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Shimura Varieties: Conjugates and the Action o
r —

of Complex Conjugation )¢

* *
J.S5. Milne and K.-y. Shih

A basic problem in the theory of Shimura varieties is to

describe how an automorphism of the complex numbers acts on a .h* 2?
variety and on its special points. For example Shimura's con- N )
jecture, concerning the existence of a canonical model, is the h«tti;hﬂ
special case of this problem in which the automorphism fixes the p¢ %

reflex field of the variety or of the special point. 1In [1,
p 417-18] Langlands states two conjectures concerning this ;I8
problem, and the main purpose of this paper is to prove these con-
jectures for all Shimura varieties of abelian type. (This class

of Shimura varieties, defined in §l1 of this paper, contains all
those for which a canonical model is constructed in Deligne ([3]).

The first conjecture describes the action of complex conju-
gation on the complex points of a Shimura variety that has a real
canonical model. Recall that a Shimura variety Sh(G, X) is
defined by a Q-rational reductive group G and a family X of
homomorphisms ¢ - G(IR) satisfying certain conditions. 1Initially
Sh(G,X) 1is defined as a complex variety but is expected to have a
model over a certain number field E(G,X) called the reflex field.

A canonical model for Sh(G,X) is a variety M(G,X) over E(G,X)

*
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satisfying certain conditions sufficient to determine it uniguely.
In the case that E(G,X) 1is real and the canonical model exists,
‘complex conjugation defines an involution 6 of Sh(G,X). It
is important to have an explicit description of 6 in ordeyr, for
example, to compute the factor at infinity of the zeta function
of Sh(G,X). The conjecture of Langlands suggests such a descrip-
tion. When the canonical model is a maduli variety, and so has a
direct description, the proof of the conjecture is straightforward.
This is not usually the case, and just as the construction of the
canonical model is intricate in general, so must be the proof of
the conjecture. 1In particular it must involve an analogous asser-
tion for connected Shimura varieties. Such an assertion is proved
in Shih [1] for connected Shimura varieties that are of primitive
abelian type C, and this result is the starting point of our
proof of the conjecture for all Shimura varieties of abelian type.
(Since 6 does not preserve the connected component the
analogous assertion takes on quite a different form from the
original; it becomes rather a statement about the action of a
"negative" element of G(Q).)

We can apply an automorphism 1t of & to the polynomial
equations defining Sh(G,X%) and so obtain a conjugate variety
T5h (G, X); the second conjecture concerns the identification of
T8h(G,X). Since TM(G,X) = M(G,X) when 1 fixes E(G,X), this
is only a problem when 1 does not fix the reflex field (oxr the
canonical model is not known to exist). Kazhdan [1] shows that,

when Sh(G,X) is compact, TSh(G,X) 1is isomorphic to the Shimura
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variety defined by a second pair (TG,TX) but unfortunately
his method provides very little information about T ana T'X.

For Shimura curves Doi and Naganuma [l] show TSh(G,X) is iso-

T T

morphic to Sh{( G, X) for an explicit pair (TG,TX) and Shih [2]
proves the same result for a Shimura variety of primitive abelian
type A or C. The conjecture of Langlands suggests a descrip-
tion of ('G,'X) in the general case. This we verify for all
Shimura varieties of abelian type.

In [3] Langlands announced a conjecture, which we shall refer
to as conjecture C, that describes in a very precise way how an
automorphism of & acts on any Shimura variety and its special
points. The statement is based on the construction of a remarkable
extension of Gal(@/Q) by the Serre group, which Langlands calls
the Taniyama group. Conjecture C 1implies the previous two con-
jectures. Although expected, because of its greater precision,
to be more amenable to proof then the earlier two conjectures,
conjecture C seems to lie much deeper. We do, however, show
that (at least for Shimura varieties of abelian type) it is equi-
valent to a statement (conjecture CM) involving only abelian
varieties of CM-type. This conjecture CM can be regarded as a
strengthening of the main theorem of complex multiplication in
that it describes how any éutomorphism of € acts on an abelian
variety of CM-type and its points of fihite order. As a consequence

we find that in order to prove conjecture C for all Shimura

varieties of abelian type it suffices to prove it for those defined
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by a group of symplectic similitudes. Moreover‘we show that if
one replaces the Taniyama group by the reductive group associlated
with the category of motives over @ generated by abelian varie-—
ties of.potential CM-type, then conjecture 'C becomes true. Thus,-
if the Taniyama group is isomorphic to this motivic Galois group
(with all its structure) then conjecture C 1is true; we also
prove the converse of this assertion.

We would like to thank P. Deligne and R. Langlands for making
available to us pre-prints of their work and D. Shelstad for a
letter on which we have based Proposition 7.2 and preceding dis-—
cussion. One of us was fortunate to be able to spend seven months
during 1978-79 at I.H.E.S. and have numerous discussions with

P. Deligne, which have profoundly influenced this paper.




Notations and conventions.

For Shimura varieties and algebraic groups we generally

follow the notations of Deligne [3]. Thus a reductive algebraic
group G 1is always connected, with derived group Gder’ adjoint
group Gac , and centre 2 = Z(G). (We assume also that Gad has

no factors of type E8.) A central extension is an epimorphism

G »~ G' whose kernel is contained in 2Z(G),and a'covering is a central

extension such that G 1is connected and the kernel is finite. If G
is reductive, then p: G > Gder is the universal covering of
Gder’

A superscript + refers to a topological connected component;
for example G(HU*' is the identity connected component of G(HU
relative to the real topology, and G({D)+ = G(O) N G(HU4_. Fox
G reductive, G(IR)'+ is the inverse image of Gad(IR)+ in
G(IR) and G(CD)+ = G(®) f\G(IR)+. In contrast to Deligne [3],

~

we use the superscript to denote both completions and closures
since we wish to reserve the superscript - for certain negative
components.
We write Sh(G,X) for the Shimura variety defined‘by a pair
(G,X) and Sh°(G, G', X+) for the comnected Shimura variety defined by a triple
(G,G',X"). The canonical model of Sh(G,X) is denoted by M(G,X). |
Vector spaces are finite-dimensional, number fields are of
finite degree over @ (and usﬁally contained in T), and @ 1is

the algebraic closure of ® in €. If V 1is a vector space over

© and R is a (@-algebra, we often write V(R) for V & R.
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We write Z = lim Z/mZ, 1A

It

D ® Z for the ring of
finite adéles of @, and T =IR x nt  for the ring of adéles
of @§. For E a number field, Imé and :mF denote E @Gzﬂxf

and E ® . The groups of idéles of E is" ng and the idéle

class group is C; =:m;/Ex.

If A 1is an abelian variety, An = ker(n: A = A), TA==;3m Ah"'
and Vf(A) = Q;® TA. Throughout the paper an abelian variety A
will be systematically confused with its isogeny class; thus only
vi(a) (not TA), H_(A, ® (ot H_(A, 1)), and H(A_., 0,)

{(not Hr(Aet’ Zg)) are defined, and Hom(A,B) means Hom(A,B) ® 0.

Complex conjugation is denoted by =z 1z,

We use [*] to denote an equivalence class containing * ;
for example, if x € X and g € G(ﬂga then [x, g] denotes
the element of Sh(G,X) = G(@)\ X X G(]Af) /2 ()" :containing (x,9).
The Hecke operator [x,9] — [x,gg9'] 1is denoted by (ERQ')‘ The
symbol A ; B means A is defined to be B or that A equals
B by definition.

We normalize the reciprocity isomo:phism of class field
theory so that a uniformizing parameter corresponds$S fo the
reciprocal of the (arithmetic) Frobenius element; we thus agree
with Deligne [3] and Tate [11].

For the Weil group, we follow the notations of Tate [1].

In particular, for a topological group T, r® denotes the
closure of the commutator subgroup of T and Fab = P/FC.

For Galois cohomology and torsors (= principal homogeneous

space) we follow the notations of Serre [1].
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The notations concerning Hodge structures are reviewed
in Appendix A.

There are many differences of sign between this paper and
Langlands [3]; the reason is that this author, despite his state-
ment on p. 224, appears to be using the opposite of the above
sign convention for the reciprocity map and hence a different

notion of the Weil group from that in Tate [1].
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I. Shimura varieties.

In 51 we review the basic definitions concerning Shimura
varieties, introduce the notion of a Shimura variety of abelian
type, and discuss the relation between Shimura varieties and
connected Shimura varieties. 1In §2 we describe how some Shimura
varieties can be realized as moduli varieties for abelian
varieties carrying Hodge cycles, and in §3 we prove a result
that will enable us to handle reductive groups whose derived

groups are not simply connected.
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1. Shimura varieties of abelian type.

A Shimura variety Sh(G,X) is defined by a pair (G,X),

comprising a reductive group G over @ and a G(R) -conjugacy
class X of homomorphisms § - GH{' that satisfies éhe following
axioms:
(1.1la) the Hodge structure defined on Lie(Gﬂg by any
h € X .is of type {(-1, 1), (0,0), (1, -1)} (cf. Appendix A);
(1.1b) for any h € X, eg h(i) 1is a cCartan involution

ad |

.on an

da

(1.1lc) the group G2 has no factor defined over 0]

whose real points form a compact group.

Then Sh(G,X) has complex points G(O)\ X x G(Eﬁ% /2{(m ",
where Z is the centre of G and 2Z(@)" the closure of 2Z (D)

in zcmf).

A connected Shimura variety ShO(G,G',X+) is defined by

a triple (G,G',X+) comprising an adjoint group G over @,

a covering G' of G, and a G(EU4-—conjugacy class of homo-
moxrphisms % - GIR such that G and the G(IR) -conjugacy class
of X containing X+ satisfy (1.1). The topology 1I(G') on
G(@) is that for which the images of the congruence subgroups
of G'(D) form a fundamental system of neighbourhoods of the
identity, and Sho(G,G',X+) has complex points %EE I‘\X+ where
I' runs over the arithmetic subgroups of G({[_))+ that are open

relative to the topology T(G'") (Deligne [3, 2.1.81).
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The relation between the two notions of Shimura variety
is as follows: let (G,X) be as in the first paragraph and

-+
let X be some connected component of X; then xt can be

ad + .
regarded as a G (IR) -conjugacy class of maps § - G;S and

der + . s .
» X') can be identified with the connected com—

sh® (¢, ¢
ponent of Sh(G,X) that contains the image of xt x {1}.

We recall that the reflex field E(G,X) of (G,X) is the
subfield of & that is the field of definition of the G(C)~-
conjugacy class of uh, any h € X, (see Appendix A for this
notation) and that E(G,X+) is defined to equal E(G,X) if X+
is a connected component of X (Deligne [3, 2.2.11). |

The following easy lemma will be needed in comparing the

Shimura varieties defined by (G,X) and (Gad, Gder' X+).

Lemma 1.2. Let Gl -~ G be a central extension of reductive

groups over C€; let M be a G(C)-conjugacy class of homomor-

phisms Gm > G and let M be a Gl(m)—conjugacy class lifting

1
M. Then Ml + M 1is bijective.
Proof. The map is clearly surjective and so it suffices to show
that, for My e Ml lifting p € M, the centralizer of My is
the inverse image of the centralizer of wu. Since the centralizer
of ul contains the center of Gl' we only have to show the
map on centralizers is surjective. We can construct a diagram

CxX G, G, G



-13-

in which the first map, and the composite G. » G are coverings.

2
After replacing My and p by multiples, we can assume My
lifts to a homomorphism (u',pu"): Gm + C X G2. Then the centralizer

of (p',u") maps into the centralizer of g and onto the

centralizer of .

Let (G,X) be as in (1.1) with G adjoint and {@-simple;

if every R-simple factor of G]R is of one of the types A, B,

R . .
c, Do, Dni, or E (in the sense of Deligne [3, 2.3.8]; see also

Appendix B) then G will be said to be of that type. When G

is a covering of G, we say that (G,G') (or (G,G',X)) is of

R and G!

is the universal covering of G, or if G is of type D]H and

primitive abelian type if G 1is of type A, B, C,or D

G' 1is the double covering described in Deligne [3, 2.3.8] (see

also Appendix B).

Notations 1. 3. If (G,X) satisfies (1.1) and G is adjoint

and Q-simple, then there is a totally real number field FO and

and absolutely simple group G° over Fb such that G = Res G°.

F_/0

For any embedding v: FO = IR, let GV = G° 8 R, and
o,V

write I, and Inc for the sets of embeddings for which GV(HQ
is compact and noncompact. Let F be a quadratic totally

imaginary extension of FJ and let r = (ov)veIc be a set of

empeddings o¢_: F <> € such that OVIFO = v; we define. hg

e

to be the Hodge structure on F (regarded as a vector space over

®) such that (F @, o 0, (r e 0’7, ana (F 8y €)% are
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the direct summands of F ®Q C = mHom(F,m) corresponding to

L ,1L, and {o:Fe—>CT| o|F_€ I__}.
o] nc

Proposition 1.4. Let G be a D-simple adjoint group and assume
‘that (G,G',X) 1is of primitive abelian type. For any pair (F,I)

as above there exists a diagram

(G,X) <—— (Gy,X)) <> (CSp(V), s¥)

1
such that ¢®% = ¢, 6%F = ¢', and E(G.,X.) = E(G,X) E(F,h_)
1 ! 1 ! 1’7 ! et
Proof. ‘This is Deligne [3, 2.3.10]}.
Remark 1.5(a). We shall need a supplement to the proposition.

Consider an h in X that is special, and so factors through

Tm where T is a Q-rational maximal torus in G. The inverse
- image of T in Gl is a (-rational maximal torus Tlc:.Gl ,
and h 1lifts to an hl in Xy factoring through Ty - We claim

X
that E(Tl'hl) = E(T,h? E(F ,hz).

To see this, first note that it is obvious that E(Tl,hl):DE(T,h)
and E(Tl,hl):D E(Gl,Xl). As the proposition shows that
X X
E(Gl,Xl):D E(F ,hz), we see that E(Tl,hl):D E(T,h) E(F ,hz).

For the reverse inclusion, let o be an automorphism of D

fixing E(T,h) and E(Fx,hz), and let Myr My and My be the
cocharacters of Tl, T, and FX corresponding to hl’ h, and
h.. Since ¢ fixes E{(T,h), it fixes E(G,X), and the pro-

z
position shows that it fixes E(Gl,Xl); thus Ouy- is Gl(E]—
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2. Shimura varieties as moduli varieties.

We shall want to make use of the notion of an absolute
Hodge cycle on a variety (Deligne [4,0.7]) and the important
result (Deligne [5]) that any Hodge cycle on an abelian variety
is an absolute Hodge cycle. Let A be an abelian variety
over an algebraically closed field k<C €; we shall always
identify a Hodge cycle on A with its Betti realization. By
this we mean the following. Let V = Hl(AE’ ®) (usual Betti

homology) and note that V has a natural Hodge structure and

that its dual V = H'(A,0). If H: (A) denotes the de Rham
cohomology of A over k then there is a canonical isomor-
phism HéR(A) ®k C —> §(m). There is also a canonical iso-
morphism Vf(A)-Qis»V(B¥E). A Hodge cycie s on A 1is to be

v
an element of some space V®m ® V®n(p) (see Appendix A) such that:

(2.1la) s 1is of type (0,0) for the Hodge structure defined by

that on V;

1 v, em 1 ®n _
dR(A) ) ® HdR(A) that corre
1 ~

dR(A) ®k C =~ V(CT)

(2.1b) there 1s an st e (u

sponds to s under the isomorphism induced by H

and C =z 2wiQ;

em Vv, N

(2.1c) there is an s € Vf(A) ® (Vf(A) ) ® (lim un(k))xp

et

that corresponds to s under the isomorphism induced by

A
vinty = via) ana 2ni 7 X 1im u (D).
. ~— 'n
Let 1 be an automorphism of €; then <TA 1is an abelian variety

over 1tk &€ € and the above-mentioned result of Deligne shows that

1s 1is a well-defined Hodge cycle on TA: it has (TS)dR = S4r ® 1

€ HdR(TA) = HdR(A) @k,T}; and (Ts)et = TS -
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Certain Shimura varieties can be described as parameter

spaces for families of abelian varieties. Let (G,X) satisfy

b

(1.1), and assume there is an embedding (G,X) &> (CSp(V), S57)
where V 1is a vector space over (Q, CSp(V) is the group of
symplectic similitudes corresponding to some non-degenerate skew-

+
symmetric form y on V, and S is the Siegel double space

(in the sense of Deligne [3, 1.3.1]). There will be some family
of tensors (Sa)aeJ in spaces of the form ng ) §®n(P) such

that G = Aut(V, (Sa)) C GL(V) x mm (see Appendix A). We shall
always take | to be one of the Sa; then the projection
G- B is defined by the action of G on y.

Consider triples (A, (ta) k) with A an abelian

alJ '
variety over (, (ta) a family of Hodge cycles on A, and Kk
is an isomorpnism k: Vf(A) = (V(Bga under which ta

corresponds to Sa for each a € J. We define 6®(G,X,V) to
be the set of isomorphism classes of triples of this form that

satisfy the following conditions:

(2.2a) there exists an isomorphism H, (A, @) -—=-» V under which

Sa corresponds to ta for each o € J;
h

(2.2b) the map & ——iie GL(Hl(A,:R)) defined by the Hodge
structure on Hl(A,Im), when composed with the map
GL(HI.(A,IR)) + GL(V(IR) ) induced by an isomorphism as in (a),

lies in X.
we let g € G(Bﬁ% act on a class [A, (Su)' k] G(ﬁyG,X,V) as

follows: (a, (ta)' klg = [A, (ta)' g_lk]-
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Proposition 2. 3. There is a bijection Sh(G, X) —£4>{AXG,X,V)

. . P f
commuting with the actions of G(IA") .

Proof: Corresponding to [h,g] € Sh(G,X) = G(@\X x GCmf),

we choose A to be the abelian variety associated with the Hodge

structure (V,h). Thus Hl(A, D) = Vv and the Sa‘ can be regarded
as Hodge cycles on A. As Vf(A) = V(Bﬁa we can define k to

-1
be Vf(A) = V(IAf) = N V(IAf). It is easily checked that the

class (A, (ta)' h] e(gXG,X,V) depends only on the class
[h,g] € Sh(G,X).
Conversely, let (A, (ta)' k) represent a class in (XXG,X,V).

We choose an isomorphism f: Hl(A, @) » vV as in (2.2a) and

define h to be thf"l (cf. 2.2b) and g to be
£ k1 £ £81 £ .
V(AR") ——— V (A) —— V(IA") . If f 1is replaced by qf, then

(h,g) 1is replaced by (ad(g) o h, gg), and g € G(Q).

Remark 2.4. The above proposition can be strengthened to show

that Sh(G,X) 1is the solution of a moduli problem over C.
Since the moduli problem is defined over E(G,X), Sh(G,X)
therefore has model over E(G,X) which, because of the main
theorem of complex multiplication, is~canonical. This is the
proof of Deligne [3, 2.3.1] hinted ag:the last paragraph of the

introduction to that paper.
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3. A result on reductive groups; applications.

The following proposition will usually be applied to
replace a given reduction group by one whose derived group

is simply connected.

Proposition 3.1. (cf. Langlands [3, p 228-29]). Let G be

a reductive group over a field k of characteristic zero
and let L be a finite Galois extension of k that is sufficiently
large to split some maximal torus in G . Let G' - Gder

be a covering of the derived group of G . Then there

exists a central extension defined over k
l1 —- N — Gl — G — 1

such that Gl is a reductive group, N 1is a torus whose group

of characters X*(N) 1is a free module over the group ring
Z{Gal(L/k)] , and (63" — ¢%F) = ' — %) .

Proof: The construction of Gl will use the following result

about modules.

Lemma 3.2. Let G be a finite group and M a finitely
generated G-module. Then there exists an exact sequence of

G-modules 0 — P1 —> P0 — M — 0 in which PO

is free and finitely generated as a Z-module and Pl is

a free Z[Qd—module.

Proof: Write M0 for M regarded as an abelian group, and

choose an exact sequence
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0 — F, — F, — My — 0

of abelian groups with FO (and hence Fl) finitely generated

and free. On tensoring this sequence with Z[gJ we obtain

\

an exact sequence of G-modules

O—)Z[E}]@F —> ZI[G] ® F — Z [G] ® M — 0

1 0 0

whose pull-back relative to the injection

(m > deg'lm): M & Z[G] 8 M,

has the required properties.
We now prove (3.1). Let T be a maximal torus in
G that splits over L and let T' be the inverse image of
der

T under G' > G < G; it is a maximal torus in G' . An

application of (3.2) to the G = Gal(L/k)-module M

provides us with the bottom row of the following diagram, and
we define Q to be the fibred product of PO and X, (T)

over M :

D%
=

v
O &« 2 & %
o

0 — P — P

0

¢

(

y

0 — > P > Q
J

0

)

0
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Since the terms of the middle row of the diagram are torsion-
free, the Z-linear dual of the sequence is also exact, and

hence corresponds, via the functor X* , to an exact sequence

1 > N —> T, — T — 1

1
of tori. The map X, (T') — Q = x*(Tl) corresponds to a
map T' — Tl lifting T' — T . Since the kernel of
T — Tl is finite, the torsion-freeness of P0 =
coker (X, (T') — X*(Tl)) thus implies that T' — T,

is injective. On forming the pull-back of the above sequence
of tori relative to 2 < T , where 2 = Z2(G) , we obtain

an exact sequence

1 = N — 2. — 7z — 1

1

As contains 2' = Z(G') , T' & T, induces an inclusion

N

T '
' Zl . The group G can bhe written as a fibred sum,
G* Z

P , where G is the universal covering group of

O O

der and 2 = Z(é) (Deligne [3.2.0.1]). We can identify G'

~

with a quotient of G . Define G, = G * 5 Zl . It is easy

to check that Zl —» Z induces a surjection G1 —> G

with kernel N C 2 induces

1 < Z(Gl) vand that G — Gl
an isomorphism G' > Gier . Finally, we note that
X, (N) is a free Z[G]-module and X*(N) is the Z-linear

dual of X, (N) .

Remark 3.3 (a) The torus N in (3.1) is a product of copies of

1
& . Thus H (k',N

ReSL/k m

k.) = 0 for any field k'>D k , and
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the sequence 1 > N(k') - Gl(k') + G(k') = 1 1is exact.

(b) Let T be the inverse image of T <(or T') in G .

1

—:? Tl . Thus Tl can be identified with

Then the maps T > T T, and 27, > T induce an

isomorphism T * Zl

a subgroup of Gl » and the diagram

l1 — N —> T1 — T — 1

I ) [

1 — N — G1 —> G —> 1

commutes. Obviously Ty is a maximal torus in Gl .

Application 3.4. Let (G,X) satisfy (1.1) , let h e X be

special, and let T be a maximal torus such that h factors

der

through TB( Let G' =+ G be some covering. Take k to
be ® and L to split T , and construct T1 C Gl > G
as above. Choose some Hy e X*(Tl) mapping to N € X, (T).

Then Hy obviously commutes with THy and so defines a

homomorphism h g > TE{C: GI(' We let X be the

1’ 1
G(IR)- conjugacy class of maps containing hl The pair

(Gl,Xl) satisfies (l.1l) because, modulo centres, (Gl'xl) and
(G,X) are equal.

It is possible to choose Hy so that E(Gl,Xl) = E(G,X).

. To prove this we first show that the image Hh of Hy in
M is fixed by Aut(C/E(G,X)) , where M 1is as in the proof

of (3.1):



0 0
\’ b
Xe(T') =—= X, (T")
J ¢
0 — X,(N) — X*(Tl) —> X, (T) ——> 0
I b \
0 — X, ([N) —> P — M — 0
\’ \
0 0

We have to show THy ~ Hy lifts to an element of X,(T') or,

equivalently, an element of X,(G') , for any T € Aut(C/E(G,X)).

By proceeding as in the proof of (Deligne [3, 2.5.5]) one can

construct a central extension G. -+ GE of G with Gder = é

2 E 2 E
and a homomorphism Mot Gm > G25 , lifing p , whose con-
jugacy class is defined over E = E(G,X) . Then, for any
T € Aut(C/E), TH, — U, € X*(Gger) = X*(CE) and maps to

T™H —u € X, (T).

We now use the fact that X,(N) is a free Gal(LE/E)-
module to deduée the existence of a My e X*(Tl) mapping to
u € X,(T) and whose image El in P, 1is fixed by Aut(C/E).
The map Gl + G 1induces an isomorphism W(Gl,Tl) —19 W(G,T)
of Weyl groups. Let T € Aut(C/E) and suppose 1Ty = w ° |
with w € W(G,T) . 1If Wy € W(Gl,Tl) maps to @ , then
w; o py maps to Tty in X, (T) and El = Tﬁl in P, ;
thus wy ° My T THy - It follows that 1 fixes E(Gl,Xl),

and so E(G,X)ZDIE(%@,XI). The reverse inclusion is automatic.

)A.s
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We can apply this to a triple (G,G‘,X+) defining a connected

Shimura variety. Thus there exists a pair (Gl'Xl) satisfying

da .d +, o~
i rGler/Xl) ~

E(G,X+) , and X*(Z(Gl)) is a free Gal(L/Q)-module for some

(1.1) and such that (G (G,G',X"), E(G /X)) =
finite Galois extension L of @ {(cf. Deligne [3, 2.7.16]).
The last condition implies Gl(k) - Gid(k) = G(k) 1is surjective

for any field k 2 Q

Application 3.5. Let G be a reductive group over a field
k of characteristic zero, and let p: G » Gder C G be the uni-
versal covering of Gder . When k 1is a local or global field

and k' is a finite extension of k , there is a canonical
norm map Nk‘/k: G(k')/pG(k"') + G(k)/pG(k) (Deligne [3, 2.4]).
We shall use (3.1) to give a more elementary construction of

this map.

If G 1is commutative, Nk'/k is just the usual norm

map G(k') > G(k)

Next assume Gder is simply connected and let

T = G/Gder . If in the diagram

1 —> G(k)/G(k') —> T(k') —> Hl(k’,a)

l Ny 7k

1 — 6k /G(K)  —> Tk —3 B (k&)

1

the map G(k')/é(k') + H (k,G) is a zero, we can define

NL'/k for G to be the restriction of N for T .

k'/k
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. 1 ~
When %k is local and nonarchimedean then H (k,G) = 0

’

and so the map is zero. When k is local and archimedean we

can suppose k = IR and k' = @ ; then NQ/BQ: T(C) »~ T(IR) maps
into T(HU*- , and any clement of 'PCR)+ lifts to an element
of G(IR) (even to an element of Z(G)(IR)) . When k 1is global,

we can apply the Hasse principle.

In the general case we choose an exact sequence

1 5 N — Gl — G — 1

as in (3.1). From the diagram

N(k') — Gy (k")/G(k') —> G(k')/pG(k') — 1

J,Nk'/k lNk'/k

N(K) = G K)/GK) > GRK)/pG(K) — 1

we can deduce a norm map for G .
Let k be a number field. If we take the restricted
product of the norm maps for the completions of k , and form

the quotient by the norm map for k , we obtain the map

of Deligne [3,2.4.0.1], where (G,) = G mk)/(c(k).pé(mk)) )

Application 3.6. Let G be a reductive group over @ such

that Gad has no factor over @ whose real points form a

compact group, and let G' be an inner twist of G . Thus

for some Galois extension L of @ there is an isomorphism
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f: G s Gi such that, for all ¢ € Gal(L/Q) , (of).—l o f =

L
f@ o with ag e Gad(L). We shall show that £ induces a
canonical isomorphism ¢ (£): 1 (G) ;ié'n(G‘) . (Recall
7(G) = G(B)/(G(D) .pG(B)).)
If f is defined over @ , for example if G 1is commutative,
then g (f) exists because 7 1is a functor.

Next assume that Gder

is simply connected, and let £
be the isomorphism from T = G/Gder to T' = G'/G'der induced
by f . A theorem of Deligne [1,2.4] showsthat the vertical arrows

in the following diagram are isomorphisms

m (G) N 8¢ 2> 7w(G")
l o (T (£)) l
ﬂo(n(T)) - rd nO(W(T')) .
We define 7 (f) to make the diagram commute.

In the general case we choose an exact sequence

l—-> N — Gl — G — 1

as in (3.1) with G?er simply connected. Note that G?d = Gad

so that we can use the same cocycle to define an inner twist

. , . .
fl. GlL -+ GlL . The first case considered above allows us to
assume fl lifts f . Remark (3.3a) shows that ﬂ(Gl) > T(G)

is surjective, and we define 7(f) to make the following

diagram commute:



T(N) —> m(G,)

lﬂ(f'N) l"<fl)
mT(N') — w(Gi)
Note that, if f: GL_’
G' and G" as inner twists
m(f'of) Also, that if f£:
for q € Gad(m) » then 7w (f)
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—> 7w (G) —>» 1

bm (£)
+

— 7m(G') — 1

and f': »~ G!

L
then

1] 1
G, G,

of G and @' ,

G > G 1is of the form

is induced by ad g:

and hence is the identity map (Deligne [3,2.0.15]).

combining these two remarks we find that

depends only

be replaced by

ﬂ(f)°1r(:3c§ q)

define

m(f

f
G(1n)

On

")om (£)

ad g

Aty

- G(DR)

T(£): w(G) » mw(G")
on G' and the cocycle (ac) + for f can only
fead (q) with ‘q e Gad(m) , and n(f°§g q) =
= 7w (f).
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II The Conjectures of Langlands

We begin, in §4, by reviewing the basic properfies of the
Serre group. In 85 we discuss abstractly the notion of an exten-
sion of the Serre group by Gal(@/@) . In 56 and §7 we review,
with some complements, Langlands‘gponstruction of the Taniyama

group and his conjectures concerning Shimura varieties.
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§4. The Serre group.

Let L CC be a finite extension of @, let T be the
set of embeddings of L into € , and write Lx for ReSL/QGm

Any p € Gal(Q/@) defines an element [p] of T , which may

be regarded as a character of L . Then T is a basis for

X* (L") . An element o of Gal(@/@) acts on X* (L) by

O(pr[p]) = pr[op] = 1Ib -1 [p] . The quotient of L by the
g p
Zariski closure of any sufficiently small arithmetic subgroup

has character group x* (L) n (¥° ® ¥7) where

O

v {x € x*(L") ® @lox = , all ¢ € Gal(G/D)}

Y

I

(Serre [3, II-31, Cor.l]). Thus this gquotient is independent of

the arithmetic subgroup; it is called the Serre group st of

I, (or, sometimes, the connected Serre group). One checks easily

that X*(SL) is the subgroup of X*(LX) of x satisfying

(4.1) (0-1) i+1)x = 0 = (1+1) (c-1)x , all o € Gal(Q /@)

There is a canonical homomorphism h = hL: g » sé and hence

(see Appendix A) corresponding homomorphisms Wy mm -+ Sé and

u o= uL: G - Sé . They determine the following maps on

the character groups:

X*(h) = (zb [p] > (by,b ): X*(8Y) — X*(8) =% ® @)

x*(wh) = (pr[p] — - b; - bl)

X*(u) = (pr[p] — bl)

{x e X* (L) @ Ql¢x = -x, all ¢ of the form ¢ = g1i0

}
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Note that W, is defined over @ . The pair (SL,uL

) is
universal: for any (Q-rational torus T that is split over

L and cocharacter u of T satisfying (4.1) there is a

P
unique Q-rational homomorphism SL ——Ha T such that p“ o uL = Uu.
In particular there are no nontrivial automorphisms of (SL,UL) .

For CDOL'D LD Q@ and L' of finite degree over

]
@ , the norm map induces a homomorphism SL > SL sending
'
hL to hL . The (connected) Serre group S 1is defined to be

the pro-algebraic group lim SL . There is a canonical
+
. _ g L .
homomorphism h = hcan = lim h™: & ~» S:|R and corresponding

= . L .
cocharacter pu = Moan® Gm > S¢ . For any L , S is the
largest quotient of S that splits over L .

We review the properties of S that we shall need to use.

(4.2). The topology induced on SL(Q) by the embedding

SL(Q) - SL(me) is the discrete topology; thus SL(m) is
closed in SL(imf) . This is a consequence of Chevalley's
theorem, which says that any arithmetic subgroup of the Q-rational
points of a torus is open relaﬁive to the adelic topology, because

L

the subgroup ({1} of S7 (@) is arithmetic.

(4.3). Make Gal(a/m) act on the group A of locally constant
functions Gal(@/@) +~ Z by transport of structure: thus

(o) (p) = A(o_lp) . The map X*(SL) > A  that sends yx = pr[p]
to the function p r— bp identifies X*(SL) with the subset

L

A of A comprising those functions that are constant on

left cosets of Gal(Q/L) in Gal(Q@/Q) and satisfy (4.1). On
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passing to the limit over L , we find that X*(S) becomes

identified with the subgroup of p of functions satisfying (4.1).

(4.4). Let Q@™ be the union of all subfields of @ of CM-type;

it is the largest subfield on which 1 and o commute for all

o € Gal(@/Q) . The condition (4.1) is equivalent to the following
condition:
(4.1") A is fixed by Gal(@/@™ and A(10) + A(0)

is independent of o

In particular, for a given L , AL CZAF where F =1L N mcm

is the maximal CM-subfield of L (or @) . Since obviously

A D AF , they must be equal: SL —16 SF .

(4.5). (Deligne) Let F be a CM-field with maximal real
subfield FO . There is an exact commutative diagram (of algebraic
groups):

1 1
T T
FX/FJ 5 sF /e
T 1
X
1 — Ker —— F -5 &F — 1
T: T Ihw
|
1 —> Ker — F;ﬂ)mx—)l
7 T
1 1
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To prove this it suffices to show that the square at bottom-right
commutes, and the top horizontal arrow is injective, but both

of these are easily seen on the character groups. Thus there

is an exact sequence

1 — Fy — Fox @ — s — 1.

We can deduce that, for any field k 5 @ , there is an injection
Hl(k,SF) “—> Br(FO ® k) where Br denotes the Brauer group.
It follows that, when k is a number field, the Hasse principle

Fy:  the map u'(k,s¥)+ o Hl(kV,SF) is

holds for Hl(k,S
injective. The remark (4.4) .shows that this is also true with-

out assuming F to be a CM-field.

(4.6) Let A € X*(S) and let TA be the @-rational torus
such that X*(TA) is the Gal(@/Q)-submodule of X*(S) generated
by X . Thus T is a quotient of S and h defines a

A can

homomorphism h: $ = TA . TFor any @Q-rational representation of
TA' TA <— GL({V), (V,h) is a @-rational Hodge structure with
weight n = -(A (1) +Xx (1)) and Mumford-Tate group MT(V,h) = TA
(Appendix A). The condition (4.1') shows that 1 acts as -1
on Ker(A' > A'(l)+X'(1): X*(TA) + 7ZZ ); thus (TA/Wh(Gm))(BU
is compact, and (V,h) is polérizable (Deligne [2,2.8]). It
follows easily that S = lim MT (V,h) where the limit is over
the (@-rational polarizable Hodge structures (V,h) of CM-type.

In other words, S 1is the group associated with the Tannakian

category of Hodge structures of this type.
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(4.7) (Serre). It is an easy combinatorial exercise to show

that X*(S) 1is generated by functions A\ such that A (o)

is 0 or 1 and A(oc) + A(wo) =1 . If X 1is of this type
then, for any representation T, <> GL(V) of T, (V,h)

is a @-rational polarizable Hodge structure of CM-type and

weight -1; it therefore corresponds to an abelian variety. Thus

S = lim MT (A) where the limit is over abelian varieties (over )
of VCM-type. In other words, the Tannakian category of @-rational

polarizable Hodge structures of CM-type is generated by those

arising from abelian varieties.

(4.8) If L is Galois over @ , then Gal(L/Q) acts on

LY = ResL/(D(Bm and this action induces an action on the quotient
sb . Thus there is an action of Gal(@Q/@Q) on the Q-rational
pro-algebraic group S . It is important to distinguish carefully

between the two natural actions of Gal(@/@®) on S(@) , the
first of which arises from the (algebraic) action of Gal (Q/®)
on S and the second from the (Galois) action of Gal(Q/®)

on Q@ .

5. Extensions of Gal(Q/Q) by S .

By an extension of Gal(@/@) by S we shall mean a

projective system

ab ;y —5 1

J,NLl/L \L L can (L LY)

1 —3 s — T — s a1y — 1

1 t ]
1 —> s® —— " — Gcal(L

There is no paye 34
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of extensions of (@-rational pro-algebraic groups; the indexing

set is all finite Galois extensions of @ contained in Q@

The group Gal(Lab/Q) is to be regarded as a pro-system of

finite constant algebraic groups in the obvious way, and the

action of Gal(Lab/Q) on s® determined by the extension is

to be the algebraic action described in (4.8). On passing

to the limit we obtain an extension

1 — s — T — Gal(p/@) — 1 .

s

We shall always assume there to be a splitting of the extension

over :mf , i.e., a compatible family of continuous homomorphic

sections SPL: Gal(Lab/Q) -+ TL(me). In the limit this defines

a continuous homomorphism sp: Gal(@/Q) - E}Iﬂf) .
Fix an L . The general theory of affine group schemes

(Demazure-Gabriel [1,V.2]) shows that, for some finite quotient

G' of G = Gal(Lab/m) ' ?F will be the pull-back of an extension

of G' by S

Since SL splits over L , Hilbert's theorem 90 shows that

L

Hi(L,S ) = 0, and so T'(L)—>G' 1is surjective. Thus we can

choose a section a': G'- ?i‘, which will automatically be a

morphism of algebraic varieties. On pulling back to G , we
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get a section a = aL: Gal(Lab/Q) f,T% which is a morphism

of pro-algebraic varieties. The choice of such an a gives

us the following data.

(5.1). A 2-cocycle (dT . ) for Gal(Lab/Q) with values
1'°2

in the algebraic group SE , defined by d = a(rl)a(Tz)a(rlrz)—

T11T2

(5.2). A family of l-cocycles c(t) € Zl(L/m,SL(L)) , one
for each 1 € Gal(Lab/Q), defined by CO(T)a(T) = caft) .

(Gal(L/@) acts on SL(L) through its action on the field L.)

(5.3). A continuous map b: Gal(Lab/m) > SL(ZRE) defined by
b(T)SpL(T) = a(t)
These satisfy the following relations:
(5.4). d cc_(tq) *15(c_(1t,)) = od cc (t,1,)
T1rT, o "1 1'7g" "2 T1:1T, o 12
(5.5). 4 = b(ty) - 14b(1,) * blryt,) T
R T, 1 1 2 1°2 '
B -1
(5.6). CO(T) = b(t) *o(b(r))

for TyrTgeT € Gal(Lab/Q) and o € Gal(L/Q) . (We have used the

L(L) through its

SL

convention that T € Gal(Lab/Q)A acts on S
action on SL , and o € Gal(L/Q) acts on (L) through its
action on the field L.) 1In fact, the first relation is a

consequence of the other two.

Note that b determines (d_~ _ ) and the (c45(1)) ,
1»°2

and that the image b(t) of b(t) in s¥(ml/sP@) is

1

.
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uniquely determined by the extension and spL (independently

of the choice of a)

Proposition 5.7. A mapping D: Gal(Lab/m)-—7SL(im£)/SL(L)

arises (as above) from an extension of SL by Gal(Lab/Q)

and a splitting if and only if it satisfies the following conditions:

(a) ob(1)) b(t), all 1 € Gal(Lab/Q), o € Gal(L/Q);

(b) Blr 1, = Blr)) -1,b(1,) , all e Gal(1®/a) ;

Tll T2
= . . ab L £
(c) b 1lifts to a continuous map b: Gal(L /@) - S (IBL) such
df . . -1
«—— that the map (1;,1,) drl,T2 == b(ty) * 1yblr,) ~blry1,)
—— 1is locally constant. Moreover, the extension (together with

(S

the splitting) is determined by b up to isomorphism.

Proof: We shall only show how to construct the extension

from b , the rest being easy. Choose a lifting b of b

as in (c) . The family dT is a 2-cocycle which takes

172

values in the algebraic group Si . It therefore defines
an extension

l — s — T

L L
L WL

— car®rpy — 1

of pro-algebraic groups over L together with a section

L

a: Gal(Lab/Q) +‘TL that is a morphism of pro-varieties.

Define EL to be the pro~algebraic group scheme over @ such

that EL(E) = ?i(@) with Gal(@/Q@) acting by the formula:
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L_..

o(sra(r)) = c (1) *as.a(t), o€ Gal(@/@), s € S (Q) .

T e Ggal (L) , c (1) L& b(1) Tt -ob(1) e s (L) . There is an

exact sequence

1 — s* — " cari — 1.

For each T @ Gal(Lab/Q), b(T)-la(T) e SLWIAE)Gal(L/Q) = SL(ﬂga ’

£ 1

and T V> spl(T) df b(t) ~a(t) is a homomorphism. As b is

continuous, so also is sp

Corollary 5.8. To define an extension of Gal(@/Q) by S

(together with a splitting over me) it suffices to give maps

Bl Gal(Lab/m) > SL(Zmi)/SL(L) satisfying the conditions of

(5.7) and such that, whenever L & L' ,

_L'v ' .
Gal (L' *P/q) b5 sP(ml/st @
l can ¢ NL'/L
B L, £, ,.L
Gal(L/®) ——> ST (R[)/ST(L))
commutes.
Remark 5.9. Let T be an extension of Gal(@/Q@) by S .

For any 1 € Gal(®/@), multiplication in T makes n_l(r) into

a torsor for S , and sp(tr) 1is a point of the torsor with values
in :mf (i.e. a trivialization of the torsor over me). In

the above we have implicitly regarded n—l(T) as a left torsor,

because that is the convention of Langlands [3]. It is however
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both more convenient and more conventional to regard ﬂ—l(T)

as a right S-torsor. With this point of view it is natural to
associate with T cocycles (YO(T)) and a map {3 defined as
follows: let L be a finite Galois extension of Q@ and choose
a section T aflr) to TL > Gal(Lab[Q) that is a morphism

Vo

of pro-algebraic varieties; then

salt) = a(uy (1), for o € Gal(L/D), T € cal (L?P/p) , and

sp(t)B(t) = a(t) for T € Gal(Lab/Q) .

The following relations hold:

1

() = B(t) ~ -0 (B(T))

_ .—1z C R
Tsz)—-TZ B(Tl) B(Tz)

The new objects are related to the o0ld as follows:

-1

(1) T CG(T)

I

Yo

i
~

B (1) b(T)

Define c'(t) and b'(t) by the formulas (5.2) and (5.3) but

with a(t) replaced by the section T a'(t) = a(T_l)_l .
Then
Y (1) =l Th™
g(t) = b'(t 57
In particular, we see that Y (1) and c(t ™l are cohomologous
-1,-1

and B (1) =B(T ) .
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Example 5.10. In the preceding discussion there is no need
to take the base field to be @ . We shall use this method to
construct for any number field L< @ , a canonical extension

L L

1L — " —— a@®

) — " s Gal(t?®P/y —5 1

of pro-algebraic groups over @ , together with a splitting
over me . According to (5.7), such an extension corresponds to
a map b: Gal(Lab/L) + SL(Imi)/SL(L) satisfying conditions
similar to (a), (b), and (c¢) of that proposition. In fact
we shall define a map b: Gal(Lab/L) - SL(IRf)/SL(m) ‘-t
SL(Imi)/SL(L) and so (a) will be obvious (and the cocycles
c(T) trivial). Note that Gal(Lab/L) acts trivially on SL
and so (b) requires that b be a homomorphism.

The canonical element uL € X*(SL) is defined over L ,

and so gives rise to a homomorphism of algebraic groups,

Res (uL) N
. X L/Q@ N L L/Q L
NR: L > ReSL/Q SL —_—t=> S5 .
Consider
NR( B): ]A; —> stm)
U U

NR (L) : L _> SL((D)

The reciprocity morphism (Deligne [3,2.2.3]).
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r. = r (s",h"): ca1@w®/L) — st(mf /st

L L

is defined to be the reciprocal of the composite of the

following maps: the reciprocity law isomorphism

Gal (12P/1) e Ty (BI/LX) , the map T (BI/LY) ~ no(sL(m)/sLun))

defined by NR , and the projection ﬂO(SIT E)/SL(Q)) > SL(ZRf)/SL(Q)).

We define B(1) = r  (1)"' . It satisfies (a) and (b) of (5.7).
According to (4.2), SL(Q) is a discrete subgfoup of

SL(me), and hence of SL(ZR). Thus there is an open subgroup

U of B such that NR: B} > S"(®m) is 1 on U AL .

If F DL corresponds to U crm; ; then there is a commutative

diagram

1 —> cal(t®®/my — 5 Ga1(®P/n) —> Gal(F/n) — 1

b// —
b - b
e

L f

K L, _f
ST(R) — ST (R7)/s(L)

in which b Y: Ga1(?P/r) » s¥(m) is induced by

NR: U/Un L* - SL(EU . It is easy to extend b to a
continuous map Gal(Lab/L) +»SL(Ef ) 1lifting b: choose a set
s’ of representatives for Gal(F/L) 1in Gal(Lab/L), choose an
element b{(s) € SL(?Rf) mapping to -B(S) for each s € S/,

and define b(sg) = b(s)b(g) for s € s, g€ cal(L®®/F). This
map b satisfies (c) of (5.7) because, when restricted to

Gal(Lab/F), it is a homomorphism.
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Remark 5.11. The extension constructed in (5.10) is, up to sign,

that defined by Serre [3]. For a sufficiently large modulus m
the group T = T/Em of (ib.,p II-8) is the Serre group

SL , and Cm = Gal(Lm/L) for some Lm<C Lab .  Thus the sequence

(ib.,p II-9) can be written
] — 5 s —> s —> callyrn —>1
Oon passing to the limit over increasing m , this becomes

Loy b > @ — a1/ —> 1.

e

The splitting (over mz) is defined in (ib., 2.3).
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6. The Taniyama group.

We denote the Weil group of a local or global field L

by WL. Let v denote the prime induced on [, or a subfield

L of @, by the fixed inclusion @® c— @, and let L, denote

the closure of L in Qv = C. According to Tate [1] there is
a homomorphism iV: WQ -+ WCD such that the diagrams
v
rec 2
i v ab v —
Lv - > WL W@ —_— Gal(@v/mv)
X v v
ab .
jean |45 iy [
rec
C L, @b wo —£ Gal (Q/Q)
L = L 0]
commute for all number fields L contained in Q. The

constructions that follow will be independent of the choice of

iv' but we shall ignore this question by fixing an iv' If

L@ is a finite Galois extension of @ then iV induces

df c daf c .
a map from wL /0 = WQ /wL to WL/Q = WQ/WL which makes
V° Tv v v
X
1 —> LV —_— WL /0 _— Gal(Lv/Qv) —_— 1
v Ty
l l i, | l (6.1)
—_ —_
1 > cL —_— wL/m — Gal(L/ @) 1

commute.

We note that there is a commutative diagram

1 > CL > WL/Q _— Gal(L/Q) — 1

| J I

1 Gal(L?/)— Ga1(1?®/0) — Gal(n/m)

> 1

in which the vertical arrows are surjective.
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Let T be¢ a torus over @; Dby analogy with T(L) =

X, (T) @ Lx , T(]Af)=X*(T) ® F\f etc., we shall write T(CL)

for X, (T) © CL . If e X, (T) and a belongs to a

u

@—-algebra R (or CL) then we write a for 1 8 a € T(R).

Fix such a torus T and an element p € X, (T), and let
LCQ@ be a number field splitting T. For each 1 € Gal(Lab/@)

that satisfies
(L +1)(t  -Lu=0 (6.3)

and lifting ¥ of 1t to W (using the map in (6.2)) we shall

L/Q

define an element b, (T,pu) € T(C )/T(Lx), where 1L =1L @_ 1R
0 L © © @

Choose a section O F——>w0 to W — Gal(L/Q@) such that:

L/@
(6.4a) w, = 1;

(6.4b) w E W c W ;
1 L,/Q, L/Q
(6.4c) for some choice of H containing 1 and such that

Gal(L/@) = HVil1 (disjoint union), w01 = wow1 for all ¢ € M.

Of course, the last two conditions are trivial if L CIR.

Corresponding to w there is a 2-cocycle (aO T), defined by
14

_ ab .
.wowT = ao'T on . Let T»e Gal(L ~/Q) satisfy (6.3) and let
T € WL/Q map to it. Choose co,% € CL to satisfy wo% =
C . W , and define

0,T 0,1
- _ ou .
b0(1,u) 17 c . € T(CL)/l(Lm)-

g€Gal (L/Q) g1
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Lemma 6.5. The element bo(?,u) is independent of the choice

of the section w; it is fixed by Gal(L/Q).

Proof. (Langlands [3, p. 221; p. 223])..

On tensoring

1l — L>< —_ ]AfLX —_— ]AfJX/L>< —s 1
-1 l l l: (6.6a)
X X
l— L, — ¢ — C /L, —> 1

with X,(T) we obtain an exact commutative diagram

1 — 1) — mm) — ) o — 1

-1} | | (6.6b)
1 — T(L) — T(C) —> T(C.)/ T(L) — 1.

(The -1 reminds us that the map is the reciprocal of the obvious
inclusion.) We define b(T,u) to be the element of T%]Ai)/T(L)
corresponding to bo(?,u). Lemma 6.5 shows that it lies in
(T(B\i)/T(L))Gal(L/@) and hence gives rise to an element
c(T,u) € Hl(L/Q, T(L)) through the boundary map in the exact

sequence

Gal (L/Q)

1> T(@ —> T(R) —> (T(B]) /T(L) — B (L/Q, T(L)) -

LEMMA 6.7. The cohomology class c¢(T,u) depends only on the

image of T in Gal(L/Q).
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Proof. Suppose T' and T have the same image in Gal(L/Q) ;
then T' = uTt ith -y = ~
T ut wi u € CL , and cO,T, cx(u)colT . Thus
by(%,u) is multiplied by Tlo(u)’" = NR(u), where NR is the
. x Res(u) NL/(D
map of algebraic groups L =21, ResL/QTL ———> T. Choose

an element 1 e:mi such that u and u represent the same
element in CL/L:. Then NR(u) € T(Bﬂ% has the same image as
NR(u) 1in T(CL)/T(L:), and we see that b(f',u) = NR(@) b(i,u)
where NEK({1) denotes the image of NR(U) in T%]Af)/T(Q) .

T(IRi)/T(L). Hence c(%,pu) = c(¥',u).

Thus we can write c(t,u) for c(T,u) where =t € Gal(Lab/Q)

(or even Gal(L/Q)).

Lemma 6.8. Up to multiplication by an element of the closure
T™(Q)” of T(@) in T(Pga, b(T,u) depends only on 1 (and

not T).

Proof. From (6.2) we see that T can be multiplied only by

an element u of the identity component of CL. An argument as

in the proof of (6.7) shows that multiplying ¥ by u corre-

sponds to multiplying b(%,u) by ©NR(#), where U 1is a lifting
of u to ]mi . But @ is in the closure of L~ c:(]Ai)x, and

so NR(Q) 1s in the closure of T(@).

Thus, for any T € Gal(Lab/m)~ satisfying (6.3), there

is a well-defined element b(t,u) € TW]Aﬁ)/'T(L) T(@) "~
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Example 6.9. For any T and 4 , Db(1i,n) is defined; we

show that it is 1. We can take 1 = W If o € H (see 6.4),
then wOT = WoWL = W and CO,T = 1; moreover wOIT =

WoW W= el T o(al’l)wO and Co1,7 og(a ' ) € L:. Cléarly\
bO(T,u) = 1.

Proposition 6.10. Assume that yu 1is defined over E C L. Then

b(t,n) is defined for all 1 € Gal(Lab/E) and there is a commu=

tative diagram

Gal (L3P gy Rl=rb) T(JAIf)/T(L) T (@)~

[reost .1

r‘(T,h)—
Gal (E2P/E) oty s~

E

in which (T,h) 1is the reciprocity morphism (Deligne [3,2.2.3]).

T
In particular, c(t,u) 1is trivial.
Proof. Let 1 € Gal(Lab/E). Then 1 fixes p, and so (6.3)

is satisfied and b(t,pu) is defined. We may choose the section

w to WL/Q > Gal(L/@) 1in such a way that wo o= T maps to T

in Gal(Lab/Q). Then Co v = 85 o - Let R be a set of repre-
r ’
sentatives for Gal(L/Q)/Gal(L/E). We have
byt ) = TT TT aP¥ (since op = )

pE€R 0€ Gal(L/E) PG, T

= TT (Ttea. - a ca t ) eH

p € R G O:T P,OT pP.,0

pu -
DIIR (pa) , Wwhere a IJ ag ¢
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To evaluate a, we use the commutative diagram (Tate{3, w3])

r
E ab
CE _— WE
rL N
C _— wa
L L

where t 1is the transfer map arising from the- inclusion

C— . = = ~wC
WL . WE Clearly rL(a) )rrL(aO,T) t(TWE). Thus a
is an element of CE that maps to TlEab in Gal(Eab/E). Let
a e I\E represent the same element in CE/E: as a. Then

b(t,y) is the image of & under Zméx NR ﬁPCmf)
Eab)—l-

/T(@)"~, and

this equals rE(T,h)(TI

We now apply the above theory to construct the Taniyama
group of a finite Galois extension L of @, L CQ. To do so,
we take the torus T to be SL and p to be the canonical co-

L . L . . L £
character of S (see §4). Since S (Q) 1s closed in S (IA7)

the above constructions give a map Gal(Lab/Q) O

(SLGAi)/SL(L))Gal(L/m) which we denote by b(or bY).

Proposition 6.11. The map b satisfies the conditions of (5.7)

and so defines an extension

l — SL — TL —_— Gal(Lab/Q) — 1

. . c s f
together with a continuous splitting over B

Proof. It is proved in Langlands [3, p. 223] that 5(1172)

B(Tl) © 1 ). Consider the diagram
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Gal(1L?P/q) —2 sL(mi)/SL(L)

Ga1(LP,n) —2 o stmf)

where b 1is the map defined in (5.9). Thé diagram commutes
because of (6.10). It is easy to extend b to a continuous
map Gal(Lab/Q) - SI%]Af) lifting b (see the proof of 5.9).
Then b satisfies (5.7c) because its restriction to Gal(Lab/F)
is a homomorphism, where F 1is the finite extension of L

defined in the proof of (5.9).

The extension, together with the splitting, is the Taniyama
group of L. The next lemma implies that the Taniyama groups
for varying L form a projective system: we have an extension

of Gal(@/@) by S in the sense of §5.

Lemma 6.12. If L' 2D L then
—'L' 1 f v
Gal(n' *@) 22— ¥ (m /st @)
lrest. lNL'/L
ab b L,_f. L
Gal(r?/@) —2>— s7(B[) /S (L)
commutes.
Proof. This follows from the corresponding statement for bo;
see Langlands (3, p. 222-23].
Proposition 6.13. Let T be a torus over @, let u € X,(T),

and let | be an automorphism of €. Assume (6.3) holds, so that
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c(t,u) € Hl(L/Q, T(L)) is defined for 1L a sufficiently large
number field. The image of c(T,u) in Hl(Lv/QV, T(LV)) is

represented by u(—l)/r—lu(—l) € Ker(l +1 : T(L) » T(T)).

Proof. The image of c(t,u) 1in Hl(m/nz, T(C)) 1is the cup-
product of the local fundamental class in Hz(m/ﬂl, Ex) with the
element of H_l(E/H{, X,(T)) represented by (1 - T_l)u. Thus

the proposition is a consequence of the following easy lemma.

Lemma 6.14. For any torus T over IR, the map H_l(m/ﬂh X, (T))

—_— Hl(m/HQ,T) induced by cupping with the fundamental class

in H2(E/HL Ex) sends the class represented by x € X, (T) to

the class represented by x(-1).

Remark 6.15. For any Q@-rational torus T, split by L, and

cocharacter u satisfying (6.3) relative to T € Gal(Lab/Q)

we have defined an element b(T,u) € T%]Ai)/T(L) T™(Q)~. It is
natural also to define RB(t,u) = B(T—l,u)_l and Y(T,u):c(T_l,u)—l
(cf. 5.9). If . satisfies the stronger condition (4.1) then

there is a unique homomorphism pU: SL > T such that pU ° UL==U,

and we have B(tT,u) = pU(E(T)) and vy(t,u) = pu(y(r)).
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§7. The conjectures of Langlands.

Let (G,X) satisfy (1.1) . Before discussing the conjectures
of Langlands concerning Sh(G,X) we review some of the properties
of (G,X) over TR

Let h e X be special (in the sense of Deligne [3,2.2.4]),

and let T be a Q-rational maximal torus such that h factors

through :R . Let pup = “h be the cocharacter corresponding to
h . According to (1.1b) %9 h(i) 4is a Cartan involution on
%;d , and hence on qger . Thus gder = k & p where
gder = Lie(qger) = Lie(G_lR)der and Ad h(i) acts as 1 on k
and -1 on p . According to . (l.la) there is a decomposition
ke ®
I
9@ -C AE P
. + -

where g = Lle(qm) , C = Lle(Z(G%R) r Pp = P ® p and Ad u(z)
acts as z on p+ and 1z on p- . (Thus go,o = S + Em ' g-l'l
and gl'—l =p .) As Tr is a maximal torus in G(r , we also have
a decomposition

Ic = ot adr Yo

v

T
A root o 1s said to be compact or noncompact according as

where t = Lie(%R) and RC t is the set of roots of (G,T)

9(1 c IEG or g<(1 c E(I

Remark 7.1. If Y e g then Ad(u(-1))Y = a(u(-1)Y - (-1)°*Wy .

Since Adp(-1) acts on k& as +*1 and on Py as -1 , this

shows that o 1is compact or noncompact according as <a,u> 1is

=P

+
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even or odd.

md f -, , .
Note that 19T pagder ;g anisotropic because £98T < x

Let N be the normalizer of T in G and let W = N(@)}/T(T) be

the Weyl group. As | acts as -1 on R C tger , 1t commutes

with the action of any reflection S, Hence | acts

triviallyon W and there is an exact cohomology sequence.
1— TR) > NR) 3w S glw,T)

where, for o ¢ W 1lifting to w e N(C) , § (w) is represénted

by w b we Ker(l + : T(@) » T(T))

Proposition 7.2. The class §&(w) is represented by

) D /ui-1)s T(@) .

-1 :
Proof: Note that G(mlwz) = w, MUﬁ) . d(wz) while
1

(wlwz)_lu(—l)/u(—l) - w;l(wilu(—l)/u(—l)) o wlH (=1) /u (1))

and so it suffices to prove the proposition for a generator S, of W .

X

We make the identifications T (@) = X, () @ @ , = X, ([) e € ,

te
v *
and Ec =X (T) e ¢ . If o' is a coroot and Hu is the element

v

of t, corresponding to a , then exp’niHOl = a (-1) . Let
= A = -
XOl e g9, and X_ae 9_o be such that [Xa'x—a] Ha . S 1, a ,
we have that H = -H and that (X_ = cX and X = dX
a a a -a -a a
with ¢,de @ . The conditions [Xa,X_a] = ha and 12 = 1 imply
that cd =1 and ,c.d =1, and so ¢ 1is real and 4 = C_l .

If we replace X by aX then we must replace X by ;X
o a -a a -o

and ¢ Dby a2c . Thus, for a given « , there are two possiblities:
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either Xu can be chosen so that IXQ = —X_Ol or X can be

chosen so that Ky = X_, - In the first case o 1is compact

and in the second is is noncompact.

Assume that o 1is compact; then the map su, > g such that

(é ‘2) vl (8 g) X (_g 8) #» X_, 1lifts to a homomorphism
SU2 * G (defined over R) . The image w of (_g é) in GR)
‘represents 5ﬂa . Thus 6(sa) = 1 in this case. On the other
hand, Sa(u)—u = -<qa,p>a¥ , and so Sau(—l)/u (-1) = a¥ (~1) “%H> -
(by 7.1)

If « 1is noncompact, then the map %%2 + 9 such that
((i) ‘3) oH %(_il j) X %(i _:.L) - X_(; lifts to a
homomor phism SUZ—% Gg - The image W of (é _g) in GI(Q)
represents 53(1 . Then \Q’;_l,l{é is the image of (—é _g) , which

is exp mil = a¥(-1) . On the other hand

sé u(-1)/u(-1) = av(-1) " %M 2 4 (1) (by 7.1).

Corollary 7.3. If the reflex field E(G,X) of (G,X) 1is real

then there exists an n e N({R) such that ig(n)ou = U
Proof: Since | fixes E(G,X) there is an element w in G(@) ,
which we can choose to lie in N(C) , such that u = Qghv)éu .

The proposition shows that the image of adw in Hl(¢/R,T(¢))
is represented by (;-1)u(-1) , and therefore is zero. Thus there
is an n e N(R) representing adw |

When the reflex field LE(G,X) 1is real and Sh(G,X) has a
canonical model over E(G,X) then | defines an éntiholomorphic
involution of Sh(G,X) . One of the conjectures of Langlands gives

.an explicit description of this involution.
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Let h , as before, be special and let 'h be the element of

X corresponding to u . If n 1is as in the corollary, then
ad (n)oh = lh . Since K_~ is the centralizer of h(i) , and of
'h (i) , we see that n normalizes K . Thus g» gn : GR) + GR)

induces a map on the quotient GMR)/K_, which we can transfer to
X by means of the isomorphism g r adgeh : G(R)/Kw-i+x . Thus

we obtain an antiholomorphic isomorphism n = (adgeh & ag(gn)Oh : X » X)

Conjecturec B. (Langlands [1, p. 4181, [2, p. 2.7, Conjecture B],

(3, p. 234]). The involution of Sh(G,X) defined by | 1is

[x,9] » [n(x),qg]

Remark 7.4. (a) If h” = ad(g)eh with g e G{R) then wu -~ gg(g)°uh

+

il
op

= o = o = o ' g
and  uy - 1 (ad geu ) ad(g)eyu = ad(gn)ey, . Thus n(h7)

In particular the validity of the conjecture is independent of

the choice of the special point h

(b) Since the two automorphisms of Sh(G,X) , [x,9]+ [x,9]

and ([(x,9]— [ n(x),g] , are continuous and commute with the Hecke
operators they will be equal if they agree at one point

(Deligne [1, 5.2]). Thus, to prove conjecture B, it suffices to

show that ([(h,1] = [n(h),1] (=['h,1]) for a single special h .

(c) In the case that the canonical model of Sh(G,X) is a moduli
variety over L(G,X) , it is easy to verify conjecture B .
Suppose, for example, that (G,X) = (CSp(V), Si) , so that

G = Aut(V,s) with s a non-degenecrate skew-symmetric form on V
Then (2.3) shows that there is a bijection Sh(G,X)JifQKLX,V)

where @4G,X,V) consists of isomorphism classes of triples [A,t,k]
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satisfying certain conditions. More precisely, Sh(G,X) 1is the
solution of a moduli problem over @ . The moduli problem is
defined over @ (=E(G,X)) and so Sh(G,X) has a model MI(G,X)
over @ , which the main theorem of complex multiplication shows

to be a canonical model. If we set T1[A,t,k] = [TA,Tt,kT_l] for

.

T e Aut(€) and [A,t,kleA(G,X,V) , then Sh(G,X) 5H(G,X,V)
commutes with actions of Aut (d).
Let h e X . Then [h,1] e Sh(G,X) corresponds to [A,t,k]
where A is the abelian variety defined by (V,h) (see Appendix A),
t =s , and k 'is Vf(A) = V(ﬂf) JL*V(Rf) . Since | : (A)(T) > A(T)
is a homeomorphism, it defines an isomorphism
£ : Hl (1A,Q)-3%H1(A,Q) = V . The canonical isomorphism
HéR(A) ®a'1 ¢-5+H3R(1A) preserves the Hodge filtrations, from which
it follows easily that 'h = foh'of ! where h' defines the Hodge

structure on Hl(lA,Q) . Since t corresponds to it under f , and

the map £ © 1 : vi(a)—val) is |71, we see that [,A, t,k, 1]
corresponds to ['h,1] e Sh(G,X) . Thus 4[h,1] = ['h,1] which,
accordinyg to the above remark, proves conjecture B.

A similar argument suffices to prove the conjecture in the case
that there is a embedding (G,X)C;ﬁ(CSp(V), s*)  (see 2.4) . It
is however clear from (b) above and Deligne [1, 1.15] that if
conjecture B is true for Sh(G',X') and (G,X) embeds in (G',X') ,
.then conjecture B is true for Sh(G,X)

The conjecture of Langlands concerning conjugates of Shimura
varieties is expressed in terms of the Taniyama group; thus let

1— 5 = T -5 Gal (3/@) =1
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be the extension, and sp : Gal(@/@)—%i&ﬂg) the splitting,

defined in §6. For any T e Gal(Q/Q) , Ts d ﬂ—l(T) is a

right S-torsor, and sp(t) e TS(Z&-f) defines a trivialization

of 'S over Af . (For any finite Galois extension L of 4
. L L

and T e Gal(Lab/Q) we can also define an S -torsor 'S ;

it corresponds to the cohomology class %(1) e Hl(L/Q, SL) ; (see 5.9)).

Let G,X,h,u,T be as at the start of this section. As

is anisotropic, uad df (Gm—giT —%Tad) satisfies (4.1)

N

ad

?R

p
and so factors into Gm ~L£ah, g —E)Tad(: Gad . Thus &S acts
! T . . . T T,U
on G , and we can use S to twist G : we define G for G)
. S . .
tobe 'S x G . (If LOQ@ splits T then there is an

d

isomorphism f : G —5+TGL such that of = fo ag XO(T,ua ) )

L

Note that the action of S on T 1is trivial, and so

S

T = 'S x T C 'G . Define 'h to be the homomorphism S-%TQR

TX(or T’UX) to be the

. . TH T
associated with Gm-——4T¢ c Gm , and
G (R)-conjugacy class of maps S-%TQR containing 'h . The
element spl(t1) e TS(Af) provides a canonical isomorphism
g+ sp(t).g = G(&f)-—éTG(&f) , which we write as

T,H

gh—»rg(or g g) . Langlands has shown [3, p. 231] that

(TG,TX) satisfies (1.1); moreover [3, p. 233] that if k'
is a second special point of X and w' = u,, then there is
an isomorphism
] ¥
sitiu',u) ¢ sh(TrMe, TPy —sn(TrH g, T Y x)

such that

Wrsut ) o T M) =TT M g) o glusutu) .
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Conjecture C. (Langlands (3, p. 232-33]) (a) For any special

h e X there is an isomorphism

b= : 1Sh (G,X) = sh ('c,Tx)

such that

[Th,1]

¢, (t[h,1])

1l

o, o1 @ig) =@W("g) o ¢, all ge cafy.

(b) If h is a second special element of X and u = Wy o
p' o= By v then

U]

18h (G,x) —= sn (Tr¥g,Tr¥x)
\\\ l dlTsu',u)
(%.u‘ .
N - '
Sh(rlu G,TIUX)
commutes.
Remark 7.5. For a given h thereis at most one map d% y
7

satisfying the conditions in part {(a) of the conjecture (this
follows from Deligne [1, 5.2]).

We note one consequence of conjecture C. Assume that Sh(G,X)
has a canonical model (M(G,X), f : M(G:X)m Z3Sh(G,X)) , and let
h e X be special with associated cocharacter p . Then for
any automorphism Tt of T , T M(G,X) is defined over 1 E{G,X) ,

and obviously TE(G,X) = E(T’“G,T’“X) . Moreover, if we make




-58-

Tg e TG(ZAf) act on TM(G,X) as T@(g) , then

b uotE T, T,H
(TM (G,X), TM(G:X)E —L—— Sh( "' G, " X) satisfies the condition,
relative to h , to be a canonical model. Part (b) of conjecture C

shows that everything is essentially independent of h , and so
™ (G,X) 1is a canonical model for Sh(T’uG,T’UX) . For the sake
of reference, and because it is the original form of conjecturé C,

we state another conjecture which is a weak form of this consequence.

Conjecture A, (Langlands [1, p. 417], [2, p. 2.5)]) Assume that

Sh(G,X) has a canonical model (M (G,X),f) , and let h be some
special point of X with associated cocharacter u . Then there
exists an igomorphism gr— g' : G(&f)—aT'“G(ﬂf) such that, if

g' e TG(Af) is made to act on M (G,X) as 1(D(g)) , then TM(G,X)

is a canonical model for Sh(T'UG,T’“X)

Remark 7.6. Conjecture A appears to depend on the choice of h .
One can, however, use the maps d&(t;u',u) to show that if the
conjecture is true with one special point h then it is true
with any special h

We shall need to use several properties of the maps ¢(T;u'.u)
Thus we prove them for the Shimura varieties of interest to us,
namely those of abelian type. We begin by defining the maps
in an easy case.

Let (G,X) satisfy (1.1). Assume:
(7.7a) for all special h e X and all 1 e Aut (C) ,

(1= 1) (Fluy = o0 = (F1) (t=-Dny ¢

(7.7p) if h 1is special and Oh : S—)G is the map defined
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by My (see 54) then the element Y(t1,n) df ph(X(T)) of Hl(Q,G)

is independent of h

Now fix two special points h and h' of X and let u = Hy

]
, "¢ for 'V , etc..

and ' = We write 'G for

Let L be some large finite Galois extension of @ and let a(t)
. L .
be a section to I - Gal(Lab/Q) . Then there are defined

By es@l) , slc,w) ¥ o ) ecml) | and

Btou) Yoo (B(1) e G@L) , and cocycles ¥ (1) , ¥ (1) F oo (2 (1))

~

and XO(T,u') . Moreover there are maps f' = (g al(t).g) : GL lq'GL ,

-1

"o . =oon _ n ' ' "
f'" = (g—ma(r).g) : Gy — GL , and f = f" o £ Gy, — G

According to (7.7b) there is a v e G(L) such that

L °

XU(T,u') = v-l. XO(T,u).ov . The map f1 = f o ad f‘(v—l): 'GL Ea"GL

is defined over @ and sends 'X into "X . It therefore defines

~

an isomorphism Sh(f,) : Sh('G,'X) = Sh("G,"X)

1
af | -1, L .
As B = B(t,u') v B(t,u) is fixed by Gal(L/®) it lies in

Qf T,HU

G(Af) , and hence 'B B = f'(B(T,u)—l B(t,u") V_l) lies

in 'G(Af) . We define ¢(t;p',u) to be the composite

Sh(f;) o (T{'B) . Thus
olriu'ou) [x,'gl = [£; ox,v"(Bg)]
Evidently,
plrrp' ,p) O(ik'g) =(¢K"g) o ¢(t;u',u)

L
Replace af(1) by a(t)u with ue S (L) , and let uy = ph(u)

and u, = ph.(u) . This forces the following changes:
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£ f ¥ (t,u) vl B (1)
l)j "’1

f' o ad u f o %g(f'(u u. uy

Y1 XU(T,u)oul u,"v Tu RB(t)u

Thus fl and B are unchanged, and so also is ¢(t;u',n) . If

vi is replaced by vl gl where u e G(L) satisfies
u= ¥ (t,udhou , then [ad f'(u_l) ° x , f'(u—l)g] = [ x,q9] for
o el
any [x,9] e Sh('G,'X) because f'(u) e 'G(@) . Again
¢(t;u',u) 1is unchanged, and is therefore well-defined.
t

Example 7.8. Let (G,X) = (CSp(V), S ) . For h e X special,
we can use pp S— CSp(V) to define an action of S on V .
Let "My = Ts x° v ; clearly '’'"G = csp("'*V) . The element

sp(t) e S(Rf) defines an isomorphism sp(t,u) : V(Af)—é T'“V(mf) .
Under the bijections  Sh(G,X) =@)(G,X,V) defined in (2.3),

f(t;u',u) corresponds to the map [A,t, sp(t,u) © k]—[A,t,sp(t,u')ek]

Example 7.9. Suppose h' = ad g © h with q e G(@) . Then
B =g and vl= g . Thus ¢(t;u',p) 1is the map
1 o ; ~n ° " .
[x,'gl— [f ad f (q) x , " (qg)]

Note that, even without the ass@btion (7.7), this expression
gives a well-defined map.

To be able to apply the above discussion, we need to know when
(7.7) holds. Clearly (7.7a) is valid if G is an adjoint group
or if there is a map (G,X)-—%(CS£(V), Si) such that the kernel

of G —4CSp(V) 1is finite.
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Lemma 7.10. The pair (G,X) satisfies (7.7) if it is of abelian

type and G 1is adjoint.

Proof. We can assume G to (@-simple. There is a diagram

t
(G,X)é— (G|, X, ) —(CSP(V), S)

such that Gid = G, G?er

(cf. 1.4). We shall prove (7.7b) holds for (Gl,xl) . To

= G, and G —CSp(V) has finite kernel

show that the two classes ¥(t,u) and ¥(t,u') are equal in
Hl(Q,Gl) it suffices to show they have the same images in
Hl(@,Gl/G?er) and in Hl(R,Gl) (see 10.3) . The first is

obvious since py and pu' map to the same element of

X*(Gl/G?er) . For the second we use (6.13). Thus ¥ = ((t-1)u) (-1)
and ¥ = ((t-1)u') (1) represent the images of Y(t,u) and
d(t,u') in Hl(R,Gl) . For any z e G(T) we write =z(u) for

‘eg z o p . A direct calculation shows that if p' = x(u) ,

x e GAR) , then

x ¥ x X_l = (x—l . TX - Tl (1) .

Let T be a maximal Q—rationél torus in G such that u factors
through T(C) , and let N be the normalizer of T . If w e N(T)

then

W deowl ¥ = (we o wh Lw-1) (-1 (1) ]
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According to (7.2), w. wl = (yc. c—l) [ (w-1)u(-1)] for some
c e T(C)
Thus
- - -
w. ¥. w. ¥ 1. (Lc. ¢ 1) [ (w=1)Tp(-1)1]
If we choose W to act on the roots of (G,T) as x—l. TX. T—l ’
then ({w-1)tp(-1) = (X_lTX-T)]J(*l) , and it follows that
x ¥ x 1= Ve w. ¥. (c w)—l, which completes the proof.
+
Lemma 7.11. Let (G,G',X ) define a connected Shimura variety
and assume (G,X) is of abelian type. Then there exists a map
(Gy.Xy) = (G,X) such that GJ% =6, ¢5°F =g, Gy (@ =G (@) is

surjective, and (GO,XO) satisfies (7.7).

Proof. Clearly the lemma is true for a product if it is true for

+
each factor, and is true for (G,G',X ) if it is true for

~

(G,G,X' ) . Thus we can assume G is @-simple and G' = G
Choose (Gl,Xl) as in the proof of (7.10). Let L be a finite

Galois extension of @ that splits 2 (G,) . There exists a

1
*
subjective map M-—X (Z(Gl)) with M a finitely-generated free

Z[Gal (L/@)]-module. Let Z(Gl)‘—?Z be the corresponding map of

tori, and define G0 = é*z(é)z (see Deligne [3,2.0.1]). The

map 2(G,)*“= Z induces an inclusion Gf—% G and we define

1 0o '

XO to be the composite of 'Xl

(GO,XO) satisfies (7.7) because (Gl’xl) " does, and GO(Q)~—5G(Q)
o

with this inclusion. Then

is surjective because Z(GO) =2 and H (@,2) =0 .
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. .
Let (G,G',X ) and (GO,XO) be as in (7.11), and let h and

+
h' be special elements of X . Write p = My and u' = My

The map

dlr;u',u) Sh('GO,-xO)_E4 Sh("GO,“X |

0

induces an isomorphism

@ (tiu w2 sn® 06,6, x)—sn® ("G, ", "x) .
(As before, we have substituted ' and " for the superscripts
7,4 and 1,up'.) The usual argument shows that ¢O is independent
of (GO,XO) . Moreover, the surjectivity of GO(Q)——§G(@) shows
that
‘PO(T:U',U) o '¥. = "¥. o ¢0(T7u’,u)

~

+ .
for all Y e G(Q) (rel G') where ¥. denotes the canonical
0

left action on Sh . (For the fact that ¥ —Y¥' = triy maps
+~ +°
G (@) into 'G(Q) , see 16.1.)

Proposition 7.12. Let (G,X) be such that (Gad,x) is of abelian

type. Then there is a unique family of isomorphisms

] 1
$lt;u',u) + sh(*"%,""*")y—sn(""H g, ¥ x) ,

T e Aut(C) , pu = My v u' o= with h and h' épecial, such

Uh-
that:
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‘-

(@) Mriut,u) o (T('g) =TN"g) o dr;u',n) , g e cal) ;

(b)  Olr;p",u") o dlry;u',u) = dorsu",u)

(¢c) if h and h' belong to the same connected component x"
of X , then $(t;n',p) restricted to the connected component
of Sh(T'uG,T’“X) is the map ¢0(T;u',u) defined above;

(d) if h' = gg(q) ° h with g e G(®@) , then ¢(t;u',n) 1is the

map defined in (7.9).

Proof. There is clearly at most one family of maps with these
properties. To show the existence one uses the standard technique
for extending a map from the connected component of a Qariety to

the whole variety (see Deligne [3, 2.7]1, or §17).

Remark 7.13. In the case that 1 fixes E(G,X) , we define in

(10.8) below a map ¢(t;n) : Sh(G,X)——»Sh(T'“G,T'“X) . On

comparing the two definitions one finds that

¢lrsn' ,u) = Glrsu') ° <b(T;u)_l

Remark 7.14. Let h' = ad(q) ° h with g e G(@) , and assume

part (a) of conjecture C holds. One checks directly that

¢ = ¢it;n',u) 04% " has the following properties:

’

o(tlh,g 1) = (7" 'h', 1)

po vhig) = @ Mg - 9.

G(r[h',1])

Thus ¢ = ¢ uro and part (b) of the conjecture holds (for yu and yu')
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III. Abelian varieties of CM-type

In 58 we make a calculation showing that a certain torsor
over R , which arises naturally from the study of abelian
varieties of CM-type, is isomorphic to a torsor TSR occurring
in the Taniyama group. This result enables us, in §7, to state
a conjecture genefalizing the main theorem of complex multiplication.
The final section relates conjecture C, which concerns Shimura
varieties, to this new conjecture, which concerns only akélian

varieties of CM-type.
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A cocycle calculation.

Let A be an abelian variety over T of CM-type, so that

there is a product F of CM-fields acting on & in such a way

that

Hl(A,Q) is a free F-module of rank 1. Assume that there

is a homogeneous polarization [yl on A whose Rosati

involution stabilizes F ¢ End(A) and induces 1 on it. Let

o

-

{f e P[\f = £} ; thus F,; 1is a product of totally real

fields. Note that the Hodge structure h on V = Hl(A,@) is

compatible with the action of F . Let ¢y e [y] be a

polarization of A (or (V,h)) ; for any choice of an element
feF  with 1f = -f there exists a unique F-Hermitian form
¢ on V such that ¢(x,y) = TrF/@ (£¢ (x,y)) .

Let ¥ be the set of embeddings FOC% £ ; then

il
<
@
a

H (A, C) =V @,C= 8

\Y where V
] veL o ' o

1 ¢

Moreover:

¢

g

>

v is a free F @ C-module of rank 1:
o 0,0
+

+ _
VO = V0 ® Vo , where h(z) acts as 2z on V and 1z on

g

¢ defines a Hermitian form ¢0 on Vo such that

+
0 on V and ¢_ < 0 on V_ .
o o] o

Let 1 be an automorphism of ©€ and let WV =.H1(TA,Q) .

The action of F on A induces an action of F on TA , and

(w]

gives rise to a homogeneous polarization [t¢] on TA

Thus there is a decomposition Hy (1A,C) = & V. where the

cel

have similar structures to the V0 .

Vo‘
)

~-e
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Our purpose is to construct an isomorphism 6 : Hl(A,I)——aﬂl(TA,E)
that is F @ C-linear and takes [Yy] to [1¢] . It will suffice

to define ©6 on each component V0 of Hl(A,t) .

Hl(A,E) is canonically dual to the de Rham cohomology

1
HdR(A) QT,TE , we see that

Hl(TA,E) = Hl(A,E) ®¢ TE . Under this identification, the two

actions of F correspond, and Ty corresponds to VY .

As

N 1 -
group H,p(A) , and Hyg (TA) =

Fix a ¢ e I , and consider VG and V'o . Since FO
acts on VO ®m TE through 10 , we see that we must have

v' =V -1 QQ TC . There is an FO @ C-linear isomorphism
I’
= . . + -
6,:vV_—=SVv' and, since F acts on V and V through
1" ¢ a o g

distinct enbeddings F<>C , exactly one of the following must

hold:
+ = + - -
+ s 1 ]
(+) 81 V0 = %} , 61 V0 —*VO ;
+ = - - = +
- - ' . ) [
(=) 6l Vo Vb ' 6l Vo vo
Choose a basis for V, compatible with the decomposition
+ _ .
V =V &V and define 0 to be 0 in case (t) and
6] a o] o 1
to be the composite of 6, with (g 3) in case (-) . Then
. 0 s . . , .
6, is an F Fo.0 C-linear isomorphism V0~4 V0 taking ¢ to
a multiple of ¢~ .

o

Lemma 8.1. With the above notations, there exists an isomorphism

B : Hl(A,T)~% H, (tA,C) such that:

1




-68-

(a) 0 ° £ =Ff o 06 for all f e F ;
(b) o(tlyl) = [yl ;

(c) 10 = 8.(tp(-1)/u(-1))

Proof. Define 6 = ®_6_  and note that 0, = 0_ in case (+)
while 0, = -0/ in case (-) . On the other hand, up(-1) acts
0 -1 + - .
= — = - +
as (i 0) on V_ v B v, and Ttyu(-1) p(-1) in case (+)
while tu(-1) = () in case (-) .

We shall need a slightly more precise result.

Proposition 8.2. Let A be an abelian variety over € that is
of CM-type, and let 1 be an automorphism of T . There exists
an isomorphism 6 : Hl(A,E)——éHl(TA,E) such that:

(a) O0(s) = ts for all Hodge cycles s on A ,

(b) 06 =06.% where ¥ is the class in H (R,MT (A))

repre%ﬁted by tp(-1)/u(-1) . (MT(A) = Mumford-Tate group of

Proof. Note that, if we let

Hl(A,R)-E)Hl(TA,R)|6 satisfies (8.2a)}

for any @-algebra. R , then P 1is a right MT (A)-torsor.

Proposition (8.2) describes the class of BR in Hl(R,MT(A))

The lemma shows that image of the class in Hl(R,T) is correct,

where T 1s the subtorus of Fx of elements whose norm to FO

. . X
lies in @
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We shall complete the proof of the proposition by showing
that Hl(R, ML (A)) — Hl(R,T) is injective.
The norm map N defines a surjection T—&_ , and
F/F0 m

we define ST and SMT +to make the rows in the following

diagram exact:

1— SMT —>MT G — 1

roc

1 -— ST — T-—ﬁGm-—al
This diagram gives rise to an exact commutative diagram

RS — HI ®, SMT) —s H ® ,MT) —> 0

I J, L

Rx__,Hl(R,ST) -——sHlaR,T) — 0

Note that ST (and hence ©SMT) 1is anisotropic over R , and
that for an anisotropic torus S’, HlCR.S5 = Ker (ST) -5 s/T))
Thus Hl(R,SMT)——bﬂl(R,ST) is injective, and the five-lemma

shows that Hl(R,MT)——bnl(R,T) is injective.

Remark 8.3. Let A,F, and V = Hl(AIQ) be as in the first

paragraph. Then h can be regarded as a map h : $-—4FX(R)
(thinking of F* as a @-rational torus). It is clear from the
discussion preceeding (8.1) that TA 1is the abelian variety
corresponding to v, hn) , whose Th is the map $—F" R)

. . x
with associated cocharacter THy € X, (F)
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§9. Conjugates of abelian varieties of CM-type.

Let A Dbe an abelian variety of CM-type over T , let

vV = Ul(A,Q) , and let h be the (natural) Hodge structure on V .
Fix some family (Sa)aeJ of tensors such that the Mumford-Tate
group MT(A) of A s Aut(V,(Su)) (see Appendix A). The canonical

map S-E;MT(A) induces an action of S on (V,(Sa)) and, for

. S .
any automorphism 1 of € , we define (TV,(TSG)) = Tsx (V,(Sa\) .

The element sp(T)eTS(Af) defines an isomorphism

vy sp (v s A", s)) S v, (s ))
which we shall again denote by sp(t) .

Lemma 9.1. There is an isomorphism f : (H (TA,Q>,(Tsu))—3+(Tv,(Tsa))

1
r
Proof. Let PA be the functgeﬁ'such that, for any @-algebra R ,

PA(R) is the set of isomorphisms (H (A,R),(Sa))-£5(Hl(TA,R),(TSa)) .

1
Clearly PA is representable, and is a right MT (A)-torsor. Since
MT (A .
p, M )(nl<A,@),(sa)) = (H) (1A4,@), (ts )) , to prove the lemma it
suffices to show that P, is isomorphic to the MT (A)-torsor D*(TS) .

We shall show this simultaneously for all abelian varieties (over
C , of CM-type) whose Mumford-Tate groups are split by a fixed
finite Galois extension L of @ .

According to (4.7), SL = lim MT (A) , and it will suffice to
T L

L .
show that the two S -torsors P = 1lim P, and S are
isomorphic. As Hl(Q,SL) satisfies the Hasse principle (see 4.5)

this only has to be shown locally. The isomorphisms
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f

Hl(A'QE) =V (A)-Esvf(rA) = H (TA,@t) show P to be trivial

1

. TL TL c o
over @, , while sp(t)e S7(@,) shows S @, to be trivial.
Finally (6.12) and (8.2) show T%é and RR define the same

cohomology class in Hl(R,SL) and are therefore isomorphic.

Note that f 1is uniquely determined up to right multiplication

by an element of MT (A) (@)

Conjecture CM (first form). The isomorphism f of (9.1) can be

chosen to make the following diagram commute:

T
vim) — via)
ll Lo
vl Selh Ty @t

We next restate the conjecture in a form that is closer to
the usual statements of the main theorem of complex multiplication.
Let T = MT(A) , and choose a polarization ¢y for (V,h) which we
shall assume to be one of the S, - From the inclusion

+
(T,{h})<— (CSp(¥),S ) we obtain, as in §2, a bijection

Sh(T, {h}) S@E(T, (n},V)

where (AXT,{h},V) consists of certain isomorphism classes of

triples (A',(tu),k)

The torus T continues to act on 'V , and in fact
T = Aut(TV,(Tsa)) . One of the Tsa is Tw , which is a
polarization for (TV,Th), where 'h 1is the homomorphism $— T

corresponding to Ty, - Thus we have an inclusion
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; t
(T,{rh})c—s(CSp(TV),S ) and, as before, a bijection
Sh(T,{'h}) A&, { n}, V) .

We define X_ : &(T,{h},V)—=xB(T,{'h},"V ) to be the
mapping that sends [A‘,(ta),k] to the class [TA',(Tta),Tk]
-1
where 'k is the composite Vf(TA) -T——*,Vf(A)—kQV (ka) —Sg—(T—L v @f) .

Lemma (9.1) shows that [TA',(Tta),Tk] satisfies condition (2.la)

to lie in {ﬁJT,{Th},TV) and (8.3) shows that it satisfies (2.1b).

Conjecture CM (second form). The following diagram commutes:

[h,g] Sh(T,{h}) =y @&(T,{h},V)
I 7 X, L*

[("n,gl  Sh(T,{ 'h}) @& (T, {"n}, V)

It is easy to check that the two forms of the conjecture are

equivalent.

Example 9.2 (a). Suppose, in the above, that there exists an

isomorphism a(t) : (V,(Sa))-:*(TV,(TS )) i.e. that the cocycle

o r
¥(t,u) e Hl(Q,T) is trivial. Then B (t,u) lies in T(Ef)/T(Q)
and is represented by B(T,u) e T(&f) where
sp(1) B(1,u) = a(r) (as maps valh) - val)) . If we use aft)

to identify EAAT,{Th],V) with (éXT,{Th},TV) then X becomes

identified with the map [A,(ta),k]h—5[TA,(Tta),B(T,u)_lOkOT_l

]
i.e. with the composite (A(T,{h},V) lﬂéﬂT,{Th},V) EJILEA(E(T,{Th},V)
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Thus, in this case, the second form of conjecture CM asserts

that
(h,q] Sh(T,{h})—=» &(T,{h},V)
] ! B
("h,g8 (1) 11 sh(T, (")) SENT, {Th) V)
commutes.

(b) Suppose that 1T fixes the reflex field E(T,{h}) ; then
1

(6.10) shows that b(t,p) = rE(T,h)(T)_ , and so
B(t,n) = rE(T,h)(T_l) = rE(T,h)(T)_l e T(Rf)/T(Q) . It follows
that X(t,u) 1is trivial, and (a) shows that, once (TV,(TSG))

has been identified with (V’(Sa)) , conjecture CM becomes

the statement that the action of 7t on (A(T,{h},V) corresponds
to the action of 'iﬁf(r)) on Sh(T,{h}) , where ¥ (1) e'TG&f)
represents r,(T,h) (1) . This is precisely the statement of the
main theorem of complex multiplication to be found, for example,
in Deligne [1, 4.19]. Thus the conjecture is a generalization

of that theoremn,.

Example 9.3. Let F be a CM-field and I a CM-type for F
Let A Dbe an abelian variety (an actual abelian variety - not
an isogeny class of abelian varieties!) of type (F,Z) . Then
H) (A,Z) is a locally free module of rank one over the ring of
integers Op in F , and hence defines an element I(A) of

Pic (0O_.,) . Consider

F
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(SL(Qi)/SL(L))Gal(L/Q)

!

11 @f)/m@ — el /o)t & 5l gg,n

where T = ResF/Q B L is a (sufficiently large) finite
Galaé; extension of @ , and the vertical map is induced by
the canonical map p : SL-—ﬁT_. As Hl(L/Q,T) = 0 , the
image of B (1) in (T(ﬁf)/T(L))Gal(L/Q) arises from an
element B' (1) efP@&f)/T(Q) . This defines an ideal class
I(1) e Pic(0;) , and the conjecture predicts that

I(tA) = I(t) I(A) .

Example 9.4. Let FO be a totally real number field, let Fl

and F2 be distinct, totally imaginary, quadratic extensions
af
of FO , and let F = Fle . For each g¢gel = Hom(FO,E) choose

an extension oq of ¢ to Fl and an extension o of o to

2
F2 . Write o' and o¢" for the elements of Hom(F,C) such that

¢, on F, , ¢" =40, on F

— L
o' = o, oOn ¥, , o" = o, ©On F_o.
Let I, be a subset of Hom(FO,E) and define-
t = {o'|oel}ufo"|oelj} U {lc"loéZO} .

Then I is a CM-type for F . The sets of complex embeddings
O’El = {01[0620},22=={02|0¢20} , and I define @-rational

Hodge structures on the vector spaces F_ ,F

o'¥y:Fy, and F , and
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hence homomorphisms hj=$-—A(Fj9R)x for j =0,... . Let

Hg Mgty and uy = HiH, be the corresponding cocharacters,

and let EO'El' and E2 be the reflex fields

'E(Fo'ho)' E(Fl,hl) , and E(Fz,hz) . In the following we assume
0 - Asg EO is
totally real, this assumption allows us to consider an

that El and E2 are linearly disjoint over E

automorphism 1 of T over E such that

0

T =131d on E

Note that (1+l)(T—l)ul = 0 = (1+l)(T~l)u2 , and so

+ — = =
(1+1) (t-D)u 0 . If we let T ResF/QEm then Mg rHyrHyy and
1 can be regarded as elements of X, (T) . Thus, if L is large

enough to split T , there are defined elements
’ Gal(L/ D

Blt,uy) e (T@D)/T L) for 3 =0,... . As u=um, ,
B(t,u) = E(T,ul)E(T,uz) . Since T = id on El and
T = id on E2 , (6.10) shows that

- ab, -1 f ~

B(t,uy) = rEl(T]El ) e TA™)/T(Q)

1

BTy = rE2(1r|E§_‘b)" er@t)/r@ .

From (6.11) and (5.9) we know E(T,uz) = (IT)—lE(I,uz).E(IT,Uz) .

and (6.9) shows B(y,u,) =1 . Thus

B(t,u) = rEl('c]E"ib)—1 rEz(lTlEgb)ule T(AﬁVT(Q) )
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Let A be an abelian variety over & with complex
multiplication by F and of CM-type I . Choose‘identifications
of Hl(A,@) and Hl(TA,@) with F . Then Vf(A) and
Vf(TA) are identified with B§~ and sp(t) : Vf(A)——)Vf(TA)

‘is multiplication by an element B(T,u)-l e 6ﬂ§)x = T(Af) .
This B (t,n) 1lifts B(t,u) = rp (r) "+ rp (1T)~1 . Conjecture

1 2
CM asserts in this case that the two maps

vi@) NELEEEN vE (ea)

-1
vi@) 8w oyfa)
are equal.
This last statement is, apart from notation, Theorem 9 of

Shih [1] (see also 8§15 below).

Remark 9.5. Let A Dbe an abelian variety of potential CM-type

defined over a number field k . Conjecture CM would imply
that the zeta function of A 1is an alternating product of
L-series associated to complex representations of the Weil group
of k . Deligne has proved this result without, however,

proving the conjecture (cf. Deligne [6]).
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510. Conjecture C, conjecture CM, and canonical models.

Let (M(G,X), £: M(G,X), —> Sh(G,X)) be a canonical
model for Sh(G,X) (Deligne [3, 2.2.5]) and, for each automor-
phism 1t of € fixing E(G,X), set wT = £ o (Tf)—l. These
isomorphisms wT: 1Sh(G,X) » Sh(G,X) satisfy the following

conditions:

T,T

(10.1a) i = o (T.¢_ ), T1,T, € AUt (C/E(G,X));
172 T1 1 Ty 1’2

(10.1b)  y_o t(@(g)) = T(g) o ¥, T € AL(T/E(G,X)), g € G(AT);

(10.1c) 1let h € X be special and assume that <1 fixes the
reflex field E(h) of h; thén ¢T(T[hrl]) = [h, Y(1)]. (Here
}(T) € G(Bﬁ% represents rE(T,h)(T) e T%/Af)/T%@)A where T

is some (@-rational torus such that h factors through T]R and
rE(T,h) ié the reciprocity morphism (Deligne [3, 2.2.3]).) Note
that the family (wT) is uniquely determined by (G,X): |if
(M(G,X)', £'Y 1is a second canonical model, there is an isomor-
phism ¢g: M(G,X)' — M(G,X) such that f' = f o A 7 and so

f' o (lf')_l = f o (‘rf)—l = wT. Moreover, descent theory shows

that every family (wT) satisfying (10.1) arises from a canonical

model for Sh(G,X).

If v fixes E(G,X) and M(G,X) is a canonical model for

S5h(G,X), then 1tM(G,X) = M(G,X) 1is again canonical model for.
Sh(G,X), and so conjecture A suggests that we should have
Sh(G,X) —> Sh('G,'X). We shall prove this. Thus let (G,X) be

any pair satisfying (1.1) and let h € X be special. Choose a
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@-rational maximal torus T 1n G such that h factors through

T and let uy = p_. If 1 1is an automorphism of € that
: h

m ?
fixes E(G,X) then +tp and p have the same weight; thus
(L + ) = (1 + 1)y, and (see 6.15) there is a well-defined

cohomology class vy (1,u) € Hl(Q, T) .

Lemma 10.2. The image of «y(1,u) in Hl(Q,G) is trivial.
Proof: After replacing (G,X) with the pair (Gl,Xl) con-
structed in (3.4), we can assume ‘Gder is simply connected.

Let H = G/Gder and let u' be the composite of py with G - H.
As Tp 1s conjugate to u, Tp' = p' and (6.10) shows that
y(t,u') 1is trivial.

Let w € G(T) normalize T(CT) and be such that Tty =

ng °© y. According to (6.13), the image of vy (t1,u) in Hl(ﬂh G)
is represented by tpu(-1)/u(-1) = (agw o u)(-1)/u(-1) which

(see 7.2) is also represented by w:- 1w—l; it is therefore
trivial. The lemma is now a consequence of the following easy
result.

Sublemma 10.3. Let G be a reductive group over @ such that
Gder is simply connected. An element <y of Hl(Q,G) is trivial

if its images in Hl(m, G/Gder) and Hl(HL G) are trivial.

We continue with the notations of the second paragraph of
this section; thus h € X 1is special, yuy = ”h' and T fixes

E(G,X). Choose an element a(1) € 'S(@ and let f: G5 ~ TGZE
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be the isomorphism g +—— a(t).g . It will often be con-
venient to regard f as being defined over L where L .is

some sufficiently large finite Galois extension of @ con-
-1 f

tained in @ . Let B(1) = sp(T1) a(t) € s(a;) and let
B(t, ) be the image of B(t) in Tad(dxi) under the map
pa : S ~» Tad defined by uad'QﬁIfq; ((E,.,ﬂ 3 T > Tad) . Recall (6.8)

that we have also defined an element B(tT,u) € T%zAi)/T(L)T(@)“.

Since B(1,pu) and B(1,u) have the same image in T(Axi)/

~

Z(lAi)T(L) T(Q)”~ we can choose an element RB(T,u) € T%LAi)that

lifts both PR(1,u) and R(T,u); it is determined up to multi-

plication by an element of Z(mi) N T(L) T(® " = Z(L) Z2(@)".
(Note that T(Q)zZ(@)" = T(@)" because Tad(

subgroup of Tad( Af).) Let GB(T,n) = E(T,u)yc :  then (y

0) 1is a discrete
O) is
a l-cocycle representing vy(t,u) € Hl(Q,T). We have of = £ oééYO.

The lemma shows that there is an element v € G({Q) such that

Yo = v_l.ov for all o € Gal(D/Q). We define an isomorphism
fl: G - 1G and an element Bl(T,u) e G(éAf) by the formulas:
- 1
f. = £ o ad v (10.4a)
1 A
Bl(TrU) - B(TJU)V (10.4b)

Remark 10.5. In the above we have had to choose an af(t),
é(T,u), and v. For example, if a(t) 1is replaced by af(t)u,
u € S(L), then PR(t,p) 1is replaced by B(t,u) pa(u). We show
that the cosets defined by Bl(r,u) and Bl(r,u)_ in

7
G(@)\\G(Af)/g(@)“ are independent of all choices.
AN
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Consider the exact commutative diagram

1 - @ \r(ah) — (rm\ rah) et Y sy,

1+ s@\aiah) — emw\eah) @ D wlwg,em)

in which the vertical arrows are induced by the inclusion T &2G.

On dividing by Z(@)" we obtain

1 — rah/rer — raneal) /raer) @Y 5 ul e, )

! ! }

Gal (L/@)

1— GO\ 6(a%) /2(@) — (GLNG(A])/ z(0)") — ul(L/@,6(L)).

Lemma 10.2 shows that the image of B(t,n) (or E(T,u)—l)

under the middle vertical arrow lies in G(@)\\G(Aﬁ)/Z(Q)A ;

it is represented by Bl(T,u).

Remark 10.6. Everything is much simpler when n satisfies
(4.1). Then there is a map p“: S » T and we can choose

P af

B(t,u) = B(t,n) (B(1)). A change in the choices of a(t1)

pU
and v forces the following changes:

a(r) B(T,u) Y v f B.(T,n)
- _l —l
a(T)u0 B([,u)u2 u2 Y00u2 u vu2 f o aguz Bl(T,u)u3

Uy € s(L), u, = 0 (u,) € T(L), u, € G(@)

We shall abuse notation by writing Th also for the

IR m T

the sense of §7) = f o Th(this sense) .

map % + G associated with 7tu: G_ > G_, ; thus Th (in
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Lemma 10.7. Regard v as an element of G(C); then

adv o Th e X.
prevy

Proof. Let w € G(T) normalize T(T) and be such that

tw = adw ° p. Then (see the proof of 10.2) v and w repre-

sent the same cocycle, and so v—lw € G(IR) . Hence adv ° "h =

adv o gQw o h € X.

Since adv ° ‘h e x, and fl o adv o "Th="he TX, we
see that fl : G —> 'G defines an isomorphism Sh(fl):Sh(G,X)

=5 sh(‘c, "x).

Proposition 10.8. Let ¢(t;u) be the map

Sh(£)) o \TB, (t,u)) : sh(6,x) —> sh('""e, "'Vx).

~

Then ¢(1;p) 1is independent of the choices of a(tr), B(t,u),

and Vv  moreover

$Ciin) fadv o “h, B (1,10 7] = (Th,1]

1

p(Tiu) ° @lg) =T M) o d(tiu).

Proof. The formula ¢(t;u)[x,g9] = [fl ° X, fl(gBl(T,U))]

shows immediately that ¢(t;p) maps [adv o 'h, Bl(T,u)_l] to

1l

[('h,1] and that ¢(t;m) (T(g) =(TNg') ¢(t;u) with g' =

Tg. The independence assertion

1l

£(87gB) = £ o ad B(T,iD (9)

is a consequence of this, the following lemma, and Deligne [1,5.2].
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Lemma 10.9. The element [adv o 'h, Bl(T,p)_l] e Sh(G,X)
is independent of the choices of al(rt), E(T,u), and wv.
Proof. Suppose that, after a change in the choices of al(1),
B(t,u) and v , the elements Bl and v are replaced by
Bi and v'. Remark (10.5) shows that (B'l)—l = uBilz with
u € G(®) and z € z(®", and that ad(B; v') = ad(B(t,wu;) =
. ad -1 -1, _

%_\(Bl v ul) with Uy € T (L). Thus gg(z Blu v') =
ad(B, vu,) and, on cancelling the B8,, we find ag(u—lv') =
ad(vu,). Hence (q@v' o “h, (B]) ') = (agv' o "h, ug 'zl =

-1 ' -1 T -1 T -1
[agu™"v' o 'h, B]7] = (adv © adu; o 'h, BT} = [agv ° 'h, B8]
because 'h maps into T(IR) and ul e Tad(L),
Remark 10.10. Under the hypothesis of (10.6), the map ¢(T:u)

becomes [x,g] +—— [f o %gv_l ° x, f(v_l gB(t,u))] and the
element in (10.9) becomes [ggv o Th, VB(T,U)_l]. Both can be

directly shown to be independent of all choices.

Proposition 10.11. Assume that Sh(G, X) has a canonical model

and let (wT), T € Aut (C/E(G,X)), be the corresponding family
of maps as in (10.1) above. Conjecture C 1is true for Sh(G,X)

and a particular 1 € Aut(C/E(G,X)) 1if

p (1(h,11) = [adv o "h, By (t,p) "] (10.12)

holds for all special h € X.
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Proof: Note that Lemma 10.9 shows (10.12) makes sense. Define
e T ¢(tin) ° Y . Then

¢T,“(T[h,l]) = ¢(rip) [adv o Th, Bl(T:u)_l] by (10.12)

= ['h,1] by (10.8)
Moreover,
bp oo TR = eltin) o fig) ° ¥,
= ot Vg) o L. by (10.8)

Thus  ~ ~ satisfies condition (a) of conjecture C. Let h'

be a second special point and let ' = Then

Uhl'

d(Tin',u) o ¢

T

d(Tsu',u) o ¢(T;u) o W

= ¢ ,

T, U

because ¢ (t,u',u) = ¢(1;n') o ¢(T;u)-l (7.13).

Remark 10.13. In certain situations, (10.12) simplifies.

For example, under the hypothesis of (10.6) it becomes

p. (tlh,11) = [adv o "h, v s, 1 (10.13a)

(see 10.10). On the other hand, if we identify Sh(G,X) with

M(G,X)m, then (10.12) becomes

t[h,1) = fadv o "h, B, (t,) '] (10.13b)

f

e

I1f Y(T,H) p_(y(1)) is trivial in Hl(Q, p_(S)) then there
H _ H )
exists a u € S(L) such that p_(u) l(op__(u)) =

Y (mod Z2(G)).
H H
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After replacing a(1) with af(r)u one finds that £ 1is
defined over @, that @#(t,u) can be chosen to lie in T(lAf),

1. Thus (10.12) becomes

and consequently that v

(Th, B(t,m h) (10.13c)

p (tlh,17)

Finally, if <1 fixes E(h) then the hypothesis of (10.6) is

E (h)

satisfied, +v(t) is trivial in HY(®, S ), and (10.12)

can be written
p (1l 1]) = [h, Bt ] = [h, F(1)] (10.13d)

(see 6.10), which is one of the defining conditions for M(G,X)

to be a canonical model (see 10.1lc).

Proposition 10.14. Assume that conjecture C. 1is true for

Sh(G,X) and all T € Aut(C/E(G,X)); then Sh(G,X) has a

canonical model and the maps wT(as in 10.1) satisfy wT =

¢(T;uh)—l o ¢T y for any special h € X; equation (10.12) is
"“h

true for all 1 fixing E(G,X) and all special h € X.

Proof: Choose a special h and set wT = ¢(T;u)_l o¢_ru with

H= - Arguments reverse to those in the proof of (10.11) show

.

that v, is independent of h, that Ve tlg) = L(g) o Yoo
and that wT(r[h,l]) = [adv » Th, Bl(r,u)_l]. To complete the

proof it must be shown that ¢ = o (t,¢_ ), but it can
1Ty T 1 Ty

be checked directly that the two maps agree at the point (h,1],

1172

and this implies they agree everywhere.
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Corollary 10.15. In addition to the assumption of (10.14),

suppose that E(G,X)CC IR . Then conjecture B 1is true for

Sh (G, X).

Proof. If we identify Sh(G,X) with M(G,X)mi then (10.14)

and (10.13) show that 1[h,1] = ['h, B(1,u) Y] for any special

h, where g£(1,u) has been chosen to be in T%AAf). But,
according to (6.9), B(i,n) =1 and so B(1,u) € T(Q). Thus
1[h,11 = ('h, B(1,u¥t] = ('h, 1], which implies conjecture B (7.4).

We come now to the relation between conjectures C and CM.
Let A be an abelian variety of CM-type, let V = Hl(A,Q), let
h be the natural Hodge structure on V, and let 1y be a
Riemann form for A. If T 1is the Mumford-Tate group of A

+

then we have an embedding (T,h) «— (CSp(V), S7).

Proposition 10.16. Conjecture CM 1is true for A and a

given 1 € Aut(T) if and only if (10.12) holds for Sh(CSp(V),S ),
h, and 1 .

Proof. Write (G,X) for (CSp(V), S'). Recall (2.3) that

there is a bijection Sh(G,X) — &(G,X,V) where ®&)(G,X,V)

consists of certain isomorphism classes of triples (A',t,k).

Let u = ;5 we define x = :/A(G/X,V) —> BT Ve, TrHx, Trhy)
to be the map [A',t,k] +r— [TA',Tt,Tk] where 'k is the

-1
composite Vf(TA') X Vf(A') —£» \H]Af) EELLL» T'“V(]Af).

Clearly there is a commutative diagram
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A(T, h, V) &——— (G, X, V).
_ X
lXT l T,
a(r,"n, "My e— At M, T Px, Ty

-

where XT is as defined in §9. On the other hand, as the

canonical model forl Sh{G,X) is the moduli variety,

T: Sh(G,X) » Sh(G,X) corresponds to the map 7t : ®&(G,X,V) » B(G,X,V)
such that [A',t,k] +—> [ZA',Tt, tk] (where 11k =k o T_l). It

is easily verified that ¢{1;u) corresponds to the map

[A'",t,k] — [A',t,sp(1) o k]; thus ¢(1;u) o 1T corresponds to

XT o Since ¢ (t;u) is an isomorphism, (10.12) is equivalent
?

to the equation ¢(t;u) (1t[h,1]) = [Th,l], or, to the assertion

that . " maps the triple corresponding to [h,1] to the
triple corresponding to '[Th,l]. But this is precisely the

second form of conjecture CM.

Corollary 10.17. Conjecture CM 1is true if and only if con-

jecture C is true for all Shimura varieties of the form

X

Sh(CSp(Vv), S7).

Proof. Combine (10.16) with (10.11) and (10.14).

Remark 10.18. The same arguments as above show that conjecture

CM implies conjecture C for Shimura varieties of the form

+

Sh(G,X) when (G,X) embeds into (CSp(V), S7). We shall show,

however, that conjecture C for Shimura varieties of the form

hd

Sh(CSp(V), S87) implies conjecture C for all Shimura varieties
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of abelian type. Thus, at least for these
varieties, conjecture C is equivalent to a statement involving

nothing more than abelian varieties of CM-type.

Remark 10.19. It is easy to verify conjecture CM in the case
that 1 = 1 (cf. 7.4¢). On combining this remark with (9.2b)

we find that conjecture CM is true whenever 1 fixes the
maximal real subfield of E(G,X). 1In particular, conjecture
CM 1is true for elliptic curves. Now (10.16) shows that con-

jecture C 1is true for Sh (GL St). (¢f. Shimura [2, 6.9]1).

2’
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IV. The action of complex conjugation.

Assuming E(G,X) is totally real, we compute in §11
the action of complex conjugation on no(Sh(G,X)). This allows
us (512, §13) to formulate a conjecture (Conjecture BO) for
connected Shimura varieties, and show it to be equivalent to
Conjecture B. In §14 we show that Conjecture B0 is a special
case of Conjecture CM. In §15 we prove Conjecture B0 case by
case for all connected Shimura varieties of primitive abelian
type, and deduce Conjecture B for all Shimura varieties of

abelian type.




-88 b-

§11. The action of | on (Sh(G,X)).

[ 0

Let (G,X) satisfy (1.1) and assume E(G,X) C IR. The

s
adjoint group Gad is a product, Gad = I Gi , of @Q-simple

i=1

adjoint groups Gi' Each Gi can be written Gi = Re *

. °r;/0 ©
where G is absolutely simple and the Fi are totally real
(Deligne [3, 2.3.4]). For each embedding wv: Fi — R we
obtain a group Gi over IR, and Gi(nﬂ is either compact or

has exactly two connected components (Deligne ({3, 1.2.8]). 1In

the latter case we write Gi(ﬂnﬁ' (or simply +) for the component
containing 1 and Gi(IR)_ (Qr simply -) for the other component.

Note that G, @y R = nci . Define:

D

ad

G Cm)+={g S Gad(ﬂnyg —> + for all i and v with Gi(HU non compact}
ad - _ ad _ . . i
G (R) ={g € G (R)|]g F> - for all i and v with GV(HU non compact}
Gad(lR)i= Gad(]R)+ U Gad(IR)_
ad 1 . ad
Clearly, G ~(IR) 1s a normal subgroup of G ~(IR), and there

is an exact sequence

l » G (IR) — G (R) — - 1
For * =+, -, or +, we define
d * d *
A% = GYUR) A G(D);

. *
G(IRR), = inverse image of Gad(]R) in G(IR) ;

G(D), = G(R), N G(Q).
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The real approximation theorem shows that there is an exact

sequence
+
1 — Yt — o) — (1) — 1
Remark 11.1. Consider G —» ¢ —> Gad. The group G(IR)
is connected (Borel-Tits (1, 4]) and so the image of G(IR) in

2 (mr) is g?d

UR)+. Thus an element g of G(IR) is in
G(R) if and only if g = p(g)c for some g € G(IR) and

c € 2(IR) , where Z = Z(G). Define T by the exact sequence

If Gder = G then an element g € G(IR) is in G(HU+_ if and

only if v(g) € v(Z{(IR) ).

Now let h € X be special and u = Hy . Choose a Q-
rational maximal torus T in G such that h factors through

T and let N be the normalizer of T in G. We have seen

IR
(7.3) that there exists an n € N(IR) such that gg(n) o U =1Y.

1

Since n takes h to h, n belongs to G(IR)_ (because

'n and h ! become equal when composed with Gp G%S , and
h—'l e x , Deligne [3, 1.2.7]). 1In particular, we see that
G(]R)JI + {z} is surjective, and the real approximation theorem

shows that there is an exact sequence

I — G, — G — {t} — 1.
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The element n € N(IR) is unigue modulo N(R) NK_,
where K_ is the isotropy subgroup of h. However, on
some occasions it is convenient to choose an n with the

properties stated in the following Lemma.

Lemma 11.2. There exist n € N(IR) and w € p(é(m)) such

that ag(n) oy = 1 and p(-1) = wn.
Proof.: Choose a maximal set of strongly orthogonal noncompact
roots {Yl,..., Yr} of gger with respect to Eger in the

sense of Illarish-Chandra, and use it to define a homomorphism
of SL2 to G over IR as usual (Ash et al. [1, III.2]). We
can choose the yi's in such a way that ‘<Yi’“> =1 for all
i=1,...,r. Put w = (p o ¢)((~é g)). Then w € N(T)N p(G(T)).

Furthermore,

Wi = e o (5 ) = el D=0 - w -,

where Y; denotes the coroot of R Hence n = wpu(-1) € N(IR)
and it has the required properties.

Recall (Deligne [3,2.1.14]) that the action of G(IAf)

on Sh(G,X) (on the right) induces an action of Ghmf) on
ﬂO(Sh(G,X)) under which nO(Sh(G,X)) becomes a principal homo-
geneous space for ?OH(G) = G(]Af)/G(m):. The image of G(Q)_
in Gtmf)/G(@f;cjzunﬂno(Sh(G,X)) is therefore an element of
order 2. On the other hand, if Sh(G,X) has a weakly canonical

modelrover a real field then 1 acts on Sh(G,X) and hence on

nO(Sh(G,X)).



_91_

Proposition 11.3. Assume that 'Sh(G,X) has a weakly can-

onical model over a real field E containing E(G,X). Then

for any o € G(Q)_, the image of a in G(Eﬂ% acts on

HO(Sh(G,X)) as 1 .

Proof: According to Deligne [3,2.6.3], 1 acts on nO(Sh(G,X))

— — _ X x
as (nONE/qu)(e), where e € ﬂoﬂ(GmE) = nO(D\E/E ) maps to

L€ Gal(Eab/E), M denotes the G(C)-conjugacy class of maps

m: G ——'GG corresponding to X, dy? n(GmE) > ﬂ(GE) and

NE/@ :ﬂ(GE) + m(G) are the maps defined in Deligne [3,2.4], and

ﬂONE/QqM 1s the composite

T (N °q,,)
0'"E/D M° p— —
ﬂoﬂ(GmE) > ﬂoﬂ(G) — ﬂoﬂ(G)—ﬂoﬂ(G)/ﬂo(G(]R)+).
The problem is to elucidate these maps.
Assume first that Gder = G. By definition M is defined

over L. For any k DE, there is a map

EIVE Gm(k) — (G/G) (k)
with the following property (see Deligne [3,2.4]): 1let u € M

be defined over k' D k, and denote the composite

6 (k') My G(k') —> (G/G) (k")

~ ~ ~

b ; then = over k'. Consider
Y qu Ay qp

}'(X
i 2

v

-~

1 —— G(k)/G(k) — (6/8) (k) —— nl(x,q).
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We see that the restriction of ﬁM to the kernel (kx)O of

d o @M factors through G(k)/G(k). Since (Ei:)0 = Es for v
a finite prime of L[ and (E:;)0 = (JRX)+ for v a real prime,
on forming a restricted product we obtain a map qM:(]AE)+ —

G(m)/G@m) . On passing to a quotient we obtain the map Ay

P X X+ N Xy -y —
from ‘mE /E= = tmE)/( E ) to tmE)/G(EE)G(E) = n(GE).

et e = (1,...,1; 1,...,1, =-1) € IA}, where the final
place corresponds to the real prime v of E defined by

0
the given embedding E ¢— 1IR. Then e represents

X X .
e € nO(ExE/E ). We compute qM([e]) € ﬂ(GE), where [e] is

the image of e in D\;/Ex.

For v'# vy ev = 1, and QM(ev) is represented by
1€ G(EV). For v = Vo let h € X be special, let u =l
and choose n and w as in Lemma 11.9. Then qM = g over
C. Since u(ev) = p(-1) = wn, u(ev) and n have the same
image in (G/é)(ﬂn ; thus qM(ev) is defined and can be repre-

sented by n € G(Ev). We conclude that (1,...,1; 1,...,1,n) e(;cmE)

representes q,, ([e]). It follows that (N q,) ([el) 1is
M E/Q M

represented by £ = (l1,...,1; n) € G(IA) , and (HONE/Q qM)(e)
is represented by the image ¢ of ¢ in ?OH(G) = wm(G) Mg (G(R) )
1 acts on w,(Sh(G,X)) as I3
Now for o € G(@)_ , let “g = (dxyeee, a; 1) € G(IA) . Then
aoé_l € G(QIG(R) _ , and so the image EO of o in ?On(G)

is g
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Therefore (nONE/QqM)(e) 1s also represented by a,. To

0
complete the proof of this case, we observe that, when FOH(G)

1s identified with Gtmf)/G(Q); , a

@ € G(O) < o(mf) .

0 is the image of

For the general case, one can repeat the argument with

the group (G/é)(k) replaced by BH'(@ > G) (see Deligne [3,2.4]).
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e 12. Definition of €: G(@)° (rel G') —- E%(G,G',X+).

Let (G,G’,X+) define a connected Shimura variety,
as in §1. Recall that E(G,X) is defined to be E(G,X),

where X 1is the G(IR) -conjugacy class of maps $ -+ G con-

IR
taining X+. Assume that E(G,X+) is real. Then the dis-
cussion in §11 applies to G = Gad and we have groups G(IR)+,
G (IR) —, e, G(Q)t, and exact sequences

+ +

1 — G(IR) — G(R) — {*} — 1,
+ +

1 — G(D) —> G(D) — {t} — 1.

Recall (Deligne [3, 2.5.7]) that for any E C @ that is

finite over E(G,X), there is a canonical extension
+a . g v ot —
1 — G(@  (rel G') —> £.(G,G',X) —> Gal(D/E) —> 1.
In the following we assume E C IR.

Proposition 12.1. With the above assumptions and nota-

tions, there exists a canonical embedding

~

e : G(D)Y (rel G') —s ZE(G,G',X+).

rendering

1 — 6@ (rel 61 &5 & (g6, x") L Gal(@/E) — 1

Lo

G(@)~ (rel G'")

~

commutative and such that (ﬂe)_l(1) = G(@)_ (rel G').
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Proof: We first review Deligne's construction [3, 2.5] of

the canonical extension. Choose a pair (Gl’ Xl) satisfying
ad der +
l ! Gl 14 Xl)

XI C:xl; it is possible to do this in such a way that

(1.1) and such that (G - (G, G', X7) for some

E(Gl’ Xl) = E(G,X+); see (3.4). The canonical extension is

defined by the diagram

1 — (@) “(rel ') —> XE(G,G',X+) i ' Gal(@/E) — 1

£
1 ) lrcl,xl

(12.2)

f
G, (")

=~ * G
z (Q) Gl(Q)+/Z(Q)

1 — G(@) " (rel G') @" — T e —1

0

in which e x is the reciprocity law and 2 1is the center
171
of Gl' The calculation made in the proof of (11.4) shows that
G, (D)7
-1 t +
T s 2 * G (@)

. 2@ G (@ ,/2(Q)

G, (@), ;
= G(m
2~ Gy (@, /Z(@)

which can be identified with G((D)i (rel G'), Deligne [3, 2.1.15.1]
- We define € to be the inverse isomorphism.
To see that ¢ 1is independent of the choice of (Gl,Xl),

take another (G2,X )  with the same properties as (Gl'Xl)'

2

Let G3 be the identity component of the fibre product

G, x_, G and X, = X, x_, X, . Then (G3,X

1 *g Gy 3 1 “x % ) also has the

3
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same properties as (Gl,Xl). We see easily that, via the

projections G3 -+ Gl and G3 > G2, (G3,X3), (Gl’xl) and

(G2,X2) all define the same €.
Remark 12.3. Let the notations be as in the above proof.
£
For simplicity, put ,lf = Elifiwl * : G(Q)+ .
Z (D) Gl(®)+/Z(@)
Note that in the identification
G(@)iA(rel G') = Gl(m)z * G ( f
Z@~ e @ sz, S
u € G((D)i is identified with 1 * o . Therefore, if o € G(D)
lifts to ay € Gl(m)_ , then €(a) 1is the element of
ZE(G,G’,X+) such that
fle(a)) = ay *x 1 € JH and mw(e(a) ) = 1 € Gal(Q/E).
In general, let Y be an element of Gl(m)_' and let vy be
its image in G(@) . Then for any a € G(@) , e(a) 1is the
element of gE(G,G',x+) such that
_ -1 A ) ~ _
fe(a)) = Yy * oy a € and m(e(a)) = 1 €Gal(Q/E).

Assume (G,G',6X) is of primitive abelian type. Then the

pair (G2,X2) constructed in the proof of Deligne (3, 2.3.10]

éd der

satisfies the conditions G2 = G, G2 = G', (G2,X2) » (G,X)
and E(G2,X2) = E(G,X), and so can be chosen as (Gl’xl) in
the proof above. However, this is not the most convenient one

to use. We shall use a group G that is larger than G

3 2
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Let the notations be as in (1.3) and (1.4). Recall that V

is a vector space over F and G2CZ.GL(V). We take G3

to be the Q-algebraic group generated by G2 and FX. Then .

(G3,X2) can be used instead of (G2,X2) as our (Gl,X ) .

1
The extra properties (G3,X2) enjoys, which are established
in the proof of [3, 2.3.10], are summarized in the following

proposition, in which (G3,X2) is denoted by (G2,X ) -

2

Proposition 12.4. Let the notations and assumptions be as in

(1.4). Then there exists a diagram

(G,.X,) —> (G,X) <— (G X)) &> (CSp(V),S")

2 1

ad _ .ad _ der _ _der _ _, i _
such that Gl = G2 = G, Gl = G2 = G', E(Gl,Xl)

X X
E(G,X) E(F ,hy), E(G2,X2) = E(G,X), Gl<:.G2, Z(G2):D F

and X, = {hzhzl h, € Xz}’
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§13. Statement of Conjecture B0 ; equivalence with Conjecture B.

Let (G,G',X+) define a connected Shimura variety as
in §1. Recall (Deligne [3, 2.7.10]) that a weakly canonical

model for ShO(G,G‘,X+) over E :)E(G,X+) is a scheme

ShO(G,G‘,X+)w over @ together with a left action of
\%%(G,G’,X+)Q satisfying certain properties.

Let X be the conjugacy class of maps & - G]R containing
X+. Assume that E(G,X+) = E(G,X) 1is totally real. Fix a

special hO € X, and let n € N(IR) and n: X + X be as in

§7. Since n € G(IR) , as was remarked in §11, we see that

aq o o n(x) € X+ for all o € X+ and x € X+.

I

Conjecture BO. Assume that »ShO(G,G',X+) has a weakly

canonical model over a field E C IR; then for all o € G(@)

’

+ +
the element ¢ (a) € @%(G,G',X ) acts on ShO(G,G',X ) =

+
lim '\x' as follows: [x] —> [adao n(x)] for all x € X .

«—

Remark 13.1. Suppose o and o

1 , are both in G(@) . Then
+ -1 + v _ +
a = w0, e G(q) . Hence e(al) e(a ) e(a2)’ and
‘ +
fad a; o n(x)] = lad o o ad @, o n(x)] = e(a’) [ad @,y o n(x)].
Thus, Conjecture B0 holds for all o € G(@Q) if and only if

it does for one ao.

Proposition 13.2. Let (G,X) satisfy (l1.1), and assume

Sh(G,X) has a weakly canonical model over some field ECIR.

. . . 0
Then Conjecture B holds for Sh(G,X) if and only if Conjecture B

+
holds for ShO(Gad, Gder, X ).
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Proof: The proof is straightforward,

first to review the various group actions on

Sho(Gad, der +

G , X ).
The group Gad(m)+ﬂ(rel Gder
ShO(Gad, Gder’ X+) on the left.

)

When ShO

is identified with the connected component

Sh(G,X) containing the image of
d

+
X

+ . C o
Yy € G° (@) is the restriction of

x 1,

(G

Sh (G, X)

acts canonically on

sh(G,x)

but it is convenient

and

of

then the action of

[x,g] +—— yIx,gl = [y(x), ad(y) (@], x € X, g € G(B") .

By transport of structure, there is also a right action of

24t on sh(G, X :

-1 d
[x,9ly =y ~[x,9], y€¢°

(@)

The group Gﬂmf) acts on Sh(G,X)

Hecke operators. If y € Gad(

ot

X €

X,

g € G(?

is the image of

f

).

on the right, via the

§ € (Q)+:

then the actions of <y and 6 (considered as an element of

G(IAf)) agree. Thus there is a right action of
PN SE ¢ (p*
z(@) " G(Q)+/Z(®)
1 -1 -1 '
on Sh(G,X): [x,9](g" *y) = [y (x), ady “(gg')].

When .ly is made to act on
0 . ad

the image of Sh (G,X) 1is G (@)

no(Sh(G,X)), the stabilizer of

4~

(rel G

der

),

and

ﬂO(Sh(G,X))

becomes a principal homogeneous space for the abelian quotient
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ﬂon(G) = G(ﬂﬁf)/G(m)i of Jy . These facts are summarized by

an exact sequence:

1— @™ (re1 ¢%T) — H — Tae) — 1.

Now assume Sh{(G,X) has a weakly canonical model over a

finite extension E of E(G,X). Then Gal(Q/E) acts on
NO(Sh(G,X)) on the left. Since ﬂO(Sh(G,X)) is a principal
homogeneous space for FON(G), the action of Gal(@/E) is described

by a homomorphism r: Gal (Q/E) — FOH(G) such that o-r = x.r(0).
The map r has an explicit description (Deligne [3,2.6]), and

there is a commutative diagram.

N 1 — ¢t (re1 F) — Z’ (39,648 x*) T Gal (T/E) —> 1
[l lf lr
ot 1 — 4@ " (re1 98T R mym(G) —> 1

Convert the right action of 4 on Sh(G,X) to a left

action, and consider the commutative diagram

1 — 2 gyt (re1 98Ty — o c2d gder oty T Gal(T/E) — 1
| = \
1 > , Y x Gal(@/E) —> Gal(D/E) —> 1

. ' + . .
The action of t£ = SL(Gad, Gder’ X') on ShO(G,X) arising, via
this diagram, from the left actions of \2/ and Gal(Q/E) on
Sh(G,X), corresponds to the given action of é? on the weakly

B
canonical model of ShO(Gad, Gder, X+) over E.
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Now we prove the Proposition. Recall that E is assumed

to be real. Fix an element a € Gad(m)" which lifts to an

element a; € of G(®) _ . " Then m(e(a)) = 1 € Gal(®/E) and

F(c(a)) = ap x 1 € Y, see (12.3). Hence

e(a) (h,1] = (1[h,1]) Wap * for he x .
Since Conjecture B holds if and only if
Lih,1] = [n(h),1] = fad o) ° n(h), oy) = fadae n(h),11Blay),
this shows’
Conjecture B holds <= e(a) [h,1] = [agcxo n(hy, 1]

< Conjecture B0 holds for a

This completes the proof, in view of (13.1).
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14. A relation between Conjectures B and C.

We consider the situation of (1.4). Thus (G,G',X)
defines a connected Shimura variety of primitive abelian type.
Write G = Res G° with F totally real and G° abso-

F,/Q 0
lutely simple, and let IC and Inc be as in (1.3). Denote
by Fb the totally real number field corresponding to the sub-

group of Gal(@/@) that stabilizes I, . We have FyC E(G,X).

Let h e X be special, and let T C. G be a Q-rational

torus such that h factors through Tﬂi' Let F be a gquadratic

totally imaginary extension of FO and let I be some family
) : [ ' =

(0", e I of embeddings o¢': F -+ € such that o |F0 o .

Denote by hZ the Hodge structure on F defined by I, see

(1.3). We shall assume that (T,h) and (F,XL) are such that

there exists an automorphism Tt of € with

id on E(F~, hy),
’l’ p—tg
1 on E(T,h).
This is the case, for example, if E(Fx, hZ) and E(T,h) are
linearly disjoint over Fb. Using Deligne [1,6.5] we know

that for a given (T,h) there is always an (F,f) such that
this holds. On the other hand, we can also start with an
(F,Z) and choose a (T,h) such that E(T,h) is linearly
disjoint from E(Fx, hy) E(G,X) over E(G,X), seé Deligne
[1,5.1]. Then (T,h) and (F,ZL) satisfy our assumption if

E(G,X) 1is totally real.
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Remark 14.1. If (T,h) and (F,L) satisfy the assumption,
then so do (T',h'") and (F,L), where T' = 3§ Y(T) and
h' = ad y o h with y € G(Q). This follows from the fact

that E(T', h') = E(T,h).

We assume now that E(G,X) 1is totally real. Let (T,h),

(F,Z) and 1 be as above. Consider the diagram

+

constructed in Deligne [3, 2.3.10]. The information we need
concerning this diagram is collected in Proposition 12.4.

Lift (T,h) to (Tl'hl) c:(Gl,Xl) as in (1.5); then

E(Ty,h;) = E(T,h) E(Fx,hz). To simplify the notations, we
put E = E(G,X), B, = E(G,X), E(h) = E(T,h), E (h) =
E(T;,h;) and F' = E(F, he). Thus we have E, = EF' and

El(h) = E(h)F' . Fix a component X+ of X. We identify

ShO(G,G',X+) (resp. Sh(Gl,Xl)) with its canonical model

over E (resp. El).

Note that 1 fixes El , because it fixes both F' and
E,E being a totally real subfield of E(h). Thus we are in

the situation of §10. Let Wy be the cocharacter of Tl

associated to h and define v € Gl(ﬁ) and B, (T,n;) € Gl(]Af)

1’ l(

as in (10.4).

Proposition 14.2. Conjecture BO holds for (G,G',X+) if and
-1

; . ‘ _ T
only if T[hl,l] = [ad Vv o hl' Bl(T,ul)

A

].
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Recall that we have identified Sh(Gl,Xl) with its

canonical model. According to Proposition 10.11, the condition

1

. _
hy, By (t,u) 7] (14.3)

T[hl,l] = [ag V o

implies that Conjecture C holds for (Tl,hl) s (Gl,X )

1
i.

and 1. As (Gy,X ) &—> (CSp(V), S7), (14.3) is equivalent

1

to Conjecture CM for Al and 1, where Al is the abelian
variety of CM-type determined by (Tl,hl) c—— (CSp(V), Si);

see Proposition 10.16.

First we show that Proposition 14.2 is a consequence of

the following assertion.

Proposition 14.4. Let the notations and assumptions be as
above. Then ¢ (a) [h] = [ggcxo n(h)] for all o € G(@) (and
for the given h) if and only if T[hl,l] = [ad v o Thl, Bl(T,Ul)—l].

In fact,note that the G(@) -orbit of [h] is dense in sh%(G,c',x").
Thereiore Conjecture BO holds for ShO(G,G',X+) if and only if
c( [h'] = [ad « o n(h')] for all « € G(@) and all
(h'] in the G(Q)+- orbit of [h]. Let Y € G(Q)+, and consider
T' = ad v(T) and h' = ad y e h. By Remark 14.1, Proposition 14.4
also applies to (T',h'). Since (T,h) 1lifts to (Tl,hl)C:(Gl,Xl),
(T',h') 1lifts to (Ti,hi), where Ti = ig y(Tl) and hi =

ad y e hl. Moreover, Thi = ady o h and we can take

ad Y(Bl(T,ul)) as Bl(T,ui), where pi is the cocharacter

of T! associated to h!

1 17 and take 3§ Y (v) as the v for
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(Ti,hi). Therefore, by Proposition 14.4, ¢€(a)(h'] = [ad a o n(h')]

for all « € G(@  if and only if

tihy, 11 = fad y(v) o "hi, @y (t,uy) 1. (14.5)

But we have

1]

1l
—
i
—<
[
=

1) = y([h 11 Gy * 1))

, -1
-nd [ES y(v) o Thl, Bl(T,ui) ]
. _
- (aa dvo Th, ad y(8, (t.u) D)1
= lad y o ad v 10 29 v(By fTruy

[ad v o Th., Bl(x,ul)—ll(Y * 1).

In other words, (l14.5) holds for all hi in the G(Q)+—orbit

of hl if and only if it holds for hl (i.e. (14.3)). Putting

these observations together, we obtain Proposition 14.2.

It remains to prove Proposition 14.4. Let (G2,X ) — (G,X)

2
be as in Proposition 12.4; thus E(G2,X2) = E, szp(%j
X _ -1 i .
Z(Gz):D F and X, = {x,h . |h1 e xl}. Lift (T,h) to
(T2,h2)C: (G2,X2). Then T2 :)TlFX. Furthermore, using Lemma 1.2,
_ _ -1
one shows that E(Tz,hz) = E(T,h) = E(h) and h2 = hlh 5 .
Therefore h2 factors through Tgsifiin.

— - . . *
Let r = B(lT.uz) l, where is the cocharacter of T

Ho 2

is the

corresponding to h2, and s = E(T,uz)—l, where My
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X N
cocharacter of F corresponding to hZ' As 1t fixes E(h),

T = (T%, h,) (1), and as 1 fixes F', §=rF,(FX,hZ)(T),

TE(h)

see (6.10). Moreover, as Wy = Mol the computation of (9.4)

shows E(i'“l) = rs.

Let L be a Galois extension of @ that splits Tl,F><

and T; . Since w, ~1is defined over @ , we can define
1

B(T:Ul) € Tl(ﬂﬁa , and choose v and Bl(T,Ul) so that
Bl(T,ul) = B(T,ul)V—l, see (10.6). We have r € T;Cmf)/Tz(Q)A
and s € Fx(]Af) JE(@)"; let r € Tg(mf) and s € Fx(]Af)

be their respective representatives. Since E(T,pl)_l =rs,

we can choose r,s 1in such a way that rs = zB(T,ul)_l with
&z€ T;(L). Note that zv_l € Gz(m).
N GZ(]Af) +
(a) Let Gl = —F—= * G(Q) , where
22 T 7, G, (@) /2, (D)
Z, = Z(G2), and consider the following diagram (Deligne

[3, 2.5.3, 2.5.8, 2.5.10}).

~ ‘ﬂ _
l — G((D)+ (rel G') —— @% —2 ﬂon(Gz) E—
NE: r
|| E 7, %,
1 — G(@" (rel ') — E1(6,6',X") ——Gal(@/B) —
I ———  T(Q) (® ———>Gal(Q/E(h)) —> 1

Since r x 1 € @b and 11 € Gal(E/E) map to the same element

in ?On(Gz), they are both the image of an element
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A = A(h) e(gg(c,c',x+). As 11 lies in Gal(T/E(h)) and
r « 1 lies 1in

T2(]Af)

_ % , (@) ,

Zé(Q)A Tz(m)/Zz(Q)

where 2Z! = 22 N T2, the element A(h) lies in (@'. There-

2

fore A(h) fixes the point (h] € sh®(g,c',x").
(b) Now consider e (a) G(EE(G,G',X+). As remarked in

12.3, we can use the diagram in (a) to define the map

RN , - ) -
€: G(@) ™ (rel G') ——e»cQE. Fix an element vy, of Gl(Q) and
let vy be its image in G(@) . Since Gl(Q)CZ.Gz(Q), the
image of ¢ (a) in (GE is Y, * y_ o, see 12.3. Therefore
g(a) i (h) e(@& maps to (yl * y—la)(r * 1) in (@E and to
1(11) = 1 in Gal(Q/E).

Consider the diagram

1 — 6@ (re1 G') —> {é —— > Gal(Q/E) —> 1
1 —>G(0) " (rel G") —— B, —— cal(@/E;) —> 1
]
where E =tE) (G,G‘,X+). Since 1 lies in Gal(Q/E.),
VB, VR 1
e(a)r(h) €@EY arises from an element ¢, (a,h) €(E, . Ve
I , U:N

have cl(a,h) [h] = €(a)A(h) [h] = e(a) [h].
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(c) Observe that (G2,X ) defines a Shimura variety,

1
(G2,Xl) — (G,X), and E(GZ’Xl) = E(Gl’xl) = El' Thus we

have an exact commutative diagram

i
1 — c(@ " (rel 6") — (@, 2 Tm(6,)  —> 1
£ r
H I 2 I 2:%1
L — 6@ (rel 6') —— F, ————cal(@/e) —> 1
1
We show that f. (e, (a,h)) = (y. * y—la)(zB(T u )_l x 1)
271 ! 1 M1 :

We have a map rF,(Fx,hz): Gal(Q/F') —> FOH(FX)=

x f X ~ . ) . — X — .
F (A")/F (@) ; composing this map with noﬂ(F ) —> non(Gz)

(resp. Fxtmf)/Fx(@)“-——é @%), we obtain a map

r Gal(@/F') —> WON(G2)(resp. F., : Gal(D) —;ﬁ’(éé)'

F.: Fl

Denote the product map of 4@% e @%} and

1
T

(ﬁﬁ 1 Gal(@/El) —> Gal(Q/F') by i, and the
1

natural injection of Gal(@/El) into Gal(@/E) x Gal(Q/F')

by j. Then the diagram

: i ~ — £, < Tpo N
EL —— (B, x Gal(Q/F') — (G}
1 .
| l |
B . B 3 Y6, X, TP
Gal(Q/E,) J > Gal(Q/E) x Gal(Q/F') > WT(G,)
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S

is commutative. Since X, = {XZhX lx2 € X2}, we have
(rcz'x2 x rp) o 3 = er.Xl and (f, x E.,) o i = %2. Thu
£y(eq (a,n)) = £, (e (@)A(h)) = ro (1) = (v, % ¥y Ta)(r % 1) (s » 1) =
(rp 7 T (zBir,u) T e 1),
(d) Next we show that on the canonical model of the Shimura
variety Sh(GZ'Xl)’
(adao "hy, 11 (e (a,h) = [ad v o "h, 8711,

where Bl = Bl(T,pl) = B(T,ul)v . In fact, for any ¢, €

1

o) (6

-
'_l
*
<
@
(e
’.—l
*
}_J
I
—<
[
o))
=<

1

Arn

Therefore, for x, € X. ,

because

[ad e x;p 1) (y; *» v "a) (6, « 1)

ladwe x, vy + (ad Y @) (811 % ¥~

-1 -1
[ié(a Y) o ad a o Xy (ad « y)(Yl) . 51]

(ad((ad o

— [(‘iw
(ag o l)(yl) € GZ(Q). Especially, in éeiw of (c¢),

{ad o o 'h., 1]F

ad 1 (e (a,h))

2
T -1 -1
(ad @ o "hy, l](Yl vy a)(2B(t,u)) * 1)

f

G, (BF)

Z

5

Q) !

) % 1) (L % Y Ta).
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_ 1 -1 -1 -1

= ladao hl’ l](Yl x Y “a)(zv Bl x 1)

_ T -1,-1

- [hll zZv Bl]

= fada(vz™h) o Thy, BT (as zv ' e 6 (m)

wA 1 1 2

_ T -1

= [39 V o hl’ Bl 1 (as 2z € Tz(m)).

(e) The inclusion (Gl, Xl) > (GZ’Xl) induces maps

. .. - — —
Sh(G,,X;) &— Sh(G,,X,), Gy e—> LG% and 'rroﬂ(Gl]‘-—-—>1TOTr(G2)
f

. . - 1. 7 2
(Deligne [1, 1.15.3]). Note that the composite (@%l ——e>\91 ———>@%
coincides with I, . Since both [ad a ° 'h;, 1] and

T -1

[Eg V o hl’ Bl ] are on the canonical model of the Shimura
variety Sh(Gl, Xl), the result (d) shows
T _ T -1
lad a o hl’ 1] fl(el(a,h)) = lad v o hl' Bl ].

(f) Finally we observe that »Tul = Tuz . THy = UHy o “Z

Thl) is the 1ift of

(T, n(h)) ¢to (Gl'xl)' We also recall that ﬂl(el(a,h)) =T .

projects to 1y in X, (T). Thus (Tl,

Therefore, for o € G(Q)- ,

&> e;(a,h)[h] = [adao n(h)] (by (b))
& tlhy, 11 = [ad v e

[adae “hy, 11£ () (a,h)) (by (£))

", 3111 (by (e))

This completes the proof of Proposition 14.4.
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0

15. Proof of Conjecture B

. . . +
In this section we prove Conjecture B0 for (G,G',X)

of primitive abelian type. For (G,G',X+) of type C, this
is done in Shih [1]. We shall use this result to prove
Conjecture B0 for all other cases. For completeness' sake,
we start with a sketch of the proof for the type C caée.
Every (G,G',X') of type C 1is obtained in the following

fashion. Let FO be a totally real number field and B a

qguaternion algebra over FO. We use ¢ to denote the main

involution of B. Denote by I the set of embeddings of FO

into 1R, by Iﬁc the set of 1 € I at which B splits, and

by IC the complement of Inc. Let ¢ be a non-degenerate

Fo—bilinear symmetric form on a free left B-module A of rank

n such that

¢ (bx,y) = ¢(x,b0y) for x,y € A and b € B.

Let G, be the similitude group of ¢ , considered as an
algebraic group over FO , and let G0 = ReSFO/D G, There is
a natural way of defining a Goﬂk—conjugacy class X0 of
homomorphisms of $ into GGR such that (GO,XO) defines a

Shimura variety, see Deligne [1, 6.3]. The reflex field

E(Gy,X,) is totally real. Let G = ng and G' = Gger. Let
+ . . .
XO be a component of XO. We can identify X; with a G(HU-F—
conjugacy class X+ of homomorphisms of § into GH{' The triple
1 .+ (R N .
(G,G',X) 1is of type C. The center Z, of G0 is ResFO/me.

Thus
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1 — F3—> Gy (@ —> G(D) —> 1

y 77

is exact. In particular, G(Q (rel G') = GO(Q)Q/ZO(Q)” .

The first step towards proving Conjecture B0 is to

show that there is t € ZO(B&f){\ G'(Exf) such that
[ad @ o n(h)] = e(ad) [h] for all o € G(B) and h € X', (15.1)

where A denotes the image of t 1in GO(Q);/ZO(Q)A = G(Q)+A(rel G').

(Note that an element t of Zotmf) is in G'(B\f) if and

only if t2 = 1l.) Two essential ingredients we need in proving
the above claim are (i) uniqueness of canonical models and

(1i) a concrete description of the automorphism group of

+

ShO(G,G',x ) For the formef, we refer to Deligne [3} 2.7.19],

C
and the latter, to T. Miyake [l1], or to Milne-Shih [l1]. The

element t 1is unique modulo +1.
Let F be a quadratic totally imaginary extension of FO’

and consider the diagram
+
(G,X) <—— (G, ,X;) & (Csp(V), S7)

as in (l.4). Let h € X+ be special, and let T C G be a

@-rational torus such that h factors through T Lift

m.
and an auto-

. X
(T,h) to (Tl,hl) C:(Gl,Xl). Consider (F ’hZ)

morphism T of @€ as in §14. Since (Tl,h —— (CSp(V), S7),

1)

we have a diagram
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143

(h

1797 l) \A)Tl, {hl}, V)

L r

T T i @1, , {Thyy. V)
["hy.9,) sh(ry,"h)) 1t

] Sh(Tl,h

as in the second form of Conjecture CM(see §9). Using (15.1)

and the argument of §14, we can show that the diagram is com-

]

mutative if the left vertical map is replaced by [hl,gl

T
— | hl' gl]x.
Note that ) =1 (i.e. t =+ 1) if IC is empty, because

in this case E(F", h) =@ so t fixes the reflex field of
(Tl,hl) and Conjecture CM holds.
To get a more precise statement, we assume that (Gl,xl)

is constructed using Shimura's original method [1l] (see also

Deligne [1, 8§6]). Thus V = A ®F F and we have an exact
0 .
sequence
] — ZO > GO P ReSF/QG —_— Gl > 1
a — > (al a_l)
Note that t , when considered as an element of Glﬂmf), is
in the center of G(IAf). We shall write t = t(B,n) to

emphasize its dependence on B and n. We choose (T,h) in

the following way: Let P be a quadratic totally imaginary

. . _ n
extension of FO that splits B. Then T0 = (ResP/Q Gm)
can be embedded in G0 and there is an hO € X; that factors

through T We let (T,h) be the projection of (To,ho) to

@
c,xH.
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With this choice of (Gl,Xl) and (T,h), Tl is simply

n copies of ReSFP/Q Em' and the abelian varieties (up to
isogeny) that appear in the family (éXTl,{hl},V) are n-fold
products of an abelian variety with FP as its field of
complex multiplication. The conjugate of the family under ¢
is described by the map [hl,gl] — [ hl,gl]A =

[Thl, t(B,n)gl]. From this we conclude that t(B,n) € (F0 Q IAff
modulo + 1 is independent of n. Actually it only depends on

L = Inc’ the set of infinite places where B splits, and not

on B, see Shih [l1, Proposition 11].

Thus to a totally real number field k and a non-empty set
L of embeddings of k into IR, we can associate a well-defined
element t(k,5) of (k ®1]Af)x modulo +1. We remark that, the
above considerations show that the statement at the end of
Example 9.4 is correct if g(1,nu) 1s replaced by t(FO,zO)B(T,u).
Our goal is to prove that ti(k,I) = + 1 for all k and % .

This would complete the proof of Conjecture B0 fgr (G,G',X+)
of type C, and also the proof of Example 9.4. We noted already
that t(k,Z) =+ 1 1if § = I, the set of all embeddings of k
into IR.

By considering various families of the form (a(Tl’{hl}’ V)
and their conjugates, we obtain the following relations between
t(k,z)'s. For simplicity, we shall use t = t' to mean that t
is congruent to t' modulo + 1. The fields k and k are

1
totally real.
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(1) If (kl,Xl) is an extension of (k,Z), then
_ . f.ox
t(k,L) = t(kl,Zl) in (kl ® IA 7).

(ii) If v : k —> kl is an isomorphism, and % 1is the
pull back of Zl by y, then t(kl,zl) = y(t(k,ZI))
in (k. & BH*.

1
(1iii) Assume that k is normal over @, and Zl and 22

are two disjoint sets of embeddings of k into IR.

Then t(k,Zl) t(k,Zz) = t(k, I v 22).

Thew
Thety functorial properties are all we need to conclude
that t(k,Z) = + 1 for any k and I. For details, see Shih
hawe

[1, Theorem 16]. Thus we,shownthat Conjecture B0 holds for

N

groups of type C, as well as the statement of Example 9.4.

Now turn to the proof of Conjecture Bo in general. For

each (G,G',X+) of primitive abelian type, we shall take the

corresponding (GO,XO) as given in Appendix B. We have
E(GO,XO) = E(G,X+). In view of Proposition 13.2, we can either
prove Conjecture BO for (G,G',X+) or prove Conjecture B for

(GO,XO). Recall that only those (GO,X

O) with E(GO,XO)

totally real are under consideration.

(A) This is a trivial case, because (G ,XO) is embeddable in

0
some (CSp(V), St), see K. Miyake [1].

(B,Dﬂz) According to Shih [3], in this case (GO,XO) can be
embedded in some (Gl,Xl) such that (Gid, G?er' XI) is of

type C. Siacc Cenjectuce R helds for (Gl,Xl), it oalse helds Yoo (Cl‘o,xc,')-
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(DBI) We use Proposition 14.2 here. Let the notations be as

in Appendix B, case (DI{). Let

be a diagonalization of g. Then for each 1i, Pi = Fo(gi) is

. _ n .
a CM-field, and T, =77 ResPi/@ Gm can be embedded in G

i=1
. (1) - m(l)
Gm, simply by T 0 fe) TO = TO Xeon

0

(n) .

Denote Res xTO

Pi/Q
Let X; be a connected component of XO' We can embed TO in

GO in such a way that some h, € X+ factors through T

0 0
Let hél): LY ——e>Té;g be the i-th factor of h

OI
_ (1) (1) . .
= E(TO . hO ). Then E(To,ho) is the composite of

g, g™

G]R .
and let

‘Put G = ng, G' = Gger and let X' be the G(R)' -conjugacy

class of homomorphisms of § into an induced by XE. Let

(T,h) be the image of (T.,h.) 1in (G,X+). We have E(T,h) =

0’0
. . . (1) (n)
B(To,ho), which is the composite of E PR ) .

Let F be a quadratic totally imaginary extension of FO'

and let ¢ and hZ be as in (l1.4). Consider the usual diagram

(G,X) < (G;.X;) &——= (CSp(V), S°).

As in the type C case, we can choose Gl so that there is an

exact sequence
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1] —— ReSFO/Q Gm —_— G0 X ReSF/Q Gm —_— G1 — 1

and take A ®F Ir as V. Let (Tl,h ) be the 1lift of (T,h)

to (G,,X.) Tgen T ='TTn T(i) l where T(i)= Res ©
1717 1 i=1 71 ! 1 FPi/Q m’
We choose (TO,hO) and (Fx,hz) in such a way that there exists

an automorphism 1t of € which induces the identity map on
E(Fx,hx), and the complex conjugation on E(T, h), see §l4.

The inclusion (T,,h;) &— (CSp(V), s*) identifies the
Shimura variety Sh(Tl,hl) with a family C)Url,{ hl} , V) of
abelian varieties. We show that Conjecture CM holds for
(Tl,hl) and 1 . In view of Propositions 10.6 and 14.2, this
would prove that Conjecture BO holds for (G,G',X+].

Members of (B(Tl’{hﬂ” V) are (isogenous to) products
Alx... XAn, where Ai is an abelian variety with complex mul-
tiplication by FPi. Since Sh(Tl,hl) is the product of
Sh(T{i), h{i)), i=1,...,n, we only have to prove that Conjecture
CM holds for 1t and each individual (T{i), h{i)). As E(i)

E(Tél)l h(gl)) is a CM-subfield of E(T,h) R T acts as 1 on
). Therefore Conjecture CM for (T{l) {l)

equivalent to the statement of Example 9.4. As we have established

, h ) and T is

this statement while proving Conjecture BO for groups of type C,
m

the proof of Conjecture B0 for groups of type D is now

completed.
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Let (G,X) be of abelian type. By definition (see §1l),

. + N .

there exist (Gi’Gi'Xi)i of primitive abelian type such that
. . + +

Gad = ﬂGi, Gder is a quotient of HGi, and X 'vHXi for a

suitable component X+ of X. Assume E(G,X) is totally real.

d

Then E(c%Y, x¥) and all E(Gi,XI) are totally real. As

Conjecture BO holds for ShO(Gi,Gi,Xi) for each i, it holds

ad’Gder +

for ShO(G ,X ). Therefore Conjecture B holds for Sh(G,X)

in view of Proposition 13.2.

Theorem 15.2. Conjecture B holds for all Sh(G,X) of abelian

type (such that E(G,X) 1is totally real).

Remark 15.3. Let V be a variety over a number field E.

For a complex infinite prime v: E «—— &€ of E the Hodge

structure on Hl(V ®E v €, @) defines a representation pl of
’

" , which we can regard as a representation of the Weil group

wm. For a real prime v the involution of Hl(V ® C, @) induced

by 1 enables one to define a representation cf W In either

R"
case the factor ZV(V,S) of the zeta function corresponding

to v 1is defined to be the alternating product of the L-series
L(s,pi). Thus in order to compute the factors at infinity of
the zeta function of a Shimura variety one must compute its
cohomology and also the involution induced by . (in the case

of a real prime). &he first of these is a problem in continuous
cohomology and Theorem 15.2 reduces the second also to a problem

in continuous cohomology. Sce Langlands [3, §7] where the

assumption is made that conjecture B 1s true.
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V. 'The conjugate of a Shimura variety

In 516 we state a version of conjecture C for connected
Shimura varieties, and in the following section we prove that
it is equivalent to the origing%iﬁgThis enables us to reduce
the proof of‘conjecturc C to the case of a Shimura variety
defined by a group of symplectic similitudes. In §18 we twist
the Taniyama group to obtain a group relative to which conjecture
CM is automatically true. From this we can read off many
consequences, including that conjecture A is true for GShimura
varieties of abelian type. The final section, which is not
used in the rest of the paper, contains a brief description of
Deligne's theory of motives for absolute Hodge cycles; we include

it in the hope that it may make the rest of the paper more

comprehensible.
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§16. Statement of conjecture C°.

Let (G,X) satisfy (1.1), let h e X be special, and let

Ho= oy Recall that there is a unique homomorphism Chvilk s — gad

_ — df ad | _ . .
such that pﬁ ° “can = u = \ ;: then pu defines an action
of 5 on G , and we write 'c for 's XS G and

f .
g ‘g : G(Af) —Tc@m’) for gm sp(t).g

. . T f T f
Lemma 16.1. The isomorphism g g : GAR )— G@" ) maps the
+~ 4+ ~

subgroup G (@) of G(Af) into 'G (@) and G (@), into
T ~ -
G (&)
Proof. Choose an element a(t) e 'S(L) for some finite Galois
extension L of @ , and let £ : GL-—bTGL be the
isomorphism g-— a(t).g . 1In (3.6) we have defined an isomorphism

Cw(f) : w(G)— w('G) and it is easily checked that the following

diagram commutes:

g'g : cat) 5 gl
[

n(£) : 1 (G) — n('G)

Thus there is a commutative diagram

g g : cal) 5Tcal)

Lo

. o o T
noﬂ(f) : NOH(G)——?HOH( G)
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Since the kernels of the two vertical arrows in this diagram are
+" T + .
G (@) and ‘G (d) (Deligne [3, 2.5.11), gr—;rg maps the

first group into the sccond. Clearly g ' g maps 2 (G) (@)

into 2('G) (@) and so it maps G(@), = G(@)" 2@ into

T ~ T +~

c@, = ‘c@ (z@)

) ' +
Lemma 16.2. Let (G,G',X ) define a connected Shimura variety,

let h e X Dbe special, and let u = Hy - Then there exists a
. . . T . . +7 . T +7 T,
unique isomorphism ge— g : G(R) (rel G') — G(@) (rel G')

‘with the following property: for any map (Gl,X ) — (G,X) such

1
that Gid = G and Gfer is a covering of G' , the diégram

~ ~

g g 1 G (@), —— T, (@),

. ~ ~
1

g5 ‘g : G(@ " (rel 61— GM@ " (rel G')

commutes.

Proof. According to (3.4) we can choose a (Gl,Xl) , as in the

statement of the lemma, such that Z(Gl) is a torus having trivial

cohomology. Then Gl(m)——)G(@) is surjective, and the equality

G " (rel G') = G, (@] *

~

(Deligne [3, 2.1.6.2]) shows that G (Q)i-—)G(Q)+ (rel G') 1is

1

surjective. Thus we can define gp—ng to be the map induced

by its namesake on G, (@),
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Let (G2,X2)——+(G,X) be a sccond map as in statement of the

lemma and define G3 to be the identity component of szG Gl

There is an X3 for which there are maps (G3,X3)——9(G1,X1) and

(G3,X3)~—)(G2,X2) . Since her(G3——)Gz) = her(Gl——ﬁG),

GB(Q)—a»GZ(Q) is surjective and the image of G3((D)+ is dense

in G2(Cl))+ . Clearly the maps g— 'g for Gy, Gl , and G

are compatible, as are the same maps for G3 and G2 . This

forces the maps g Tg for G2 and G to be compatible.
When necessary, we shall denote the map defined in the
lemma by ¥ = '’"¥.

~

+
Recall that any ¥ e G(®) (rel G') defines an

, ° + , +
automorphism ¥. of Sh (G,G',X ) which, when Ye G(@) ,
+ - +
is equal to the family of maps ad¥ : I'\X — ¥I¥ hx .
wer
_I..
Conjecture C°. Let (G,G',X ) define a connected Shimura variety

and let 1 be an automorphism of U
.*. .
a) For any special h e X , with u = Hy there is an

isomorphism

+ +
$° =92 it Sh°(G,G6',x )—>sh° (‘g6 Tx")

T T, U
such that
$2 (t(h]) = ['h]
¢; o 1(¥.) = UY¥. °¢: , e G((D)+ (rel G')

+
b) If h' e X is a second special element and p' = Hyoo o then
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4 °© ) ] +
+ "[|i - T, T,H T, U
T ShO (G,G',X ) [ 1 bho( lG, lle, 14 X )

commutes.

(For ¢°(t;u',n), see §7.)
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§17. Rcduction of the proof of conjecture C to the case of the

symplectic group.

d

Let (G,X) satisfy (1.1), let ¥ e ¢ (@) , and let h e X

be special. If the image of ¥ in Gad(R) lifts to an element

of GR) , then h' = agd ¥° h is also a special point of X
Write p = My oo p' o= Hyooo and choose an af(t) e TSL(L) for
some finite Galois extension of @® . Then
- -1 - . . . T, U T,u'
fl = (a(t).g— a(t). gqgq ~) 1is @-rational isomorphism G- G

which is independent of the choice of a(tr) and maps Tr¥y  into

T.u’x

Lemma 17.1. With the above notations, the composite

T \ - ] 1 1
sh (Tr ¥, Trix) U'!Sh(T'HG,T'UX) $lrip' u) g (Tou e, TH'x)

is egual to Sh(flj .
Proof. If ¥ 1lifts to an element of G(@) , this is immediate
from the definition of d(t;n',u) (see 7.12d). Since we can
always find a group with the same adjoint and derived groups as
G , but with cohomologically trivial centre, this shows that the
two maps agree on a connccted component of Sh(T’“G,T’“X) . To

complete the proof we only have to note that both maps transfer

the action of (ENg) on Sh(T’uG,T’uX) into the action of

o 1 t
(titfy (9)) on sh(""M g, M x) .
Lemma 17.2. Suppose conjecture C is true for (G,X) and let
+
h e X be special with uy = yq Then for any X'e Gad(@) '

h
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Proof. Consider the following diagram:

d)
T Sh(G,x) —ly sh(tr¥g,TrHx)

l}(%.) l T,
¢

T Sh(G,x) —Hy sn(Tr¥g, T Hx) | shif

\\\Qa,u' L¢h¢u‘,u)

' 1
Sh(T’u G'—I--ILl X)

Since we are assuming that the bottom triangle commutes, it

suffices to show that the diagram commutes with the lower ¢T

rH
removed. But clearly
= [T = d
Shi(fy) o ¢ (tlh,1]) = ["h', 11 =4 , o ©(%) (tlh,1])
) ) ° (‘ = 40 T’]‘l’ o o
Sh(f)) o b o lig) @ " g) o sn(f) .
o t
bp yr ot (B e 1lig) =W g) e g goo T
which completes the proof.
Remark 17.3. If, in (17.2), ¥ 1lifts to & e G(@) , then the
Aye~ Ly Ay Te1
statement of the lemma becomes ¢T,U o (TS ) =S ) o ¢T,u '

which is part of (a) of conjecture C.

+
Proposition 17.4. Let (G,X) satisfy (1.1) and let X be one

connected component of X . Then conjecture C is true for Sh(G,X)

‘ ' +
if and only if conjecture C° is true for Sh°(Gad,Gder,X )
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Proof. Assume conjeéturc C and let h e X+ be special. Then
qf’u , With u = My, + Maps t[h,1] to [Th,l] and therefore

it maps Sh°(G,G',X+) into Sh°(TG,TG',TX+) . We can therefore
define ¢° | to be the restriction of ¢ to Sh°(G,G',X+) .

T,H T,H

Part (a) of conjecture C° follows .from part (a) of conjecture C
and (17.2), while part (b) of conjecture C° follows from part (b)
of conjecture C.

Next assume conjecture C holds for Sh(G,X) . Suppose that,

for each special h e X+ , we have extended ¢:,U e

to a map iﬂ,u : 1Sh(G,X)— Sh(TG,TX) satisfying

oy (g) = m(Tg) ° ¢,, - Then ¢  (t(h,1]) = ('h,1] and,
for p' = Hp o with h' e X+ , (%.U' = ¢(t;u',u) °¢T,U , because
the maps ¢° have the corresponding properties. I1f h' is a
special element of X , but h' & X+ , We write h' = Qg g ° h
with h e X% and qgq e G(d) , and define ¢T,U' to be

Dlt;p',p) ° ¢ . We have already noted in (7.14) that this

T, U

map automatically satisfies part (a) of conjecture C. That the

entire family, (4% " ) , h e X special, satisfies part b of
’
h

conjecture C follows easily from the definitions and from (7.12b).

It remains to see how to extend ¢: b For this we use

7

Deligne (3, 2.7.3]. Write tSh for 1Sh(G,X) and 'Sh for
sh('G,™%) . Recall (Deligne [3, 2.1.161) that c@f) acts

transitively on ﬂO(TSh) (=‘rﬂ0(5h)) and that the stabilizer

. ' + oo~ L
of Tte df TSh°(Gad,Gder,X ) is G(d), Similarly TG(ﬁf)

acts transitively on (YSh) and the stabilizer of ‘e

"o
is TG(CD)+ We have compatible isomorphisms

f

G(ﬁf)-—éTG(A ) and 1, (1Sh)-— ﬂO(TSh) (see the proof of 16.1).

0

Thus giving a morphism T1Sh— TSh that is compatible with these
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. . . Do . T
two morphisms is equivalent to giving a morphism te— e

that is equivariant for the actions of the stabilizers of

T

Te and e . But ¢$ y is such a morphism.
Lemma 17.5. Suppose that (G,X) and (G',X') satisfy (1.1)

and that there is a map (G,X)-— (G',X') with G-—G'
injective. If conjecture C is true for Sh(G',X') then it is

also true for Sh(G,X)

Proof. According to Deligne [1l, 1.15.1] the map

Sh(G,X)-—Sh (G',X') 1is injective. A special point h of X
maps to a special point h' of X' , and the map q%'“h' sends
t(h,1]1 to ['h,1] e sh('G,"x) < sh('c',™x') . It therefore
sends T1(h,qg] to [Th,Tg] e Sh(TG,TX) for any g e G(Rf) '

which implies that it maps 71Sh(G,X) into Sh(TG,TX) . We define

¢ to be the restriction of ¢ to TSh(G,X) .
T,H : Tl
h h
. . . + "
Lemma 17.6. 1f conjecture C° is true for Sh°(G,G',X ) , and G

is 'a quotient of G' , then conjecture C° is true for

+
Sh® (G,G",x ) .

Proof. This follows immediately from the general fact that

vy T . . +
Sh° (G,G",X ) 1is the quotient of Sh°(G,G',X ) by the kernel
of the surjectuve map

@’ (rel 6 ) —c@" (rel ") .
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. , . . + .
Lemma 17.7. Lf conjecture C° is true for Sh°(G,,G!,X.), i = 1
—_——— J 1 1 1

+
then the conjecture is true for Sh°(HGi,HGi,HXi)
Proof. Easy.

Theorem 17.8. If conjecture C is true for all varieties of the

T
form Sh(CSp(V), S ) then it is true for all Shimura varieties

of abelian type.

Proof. If conjecture C is true for varieties of the form

Sh (CSp (V), Si) then (1.4), (17.5), and (17.4) show that
conjecture C° is true for all connected Shimura varieties of
primitive abelian type. Then (17.6) and (17.7) show’that
conjecture C° is true for all connected Shimura varieties of
abelian type. Finally (17.4) then implies that conjecture C

is true for all Shimura varieties of abelian type.

Corollary 17.9. Conjecture CM implies that conjecture C is

true for all Shimura varieties of abelian type.

Proof. Combine (10.17) with (17.8).

re e My,
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518. Proof of conjecture A.

Throughout this section, all Shimura varieties will be of
abelian type.

Let A be an abelian varietyover T of CM-type, let
T = TA be the Mumford-Tate group of A , and let h = hy : S-—éTA
be the map defined by the Hodge structure on V = Hl(A,@)

Choose an isomorphism f : (Hl(TA,Q),(Tsa))—zy(TV,(Tsa)) as in

(9.1) and let eA(T) be the element of T(Af) such that

)
V(Af) _ Vf(A)-£+Vf(TA) fl TV(Af) sp (1) V(Af)
is multiplication by eA(T)_l . Note that the class
exlt) of e, (1) in T,@0)/T, (@ is well-defined, and that
conjecture CM holds for A if and only if éA(T) =1.
In particular 5A(T) =1 if 1 £fixes 2(7,{hl}l) (see 9.2b).
We could also have defined eA(i) to be an element making

[h,g] Sh(1,{h}) = A(T,{n},V)
l L Lx

["h,e, (t)g)  Sh(r,{Th})==a(T, ("}, V)

commute (see the second form of conjecture CM).

Fix a finite Galois extension L of @ and consider those
abelian varieties A of CM-type such that TA is split by L .
For such an A , éA(T)‘ depends only on T|L . "The maps
éA : Gal(L/@)-—+TA(&f)/TA(Q) for varying A are compatible and

therefore define a map e = éL : Gal(L/Q)——>SL(Af)/Sh(@)



-130-

Lemma 18.1. For any TyrT, € Gal (L/q@), é(Tsz) = T;lé(Tl).é(Tz)

Proof. Let & have a Mumford-Tate group that is split by L ,

and let u = My € X*(TA) correspond to hA . The homomorphism

py SL-%-TA defined by y 1is induced by L~ 'E*TA‘L) —Eég-TA(@) .
(t) =

By definition éA pu(é(T)) . 1f we choose an isomorphism

£ : (H,(1A,@), (ts)) = (W, ("s)) then we can identify MT (tA)
1 o o
: IRl 3 T 0 0
with 1A , hTA with hA , and “TA with THy - With these
identifications, p = p ©° L
TU U
The composite

X X
. T : T T T, - T, T T,T
By, 01, v) —BAKr,, ¢ %0, V) —Shie,, (1 2ny, )
is equal to ¥ . Thus
T1t2

;l () .

pu(e(rlrz)) = pu(e(rz)) P l(é(rl))

) p (é(Tz) . T
o}

U

Un passing to the inverse limit over A , we obtain the required

formula.

For a given finite Galois extension L of @ , the map

Gal (1L%P/@) — st @f) /st @)

(with b as in §6) satisfies the conditions of (5.7), and for

varying L the maps are compatible. Thus they define an extension

-~

1—->s—~>£4”—7—‘»ca1(®/<11)—>1
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of Gal (/@) by S (together with a splitting sSp over af ) in the
sense of §5. We shall refer to this extension as the motivic

Galois group (for an explanation of the name, and a much more

natural definition, see §19). To distinguish objects associated
with m from the same objects for T , we shall use a tilde.
A10N

, ~ , \ L 5
Thus if af(rt) 1is a section to ML-—aGal(Lab/Q) , then

B(1) e SL(AE) is defined by sp(t) B (1) = &(1) . For appropriate
choices of a and & we have RB(1) = B(1) e (1) with

e(t) e SL(Af) representing. e(t) . Then fc(r) = {j(T) and so
Y 2 a7 ) ¥ Ts . Thus Lemma 9.1 holds with T

replaced by M , and so it makes sense to ask whether conjecture

CM 1is true for M .
[7ey

Remark 18.2. Let extensions M, and M, of Gal (§/@) by S

1
. L oL I
correspond to families of maps B%, B, : Gal(Lab/@)—é Sbﬁki)/SL(L) .
Then Ei = ég for all L if and only if M, ¥ M, in the sense

that there is an isomorphism ¢ : @l-—)ﬂz of pro-algebraic groups

such that:

— Gal (Q/Q@) — 1

[ I

1= S —M,—>Gal (@/Q) —1

(i) 15 S—>M

commutes; and

. sp, _
(ii) mlﬂf —— Gal (&/Q)

Ly I

sp

Moat 2 cal (3/@)
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commutes.
There exists an isomorphism 1y satisfying (i) , but not
necessarily (ii) , if and only if, for each L ,
Ei = E; &% where & 1ifts to a continuous map

) L . . -
e Gal(bab/@)——>s (Af) satisfying e(Tsz) = Tzle(rl). e(Tz) .
Proposition 18.3. If, in the statement of conjecture CM, T 1is

A

replaced by ££ , then the conjecture becomes true. Conversely
let M, be an extension of Gal(@/®) by S such that, for
each 1 e Gal(@/@) , the inverse image of T in .%l is

isomorphic to 'S as an S-torsor; if conjecture CM is true

when T 1is replaced by ~yl , then %l ~ M
Proof. The first assertion is obvious; in fact our aim in

twisting 1 was to define a group relative to which conjecture
CM was true.
For the second assertion, note that conjecture CM is

equivalent to the following statement: let L be a finite Galois

extension of J that splits Tp i then there exists an
isomorphism f : (Hl(TA,L), (Tsa))—:+(V ® L, (Sa)) such that

vima) e -Io vi(a) e L
I Lier
vaf)y  E0hyaf)
commutes. Thus if conjecture CM is true with .gl then the
= L
B p
map Gal(]_,ab/(g)—-l—-»sl"(};f‘)/SL(L)—H»'I‘A(Af‘)/TA(L) , where
él corresponds to ~§l , 1s equal to the same map defined by
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-L
B . OUn passing to the inverse limit over A we find that
-L _ -L '
Bl B, and so ‘ml ~ my.
Much of chapters II and III of this paper continues to hold
if g is replaced by M . In particular, maps ¢§ (t;u',n) are

defined (see 7.12) and it makes sense to ask whether conjecture C
is true for M . The maps ¢ (1;u) of 8§10 are not defined in the
same generality because, in their definition, we have used that
b(t,u) 1is defined whenever (6.3) holds. The alternative
definition (see 10.6, 10.10) is, however, valid and provides a
map ¢(1;u) whenever yu satisfies (4.1). (This condition holds
when (G,X) satisfies (2.1.1.4) and (2.1.1.5) of Deligne [3];
that is, when the weight W = Wh is defined over @ and gg h (i)

is a Cartan involution on (G/W(Gm)}R.)

Theorem 18.4. Conjecture C becomes true when I, is replaced by

M . (Recall: we are only considering Shimura varieties of abelian

type.)

Proof. As in (10.17) one proves that conjecture CM implies that

s
conjecture C is true for Shimura varieties of the form Sh(CSp(V),S ) ,
and as in (17.8) that this implies that conjecture C is true for

all Shimura varieties.

Corollary 18.5. Conjecture A is true (for Shimura varieties of

abelian type).
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Froof. This is an immediate consequence of (18.4)%- see the

discussion preceeding the statement of conjecture A in §7.

Corollary 18.6. Conjecture B is true for Sh(G,X) provided the

weight w =w,  of any h e X 1is defined over @ and ad h (i)
is a Cartan involution on (G/wiEm}LR(and (G,X) 1is of abelian

type).

Proof. We are, of course, assuming also that L(G,X)C R . The
hypotheses imply that, for any special h e X , the cocharacter

M=y induces a map pu : S5 G . We can substitute pp(é(T)

for the element denoted by B (t,u) in the proof of (10.15) .

In order to be able to apply the same argument as in that proof

we have to show that é(l) e SL(L) . But conjecture CM is true
for 1 =, (cf. 10.19) and so e(y) =1 . Thus

= - - ) L

B(1) =B() a() =1 in s“@l)/stw) .

Remark 18.7. 'There is a good reason why conjecture B is easy to

prove under the hypotheses of (18.6): these hypotheses should imply

that Sh(G,X) 1is moduli variety for motives. (Cf. 7.4c)

Remark 18.8. Theorem (18.4) together with the proof of (10.14)

show that ©Sh(G,X) has a canonical model whenever (G,X)
satisfies the conditions of (18.6). Presumably, if one defined
maps ¢ (t;p) (using %) for all Shimura varieties then one
would recover the main theorem of Deligne [3], but there seems
little point to this.r (Lxcept that, curiously, it would give a

— +
proof that does not involve (@t(G,G',X ).)
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Deligne has conjectured the following:

Conjecture D. The Taniyama group E‘ is isomorphic (in the sense
of 18.2) to M .
He also suggested that this conjecture should be equivalent to

Langland's conjecture C. We prove:

Proposition 18.9. Conjecture D is true if and only if

conjecture C is true (for all Shimura varieties of abelian type).

Proof. If 1 ® M then (18.4) shows that conjecture C is true.
Conversely assume that conjecture C is true for all Shimura

+
varieties of the form Sh(CSp(v),S ) . Then(10.17) shows that

AN

conjecture CM is true, and (18.3) shows that T = M .

Remark 18.10. Deligne has shown [6] that if M and & are

wl 2
extensions of Gal(@/@) by S that give rise to the same

S-torsors as T for each 1 e Gal (@/@) , then there exists an

isomorphism ¢ : M., —» satisfying (i) of (18.2) (but not

SR

necessarily (ii)). Thus there exists a commutative diagram

1— S — I —> Gal (2/Q) — 1

TRE I

1= S— M — Gal (Q/Q)—>1

What remains to be shown is that the isomorphism can be chosen

to carry sp into sp
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Let L be a finite Galois extension of @ , and let K be
a subfield of L . We shall write KEL and K&P for the
pull-backs of EP and &P relative to
Gal(Lab/K)CA Gal(Lab/@) . Assume that L 1is a CM-field. If
A is an abelian variety of CM-type whose Mumford-Tate group is
split by L , then the reflex field of A is contained in L ,
and the main theorem of complex multiplication shows that
comjecture CM is true for A and all 1 fixing L (cf. 9.2b).
Thus an obvious variant of (18.3) shows that LQL = L%¥ (by
an isomorphism preserving>all structure including the splittings).
Since conjecture CM is known to be true for 1 =, , it is also
true for any T fixing the maximal totally real subfield KX of
F : thus KEL ~ K%L . The results of 8§15 often allow one to
replace K in this isomorphism by a subfield of & over which

) ) L . L . . .
L has degree 4 . In particular T ~ %f~\lf.ﬂL“lS'tﬁé‘

composite of two quadratic imaginary extensions of, @..
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£19. Motives.

Since the theory of motives has helped suggest a good part
of the work described in the previous eighteen sections, we feel
we should include a brief description of this theory.

Fix a field k . A k-linear tensor category is a k-linear

category S provided with a k-bilinear functor

(X,¥)— X @ Y : C x E,———* C

s

and
(19.1a) functorial isomofphisms ¢X,Y,Z : X 8(YRZ) jg(x@Y)@ pA
for X,Y,2 e Ob(%) (an associativity constraint),
(19.1b) functorial isomorphisms Uy v XQY — Y @ X for
X, Y e Ob(g) (a commutativity constraint), and
(19.1c) an object 1 and functorial isomorphisms
£y : X-H18X , r, : XX @1 for X e Ub(C) (an identity

constraint), all of which satisfy certain natural compatibility
conditions (Saavedra [1, I2. 4.11]).

Let C and g' be k-linear tensor categories. A pair (F,c)
comprising a k-linear functor F : CE—=2C"' and a functorial

isomorphism F(X) @ F(Y)F(X @ Y) is a tensor functor

“x,v

if it is compatible with the constraints on C, and o)

(Saavedra [1, I4.2]). If F and F' are two such functors then
a morphism of k-linear functors A : F—F' 1is a tensor
morphism if Al : F(1)—F' (1) is an isomorphism and if the

diagrams
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x,Y
F(X) ¢ F(Y) —2r%y F(xeY)

l*xgxy . l*x@y
Sy v
F'(X) @ F' (Y) —XhFr (xey)

. Q
commute. We write Hom (F,F') for the set of such functors.

k

bxamples 19.2. (a) The category &E?k of finite-dimensional

vector spaces over Xk 1is, in a natural way, a k-linear tensor
category.
(b) Let G be an affine group scheme over k . The category
igpk(G) of representations of G on finite dimensional vector
spaces over k 1is a k-linear tensor category. The forgetful
functor wG : Egpk(G)——»Yggk is a tensor functor.

Let (C,®) be a k-linear tensor category and w a tensor
functor g;—»%sgk . We say that (C,®) is Tannakian with

fibre functor w if there is an affine group scheme G over Kk

and a tensor functor F :wg'_+§99k(c) that is an equivalence

of categories and is such that w is ' the composite
G
F w c . .
=
C ggpk(G)-——+Vec . For conditions implying that a tensor

MY k

category is Tannakian; see Saavedra [1].

Remark 19.3. For G an affine group scheme over k and A

a k-algebra, let mG @ A be the functor Vr—,wG(V) @ A

@
Then G represents the functor of k-algebras Aw Aut , (mG@A) .

Thus if (g,@) is Tannakian with fibre functor w , the group G

. &
corresponding to (QHQ,m) represents A+~ Aut A

w ® A) |
We now assume that k is a subfield of T and let k be

its algebraic closure in € ., The category of smooth projective
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(not neccssarily connected) varieties over k , with the usual
notion of morphism, will be denoted by Xﬂk) . We write %3
for the functor X+— & Hi(X(E),Q) from x(k) to graded vector
spaces over ® . We refer to Deligne [4, p. 317] for the
notion of an absolute Hodge cycle of codimension p . Let
CEH(X) be the d-vector space of all such cycles on X , and
define MOIKH (Y,X) = ngdlm(Y) (XxY) . There is a canonical

map Hom(X,Y)c_,MorO

Ay (¥/X) that sends a morphism ¢: X—Y

to the class of its graph F¢
The standard constructions (see, for example, Saavedra [1, VI.4])

show that there exists a triple (QQ;AH(k), ®, w) , the category

of motives for absolute Hodge cycles, and a contravariant

functor h : X(k)—+'gStAH(k) with the following properties
(which determine them uniquely).

(19.4) (ﬂg}xu(k), ®,w) 1is a Tannakian category; each object

of %S}Au(k) is graded by Z , and this grading is compatible

with tensor products; for any X in V(k), wth (X)) = HB(X) (as
graded vector spaces); for any X and Y in V(k), h(XxY) = h(X)®h(Y).
Let L =h®h)? , since w() = B2@l,@) is

one-dimensional, there is an inverse object T in Mot,, (k) ,

which is called the Tate motive. For any i e Z and

M e MotAH(k) , write M(i) =M @ p¥i .

(19.5) For any X,Y in V() , Morjg® (X,¥) = Hom(h(X) (i),h(¥) (3))
in particular, MorgH (X,Y) = Hom (h(X),h(Y)) |

If 7 e Morgh(x,x) satisfies ﬂ2 = T, we write

(X,m) = Ker(m:h(X)— h(X)) . 'The category of effective motives

Mot (k) is defined to be the full subcategory of Mot (k)

vAH ws AH

whose objects are isomorphic to (X,m) for some X in Vy/(k) .
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(19.6)  Any object in MotAH(k) is of the form (X,nw) (i)

+
for some (X,m) in Mot,, (k) and i e Z .
s AL
(19.7) For X in XJK) , let idX = g n; e Cgﬁm(X)(X xX) ;
then hX)! = (X,n;)

(19.8) The constraints on Motay (k) are determined by the

following conditions:
for X,Y¥,Z in V (k),
M n
by y,z P h(X) @ (h(Y) ® h(2))—(h(X) € h(¥)) @ h(Z) is obtained

by applying h to the natural map (XxY)xZ —Xx (YxZ)

14

for X,Y in V(k) , let § = ® y’9 be the map obtained by

o~/

applying h to the natural map Y X X-—X x Y ; then

by y W) @ h(Y)— h(¥) @ h(x) is © (-1)PT yPd

’

1 = spec k , and ﬂx : h(X)—= 1 ® h(X) and ry h(X)— h{X) & 1

are obtained by applying h to the natural maps spec(k)x X—X
and X x spec(k)—X

(19.9) gngH(k) is a semisimple category.

Lxample 19.10. Let Xo(k) be the category of zero-dimensional

smooth varieties over k . Define (%qtgﬂ (k), ®,w) to be the

category &EE@(Gal(E/k)) of continuous finite-dimensional
Q-representations of Gal (k/k) , together with the obvious tensor
product and fibre functor. This triple, with the functor

h = (X Hom (X (k),®)) satisfies (analogues of) the above conditions,

and hence is the category of zero-dimensional motives.
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Now let L be a finite Galois extension of @ and let A
be an abelian variety over @ that is of potential CM-type and
. . . A
whose Mumford-Tlate group is split by L . Write Mot (L) for

the Tannakian subcategory of %gt (U) generated by A , the

SAL

Tate motive, and all zero-dimensional varieties over W that

are split by Lab

. A N .
We define Mo, the motivic Galois group
for A , to be the {-rational affine group scheme associated with

this category. The embedding of the zero-dimensional motives

. . . . A .
into ﬂg}A(@) induces a surjection ﬂ,-—+Gal(hab/Q) , and the
A L - . A
map Mot (Q)—+MotA(¢) induces an injection MT(A)“4M
N~ "

(see Appendix A.3).

Proposition 19.11. The sequence

1 — ML (A) — &A—)Gal (L3P /) — 1

is exact; on passing to the inverse limit over A we obtain an

exact sequence
1- 87> m' = 6al /0 =1 ;

the action of Gal(hab/m) on §" arising from this sequence

is the algebraic‘action (4.8).

Proof. See Deligne [5].
It is not difficult to obtain the following description of
. A . A .
the points of M in a Q-algebra R : an element of M (R) is

given by a pair (f,T) where 7T e Gal(Lab/@) and Vf is an
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an isomorphism (i (A,R), (s ))==3 (i, (1A,R),

1 1

being the family of all Hodge cycles on A

. , - A
there is a canonical element sp(t) e M (ﬂf)

- vi@ay SHvfa) = u (ea,af)

1

have a canonical splitting over

~ f
I (A,A7)
in (19.11)
is compatible for varying L we obtain an

Gal (I/@) by S , together with a splitting

in the sense of §5.

Proposition 19.12. 'The above definition of

with that in §18.

Proof. According to (18.3) we only have to
CM becomes true when [T, is replaced by the
clear from the above description of gé(R)

("v,("s,)) with (H,(tA,@), (t5)) . Thus

conjecture CM (first form) is

vi@ay = v (ra)

I I

Hy (a,afy Ty Hy (ta Af)

(Tsa)), (8

a)
1t follows that

, hamely

Thus the extensions

af

extension .% of

sp over af

14

M

v

and sp adgrees

show that conjecture

above It is

M .
vt
that we can identify

the diagram in

Even the most weary reader will be able to observe that this

commutes.

Since everything
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Appendix A. Hodge structures; Mumford-Tate groups.

Let 8 = Resm/R(Gm) . We usually identify B with

T
Gm x Gm through the isomorphism such that C* = BR)—B(C) = L xT
is z—(z,2 . Then | acts on B() =€ x T by
1z, 2)) = (zy,qz7) . There is a homomorphism w : € —5
that is the inclusion R €T on real points and the diagonal
map on complex points. TFor any algebraic group G over R
there is a one-one correspondence h 3 Hy between
homomorphisms h : 5—G and homomorphisms y : Enf—’GE for
which u commutes with p ; given h one defines
i) = hp(z,1) , and given y  one defines hplzy,z,) = U(zl).(lu)(zz)

A Jd-rational lodge structure on a vector space V over

is a homomorphism h : ¥ —GL (V) whose weight,

:)_\4
I

(z+—h W(an)) : Gm ——%GL(VR) , is defined over @ . ‘Then
v, = ® vP'? | yhere VP'Y = (v e Velh(z)v = z P(,2) 9} , and

V=6V, wvhere V' = {v eV Iwh(r)v = rv} ; note that

vl - yP:q

T p?q=n An elem?nt veVy is of bidegree (p,q)

if it lies in VPr9 | and it is rational if it lies in V C Ve

The vector space (2wi) @ , together with the unique @-rational

Hodge structure such that ((27i)"@) @ € = ((2mi)"@) 271 ,

will be denoted by @(n) ; thus h(z)¥v= (N‘I/Rz)n v for

ved(n @ R . A (d-rational Hodge structure on V induces
4
a similar structure on the dual space V¥ , and on any object
en v dn @n v ¥n &n
PoV 2y ¥v eV 2eaa) 3 of the tensor

v
category generated by V, V, and @(1) . A morphism of Hodge

(V

structures B (V

1

l,hl)~—+(V2,h2) is a @-linear map ¢ : Vl——")V2

such that %R commutes with the actions of 5 . The canonical
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v
map llom(vl,vz)-;-)\/l ¥ V, identifies such morphisms with

2

v
rational elements of (Vl ® V,)p of bidegree (0,0).

Let (V,h) Dbe a U-rational Hodge structure of weight n ,

i.e. such that V = V" | A polarization of (V,h) 1is a

morphism of lHodge structures § : V @ V— 0(-n) such that
(x,y)—> (2mi)" Pp(x,h(i)y) = VR @ Vg ™R is symmetric and
positive definite. The category of polarizable @-rational
Hodge structures is a semisimple Tannakian category (Saavedra
[1, VI.2]).

For any abelian variety A over L , there is a unique
O0-rational Hodge structure h on V = H (A,@) of weight -1

1
0,-1

and such that V is the kernel of the exponential map

Hl(A,Q)@E—ﬁ Lie (A) . Any Riemann form for A defines a
polarization of (V,h)

The map A+ (H 6 (A,Q),h) defines an equivalence between

1
the category of abelian varieties over T (up to isogeny)
and the category of polarizable {i-rational Hodge structures
of weight -1

Let (V,h) be a polarizable Q-rational Hodge structure.

The Mumford-Tate group MT(V,h) of (V,h) can be described

variously as follows:
(A.1) the smallest Q—rétional subgroup G of GL (V) xEm
such that Gm contains the image of (?h) : @m —)GL(VE) % Em :
(A.2) the smallest {-rational subgroup G' of GL(V) x €
such that Qﬁ contains the image of (EE/R) : B-—#GL(YR) x Gm H
(A.3) the affine group scheme G" over @ associated with

the Tannakian category of llodge structures generated by V and

©(1) (cf. Saavedra [1]);
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(A.4) the subgroup G'" of GL(V) x Gm fixing all
rational tensors of bidegree (0,0) in spaces of the

Yn v ¥n

form V 1 2V 2(n ), ny.,n, € N, nf e Z . Indeed, it is

3
clear that GC G' C G" C G'" and a standard result
(Serre [2, Lemme 1]) shows that G = G'"
The group MT (V,h) is reductive. If it is commﬁtative,
and hence a torus, then (V,h) 1is said to be of CM-type.
Assume that (V,h) has weight -1 , and let R be the
centralizer of h(3) in End (V) , so that R = End(V,h)
A polarization ¢ of (V,h) induces a positive involution *
on R by the rule: vy (au,v) = y(u,a*v) ; thus R 1is semi-simple.

It is easily seen that (V,h) 1is of CM-type if and only if

V is gencerated as an R-module by a single element or,

equivalently, R contains a commutative étale subalgebra F
such that [F:Q] = dim V ; such an F will be a product

of Cit-fields. (Cf. Mumford [1, §2]). Let A be the abelian
variety over € associated with (V,h) . We often refer to
MT (V,h) as the Mumford-Tate group MT(A) of A . Note that
R = Ind(A) . Clearly A 1is of CM-type (meaning that there is

a product F of CM-fields acting on A in such a way that
(A Q) 1is a free F-module of rank 1) if and only if (V.,h)

is of CM-type. In this case MT(A) is the image of

ResE/mu Norm
NR(y) : Resy q B ————yResy 4 T}, —

= = { E .
where T ResF/@ Gm’ u M Gn1_+TE C GL(V¢) , and is the
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field of definition of p (i.e. the reflex field for Sh(l,{h})) .
If A is an abelian variety defined over a subfield L of

€ , then we write MT(A) for MI(Ap) , but note that this

depends on the embedding of L in € . We say A is of

potential CM-type if AE is of CM-type.

Let (V,h) and (W,h) be @-rational Hodge structures and

let (sy) and (ta)aeJ be tensors occurring in spaces of

. K2
the form ng Q V®n

aed
Q Y e .
(p) and WM ew'n (p) respectively.

Consider a @i-algebra R and a pair (f,\X) where f is an
isomorphism V(R) =W(R) and A e R* . If the maps

~ VE
) W@ ™ @ W (R), (p)

defined by (f£,1) send Sa to tu for each o e J , then we
say that (f,X) is an isomorphism (V,(Sa))ﬁR E*(W,(tu))@R .

We also refer loosely to (f,)) as an isomorphism £ : V(R)—W(R)

making S, correspond to t, for each «
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Appendix B.

We give a list of classical reductive group GO such that

(GO,XO) defines a Shimura variety for a suitable XO , and
(Gad Gder)
o

such that G is of primitive abelian type. Every

+
(G,G',X ) of primitive abelian type is of the form

+
629,698 x")  with some (G_,X ) from the following list.
o '"o o oo
. a .+
lf ’ = a
hese (GO,XO) all have the property h(GO,XO) E(Go ,XO) .

In the following, Fo is a totally real number field, and

I 1is the set of all embeddings of Fg into R . We use =z
to denote the complex conjugate of =z el .
(A) Let K be a quadratic totally imaginary extension of FO,

and A a central simple algebra over K , together with an

. . . < x .
involution ¢ of the second kind. Then {xeAx}c<OeFo} defines

a reductive group G, over F, . We put G = ReSFO/DG* .
The center of G, 1is ResK/(D(Em .

For non-negative integers r and s , we put

I_ 0
Ir S = g )
4 O _I I
S
and
GU(r,s) = {ge GL_. (T)| gI. %G = v(g)I. _,v(g)eR"}
. ge GL_, 9T, ¢ 9 = V(@I V(g .

Then for each vel , there are non-negative integers r, and S,

such that

HvGU(rv'Sv) .

")
2
Il
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Let I = {vel |rv-sv+ 0} and let I_ be the complement of I

nc nc

i 3 = \X
Define hv' g =C -—»GU(rV,sv) by

r ;21 0 ,
Ty
) if wvel
, nc

L 1 if vel .

and define h_: §—G_(R) to be the product of h 's . Let

XO be the GOGR)—conjugacy class of ho . Then (GO,XO) defines

a Shimura variety. For any connected component X+ of X_ ,

o) o)
ad _der _+ .
o ,GO ,XO) is of type A .

The reflex field E(GO,XO) is either @ or a CM- field.

(G

The former case happens if and only if r, = s, for all wvel
. . : - Rt
In this case the map ??deflned in 7.3 takes ho to hO thv ’

where

(B) Let n 2> 3 be an odd integer and g a quadratic form on

an n-dimensional vector space over F such that the signature

of g ata wvelI is (n,0) , (0O,n) , (n-2,2) or (2,n-2) .

The special Clifford group of q defines a reductive group G,
o

over FO . We put GO = ReSFO/QG* . The center of G is

ReSFO/@Gm
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We refer to Shih [3] for the description of ‘Xo such that
(GO,XO) defines a Shimura variety. The reflex field E(GO,XO)
is totally real. The derived group Gger is the spin group of

ad ,der _+

q . (GO ,Go ,Xo) is of type B for any connected component

XO of XO
(C) GO is the similitude group of a hermitian form over a
quaternion algebra whose center is FO , see 815,
(ﬁR) There are two cases:
(1) Same as type B , except n > 4 1is even.
(2) Let B be a totally indefinite quaternion algebra
over FO and denote by ¢ the main involution of
B . Let g be a og-antihermitian form on a left free
B-module of rank n > 2 . At each 7tel , g defines
a quadratic form on a 2n-dimensional real vector
space. We assume that its signature is (2n,0) ,
(0,2n) , (2n-2,2) or (2,2n-2) . Let G, be the

algebraic group over FO defined by the special

Clifford group of q , and let GOZReSFO/QG* . We
define XO as in Shih [3]. Then (GO,XO) defines a
Shimura variety and (Gid,Gger) is of type ﬂR

In both cases E(GO,XO) is totally real, and the center

of G is Res Z, . where Z, 1is an extension of Mo by

o r,/0

G over F
m e}

(5H) Let B be a quaternion algebra over Fo with main
involution ¢ . Let g be a o-anti-hermitian form on a free left
B-module A of rank n > 4 . Let Inc be the set of Tel where
B does not split, and let IC be the complement of I . As

nc

usual , we assume InC is non-empty; let r be its cardinality.
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We assume also that at cvery TeIc , the real gquadratic form
defined by q 1is definite. Let GO be the algebraic group

over { such that

G (@) = {gecLy (M) [9ag® = v(gla,v(gleF, and N(g) = ()"},

where N denotes the reduced norm from EndB(A) to FO . Then

*
GOGR) is isomorphic to the product of r copies of GO (2n) ,

where
. A B
GO (2n) = g=( N _} eGL, (C)
8 & 2n
I o) I 0
n v n
_ X
g g = vig) , v(g)eR" and det(g)=v(g)
o -I o i
n n
*
Define ho : B = mxuérGOGR) = (GO (2n))r so that each component
of ho is given by
z1 0]
n
Z — r
o zI
n

and define XO to be the GOGR)—conjugacy class of ho . Then

(GO,XO) defines a Shimura variety. The center of Go is

R G

es
Fo/m m
The reflex field E(GO,XO) is either a CM-field or a totally
real field, depending on whether n 1is odd or even. Let

- ~

* .
hé : B = Cx-—sGOGR) = (GO (2n))r be a homomorphism such that
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each component of hé is given by
zTI 0]
n

2 .

Then hé belongs to Xo if and only if n is even. In this
case the map n defined in 7.3 takes hO to hé .

When n = 4 , we also allow GO of the "mixed type". We let
IC be the set of 7T1el such that B splits at 1 and the
quadratic form over IR determined by g at 7T is definite.

Denote the complement of Ic by Inc

the number of TeInC at which B splits (resp. does not split).

. Let s (resp. r) be

We assume r >o . If B splits at a reInC , we assume that
the signature of the real quadratic form determined by g at

is (6,2) or (2,6) . Then

(o  (8))F x (co(6,2)T)" ,

(D}
3
1K

-where

I 0 I 0
GO(6,2) " = {geGL (R) Ig(. o -1,/ 9° vig) | 4 1,/

\)(g)e'iR>< and det g > o} .
We define ho P 5 GOGR) componentwise: the homomorphism

*
into the component GO (8) 1is defined as before and the

homomorphism into the component GO(6,2)+ is given by
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Z

Let Xo be the GOGR)-conjugacy class of ho . Then (GO,XO)
defines a Shimura variety.

The reflex field E(GO,XO) is totally real. Let hé be
the image of hO under the mapn of 7.3. Then the component

*
of hé corresponding to the factor GO (8 is

z — '

and to the factor GO(6,2)+ , it is

l2|% 1, 0
ZD ‘
Re 22 -Im 22
0]
Im 22 Re 22

University of Michigan
Ohio State University
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