre functor on a Tannakian category C with values
in a field k'Dk 1is an exact k-linear functor C » vec, ,
that commutes with tensor products. For example, the forgetful
functor is a fibre functor on Eggk(G] . In the third section it
is shown that fibre functors on Rep, (G) are in one-to-one correspon-
dence with the torsors of G . Also, the notion of a (non-
neutral) Tannakian category as introduced.

The fourth section studies the notion of a polarization
(compatible families of sesquilinear forms having certain
positivity properties) on a Tannakian category, and the fifth
studies the notion of a graded Tannakian category.

In the sixth section, motives are defined using absolute
Hodge cycles, and the related motivic Galois groups discussed.

In an appendix, some terminology from non-abelian cohomology is
reviewed.

We note that the introduction of Saavedra [1] is an excellent
summary of Tannakian categories, except that two changes are
necessary: Théoréme 3 is, unfortunately, only a conjecture; in
Théor&me 4 the requirement that G be abelian or connected can

be dropped.

Notations: Functors between additive categories are assumed to
be additive. In general, rings are commutative with 1 except
in §2. A morphism of functors is also called a functorial or
natural morphism. A strictly full subcategory is a full sub-
category containing with any X , all objects isomorphic to X .

The empty set is denoted by ¢ .
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Our notations agree with those of saavedra [l1] except that
we have made some simplifications: What would be called a
®-widget ACU by Saavedra, here becomes a tensor widget, and

oL becomes Hom8 .

Hom
Vec,: Category of finite-dimensional vector spaces over k ;

Regk(G): Category of finite-dimensional representation of G
over k ;

Modp: Category of finitely generated R-modules;
ProjR: Category of finitely generated projective R-modules;

Set: Category of sets
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§1. Tensor categories

Let C be a category and

® CxC~>C, (X,¥) X8 Y

is a functorial

a functor. An associativity constraint for (C,®)
isomorphism
¢X,Y,Z: X8 (Y® z) — (X0Y) 812

such that, for all objects X,Y,%Z,T, the diagram

X ® (v8(z8T)) -2+ (xey) ® (z8T) -2+ ((x8Y)82) ® T

ll&d) Idn@l (1.0.1)
¢ > (X8(Y8Z)) ® T

X 8 ((Y8Z)8T)

is commutative (this is the pentagon axiom). Here, as in sub-

sequent diagrams, we have omitted the obvious subscripts on the

at top-left is ¢X v 78T ° A
r 4

maps; for example, the ¢
is a functorial isomorphism

commutativity constraint for (C,®)

X®Y —— Y ®X

¥y, vt

X,Yle'X ° wX,Y = 1dX®Y: X®Y+>X®Y.

such that, for all objects
An associativity constraint ¢ and a commutativity constraint
are compatible if, for all objects X,Y,Z, the diagram

P
Y. 76 (x8Y)

x ® (vezj —P+ (xeY) & z

¢ (1.0.2)

19y

b, (xez) @ ¥ ¥8L (z8x) o ¥

X & (z8Y)



105

is commutative (hexagon axiom). A pair (U,u) comprising an
object U of C and an isomorphism u: U+ U ® U is an

identity object of (C,8) if X +—= U® X: C > C 1is an

equivalence of categories.

Definition 1.1. A system (C,®,¢,¥y) , in which ¢ and ¢ are
compatible associativity and commutativity constraints, is a

tensor category if it has an identity object.

Example 1.2. The category gggR of finitely generated modules
over a commutative ring R becomes a tensor category with the
usual tensor product and the obvious constraints. (If one
perversely takes ¢ to be the negative of the obvious isomorphism,
then the pentagon (1.0.1) fails to commute by a sign.) A pair
(U,uo) comprising a free R-module U of rank 1 and a basis
element u determines an identity object (U,u) of MQQR —_

0

take U to be the unique isomorphism U + U & U mapping u, to

u, ® u, . Every identity element is of this form.

(For other examples, see the end of this section.)

Proposition 1.3. Let (U,u) be an identity object of the tensor
category (C,8).

(a) There exists a unique functorial isomorphism

Lt X —» U®X
such that EU is u and the diagrams
xey X ue (xey) xey 8L, (uex) ey
|| l¢ 1182 l\pel
xeyv 8L, (uex) e ¥ x @ (uey) -t (xeu) ® Y

are commutative.
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(b) If (U',u') is a second identity object of (C,8)

then there is a unique isomorphism a: U =4 U making

v 2 +uev

s Jaea

v B,y e Ut

commute

Proof (a) We confine ourselves to defining ZX . (See Saavedra
[1,12.2.5.1,2.4.1] for details.) As X +—= U ® X 1is an
equivalence of categories, it suffices to define

18 Ex: U® X~ U ®(UBX); this we take to be
uel -1
vex -2, (yey) 8 x 2o U e (UBK) .

y ¥ L
(b) The map U —= U'®U — UB®U' —— U' has

the required properties.

I

X by x°tx ? X > X®U has

analogous properties to lx . We shall often use (l,e) to

denote a (the) identity object of (C,®8).

The functorial isomorphism r

Remark 1.4. Our notion of a tensor category is the same as
that of a "®-catégorie AC unifére" in (Saavedra [l]) and,
because of (1.3), is essentially the same as the notion of a
"®-catégorie ACU" defined in (Saavedra [1, I.2.4.1]) (cf.

Saavedra [1,I.2.4.3]).

Extending ®

Let ¢ be an associativity constraint for (C,8). Any

functor g? + C defined by repeated application of ® is called
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an iterate of ® . If F,F': c" =~ C are iterates of ® , then

it is possible to construct an isomorphism of functors

T: F —— F' out of ¢ and ¢_l . The significance of the

pentagon axiom is that it implies that 1 1is unique: any two

iterates of ® to c" are isomorphic by a unique isomorphism

1

of functors constructed out of ¢ and ¢ (MacLane [1],

[2,VII.2]). In other words, there is an essentially unique
n

way of extending ® to a functor & : gﬁ -+ C when n> 1.
i=1

Similarly, if (C,®) is a tensor category, then it is possible

to extend ® in essentially one way to a functor 9 : QI + C

ier
where I 1is any finite set: the tensor product of any finite

family of objects of C is well-defined up to a unique isomor-

phism (MacLane [l]). We can make this more precise.

Proposition 1.5. The tensor structure on a tensor category
(C,®) can be extended as follows. For each finite set I there
is to be a functor
@:(_:I’*gr
ier
and for each map a: I +~ J of finite sets there is to be a
functorial isomorphism
x(@): ® X, —— 8 ( & X;)
ier jeg iwj
satisfying the following conditions:

(a) 1f I consists of a single element, then ® is
ieI
the identity functor X +—— X ; if o is a map between single-

element sets, then X(a) is the identity automorphism of the

identity functor:
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8

(b) the isomorphisms defined by maps I — J — K

give rise to a commutative diagram

8 X. —xl & (& X,)
jer 1t jes  irj
X (Ba) x(B)
® (x(a]Ik))
® ( 3 Xi) -+ ® ( ® ( © Xi))
keK i~k k€K Pk ik 3
-1
where I, = (Ba) “(k) .
Proof: Omitted.

By ( ® ,x) being an extension of the tensor structure on

iel
C we mean that ® X. =X
= . i
ieT
isomorphisms X ® (¥®z) — (X®Y) € Z and X ® Y —

1 ® X

induced by X are equal to ¢ and ¥ respectively.
automatic that (& X ,x(® ~ {1,2})) 1is an identity obj
®

that x({2} ©— {1,2}) is L,: X~> 1@ X . If (8,
. ier
such extension, then

there is a unique system of isomorphisms ® X. > o'
. i .
iel iex

patible with x and x' and such that, when I = {i}

isomorphism is idX .
i

, vhen I = {1,2} and that the

Y ® X
It is
ect and

x') 1is a second

. com-
Xl

, the

When a tensor category (C,8) is given, we shall always

assume that an extension as in (1.5) has been made. (W

e could,

in fact, have defined a tensor category to be a system as in (1.5).)
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Invertible objects

Let (C,®8) be a tensor category. An object L of C is
invertible if X +—> L ® X: C » C is an equivalence of cate-
gories. Thus, if L is invertible, there exists an L' such

that L ® L' = 1; the converse assertion is also true. An

inverse of L is a pair (L_1,6) where 6: 5] X Za1,
ie{+} -
X, =L, X_ = ™! . Note that this definition is symmetric:
R . -1 -
(L,6) 4is an inverse of L . If (Ll,dl) and (L2,62)

are both inverses of L , then there is a unique isomorphism

a: L, —== L, such that & +L®L,~»>1.

1 2 1 1 2

An object L of ModR is invertible if and only if it

= 520 (1®a): L & L

is projective of rank 1 . (Saavedra [1,0.2.2.2]).

Internal Hom

Let (C,®) be a tensor category.

Definition 1.6. If the functor T +—+ Hom(T®X,Y¥): C°+ Set
is representable, then we denote by Hom(X,Y) the representing

object and by e Hom(X,Y) ® X > Y the morphism correspond-

Ve vt
ing to ldHom(X,Y) .
Thus, to a g there corresponds a unique f such that

ev o (£®id) = g:

T T @& X

' g
' f 'f @ id (1.6.1)
+

Hom(X,Y) Hom(X,Y) ©® X & o ¢y

P
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For example, in ModR , Hom(X,Y) = HomR(X,Y) regarded as an
R-module, and ev is f 8 x t+— f(x), whence its name.
Assume that in (C,®), Hom(X,Y) exists for every pair

(X,Y) . Then there is a composition map

Hom(X,Y) ® Hom(Y,Z) - Hom(X,Z) (1.6.2)

(corresponding to Hom(X,Y) ® Hom(Y,Z) @ X £V, yom(Y,2) 8 Y =+ 3)

and an isomorphism

Hom (% ,Hom (X,Y)) —— Hom(%®X,Y) (1.6.3)

(inducing, for any object T,
Hom (T, Hom (%, Hom (X,Y))) — Hom(T®Z,Hom(X,Y)) —= Hom(T®Z®X,Y)

—Z=+ Hom (T ,Hom (28X,Y)))
Note that
Hom(l,Hom(X,Y)) = Hom(1l®X,Y) = Hom (X,Y) (1.6.4)

The dual X' of an object X is defined to be Hom(X,1l) .

There is therefore a map evy: XV ® X » 1 inducing a functorial

isomorphism
Hom(T,Xx') -2~ Hom(T®X,1) (1.6.5)

The map X +— XV can be made into a contravariant functor: to

f: X > Y we associate the unique map tf: YV d XV rendering

commutative
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&
vVVex -£81d , Veyx

idef evy (1.6.6)

ev
YV@Y —Y*

=

For example, in MQQR , XV = HomR(X,R) and °f is determined

by the equation <tf(y),x >,=<y,f(x)>,, v € Yv, X € X , where
q X Y

we have written < , >X and < ,>Y for evx and evY .

If f is an isomorphism, we let fv = (tf)-l: XV - YV ; SO
that

v v
evy ° (£'8f) = eve: X' @ X > 1. (1.6.7)
. Vo, ' ) v

(E.g. in ModR, <fE (x'),E(x) >y = <% ,x>x, x' € X ,xeX.)

Let ix: X - XVV be the map corresponding in (1.6.5) to
evy o yr X ® xV 1 . 1If iX is an isomorphism then X is said to

1 1

be reflexive. If X has an inverse (X —,8: X ~ ® X :iﬂ*l)

then X 1is reflexive and & determines an isomorphism
x 1 Zex’ as in (1.6.1).
For any finite families of objects (Xi)ieI and (Yi)ieI

there is a morphism

® Hom(X ,Y ) - Hom( ® Xl, ] Yi) (1.6.8)
iel iel ier

corresponding in (l.6.1) to

(9 Hom(x ,Y )) & (© Xy ) —— 8 [nom(x Y )®X ) Bev ® Y. .

iel ier ier jer *
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In particular, there are morphisms

® xi — (® xi)v (1.6.9)
ier ier
and
v
x' ® Y — Hom(X,Y) (1.6.10)

obtained respectively by taking Yi =1 all i, and
X=X X =L1=Y. Y

Rigid tensor categories

Definition 1.7. A tensor category (C,®) is rigid if Hom(X,Y)
exists for all objects X and Y , the maps (1.6.8) are
isomorphisms for all finite families of objects, and all
objects of C are reflexive.

In fact, it suffices to require that the maps (1.6.8)

be isomorphisms in the special case that I = {1,2} .
Let (C,®) be a rigid tensor category. The functor

0

L) c- — C

is an equivalence of categories because its composite with
itself is isomorphic to the identity functor. (It is even
an equivalence of tensor categories in the sense defined below.—note

that C° has an obvious tensor structure for which @X; = (@Xi)?)

In particular

€ +— Yf:  Hom(x,¥) — Hom(¥',x") (1.7.1)

is an isomorphism. There is also a canonical isomorphism
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Hom (X,¥) —-*> Hom(y¥,xV) , (1.7.2)

v Vv

_l_::_'ili Y =

namely Hom(X,Y) <

va [ XV —ngLLQ Hom(YV,Xv)

x' 8 Y =X

For any object X of C , there is a morphism

Hom(X,X) —=0:10 Vg yx &, ,

On applying the functor Hom(l,-) to this we obtain (see 1.6.4))

a morphism
TrX: End (X) + End(l) (1.7.3)

called the trace morphism. The rank, rk(X), of X is
defined to be Trx(idx). There are the formulas (Saavedra

[1,I 5.1.4]):

] - 1
Try o x.(f ® f') = Trx(f)Trx,(f )
(1.7.4)
Trl(f)= £
In particular,
rk(X ® X') = rk(X)rk(X'")
(1L.7.5)
rk(l) = idl .
Tensor functors
Let (C,8) and (C',8') be tensor categories.

Definition 1.8. A tensor functor (C,®) + (C',®') is a pair

(F,c}) comprising a functor F: C + C' and a functorial

isomorphism ¢ F(X) ® F(Y) = F(X ® Y) with the

X, Y’

properties:
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(a) for all X,Y¥,2 € ob(C), the diagram

FX & (Fyerz) 9%S. px o F(¥8z) -S> F(X8(Y8Z))

| o | o

(Fxory) 8 Fz <239, p(xev) & Fz -S> F((x8Y)87)

is commutative:
(b) for all X,Y € ob(C), the diagram

FX ® FY -S> F(X8Y)
v |7 )

FY ® FX ——> F(Y®X)

is commutative;

(c) if (U,u) is an identity object of C then

(F(U),F(u)) is an identity object of C' .

In (Saavedra [1,I4.2.4]) a tensor functor is called a

"®-foncteur ACU".
Let (F,c) be a tensor functor C + C' . The conditions
(a), (b), (c) imply that, for any finite family (xi)ieI of
objects of C , ¢ gives rise to a well-defined isomorphism
c: ® F(X,) —> F(® X.);
ier * jer *

moreover, for any map a&: I -+ J , the diagram
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c
2 F(X,) ~ F(® X;)
iel ielx
] x (@ i I Flx(e))
o (& F(X.)) > & (F( ® X)) — F(® (8 X))
. . . 1 ~ . : . 1 c@J if‘;'
jeJ ir>j jed ik3J J J
is commutative. 1In particular, (F,c) maps inverse objects to

inverse objects. Also, the morphism
F(ev): F(Hom(X,Y)) ® F(X) - F(Y) gives rise to morphisms

F(Hom(X,Y)) + Hom(FX,FY) and Fg: rh) - F(X)v,

F X

X,v*

Proposition 1.9. Let (F,c): C + C' be a tensor functor. If

C and C' are rigid, then FX v: F(Hom(X,Y)) -+ Hom(FX,FY)
2 ~ s zom zonm

is an isomorphism for all X,Y € ob(C) .

Proof: It suffices to show that F preserves duality, but this

is obvious from the following characterization of the dual of X :

it is a pair (Y,Y¥ @ X &% 1) , for which there exists
e:1>X6Y such that X = 1 & x 2195 (xev)ex-xe(vex) 19%eVy yx ,

and the same map with X and Y interchanged, are identity maps.

Definition 1.10. A tensor functor (F,c) : C -+ C' 1is a tensor

equivalence (or an equivalence of tensor categories)if F : C + C'

-

is an equivalence of categories.

The definition is justified by the following proposition.
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Proposition 1.11. Let (F,c): C ~ C' be a tensor equivalence:;

then there is a tensor functor (F',c'): C' > C and

isomorphisms of functors F'oF — idC and Fo F' => idc.

commuting with tensor products (i.e. isomorphisms of tensor functors;

see below).
Proof: Saavedra [1, I4.4].

A tensor functor F: C + C' of rigid tensor categories
induces a morphism F: End(l) - End(l') . The following

formulas hold:

F(£) F(Trx(f))

TrF(X)

rk (F (X))

F(rk (X))

Morphisms of tensor functors

Definition 1.12. Let (F,c) and (G,d) be tensor functors

C +~ C' ; a morphism of tensor functors (F,c) —> (G,d) is

a morphism of functors A: F + G such that, for all finite

families (X,) of objects in C , the diagram

jex
® F(X;) L5 F(e X;)
ie1 ier
1 oL, l)@xl (1.12.1)
1 1
® G(X,) <. G(® x;)
ier jie1

is commutative.

In fact, it suffices to require that the diagram (1.12.1)
be commutative when I 1is {1,2} or the empty set. For the

empty set, (1.12.1) becomes



117

1" —— F(l)

l 1 : (1.12.2)

11— e

in which the horizontal maps are the unique isomorphisms
compatible with the structures of 1' , F(l), and G(1l) as
identity objects of C' . In particular, when (1.12.2)
commutes, Al is an isomorphism.

We wri;e Hom®(F,F') for the set of morphisms of tensor

functors (F,c) > (G,d).

Proposition 1.13. Let (F,c) and (G,d) be tensor functors

C+Cc' . If C and C' are rigid, then any morphism of tensor

functors A: F + G 1is an isomorphism.

Proof: The morphism u: G =+ F , making the diagrams

ALV

Ft) —2 5 (b
= . z
l (u,) l
Fix)Y —%5 eV

commutative for all X € ob(C) , is an inverse for A .
For any field k and k-algebra R , there is a canonical
tensor functor ¢R: Veck + ModR , Vi— V @k R . If (F,c)

and (G,d) are tehsor functors C + Vec then we define

k ’
Homa(F,G) to be the functor of k-algebras such that

_Hime (F,G) (R) = Hom®(¢R °oF.pp°G)

(1.13.1)
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Tensor subcategories

Definition 1.14. Let C' be a strictly full subcategory of a

tensor category C . We say C' is a tensor subcategory of c

if it is closed under the formation of finite tensor products
(equivalently, if it contains an identity object of C and if
Xy ] X, € ob(C') whenever Xy /X, € ob(C')) . A tensor subcategory

of rigid tensor category is said to be a rigid tensor subcategory

if it contains XV whenever it contains X .
A tensor subcategory becomes a tensor category under the
induced tensor structure, and similarly for rigid tensor sub-

categories.

When (C,®) is abelian (see below), then we say that a

family of objects of C is a tensor generating family

(X1) jer

for C if every object of C is isomorphic to a subquotient

of P(Xi) . P(ti) € ni[ti] where in P(Xi) multiplication

iel '

is interpreted as ©® and addition as & .

Abelian tensor categories; End (1)

Our convention, that functors between additive categories

are to be additive, forces the following definition,

Defintion 1.15. An additive (resp. abelian) tensor category is a

tensor category (C,8) such that C 1is an additive (resp. abelian)

category and @ is a bi-additive functor.
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1f (C,8) is such a category, then R = End(l) is a
ring which acts, via lx : X+ 108 X, on each object X . The
action of R on X commutes with endomorphisms of X and
so, in particular, R is commutative. The category C is

R-linear and ® is R-bilinear. When C is rigid, the trace

morphism is an R-linear map Tr: End(X) = R .

Proposition 1.16. Let (C,®8) be a rigid tensor category. If

C is abelian then ® is bi-additive and commutes with direct

and inverse limits in each factor; in particular it is exact.

Proof: The functor X P X ® Y has a right adjoint, namely

Z b Hom(Y,Z), and therefore commutes with divect limits and is
additive. By considering the opposite category C° , one deduces
that it also commutes with inverse limits. (In fact, 2 |~ Hom(Y,2Z)

is also a left adjoint for X|— X 8 Y).

Proposition 1.17. Let (C,8) be a rigid abelian tensor category.

L 1
If U is a subobject of 1 , then 1 =U® U where U = ker(l;*Uv).

Consequently 1 is a simple object if End(l) is a field.

Proof: Let V = coker (U + 1) . On tensoring 0 > U+ 1>V >0

with itself, we obtain an exact commulative diagram




ue v > Vv > Ve v
/57
0.~
el
v~ > 1 > v
_ 7
o -
~
teuy €35 UZ—> VauU,

from which it follows that U ® V=0 and that U ® U =0 as
subobject of 168 1 =1,

For any X , the largest subobject Y of X such that
U® Y =0 is also the largest subobject for which the map
Ue Y Y (=(uss 1) ® Y) is zero or, equivalently, such that
<~ Y ® UV is zero; hence Y = ker(X-»X ®-UV) =X ® U'l . On
applying this remark with X = V , and using that U & V = o,
we. find that V & Ul = V ; on applying it with X = U , we find

1
U®U =0. From

1 L 1
0+UBU +10U +VeUu »0

1 . L
we deduce that U 5 V , and that 1 =U0U@& U .

Remark 1.18. The proposition shows that there is a one-to-one
correspondence between subobjects of 1 and idempotents in
End(l) . Such an idempotent e determines a decomposition of
tensor categories C = C' x C" in which ob(C') is the set of

objects of C on which e acts as the identity map.
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Proposition 1.19. Let C and C' be rigid abelian tensor categories
and assume that End(l) is a field and that 1' # 0 , where 1 and
l' are identity objects in C and C' . Then any exact tensor

functor F : C + C' 1is faithful.

Proof: The criterion in C ,
X#0& X0 % + 1 surjective

is respected by F .

A criterion to be a rigid tensor category

Proposition 1.20. Let C be a k-linear abelian category,
where k is a field, and let ®: C x C > C be a k-bilinear
functor. Suppose there are given a faithful exact k-linear
functor F: C + Vec, , a functorial isomorphism

[} X ® (¥Y®2) » (X8Y) ® Zz , and a functorial isomorphism

X,Y,z°

wx y? X8 Y +Y®X with the following properties:
I

(a) Fo® ®oF X F ;

I

(b) F(¢ ) is the usual associativity isomorphism

X,Y,2
in Veck H

(c) F(wle) is the usual commutativity isomorphism in
vee,

(d) thereexistsa U € ob(C) such that k » End(U) is an
isomorphism and F(U) has dimension 1

(e) if F(L) has dimension 1 , then there exists an
object ™1 in C such that L @ 'ty

Then (C,8,¢,y) is a rigid abelian tensor category.
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Proof: It is not difficult to prove this directly — essentially
one only has to show that the object U of (d) is an identity
object and that (e) is sufficient to show that C is rigid —

but we shall indicate a more elegant approach in (2.18) below.

Examples

(1.21) Veg, , for k a field, is rigid abelian tensor
category and End(l) = k . All of the above definitions take
on a familiar meaning when applied to yggk . For example,
Tr: End(X) - k is the usual trace map.

(1.22) gggR is an abelian tensor category and End(l) = R .
In general it will not be rigid because not all R-modules will be
reflexive.

(1.23) The category Projp of projective modules of
finite type over a commutative ring R 1is a rigid additive tensor
category and End(l) = R . The rigidity follows easily from
considering the objects of EEEiR as locally-free modules of
finite rank on spec(R) .

(l.24) Let G be an affine group scheme over a field
k and let BEEk(G) be the category of finite-dimensional
representations of G over k . Thus an object of BEEK(G)
consists of a finite-dimensional vector space V over k and a
homomorphism g t— gy : G~ GL(V) of affine group schemes over
k . Then gggk(G) is a rigid abelian tensor category and
End(l) = k . These categories, and more generally the categories
of representations of affine gerbs (see §3), are the main topic

of study of this article.
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(1.25) (Vector spaces graded by Z/2Z) . Let C be the
category whose objects are pairs (VO,Vl) of finite dimensional
vector spaces over a field k . We give C the tensor structure
whose commutativity constraint is determined by the Koszul rule

of signs, i.e., that defined by the isomorphisms
vowl+ (- wev:view »uw e vt.

Then C is a rigid abelian tensor category and End(l)=k , but it
is not of the form Repk(G) for any G Dbecause rk(V°,V1) =
dim(ve) - dim(vl) may not be positive.

(1.26) The rigid additive tensor category freely generated

by an object T 1is a pair (C,T) comprising a rigid additive
tensor category C and that End(l) = Z [t] and an object T

having the property that

is an equivalence of categories for all rigid additive tensor
categories C' (t will turn out to be the rank of T). We show
how to construct such a pair (C,T) — clearly it is unique up to
a unique equivalence of tensor categories preserving T .

Let V be a free module of finite rank over a commutative

a,b

ring k and let T (V) Dbe the space V®a ] ¥®b of tensors

with covariant degree a and contravariant degree b . A map

£ : 72 Py 5 pCrd

Tb+c,a+d

(V) can be identified with a tensor "f" in

Tb+c,a+d

(V) . When a+d = b+c, (V) contains a special
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element, namely the (a+d)th tensor power of "id" € Tl'l(v) .
and other elements can be obtained by allowing an element of the
symmetric group Sa+d to permute the contravariant components of

this special element. We have therefore a map

c,d

T

e : S a,b'

> Hom({T ) (when a+d = b+c) .

a+d

a,b’Tc,d)

The induced map k[sa+d] + Hom (T is injective provided

rk(V) > a+d . One checks that the composite of two such maps

c,d

e(o) Ta'b(V) + T (V) and e(1) : Tc’d(v) > Te'f(v) is given

by a universal formula

e(t)ee(o) = (rk VY e(p) (1.26.1)

with p and N depending only on a,b,c,d,e,f,o, and T

.

We define C' to be the category having as objects symbols

a,b a,bch,d)

T (a,b, € W) , and for which Hom(T is the free

72 [t]-module with basis Sa+d if a+d = b+c and is zero otherwise.

Composition of morphisms is defined to be % [t]-bilinear and to
agree on basis elements with the universal formula (1.26.1) with
rk V replaced by the inderterminate t . The associativity law
holds for this composition because it does whenever t 1is replaced
by a large enough positive integer (it becomes the associativity

law in a category of modules). Tensor products are defined by

Ta,b c,d _ Ta+d,b+d

8T and by an obvious rule for morphisms.

We define T to be Tl’0

The category C is deduced from C' by formally adjoining
direct sums of objects. 1Its universality follows from the fact

that the formula (1.26.1) holds in any rigid additive category.
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(L.27) (ggt) . Let n be an integer, and use
tb—n : Z [t] » € to extend the scalars in the above example
from Z [t] to € . If V is an n-dimensional complex vector

space, and if a+d <n, then

a,b

Hom (T , o¢/d

) ® T - Hom )(Ta’b(V) , 1% w))

ZZ [t] GL(V

is an isomorphism. For any sum T' of Ta’bs and large enough

integexr n , End(T') @ is therefore a product of matrix

z [£)°
algebras. This implies that End(T') & 7 [t]m(t) is a semisimple
algebra.

After extending the scalars in € to @(t) (i.e., replacing
Hom(T',T") with Hom(T',T") @ zz[t]m(t)) and passing to the
pseudo-abelian (Karoubian) envelope (i.e., formally adjoining
images of idempotents), we obtain a semisimple rigid abelian tensor
category GLy . The rank of T in EEt is t ¢ W and so,

although End(l) = Q(t) is a field, GL, is not of the form

Repk(G) for any group scheme (or gerb) G

§2. Neutral Tannakian categories

Throughout this section, k will be a field.

Affine group schemes

Let G = spec A be an affine group scheme over k . The
maps mult: G x G - G , identity {1} - G , inverse: G + G

induce maps of k-algebras
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Az A > A @k A, e: A -+ k ., S: A+ A

(the comultiplication, coidentity, and coinversemaps) such that

>

(id ® A)A= (A ® id)A: A+ A © A > A®A®A

(coassociativity axiom),

id = (e®id)A: A - A ® A - k ® A = A (coidentity axiom), and

aLsnean (5034 Ay _ 4 -E

> k <> A) (coinverse axiom).

We define a bialgebra over k to be a k-algebra A together
with maps A, €, and S satisfying the three axioms. (This

terminology is not standard).

Proposition 2.1. The functor A > spec A defines an
equivalence between the category of k-bialgebras and the
category of affine group schemes over k .

Proof: Obvious.

If A is finitely generated (as a k—-algebra) we say that

G is algebraic or that it is an algebraic group.

We define a coalgebra over k to be a vector space C over
k together with k-linearmaps A: C » C @k C and g: C > k
satisfying the coassociativity and coidentity axioms.
A comodule over C is a vector space V over k together with a
k-linear map p: V +V ® C such that (id®e)p: V+VBC>+>VOk=V
is the identity map and (id®A)p = (p®id)p ¢ V>V ® C & C .

For example, A defines an C-comodule structure on C .

Proposition 2.2. Let G = spec A be an affine group scheme over
k and let V be a vector space over k . There is a canonical

one-to-one correspondence between the A-comodule structures on V

and the linear representations of G on V .
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Proof. Let G * GL(V) be a representation. The element

id € Mor(G,G) = G(A) maps to an element of GL(V % A) whose

restriction to V =V & k&€ V ® A 1is a comodule structure

on V. Conversely, a comodule structure p on V determines
a representation of G on V such that, for R a k-algebra

and g € G(R), the restriction of 9y* VO R>VE®R to

V=VekCVe®R is
(ideg)p: V> V® A+ VBR.

Proposition 2.3. Let C be a k-coalgebra and (V,p) a comodule
over C. Any finite subset of V 1is contained in a sub-comodule

of V having finite dimension over k .

Proof: Let {ai} be a basis for C over k . If v is in
the finite subset, write p(v) = § v, @ a; (finite sum). The

k-space generated by the v and the vy is a sub-comodule.

Corollary 2.4. Any k-rational representation of an affine group scheme

is a directed union of finite-dimensional subrepresentations Vi .
Proof: Combine (2.2) and (2.3) .

Corollary 2.5. An affine group scheme G is algebraic if and

only if it has a faithful finite-dimensional representation over k .

Proof: The sufficiency is obvious. For the necessity, let V
be the regular representation of G , and write V =UVi with

the Vi as in (2.4). Then Q Rer (G - GL(Vi)) = {1} because
i

V is a faithful representation, and it follows that
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Ker (G + GL(V, )) = {1} for some i, because G is
0
Noetherian as a topological space.
Proposition 2.6. Let A be a k-bialgebra. Any finite subset

of A is contained in a sub-bialgebra that is finitely

generated as an algebra over k .

Proof: According to (2.3), the finite subset is contained in
a finite-dimensional subspace V of A such that A(V)C V@A .

Let {v,} be a basis for V and let A(Vy) = Iv;® ajy - The

subalgebra k[vj,aij,Svj,Saij] of A is a sub-bialgebra.

(See Waterhouse [1,3.3]).

Corollary 2.7. Any affine group scheme G over k is a

directed inverse limit G = lim G; of affine algebraic groups
“

over k in which the transition maps G, * Gj , i <3, are

surjective.

Proof: The functor spec transforms a direct limit A =U A, = lim A,
>

into an inverse limit G = lim Gi . The transition map Gi « Gj
is surjective because Aj is faithfully flat over its subalgebra
Ai (Waterhouse [1, 14.1]).

The converse to (2.7) is also true; in fact the inverse limit

of any family of affine group schemes is again an affine group

scheme.

Determining a group scheme from its representations.

Let G be an affine group scheme over k and let w ,

or mG , be the forgetful functor ReEk(G) -+ Veck . For R a
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2 , cqs
k-algebra, Aut” (w)(R) consists of families (AX), X € ob(Rep](G)),

where Ay is an R-linear automorphism of X ® R such that
AX & X. = AX ® lx , Al is the identity map (on R) , and
1 2 1 2 =
AY ° (a®l) = (a®l) OKX: X®R>Y®R

for all G-equivariant k-linear maps a: X + Y (see 1.12).

Clearly any g € G(R) defines an element of Aute(w)(R) .

Proposition 2.8. The natural map G =+ Aut®(w) is an isomorphism

of functors of k-algebras.

Proof: Let X € Rep, (G) and let C, be the strictly full

X
subcategory of ngk(G) of objects iscomorphic to a subguotient
of P(X,XV) , P e IN[t,s] (cf. the discussion following (1.14).
The map A +—> ), identifies QEE?(mIQX)(R) with a subgroup

of GL(X ® R). Let GX be the image of G in GL(X):; it is

a closed algebraic subgroup of G , and clearly
Gy (R) ©aut®(w|c,) (R) C GL(X 8 R) .

If ve ob(Cy) and t eV is fixed by G , then
a

a r— at: k —— V is G-equivariant, and so Av(t @& 1) =
(@ ® 1)A;(1) = £ ® 1 . Now (I.3.2) shows that G, = aut®(wc,)
If _X' = X ® Y for some representation Y of G ,
then gx C:gx, . and there is a comnutative diagram
Gy SN ég;e(m|gx.)
¥ v

X Q
—_— 5
Gy Aut (w|CX)
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It is clear from (2.5) and (2.7) that G = lim GX' , and so,
on passing to the inverse limit over these diagrams, we obtain
an isomorphism G = éEE?(“) .
A homomgrphism f: G + G' defines a functor
wf: Rep (G') > Rep, (), nmamely (G’ > GL(V)) F> (G =»G' » GL(V)),

L]
such that wG °mf = wG

Corollary 2.9. Let G and G' be affine group schemes over k
and let F: Egpk(G‘)»Reuk(G) be a tensor functor such that

1
w® °F = w® . Then there is a unique homcomorphism f: G -+ G'

such that F = wf .

Proof: For A € ég;®(mG)(R) , R a k-algebra, define

Fr(2) € aut®w®') (R) by the rule F*(h), The

= XF(X') .
proposition allows us to regard F* as a homomorphism G -+ G' ,

and clearly F — F* and £ r— wf are inverse maps.

Remark 2.10. Proposition 2.8 shows that G is determined by
the triple (Regk(G),S,mG) ; it can be shown that the coalgebra
of G is already determined by (ggpk(G),wG) (cf. the proof

of Theorem 2.11).

The main theorem

Theorem 2.11. Let C be a rigid abelian tensor category

such that k = End(l) , and let w: C » Vec be an exact faithful

k

k-linear tensor functor. Then,

(a) the functor Auta(m) of k-algebras is representable

by an affine group scheme G;
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(b) w defines an equivalence of tensor categories
C > Rep, (G) .

Proof: We first construct the coalgebra A of G without
using the tensor structure on C . The tensor structure then
enables us to define an algebra structure on A , and the
rigidity of C implies that spec A 1is a group scheme (rathér
than a monoid scheme). The following easy observation will
allow us to work initially with algebras rather than coalgebras:
for a finite-dimensional (not necessarily commutative) k-algebra

A and its dual coalgebra Av af Hom(A,k), the bijection

Hom(A ® .V, V) <—-— Hom(V,AV 8kV)

k

determines a one-to-one correspondence between the A-module
structures on avector space V and the Av—comodule structure
on V .

We begin with some constructions that are valid in any
k-linear abelian category C . For V a finite-dimensional
vector space over k and X and object of C , we define V @ X

to be the system ((xn)a’¢B a) where o runs through the

isomorphisms " = v , (Xn)a = x" df X ®...8 X (n copies), and

n 1

bg ot (XN > (xn)B is defined by B " oa € GL_(k) . Note that

¢Y:B °¢B.a = ¢Y,G . A morphism V& X+ T or T—+V®ZX,

where T € ob(C) , is a family of morphisms compatible with the
¢B o There is a canonical k-linear map V -+ Hom(X,V®X) under
’
v
which v € V maps to (X 2 (Xn)a) where wu is defined by

u—l(V) e x" . This map induces a functorial isomorphism
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Hom (V¥X,T) ——> Hom(V,Hom(X,T)), T € ob(C). Any k-linear functor
F: C » C' has the property that F(VeX) =V 8 F(X) . When C
is ZESK , V& X can be identified with the usual object.

For V € Ob(YEEk) and X € ob(C) , we define Hom(V,X)
to be Vv R X . If WV and Y € X , then the subobject of

Hom(V,X) mapping W into Y is defined to be
(Y:W) = Ker(Hom(V,X) » Hom(W,X/Y)) .

Lemma 2.12. Let C be a k-linear abelian category and
ws C + Veck a k-linear exact faithful functor. Then, for any

X € ob(C), the following two objects are equal:

(a) the largest subobject P of Hom(w(X),X) whose
image in ggg(w(x)n,xn) (embedded diagonally) is contained in
(¥: w(Y)) for all Y ¢ x" ;

(b) the smallest subobject P' of Hom(w(X),X) such that

the subspace w(P') of Hom(w(X),w(X)) contains id: w(X) » w(X).

Proof: Clearly w(X) = 0 implies End(X) = 0 , which implies
X=0. Thus if X CY and w(X) = w(Y) then X =Y , and it
follows that all objects of C are both Artinian and Noetherian.
The objects P and P' therefore obviously exist.
The functor w maps Hom(V,X) to Hom(V,w(X)) and

(Y:W) to (w(Y):W) for all W CV € ob(Vec,) and Y CX € ob(C).
It therefore maps P S£ A (Hom(w(X),X) 0 (Y:w(¥))) to

N (End (0 (X)) {(wY¥:wY)) . This means wP is the largest subring
of End(w(X)) stabilizing w(¥) for all Y cx™ . Hence

id € w(P) and P DP' .




133

Let V be a finite-dimensional vector space over k
there is an obvious map Hom(w(X),X) > Hom(w(V8X),6V@X)
(inducing fr— 1 ® f£f: End(w(X)) » End(Vew(X)) and
w(P) C End(w (X)) stabilizes (Y) for all YCV® X . On
applying this remark to a Q C Hom{(w(X),X) = w(X)V ® X , we
find that w(P) , when acting by left multiplication on
End(w(X)), stablizes w(Q). Therefore, if w(Q) contains 1,

then w(P) c w(Q) , and PC Q ; this shows that P C P' .

Let PX ¢ Hom(w(X) ,X) be the subobject defined in (a)

(or (b)) of the lemma, and let A_ = w(PX); it is the largest

X
subalgebra of End(w(X)) stabilizing w(¥Y) for all Y c x" .

Let <X> be the strictly full subcategory of C such that
ob{(<X>) consists of the objects of C that are isomorphic

to subquotients of X" , n € N. Then w| <X>: <X> =+ Vec,
factors through Mod
Z:L’X

Lemma 2.13. Let w: g-rVeck be as in (2.12). Then w

defines an equivalence of categories <X> - ModA carrying
X

w| < X> into the forgetful functor. Moreover AX = End(w| <X>).

Proof: The right action f += foa of A on Hom({w(X) ,X)

X
stabilizes Py because obviously (Y:w(¥)) (w(Y):w(Y)) < (Y:w(¥)).
If M is an Ax—module we define
_ —
Py eAx M = Coker(Py ® A, @ M __ P, 8 M)

Then r..o(PX @Ax M) =w (Px) @AXM = AX @Ax M =M . Recall that
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P, ® M is a family (Y ) of objects of C with given
X “Ayg o c

compatible isomorphisms Ya -+ YB . If we choose one a ,

then w(Ya) ® M , which shows that & is essentially surjective.
A similar argument shows that <X> =+ ModA is full.
X

Clearly any element of A defines an endomorphism of

X
w| <X> . On the other hand an element A of End(w| <X>) is

determined by € End(y(X)); thus End(y(X)) O End(w|<:X>) 2 A

Ax X"

But Ax stabilizes w(Y) for all Y C x" , and so

End(w]| <X>) C Ay . This completes the proof of the lemma.

Let Bx = Ax . The remark at the start of the proof

allows us to restate (2.13) as follows: w defines an

equivalence
(<X>, wkX>) + ((;omodB ,forget)
X
where ComodE is the category of Bx—comodules of finite

X

dimension over k .
On passing to the inverse limit over X (cf. the proof of

{2.8)), we obtain the following result.

Proposition 2.14. Let (C,w) be as in (2.12) and iet
B = 1ljim End (w| <X >)V . Then w defines an equivalence of

categories C - ComodB carrying w into the forgetful functor.

Example 2.15. Let A be a finite-dimensional k-algebra and

let w be the forgetful functor ModA -+ Veck . For R
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a commutative k-algebra, let ¢R be the functor

R® -: Veck

End(¢R°w] , which we shall show to be an isomorphism by

-+ ModR . There is a canonical map ©: R @k A >

defining an inverse B8 . For A € End(¢R°w) , set B(A) = AA(l)
Clearly fa = id , and so we have to show af = id . For

M€ ob(ModA) , let My = w(M) . The A-module A ®k MO is

a direct sum of copies of A , and the additivity of X shows

that kA@MO = AA ® 1dMO . Themap a ® m > am: A 8k M0 + M

is A-linear, and hence

R®AG® MD —> R®M

b I

R®AG® MD —> RO®M
is commutative. Therefore AM(m) = AA(l)m = (aB(l])M(m) for
meROM.
In particular, A —> End(w) , and it follows that, if in

(2.13) we take C = Modz so that C =<A >, then the equivalence

of categories obtained is the identity functor.
Let B be a coalgebra over k and let w be the

forgetful functor ComodB + Vec The above discussion shows

K -
that B = lim End (w] <x>)" . We deduce, as in (2.9) , that

every functor Comod, -+ Comod., carrying the forgetful functor
D g=J

into the forgetful functor arises from a unique homomorphism

B » B' .
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Again let B be a coalyebra over k . A homomorphism

u: B @k B + B defines a functor

u -
[ I (.omodB X ComodB -+ ComodB

sending (X,¥) to X ®k Y with the B-comodule structure

px®pY 18u
X®Y —— X B®BRY®E — X0 Y®B.

Proposition 2.16. The map u +— ¢u defines a one-to-one
correspondence between the set of homomorphisms B @k B + B

and the set of functors ¢: Comod, X ComodB + Comod, such

that ¢ (X,Y) = X ek Y as k vector spaces. The natural
associativity and commutativity constraints on Vec, induce
similar contraints on (ComodE,¢u) if and only if the
multiplication defined by u on B 1is associative and commuta-
tive; there is an identity object in (ggmgg3,¢u) with
underlying vector space k if and only if B has an identity

element.

Proof: The pair (Comod, x Comody, w8w) , with (W ® w) (X8Y)
w(X) ® w(Y) (as a k vector space), satisfies the conditions of
(2.14), and 1lim End(uw8u| < (X,Y) > )Y = B ® B . Thus the first
statement of the proposition follows from (2.15). The remaining

statements are easy.

Let (C,w) and B be as in (2.14) except now assume that
C 1is a tensor category and w is a tensor functor. The

tensor structure on C induces a similar structure on
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ComodB and hence, because of (2.16) , the structure of an
associative commutative k-algebra with identity element on B .
Thus B lacks only a coinverse map S to be a bialgebra,

and G = spec B is an affine monoid scheme. Using (2.15) we
find that, for any k-algebra R, Emd(w) (R) 2£ End (¢ °w) =

(BX,R) = Hom (B,R) . An element

k-1in
(B,R) corresponds to an element of

lim Homy ;.

A€ Homy 444
End (w) (R) commuting with the tensor structure if and only if

A is a k-algebra homomorphism; thus Ende(w)(R) = Hom (B,R) = G(R).

k-alg
We have shown that if in the statement of (2.11) the rigidity
condition is omitted, then one can conclude that End®(m)

is representable by an affine monoid scheme G = spec B

and w defines an equivalence of tensor categories

c - ComodB = Regk(G). If we now assume that (C,8) is rigid,
then (1.13) shows that Ende(w) = Autg(m) , and the theorem

follows.

Remark 2.17. Let (C,w) be (Repk{G],wG) . On folliowing
through the proof of (2.11) in this case one recovers (2.8):

Aute(wG) is represented by G .

Remark 2.18. Let (C,8,¢,y,F) satisfy the conditions of
(1.20). Then (C,®,¢,¥) is obviously a tensor category,

and the proof of (2.11) shows that F defines an equivalence
of tensor categories C gggk(G) where G 1is an affine group

monoid representing Ende(w) . We can assume that C = Regk(G) .




138

Let A €G(R) . If LC Regk(G) has dimension 1 , then

A R®L > R®L is invertible, as follows easily from the

1

L:

existence of a G-isomorphism L & L~ >k . It follows

that lx is invertible for any X € ob(ReEk(G)) because

det(xx) £ Adxx = Xpdy, where d =dim X , is invertible.

Hh

Definition 2.19. A neutral Tannakian category over Kk is a rigid

abelian k-linear tensor category C for which there exists an exact
faithful k-linear tensor functor w: C ~» Vec, . Any such
functor w® 1is said to be a fibre functor for C.

Thus (2.11) shows that any neutral Tannakian category is
equivalent (in possibly many different ways) to the category of

finite-dimensional representations of an affine group scheme.

Properties of G and of Regk(G) .

In view of the last remark, it is natural to ask how

properties of G are refiected in ReEk(G) .

Proposition 2.20. Let G be an affine group scheme over k

(a) G 1is finite if and only if there exists an object X

of Rep, (G) such that every object of Rep, (G) is isomorphic

to a subquotient of x® , some n >0.

(b) G 1is algebraic if and only if there exists an object

X of Rep (G) that is a tensor generator for Rep, (G) .

Proof (a). If G 1is finite then the regular representation

of G has the required properties. Conversely if, with the
notations of the proof of (2.11), Rep, (G) =<X>, then G = spec B

where B is the linear dAual of the finite k-algebra Ax .
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(b) If G 1is algebraic, then it has a finite-dimensional
faithful representation X (2.5), and one shows as in (I.3.la) that
Xex' isa tensor generator for gggk(G) . Conversely, if

X is a tensor generator for ngk(c) then it is a faithful

representation of G .

Proposition 2.21. Let f: G + G' be a homomorphism of

affine group schemes over Xk , and let wf be the correspond-
ing functor Rep, (G') ~ Rep, (G).

(a) f is faithfully flat if and only if wf is fully
faithful and every subobject of mf(x') , for X' e ob(gggk(c')),
is isomorphic to the image of a subobject of X' .

(b) f is a closed immersion if and only if every object

of ggEk(G) is isomorphic to a subguotient of an object of the
form wf(x'), X' € ob(Rep, (G')) .

Proof (a). If G —£>G' is faithfully flat, and theretore

is an epimorphism, then BEEk(G') can be identified with the
subcategory of ggpk(G) of representations G + GL(V) factoring
through G' . It is therefore obvious that mf is fully
faithful etc. Conversely, if mf is fully faithful, it defines
an equivalence of Repk(G') with a full subcategory of

Rep, (G) , and the second condition shows that, for

X' e ob(Repk(G')), <X'> is equivalent to < mf(x‘) > . Let

G = spec B and G' = spec B' ; then (2.15) shows that

B' = lim End ('] <x' >)" = lim End(w| <of (x') >)¥ C1lim End(w| <x>) =B,
> -+ +
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and B' > B being injective implies that G > G' 1is faithfully
flat (Waterhouse [1,14]).

(b) Let C be the strictly full subcategory of gggk(G)

whose objects are isomorphic to subquotients of objects of

the form wf(x') . 'The functors
ngk(s') > C > gggk(G)
correspond (see (2.14,2.15)) to homomorphisms of k-coalgebras
B' - B" + B

where G = spec B and G' = spec B' . An argument as in the
above proof shows that B" + B 1is injective. Moreover,

for X' € ob(Rep, (G')) , End(w| <wf(x)>) » End(w'|<x'>) is
injective, and so B' > B" is surjective. If f is a closed
immersion, then B' > B 1is surjective and it follows that

B" —» B, and C = Rep, (G) . Conversely, if ¢ = Rep, (G),

then B" =B and B' -+ B 1is surjective.

Corollary 2.22 Assume k has characteristic zero; then G is
connected if and only if, for any representation X of G

on which G acts non-trivially, the strictly full subcategory
of BEEk(G) whose objects are isomorphic to subquotients of

xn

» n >0, is not stable under @ .

Proof: G is connected if and only if there is no non-trivial
epimorphism G + G' with G' finite. According to (2.21a),
this is equivalent to gggk(G) having no non-trivial subcategory

of the type described in (2.20a).
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Proposition 2.23. Assume k has characteristic zero and that
G 1is connected; then G 1is pro-reductive if and only if

Rep, (G) is semisimple.

Proof: As every finite-dimensional representation G > GL (V)
of G factors through an algebraic quotient of G , we can

assume that G itself is an algebraic group.

Lemma 2.24. Let X be a representation of G ; a subspace
Y X 1is stable under G if and only if it is stable under
Lie(G).

Proof: Standard.

Lemma 2.25. Let k be the algebraic closure of k ; then
gggk(G) is semisimple if and only if BQE:(GE) is semisimple.
Proof: Let U(G) be the universal enveloping algebra of

Lie(G) , and let X be a finite-dimensional representation of

G . The last lemma shows that X 1is semisimple as a representa-
tion of G if and only if it is semisimple as a representation

of Lie(G) , or of U(G) . But X is a semisimple U(G)-module

if and only if k ® X is a semisimple k ® U(G)-module

(Bourbaki [1,13.4]). Since k ® U(G) = U(G_) , this shows that
k
if Rep (G_) is semisimple then so is Rega(G) . For the
k k

converse, let X be an object of Rep (G_) . There is a

finite extension k' of k and a repteszntation X' of

Gk' over k' giving X by extension of scalars. If we regard

X' as a vector space over k then we obtain a k-representation X
of G . By assumption, X 1is semisimple and, as was observed above,
this implies that k 8, X is semisimple. Since X is a quotient

of k ®, X, X is semisimple.
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Lemma 2.26 (Weyl). Let L be a semisimple Lie algebra over
an algebraically closed field k (of characteristic zero). Any
finite-dimensional representation of L is semisimple.
Proof: For an algebraic proof, see for example (Humphries [1,
6.3]). Weyl's original proof was as follows: we can assume
k=€ ; let L, be a compact real form of L and G0 a connected
simply-connected real Lie group with Lie algebra Ly ; as Gy is
compact, any finite-dimensional representation of it carries a
positive-definite form (see (I3.6)) and therefore is semisimple;
thus any finite-dimensional (real or complex) representation of
Ly is semisimple, and it is then obvious that any (complex)
representation of L 1is semisimple.

For the remainder of the proof, we assume that k is

algebraically closed.

Lemma 2.27. If N is a normal closed subgroup of G and
p: G+ GL(X) is semisimple, then p|N is semisimple.
Proof: We can assume X is a simple G-module. Let Y be
a nonzero simple N-submodule of X . For any g € G(k)

g¥Y is an N-module and is simple because S t+— g—lS maps

’

N-submodules of gY to N-submodules of Y . The sum
L gY , g € G(k) , is G-stable and nonzero, and therefore equals

X . Thus X , being a sum of simple N-submodules, is semisimple.
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We now prove the proposition. If G is reductive, then
G = 2.G' where Z is the centre of G and G' is the
derived subgroup of G . Let p: G + GL(X) be a finite-
dimensional representation of G . As Z is a torus, plz is
diagonalizable: X = & X, as a z-module, where any 2z € 2 acts
on X, asa scalar Xi(Z) . Each Xi is G'-stable and, as
G' 1is semisimple, is a direct sum of simple G'-modules.
It is now clear that X is semisimple as a G-module.
Conversely, assume that gggk(G) is semisimple and choose
a faithful representation X of G . Let N be the unipotent
radical of G . Lemma 2.27 shows that X 1is semisimple as
an N-module: X = & X, where each X, is a simple N-module.
As N is solvable, the Lie-Kolchin theorem shows that each
Xi has dimension one, and as N is unipotent, it has a
fixed vector in each Xi . Therefore N acts trivially on
each Xi , and on X , and, as X is faithful, this shows that

N = {1} .

Remark 2.28. The proposition can be strengthened as follows:
assume that X has characteristic zero; then the identity
component G0 of G is pro-reductive if and only if
Rep, (G) is semisimple.

To prove this one has to show that ngk(G) is semisimple
if and only if gggk(G°) is semisimple. The necessity follows
from (2.27). For the sufficiency, let X be a representation

of G (where G 1is assumed to be algebraic) and let Y be a

G-stable subspace of X . By assumption, there is a G°-equivariant




map p : X » Y such that p|Y = id . Define

Q
~
®
>
+
~
®

=

Q
I

K R I owsy
where n = (G(k): G°(k)) and g runs over a set of coset
representatives for G°(k) in G(k) . One checks easily that
g has the following properties:
(i) it is independent of the choice of the coset representatives:;
(ii) for all o e Gal(k/k), o(g) = q ;
(iii) for all y €k @ Y , q(y) = q :
(iv) for all g € G(k), 949 = q*9y .
Thus g 1is defined over k , restricts to the identity map on

Y , and is G-equivariant.

Remark 2.29., When, as in the above remark, Repk(G) is
semisimple, the second condition in (2.2la) is superfluous:
thus £ : G + G' 1is faithfully flat if and only if wf is fully

faithful.

Examples.

(2.30) (Graded vector spaces) Let C be the category
whose objects are families (Vn)nezz of vector spaces over
k with finite-dimensional sum V = & V! . There is an obvious
rigid tensor structure on C for which End(l) = k and
w s (Vn)i—» ® V' is a fibre functor. Thus, according to (2.11),

there is an equivalence of tensor categories C - Regk(G) for
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some G . This equivalence is easy to describe: Take G = E,

and make (V%) correspond to the representation of €, on

® V® for which Gm acts on V" through the character ib— Am.
(2.31) A real Hodge structure is a finite dimensional

vector space V over IR together with a decomposition

vec= o vP9 such that vP'? ana v¥'P are conjugate
pP.q

complex subspaces of V 8 € . There is an obvious rigid tensor
structure on the category HodIR of real Hodge structures and
w s (V,(Vp’q))k—» V is a fibre functor. The group corresponding

to Hod,, and w is the real algebraic group $ obtained from

& by restriction of scalars from € to IR : & = Res

/R
The real Hodge structure (V,(Vp'q)) corresponds to the

representation of & on V such that an element XA € §(IR) = r*

acts on VP'9 as A"Pi79 . e can write V = & V© where

vVec= e vP'Y? | tThe functor (v, (VP'Y))— (v?) from
p+g=n
Hod]R to the category of real graded vector spaces corresponds

to the homomorphism Gm + & which, on real points, is t}— t_l :
R +~ T .
(2.32) The preceding examples have a common generalization.

Recall that an algebraic group G 1is of multiplicative type if

Gg , where k is the separable algebraic closure of k , 1is
diagonalizable in some faithful representation, and that the
character group X(G) df Hom(Gg,& ) of such a G is a finitely
generated abelian group on which T = Gal(k/k) acts continuously.

Write M = X(G), and let k'C k be a Galois extension of k over
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which all elements of M are defined. For any finite-dimensional
representation V of G , V @k k' = mgm v™  where

V= (vev 8.k'|gv = m(g)v , all g € G(k')} . A finite-
dimensional vector space V over k together with a decomposition

k' 8 v=29 V" arises from a representation of G if and only if

Vo(m) = ch(g£ Vg k') for all me M and o € I' . Thus an
k',o '

object of Repy (G) can be identified with a finite-dimensional
vector space V over k together with an M-grading on V Gkk'
that is compatible with the action of the Galois group.

(2.33) (Tannakian duality) Let K be a topological group.
The category BSEIR(K) of continuous representations of K on
finite-dimensional real vector spaces is, in a natural way, a neutral
Tannakian category with the forgetful functor as fibre functor.

There is therefore a real affine algebraic group K, called the

real algebraic envelope of K , for which there exists an

equivalence BEBIR(K) 5 BSEIR(R) . There is also a map K ~+ R(nn ’
which is an isomorphism when K 1is compact.

In general, a real algebraic group G 1is said to be compact
if G(IR) 1is compact and the natural functor ggBIR(G(IR)) -+
BEBH{(G) is an equivalence. The second condition is equivalent
to each connected component of G(&) containing a real point
(or to G(IR) being Zariski dense in G) . We note for reference
that Deligne [l, 2.5] shows that a subgroup of a compact real
algebraic group is compact.

(2.34) (The true fundamental group). Recall that a vector
bundle E on a curve C 1is semi-stable if for every sub-bundle

E'C E, (deg E')/(rank E') ¢ (deg E)/(rank E). Let X be a
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complete connected reduced k-scheme, where k 1is assumed to
be perfect. A vector bundle E on X will be said to be semi-
stable if for every nonconstant morphism f : C - X with C

a projective smooth connected curve, f*E 1is semi-stable of
degree zero. Such a bundle E is finite if there exist
polynomials g,h € W [t] , g # h , such that g(E) ® h(E) . Let
C be the category of semi-stable vector bundles on X that are
isomorphic to a subquotient of a finite vector bundle. If X
has a k-rational point x then C 1is a neutral Tannakian
category over k with fibre functor w : E~ E, . The group

associated with (C,w) 1is a pro-finite group scheme over k ,

called the true fundamental group nl(x,x) of X , which classifies
all G-coverings of X with G a finite group scheme over k .

The maximal pro-étale quotient of nl(x,x) is the usual étale
fundamental group of X . See Nori [1].

(2.35) Let K be a field of characteristic zero, complete
with respect to a discrete valuation, whose residue field is
algebraically closed of characteristic p # 0 . The Hodge-Tate
modules for K from a neutral Tannakian category over mp (see

Serre [2]).

§3. Fibre Functors; the general notion of a Tannakian category

Throughout this section, k denotes a field

Fibre functors

Let G be an affine group scheme over k and let

U = spec R be an affine k-scheme. A G-torsor over U (for the
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f.p.g.c. topology) is an affine scheme T , faithfully flat over

S , together with a morphism T *y G =+ T such that

(t,g) — (t,tg) : T XU G+ T X T is an isomorphism. Such a scheme
T is determined by its points functor, h, = (R'}— T(R"))

T
A non-vacuous set-valued functor h of R-algebras with
functorial pairing h(R') x G(R') » h(R') arises from a G-torsor
if

(3.1la) For each R-algebra R' such that h(R') is non-
empty, G(R') acts simply transitively on h(R') , and

(3.1b) h is respectable by an affine scheme faithfully flat
over U . Descent theory shows that (3.1lb) can be replaced by
the condition that h be a sheaf for the f.p.g.c. topology on
U (see Waterhouse [1,V]) . There is an obvious notion of a
morphism of G-torsors.

Let C be a k-linear abelian tensor category; a fibre functor
on C with values in a k-algebra R is a k-linear exact
faithful tensor functor n : C + EQQR that takes values in the
subcategory BEQiR of EQQR . Assume now that C is a neutral
Tannakian category over k . There then exists a fibre functor
w with values in k and we proved in the last section that if
we let G = ggge(w),m defines an equivalence C > ngk(G) . For
any fibre functor n with values in R , composition defines a

pairing
Home(m,n) x Aut@(m) -+ Home(m,n)

of functors of R-algebras. Proposition 1.13 shows that
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Homa(w,n) = Isome(m,n) , and therefore that Home(w,n)

satisfies (3.la).

Theorem 3.2. Let C be a neutral Tannakian category over k
(a) For any fibre functor n on C with values in R ,
Egmg(w,n) is representable by an affine scheme faithfully
flat over spec R ; it is therefore a G-torsor.

(b} The functor nl— ggge(w,n) determines an equivalence
between the category of fibre functors on C with values in

R and the category of G-torsors over R .

Proof: Let X € ob(C) , and, with the notations of the proof of

(2.11), define

AyCEnd(w(X)) , Ay =\ (0(¥) : w(¥) , Yex* ,
Y

Py( Hom(w(X),X) , Py =O<Y sw(Y)) , YCx' .

Then m(Px) = A and P, € ob(<X>) . For any R-algebra R' ,

X X
Hom(w|<X>,n|<X>) (R') is the subspace of Hom (w (Py) & R',n(Py) 8 R')
of maps respecting all vy x" ; it therefore equals n(PX) ® R' .

Thus

121

Hom(w| <X>, n|<X>) (R') HomR_lin(n(P;’(),R')

Let Q be the ind-object (P;/()x , and let B = lim Ax . As we saw
>
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in the last section, the tensor structure on C defines an
algebra structure on B ; it also defines a ring structure on
Q (i.e., a map Q ® Q + Q in Ind(C)) making w(Q) 5B into an

isomorphism of k-algebras. We have

Hom{w,n) (R") lim Hom(w|<X>, n|<X>) (R")

+

lim Hom
“

v '
r-1in(N(Pg) . R )

= Hom (n(Q), R)

R-lin

&

where n(Q) lim n(PX) . Under this correspondence,
>

Hom® (w,n) (R') = Hom (n(Q),R") ,

R-alg

and so Homa(w,n) is represented by n(Q) . By definition

n(Px) is a projective R-module, and so n(Q) = lim n(PX) is
>

flat over R . PFor each X there is a surjection Py => 1,

and the exact sequence
0+ 1>Py+Py/L~>0
gives rise to an exact sequence
0 > n(l) » n(By) » n(Bg/1) + 0
As n(1) = R and n(By/l) is flat, this shows that n(By) is

a faithfully flat R-module. Hence n(Q) is faithfully flat

over R , which completes the proof that Home(m,n) is a G-torsor.
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To show that n |— Homa(m,n) is an equivalence, we
construct a quasi-inverse. Let T be a G-torsor over R . For

a fixed X , define R'|l— nT(x)(R') to be the sheaf associated with
R'l— (w(X) 8 R') x T(R')/G(R')

Then X |— nT(X) is a fibre functor on C with values in R .

Remark 3.3

(a) Define

A,C Hom(X,X), Ay =N(¥:¥) , YC X" .

Then A is a ring in C such that m(éx) = Ay (as k-algebras).

X
Let B be the ind-object (éx) . Thén
@ —
End” (w) = spec w(B) = G
Endg(n) = spec n(B)

(b) The proof of (3.2) can be made more concrete by using

(2.11) to replace (C,w) with (Repk(G),wG) .

Remark 3.4. The situation described in the theorem is analogous
to the following. Let X be a connected topological space and
let C be the category of locally constant sheaves of @ vector
spaces on X . For any x € X , there is a fibre functor

: + Ve fines an equivalence of categories
Wy c <o’ and Wy define q c g
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c ~+ Repm(ﬂl(x,x)) . Let Hx,y be the set of homotopy classes
of paths from x to y : then Hx,y = Isom(mx,wy) , and
nx,y is a nl(x,x)—torsor.

Question 3.5. Let C be a rigid abelian tensor category
whose objects are of finite length and which is such that
End(l)=k and ©® 1is exact. (Thus C lacks only a fibre
functor with values in k to be a neutral Tannakian category).

As in (3.3) one can define

= n
Ayc Hom (X,X), Ay =[}(¥Y:Y), YCX

and hence obtain a bialgebra B = "lim" AX in Ind(C) which
>

can be thought of as defining an affine group scheme G in Ind(C).

Is it true that for XCX' , A > Ay is an epimorphism?

XI
. . P .
For any X in C , there is a morphism X + X & B , which

can be regarded as a representation of G . Define XG , the

subobject fixed by G , to be the largest subobject of X such

that x® +x @ By factors through xC
true that Hom(l,X) & 1 ~» XG

® 1C— x 8 By . Is it
is an isomorphism?

If for all X there exists an N such that ANX =0,
is C Tannakian in the sense of Definition 3.7 below? (See note
at the end of the article.)

The general notion of a Tannakian_category

In this subsection, we need to use some terminology from

non-abelian 2-cohomology, for which we refer the reader to the
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Appendix. In particular éffs or éﬁﬁk denotes the category

of affine schemes over S = spec kK and PROJ is the stack over
Affs, such that PROJ; = EEEiR for R = F(U,OU) . For any gerb
G over Aff,  (for the f.p.q.c. topology) we let Rep, (G) denote
the category of cartesian functors G + PROJ. Thus an object

$ of ngk(c) determines (and is determined by) functors

¢R : QR - gggiR , one for each k-algebra R , and functorial
isomorphisms ®R,(g*Q) <jL> ¢R(Q) 8r R' defined whenever

g : R> R' 1is a homomorphism of k-algebras and Q € ob(gR) .
There is an obvious rigid tensor structure on BEEK(G) , and

End(l) =k .

Example 3.6. Let G be an affine group scheme over k , and

let TORS(G) be the gerb over such that TORS(G)U is

Affg
the category of G-torsors over U . Let Gr be G regarded as
a right G-torsor, and let ¢ be an object of Rep, (TORS(G)) .
The isomorphism G ¥ éEE(Gr) defines a representation of G on
the vector space Qk(Gr) , and it is not difficult to show that
bt @k(Gr) extends to an equivalence of categories .

ngk(TORS(G)) 3 BEEk(G)

Let C be a rigid abelian tensor category with End(l) = k
For any k-algebra R , the fibre functors on C with values in
R form a category FIB(_C_)R , and the collection of these categories
forms in a natural way a fibred category FIB(C) over éffk.‘

Descent theory for projective modules shows that FIB(C) 1is a

stack, and (1.13) shows that its fibres are groupoids. There is a
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canonical k-linear tensor functor C + Repk(FIB(C)) associating

to X € ob(C) the family of functors wi— w(X) : FIB(Q)R + ProjR .

Definition 3.7. A Tannakian category over k 1is a rigid abelian

tensor category C with End(l) = k such that FIB(C) 1is an

affine gerb and C -+ Repk(FIB(g)) is an equivalence of categories.

Example 3.8. Let C be a neutral Tannakian category over k .
Theorem 3.2 shows that the choice of a fibre functor w with
values in k determines an equivalence of fibred categories
FIB(C) 3> TORS(G) where G represents ég&e(w) . Thus FIB(C)

is an affine gerb and the commutative diagram of functors

c + Repy (FIB(C))
~4w [ 2d

Rep, (G) ¥ Rep, (TORS(G))

shows that C is a Tannakian category. Thus a Tannakian category
in the sense of (3.7) is a neutral Tannakian category in the sense

of (2.19) if an only if it has a fibre functor with values in k .

Remark 3.9. The condition in (3.7) that FIB(C) 1is a gerb means
that C has a fibre functor w with values in some field k'Dk
and that any two fibre functors are locally isomorphic for the
f.p.g.c. topology. The condition that the gerb FIB(C) be affine
means that QEEQ(m) is representable by an affine group scheme

over k' .
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Remark 3.10. A Tannakian category C over k is said to be
algebraic if FIB(C) is an algebraic gerb. There then exists a
finite field extension k' of k and a fibre functor w®w with
values in k' (App., Proposition), and the algebraicity of C
means that G = Agge(m) is an algebraic group over k' . As in
the neutral case (2.20), a Tannakian category is algebraic if and
only if it has a tensor generator. Consequently, any Tannakian

category is a filtered union of algebraic Tannakian categories.

Tannakian categories neutralized by a finite extension

Let C be a k-linear category, and let A be a commutative
k-algebra. An A-module in C is a pair (X,ax) with X an
object of C and ay a homomorphism A + End(X) . For example,
an A-module in ygsk, , where k' k , is simply an A @kk'—module
that is of finite dimension over k' . With an obvious notion of
morphism, the A-modules in C form an A-linear category E(A) .
If C is abelian so also is E(A) , and if C has a tensor
structure and its objects have finite length then we define

(X, ® (Y,ay) to be the A-module in C with object the largest

%)
quotient of X ® Y to which ax(a) ® id and id ® aY(a) agree
for all a € A .

Now let C be a Tannakian category over k , and let k'
be a finite field extension of k . As the tensor operation on
C commutes with direct limits (1.16), it extends to 1Ind(C) ,
which is therefore an abelian tensor category. The functor

C » Ind(C) defines an equivalence between C and the strictly

full subcategory ge of Ind(C) of essentially constant ind-
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e

objects. 1In [of it is possible 'to define external tensor

products with objects of Veck (cf. the proof of (2.11)) and

hence a functor
Xb> (X)) = (k' 8 X, a' > a' 8 id) : c®(
This functor is left adjoint to
(X,0) b= 3(X,0) = x = cfp,) > C®
and has the property that k' ®k Hom(X,Y) 3 Hom(i(X), i(Y))
Let w be a fibre functor on ge (or C) with values in k'

For any (X,0) e ob(g?k,)) r (w(X), w(a)) is a k'-module in

YEEk' , i.e., it is a k' ®k k'-module. If we define
w'(X,a) = k' 8 g1 @ (X) (3.10.1)
Then
£ — S

wl
W
Veck.

commutes up to a canonical isomorphism.

e
(
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Proposition 3.11. Let C be a Tannakian category over k and
let w be a fibre functor on C with values in a finite field
extension k' of k ; extend w' to g(k') using the formula
(3.10.1) ; then w' defines an equivalence of tensor categories
Cikr) 5 Rep, . (G) where G = éggé(w) . In particular, ' |is

exact.
Proof: One has simply to compose the following functors:

arising from the equivalence

10
+

Repy (G) (G = FIB(C)) in the

definition (3.7);
Repk(g) (k') ; REPk, (El/k')

~ where G/k' denotes the restriction of G to Affk. (the functor

sends (¢,a) € ob(Repk(gj(k,)) to ¢' where, for any k'-algebra
R and Q € Gp , ¢§(Q) = R ®k.@R¢R(Q)) H
Rep, , (G/k") 5 Rep, , (TORS(G))

arising from TORS(G) ;'g/k' :

Rep, ; (TORS(G)) > Repy . (G) (see 3.6).
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Remark 3.12. Let C = Repk(G) and let k' be a finite extension
of k . Then E(k') = Repk.(G) and i : C ~ E(k') is Xp— k' @kx.
Let w be the fibre functor Xt k' 8 X : Repk(G) > Vec,., .

2] . ~ .
Then Gk' = Aut (w) and the equivalence g(k') > Repk.(Gk.) defined

in the proposition is
X — k' ek,Qk.x : Repk,(G) - Repk.(Gk,) .

Descent of Tannakian categories

Let k'/k be a finite Galois extension with Galois group T ,
and let C' be a Tannakian category over k' . A descent datum
on C' relative to k'/k is

(3.13a) a family (BY)YEF of equivalences of tensor

categories B : C' - C' , BY being semi-linear relative to vy ,

”
together with

(3.13b) a family (uY. Y) of isomorphisms of tensor functors
My y BY'Y * BY'°BY such that
How oy (XD
Y (Y'Y >
BYHY.Y(X) > BY"(SY.Y(X))
uY"Y',Y(X) SY"(UY.Y(X))
Uona (B, (X))
YUY Y ~
BY"Y.(BY(X)) > BYH(By.(BY(X)))

commutes for all X € ob(C)

A Tannakian category C over k gives rise to a Tannakian

category C' = E(k') over k ' together with a descent datum
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for which BY(X,ax) = (X,axoy_l) . Conversely, a Tannakian
category C' over k' together with a descent datum relative
to k'/k gives rise to a Tannakian category C over k whose
objects are pairs (X,(ay)) , where X € ob(C'}) and

(aY : X + BY(X))YGT is such that (uY.’Y)X°aY.Y = Yo

and whose morphisms are morphisms in C' commuting with the ay -

These two operations are quasi-inverse, so that to give a Tannakian

BY.(aY)oa

category over Xk (up to a tensor equivalence, unique up to a

unique isomorphism) is the same as to give a Tannakian category over
k' together with a descent datum relative to k'/k (Saavedra

[, IT@ 1.2]). On combining this statement with (3.11) we see that
to give a Tannakian category over k together with a fibre functor
with values in k' is the same as to give an affine group scheme

G over k' together with a descent datum on the Tannakian category

Repk.(G) .
Questions

(3.14) Let G be an affine gerb over k . There is a
morphism of gerbs

G » FIB(Rep, (G)) (3.14.1)

which, to an object Q of G over S = spec R , associates the
fibre functor F }—= F(Q) with values in R . 1Is (3.14.1) an
equivalence of gerbs? If G is algebraic, or if the band of G

is defined by an affine group scheme over k , then it is (Saavedra
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{1, Ir 3.2.5]) but the general question is open. A positive
answer would provide the following classification of Tannakian
categories: The maps C |— FIB(C) and G |— Repy (G) determine

a one-to-one correspondence between the set of tensor equivalence
classes of Tannakian categories over k and the set of equivalence
classes of affine gerbs over k ; the affine gerbs bound by a given
band B are classified by HZ(S,B) , and HZ(S,B) is a pseudo-
torsor over HZ(S,Z) where 2Z 1is the centre of B .

(3.15) In [1, ID 3.2.1] Saavedra defines a Tannakian category
over k to be a k-linear rigid abelian tensor category C for
which there exists a fibre functor with values in a field k'Dk .
He then claims to prove (ibid. 3.2.3.1) that C satisfies the
conditions we have used to define a Tannakian category. This is
false. For example, Vec,, for k' a field containing k 1is a

Tannakian category over k according to his definition but the

£

fibre functors V = oV =V k' for o € Aut(k'/k) are not

8k',o
locally isomorphic for the f.p.q.c. topology on spec k' . There
is an error in the proof (ibid. p. 197, %.7) where it is asserted
that "par définition" the objects of Gg are locally isomorphic.
The question remains of whether Saavedra's conditions plus
the condition that End(l) = k imply our conditions. As we noted
in (3.8), when there is a fibre functor with values in k they
do, but the general question is open. The essential point is
the following: Let C be a rigid abelian tensor category with

End(l) = k and let w be a fibre functor with values in a finite

field extension k' of k ; is the functor w' ,
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Xl k'@ g w(X) : Ckry ~ Ve o
exact? (See Saavedra [l1, p. 195]; the proof there that w' |is
faithful is valid.) The answer is yes if C = Repk(G) , G an
affine group scheme over k , but we know of no proof simpler
than to say that ' 1is defined by a G-torsor on k' , and
9(k') = Repk,(G) . (See note at end.)

§4, Polarizations

Throughout this section C will be an algebraic Tannakian

category over IR and C' will be its extension to T : C' = g(m) .
Tannakian categories over IR

According to (3.13) and the paragraph following it, to
give C is the same as to give the following data:

(4.1a) A Tannakian category C' over € ;

(4.1b) A semi-linear tensor functor X|—= X : C' + C' ;

(4.1c) A functorial tensor isomorphism u, : X 3 X such

X
that ug = ﬁx .

An object of C «can be identified with an object X of C' together
with a descent datum (an isomorphism a : X 3 X such that

aeca = My) . Note that C' is automatically neutral (3.10).

Example 4.2, Let G be an affine group scheme over € and let
0:G + G be a semi-linear isomorphism (meaning £ |— gof :

F(G,OG) +> F(G,OG) is a semi-linear isomorphism). Assume there is
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given c¢ € G(C) such that

o = ad(c) , a(c) = ¢ (4.2.1).

From (G,0,c) we can construct data as in (4.1):

(a) define C' to be 5§E¢(G) :

(b) for any vector space V over & there is an (essentially)
unique vector space V and semi-linear isomorphism vf— v : Vv 3 ¥;
if V is a G-representation, we define a representation of G on
¥V by the rule gv = o(g)V ;

(c) define to be the map cvj— v : v 3

<

Yy
Let m € G(T) . Then o' = gead(m) and c' = o(m)cm again
satisfy (4.2.1). The element m defines an isomorphism of the
functor V}— V (rel. to (o,c)) with the functor V}— V (rel. to
(g',c'")) by mvl— v : V (rel. to (0,c)) + V (rel. to {(o',c')) .
This isomorphism carries uy (rel. to (o,c)) to uy (rel. to
(¢',c')) , and hence defines an equivalence C (rel. to (g,c))

with C (rel. to (o',c')).

Proposition 4.3. Let C be an algebraic Tannakian category over

IR , and let C' = Choose a fibre functor w on C' with

S -
values in € and let G = éBE?(m)

(a) There exists a pair (o,c) satisfying (4.2.1) and such
that under the equivalence C' 5 BSEE(G) defined by w , X X
corresponds to V= V and w(uy) = Hy(x) *

(b) The pair (o,c) in (a) 1is uniquely determined up
to replacement by a pair (o',c') with ¢' = gead(m) and

c' = o(m)cm , some m € G(T) .
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Proof: (a) Let w be the fibre functor X|— :Rga and let
T = Egme(w,a) . According to (3.2), T is a G-torsor, and
the Nullstellensatz shows that it is trivial. The choice of
a trivialization provides us with a functorial isomorphism
w(X) ¥ @(X) and therefore with a semi-linear functorial
isomorphism A, : w(X) 3 w(X) . Define o by the condition
that o(g)g = Ayegyery  for all g € G(E) , and let c be
such that cy = w(ux)_loliakx .

(b) The choice of a different trivialization of T replaces

A with X

X x°My for some m € G(C) , and o with ooad(m) and

¢ with o(m)cm .

Sesquilinear forms

Let 1 (with e : 1861 3 1) be an identity object for
C' . Then i (with e) 1is again an identity object, and the
unique isomorphism of identity objects a : 1 » I is a descent
datum. It will be used to identify 1 and I .

A sesquilinear form on an object X of C' is a morphism

>

On applying - , we obtain a morphism ® X > i , which can be

identified with a morphism
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There are associated with ¢ two morphisms 7,79 : X » X'

determined by

o7 (x) (y) o(x 8 y)

(4.3.1)

To(x) (y) = %y © x)

The form ¢ is said to be non-degenerate if ¢~ (equivalently

“¢) is an isomorphism. The parity of a non-degenerate

sesquilinear form ¢ is the unique morphism ¢ X > X such

¢
that

¢~ = ~¢°€¢ 7 ¢(X,Y) = ¢'(y,€¢x) . (4.3.2)
Note that
¢o(e¢@E¢) = ¢, ¢(e¢x,E¢y) = ¢(x,y). (4.3.3)

The transpose u¢ of u € End(X) relative to ¢ 1is determined

by
¢o (uBidg) = ¢o(id8u®) , ¢(ux,y) = o(x,uly) . (4.3.4)
There are the formulas

() ? = v®® , (1@)? = i, W"? = e ue !l

$__-1
$1€s .(€¢) € (4.3.5)

¢
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and u b= u¢ is a semi-linear bijection End(X) -+ End(X) .
I1f ¢ is a non-degenerate sequilinear form on X , then
any other non-degenerate sequilinear form can be written

b, = 6o (a®id) , ¢ (x,¥) = d(ax,y) = o(x,aby)y  (4.3.9)

for a uniquely determined automorphism o of X . There are
the formulas

wte = (auahH?® ey = (@7 ege . (4.3.7)
a

When € is in the centre of End(X) , ¢a has the same parity as

¢
¢ 1if and only if a¢ = a .

Remark 4.4. There is also the notion of a bilinear form on an
object X of a tensor category: It is a morphism X & X = 1 .
Most of the notions associated with bilinear forms on vector
spaces make sense in the context of Tannakian categories; see

Saavedra [1, V 2.1].

Weil forms

A non-degenerate sesquilinear form ¢ on X is a Weil
form if its parity € is in the centre of End(X) and if for

all nonzero u € End(X) , Trx(uu¢)>0 .
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Proposition 4.5. Let ¢ be a Weil form on X .
(a) The map up~ uq> is an involution on End(X) inducing

complex conjugation on € = C.id and (u,v) }— Tr(uv¢) is

x I
a positive definite Hermitian form on End(X) .

(b) End(X) is a semisimple (€-algebra.

(c) Any commutative sub-IR-algebra A of End(X) composed

of symmetric elements (i.e., such that u¢=u) is a product of

copies of IR.

Proof. (a) 1is obvious.

(b) Let I be a nilpotent ideal in End(X) : we have to
show that I = 0 . Suppose on the contrary that there is a
u#0 in I . Then v af u u¢ € I and is nonzero because
Tr(v)>0 . As v = v¢ , we have Tr(v2)>0 , Tr(v4)>0,...,
contradicting the nilpotence of I .

(c) The argument used in (b) shows that A is semisimple
and is therefore a product of fields. If € occurs as a factor
of A , then Trx|m is a multiple of the identity map, and
Tr(uz) = Tr(uu¢)>0 is impossible.

Two Weil forms, ¢ on X and ¢y on Y , are said to be
compatible if the sesquilinear form ¢®y on X®Y is a Weil

form. Note that if Hom(X,Y)=0=Hom(Y,X) , then ¢ and ¢ are

automatically compatible.

Proposition 4.6. Let ¢ be a Weil form on X ; then

o b= oy, af $poa®l induces a bijection between
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{a € Aut(x)|ozq> = a, o is a square in IR [a]C End(X)}

and the set of Weil forms on X that have the same parity as

¢ and are compatible with ¢ .

Proof: We saw in (4.3.6) that any non-degenerate sesquilinear
form on X 1is of the form bq for a unique automorphism o

of X . Moreover, ¢u has the same parity as ¢ if and only

if o= of. Assume a=a?® then u®e = ou® a™! and so ¢, is a Weil

form if and only if Tr(uou®o )50 for all u # 9 . Let

_ 00 . 06, _ 0 uda T _
v = (u 0) € End(X @& X) ; then v a = (0 0 ) and TrXQX(V Oy) =
Tr(u¢uu) . Therefore if ¢a is compatible with ¢ , then
Trx(u¢au)>0 for all u # 0 . One checks easily that the converse

statement also holds.

2 with

Now assume « to be symmetric and equal to B8
R € R[a] . Then rr (uaula™l) = Tr((ug)guat) = Tr(8u¢a_l(u8))=
tr((g tug)®8™luB) > 0 for u # 0, and Tr(ubow) = Tr((sw ¥su)>0
for u # 0 . Hence ¢a is a Weil form and is compatible with
¢ . Conversely, if bq has the same parity as ¢ and is
compatible with it, then o is symmetric and TrX(u2G)>O for

all u#0 in IR [a) ; this last statement implies that o is

a square in IR [a] .

Corollary 4.7. Let ¢ and ¢' be compatible Weil forms on X
with the same parity, and let ¢ be a Weil formon Y . If

¢ is compatible with ¢ , then so also is ¢' . In particular,
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compatibility is an equivalence relation for Weil forms on X

having a given parity.

Proof: This follows easily from writing ¢' = by -
Example 4.8. Let X be a simple object in C' , so that

End(X) = € , and let € € End(X) . If X is isomorphic to

X , then (4.3.6) shows that the sesquilinear forms on X form
a complex line; (4.3.7) shows that if there is a nonzero such
form with parity e , then the set of sesquilinear forms on X
with parity € 1is a real line; (4.6) shows that if there is

a Weil form with parity € , then the set of such forms falls

into two compatibility classes, each parametrized by R,

Remark 4.9, Let X be an object in C ‘and let ¢, be a non-
degenerate bilinear form by @ X5 @ X5 * L The parity of g
is defined by the equation ¢o(x,y) = ¢O(y,ex) . The form 6o
is said to be a Weil form on X, 1if € is in the centre of
End(X,) and if for all nonzero u € End(X,) , Tr(uu®)>0 . Two
Weil forms ¢ and ¢, are said to be compatible if 6,0V, is
also a Weil form.

Let Xg correspond to the pair (X,a) with X € ob(C') .
Then g defines a bilinear form ¢ on X , and
¥ f xe x lea~l X 8 X ? 1) 1is a non-degenerate sesquilinear
formon X . If ¢ is a Weil form, then ¢y is a Weil form on

X which is compatible with its conjugate Yy , and every such

yp arises from a ¢o; moreover e(y) = E(¢0) .




Polarizations.

Let 7% be the centre of the band associated with C
(see the appendix). Thus 2 is a commutative algebraic group
over IR such that 2(C) is the centre of Auta(w) for any
fibre functor on C' with values in T . Moreover, Z represents
Aut®(id ) .
- €
Let € € Z(IR) and, for each X € ob(C') , let w(X) be
an equivalence class (for the relation of compatibility) of Weil
forms on X with parity € ;: we say that 7w is a (homogeneous)
polarization on C if
(4.10a) for all X , $ € m(X) whenever ¢ € w(X) , and
(4.10b) for all X and Y, ¢ ® ¢y € (X & ¥Y) and
¢ ® Yy € T(XBY) whenever ¢ € 7(X) and Y € w(Y) .
We call € the parity of © and say that ¢ 1is positive
for m if ¢ € w(X) . Thus the conditions require that ¢, ¢ @& ¢ ,

and ¢ ® ¢ be positive for m whenever ¢ and ¢ are.

Proposition 4.11, Let 7 be a polarization on C
(a) The categories C and C' are semisimple.
L
(b) If ¢ € m(X) and YC X then X =Y @Y and the

restriction by of ¢ to Y is in w(Y) .

Proof. (a) Let X be an object of C' ; let Y be a nonzero
simple subobject of X and let u : Y& X denote the inclusion
map. Choose ¢ € w(Y) and ¢ € w(X) . Consider v = (g 3) :

X®Y+>X®Y and let u' : X + Y be such that vw®¢ = (3,8) .
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Then TrY(u‘u) = TrY$x(v¢e¢v)>O and so u'u is an auto-
morphism w of Y . The map p = w_lou' projects X onto
Y , which shows that Y is a direct summand of X , and X
is semisimple.

The same argument, using the bilinear forms (4.9) shows
that C is semisimple.

(b) Let Y' = Yr‘\Yl , where YL is the largest subobject
of X such that ¢ is zeroon Y ® ?1 , and let p : X + X
project X onto Y' (by which we mean that p(X)C Y' and
p|Y' = id). As ¢ is zeroon Y' 8 ¥' , 0 = ¢o(p®p) = ¢°(id®;$;),
and so p¢p = 0 . Therefore Tr(p¢p) =0 and so p , and
Y', are zero. Thus X =Y & Y' ana o= 06,8 ¢Y1 . Let ¢; € m(Y)
and ¢2 e n(Yl) . Then ¢1 ® ¢2 is compatible with ¢ , and this
implies that N is compatible with by -
Remark 4.12. Suppose C 1is defined by a triple (G,o0,c) , as in
(4.1), so that C' = Repp(G) . A sesquilinear form ¢:X @ X+ 1

defines a sesquilinear form ¢' on X in the usual, vector space,

sense by the formula

¢'(x,y) = ¢(x®y) , x,y € X (4.12.1).

The conditions that ¢ be a G-morphism and have a parity

€ € Z(IR) become respectively

¢'(qx,0'l(g)y) , g e G(o , (4.12.2)

' (x,y)
¢ (y,x)

o' (x, ec ty) (4.12.3).
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When G acts trivially on X , then (4.12.3) becomes
o' (y.x) = ¢'(x,y) ,

and so ¢' 1is a Hermitian form in the usual sense on X . If

X is one-dimensional and ¢ € w(X) , then ¢' is positive-
definite (for otherwise ¢ ® ¢ € 7(X)) . Now (4.11lb) shows that
the same is true for any X , and (4.6) shows that

{¢'|¢ € m(X)} 1is the complete set of positive-definite Hermitian
forms on X (when G acts trivially on X) . 1In particular,

Vec,, has a unique polarization.

Remark 4.13. A polarization 7 on C with parity ¢ defines,
for each simple object X of C' , an orientation of the real
line of sesquilinear forms on X with parity e (see 4.8), and

T is obviously determined by this family of orientations. Choose
a fibre functor w for C' , and choose for each simple object

X. a ¢i e n(Xi) . Then

1

(X)) = {r ¢;]r € R, }

0

If X 1is isotypic of type X; » so that w(X) = W 8 m(Xi) where

Aute(m) acts trivially on W , then

{w(d)'|[¢ e (X))} = {y ® w(¢;)'|¥ Hermitian y>0} .

If X =06 X(l) where the X(l) are the isotypic components of X

12
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then

T(X) =@ w(x(i))
Remark 4.14. Let e € Z(IR) and, for each X € ob(C) , let
n(xo) be an equivalence class of bilinear Weil forms on Xo
with parity € (see (4.9)) . One says that w 1is a homogeneous
polarization on C if b, @ U, € T(X ® Y) and ¢, @ wo e T(X8Y)
whenever ¢, € m(X) and Y, € m(Y) . As {x| (X,a) e ob(C)}
generates C' , the relation between bilinear and sesquilinear
forms noted in (4.9) establishes a one-to-one correspondence
between polarizations in this bilinear sense and in the sesquilinear
sense of (4.10).

In the situation of (4.12), a bilinear form ¢o on X, defines
a sesquilinear form ¢' on X =T ® xo (in the usual vector

space sense) by the formula

wKzlvl,zzvz) =212, ¢0(v1,v2), Vi{i1Vqy e Xo' 2042y et .

Description of polarizations

Let C be defined by a triple (G,qg,c) satisfying (4.2.1),
and let K be a méximal compact subgroup of G(C) . As all
maximal compact subgroups of G(T) are conjugate (Hochschild
{1, XV. 3.11), there exists m € G(L) such that oLk =mrm?! .

Therefore, after replacing ¢ by oecad(m) , we can assume that
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o(K) = K . Subject to this constraint, (o,c) is determined
up to modification by an element m in the normalizer of K .
Assume that C 1is polarizable. Then (4.1lla) and (2.28)

show that G° is reductive, and it follows that K is a compact

real form G , i.e., K has the structure of a compact real
algebraic group in the sense of (2.33) and Km = G (see Springer
[1, 5.6]). Let Ok be the semi-linear automorphism of G such

that, for g € G(T), og(g) is the conjugate of g relative to

the real structure on G defined by K ; note that o determines

K
K . The normalizer of XK is K.Z(fL), and so c € K.Z(C) .

Fix a polarization © on C with parity € . If X is an
irreducible representation of G and ¢ 1is a positive-definite

K-invariant Hermitian form on X , then for any ¢ € 7(X) ,

(bx © ¥y Eyor (x,y) = vix,By)

for some B € Aut(X). Equations (4.12.2) and (4.12.3) can be

re-written as

Bgy = g(g)y B , g € K(IR) (4.14.1)
B* = B ey cx (4.14.2)
where B8* is the adjoint of B8 relative to % : Y(Bx,y) = ¢(x,8*y).

As K(IR) is Zariski dense in K(T) , X is also irreducible as a
representation of K(IR) , and so the set c(X,m) of such B's

is parametrized by IR An arbitrary finite-dimensional

>0

representation X of G can be written
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X = Qi Wi ] Xi

where the sum is over the non-isomorphic irreducible represen-
tations X, of G, and G acts trivially on each w, ot let

¥; and ¢i respectively be K-invariant positive-definite
Hermitian forms on X and Wi , and let ¢ =@ wi ® ¢; ; then for
any ¢ € m(X) , ¢'(x,y) = ¥(x,By) where B = & B} ® B; with

Bi e c(Xi,ﬂ) and B} is positive-definite and Hermitian relative
to wi . We let c¢c(X,m) denote the set of B as ¢ runs through
m(X) . The condition (4.10b) that n(Xl) e n(xz)c:ﬂ(xl ® X2)
becomes c(Xl,n) ] c(XZ,ﬂ)(:c(Xl & Xz,ﬂ) .

Lemma 4.15. There exists a b € K with the following properties:
(a) by € c(X,m) for all irreducible X ;

(b) ¢ = °K°§§ b , where Ok denotes complex conjugation on

G relative to K ;

(c) e lc = ob.b = b% .

Proof: Let a = ec’ L € G(T) . When X is irreducible, (4.14.1)
applied twice shows that Bzgx = 02(9)82x = Cgc_lszx for B € c(X,m,

g€e€K, and x € X ; therefore (c_lﬁz)gx = g(c—lsz)x , and so

2 acts as a scalar on X . Hence a82 = € c_lsz also acts
as a scalar. Moreover, 82a = BR* (by 4.14.2) and so

c g

2, _ 2 . 2
Trx(aB ) = TrX(B a)>0 ; we conclude that aXB e IR>0 . It

follows that there is a unique B € c(X,m) such that ay = 8_2 .
Bgy = o(g)yB (g € K), and B* = B_l (so B is unitary).
For an arbitrary X we write X = @ wi [} X; as before, and

set B =8 id 6 Bi , where Si is the canonical element of
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c(x;,m just defined. We still have ay = 8_2, Bgy = 0(g)yB (g € X),

and B8 € c(X,7m). Moreover, these conditions characterize g : if
B' € c(X,m has the same properties, then B8' = I y; ® B4 (this
expresses that B'g, = o(g) B', g € K) with Y? =1 (as 8'2 = a-l)

X X i X
and Yi positive-definite and Hermitian; hence Yy = 1.

The conditions are compatible with tensor products, and so the

canonical B are compatible with tensor products: they therefore define

an element b € G(C) . As b is unitary on all irreducible represen-
tations, it lies in K . The equations 82 = a;l show that
p? = al = ¢1le . Finally, Bgy = 0(g),® implies that a(g) = ad b(g)

for all g € K : therefore gead b—1 fixes K and, as it has order
2, it must equal og -
Theorem 4.16. Let C be an algebraic Tannakian category over IR
and let G = égge(w) where w is a fibre functor on C with values
in € ; let 7 be a polarization on C with parity ¢ . For any
compact real-form K of G , the pair (GK,e) satisfies (4.2.1),
and the equivalence g'liggEE(G) defined by w carries the descent
datum on C' defined by C into that on BEEm(G) defined by

(OK,E) : w(X) = w(X), m(ux) = Mux) - For any simple X in C' ,
{w($)'l¢ € m(X)} is the set of K-invariant positive-definite
Hermitian forms on w(X).

Proof: Let (C,w) correspond to a triple (G,ol,cl) (see (4.3a)),
and let b € K be the element constructed in the lemma. Then

o, = UKOEQ b and c¢ = e.ob.b = ogb.e.b . Therefore (GK,e) has the
same property as (cl,cl) (see (4.3b)), which proves the first
assertion. The second assertion follows from the fact that

b € c(w(X),m) for any simple X .
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Classification of polarized Tannakian categories

Theorem 4.17 (a) The category C 1is polarizable if and only if
its band is defined by a compact real algebraic group K .

(b) Let K be a compact real algebraic group, and let
e € Z(IR) where 2 is the centre of K ; there exists a Tannakian
category C over IR whose gerb is bound by the band B(K) of K
and a polarization 7 on C with parity e .

(c) Let (gl,nl) and (gz,ﬂz) be polarized algebraic Tannakian
be the identific-

categories over IR, and let B 3 B and B 3 B

1 2
ations of the bands of <, and c, with a given band B . If

e(wl) = e(m,) in 2z (B)(R) then there is a tensor equivalence

< e C, respecting the polarizations and the actions of B (i.e.,
such that FIB(QZ) 5 FIB(Cy) is a B-equivalence), and this equi-
valence is unique up to isomorphism.

Proof: We have already seen that if C is polarizable, then ('

is semisimple, and so, for any fibre functor « with values in T ,
(the identity component of) G = égge(w) is reductive, and hence has
a compact real form K . This proves half of (a). Part (b) is proved
in the first lemma below, and the sufficiency in (a) follows from

(b) and the second lemma below. Part (c) is essentially proved by

(4.16) .

Lemma 4.18. Let K be a compact real algebraic group and let

G =K let o(g) o'(g) where ¢' 1is a Cartan involution for K ,

T ;
and let € € Z(R) where Z is the centre of K . Then (o,¢g)
satisfies (4.2.1) and the Tannakian category ¢ defined by (G,o,¢€)

has a polarization with parity e
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Proof: Since 02 = id and o0 fixes all elements of K , (4.2.1)
is obvious. There exists a polarization w on C such that,

for all simple X , {¢'|d € 7(X)} 1is the set of positive-definite
K-invariant Hermitian forms on X . (In the notation of (4.15),

b=1.) This polarization has parity e .

Let C correspond to (C', X k* X,u); for any 2z € Z(R) , where
Z 1is the centre of the band B of cC ., (C', X} X, uwoz) defines

a new Tannakian category zg over R .

Lemma 4.19. Every Tannakian category over R whose gerb is bound

by B is of the form Zg for some =z € Z(R) ; there is a tensor

zl

Zg > C respecting the action of B if and only if

equivalence

leam? .

z'z
Proof: Let w be a fibre functor on C . and let (C,w) correspond
to (G,o,c) ; we can assume that a second category 91 corresponds

to (G,0y,cy) . Let y and y; be the functors V |= ¥ defined

by (o,c) and (ol,cl) respectively. Then Yil o y defines a

tensor automorphism of w , and so corresponds to an element

me G(C) . We have g = clogg(m) ;, and so we can modify (Gl,cl)
in order to get gy =0 . Let u and By be the functorial
isomorphisms V - V defined by (o,c) and (o,cl) respectively.
Then u11°u defines a tensor automorphism of idc , and so

u_io u= z-l, z € Z(R) . We have 4y = pez . B

The second part of the lemma is obvious.
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Remark 4.20. Some of the above results can be given a more
cohomological interpretation. Let B be the band defined by a
compact real group K , and let 2 be the centre of B ; let
C be a Tannakian category, whose gerb is B .

(a) As 2z is a subgroup of a compact real algebraic group,

it is also compact (see (2.33) ). It is easy to compute its

cohomology; one finds that

IE:

ul (R, 2)

2Z(]R) ker(2:Z(R) + Z(R))

u2(R,2) = Z(R)/Z(R)>

]

(b) The general theory shows that there is an isomorphism
HlﬂR,Z) > AutB(g) , which can be described explicitly as the map

associating to z € Z(R)2 the automorphism w,

(X, ay) = (X, ag zy)

il S

(¢} The Tannakian categories bound by B , up to B-equivalence,
are classified by HzaR,B) , and HZGR,B) if nonempty is an
HzﬂR,Z)—torsor; the action of Hz(R,Z) = ZGR)/ZGR)2 on the categories
is made explicit in (4.19).

(d) Let Pol(C) denote the set of polarizations on C . For

m € Pol(C) and z € Z(R) we define zm to be the polarization such

that
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d(x,y) € zm(X) = ¢(x,zy) € m(X) :
it has parity e(zw) = 22 e(m) . The pairing
(z,m) I zw : Z(R) x Pol(C) +Pol(C)
makes Pol(C) into a Z (R) -torsor.

(e) Let m € Pol(C) and let e=¢g(m) ; then C has a
polarization with parity €' € Z(M®R) if and only if ' = 522 for
some z € Z(R) .

Remark 4.21. 1In Saavedra [1, V. 1] there is a table of Tannakian
categories whose bands are simple, from which it is possible to

read off those that are polarizable (loc. cit. V. 2.8.3).

Neutral polarized categories

The above results can be made more explicit when C has a fibre
functor with values in R .

Let G be an algebraic group over R , and let C € GR) . A
G-invariant sesquilinear form ¢ : V xV » C on V € ob(gggm(G)) is

said to be a C-polarization if

at

o€ (%, y) Y(x,Cy)
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is a positive-definite Hermitian form on V . If every object

of Repm(G) has a C-polarization then C is called a Hodge

element.

Proposition 4.22. Assume that G(R) contains a Hodge element C .

There is then a polarization on ReEE(G) for which the

C
positive forms are exactly the C-polarizations; the parity of

m is C2 : for any g € G(@R) and z € Z(R) , where 2 1is the

C

centre of G , C' = ngg_l is also a Hodge element and

Tor = 2T ;1 every polarization on RegE(G) is of the form

for some Hodge element C' .

c!

Proof: Let ¢ be a C-polarization on V € ob(Rep,(G)) ; then
—_— ==Pg

vix,y) = ¥(Cx,Cy) because § 1is G-invariant, and

Y(Cx,Cy) = wC(Cx,y) = wc(y,Cx) = w(y,sz) . This shows that ¢

has parity c® . For any V , w(y,sz) = Y(x,y) = ¥(gx,qy) =

w(gy,czgx) = w(y,g_lczgx), g€ G®R), x, y €V ; this shows that
C

C2 € Z(R). For any u € End(V) , u¥ = ul!J , and so Tr(uuw) >0

if u # 0 . This shows that Yy is a Weil form with parity 02 .

The first assertion of the proposition is now easy to check. The
third assertion is straightforward to prove, and the fourth follows

from it and (4.19).

Proposition 4.23. The following conditions on G are equivalent:
{(a) there is a Hodge element in G(R) ;
(b) the category ReEE(G) is polarizable;

(c) G is an inner form of a compact real algebraic group K
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Proof: (a) = (b). This follows from (4.22).

(b) = (c) . To say that G is an inner form of K is the same
as to say that G and K define the same band: this implication
therefore follows from (4.17a).

(¢) => (a) . Let 2 be the centre of K (and therefore also

of G) and let Kad = K/Z . The assumption says that the
isomorphism class of G is in the image of

it @, k2% > ¢ ®, Aut(x))

According to Serre [l1, IH, Thm 6], the canonical map
,®4m) = vlmxdm) » at®, k29
is an isomorphism. From the cohomology sequence

kK®) » k4m > wl®, 2 » 1l ®,K

I I
LZRS JK®R)

we see that K®R) —> KadaR) , and so G 1is the inner form of
K defined by an element C' € K(R) whose square is in Z(R)

Let Yy be an isomorphism Km -+ Gm such that yeadC' = Y , and

1 1

let C = y(C') ; then C = ¥(C') =vy(C') =C and ¥ oad(C) =y ~ .
This shows that C € G(R) and that K is the form of G defined

by C ; the next lemma completes the proof.
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Lemma 4.24. An element C € G(R) such that C° € zZ(R) is a

Hodge element if and only if the real-form K of G defined by
C is a compact real group.

Proof: Identify K with G; and let g and g* respectively
be the complex conjugates of g € G(C) relative to the real
structures defined by G and K . Then g* = gg(c'l)(a) = Cl§C .
Let V¥ be a sesquilinear form on V € Ob(BEEE(G)) . Then V¥

is a G-invariant if and only if

vlgx,gy) = ¥(x,y) , g € G(T)

On the other hand, wC is K-invariant if and only if

WCiax,a*y) = 1Cx,y) , g € (D) .

These conditions are equivalent: V has a C-polarization if

and only if V has a K-invariant positive-definite Hermitian
form. Thus C 1is a Hodge element if and only if, for every
complex representation V of K , the image of K in Aut(V)

is contained in the unitary group of a positive-definite Hermitian
form; this last condition is implied by K being compact and
implies that K 1is contained in a compact real group and so is

compact (see (2.33)).

Remark 4.25. (a) The centralizer of a Hodge element C of G
is a maximal compact subgroup G , and is the only maximal compact

subgroup of G containing C ; in particular, if G is compact, then
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C 1is a Hodge element if and only if it is in the centre of G
(Saavedra [1, 2.7.3.5]).

(b) If C and C' are Hodge elements of G then there

exists a g € G(R) and a unique z € Z(R) such that C' = ngg"l

(Saavedra [1, 2.7.4]). As Tor = 2T o this shows that Moy = T

if and only if C and C' are conjugate in GR) .

C

Remark 4.26. It would perhaps have been more natural to express
the above results in terms of bilinear forms (see (4.4), (4.9),
(4.14)): a G-invariant bilinear form ¢ : Vv, *V, >R on

v, € ob(RegF(G)) is a C-polarization if ¢C(x,y) af ¢(x,Cy) 1is

a positive-definite symmetric form on Vo i C is a Hodge element
if every object of ReEB(G) has a C-polarization; the positive
forms for the (bilinear) polarization defined by C are precisely

the C-polarizations.

Symmetric polarizations

A polarization is said to be symmetric if its parity is 1 .
Let K be a compact real algebraic group. As 1 is a Hodge
element (4.24), BEER(K) has a symmetric polarization 1w for
which w(XO) r X, € Ob(BEER(K)) , consists of the K-invariant
positive-definite symmetric bilinear forms on X5 (and w(X) .,
X € ob(gggm(K)) , consists of the K-invariant positive-definite

Hermitian forms on X).
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Theorem 4.27. Let C be an algebraic Tannakian category over

R, and let 7 'be a symmetric polarization on C . Then C

has a unique (up to isomorphism) fibre functor w with values

in R transforming positive bilinear forms for m into positive-
definite symmetric bilinear forms; w defines a tensor equivalence
c 3 BSER(K) , where K = ggge(m) is a compact real group.

Proof: Let wy be a fibre functor with values in € , and let

G = égge(ml) . Since C 1is polarizable, G has a compact real
form K . According to (4.16), wi : C' ¥ BSEE(G) carries the
descent datum on €' defined by C into that on BSEm(G) defined
by (OK,l) . It therefore defines a tensor equivalence w : C =+ BEER(K)
transforming 1w 1into the polarization on BEER(K) defined by

the Hodge element 1 . The rest of the proof is now obvious.

Remark 4.28. Let 7 be a polarization on C . It follows from
(4.204) that C has a symmetric polarization if and only if

e(m) € Z(ZR)2 .

Polarizations with parity € of order 2

For u = +1 , define a real u-space to be a complex vector space

V together with a semi-linear automorphism o such that 02 =u .
A bilinear form ¢ on a real u-space is u-symmetric if
¢(x,y) = up(y,x) : such a form is positive-definite if ¢(x,0x) > O

for all x # 0 . Thus a l-symmetric form is symmetric, and a (-1)-
symmetric form is skew-symmetric.

Let V¥V, be the category whose objects are pairs (V,0) where

1

v=vlev is a Z/27ZZ - graded vector space over T and




g : V3V is a semi-linear automorphism such that 02x=(—1)deg(X)x.

With the obvious tensor structure, V_  Dbecomes a Tannakian category

over R with €-valued fibre functor (V,o)p— V . There is a
polarization m =m__ .~ on Y5 such that, if V 1is homogeneous,
deg(v)

then n(V,0) comprises the (-1) -symmetric positive-definite

forms on V .

Theorem 4.29. Let C be an algebraic Tannakian category over IR,
and let 7w be a polarization on C with parity € where sz=l ,
€ #1 . There exists a unique (up to isomorphism) exact faithful

functor w : C » Zo such that

(a) w carries the grading on C defined by € into the grading
)m

on V i.e., w(e) acts as (-1 on w(V)m :

-0’

(b) w carries 7w 1into w i.e., ¢ € m(X) if and only if

can’
w(e) € m . (w(X) .

Proof: Note that v, is defined by the triple (uz,oo,eo) where
Oq is the unique semi-linear automorphism of u, and €5 is the
unigque element of uzﬂR) of order 2. We can assume (by (4.3))
that C corresponds to a triple (G,0,e) . Let G0 be the

subgroup of G generated by € :; then (Go,cho,e) = (uz,do,eo)

~

and so the inclusion (GO,0|GO,€)C;* (G,0,e) induces a functor
c+ Vv, having the required properties.

Let w,0': C = Yo be two functors satisfying (a) and (b).

yu
€

It is clear from (3.2a) that there exists an isomorphism A : w
1 . 1
from w to w regarded as functors to Vecm . As AX : w(X) + w'(X)
commutes with the action of ¢ , it preserves the gradings; as 2
commutes with w(¢) , any ¢ € w(X) , it also commutes with o ;

it follows that A 1s an isomorphism of w and w' as functors to Yo‘
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§5,. Graded Tannakian categories

Throughout this section, k will be a field of characteristic

Zero.

Gradings

Let M be set. An M-grading on an object X of an additive

category is a decomposition X = @& ™ ; an M-grading on an
meEM

additive functor u : C + C' is an M-grading on each u(X),
X € ob(C) , that depends functorially on X .

Suppose now that M 1is an abelian group, and let D be the
algebraic group of multiplicative type over k whose character
group is M (with trivial Galois action; see (2.32)). In the cases
of most interest to us, namely M = 2Z or M= Z /2%, D equals
G, or u, (=22/27Z) . BAn M-grading on a Tannakian category C
over k can be variously described as follows:

(5.1la) An M-grading, X = @& X, on each object X of C
that depends functorially on X and is compatible with tensor
= e xf e ¥° ;

r+s=m

products in the sense that (X 8 Y

(5.1b) An M-grading on the identity functor idc of C
that is compatible with tensor products; -

(5.1c) A homomorphism D - éu_t@(idc)

(5.1d) A central homomorphism D +—G , G = égga(m) , for
one (or every) fibre functor w .
Definitions (a) and (b) are obviously equivalent. By a central

homomorphism in (d), we mean a homomorphism from D into the

centre of G defined over k ; although G need not be defined
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over k , its centre is, and equals Aut@(idc) , whence follows
the equivalence of (c) and (4) . Finally, a homomorphism
w : D~ Aute(idc) corresponds to the family of gradings X = & X

for which w(d) acts on X"CX as m(d) € k .

Tate triples

A Tate triple T over k is a triple (C,w,T) comprising
a Tannakian category C over k , a % -grading W:Gm hd Autg(idc)

on C (called the weight grading), and an invertible object T

(called the Tate object) of weight -2. For any X € ob(C) and
n € Z, we write X(n) = X @ ™ A fibre functor on T with
values in R is a fibre functor w : C > Mod, together with an
isomorphism w(T) > m(Taz), i.,e., the structure of an identity
object on w(T) . If T has a fibre functor with values in k ,
then T is said to be neutral. A morphism of Tate triples
(gl,wl,Tl) > (gz,wz,Tz) is a tensor functor n : C, + Gy

preserving the gradings together with an isomorphism n(Tl) 3 T, -

Example 5.2 (a). The triple (gggR,W,R(l)) in which Ho is
the category of real Hodge structures (see (2.31)), w 1is the
weight grading on EEER , and R(l) is the unique real Hodge structure
with weight -2 and underlying vector space 27iTR, is a neutral
Tate triple.
(b) The category of Z-graded vector spaces over (@,
together with the object T = mB(l) {(see I.1), forms a Tate triple

EB ; the category of % -graded vector spaces over Wz , together
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with the object T = ml(l)' forms a Tate triple Ty ¢ the
category of %~ graded vector spaces over k , together with the
object T = mDR(l) , forms a Tate triple EDR .
Example 5.3. Let V be the category of % -graded complex

vector spaces V with a semi-linear automorphism a such that

azv = (-1 if v e V" . with the obvious tensor structure,

V becomes a Tannakian category over R, and w : (V,a) = Vv is

a fibre functor with values in € . Clearly G, = éggg(w) ’

and V corresponds (as in (4.3a)) to the pair (g|— g ,-1).

Let w : G~ B be the identity map, and let T = (V,a) where

V is € regarded as a homogeneous vector space of weight -2

and a is z F* z . Then (V,w,T) is a (non-neutral) Tate triple

over R .

Example 5.4. Let G be an affine group scheme over k and let
W B > G be a central homomorphism and t : G > E 2 homo-
morphism such that tow = -2 (&£ s s%) . Let T be the
representation of G on k such that g acts as multiplication
by t(g) . Then (ngk(G),w,T) is a neutral Tate triple over k .

The following proposition is obvious.

Proposition 5.5. Let T = (C,w,T) be a Tate triple over k , and
let w be a fibre functor on T with values in k . Let
G = Aute(w) , so that w 1is a homomorphism Gm + Z(G)C G . There

is a homomorphism t : G > B, such that g acts on T as
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multiplication by t(g) , and tow = -2 . The equivalence
c e ngk(G) carries w and T into the weight grading and
Tate object defined by t and w .

More generally, a Tate triple T defines a band B , a
homomorphism w : G, 2z into the centre 2 of B , and a
homomorphism t : B + mm such that tow = -2 . We say that
T is bound by (B,w,t).

Let G, w, and t be as in (5.4). Let G, = Ker(t : G -~ Gm) ,

and let € : Ky ™ G

o Dbe the restriction of w to m, ; we often

identify e with e(~-1) = w(-1) € Z(GO)(k) . Note that e defines
a Z/2Z-grading on _C_O=Repk(G°) . The inclusion GOC—>G

defines a tensor functor Q : C with the following properties:

=
(5.6a) if X is homogeneous of weight n , then Q(X) is
homogeneous of weight n (mod 2},
(5.6b) Q(T) =1 ;
(5.6c) if X and Y are homogeneous of the same weight, then

X

Hom(X,Y) + Hom(Q(X), Q(Y)) :

(5.6d) if X and Y are homogeneous with weights m and n
respectively and Q(X) ® Q(Y), then m-n is an even integer 2k
and XxX(k) ® Y :

(5.6e) Q 1is essentially surjective.

The first four of these statements are obvious. For the last, note
that G = Gm x G/p2 . and so we only have to show that any
representation of Hy extends to a representation of G_ , but

m
this is obvious.
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Remark 5.7 (a) The identity component of Go is reductive
if and only if the identity component of G 1is reductive:; if
Go is connected, so also is G , but the converse statement is
false (e.g., G, = py, G = G ) .

(b) It is possible to reconstruct (C,w,T) from (go,e) e
the following diagram makes it clear how to reconstruct (G,w,t)

from (Go,e) :

1 >Hy —> B _2, G >1
el
- t
1— 56, —> G B —>1
Proposition 5.8. Let T = (C,w,T) be a Tate triple over k with

Cc algebraic. There exists a Tannakian category go over k , an

element € in Aute(idc ) with 52 =1, and a functor Q : C ~» 90
=0

having the properties (5.6).
Proof: For any fibre functor w on C with values in an algebra

R , Isom(R,w(T)) regarded as a sheaf on spec R is a torsor for

& - This association gives rise to a morphism of gerbs

h

G = FIB(g) % TORS(Gm) , and we define 90 to be the kernel of

t ; thus G, is the gerb of pairs (Q,&) where Q € ob(G) and

$u

£ 1is an isomorphism t(Q) G , i.e., Gy is the gerb of fibre

m,X

functors on T . Let [ be the category Regk(Go) which

(see (3.14)) is Tannakian. If 2 = Aute(idc) and z = Aute(idc Y,
(o)

then the homomorphism 2 + Aut(T) =G, a}— ap , determined by

m’

t has kernel 2 and the composite tew = -2; we let e=w(—l)ezo .

o’
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There is an obvious (restriction) functor Q : C - C, -
In showing that @Q had the properties (5.6), we can make a
finite field extension X -+ k' . We can therefore assume that

T is neutral, but this case is covered by (5.5) and (5.6).

Example 5.9. Let (V,w,T) be the Tate triple defined in (5.3);
then (Yo,e) is the pair defined in the paragraph preceding

(4.29),

Example 5.10. Let T = (C,w,T) be a Tate triple over IR ,
and let w be a fibre functor on T with values in € . On
combining (4.3) with (5.5) we find that (T,w) corresponds to a
quintuple (G,o0,c,w,t) in which

(a) G 1is an affine group scheme over T ;

(b) (o,c) satisfies (4.2.1);

(c) w: &+ G is a central homomorphism; that the grading

is defined over R means that w is defined over R, i.e.,

o(w(g)) = w(g) .
(d) t : G ~» G is such that tew = -2; that T is defined
over R means that t(o(g)) = t(g) and there exists a € mm(m)

such that +t(c) =oc(a)a .
Let G, = Ker(t) , and let m € G(E) be such that t(m) = al
After replacing (o,c) with (ceadm, o(m)cm) we find that the

new c¢ is in G, . The pair (C_,w|C)) corresponds to

(Gyr0|G ,c) -«

Remark 5.11. As in the neutral case, T «can be reconstructed from
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(go,e) . This can be proved by substituting bands for group
schemes in the argument used in the neutral case (Saavedra
[1, V. 3.14.1]), or by using descent theory to deduce it from
the neutral case.

There is a stronger result: T |- (go,e) defines an
equivalence between the 2-category of Tate triples and that of

% /27 -graded Tannakian categories.

Graded polarizations

For the remainder of this section, T = (C,w,T) will be
a Tate triple over R with C algebraic. We use the notations

of §4; in particular (' = C Let U be an invertible

=) -
object of C' that is defined over R, i.e., U is provided
with an identification U 3 U; then in the definitions and results
in §4 concerning sesquilinear forms and Weil forms, it is possible
to replace 1 with U .

For each X € ob(C') that is homogeneous of degree n , let
m(X) be an equivalence class of Weil forms X & X 1(-n) of
parity (-1 ; we say that 1w 1is a {(graded) polarization on T
if

(5.12a) for all X , ¢ € w(X) whenever ¢ € m(X) ;:

(5.12b) for all X and Y that are homogeneous of the same
degree, ¢ ® Y € M(X & ¥Y) whenever ¢ € w(X) and ¢ € m(Y) ;

(5.12c) for all homogeneous X and Y , ¢ 8 ¢ € (X 8 Y)

whenever ¢ € w(X) and Y € w(Y) :
2

(5.12d) the map T ® T » T 1(2), defined by T ¥ T , is

in w(T)
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Proposition 5.13. Let (go,s) be the pair associated with T

by (5.8). There is a canonical bijection
Q : Pol(T) - POle(go)

from the set of polarizations on T to the set of polarizations
on Eo with parity ¢ .

Proof: For any X € ob(C') that is homogeneous degree n ,
(5.6b) and (5.6c) give an isomorphism

Q : Hom (X ® X, 1(-n)) > Hom(Q(X) & Q(X), 1) .

We define Qn to be the polarization such that, for any homogeneous
X, om(ox) = {Q¢|¢ e (X))} . It is clear that =f Qw is a

bijection.

Corollary 5.14, The Tate triple T is polarizable if and only

if C, has a polarization w with parity e(m)ze (mod ZO(R)Z) .
Proof: See (4.20e).

Corollary 5.15. The map (z,m)|+ zm : 2ZO(]R) x Pol(T) = Pol(T)
(where ¢(x,y) € zm(X)<=>¢(x,2y) € 7(X)) makes Pol(T) into
a pseudo-torsor for 2ZOCR)

Proof: See (4.204).

Theorem 5.16. Let m be a polarization on T , and let w be a
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fibre functor on C' with values in € . Let (G,w,t) correspond
to (Im'”) . For any real form K of G such that K, = Ker (t)
is compact, the pair (cK,e) where e = w(-1) satisfies (4.2.1),
and w defines an equivalence between T and the Tate triple
defined by (G,UK,e,w,t) . For any simple X in C(C'

{w($)'|¢ € n(X)} is the set of Ko—invariant positive-definite
Hermitian forms on w(X) .

Proof: See (4.16).

Remark 5.17. From (4.17) one can deduce the following: A triple
(B,w,t), where B 1is an affine algebraic band over R and
tow = -2, bounds a polarizable Tate triple if and only if
B, = Ker(t:B —+ Gm) is the band defined by a compact real algebraic
group; when this condition holds, the polarizable Tate triple bound
by (B,w,t) is unique up to a tensor equivalence preserving the
action of B and the polarization, and the equivalence is unique
up isomorphism. The Tate triple is neutral if and only if
e =wi-1) e 3 (R Z .

Let (G,w,t) be a triple as in (5.4) defined over R , and
let Go = Ker(t) and e = w(-1l) . A Hodge element C € GOGR) is
said to be a Hodge element for (G,w,t) if 02 =g . A G-invariant
sesquilinear form Y :V X V + 1(-n) on a homogeneous complex

representation V of G of degree n is said to be a C-

polarization if
wc(x,y) df y(x,Cy)

is a positive~-definite Hermitian form on V . When C 1is a Hodge
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element for (G,w,t) there is a polarization To on the Tate

triple defined by (G,w,t) for which the positive forms are

exactly the C-polarizations.

Proposition 5.18. Every polarization on the Tate triple defined

by (G,w,t) 1is of the form w for some Hodge element C .

C
Proof: See (4.22) and (4.23) .

Proposition 5.19. Assume that w(-1)=1 . Then there is a unique

(up to isomorphism) fibre functor w on T with values in R
transforming positive bilinear forms for = into positive-definite
symmetric bilinear forms.

Proof: See (4.27).

Proposition 5.20. Let (V,w,T) be the Tate triple defined in

(5.3), and let Tan be the polarization on V such that, if

(V,a} € ob(V) is homogeneous, then n(V,a) comprises the (—l)deg(V)—

symmetric positive-definite forms on Vv . If w(-1) # 1 for T
and 7 is a polarization on T , then there exists a unique (up to
isomorphism) exact faithful functor w : C » V preserving the
Tate-triple structures and carrying 7m into .

can
Proof: Combine (4.29) and (5.9).

Example 5.21. Let T be the Tate triple (gggn,wyB(l)) defined
in (5.2). A polarization on a real Hodge structure V of weight

n is a bilinear form ¢ : V x V - R(-n} such that the real-valued
form (x,y)— (27i)™¢(x,Cy) , where C denotes the element
iesm = T , 1s positive-definite and symmetric. These

polarizations are the positive (bilinear) forms for a polarization
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T on the Tate triple T . The functor w : EQER > Vv
provided by the last proposition is V= (V& €, v c¥) .

(Note that (gggm,wgm(l)) is not quite the Tate triple associated,
as in (5.4), with (8,w,t) because we have chosen a different

Tate objects:; this differencg explains the occurrence of (ZWif)

in the above formula; m is essentially the polarization defined

by the canonical Hodge element C . )

Filtered Tannakian Categories

For this topic we refer the reader to Saavedra [1, IV.2].

§6. Motives for absolute Hodge cycles

Throughout this section, k will denote a field of characteristic
zero with algebraic closure k and Galois group T = Gal(k/k) .
All varieties will be projective and smooth, and, for X a variety
{or motive) over k , X denotes X 8 k . We shall freely use

the notations and results of Article I; for example, if %k = C

then HB(X) denotes the graded vector space & Hg(x) .

Complements on absolute Hodge cycles

For X a variety over k , CgH(x) denotes the rational
vector space of absolute Hodge cycles on X (see I.2). When X

has pure dimension n , we write
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P - ontP
MorAH(X,Y) CAH (X x Yy) .

Then Mozb (x, NC 2P (x x ¥) (p+n) = ®  H(X) 8 K (Y) (p+n)
r+s=2n+2p
= ® BT (x)¥ 8 H°(Y) (p)
s=r+2p
= ® Hom (HY (X) ,HEF 2P (v) (p))
r

The next proposition is obvious from this and the definition of an

absolute Hodge cycle.

Proposition 6.1l. An element £ of MoriH(X,Y) gives rise to

(a) for each prime £ , a homomorphism £, : Hl(i) + HQ(Y)(p] of

graded vector spaces (meaning that f2 is a family of homomorphisms

r , ,r,3 r+2p,g .

fg @ Hp(X) » Hy (Y)Y (p)) =

(b) a homomorphism fDR : HDR(X) > HDR(Y)(p) of graded vector
spaces;

(c) for each o : k& € , a homomorphism £, ¢ Hc(x) > HU(Y)(p)
of graded vector spaces.

These maps satisfy the following conditions:

(d) for all y € T and primes ¢, Y(fl) = fl :

(e) £ is compatible with the Hodge filtrations on each

DR

homogeneous factor;

(f) for each o : k& € , the maps f £ and f correspond

g’ "L’ DR

under the comparison isomorphisms (I.1l).

Conversely, assume that k is embeddable in €; then any family of maps

0 fDR as in (a), (b) arises from f € MorgH(X,Y) provided (fl) and

£ satisfy (d) and (e) respectively and for every o¢ : k& €
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there exists an fc such that (fz), f and fo satisfy

DR’
condition (f) ; moreover, £ is unique.

Similarly, a ¢ € Cig_r (X x X) gives rise to pairings

S

v HS(X) % H2r—s

(x) > @(-xr) .

Proposition 6.2. On any variety X (of dimension n) there exists

a ye Cia_r(x x X) such that, for every ¢ : k& T,

vy Hg(X,R) % HD (X,R) > R(-x)

is a polarization of real Hodge structures (in the sense of (5.21)).
Proof: Choose a projective embedding of X , and let L be a
hyperplane section of X . Let & be the class of L in HZ(X)(l),
and write & also for the map H(X) » H(X)(l) sending a class

to its cup-product with & . Assume X is connected and define

the primitive cohomology of X by

2n-r+2

HY(X) + H (X) (n-r+1)) .

The hard Lefschetz theorem states that

gPT L T (x) » 52PTT(X) (n-1)

is an isomorphism for r<n ; it implies that
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s Hr-ZS(x)(_s) ]

r —
O (X) = ® % prim .

s>r-n, SzO

Thus any x € HY(X) can be written uniquely, x = £2%(x_), with
s

r-2s .
Xg e H (X)(—s)prim, define

)(r—ZS)(r~2s+l)/2 ﬁn—r+s < € H2n—r

s (X) (n-r) .

*y = § (-1

Then x + *x : HY(X) » H2PF

(X) (n-r) 1is a well-defined map

for each of the three cohomology theories, 2-adic, de Rham, and
Betti. Proposition 6.1 shows that it is defined by an absolute
Hodge cycle (rather, the map H(X) + H(X)(n-r) that is xpk *x

on H' and zero otherwise is so defined). We take wr to be

ide* 2n-r Tr

Y (x) ®HT (X) HE (X) OH (X) (n-r) + H®(X) (n-r) 5 Q(-r) .
Clearly it is defined by an absolute Hodge cycle, and the Hodge-
Riemann bilinear relations (see Wells [1, 5.3)) show that it

defines a polarization on the real Hodge structure Hﬁ(x,m) for

each o : k= C .

Proposition 6.3. For any u € MorZH(Y,X) there exists a unigue

u' e MorZH(X,Y) such that
by luy, %) = by(y,u'x) , x € H'(X), y € H'(¥)

where ¢ and ¢ are the forms defined in (6.2); moreover,
X Y
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Tr(uu') = Tr(u'u) € @

Tr(uu') > o 1if u # o

Proof: The first part is obvious; the last assertion follows
from the fact that the wx and wY are positive forms for a
polarization in Eggm .

Note that the proposition shows that MorXH(X,X) is a

semisimple @-algebra (see 4.5).

Construction of the category of motives

Let Yk be the category of (smooth projective, not
necessarily connected) varieties over k . The category Cvy
is defined to have as objects symbols h(X) , one for each
X € ob(yk) , and as morphisms Hom(h(X),h(Y)) = MoriH(X,Y) .
There is a map Hom(Y,X) - Hom(h(X),h(Y)) sending a homomorphism
to the cohomology class of its graph which makes h into con-
travariant functor Vi > &Y .

Clearly g!k

h(X) ® h(Y) . There is a @-linear tensor structure on gyk

is a (@-linear category, and h(Xx J| Y¥) =

for which h(X) ® h(Y) = h(X x ¥) , the associativity constraint is
induced by (X x ¥) x Z » X x(¥YxZ) , the commutativity constraint
is induced by Y x X » X x Y , and the identity object is h{(point).

The false category of effective (or positive) motives

o

M; is defined to be the pseudo-abelian (Karoubian) envelope of

vy - Thus an object of &; is a pair (M,p) with M € Eyk and

p an idempotent in End(M) , and
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Hom( (M,p), (N,q)) = {f : M > N|fop = gof}/~ (6.3.1)
where f~0 if fop = 0 = gof . The rule

(M,p) & (N,q) = (M8N, p®qg)

. . +
defines a {-linear tensor structure on Mk , and

M > (M,id) : CVy > @; is a fully faithful functor which we use

to identify CVy with a subcategory of M; . With this

identification, (M,p) becomes the image of p : M + M . The

category Mt is pseudo-abelian: any decomposition of id into
M

a sum of pairwise orthogonal idempotents

.

. . + . .
with eiIMi = ldMi . The functor CV, - Mk is universal for

functors from CV, into pseudo-abelian categories.

For any X € ob(yk) , the projection maps pr : H(X) + BHE(X)
define an element of MorgH(X,x) = End(h(X)) . Corresponding to
the decomposition

s _ .0 1 2 .
ldh(X) =p +p +p +
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there is a decomposition (in &;)
- ho 2 2
h(X) = h°(X) + h“(X) + h"(X) + *** .

This grading of objects of v, extends in an obvious way to
objects of é; , and the Kiinneth formulas show that these gradings
are compatible with tensor products (and therefore satisfy (5.1la)).
Let L be the Lefschetz motive hz(Pl) . With the notations
of (I.1), H(L) = @(-1), whence it follows that Hom(M,N)
Hom(MSL,N8L) for any effective motives M and N . This means
that VI> V®L is a fully faithful functor and allows us to
invert L . The false category &k of motives 1is defined as
follows:
(6.4a) an object of &k is a pair (M,m) with
Meob(b._d;) and me Z;

N-m w8 Ny N > m,n

(6.4b) Hom((M,m), (N,n)) = Hom(M ® L
(for different N, these groups are canonically isomorphic) ;
(6.4c) composition of morphisms is induced by that in &; .

This category of motives is {@-linear and pseudo-abelian and

has a tensor structure
(M,m) & (N,n) = (M8N, m+n)

and grading
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We identify M; with a subcategory of &k by means of M ¢# (M,0).
The Tate motive T is L1 = (1,1) . We abbreviate MeT®"= (M, m)
by M({m) .

We shall see shortly that &k is a rigid abelian tensor
category, and End(l) = @ . It is not however a Tannakian category
because, for X € ob(yk) , rk(h(X)) is the Euler-Poincaré
characteristic, J (-1)F dim H*(X) , of X , which is not

necessarily positive. To remedy this we modify the commutativity

constraint as follows: let

P : MeNINOM bp=8y ", P : M

by the commutativity constraint on &k ; define a new commutativity

constraint by
P:MONINGOM, y=20ypS y = (-1)FSyTrs (6.4.1)

Then My with § replaced by ¥ , is the true category M, of

Proposition 6.5. The category My is a semisimple Tannakian
category over @ .

Proof: We first need a lemma.

Lemma 6.6. Let C be a (@-linear pseudo-abelian cateogry, and
let w : C~» YEEQ be a faithful @-linear functor. If every
indecomposable object ov C is simple, then C is a semisimple
abelian category and w is exact.

Proof: The existence of w shows that each object of C has
finite length and hence is a finite direct sum of simple objects.
For any map f : X - Y , Ker(f) is the largest subobject of X

on which f is zero, and Coker(f) is the largest guotient of
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Y such that the composite X + Y + Coker(f) is zero. The

rest of the proof is easy.

Proof of (6.5): We can replace M with the tensor subcategory
generated by a finite number of objects, and consequently we

can assume that there exists an embedding o : k& € . The
functor Hy ¢ M > YEEQ is faithful and @-linear. Let M be

an indecomposable motive, and let i : NG M be a nonzero simple
subobject of M . Clearly M is homogeneous, and after tensoring

it with a power of T we can assume that N and M are effective,

and therefore

M@ M =h'(X) with X eV, and

NeN' =hT(Y) with Y€V .
Let u : hf(Y) - h¥(X) be the morphism (3 g) and let u' = (z g)
be its transpose (see 6.3), As Tr(u'u) > 0 , and Tr(u'u) = Tr(ai) ,

we see that ai # 0 . It is therefore an automorphism of N,

and (ai)_1 a: M+ N projects M on N . As M is indecomposable,
this shows that M = N , and M is simple. The lemma can therefore
be applied, and shows that My is a semisimple {@-linear abelian

tensor category. It remains to show that it is rigid. Let X and Y

be varieties of pure dimension m and n respectively. Then

Hom(h(Y),h(X) (m-n))

_ m _ m
Hom(h (X) ,h(Y)) = CAH(XXY) = CAH(YXX)

i

Hom(h(¥) (n) ,h(X) (m})
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The functor h(X) = h(X)’ € h(x)(m) extends to a fully faith-
ful contravariant functor Mw Mv P M- gk , and we set
Hom(M,N) = M & N . It is straightforward now to check that M
is Tannakian (especially if one applies (1.20)).

The following theorem summarizes what we have (essentially)

shown about Ek .

Theorem 6.7. (a) Let w be the grading on M then (gk,w,T)
is a Tate triple over Q .

(b) There is a contravariant functor h : Vi > M every effective
motive is the image (h(X),p) of an idempotent p € End{h(X)) for
some X € ob(yk) ; every motive is of the form M(n) for some
effective M and some n € ZZ.

(c¢) For all varieties X,Y with X of pure dimension m ,
cggs‘r(x x¥) = Hom(h(X) (r),h(¥)(s)) ; in particular, Cp.(X x ¥) =
Hom(h(X) ,h(Y)) ; morphisms of motives can be expressed in terms of
absolute Hodge cycles on varieties by means of (6.3.1) and (6.4b).
(d) The constraints on ﬂk have an obvious definition, except
that the obvious commutativity constraint has to be modified by

(6.4.1).

(e) For varieties X and Y ,

h(X J| ¥) = h(X) & h(Y)
h(X x ¥ ) = h(X) 8 h(Y)
h(x)¥ = h(X)(m), if X is of pure dimension m.
(f) The functors H H and Hc define fibre functors on M, . :

2’ DR’ k

these fibre functors define morphisms of Tate triples, M > zﬂ'TDR’TB
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(see (5.2b)); in particular H(T) = @(1) .
(g) When k is embeddable in T , Hom(M,N) is the vector

space of families of maps

£, ¢ Hz(ﬁ) > Hz(ﬁ)

£ : Hpp(M) > Hpyp (N)

DR DR
such that fDR preserves the Hodge filtration, Y(fg) = fz for all
Yy €T, and for any o : k< T there exists a map
f0 : HO(M) > HU(N) agreeing with f2 and fDR under the comparison
isomorphisms.

(h) The category M is semisimple.
(i) There exists a polarization on M for which w(hT(X)) consists

of the forms defined in (6.2).

Some calculations

According to (6.7g), to define a map M + N of motives it
suffices to give a procedure for defining a map of cohomology groups
H(M) » H(N) that works (compatibly) for all three theories: Betti,
deRham, and %-adic. The map will be an isomorphism if its
realization in one theory is an isomorphism.

Let G be a finite group acting on a variety. The group

algebra Q@QI[G] acts on h(X) , and we define h(X)G to be the

1

motive (h(X),p) where p is the idempotent (ord G) ~Ig .

Note that H(h(X)G) = H(X)G .
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Proposition 6.8. Assume that the finite group G acts freely
on X , so that X/G is also smooth; then h(X/G) = h(X)G .
Proof: Since cohomology is functorial, there exists a map
H(X/G) + H(X) whose image lies in H(x)G = H(h(X)G) . The

r+s

Hochschild-Serre spectral sequence HY(G,H%(X)) == H (X/G)
shows that the map H(X/G) + H(X)G is an isomorphism for, say
the f2-adic cohomology, because Hr(G,V) =0, r>0 , if Vv is

a vector space over a field of characteristic zero.

Remark 6.9. More cgenerally, if £ : Y + X 1is a map of finite
(generic) degree n between connected varieties of the same
dimension, then the composite H(X) E: H(Y) £5 H(X) is multi-
plication by n ; there therefore exist maps h(X) - h(Y) + h(X)

with composite n , and h(X) is a direct summand of h(Y) .

Proposition 6.10. Let E be a vector bundle of rank m+l over a
variety X and let p : P(E) - X be the associated projective
bundle; then h(P(E)) = h(X) & h(X)(~1) &+++0h(X) (-m) .

Proof: Let vy be the class in HZ(P(E))(l) of the canonical line
bundle on P(E) , and let p* : H(X) + H(P(E)) be the map induced

by p . The map
(Corennrcy) b 1 p*(c)) Yo @ -+ 8 HI(X) (-m) > HP(E))

has the requisite properties.

Proposition 6.11. Let Y be a smooth closed subvariety of codimension

¢ in the variety X , and let X' be the variety obtained from X
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by blowing up Y ; then there is an exact sequence
0 +~ h(Y) (-c) =~ h(X) @ h(¥Y')(-1) ~ h(X") ~ 0

where Y' is the inverse image of Y .

Proof: From the Gysin sequences

cee > B2 (y) (=) » HE(K) > BE(X-Y) o+ eeo
' ‘ I
cee > BET2(Y0) (1) > BE(XO) > HO(X'SY) e

we obtain a long exact sequence
oo > WET2C(y) (mo) » HE(X) @ BETA(Y') (<1) + HT(X') » oeer .

But Y' is a projective bundle over Y , and so Hr_zc(Y)(—c) >

Hr_z(Y')(—l) is injective. Therefore there are exact sequences
0 » E2%(y) (<c) » HE(X) ® BT 2(¥') (-1) » HT(X') > 0,
which can be rewritten as
0 + H(Y)(-c) + H(X) & H(Y')(-1) > H(X'} ~ 0 .

We have constructed a sequence of motives, which is exact because

the cohomology functors are faithful and exact.
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Corollary 6.12. With the notations of the proposition,

c-1
h(X') = h{X) & @& h(Y)(-r) .
r=1
c-1
Proof: (6.10) shows that h(Y') = @& h(Y)(r) .
r=0
Proposition 6.13. If X 4is an abelian variety, then h(X) = A(hl(x)).

Proof: Cup-product defines a map A(Hl(x)) + H(X) which, for
the Betti cohomology say, is known to be an isomorphism. (See

Mumford [1,I.1}].)

Proposition 6.14. If X 1is a curve with Jacobian J , then
h(x) =1ehl(3) oL .

Proof: The map X + J (well-defined up to translation) defines

an isomorphism Hl(J) + Hl(x] .

Proposition 6.15. Let X be a unirational variety of dimension

d<3 over an algebraically closed field; then

(d=1) h(x) =1 8L ;
(d=2) h(X) =1 & rL ® L%, some r € N ;
(d=3) h(X) =1 ® rL ® h'(a)(-1) 8 rt.? 8 1.3 , some r e N ,

where A is an abelian variety.
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Proof: We prove the proposition only for d=3 . According to

the resolution theorem of Abhyankar [1], there exist maps

with v surjective of finite degree and u a composite of

2 3

blowing-ups. We know hﬂP3) =16L6&L"®L (special case of

(6.10)). When a point is blown up, a motive L & L2 is added,
and when a curve Y is blown up, a motive L & hl(Y)(—l) ] L2 is
added. Therefore

h(X') =1 @ sL ® M(-1) @ sL?® L3

where M is a sum of motives of the form hl(Y) , Y a curve.

A direct summand of such an M is of the form hl(A) for A an

abelian variety (see (6.21) below). As h(X) is a direct summand

of h(X') (see (6.9)) and Poincaré duality shows that the multiples
2

of L and L3 occurring in h(X) are the same as those of L

and 1 respectively the proof is complete.

Proposition 6.16. Let Xg denote the Fermat hypersurface of

dimension n and degree d

d d =
TSt Tl + e 4+ T =0 .

Then

n-1
d

R (x3) @ a h@™ = Rl x x)W e (a-1)n™72(x272) (-1
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where ug o the group of dth roots of 1 , acts on Xg_l X Xé
according to
pltgser=: n;so:sl:sz) = (tO:---:tn_l:ctn;so:slzzsz)

Proof: See Shioda-Katsura [l1, 2.5].

Artin Motives

Let yi be the category of zero-dimensional varieties over

k , and let CYE be the image of yﬁ in M. The Tannakian
subcategory g; of gk generated by the objects of Cy; is
called the category of (E.) Artin motives.

For any X 1in ob(yg) , X(k) 4is a finite set on which T

X (k)

acts continuously. Thus Q is a finite-dimensional continuous

representation of T . If we regard T , in the obvious way, as

XK ¢ Repy (T) -

a (constant, pro-finite) affine group scheme over k ,

For X, Y € ob(Vp) ,

mx(i)xy(i) r k

Hom(h(x) ,h(¥)) & g (x x ¥) = )T = mom (@™, "1

Thus h(X) QX(k) : g!; + Regm(P) is fully faithful, and Grothendieck's
formulation of Galois theory shows that it is essentially surjective.
Therefore gyi is abelian and g§ = gy; . We have shown:

Proposition 6.17. The category of Artin motives g? = gy? ; the

T X K
x(K)

functor h(X)H Q@ defines an equivalence of tensor categories

§§ 3 Regm(F) .

Remark 6.18. Let M be an Artin motive, and regard M as an
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object of Repm(F). Then

HG(M) = M (underlying vector space) for any o : k& T ;
H[_(F{) = M 8;D,, as a T -module;

=T

HDR(M) = (M® k)Y .

]
Note that, if M = h(X) where X = spec A , then

= XK g =T _
Hpp{M) = (@ emk) = (A Qk) =A.
Remark 6.19. The proposition shows that gﬁ is equivalent to

the category of sheaves of finite-dimensional @ vector spaces

on the étale site spec(k)et .

Effective motives of degree 1

A (@Q-rational Hodge structure is a finite-dimensional vector

space V over @ together with a real Hodge structure on V @ R
whose weight filtration is defined over @ . Let gggm be the
category of Q@-rational Hodge structures. A polarization on an
object V of Eggm is bilinear pairing ¢ :V x V » @(-n) such
that ¢ @ R is a polarization on the real Hodge structure V @ R .
Let Egggk be the category of abelian varieties up to isogeny
over k . The following theorem summarizes part of the analytic

theory of abelian varieties.

. R .
Theorem 6.20. (Riemann) The functox HB : Isabm - Hodm is fully

faithful; the essential image consists of polarizable Hodge structures

of weight 1.
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Let E;l be the pseudo-abelian subcategory of gk
generated by motives of the form hl(x) for X a geometrically
connected curve; according to (6.14), M;l can also be described
as the category generated by motives of the form hl(J) for J

a Jacobian.

Proposition 6.21. (a) The functor hl : Isabk -+ Ek factors

through le and defines an equivalence of categories,

~ .+
Isabk + Mk .
1 +1

(b) The functor H™ : My Hodm is fully faithful; its
essential image consists of polarizable Hodge structures of weight
1.

Proof: Every object of Isabk is a direct summand of a Jacobian,

which shows that hl factors through !;1 . Assume, for simplicity,

that k 1is algebraically closed. Then,for any A,B. € ob(Isabk) P
Hom(B,A)  Hom(h' (a), n'(B))c Hom(n_(a) ,H_(B)) ,

and (6.20) shows that Hom(B,A) = Hom(Ho(A),HU(B)) . Thus hl

is fully faithful and (as Isabk is abelian) essentially surjective.

This proves (a), and (b) follows from (a) and (6.20).

The motivic Galois group

Let k be a field that is embeddable in € . For any
g : k= € , we define G(o) = Aute(HB) . Thus G(o) is an affine
group scheme over @ , and Hy defines an equivalence of tensor
categories M > Repm(G(o)) . Because G(og) plays the same role
for M, as T = Gal(k/k) plays for gﬁ , it is called the

motivic Galois group.
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Proposition 6.22. (a) If k is algebraically closed, then

G(o) is a connected pro-reductive affine group scheme over ¢ .
(b) Let kck' be algebraically closed fields, let o' : k'~ 1T ,
and let ¢ = o'|k . The homomorphism G(¢') + G(o) induced by

Mk > !k' is faithfully flat: if k has infinite transcendence
degree over @ , then G(¢') + G(g) 1is an isomorphism.

Proof: (a) Let X € ob(gk) , and let gx be the abelian tensor

subcategory of gk generated by X, XY, T, and T . According

to (I 3.4), GX df QEE@(H0|QX) is the smallest subgroup of
Aut(Hc(X)) X Gm such that (GX)E contains the image of the
homomorphism p : mmm > Aut(Ho(X,m)) X mmm defined by the Hodge
structure on HG(X) . As Im(u) 1is connected, so also is Gy -

As Cy is semisimple (see (6.5)) , Gy is a reductive group (2.23).
Therefore G = lim Gx is connected and pro-reductive.

<

(b) According to (I 2.9), Mo~ M, is fully faithful, and so
(2.29) shows that G(o') + G(o) . When k has infinite
transcendence degree over (@ , gk - gk' is essentially surjective,

and so G(c') ¥ G(o) .

Now let k be arbitrary, and fix an embedding o : k& C .
The inclusion gﬁ > M defines a homomorphism = : G(g) - I' because
. ® o _ .
I' = Aut (H0|gk) (see (6.17)), and the functor M - Mp defines

a homomorphism i : c°(o) + G(o) where G°(0) af Aut®(Ho]gi) .

Proposition 6.23. (a) The sequence

1> ) % oy Ir+1

is exact.
(b) The identity component of G(o) is c°(a) .
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(¢) For any 1 €T , 710 =§gE®(HU,HTU), regarding H; and

H , as functors on Mg .

(d) For any prime & , there is a canonical continuous homo-
morphism spy r - G(c)(ml) such that mesp, = ia .

Proof: (a) As gﬁ > M is fully faithful, 7 1is surjective
(2.29). To show that i is injective, it suffices to show that

every motive h(X) , X € Vi , is a subguotient of a motive h(x")

k
for some X' € V) ; but X has a model X, over a finite extension
k' of k , and we can take X' = Resk'/kxo . The exactness of

G(o) 1is a special case of (c) .

(b) This is an immediate consequence of (6.22a) and (a).

() Let M, N € ob(M) . Then Hom(M,N) € ob(Repy () , and so

we can regard it as an Artin motive over k. There is a canonical

map of motives Hom(M,N)<— Hom(M,N) giving rise to
H, (Hom (M,§)) = Hom(M,§) 225 Hom(u (M), H (M) = H_(Hom(M,N)) .

Let T €T ; then HO(M) = HU(M) = HTO(M) = HTU(M) and, for
f € Hom(M,N), Hc(f) = HTO(Tf) .
Let g € G(R) ; for any f : M+ N in Mo there is a

commutative diagram

Iy
H_(M,R) —> H_(M,R)
H, (£) Hy (£)

Iy
HG(N,R) _— HO(N,R)

Let T = m(g), so that g acts on Hom(M,N)c Hom(M,N) as T .

Then for any £ : M » N in Mg
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_ 9y _ _
Hg(M,R) e 4 HU(M,R) = HTG(M'R)
H_(f) H (17l H__(f)
o] ag T0
S g _ ) _
HO(N,R) N Hg(N,R) HTG(N'R)

commutes . The diagram shows that dy 3 Ho(ﬁ,R) - HTG(ﬁ,R)

depends only on M as an object of gi . We observed in the
proof of (a) above that Mﬁ is generated by motives of the

form M, M e M, . Thus g defines an element of EQEQ(HU'HTGJ(R)'
where Hg and H , are to be regarded as functors on ﬂi . We
have defined a map ﬂ_l(T) d EEEG(HG'HTU) , and it is easy to see
that it is surjective.

(d) After (c), we have to find a canonical element of

Home(Hz(cM), HQ(TGM)) depending functorially on M € Mg . Extend
T to an automorphism T of € . For any variety X over k .

there is a T Y-linear isomorphism oX « ToX which induces an

isomorphism T : Hz(cx) 3 HQ(TOX) .

The "espoir" (Deligne [2, 0.10) that every Hodge cycle is
absolutely Hodge has a particularly elegant formulation in terms

of motives.

Conjecture 6.24. For any algebraically closed field k and
embedding o : k& T , the functor H, : Ek + Hodm is fully
faithful.

The functor is obviously faithful. There is no description,

not even conjectural, for the essential image of H,
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Motives of abelian varieties

v
k

motives of abelian varieties and Artin motives. The main theorem

Let Ma be the Tannakian subcategory of gk generated by

of I has the following restatement.

Theorem 6.25. For any algebraically closed field k and

. av .
embedding o : k<& € , the functor Ho : gk -+ Hodm is fully
faithful.

Proposition 6.26. The motive h(X) € ob(M}") if

(a) X is a curve;
(b) X 1is a unirational variety of dimension <3 ;
(c) X 1is a Fermat hypersurface:;

(d) X

is a K3-surface

Before proving this, we note the following consequence.

Corollary 6.27. Every Hodge cycle on a variety that is a
product of abelian varieties, zero-dimensional varieties, and

varieties of type (a), (b), (c) and (d), is absolutely Hodge.

Proof of 6.26. Cases (a) and (b) follow immediately from (6.14)
and (6.15), and (c) follows by induction (on n) from (6.16). 1In
fact one does not need the full strength of (6.16). There is

a rational map

+
m—ey xEY¥S

s
n
[N

(Rpzorixpyg)y (Yoreeiyg ) — (K ¥y 7 tX Y ) TEX 1Y 3 m s uEX 1Y)

where € 1is a primitive 2mth root of 1 . The map is not defined

on the subvariety Y : x =0 . On blowing up Xg x Xz

r+l = Ys+1
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along the nonsingular centre Y , one obtains maps

By induction, we can assume that the motives or Xg, Xg, and

Y(:Xé-l x Xg-l) are in g;v . Corollary (6.12) now shows that

r+s

h(ZgrS) € ob(giv) and (6.9) that h(X3 ") € ob(Miv) .

For (d), we first note that the proposition is obvious if
X is a Kummer surface, for then x = i/<0> where A 1is an
abelian variety A with its 16 points of order <2 blown up and
o induces at+> -aon A .

Next consider an arbitrary K3-surface X , and fix a projective

embedding of X . Then

_ 2 2
h(X) = h(®") @ h (X)prim

av

and so it suffices to show that hz(X) is in M . We can

prim
assume k = € . It is known (Kuga-Shimura [l1], Deligne [1, 6.51])
that there is a smooth connected variety S over € and families
£f:Y¥Y+S, a:A>S of polarized K3-surfaces and abelian varieties
respectively parametrized by S having the following properties:

£ -1

(a) for some o€ S, ¥ =f

° (0) 1is X together with its

given polarization;
(b) for some 1 € S , Yl is a polarized Kummer surface;

(c) there is an inclusion u : sz*m(l) — End(Rla*Q)

prim
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ccmpatible with the Hodge filtrations.

The map u Hé(x)(l) < End(Hl(Ao,Q)) is therefore defined

(o} prim
by a Hodge cycle, and it remains to show that it is defined by

an absolutely Hodge cycle. But the initial remark shows that ug .
being a Hodge cycle on a product of Kummer and abelian surfaces,

is absolutely Hodge, and principle B (I2.12) completes the proof.

Motives of abelian varieties of potential CM-type

An abelian variety A over k 1is said to be of potential
CM-type if it becomes of CM-type over an extension of k . Let
A be such an abelian variety defined over @ , and let MT(A) be

the Mumford-Tate group of Ap (see I.5). Since Am is of CM-

type, MT(A) is a torus, and we let LcC be a finite Galois
extension of (@ splitting MT(A) . Let EQ,L be the Tannakian

subcategory of EQ generated by A , the Tate motive, and the Artin
b

motives split by 12 , and let A bpe affine group scheme associated

with this Tannakian category and the fibre functor Hp

Proposition 6.28. There is an exact sequence of affine group schemes

1> nr(a) 3¢ ¥ Galt®/p > 1 .

. 5 . :
Proof: Let gg be the image of gg in Em ; then MT(A) is

the affine group scheme associated with gé , and so the above

sequence is a subsequence of the sequence in (6.23a).

Remark 6.29. If we identify MT(A) with the subgroup of

-1

Aut(Hé(A)) , then (as in 6.23c) 7 ~ (1) becomes identified

with the MT(A)-torsor whose R-points, for any @-algebra R , are the
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R-linear isomorphisms a : Hl(Am,R) -+ Hl(TAm,R) such that

a(s) = trs for all (absolute) Hodge cycles on A@ . We can also
identify MT(A) with a subgroup of Aut(H?(A)) and then it
1

becomes more natural to identify = ~ (1) with the torsor of
R-linear isomorphisms a’ : Hl(AQ,R) > Hl(TAm,R) preserving
Hodge cycles.

On passing to the inverse limit over all A and L , we

obtain an exact sequence
1+s°+ s+ cal(l/@ » 1

with s° and s respectively the connected Serre group and the
Serre group. This sequence plays an important role in the next

three articles.

Appendix: Terminology from non-abelian cohomology

We review some definitions from Giraud [1l].

Fibred categories

Let & : F > A be a functor. For any object U of A we

write F, for the category whose objects are those F in F

U
such that o(F) = U and whose morphisms are those £ such that
a(f) = idU . For any morphism a : a(Fl) + a(F,) , we write

Homa(Fl,Fz) for the set of £ : Fl + F

A morphism f : Fl > F2 in F 1is said to be cartesian, and Fl

2 such that of(f) = a .

is said to be the inverse image a(f)*F2 of F2 relative to

o(f) , if, for any F' € Ea(Fl) and h € Homu(f)(F +Fy) , there
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is a unique g € Homid(F',Fl) such that fg=h:

We say that o : F > A 1is a fibered category if

(a) for any morphism a : U, > U in A and F, € ob(F_. ) ,
1 2 = 2 -U2

the inverse image a*(Fz) of F, exists:

(b) the composite of two cartesian morphisms is cartesian.
(Existence and transitivity of inverse images.) Then a* can be
made into a functor EUZ + EUl , and (ab)* is canonically
isomorphic to b*a¥

Let o : F+> A and a' : F' + A be fibred categories over
A, and let 8 : F > F' be a functor such that a'<f = o: one says
B 1is cartesian if it maps cartesian morphisms to cartesian

morphisms.

Stacks (Champs)

Let a : F ~» AffS be a fibred category where Affs is
the category of affine schemes over S = spec R . We endow AffS

with the f.p.q.c. topology. Let a : T' - T be a faithfully

flat map of affine S-schemes and let F € ob(Fqe) 5

datum on F relative to a 1is an isomorphism ¢ : pI(F) + p3(F)

a descent

such that p§1(¢) = p§2(¢) p51(¢) where Py and p, are the
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-

projections T" = T' x_ T' 5 T' and the pij are the

T

projections T'" = T' Xp T' xg T ER Xn T' . With an
obvious notion of morphism, the pairs (F,¢) form a category
Des(T'/T) . There is a functor Fp » Des(T'/T) under which
F € ob(F;) maps to (a* (") ,¢) where ¢ is the canonical
morphism pia*(F) =z (pla)*F = (pza)*F ® p%a*F . The fibred
category o : F -+ §££S is a stack if, for all faithfully flat
maps a : T' + T , Fqp > Des(T'/T) is an equivalence of categories.

For example, let a« : MOD ~» éfis be the fibred category such

that MOD is the category of finitely presented F(T,OT)—modules;

T
descent theory shows that this is a stack (Waterhouse [1,17.2],
Bourbaki [2,I.3.6]). Similarly, there is a stack PROJ =+ Affs

for which PROJ, is the category of finitely generated projective
P(T,OT)—modules (ibid.) and a stack AFF - AffS for which

AFFT = AffT .

Gerbs (Gerbes)

A stack G -~ §££S is a gerb if

(a) each fibre Gp is a groupoid (i.e., all morphisms in
Gy are isomorphisms);

(b) there is a faithfully flat map T + S such that e
is nonempty;

(¢) any two objects of a fibre Gp are locally isomorphic
(i.e., their inverse images relative to some faithfully flat map
T' + T are isomorphic).

By a morphism of gerbs over Aff, we mean a cartesian functor.

A gerb G ~» AffS is said to be neutral (or trivial) if Gg is

nonempty.
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Let F be a sheaf of groups on S for the f.p.q.c.
topology. The fibred category TORS(F) -+ éggs for which
TORS(F)T is the category 29£§T(F) of right F-torsors on
T is a neutral gerb. Conversely, let G be a neutral gerb
and let Q € Ob(E5)7 then F = Aut(Q) 1is a sheaf of groups
on éﬁﬁs and G -~ TORS(F) , P& EEEET (a*Q,P) (for a : T = S)

is an equivalence of gerbs.
Bands (Liens)

Let F and G be sheaves of groups for the f.p.g.c.

ad

topology on S , and let G be the quotient sheaf G/Z where

2 is the centre of G . The action of G2 on G by conjugation

ad

induces an action of G on the sheaf 1Isom(F,G) and we set

Isex(F,G) = F(S,Gad\Isom(F,G)) . as G2 acts faithfully on

Isom(F,G) ,

Isex(F,G) = lim Ker(Gad(T)\Isom(FlT,GlT) s ¢ X T)\Isom(F|T X T,G|T X T))
>

where the limit is over all T + S faithfully flat and affine.
A band B on S 1is defined by a triple (S',G,¢) where
S' is an affine S-scheme, faithfully flat over S , G is a sheaf
of groups on S' , and ¢ € Isex(pr, ng) is such that
P3; (9) = p%,(9)p%,(¢) . (As before, the p; and pjj are the
various projection maps S" # S' and Ss'™ F s"). If T is also
a faithfully flat affine S-scheme, and a : T + S' is an S-morphism,
then we do not distinguish between the bands defined by (S',G,¢)
and (T,a*(G),(a x a)*(¢)) . Let B, and B, be the bands defined

by (S‘,G1,¢l) and (S',G2,¢2): an isomorphism By 3 B, is an
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element ¢ € Isex(G;,G,) such that p§(¢)“¢l= ¢2°p;(w) .

If G 1is a sheaf of groups on S , we write B(G) for the
band defined by (S,G,id). One shows that Isom(B(Gl),B(GZ)) =
Isex(Gl,Gz) . Thus B(Gl) and B(Gz) are isomorphic if and
only if Gy is an inner form of Gy i.e. G, becomes isomorphic
to Gl on some faithfully flat S-scheme T , and the class of
G, in Hl(S,égE(Gl)) comes from Hl(S,Gid) . When G is

2
Isom(Gl,Gz).

commutative, then Isom(B(Gl),B(Gz)) = Isex(Gl,Gz)
and we usually do not distinguish B(Gz) from G, -

The centre Z(B) of the band B defined by (S',G,?%) 1is
defined by (S',Z,¢|piz) where 2 is the centre of G . The
above remark shows that ¢|pfz lifts to an element
¢, € Isom(piz, pﬁZ) , and one checks immediately that pgl(¢1)
P3,(%) P3,(¢;) . Thus (s’,Z,¢|piZ) arises from a sheaf of
groups on S , which we identify with Z(B)

Let G be a gerb on éﬁES . By definition, there exists
an object Q € gs. for some S' + S faithfully flat and affine.
Let G = Aut(Q); it is a sheaf of groups on S' . Again by
definition, p§Q and p3Q are locally isomorphic on §"“, and
the locally-defined isomorphisms determine an element
¢ € Isex(p{(G),pﬁ(G)) . The triple (S',G,¢) defines a band

B which is uniquely determined up to a unique jisomorphism.

This band B is called the band associated with the gerb G ,

and G 1is said to be bound by B . For example, the gerb

TORS (G) is bound by B(G)
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A band B 1is said to be affine (or algebraic) if it can
be defined by a triple (S',G,¢) with G an affine (or algebraic)

group scheme over g'. A gerb is said to be affine (or algebraic)

if it is bound by an affine (or algebraic) band.

Cohomology

Let B be a band. Two gerbs gl and EZ bound by B are
said to be B-equivalent if there is an isomorphism m : 91 + G,
with the following property: for some triple (S',G,¢) defining
B there is an object Q € Els'
G * Aut(Q) 3 Aut(m(Q)) ¥ G defined by m is equal to id in

such that the automorphism

Isex(G,G) . The cohomology set H2(S,B) is defined to be the set
of B-equivalence classes of gerbs bound by B . If 2 is the
centre of B , then HZ(S,Z) is equal to the cohomology group of
Z in the usual sense of the f.p.qg.c. topology on S , and
either H2(S,B) is empty or HZ(S,Z) acts simply transitively

on it (Giraud [1, IV. 3.3.3]).

Proposition: Let S = spec k,k a field, and let G be an
affine algebraic gerb on S ; then there is a finite field extension

k' of k such that G , S' = spec k' , is nonempty.

SI
Proof: By assumption, the band B of G is defined by a triple
(s',G,¢) with G of finite type over S' . Let §S' = spec R';
R' «can be replaced by a finitely generated subalgebra, and then

by a quotient modulo a maximal ideal, and so we may suppose S' =

speck' where k' 1is a finite field extension of k . We shall
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show that the gerbs G and TORS (G) become B-equivalent

over some finite field extension of k' . The statement
preceding the proposition shows we have to prove that an element
of HZ(S',Z) , 72 the centre of B , is killed by a finite

field extension of k' . But this assertion is obvious for
elements of Hl(S‘,Z) and is easy to prove for elements of

v v
the Cech groups HY(s',Z) , and so the exact sequence
v v
0 - n2(s',z) - H2(s',2) » HL(S',HN(2))

completes the proof. (See Saavedra [1, III 3.1] for more details.)

Note: (Added July, 1981): It seems likely that the final
question in (3.5) can be shown to have a positive answer when

k has characteristic zero. 1In particular this would show that
any rigid abelian tensor category C with End(l) = k having

a fibre functor with values in some extension of k is Tannakian,

provided k 1is a field of characteristic zero.
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