We consider the problem of finding the rational points on a plane curve \(\Gamma \), given by \(F(x_1, x_2, x_3) \in k[x_1, x_2, x_3] \). The most interesting fields are \(k \), the \(\mathbb{Q} \), \(\mathbb{Q}_p \), \(\mathbb{R} \), \(\mathbb{C} \) (and possibly function fields).

If \(F \) is linear, \(a_1 x_1 + a_2 x_2 + a_3 x_3, a_i \in k \), we get a line, \(\Gamma_k \).

If \(a_1 \neq 0 \), letting \(x = \frac{z_1}{z_3}, y = \frac{z_2}{z_3} \), we obtain \(x = -\frac{a_2}{a_1}, y = \frac{a_3}{a_1} \). \(y \in \mathbb{K} \cup \mathbb{Q}_p \). Here the line is parametrized by \(k \cup \mathbb{Q}_p \).

If \(F \) is quadratic and irreducible, and \(\Gamma : F = 0 \) has one \(k \)-rational point, then \(\Gamma_k \) is our \(k \)-line again (rationally).

For \(z_1^2 + z_2^2 = z_3^2 \), \(x^2 + y^2 = 1 \),

\[x = \frac{1-t^2}{1+t^2}, \quad y = \frac{2t}{1+t^2}, \quad t = \frac{y}{x+1}. \]

Now take \(F \) an irreducible cubic. Here there is at most one double point.

\[y^2 = x^2(x-1) \quad \text{(tangents)} \quad y^2 = x^3. \]

The coordinates of a singular point are equal to their conjugates, and using separability, lie in \(k \).
Now take F cubic irreducible, nonsingular.

Does F have a rational point? There is no decision procedure for finding rational points if $k = \mathbb{Q}$.

Example: (Selmer) $3z_1^3 + 4z_2^3 + 5z_3^3 = 0$. There are \mathbb{Q}_p-valued points for all p, but no \mathbb{Q}-valued point.

If there is a rational point, Mordell's Th. says that for $k = \mathbb{Q}$, the rational points are finitely generated, i.e., there is a finite set of them so that by drawing tangents, and taking residual interactions of the curve with lines, all rational points can be obtained from these.

Fix a rational point O, a flex.

The group Γ of rational points is obtained as follows:

Define $\Gamma \times \Gamma \to \Gamma, \; P, Q \to P + Q$.

We claim there is a unique rational point R, s.t. $(P) + (Q) \sim (R) + (O)$. Since P and Q are rational, so is S. But then since O is rational, so is R. \(\text{Eqs.} \) also the form for $L_i, \; i \in \{1, 2\}$, and $P = P_i$. Then $(P) + (Q) = (R) + (O) + (P) \sim (R) + (O)$, or $(R) \sim (P) + (Q) - (O)$.

Now F has genus 1, and given any divisor of degree 1 there is a unique pos. divisor linearly equivalent to it, i.e., in the words $K = P + Q$ is characterized by $P, Q,$ and O.

Riemann-Roch implies in each divisor class of degree 1, there is just one effective divisor, a point. Thus, \(P \mapsto \text{Class of } (P) - (0) \) gives a 1:1 correspondence between points and divisor classes of degree 1. Thus \(P_k \) is a commutative group, and Mordell's Theorem says that for \(k = \mathbb{Q} \), \(P_k \) is finitely generated. The proof is non-constructive.

There are some theorems obtainable by analytic methods over \(\mathbb{Q} \).

Also, over \(\mathbb{Q} \), there is the rank problem. The highest known rank is 5, and it is unknown whether there is a bound on the ranks.

(If \(0 \) is a point of reflection, \(P_1 + P_2 + \cdots + P_m = 0 \) if and only if \((P_1) + (P_2) + \cdots + (P_m) = \Gamma \cdot C_m \).)

Fix a nonsingular curve, \(A \), complete and of genus \(1 \), defined over \(k \). Then \(A \) has a nonsing. proj. model defined over \(k \). The genus is 1 in the good sense, i.e., \(A \) has genus 1 over \(k \). Evidently, \(\text{Pic} \) gives a projective embedding \(A \hookrightarrow \mathbb{P}^3 \), if \(0 \) is a fixed rational point of \(A \), so \(A \) is defined by an equation \(F(x, y) = 0 \)

<table>
<thead>
<tr>
<th>(n)</th>
<th>Basis for (H^0(A, \mathcal{L}(nD)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1, (x) (x) must have a pole of order 2</td>
</tr>
<tr>
<td>3</td>
<td>1, (x), (y)</td>
</tr>
<tr>
<td>4</td>
<td>1, (x), (x^*, y)</td>
</tr>
<tr>
<td>5</td>
<td>1, (x), (x^*), (xy), (y)</td>
</tr>
<tr>
<td>6</td>
<td>1, (x), (x^*), (xy), (y), (x^3), (y^2).</td>
</tr>
</tbody>
</table>
Hence in \(H^0(A, \mathcal{L}(6D)) \), we obtain a relation, which we can actually take as

\[
F(x, y) = y^2 + a_1xy + a_0y + x^3 + a_2x^2 + a_4x + a_6 = 0.
\]
\(a_i \in k\).

Now if the characteristic of \(k \neq 2 \), and \(Y = -2y + a_1x + a_3 = F_y(x, y) \).

\(X = -x\), and obtain: \(Y^2 = 4X^5 + \beta_2X^2 + 2\beta_4X + \beta_6 - 4(X - x)(X - x_2)(X - x_3)(X - x_4)(X - x_5)\).

If char \(k \neq 2,5\), and \(\beta_2 = \frac{\beta_3}{12} + X \), \(\beta_4 = 1 + X \), and give the Weierstrass

form \(4\beta_3 - \beta_2\beta_4 - \beta_6 = \beta_4^2 = 4(\beta_2 - \beta_4)(\beta_2 - \beta_6)(\beta_2 - \beta_8)\).

Where:

\[
\begin{align*}
\beta_2 &= a_4^2 - 4a_6 \\
\beta_4 &= 2a_4 - a_1a_3 \\
\beta_6 &= a_3^2 - 4a_4 \\
\beta_8 &= a_4^2 - a_1a_3a_4 + a_4^2a_6 + a_5a_6^2 - 4a_4a_6 \\
(4\beta_6 &= \beta_2^2 - \beta_8, \text{ so } \beta_8 \text{ is redundant in } \beta_2a_2 + 2.)
\end{align*}
\]

\[
\begin{align*}
\gamma_4 &= \beta_2^2 - 24\beta_4 = 12\beta_2 \\
\gamma_6 &= \beta_2^3 - 3\beta_2\beta_4 + 216\beta_6 = -216\beta_6 \\
\Delta &= \beta_2^2\beta_4 - 8\beta_4^2 - 27\beta_6^2 + 9\beta_2\beta_4\beta_6 - \beta_4^2 - 27\beta_5^2 \\
&= 16(X_1 - x_2)(X_1 - x_3)(X_1 - x_4)(X_1 - x_5)^2 \\
&= 16(e_1 - e_2)^2(e_1 - e_3)^2(e_2 - e_3)^2 \\
J &= \frac{\gamma_5^3}{\Delta} = \frac{1728\beta_6^3}{\Delta} = 1728J.
\end{align*}
\]

If \(A' : F'(x', y') = y'^2 + a'_1x'y' + a'_0y' + x'^3 + a'_2x'^2 + a'_4x' + a'_6 = 0 \).

is another curve of the same form, then an isom. \(\phi : A' \cong A \), over \(k \).

i. e. \(\phi(0') = 0 \), will be of the form \(x \circ \phi = \rho^2 x' + r \), \(y \circ \phi = \rho^3y' + \rho^3ax' + t \), \(\rho, a, t, \rho \in k \), \(\rho \neq 0 \). Then \(\rho^{-2}F(x, y) = F'(x', y') \), and
\[\rho a' = a_1 + 2a \]
\[\rho a' = a_2 + 2a_1 + 5z + S^2. \]
\[\rho a' = a_3 + 2a_1 + 2t = F_y(z, t) \]
\[\rho a' = a_4 + 2a_3 + 2a_4 + t\alpha + 2a_4 + 3z^2 + 2zt = aF_y(z, t) + F_z(z, t) \]
\[\rho a' = a_5 + 2a_4 + 2a_5 + t\alpha + 2a_5 + t^2 = F(z, t). \]
\[\rho a_2' = \beta_2 - 12z \]
\[\rho a_4' = \beta_4 + 2\beta_2 + 6z^2 \]
\[\rho a_6' = \beta_6 - 2\beta_4 + 2\beta_2 - 4z^3 \]
\[\rho a_8' = \beta_8 + 3\beta_6 - 3\beta_4 + 3\beta_2 - 3z^4 \]

To compute the discriminant, note that \(D \) is the only \(\rho \) at \(\infty \) and
\(x \) at that place \(\rho \) vanishes. In fact \(D \) is an infinite point and
the tangent to the line of \(x \). \(D \) is a simple \(\rho \) of the projective
model. Of \(\rho = 3 \), we have
\(Y^2 = 4f(X) = 4(X-X_1)(X-X_2)(X-X_3) \).
As a singularity, \(Y \) and \(f(X) \) must vanish, i.e., \(Y = f(X) \cdot f'(X) \).
So \(D \) is non-singular \(\iff \Delta \neq 0 \).
Of \(\rho = 2 \), the same condition holds.
\[F_x = ay + ax + a_2 = a_1 + ax + a_2 \]
\[F_y = ay + 3ax^2 + 2ax + ay = a_3 + 3ax^2 + ay \]
Case 1: \(a_1 = 0 \): non-sing \(\iff a_3 \neq 0 \)
* 2: \(a_1 \neq 0 \): solve for \(x, y \) in terms of \(a_1, a_2 \).

In the classical case, given such an eqn with \(D \neq 0 \), can find a
lattice in \(C \), such that the doubly periodic functions form a
field generated by \(
\omega_1 \) and \(\omega_2 \), satisfying the relation given
on last page with given \(g_0 \) and \(g_3 \).
\[\frac{\omega_1}{\omega_2} = 2, \] and \(\omega_2 \) is the elliptic modulus for. Thus if
2 elliptic function fields are isomorphic, they have the same \(j \) and conversely.....

Of course, given 2 elliptic curves \(A, A' \), suppose \(j = j' \). Is there a transformation carrying one into the other? Yes, if \(k \) is algebraically closed! (any characteristic.)

If \(p \neq 3, 3 \) reduce the curve to the form: \(y^2 = 4x^3 - G_2x - G_3. \) Then the only allowable transformations on \(x \) and \(y \) are \(x = p^2x', \ y = p^3y', \ p \neq 0, \) so \(G_2 = p^4G_2', \ G_3 = p^6G_3'. \) and

\[
j = \frac{1728 G_2^3}{G_2^3 - 27 G_3^2}
\]

Case 1: \(j \neq 0, 1728. \) Then \(j^{-1} - 1728 = \frac{G_2^3}{G_2^3 - 27 G_3^2}. \) Taking the transformation: \(p = \pm \sqrt[3]{\frac{G_2^3}{G_2^3 - 27 G_3^2}}, \) we can go from one curve to the other. \(j^{-1} = j'. \) [Because we can take the curve:

\[
A: \ y^2 = 4x^3 - 3c^2 \frac{j}{j - 1728} x - c^2 \frac{j}{j - 1728} \quad c \in k^*, \ \mod k^2,
\]

given any \(j \in k, \) there is an elliptic curve over \(k \) having \(j \) as its invariant.]

Case 2: \(j = 1728. \) \(G_2 = 0, \) gives

\[
y^2 = 4x^3 - cx \quad c \in k^*
\]

Case 3: \(j = 0, \) \(G_3 = 0, \) \(y^2 = 4x^3 - c \)

Case 1: Automorphisms are \(p = \pm 1 \)

Case 2: \(\quad p^4 = 1 \)

Case 3: \(\quad p^6 = 1. \)

Case \(p = 3 \) is an exercise!
\[p = 2, \quad y^2 + a_1 xy + a_2 y + x^3 + a_3 x^2 + a_4 x + a_6 = 0. \]

\[\rho a_1' = a_1; \quad (a_1 \neq 0 \text{ is intrinsic}) \]

Case 1: \(a_1 \neq 0 \). Can get \(a_1 = 1 \) and thus \(f \) is even \(f = 0 \).

\[\rho^3 a_2' = a_3 + \rho a_1. \quad a_3 = 0 \text{ for } x = 0, \quad \text{and } a_4 = 0 \text{ for } t = 0 \text{ from here on. Thus we have the form:} \]

\[y^2 + xy = x^3 + a_2 x^2 + a_6. \]

The only possible transformations are with \(s \) : \(X = X', \quad y = y' + s x \).

What is \(\Delta \) and what is \(j \)?

\[\beta_2 = 1; \quad \beta_4 = \beta_6 = 0; \quad \beta_3 = a_6; \quad y_4 = 1; \quad \Delta = a_2, \quad \text{and } j = \frac{1}{a_2}. \]

\[a_6 \neq 0 \quad (a_1 \neq 0 \iff j \neq 0), \text{ so we get} \]

\[y^2 + xy = x^3 + a_2 x^2 + j. \]

\[a_6' = a_2 + s^2. \quad f(s) = s^2 + s. \quad f(a_2 + s) = f(s) + f(a_2). \]

(a even, \(a_2 \mod f(k^+) \)).

Automorphism are given by \(s = 0, 1 \). Cycle of order 2.

Case 2: \(a_1 = 0 \), i.e., \(j = 0 \).

Using \(r \), make \(a_2 = 0 \), which fixes \(r = a_2 \).

The remaining cases are:

\[\rho^3 a_6' = a_6 \]

\[\rho^3 a_4' = a_4 + a_2 a_3 + a_6 \]

\[\rho^3 a_6' = a_6 + a_2^2 a_4 + t a_2 + s^2 + t^2 \]

Thus we get:

\[y^2 + a_2 y + x^3 + a_4 x + a_6 = 0, \]

\[\Delta = a_2^3, \quad j = 0, \quad (a_3 \neq 0). \]

In fact one gets \(y^2 + y = x^3 \) over a separable extension of degree \(\leq 24 \).

\[\rho^3 = 1, \quad \text{3 possibilities for } \rho \]

\[0 = a + s^2 \quad 4 \text{ for } a, \quad (24 \text{ is the order of the group}). \]

\[0 = t + t^2 + s^6, \quad 2 \text{ for } t. \]

\(\rho, a, t \) generate the group. \((1, a, t) \) generates a subgroup of index 5.
which must be the quaternion group since it can only have elements of order 2.
Take \((\mathbb{Z}/3\mathbb{Z}) \times G_2\) where,

\[(a \times q)(b \times q') = (ab \times q b') (1 + q_2) = ab \cdot q_1 \cdot q_2.
\]

Now \(y^2 + xy = x^5 - \frac{36}{j-1728} x - \frac{4}{j-1728}, \quad \Delta = \frac{j^2}{j-1728}\)
makes sense for all \(p\) if \(j \neq 1728\), and \(\Delta \neq 0\) if \(j \neq 0\),
so has invariant \(j\) for all \(p\).

Over algebraically closed fields, \(j\) is a modulus for these curves.

Explicit formulas for addition of points.

\[A : F(x,y) = y^2 + a_1 xy + a_3 y + x^5 + a_2 x^3 + a_4 x + a_6 = 0.\]

\[\Delta \neq 0, \quad a_i \in k.\]

\[A_k = A_k \cup \{(0,0)\}, \quad 0 = (\pm \infty), \quad A'_k = \{(x,y) : x, y \in k \}^2.\]

\[0 + P = P + 0 = P\]

Suppose \(P_1 = (x_1, y_1), P_2 = (x_2, y_2) \in A'_k.\)

\[P_1 + P_2 + P_3 = 0, \quad \text{since they are collinear}.
\]

\[L\] is the line through \(P_1\) and \(P_2\).

\((y P_1 - P_2, L\) is the tangent to \(A\).

\[\sigma = F(x, y) - F(x, y) = (y_1 - y_2)(y_1 y_2 + a_3 x_1 + a_4) + (x_1 - x_2).
\]

\[
\frac{y_1 - y_2}{x_1 - x_2} = \lambda = \frac{x_1^2 + x_1 x_2 + a_3 (x_1 + x_2) + a_4 y_1 + a_6}{(y_1 + y_2 + a_3 x_1 + a_4)}.
\]

\[(x^2 + x_1 x_2 + a_3 (x_1 + x_2) + a_4 y_1 + a_6) = \frac{y_1 - y_2}{x_1 - x_2}.
\]
If neither denominator vanishes, i.e., \(x_1 - x_2 \) and \(y_1 + y_2 + a_1 x_1 + a_2 = 0 \) then \(y_1 - y_2 \), i.e., \(\overline{p_1} = \overline{p_2} \), and in such cases, \(y_1 + y_2 + a_1 x_1 + a_2 = F_x(x_1, y_1) \), and the numerator is \(F_x(x_1, y_1) \), so \(\lambda = \frac{F_x}{F_y} = \) slope of line.

If \(x_1 = x_2 \), and \(y_1 + y_2 + a_1 x_1 + a_2 = 0 \), then \(\lambda \) is parallel to \(y \)-axis.

i.e., \(\lambda = \frac{0}{x_1 - x_2} \), \(\lambda = \frac{y_1 - y_2}{x_1 - x_2} \).

If \(\overline{p_1} + \overline{p_2} \neq \overline{0} \), i.e., \(y_1 + y_2 + a_1 x_1 + a_2 = 0 \), then \(\lambda \) has eqn \(y = \lambda x + \mu \). Let \(\mu = y_1 - \lambda x_1 = y_2 - \lambda x_2 \). To find the 3rd intersection:

\[
0 = F(x_1 + \lambda y + v) = x_1^2 + (a_1 + a_2 + \lambda + \mu)v + (\cdots) x + (a_1 + a_2 y + \lambda v).
\]

Let \(x_1 + x_2 + x_3 = \lambda x_1 - a_2 - a_1 \lambda - \lambda v \), permitting \(\lambda \) to solve for \(x_3 \), and \(y_3 = \lambda x_3 + v \) giving \(\overline{p_3} = \overline{-(p_1 + p_2)} \).

Now suppose \(D \) is a valuation ring with maximal ideal \(\mathfrak{m} \), and fraction field \(\mathbb{K} \), and \(\mathbb{K} = \mathbb{Q}/\mathfrak{m} \). Suppose \(A \in D \), i.e., \(F(x, y) \in D[x, y] \).

Given \(A \). Reduce mod \(\mathfrak{m} \) to \(\overline{F}(x, y) \in \mathbb{K}[x, y] \). If \(\Delta \neq 0 \), then \(\Delta \neq 0 \) and \(\overline{F} \) gives an elliptic curve, \(\mathbb{A} \) over \(\mathbb{K} \).

Def: \(A \) has nondegenerate reduction mod \(\mathfrak{m} \) iff. \(\Delta \neq 0 \) (\(A \in Cl(D) \)).

The point is: if we have 2 curves, \(A, A' \), each having a model with nondegenerate reduction mod \(\mathfrak{m} \), and if \(A \) is birationally equivalent to \(A' \) over \(\mathbb{K} \), then \(\mathbb{A} \) is birationally equivalent to \(\overline{A'} \) over \(\mathbb{K} \).

If \(A = \mathbb{A} \), then there is a transformation of type \(r, s, t \) in \(\mathbb{K} \) \(\rho \neq 0 \), s.t. the 5 eqns.: \(\rho a_1 = a_1 + 2 \alpha \), etc., holds, where \((\alpha)\) are coeff's for \(A \), \((\alpha')\) coeff's for \(A' \). To show \(\rho, s, t \in \mathbb{Q}, \rho \neq 0 \). But \(\rho^2 \Delta = \Delta \), so \(\rho \in \mathbb{Q}^* \), and \(\rho \) makes sense. But the 5 eqns.

show that \(r, s, t \) are integral over \(\mathbb{Q} \), so \(\mathbb{A} \). Thus, \(\mathbb{A} \neq \mathbb{A} \).
Now assume that \(a \in \mathbb{C} \) but not zero. \(\Delta \neq 0 \). From the equ., \(x \in \mathbb{C} \iff y \in \mathbb{C} \), so if \(x \notin \mathbb{C} \), \(|x|^2 = 1 |y|^2 \). These should be the points near the origin 0.

\(\frac{x}{y} \in \mathbb{C} \), \(y \in \mathbb{C} \), and also, in fact \(\frac{x}{y} \in \mathbb{C} \), i.e., \(|x|^2 = \frac{1}{|y|^2} = \frac{1}{y} \), \((x \notin \mathbb{C}) \), so letting \(u = \frac{x}{y} \), \(v = \frac{y}{x} \), \((x \notin \mathbb{C}) \), \(|v|^2 = |\frac{1}{y}| \).

We have the birational transformation: \(y = \frac{1}{v} \), \(x = \frac{u}{v} \).

(Dividing \(0 = F(x, y) \) by \(y^3 \!). which gives:

\[C(u, v) = v + a_1 u v + a_2 u^2 v + a_3 u^3 v + a_4 u^4 v^2 + a_5 v^3. \]

\(C \) gives an affine variety, \(A^2 \), and

\[A^2_k = A^2 \cup A^2_x \quad (\text{disjoint union}) \]

\(0 \in A^2 \), \(u = 0 \), \(v = 0 \), and \(u \) is a uniformizing parameter for 0.

\[o = C(u_1, v_1) - C(u_2, v_2), \]

\[\text{if} \quad \frac{v_1 - v_2}{u_1 - u_2} = \frac{a_1 v_1 + (a_2 u_1 v_1 + a_3 u_1^2 v_1 + a_4 u_1^3 v_1 + a_5 u_1^4 v_1)}{1 + a_1 u_1 + a_2 u_1^2 (v_1 + v_2) + a_3 u_1^3 v_2 (v_1 + v_2) + a_4 u_1^4 v_2^2 (v_1 + v_2) + a_5 u_1^5 v_2^3 (v_1 + v_2)}. \]

For each \(x \in \mathbb{C} \), there is at most one \((y, z) \in \mathbb{C} \) such that \((x, y, z) \in A^2 \).

This follows easily since \(1 + yf \) is a set of units.

\((u, v) \rightarrow u \) gives an injection \(A^2_y \rightarrow \mathbb{C} \), (a bijection when \(k \) is complete (and \(\mathbb{C} \) ?)).

Now stand adding points \(u \in A^2_y \).

If \(P_1, P_2 \in A^2_y \); in such a case, the denominator cannot vanish.

and \(P \in \mathbb{C} \). \(V_i = P \in \mathbb{C} \), so \(V \in \mathbb{C} \) and we get:

\[u_i + u_2 + u_3 = \frac{a_1 u_1 V_i + a_2 V_i + a_3 V_i^2 + a_4 V_i^3 + a_5 V_i^4}{1 + a_1 u_1 + a_2 u_1^2 + a_3 u_1^3 + a_4 u_1^4 + a_5 u_1^5} \in \mathbb{C}. \]

so \(u_3 \in \mathbb{C} \) and hence \(V \in \mathbb{C} \).

This shows that \(A^2_y \) is a subgroup (at least a subgroup and its corresponding subtractable that \(V P \in A^2_y \), \(-P \in A^2_y \), so \(A^2_y \) is really a subgroup.).
Let \mathfrak{a} be a proper ideal in \mathcal{O}, and let $A_\mathfrak{a}'' = \{ (u,v) \in A_\mathfrak{a}^2 : u, v \in \mathfrak{a} \}$.

First note that $v \mathcal{O} = u_0^2 \mathcal{O}$, so $v \in A_\mathfrak{a}^2$. Note if $P_1, P_2 \in A_\mathfrak{a}$, $P_1 \in A_\mathfrak{a}, P_2 \in A_\mathfrak{a}''$ we have $P_1 + P_2 + u_0 \in A_\mathfrak{a}^2$ in all cases, and

- if $a_1 = 0$, " " 0^2,
- if $a_1 = 0$, " " 0^4,
- if $a_1 = a_2 = a_3 = 0$, " " 0^5.

Thus $(u,v) \mapsto (u)$ gives a homomorphism, $A_\mathfrak{a}'' \to A_\mathfrak{a}/A_\mathfrak{a}^2$, and we have an exact sequence: $\mathcal{O} \to A_\mathfrak{a} \to A_\mathfrak{a}'' \to A_\mathfrak{a}/A_\mathfrak{a}^2$, and there only if k is complete. If the valuation is discrete and k has characteristic p, then $A_\mathfrak{a}''$ has no prime-to-p torsion, for we have $A_\mathfrak{a}'' \supset A_\mathfrak{a}^2 \supset A_\mathfrak{a}^{g_2} \supset \cdots$, and the successive quotients are isomorphic to subgroups of k^*.

Proposition: Suppose $\Delta \notin k^2$, then $(x,y) \mapsto (\tilde{x}, \tilde{y})$ gives a homomorphism $A_k \to A_\mathfrak{a}''$, with kernel $A_\mathfrak{a}''$ and the injection $A_k/A_\mathfrak{a}'' \to A_\mathfrak{a}''$ is bijective if k is complete.

Proof: We show $\tilde{P}_1 + \tilde{P}_2 = \tilde{0} \iff P_1 + P_2 \in A_\mathfrak{a}''$.

But $x_1 + x_2 + x_3 = -a_1 - a_3 \lambda - \lambda^2$. If $P_1, P_2 \in A_\mathfrak{a}$, then $P_3 \in A_\mathfrak{a}''$,

$\iff \lambda \notin k^2$, $\iff \lambda - a_1 a_3 + a_2 - a_3 \in k$.

Now we consider the case of nondegenerate reduction, $\tilde{A}_a : y^2 + a_1 yx + a_2 y + x^2 + \cdots \in \tilde{A}$. $A_\mathfrak{a}': y^2 + a_1 yx + a_2 y + x^2 + \cdots \in A_\mathfrak{a}''$.

we get a homomorphism $A_k \to \tilde{A}_\mathfrak{a}''$, $(\tilde{x}, \tilde{y}) \mapsto (x,y)$ of $(x,y) \mapsto (\tilde{x}, \tilde{y})$ if $x, y \in k$, $(x, y) \mapsto \tilde{0}$.
Now consider the case $\Delta = 0$. We start the discussion anew.

Given $F(x, y) = 0$; a_1, a_2, a_3, a_4, a_6 are the coefficients and $\Delta = 0$.

For the form $y^2 + l(x)y + C(x)$, $l(x) = a_1 x + a_3$, $C(x) = x^2 + \ldots$

In any case, F must be irreducible, because if it split, we would have $F = (y + g(x))(y + h(x))$, where $g + h$ is a line, gh a curve!

I claim that by Bezout's Theorem the curve has only one singularity, which can only be a double point. Thus, $\Delta = 0 \Rightarrow \exists (x, t)$ s.t. $F(x, t) = F_1(x, t) = F_2(x, t) = 0$. Such a x, so rational.

Now transform by $r = 1, s = 0, z = x, t = t$ to obtain $a_1 = a_3 = a_5 = a_6 = 0$, and the eqn:

$$y^2 + axy + x^3 + a_2x^2 = 0$$

with singularity $\Delta(0, 0)$. To find the tangents, solve

$$a_1^2 + a_1 + a_2 = (a_1 - a_2)(a_1 - 2a_2), \quad (a_1 - a_2)^2 = a_1^2 - 4a_2 = \beta_2.$$

Thus we have a node if $\beta_2 > 0$ and a cusp if $\beta_2 < 0$.

Now assume $\lambda_i \in k$. Then setting $s = \lambda$ yields $a_2 = 0$, (as $a_2 = 0$)

Thus $a_2 = 0$ gives a cusp, $a_1 = 1$ a node, respectively.

1. $y^2 + x^3 = 0$.
2. $y^2 + xy + x^3 = 0$.

And $w = x$, as before. $x = y w$

In case 1 we get $1 + y^2 w^3 = 0$; $y = -\frac{1}{w^3}, x = -\frac{1}{w^2}$.

In case 2 we get $y = -\frac{(1 + w)}{w^3}, x = -\frac{(1 + w)}{w^2}$.

In case 3 we include the cases $w = 1, \infty$, and in O we include $w = \infty$. Then in case 1, $O: w = 0$, we get the additive group of k, and in case 2, $O: 1 + w = 1$, we get the multiplicative group of k.

$$(1 + w)(1 + w) = 0$$
Now using the fact that \(a_2 = a_5 = a_7 = a_9 = 0 \), we have:

\[
\frac{a}{a_1} = \frac{a_2}{a_3} + \left(\frac{a_4}{a_5} \right) a + 0.
\]

So if we have an cusp then reduces to:

\[
\Delta = \Delta \frac{a_2}{a_3} + \left(\frac{a_4}{a_5} \right) a + 0.
\]

If we have a node, \(\Delta = -1 \).

Now choose a model for \(A \), i.e., \((a_1, a_2, a_3, a_4, a_5)\), with \(a_i \in \mathbb{Q} \) and \(1|A| \) maximal, and \(\Delta \) (\(a_1, \ldots, a_5 \)) be another such model. Give:

\[
\rho, \tau, s, t : a_i \mapsto a_i^\prime \quad and \quad \Delta \text{ changes by a factor} \quad \rho^2 \quad \text{so } l \geq 1
\]

and \(x, s, t \in \mathbb{Q} \) so before, \(\Delta, \rho, \tau, s, t \) make sense, and the transformation can be reduced mod \(q \), and \(\tilde{A} \) and \(\tilde{A}^\prime \) are birational. From now on we always take \(A \tilde{A} \) be a "best" model, i.e., \(1|A| \) maximal, and \(A_{y} = A_{y}^\prime \). \(A_{y} \) is independent of the "best" model chosen. Similarly we get \(A_{x} = \mathcal{E}(x, y) \); \(\frac{x}{y} \in \mathbb{R} \). Call \(A_y = \mathcal{E}(x, y) \); \((x, y) \) simple on \(A \tilde{A} ^3 \)

By using:

\[
A_{x} = k^*, \quad A_{y} = 0^*, \quad A_{x} = 1 + y, \quad A_{y} = 1 + 6z, \quad \text{so we have:}
\]

\[A_{x} = 0, A_{y} = 0, A_{x} = 0, \quad \ldots\]

If we have nondegenerate reduction, \(1|A| = 1 \), and \(\tilde{A} = A_{y}^\prime \). In the case of a general abelian variety, \(A_{x}/A_{y} \equiv ? \) (Wron). We get a hom. from \(A_{y} \) to the complex part of \(\tilde{A}^\prime \). and the sequence:

\[0 \rightarrow A_{y} \rightarrow A_{y} \rightarrow A_{y} \rightarrow \tilde{A}_{y} \text{ is exact - at least after a quadratic extension of } \tilde{k} .\]
Now we consider the case where \(k \) is complete under \(| \cdot | \).

Proposition: If \(k \) is complete, then \(\overline{A_0} \to \overline{A_{0,0}} \) is surj.

Proof: Take a point \(\bar{x} \in \overline{A_{0,0}} \). If \(\bar{x} = \bar{0} \), there is no problem, so assume \(x, y_0 \in \bar{0} \), and \((x, y_0) \) is a point in \(\overline{A} \). \(F(x, y_0) = \bar{0} \). Either \(|F_x(x, y_0)| = 1 \) or \(|F_y(x, y_0)| = 1 \). If \(|F_x(x, y_0)| = 1 \), consider \(F(x, y_0) \) as an

ign for \(\bar{x} \), and \(x \sim x_0 \) is an approximate root, since \(|F(x, y_0)| < 1 \).

Let \(f(x) = F(x, y_0) \). Then \(f'(x) \) is 1, and \(f(x) \) is surj by Newton's theorem, one gets: \(\exists \) a unique \(x \in \bar{0} \) s.t. \(x = x_0 \) (eg) and \(f(x) = F(x, y_0) \). So every \((x, y_0) \in \overline{A_{0,0}} \) and \((x, y_0) - (x_0, y_0) \).

Con: The seq: \(0 \to A_{0} \to \overline{A_{0}} \to \overline{A_{0,0}} \) is exact if \(k \) is complete.

Connection with Formal Groups.

Use the \(u, v \) notation; just forget \(\mathcal{O} \), use \(k \). \(u \) is a

uniforming parameter of \(\mathcal{O} \), \(\mathcal{O}_{x,0} = k \ll u \ll k \), and \(v = u^2 + B_1 u^3 + B_2 u^5 + \cdots \). \(B_3, \ldots \in k \). Call \(v(u) \). We get \(G(u,v(u)) \) as an identity in \(k \ll u \ll k \), \(w_0 = \mathcal{O}(u, v(u), v(u)v(u)) \)

\(u, \ldots \) is a rational field for addition of pts. Define \(\Phi(w_0, v(u)) = \mathcal{O}(u, v(u), v(u)v(u), v(u)u) \) \(= \mathcal{O}(u, v(u)) \). \(\Phi(0) = v(u) \). The group is an

morphism. \(\Psi(u) \) s.t. \(\Phi(u, \Phi(w_0)) = 0 \). From the additive

\(u, v \) group, we get the formal group, \(\Phi(u, v(u)) = u, v(u) \).

From the multi. group: \(\Phi(u, v(u)) = u, v(u) \).
Now we use the existence of the valuation ring, \(\mathcal{O} \), of \(\mathbb{R} \) in \(\mathcal{O} \), so are the \(B_i \), the coefficients of \(V(u) \), and so are \(c_{ij} \), the entries of \(\Phi(w, w) \). Thus we have a way of describing points \(\mathbb{A}^2 \). For all \(u \in \mathbb{A}^2 \), \(V_i = V(u) \) converges to an element of \(\mathbb{Q} \). \((u, v) \in \mathbb{A} \).

This gives: \(y \mapsto \mathbb{A}^2 \) (not a home) via \(u \mapsto \mathbb{P}(w) \), with \(P(u) + P(w) = P(w, w) \).

Again, \(\mathcal{O} \) is a valuation ring, with fraction field \(k, \tilde{k} = \mathcal{O}/\mathfrak{g} \). If \(A \) is defined over \(k \). If \(j \in \mathcal{O} \), there exists a model for \(A \) having nondegenerate reduction, but the model is defined over a finite extension \(K \) of \(k \).

Case 1: \(2 \nmid \mathfrak{g} \): \(y^2 + x(x+1)(x+1) = 0 \).

\[\Delta = 16 \lambda^3 (1-\lambda)^5 \quad \lambda^2 (1-\lambda)^2 j = 2^8 (1-\lambda + \lambda^3)^3 \]

\[= 2^8 (1-(1-\lambda^2)) = 2^8 (1-(1-\lambda^2)). \]

Solve for \(\lambda \) and adjoin \(\lambda \) to get \(K = k(\lambda) \).

Case 2: \(3 \nmid \mathfrak{g} \): \(y^2 + axy + y + x^3 = 0 \).

\[\Delta = - (27 + a^3) \]

\[= (a^3 + 27) \alpha^3 + j (27 + a^3) = 0. \]

Solve for \(a \) to get \(K = k(a) \).

\[\pm 27 \]

N.B., \(\mathfrak{g} \) \(j \in \mathcal{O} \), there exists a model with reduction to an ordinary double \(\mathfrak{p} \) (possibly after a quadratic extension).
General discussion of the case \(j \neq 0 \).

Consider \(C^* \), and take \(g \) s.t. \(0 < |q| < 1 \). Call the subgroup generated by \(g \), \(\langle g \rangle \). Then \(C^*/\langle g \rangle \) is a compact group, isomorphic to a torus. The forms on this group are all \(f \) defined on \(C^* \) s.t. \(f(q^n) = f(n) \), with \(f \) homomorphic on \(C^* \).

If \(A_g = C^*/\langle g \rangle \), we write \(A = A(g) \). Now assume \(k \)

\(k = \mathbb{C} \) or \(\mathbb{R} \)

\(0 < |q| < 1 \)

\(0 \neq q \in \mathbb{C} \).

![Image]

To make \(A = A_g \) s.t. \(A_{k^*} = k^*/\langle g \rangle \)!

\[f(n) = \sum_{n=-\infty}^{\infty} F(q^n w), \] if this is absolutely convergent, \(f(q^n w) = f(w) \).

Since \(|q| < 1 \), \(q^n w \to 0 \) as \(n \to \infty \), \(q^n w \to \infty \) as \(n \to -\infty \), so \(F \) must be small near 0 and \(\infty \). Take \(F(w) = \frac{w}{(1-w)^a} \), which

\[x(W) = \sum_{n=-\infty}^{\infty} \frac{q^n w}{(1-q^n w)^2} - 2 \sum_{n=1}^{\infty} \frac{q^n}{(1-q^n)^2} \]

\(x(W) \) is defined for \(W \) not a power of \(q \).

\[\|F(w)\| = O(1/|w|) \text{ as } |w| \to 0. \]

\[O(1/|w|) \text{ as } |w| \to \infty \]

\(x \) is a form on \(k^* \) - if allowed to have value \(\infty \) on \(q^2 \), and

\(x \) is actually a form on \(k^*/\langle g \rangle \), as \(x(w) = x(q^n w) \).
Since \(\frac{1}{W+W^{-1}-2} = \frac{1}{N+\frac{1}{W}-2} = \frac{1}{W} \left(\frac{1}{W-1} \right)^2 = \frac{W}{(1-W)^2} \). \(x(W) \) is an
even function of \(W \) in the sense that \(x(W) = x(W^{-1}) \).

\[
x(W) = \frac{W}{(1-W)^2} + \sum_{m=1}^{\infty} \left[\frac{q^{-m} W}{(1-q^{-m})} + \frac{q^{-m} W^{-1}}{(1-q^{-m})} - \frac{2q^{-m}}{(1-q^{-m})^2} \right] =
\]
\[
\frac{W}{(1-W)^2} + \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \left(nq^{mn} W^n + nq^{mn} W^{-n} - 2nq^{mn} \right) \quad (1q < 1W < 1q^{-1})
\]
\[
\frac{W}{(1-W)^2} + \sum_{m=1}^{\infty} \left(W^n + W^{-n} - 2 \right) \cdot \frac{nq^{mn}}{1-q^{-m}} \quad (1q < 1W < 1q^{-1})
\]

Consider the case \(k = 0 \). \(x(W) \) is even on \(C^0 \) and has period \(q \). Put
\(W = e^{\pi i} \). Let \(\omega_1 = 2\pi i \), \(\omega_2 = \log q \). For \(z = \frac{\omega_2}{\omega_1} \), \(\log(z) > 0 \).
\(C'/Z \omega_1 + 2Z \omega_2 = C'/q \) by the map.

Claim: \(g(u) = x(W) + \frac{1}{12} \)
\[
\begin{align*}
ge_1 &= \frac{1}{12} + 20 \sum_{m=1}^{\infty} \frac{nq^{mn}}{1-q^{-m}} \\
ge_2 &= \frac{1}{276} + \frac{3}{5} \sum_{m=1}^{\infty} \frac{nq^{mn}}{1-q^{-m}}
\end{align*}
\]

[Indication of how one does it: Write \(x(W) \) as a function of \(W \). For \(u \) near \(u_0 \)
\[
x(u) = \frac{e^u + e^{-u} - 2}{e^u + e^{-u}} + \sum_{n=1}^{\infty} \frac{1}{1-q^{-n}} e^{\frac{u}{2}} + \sum_{n=1}^{\infty} \frac{nq^{u}}{1-q^{-n}} e^{\frac{u}{2}} + \sum_{n=1}^{\infty} \frac{nq^{u}}{1-q^{-n}} e^{\frac{u}{2}}
\]
\[
\frac{1}{12} - \frac{1}{12} + \frac{1}{240} \sum_{m=1}^{\infty} \frac{nq^{mn}}{1-q^{-m}} a^2 + (\frac{1}{240} - \frac{1}{240} \sum_{m=1}^{\infty} \frac{nq^{mn}}{1-q^{-m}}) a^4 + \ldots
\]

has a pole of order 2, so \(x(u) + \frac{1}{12} = g_0(u) \).
\[
g_0(u) = a^2 + \frac{1}{240} \sum_{m=1}^{\infty} \frac{nq^{mn}}{1-q^{-m}} a^2 + \frac{1}{240} \sum_{m=1}^{\infty} \frac{nq^{mn}}{1-q^{-m}} a^4 + \ldots
\]
\(g_0(u) \) is used just formally to check
\[
(g_0(u))^2 - 4(g_0(u))^2 + g_2 g_0(u) + g_3 = C a^2 + D a^4 + \ldots \quad \text{and} \quad i = 0.
\]
Will also find \(f_3(w) = \frac{4g_3}{w^3} - \frac{4x}{w^2} + \frac{2g_2}{w} \).

where \(y(w) = \sum_{n=0}^{\infty} \frac{g_n}{n!} w^n \),

Substituting \(x \) and \(y \) into \((f_3(w))^2 = 4(f_3(w))^3 + g_2 f_3(w) - g_3 \), one gets the identity:

\[y^2 + xy - x^3 - b_2 x - b_3 = 0 \]

where \(b_2 \) and \(b_3 \) are certain sums of \(g_2, g_3, g_4, \ldots \).

\[
\begin{align*}
b_2 &= \frac{1}{4} g_2 - \frac{1}{12} f_3 - \frac{1}{5} \sum_{n=1}^{\infty} \frac{g_n}{n} \quad \text{(integer coeff when expanded)}. \\
b_3 &= \frac{1}{4} (g_3 + \frac{g_4}{12} - \frac{1}{432}) - \sum_{n=1}^{\infty} \frac{2g_n + 5g_{n+1} - \frac{g_{n+2}}{12}}{1 - \frac{g}{12}} \\
\end{align*}
\]

(Also \(7n^5 + 5n^3 = 7s^5(n^3 - 1) + 12n^3, \) so \(b_3 \) has integer coeffs. \(\equiv 0 \mod{12} \))

If \(k \) is arbitrary, use these formal series \((|q| < 1) \). Then \(b_2 = b_2(q) \in k \) \(b_2 \) and \(b_3(q) \in k \). Then \(y^2 + xy - x^3 - b_2 x - b_3 \) defines a curve \(A = A(q) \) over \(k \).

Proof: The map \(w \rightarrow (x(w), y(w)) \) is an isomorphism of \(k \) onto \(A_k \), with kernel \(q \cdot \frac{1}{n} \), and \(\Delta(q) \equiv 0 \mod{q} \), so \(A(q) \) is elliptic.

(Thus gives a transcendental parametrization of the group of rational points.)

in search of

\(\Delta = q - 24q^2 = 0 \) since \(\equiv q \mod{q^2} \); \(\Delta(q) = \prod (1 - q^m)^2 \).

\(j = \frac{1}{q} (1 + 744q + 196884q^2 + \cdots) \) so \(j \neq 0 \) in new. arch. case.

Inverting formally gives \(q \) as a p.s. in \(j \), integer coeff. and any such \(j \) is obtainable from a (unique) \(q \).
Proof of the theorem!
We have \(q: k^* \to k \times k \). We claim \(q(k^*) \subset A_k \), i.e.,
\(q: k^* \to A_k \), with the understanding that \(q(q^* A_k) = \) infinite points of \(A_k \), i.e., \(x(w), y(w) \) satisfy \(y^2 + xy = x^3 - b_2 x - b_3 \), \(\forall w \in k^*, w \neq q^* \).
Because of the purity of degree, it suffices to work with \(k \)'s 6.8. \(|q| : 1 < |w| \leq 1 \).
\(x(w) \in k = \mathbb{Z}[w, w^{-1}, (1-w)^{-1}] \ll q \rr \), also \(y(w) \in k \). Claim \((*)\)
holds in this ring. We have a canonical homomorphism \(k \to \mathbb{Z}[w, w^{-1}, (1-w)^{-1}] \ll q \rr \).

Thus we need only show that \((*)\) holds formally. Fix \(w \in k \), \(|w| < 1 \).
and let \(X = X_w(q) \), \(1 < |w| \). Since \((*)\) holds for \(X, y \) (classical case), \((*)\) holds formally, and hence in the general case.
If \(w_1, w_2 \), do we have \(q(w_1 w_2) = q(w_1) \cdot q(w_2) \)? (in the sense of addition on the curve.)
\(\Rightarrow \) \(1 < |w_1| \leq 1 < |w_2| \), \(|q| : 1 < |w_1| \leq 1 < |w_2| \).

We know \(q(1) = 0 \), so we can assume \(w_1 \neq 1 = w_2 \). Let \(q(w_2) = (x_1, y_1) \). We must have \(\lambda = \frac{y_1 - y_2}{x_1 - x_2} \), \(\forall x_1 \neq x_2 \).
Then \(\Pi = \Pi_1 + \Pi_2 \iff (x_1 - x_2)^2 y_1 = (y_1 - y_2)^2 + (y_1 - y_2)(x_1 - x_2) - (x_1 - x_2)^2 (x_1 + x_2) \)
and a similar equation holds for \((x_1 - x_2)^3 y_2 \). These equations hold formally, for \(x_1, y_1, y_2 \in \mathbb{Z}[w_1, w_2, w_1^{-1}, w_2^{-1}, (1-w_1)^{-1}, (1-w_2)^{-1}, (1-w_2)^{-1}] \ll q \rr \).

Since they hold in the complex domain.
If \(x_1 = x_2 \), i.e., \(p_1 = \pm p_2 \), then we have the following.

Lemma: Let \(q: A \to B \) be a map of commutative groups s.t \(q \) assumes infinitely many values,
and \(q(w_1 + w_2) = q(w_1) + q(w_2) \) for all \(w_1, w_2 \) s.t. \(q(w_1) \neq \pm q(w_2) \). Then \(q \) is a homomorphism.

Then for \(q_1 \cdot q_2 \) and \(q_1(q_2) = q_1(q_2) \Rightarrow w_1 = q_2(w_2) \), some \(v \).
Lemma: If \(w \) is separably algebraic over \(k \), and \(q(w) \in A_k \), then \(w \in k \).

Proof: If \(w \in K \), write \(K \) finite and algebraic over \(k \). Let \(G = G(K/k) \).
Then \(G \) acts on \(A_k \), \(K^* \rightarrow A_k \) via \(\varphi(w)^o = (\varphi(w))^o \).
\(o \in G \), since \(o \) leaves all coefficients fixed, but \(o \) leaves the valuation fixed: \(a_0 \rightarrow a \Rightarrow a_0^o \rightarrow a^o \). But then \(w^o = q(w) \Rightarrow lq^{1/2} - 1 \Rightarrow v = 0 \Rightarrow w^o = w \Rightarrow w \in k \).

Now, given \(x_0 \in k \), to find \(w \) s.t \(X(w) \cdot x_0 \).

Case 1: \(|x_0| > lq^{1/2} \). (Line 2 undone, \(|x_0| < 1 \)).

Put \(L = w + w^{-1} - 2 \); \(w^x - (x^2 + 2)w + 1 = 0 \) has roots \(L, w^{-1} \) up \(k \).
\(w^x + w^{-x} - 2 = x^x + c_{x^{-1}} x^{x^{-1}} + \ldots + c_{x^{-1}} x^{x^{-1}} + \frac{1}{x} + \frac{1}{x^2} + \ldots \).
\(x \in k \Rightarrow \exists \ z \in k \) s.t. \(x = f(z) \). The crucial thing is \(|x_0| > \frac{1}{lq^{1/2}} \) and \(|x_0| < lq^{1/2} \). Then we can invert and get \(z = \frac{1}{x} + b_1 x + \ldots \) and the formal inverse series converges for \(\frac{1}{x} < lq^{1/2} \).

Classically, \(q = e^{\pi i \lambda} \), \(z = \frac{z}{z^2} \), and \(\Delta \gg 0 \).

\(A_k = k^{1/2} / q^{1/2} \); \(x \in K \) is algebraic over \(k \), \(A_k \cong k^{1/2} / q^{1/2} \).

Take \(m > 0 \) and \(\Delta \gg 0 \).

If \(k \in K^{\ast} \), \(w^m = q^2 \), i.e., \(w^m \in q^{2 \ast} \). If \(K \) is algebraically closed, this group is generated by \(2 \) elements, \(w^v, v^w \).
\(x \in A_k \Rightarrow (A_k)^m \cong (\mathbb{Z}/m\mathbb{Z}) \times (\mathbb{Z}/m\mathbb{Z}) \). If char \(= m \). This is true quite generally for \(K \) algebraically closed, and \(p + 1 \) even. \(\frac{1}{lq^{1/2}} - 1 \).
If \(m = p^n \), then \((A_K)_p \approx \mathbb{Z}/p^n\mathbb{Z}\), for \(K\) algebraically closed of characteristic \(p\). This is not true in general: it is true under \(j\) is one of a certain number of absolutely algebraic elements in each characteristic \(p > 0\) in which case \((A_K)_p \approx \mathbb{Z}/p^j\mathbb{Z}\). For example, \(p = 2, j = 0\) so this is an exception.

If \(K\) not algebraically closed, not complete, and if \(K = \bar{K}\), adjoining the coordinates of \(A_K\) in \(\bar{K}\), what kinds of rationality does one get? (Problem.)

Now we have \((A(q))_K \cong K^*/q^\mathbb{Z}\)

\[A_K \supseteq A_0 \supseteq A_q \supseteq A_{\bar{q}}\]

For \(q \in (A(q))_K\), \(a: x(w), y(w), y^2 + xy - x^3 + b_2x + b_3, b_2 \in \mathbb{Q}\).

\[A_0 \cong \{w: w < 1\}\]

\[A_q \cong \{w: w < 1 + 1\}\]

\[A_{\bar{q}} \cong \{w: w \in \mathbb{Q}\}\]

Then \(A_K/A_0 \cong \text{value group/1}_{1/\mathbb{Q}}\mathbb{Z}\). In the case of a discrete valuation \(v = 0/\mathbb{Q}\), \(v - \text{ord } q = \text{ord } 1/\mathbb{Q}\).

Problem: if the valuation is discrete and \(A_0\) is optimal, then is \(A_K/A_0\) always finite? What is its structure. It is known in for \(k = \mathbb{Q}(t), k, \text{alg. cl., char. } 0\).

We have now handled the case \(|j| > 1\). If \(B\) is good with such \(j\), let \(A\) be our standard one (arch. valuation), so we can find \(g\) as a power series in \(1/j\), (and let \(A = A(q), q = q(j)\)).
Then \(A \) and \(B \) have the same \(j \)- and so become isomorphic over a separable quadratic extension \(K/k \). Let \(\sigma(\hat{K}/K) = \{1, \sigma^3\} \).

Let \(\varphi: A \rightarrow B \) be an isom. def. /K. \(\varphi: A_k \rightarrow B_k \). \(B_k = \{ b \in B_k : \sigma b = b^3 \} \). We also have \(\varphi^*: A \rightarrow B \), and we may assume \(\varphi^* = \varphi \), otherwise \(A \cong B \) over \(k \). Thus we have the composite \(A \rightarrow B \rightarrow A \), and \(\varphi^* \varphi \) is nontrivial. Since \(\sigma \neq 1 \) for \(\bar{a} \neq 1728 \), \(A \) has just one nontrivial aut., i.e., \(\varphi^*(a) = -\varphi(a) \).

Thus we want to find the \(a \)'s s.t. \(\varphi(a) = \varphi^*(a) \). Put \(\varphi(a)^3 = \varphi^*(a)^3 = \varphi(a^3) \). Thus we want \(a \)'s s.t. \(a + a^5 = 0 \), and the \(b \)'s s.t. \(b^6 = b \) correspond to the \(a \)'s s.t. \(a^6 = -a \).

It is not a \(\mathbb{G}_m \)-homomorphism.

Thus if you know the structure of \(A_k \) and \(A_k \) for \([K:k] \cdot [K:k] = 2 \), then by looking at all \(a \in A_k \) s.t. \(a + a^5 = 0 \), get structure of \(B_k \).

Divisible points

Let \(m \) be \(> 0 \). Consider \(A \rightarrow A \) by \(a \rightarrow ma \).

Let \(A_m = A^m \). (On the case \(m = 2 \) - all we need in the Mordell theorem.) Every fact used can be checked directly without using sophisticated alg. geometry.

We always have a surjection \(A\hat{\omega} \rightarrow A_m \), and hence an exact sequence

\[0 \rightarrow A_m \rightarrow A\hat{\omega} \rightarrow A_m \rightarrow 0 \]

if \(\text{gcd}(k, m) = 1 \), then:

1. \(A\hat{\omega} \) is divisible by \(m \) (true even of \(p \mid m \) but harder!)
2. \(A_m \cong (\mathbb{Z}/m\mathbb{Z}) \times (\mathbb{Z}/m\mathbb{Z}) \).
3. \(A \rightarrow A \) is separable, unramified of degree \(m \), so if \(a \in A\hat{\omega} \), \(ma \in A_k \), then \(k(A)/k \) is separable.
5. If \(k \) is complete, then \(\tilde{A}_g \) is uniquely divisible by any \(m \) s.t. \(\text{char}(k) + m \).

(5) is proved using the filtrations, \(A_{g_0} \supset A_{g_1} \supset A_{g_2} \supset \cdots \). Then \(A_{g_1}/A_{g_2} \cong k^* \), which is uniquely divisible by \(m \), and \(A_g = \text{finite } A_{g_1}/A_{g_2} \).

Theorem: Given a valuation on \(k \), and \(A \) defined over \(k \) with non-degenerate reduction mod \(y \). Then division by \(m \) gives ramified extensions of \(k \): \(m \alpha \in \tilde{A}_g \Rightarrow k(\bar{\alpha})/k \) are ramified.

Proof: Might as well assume \(k, K \) complete, \(\alpha \in \tilde{A}_g \), \([K:k] < \infty\).

Let \(\bar{\alpha} \in \tilde{A}_g \). We get a unique extension of the valuation \(\bar{k} \).

Let \(\bar{k}(\bar{\alpha})/\bar{k} \) be separable. Then there is a unique \(E \) s.t. \(\tilde{E} = \tilde{k}(\bar{\alpha}) \) and \(E \) is unramified over \(k \). Now take \(A_E \rightarrow \tilde{A}_E \) which is surjective. \(\tilde{E} \in \tilde{A}_E \Rightarrow \exists \tilde{c} \in A_E \) s.t. \(\tilde{c} = \tilde{\alpha} \), so \(\tilde{c} - \tilde{\alpha} = 0 \), and \(\tilde{c} - a \in A_{\tilde{E}} \subset A_k \). \(m \alpha \in \tilde{A}_g \), \(c \in A_E \Rightarrow m c \in A_{\tilde{E}} \Rightarrow m(c - a) \in A_g \) i.e., \(m(c - a) \in A_{\tilde{E}} \). Then using divisibility of \(A_g \) and \(A \), \(\alpha \in \tilde{A}_E \).

By the same methods one proves:

Under the hypotheses of the thm, the homomorphism \((\tilde{A}_g)_m
\rightarrow (\tilde{A}_g)_m \)

is an isomorphism.

Reference: Lang Tate A.T.M. Principal homog. space over abelian var's.

Consider \(A_g \) and \(mA_g \). - get an extension of \(D \) - for \(p + m \) ram of coher., get non-degenerate reduction. For \(p + m \), can apply thm and use this D show that the extension is finite over \(D \). Thus it will follow that \(A_g/mA_g \) is finite.
To show A_k/mA_k finite, let $K = k(\frac{1}{mA_k})$ i.e. adjoin $\frac{1}{m}$ to the coefficients of the minimal division σ. (Assume $m/k = ?$)

Claim: $[K:k] < \infty \iff (A_k:mA_k) < \infty$.

Proof: (\Rightarrow): If $A_k = \mathcal{U} \sigma_j + mA_k$ take $m \sigma_j = 0, 1 \leq j < m^2$, $a_i = m b_j, 1 \leq i < m$. Then $K = k(b_0 + c_j)$, generated by m^2 elements.

(\Leftarrow): Let $G = G(K/k)$. For each $a \in A_k$ choose $b \in A_k$ s.t. $a = mb$. For $\sigma \in G$, let $\text{f}_a(\sigma) = \sigma b - b * m \sigma f_b(\sigma) = 0$. So $f_a(\sigma) \in A_m$ which is finite (of order $\leq m^2$).

I claim also G is abelian. To see this note $\sigma \beta = \beta + t \sigma, t \in A_m$, and $\sigma \delta \beta = \beta + t \sigma + t \delta, \sigma t \sigma = t \sigma + t \delta$. Then:

$$f_a(\sigma) : A_k \times G \to A_m$$

is abelian. Also, the kernel on the right consists of those a s.t. $f_a(\sigma) = 0$ for all σ, hence K is generated by the elements $n a, a \in A$, n must be the identity. The kernel on the left is $\{a : f_a(\sigma) = 0, \forall \sigma \in G \}$. But for such a, $k(\frac{1}{mA_k})$ is fixed under G, so k. Thus $d \in mA_k$. Hence we get a bijective map: $A_k/mA_k \times G \to A_m$ whose kernel on both sides is trivial.

Thus G is abelian of exponent $\leq m$.

Now take $k = a$ finite extension of $k(\frac{1}{k_0})$, and let $k_0 = k$.

Almost all primes in \mathfrak{p} are discrete. Assume $k \neq k_0$.

If A is a curve over k, A has nondegenerate reduction (n.d.r.) for almost all primes, i.e., for all y and in a finite set
S which contains:

all archimedean primes \(\mathfrak{p} \).

all \(\mathfrak{p} \) s.t. \(A_i \not\subset \mathfrak{p} \) for some \(i \).

all \(\mathfrak{p} \) s.t. \(\mathfrak{p} \mid \Delta \).

If, in the number field case, enlarge \(S \) so that it contains

all \(\mathfrak{p} \) s.t. \(\mathfrak{p} \mid \mathfrak{m} \).

\(S \) is still finite.

Assuming \(A_m \subset A_k \) and the primitive \(m \)th roots of 1 are in \(k \), then

1. \(k\left(\frac{1}{m} A_k\right) \) is abelian over \(k \), with \(\mathcal{C} = \mathcal{G}(k\left(\frac{1}{m} A_k\right)/k) \)

2. of exponent \(m \). (i.e. \(\mathcal{C} \))

3. and unramified outside \(S \) (i.e. \(k\left(\frac{1}{m} A_k\right) \)).

(Th: \(A_k/mA_k \) is finite if \((k_0^\times/k_0^\times m) < \infty \). [cf. DG ?]

Let \(K \) be the maximal abelian extension of exponent \(m \) unramified
outside \(S \). Then \([K: k] < \infty \).

Proof: Take \(f \in k^\times \). When is \(k(\sqrt[m]{f}) \) unramified at \(\mathfrak{p} \)?

\(k(\sqrt[m]{f}) \) unramified at \(\mathfrak{p} \) \(\Leftrightarrow \) order \((f) = 0 \mod m \) (if \(\mathfrak{p} \not\subset \mathfrak{m} \)).

Consider for field case:

\[\{ f : (f) = m \mathfrak{m} \text{ outside } S \} \setminus \{ f : (f) = m \mathfrak{m} \text{ in } S \} \]

\[\{ f : (f) = m \mathfrak{m} \} \]

\[\{ f : (f) = m(g), g \in k^\times \} \]

\[= \{ f \in k_0^\times k^\times m \} \]

\[\{ f \in k^\times m \} \]

\[\{ f \in k^\times \} \]
k^m is of finite index in \mathfrak{F}: $(\mathfrak{f}) = ml$ outside S^3.

In the number field case, work with ideals rather than division.

\[\mathfrak{f} : (\mathfrak{f}) = \mathfrak{A}^m \text{ outside } S^3 \]
\[\mathfrak{f} : (\mathfrak{f}) = \mathfrak{A}^m \text{ if } \mathfrak{f} \in k^*(\text{units})^3 \]

\[
\begin{align*}
\mathfrak{f} & = \mathfrak{A}^m \text{ outside } S^3 \\
\mathfrak{f} & = \mathfrak{A}^m \\
\mathfrak{f} & \in k^*(\text{units})^3
\end{align*}
\]

\[
\begin{align*}
\mathfrak{f} & \in k^*(\text{units})^3 \\
\mathfrak{f} & \in k^m
\end{align*}
\]

Now look at the case $m = 2$, i.e., $A_k/2A_k$.

Assume $y^2 = (x - e_1)(x - e_2)(x - e_3)$, $e_i \in k^m$. ($k = \mathbb{Q}$).

Then

\[
A_k/2A_k \cong \text{Hom}(G, A_k) = \text{Hom}(G, \text{Hom}(A_2, 3^{\pm 13}))
\]

where $A_m \cong \text{Hom}(A_m, \{m\text{th roots of 1}\})$ is canonical. $G \cong (K/k)$, $3^{\pm} = k^* \cong k$. Hence $f \in \Sigma \iff f \in k^*$.

where $\text{Hom}(A_2, 3^{\pm}) \subset \text{Hom}(A_2, k^{*1})$. $A_2 = \{e, e_1, e_2, e_3\}$ so the fours groups.

An element of $\text{Hom}(A_2, k^{*1})$ is described by 2 elements $e_i, c_i, c_3 \in k^{*1}$ so $e_i c_i c_3 = 0$ or k^{*1}. (We have $2a_i = 0$, $a_i + a_i + a_3 = 0$), i.e., $(e_i, c_i, c_3) \in (k^{*1})^3 = \Sigma$, so we get a map $A_k/2A_k$.

\[
\begin{align*}
\mathfrak{f} & = \mathfrak{A}^m \text{ if } \mathfrak{f} \in k^*(\text{units})^3 \\
\mathfrak{f} & \in k^m
\end{align*}
\]
If \(P = (x,y) \in A_k \pmod{2A_k} \), map \(P \mapsto (c_1, c_2, c_3) \), where \(c_i = x - c_i \pmod{k^{*2}} \) (if \(c_i = 0 \), replace it by \(c_i = c_i, c_2 \)).

For which such triples \((c_1, c_2, c_3) \), does \(\exists P \in A_k \) giving the triple? To find \(x \) s.t. \(x - c_3 = c_3 x^2 \pmod{3} \), where \(c_3 \) are given and \(c_2 \) are determined by the curve? (\(? \))

In the rational field, \(c_3 = \pm 1 \Gamma P^2 \), \(\Gamma = 0 \) or \(1 \). \(P \Gamma A_k \), d.m.m. of \(c_3 \).

References:

A defined over \(\mathbb{Q} \), \(y^2 = x^3 - Ax^2 - B \). \(A, B \in \mathbb{Z} \).

If \(P = (x,y) \) is not \(O \) and \(x \) and \(y \) are rational, then, what must the denominators look like?

\[
\begin{align*}
x &= \frac{m}{n^2}, \\
y &= \frac{c}{n^2}, \\
n > 0.
\end{align*}
\]

Define the height of \(P = \max \{ |m|, |m|^{1/3} = h(P) \} \) (and of \(P \) also!)

\(h(0) > 1, \ h(P) \geq 1 \) always. Clearly \(V_{h_0}, \ \{ P \in A_k, \ h(P) = h_0 \} \)

is finite.

For all \(P_0 \in A_k \), \(E \) constant \(c_0 \geq 0 \) s.t. \(h(P + P_0) \leq c_0 h(P)^2 \).

And \(E \) universal \(c_0 \geq 0, \ s.t. \ h(P)^2 \leq c_0 h(2P) \). Both results hold for all \(P \in A_k \).

Assuming these, to prove the Mordell Theorem, we know \(A_k / 2A_k \) is finite. Take a finite set of worst representatives, \(\{ Q_1, \ldots, Q_n \} \) for \(2A_k \) in \(A_k \).
The Mordell-Weil Theorem.

Weil: sur un théorème de Mordell, Bull Soc Math de France 1930
Northcott: points torsion sur une variété algébrique; Ann 1950
Lang-Neron: with points of ab. Var. over fields; Andy Jan 1959

Theorem: Take A defined over \(\mathbb{Q} \):
\[y^2 = x^3 - Ax - B \]
with \(A, B \in \mathbb{Z} \). Let \(P = (x, y) \), \(P \neq 0 \) and \(x, y \in \mathbb{Q} \).
What must the denominator look like? \(x = \frac{m}{n^2} \) \& \(y = \frac{e}{n^3} \) for \(n > 0 \); in lowest terms \((m, n) = 1 = (l, n) \) with \(m, n, l \in \mathbb{Z} \).

Define the height of a point \(P = \max \{ |m|, |n| \} \) = \(h(P) \). Note \(h(0) = 1 \), and \(h(P) > 1 \) always.

Clearly \(h_0 \), \(\{ P \in A \mathbb{Q} : h(P) < h_0 \} \) is a finite set.

For every point \(P_0 \in A \mathbb{Q} \), there is a constant \(c > 0 \) \& \(h(P+P_0) \leq c \cdot h(P)^2 \) and there is a universal constant \(c > 0 \) \& \(h(P)^n \leq c \cdot h(2P) \) for all \(P \in A \mathbb{Q} \).

Assuming there are no points of the Mordell-Weil Theorem:

Know \(A \mathbb{Q} / 2A \mathbb{Q} \) is finite, takes finite number of representatives for cosets — say \(\{ a_1, \ldots, a_r \} \) are representatives for the cosets of \(2A \mathbb{Q} \) in \(A \mathbb{Q} \). Let \(P = P_0 \in A \mathbb{Q} \); then \(P_0 = a_0 + 2P_1, P_1 = a_1 + 2P_2, \ldots, P_n-1 = a_{n-1} + 2P_n \).

Let \(P = a_0 + 2a_1 + 4a_2 + \ldots + 2^{n-1} a_{n-1} + 2^n P_n \).

Let \(P' = 2P \) and note \(h(P') \leq c \cdot h(P') \leq c \cdot h(P)^2 \). Let \(C > C' c \). Then \(h(P') \leq c \cdot h(P) \) and \(h(P_{n+1}) \leq c \cdot h(P_n) \) so \(h(P) \leq C' \) for \(n \geq 0 \), \(h(P) \leq C + e \) for \(P \in \mathbb{Q} \) is a set of generators.

Proof of first statement:
\[a^2 = m^3 - An^2 - Bn^2 \]
so \(1 + \frac{1}{1} + \frac{1}{1} \). Let \(P_0 = (\frac{m_0}{n_0}, \frac{l_0}{n_0}) \) and \(P + P_0 = (\frac{m_0}{n_0}, l_0/n_0) \).

Given by \(X = \{ (x, y) : (x-x_0)(x+x_0) - 2B - 2yy_0 \} \). Then \((x-x_0)^2 \)
\[= \{(m^2 - An^2 n_0^2)(m_0^2 + m_0 n^2) - 2Bn^2 n_0^2 - 2Bn^2 n_0^2 \}/(m_0^2 - m_0 n_0^2) \]
\[= h(P) h(P)^2 - A h(P)^2 - h(P)^3 A h(P)^2 \]
\[/ A h(P)^2 \]
providing these formulas work, we're ok. But they break down in only finitely many cases: \(p = \pm p_0 \). This is still ok for \(p = -p_0 \), and we enlarge the constant in case \(p = p_0 \).

Proof of second statement: Let \(2P = (X, Y) \).
\[
X = \left\{ x^4 + 2A x^2 + 8B x + A^2 \right\} / \left\{ 4x^3 - 4Ax - 4B \right\} \quad \text{works if} \quad 2P \neq 0 \quad \text{(of which there are four points?)} \quad \text{let} \quad x = x_0 / x_1 \quad \text{in lowest terms, and} \quad X = x_0 / x_1. \quad \text{Then} \quad \frac{x_0^4 + 2Ax_0x_1^2 + 8Bx_0x_1^3 + A^2x_1^4}{x_1} = \frac{20}{L_1(x_0, x_1)}.
\]

Claim: \(l_0 \) & \(l_1 \) have no common zeroes in projective line \(TP_1 \):
\[
F_0(x_0, x_1) L_0(x_0, x_1) + F_1(x_0, x_1) L_1(x_0, x_1) = D_0 x_0^2 + F_1 L_1 = D_1 x_1^3
\]

(homogeneous multilinearly applied to \(P: 1 \) is expressible as a sum with homogeneous int. coeff.) \(F_i \) have coefficients in \(Z \); \(D_0, D_1 \in Z \); \(x_i \in Z \).
and \(gcd(x_0, l_1) \) divides lcm \(D_0, D_1 \). The \(D_i \) depend only on \(A \) & \(B \). New \quad \frac{\max(x_0, x_1)}{\min(|x_0| + 1, |x_1|)} \quad \text{is homogeneous and continuous on the real projective line, so takes on a non-zero minimum, so} \quad \max(|x_0| + 1, |x_1|) \geq \text{const} \cdot h(P)^4 \quad \text{and} \quad \max(x_0, x_1) \geq \frac{\text{const} \cdot h(P)^4}{2} \quad \text{etc.} \quad \text{and} \quad \text{a.e.}

\[A_2 = \mathbb{Z}^r + F, \quad F \text{ a finite group. And} \quad (A_2 / 2A_2) = \mathbb{Z}^s \quad \text{if there are} \ 2^s \text{ points of order 2:} \ (s = 0, 1, 2) \quad \text{depending on whether} \ x^3 - Ax - B \quad \text{splits.}
\]

Northcott's definition of height:
Take \(TP^n \) = projective \(n \)-space, \(P = (x_0, \ldots, x_n) \in \mathbb{P}^n_k \). If \(k \) is a number field define \(h_k(P) = TP \min_{\text{prime} \ p} (1; p) \) where the product is over all prime divisors \(p \) of \(k \), finite and infinite, and where \(1/\gamma \) is normalized. Since \(1 \neq 0 \) in \(k \), \(TP \gamma 1; p = 1 \); the above definition doesn't depend on the way the point \(P \) is represented. Thus \(h_k(P) \) depends only on \(P \), and not on its coordinates.

And \(h_k(P) = h_k(P) \quad [k, k] \quad \text{if} \ k \in \mathbb{K} \) one can show \(h_k(P) = h_k(P) \quad [k, k] \).
and thus define $h(P) = h_k(P)^{1/k^2}$, independent of k.

The proof works approximately if you take $k = k_0(x)$; $x = m^2$, $m, n \in \mathbb{Z}$, $h(P) = \max \{ 2^{\deg m}, c \deg n^2 \}$ where $c > 1$.

But we must fix up appeal to compactness of real P^1.

Fact (he won’t swear to it): A_k is finitely generated unless it comes from an abelian variety defined over k_0. Then A_k/k_0 is finitely generated.

Let k be either a number field or a function field in one variable over k_0. For $y = (y_0, \ldots, y_n) \in P^n_k$ define $h_k(y) = \prod_p \max (1, y_i/p)$, y_i running over the set of primes \mathcal{M}_k of k/k_0 or (function field case) field k.

For function fields case: let $f \in k$ and $1/f = e^{\text{deg } f}$; as the function formula holds, $h(y) = h_k(fy)$, where $\gamma = (x_0, \ldots, x_n)$.

1. $\{ P \in P^n_k \mid h_k(P) \leq h_0 \}$ is finite in the number field case or if k_0 is finite.

Today, A would be any non-singular complete curve defined over k, with function field $k(A)$.

If $f_0, f_1, \ldots, f_n \in k(A)$, not all zero, we get a map $f : A \to P^n_k$ over k by $f(P) = (f_0(P), \ldots, f_n(P))$ for $P \in A_k$, after multiplying all the f_i by a high enough power of f (1 up at P) to make sure no $t^n f_i$ has a pole at P, but one $t^n f_i$ is non-zero at P.

So A_k maps into P^n_k where h_k is a height in A_k, depending on choice of $f = (f_0, \ldots, f_n)$; $h_k(P) = h_k(f(P))$.

We were using $f = (1, x)$ before. He claims that the height doesn’t depend too much on the choice of the f’s.

2. $y = (y_0, \ldots, y_n)$, set $xyi = (\ldots, fi \circ gi, \ldots)$

Then $h_{xyi} = h_f \circ h_g$.

3. If B is another curve in A and $B \to A$

Then $h_{B \circ f \circ w} = h_f \circ h_w$.

Write $h' = h \iff \exists c_1, c_2 \gg A \in \mathbb{A}$, $c_1 h'(P) \leq h(P) \leq c_2 h'(P)$.

Again $f = (f_0, \ldots, f_n)$, $(f)_0$ is the smallest s.

$r_j (f_{10} + f_{11}) > 0$.

-3.16.
4. If \(\langle f \rangle \sim \langle g \rangle \), then \(b_f \sim b_g \). Let \((tf)_0 = (t_0 - t) \) for all \(t \in k \). We can consider them equal.

a. Let \(f \equiv g \) \((t_0, \ldots, f_n, g, \ldots, g_n) \); now \((f, g)_0 = (f, g) \). Show \(b_f \sim b_g \). The triangle is to go from \((t_0, \ldots, f_n)\) to \((t_0, \ldots, f_n, g)\) and \((t_0, \ldots, f, g)_0 = (t_0, \ldots, f, g) \). Now consider the ring \(k[\frac{t_0}{g}, \frac{t_1}{g}, \ldots, \frac{t_n}{g}] \subset k(\mathcal{K}) \). The \(\frac{t_i}{g} \) have no common zeros on \(A \) — for otherwise \(g \) has less zeros (more poles) than every \(f_i \). And \((t_0, \ldots, f_n, g)_0 = (t_0, \ldots, f_n, g) \Rightarrow \frac{t_0}{g}, \ldots, \frac{t_n}{g} \) have no common zeros on \(A \).

Now \(\frac{t_0}{g}, \ldots, \frac{t_n}{g} \) generate the unit ideal in \(k[\frac{t_0}{g}, \ldots, \frac{t_n}{g}] \) so by using completeness and by extending \(k \) to get a valuation, \(1 \equiv \sum q_1 (\frac{t_0}{g}, \ldots, \frac{t_n}{g}) q_j = \sum q_j (\frac{t_0}{g}, \ldots, \frac{t_n}{g}) \) \(\forall q \in A \), \(1 = \phi (\frac{t_0}{g}, \ldots, \frac{t_n}{g}) \).

So \(\frac{t_0}{g} \in M_k \), \(\exists \phi > 0 \) (depending on \(\phi \)) such that \(\text{Max} \{ | t_0 | g | t_k | \} > \phi \).

where \(\phi \) is normal. and doesn't occur in the denominators of the coefficients of \(\phi \).

Thus \(T_0 \text{Max} \{ | t_0 | g | t_k | \} > T_0 \text{Max} \{ | t_0 | g | t_k | \} \) \(\text{Max} \{ | t_0 | g | t_k | \} \) \(\phi = 1 \equiv \sum q_j (\frac{t_0}{g}, \ldots, \frac{t_n}{g}) q_j \).

Thus \(b_f \sim T_0 \text{Max} \{ | t_0 | g | t_k | \} \).

And \(\phi \) is proved. At least the argument is good for all but finitely many points.

If \(\alpha = (t_0) \) and \(\beta = (t_0) \), then we can write \(h_{\alpha} = h_f \) and the divisor associated with \(f \equiv g \), \((f, g)_0 = \alpha + \beta \). So \(h_{\alpha + \beta} = h_{\alpha} h_{\beta} \). And \(h_{\beta - \alpha} \sim h_{\alpha} \).

5. Given \(\alpha, \beta \) coming from \((f) \) and \((g) \), and \(\varepsilon > 0 \)

\(\exists \) constants \(c_1, c_2 \) depending on \(\varepsilon \), \(\delta_t \), \(\text{deg} b - \varepsilon \leq c_1 h_{\alpha} \), \(\text{deg} h_{\beta} + \varepsilon \leq c_2 h_{\beta} \).

Thus \(c_1 \text{deg} b - \varepsilon \leq c_2 \text{deg} h_{\beta} + \varepsilon \), \(c_1 \text{deg} h_{\alpha} (\varepsilon) \leq c_2 \text{deg} h_{\beta} (\varepsilon) \).

and \(\exists \) essentially only one height function.

Proof of 5: Let \(\phi \) be a prime of \(k \). \(\alpha = \text{deg} \phi, \beta = \text{deg} \phi \). Now \(3g \alpha + \text{deg} h_{\alpha} = \text{deg} h_{\beta} \) and \(\text{deg} h_{\alpha} = 3g \) and \(\alpha = (\beta) \).

For some family \(\phi \). Now \(\frac{3g}{2} \phi \leq h_{\alpha} \). Let \(\phi = h_{\alpha} \). \(\text{deg} h_{\alpha} = h_{\phi} \) and \(\text{deg} h_{\alpha} = h_{\phi} \).
we can get automorphisms of \(k(A) \) by translating by a point. For \(a = (b, c) \in A_k \), \(T_a : \text{autom of } k(A)/k \), \(P \in k^* \),
\[
T_a(P) = P + a \quad \text{(addition on curve)}
\]
defines a rational map of \(A \) into itself, \(T_\infty : T_a \circ T_a' \).

Define for \(f \in k(A) \), \(f \circ T_a(p) = f(p-a) \); \(f \circ T_a(cP) = f(cP) \).

We want \((x', y') = (x, y) \) for \(p + a = (x', y') \). Take \(K \)
galois over \(k \) with group \(G \). Let \(\sigma \)
operate on \(k(A)/k \) and \(G = G_{k(A)/k} \).

For \(T_a \in G_k \); \(\sigma \circ T_a \) an autom of \(k(A)/k \), \(\sigma \circ T_a = T_{\sigma \circ a} \).

Claim: for \(\sigma \in G \), \(\sigma \circ T_a = T_{\sigma \circ a} \).

Indeed, \(f \circ T_a (P) \quad \sigma \circ f \circ T_a (P) = (f \circ T_a (P)) \quad \sigma = (f \circ T_a (p)) \circ \sigma = (f(cP)) \circ \sigma = f(cP - \sigma a) = (f \circ T_a(cP - \sigma a)) \), and \(T_{\sigma \circ a} \).

To make another group \(G^* \), isomorphic to \(G \), of automorphisms of \(k(A) \). For \(\sigma \in G \) define \(\sigma^* = T_{\sigma \circ a} \circ \sigma \).

\(\{a_\sigma \mid \sigma \in G \} \) is a family of elements of \(k(A) \), indexed by \(G \), \(\sigma \rightarrow a_\sigma \) is a map \(G \rightarrow k(A) \).

What conditions on \(\sigma \) will give \(\sigma^* \circ \sigma = (\sigma^* \circ \sigma)^* \) ?

\(\sigma^* \circ \sigma = T_{\sigma \circ a} \circ \sigma = T_{\sigma \circ a} \circ \sigma \circ T_{\sigma \circ a} \circ \sigma = (T_{\sigma \circ a} \circ \sigma)^* \).

will be true iff \(a_\sigma + \sigma a_\sigma = a_\sigma \) all \(\sigma \in G \).

We define a group \(G^* \), isomorphic to \(G \), of automorphisms of \(k(A) \).

Thus we get \(\sigma \mid K \subseteq k(A) \).

\(F = k(A) \), \(F \cap K \) so the degrees are the same. In fact \(F \) regular in \(k \) it is the function field for some curve \(k(C) \).

\(k(C) = \text{fixed field of } G^* \text{ in } k(A) \).

\(G^* \) is isomorphic to \(\{a_\sigma \mid \sigma \in G \} \) is a group of automorphisms of \(k(A) \).

And \(\sigma \mid K \).

Thus we get \(\sigma \mid K \).

In fact, given any curve \(C \) of genus 1, we can get \(\sigma \)
such that \(C \) comes from \(A \) in the way defined by \(\alpha \).

The elements of \(H'(G_{/K}, A_K) \) are in 1-1 correspondence
with \(K \)-isomorphism classes of the \(C \)'s you get (1).
\(C_K \) is identified with \(A_K \) by \(K(A) \cong K(C) \).

If \(a \in A_K \), \(a^* \in C_K \), \(a \mapsto a^* \) a birational map \(A \to C \)
defined \(/K \), produced by the identification of the function
fields: What is \((\sigma a)^* ? \)
\[
(\sigma^*(a)) = \frac{\sigma a}{a} = \sigma a + \sigma a^*
\]
\((\sigma^*(a^*)) = \sigma(a^*) \) is \(\sigma(a^*) \)

Start over: want a birational map \(C \to A \), \(\varphi : C \cong A \),
defined \(/K \) by \(K(C) = K(A) \). Let \(c \in C_K \); then
\[
\varphi(c) = \varphi(c) = \varphi(\varphi(c)) + \varphi c
\]
and
\[
\varphi c = \varphi(\varphi c) = \varphi(\varphi c) + \varphi c \quad (\sigma \in \varphi c)
\]

Let's try to investigate whether \(C \) has rational points;
it certainly does over \(K \).
If \(C_L \equiv c \), then \(\forall \sigma \in H \), \(c = \sigma c \)
and \(\alpha c = \varphi(c) = \varphi(\varphi c) \) so
\(c \mapsto H \{ \alpha c \} \) splits (i.e., is zero).

3-23

General Question: Descartes des corps de base

F. Châtelet; Weil: Ann. 1936, 509-524

Serves: Arith. & Corps de ...

... and Saavedra

Let \(A \) be any variety \(/K \), and \(K \) an extension of \(k \).
To find varieties \(B/K \) and \(B \cong A \) over \(K \). Better to consider
a pair \((B, \varphi)\), \(B \) defined \(/K \) and \(\varphi : A \cong B \) an isomorphism.
And \((B, \varphi) \cong (B', \varphi') \iff \exists \psi \) defined \(/K \) st
\(A \to B \)
an map \(K/k \) is gadget with group \(G \).
we have \(\varphi^\sigma = \varphi \psi \psi^\sigma = \varphi(p)^\sigma / p \sigma \psi \)
for \(P \in A \), where \(\sigma \) is any extension of \(\sigma \) to the
field in which the coordinates of \(P \) lie. Now \(p \)
is defined \(/K \) \iff \(\forall \sigma \in G \), \(\varphi = \varphi^\sigma \).

Given a pair \((B, \varphi)\) we get an automorphism
of \(A \) (over \(K \)) by taking \(\varphi^{-1} \circ \varphi^\sigma = \alpha \). \(\sigma \in \text{Aut}_K(A) \). Trivial: \(\alpha \cdot \alpha^\sigma = \alpha^\sigma \), so \(\sigma \mapsto \alpha \)
is a cocycle. Question: given a 1-cocycle, does it
come from a \((B, \varphi)\)? Practically yes.
Then: Given a 1-couple $\sigma \to \alpha_\sigma$ of G in $\text{Aut}_K(A)$,
(1) if $\{\alpha_\sigma\}$ comes from (B, φ), then (B, φ) is unique up to a K-isomorphism.
(2) $\{\alpha_\sigma\}$ does come from (B, φ) if every finite set of points on A algebraic over K lies on an affine open subset of A which is defined over K (in the same K).

Proof for curves, using the function field:
(1) Observe: if we also have $\psi_1, \psi_2: \psi_1^{-1} \psi_2 = \alpha_2 \circ \alpha_1$, so
$\psi_1^\sigma = \psi_2 \circ \psi_1^{-1}$ and $(\psi_1^{-1})^\sigma = \psi_2^{-1} \circ \psi_1^{-1}$ (all σ) and $\psi_2 \circ \psi_1^{-1}$ is defined over K.
(2) For curves: non-singular, complete
K operates on functions by: for $f \in K(A)$,
$f^\alpha(x) = f(x^\alpha)$, for all $x \in K$. $[\alpha^\text{act}$ on $K(A)]$
How do the x's and x's commute? Claim: $x^\sigma = x^\sigma \alpha$, as follows
$x^\sigma = f^\sigma(f^\sigma(x)) = f^\sigma(f^\sigma(x)) = f^\sigma(f^\sigma(x))$.
so $x^\sigma = x^\sigma$.

Let $K = K_0$, $K^\sigma = (K^\sigma_0)$. $x^\sigma \alpha^\sigma = x^\sigma \alpha^\sigma \epsilon$,
$A \to B$ for $f \in K(B)$, $f \circ \varphi \in K(A)$. By construction, $f^\sigma \circ \varphi = (f \circ \varphi)^{\sigma}$
and we claim: $\varphi^\sigma = \varphi^\sigma \alpha$. For all $f \in K(B)$,
$f^\sigma \circ \varphi \circ \alpha = f^\sigma \circ \varphi \circ \alpha$, formally the same
for affine varieties.

Suppose $\varphi^{-1} \varphi = \beta$, $\varphi^{-1} \varphi = \beta_\sigma$
Let $x = \varphi^{-1} x^\varphi$. Now (if Γ defined over K)
$x^\sigma \alpha = x^\sigma \alpha \epsilon \varphi^\sigma \alpha$ (all σ), then
$\varphi^{-1} \varphi = \beta$, $\forall \alpha \in \Gamma \Leftrightarrow \{\beta_\sigma\} \sim \{\beta_\sigma\}$ (colored)
$H^1(G_k/k, \text{Aut}_K(A))$ 1-dimensional cohomology set
H^1 in 1-1 correspondence with the K-isomorphism classes of B's which solve the problem.

Example let A be a subgroup of $\text{Aut}_K(A)$. φ is invariant under A. Take only (B, φ) st $(B, \varphi) \in A$ (all σ). Correspondingly, take only K-isoms $\Gamma: B \to C$ st
$
\alpha = \varphi^{-1} \Gamma \varphi$ lies in A.

Example A/k, $\alpha \in A_k$. Let $G = \varphi : B \to A$, $\varphi(\alpha) \in A_k$.
$\varphi(\alpha) = \varphi(\alpha) \circ \alpha = \varphi(\alpha) \circ \alpha = \varphi(\alpha)$, so B has a rational point. Now let A be an elliptic curve,
with 0. Suppose \(j \neq 0, 1728 \). \(H'(G, k) \) for quadratic extensions \(k \) in \(K \). \(\text{Aut}_k A \cong \text{Aut}_k (A, 0) \) with some rules for commutations. The translations are the subgroups of \(\text{Aut}_A \), having the divisor classes of degree 0 fixed.

Now \(H'(G, A_k) \) gives certain curves.

Then (ii) Chian curve \(B \) of genus 1, non-singular, \(\bar{k} \) \(\in \bar{K} \) and an ideal over \(A \) of dim 1 (i.e. an elliptic curve with rational point) defined over \(k \), from which \(B \) is gotten via \(H'(G, A_k) \).

2. The \(A \) is unique up to \(k \)-isomorphism. Let \(K, o \in B_k \), \(\alpha = \frac{T_o}{T_0} \) (translation on \(B \) = group with \(o \) as origin).

3-29

\[
A_{\alpha} = A'_{\alpha}, \text{order} A \text{ minimal}. \quad \text{want} \quad A_{\bar{\alpha}} \text{ over} A_{\bar{\alpha}}^{\text{p}}. \quad \text{char} \; k \neq 2, 3, \; j \in \bar{k}.
\]

The case \(j \notin \bar{k} \) can be handled analytically by the previous methods seen before.

\[
y^2 + (a_1 x + a_2) y = x^3 + a_1 x^2 + a_2 x + a_3
\]

\[
y = y + r x + z, \quad x' = x + z \quad \text{or something. At any rate can get in Weierstrass form:} \quad y^2 = x^3 + A x + B.
\]

\[
x = \rho^a x, \quad y = \rho^b y, \quad y' = x^3 + A x + B
\]

\[
a = \rho^a A, \quad b = \rho^b B, \quad \Delta = \rho^{12} \Delta
\]

And for \(p \) a prime, either \(p^y / A \) or \(p^y B \) (equivalent to minimality).

He makes a list of the possible cases. He says (check)

\(j \neq \infty \) means \(\text{ord} \; \Delta = \min \{ 3 \text{ord} a, 2 \text{ord} b \} \)

\(j = 1728 \) \(\text{ord} a = 0 \) non-degenerate already

\[
\begin{array}{cccc}
1 & \pi^{1/4} & \frac{1}{4} \\
2 & \pi^{1/2} & 2 \\
3 & \pi^{3/4} & \frac{2}{3} \\
\end{array}
\]
Case 2
3rd a > 2 and b
\[f = 0 \]
\[\text{ord}\ 0 \]
\[\text{non\ degenerate} \]
\[\text{already} \]

Case 3
3rd a = 2 and b
\[f = 0 \]
\[\text{ord}\ a = 0 = \text{ord}\ b, \text{we already have} \]
\[\text{non-degenerate reduction} \]
\[\text{Note}\ \delta \in \alpha \Rightarrow a/b^2 \neq 27/4 \]

\[\text{if } a = 2, \text{and } b = 3. \text{ Take } \rho = \pi \eta, m = 2. \]
\[K = k(\rho, \eta^2) \]
\[\text{Let } G = G_{K/k} \]

Now \[A_k^* = \text{all points not lying to } (0,0) \]
under \(\eta \)-adic reduction. Let \(\sqrt[3]{x/y} \)
Here \(A_k^0 = \text{kernel of reduction map} \): \(A_k \)
\[A_k/A_k^0 \cong \tilde{A}_k^0 \text{ reduced } \]
\[y^2 = x^3 + ax + f \]
\[2f \geq 4f^2 \]

we have \[2f = 3f \]
\[(\text{impossible or looking closely}) \]
\[3f \\let \delta = f^2, x = \delta^2 \]
\[\text{ie } f < 3, f < 2 \]
\[\times \eta \]

we have \[2\eta = 3f \]
\[(\text{impossible on looking closely}) \]
\[2\delta \geq 4f \]
\[(\text{impossible, directly}) \]
\[2\delta \geq 4f^2 \]
and then \[2\delta > 4f^2 > 3f^2, \text{ so } 2f > 2 \eta \text{ (16/3 = 2 + 4/3) so what's wrong? By looking at the equation, } 3f > 2 \eta \text{ not this case!} \]
Thus the claim is proved.

Claim \(G \) takes \(A_k^0 \) to itself, and \(\hat{G} \) have exact
sequence of \(G \)-modules
\[0 \rightarrow A_k^0 \rightarrow A_k \rightarrow \tilde{A}_k \rightarrow 0 \]
where \(G \) acts on \(\tilde{A}_k^0 \) as a factor module. What is
\[0 \rightarrow A^0_k \rightarrow A_k \rightarrow \tilde{A}_k \rightarrow H^1(G, A_k^0) \rightarrow \]
\[\text{Now } A_k^0 = A_k^* \]
\[A_k^0 = A_k \]
\[\text{if } H^1(G, A_k^0) = 0, \text{ get } 0 \rightarrow A_k^0 \rightarrow A_k \rightarrow \tilde{A}_k \rightarrow 0 \]
\[\text{by } f^t + m, \text{ } A_k \text{ is uniquely divisible } A_k/A_k^* \]
by \(m \); especially \(\frac{f}{m} \) by order \(G = n. \text{ Thus } H^1(G, A_k) = 0 \)
let $\xi = \rho^{-1}$, a unit in K. Then $(X, Y)^\sigma = (\xi^2 X^\sigma, \xi^3 Y^\sigma)$. Now $(\tilde{X}, \tilde{Y})^\sigma = (\xi^2 \tilde{X}^\sigma, \xi^3 \tilde{Y}^\sigma)$ operation on \tilde{K}.

We now need the fixed points: assume V_0

$(X, Y)^\sigma = (\tilde{X}, \tilde{Y})$.

Remark: if $\tilde{Y} \neq 0$, then $\xi^3 = \tilde{Y}^{-1}$ so ξ^3 splits in L if $X \neq 0$, then $\xi^2 = \tilde{X}^{-1}$ so ξ^2 splits in L.

Because: look at the exact sequence $0 \to (1 + \rho^2) \to L/K \to \tilde{K}^* \to
\therefore H_1(L/K) = H_1(\tilde{K}^*)$
unniquely divisible so 3 units $\xi^3 \tilde{Y}^{-1} = \xi^3 = \rho^3(\eta^{-1})$, so ρ^3 is invariant under σ so ρ^3/η is in K so $m = 3$. Similarly $X \neq 0 \Rightarrow m = 2$.

What does $m = 6$ mean? $(\tilde{X}, \tilde{Y}) = (0, 0)$ impossible because $\tilde{X} \neq 0$, $\tilde{Y} \neq 0$.

$m = 4$ means $(\tilde{X}, \tilde{Y}) = (0, 0)$.

ord $a = 1$ \[\begin{array}{c|c}
 m & A_k / A_k \\
 \hline
 4 & \mathbb{Z}/2\mathbb{Z} \\
 2 & \mathbb{Z}/2\mathbb{Z} \times (\mathbb{Z}/2\mathbb{Z})^2 \\
 2 & \mathbb{Z}/2\mathbb{Z} \\
 4 & \mathbb{Z}/2\mathbb{Z} \\
 \end{array} \]

$m = 3$ means $\rho \in K$ so $\rho^3 - 1 = 1$, $\therefore \xi = \tilde{Y}^{\tilde{X}}$ and $b = 1$

for case $m = 2, \tilde{Y} = 0$.

so $\rho \in K$, \tilde{X} is arbitrary on curve, \therefore get the points of order 2 on the curve.

(v) as \tilde{X} is a square or not.
(*) as $X^3 + A X + B$ has defined over \tilde{K}

0, 1, or 3 zeros in \tilde{K}.

If A is a group variety in K, and C any variety in K, and $\phi : A \times C \to C$ is a map $s + (\phi(a, c) = a \cdot c)$

1. $a \cdot (a_2 \cdot c) = (a_1 a_2) \cdot c$
2. $1 \cdot c = c$
3. $a, c, d \in C$ $\therefore a \cdot c = c$

Then C is a homogeneous space for A over K.

C is a principal homogeneous space iff the a in 3. is unique (call it $c_2 c_3^{-1}$). Then the map $C \times C \to A$ given by $(c_1, c_2) \to c_2 c_3^{-1}$ is regular & defined over K.

We can speak of isomorphisms classes of principal homogeneous spaces for A / K.

The trivial class contains $C = A$, $A \times A \to C$ is trivial iff it has a rational point (ie iff $C_+ \neq \phi$)

If K/k is Galois with group G, classes of ϕ's
for A/k which are split by K (trivial $/K$; have real point over K) are in natural 1-1 correspondence with the elements of $H^1(G, A_K)$. If $c_0 \in C_K$, let $a_0 = c_0 \cdot c_0^{-1}$ a cocycle if $c_0' \in C_K$, & C_K is isomorphic to C_K', get a non-degenerate cocycle. Can be read about in Lang-Tate. Only non-trivial thing is: given 1-cocycle, to find C at $\exists c \in C_K$. Given $\{a_0, a\}$ cocycle, $\exists A \mapsto C$, $A, C / k$; φ / K;
\[
s + \varphi^{-1} \varphi = \text{right translation on } A \text{ by } a_0 = T_{c_0}
\]
and define $a \cdot c = \varphi(a \cdot \varphi^{-1}(c))$; now need only check $(a \cdot c)^\varphi = a_0 \cdot c_0$. Suppose C is a psh for A & A'/k. Then A, A' are isomorphic, $A \cong A' / k$ canonically. Want f s.t $f(a) \cdot c = a \cdot c$. Well, take $c_0 \in C$ over some large Galois ext K/k & define f so that $f(a) \cdot c_0 = a_0 \cdot c_0$, so $(f(a))^\varphi \cdot c_0 = a_0 \cdot c_0$; note $(f(c_0))^\varphi = f(c_0)$. Then $f(c_0 \cdot c_0) = a_0 \cdot c_0 = a \cdot c$, so $f(a) \cdot c_0 = a_0 \cdot c_0$ since $c_0 = b \cdot c_1$, $b \in A$ then $f(a) \cdot (b \cdot c_1) = f(a) \cdot c_0 = a_0 \cdot c_1 = a \cdot (b \cdot c_1) = f(ab) \cdot c_1 = f(a) \cdot (bc_1)$ so $f = \frac{f}{f}$.

If C is defined / k and $C \times C \to C / k$ is a group law, then C is psh for a group / k which becomes isomorphic to C over K, ie $3!$ group A / k, and structure of psh for A/k on C such that over K, one gets just that group law for C. Let c be the neutral element, $c \in C_K$; consider the right translation by c_0; let $a_0 = T_{c_0}$ & $\text{Aut}_K(C)$. $(a_0)^\varphi = (T_{c_0})^\varphi = ? = T_{c_0}(x_\varphi) = [T_{c_0}(x)]_{x_\varphi} = (x_\varphi)^\varphi = \text{whoops}$ [it looks as if it may not be true] wants to find some rule like $x_\varphi \cdot c_0 \cdot e^{-\varphi} = (xe)_\varphi$ or wants $T_{c_0} \circ T_{c_0} = T_{c_0}$.

"So study of elliptic curves without rational points reduces to the study of elliptic curves with rational points, and their cohomology."

One example: look at R.R. Thm: Suppose C has no rational points, but it does in a quadratic extension: C/k of genus 1, $[k : k] = 2$, then $k \neq 2$, $c_0 \in C_K$, $C_K = \varphi$. I have $(c_0) + (c_0^{-1}) = \varphi$ is a prime divisor of degree 2 in $k(C)$. Now \exists a function with poles y_φ^{-1}, and we come out with an equation of type
\[
y^2 = a_0 x^q + a_1 x^{q+1} + a_2 x^{q+2} + a_3 x^{q+3} + a_4 = f_d(x)
\]
$a_0 \neq 0, a_i \in k$
\[d = 3 \text{ non-singular elsewhere}
\]
$y/x^2 \sim \sqrt{x_\varphi}$
Our \(A \) is
\[
Y^2 = X^3 + a_3 X + (a_1 - a_2 - 4a_0 a_4) X + (a_0 a_1 + a_1 a_2 - 4a_0 a_2 a_1)
\]
and \(\overline{\gamma} : C \rightarrow A \) is defined by
\[
X = a \sqrt[3]{\beta}, \quad y = 2a_0 X^2 + a_1 X
\]
where \(K = k(\sqrt[3]{\beta}) \).

Points \(P \) on \(C \) ?
\[
\overline{\gamma}(x, y) = \left(\frac{a_1}{\sqrt[3]{\beta} a_0}, \quad 2\sqrt[3]{\beta} \left(a_1 - \frac{a_1^3}{a_0^2} - 2a_0 a_1 \right) \right)
\]
and \(\overline{\gamma}(P) = \overline{\gamma}(P) = P + a ; \quad \phi^* \phi^{-1} = T_a \) (\(\phi = \overline{\gamma}^{-1} \)) so we have the Jacobian.

\[
\mathcal{G} = \mathbb{I}, \quad \sigma^f \quad \text{if} \quad a_1 = 0, \quad a_0 = a \quad a_0 + a_f = 2a_0 = 0
\]
so we need \(a + a_0 = 0 \) (i.e. an elliptic curve that splits if \(a, b \in A_k \) and \(a = \sigma_0 - b \).

Now \(A K / \sigma \) is a finite group generated by \(\sigma \). The

Jacobian substitution: \(x' = x^a \). Now \(a_{n+1} = a_n + a_0 \)
so \(T_{a_{n+1}} a_0 = 0 \) and \(a_0 = \sigma_0 - b \).

\(H' \) (cyclic, \(A \)) = \{ \text{Tr}_a = 0 \} / \{ a_0 = \sigma_0 - b \} \}

Then \(a = (1 + \sigma + \cdots + \sigma^{n-1}) a_0 \). If \(b = (a_0 - 1) b_0 \) and \(b \in A_k \)
then \(b \in A_k \) since \(\sigma^n b_0 = b \).

Note that \(a \) is a rational function of \(a \) if \(a = (a_1, a_2, \ldots) \)
then \(\sigma(a) = (a_1, a_2, \ldots) = \sum(a) \) and \(x \mapsto (\sigma-1)x \),
\(x \mapsto \Sigma(x) - x \) is onto on \(A_k \).

This completes discussion of \(K \)-homogeneous spaces. Now view elliptic curves without rational points as \(K \)-homogeneous curves with a rational point.

Talks more about cohomology. Let \(A_2 = \text{points of order} \),
\(\overline{k} = \text{algebraic closure of} \ k \), and then \(k = 0 \). Now
\(0 \rightarrow A_2 \rightarrow A_\sigma \rightarrow A_0 \rightarrow 0 \) is exact. Let \(G = G_{\sigma/k} \);
\[
G = \lim \frac{G_k}{G/k}.
\]
Let \(B \) be a \(G \)-module, \(G = G_k = G_{\sigma/k} \); \(G_k/k = G_k / G_{k/k} \),
\(k/k \) finite (??) Let \(B^G = \{ b \in B | \forall g \in G_k, \sigma b = b \} \).
\(B = U \beta B_{G/k} ; \quad A_{G/k} = A_k \).

Consider \(H^r(G_k, B) = \lim H^r(G_{k/k}, B^G) \), \(\sigma \in k \cdot k \)
\(H^r(G_{k/k}, B^G) \) in the usual way for the \(\lim \). For \(r = 1 \), \(\text{infl} \) is injection, so \(\text{infl} \) becomes a union.

Remark: \(\text{If} \ B \) is an abelian group and \(H^1 \) is the set
of equivalence classes of \(K \)-split by \(k \), and \(\text{if} \ b

going to L no nonequivalent spaces become equivalent, so that $H'(\ldots L) = H'(\ldots K)$ if B is abelian, things become groups.]

Now $0 \to A_2 \to A_2 \to A_2 \to 0$ is an exact sequence of G-modules. We get

$$0 \to H^0(G_2, A_2) \to H^0(G_2, A_3) \to H^0(G_2, A_3) \to H^0(G_2, A_2) \to \cdots$$

and then

$$0 \to A_2 \to A_3 \to A_3 \to A_2 \to A_2 \to \cdots$$

and

$$0 \to A_2/k_{\mathbb{A}_2} \to H^1(G_2, A_2) \to H^1(G_2, A_2) \to 0$$

where $A_2/k_{\mathbb{A}_2} = H^1(G_2, A_2)$.

Let $x \in H^1(G_2, A_2)$ correspond to the path C; set

index $x = \min \{ k \in \mathbb{N} : x \} \quad$ and order $\alpha = \text{order of } x$.

in the group H^1. Now $\text{ord} x | \text{index } x$ for some n.

Let $k = C(z^N)$, A defined over k. Let $K = C(z_0, z_1)$;
so K/k is cyclic of order n, G_{k_0} is cyclic of order n

$$z \mapsto e^{2\pi i n z}$$

Now $A_2 \subset A_2 \subset A_2 = A_2$ because

if A is given by $Y^2 = 4X^3 - 2X - 3$ and if $x, y \in C,

C(x, y) \in C(t)$ has genus 1.

$C(t)$ has genus 0.

impossible by Luroth.

Note $H^1(G_{k_0}, A_2) = H^1(G_{k_0}, A_2) = \text{Hom}(G_{k_0}, A_2) \cong (A_2)_n$

of type (n, n).

Let C be a curve (complete, nonsingular) defined
over Ω alg closed. A divisor α on C is $\alpha = \Sigma a_P (P) \in \Omega$.

where $\{P\}$ is the divisor consisting of P alone.

$\deg \alpha = \Sigma a_P \quad \text{Supp } \alpha = \{ P \mid a_P \neq 0 \}$, a finite set

of $f \in \mathcal{O}(C)^*$, $\langle f \rangle = \Sigma a_P (P) \quad \text{deg } \langle f \rangle = 0$ and

$\text{Supp } \langle f \rangle = \{ \text{zeros & poles of } f \}$.

If $P \in \text{Supp } \langle f \rangle$, $f(P) \neq 0$.

Thus $f : C \to \Omega^*$.

or at least $f(C - \text{Supp } \langle f \rangle) \to \Omega^*$.

extends to divisors which are disjoint from f; i.e. f.

\text{Supp } \langle f \rangle = \emptyset, f(\alpha) = \prod_{P \in \text{Supp } \langle f \rangle} (P)^{a_P}$

Then (if right hand sides defined)

$f(\{P\}) = f(P), f(\alpha + \beta) = f(\alpha)f(\beta), f(g(\alpha)) = f(g(\alpha))$

and $f(c \cdot \alpha) = c f(\alpha)$ and $\alpha f(\alpha) = f(\alpha)$.

If α is of degree 0, $f(\alpha)$ depends only on the divisor $\langle f \rangle$.

Then α are functions on C and $\text{Supp } f \cap \text{Supp } g = \emptyset$, then

$f((g)) = g((f))$.
Theorem: Let \(A \) be the group of divisor classes of degree \(0 \) on \(C \). If \(a \in A \) let \(S(a) \) be its class, \(\alpha \).

Define the pairing \(\Delta^* \times \Delta^* \to \mathbb{Z} \) as follows: for \(\alpha, \beta \in \Delta^* \) choose \(a, b \) s.t. \(S(a) = \alpha, S(b) = \beta \) and \(\text{supp } a \cap \text{supp } b = \emptyset \); also \(m_a = (f_a), m_b = (g_b) \). Set \(\text{em}(\alpha, \beta) = f_b / g_a \). This does not depend on our choices (use reciprocity formula): if we also have \(\alpha', \beta' \) we can assume with a short argument that all of \(\alpha, \beta, \alpha', \beta' \) are disjoint. Now \(\alpha' = \alpha + (k), \beta' = (h'^n) = (f'^n) \) (take \(f' = f'^{\Delta^*} \)) and

\[
\frac{f'_b}{g'_a} = (f'^n) = \frac{f_b}{g_a} = \frac{f(a + (h))}{g((a + (h)))} = \frac{f_b}{g_a} \cdot \frac{g(a + (h))}{g((a + (h)))} = \frac{g((a + (h)))}{g(a + (h))} \cdot \frac{f_b}{g_a}.
\]

Also \(\text{em}(\alpha + \beta, \beta') = \text{em}(\alpha, \beta) \cdot \text{em}((\alpha + \beta), \beta') \).

We have \(m_{\alpha + \beta} = (f_f'), m_a = (f), m_{\alpha'} = (f'_f) \).

And \(\text{em}(\alpha, \beta) = \text{em}(\beta, \alpha)^{-1} \) and is always an \(m^m \) root of \(1 \), i.e. in \(\Delta^* \). Further, \(\text{em}(\alpha, \beta) = 1 \); but this is more difficult to show.

If \(\rho \notin m \), \(A_m \) has order \(m^{2g} \) and \(\Delta^* \) has order \(m \).

Suppose \(C = A \) is an abelian variety of dimension 1. Let \(\alpha = \sum q \alpha p P \), \(S(\alpha) = \sum q \alpha p P \in A \) (addition on curve).
Suppose \(p = m \). For all \(Q \), \(m^2 \) points above \(Q \), so we have a separable covering of degree \(m^2 \). In fact it is an abelian Galois covering with Galois group \(A_m \); \(A = A/A_m \).

If \(a \) is a divisor on \(A \) of degree zero, then
\[
S(m^*a) = S(m^*a) = S(ma) = mS(a).
\]
Proof: it suffices to consider \(a = [P] - [Q] \). Now (ab use addition)
\[
[S(P) - S(Q)] = mS(a) \quad S(a) = P - Q \quad S(m^*a) = mP - mQ.
\]
Write \(mP = P \), \(mQ = Q \); now \(m^*P = \Sigma_{\alpha = 0}^{[P_0]} [P_0 + \lambda] \),
\[
m^*Q = \Sigma_{\alpha = 0}^{[Q_0 + \lambda]} [Q_0 + \lambda], \quad \text{so} \quad S(m^*a) = m^2P - m^2Q_0 = mP - mQ \quad \text{qed}
\]

Take \(P, Q \in A_m \); how can we interpret \(\mathbb{E}_m(P, Q) \)? Let
\[
P = S(a) \quad m^2a = (f). \quad \text{Now} \quad (m^*f) = m^2(f) = m^2(G(a)) = m^2a \quad \text{and} \quad S(m^*a) = mS(a) = mP = 0, \quad \text{so} \quad (m^*f) \quad \text{equals} \quad \text{a f divisor of a function}. \quad \text{Using closedness of the field,} \quad (m^*f) = m(f) = (f^m), \quad \text{so} \quad m^*f = f^m \quad \text{and for all} \quad x, \quad f(mx) = F(x)^m. \quad \text{Thus the maximal unramified abelian extension of exponent} \quad m \quad \text{is} \quad A \rightarrow A (\text{speaking of function fields}) \quad f(mx) = F(x)^m = F(x + Q)^m \quad \text{and we claim} \quad \forall x, \quad F(x + Q)/F(x) = \mathbb{E}_m(P, Q).
\]

Look \([X + Q] - [X] \); \(mB = [X + Q] - [X] + (G) \); choose \(B \) s+ ... and apply \(m^*a \).
\[
m^0a = (g).
\]

So \(mB = (g) \); then \(S(mB) = S(m^0B) = S(mB) = Q \). Now want
\[
f(a) = f(mB) = m^2f(g(a)) = f^m(g(a)) = F(mB) = F(x + Q), \quad \text{q.e.d.}
\]

Let \(P \in A_m \); \([P] - [Q] \); \(m/[Q] - m/[Q] = (f) \); want \(\mathbb{E}_m(P, P, P) \).

Let \(R \neq Q \), \(P \) and let \(g(X) = f(X + R) \). Can see \(m([P + R] - [R]) = (g) \)
\[
S([P] - [Q]) = P = S([P + R] - [R]), \quad \mathbb{E}_m(P, P, P) = (f(R))/(f(R)); (g(0))/(g(P)) = 1.
\]

If \(P_1, P_2 \in A_{m} \), then putting \(P'_1 = n_{11}P_1 + n_{12}P_2 \),
\[
P'_2 = n_{21}P_1 + n_{22}P_2, \quad \text{we have} \quad \mathbb{E}_m(P'_1, P'_2) = \mathbb{E}_m(P_1, P_2)^{n_{22}P_{21} - n_{12}n_{21}}
\]
\[
\text{and:} \quad \text{If} \quad P_1, P_2 \text{is a basis for} \quad A_m \quad \text{then} \quad \mathbb{E}_m(P_1, P_2) \text{is a primitive} \quad m \text{th root of} \quad 1.
\]

If \(A \) is defined \(\mathbb{F}_k \), \(P, Q \in \mathbb{A}_k \Rightarrow \mathbb{E}_m(P, Q) \in \mathbb{F}_k \). If \(A \subset A_k \), then \(k \) contains the \(m \)th roots of 1.
Result: \(H^r(\mathbb{G}_k, A) \) is dual to \(A_k \)

(As noted in the 1957 Bombieri seminar)

First let \(k \) be an arbitrary field, \(A \) an \(A_k \)-

valued \(k \)-algebra, \(G \) a \(k \)-

homogeneous \(G \).

\[H^r(G, A_k) \times H^s(G, A_k) \to H^{r+s+1}(G, A_k) \]

will become a linear map \(r = 1, s = 0 \).

\[H^r(G, A_k) \times H^0(G, A_k) \to H^r(G, A_k) \]

(in general, can be very degenerate; in fact, for \(k \) a finite field, by Iwasawa's theorem, \(H^r(G, A_k) = 0 \).

Take \(\alpha \in H^r \), \(\beta \in H^0 = A_k \). Get \(\gamma \in H^r \) by

following: let \(\alpha \) represent \(\alpha \).

Have \(S: \mathcal{S}_0, A_k \to A_k \); can represent \(\forall \sigma \),

\[a_{\sigma} \in \sigma \in \mathcal{S}_0, \quad \beta \in A_k \to \beta \in \mathcal{S}_0, \quad \text{say} \]

\(f = (\beta) - (\sigma) \), \(\phi f \) could choose \(f \) instead

\[\phi f \in \varphi f(\sigma) \]

Now, \((\beta)_{\sigma} = a_{\sigma} - a_{\varphi f} + a_{\sigma} = 0 \)

\[(\phi f)_{\sigma} = \sigma_{\varphi f} - \sigma_{\sigma} + \sigma_{\sigma} = (\phi f)_{\sigma} \]

for some \(f \) (depending on \(\sigma, \tau \)),

support of \((\phi f)_{\sigma} \) is disjoint from support of \(\phi f \).

Claim: \((\phi f)_{\tau} = 0 \).

Thus, \((\phi f)_{\tau} = \sigma_{\tau} \)

Now, evaluate \(\phi f \)

A degree zero gives zero.

\[\sigma_{\tau} = \sigma_{\tau} + (\tau - \sigma_{\tau}) \]

\[c = c(\tau) = c \circ (\sigma_{\tau}) \]

Real problem is to show choice of \(\sigma \) doesn't matter.

\[\hat{c} = c + (h) \]

\[c = c(\hat{c}) = c(h) \]

Now, since it doesn't depend on choices, it's clear to a homomorphism \(\hat{c} \).

Let \(\mathbb{A} \) = separable alg closure of \(k \). Let

\[H^r(A) = H^r(G \times k, A_k) \]

\[H^r(A) \times H^0(A) \to H^r(A) \]

\[H^r(A_k) \times H^0(A_k) \to H^r(A_k) \]

(Using \(k \)-splitting)

\[H^r(A_k) \times H^0(A_k) \to H^r(A_k) \]

\[H^r(A_k) \times H^0(A_k) \to H^r(A_k) \]

Borel

\(\mathbb{A} \) of \(k \)
Now look at $\ast \to A_m \to A_n \to A_\ast$ (with $\ast = \text{char } k$).

(1) We can't go to each big square, adding lifts induces the same with \ast.

$C \to H^0(A_m) \to H^0(A) \xrightarrow{m} H^0(A) \to H^1(A)$ (by m

$\to H^1(A) \to H^1(A) \to H^1(A) \xrightarrow{m} H^1(A)$

Breaking it up,

$\ast \to A_k / mA_k \to H^1(A) \to [H^1(A)]m \to \ast$

(Exact, if $\ast \neq 0$)

Vertical makes by braiding, but middle by

braiding $A_m \times A_m \to \text{Im } \ast \neq 0$ defined

last time. Let $H^1(A_m) \times H^1(A) \to H^1(A) \ast$ explain

with Frobenius, $a \sigma, b \tau \mapsto c m (a \sigma, b \tau) = e \tau$.

Claim the diagram is commutative or anticommutative. Do it in first square,

let $b \in A_k$, let $a \sigma$ represent $x \in H^1(A_m)$. Take

$\sigma \tau \in G$, $\sigma = (t)$. Take $f(\sigma)$. Take

$b \in B_\ast$, $\sigma \ast m \bar{b} = b + (y)$. Now

$\bar{b} = (\sigma^{-1}) \bar{b}$ use a fun of $\tau \in G$.

call $\bar{S} \bar{e} = \bar{e} \tau \in A_m$

$c_m (a \sigma, b \tau) \mapsto f_{\sigma, \tau}(b \tau)$

Let $m c_{\tau} = h_{\ast}$

$m(\sigma^{-1}) \bar{b} = (\bar{a} \tau \bar{b}) = (h_{\tau}) = m \bar{a} \tau$

$g(\bar{a} \tau \bar{b}) = e_m = g(\bar{a} \tau \bar{b}) h_{\tau} (b \tau)$

$f_{\tau, \tau}(b \tau) = \frac{f_{\tau, \tau}(m \bar{b})}{g(\bar{b} \tau)} = \frac{f_{\tau, \tau}(b \tau)^m}{g(\bar{b} \tau)} h_{\tau} (b \tau) g(\tau \tau)$

$= \frac{[h_{\tau} (b \tau)]^m g(\tau \tau)}{h_{\tau} (b \tau)[g(\tau \tau)]^m g(\tau \tau)} = e_m = \frac{f_{\tau, \tau}(b \tau)}{g(\tau \tau)} h_{\tau} (b \tau)$

$= (\delta m)_{\tau, \tau}$ where $m_{\tau} = h_{\tau} (b \tau) / g(\tau \tau)$

and it commutes!

(1): k a quadratic number field
If a canonical form $H^r(E^*) \cong Q/\mathbb{Z}$, then E is any finite C-alg module (e.g. $E = \mathbb{A}_m^n$), and $F = \text{Hom}(E, E^*) \cong \text{char}(E)$, let $G = \text{graph}$ on F. Then $E \times F \rightarrow K^*$ is a C-homming.

Then $H^r(E)$ is of finite order all r, 0 for $r > 2$. Dual homing in all cases.

Let $X(E) = \frac{\text{h}_0(E) \cdot \text{h}_2(E)}{\text{h}_1(E)}$. If $|E|_k = \text{normed abs value (in } k\text{)}$, of the no of elts of E.

The order of E exactly.

(3) A subalg $A_k / A_k' \cong \mathcal{O}_k$ (int$_2$) A_k / A_k' is finite diff of first kind, $w = (1 + a_0 + a_1 u + \cdots) du + \cdots$ $a_i \in \mathcal{O}$.

where $a_i, b_i \in \mathcal{O}$

k a p-adic ring. $C = C \text{, alg }$, $H^r(C, x) = H^r(C, x)$. Then from

$0 \rightarrow A_m \rightarrow A \rightarrow \mathcal{O} \rightarrow 0$, get

$0 \rightarrow H^r(A_m) \rightarrow H^r(A) \rightarrow H^r(A) \rightarrow H^r(A_m) \rightarrow H^r(A) \rightarrow H^r(A) \rightarrow H^r(A_m) \rightarrow H^r(A) \rightarrow 0$.

$H(A_m)$ is finite.

Let b_i, c_i be order of kernel, cohom of the max m in dim i.

$\frac{\text{h}_0(A_m)}{\text{h}_1(A_m)} = b_i \text{, } \frac{\text{h}_2(A_m)}{\text{h}_1(A_m)} = b_i = 1m^2l_k \frac{b_i}{c_i}$

for $\text{h}_i(A_m) = \text{h}_i(A_m)$, since $A_m \in \text{Hom}(A_m, A_m^*)$.

Use the Lie \mathcal{L}-module subalg. Let

$\text{ker}(X \rightarrow X) = \text{char}(X \rightarrow X) = (X, m X)$

$0 \rightarrow X' \rightarrow X \rightarrow X'' \rightarrow 0$ is exact.
then \(q_m(X) = q_m(X') q_m(X'') \)
\(q_m(X) = 1 \) if \(X \) is finite.

\[q_m(H^n(A)) = \frac{c_0}{b_0} = q_m(A_k) = q_m(\varphi_k) = \frac{1}{m k} \]

\[\frac{c_0}{b_0} = \frac{\times \sqrt{h'(A_m)}}{l} \]

\[0 \rightarrow A_k / m A_k \rightarrow H'(A_m) \rightarrow [H'(A)]_m \rightarrow 0 \]

\[0 \rightarrow [H'(A)]_m \rightarrow H'(A_m) \rightarrow A_k / m A_k \rightarrow 0 \]

Since \(A_m \) is a finite cyclic group, \(H'(A_m) \rightarrow H'(A_k) \)

\[A_k / m A_k \rightarrow [H'(A)]_m \]

is injective, but they are finite of the same order \(b_k = c_0 \).

\[\frac{A_k / m A_k}{H'(A)]_m} \]

Since \(A_k / m A_k \) is rowan.

m was arbitrary, \(e \in \mathbb{N} \) : the pairing

\[H'(A) \times A_k \rightarrow H^2(A_k) \rightarrow \mathbb{Q}/\mathbb{Z} \]

\[\frac{H'(A)}{A_k} \]

Have duality, for each \(m \), get duality in the limit:

\[H'(A) \times A_k \rightarrow H^2(A_k) \]

ie \(H'(A) = \text{Hom}_{\text{cts}}(A_k, \mathbb{Q}/\mathbb{Z}) \) \((\cong \text{Hom}_{\text{cts}}(A_k, \mathbb{R}/\mathbb{Z})) \]

\[A_k = \text{Hom}(H'(A), \mathbb{Q}/\mathbb{Z}) \]

\[A_k = \text{Hom}(H'(A), \mathbb{R}/\mathbb{Z}) \]

\(A_k = \) finite group of order \(p \), home to \(P \times B \)

\(B' / B' \) finite of order \(p' \), \(B' \equiv B_k \).

\[H'(A) \cong (\text{finite prime to } p) + H'(A; p) \]

\[H'(A; p) / \text{finite groups} \cong (\mathbb{Q}/\mathbb{Z}_{p})^{[k : Q_p]} \]

\(A_k \) finite \(\mathbb{Q}^1 \) adic no. field.

\[H'(k, A) \rightarrow H'(k, A) \rightarrow H(k, A) \]

\(H'(k, A) = \) those \(A \) 's split going from \(k \) to \(K \).

\[A_k \rightarrow A_k, \ 0 \rightarrow H'(K/k, A) \rightarrow H'(k, A) \rightarrow H'(K, A) \]

\[0 \rightarrow A_k / m A_k \rightarrow A_k \rightarrow A_k \]
For: \(\bigwedge_{1 \leq i \leq n} \text{Tr}_{k/k} A_k = 0 \)

Cor.: If red. is nondegenerate & \(K/k \) unramified then \(H'(K/k, A) = 0 \).

Proof: By the duality, \(A_k = \text{Tr}_{k/k} A_K \).

Now \(G_{K/k} = G_{\overline{K}/\overline{k}} \), cyclic.

Long: ab over \(\mathbb{F}_q \) finite field: every rational point is the trace of a rational pt (since never have \(\mathbb{F}_q \) points).

\(\text{Tr} \) gets you everywhere mod \(\mathbb{F}_q \). Now claim \(\text{Tr} \) is onto mod \(\mathbb{F}_q^2, \mathbb{F}_q^3 \), etc.

\(A_k \xrightarrow{\text{Tr}} A_{\overline{k}} \quad A_{\overline{k}} \xleftarrow{\text{Tr}} A_{\overline{k}} \)

\(\text{com} \quad \text{com} \quad \text{com} \)

\(\overline{k}^+ \xrightarrow{\text{Tr}} \overline{k}^+ \quad \overline{k}^+ \xleftarrow{\text{Tr}} \overline{k}^+ \)

etc., + onto.

H. S. 3. are given by conts char of \(A_k \),

\(\chi: A_k \rightarrow \mathbb{Q} / \mathbb{Z} \).

Let \(n \) be minimal s.t. \(\chi(A_{\mathbb{F}_q^n}) = 0 \). \(n \) is the conductor of the character.

What does this mean in terms of \(A_k \)'s?

\(n = 1 \) \(\Leftrightarrow \chi \) is char of \(A_k/A_{\overline{k}} \equiv \overline{A}_{\overline{k}} \) if nondeg. reduction.

[If \(\chi \) char of \(A_k/A_{\overline{k}} \) nondeg. reduction, then \(K \)-algebraic \(\chi \in H' \) \(\Leftrightarrow \text{period of } X/\text{ram } K/k \)]

\(A_k \xrightarrow{\text{Tr}} A_{\overline{k}} \quad e = e(K/k) \)

\(\text{com} \quad \text{com} \quad \text{com} \)

\(\overline{A}_{\overline{k}} \xrightarrow{\text{Tr}} \overline{A}_{\overline{k}} \)

\(T_{k/k}(A_{\mathbb{F}_q^n}) \), often in \(A_k \). Take \(N \) mod.

\(e = e(A_{\mathbb{F}_q^n}) \) a function of \(n \) of what kind?
If k an alg. no.fld., $[k:Q] < \infty$, let A_k defined over k, form $\prod_x A_{k_x}$. Invert A_k into it.

$$0 \rightarrow A_k \rightarrow \prod_x A_{k_x}$$

$K_k =$ ring of valuation vectors = adic ring

$$0 \rightarrow V_k \rightarrow V(K_k)^\times \subset \prod_x V_{k_x}$$

Weil: $x \in V(K_k)$; eliminate finite number of x affine covering in the original collection thereof s.t. the coordinates therein are integers.

According to Weil's definition, must include all pts in the product $\prod_x A_{k_x}$. [Also Grothendieck's defn.]

Con think of this as the points on A with coordinates in K_k. Very fruitful in the theory of affine algebraic groups. In our situation, A_k is usually not finite, $\prod_x A_{k_x}$ is set. A_k is usually not closed in the product.

Look at local theory in the very good case. k a local (i.e. p-adic no. fld.), A_k nondeg. redn., $A_m \subset A_k$, $m \neq 0$ (i.e. $x + m$), then get

$$0 \rightarrow A_k/mA_k \rightarrow H'(G_k, A_m) \rightarrow [H'(G_k, A_m)]_m \rightarrow 0$$

since $A_m \subset A_k$, $H'(G, A_m) = \text{Hom}_{cts}(G_k, A_m)$.

$$\begin{cases} \{ \} \\ \cap \end{cases} 0 \rightarrow \text{Hom}_{cts}(G_{Til}, A_m) \rightarrow \text{Hom}_{cts}(G_k, A_m)$$

(for b s.t. $m b = a$), $\sigma \rightarrow (\sigma^{-1}) b = \tau(a)$

This then a map: $G_{Til} \rightarrow A_m$ canonical res of $\text{Hom}(G_{Til}, A_m)$ with A_m by using Frob substitution.

When does an elt of $H'(G_k, A_m)$ come from an elt of A_k/mA_k, i.e. when does it go to zero in $[H'(G_k, A_m)]_m$?

A_m has m^2 elts, is of type (m, m).

26/14.
\[\frac{A_k}{mA_k} \cong \frac{\tilde{A}_k}{m \tilde{A}_k} \quad \text{because} \quad 0 \rightarrow A_k \rightarrow \tilde{A}_k \rightarrow 0 \quad \text{is uniquely dir. by } m \]

\[0 \rightarrow A_k \rightarrow \tilde{A}_k \rightarrow 0 \]

Think of vertical lines as zero everywhere else, get homology sequence: get \(A_k / mA_k \cong \frac{\tilde{A}_k}{m \tilde{A}_k} \cdot (A_k)_m \cong (\tilde{A}_k)_m \).

\[\text{now } m \tilde{A}_k \text{ have all } \ell \text{ of order } m, \text{ is of type } (m,m), \text{ kernel has } m \ell \text{ els, cokernel has } m \ell \text{ els, } A_k / mA_k \text{ has } m \ell \text{ els} \] (not necessarily in general case with same structure as \(A_m \), but here it so!)

\[\frac{\tilde{A}_k}{m \tilde{A}_k} \cong A_k / mA_k \rightarrow \text{Hom}(C_{T/k}, A_m) = A_m \]

k number field, \(A/k \). Let \(S \) be a finite set of primes of \(k \), including all \(\neq 1, m, \infty, A \) for a particular \(m \). (I = divisor of model of \(A \))

\[H'(G_k, A) \rightarrow H'(G_{kx}, A) \]

\(2 \in H'(G_k, A) \) splits at \(y \) iff it goes to zero there.

There is kernel of the map: \(H'(G_k, A) \rightarrow \prod H'(G_k, A) \)

is finite.

Let \(H'(G_k, A; S) = \{ x \in H'(G_k, A) : x \text{ splits outside of } S \} \)

Thm: \[[H'(G_k, A; S)]_m \cong [H'(C_{T/k}; A_{\text{unr}})]_m \]

where \(\Omega_S = \text{ the maximal elt of } k \text{ unramified outside of } S, \text{ this group is finite } \]

\[\text{Certainly have a map } [H'(C_{T/k}, A_{\text{unr}})]_m \rightarrow [H'(G_k, A)]_m \]

easily seen that the image is contained in stuff splitting outside \(S \), using \(\Omega_S \) facts about unramified finite extensions where there is non-degenerate reduction.

\[\Omega_S \text{ in } k = \Omega_S \text{ in } k(A_m) \quad \text{for } S, \text{ the set of primes of } k(A_m) \text{ above the primes in } S. \]
So take $\alpha \in \mathbb{H}'(G_k, A; S)_m$

$$0 \to A_k/m A_k \to H'(G_k, A_m) \to \mathbb{H}'(G_k, A)_m \to 0$$

$$\downarrow \quad \alpha \in \mathfrak{g}$$

$$0 \to A_k/m A_k \to H'(G_k, A_m) \to \mathbb{H}'(G_k, A)_m$$

$\mathrm{Hom}(G_k, A_m)$

$X_y = \text{rest}_{G_k} X, \quad X_y \mapsto 0 \to X_y$ is "irrelevant" as it comes from character of unramified

Now to finiteness of the group. As far as m is concerned, S is almost as good as the algebraic closure. $A \cong \mathbb{Z} \oplus \mathbb{Q}$ as direct limit by m (1)

$$0 \to \mathbb{A}_m \to A_{\mathbb{Q}} \to A_{\mathbb{Z}} \to 0$$

$$0 \to A_k/m A_k \to H'(G_{\mathbb{Q}/k}, A_m) \to H'(G_{\mathbb{Z}/k}, A_{\mathbb{Z}})_m \to 0$$

Prove this finite!

By a little abuse can reduce it to case $A_m \subset A_k$

$$0 \to k(A_m)/k \to \mathbb{Z}/k \to \mathfrak{sl}_2/k(A_m)$$

finite coho.

i.e. can assume $A_m \subset A_k$

$\mathrm{Hom}(G_{\mathbb{Q}/k}, A_m)$ finite?

$= \mathrm{Hom}(G_{\mathbb{Z}/k}, A_m)$ where

$K = \text{maxi abelian ext} \ of \ k$ of extension in unramified outside S. Such K has $[K:k] < \infty$ (can use Kummer theory = unit theorem, or class field theory)

$\mathrm{Hom}(G_{k/k}, A_m)$ is finite

Let $X = X(k, A) = \{ \alpha \in H'(G_k, A) \ | \ \alpha \text{ split at all } \}$

X_m finite all m. $X_m = \text{ker } [H'(G_k, A; S) \to \prod H'(G_{k_m}, A)]$

the corollary is equivalent to the above theorem (Lang - Tate + Faltings)

Is X finite? Let's 99% certain if X could be proved finite (would be enough $U_n X_{m,v}$ finite for each m) then would be a finite method
for getting the group of rational pts on A.
Pretty sure J is anti-symmetrised pairing.

$s: X \times X \rightarrow \mathbb{Q}/\mathbb{Z}$ (anti-symmetric)
s.t. $\langle x, x \rangle = 0$ or at least $\exists \langle \alpha, \beta \rangle = -\langle \beta, \alpha \rangle$

$\mathbb{Q}/\mathbb{Z} = H^2 (\text{cycle classes group})$

then X_m becomes dual to X/mX, all m.

$[k: \mathbb{Q}] < \infty$, ω prime to k, K_ω completion.

K/κ finite galois, group G.

$K_\omega = K \otimes \mathbb{Q}_\omega = \prod_{\lambda} K_{\lambda}$

$A/k: \quad A_{K_\omega} = \prod_{\lambda} A_{K_{\lambda}}$

$0 \rightarrow A_k \rightarrow \prod_{\lambda} A_{K_{\lambda}} \cong \prod_{\lambda} A_{K_{\lambda}}$

in cohom.

$H'(G, A_{K_\omega}) \rightarrow H'(G, \prod_{\lambda} A_{K_{\lambda}}) \cong \prod_{\lambda} H'(G, A_{K_{\lambda}})$

by nature of K_ω,

$H'(G, A_{K_\omega}) \cong H'(G_\omega, A_{K_\omega})$

where G_ω is the decomposition group at ω, but for almost all ω, $H'(G_\omega, A_{K_\omega}) = 0$.

$\prod_{\lambda} H'(G, A_{K_{\lambda}}) = \prod_{\lambda} H'(G_\omega, A_{K_{\lambda}})$

$0 \rightarrow X_{K_{1/\omega}} \rightarrow H'(G, A_k) \rightarrow H'(G, \prod_{\lambda} A_{K_{\lambda}})$

κ-ho is ω-split at K + at every prime λ of K.

Describe a pairing

$X_{K/\kappa} \times X_{K/\kappa} \rightarrow H^2 (G_{K/\kappa}, \Sigma) \rightarrow \mathbb{Q}/\mathbb{Z}$.

Letting $K \rightarrow \kappa$, check its consistent with inflation to get $X \times X \rightarrow \mathbb{Q}/\mathbb{Z}$.

$X = \mathbb{Z}$ is represented by $a \in \omega G(A_k)$

$s: \forall \gamma, a = \delta a \gamma, a_\gamma \in \mathbb{Z}^0 (G, A_{K_{\gamma}})$

$a = S(a), \omega a$ a 1-cochain divisor of degree

zero in K.

$a = S(\delta \gamma) \gamma \in K_\gamma$

(S the sum from divisors of degree 0 to γ points).

$\gamma = \delta \gamma + (\gamma)$ where $\gamma \in K$ is a 1-cochain of
tors defined $/K_\gamma$.
\[\delta \alpha = (f) = \delta (\psi \psi), \quad \delta \beta = \delta \beta \psi + (\psi \psi) \]

\[\delta \beta = (g) = \delta (\psi \psi) \]

\[(\alpha, \beta) \mapsto \langle \alpha, \beta \rangle = \chi \in H^2(G, \Gamma_k) \]

\[L = \chi + \gamma - \psi \psi \psi \psi \]

\[\delta \chi = \partial \psi \psi \psi \psi - \gamma - \psi \psi \psi \psi \]

\[f(x) = \langle x, \chi \rangle \mapsto \chi \text{ (lifted induced by this pairing)} \]

Now write everything additively:

\[f(x) = \delta \psi \psi \psi \psi + \psi \psi \psi \psi \]

\[f(y) = \psi \psi \psi \psi \]

\[c \mapsto \text{a 2-cochain in } K^*_x, \text{ each } c \]

\[H \text{ can make choices s.t. } c_x \in H^1, \text{ almost all } x, \]

\[H = \prod_{x} H_x, \text{ then } c = (c_x) \text{ would be a 2-cochain in } \pi \text{ of cocycles}. \]

But using these formulas, state clue of \(c \):

\[(\delta c)_x = \delta (\partial \psi \psi \psi \psi + \psi \psi \psi \psi) = \delta (\psi \psi \psi \psi + \psi \psi \psi \psi) = 0 \]

\[\implies \delta f = 0 \text{ in } K^*_x \]

\[\text{its class is a cocycle}, \quad \delta c = 0 \text{ in } \pi \text{ of cocycles}. \]

Formally, except for questions of when things are defined, independent of choice.

Also, \(\langle \alpha, \beta \rangle = -\langle \beta, \alpha \rangle \), probably \(\langle \alpha, \alpha \rangle = 0 \),

doesn't change under inflation *looks non-trivial*.

Conjectures: 1. This process gives canonical \(X \times X \rightarrow \mathbb{Q}/\mathbb{Z} \) with \(\langle \alpha, \alpha \rangle = 0 \)

2. \(\{ \alpha \in X \mid \forall \beta \in X, \langle \alpha, \beta \rangle = 0 \} = mX \)

or \(\{ \alpha \in X_m \mid \forall \beta \in X, \langle \alpha, \beta \rangle = 0 \} = mX \times X = X_m \times mX_m \)

[Cuscelo: On a conjecture of Selmer, Crelle, Fall 1959]

Considering \(x^3 + y^3 = d z^3 \) (3 = 0)

\(\text{Num} (A, A) \text{ contains } \sqrt{3} = \rho, \text{ so that } \rho^2 : A \rightarrow A \)

\(\rho^2(p) = -3 p \)

Let \(m \in M^{(1)} \); \(m \in M^{(2)} (\implies U(m, m) = 1) \) all \(m \in M^{(1)} \)

\(\text{of form } 0(\bar{m}) \text{ for some something}. \)

Note to self: that this statement is:

\[\forall \alpha \in X \mid \forall \beta \in X, \langle \alpha, \beta \rangle = 0 \implies X_0 \times \rho X \]

Proof: methods of global class field theory with...
some local theory]

\[0 \to A_k / m A_k \to H'(G_k, A_m) \to [H'(G_k, A)]_m \to 0 \]

\[\to [\Sigma \text{H}'(G_k^m, A)]_m \]

get

\[0 \to A_k / m A_k \to H'_X(G_k, A_m) \to X_m \to 0 \]

\[H'(G_k^m, A_m) \]

\[H'_X(G_k, A_m) \text{ is constructible finitely.} \]

But shee conjecture is true: shee \(\alpha, \beta \in H'_X(G_k, A) \)

Let \(S_m < H'_X \) s.t. \(H'_X / S_m \equiv X_m / m X_m \cap X_m \)

Take \(m, m^2, m^4, \ldots \)

\[X_m / m X_m \cap X_m \text{ increases its order (can't do),} \]

Call the order \(\pi(m) \). \(\pi(m^2) \leq \pi(m^4) \leq \pi(m^4) \).

Conjecture #: \(X \) is finite

\[\pi(m^n) \text{ becomes const at } m^n \iff X_{m^n} = X \]

If \(A/k \) is finite with \(g \) elts, \((A : o) = N \),

\[|N - (g + 1)| \leq 2g \sqrt{g} \]

Generally, if \(A \) is of genus \(g \), \(A_k = N \), then

\[|N - (g + 1)| \leq 2g \sqrt{g} \]

If \(C \) is complete nonsingular of genus \(g \). \(C \times C \)

is a surface, \(\Delta \subset C \times C \). A mesh of \(C \to C \)

has graph, consider the mesh \(x \mapsto (x^{(g)}) \)

Points wth \(1/k \) are pts of intersection of \(\Delta \) with

the graph. Call graph of mesh \(\phi \), \(N = \Delta \cdot \phi \).

Let \(X \) be a nonsingular surface

defined over an alg. closed \(k \).

If \(A, B \) are two smooth curves on \(X \)

\(p \in A \cap B \)

let \(O = O_p, x \) : ring of fens wth no hole at \(p \)

Take \(a, b \in O_p, x \) s.t. \(a = 0 \) is local equation for \(A \)

\(b = 0 \)

\((a) = A + \ldots \) other things not going thr' \(p \)

\((b) = B + \ldots \)

\((a) = A + D \), \(p \notin D \) with \(D \).
\(a, b\) determined \(ab\) to units (the ideal \(a, 0\) is determined).

Look at \((a, b) = a \mathfrak{o} + b \mathfrak{o} \subset \mathfrak{O}_\mathfrak{p}, x\)

\[i(\mathfrak{A}, \mathfrak{B} \text{ at } \mathfrak{P} \text{ on } X) = \dim_{\mathfrak{A}} (\mathfrak{O}/a \mathfrak{o} + b \mathfrak{o}) \]

\[\mathfrak{P} X \mathfrak{o} + b \mathfrak{o} = \mathfrak{m} \subset \mathfrak{O}, \mathfrak{m} \text{ mod ideal} \]

\(kX\) higher.

\[i(\mathfrak{A}, \mathfrak{B} \text{ at } \mathfrak{P} \text{ on } X) = \sum_{i=0}^{n} (-1)^i \dim_{\mathfrak{A}} (\mathfrak{O}/(0/\mathfrak{m}, 0/\mathfrak{I})) \]

\(2\mathfrak{o} = \mathfrak{O}/\mathfrak{o} \otimes \mathfrak{O}/\mathfrak{l} = \mathfrak{O}/\mathfrak{o} + \mathfrak{l} \)

Can look at it asymmetrically: \(A\) has a desingularization, \(A \xrightarrow{k} A\).

Claim: \(i\) also equals \(i = \sum_{\mathfrak{q}(q) = \mathfrak{p}} \text{ord}_\mathfrak{q}(\mathfrak{a} + \mathfrak{b}) \)

\((\mathfrak{a} + \mathfrak{b} = \mathfrak{b} + \mathfrak{a})\).

\(0/\mathfrak{a} \mathfrak{O} \equiv \text{local ring of } \mathfrak{P} \text{ on } A = \mathfrak{O}_\mathfrak{p}, A\)

\(0/\mathfrak{a} \mathfrak{O} + \mathfrak{b} \mathfrak{O} \equiv \mathfrak{O}_\mathfrak{p}, \mathfrak{A} / b_\mathfrak{A} \mathfrak{O}_\mathfrak{p}, \mathfrak{A} \)

\(b_\mathfrak{A} = b_\mathfrak{A} \mathfrak{A} = b + a \mathfrak{O} \)

\(\mathfrak{O}_\mathfrak{p}, \mathfrak{A} \subset \mathfrak{I}(\mathfrak{A}) \equiv \mathfrak{I}(\mathfrak{A}) \)

\(\mathfrak{O}_\mathfrak{p}, \mathfrak{A} \subset \mathfrak{I}(\mathfrak{A}) \)

What is relation between \(\mathfrak{O}_\mathfrak{p}, \mathfrak{A} + \mathfrak{O}_\mathfrak{q}, \mathfrak{A}\)?

\(\mathfrak{q}(\mathfrak{q}) = \mathfrak{p}, \mathfrak{q}, \mathfrak{A} \supset \mathfrak{O}_\mathfrak{p}, \mathfrak{A}\) (r, of finite codim)

\[\sum_{\mathfrak{q}(\mathfrak{q}) = \mathfrak{p}} \text{ord}_\mathfrak{q}(\mathfrak{a} + \mathfrak{b}) = \sum \dim_{\mathfrak{q}}(\mathfrak{O}/b_\mathfrak{A} \mathfrak{O}) \]

\[\dim_{\mathfrak{q}}(\mathfrak{O}/b_\mathfrak{A} \mathfrak{O}) \]

\[\mathfrak{O}_\mathfrak{p}, \mathfrak{A} \rightarrow \prod_{\mathfrak{q}(\mathfrak{q}) = \mathfrak{p}} \mathfrak{O}/\mathfrak{q}, \mathfrak{A} \supset \prod_{\mathfrak{q}} b_\mathfrak{A} \mathfrak{O}/\mathfrak{q}, \mathfrak{A} \]

\[\dim_{\mathfrak{q}}(\mathfrak{O}/b_\mathfrak{A} \mathfrak{O}) \]

\[\mathfrak{O}_\mathfrak{p}, \mathfrak{A} \supset b_\mathfrak{A} \mathfrak{O}_\mathfrak{p}, \mathfrak{A} \rightarrow \prod_{\mathfrak{q}} b_\mathfrak{A} \mathfrak{O}/\mathfrak{q}, \mathfrak{A} \]

\[\dim_{\mathfrak{q}}(\mathfrak{O}/b_\mathfrak{A} \mathfrak{O}) \]
Theorem: If $f = bA \phi$, $\phi \in \mathcal{O}_A$, and $g \in \mathcal{O}_A$, then $\sum_{\mathfrak{p}|\mathfrak{q}} \operatorname{ord}_\mathfrak{q}(bA) = \sum_{\mathfrak{p}|\mathfrak{q}} \operatorname{ord}_\mathfrak{q}(f)$.

Let $A \cdot B$ be the \mathfrak{p}-th degree of $\mathfrak{p} \in \mathcal{A}$, where \mathcal{A} is the linear combination of divisors A and B. For any divisor B, the degree of $A \cdot B$ only depends on the linear equivalence class of B. If $B \sim B'$, then $A \cdot B = A \cdot B'$.

Now, let $A \cdot B$ be the sum of $A_i \cdot B$, where A_i are distinct elements of A and B. Additive in each argument. $A \cdot B$ is additive in each argument. $A \cdot B$ depends only on the linear equivalence class of A and B.

On any surface X, if A is a canonical divisor class, $K_X = \mathfrak{p}$-th divisor of a double diff on X.

Let A be a nonsingular curve on X. Choose a set of vanishing to order 1 on A. $A = (x) + A'$, where A' has no chs in common with A.

\[A = (x) + A' \]
A

A : A = A : A₀ , good interaction.

For double diffuse on X, define T⁻¹ w = w', single diffuse on A; for P where t = 0 is a local equation, can choose as uniformizing parameters t, u.

w = f dt du

Def: w' = f du restricted to A, = fdu |ₐ doesn't depend on u.
If f dt du = g dt dv, then fdu - gdv restricts to 0 on A. Set 0.

Thm: \((w') = ((w) + A₀) : A \) as a divisor on A.

Take degrees: \(2g - 2 = K_A + A₀ \), \(K \) any divisor on X, define \(p_a(V) \) = "virtual arithmetic genus of \(V \)"

\[p_a(V) = 1 + \frac{K_A + A₀}{2} \]

If \(V \) is nonsingular irreducible, \(p_a(V) = g_V \) irreducible, singular:

\[p_a(V) = g + \sum \frac{m_i (m_i - 1)}{2} \]

\[= g + \sum \dim \left(O_{P_i} / O_{P_i} \right) \]

Beyond: Take \(X \) to be the plane, \(X = \mathbb{P}^2 \), \(A \sim B \)

\(\iff \) \(\deg A = \deg B \).

\(A : B = \deg A \deg B \) \((A₀ : B₀) \) where \(\deg A₀ = \deg B₀ = 1 \).

= \(\deg A \) \(\deg B \)

an \(m \)-deg curve meets an \(n \)-deg curve in \(mn \) pts.

(\(\deg K = 3 \))

A nonsingular plane curve of deg \(m \) \(\Rightarrow \) \(g_A = 1 + \frac{-3m^2 + m}{2} \)

= \(\frac{(m-1)(m-2)}{2} \)

\(X \) surface, \(A, B \) divisors on \(X \); \(A : B = \) tot int

multiplicity: \(A^t = A : A \)

If \(K \) is canonical divisor on \(X \),

\[2p_a(X) - 2 = A^t + A : K \]

Thm: If \(A \) linear, then \(p_a(A) = \) genus of \(A \) as a curve with

singularities, \(p_a(A) = g(A) + \sum \left(\frac{1}{\deg O_{P_i}} \right) \)

\(\sum \left(\frac{1}{\deg O_{P_i}} \right) \)
\[A = \text{normalization of } A. \]

Riemann-Roch for nonsing curve \(C \):
\[
\l(\sigma) = \deg(\sigma) + 1 - g + \l(v - \sigma), \quad \text{if } v \text{ can divisor on } C \]

\[
\l(\sigma) = \dim \{ f \mid f(\sigma) \geq \sigma \} = \dim \l(\sigma) \]

\(\mathcal{O}_C \) = structure sheaf of \(C \), sheaf of germs of regular functions; stalk of \(p \) is local ring at \(p \).
\(\mathcal{O}_C(\sigma) \) = sheaf of germs of rational functions for \(C \), \((f) \geq -\sigma \)

\[
\l(\sigma) = H^0(C, \mathcal{O}_C(\sigma)) \quad (\text{eg } \mathcal{O}_C(0) = \mathcal{O}_C)
\]

\[
\l(\sigma) = \dim H^0(C, \mathcal{O}_C(\sigma)) = \sum_{i=0}^\infty (-1)^i \dim H^i(C, \mathcal{O}_C(\sigma)) = \deg \sigma + 1 - g
\]

Can do the same thing for surfaces.
\(\mathcal{O}_x(D) \), for a divisor \(D \) on \(X \) : all \(f > 0 \) \((f) \geq -D \)

\[
X(x, \mathcal{O}_x(D)) = \frac{1}{2} D(D-K) + \text{pa}(x) + 1
\]

(\(R \)-Roch for divisors on a surface)

\[
\l(D) - \dim H^0(X, \mathcal{O}_x(D)) + \dim H^0(X, \mathcal{O}_x(D)) = \frac{1}{2} D(D-K) + \text{pa}(x) + 1
\]

\[
\dim \l(D) = \dim H^0(X, \mathcal{O}_x(D)) + \dim H^0(X, \mathcal{O}_x(D)) = \frac{1}{2} D(D-K) + \text{pa}(x) + 1
\]

get \(R \)-R inequality,

\[
(*) \quad \l(D) + \l(K-D) \geq \frac{1}{2} D(D-K) + \text{pa}(x) + 1
\]

Lemma:
Let \(D \) be a divisor on \(X \), \(D^2 \geq 0 \). Then replacing, if necessary, \(D \) by \(-D \), we will have \(\l(-nD) = 0 \) for all \(n > 0 \). Then for each divisor \(C \), we will have \(\l(C-nD) = 0 \) for large \(n \), \(n \) \(\to \infty \)

(\(\text{Grothendieck, JfRuAM, Note or Mathis, Fall 1957} \))

4.
Let \(m, n > 0 \). Claim: it impossible that

\[
\l(nD) > 0 = \l(-nD) > 0. \quad \text{Hypothesis means } mD \sim E > 0, \quad -mD \sim E' > 0; \quad mD \sim mE \geq 0, \quad -mD \sim mE' \geq 0, \quad 0 \sim mE + mE' \geq 0, \quad nE = -mE' \sim mE = 0. \quad 0 = nE' = \n^2 m^2 D^2 > 0, \text{ impossible.}
\]

Thus, \(\text{claim verified} \).

Apply \(R \)-R inequality (\(*) \), \(\l(-nD) \):

\[
\l(nD) + \l(K+nD) \geq \frac{1}{2} D^2 + \frac{1}{2} D \cdot K + \text{pa}(x) + 1
\]

\[
\to \quad \l(K+nD) \to \infty \approx n \to \infty
\]
Given any divisor C, choose n large enough so that $l(K+nD) > l(C+K)$. Claim $l(C+nD) = 0$ for any such n. If not, $E \sim C-nD$, $E \geq 0$.

If $E \sim K+nD$, $E \geq 0$.

$E \geq 0 : l(D+E) \geq l(D)$ since $l(D+E) > l(D)$.

$l(C+K) = l(E+K+nD) \geq l(K+nD)$, contradicting above inequality. $l(C+nD) = 0$ for large enough n.

Now to finish, apply $R \cdot R$ to $C+nD$:

$l(C+nD) + l(K-C-nD) = \frac{n}{2} D^2 + \text{const} \cdot n + \text{const}$

$\to \infty$ with n, qed to lemma.

Then (Hodge, with harmonic integrals, in 1937, in classical case, then by Segre + Petrovsky in abstract case 1938). A, D divisors on complete non-singular X. $A^2 > 0$, $AD = 0 \Rightarrow D^2 \leq 0$.

By Grothendieck. First for special kind of A: let H be a hyperplane section.

(Rote, all hyperplane sections are linearly equivalent.) (If A, B have no common chts, $A > 0$, $B > 0 \Rightarrow A \cdot B > 0$)

If $E \geq 0$, then $HE > 0$ since can move H by linear equivalence so that H, E have no common chts.

If $l(D) > 1$, then $H \cdot D = 0$.

$H^2 > 0$, $D \cdot H = 0 \Rightarrow \pm n D \cdot H = 0$ all n. $l(\pm n D) \leq 1$ all n.

It is impossible that $D^2 > 0$, $D^2 \leq 0$.

If $A^2 > 0$, $DA = 0$, put $u = AH$, $d = DH$ then ($uD - dA$) $H = 0$. $a^2 D^2 + d^2 A^2 = (uD - dA)^2 \leq 0$.

$0 \neq 0 + D^2 \leq 0$.

(inequality of Castelnuovo- Severi). Let C_1, C_2 be two complete nonsingular curves, let D be a divisor on $X = C_1 \times C_2$.

Let $d = D \cdot C_2 = D \cdot (p_2 \times C_2)$ = degree of D over C_2.

$d_2 = D \cdot C_1 = D \cdot (p_1 \times C_1) = \cdots C_1$.

Then $D^2 \leq 2d_1 d_2$.

Consider C_i as embedded in $C_1 \times C_2$. $C_i^2 = 0 = C_i \cdot C_2 = 1$.

Take $A = C_1 + C_2$, $A^2 = 2 > 0$.
\[\text{let } D = D^* + d_1 c_1 + d_2 c_2 \quad (\text{def of } D^*) \]
\[D^* c_1 = 0 = D^* c_2 \]
\[D^2 + 2 \leq 0 \text{ by Hodge's Index Thm} \]
\[D^2 = \frac{D^*}{D} \quad \therefore D^2 \leq 2 d_1 d_2 \]

Put \[Q(D) = 2d_1 d_2 - D^2 \geq 0 \text{ all } D \text{. It behaves in a quadratic way.} \]
(\[B(D, D') = d_1 d_2 + d_1 d_2 - D D' \text{, the bilinear form associated to } Q \])

Now consider two regular maps
\[\varphi, \psi : C \rightarrow C_1 \text{ graphs } \Phi, \Psi \subset X = C_1 \times C_2 \]
\[\Phi, \Psi \equiv C_1 \text{ as curves.} \]
\[Q(m \Phi + n \Psi) = \alpha m^2 + 2 \beta m n + \gamma n^2 \geq 0 \text{ (all } m,n) \]
\[\beta^2 - 4 \gamma \leq 0 \]
\[B(\Phi, \Psi)^2 \leq B(\Phi, \Phi) B(\Psi, \Psi) = Q(\Phi) Q(\Psi) \]
\[\deg \varphi, \deg \psi \text{ are the degrees of } \Phi, \Psi \text{ rest } / C_2 \]
\[(\deg \varphi + \deg \psi - N)^2 \leq (2 \deg \varphi - \Phi^2)(2 \deg \psi - \Psi^2) \]

\[(N = \Phi \cdot \Psi = \text{no. of fixed pts } \varphi = \Psi \text{ with multiplicities counted}) \]
\[\Phi^2 = 2 g_1 - 2 - \Phi \cdot K \]
\[K \text{ canonical on } X \]
\[\Phi \cdot K = 2 g_1 - 2 + \deg \varphi (2 g_s - 2) \]
\[\Phi^2 = - \deg \varphi (2 g_s - 2) \]
\[2 \deg \varphi - \Phi^2 = 2 g_s \deg \varphi \]
\[(\deg \varphi + \deg \psi - N)^2 \leq 4 g_s \deg \varphi \deg \psi \]
\[1 \deg \varphi + \deg \psi - N \leq 2 g_s \sqrt{\deg \varphi \deg \psi} \]

Now let \[C_1 = C_2 \text{, } \Psi = 1 \]
\[1 + \deg \varphi - N \leq 2 g_s \sqrt{\deg \varphi} \]
\[N \text{ becomes no. of fixed pts of } \varphi : C \rightarrow C \text{. If } C \text{ is defined over a field with } q \text{ elts, define } \]
\[\varphi(x_1, \ldots x_n) = (x_1^q, \ldots x_n^q) \]
\[\deg \varphi = q \quad 1 + q - N \leq 2 g_s \sqrt{q} \quad N = \text{no. of its rant / k} \]

What does this result have to do with the Riemann Hypothesis.
Define \(S(s) = \sum_{\mathfrak{n}} \frac{1}{(N\mathfrak{n})^s} = \prod_{\mathfrak{p}} \frac{1}{1 + (N\mathfrak{p})^s} \) for real \(s > 1 \).

For running the nonzero ideals in \(\mathbb{Z} \)

- \(N\mathfrak{n} = \# \text{ elts of } \mathbb{Z}/\mathfrak{n} \).
- \(N \) is the unique function so \(N\mathfrak{a} N\mathfrak{b} = N(\mathfrak{a} \mathfrak{b}) \) and \(N\mathfrak{p} \) is the number of elts in \(\mathbb{Z}/\mathfrak{p} \).

The formal identity comes from unique factorization.

Consider in domain \(\mathbb{R}(s) > 1 \) is easy to show. Can do it for any no. field \(K \); get \(S_K \); take all \(s \) for \(K \), or all \(s \) for \(K \). Has analytic continuation over all the \(s \)-plane \(C \), except for a simple pole at \(s = 1 \); get

\[
S(1-s) = \left(\frac{\pi}{\sin \pi s}\right) \Gamma(s) S(s) \quad \Gamma(s) S(s) = \Gamma(s) \frac{S(s)}{S(s)}
\]

Except for trivial zeros coming from the \(\Gamma \) factor, \(\mathbb{R} \) zeros outside of \(0 \leq \Re s \leq 1 \).

If \(K \) is a non-field with non-field \(K_0 \) with \(\mathbb{R} \) elts, define \(S_k \). Define

\[
S_k(s) = \left(\sum_{\mathfrak{p} \in \mathfrak{p}_0} \frac{1}{(N\mathfrak{p})^s} \right)
= \prod_{\text{prime ideal } \mathfrak{p}_0} \frac{1}{1 + (N\mathfrak{p}_0)^s}
\]

where \(N\mathfrak{p}_0 = \deg \mathfrak{p}_0 \)

\[
N\mathfrak{p} = \mathfrak{q} \deg \mathfrak{q}
\]

\[
N\mathfrak{a} = \mathfrak{q} \deg \mathfrak{a}
\]

\[
S_k(s) = \sum_{n=0}^{\infty} D_n q^{-ns} \quad \text{where } D_n = \# \mathfrak{a} \text{ of } \mathfrak{a} \geq 0, \deg \mathfrak{a} = n.
\]

We have a zeta function involving \(Z(u) = Z(\frac{1}{2}u) \).

Let \(\mathcal{A} \) be a linear class. R. R. says that \# of \(\alpha \in \mathcal{A} \) such \(\alpha \geq 0 \) is

\[
\frac{q^{d(A)}}{q - 1}
\]

Let \(d(A) = \text{dim} \mathcal{A} \) for \(\alpha \geq 0 \) for \(\alpha \in \mathcal{A} \).

Claim: \(\forall \mathcal{A}, \ D_n \neq 0 \)

Assume: \(\exists \text{ a divisor of degree } 1 \) for \(n > 2q-2 \).

Then by R. R.,

\[
l(A) = \deg(A) + 1 - q + \ell(\mathfrak{p} - A)
\]

If \(\deg A > 2q-2 \),

Then each class of degree \(n \) has \(\frac{q^{n+2q-3}}{q-1} \) divisors.
No. of classes of degree \(n = \text{no. of classes of degree } 0 = h < \infty \)

\[D_n = \frac{h^n q^{n+1} - 1}{q^{n+1}} \quad \text{for } n > 2g - 2 \quad \therefore \quad Z(u) \text{ is a rt function of } u. \]

\[Z(u) = \frac{h}{q-1} \left(\frac{1-u}{1-q u} \right) + \text{polynomial of degree } \leq 2g - 2 \]

for \(1/4 < \frac{1}{2} \) i.e. \(\text{Re}(u) > 1, \) has poles at \(u = \frac{1}{q}, \) \(u = 1. \) Residues are \(\frac{h}{q-1} \) at \(u = 1 \)

\[= \frac{h}{q^g} (q-1) \text{ at } U = \frac{1}{q}. \]

One proves the functional equation for \(Z \) by relating \(D_n \) and \(D_{2g-2-n} \) for \(0 \leq n < 2g-1 \)

One gets \(Z(\frac{1}{q} u) = q^g u^{2g-2} Z(u) \) (by R.R.)

\[P(u) = q^g u^{2g} P(\frac{1}{q} u), \text{ so that } P \text{ must be of degree } 2g, \] \[P(0) = 1, \quad P(1) = h. \]

\[P(u) = \prod_{i=1}^{2g} (1 - \alpha_i u). \]

R.H. Hypothesis says: \(\prod_{i=1}^{2g} \alpha_i = \sqrt{q} \)

\[Z(u) = \frac{\prod_{i=1}^{2g} (1 - \alpha_i u)}{(1-u)(1-q u)} \]

\[= Z(u) = 1 + D_1 u + \ldots \]

\[= 1 + (1+q - \sum_{i=1}^{2g} \alpha_i) u + \ldots \]

\[D_1 = 1+q - \sum_{i=1}^{2g} \alpha_i = \text{no. of frames of degree } 1 \]

\[Z(u) = \prod_{x} \left(1 - u^\deg(x)^{-1}\right) \]

\[\frac{Z'(u)}{Z(u)} = \sum \frac{\deg(x) \cdot u^{\deg(x) - 1}}{1 - u^\deg(x)} = \sum \left(\sum_{n=0}^{\deg(x)} E_n \cdot u^n \right) \]

Coeff of \(u^{m-1} = \text{no. of rt frames over } \mathbb{K}_{m-1} = N_m \]

\[\left(\frac{z_m}{z(u)} \right) = \sum_{m=1}^{2g} N_m u^m / u; \quad \text{Comparing} \]

\[\sum_{i=1}^{2g} \alpha_i^m \]

We know that \(\left| \sum_{i=1}^{2g} \alpha_i^m \right| \leq 2g \sqrt{2g} = 2g q^{m/2}. \]

Know that

\[\prod \alpha_i = q^g. \quad \text{Oh well} \]