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This paper has two purposes: the first is to extend Shimura’s results, as described in his
talk (Shimura 1971b) to more general arithmetic quotients of bounded symmetric domains
and the second is to interpret some of the results of Milne and Shih 1982b as non-abelian
reciprocity laws at the special points of the symmetric domain. The latter can be regarded as
nonabelian solutions to Hilbert’s twelfth problem.

Before describing our results in more detail, we review the classical case. A modular
function (on the upper half-plane) of level N is said to be arithmetic if its Fourier expansion
with respect to e2�iz=N has coefficients in Q.e2�i=N /. The arithmetic modular functions
form a field F 0 on which GL2.A/C acts and there is an exact sequence of topological groups

1!Q� �GL2.R/C! GL2.A/C
�
�! Aut.F 0/! 1

(Shimura 1971a, 6.23). The sequence generalizes the exact sequence

1!Q� �R�C! A�Q! Gal.Qab=Q/! 1

of class field theory. We have Qab � F 0 and for u 2 GL2.A/C, the restriction of �.u/ to
Qab is given by det.u/�1 2 A�Q via the Artin reciprocity map. Moreover, let z be a special
point of the upper half-plane, so that Q.z/ is a quadratic imaginary extension of Q. Let
Q.z/� ,!GL2 be the normalized embedding (ibid., p. 104). The reciprocity law at z asserts
the following: if f 2 F 0 is defined at z, then f .z/ 2Q.z/ab; for any v 2A�Q.z/ �GL2.A/C,
�.v/�1f .z/D Œ��f .z/, where Œ�� is the image of � in Gal.Q.z/ab=Q.z//.

More generally, one starts with a bounded symmetric domain XC and a reductive group
G such that Gad.R/C is the identity component of the group of holomorphic automorphisms
of XC. The field F 0 consists of meromorphic functions on XC that are automorphic
relative to a congruence subgroup of Gder.Q/ and are arithmetic. In defining this last notion,
it is not always possible to use Fourier expansions. Instead one must first construct a
family of varieties defined over number fields (a canonical model) and require an arithmetic
automorphic function to be defined on one of the varieties in the family. Then, under certain
assumptions, there is an exact sequence,

1!1Z.Q/ �G.R/C! G.G;X/ �
�! Aut.F 0=E/
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in which G.G;X/ is a certain subgroup of G.A/, Z is the centre of G, 1Z.Q/ is the closure
of Z.Q/ in Z.A/, and E is a certain field associated with G and X (called the reflex field).
The image of � in Aut.F 0=E/ is an open subgroup of finite index. It is frequently possible
to enlarge G.G;X/ to make � surjective. Attached to a special point z of XC there is a
finite extension field E.z/ of E and a map �WE.z/�! G of Q-rational algebraic groups
such that �.A/WA�

E.z/
! G.A/ factors through G.G;X/. The reciprocity law at z asserts

the following:

if f 2 F 0 is defined at z, then f .z/ 2 E.z/ab; if v 2 A�
E.z/

and uD �.�/�1,

then �.u/f .z/D Œ��f .z/, where Œ�� is the image of � in Gal.E.z/ab=E.z//.

The above results were proved in Shimura 1970, K. Miyake 1971, Shih 1979 for a group
whose derived group is simply connected and Q-simple of type C , A, and B respectively.
We prove them whenever G is classical and the canonical model is known to exist. (In
this generality it is more natural to replace the exact sequence by an inclusion E.G;X/ ,!
Aut.F 0=E/.) The essential step, which is carried out in �1, is to compute the automorphism
group of a connected Shimura variety. An argument of T. Miyake allows us in �2 to show that
the automorphism group of the variety is equal to the automorphism group of its function
field. The above results, concerning Shimura’s canonical models, can then be deduced
without difficulty from Deligne’s results (1979) concerning his canonical models. This is
done in �3 and �4.

The non-abelian reciprocity laws proved in �5 take the following form. Recall that the
Weil group of E.z/ over E is an extension

1!E.z/�nA�E.z/!WE.z/=E
�
�! HomE .E.z/;Q/! 1;

and that the map E.z/�nA�
E.z/
! Gal.E.z/ab=E.z// of class field theory extends to a map

� 7! Œ��WWE.z/=E ! HomE .E.z/ab;Q/. For any special z 2X , the abelian reciprocity law
can be interpreted as stating the following:

let � 2 E.z/�nA�
E.z/

and let �.�/ be its image in G.Q/nG.A/ under the map
defined by �; then, for any lifting uD .u1;uf / of �.�/ to G.A/,

�.u�1
f
/f .z/D Œ��f .adu1 ı z/:

This makes sense because �.a
�1/f .z/D f .ada ı z/ for a 2 G.Q/. The non-abelian reci-

procity law states the following:

letC be the isotropy subgroup ofGR at z; the mapE.z/�nA�
E.z/
!G.Q/nG.A/=C.R/

defined by � extends to a map �WWE.z/=E ! G.Q/nG.A/=C.R/; for any
� 2WE.z/=E and lifting uD .u1;uf / of �.�/ to G.A/,

�.u�1
f
/f .z/D Œ��f .adu1 ı z/:

We remark that there are now three notions of canonical model: Shimura’s model and
Deligne’s connected and non-connected models. Only Shimura’s model provides one with
a family of geometrically irreducible varieties defined over number fields, but in proving
theorems it seems to be easier to work first with Deligne’s models.
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NOTATION AND CONVENTIONS.

For Shimura varieties and algebraic groups we generally follow the notation of Deligne 1979.
Thus a reductive algebraic group G is always connected, with derived group Gder, adjoint
group Gad, and centre Z DZ.G/. A central extension is an epimorphism G!G0 whose
kernel is contained in Z.G/, and a covering is a central extension such that G is connected
and the kernel is finite.

A superscript C refers to a topological connected component; for example, G.R/C is
the identity component of G.R/ relative to the real topology, and G.Q/C DG.Q/\G.R/C.
For G reductive, G.R/C is the inverse image of Gad.R/C in G.R/ and G.Q/C DG.Q/\
G.R/C. In contrast to Deligne 1979, we use the superscript ^ to denote both completions
and closures.

We write Sh.G;X/ for the Shimura variety defined by a pair .G;X/ and Shı.G;G0;XC/
for the connected Shimura variety defined by a triple .G;G0;XC/. The canonical model of
Sh.G;X/ is denoted by M.G;X/.

Vector spaces are finite-dimensional, number fields are of finite degree over Q (and
usually contained in C/, and Q is the algebraic closure of Q in C. If V is a vector space over
Q and R is a Q-algebra, we often write V.R/ for V ˝R.

We write yZD lim
 �

Z=mZ, Af DQ˝yZ for the ring of finite adèles of Q, and ADR�Af
for the ring of adèles of Q. For E a number field, AE;f and AE denote E˝QAf and
E˝A. The group of idèles of E is A�E and the idèle class group is CE D A�E=E

�.
We use Œ�� to denote an equivalence class containing �; for example, if x 2 X and

g 2 G.Af /, then Œx;g� denotes the element of Sh.G;X/ D G.Q/nX �G.Af /=Z.Q/^
containing .x;g/.

Throughout the paper, all groups actions are from the left.
We normalize the reciprocity isomorphism of class field theory so that a uniformizing

parameter corresponds to the reciprocal of the (arithmetic) Frobenius element; we thus agree
with Deligne 1979 and Tate 1979, but disagree with Langlands 1979.1

1 The automorphism group of a connected Shimura
variety

Let G be a semi-simple Q-rational adjoint group, G0 a covering of G, and XCa family of
maps C�! G.R/. The topology on G.Q/ defined by G0 is that for which the images of
the congruence subgroups of G0.Q/ form a fundamental system of neighbourhoods. Let
˙ D˙.G0/ be the set of arithmetic subgroups � of G.Q/C that are open relative to this
topology and are torsion-free. Under certain hypotheses (Deligne 1979, 2.1.8), .G;G0;XC/
defines a connected Shimura variety Shı.G;G0;XC/ equal to the projective limit of � nXC,
� 2˙ . An automorphism of Shı D Shı.G;G0;XC/ is a morphism ˛WShı! Shı such that,

127.05.23. This refers to the fact that the signs in Langlands disagree with those in Deligne. However, the
signs in Deligne 1979 require correction — see my letter to Deligne 28.03.90 — and so our signs should agree
with those in Langlands.
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for any � 2˙ , there exist a � 0 2˙ and a commutative diagram

Shı Shı

� 0nXC � nXC

˛

canonical canonical

˛�

with ˛� an isomorphism. (The morphisms are required to be analytic; according to Borel
1972, 3.10, they will then be algebraic.) Denote the group of automorphisms of Shı by
AutC.Shı/. For a � 2˙ , the ˛ 2 AutC.Shı/ such that

.Shı
˛
�! Shı

can
�! � nXC/D .Shı

can
�! � nXC/

form a subgroup of AutC.Shı/. The group AutC.Shı/ is given the topology for which these
subgroups form a fundamental system of neighbourhoods of the identity element. In this
section, we give an explicit description of this topological group, assuming G is classical in
the sense of Kneser 1969, 2.3, i.e., it is not exceptional and neither 3D4 nor 6D4 occurs as a
component of its universal covering group.

1.1. According to Weil 1960 (see also Kneser 1969, Chapter 2), we can identify the
classical group with the identity component of the automorphism group of a semi-simple
algebra with involution over Q. The algebra with involution is a direct product of .L;�/ of
the following types:

(A) L is a central simple algebra over a quadratic totally imaginary extension of a totally
real field F0, and � is an involution of the second kind.

(B), (DR)LD EndF0.V /, where V is a finite-dimensional vector space over a totally real
field F0 and � is defined by q.˛x;y/D q.x;˛�y/, where q is a nondegenerate quadratic
form on V .

(C) LD EndB.�/, where B is a quaternion algebra over a totally real field F0 and �

is a free left B-module of finite rank; � is defined by '.˛x;y/D '.x;˛�y/, where ' is a
B-valued form on � that is hermitian with respect to the main involution of B .

(DH/ L is the same as in (C), but � is defined by an anti-hermitian form '.
We impose the following conditions: for type (A), ŒLWF0� � 2 � 32; for types (B) and

(DR), dimF0 V � 7; and for type (DH/, rankB�� 4. Then for the given semisimple adjoint
group G, there is a unique .L;�/ (up to isomorphism) such that the direct factors of .L;�/
satisfy the above conditions and such that the identity component of the automorphism group
of .L;�/ is G. We refer to .L;�/ as the algebra with involution corresponding to G.

1.2. Let .G;G0;XC/ define a connected Shimura variety, with G classical. Let .L;�/ be
the algebra with involution corresponding to G, and A the automorphism group of .L;�/.
Since G is the identity component of A, inner automorphisms of A define an injection
adWA! Aut.G/. In fact ad is an isomorphism. This follows from the fact that if G1,
G2 are classical Q-simple groups and .L1;�1/, .L2;�2/ are the corresponding algebras
with involution, then every isomorphism of G1 to G2 is induced by a unique isomorphism
of .L1;�1/ to .L2;�2/. Let A.Q/� be the group consisting of the  2 A.Q/ such that
ad WG.Q/! G.Q/ is a homeomorphism with respect to the topology defined by G0. If
G is Q-simple, then every ad ,  2 A.Q/, lifts to an automorphism of G0.Q/. Therefore
A.Q/� D A.Q/ in this case.

Decompose L˝QR into the direct product of simple algebras L1; : : : ;Lg over R. Then
� induces an involution �v on each factor Lv. Let Av be the group of automorphisms
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of .Lv;�v/. Denote by S the group of permutations � of f1; : : : ;gg such that .Lv;�v/ is
isomorphic to .L�.v/;��.v// for all v. Then we have an exact sequence

1!
Y
Av.R/! A.R/! S ! 1:

Let Gv be the identity component of the algebraic group Av over R. Then GR D
Q
Gv.

For each v; there is a Gv.R/C-conjugacy class XCv of homomorphisms of C� into Gv
such that XC D

Q
XCv . The adjoint action of A (resp. Av/ on G (resp. Gv/ induces an

action of A.R/ (resp. Av.R/) on the set of homomorphisms of C� into GR (resp. Gv), and
we let A.R/1 (resp. Av.R/1) be the subgroup that preserves XC (resp. XCv ). For each v,
Gv.R/C is a subgroup of Av.R/1 of index at most 2, and adWAv.R/1 ! Aut.Xv/ is an
isomorphism. Furthermore, it is easy to see that we have the following commutative diagram

1
Q
Av.R/ A.R/ S 1

1
Q
Av.R/1 A.R/1 S 1:

It follows that adWA.R/1! Aut.XC/ is an isomorphism. In fact, for  2 Aut.XC/ there
is a permutation � of f1; : : : ;gg such that  is given componentwise by isomorphisms
XCv

�
�! XC

�.v/
. Then � 2 S . Let ˛ be an element of A.R/1 that maps to � . Then ad˛�1 ı

 2
Q

Aut.Xv/. Hence ad˛�1 ı  D
Q

ad˛v D ad.
Q
˛v/, ˛v 2 Av.R/1. Therefore  2

ad.A.R/1/.
Put A.Q/1 D A.Q/�\A.R/1. Then A.Q/1 acts on the set ˙ , and therefore on the con-

nected Shimura variety Shı.G;G0;XC/. The inclusion adWA.Q/1 ,! Aut.Shı.G;G0;XC//
extends by continuity to the completion A.Q/1^.relG0/ of A.Q/1 with respect to the topol-
ogy defined by G0. Note that G.Q/C is a subgroup of A.Q/1 of finite index.

THEOREM 1.3. Under the above hypotheses, A.Q/1^.relG0/ is the full group of automor-
phisms of Shı.G;G0;XC/.

Let .L;�/ be the algebra with involution corresponding to G. Let U be the algebraic
group over Q defined by fx 2 L� j xx� D 1; Nx D 1g, where N denotes the reduced norm
of L to its centre F . Then U is semisimple and U ad DG, see Weil 1960, Theorem 2. Let zG
be the universal covering group of G and consider the covering zG! U .

LEMMA 1.4. Let � be an arithmetic subgroup of U.Q/ that is open with respect to the
topology defined by zG. Then for any natural number m, fım j ı 2�g spans L over Q.

PROOF. We follow the argument of Shimura (1970, 6.6) and and K. Miyake (1971, 4.8).
Since the image of an arithmetic subgroup under an isogeny is arithmetic (Borel 1969, 8.9),
we can assume that � is the image of a congruence subgroup z� of zG.Q/. Choose a rational
prime p ¤ 2 such that

(i) the congruence condition defining z� does not involve p;
(ii) p splits completely in F , the centre of L;

(iii) .L˝QQp;�/ splits, i.e., it is the direct product of algebras with involution over Qp
of the following types:
(A) .Mn.Qp/˚Mn.Qp/;�/, where .X;Y /� D .Y tr;X tr/, n� 3;
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(B) and (D) .Mn.Qp/;�/, where X� DX tr, n� 7;

(C) .M2n.Qp/;�/, where X� D JX trJ�1, J D
�
0 In
�In 0

�
; n� 1.

Then U.Qp/ is isomorphic to the direct product of simple groups of the forms
(A) SLn.Qp/, n� 3;
(B) and (D) SOn.Qp/, n� 7;
(C) Spn.Qp/, n� 1.

Using this isomorphism, we can choose a Zp-order Op in Lp
def
D L˝QQp invariant under �

such that U.Zp/
def
DO�p \U.Qp/ is the direct product of groups of the forms

(A) SLn.Zp/, n� 3,
(B) and (D) SOn.Zp/, n� 7,
(C) Spn.Zp/, n� 1.

For a �-skew symmetric element w of pOp, the Cayley transformation of w lies in U.Zp/.
Let U 0 � U.Zp/ be the set of Cayley transformations of such elements. Then it is easy to
see that for any integer m� 1, f˛m j ˛ 2 U 0g spans Lp over Qp.

Let �p (resp. z�p/ be the closure of � (resp. z�) in U.Qp/ (resp. zG.Qp//. Then �p is
commensurable with U.Zp/. It follows that for any integerm� 1, there are ˛1; : : : ;˛k 2�p
such that ˛m1 ; : : : ;˛

m
k

form a basis for Lp. Lift each ˛i to an element ˇi of z�p and apply
the strong approximation theorem for zG to obtain elements bi of zG.Q/ that are in z� and
are close to ˇi . Then ami , where ai 2 � is the image of bi , will be close to ˛mi in �p,
and am1 ; : : : ;a

m
k
2 L will be linearly independent over Qp, and a fortiori over Q. Thus the

Q-linear span of am1 ; : : : ;a
m
k

is L. 2

REMARK 1.5. Since any two arithmetic subgroups of U.Q/ are commensurable, Lemma
1.4 holds for every arithmetic subgroup� of U.Q/. As S. Kudla pointed out to us, this result
also follows from Borel’s density theorem (Borel 1966, Theorem 1).

To complete the proof of Theorem 1.3, we have to show that for ˛ 2AutC.Shı.G;G0;XC//
and � 2˙ , there is a ˇ 2 A.Q/1 such that�

Shı
˛
�! Shı

can
�! � nXC

�
D
�

Shı
adˇ
�! Shı

can
�! � nXC

�
:

By definition, there is a �1 2˙ and an isomorphism ˛1W�1nX
C! �1nX

C such that the
diagram

Shı Shı

�1nX
C � nXC

˛

canonical canonical

˛1

commutes. As XC is simply connected, ˛1 can be lifted to an element of Aut.XC/, say
adˇ (ˇ 2 A.R/1/. We first show that ˇ 2 A.Q/, i.e., it is an automorphism of .L;�/. Since
ˇ 2 A.R/, it suffices to show that ˇ maps L into L.

Let � WU !G be a covering map, and ` its degree. Choose arithmetic subgroups �, �1
of U.Q/ that are open with respect to the topology defined by zG and such that �.�/� �
and �.�1/� �1. Let m be the index of �.�/ in � . For ı1 2�1, we have �.ı1/ 2 �1 and
adˇ.�.ı1// 2 � . Note that ˇ.ım1 / 2 U.R/ and �.ˇ.ım1 //D adˇ.�.ı1//m 2 �.�/. As the
degree of � is `, we see that ˇ.ım`1 / 2�. Thus ˇ maps fım`1 j ı1 2�1g into �. In view of
Lemma 1.4, this proves that ˇ.L/ is contained in L.
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Next we show that adˇWG.Q/!G.Q/ is a homeomorphism. Let � 0 2˙ be a normal
subgroup of � . Then there is a � 01 2˙ contained in �1 and an isomorphism ˛01W�

0
1nX

C!

� 0nXC such that the diagram

Shı Shı

� 01nX
C � 0nXC

�1nX
C � nXC

˛

canonical canonical

˛01

q1 q

˛1

commutes. Here q and q1 denote the natural projections induced by the inclusions � 0 ,! �

and � 01 ,! �1. Applying the above considerations to ˛01, we see that there is a ˇ0 2 A.Q/\
A.R/1 such that ˛01 lifts to adˇ0 2 Aut.XC/. We have adˇ0.� 01/D �

0. As both adˇ and
adˇ0 induce ˛1, there is a  2 � such that adˇ D adˇ0. Hence

adˇ.� 01/D .ad ı adˇ0/.� 01/D ad.� 0/D � 0;

because � 0 is a normal subgroup of � . Since the normal subgroups � 0 of � , � 0 2˙ , form
a basis for the neighbourhoods of 1, this shows that adˇ is continuous. The same argument
applied to ˇ�1 shows that ˇ is a homeomorphism. Therefore ˇ 2A.Q/�\A.R/1 DA.Q/1
and adˇ ı˛�1 2 AutC.Shı/ induces the identity map on � nXC.

1.6. The above techniques can be used to compute the automorphism group of a sin-
gle � nXC. Let G be classical and � 2 ˙ . An automorphism ˛ of � nXC lifts to an
automorphism adˇ of XC, ˇ 2 A.R/1. The argument in the proof of 1.3 shows that
ˇ 2 A.Q/\A.R/1. Conversely, every ˇ 2 A.Q/\A.R/1 such that adˇ.� /D � defines
an automorphism of � nXC. Thus AutC.� nXC/ is the quotient of

fˇ 2 A.Q/\A.R/1 j adˇ.� /D � g

by the subgroup of ˇ such that

�
XC

adˇ
�!XC

can
�! � nXC

�
D
�
XC

can
�! � nXC

�
:

In particular, if A.Q/ D A.Q/� (this is the case if G is Q-simple or G0 D zG, the
universal covering group ofG), then every element of AutC.� nXC/ is induced by adˇ with
ˇ 2A.Q/1, hence can be extended to an element of AutC.Shı.G;G0;XC//. This is not true
if A.Q/� ¤ A.Q/. Note also that we need to assume that � is torsion free. For example, if
XC is the complex upper half plane, then the only automorphism of SL2.Z/nXC that can
be extended to an automorphism of Shı.PGL2;SL2;XC/ is the identity map.

1.7. The automorphism group of a non-connected Shimura variety Sh.G;X/ (Deligne 1979,
2.1) is very large and complicated. However, the subgroup of automorphisms commuting
with the Hecke operators is small: it consists only of the identity element if G is adjoint.2

227.03.23. See Corollary 2.6 of Milne, J.S., The action of an automorphism of C on a Shimura variety and its
special points In: Arithmetic and Geometry, Papers dedicated to I.R. Shafarevich on the occasion of his sixtieth
birthday, Progress in Math. 35 (1983), Birkhauser Verlag, 239-265.
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2 The automorphism group of a field of automorphic
functions

Let .G;G0;XC/ define a connected Shimura variety, and let ˙ be as in �1. For � 2˙ , we
let F.� / denote the function field of the algebraic variety � nXC and we let F D lim

�!
F.� /.

An element f of F.� / can be identified with a meromorphic function zf on the bounded
symmetric domain XC invariant under � . A meromorphic function on XC arising in this
way is said to be automorphic with respect to � . Thus F can be regarded as the field of all
meromorphic functions on XC automorphic with respect to some � 2˙ . When � nXC is
compact, the comparison theorem (Shafarevich 1994, VIII, 3.1) shows that F.� / is equal to
the field of meromorphic functions on XC invariant under � . The same is always true if G
has no Q-rational simple factors isomorphic to PGL2 (Baily and Borel 1966, 10.12). For the
remaining case, an automorphic function is required to be meromorphic at the cusps.

An automorphism ˛ of Shı.G;G0;XC/ defines an automorphism ˛� of F over C by
the rule: ˛�f D f ı˛�1. If Aut.F=C/ is given its usual topology (Shimura 1971b, 6.3),
then ˛ 7! ˛� is continuous.

PROPOSITION 2.1. The map

˛ 7! ˛�WAutC.Shı.G;G0;XC//! Aut.F=C/

is an isomorphism of topological groups.

PROOF. As � nXC is separated as an algebraic variety, a morphism V ! � nXC is deter-
mined by its action on F.� /. Thus ˛ 7! ˛� is injective. In proving that the map is surjective,
we follow an argument of T. Miyake 1972, which is based on the following result:

every isomorphism XCXY1!XCXY , where Y and Y1 are proper analytic
subsets of XC, extends to an automorphism of XC (ibid., �4(I)).

Let ˛� be an element of Aut.F=C/. Then, for any � 2˙ , there is a unique �1 2˙ such
that ˛�.F.� //D F.�1/; ibid. �4.(I). Thus the restriction of ˛� to F.� / defines a rational
map ˛� W�1nXCÜ � nXC. We show that ˛� is an isomorphism. Let V and V1 be Zariski-
open subsets of � nXC and �1nXC such that ˛� is an isomorphism from V1 to V . The
inverse images Y and Y1 of .� nXC/XV and .�1nXC/XV1 are proper analytic subsets of
XC. Consider the coverings XCXY ! V and XCXY1! V1. The argument of T. Miyake
(ibid., �4.(III)) shows that ˛� WV1! V lifts to an isomorphism z̨� WXCXY1! XCXY

which, according to the result recalled above, extends to an automorphism z̨� of XC. This
z̨� induces an isomorphism of �1nXC to � nXC that agrees with ˛� on V1. Therefore
(ibid., Lemma 1) ˛� is defined everywhere and is an isomorphism from �1nX

C to � nXC.
Thus, for every � 2˙ , there is a unique �1 2˙ and an isomorphism ˛� W�1nX

C!

� nXC such that ˛�� WF.� /! F.�1/ is the restriction of ˛� to F.� /. If � 0 2 ˙ is
contained in � , then the corresponding � 01 is contained in �1, and the diagram

� 01nX
C � 0nXC

�1nX
C � nXC

˛� 0

˛�

commutes. Therefore f˛� j � 2˙g defines an automorphism ˛ of Shı.G;G0;XC/ whose
image in Aut.F=C/ is ˛�. 2
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3 The automorphism group of a field of arithmetic
automorphic functions

3.1. Throughout this section, G will be assumed to be classical and Shı.G;G0;XC/ will
be assumed to have a canonical model M ı.G;G0;XC/ in the sense of Deligne 1979, 2.7.10.
(For a list of those Shimura varieties known3 to have canonical models, see ibid., 2.7.20.)
Let E D E.G;XC/ be the reflex field; then M ı.G;G0;XC/ is a scheme over Q together
with a left action of the middle term of the canonical extension

1!G.Q/C^.rel G0/! E.G;G0;XC/ �
�! Gal.Q=E/! 1

(ibid., 2.5.9). For any � 2˙ , � nM ı is a model for � nXC over Q. Thus its function field
F.� / is a subfield of F.� / linearly disjoint from C over Q and such that C �F.� /DF.� /.
We define F , the field of arithmetic automorphic functions on XC relative to .G;G0/ to beS
F.� /� F .

We note that a Hilbert or Siegel modular function is arithmetic in this sense if and only
if it the quotient of two modular forms with algebraic Fourier coefficients (Shimura 1975).

3.2. For any �; � 0 2 ˙ , there are only countable many isomorphisms ˛W.� 0nM ı/C!
.� nM ı/C that extend to automorphisms of Shı.G;G0;XC/. Thus, each such ˛ is defined
over Q, and we can identify AutC.Shı.G;G0;XC//with its subgroup AutQ.M

ı.G;G0;XC//.
Theorem 1.3 provides us with an isomorphism

A.Q/1^.relG0/
'
�! AutQ.M

ı.G;G0;XC//:

The two actions ofG.Q/C^.relG0/ onM ı.G;G0;XC/, arising from the actions ofA.Q/1^.rel
G0/ and E.G;G0;XC/, are the same. For any ˛ 2 E.G;G0;XC/,

M ı.G;G0;XC/ M ı.G;G0;XC/

Spec.Q/ Spec.Q/

˛

Spec.�.˛/�1/

commutes (Deligne 1979, 2.7.10). Thus, we can define an action of E.G;G0;XC/ on F by
setting ˛f D �.˛/ıf ı˛�1 for f 2 F and ˛ 2 E.G;G0;XC/. Note that if ˛ 2G.Q/C^.rel
G0/� E.G;G0;XC/, then ˛f D ˛�f (with the notation of �2).

THEOREM 3.3. The map E.G;G0;XC/ ! Aut.F=E/ identifies E.G;G0;XC/ with an
open subgroup of Aut.F=E/ of finite index.

PROOF. This follows from the commutative diagram

1 G.Q/C^.rel G0/ E.G;G0;XC/ Gal.Q=E/ 1

1 Aut.F=xQ/ Aut.F=E/ Gal.Q=E/ 1

since we know from �1 and �2 that the left hand vertical arow identifies G.Q/C^.rel G0)
with an open subgroup of Aut.F=Q/ of finite index. 2

327.03.23. In fact, all Shimura varieties are known to have canonical models — see the article in footnote 2.
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3.4. The reciprocity law at a special h 2 XC (Deligne 1979, 2.7.10c) has the following
interpretation. Let T be a Q-rational torus G such that h factors through T .R/. In ibid.
2.5.10, Deligne constructs an extension D of Gal.Q=E.T;h// by T .Q/ and a commutative
diagram

1 T .Q/ D Gal.Q=E.T;h// 1

1 G.Q/C^.rel G0/ E.G;G0;XC/ Gal.Q=E/ 1:

Let � 2D have images ˛.�/ in E.G;G0;XC/ and �.�/ in Gal.Q=E.T;h//. If z D Œh� is the
point on M.G;G0;XC/ defined by h, then Deligne’s reciprocity law says that ˛.�/z D z.
Thus, for any f 2 F that is defined at z, ˛.�/f .z/D �.�/.f .z//.

3.5. Let .L;�/ be the algebra with involution corresponding as in 1.1 to G, and let AD
Aut.L;�/. According to Deligne (1979, 2.7.16), there is a pair .G1;X1/ satisfying the
axioms for a Shimura variety and such that

.Gad
1 ;G

der
1 ;XC1 /D .G;G

0;XC/

E.G1;X1/DE.G;X
C/:

We assume that it is possible to choose .G1;X1/ so that there is an action adWA! Aut.G1/
of A on G1 that is compatible with the action of A on G. (For this to be possible, it is
obviously necessary that the action of A on Z. zG/, the centre of zG, induces an action of
Z.G0/; in 3.7 below we show that this condition is also sufficient.) Under this assumption,
we can apply the functor ��G1.Q/C=Z1.Q/A.Q/

1 to the first two terms of the sequence

1!G1.Q/^C=Z1.Q/
^
!G1.Af /=Z1.Q/^! �0�.G1/! 1

and obtain an exact sequence

1! A.Q/1^.rel G0/!
G1.Af /
Z1.Q/^

�G1.Q/C=Z1.Q/A.Q/
1
! �0�.G1/! 1

(cf. Deligne 1979, 2.5.1). On pulling-back relative Gal.Q=E/! �0�.G/, we obtain the
second row of the following exact commutative diagram

1 G.Q/C^.rel G0/ E.G;G0;XC/ Gal.Q=E/ 1

1 A.Q/1^.rel G0/ Ee.G;G0;XC/ Gal.Q=E/ 1:

�

�

This diagram is independent of the choice of .G1;X1/. We give Ee.G;G0;XC/ the topol-
ogy for which E.G;G0;XC/ is an open subgroup. The actions of A.Q/1^.rel G0/ and
E.G;G0;XC/ on F combine to give an action of E� .G;G0;XC/ on F .

THEOREM 3.6. Under the above assumption, there is an isomorphism of topological groups
Ee.G;G0;XC/! Aut.F=E/.

PROOF. The proof is the same as that of 3.3. 2
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LEMMA 3.7. With the notation of 3.5, assume that the action of A on Z. zG/ induces an
action of A on the quotient Z.G0/ of Z. zG/. Then there exists a .G1;X1/ such that

.Gad
1 ;G

der
1 ;XC1 /D .G;G

0;XC/

E.G1;X1/DE.G;X
C/;

and the action of A on G lifts to an action of G1.

PROOF. We have only to modify slightly the proof in Milne and Shih 1982b, �3. Let T be a
maximal torus in G and T 0 its inverse image in G0. Then

M
def
DX�.T /=X�.T

0/' Hom.X�.Z.G0//;Q=Z/;

and so, by assumption, has a natural action by A=Aı. The sequence

0! P1! P0!M ! 0

of Lemma 3.2, ibid., can then be chosen to have an action by A=Aı. The centre of the group
G1 constructed ibid., 3.1, is a torus Z.G1/ such that X�.Z.G1//D P1. It therefore carries
an action by A=Aı such that Z. zG/!Z.G1/ is equivariant. Since G1 D zG �Z. zG/Z.G1/, it
also carries an action by A. According to ibid., 3.4, it is now possible to choose X1 such that
E.G1;X1/DE.G;X

C/. 2

4 The main theorems for canonical models in the
sense of Shimura

4.1. Let G be a reductive group and X a family of maps C�! G.R/ such that .G;X/
satisfies the axioms for a Shimura variety (Deligne 1979, 2.1.1). Assume that Sh.G;X/
has a canonical model .M.G;X/;'WSh.G;X/!M.G;X/C/ in the sense of Deligne 1979,
2.2.5, defined over its reflex field E DE.G;X/. We begin this section by showing how to
derive from M.G;X/ a canonical model in the sense of Shimura 1970.

4.2. Let `D `G;X be the map

�0NE=QqM WGal.Q=E/ab
D �0�.GmE /! �0�.G/

explicitly defined in Deligne 1979, 2.6.2.1. According to Deligne (ibid., 2.6.3), �� D
`.�/� def

D �`.�/�1 for � 2 �0.M.G;X/Q/. Let k be the subfield of Q corresponding to the
kernel of ` and define E.G;X/ to make the following diagram exact and commutative,

1 Gad.Q/C^.rel Gder/
G.Af /
Z.Q/^

�G.Q/C=Z.Q/G
ad.Q/C �0�.G/ 1

1 Gad.Q/C^.rel Gder/ E.G;X/ Gal.k=E/ 1
�

r

Thus E.G;X/ is a quotient of E.Gad;Gder;XC/. Let z be the set of open compact subgroups
of E.G;X/ and for any S 2 z, let kS be the subfield of k defined by �.S/. Let �S D
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S \Gad.Q/C, and choose a connected component XC of X . We shall construct a family
.VS ;'S /, S 2 z, of models for the varieties �SnXC, and a family of maps .JTS .x//, x 2
E.G;X/ analogous to those constructed in special cases by Shimura (1970, 2.5), K. Miyake
(1971, 4.1), and Shih (1979, 2.4; 1981, 3).

4.3. The group �S is open relative to the topology on Gad.Q/ defined by Gder, and is
torsion free (and so belongs to ˙) if S is sufficiently small. Set S0 D S \Gad.Q/C^.rel
G0/. Let Sh.G;X/ı be the connected component of Sh.G;X/ containing the image of
XC�f1g. Thus �SnXC

'
�! S0nSh.G;X/ı. For some connected component M.G;X/ı

of M.G;X/Q, ' induces an isomorphism Sh.G;X/ı
'
�!M.G;X/ıC, and we let e denote

M.G;X/ı regarded as a point on the pro-finite scheme �0.M.G;X//. As e is fixed by
Gal.Q=k/, M.G;X/ı is defined over k. The group E.G;X/ acts on M.G;X/ı compatibly
with the action of its quotient Gal.k=E/ on k. Thus VS

def
D SnM.G;X/ı is a model of

S0nM.G;X/
ı rational over kS . Define 'S to be the composite,

�SnX
C '
�! S0nSh.G;X/ı

'
�! S0nM.G;X/

ı
C
'
�! .VS /C:

4.4. The compatibility of the actions of E.G;X/ on M.G;X/ı and k means that, for any
˛ 2 E.G;X/;

M.G;X/ı M.G;X/ı (left action)

Spec.k/ Spec.k/

˛

Spec.�.˛/�1/

commutes. We therefore have a map of k-schemes J.˛/WM.G;X/ı! �.˛/�1M.G;X/ı

such that �.˛/ıJ.˛/D ˛,

M.G;X/ı �.˛/�1M.G;X/ı M.G;X/ı

Spec.k/ Spec.k/:

J.˛/

˛

�.˛/

Spec.�.˛/�1/

If S;T 2 z are such that ˛S˛�1 � T , then J.˛/ defines a map on the quotients,

JTS .˛/WVS ! T n.�.˛/�1M.G;X/ı/D �.˛/�1VT :

Thus, for f 2 kT .VT /, .�.˛/�1f /ıJTS .˛/D ˛�1f def
D �.˛/�1 �f ı˛.

4.5. Let h 2 XC be special, so that h factors through H.R/ for some Q-rational torus
H �G, and let � be the cocharacter of GC defined h. By definition, the reflex field E.h/ is
the smallest field over which � is defined. Let � be the homomorphism of algebraic groups

E.h/�
NR.�/
�����!H ,!G;

where, as in Deligne 1979, 2.2.2, NR.�/ is the composite

E.h/� D ResE.h/=Q.GmE.h//
Res.�/
����! ResE.h/=Q.HE.h//

NE.h/=Q
�����!H:
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Let M be the G.C/-conjugacy class of maps C� ! G.C/ associated with X , and let
qmW�.GmE /! �.GE / and NE=QW�.GE /! �.G/ be the maps defined in Deligne 1979,
2.4. It follows directly from the definitions that

A�
E.h/

G.A/

A�E �.GmE / �.G/ �0�.G/

�

NE.h/=E

NE=Qıqm

commutes. Let � 2 A�
E.h/

and let Œ�� and Œ�.�/� denote respectively the images of � and
�.�/ in Gal.E.h/ab=E.h// and �0�.G/. The above diagram and Deligne 1979, 2.6.3,
show that Œ�.�/�� D `G;X .NE.h/=E .�// � � D Œ��� for � 2 �0.M.G;X/Q/. The element
�.�/�12G.Af /=Z.Q/^�� � � maps to `G;X .NE.h/=E .�// and therefore lies in E.G;X/; we
have therefore a map �D .� 7! �.�/�1/WA�

E.h/
! E.G;X/. Moreover, �.�.�//D Œ���1jk.

THEOREM 4.6. (a) For each S 2 z, .VS ;'S / is a model of �SnXC over kS .
(b) For any ˛ 2 E.G;X/ and S;T 2 z such that ˛S˛�1 � T , JTS .˛/ is a map VS !

�.˛/�1VT defined over kS . The following hold:8̂̂<̂
:̂
JSS .˛/ is the identity map if ˛ 2 S I

.�.˛/�1JTS .ˇ//ıJSR.˛/D JTR.ˇ˛/I

JTS .˛/ı'S D 'T ı˛ for all ˛ 2G.Q/C such that ˛S˛�1 � T:

(c) Let z 2 XC be special; for each S 2 z, 'S .z/ is rational over E.z/ab, and for every
� 2 A�

f;E.z/
,

Œ��'S .z/D JST .�.�//'T .z/;

where Œ�� is the element of Gal.E.z/ab=E.z// corresponding to � and T D �.�/�1S�.�/.

PROOF. Both (a) and (b) follow directly from the definitions. Let z 2 XC be special
and let � 2 A�

f;E.z/
. One of the conditions for M.G;X/ to be a canonical model is that

Œ��Œz;1� D Œz;�.�/�1�, where Œz;1� is regarded as a point on M.G;X/Q (Deligne 1979,
2.2.5). Therefore,

�.�/Œz;1�
def
D �.�.�//Œz;�.�/�1�

4:5
D Œ���1Œz;�.�/�1�D Œz;1�;

and so J.�.�//Œz;1�D Œ��Œz;1�, which implies (c). 2

4.7. It is sometimes possible to strengthen this theorem by enlarging E.G;X/ and z. Let A
be the algebraic group associated with Gad as in �1, and assume that the action of A on Gad

extends to an action on G (cf. 3.7). Since G D zG �
Z. zG/

Z.G/ it is only necesary for this

that the action of A=Aı on Z. zG/ extend to Z.G/. Under this assumption, we can construct,
as in 3.5 and 4.2, extensions

1 A.Q/1^.rel Gder/
G.Af /
Z.Q/^

�G.Q/C=Z.Q/A.Q/
1 �0�.G/ 1

1 A.Q/1^.rel Gder/ Ee.G;X/ Gal.k=E/ 1
�
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Let Z be the set of compact open subgroups of Ee.G;X/. Then, exactly as before, we can
construct a family .VS ;'S ;JST .˛// with the same properties as the family in 4.6 except
that now S and T are allowed to lie in Z and ˛ in E.G;X/. For example, if Gad is Q-simple
of type C or A and we take .G;X/ to be the pair denoted .G0;X0/ in the appendix of Milne
and Shih 1981, then we obtain the families constructed in Shimura 1970, 5.2, and K. Miyake
1971, 4.1.

4.8. We return to the situation of 4.6. For any S 2 z, the function field F.S/ of VS is a
subfield of the function field F.�S / of �SnM.G;X/ı linearly disjoint from C over Q and
such that C �F.S/D F.�S /. We define F 0, the field of arithmetic automorphic functions
on XC relative to G to be

S
F.S/ � F . Thus f 2 F is in F 0 if and only if there is an

S 2 z such that f D g ı'S for some g 2 kS .VS /. We define an action of xE.G;X/ on F 0 as
follows: for ˛ 2 xE.G;X/; f 2 F 0, and z 2M.G;X/ı, we set ˛f .z/D �.˛/ıf ı˛�1.z/.
Thus, if f D g ı'S , then ˛f D˛g ı'S D .�.˛/g/ıJST .˛�1/ı'T (cf. 4.4).

THEOREM 4.9. If Gad is classical, then xE.G;X/ is isomorphic to an open subgroup of
Aut.F 0=E/ of finite index.

PROOF. The proof is the same as that of 3.4. 2

4.10. There is a reciprocity law at the special points: with the notation of 4.5, for any special
z 2XC and f 2F 0 defined at z, f .z/ 2E.z/ab; moreover, for any � 2A�

f;E.z/
, the function

x�.�/�1f is also defined at z, and Œ��f .z/D x�.�/
�1

f .z/ (because x�.�/
�1

f def
D Œ��ıf ı x�.�/, and

x�.�/z D z; cf. the proof of 4.6c).

4.11. In the case that (as in 4.7) the action of A on Gad extends to G, we can replace
xE.G;X/ with Ee.G;X/ and .VS ;'S /, S 2 z, with the larger family .VS ;'S /, S 2 Z. The
field F 0 D

S
F.S/ is unchanged. If further Gad is classical, then there is an isomorphism

Ee.G;X/ '�! Aut.F 0=E/ of topological groups.

4.12. In the special case that Gder is simply connected and the centre Z of G is a coho-
mologically trivial torus, the above results can be made more explicit. This will be so, for
example, if Gad is Q-simple of type A; B , or C and .G;X/ is taken to be the pair denoted
.G0;X0/ in the appendix to Milne and Shih 1981. (These are the cases studied in K. Miyake
1971, Shih 1979, and Shimura 1970 respectively.)

Let T be the torus defined by the exact sequence

1!Gder
!G

�
�! T ! 1:

Since Gder is simply connected, the map

�0�.G/D �0.G.Q/nG.A//! �0.T .Q/nT .A//

induced by � is an isomorphism (Deligne 1971, 2.4). As

G.R/C D fg 2G.R/ j �.g/ 2 �.Z.R//g

(see Milne and Shih 1981, 3.1), we see that

x�0�.G/
def
D �0.G.R/C/n�0�.G/
D �.Z.R/n�0.T .Q/nT .A//
D T .A/=T c�.Z.R//;
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where T c is the closure of T .R/CT .Q/ in T .A/. In many cases, �.Z.R//� T .R/C and so
x�0�.G/D T .A/=T c .

The map `WGal.Eab=E/D �0.A�E=E
�/! x�0�.G/ of 4.2 can be described as follows.

Let �hWGm!GC correspond to h 2X . The composite �X D � ı�h is independent of h,
and is therefore defined over E. We have therefore a map

�D .ResE=QGm
Res.�X /
�����! ResE=QT

NE=Q
����! T /:

This gives a map �0.A�E=E
�/!�0.T .A/=T .Q// that, when composed with �0.T .A/=T .Q//!

�0.T .A/=T .Q//=�.Z.R//, equals `.
As Z is cohomologically trivial, G.Q/!Gad.Q/ is surjective. Thus,

G.Af /
Z.Q/^

�G.Q/C=Z.Q/G
ad.Q/C D

G.Af /
Z.Q/^

D
G.A/C

Z.Q/^ �G.R/C
:

There is a diagram

1 G.Q/^
C
�G.R/C G.A/C x�0�.G/ 1

1 G.Q/^
C
�G.R/C G.G;X/ Gal.k=E/ 1;

�

`

which, when the four left-most terms are divided by Z.Q/^ �G.R/C, becomes the diagram
in 4.2. By definition,

G.G;X/D fg 2G.A/C j �.g/ 2 T c ��.A�E / ��.Z.R//g:

Note that, for any special h 2 X , the map � of 4.5 defines a homomorphism A�
E.h/
!

G.G;X/.
We can now identify z with the set of subgroups S of G.G;X/ such thatZ.Q/^G.Q/C�

S and S=Z.Q/^G.R/C is open and compact in G.G;X/=Z.Q/^G.R/C (D E 0.G;X/), and
we can substitute G.G;X/ for xE.G;X/ in the statement of Theorem 4.6. From 4.6, 4.9, and
4.10 we can conclude the following statement.

THEOREM 4.13. There is a continuous homomorphism � WG.G;X/!Aut.F 0=E/ with the
following properties.

(a) The kernel of � is Z.Q/^ �G.R/C.
(b) For all ˛ 2 G.G;X/, �.˛/jk D �.˛/.
(c) For ˛ 2G.Q/^

C
� G.G;X/, f 2 F 0, and z 2M.G;X/ı

�.˛/f .z/D f .˛�1z/:

(d) For all special z 2 XC and f 2 F 0 defined at z, f .z/ 2 E.z/ab; if � 2 A�
E.h/

and

uD �.�/�1, then �.u/f is also defined at z, and �.u/f .z/D Œ��f .z/.
(e) The map � defines a topological isomorphism of G.G;X/=.Z.Q/^ �G.R/C/ onto an

open subgroup of Aut.F 0=E/. For every S 2 z, F 0 is an infinite Galois extension of
kS and �.S/D Gal.F 0=kS /.
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4.14. In, in addition to the assumptions of 4.12, we suppose that the action of A on
Gad extends to an action on G, then we can extend G.G;X/ to a group Ge.G;X/ having
xEe.G;X/ as a quotient group. In this case, there is an exact sequence

1!Z.Q/^ �G.R/C! Ge.G;X/! Aut.F 0=E/! 1

of topological groups.

4.15. Unlike Deligne’s connected canonical model, Shimura’s canonical model depends on
the pair .G;X/withG a reductive group and not merely the associated triple .Gad;Gder;XC/

(because the field k depends on G; consider the example the case of a torus). It would
perhaps be most natural to define the canonical model associated with a triple .G;G0;XC/
to be a family .VS ;'S ;JST .˛// in which S is an open compact subgroup of E.G;G0;XC/,
˛ 2 E.G;G0;XC/, and VS D SnM ı.G;G0;XC/ is a model for �SnXC, where �S D
S \G.Q/C.

5 Non-abelian reciprocity laws and solutions to Hilbert’s
twelfth problem

5.1. Throughout this section, .G;X/ satisfies the axioms for a Shimura variety and is of
abelian type in the sense of Milne and Shih 1981, �1. We also assume that the weight w of
any h 2 X is defined over Q and that adh.i/ is a Cartan involution of .G=w.Gm//R (see
Deligne 1979, 2.1.1.4, 2.1.1.5). These conditions ensure that, for all special h 2 X , the
cocharacter � associated with h factors through the Serre group,

Gm
�can
�! SC

��
�!GC (�� Q-rational).

See Milne and Shih 1982a, �1.

5.2. Let h be a special element ofX , and let T �G be a Q-rational torus such that h factors
through TR. Fix a field E �Q of finite degree over E.G;X/, and let E 0.h/DE.h/ �E. We
define �0 to be the composite

E 0.h/� D ResE 0.h/=Q.Gm/
Res.�/
����! ResE 0.h/=Q.TE.h//

NE.h/=Q
�����! T ,!G

(so �0 D � if E 0.h/D E; see 4.5). Let WE 0.h/=E be the Weil group of E 0.h/ over E (see
Tate 1979). There is an exact commutative diagram

1 A�
E 0.h/

=E 0.h/� WE 0.h/=E HomE .E 0.h/;Q/ 1

1 Gal.E 0.h/ab=E 0.h// HomE .E 0.h/ab;Q/ HomE .E 0.h/;Q/ 1:

For ˛ D .˛1; f̨ / 2G.Q/, the element Œad˛1 ıh; f̨ � 2 Sh.G;X/ depends only on the
class of ˛ in G.Q/nG.A/=C.R/, where C is the centralizer of h in GR. Let M.G;X/ be
a weakly canonical model for Sh.G;X/;and identify Sh.G;X/ with M.G;X/C. Then, as
Œh;1� is rational over E.h/ab, �Œh;1� is well-defined for � 2 HomE .E 0.h/ab; xQ/.
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THEOREM 5.3. There is a map �WWE 0.h/=E !G.Q/nG.A/=C.R/ with the following prop-
erties:

(a) for any � 2WE 0.h/=E ,

Œad.�.�/1/ıh;�.�/f �D Œ�
�1�Œh;1�;

where Œ�� is the image of � in HomE .E 0.h/ab;Q/I
(b) the following diagram commutes,

A�
E 0.h/

WE 0.h/=E

G.Af / G.Q/nG.A/=C.R/I

�0 �

(c) for all � 2WE 0.h/=E and � 2 �0.M.G;X/Q/,

�.�/f � � Œ���

in G.Q/n�0.M.G;X/Q/.

PROOF. To construct � we shall need to use the motivic Galois group attached to the category
of abelian varieties over Q that are of potential CM-type (see Deligne and Milne 1982). This
is an extension

1! S !M
�
�! Gal.xQ=Q/! 1

of Gal.Q=Q/ by the Serre group S together with a splitting M.Af /
sp
 � Gal.xQ=Q/ over

Af . For � 2 Gal.xQ=E/, let �S be the S-torsor ��1.�/ and let �G be the G-torsor �S �S G.
According to Milne and Shih 1982b, 7.2, �10, �G is trivial. Choose an a.�/ 2 �S.xQ/ and
c.�/ 2 �G.Q/ and set

�.a.�//D c.�/�; � 2G.Q/;
�.sp.�//D c.�/˛; ˛ 2G.Af /

with � D �� as in 5.1. Let !� 2 G.C/ normalize T .C/ and be such that ad!� ı�D ��.
Then �!� 2 G.R/ (ibid., 7.7, �10) and �Œh;1� D Œad.�!� / ı h;˛� (ibid., 7.11, �10). For
� 2WE 0.h/=E , we choose a � 2 Gal.Q=E/ whose restriction to E 0.h/ab is Œ��1�, and we set
�.�/ equal to the class of .�!� ;˛/ in G.Q/nG.A/=C.R/. Obviously �.�/ is well-defined,
and Œ��1�Œh;1�D Œad�.�/1/ıh;�.�/f �.

Let � 2 A�
E.h/

and identify � D Œ��1� with an element of Gal.E 0.h/ab=E 0.h//. Then
�� D � because E.h/ � E 0.h/ is the field of definition of �, and we can take !� D 1.
According to Milne and Shih 1982a, 3.10, �S is trivial, so that we can take a.�/ 2 �S.Q/
and c.�/ 2 �.a.�//. Moreover, ˛ D �0.�f /, and so �.�/ def

D .1;�0.�f //� .�
0.�1/;�

0.�f //

because �0.�1/ 2 C.R/.
As G.Af / acts transitively on �0.M.G;X/xQ/ and its action factors through an abelian

quotient and commutes with the action of Gal.Q=E/, it suffices to check (c) for a single
� 2 �0.M.G;X/Q/. But if we take � to be the class of Œh;1�, then the formula follows from
(a). 2
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5.4. Let z�.�/ 2G.A/ represent �.�/. The real approximation theorem allows us to assume
that z�.�/1 2 G.R/C. Part (c) of the theorem can be strengthened to read: z�.�/f � D Œ���.
From this it follows that x�.�/f

def
D z�.�/f �1 2G.Af /=Z.Q/^ � � � � lies in E.G;X/, and that

�.x�.�/f /D Œ��jk.

COROLLARY 5.5. Part (c) of Theorem 4.6 can be replaced by the following: let h 2XC be
special; for each S 2 z, 'S .h/ is rational over E.h/ab, and for every � 2WkSE.h/=kS ;

Œ��'S .adz�.�/1 ıh/D JST .x�.�/f /.'T .h//;

where T D x�.�/�1
f
Sx�.�/f and z�.�/1 and x�.�/f correspond to some lifting z�.�/ of �.�/

with z�.�/1 2G.R/C.

PROOF. We have x�.�/f Œh;1�
def
D �.x�.�/f /Œh;x�.�/

�1
f
�, and �.x�.�/f / D Œ�� and Œ��Œh;1� D

ad�.�/1 ıh;�.�/f �. Thus x�.�/�1
f
Œad�.�/1 ıh;1�D Œh;1� and so

J.x�.�/f /Œh;1�D Œ��Œad�.�/1 ıh;1�;

which implies the formula. 2

COROLLARY 5.6. Let z 2 XC be special and let f 2 F 0 be defined at z; then, for any
� 2WE.h/=E , uf , where uD x�.�/�1

f
, is defined at z and

uf .z/D Œ��f .adz�.�/1 ız/:

PROOF. We have

uf .z/D Œ��ıf ı x�.�/f .z/D Œ��f .adz�.�/1 ız/

because x�.�/f Œz;1�D Œadz�.�/1 ız;1� (see the above proof). 2

5.7. The last corollary can be regarded as a non-abelian solution to Hilbert’s twelfth
problem: it describes the action of the Weil group on the special values of certain functions
and therefore determines the fields they generate; this field is an abelian extension of a finite
extension of the base field.

5.8. We shall prove a non-abelian version of the reciprocity law stated in Deligne 1979,
2.7.10c. Let h 2X be special and let �D �� be the map S !G associated with h as in 5.1.
Let EM be the pullback of the motivic Galois group relative to Gal.xQ=E/ ,! Gal.Q=Q/.
Then we have an extension

1! S �! EM
�
�! Gal.xQ=E/! 1

together with a splitting EM.Af /
sp
 �Gal.Q=E/. WriteM for EM and let S act onM �G

by s.m;g/ D .ms�1;�.s/g/ and define MG to be the quotient scheme SnM �G. The
splitting sp allows us to define a map MG.Af /! G.Af /�Gal.Q=E/: we send Œm;g�
to .�.sp.�/�1m/g;�/, where � is the image of m in Gal.Q=E/. If q 2MG.Q/ maps to
.˛;�/ 2G.Af /�Gal.xQ=E/, we define qŒh;1�D �Œh;˛�.
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PROPOSITION 5.9. Let h 2 X be special, and let q D Œm;g� 2MG.Q/. If � is the image
of m in Gal.Q=E/, then qh def

D adg�1 ı �h is in X , and qŒh;1�D Œqh;1�.

PROOF. Let L be some large finite Galois extension of Q containing E.h/. Using that the
motivic Galois group, and therefore EM; is a pro-system, we have an extension

1! SL! EM
L
! Gal.Lab=E/! 1

with a splitting EML.Af /
sp
 � Gal.Lab=E/, see Milne and Shih 1982a, �2. Replace EM

in the above discussion by its quotient EML. Choose a section � 7! a.�/ to EML.L/!

Gal.Lab=E/ that is a morphism of pro-algebraic schemes. After possibly multiplying g
by an element of SL.L/, we can assume q D Œa.�/;g�. Let �.a.�// D a.�/� .�/ with
� .�/ 2 S

L.L/; since �g D Œ�a.�/;�g�D q, we have �g D �.� .�//g. The formula of
Milne and Shih 1982b, 7.13, �10, states that �Œh;1�D Œad� ı� h;��.sp.�/�1a.�//�1�, where
� is any element of G.L/ such that �� D ��.� .�//. Clearly, g�1 is such an element, and so
�Œh;1�D Œqh;g�1�.sp.�/�1a.�//�1�. On multiplying on the right with �.sp.�/�1a.�//g,
we obtain the formula qŒh;1�D Œqh;1�. 2

5.10. If we knew the conjecture of Langlands (1979, pp. 232–33) (equivalently, conjecture
CM or D of Milne and Shih 1982b), it would be possible to replace the motivic Galois
group by the Taniyama group. The above results would then be more explicit.4

5.11. Let N be the normalizer of T in G. It would be interesting to know under what
conditions every element �.�/ is representated by an element of N.A/ and further that there
exists a commutative diagram

1 E.h/�nA�
E.h/

WE.h/=E HomE .E.h/;Q/ 1

1 T .Q/nT .A/ N.Q/nN 0=N 0\C.R/ HomE .E.h/; xQ/ 1

� �

with N 0 � N.A/. The existence of such a diagram would provide a partial answer to the
problem mentioned in Tate 1967, p. 200.5

THE UNIVERSITY OF MICHIGAN

427.03.23. We do know the conjecture, see the article in footnote 2.
5The kernel of the map [from the Weil group E of L=K to Gal.Lab=K/] is the connected component DL of

CL. As Weil remarks, the search for a Galois-like interpretation of E (or even a “natural” construction, without
recourse to factor systems, of a group E furnished with a “natural” map W WE! Gal.Lab=K/ seems to be one
of the fundamental problems of number theory.
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