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In this article, I prove the Weil conjecture on the eigenvalues of Frobenius endomor-
phisms. The precise statement is given in (1.6). I have tried to present the proof in a form
as geometric and elementary as possible and have included many reviews: only the results
of §83, 6, 7, and 8 are original.

In a sequel to this article,! T will give various refinements of the intermediate results and
of the applications, including the “hard” Lefschetz theorem (on the iterated cup-products
by the cohomology class of a hyperplane section).

The text faithfully follows that of six lectures given at Cambridge in July 1973. I thank
N.Katz for allowing me to use his notes.

1 Grothendieck’s theory: cohomological interpretation
of L-functions

(1.1) Let X be a scheme of finite type over Z and | X | the set of closed points of X. For
x € |X]|, let N(x) denote the number of elements in the residue field k(x) of X at x. The
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Hasse-Weil zeta function of X is

(1.1.1) ()= [ A=Nx)™™

x€|X|

(this product converges absolutely for N (s) sufficiently large). For X = Spec(Z), {x (s) is
the Riemann zeta function.

We will consider exclusively the case where X is a scheme over a finite field ;.

For x € | X|, we write g, for N(x). Putting deg(x) = [k(x):IF,], we have gx = qdeg™)
It is useful to introduce a new variable t = ¢ 5. Let

(1.1.2) Z(X;t) = l_[ 1§ _tdeg(x))—l;
x€|X|

this product converges for |¢| sufficiently small, and we have
(1.1.3) tx(s) = Z(X;q7°).

(1.2) Dwork (On the rationality of the zeta function of an algebraic variety, Amer. J.
Math., 82, 1960, p. 631-648) and Grothendieck ([1] and SGA 5) have proved that Z(X ;)
is a rational function of ¢.

For Grothendieck, this is a corollary of general results in /-adic cohomology (where /
is a prime number not equal to the characteristic p of IF;). These provide a cohomological
interpretation of the zeros and poles of Z(X ;¢), and a functional equation when X is proper
and smooth. The methods of Dwork are p-adic. For X a non-singular hypersurface in a
projective space they also provided him with a cohomological interpretation of the zeros and
poles, and the functional equation. They inspired the crystalline theory of Grothendieck and
Berthelot, which for X proper and smooth provides a p-adic cohomological interpretation
of the zeros and poles, and the functional equation. Based on the ideas of Washnitzer,
Lubkin created a variant of this theory, valid only for X proper, smooth, and liftable to
characteristic 0 (A p-adic proof of Weil’s conjectures, Ann of Math, 87, 1968, pp. 125-
255).

We will make essential use of Grothendieck’s results, and recall them below.

(1.3) Let X be an algebraic variety over an algebraically closed field k of characteristic
p, i.e., a separated scheme of finite type over k. We do not exclude the case p = 0. For
any prime number [ # p, Grothendieck defined /-adic cohomology groups H'(X,Qy).
He also defined cohomology groups with compact support H C’ (X,Qy). For X proper, the
two coincide. The Hc{ (X,Qy) are vector spaces of finite dimension over Q;, zero for i >
2dim(X).

(1.4) Let X be an algebraic variety over [y, Fq the algebraic closure of [Fy, and X the
algebraic variety over Fq obtained from X¢ by extension of scalars from [ to I_Fq. In the
language of Weil and Shimura, we would express this situation by: “Let X be an algebraic
variety defined over F;”. Let F': X — X be the Frobenius morphism; it sends a point with
coordinates x to the point with coordinates x4; in other words, for Uy a Zariski open subset
of Xp, defining an open subset U of X, we have F~Y(U) = U; for x € H*(Uy, 0), we
have F*x = x?. Let us identify the set |X| of closed points of X with XO(I_Fq) (the set
Homp, (Spec(Fq), Xo) of points of X with coefficients in IE_?q) and let ¢ € Gal(Fq /Fgq) be
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the Frobenius map: ¢(x) = x9. The action of F on | X| can be identified with the action of
@ on XO(IF'q). So:

a) The set X of closed points of X fixed under F can be identified with the set
Xo(Fy) C Xo (Fq) of points of X defined over ;. This simply expresses the fact that
for, x € Fq, we have x € F; & x9 = x.

b) Similarly, the set X © " of closed points of X fixed under the nth iterate of F can be
identified with Xo(IFyn).

c¢) The set | X | of closed points of X can be identified with the set | X | 7 of orbits of F (or
@) on | X|. The degree deg(x) of x € | Xo| is the number of elements in the corresponding
orbit.

d) From b) and c¢) we see that

(1.4.1) #XF" =#Xo(Fgr) = ) deg(x).
deg(x)|n

(If x € | Xo| and deg(x)|n, then x defines deg(x) points with coordinates in Fy», all conju-
gate over [Fy).

(1.5) The morphism F is finite, in particular, proper. Therefore, it induces morphisms
F*:HL(X.Qq) — H(X.Q)).
Grothendieck proved the Lefschetz formula

#XF = (=1 Te(F*, HA(X.Q))):;

the term on the right, a priori an [-adic number, is an integer, equal to the term on the left.
We note that such a formula is only reasonable because d F = 0, even at infinity (X is not
assumed to be proper); the relation d F' = 0 implies that fixed points of F' have multiplicity
one.

An analogous formula is valid for the iterates of F':

(1.5.1) #XT" = Xo(Fgr) =Y (=) Te(F** HL(X.Q)))
i
We take the logarithmic derivative of (1.1.2):
(1.5.2) 4 Z(Xo,1) (g7 Z(Xo.1)
5. —1lo =L "
dr 850 Z(Xo.1)
B Z —deg(x)rdee™)

— deg()
xelxol 1!

= Y Y deg(x)i"eE® “il)ZXo(Fqn)t”

x€|Xo|n>0 n

For F' an endomorphism of a vector space V', we have an identity of formal series

d -1 n n
(1.5.3) t - log(det(1—F1.V) )= Tr(F". V)t

n>0
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(check it for dim V' = 1 and observe that both sides are additive in V when we take short
exact sequences). On substituting (1.5.1) into (1.5.2) and applying (1.5.3), we find that

d - d .
—logZ(Xo.t) =Y (=1)'t—1 1—F*t, H(X -1
trloe Z(Xo.t) = ) (=1)'t--logdet(1 — 71, Ho(X.Qi) ™",

l
or
(1.5.4) Z(X.1) = [ [det(1 — F*r. HI(X.Qp) V"™

1

The term on the right is in Q; (¢). The formula affirms that its Taylor expansion at t = 0, a
priori a formal series in Q; [[¢]] with constant coefficient one, is in Z[[¢]] and is equal to the
term on the left, also considered as a formal series in #. This formula is the Grothendiek’s
cohomological interpretation of the Z-function.

Our main result is the following:

Theorem (1.6). Let X be a projective nonsingular (= smooth) variety over Fy. For each i,
the characteristic polynomial det(1— F*t, H' (X,Qy)) has integer coefficients independent
of I (I # p). The complex roots a of this polynomial (complex conjugates of the eigenvalues

of F*) have absolute value |a| = q[i.
We show that (1.6) is a consequence of the following apparently weaker statement:

Lemma (1.7). For eachi and eachl # p, the eigenvalues of the Frobenius endomorphism
F*on H (X ,Qq) are algebraic numbers all of whose complex conjugates are of absolute

value |a| = qli.

Proof of (1.7) =(1.6): Regard Z(X¢,t) as a formal series with constant term 1 in
Z([t]] : Z(Xo.,t) = )_, ant™. From (1.5.3), the image of Z(Xy,?) in Q;[[¢]] is the Taylor
expansion of a rational function. This means that for N and M sufficiently large (> the
degrees of numerators and denominators) the Hankel determinants

Hj = det((a; 4+ j+x)o<i,j<M) (k> N)

are zero. The vanishing is true in Q; if and only if it is true in Q; Z(Xo,?) is therefore the
Taylor expansion of an element of QQ(¢). In other words,

Z(Xo.1) € Z[[1]NQ; (1) C Q(1).

Let Z(Xo,t) = P/Q with P, Q coprime elements of Z[t] having positive constant
terms. According to a lemma of Fatou, since Z(Xjy,) lies in Z[[¢]] and has constant term
1, the constant terms of P and Q are 1. Let

Pi(t) = det(1— F*t, H (X,Qy)).

(1.7) implies that P; are coprime. The term on the right of (1.5.4) is therefore an irreducible
fraction and

P@) =[] P
i odd

o =[] .

i even
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Let K be the subfield of the algebraic closure Q; of Q; generated over Q by the roots of
R(t) = P(t)Q(t). The roots of P;(t) are those roots of R(z) with the property that all
their complex conjugates have absolute value q_li. This set is stable under Gal(K/Q).
Therefore, P;(t) has rational coefficients. According to a lemma of Gauss (or because
roots of P;, being roots of R, are the inverses of algebraic integers), it even has integer
coefficients. The description above of the roots of P;(¢) is independent of /; therefore, the
polynomial P;(¢) is also independent of /.
The rest of the article is devoted to the proof of (1.7).

(1.8) Grothendieck’s theory provides a cohomological interpretation, not only of zeta
functions, but also of L-functions. The results are as follows.

(1.9) Let X be an algebraic variety over a field k. For the definition of a constructible
Qy-sheaf on X, I refer to SGA 5 VL. It suffices to say that:

a) If F is a constructible Q;-sheaf on X, then there exists a finite partition of X into
locally closed subschemes such that F|X; is locally constant.

b) Suppose that X is connected, and let X be a geometric point of X. For F locally
constant, 71(X,X) acts on the stalks F%; the functor sending a sheaf to its stalk at X is
an equivalence from the category of locally constant Q;-sheaves on X to the category of
continuous representations of 71 (X,Xx) on Q;-vector spaces of finite dimension. Such a
representation in general does not factor through a finite quotient.

¢) When k = C, the constructible Q;-sheaves over X can be identified with the sheaves
of Q;-vector spaces F on X" with the property that there exists a finite partition of X
into Zariski-locally closed subsets X; such that, for each i, there is a local system of free
Zj;-modules F; of finite type on X; with

FlXi = Fi ®z, Q.
We will consider only constructible (Q;-sheaves, and will simply call them Q;-sheaves.

(1.10) Suppose that k is algebraically closed, and let F be a Q;-sheaf on X . Grothendieck
has defined /-adic cohomology groups H'(X,F) and Hci (X,F). The H, é (X,F) are vec-
tor spaces of finite dimension over Q;, zero for i > 2dim(X). For k = C, the H' (X, F)
and H c’ (X, F) are the usual cohomology groups (resp. with compact support) of X" with
coefficients in F.

(1.11) Let Xy be an algebraic variety over IF;, X the corresponding variety over Fq,
and Fy a sheaf of sets on Xg (for the etale topology). We denote by F its inverse image on
X . In addition to the Frobenius isomorphism F: X — X, we have a canonical isomorphism
F*: F*F = F. Here is a description. We regard Fy as an étale space over Xy, i.e., we
identify Fo with an algebraic space [Fp] equipped with an etale morphism f:[Fo] — Xo
such that Fy is the sheaf of local sections of [Fp]. The similar etale space [F] over X is
obtained from [Fp] by extension of scalars. Therefore, we have a commutative diagram
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and hence a morphism [F] — X X(r x, r) [F] = [F*F], which is an isomorphism because
f is étale. The inverse of this isomorphism defines the isomorphism F*F = F sought.
This construction can be generalized to (Q;-sheaves.

(1.12) Let X be an algebraic variety over Fy, Fo a Q;-sheaf on Xo, (X,F) the pair
obtained by extension of scalars from Fy to Fy, F: X — X, and F*: F*F — F.
The finite morphism F and F* define an endomorphism

F*H{(X.F) — H.(X,F*F) — H.(X., F).

For x € |X|, F* defines a morphism F*: Fr(y) — Fx. When x € X this is an endomor-
phism of F. Grothendieck proved the Lefschetz formula

> Te(Ff Fo) =Y (=) Te(F*, H(X. F)).
xeX¥ i
A similar formula holds for the iterates of F: the n iterate of F* defines morphisms

FI": Fpn(x)y — Fx; for x fixed by F", F" is an endomorphism and

(1.12.1) > T(FF Fo) =) (=1 Te(F** H.(X.F))

xex "

(1.13) Let xo € | X|, Z the orbit corresponding to F in | X|, and x € Z. The orbit Z has
deg(xo) elements (1.4). We denote by F ;0 the endomorphism F. ; deg(xo) of Fx, and we put

det(1— Fy t,Fo) = det(1 — Fy t, Fx).

Up to isomorphism, (Fx, F; ) does not depend on the choice of x. This Justlﬁes omitting
x in the notation. We will use a similar notation for other functions of (Fy, F. )

(1.14) Define Z(Xo, Fo,t) € Qq[[¢]] by the product
(1.14.1) Z(Xo.Fo.t) =[] det(1—F}ie™ Fo)~t,
x€|X0|

For F the constant sheaf (Q;, we recover (1.1.2). According to (1.5.3), the logarithmic
derivative of Z is

d Z(Xo,Fo.t)
1.14.2 z—1 Z(X, 1) & d’ Te(FX", Fo)t"
(1.14.2) 0g Z(Xo. Fo.1) ¥ ~Z s => > r(F}", Fo)

n xexr” =X0(]Fqn)

Substituting (1.12.1) into (1.14.2), we find, by the same calculation as in (1.5), the following
generalization of (1.5.4)

(1.14.3) Z(Xo.Fo.t) = [ [ det(1 — F*1, HI (X, F)) D™
i
This formula is an identity in Q;[[¢]].

(1.15) It is sometimes convenient to use a galoisian language rather than a geometric
one. Here is the dictionary.
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If I_F; and I_FZ are two algebraic closures of I, then (X, Fo) over I, defines by exten-
sion of scalars (X1, F1) over F}] and (X», F>) over IF‘LZI. Every F4-isomorphism o': I_F; = I_Fé
defines an isomorphism

H}(X1,F1) = HY (X2, F2).

In particular, for Ell = I_Fg (denoted by IF‘q), we find that Gal(Fq /Fq) acts on H} (X, F)
(action by transport of structure ). Let ¢ € Gal(F;/F,) be the Frobenius map. One can
check that

F*=¢ ' (in End(H}(X,F))).

This suggests defining the geometric Frobenius F € Gal(IF‘q /F4) tobe 1. We have
(1.15.1) F*=F.

Let x be a geometric point of Xy, localized to x¢ € |Xo|. By transport of structure,
the group Gal(k(x)/k(xo)) acts on the stalk (Fo)y of Fop at x; in particular, the geometric
Frobenius relative to k(xg), Fx, € Gal(k(x)/k(xo)), acts. For x defined by a closed point,
again denoted by x, in X, we have F, = (Fp)x and

(1.15.2) FE & Freec0) — g (in End(Fy)

In the galoisian notation, (1.14.3) becomes
[T det(l— Fur®e® 7o) =" = [ Tdet(1 - Fe. HI (X, F)©V'™".

x€|Xo| 1

2 Grothendieck’s theory: Poincare duality

(2.1) To explain the relation between roots of unity and orientations, I will first restate two
classical cases in an unusual language .

a) Differentiable manifolds. - Let X be a differentiable manifold purely of dimension #.
The orientation sheaf Z’ on X is the sheaf locally isomorphic to the constant sheaf Z, whose
invertible sections on an open U in X correspond to the orientations of U. An orientation
of X is an isomorphism of Z' with the constant sheaf Z. The fundamental class of X is
a morphism Tr: H (X, 7'y — Z; if X is orientable, it can be identified with a morphism
Tr: H! (X,Z) — Z. Poincaré duality can be expressed using this fundamental class.

b) Complex varieties. - Let C be an algebraic closure of R. A smooth complex algebraic
variety, or rather the underlying differentiable variety, is always orientable. To justify this
it suffices to orient C itself. This amounts to a choice:

a) choosing one of the two roots of the equation X2 = —1; we call it +i;

b) choosing an isomorphism from R/Z to U! = {z € C| |z| = 1}; +i is the image of
1/4,

¢) choosing one of the two isomorphisms x — exp(£2mix) from Q/Z to the group of
the roots of unity of C, which extends continuously to an isomorphism from R/Z to U!.

We denote by Z(1) a free Z-module of rank one whose set of generators has two ele-
ments canonically corresponding to one of the two-element sets a), b), ¢). The simplest is to
take Z(1) = Ker(exp: C — C*). The generator y = +27i corresponds to the isomorphism
c): x = exp(xy).
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Let Z(r) be the r-th tensor power of Z(1). If X is a smooth complex algebraic variety
purely of complex dimension r, the orientation sheaf on X is the constant sheaf of value
Z(r).

(2.2) To “orient” an algebraic variety over an algebraically closed k of characteristic
zero, we must choose an isomorphism from QQ/Z to the group of the roots of unity of k.
The set of such isomorphisms is a principal homogeneous space under Z* (no longer under
7*). When one is only interested in /-adic cohomology, it suffices to consider the roots of
unity of order a power of /, and to suppose that the characteristic p of k differs from /. We
denote by Z/I" (1) the group of roots of unity of k of order dividing /”. For variable n, the
Z/ 1™ (1) form a projective system with transition maps

lm—n

Omn:Z/I™(1) = Z/1"(1), x> x

We put Z;(1) = limprojZ/ 1" (1) and Q;(1) = Z;(1) ®z, Q;. Denote by Q;(r) the r-th
tensor power of Q; (1); for r € Z negative we put Q;(r) = Q;(—r)".

As a vector space over QQ;, Q;(1) is isomorphic to ;. However, the automorphism
group of k acts non-trivially on Q; (1): it acts via the character with values in Z; giving its
action on the roots of unity. In particular, for k = I_Fq, the Frobenius map ¢: x — x? acts by
multiplication by g.

Let X be an algebraic variety purely of dimension n over k. The orientation sheaf of
X for the /-adic cohomology is the constant Q;-sheaf Q;(n). The fundamental class is a
morphism

Tr: HZ" (X, Q;(n)) — Q,

or again
Tr: HZ" (X, Q1) = Qi (—n).

Theorem (2.3) (Poincare duality). For X proper and smooth, purely of dimension n, the
bilinear form . _
Tr(xUy): H' (X,Q) ® H*" ™ (X,Q;) = Q(—n)

is a perfect pairing (it identifies H (X, Q;) with the dual of H*"(X,Q;(n))).

(2.4) Let X¢ be a smooth proper algebraic variety over [y, purely of dimension n, and
X over I_Fq the variety deduced from Xy by extension of scalars. The morphism (2.3) is
compatible with the action of Gal(IE_?q /Fgq). If the («;) are the eigenvalues of the geometric
Frobenius acting on H' (X,Q;), the eigenvalues of F acting on H?"~(X,Q) are (q”ocj_l).

(2.5) Suppose, for simplicity, that X is connected. The proof of (2.4) is as follows once
we transpose to the geometric language instead of the Galois one (see (1.15)).

a) Cup-product puts H’(X,Q;) and H?*"~/(X,Qy) in perfect duality with values in
H?"(X,Qy), which has dimension one.

b) Cup-product commutes with forming the inverse image F* by the Frobenius mor-
phism F: X — X.

¢) The morphism F is finite of degree ¢”: on H?"(X,Qy), F* is multiplication by ¢”.

d) The eigenvalues of F* therefore have the property (2.4).
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(2.6) We let y(X) =), (=1)"dim H' (X, Q). When n is odd, the form Tr(x U y) on
H"(X,Qy) is alternating; the integer ny(X) is therefore always even. It is easy to deduce
from (1.5.4) and (2.3), (2.4) that

—nx(X)

Z(Xo.t)=¢eq 2t XX Z(Xg,q7"t™™),

where ¢ = 1. When 7 is even, we let N denote the multiplicity of the eigenvalue q”/ 2 of
F* acting on H"(X,Qy) (i.e., the dimension of the corresponding invariant subspace). We

have
1, if n 1s odd

B (—=1)N, ifnis even.

This is the Grothendieck’s formulation of the functional equation for Z-functions.

(2.7) We will need other forms of the duality theorem. The case of curves will be enough
for our purposes. If F is a Q;-sheaf on an algebraic variety X over an algebraically closed
k, we denote by F(r) the sheaf 7 ® Q;(r). This sheaf is (noncanonically) isomorphic to
F.

Theorem (2.8). Let X be smooth purely of dimension n and F locally constant. We denote
by FY the dual of F. The bilinear form

Tr(xUy): H (X, )@ HX" (X, F¥ (n)) — H" (X, FRF" (n)) — H>"(X,Q;(n)) — Q
is a perfect pairing.

(2.9) Suppose that X is connected and that x is a closed point of X. The functor
F +— Fx is an equivalence of the category of locally constant Q;-sheaves with that of /-

adic representations of 771 (X, x). Via this equivalence, H°(X, F) can be identified with the
invariants of 71 (X, x) acting on Fy:

(2.9.1) HYX,F) = ]:;n(X,x)_
According to (2.8), for X smooth and connected of dimension », we have
X>
HZ* (X, F) = HO(X, F¥ ()Y = (FY ()" ).

The duality exchanges invariants (the largest invariant subspace) with coinvariants (the
largest invariant quotient). The formula can be rewritten as

HZ(X, F) = (Fx)x; (x,x) (—1).
We will use it only forn = 1.

Statement (2.10). Let X be a connected smooth curve over an algebraically closed field k,
X a closed point of X, and F a locally constant Q;-sheaf. We have

(i) HO(X,F) = 0if X is affine.

(ii) ch(va) = (fx)m(X,x)(_l)~
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Assertion (i) simply states that 7 does not have sections with finite support.

(2.11) Let X be a connected smooth projective curve over an algebraically closed field
k, U an open set in X, the complement of the finite set S of closed points of X, j the
inclusion U < X, and F a locally constant Q;-sheaf on U. Let j.«F be the constructible
Q;-sheaf — the direct image of F. Its stalk at x € S has rank at most the rank of the stalk at
a general point; it is the space of invariants of the local monodromy group.

Theorem (2.12). The bilinear form

Tr(x Uy): H (X, j«F) @ H> (X, ju F¥ (1)) = H*(X, jx F ® jx F¥ (1))
— H*(X, ju(F®FY)(1) > HZ(X.Q;(1)) > Q

is a perfect pairing.

(2.13) It will be convenient to have Q;-sheaves Q;(r) on any scheme X on which / is
invertible. The main point is to define Z/["(1). By definition, Z/[" (1) is the étale sheaf of
["-th roots of unity.

(2.14) Bibliographical notes for paragraphs 1 and 2.

A) All the important results in étale cohomology are first proved for torsion sheaves.
The extension to (Q;-sheaves is done by passing to formal limits. In what follows, for each
theorem mentioned, I will not refer to the reference where it is proved, but to the reference
where a similar statement for torsion sheaves is proved.

B) With the exception of the Lefschetz formula and (2.12), all the results in étale coho-
mology used in this article are all proved in SGA 4. For those already stated, the references
are: definition of H?: VII; definition of H (f, XVII 5.1; finiteness theorem: XIV 1, com-
pleted in XVII 5.3; cohomological dimension: X; Poincare duality: XVIII.

C) The relation between the various Frobenius elements ((1.4), (1.11), (1.15)) is ex-
plained in detail in SGA 5, XV, §§1, 2.

D) The cohomological interpretation of the Z-functions is clearly explained in [1];
however, the Lefschetz formula (1.12) for X a smooth projective curve is used, but not
proved. For the proof, one has to consult SGA 5.

E) The form (2.12) of Poincare duality follows from the general result SGA 4, XVIII
(3.2.5) (for S = Spec(k), X = X, K = j«F, L = Qy) by a local calculation that is not
difficult. The statement will be explicitly included in the final version of SGA 5. For the
case where we use it (tame ramification of ), we could obtain it by transcendental methods
by lifting X and F to characteristic 0.

3 The main lemma (La majoration fondamentale)
The result of this paragraph was catalyzed by reading Rankin [3].

(3.1) Let Up be a curve over Fy, complement in P! of a finite set of closed points, U
the curve over Fq deduced from it, u a closed point of U, Fy a locally constant sheaf on
Uy, and F its inverse image on U'.

Let B € Q. We say that Fq is of weight B if, for all x € |Up|, the eigenvalues of F
acting on Fp (1.13) are algebraic numbers all of whose complex conjugates are of absolute

value qf/z. For example, Q; (r) is of weight —2r.
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Theorem (3.2). We make the following hypotheses:
(i) Fo is equipped with a nondegenerate alternating bilinear form

V:Fo® Fo— Qi (—=PB) (B €2Z).

(ii) The image of w1 (U,u) in GL(F,) is an open subgroup of the symplectic group

(iii) For all x € |Uy|, the polynomial det(1 — Fxt, Fo) has rational coefficients.

Then F is of weight B.

We may suppose, and we do suppose, that U is affine and that F # 0.

2k
Lemma (3.3). Let 2k be an even integer and denote by @ Fg the 2k-th tensor power of Fo.
For x € |Uy|, the logarithmic derivative

d 2k
(- og(det(1 Fr192® @ Fo)~h

is a formal series with positive rational coefficients.

The hypothesis (iii) ensures that, for all n, Tr(F}, Fo) € Q. The number

n 2k n 2k
Tr(F}, ®Fo) =Tr(F;,Fo)
is a positive rational, and we apply (1.5.3).

2k
Lemma (3.4). The local factors det(1 — Fyt92®) '® Fo)™ are formal series with positive
rational coefficients.

2k
The formal series log(det(1 — F " 19¢8(®) '@ F)~1) has constant term zero; from (3.3)
all the coefficients are > 0; the coefficients of its exponential are therefore also positive.

Lemma (3.5). Let f; =), a; nt" be a sequence of formal series with constant term 1 and
positive real coefficients. We assume that the order of f; — 1 tends to infinity with i; and we
put [ =11, fi. Then the radius of convergence of f; is at least equal to that of f.

If f=),ant", wehavea;, <a,.

Lemma (3.6). Under the hypotheses of (3.5), if f and the f; are Taylor expansions of
meromorphic functions, then

inf{|z| | f(z) = oo} < inf{|z| | fi(z) = oo}.
Indeed, these numbers are the radii of absolute convergence.

(3.7) For each partition P of [1,2k] into two element sets {iy, jo} (ia < ja), We define
2k
VP ®Fo = Q(—kB)ix1 @+ ®xak = [ [V (Xiy.Xs0)-
o

Let x be a closed point of X. Hypothesis (ii) ensures that the coinvariants of 71 (U, u)

2k 2k
on ®Fy are the coinvariants on ® F, of the entire symplectic group (s is Zariski-dense
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in Sp). Let P be the set of partitions P. From H.Weil (The classical groups, Princeton
University Press, chap. VI, §1), for a suitable P’ C P, depending on dim(F,,), the ¥p (for
P € P’) define isomorphisms

2k 2k ,
(®Fu)m, = (®Fu)sp = Qi (—kp)”".

Let N be the number of elements in P’. According to (2.10) the formula above gives
257 2K N
HZ(U,QF) ~Qi(=kp—-1)".
2k
Since H(U, ® F) = 0, the formula (1.14.3) reduces to

2k
2% det(1— F*t, H' (U, ®F))

Z(Uo, ®Fp,t) = :
( 0 0 ) (l_qkﬂ+lt)N

This Z-function is therefore the Taylor series expansion of a rational function having only
one pole at t = 1/ gkB+1. We will only use the fact that the poles are of absolute value
t=1/ qkﬂJrl in C. This could be concluded from general arguments on reductive groups.

2k
If « is an eigenvalue of F on Fy, then a2k is an eigenvalue of Fy on ®Fp. We now let

« be any complex conjugate of «. The inverse power 1/a2¥/d42(®) 5 a pole of det(1 —

2k
Fyot2®™) ‘@ F)~1. After (3.4) and (3.6) we therefore have

|1/qkﬂ+1| < |1/a2k/deg(x)|,

or

Letting k tend to infinity, we find that

On the other hand, the existence of i ensures that q)’? o~ is also an eigenvalue, so we have

the inequality
lgfa™" <},

or
q?? < al.

This completes the proof.

Corollary (3.8). Let o be an eigenvalue of F* acting on H Cl (U, F). Then « is an algebraic
number all of whose complex conjugates satisfy

MEY Ema?
The formula (1.14.3) for Fy reduces to

Z (U, F,t) = det(1 — F*t, Hcl (U, F)).
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The term on the left is a formal series with rational coefficients, in view of its representation
as a product and hypothesis (iii). The term on the right is therefore a polynomial with
rational coefficients; 1/« is a root. This already implies that « is algebraic. To complete the
proof, it suffices to show that the infinite product defining Z(Uy, Fo,t) converges absolutely
(and thus is nonzero) for |t| < q_TB_l.
Let N be the rank of F, and put

N
det(1— Fxt, F) = [ [(1 = aix0).
i=1
According to (3.2), |a; x| = qf / 2 The convergence of the infinite product for Z follows
from that of the series
D ot 5242,
i,X

For |t]| = q%ﬁ_l_s (¢ > 0), we have
> laixt ¥ =Ny gt
i,x X

On the affine line, there are ¢” points with coordinate in [Fy», so there are at most ¢” closed
points of degree n. We have therefore

Yar =Y " T =) g < oo,
X n

n

which completes the proof.

Corollary (3.9). Let jo be the inclusion of Uy in IP’]}?(I, j that of U into P!, and a an

eigenvalue of F* acting on H' (P, j«F). Then « is an algebraic number all of whose

complex conjugates satisfy .
=t

D=

q 2 %flalfq

A segment of the long exact sequence in cohomology defined by the short exact se-
quence
0— j1F = juF — juF/j1F =0

(i is extension by 0) can be written
HYU,F)— H (P, j«.F) — 0.

Therefore, the eigenvalue « already appears in H! (U, F), and so by (3.8) we have:

o <g" Tt

D=

Poincare duality (2.12) implies that qﬂ +1a~1 is an eigenvalue, so we have the inequality
1P+ 1a Y| < q%%

and the corollary is proved.
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4 Lefschetz theory: local theory

(4.1) Over C, the local Lefshietz results are the following.

Let D = {z| |z| < 1} be the unit disk, D* = D — {0}, and f:X — D a morphism of
analytic spaces. We suppose that

a) X is nonsingular and purely of dimension n + 1;

b) f is proper;

¢) f is smooth outside the point x of the special fiber Xo = f~1(0);

d) at x, f has a nondegenerate double point.

Let ¢ # 0 be a point of D and X; = f~!(¢) “the” general fiber. With the previous data
we associate:

o) a specialization morphisms sp: H' (Xg,Z) — H'(X;,Z): Xy is a deformation retract
of X and sp is the composite arrow

H'(Xo,Z) < H' (X,Z) - H'(X;,Z)

B) the monodromy transformations 7: H' (X;,Z) — H'(X;,Z), which describe the
effect on the singular cycles of X; of “rotating ¢ around 0”. This is even an action on
H(X,,7), the stalk at ¢ of the local system R’ fxZ|D*, of the positive generator of
w1 (D *t ).

Lefschetz theory describes o) and B) in terms of the vanishing cycle § € H"(Xy,7Z.).
This cycle is well-defined up to sign. For i # n, n 4+ 1 we have

H'(X0,Z) = H' (X;,Z) (i #n,n+1).
Fori =n, n+ 1, we have an exact sequence

x—(x,68)

0— Hn(X()vZ) - Hn(XI9Z) Z— Hn+1(X0’Z) - Hn+1(XtaZ) — 0.
For i # n, the monodromy T is the identity. For i = n, we have
Tx =x=£(x,8)s.

The values of 4, 7'§ and (8, 8) are as follows:

n mod 4 o 1 2 3
Tx=xx+(x,8§ — — + +
(8,9) 2 0 -2 0
Ts -5 &5 -5 6§

The monodromy transformation preserves the intersection form Tr(x U y) on H"(X¢,Z).
For n odd, it is the symplectic transvection. For n even, it is an orthogonal symmetry.

(4.2) Here is the analog of (4.1) in abstract algebraic geometry. The disk D is replaced
by the spectrum of a henselian discrete valuation ring A with algebraically closed residue
field. Let S be its spectrum, 7 its generic point (spectrum of the field of fractions of A4), s
the closed point (spectrum of the residue field). The role of ¢ is played by the geometric
generic point 77 (spectrum of the algebraic closure of the field of fractions of A).

Let f: X — S be a proper morphism, with X regular purely of dimension n + 1. We
suppose that f is smooth except for an ordinary double point x in the special fiber X;. Let
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[ be a prime number different from the residue characteristic p of S. Denoting by X7 the
geometric generic fiber, we have a specialization morphism

4.2.1) sp:H'(X5.Qp) < H'(X.Q)) > H (X7.Qp)

The role of T is played by the action of the inertia group I = Gal(7/n) on H' (X 7.Qp) by
transport of structure (see (1.15)):

(4.2.2) I = Gal(j/n) — GL(H' (X7,Q;))
The data (4.2.1), (4.2.2) fully determine the sheaf R! f+«QponS.

(4.3) Put n = 2m for n even and n = 2m + 1 for n odd. (4.2.1) and (4.2.2) can still be
described in terms of the vanishing cycle

4.3.1) § € H"(X7.Qp)(m).

This cycle is well-defined up to sign.
Fori # n,n+ 1, we have

(4.3.2) H' (X5,Q)) = H' (X7,Q1) (G #n, n+1).
Fori =n, n+ 1, we have an exact sequence

(4.3.3)
n n xr—>Tr(xU8) n+1 n+1
0—H"(Xs,Q)—H" (X7, Q) ——— Qi(m—n)—H"""(X;,Q)—H""" (X7,Q1)—0

The action (4.2.2) of I (local monodromy) is trivial for i # n. For i = n, it is described
as follows.
A) n odd. - We have a canonical homomorphism

t;: 1 —7Z;(1),
and the action of o € I is
x —>xx1t(0)(x,8)s.

B) n even. - We will not need this case. We just say that, if p # 2, there exists a unique

character of order two
el — {£1},

and that we have

oxX=2Xx if elo)=1
ox=x*x(x,8)8 if e(o)=-1.

The signs &+ in A) and B) are the same as in (4.1).

(4.4) These results furnish the following information about R! 1+xQy.
a)Ifé #0:

1) For i # n, the sheaf R’ £,Q is constant.

2) Let j be the inclusion of 7 into S'. We have

Rif*@l = j*j*Rif*Ql-
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b) If § = 0: (This is the exceptional case. Since (§,8) = %2 for n even, it can happen
only for n odd.)
1) For i # n + 1, the sheaf R’ £,Q is constant.
2) Let Q;(m —n)s be the sheaf Q;(m —n) on {s}, extended by zero on S. Then we
have an exact sequence

0— Q(m—n)s — R" M £,Q; — juj*R"T! £2Q; — 0,

where ji j *R”+1f*@l is a constant sheaf.

5 Lefschetz theory: global theory

(5.1) Over C, the results of Lefschetz are the followsing. Let IP be a projective space of
dimension > 1 and P the dual projective space; its points parametrize the hyperplanes of
P and we denote by H; the hyperplane defined by ¢ € P. If A is a linear subspace of
codimension 2 in P, the hyperplanes containing A are parameterized by points of a line
D C P, the dual of A. These hyperplanes (H;);cp form the pencil with axis A.

Let X C P be a connected nonsingular projective variety of dimension 7 + 1. Let Xc
X x D be the set of pairs (x,?) such that x € H;. The projections to the first and second
coordinates form a diagram

X +Z - X
(5.1.1) lf
D

The fiber of f att € D is the hyperplane section X; = X N H; of X.

Fix X, and take A sufficiently general. Then:

A) A is transverse to X and X is the blowing up of X along AN X. In particular, X is
nonsingular.

B) There exists a finite subset S of D and, for each s € S, a point x5 € X such that f
is smooth outside xg.

C) The x; are nondegenerate critical points of f.

Therefore, for each s € S, local Lefschetz theory (4.1) applies to a small disk D around
s and to f~1(Dy).

(5.2) Let U = D —S. Letu € U, and choose disjoint loops (ys)ses starting from u,
with Y, turning once around s:
These loops generate the fundamental group 71 (U, u). This group acts on H'(Xy,7Z), the
stalk at u of the local system R’ f,Z|U. According to the local theory (4.1), to each s € §
corresponds a vanishing cycle §; € H"(X,,7Z); these cycles depend on the choice of the
ys. For i # n, the action of 71 (U,u) on H'(Xy,7Z) is trivial. For i = n, we have

(5.2.1) ysx = x £ (x,85)8s

Let E be the subspace of H"(X,,,Q) generated by the &5 (vanishing part of the coho-
mology).

Proposition (5.3). E is stable under the action of the monodromy group w1(U,u). The
orthogonal complement E* of E (for the intersection form Tr(x U y)) is the subspace of
invariants of the monodromy in H" (X, Q).
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The ys generate the monodromy group, so this is clear from (5.2.1).

Theorem (5.4). The vanishing cycles £ (taken up to sign) are conjugate under the action
of m (U, u).

Let X C P be the dual variety of X; itis the set of 7 € P such that H ¢ 1s tangent to X,
i.e., such that X; is singular or X C H;. The variety X is irreducible. Let Y C X x P be
the space of pairs (x,¢) such that x € H;. We have a diagram

X +—Y

&

~

P

The fiberof g att € P is the hyperplane section X; = X N H; of X, and g is smooth on the
complement of the inverse image of X.
We recover the situation of (5.1) by replacing P with the line D C Pand Y with g U(D).
We have S = DN X. According to a theorem of Lefschetz, for D sufficiently general, the
map
(D —S,u) —> nl(fb—f,u)

is surjective. It suffices to show that the -85 are conjugate under ¢ (IF’ -X ).

For x in the smooth locus of codimension 1 of X, let ch be the path from ¢ to x in
P— X and yx the loop that follows c/ until the neighborhood of X, turns once around X,
and then returns to ¢ by ch. The loops yy (for Varlous ch) are mutually con]ugate Since
X is irreducible, two points in the smooth locus of X can always be joined, in X, by a
path that does not leave the smooth locus. It follows that the conjugacy class of yx does
not depend on x. In particular, the y,; are mutually conjugate. We see from (5.2.1) that this
implies the conjugacy of 4.

Corollary (5.5). The action of w1 (U,u) on E/(E N EYL) is absolutely irreducible.

Let F C E ® C be a subspace stable under the monodromy. If F ¢ (ENEL+)®C,
there exists an x € F and an s € S such that (x,d;) # 0. We then have

ysx —x = +(x,85)0s € F,
and 85 € F. According to (5.4), all the 85 are then in F and F = E. This proves (5.5).

(5.6) These results transpose as follows into abstract algebraic geometry. Let P be a
projective space of dimension > 1 over an algebraically closed field k of characteristic p
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and X C P a connected projective nonsingular variety of dimension n + 1. For A a linear
subspace of codimension 2 we define D, the pencil (H;):ep, X, and the diagram (5.1.1)
as in (5.1). We say that the (H)sep form a Lefschetz pencil of hyperplane sections if the
following conditions are satisfied:

A) The axis A is transverse to X. The variety X is then obtained from X by blowing
up along A N X, and it is smooth.

B) There is a finite subset S of D and, for each s € S, a point x; € X such that f is
smooth outside xg.

C) x; is an ordinary quadratic singular point of Xj.

For each s € S, the local Lefschetz theory of §4 applies to the spectrum Dy of the
henselization of the local ring of D at s and to X D, = X x p Dyg.

(5.7) Let N be the dimension of P, r an integer > 1, and ((,) the embedding of [P into
the projective space of dimension (N AW,L " ) — 1, the homogeneous coordinates of which are
the monomials of degree r in the homogeneous coordinates of P. The hyperplane sections
of 1()(IP) are the hypersurfaces of degree r of IP.

For p # 0 it might happen that there is no such pencil of hyperplane sections of X
that is Lefschetz. However, if r > 2 and we replace the projective embedding t1: X — P
by t = () o1, then, in this new embedding, any general enough pencil of hypersurface

sections of degree r on X is always Lefschetz.

(5.8) For the rest of this discussion, we will study the Lefschetz pencil of hyperplane
sections of X, excluding the case p = 2, n even. The case where n is odd will suffice for our
purposes. We put U = D — S. Take u € U and [/ a prime number # p. The local results of
§4 show that R" £, Q; is tamely ramified at each s € S. The tame fundamental group of U
is a quotient of the profinite completion of the corresponding transcendental fundamental
group (lifting to characteristic O of the tame coverings and the Riemann existence theorem).
The algebraic situation is therefore very similar to the transcendental situation, and the
transfer of Lefschetz’s results can be done by standard arguments. In the proof of (5.4),
the theorem of Lefschetz for m; is replaced by the theorem of Bertini, and we have to
invoke Abhyankar’s lemma to control the ramification of R*g,Q; along the smooth locus
of codimension one in X .

The results are as follows:

a) If the vanishing cycles are nonzero:

1) For i # n, the sheaf R’ f,Q; is constant.
2) Let j be the inclusion of U in D. We have

Rnf*@l = J*J*Rnf*(@l

3) Let E C H"(X,,Qy) be the subspace of the cohomology generated by the van-
ishing cycles. This subspace is stable under 71 (U, u) and

Et = H"(X,. Q)" U,

The representation of 771 (U,u) on E/(E N EXL) is absolutely irreducible and the image of
71 in GL(E/(E N E1)) is generated (topologically) by the maps x — x % (x,85)85 (s € S)
(the £ sign is determined as in (4.1)).

b) If the vanishing cycles are zero: (This is an exceptional case. Since (§,8) = +2 for
n even, it can only happen for n odd: n = 2m + 1. Note that if one vanishing cycle is zero,
they all are, because of conjugacy.)
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1) For i # n + 1, the sheaf R’ f,Q is constant.
2) We have an exact sequence

0— @ Q;(m—n)s— R"™ £,Q; > F—>0
seS

with F constant.
3) E=0.

(5.9) The subspace E N E+ of E is the kernel of the restriction to E of the intersection
form Tr(x U y). Therefore, this form induces a bilinear nondegenerate form

v:E/(ENEY)®E/(ENEY) > Qi(—n),

skew-symmetric for n odd and symmetric for n even. This form is preserved by the mon-
odromy; for n odd, therefore, the monodromy representation induces

p:1(U,u) = Sp(E/(E N EL), ).
Theorem (5.10) (Kajdan-Margulis). The image of p is open.

The image of p is a compact, hence analytic /-adic, subgroup of Sp(E/(E N EL), ).
It suffices to show that its Lie algebra £ equals sp(E/(E N EL),y). The transcendental
analog of this Lie algebra is the Lie algebra of the Zariski closure of the monodromy group.
We deduce from (5.8) that £ is generated by transformations with square zero

Ng:x = (x,85)8s (s€S)

and that E/(E N E~) is an absolutely irreducible representation of £. The theorem follows
from the next lemma.

Lemma (5.11). Let V be a finite dimensional vector space over a field k of characteristic
zero, and W a nondegenerate skew-symmetric form on a Lie subalgebra £ of the Lie algebra
sp(V,n). We suppose that:

(i) V is a simple representation of £.

(ii) £ is generated by the family of endomorphisms of V of the form x +— yr(x,8)4.
Then £ = sp(V,¥).

We may, and do, assume that V', therefore £, is nonzero. Let W C V be the setof 6 € V
such that N(8) : x — ¥ (x,8)6 is in £.

a) W is stable under homotheties (because £ is a vector subspace of gl(V)).

b) If § € W, exp(AN(§)) is an automorphism of (V,, £), and therefore transforms W
to itself. If §’, §” € W, we therefore have

exp(AN(8))8" = 8" + Ay (8",8")8' € W

if ¥ (8',8”) # 0, then the vector subspace spanned by 8’ and §” lies in W'.

c) It follows that W is the union of its maximal linear subspaces W,, and that they are
pairwise orthogonal. Each W, is therefore stable under the N(§) (§ € W), so it is stable
under £. By hypothesis (i), Wy, = V and £ contains all N(§) for § € V. We conclude by
noting that Lie algebra sp(V, ¥) is generated by the N(4), (§ € V).
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Remark (5.12) (not necessary for what follows). — It is now easy to prove (1.6) for a
hypersurface of odd dimension 7 in P%;H.

Let Xo be such a hypersurface and Xg the hypersurface over IFq deduced from X by
extension of scalars. We have

H'(X0,Q) =Q(—i)  (0<i=<n);

H'(Xo,Q;(i)) is generated by the i-th cup power of 7, the cohomology class ¢1(O(1)) of
a hyperplane section. Therefore, we have

det(1— F*t, H" (X0, Q)

and det(1 — F*t, H"(Xy,Q;) is a polynomial with integer coefficients independent of /.

We let X vary in a Lefschetz pencil of hypersurfaces defined over IF; (see (5.7) for X =
P"+1; the existence of such a pencil is not clear; if we wanted to complete the argument
sketched here, we would have to use the arguments that will be given in (7.1). One checks
that E coincides here with the whole H", and (3.2) proves the Weil conjecture for all the
hypersurfaces of the pencil, in particular for Xo.

Z(Xo,t) =

(5.13) Bibliographical notes for §§4 and 5.

A) The results of Lefschetz (4.1) and (5.1) to (5.5) are contained in his book [2]. For
the local theory (4.1), it may be more convenient to consult SGA 7, XIV (3.2).

B) The results of §4 are proved in Exposés XIII, XIV, and XV of SGA 7.

C) (5.7) is proved in SGA 7, XVIL.

D) (5.8) is proved in SGA 7, XVIIL. The irreducibility theorem is proved there for
E, but only under the hypothesis that E N E+ = {0}. The proof of the general case (for
E/(E N EY)) is similar.

6 The rationality theorem

(6.1) Let Pg be a projective space of dimension > 1 over Fy, Xo C Pg a projective nonsin-
gular variety, Ag C PPy a linear subspace of codimension two, D¢y C PO the dual line, Fq the
algebraic closure of Fy, and P, X, A, D the varieties over F obtained from Py, X, Ag, Do
by extension of scalars. The diagram (5.1.1) from (5.6) comes from a similar diagram over
Fg:

(6.1.1) lfo

We suppose that X is connected of even dimension n 4+ 1 = 2m + 2 and that the pencil
of hyperplane sections of X defined by D is a Lefschetz pencil. The set S of t € D such
that X; is singular and defined over [F; comes from So C Dg. We put Uy = Do — Sp and
U=D-S.

Let u € U. The vanishing part of the cohomology £ C H"(X,,Q;) is stable under
m1(U,u), so it is defined over U by a local subsystem &£ of R” f(Q;. The latter is defined
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over [Fy: R £,Qy is the inverse image of the Q;-sheaf R’ fy«Q; on Dg and, on U, £ is the
inverse image of a local subsystem

&y C Rnf()*@l.

Cup product is a skew-symmetric form

V:R" f0+Q; ® R" foxQ; — Qi (—n).

Denoting by 53‘ the orthogonal complement of & relative to ¥ on R” fp«Q;|Up, we see
that ¥ induces a a perfect pairing

¥:0/(EoNEFL) ®Eo/(EaNEF) — Qi(—n).

Theorem (6.2). For all x € |Uy|, the polynomial det(1 — Ft,Ey/(Ep N 53‘)) has rational
coefficients.

Corollary (6.3). Let jo be the inclusion of Uy in Do and j that of U in D. The eigenval-
ues of F* acting on H'(D, j«Eo/(Eg N Sd')) are algebraic numbers all of whose complex

conjugates o satisfy
n+1_1 n+1+
q 2> 2=lal=q>2

D=

After (5.10) and (6.2), the hypotheses of (3.2) are indeed satisfied for

(o.€0/(EoNE).Y)
for B = n, and we can apply (3.9).

Lemma (6.4). Let Go be a locally constant Qp-sheaf on Uy such that its inverse image G on
U is a constant sheaf. Then there exist units «; in Q; such that for each x € |Uy| we have

det(1— F}1,Go) = [ [(1 —{*™s).
i

The lemma expresses the fact that Gg is the inverse image of a sheaf on Spec(FFy),
namely, its direct image on Spec(Fy) . The latter can be identified with an /-adic represen-
tation Go of Gal(IF, /Fy), and we have

det(1—F1,Go) = [ (1 —ai0).

1

Lemma (6.4) applies to R’ foxQ;, (i # n), to R" f0+Q;/Eop, and to Eg N Sd- .

For x € |Uy|, the fiber X, = fo_1 (x) is a variety over the finite field k(x). If X is a point
of U above x, X5 is obtained from X by extension of scalars from k(x) to the algebraic
closure k(x) = I_Fq and H'(Xz,Qy) is the stalk of R’ £,Q; at X. The formula (1.5.4) for the
variety X over k(x) can therefore be written

Z(Xy.t) = [ [ det(1 = F1. R fo,Q) V"™

1

and Z(Xy,t) is the product of

27 =det(1= F{1, R" fouQ1/€0)-det(1— F1.£0NE)- [ | det(1= F71, R o@D
i#n
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with
Z™M =det(1— F}t,E0/(E0 N EY).

Put Fo = &/ (Eo N é’d—) and F = £/(ENEL), and apply (6.4) to the factors of Z/. We

find that there exist /-adic units o; (1 <7 < N) and B; (1 < j < M) in Q; such that for all

X € |U0|,

[;( —a?eg(x)l)

[T, (1= 5=

and in particular the term on the right is in Q(7). If some «; coincides with a 8;, we can
simultaneously delete «; from the family of « and B; from the family of 8. Therefore, we
may and do suppose that «;; # B; forall i and all ;.

Z(Xx,t) = -det(1— F't, Fo),

(6.5) It suffices to prove that the polynomials [ [; (1 —«;¢) and [ | ;(1—p;t) have rational
coefficients, i.e., that the family of «; (resp. the family of ;) is defined over Q. We will
deduce this from the following propositions.

Proposition (6.6). Let (yi)1<i<p and (8;)1<j<o be two families of l-adic units in Q.
Suppose that y; # §;. If K is a sufficiently large finite set of integers # 1, and L is a
sufficiently large nowhere dense subset of |Uy|, then, if x € |Uy| satisfies k t deg(x) (for all
k € K) and x ¢ L, the denominator of the fraction,

det(1— F1,Fo)-TT;(1 -y =)

1

(6.6.1)
[T,(1— 8¢

written in irreducible form, is [ | (1= 8?eg(x) 1).

The proof will be given in (6.10-13). According to (6.7) below, (6.6) provides an in-
trinsic description of the family of §; in terms of the family of rational fractions (6.6.1) for
X € |U()|

Lemma (6.7). Let K be a finite set of integers # 1 and (§;)1<j<p and (gj)1<j<go two
families of elements of a field. If, for all sufficiently large n not divisible by any of the
k € K, the family (87) coincides with the family (8;?) (up to order), then the family (8;)
coincides with the family (g;) (up to order).

We proceed by induction on Q. The set of integers n such that 67, = 8;? is anideal ().
We prove that there exists a jo such that §g = ¢,. Otherwise the n; would be distinct from
1 and there would be arbitrarily large integers n, not divisible by any of the n; nor by any
of the k € K. We would have S’é # 87 and this contradicts the hypothesis. So there exists
a jo such that o = g;,.We conclude by applying the induction hypothesis to the families
(67)j0 and (¢/)#jo-

Proposition (6.8). Let (yi)i<i<p and (5j)1<j<o be two families of p-adic units in Q,
R(t) =[];(1 —yit), and S(t) = [];(1—6;t). Suppose that for all x € |Up|, the product
[ —S?Cg(x)t) divides

[T —=®1)- det(1 — Ff1. Fo).

i

Then S(t) divides R(t).
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Remove from the families (y;) and (6;) pairs of common elements until they satisfy the
hypothesis of (6.6). Apply (6.6). By hypothesis, the rational fractions (6.6.1) are polyno-
mials. Therefore, no § survives, which means that S(¢) divides R(z).

(6.9) We prove (6.5) and (6.2) (modulo (6.6)). Put (y;) = («;) and (6;) = (B;) in (6.6).
We get an intrinsic characterization of the family of B; in terms of the family of rational
functions Z(Xy,t) (x € |Up|). These being in Q(¢), the family of B; is defined over Q.

The polynomials [ [, (1 —cxjeg(x)t) -det(1 — F}t, Fo) are therefore in Q[¢]. Proposition
(6.8) provides an intrinsic description of the family of ¢; in terms of this family of polyno-
mials. The family of ¢; is thus defined over Q.

(6.10) Preliminaries.— Letu € U, and leAt Ju be t}le stalk of F at u. The arithmetic fun-
damental group 71 (Up,u), the extension of Z = Gal(F/F) (generator: ¢) by the geometric
fundamental group 71 (U, u), acts on F,, by symplectic similitudes

P37T1 (UO’ u) - Csp(fuv W)
We denote by 1 (g) the multiplier of the symplectic similitude g. Let
H CZxCSp(Fu.¥)

be the subgroup defined by the equation

g " = u(g)

(¢ being an [-adic unit, ¢" € Q?‘ is defined for all n € Z). The fact that ¥ has values in

Qs (—n) can be expressed by saying that the map from 7y to Z x CSp, with coordinates the
canonical projection to Z and p, factors through

p1:m1(Uo,u) — H.
Lemma (6.11). The image H of p1 is open in H.

Indeed, 71 (Uy,u) projects onto 7., and the image of 71 (U,u) = Ker(mw(Up,u) — Z)
in Sp(Fy,¥) = Ker(H — Z) is open (5.10).

Lemma (6.12). For § € Q; an I-adic unit, the set Z of (n,g) € Hy such that §" is an
eigenvalue of g is closed of measure 0..

It is clear that Z is closed. For each n € Z, let CSp,, be the set of g € CSp(Fy,¥)
such that ;(g) = ¢~" and let Z,, be the set of g € CSp,, such that §” is an eigenvalue of g.
Then CSp,, is a homogeneous space for Sp and one can check that Z;, is a proper algebraic
subspace, thus, of measure 0. After (6.11), H; N ({n} x Z,) is therefore of measure 0 in the
inverse image in H; of n and we can apply Fubini to the projection H; — Z.

(6.13) Let us prove (6.6). For each i and j, the set of integers n such that y/* = 8;’ is the
set of multiples of a fixed integer n;; (we do not exclude n;; = 0). By hypothesis, n;; # 1.
After (6.12) and the Chebotarev density theorem, the set of x € |Up| such that ﬂjeg(x)
is an eigenvalue of F} acting on Fy is nowhere dense. We take for K the set of n;; and for

L the set of x as above.
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7 Completion of the proof of (1.7)

Lemma (7.1). Let X be an absolutely irreducible nonsingular projective variety of even
dimension d over Fy. Let X over Fq be obtained from X by extension of scalars, and let
a an eigenvalue of F* acting on H d (X,Qy). Then « is an algebraic number; all of whose
complex conjugates, again denoted by o, satisfy

+

[N

D=
D=

(7.1.1) 452 <lal=q

We proceed by induction on d (always assumed even). The case d = 0 is trivial even
without assuming that X is absolutely irreducible; we assume from now on d > 2. We put
d=n+1=2m+2.

If Fyr is an extension of degree r of Fy; and X/F4r is obtained from Xo/F, by exten-
sion of scalars, the statement (7.1) for X /I, is equivalent to (7.1) for X (’) /Fg4r; in the same
way as ¢ is replaced by ¢g”, the eigenvalues of F* are replaced by their r-th powers.

According to (5.7), in a suitable projective embedding i: X — P, X admits a Lefschetz
pencil of hyperplane sections. The preceding remark allows us to assume that the pencil is
defined over I, (once we replace I, by a finite extension).

Suppose therefore that there exists a projective embedding X¢o — P and a subspace
Ao C Py of codimension two defining the Lefschetz pencil. We recall the notation of (6.1)
and (6.3). A new extension of scalars allows us to assume that:

a) The points of S are defined over F.

b) The vanishing cycles for x5 (s € S) are defined over F; (since only %4 is intrinsic,
they can only be defined over quadratic extensions).

c¢) There exists a rational point ug € Up. We take the corresponding point u of U as the
base point.

d) Xy, = fo_l(uo) admits a smooth hyperplane section Yy defined over ;. We let
Y =Yy QF » Fq.

Since X is obtained from X by blowing up along a smooth subvariety A N X of dimen-
sion two, we have . s

H'(X,Qp) = H' (X, Q)

(in fact, H' (X, Q) = H (X,Q)) & H'"2(AN X,Qp)(—1)). It suffices to prove (7.1.1) for
the eigenvalues o of F* acting on H% (X, Q).
The Leray spectral sequence for f is

EJ? = HP(D,R? Q) = H?T4(X, Q).

It suffices to prove (7.1.1) for the eigenvalues of F* acting on E;q forp+g=d=n+1.
They are:
A) Eg’n_l. According to (5.8), R"*~! £,Qy is constant. From (2.10) we have

E3" ' = H" 7 (X, Q) (—1).

Applying the weak Lefschetz theorem (corollary of SGA 4, XIV (3.2)) and Poincare duality
(SGA 4, XVIII), we have

H" (X, Q)(=1) = H" 1 (Y, Q) (=)

and we apply the induction hypothesis to Y.
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B) Eg LI the vanishing cycles are nonzero, R" ! £,Q is constant and
Eg’n-H =H"t! (Xu» Ql)

The Gysin map
H" 'Y, Q) (=1) — H" ™ (Xu, Q1)

is surjective (by an argument dual to that of A)) and we apply the induction hypothesis to
Yo.
If the vanishing cycles are zero, the exact sequence of (5.8) b) gives the following exact
sequence
D Qin—n) — EZ" — H" (X Q).

seS

The eigenvalues of F acting on Q; (m —n) are qd/ 2 and for H" ! everything is as above.

@] Ezln If we had the “hard” Lefschetz theorem, we would know that £ N E~L is zero
and that R f, Q) is the direct sum of j,& and a constant sheaf. The H! of a constant sheaf
on P! is zero and it would suffice to apply (6.3).

Since we have not proved the “hard” Lefshetz theorem yet, we will have to figure a way
out (literally: unscrew). If the vanishing cycles are zero, R” f,.Q; is constant ((5.8) b)) and
Ezln = 0. Therefore we may and do assume that the vanishing cycles are nonzero. Filter
R" £+Q; = j«j*R" f+xQ; (5.8) by the subsheafs j+& and j«(£ NEL). If the vanishing
cycles § are not in £ N EL, then we have exact sequences:

(7.1.2) 0 — j«& — R" f+Q; — constant sheaf — 0,
(7.1.3) 0 — constant sheaf j(ENEL) > j& — j(E/(ENEL)) — 0.

If, God forbid, the § are in €N EL, then € C L and we have exact sequences:

(7.1.4) 0 — the constant sheaf j*El — R" 1,Q; — asheaf F — 0
(7.1.5) 0 — F — the constant sheaf j,j*F — s?SQl n—m); —0
In the first case the long exact sequences in cohomology give
(7.1.2) HY(D, j+&) - HY(D,R" f,Q;) - 0
(7.1.3) 0— HY(D, j«&) — HY(D, j«(/(ENE)))
and we apply (6.3).
In the second case, they give
(7.1.4) 0— HY(D,R" f,Q;) > H'(D,F)
(7.1.5') Pen—m)— H'(D.F)—>0
seS

and we remark that F acts on Q; (n —m) by multiplication by qd /2,

Lemma (7.2). Let Xo be an absolutely irreducible nonsingular projective variety of dimen-
sion d over Fy. Let X over Fq be obtained from Xo by extension of scalars and let o be
an eigenvalue of F* acting on H d(X ,Qp). Then o is an algebraic number all of whose
complex conjugates, still denoted o, satisfy

da
2

la| =¢
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We first prove that (7.2) = (1.7). For X projective nonsingular over I_Fq we have to
prove the following statements:

W(Xo,i). Let X be obtained from X¢ by extension of scalars from Fy to Fq. Ifais an
eigenvalue of F* acting on H' (X,Qy), then « is an algebraic number all of which complex
conjugates, again denoted «, satisfy |o| = q'/2.

a) If Fgn is an an extension of degree n of F; and X(/Fyn is obtained from Xo/F,
by extension of scalars, then W(Xy,i) is equivalent to W(X/,i): the extension of scalars
replaces « by o” and ¢ by ¢”".

b) If X¢ is purely of dimension n, W(Xy,i) is equivalent to W(X¢,2n —1i); this follows
from Poincare duality.

¢) If Xy is a sum of the varieties X&, then W(Xy,7) is equivalent to the conjunction of
the W(X{,i).

d) If X is purely of dimension n, Yy is a smooth hyperplane section of Xy, and i < n,
then W(Yp,i) = W(Xy,i): this follows from the weak Lefschetz theorem.

To prove the statements W (Xp,i) we move in succession:

— by ¢), we may suppose that X is purely of dimension 7;

— by b), we may also suppose that 0 <i < n;

— by a) and d), we may also suppose that i = n;

— by a) and c¢), we may also suppose that X is absolutely irreducible.

This case satisfies the hypotheses of (7.2).

(7.3) We prove (7.2). For every integer k, a* is an eigenvalue of F* acting on H*? (X* Q)
(Kiinneth formula). For k even, X* satisfies the conditions of (7.1), so we have

kd _

g% < ek < g2
and

d_ 1 di 1

q?2 2k§|a|§q2 2k .

Letting k go to infinity, we establish (7.2).

8 First applications

Theorem (8.1). Let Xo C IP’8+r be a nonsingular complete intersection over ¥y of dimen-
sion n and multidegree (dy,---d;). Let b’ be the n-th Betti number of a complex nonsingular
complete intersection with the same dimension and multidegree. Put b = b’ for n odd and
b =1b"—1 for n even. Then

[#Xo(Fy) —#P" (F,)| < bqg"'?.

Let X/Fq be obtained from X, and let Q; - ' be the line in H?"(X,Q;) generated by
the i -th cup power of the cohomology class of the hyperplane section. On this line F* acts
by multiplication by ¢’. The cohomology of X is the direct sum of the Q;7' (0 <i <n)
and the primitive part of H"(X,Q;) of dimension b. According to (1.5), therefore, there
exist b algebraic numbers ¢, the eigenvalues of F* acting on this primitive cohomology,
such that

#Xo(F) =D q' + (=" .
i=0 j



8 FIRST APPLICATIONS 27

n/2

According to (1.7), |oj | = ¢"/* and

n
#X0(Fy) —#P" (Fy)| = #Xo(Fy) — > q'| = 1> oj| <> lej| = bg"/%.
i=0 J J

Theorem (8.2). Let N be an integer > 1, €:(Z/N)* — C* a character, k an integer > 2,
and [ a holomorphic modular form on I'o(N) of weight k and with character e: [ is a
holomorphic function on the Poincare half-plane X such that for (g 2) e SL(2,7), with
¢ =0(N) we have

az+b\ 1 k
1 (5557) =@ e+ £,

We suppose that f is cuspidal and primitive ("new” in the sense of Atkin-Lehner and
Miyake), in particular an eigenvector of the Hecke operators Ty (p ¥ N). Let f =Y 22 anq"
with ¢ = e?™'% (and a1 = 1). Then for p prime not dividing N

k=1
lapl <2p 2.

In other words, the roots of the equation

Tz—apT—I—e(p)pk_1

k—1
are of absolute value p 2 .

These roots are indeed the eigenvalues of the Frobenius map acting on the H k=1 of a
nonsingular projective variety of dimension k — 1 defined over F,.

Under restrictive assumptions, this fact is proved in my Bourbaki exposé (Formes mod-
ulaires et représentations /-adiques, exposé 355, February 1969, in: Lecture Notes in Math-
ematics, 179). The general case is not much more difficult.

Remark (8.3) J. P. Serre and I have recently proved that (8.2) remains true for k = 1.

The proof is quite different.
The following application was suggested to me by E. Bombieri.

Theorem (8.4). Let Q be a polynomial in n variables and of degree d over Fy, Q; the
homogeneous part of degree d of Q, and V:IFy — C* an additive nontrivial character on
Fy. We assume that:
(i) d is prime to p
(ii) the hypersurface Hy in Pﬁ;l defined by Q 4 is smooth.
Then
> Y@@ )| =@ 1),

X1, ,xn€Fg

After replacing Q by a scalar multiple, we may (and do) suppose that

(8.4.1) V(x) = exp(2ni Trg, /r, (x)/ p).

Let X be the étale covering of the affine space Ao of dimension n over F, with equation
T? —T = Q, and let ¢ be the projection of X¢ to Ag:

0:Xo— Ao, Xo = Spec(Fy[x1,-+,x,, T]/(T? =T — Q)).
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The covering X is Galois with Galois group Z/p;i € Z/p =Fp actsby T — T +1i.

For x € Ag(F4), we compute the Frobenius endomorphism on the fiber of X¢/A at x.
Letg = p/, and let IE_Tq be the algebraic closure of IF,. For (x,T) € Xp (F) above x we have
F((x,T)) =(x,T?) and

S _ A .
T9=T+Y (TP =TP" ) =T+ 0@)? " =T +Ts,x,(0)).

i=1

This is the action of the element Try, /r, (Q(x)) of the Galois group.

Let E be the field of the p-th roots of unity and A a finite place of E prime to p.
We will work in A-adic cohomology. For j € Z/p, let Fj o be a E-local system of rank
one on Ag defined by Xo and ¢ (—jx):Z/p — E* — E}: we have ©: Xo — Fj,0 and
t(i *x) = ¥ (—ij)t(x). Denote without ¢ objects obtained from Ag, Xo, F 0 by extension
of scalars to Fq. The trace formula (1.12.1) for F; o gives:

(8.4.2) D U(Qxr, e x0)) = ) Tr(F* HL(A, F))
X1, ,Xn€Fq i

We have 04 E) = EB]-'] and so
J
(8.4.3) HC*(X,QZ) ®q, Ex =@H:(A,f;).
J

For j = 0, F; is the constant sheaf E; this factor corresponds to inclusion, by taking the
inverse image, of the cohomology of A in that of X.

Lemma (8.5). (i) For j # 0, H.(A, Fj)is zero fori # n; fori = n, this cohomology space
has dimension (d —1)".

(ii) For j # 0, the cup-product

T
H'(A,Fj) @ HI (A, F—;) — H>" (A, E;) — Ej(—n)
is a perfect pairing.
(iii) Xo is open in a nonsinqular projective variety Zy.

Let’s ded_uce (8.4) from (8.5). Let jo: X9 — Zp and j: X — Z be obtained by extension
of scalars to [F;. According to (8.4.2), (1), and (1.7) for Zy, it suffices to prove the injectivity
of

HY (A F1) S HI (X, Fr) = HX (X, Ey) 5 H™(Z, E).
We have Tr(a Ub) = %Tr( Jro*a N jio*b), so this injectivity follows from (ii).

(8.6) We prove (8.5) (iii). Let [Py be the projective space over I, obtained from Ag by
adding a hyperplane at infinity IPg°, Ho C IPg° with equation Q4 = 0, and Yy the covering
of Py normalizing Py along Xo.

Xo —— Yo

(8.6.1) lo l

Ag © > Po < > PR < > Hy

We study Yo /Pg near the infinity, locally for the étale topology.
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Lemma (8.7). Yy is smooth outside the inverse image of Hy.

The divisor of a rational function Q on Py is the sum of the finite part div(Q)y and of
(—d) times the hyperplane at infinity. We have:

(8.7.1) div(Q) = div(Q) s —d P
div(Q)s NP = Hy

At finite distance, Yo = Xy is étale over Ag, so smooth. At the infinity, but outside the

inverse image of Hy, there exist local coordinates (z1,---,z,) such that Q = Zl_d (here we
use (d, p) = 1). In these coordinates, Yo appears as a product of a curve and a smooth space
(corresponding to coordinates z5, -+, z,). By normality it is smooth.

Lemma (8.8). In an étale neighborhood of a point above Hy, Yy is smooth on a normal
singular surface, always the same.

This time we can find local coordinates such that 0 = Zl_d z5. Indeed, since Hy is

smooth, div(Q)y is smooth in the neighborhood of infinity and crosses IPG° transversely.
This form is independent of the chosen point, and uses only two coordinates, hence the
assertion.

(8.9) The following method (due to Zariski) allows one to resolve singularities on sur-
faces: alternately, we normalize and we blow up the (reduced) singular locus. The opera-
tors in play commute with étale localization and taking a product with a smooth space. The
method of Zariski, therefore, allows one to resolve the singularities of a space that (like Yp)
is, locally for the étale topology, smooth over a surface. The resolution obtained from Yy is
the Zo sought.

If T is a curve on a surface S, containing the singular locus, and 7" is the inverse
image of T in the Zariski resolution S’ of S, we know that if we repeatedly blow up the
(reduced) singular locus of (7”)q in S’, we obtain a surface S” such that the reduced
inverse image (7" )eq of T in S” is a divisor with normal crossings. Again, the operators
in play commute with étale localization and taking products with a smooth space. Arguing
as above and observing that (Yp, infinity) is locally smooth in (S, 7T"), we can find Z¢ such
that Zo — X is a divisor with normal crossings.

(8.10) We prove (8.5) (i), (ii). These assertions are geometric; this allows us to work
from now on over F q- Let S’ be the affine space over Fq that parametrizes polynomials
in n variables of degree < d, and let S be the open subscheme in S’ corresponding to the
polynomials whose homogeneous part of degree d has nonzero discriminant. We denote
by Os € H°(S,O[x1, -+, xy]) the universal polynomial of S and by Xg the Galois étale
covering of Ag = A" x § with equation 77 —T = Q5 and Galois group Z/p. Let Pg =
P" x S be the projective completion of Ag and Yg the normalization of Pg along X;. We
have, for S, a diagram similar to (8.6.1).

The expressions of Q in local coordinates given in (8.7) and (8.8) remain valid in the
present situation, with parameters, so that, locally for the étale topology on Yg, Ys/S is
isomorphic to the product of S (which is smooth) with a fiber. The method of canonical
resolution used in (8.9) gives us a relative compactification Zg/S of Xg/S with Zg — Xg
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a divisor with normal crossings relative to .S

Xs <% Zg

s

AS(L)S

(f proper and smooth, u# an open immersion, Z; — X a divisor with relative normal cross-
ings).
Let ;s be an Ej-sheaf on Ag obtained as in (8.4) from Xg/Ag. We have 0*E) =
@®Fj,s, S0
R*(fu)(Ey) = ®R*a\Fjs.
J

The properties of Zg ensure that R' (fu)\Ej = R’ fx(u1E}) is a locally constant sheaf on
S. Therefore, R aFj s is also locally constant. Since § is connected, it suffices to prove
(8.5) (i), (ii) for a particular polynomial Q. We will take Q =) ; xld . This polynomial
satisfies the nonsingularity condition because (d, p) = 1. For this polynomial, the variables
separate in the exponential sum (8.4). This corresponds to the fact that F; is the tensor
product of the inverse images of similar sheaves ]-'j1 on the factors of dimension one A! of
A = A", By the Kiinneth formula

H*(AFj) =QH* (A" F}).
This reduces the proof of (8.5) (i), (ii) to the case where n = 1 and Q is x4,
(8.11) We treat this particular case. The covering X of A is irreducible, so fori = 0,2
HI(AEj) > HL(X.Ey).

So fori # 1 and j # 0 we have _
H.(X,Fj)=0.

Assertion (ii) follows from (2.8) or (2.12) and the fact that u1F; = uxF;. To prove (i) it
remains to show that
XA Fj)=1-d.

According to the Euler-Poincare formula (see Bourbaki Exposé 286, February 1965, by
M.Raynaud), this is equivalent to the following lemma.

Lemma (8.12). Swan’s conductor of F; at infinity equals d.
This statement is equivalent to the following.

Lemma (8.13). Let k be a finite field of characteristic p, y € k[[x]] an element of valuation
d prime to p, L the extension of K = k((x)) generated by the roots of T? — T = y~!, and
X the following character on Gal(L/K) with values in 7/ p:

x(o)=0T-T.
Then y has conductor d + 1.

By extension of the residue field, we may suppose that k is algebraically closed rather
than finite and apply: J.P.Serre, Sur les corps locaux a corps residuel algebriquement clos,
Bull. Soc. Math. France, 89 (1961), p. 105-154, n° 4.4.
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