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Introduction
Let X be a smooth projective variety over C. Hodge conjectured that certain cohomology
classes on X are algebraic. The main result proved in these notes shows that, when X is an
abelian variety, the classes considered by Hodge have many of the properties of algebraic
classes.

In more detail, let X an be the complex analytic manifold associated with X , and consider
the singular cohomology groups Hn.X an;Q/. The variety X an being of Kähler type (every
projective embedding defines a Kähler structure), its cohomology groups Hn.X an;C/'
Hn.X an;Q/˝C have canonical decompositions

Hn.X an;C/D
M

pCqDn

Hp;q; Hp;q def
DH q.X an;˝

p
X an/.

The cohomology class cl.Z/ 2H 2p.X an;C/ of an algebraic subvarietyZ of codimension p
in X is rational (i.e., it lies in H 2p.X an;Q// and is of bidegree .p;p/ (i.e., it lies in Hp;p).
The Hodge conjecture states that, conversely, every element of

H 2p.X an;Q/\Hp;p

is a Q-linear combination of the classes of algebraic subvarieties. Since the conjecture is
unproven, it is convenient to call these rational .p;p/-classes Hodge cycles on X .

Now consider a smooth projective variety X over a field k that is of characteristic zero,
algebraically closed, and small enough to be embeddable in C. The algebraic de Rham
cohomology groups Hn

dR.X=k/ have the property that, for any embedding � Wk ,! C, there
are canonical isomorphisms

Hn
dR.X=k/˝k;� C'H

n
dR.X

an;C/'Hn.X an;C/:

It is natural to say that t 2H 2p
dR .X=k/ is a Hodge cycle on X relative to � if its image in

H 2p.X an;C/ is .2�i/p times a Hodge cycle on X˝k;� C. The arguments in these notes
show that, if X is an abelian variety, then an element of H 2p

dR .X=k/ that is a Hodge cycle on
X relative to one embedding of k into C is a Hodge cycle relative to all embeddings; further,
for any embedding, .2�i/p times a Hodge cycle in H 2p.X an;C/ always lies in the image
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of H 2p
dR .X=k/.

1 Thus the notion of a Hodge cycle on an abelian variety is intrinsic to the
variety: it is a purely algebraic notion. In the case that k D C the theorem shows that the
image of a Hodge cycle under an automorphism of C is again a Hodge cycle; equivalently,
the notion of a Hodge cycle on an abelian variety over C does not depend on the map
X ! SpecC. Of course, all this would be obvious if only one knew the Hodge conjecture.

In fact, a stronger result is proved in which a Hodge cycle is defined to be an element of
Hn

dR.X/�
Q
lH

n.Xet;Ql/. As the title of the original seminar suggests, the stronger result
has consequences for the algebraicity of the periods of abelian integrals: briefly, it allows
one to prove all arithmetic properties of abelian periods that would follow from knowing the
Hodge conjecture for abelian varieties. M.2

—————————————————-
In more detail, the main theorem proved in these notes is that every Hodge cycle on an

abelian variety (in characteristic zero) is an absolute Hodge cycle — see �2 for the definitions
and Theorem 2.11 for a precise statement of the result.

The proof is based on the following two principles.

A. Let t1; : : : ; tN be absolute Hodge cycles on a smooth projective variety X and let G be
the largest algebraic subgroup of GL.H�.X;Q//�GL.Q.1// fixing the ti ; then every
cohomology class t on X fixed by G is an absolute Hodge cycle (see 3.8).

B. If .Xs/s2S is an algebraic family of smooth projective varieties with S connected and
smooth and .ts/s2S is a family of rational cycles (i.e., a global section of . . . ) such
that ts is an absolute Hodge cycle for one s, then ts is an absolute Hodge cycle for all
s (see 2.12, 2.15).

Every abelian variety A with a Hodge cycle t is contained in a smooth algebraic family
in which t remains Hodge and which contains an abelian variety of CM-type. Therefore,
Principle B shows that it suffices to prove the main theorem for A an abelian variety of
CM-type (see �6). Fix a CM-field E, which we can assume to be Galois over Q, and let
˙ be a set of representatives for the E-isogeny classes over C of abelian varieties with
complex multiplication by E. Principle B is used to construct some absolute Hodge classes
on
L
A2˙ A — the principle allows us to replace ˚A by an abelian variety of the form

A0˝ZOE (see �4). Let G � GL.˚A2˙H1.A;Q//�GL.Q.1// be the subgroup fixing the
absolute Hodge cycles just constructed plus some other (obvious) absolute Hodge cycles.
It is shown that G fixes every Hodge cycle on A, and Principle A therefore completes the
proof (see �5).

On analyzing which properties of absolute Hodge cycles are used in the above proof,
one arrives at a slightly stronger result.2 Call a rational cohomology class c on a smooth
projective complex variety X accessible if it belongs to the smallest family of rational
cohomology classes such that:

(a) the cohomology class of every algebraic cycle is accessible;
(b) the pull-back by a map of varieties of an accessible class is accessible;
(c) if t1; : : : ; tN 2H�.X;Q/ are accessible, and if a rational class t in some H 2p.X;Q/

is fixed by an algebraic subgroup G of Aut.H�.X;Q// (automorphisms of H�.X;Q/
as a graded algebra) fixing the ti , then t is accessible;

1Added(jsm). This doesn’t follow directly from Theorem 2.11 (see 2.4). However, one obtains a variant of
Theorem 2.11 using the above definitions simply by dropping the étale component everywhere in the proof (see,
for example, 2.10b).

2Added(jsm). See also �9 of Milne, Shimura varieties and moduli, 2013.
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(d) Principle B holds with “absolute Hodge” replaced by “accessible”.

Sections 4,5,6 of these notes can be interpreted as proving that, when X is an abelian variety,
every Hodge cycle is accessible. Sections 2,3 define the notion of an absolute Hodge cycle
and show that the family of absolute Hodge cycles satisfies (a), (b), (c), and (d); therefore,
an accessible class is absolutely Hodge. We have the implications: M.3

Hodge
abelian varieties
HHHHHHHH) accessible HHHH) absolutely Hodge

trivial
HHHH) Hodge.

Only the first implication is restricted to abelian varieties.
The remaining three sections, �1 and �7, serve respectively to review the different

cohomology theories and to give some applications of the main results to the algebraicity of
products of special values of the � -function.

NOTATION

We define C to be the algebraic closure of R and i 2 C to be a square root of �1; thus i
is only defined up to sign. A choice of i D

p
�1 determines an orientation of C as a real

manifold — we take that for which 1^ i > 0 — and hence an orientation of every complex
manifold. Complex conjugation on C is denoted by � or by z 7! z.

Recall that the category of abelian varieties up to isogeny is obtained from the category
of abelian varieties by taking the same class of objects but replacing Hom.A;B/ with
Hom.A;B/˝Q. We shall always regard an abelian variety as an object in the category of
abelian varieties up to isogeny: thus Hom.A;B/ is a vector space over Q.

If .V˛/ is a family of representations of an algebraic groupG over a field k and t˛;ˇ 2 V˛ ,
then the subgroup of G fixing the t˛;ˇ is the algebraic subgroup H of G such that, for all
k-algebras R,

H.R/D fg 2G.R/ j g.t˛;ˇ ˝1/D t˛;ˇ ˝1, all ˛;ˇg.

Linear duals are denoted by _. If X is a variety over a field k and � is a homomorphism
� Wk ,! k0, then �X denotes the variety X˝k;� k0 (DX �Spec.k/ Spec.k0/).

By a� b we mean that a is sufficiently greater than b.
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1 Review of cohomology

Topological manifolds
Let X be a topological manifold and F a sheaf of abelian groups on X . We set

Hn.X;F /DHn.� .X;F �//

where F ! F � is any acyclic resolution of F . This defines Hn.X;F / uniquely up to a
unique isomorphism.

When F is the constant sheaf defined by a field K, these groups can be identified with
singular cohomology groups as follows. Let S�.X;K/ be the complex in which Sn.X;K/ is
the K-vector space with basis the singular n-simplices in X and the boundary map sends a
simplex to the (usual) alternating sum of its faces. Set

S�.X;K/D Hom.S�.X;K/;K/

with the boundary map for which

.˛;�/ 7! ˛.�/WS�.X;K/˝S�.X;K/!K

is a morphism of complexes, namely, that defined by

.d˛/.�/D .�1/deg.˛/C1˛.d�/:

PROPOSITION 1.1. There is a canonical isomorphism Hn.S�.X;K//!Hn.X;K/.

PROOF. If U is the unit ball, then H 0.S�.U;K//DK and Hn.S�.U;K//D 0 for n > 0.
Thus, K! S�.U;K/ is a resolution of the group K. Let Sn be the sheaf of X associated
with the presheaf V 7! Sn.V;K/. The last remark shows that K! S� is a resolution of
the sheaf K. As each Sn is fine (Warner 1971, 5.32), Hn.X;K/'Hn.� .X;S�//. But the
obvious map S�.X;K/! � .X;S�/ is surjective with an exact complex as kernel (loc. cit.),
and so

Hn.S�.X;K//
'
!Hn.� .X;S�//'Hn.X;K/. �

Differentiable manifolds
Now assume X is a differentiable manifold. On replacing “singular n-simplex” by “differen-
tiable singular n-simplex” in the above definitions, one obtains complexes S1� .X;K/ and
S�1.X;K/. The same argument shows that there is a canonical isomorphism

Hn
1.X;K/

def
DHn.S1� .X;K//

'
!Hn.X;K/

(Warner 1971, 5.32).
Let OX1 be the sheaf of C1 real-valued functions onX , let˝nX1 be the OX1-module

of C1 differential n-forms on X , and let ˝�X1 be the complex

OX1
d
!˝1X1

d
!˝2X1

d
! �� � :
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The de Rham cohomology groups of X are defined to be

Hn
dR.X/DH

n.� .X;˝�X1//D
fclosed n-formsg
fexact n-formsg

:

If U is the unit ball, Poincaré’s lemma shows that H 0
dR.U /D R and Hn

dR.U /D 0 for n > 0.
Thus, R!˝�X1 is a resolution of the constant sheaf R, and as the sheaves ˝nX1 are fine
(Warner 1971, 5.28), we have Hn.X;R/'Hn

dR.X/.
For ! 2 � .X;˝nX1/ and � 2 S1n .X;R/, define

h!;�i D .�1/
n.nC1/
2

Z
�

! 2 R.

Stokes’s theorem states that
R
� d! D

R
d� !, and so

hd!;�iC .�1/nh!;d�i D 0.

The pairing h;i therefore defines a map of complexes

f W� .X;˝�X1/! S�1.X;R/.

THEOREM 1.2 (DE RHAM). The map Hn
dR.X/!Hn

1.X;R/ defined by f is an isomor-
phism for all n.

PROOF. The map is inverse to the map

Hn
1.X;R/

'
!Hn.X;R/'Hn

dR.X/

defined in the previous two paragraphs (Warner 1971, 5.36). (Our signs differ from the usual
signs because the standard sign conventionsZ

�

d! D

Z
d�

!;

Z
X�Y

pr�1!^pr
�
2 �D

Z
X

! �

Z
Y

�; etc.

violate the sign conventions for complexes.) �

A number
R
� !, � 2 Hn.X;Q/, is called a period of !. The map in (1.2) identifies

Hn.X;Q/ with the space of classes of closed forms whose periods are all rational. Theorem
1.2 can be restated as follows: a closed differential form is exact if all its periods are zero;
there exists a closed differential form having arbitrarily assigned periods on an independent
set of cycles.

REMARK 1.3 (SINGER AND THORPE 1967, 6.2). If X is compact, then it has a smooth
triangulation T . Define S�.X;T;K/ and S�.X;T;K/ as before, but using only simplices in
T . Then the map

� .X;˝�X1/! S�.X;T;K/

defined by the same formulas as f above induces isomorphisms

Hn
dR.X/!Hn.S�.X;T;K//.
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Complex manifolds
Now let X be a complex manifold, and let ˝�X an denote the complex

OX an
d
!˝1X an

d
!˝2X an

d
! �� �

in which ˝nX an is the sheaf of holomorphic differential n-forms. Thus, locally a section of
˝nX an is of the form

! D
X

˛i1:::indzi1 ^ : : :^dzin

with ˛i1:::in a holomorphic function and the zi complex local coordinates. The complex
form of Poincaré’s lemma shows that C!˝�X an is a resolution of the constant sheaf C, and
so there is a canonical isomorphism

Hn.X;C/!Hn.X;˝�X an/ (hypercohomology).

If X is a compact Kähler manifold, then the spectral sequence

E
p;q
1 DH q.X;˝

p
X an/ H) HpCq.X;˝�X an/

degenerates, and so provides a canonical splitting M.4

Hn.X;C/D
M

pCqDn

H q.X;˝
p
X an/ (the Hodge decomposition)

as Hp;q def
D H q.X;˝

p
X an/ is the complex conjugate of H q;p relative to the real structure

Hn.X;R/˝C ' Hn.X;C/ (Weil 1958). The decomposition has the following explicit
description: the complex ˝�X1 ˝C of sheaves of complex-valued differential forms on
the underlying differentiable manifold is an acyclic resolution of C, and so Hn.X;C/D
Hn.� .X;˝�X1 ˝C//; Hodge theory shows that each element of the second group is
represented by a unique harmonic n-form, and the decomposition corresponds to the decom-
position of harmonic n-forms into sums of harmonic .p;q/-forms, pCq D n. 3

Complete smooth varieties
Finally, let X be a complete smooth variety over a field k of characteristic zero. If k D C,
thenX defines a compact complex manifoldX an, and there are therefore groupsHn.X an;Q/,
depending on the map X ! Spec.C/, that we shall write Hn

B .X/ (here B abbreviates Betti).
If X is projective, then the choice of a projective embedding determines a Kähler structure
on X an, and hence a Hodge decomposition (which is independent of the choice of the
embedding because it is determined by the Hodge filtration, and the Hodge filtration depends
only on X ; see Theorem 1.4 below). In the general case, we refer to Deligne 1968, 5.3, 5.5,
for the existence of the decomposition.

For an arbitrary field k and an embedding � Wk ,! C, we write Hn
� .X/ for Hn

B .�X/

and Hp;q
� .X/ for Hp;q.�X/. As � defines a homeomorphism �X an! ��X an, it induces an

isomorphism Hn
�� .X/!Hn

� .X/. Sometimes, when k is given as a subfield of C, we write
Hn

B .X/ for Hn
B .XC/.

3For a recent account of Hodge theory, see C. Voisin, Hodge Theory and Complex Algebraic Geometry, I,
CUP, 2002.
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Let ˝�
X=k

denote the complex in which ˝n
X=k

is the sheaf of algebraic differen-
tial n-forms, and define the (algebraic) de Rham cohomology group Hn

dR.X=k/ to be
Hn.XZar;˝

�
X=k

/ (hypercohomology with respect to the Zariski cohomology). For any
homomorphism � Wk ,! k0, there is a canonical isomorphism

Hn
dR.X=k/˝k;� k

0
!Hn

dR.X˝k k
0=k0/:

The spectral sequence

E
p;q
1 DH q.XZar;˝

p

X=k
/ H) HpCq.XZar;˝

�
X=k/

defines a filtration (the Hodge filtration) F pHn
dR.X/ on Hn

dR.X/ which is stable under base
change.

THEOREM 1.4. When k D C the obvious maps

X an
!XZar; ˝�X an  ˝�X ;

induce isomorphisms
Hn

dR.X/!Hn
dR.X

an/'Hn.X an;C/

under which F pHn
dR.X/ corresponds to F pHn.X an;C/ def

D

M
p0�p, p0Cq0Dn

Hp0;q0 .

PROOF. The initial terms of the spectral sequences

E
p;q
1 DH q.XZar;˝

p

X=k
/ H) HpCq.XZar;˝

�
X=k/

E
p;q
1 DH q.X;˝

p
X an/ H) HpCq.X;˝�X an/

are isomorphic — see Serre 1956 for the projective case and Grothendieck 1966 for the gen-
eral case. The theorem follows from this because, by definition of the Hodge decomposition,
the filtration of Hn

dR.X
an/ defined by the above spectral sequence is equal to the filtration of

Hn.X an;C/ defined in the statement of the theorem. �

It follows from the theorem and the discussion preceding it that every embedding
� Wk ,! C defines an isomorphism

Hn
dR.X/˝k;� C

'
�!Hn

� .X/˝QC

and, in particular, a k-structure on Hn
� .X/˝QC. When k D Q, this structure should be

distinguished from the Q-structure defined by Hn
� .X/: the two are related by the periods.

When k is algebraically closed, we write Hn.X;Af /, or Hn
et.X/, for Hn.Xet; OZ/˝Z

Q, where Hn.Xet; OZ/ D lim
 �m

Hn.Xet;Z=mZ/ (étale cohomology). If X is connected,
H 0.X;Af / D Af , the ring of finite adèles for Q, which justifies the first notation. By
definition, Hn

et.X/ depends only on X (and not on its structure morphism X ! Speck).
The map Hn

et.X/!Hn
et.X˝k k

0/ defined by an inclusion k ,! k0 of algebraically closed
fields is an isomorphism (special case of the proper base change theorem Artin et al. 1973,
XII). The comparison theorem (ibid. XI) shows that, when k D C, there is a canonical
isomorphism Hn

B .X/˝Af !Hn
et.X/. It follows that Hn

B .X/˝Af is independent of the
morphism X ! SpecC, and that, over any algebraically closed field of characteristic zero,
Hn

et.X/ is a free Af -module.
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The Af -moduleHn.X;Af / can also be described as the restricted product of the spaces
Hn.X;Ql/, l a prime number, with respect to the subspaces Hn.X;Zl/=ftorsiong.

Next we define the notion of the “Tate twist” in each of the three cohomology theories.
For this we shall define objects Q.1/ and set Hn.X/.m/DHn.X/˝Q.1/˝m. We want
Q.1/ to be H 2.P1/ (realization of the Tate motive in the cohomology theory), but to avoid
the possibility of introducing sign ambiguities we shall define it directly,

QB.1/D 2�iQ

Qet.1/D Af .1/
def
D .lim
 �
r

�r/˝ZQ; �r D f� 2 k j �
r
D 1g

QdR.1/D k;

and so

Hn
B .X/.m/DH

n
B .X/˝Q .2�i/

mQDHn.X an; .2�i/mQ/ .k D C/

Hn
et.X/.m/DH

n
et.X/˝Af .Af .1//

˝m
D

�
lim
 �

rH
n.Xet;�

˝m
r /

�
˝ZQ .k alg. closed)

Hn
dR.X/.m/DH

n
dR.X/.

These definitions extend in an obvious way to negative m. For example, we set Qet.�1/D

HomAf .Af .1/;Af / and define

Hn
et.X/.�m/DH

n
et.X/˝Qet.�1/

˝m:

There are canonical isomorphisms

QB.1/˝QAf !Qet.1/ (k � C, k algebraically closed/

QB.1/˝C!QdR.1/˝k C (k � C)

and hence canonical isomorphisms (the comparison isomorphisms)

Hn
B .X/.m/˝QAf !Hn

et.X/.m/ (k � C, k algebraically closed/

Hn
B .X/.m/˝QC!Hn

dR.X/.m/˝k C (k � C).

To define the first, note that exp defines an isomorphism

z 7! ez W2�iZ=r2�iZ! �r :

After passing to the inverse limit over r and tensoring with Q, we obtain the required
isomorphism 2�iAf ! Af .1/. The second isomorphism is induced by the inclusions

2�iQ ,! C - k:

Although the Tate twist for de Rham cohomology is trivial, it should not be ignored. For
example, when k D C,

Hn
B .X/˝C Hn

B .X/.m/˝C

Hn
dR.X/ Hn

dR.X/.m/

17!.2�i/m

'

' '
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fails to commute by a factor .2�i/m. Moreover when m is odd the top isomorphism is
defined only up to sign.

In each cohomology theory there is a canonical way of attaching a class cl.Z/ in
H 2p.X/.p/ to an algebraic cycle Z on X of pure codimension p. Since our cohomology
groups are without torsion, we can do this using Chern classes (Grothendieck 1958). Starting
with a functorial isomorphism c1WPic.X/!H 2.X/.1/, one uses the splitting principle to
define the Chern polynomial

ct .E/D
P
cp.E/t

p; cp.E/ 2H
2p.X/.p/;

of a vector bundle E on X . The map E 7! ct .E/ is additive, and therefore factors through
the Grothendieck group of the category of vector bundles on X . But, as X is smooth, this
group is the same as the Grothendieck group of the category of coherent OX -modules, and
we can therefore define

cl.Z/D
1

.p�1/Š
cp.OZ/

(loc. cit. 4.3).
In defining c1 for the Betti and étale theories, we begin with maps

Pic.X/!H 2.X an;2�iZ/
Pic.X/!H 2.Xet;�r/

arising as connecting homomorphisms from the sequences

0! 2�i !OX an
exp
��!O�X an ! 0

0! �r !O�X
r
�!O�X ! 0:

For the de Rham theory, we note that the d log map, f 7! df
f

, defines a map of complexes

0 O�X 0 � � �

OX ˝1X ˝2X � � �

dlog

d d d

and hence a map

Pic.X/'H 1.X;O�X /'H2.X;0!O�X ! �� �/
!H2.X;˝�X /DH

2
dR.X/DH

2
dR.X/.1/

whose negative is c1. It can be checked that the three maps c1 are compatible with the
comparison isomorphisms (Deligne 1971a, 2.2.5.1), and it follows formally that the maps cl
are also compatible once one has checked that the Gysin maps and multiplicative structures
are compatible with the comparison isomorphisms.

When k D C, there is a direct way of defining a class cl.Z/ 2 H2d�2p.X.C/;Q/
(singular cohomology, d D dim.X/, p D codim.Z//: the choice of an i D

p
�1 deter-

mines an orientation of X and of the smooth part of Z, and there is therefore a topo-
logically defined class cl.Z/ 2 H2d�2p.X.C/;Q/. This class has the property that for
Œ!� 2H 2d�2p.X1;R/DH 2d�2p.� .X;˝�X1// represented by the closed form !,

hcl.Z/; Œ!�i D

Z
Z

!.
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By Poincaré duality, cl.Z/ corresponds to a class cltop.Z/ 2 H
2p
B .X/, whose image in

H
2p
B .X/.p/ under the map induced by 1 7! .2�i/pWQ!Q.p/ is known to be clB.Z/. The

above formula becomes Z
X

cltop.Z/[ Œw�D

Z
Z

!.

There are trace maps (d D dimX )

TrBWH
2d
B .X/.d/

'
!Q

TretWH
2d
et .X/.d/

'
! Af

TrdRWH
2d
dR .X/.d/

'
! k

that are determined by the requirement that Tr.cl.point//D 1. They are compatible with
the comparison isomorphisms. When k D C, TrB and TrdR are equal respectively to the
composites

H 2d
B .X/.d/ H 2d

B .X/ H 2d .� .˝�X1// C

H 2d
dR .X/.d/ H 2d

dR .X/ H 2d .� .˝�X1// C

.2�i/d 7!1 ' Œ!�7!
R
X !

'
Œ!�7! 1

.2�i/d

R
X !

where we have chosen an i and used it to orientate X (the composite maps are obviously
independent of the choice of i ). The formulas of the last paragraph show that

TrdR.cldR.Z/[ Œ!�/D
1

.2�i/dimZ

Z
Z

!:

A definition of Tret can be found in Milne 1980, VI 11.

Applications to periods
We now deduce some consequences concerning periods.

PROPOSITION 1.5. Let X be a complete smooth variety over an algebraically closed field
k � C and let Z be an algebraic cycle on XC of dimension r . For any C1 differential
r-form ! on XC whose class Œ!� in H 2r

dR .XC/ lies in H 2r
dR .X/Z

Z

! 2 .2�i/rk:

PROOF. We first note that Z is algebraically equivalent to a cycle Z0 defined over k.
In proving this, we can assume Z to be prime. There exists a smooth variety T over k, a
subvariety Z �X�T that is flat over T , and a point SpecC! T such thatZDZ�T SpecC
in X �T SpecCD XC. We can therefore take Z0 to be Z�T Speck � X �T Speck D X
for any point Speck! T . From this it follows that cldR.Z/D cldR.Z0/ 2H

2r
dR .X/.r/ and

TrdR.cldR.Z/[ Œ!�/ 2 k. But we saw above that
R
Z ! D .2�i/

r TrdR.cldR.Z/[ Œ!�/. �

We next derive a classical relation between the periods of an elliptic curve. For a
complete smooth curve X and an open affine subset U , the map

H 1
dR.X/!H 1

dR.U /D
� .U;˝1X /

d� .U;OX /
D
fmeromorphic diffls, holomorphic on U g

fexact differentials on U g
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is injective with image the set of classes represented by forms whose residues are all zero
(such forms are said to be of the second kind). When k D C, TrdR.Œ˛�[ Œˇ�/, where ˛ and ˇ
are differential 1-forms of the second kind, can be computed as follows. Let ˙ be the finite
set of points where ˛ or ˇ has a pole. For z a local parameter at P 2˙ , ˛ can be written

˛ D
X

�1�i<1

aiz
idz with a�1 D 0:

There therefore exists a meromorphic function f defined near P such that df D ˛. We
write

R
˛ for any such function — it is defined up to a constant. As ResP ˇ D 0, ResP .

R
˛/ˇ

is well-defined, and one proves that

TrdR.Œ˛�[ Œˇ�/D
X
P2˙

ResP
�R
˛
�
ˇ.

Now let X be the elliptic curve

y2z D 4x3�g2xz
2
�g3z

3:

There is a lattice � in C and corresponding Weierstrass function }.z/ such that

z 7! .}.z/ W }0.z/ W 1/

defines an isomorphism C=�!X.C/. Let 1 and 2 be generators of � such that the bases
f1;2g and f1; ig of C have the same orientation. We can regard 1 and 2 as elements of
H1.X;Z/, and then 1 �2D 1. The differentials ! D dx=y and �D xdx=y on X pull back
to dz and }.z/dz respectively on C. The first is therefore holomorphic and the second has a
single pole at1D .0 W 1 W 0/ on X with residue zero (because 0 2 C maps to12 X and
}.z/D 1

z2
Ca2z

2C : : :). We find that

TrdR.Œ!�[ Œ��/D Res0

�Z
dz

�
}.z/dz D Res0.z}.z/dz/D 1.

For i D 1;2, let Z
i

dx

y

def
D

Z
i

dxp
4x3�g2x�g3

D !iZ
i

xdx

y

def
D

Z
i

xdxp
4x3�g2x�g3

D �i

be the periods of ! and �. Under the map

H 1
dR.X/!H 1.X;C/

! maps to !1 01C!2
0
2 and � maps to �1 01C �2

0
2, where f 01;

0
2g is the basis dual to

f1;2g. Thus

1D TrdR.Œ!�[ Œ��/

D TrB..!1
0
1C!2

0
2/[ .�1

0
1C�2

0
2//

D .!1�2�!2�1/TrB.
0
1[

0
2/

D
1

2�i
.!1�2�!2�1/:
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Hence
!1�2�!2�1 D 2�i .

This is the Legendre relation.
The next proposition shows how the existence of algebraic cycles can force algebraic

relations between the periods of abelian integrals. Let X be an abelian variety over a subfield
k of C. In each of the three cohomology theories,

H r.X/D
^r

H 1.X/

and
H 1.X �X � � � �/DH 1.X/˚H 1.X/˚�� �

Let � 2Gm.Q/ act on QB.1/ as ��1. There is then a natural action of GL.H 1
B .X//�Gm on

H r
B.X

n/.m/ for any r;n; andm. We defineG to be the subgroup of GL.H 1
B .X//�Gm fixing

all the tensors of the form clB.Z/, Z an algebraic cycle on some Xn (see the Notations).
Consider the comparison isomorphisms

H 1
dR.X/˝k C

'
�!H 1.X an;C/

'
 �H 1

B .X/˝QC.

The periods pij of X are defined by the equations

˛i D
X

pj iaj

where f˛ig and faig are bases for H 1
dR.X/ and H 1

B .X/ over k and Q respectively. The field
k.pij / generated over k by the pij is independent of the bases chosen.

PROPOSITION 1.6. With the above definitions, the transcendence degree of k.pij / over k
is � dim.G/.

PROOF. We can replace k by its algebraic closure in C, and hence assume that each algebraic
cycle on XC is equivalent to an algebraic cycle on X (see the proof of 1.5). Let P be the
functor of k-algebras whose value onR is the set of isomorphisms pWH 1

B˝QR!H 1
dR˝kR

mapping clB.Z/˝ 1 to cldR.Z/˝ 1 for all algebraic cycles Z on a power of X . When
RD C, the comparison isomorphism is such a p, and so P.C/ is not empty. It is easily seen
that P is represented by an algebraic variety that becomes a Gk-torsor under the obvious
action. The bases f˛ig and faig can be used to identify the points of P with matrices. The
matrix

�
pij
�

is a point of P with coordinates in C, and so the proposition is a consequence
of the following easy lemma. �

LEMMA 1.7. Let AN be the affine N -space over a subfield k of C, and let z 2AN .C/. The
transcendence degree of k.z1; : : : ; zN / over k is the dimension of the Zariski closure of fzg
in AN .

PROOF. Let a be the kernel of the homomorphism kŒT1; : : : ;TN �! kŒz1; : : : ; zN � sending
Ti to zi . The Zariski closure of fzg in AN is the zero set Z.a/ of a, and Z.a/ is a variety
over k with function field k.z1; : : : ; zN /. Now dim.Z.a//D tr. deg.kk.z1; : : : ; zN / (standard
result). �
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REMARK 1.8. If X is an elliptic curve, then dimG is 2 or 4 according as X has complex
multiplication or not. Chudnovsky has shown that

tr. deg.kk.pij /D dimG

when X is an elliptic curve with complex multiplication. Does equality hold for all abelian
varieties? M.5

One of the main purposes of the seminar was to show that, in the case that X is an
abelian variety, (1.5) and (1.6) make sense, and remain true, if “algebraic cycle” is replaced
by “Hodge cycle”.
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2 Absolute Hodge cycles; principle B

Definitions (k algebraically closed of finite transcendence degree)
Let k be an algebraically closed field of finite transcendence degree over Q, and let X be a
complete smooth variety over k. Set

Hn
A.X/.m/DH

n
dR.X/.m/�H

n
et.X/.m/

— it is a free k�Af -module. Corresponding to an embedding � Wk ,!C, there are canonical
isomorphisms

��dRWH
n
dR.X/.m/˝k;� C

'
!Hn

dR.�X/.m/

��et WH
n
et.X/.m/

'
!Hn

et.�X/.m/

whose product we write ��. The diagonal embedding

Hn
� .X/.m/ ,!Hn

dR.�X/.m/�H
n
et.�X/.m/

induces an isomorphism

Hn
� .X/.m/˝ .C�Af /

'
!Hn

dR.�X/.m/�H
n
et.�X/.m/

(product of the comparison isomorphisms, �1). An element t 2 H 2p
A .X/.p/ is a Hodge

cycle relative to � if

(a) t is rational relative to � , i.e., ��.t/ lies in the rational subspace H 2p
� .X/.p/ of

H
2p
dR .�X/.p/�H

2p
et .�X/.p/;

(b) the first component of t lies in F 0H 2p
dR .X/.p/

def
D F pH

2p
dR .X/.

Equivalent condition: ��.t/ lies in H 2p
� .X/.p/ and is of bidegree .0;0/. If t is a Hodge

cycle relative to every embedding � Wk ,! C, then it is called an absolute Hodge cycle.

EXAMPLE 2.1. (a) For any algebraic cycle Z on X , t D .cldR.Z/;clet.Z// is an abso-
lute Hodge cycle — the Hodge conjecture predicts there are no others. Indeed, for
any � Wk ,! C, ��.t/D clB.Z/, and is therefore rational, and it is well-known that
cldR.�Z/ is of bidegree .p;p/ in H 2p

dR .�X/.
(b) Let X be a complete smooth variety of dimension d , and consider the diagonal

��X �X . Corresponding to the decomposition

H 2d .X �X/.d/D

2dM
iD0

H 2d�i .X/˝H i .X/.d/

we have
cl.�/D

P2d
iD0�

i :

The � i are absolute Hodge cycles.
(c) Suppose that X is given with a projective embedding, and let  2 H 2

dR.X/.1/�

H 2
et.X/.1/ be the class of a hyperplane section. The hard Lefschetz theorem states

that
x 7! d�2p �xWH 2p.X/.p/!H 2d�2p.X/.d �p/; 2p � d;

is an isomorphism. The class x is an absolute Hodge cycle if and only if d�2p �x is
an absolute Hodge cycle.
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Loosely speaking, every cycle constructed from a set of absolute Hodge cycles by a
canonical rational process will again be an absolute Hodge cycle.

OPEN QUESTION 2.2. Does there exist a cycle rational for every � but which is not abso-
lutely Hodge? M.6

More generally, consider a family .X˛/˛2A of complete smooth varieties over a field k
(as above). Let .m.˛// 2 N.A/, .n.˛// 2 N.A/, and m 2 Z, and write

TdR D

 O
˛

H
m.˛/
dR .X˛/

!
˝

 O
˛

H
n.˛/
dR .X˛/

_

!
.m/

Tet D

 O
˛

H
m.˛/
et .X˛/

!
˝

 O
˛

H
n.˛/
et .X˛/

_

!
.m/

TA D TdR�Tet

T� D

 O
˛

Hm.˛/
� .X˛/

!
˝

 O
˛

Hn.˛/
� .X˛/

_

!
.m/ .� Wk ,! C/:

Then we say that t 2 TA is

˘ rational relative to � if its image in TA˝k�Af ;.�;1/C�Af lies in T� ,
˘ a Hodge cycle relative to � if it is rational relative to � and its first component lies in

F 0, and
˘ an absolute Hodge cycle if it is a Hodge cycle relative to every � .

Note that, in order for there to exist Hodge cycles in TA, it is necessary thatP
m.˛/�

P
n.˛/D 2m.

EXAMPLE 2.3. Cup product defines maps

T
m;n
A .p/�T

m0;n0

A .p0/! T
mCm0;nCn0

A .pCp0/;

and hence an element of T _A ˝T
_
A ˝TA, which is an absolute Hodge cycle.

OPEN QUESTION 2.4. Let t 2 F 0H 2p
dR .X/.p/. If ��dR.t/ 2H

2p
� .X/.�/ for all � Wk ,! C,

is t necessarily the first component of an absolute Hodge cycle?

Basic properties of absolute Hodge cycles
In order to develop the theory of absolute Hodge cycles, we shall need to use the Gauss-
Manin connection (Katz and Oda 1968; Katz 1970; Deligne 1971b). Let k0 be a field of
characteristic zero and let S be a smooth k0-scheme (or the spectrum of a finitely generated
field over k0). A k0-connection on a coherent OS -module E is a homomorphism of sheaves
of abelian groups

rWE!˝1S=k0˝OS E

such that
r.fe/D df ˝ eCf r.e/
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for local sections f of OS and e of E . The kernel of r, Er , is the sheaf of horizontal
sections of .E ;r/. Every k0-connection r can be extended to a homomorphism of abelian
sheaves,

rnW˝
n
S=k0
˝OS E!˝nC1

S=k0
˝OS E ;

!˝ e 7! d!˝ eC .�1/n!^r.e/

and r is said to be integrable if r1 ır D 0. Moreover, r gives rise to an OS -linear map

D 7! rDWDer.S=k0/! Endk0.E/

where rD is the composite

E r!˝1S=k0˝OS E
D˝1
! OS ˝OS E ' E :

Note that rD.fe/ D D.f /eC f rD.e/. One checks that r is integrable if and only if
D 7! rD is a Lie algebra homomorphism.

Now consider a proper smooth morphism � WX ! S of smooth varieties, and write
Hn

dR.X=S/ for Rn��.˝�X=S /. This is a locally free sheaf of OS -modules with a canonical
connection r; called the Gauss-Manin connection, which is integrable. It therefore defines
a Lie algebra homomorphism

Der.S=k0/! Endk0.H
n
dR.X=S//:

If k0 ,! k00 is an inclusion of fields and X 0=S 0 D .X=S/˝k0 k
0
0, then the Gauss-Manin

connection on Hn
dR.X

0=S 0/ is r˝1. In the case that k0 D C, the relative form of Serre’s
GAGA theorem (Serre 1956) shows that Hn

dR.X=S/
an 'Hn

dR.X
an=X an/ and r gives rise to

a connection ran on Hn
dR.X

an=S an/. The relative Poincaré lemma shows that

.Rn��C/˝OS an
'
!Hn

dR.X
an=S an/;

and it is known that ran is the unique connection such that

Rn��C
'
!Hn

dR.X
an=S an/r

an
.

PROPOSITION 2.5. Let k0 � C have finite transcendence degree over Q, and let X be a
complete smooth variety over a field k that is finitely generated over k0. Let r be the
Gauss-Manin connection on Hn

dR.X/ relative to the composite X ! Speck! Speck0. If
t 2Hn

dR.X/ is rational relative to all embeddings of k into C, then t is horizontal for r, i.e.,
rt D 0.

PROOF. Choose a regular k0-algebra A of finite-type and a smooth proper map � WXA!
SpecA whose generic fibre is X ! Speck and which is such that t extends to an element of
� .SpecA;Hn

dR.X=SpecA/. After a base change relative to k0 ,! C, we obtain maps

XS ! S ! SpecC; S D SpecAC;

and a global section t 0 D t˝1 of Hn
dR.X

an
S =S

an/. We have to show that .r˝1/t 0 D 0, or
equivalently, that t 0 is a global section of Hn.X an

S ;C/
def
DRn�an

� C.
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An embedding � Wk ,!C gives rise to an injectionA ,!C (i.e., a generic point of SpecA
in the sense of Weil) and hence a point s of S . The hypotheses show that, at each of these
points, t .s/ 2 Hn.X an

s ;Q/ � Hn
dR.X

an
s /. Locally on S , Hn

dR.X
an
s =S

an/ will be the sheaf
of holomorphic sections of the trivial bundle S �Cn and Hn.X an;C/ will be the sheaf of
locally constant sections. Thus, locally, t 0 is a function

s 7! .t1.s/; : : : ; tm.s//WS ! S �Cm:

Each ti .s/ is a holomorphic function which, by hypothesis, takes real (even rational) values
on a dense subset of S . It is therefore constant. �

REMARK 2.6. In the situation of (2.5), assume that t 2Hn
dR.X/ is rational relative to one �

and horizontal for r. An argument similar to the above then shows that t is rational relative
to all embeddings that agree with � on k0.

COROLLARY 2.7. Let k0 � k be algebraically closed fields of finite transcendence degree
over Q, and let X be a complete smooth variety over k0. If t 2Hn

dR.Xk/ is rational relative
to all � Wk ,! C, then it is defined over k0, i.e., it is in the image of Hn

dR.X/!Hn
dR.Xk/.

PROOF. Let k0 be a subfield of k which is finitely generated over k0 and such that t 2
Hn

dR.X˝k0 k
0/. The hypothesis implies thatrt D 0wherer is the Gauss-Manin connection

for Xk0 ! Speck0! Speck0. Thus, for any D 2 Der.k0=k0/, rD.t/D 0. But Xk0 arises
from a variety over k0, and so Der.k0=k0/ acts on Hn

dR.Xk0/DH
n
dR.X/˝k0 k

0 through k0,
i.e., rD D 1˝D. Thus the corollary follows from the next well-known lemma. �

LEMMA 2.8. Let k0 � k0 be as above, and let V D V0˝k0 k
0, where V0 is a vector space

over k0. If t 2 V is fixed (i.e., killed) by all derivations of k0=k0, then t 2 V0.

Let CpAH.X/ be the subset of H 2p
A .X/.p/ of absolute Hodge cycles. It is a finite-

dimensional vector space over Q.

PROPOSITION 2.9. Let k be an algebraically closed field of finite transcendence degree
over Q.

(a) For any smooth complete variety X defined over an algebraically closed subfield k0
of k, the canonical map

H
2p
A .X/.p/!H

2p
A .Xk/.p/

induces an isomorphism
C
p
AH.X/! C

p
AH.Xk/.

(b) Let X0 be a smooth complete variety defined over a subfield k0 of k whose algebraic
closure is k, and let X DX0˝k0 k. Then Gal.k=k0/ acts on CpAH.X/ through a finite
quotient.

PROOF. (a) The map is injective, and a cycle on X is absolutely Hodge if and only if it is
absolutely Hodge on Xk , and so it remains to show that an absolute Hodge cycle t on Xk
arises from a cycle on X . But (2.7) shows that tdR arises from an element of H 2p

dR .X/.p/,
and H 2p

et .X/.p/!H
2p
et .Xk/.p/ is an isomorphism.

(b) It is obvious that the action of Gal.k=k0/ on H 2p
dR .X/.p/�H

2p
et .X/.p/ stabilizes

C
p
AH.X/. We give three proofs that it factors through a finite quotient.
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(i) Note that CpAH.X/!H
2p
dR .X/ is injective. Clearly, H 2p

dR .X/D
S
H
2p
dR .X0˝ki /

where the ki run over over the finite extensions of k0 contained in k. Thus, all elements of a
finite generating set for CpAH.X/ lie in H 2p

dR .X0˝ki / for some i .
(ii) Note that CpAH.X/!H 2p.Xet;Q`/.p/ is injective for all `. The subgroup H of

Gal.k=k0/ fixing CpAH.X/ is closed. Thus, the quotient of Gal.k=k0/ by H is a profinite
group, which is countable because it is a finite subgroup of GLm.Q/ for some m. It follows
that it is finite (the Cantor diagonalization argument shows that an infinite profinite group is
uncountable).

(iii) A polarization of X gives a positive definite form on CpAH.X/, which is stable under
Gal.k=k0/. This shows that the action factors through a finite quotient. �

REMARK 2.10. (a) The above results remain valid for a family of varieties .X˛/˛ rather
than a single X .

(b) Proposition 2.9 would remain true if we had defined an absolute Hodge cycle to be
an element t of F 0H 2p

dR .X/.p/ such that, for all � Wk ,! C; ��dR.t/ 2H
2p
� .X/.

Definitions (arbitrary k)
Proposition 2.9 allows us to define the notion of an absolute Hodge cycle on any smooth
complete variety X over a field of characteristic zero. When k is algebraically closed,
we choose a model X0=k0 of X0 over an algebraically closed subfield k0 of k of finite
transcendence degree over Q, and we define t 2H 2p

A .X/.p/ to be an absolute Hodge cycle
if it lies in the subspace H 2p

A .X0/.p/ of H 2p
A .X/.p/ and is an absolute Hodge cycle there.

The proposition shows that this definition is independent of the choice of k0 and X0. (This
definition is forced on us if we want (2.9a) to hold without restriction on the transcendence
degrees of k and k0.) When k is not algebraically closed, we choose an algebraic closure k
of it, and define an absolute Hodge cycle on X to be an absolute Hodge cycle on X˝k k
that is fixed by Gal.k=k/.

One can show (assuming the axiom of choice) that if k is algebraically closed and of
cardinality not greater than that of C, then an element t of H 2p

dR .X/.p/�H
2p
et .X/.p/ is

an absolute Hodge cycle if it is rational relative to all embeddings � Wk ,! C and tdR 2

F 0H
2p
dR .X/.p/. If k D C, then the first condition has to be checked only for isomorphisms

of C. When k �C, we define a Hodge cycle to be a cohomology class that is Hodge relative
to the inclusion k ,! C.

Statement of the main theorem
M.7

MAIN THEOREM 2.11. Let X be an abelian variety over an algebraically closed field k,
and let t 2H 2p

A .X/.p/. If t is a Hodge cycle relative to one embedding � Wk ,! C, then it
is a Hodge cycle relative to every embedding, i.e., it is an absolute Hodge cycle.

The proof will occupy ��2–6 of the notes.

Principle B
We begin with a result concerning families of varieties parametrized by smooth algebraic
varieties over C. Let � WX ! S be a proper smooth map of smooth varieties over C with S
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connected. We set
Hn

et.X=S/.m/D lim
 �
r

.Rn��et�
˝m
r /˝ZQ:

and
Hn

A.X=S/.m/DHn
dR.X=S/.m/�Hn

et.X=S/.m/.

THEOREM 2.12 (PRINCIPLE B). Let t be a global section of H2p
A .X=S/.p/ such that

rtdR D 0. If .tdR/s 2 F
0H

2p
dR .Xs/.p/ for all s 2 S and ts is an absolute Hodge cycle in

H
2p
A .Xs/.p/ for one s, then ts is an absolute Hodge cycle for all s.

PROOF. Suppose that ts is an absolute Hodge cycle for s D s1, and let s2 be a second point
of S . We have to show that ts2 is rational relative to every isomorphism � WC! C. On
applying � , we obtain a morphism �� W�X! �S and a global section �t of H2p

A .X=S/.p/.
We know that �.t/�s1 is rational, and we have to show that �.t/�s2 is rational. Clearly, �
only translates the problem, and so we can omit it.

First consider the component tdR of t . By assumption, rtdR D 0, and so tdR is a global
section of H2p.X an;C/. Since it is rational at one point, it must be rational at every point.

Next consider tet. As H2p
B .X=S/.p/

def
DR2p�an

� Q.p/ and H2p
et .X=S/ are local systems,

for any point s 2 S there are isomorphisms

� .S;H2p
B .X=S/.p//

'
!H

2p
B .Xs/.p/

�1.S;s/

� .S;H2p
et .X=S/.p//

'
!H

2p
et .Xs/.p/

�1.S;s/:

Consider

� .S;H2p
B .X=S/.p// � .S;H2p

B .X=S/.p//˝Af � .S;H2p
et .X=S/.p//

H
2p
B .Xs/.p/

�1.S;s/ H
2p
B .Xs/.p/

�1.S;s/˝Af H
2p
et .Xs/.p/

�1.S;s/

H
2p
B .Xs/.p/ H

2p
B .Xs/.p/˝Af H

2p
et .Xs/.p/

' ' '

'

'

'

We have tet 2 � .S;H2p
et .X=S/.p// and are told that its image in H 2p

et .Xs1/.p/ lies in
H
2p
B .Xs1/.p/. On applying the next lemma (with Z D A and z D 1), we find that tet lies in

� .S;H2p
B .X=S/.p//, and is therefore in H 2p

B .Xs/.p/ for all s. �

LEMMA 2.13. Let W ,! V be an inclusion of vector spaces. Let Z be a third vector space
and let z be a nonzero element of Z. Embed V in V ˝Z by v 7! v˝z. Then

.W ˝Z/\V DW (inside V ˝Z).

PROOF. Choose a basis .ei /i2I for W and extend it to a basis .ei /ItJ for V . Every
x 2 V ˝Z has a unique expression

x D
P
i2ItJ ei ˝zi ; .zi 2Z, finite sum/:

If x 2W ˝Z, then zi D 0 for i … I , and if x 2 V , then zi D z for all i . �
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REMARK 2.14. The assumption in the theorem that .tdR/s 2 F
0H

2p
dR .Xs/.p/ for all s is

unnecessary: it is implied by the condition that rtdR D 0 (Deligne 1971a, 4.1.2, Théorème
de la partie fixe). M.8

We shall need a slight generalization of Theorem 2.12.

THEOREM 2.15. Let � WX ! S again be a smooth proper map of smooth varieties over
C with S connected, and let V be a local subsystem of R2p��Q.p/ such that Vs consists
of .0;0/-cycles for all s and consists of absolute Hodge cycles for at least one s. Then Vs
consists of absolute Hodge cycles for all s.

PROOF. If V is constant, so that every element of Vs extends to a global section, then this is
a consequence of Theorem 2.12, but the following argument reduces the proof of the general
case to that case.

At each point s 2 S , R2p��Q.p/s has a Hodge structure. Moreover, R2p��Q.p/ has a
polarization, i.e., there is a form

 WR2p��Q.p/�R2p��Q.p/!Q.�p/

which at each point defines a polarization on the Hodge structure R2p��Q.p/s . On

R2p��Q.p/\ .R2p��C.p//0;0

the form is symmetric, bilinear, rational, and positive definite. Since the action of �1.S;s0/
preserves the form, the image of �1.S;s0/ in Aut.Vs0/ is finite. Thus, after passing to a
finite covering of S , we can assume that V is constant. �

REMARK 2.16. Both Theorem 2.12 and Theorem 2.15 generalize, in an obvious way, to
families �˛WX˛! S .
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3 Mumford-Tate groups; principle A

Characterizing subgroups by their fixed tensors
Let G be a reductive algebraic group over a field k of characteristic zero, and let .V˛/˛2A be
a faithful family of finite-dimensional representations over k of G, so that G!

Q
GL.V˛/

is injective. For all m; n 2 N.A/, we can form

Tm;n D
N
˛ V
˝m.˛/
˛ ˝

N
˛.V

_
˛ /
˝n.˛/,

which is again a finite-dimensional representation of G. For an algebraic subgroup H of G,
we write H 0 for the subgroup of G fixing all tensors that occur in some Tm;n and are fixed
by H . Clearly, H �H 0, and we shall need criteria guaranteeing their equality.

PROPOSITION 3.1. The notations are as above.

(a) Every finite-dimensional representation of G is contained in a direct sum of represen-
tations Tm;n.

(b) (Chevalley’s Theorem). Every subgroup H of G is the stabilizer of a line D in some
finite-dimensional representation of G.

(c) If H is reductive, or if Xk.G/!Xk.H/ is surjective, then H DH 0. (Here Xk.G/
denotes Homk.G;Gm/, so the hypotheses is that every k-character of H extends to a
k-character of G.)

PROOF. 4 (a) Let W be a representation of G, and let W0 denote the underlying vector
space of W with G acting trivially (i.e., gw D w, all g 2 G, w 2W ): Then G�W !W

defines a map W ! W0˝ kŒG� which is G-equivariant (Waterhouse 1979, 3.5). Since
W0˝kŒG�� kŒG�

dimW , it suffices to prove (a) for the regular representation. There is a
finite sum V D˚V˛ such that G! GL.V / is injective (because G is noetherian). The map

GL.V /! End.V /�End.V _/

identifies GL.V / (and hence G) with a closed subvariety of End.V /�End.V _/ (ibid.).
There is therefore a surjection

Sym.End.V //�Sym.End.V _//! kŒG�;

where Sym denotes the symmetric algebra, and (a) now follows from the fact that representa-
tions of reductive groups in characteristic zero are semisimple (see Deligne and Milne 1982,
�2).

(b) Let I be the ideal of regular functions on G that are zero on H . Then, in the regular
representation of G on kŒG�, H is the stabilizer of I . There exists a finite-dimensional
subspace V of kŒG� that is G-stable and contains a generating set for I (Waterhouse 1979,
3.3). ThenH is the stabilizer of the subspace I \V in V , and hence of

Vd
.I \V / in

Vd
V ,

where d D dimk.I \V /.
(c) According to (b), H is the stabilizer of a line D in some representation V of G,

which (according to (a)) can be taken to be a direct sum of Tm;n’s.

4Added(jsm): For a detailed proof of (a), see Milne, Algebraic Groups, 2017, 4.14, 22.42; for a detailed
proof of (b), see ibid. 4.27
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If H is reductive, then V DW ˚D for some H -stable W and V _ DW _˚D_. Now
H is the group fixing a generator of D˝D_ in V ˝V _.

If every k-character of H extends to a k-character of G, then the one-dimensional
representation of H on D can be regarded as the restriction to H of a representation of G.
Now H is the group fixing a generator of D˝D_ in V ˝D_. �

REMARK 3.2. (a) It is clearly necessary to have some condition on H in order to have
H 0 DH . For example, let B be a Borel subgroup of a reductive group G, and let v 2 V be
fixed by B . Then g 7! gv defines a map of algebraic varieties G=B! V , which must be
constant because G=B is complete and V is affine. Thus, v is fixed by G, and so B 0 DG.

However, the above argument proves the following: letH 0 be the group fixing all tensors
fixed by G occurring in any representation of G (equivalently, any representation occurring
as a subquotient of some Tm;n); then H DH 0.

(b) In fact, in all our applications of (3.1c), H will be the Mumford-Tate group of a
polarizable Hodge structure, and hence will be reductive. However, the Mumford-Tate
groups of mixed Hodge structures (even polarizable) will not in general be reductive, but
will satisfy the second condition in (3.1c) (with G D GL).

(c) The theorem of Haboush (Demazure 1976) can be used to show that the second form
of (3.1c) holds when k has nonzero characteristic.

(d) In (3.1c) it suffices to require that Xk.G/! Xk.H/ has finite cokernel, i.e., a
nonzero multiple of each k-character of H extends to a k-character of G.

Hodge structures
Let V be a finite-dimensional vector space over Q. A Q-rational Hodge structure of weight
n on V is a decomposition VC D

L
pCqDnV

p;q such that V q;p is the complex conjugate of
V p;q . Such a structure determines a cocharacter

�WGm! GL.VC/

such that
�.z/vp;q D z�pvp;q; vp;q 2 V p;q:

The complex conjugate �.z/ of �.z/ has the property �.z/ �vp;q D z�qvp;q . Since �.z/
and �.z/ commute, their product determines a homomorphism of real algebraic groups

hWC�! GL.VR/; h.z/vp;q D z�pz�qvp;q .

Conversely, a homomorphism hWC�! GL.VR/ whose restriction to R� is r 7! r�n � idV
defines a Hodge structure of weight n on V .

Let F pV D
L
p0�p V

p0;q0 , so that

� � � � F pV � F pC1V � �� �

is a decreasing (Hodge) filtration on VC.
Let Q.1/ denote the vector space Q with the Hodge structure for which Q.1/C D

Q.1/�1;�1. It has weight �2 and h.z/ �1D zz �1. For any integer m,

Q.m/ def
DQ.1/˝m DQ.m/�m;�m

has weight �2m. (Strictly speaking, we should define Q.1/D 2�iQ : : :.)
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REMARK 3.3. The notation h.z/ �vp;qD z�pz�qvp;q is the negative of that used in Deligne
1971b, Saavedra Rivano 1972, and elsewhere. It is perhaps justified by the following. Let A
be an abelian variety over C. The exact sequences

0! Lie.A_/_!H1.A;C/! Lie.A/! 0

and

0 F 1H 1.A;C/ H 1.A;C/ F 0=F 1 0

H 1;0 DH 0.A;˝1/ H 0;1 DH 1.A;OX /

are canonically dual. Since H 1.A;C/ has a natural Hodge structure of weight 1 with
.1;0/-component H 0.˝1/, H1.A;C/ has a natural Hodge structure of weight �1 with
.�1;0/-component Lie.A/. Thus h.z/ acts on Lie.A/, the tangent space to A at zero, as
multiplication by z.

Mumford-Tate groups
Let V be a Q-vector space with Hodge structure h of weight n. For m1;m2 2N and m3 2 Z,
T D V ˝m1˝V _˝m2˝Q.1/˝m3 has a Hodge structure of weight .m1�m2/n�2m3. An
element of TC is said to be rational of bidegree .p;q/ if it lies in T \T p;q . We let � 2Gm
act on Q.1/ as ��1. The action of GL.V / on V and the action of Gm on Q.1/ define
an action of GL.V /�Gm on T . The Mumford-Tate group G of .V;h/ is the subgroup
of GL.V /�Gm fixing all rational tensors of type .0;0/ belonging to any T . Thus the
projection on the first factor identifiesG.Q/ with the set of g 2GL.V / for which there exists
a �.g/ 2Q� with the property that gt D �.g/pt for all t 2 V ˝m1˝V _˝m2 of type .p;p/.

PROPOSITION 3.4. The groupG is the smallest algebraic subgroup of GL.V /�Gm defined
over Q for which �.Gm/�GC.

PROOF. Let H be the intersection of all Q-rational subgroups of GL.V /�Gm that, over
C, contain �.Gm/. For any t 2 T , t is of type .0;0/ if and only if it is fixed by �.Gm/ or,
equivalently, it is fixed by H . Thus G DH 0 in the notation of (3.1), and the next lemma
completes the proof. �

LEMMA 3.5. With H as above, every Q-character of H extends to a Q-character of
GL.V /�Gm.

PROOF. Let �WH ! GL.W / be a representation of dimension one defined over Q, i.e., a
Q-character. The restriction of the representation to Gm is isomorphic to Q.n/ for some
n. After tensoring W with Q.�n/, we can assume that �ı�D 1, i.e., �.Gm/ acts trivially.
But then H must act trivially, and the trivial character extends to the trivial character. �

PROPOSITION 3.6. If V is polarizable, then G is reductive.

PROOF. Choose an i and write C D h.i/ (C is often called the Weil operator). For vp;q 2
V p;q , Cvp;q D i�pCqvp;q , and so C 2 acts as .�1/n on V , where nD pCq is the weight
of V .
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Recall that a polarization  of V is a morphism  WV � V ! Q.�n/ such that the
real-valued form  .x;Cy/ on VR is symmetric and positive definite. Under the canonical
isomorphism

Hom.V ˝V;Q.�n//! V _˝V _.�n/;

 corresponds to a tensor of bidegree .0;0/ (because it is a morphism of Hodge structures)
and therefore is fixed by G:

 .g1v;g1v
0/D gn2 .v;v

0/, all .g1;g2/ 2G.Q/� GL.V /�Q�; .v;v0/ 2 V:

Recall that ifH is a real algebraic group and � is an involution ofHC, then the real-form
ofH defined by � is a real algebraic groupH� endowed with an isomorphismHC! .H� /C
under which complex conjugation on H� .C/ corresponds to � ı .complex conjugation/ on
H.C/. We are going to use the following criterion: a connected algebraic group H over R
is reductive if it has a compact real-form H� . To prove the criterion, it suffices to show that
H� is reductive. On any finite-dimensional representation V of H , there is an H� -invariant
positive definite symmetric form, namely,

hu;vi0 D

Z
H�

hhu;hvidh;

where h ; i is any positive definite symmetric form on V . If W is an H� -stable subspace
of V , then its orthogonal complement is also H� -stable. Thus every finite-dimensional
representation ofH� is semisimple, and this implies thatH� is reductive (Deligne and Milne
1982, �2).

We shall apply the criterion to the special Mumford-Tate group of .V;h/,

G0
def
D Ker.G!Gm/.

Let G1 be the smallest Q-rational subgroup of GL.V /�Gm such that G1R contains h.U 1/,
where U 1.R/ D fz 2 C� j zz D 1g. Then G1 � G, and in fact G1 � G0. Since G1R �
h.C�/DGR and h.U 1/D Ker.h.C�/!Gm/, it follows that G0 DG1, and therefore G0

is connected.
Since C D h.i/ acts as 1 on Q.1/, C 2 G0.R/. Its square C 2 acts as .�1/n on V and

therefore lies in the centre of G0.R/. The inner automorphism adC of GR defined by C is
therefore an involution. For u;v 2 VC, and g 2G0.C/, we have

 .u;Cv/D  .gu;gCv/D  .gu;CC�1gCv/D  .gu;Cg�v/

where g� D C�1gC D .adC/.g/. Thus, the positive definite form �.u;v/
def
D  .u;Cv/ on

VR is invariant under the real-form ofG0 defined by adC , and so this real-form is compact.�

EXAMPLE 3.7. (Abelian varieties of CM-type). A CM-field is a quadratic totally imaginary
extension of a totally real field, and a CM-algebra is a finite product of CM-fields. Let E be
a CM-algebra, and let �E be the involution of E such that �ı� D � ı �E for all � WE! C.
Let I

S D Hom.E;Q/D Hom.E;C/DD spec.EC/:

A CM-type for E is a subset ˙ � S such that

S D˙ t �˙ (disjoint union).
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To the pair .E;˙/, there is attached an abelian variety A with A.C/D C˙=˙.OE / where
OE , the ring of integers in E, is embedded in C˙ by the map u 7! .�u/�2˙ . Obviously,
E acts on A. Moreover, from the choice of a nonzero element of H1.A;Q/, we obtain an
isomorphism H1.A;Q/'E, and

H1.A/˝C'E˝QC
'
! CS D C˙ ˚C�˙

u˝1 7! .�u/�2S

with C˙ the .�1;0/-component ofH1.A/˝C and C�˙ the .0;�1/-component. Thus, �.z/
acts as z on C˙ and as 1 on C�˙ .

LetG be the Mumford-Tate group ofH1.A/. The actions of �.C�/ andE� onH1.A/˝
C commute. As E� is its own commutant in GL.H1.A//, this implies that �.C�/ �
.E˝C/� and G is the smallest algebraic subgroup of E��Q� such that G.C/ contains
�.C�/. In particular, G is a torus, and can be described by its cocharacter group Y.G/ def

D

HomQ.Gm;G/.
Clearly,

Y.G/� Y.E�/�Y.Gm/D ZS �Z.

Note that � 2 Y.G/ is equal to
P
s2˙ esC e0, where .es/s2S � ZS is the basis dual to the

basis S of X.E�/ and e0 is the element 1 of the last copy of Z. The following are obvious:

(a)
�
ZS �Z

�
=Y.G/ is torsion-free;

(b) � 2 Y.G/;
(c) Y.G/ is stable under Gal.Q=Q/; thus Y.G/ is the Gal.Q=Q/-module generated by �;
(d) since �C ��D 1 on S ,

Y.G/�
˚P

nsesCn0e0 2 ZS �Z j nsCn�s D constant
	

.

Let F be the subalgebra of E whose elements are fixed by �E (thus, F is a product of totally
real fields). Then (d) says that

G.Q/�
˚
.x;y/ 2E��Q� j NmE=F .x/ 2Q�

	
:

Principle A
M.9

THEOREM 3.8 (PRINCIPLE A). Let .X˛/˛ be a family of varieties over C, and consider
spaces T obtained by tensoring spaces of the form H

n˛
B .X˛/, H

n˛
B .X˛/

_, and Q.1/. Let
ti 2 Ti , i D 1; : : : ;N (Ti of the above type) be absolute Hodge cycles, and let G be the
subgroup of Q

˛;n˛

GL.Hn˛
B .X˛//�Gm

fixing the ti . If t belongs to some T and is fixed by G, then it is an absolute Hodge cycle.

We first need a lemma.

LEMMA 3.9. Let G be an algebraic group over Q, and let P be a G-torsor of isomorphisms
H˛
� !H˛

� where .H˛
� /˛ and .H˛

� /˛ are families of Q-rational representations of G. Let
T� and T� be like spaces of tensors constructed out of H� and H� respectively. Then P
defines a map TG� ! T� .
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PROOF. Locally for the étale topology on Spec.Q/, points of P define isomorphisms
T� ! T� . The restriction to TG� of such a map is independent of the point. Thus, by étale
descent theory, they define a map of vector spaces TG� ! T� . �

PROOF OF THEOREM 3.8. We remove the identification of the ground field with C. Thus,
the ground field is now a field k equipped with an isomorphism � Wk! C. Let � Wk! C be
a second isomorphism. We can assume that t and the ti all belong to the same space T . The
canonical inclusions of cohomology groups

H� .X˛/ ,!H� .X˛/˝ .C�Af / - H� .X˛/

induce maps
T� ,! T ˝ .C�Af / - T� .

We shall regard these maps as inclusions. Thus,

.t1; : : : ; tN ; t /� T� � T ˝ .C�Af /;
.t1; : : : ; tN /� T� � T ˝ .C�Af /.

Let P be the functor of Q-algebras such that

P.R/D fpWH� ˝R
�
!H� ˝R j p maps ti (in T� ) to ti (in T� ), i D 1; : : : ;N g:

The existence of the canonical inclusions mentioned above shows that P.C�Af / is
nonempty, and it is easily seen that P is a G-torsor.

On applying the lemma (and its proof) in the above situation, we obtain a map TG� ! T�
such that

TG� T�

T� T ˝ .C�Af /

commutes. This means that TG� � T� , and therefore t 2 T� .
It remains to show that the component tdR of t in T ˝CD TdR lies in F 0TdR. But for a

rational s 2 TdR,
s 2 F 0TdR ” s is fixed by �.C�/.

Thus, .ti /dR 2 F
0, i D 1;2; : : : ;N , implies G � �.C�/, which implies that tdR 2 F

0. �
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4 Construction of some absolute Hodge cycles

Hermitian forms
Recall that a number field E is a CM-field if, for each embedding E ,! C, complex
conjugation induces a nontrivial automorphism e 7! e on E that is independent of the
embedding. The fixed field of the automorphism is then a totally real field F over which E
has degree two.

A bi-additive form
�WV �V !E

on a vector space V over a CM-field E is Hermitian if

�.ev;w/D e�.v;w/; �.v;w/D �.w;v/; all e 2E, v;w 2 V .

For any embedding � WF ,!R we obtain a Hermitian form �� in the usual sense on the vector
space V� D V ˝F;� R, and we let a� and b� denote the dimensions of the maximal subspaces
of V� on which �� is positive definite and negative definite respectively. If d D dimV ,
then � defines a Hermitian form on

Vd
V that, relative to some basis vector, is of the form

.x;y/ 7! f xy. The element f is in F , and is independent of the choice of the basis vector
up to multiplication by an element of NmE=F E�. It is called the discriminant of �. Let
.v1; : : : ;vd / be an orthogonal basis for �, and let �.vi ;vi /D ci ; then a� is the number of i
for which �ci > 0, b� the number of i for which �ci < 0, and f D

Q
ci (mod NmE=F E�/.

If � is nondegenerate, then f 2 F �=NmE�, and

a� Cb� D d; sign.�f /D .�1/b� , all �: (1)

PROPOSITION 4.1. Suppose given nonnegative integers .a� ;b� /� WF ,!C and an element
f 2 F �=NmE� satisfying (1). Then there exists a non-degenerate Hermitian form � on an
E-vector space V of dimension d with invariants .a� ;b� / and f ; moreover, .V;�/ is unique
up to isomorphism.

PROOF. The result is due to Landherr 1936. Today one prefers to regard it as a conse-
quence of the Hasse principle for simply connected semisimple algebraic groups and the
classification of Hermitian forms over local fields. �

COROLLARY 4.2. Let .V;�/ be a non-degenerate Hermitian space, and let d D dimV . The
following conditions are equivalent:

(a) a� D b� for all � and disc.f /D .�1/d=2I
(b) there exists a totally isotropic subspace of V of dimension d=2.

PROOF. Let W be a totally isotropic subspace of V of dimension d=2. The map v 7!
�.�;v/WV !W _ induces an antilinear isomorphism V=W !W _. Thus, a basis e1; : : : ; ed=2
of W can be extended to a basis feig of V such that

�.ei ; ed
2
Ci /D 1; 1� i � d=2;

�.ei ; ej /D 0; j ¤ i˙d=2:
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It is now easy to check that .V;�/ satisfies (a). Conversely, .Ed ;�/ where

�..ai /; .bi //D
X

1�i�d=2

aib d
2
Ci Cad

2
Cibi ;

is, up to isomorphism, the only Hermitian space satisfying (a), and it also satisfies (b). �

A Hermitian form satisfying the equivalent conditions of the corollary will be said to be
split (because then the algebraic group AutE .V;�/ over F is split).

We shall need the following lemma from linear algebra.

LEMMA 4.3. Let k be a field, and let V be a free finitely generated module over an étale
k-algebra k0 (i.e., k0 is a finite product of finite separable field extensions of k).

(a) The map
f 7! Trk0=k ıf WHomk0.V;k

0/! Homk.V;k/

is an isomorphism of k-vector spaces.
(b)

Vn
k0 V is, in a natural way, a direct summand of

Vn
k V .

PROOF. (a) As the pairing Trk0=k Wk0�k0! k is nondegenerate, the map f 7! Trk0=k ıf is
injective, and it is onto because the two spaces have the same dimension over k.

(b) There are obvious maps Vn
k V !

Vn
k0 VVn

k V
_!

Vn
k0 V

_

where V _ D Homk0.V;k0/' Homk.V;k/. The pairingVn
V _�

Vn
V ! k

determined by
.f1^� � �^fn;v1˝�� �˝vn/D det.hfi jvj i/

induces an isomorphism .
Vn

V _/' .
Vn

V /_ (Bourbaki, N., Algébre Multilinéaire, Her-
mann, 1958, �8), and so the second map gives rise to a map

Vn
k0 V !

Vn
k V , which is left

inverse to the first.
Alternatively, and more elegantly, descent theory shows that it suffices to prove the

proposition with k0 D kS , S D Homk.k0;k/. Then V D
L
s2S Vs with the Vs subspaces of

the same dimension, and the map in (a) becomes f D .fs/ 7!
P
fs , which is obviously an

isomorphism. For (b), note that5

Vn
k V D

MP
nsDn

 O
s2S

Vns
k
Vs

!
�

M
s2S

Vn
k Vs D

Vn
k0 V .

The first sum is over the set of families .ns/s2S such that ns 2 N and
P
s2S ns D n, while

the second is over the set of such families with ns D n for some s. �
5Because V is a free kS -module,

V DW ˝k k
S
D

M
s2S

W ˝k k D
M

s2S
Vs

for some k-vector space W . Correspondingly,^n

kS
V D

�^n

k
W
�
˝k k

S
D

M
s2S

�^n

k
W
�
˝k k D

M
s2S

^n

k
Vs :
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Conditions for
Vd
EH

1.A;Q/ to consist of absolute Hodge cycles
LetA be an abelian variety over C and let �WE! End.A/ be a homomorphism withE a CM-
field (in particular, this means that v.1/D idA). Let d be the dimension ofH1.A;Q/ over E,
so that dŒEWQ�D 2dimA. When H1.A;R/ is identified with the tangent space to A at zero,
it acquires a complex structure; we denote by J the R-linear endomorphism “multiplication
by i” of H1.A;R/. If hWC�! GL.H 1.A;R// is the homomorphism determined by the
Hodge structure on H 1.A;R/, then h.i/$ J under the isomorphism GL.H 1.A;R// '
GL.H1.A;R// determined by H 1.A;R/'H1.A;R/_.

Corresponding to the decomposition

e˝z 7! .: : : ;�e � z; : : :/WE˝QC
'
!

Y
�2S

C; S D Hom.E;C/;

there is a decomposition

H 1
B.A/˝C

'
!

M
�2S

H 1
B;� (E-linear isomorphism)

such that e 2E acts on the complex vector space H 1
B;� as �e. Each H 1

B;� has dimension d ,
and (as E respects the Hodge structure on H 1

B.A/) acquires a Hodge structure

H 1
B;� DH

1;0
B;� ˚H

0;1
B;� :

Let a� D dimH 1;0
B;� and b� D dimH 0;1

B;� ; thus a� Cb� D d .

PROPOSITION 4.4. The subspace
Vd
EH

1
B .A/ of Hd .A;Q/ is purely of bidegree .d

2
; d
2
/ if M.10

and only if a� D d
2
D b� for all � 2 S .

PROOF. Note thatHd .A;Q/'
Vd

QH
1.A;Q/, and so (4.3) canonically identifies

Vd
EH

1
B .A/

with a subspace of Hd
B .A/. As in the last line of the proof of (4.3), we have�Vd
EH

1
B

�
˝C'

Vd
E˝C

�
H 1

B ˝C
�

'

M
�2S

Vd
H 1

B;�

'

M
�2S

Vd
.H

1;0
B;� ˚H

0;1
B;� /

'

M
�2S

Va� H
1;0
B;� ˝

Vb� H
0;1
B;� ;

and
Va� H

1;0
B;� and

Vb� H
0;1
B;� are purely of bidegree .a� ;0/ and .0;b� / respectively. �

Thus, in this case,
�Vd

EH
1
B .A/

�
.d
2
/ consists of Hodge cycles, and we would like to

show that it consists of absolute Hodge cycles. In one special case, this is easy.

LEMMA 4.5. Let A0 be an abelian variety of dimension d
2

and let AD A0˝QE. Then the
subspace

Vd
EH

1.A;Q/.d
2
/ of Hd .A;Q/.d

2
/ consists of absolute Hodge cycles.



4 CONSTRUCTION OF SOME ABSOLUTE HODGE CYCLES 31

PROOF. There is a commutative diagram

Hd
B .A0/.

d
2
/˝QE Hd

A .A0/.
d
2
/˝QE

�Vd
EH

1
B .A0˝QE/

�
.d
2
/

�Vd
E˝AH

1
A.A0˝QE/

�
.d
2
/ � Hd

A .A0˝E/.
d
2
/

' '

in which the vertical maps are induced by H 1.A0/˝E
'
!H 1.A0˝E/. From this, and

similar diagrams corresponding to isomorphisms � WC! C, one sees that

Hd
A .A0/.

d
2
/˝E ,!Hd

A .A0˝E/.
d
2
/

induces an inclusion
C dAH.A0/˝E ,! C dAH.A0˝E/:

But C dAH.A0/DH
d
B .A0/.

d
2
/ since Hd

B .A0/.
d
2
/ is a one-dimensional space generated by

the class of any point on A0. This completes the proof as the above diagram shows that the
image of Hd

B .A0/.
d
2
/ in Hd

B .A/.
d
2
/ is

Vd
EH

1
B .A/.

d
2
/. � M.11

In order to prove the general result, we need to consider families of abelian varieties
(ultimately, we wish to apply (2.15)), and for this we need to consider polarized abelian
varieties. A polarization � on A is determined by a Riemann form, i.e., a Q-bilinear
alternating form  on H1.A;Q/ such that the form .z;w/ 7!  .z;Jw/ on H1.A;R/ is
symmetric and definite; two Riemann forms  and  0 on H1.A;Q/ correspond to the same
polarization if and only if there is an a 2 Q� such that  0 D a . We shall consider only
triples .A;�;v/ in which the Rosati involution defined by � induces complex conjugation on
E. (The Rosati involution e 7! teWEnd.A/! End.A/ is determined by the condition

 .ev;w/D  .v; tew/; v;w 2H1.A;Q/:/

LEMMA 4.6. Let f 2E� be such that f D�f , and let  be a Riemann form for A. There
exists a unique E-Hermitian form � on H1.A;Q/ such that  .x;y/D TrE=Q.f �.x;y//.

We first need:

SUBLEMMA 4.7. Let V and W be finite-dimensional vector spaces over E, and let  WV �
W !Q be a Q-bilinear form such that  .ev;w/D  .v;ew/ for e 2E. Then there exists a
unique E-bilinear form � such that  .v;w/D TrE=Q�.v;w/.

PROOF. The condition says that  defines a Q-linear map V ˝E W ! Q. Let � be the
element of HomQ.V ˝E W;E/ corresponding to  under the isomorphism (see 4.3(a))

HomE .V ˝E W;E/' HomQ.V ˝E W;Q/. �

PROOF OF LEMMA 4.6. We apply (4.7) with V DH1.A;Q/DW , but with with E acting
through complex conjugation on W . This gives a sesquilinear �1 such that  .x;y/ D
TrE=Q�1.x;y/. Let � D f �1�1, so that  .x;y/D TrE=Q.f �.x;y//. Since � is sesquilin-
ear it remains to show that �.x;y/ D �.x;y/. As  .x;y/ D � .y;x/ for all x;y 2
H1.A;Q/,

Tr.f �.x;y//D�Tr.f �.y;x//D Tr.f �.y;x//:
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On replacing x by ex with e 2E, we find that

Tr.fe�.x;y//D Tr.fe�.y;x//:

On the other hand,
Tr.fe�.x;y//D Tr.fe�.x;y//;

and so
Tr.fe�.y;x//D Tr.fe�.x;y//:

As fe is an arbitrary element of E, the non-degeneracy of the trace implies that �.x;y/D
�.y;x/. Finally, the uniqueness of � is obvious from (4.7). �

THEOREM 4.8. Let A be an abelian variety over C, and let vWE! End.A/ be a homomor-
phism with E a CM-field. Let d D dimEH 1.A;Q/. Assume there exists a polarization �
for A such that

(a) the Rosati involution of � induces complex conjugation on E;
(b) there exists a split E-Hermitian form � on H1.A;Q/ and an f 2E� with f D�f

such that  .x;y/ def
D TrE=Q.f �.x;y// is a Riemann form for � .

Then the subspace
�Vd

EH
1.A;Q/

�
.d
2
/ ofHd .A;Q/.d

2
/ consists of absolute Hodge cycles.

PROOF. In the course of the proof, we shall see that (b) implies thatA satisfies the equivalent
statements of (4.4). Thus, the theorem will follow from (2.15) and (4.5) once we have shown
that there exists a connected smooth variety S over C and an abelian scheme Y over S
together with an action v of E on Y=S such that6

(a) for all s 2 S , .Ys;vs/ satisfies the equivalent conditions in (4.4);
(b) for some s0 2 S , Ys0 is isomorphic to A0˝QE, some A0, with e 2E acting as id˝e;
(c) for some s1 2 S , .Ys1 ;vs1/D .A;v/.

We shall first construct an analytic family of abelian varieties satisfying these conditions,
and then pass to the quotient by a discrete group to obtain an algebraic family.

LetH DH1.A;Q/ regarded as anE-space and chose � ,  , f , and  as in the statement
of the theorem. We choose i D

p
�1 so that  .x;h.i/y/ is positive definite.

Consider the set of all quadruples .A1;�1;v1;k1/ in which A1 is an abelian variety over
C, v1 is an action of E on A1, �1 is a polarization of A, and k1 is an E-linear isomorphism
H1.A1;Q/!H carrying a Riemann form for �1 into c for some c 2Q�. From such a
quadruple, we obtain a complex structure on H.R/ (corresponding via k1 to the complex
structure on H1.A1;R/D Lie.A1/) such that:

(a) the action of E commutes with the complex structure;
(b)  is a Riemann form relative to the complex structure.

Conversely, a complex structure on H ˝R satisfying (a) and (b) determines a quadruple
.A1;�1;v1;k1/ with H1.A1;Q/DH (as an E-module), Lie.A1/DH ˝R (endowed with
the given complex structure), �1 the polarization with Riemann form  , and k1 the identity
map. Moreover, two quadruples .A1;�1;v1;k1/ and .A2;�2;v2;k2/ are isomorphic if and
only if they define the same complex structure on H . Let X be the set of complex structures
on H satisfying (a) and (b). Our first task is to turn X into an analytic manifold in such a
way that the family of abelian varieties that it parametrizes becomes an analytic family.

6Added: we also need that there exists a locally constant subsytem of Hodge cycles.
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A point of X is determined by an R-linear map J WH ˝R!H ˝R, J 2 D �1, such
that

(a0) J is E-linear, and
(b0)  .x;Jy/ is symmetric and definite.

Note that  .x;Jy/ is symmetric if and only if  .Jx;Jy/D  .x;y/. Let F be the real
subfield of E, and fix an isomorphism

E˝QR!
L
�2T C; T D Hom.F;R/

such that .f ˝1/ 7! .if� / with f� 2R, f� > 0. Corresponding to this isomorphism, there is
a decomposition

H ˝QR'
L
�2T H�

in which each H� is a complex vector space. Condition (a0) implies that J D˚J� , where
J� is a C-linear isomorphism H� !H� such that J 2� D�1. Let

H� DH
C
� ˚H

�
� ,

where HC� and H�� are the eigenspaces of J� with eigenvaluesCi and �i respectively. The
compatibility of  and � implies

.H; /˝R'
L
�2T .H� ; � /

with  � an R-bilinear alternating form on H� such that

 � .zx;y/D  � .x;zy/; z 2 C:

The condition
 .Jx;Jy/D  .x;y/

implies that HC� is the orthogonal complement of H�� relative to  � :

H� DH
C
� ?H

�
� :

We also have
.H;�/˝R'

L
�2T .H� ;�� /

and  � .x;y/D TrC=R.if��� .x;y//. As

 .x;y/D
P
� TrC=R.if��� .x;y//;

we find that

 .x;J x/ > 0 all x ” TrC=R.if��� .x� ;J x� // > 0 all x� ; �

” TrC=R.i�� .x� ;J x� // all x� ; �;

”

�
�� is positive definite on HC� , and
�� is negative definite on H�� .

This shows, in particular, that HC� DH
�1;0
� and H�� DH

0;�1
� each have dimension d=2

(cf. 4.4). Let XC and X� be the sets of J 2X for which  .x;Jy/ is positive definite and
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negative definite respectively. ThenX is a disjoint unionX DXCtX�. As J is determined
by itsCi eigenspace we see that XC can be identified with

f.V� /�2T j V� a maximal subspace of H� such that �� > 0 on V�g:

This is an open connected complex submanifold of a product of Grassman manifolds

XC �
Q
�2T Grassd=2.V� /.

Moreover, there is an analytic structure on XC �V.R/ such that XC �V.R/! XC is
analytic and the inverse image of J 2XC is V.R/ with the complex structure provided by J .
On dividing V.R/ by an OE -stable lattice V.Z/ in V , we obtain the sought analytic family
B of abelian varieties.

Note that A is a member of the family. We shall next show that there is also an abelian
variety of the form A0˝E in the family. To do this, we only have to show that there
exists a quadruple .A1;�1;�1;k1/ of the type discussed above with A1 D A0˝E. Let A0
be any abelian variety of dimension d=2 and define �1WE! End.A0˝E/ so that e 2 E
acts on H1.A0˝E/ D H1.A0/˝E through its action on E. A Riemann form  0 on
A0 extends in an obvious way to a Riemann form  1 on A1 that is compatible with the
action of E. We define �1 to be the corresponding polarization, and let �1 be the Hermitian
form on H1.A0˝E;Q/ such that  1 D TrE=Q.f �1/ (see 4.6). If I0 � H1.A0;Q/ is
a totally isotropic subspace of H1.A0;Q/ of (maximum) dimension d=2, then I0˝E
is a totally isotropic subspace of dimension d=2 over E, which (by 4.2) shows that the
Hermitian space .H1.A0˝E;Q/;�1/ is split. There is therefore an E-linear isomorphism
k1W.H1.A0˝E;Q/;�1/! .H;�/ which carries  1 D TrE=Q.f �1/ to  D TrE=Q.f �1/.
This completes this part of the proof.

Let n be an integer � 3, and let � be the set of OE -isomorphisms gWV.Z/! V .Z/
preserving  and such that .g�1/V .Z/� nV.Z/. Then � acts on XC by J 7! g ıJ ıg�1

and (compatibly) on B . On forming the quotients, we obtain a map

� nB! � nXC

which is an algebraic family of abelian varieties. In fact, � nXC is the moduli variety for
quadruples .A1;�1;�1;k1/ in which A1, �1, and �1 are essentially as before, but now k1 is a
level n structure

k1WAn.C/DH1.A;Z=nZ/
�
�! V.Z/=nV.Z/I

the map XC! � nXC can be interpreted as “regard k1 modulo n”. To prove these facts,
one can use the theorem of Baily and Borel (1966) to show that � nXC is algebraic, and a
theorem of Borel (1972) to show that � nB is algebraic — see �6 where we discuss a similar
question in greater detail. �

REMARK 4.9. With the notations of the theorem, let G be the algebraic group over Q such
that

G.Q/D fg 2 GLE .H/ j 9 �.g/ 2Q� such that  .gx;gx/D �.g/ .x;y/; 8x;y 2H g.

The homomorphism hWC�! GL.H ˝R/ defined by the Hodge structure on H1.A;Q/
factors through GR, and X can be identified with the G.R/-conjugacy class of the homomor-
phisms C�!GR containing h. Let K be the compact open subgroup of G.Af / of g such
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that .g�1/V . OZ/� nV. OZ/. Then � nXCis a connected component of the Shimura variety
ShK.G;X/. The general theory shows that ShK.G;X/ is a fine moduli scheme (see Deligne
1971c, �4, or Milne and Shih 1982, �2) and so, from this point of view, the only part of the
above proof that is not immediate is that the connected component of ShK.G;X/ containing
A also contains a variety A0˝E.

REMARK 4.10. It is easy to construct algebraic cycles on A0˝E: every Q-linear map
�WE!Q defines a map A0˝E! A0˝QD A

0
, and we can take cl.�/ to be the image

of the class of a point in Hd .A0/!Hd .A0˝E/. More generally, we have

Sym�.HomQ-linear.E;Q//! falgebraic cycles on A0˝Eg.

If E DQr , this gives the obvious cycles.

REMARK 4.11. The argument in the proof of Theorem 4.8 is similar to, and was suggested
by, an argument of B. Gross (1978).
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5 Completion of the proof for abelian varieties of CM-
type

Abelian varieties of CM-type
The Mumford-Tate, or Hodge, group of an abelian variety A over C is defined to be the
Mumford-Tate group of the rational Hodge structure H1.A;Q/: it is therefore the subgroup
of GL.H1.A;Q//�Gm fixing all Hodge cycles onA and its powers (see �3). In the language
of Tannakian categories, the category of rational Hodge structures is Tannakian with an
obvious fibre functor, and the Mumford-Tate group of A is the group associated with the
Tannakian subcategory generated by H1.A;Q/ and Q.1/.

An abelian variety A is said to be of CM-type if its Mumford-Tate group is commutative.
Since every abelian variety A is a product A D

Q
A˛ of simple abelian varieties (up to

isogeny) and A is of CM-type if and only if each A˛ is of CM-type (the Mumford-Tate
group of A is contained in the product of the Mumford-Tate groups of the A˛ and projects
onto each), in understanding this concept we can assume A is simple.

PROPOSITION 5.1. A simple abelian variety A over C is of CM-type if and only if E D
EndA is a commutative field over which H1.A;Q/ has dimension 1. Then E is a CM-field,
and the Rosati involution on E D End.A/ defined by any polarization of A is complex
conjugation.

PROOF. LetA be an abelian variety such that End.A/ contains a fieldE for whichH1.A;Q/
has dimension 1 as an E-vector space. As �.Gm/ commutes with E˝R in End.H1.A;R//,
we have that �.Gm/� .E˝R/� and so the Mumford-Tate group of A is contained in E�.

Conversely, let A be simple and of CM-type, and let �WGm!GL.H1.A;C// be defined
by the Hodge structure onH1.A;C/ (see �3). AsA is simple,EDEnd.A/ is a field (possibly
noncommutative) of degree � dimH1.A;Q/ over Q. As for any abelian variety, End.A/ is
the subalgebra of End.H1.A;Q// of elements preserving the Hodge structure or, equivalently,
that commute with �.Gm/ in GL.H1.A;C//. IfG is the Mumford-Tate group of A, thenGC
is generated by the groups f��.Gm/ j � 2Aut.C/g (see 3.4). Therefore E is the commutant
of G in End.H1.A;Q//. By assumption, G is a torus, and so H1.A;C/D

L
�2X.G/H�.

The commutant of G therefore contains étale commutative algebras of rank dimH1.A;Q/
over Q. It follows that E is a commutative field of degree dimH1.A;Q/ over Q (and that it
is generated as a Q-algebra by G.Q/; in particular, h.i/ 2E˝R).

Let be a Riemann form corresponding to some polarization onA. The Rosati involution
e 7! e� on End.A/DE is determined by the condition

 .x;ey/D  .e�x;y/; x;y 2H1.A;Q/.

It follows from
 .x;y/D  .h.i/x;h.i/y/

that
h.i/� D h.i/�1 .D�h.i//:

The Rosati involution therefore is nontrivial on E, and E has degree 2 over its fixed field F .
There exists an ˛ 2 F � such that

E D F Œ
p
˛�;

p
˛
�
D�
p
˛;
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and ˛ is uniquely determined up to multiplication by a square in F . If E is identified with
H1.A;R/ through the choice of an appropriate basis vector, then

 .x;y/D TrE=Q˛xy
�; x;y 2E;

(cf. 4.6). The positivity condition on  implies that

TrE˝R=R.f x
2/ > 0; x ¤ 0; x 2 F ˝R; f D ˛=h.i/,

which implies that F is totally real. Moreover, for every embedding � WF ,! R, we must
have �.˛/ < 0, for otherwise E˝F;� RDR�R with .r1; r2/� D .r2; r1/, and the positivity
condition is impossible. Thus, �.˛/ < 0, and � is complex conjugation relative to any
embedding of E into C. This completes the proof. �

Proof of the main theorem for abelian varieties of CM-type
Let .A˛/ be a finite family of abelian varieties over C of CM-type. We shall show that every
element of a space

TA D
�N

˛H
1
A.X˛/

˝m˛
�
˝
�N

˛H
1
A.X˛/

_˝n˛
�
.m/

that is a Hodge cycle (relative to idWC! C) is an absolute Hodge cycle. According to
(3.8) (Principle A), to do this it suffices to show that the following two subgroups of
GL.

Q
H1.A˛;Q//�Gm are equal:

GH D group fixing all Hodge cycles;

GAH D group fixing all absolute Hodge cycles.

Obviously GH �GAH .
After breaking up each A˛ into its simple factors, we can assume A˛ is itself simple.

Let E˛ be the CM-field End.A˛/ and let E be the smallest Galois extension of Q containing
all E˛; it is again a CM-field. Let B˛ D A˛˝E˛ E. It suffices to prove the theorem for the
family .B˛/ (because the Tannakian category generated by the H1.B˛/ and Q.1/ contains
every H1.A˛/; cf. Deligne and Milne 1982).

In fact, we consider an even larger family. FixE, a CM-field Galois over Q, and consider
the family .A˛/ of all abelian varieties with complex multiplication by E (so H1.A˛/ has
dimension 1 over E) up to E-isogeny. This family is indexed by S , the set of CM-types for
E. Thus, if S D Hom.E;C/, then each element of S is a set ˚ � S such that S D ˚ t �˚
(disjoint union). We often identify ˚ with the characteristic function of ˚ , i.e., we write

˚.s/D

�
1 if s 2 ˚
0 if s … ˚:

With each ˚ we associate the isogeny class of abelian varieties containing the abelian variety
C˚=˚.OE / where OE is the ring of integers in E and

˚.OE /D f.�e/�2˚ 2 C˚ j e 2OE g:

With this new family, we have to show that GH DGAH . We begin by determining GH

(cf. 3.7). The Hodge structure on each H1.A˚ ;Q/ is compatible with the action of E. This
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implies that, as a subgroup of
Q
˚2S GL.H1.A˚ //�Gm, GH commutes with

Q
˚2SE

�

and is therefore contained in
Q
E��Gm. In particular, GH is a torus and can be described

by its group of cocharacters Y.GH / def
DHomQal.Gm;GH / or its group of characters X.GH /.

Note that
Y.GH /� Y.

Q
˚2SE

��Gm/D ZS�S �Z.

There is a canonical basis for X.E�/, namely the set S , and therefore a canonical basis for
X.
Q
˚2SE

��Gm/ which we denote ..xs;˚ /;x0/. We denote the dual basis for Y.
Q
E��

Gm/ by .ys;˚ ;y0/. The element � 2 Y.GH / equals
P
s;˚ ˚.s/ys;˚ Cy0 (see 3.7). As

GHC is generated by f��.Gm/ j � 2 Aut.C/g, Y.GH / is the Gal.Qal=Q/-submodule of
Y.
Q
E��Gm/ generated by �. (Here, Gal.Qal=Q/ acts on S by �s D s ı��1; it acts on

Y.
Q
˚2SE

� �Gm/ D ZS�S �Z through its action on S , �ys;˚ D y�s;˚ ; these actions
factor through Gal.E=Q/).

To begin the computation of GAH , we make a list of the tensors we know to be absolute
Hodge cycles on the A˛.

(a) The endomorphismsE � End.A˚ / for each ˚ . (More precisely, we mean the classes
clA.�e/ 2HA.A˚ /˝HA.A˚ /, �e Dgraph of e, e 2E.)

(b) Let .A˚ ;�WE ,! End.A˚ // correspond to ˚ 2 S, and let � 2 Gal.E=Q/. Define
�˚ D f�s j s 2 ˚g. There is an isomorphism A˚ ! A�˚ induced by

C˚ C˚

C˚=˚.OE / C�˚=�˚.OE /

.:::;z.�/;:::/ 7!.:::;z.��/;:::/

whose graph is an absolute Hodge cycle. (Alternatively, we could have used the fact that
.A˚ ;��WE ! End.A˚ //, where �� D � ı��1, is of type �˚ to show that A˚ and A�˚
are isomorphic.)

(c) Let .˚i /1�i�d be a family of elements of S and let AD
Ld
iD1Ai where Ai D A˚i .

Then E acts on A and H1.A;Q/D
Ld
iD1H1.Ai ;Q/ has dimension d over E. Under the

assumption that
P
i ˚i Dconstant (so that

P
i ˚i .s/D d=2, all s 2 S ), we shall apply (4.8)

to construct absolute Hodge cycles on A.
For each i , there is an E-linear isomorphism

H1.Ai ;Q/˝QC!
M

s2S
H1.Ai /s

such that s 2E acts on H1.Ai /s as s.e/. From the definitions one sees that

H1.Ai /s D

(
H1.Ai /

�1;0
s ; s 2 ˚i ;

H1.Ai /
0;�1
s ; s … ˚i :

Thus, with the notations of (4.4),

as D
P
i ˚i .s/

bs D
P
i .1�˚i .s//D

P
i ˚i .�s/D a�s:

The assumption that
P
˚i D constant therefore implies that

as D bs D d=2; all s:
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For each i , choose a polarization �i for Ai whose Rosati involution stabilizes E, and
let  i be the corresponding Riemann form. For any totally positive elements fi in F (the
maximal totally real subfield of E) � D

L
i fi�i is a polarization for A. Choose vi ¤ 0,

vi 2H1.Ai ;Q/; then fvig is a basis for H1.Ai ;Q/ over E. There exist �i 2 E� such that
�i D��i and  i .xvi ;yvi /D TrE=Q.�ixy/ for all x;y 2E. Thus �i , where �i .xvi ;yvi /D
�i
�1
xy, is an E-Hermitian form on H1.Ai ;Q/ such that  i .v;w/D TrE=Q.�1�i .v;w//. The

E-Hermitian form on H1.A;Q/

�.
P
xivi ;

P
yivi /D

P
i fi�i .xivi ;yivi /

has the property that  .v;w/ def
D TrE=Q.�1�.v;w// and is the Riemann form of � . The

discriminant of � is
Q
i fi .

�i
�1
/. On the other hand, if s 2 S restricts to � on F , then

sign.�disc.�//D .�1/bs D .�1/d=2.

Thus,
disc.�/D .�1/d=2f

for some totally positive element f of F . After replacing one fi with fi=f , we have that
disc.�/D .�1/d=2, and that � is split. Hence (4.8) applies.

In summary: let AD˚diD1A˚i be such that
P
i ˚i D constant; then�Vd

EH
1.A;Q/.d

2
/
�
�Hd .A;Q/.d

2
/

consists of absolute Hodge cycles.
Since GAH fixes the absolute Hodge cycles of type (a), GAH �

Q
˚ E
��Gm. It is

therefore a torus, and we have an inclusion

Y.GAH /� Y.
Q
E��Gm/D ZS�S �Z

and a surjection,
X.
Q
E��Gm/D ZS�S �Z�X.GAH /:

Let W be a space of absolute Hodge cycles. The action of the torus
Q
E��Gm on

W ˝C decomposes it into a sum ˚W� indexed by the � 2 X.
Q
E��Gm/ of subspaces

W� on which the torus acts through �. Since GAH fixes the elements of W , the � for which
W� ¤ 0 map to zero in X.GAH /.

On applying this remark with W equal to the space of absolute Hodge cycles described
in (b), we find that xs;˚ �x�s;�˚ maps to zero in X.GAH /, all � 2 Gal.E=Q/, s 2 S , and
˚ 2 S. As Gal.E=Q/ acts simply transitively on S , this implies that, for a fixed s0 2 S ,
X.GAH / is generated by the image of fxs0;˚ ;x0 j ˚ 2 Sg.

Let d.˚/ � 0 be integers such that
P
d.˚/˚ D d=2 (constant function on S) where

d D
P
d.˚/. Then (c) shows that the subspace

W
def
D

O
E
H1.A˚ ;Q/˝Ed.˚/.�d=2/D

Vd
EH1.

L
A
d.˚/
˚ ;Q/.�d=2/

of Hd .
L
A
d.˚/
˚ ;Q/.�d=2/ consists of absolute Hodge cycles. The remark then shows thatP

d.˚/xs;˚ �d=2 maps to zero in X.GAH / for all s.
Let

X DX.
Q
E��Gm/=

P
Z.x�s;�˚ �xs;˚ /
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and regard
fxs0;˚ ;x0 j ˚ 2 Sg

as a basis for X . We know that

X.
Q
E��Gm/�X.GAH /

factors through X , and that therefore Y � Y.GAH / (� Y.GH /) where Y is the submodule
of Y.

Q
E��Gm/ dual to X .

LEMMA 5.2. The submodule Y.GH /? of X orthogonal to Y.GH / is equal tonP
d.˚/xs0;˚ �

d
2
x0

ˇ̌̌ P
d.˚/˚ D d

2
,
P
d.˚/D d

o
I

it is generated by the elementsP
d.˚/xs0;˚ �

d
2
x0;

P
d.˚/˚ D d

2
; d.˚/� 0 all ˚:

PROOF. As Y.GH / is the Gal.E=Q/-submodule of Y generated by �, we see that

x D
P
d.˚/xs0;˚ �

d
2
x0 2 Y.G

H /?

if and only if h��;xi D 0 all � 2 Gal.E=Q/. But � D
P
˚.s/ys;˚ C y0 and �� DP

˚.s/y�s;˚ C x0, and so h��;xi D
P
d.˚/˚.��1s0/�

d
2

. The first assertion is now
obvious.

As ˚C �˚ D 1, xs0;˚ Cxs0;�˚ �x0 2 Y.G
H /? and has positive coefficients d.˚/. By

adding enough elements of this form to an arbitrary element x 2 Y.GH /? we obtain an
element with coefficients d.˚/� 0, which completes the proof of the lemma. �

The lemma shows that Y.GH /?�Ker.X�X.GAH //DY.GAH /?. Hence Y.GH /�
Y.GAH / and it follows that GH DGAH ; the proof is complete. M.12
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6 Completion of the proof; consequences

Completion of the proof of Theorem 2.11
Let A be an abelian variety over C and let t˛, ˛ 2 I , be Hodge cycles on A (relative to
idWC! C). To prove the Main Theorem 2.11, we have to show that the t˛ are absolute
Hodge cycles. Since we know the result for abelian varieties of CM-type, Theorem 2.15
shows that it remains only to prove the following proposition.

PROPOSITION 6.1. There exists a connected smooth algebraic variety S over C and an
abelian scheme � WY ! S such that

(a) for some s0 2 S , Ys0 D A;
(b) for some s1 2 S , Ys1 is of CM-type;
(c) the t˛ extend to elements that are rational and of bidegree .0;0/ everywhere in the

family.

The last condition means the following. Suppose that t˛ belongs to a tensor space
T˛ DH

1
B .A/

˝m.˛/˝ : : :; then there is a section t of
�
R1��Q

�˝m.˛/
˝ : : : over the universal

covering QS of S (equivalently, over a finite covering of S) such that for Qs0 mapping to s0,
tQs0 D t˛, and for all Qs 2 QS , tQs 2H 1

B .YQs/
˝m.˛/˝ : : : is a Hodge cycle.

We sketch a proof of Proposition 6.1. The parameter variety S will be a Shimura variety
and (b) will hold for a dense set of points s1.

We may suppose that one of the t˛ is a polarization � for A. Let H DH1.A;Q/ and
let G be the subgroup of GL.H/�Gm fixing the t˛. The Hodge structure on H defines
a homomorphism h0WC�! G.R/. Let G0 D Ker.G! Gm/; then ad.h0.i// is a Cartan
involution on G0C because the real form of G0C corresponding to it fixes the positive definite
form  .x;h.i/y/ on H ˝R where  is a Riemann form for � . In particular, G is reductive
(see 3.6).

Let
X D fhWC�!G.R/ j h is conjugate to h0 under G.R/g.

Each h 2X defines a Hodge structure on H of type f.�1;0/; .0;�1/g relative to which each
t˛ is of bidegree .0;0/. Let F 0.h/DH 0;�1 �H ˝C. Since G.R/=K1

�
!X , where K1

is the centralizer of h0, there is an obvious real differentiable structure on X , and the tangent
space to X at h0, Tgth0.X/ D Lie.GR/=Lie.K1/. In fact, X is a Hermitian symmetric
domain. The Grassmannian,

Grassd .H ˝C/ def
D fW �H ˝C jW of dimension d .D dimA/g

is a complex analytic manifold (even an algebraic variety). The map

�WX ! Grassd .H ˝C/; h 7! F 0.h/;

is a real differentiable map, and is injective (because the Hodge filtration determines the
Hodge decomposition). The map on tangent spaces factors into

Tgth0.X/DLie.GR/=Lie.K1/ End.H ˝C/=F 0End.H ˝C/D Tgt�.h0/.Grass/

Lie.GC/=F
0.Lie.GC//

�
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— the maps are induced by G.R/ ,!G.C/ ,! GL.H ˝C/ and the filtrations on Lie.GC/

and End.H ˝C/ are those corresponding to the Hodge structure defined by h0. Thus, d�
identifies Tgth0.X/ with a complex subspace of Tgt�.h0/.Grass/, and so X is an almost-
complex (in fact, complex) manifold (see Deligne 1979b, 1.1, for more details). (There is an
alternative, more group-theoretic, description of the complex structure; see Knapp 1972, 2.4,
2.5.)

To each point h of X , we can attach a complex torus F 0.h/nH ˝C=H.Z/, whereH.Z/
is some fixed lattice in H . For example, to h0 is attached

F 0.h0/nH ˝C=H.Z/D Tgt0.A/=H.Z/;

which is an abelian variety representing A. From the definition of the complex structure on
X , it is clear that these tori form an analytic family B over X .

Let
� D fg 2G.Q/ j .g�1/H.Z/� nH.Z/g

some fixed integer n. For a suitably large n� 3, � will act freely on X , and so � nX will
again be a complex manifold. The theorem of Baily and Borel (1966) shows that S D � nX
is an algebraic variety.

The group � acts compatibly on B , and on forming the quotients, we obtain a complex
analytic map � WY ! S with Y D � nB . For s 2 S , Ys is a polarized complex torus (hence an
abelian variety) with level n structure (induced by H1.Bh;Z/

�
!H.Z/ where h maps to s).

The solution Mn of the moduli problem for polarized abelian varieties with level n-structure
in the category of algebraic varieties is also a solution in the category of complex analytic
manifolds. There is therefore an analytic map  WS !Mn such that Y is the pull-back of
the universal family on Mn. A theorem of Borel (1972, 3.10) shows that  is automatically
algebraic, from which it follows that Y=S is an algebraic family.

For some connected component Sı of S , ��1.Sı/! Sı will satisfy (a) and (c) of the
proposition. To prove (b) we shall show that, for some h 2X close to h0, Bh is of CM-type
(cf. Deligne 1971c, 5.2).

Recall (�5) that an abelian variety is of CM-type if and only if its Mumford-Tate group
is a torus. From this it follows that Bh, h 2X , is of CM-type if and only if h factors through
the real points of a subtorus of G defined over Q.

Let T be a maximal torus, defined over R, of the algebraic group K1. (See Borel and
Springer 1966 for a proof that T exists, or apply the argument that follows.) Since h0.C�/
is contained in the centre of K1, h0.C�/� T .R/. If T 0 is a torus in GR containing T , then
T 0 will centralize h0 and so T 0 �K1; T is therefore maximal in GR. For a general (regular)
element � of Lie.T /, T is the centralizer of �. Choose a �0 2 Lie.G/ that is close to � in
Lie.GR/, and let T0 be the centralizer of �0 in G. Then T0 is a maximal torus of G that is
defined over Q, and, because T0R is close to TR, T0R D gTg�1 for some g 2G.R/. Now
hD ad.g/ıh0 factors through T0R, and so Bh is of CM-type.

This completes the proof of the main theorem. M.13

Consequences of Theorem 2.11
We end this section by giving two immediate consequences.

Let X be a complete smooth variety over a field k and let  2H 2p.Xet;Q`/.p/, `¤
char.k/. Tate’s conjecture states that  is in the Q`-span of the algebraic classes if there
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exists a subfield k0 of k finitely generated over the prime field, a model X0 of X over k0,
and a  2H 2p.X0˝k0;Q`/.p/ mapping to  that is fixed by Gal.k0=k0/.

COROLLARY 6.2. Let A be an abelian variety over C. If Tate’s conjecture is true for A,
then so also is the Hodge conjecture.

PROOF. We first show that, for any complete smooth variety X over C, Tate’s conjecture
implies that all absolute Hodge cycles on X are algebraic. Let X0 be a model of X over
a subfield k0 of C finitely generated over Q. According to Proposition 2.9, CpAH.X/ D

C
p
AH.X0˝k0/ and, after we have replaced k0 by a finite extension, Gal.k0=k0/ will act

trivially on CpAH.X0˝k0/. Let Cpalg.X/ denote the Q-subspace of CpAH.X/ spanned by the
algebraic cycles on X . Tate’s conjecture implies that the Q`-span of CpAH.X/ is contained in
the Q`-span of Cpalg.X/. Hence Cpa lg.X/˝Q` D C

p
AH.X/˝Q`, and so Cpa lg.X/D C

p
AH.X/.

Now let A be an abelian variety over C, and let t 2H 2p.A;Q/ \Hp;p. The image t 0

of t in H 2p
A .A/.p/ is a Hodge cycle relative to idWC! C, and so Theorem 2.11 shows that

t 0 2 C
p
AH.A/. It is therefore in the Q-span of the algebraic cycles. �

REMARK 6.3. The last result was first proved independently by Pjateckiı̆ Šapiro 1971 and
Deligne (unpublished) by an argument similar to that which concluded the proof of the
main theorem. (Corollary 6.2 is easy to prove for abelian varieties of CM-type; in fact,
Pohlmann 1968 shows that the two conjectures are equivalent in that case.) We mention also
that Borovoi 1977 shows that, for an abelian variety X over a field k, the Q`-subspace of
H 2p.Xet;Q`/.p/ generated by cycles that are Hodge relative to an embedding � Wk ,! C is
independent of the embedding.

M.14
COROLLARY 6.4. Let A be an abelian variety over C and let GA be the Mumford-Tate
group of A. Then dim.GA/� tr:degk k.pij / where pij are the periods of A.

PROOF. Same as that of Proposition 1.6. �
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7 Algebraicity of values of the � -function
The next result generalizes Proposition 1.5.

PROPOSITION 7.1. Let k be an algebraically closed subfield of C, and let V be a complete
smooth variety of dimension n over k. If � 2HB

2r.V / maps to an absolute Hodge cycle 
under

HB
2r.V /

17!.2�i/�r

��������!HB
2r.V /.�r/

'
!H 2n�2r

B .V /.n� r/ ,!H 2n�2r
A .VC/.n� r/

then, for any C1 differential r-form ! on VC whose class Œ!� in H 2r
dR .V=C/ lies in

H 2r
dR .V=k/, Z

�

! 2 .2�i/rk.

PROOF. Proposition 2.9 shows that  arises from an absolute Hodge cycle 0 on V=k. Let
.0/dR be the component of 0 in H 2n�2r

dR .V=k/. Then, as in the proof of (1.5),Z
�

! D .2�i/r TrdR..0/dR[ Œ!�/ 2 .2�i/
rH 2n

dR .V=k/D .2�i/
rk. �

In the most important case of the proposition, k will be the algebraic closure Q of Q in
C, and it will then be important to know not only that the period

P.�;!/
def
D .2�i/�r

Z
�

!

is algebraic, but also in which field it lies in. We begin by describing a general procedure for
finding this field and then illustrate it by an example in which V is a Fermat hypersurface
and the period is a product of values of the � -function.

Let V now be a complete smooth variety over a number field k �C, and let S be a finite
abelian group acting on V over k. Let V D V ˝kQ. When ˛WS ! C� is a character of S
taking values in k� and H is a k-vector space on which S acts, we let

H˛ D fv 2H j sv D ˛.s/v, all s 2 Sg.

Assume that all Hodge cycles on VC are absolutely Hodge and that H 2r.V .C/;C/˛ has
dimension 1 and is of bidegree .r; r/. Then .C rAH.V /˝ k/˛ has dimension one over k.
The actions of S and Gal.Q=k/ on H 2r

dR .V =Q/'H
2r
dR .V=k/˝kQ commute because the

latter acts through its action on Q; they therefore also commute on C rAH.V /˝ k, which
embeds into H 2r

dR .V =Q/. It follows that Gal.Q=k/ stabilizes .C rAH.V /˝k/˛ and, as this
has dimension 1, there is a character �WGal.Q=k/! k� such that

� D �.�/�1; � 2 Gal.Q=k/;  2
�
C rAH.V /˝k

�
˛:

PROPOSITION 7.2. With the above assumptions, let � 2 HB
2r.V / and let ! be a C1-

differential 2r-form on V.C/ whose class Œ!� in H 2r
dR .V=C/ lies in H 2r

dR .V=k/˛; then
P.�;!/ lies in an abelian algebraic extension of k, and

�.P.�;!//D �.�/P.�;!/ for all � 2 Gal.Q=k/:
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PROOF. Consider Œ!� 2 H 2r
dR .V=C/˛ D .C

r
AH.V /˝C/˛; then Œ!� D z for some z 2 C,

 2 .C rAH.V /˝k/˛. Moreover,

P.�;!/
def
D

�
1

2�i

�r Z
�

! D z.�˝ .2�i/�r/ 2 zk;

where we are regarding  as an element of H 2r
B .V /.r/˝k DHB

2r.V /.�r/
_˝k. Thus

P.�;!/�1Œ!� 2 C rAH.V /˝k.

As
Œ!� 2H 2r

dR .V =Q/D C
r
AH.V /˝Q;

this shows that P.�;!/ 2Q. Moreover,

�.P.�;!/�1Œ!�/D �.�/�1.P.�;!/�1Œ!�/.

On using that �Œ!�D Œ!�, we deduce that

� .P.�;!//D �.�/ �P.�;!/. �

REMARK 7.3. (a) Because C rAH.V / injects into H 2r.V et;Q`/.r/, � can be calculated from
the action of Gal.Q=k/ on H 2r.V et;Q`/˛.r/.

(b) The argument in the proof of the proposition shows that �˝ .2�i/�r 2HB
2r.V /.�r/

and P.�;!/�1Œ!� 2H 2r
dR .V =Q/ are different manifestations of the same absolute Hodge

cycle.

The Fermat hypersurface
We shall apply (7.2) to the Fermat hypersurface

V WXd0 CX
d
1 C�� �CX

d
nC1 D 0

of degree d and dimension n, which we shall regard as a variety over k def
DQ.e2�i=d /. As

above, we let V D V ˝kQ, and we shall often drop the the subscript on VC.
It is known that the motive of V is contained in the category of motives generated by

abelian varieties (see Deligne and Milne 1982, 6.26), and therefore Theorem 2.11 shows that
every Hodge cycle on V is absolutely Hodge (ibid. 6.27).

Let �d be the group of d th roots of 1 in C, and let

S D

nC1M
iD0

�d=(diagonal).

Then S acts on V=k according to the formula:

.: : : W�i W : : :/.: : : Wxi W : : :/D .: : : W�ixi W : : :/; all .: : : Wxi W : : :/ 2 V.C/.

The character group of S will be identified with

X.S/D
˚
a 2 .Z=dZ/nC2

ˇ̌
aD .a0; : : : ;anC1/;

P
i ai D 0

	
I
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here a 2X.S/ corresponds to the character

� D .�0W : : :/ 7! �a def
D
QnC1
iD0 �

ai
i .

For a 2 Z=dZ, we let hai denote the representative of a in Z with 1 � hai � d , and for
a 2X.S/ we let hai D d�1

P
hai i 2 N.

If H.V / is a cohomology group on which there is a natural action of k, we have a
decomposition

H.V /D
M

H.V /a; H.V /a D fv j �v D �
av; � 2 Sg.

Let .Z=dZ/� act on X.S/ in the obvious way,

u � .a0; : : :/D .ua0; : : :/;

and let Œa� denote the orbit of a. The irreducible representations of S over Q (and hence the
idempotents of QŒS�) are classified by the these orbits, and so QŒS�D

Q
QŒa� where QŒa� is

a field whose degree over Q is equal to the order of Œa�. The map � 7! �a
WS ! C induces

an embedding QŒa� ,! k. Every cohomology group decomposes as H.V /D
L
H.V /Œa�

where
H.V /Œa�˝CD

M
a02Œa�

.H.V /˝C/a0 .

Calculation of the cohomology
M.15

PROPOSITION 7.4. The dimension of Hn.V;C/a is 1 if no ai D 0 or if all ai D 0 and n is
even; otherwise Hn.V;C/a D 0.

PROOF. The map
.x0Wx1W : : :/ 7! .xd0 Wx

d
1 W : : :/WP

nC1
! PnC1

defines a finite surjective map � WV ! Pn where P n .� Pn/ is the hyperplane
P
Xi D 0.

There is an action of S on ��C, which induces a decomposition ��C'
L
.��C/a. The

isomorphism H r.V;C/
'
!H r.P n;��C/ is compatible with the actions of S , and so gives

rise to isomorphisms
H r.V;C/a

'
!H r.P n; .��C/a/:

Clearly .��C/0 D C, and so

H r.P n; .��C/0/'H r.Pn;C/ for all r:

For a¤ 0, the sheaf .��C/a is locally constant of dimension 1, except over the hyperplanes
Hi WXi D 0 corresponding to the i for which ai ¤ 0, where it is ramified. It follows that

H r.P n; .��C/a/D 0; r ¤ n; a¤ 0;

and so .�1/n dimHn.P n; .��C/a/ is equal to the Euler-Poincaré characteristic of .��C/a
(a¤ 0). We have

EP.P n; .��C/a/D EP.P nX
S
ai¤0

Hi ;C/.
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Suppose first that no ai is zero. Then

.x0W : : : WxnW�
P
xi /$ .x0W : : : Wxn/WP

n '$ Pn

induces
P nX

SnC1
iD0 Hi

�
$ PnX

Sn
iD0Hi [P

n�1;

where Hi denotes the coordinate hyperplane in PnC1 or Pn. As

.PnX
S
Hi [P

n�1/t .P n�1X
S
Hi /D PnX

S
Hi ;

and PnX
S
Hi , being topologically isomorphic to .C�/n, has Euler-Poincaré characteristic

zero, we see that

EP.P nX
SnC1

Hi /D�EP.P n�1X
Sn

Hi /D : : :D .�1/
nEP.P 0/D .�1/n:

If some, but not all, ai are zero, then P n X
S
Hi � .C�/r �Cn�r with r � 1, and so

EP.P nX
S
Hi /D 0

r �1n�r D 0: �

REMARK 7.5. Note that the above argument shows that the primitive cohomology of V ,

Hn.V;C/prim D
M

a¤0
Hn.V;C/a.

The action of S on Hn.V;C/ respects the Hodge decomposition, and so Hn.V;C/a is
purely of bidegree .p;q/ for some p;q with pCq D n.

PROPOSITION 7.6. If no ai D 0, then Hn.V;C/a is of bidegree .p;q/ with p D hai�1.

PROOF. We apply the method of Griffiths 1969, �8. When V is a smooth hypersurface in
PnC1, Griffiths shows that the maps in

HnC1.PnC1;C/ HnC1.PnC1XV;C/ HnC2
V .PnC1;C/ HnC2.PnC1;C/

Hn.V /.�1/

0

'

induce an isomorphism

HnC1.PnC1XV;C/
'
!Hn.V /.�1/prim

and that the Hodge filtration onHn.V /.�1/ has the following explicit interpretation: identify
HnC1.PnC1XV;C/ with � .PnC1XV;˝nC1/=d� .PnC1XV;˝n/ and let

˝nC1p .V /D
˚
! 2 � .PnC1XV;˝nC1/

ˇ̌
! has a pole of order � p on V

	
I

then the map
RW˝nC1p .V /!Hn.V;C/

determined by

h�;R.!/i D
1

2�i

Z
�

!; all � 2Hn.V;C/;
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induces an isomorphism

˝nC1p .V /=d˝np�1
�
! F n�pHn.V /.�1/prim D F

n�pC1Hn.V /prim.

(For example, when p D 1, R is the residue map

˝nC11 .V /! F nHn.V /DH 0.V;˝n//:

Let f be the irreducible polynomial definining V . As ˝nC1PnC1.nC2/�OPnC1 has basis

!0 D
P
.�1/iXi dX0^ : : :^bdXi ^ : : :^dXn;

any differential form ! equals P!0=f p with P a homogeneous polynomial of degree
p deg.f /� .nC2/ lies in ˝nC1p .V /. In particular, when V is our Fermat surface,

! D
X
ha0i�1
0 � � �X

hanC1i�1
nC1

.Xd0 C�� �CX
d
nC1/

hai
!0

D
X
ha0i
0 � � �X

hanC1i
nC1

.Xd0 C�� �CX
d
nC1/

hai

P
.�1/i dX0

X0
^ : : :^

bdXi
Xi
^ : : :

lies in ˝nC1
hai .V /. For �2 S , �Xi D ��1i Xi , and so �! D ��a!. This shows that

Hn.V;C/�a � F
n�haiC1Hn.V;C/:

Since h�ai�1D nC1�hai, we can rewrite this inclusion as

Hn.V;C/a � F hai�1Hn.V;C/.

ThusHn.V;C/a is of bidegree .p;q/with p� hai�1. The complex conjugate ofHn.V;C/a
is Hn.V;C/�a, and is of bidegree .q;p/. Hence

n�p D q � h�ai�1D nC1�hai

and so p � hai�1. �

Recall that Hn
B .V /Œa� D

L
a02Œa�H

n
B .V /a0 ; thus (7.4) shows that Hn

B .V /Œa� has dimen-
sion 1 over QŒa� when no ai is zero and otherwise

Hn
B .V /Œa�\H

n
B .V /prim D 0.

COROLLARY 7.7. Let a be such that no ai D 0. Then Hn
B .V /Œa� is purely of type .n

2
; n
2
/ if

and only if huai is independent of u.

PROOF. As haiC h�ai D nC 2, huai is constant if and only if huai D n
2
C 1 for all u 2

.Z=dZ/�, i.e., if and only if ha0i D n
2
C1 for all a0 2 Œa�. Thus the corollary follows from

the proposition. �

COROLLARY 7.8. If no ai D 0 and huai is constant, then C nAH.V /Œa� has dimension one
over QŒa�:

PROOF. This follows immediately from (7.7) because, as we have remarked, all Hodge
cycles on V are absolutely Hodge. �
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The action of Gal.Q=k/ on the étale cohomology
Let p be a prime ideal of k not dividing d , and let Fq be the residue field of p. Then d jq�1
and reduction modulo p defines an isomorphism �d ! F�

d
whose inverse we denote t . Fix

an aD .a0; : : : ;anC1/ 2X.S/ with all ai nonzero, and define a character "i WF�q ! �d by

"i .x/D t .x
.1�q/=d /ai ; x ¤ 0:

As
Q
"i D 1, the product

Q
"i .xi / is well-defined for xD .x0W : : : WxnC1/ 2 PnC1.Fq/, and

we define a Jacobi sum

J."0; : : : ; "nC1/D .�1/
n P

x2Pn.Fq/

nC1Q
iD0

"i .xi /

where P n is the hyperplane
P
Xi D 0 in PnC1. (As usual, we set "i .0/D 0.) Let  be a

nontrivial additive character  WFq! C� and define Gauss sums

g.p;ai ; /D�
P
x2Fq

"i .x/ .x/

g.p;a/D q�hai
nC1Q
iD0

g.p;ai ; /:

LEMMA 7.9. The Jacobi sum J."0; : : : ; "nC1/D q
hai�1g.p;a/.

PROOF. We have

qhaig.p;a/D
nC1Q
iD0

.�
P
x2Fq

"i .x/ .x//

D .�1/n
P

x2FnC2q

�
nC1Q
iD0

"i .xi /

�
 .
P
xi /; xD .x0; : : :/

D .�1/n
P

x2PnC1.Fq/

P
�2F�q

�
nC1Q
iD0

"i .�xi / .�
P
xi /

�
:

We can omit the � from
Q
"i .�xi /, and so obtain

qhaig.p;a/D .�1/n
P

x2PnC1.Fq/

 
nC1Q
iD0

"i .xi / �
P
�2F�q

. .�
P
xi //

!
:

Since P
x

nC1Q
iD0

"i .xi /D
nC1Q
iD0

 P
x2Fq

"i .x//

!
D 0;

we can replace the sum over � 2 F�q by a sum over � 2 Fq . From

P
�2Fq

 .�
P
xi /D

(
q if

P
xi D 0

0 if
P
xi ¤ 0

we deduce finally that

qhaig.p;a/D .�1/nq
P

x2Pn.Fq/

nC1Q
iD0

"i .xi //

D qJ."0; : : : ; "n/. �
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Note that this shows that g.p;a/ is independent of  and lies in k.
Let ` be a prime number such that ` − d , p − `, and d j`�1. Then Q` contains a primitive

d th root of 1 and so, after choosing an embedding k ,!Q`, we can assume g.p;a/ 2Q`.
PROPOSITION 7.10. Let Fp 2 Gal.Q=k/ab be a geometric Frobenius element of p − d ; for
all v 2Hn.V et;Q`/a,

Fpv D q
hai�1g.p;a/v.

PROOF. As p − d , V reduces to a smooth variety Vp over Fq and the proper-smooth base
change theorem shows that there is an isomorphism Hn.V ;Q`/!Hn.V p;Q`/ compatible
with the action of S and carrying the action of Fp onHn.V ;Q`/ into the action of the Frobe-
nius endomorphism Frob onHn.V p;Q`/. The comparison theorem shows thatHn.V ;Q`/a
has dimension 1, and so it remains to compute

Tr.FpjH
n.V ;Q`/a/D Tr.Frob jHn.V p;Q`/a/:

Let � WVp! P n be as before. Then

Hn.V p;Q`/a DHn.P n; .��Q`/a/,

and the Lefschetz trace formula shows that

.�1/nTr.Frob jHn.P n; .��Q`/a/D
X

x2Pn.F/

Tr.Frob j..��Q`/a/x/ (2)

where ..��Q`/a/x is the stalk of .��Q`/a at x.
Fix an x 2 P n.Fq/ with no xi zero, and let y 2 Vp.Fq/ map to x; thus ydi D xi all i .

Then ��1.x/D f�y j � 2 Sg, and .��Q`/x is the vector space Q�
�1.x/
`

.
If � denotes the arithmetic Frobenius automorphism (i.e., the generator z 7! zq of

Gal.Fq=Fq/), then

�.yi /D y
q
i D x

q�1
d

i yi D t .x
q�1
d

i /yi ; 0� i � n�1;

and so
Frob.y/D �y where �D .: : : W t .x

1�q
d

i /W : : :/ 2 S:

Thus Frob acts on .��Q`/x as �, and for v 2 ..��Q`/a/x, we have

Frob.v/D �v D �av ; �a
D

nC1Q
iD0

"i .xi / 2 k �Q`.

Consequently,

Tr.Frob j..��Q`/a/x/D
nC1Q
iD0

"i .xi /.

If some xi D 0, then both sides are zero (.��Q`/a is ramified over the coordinate hyper-
planes), and so, on summing over x and applying (2) and (7.9), we obtain the proposition.�

COROLLARY 7.11. Let a be such that no ai is zero and huai is constant. Then, for all
v 2Hn.V et;Q`/a.n2 /,

Fpv D g.p;a/v:

PROOF. The hypotheses on a imply that hai D n
2
C1. Therefore, when we write v D v0˝1

with v0 2Hn.V et;Q`/a,

Fpv D Fpv0˝Fp1D q
n
2 g.p;a/v0˝q

�n
2 D g.p;a/v. �
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Calculation of the periods
Recall that that the � -function is defined by

� .s/D

Z 1
0

e�t ts
dt

t
; s > 0;

and satisfies the following equations

� .s/� .1� s/D �.sin�s/�1

� .1C s/D s� .s/:

The last equation shows that, for s 2Q�, the class of � .s/ in C=Q� depends only on the
class of s in Q=Z. Thus, for a 2X.S/, we can define

Q� .a/D .2�i/�hai
nC1Q
iD0

� .ai
d
/ 2 C=Q�:

Let V o denote the open affine subvariety of V with equation

Y d1 C�� �CY
d
n�1 D�1 (so Yi DXi=X0).

Denote by � the n-simplex˚
.t1; : : : ; tnC1/ 2 RnC1

ˇ̌
ti � 0;

P
ti D 1

	
and define �0W�! V o.C/ to be

.t1; : : : ; tnC1/ 7! ."t
1
d

1 ; : : : ; "t
1
d

nC1/; "D e2�i=2d D
d
p
�1; t

1
d

i > 0:

LEMMA 7.12. Let a0; : : : ;anC1 be positive integers such that
P
ai � 0 mod d . ThenZ

�0.�/

Y
a1
1 � � �Y

anC1
nC1

dY1

Y1
^ : : :^

dYn

Yn
D

1

2�i
.1� ��a0/

nC1Q
iD0

�
�
ai
d

�
where � D e2�i=d .

PROOF. Write !0 for the integrand. ThenZ
�0.�/

!0 D

Z
�

��0 .!0/

D

Z
�

."t
1
d

1 /
a1 � � �."t

1
d

nC1/
anC1d�n

dt1

t1
^ : : :^

dtn

tn

D c

Z
�

t
b1
1 � � � t

bnC1
nC1

dt1

t1
^ : : :^

dtn

n

where bi D ai=d and c D "a1C���CanC1. 1
d
/n. On multiplying by

� .1�b0/D � .1Cb1C�� �CbnC1/D

Z 1
0

e�t tb1C���CbnC1dt
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we obtain

� .1�b0/

Z
�0.�/

!0 D c

Z 1
0

Z
�

e�t tb1C���CbnC1 t
b1
1 � � � t

bnC1
nC1

dt1

t1
^ : : :^

dtn

n
^dt .

If, on the inner integral, we make the change of variables si D t ti , the integral becomes

c

Z 1
0

Z
�.t/

e�ts
b1
1 : : : s

bnC1
nC1

ds1

s1
^ : : :^

dsn

sn
^dt

where
�.t/D f.s1; : : : ; snC1/ j si � 0;

P
si D tg.

We now let t D
P
si , and we obtain

� .1�b0/

Z
�0.�/

! D c

Z 1
0

� � �

Z 1
0

e�s1�����snC1s
b1
1 : : : s

1CbnC1
nC1

ds1

s1
^ : : :^

dsnC1

snC1

D c� .b1/� .b2/ : : :� .bn/� .1CbnC1/

D cbnC1� .b1/ : : :� .bnC1/.

The formula recalled above shows that

� .1�b0/D �=.sin�b0/� .b0/,

and so

c� .1�b0/
�1
D "�a0

sin�b0
�

� .b0/ mod Q�

D
1

�
e�2�ib0=2

 
e�ib0 � e��ib0

2i

!
� .b0/

D
1

2�i
.1� "�2a0/� .b0/:

The lemma is now obvious. �

The group algebra QŒS� acts on the Q-space of differentiable n-simplices in V.C/. For
a 2X.S/ and �

i
D .1; : : : ; �; : : :/ (� D e2�i=d in the i th position), define

� D
nC1Q
iD0

.1� �
i
/�1�0.�/� V

o.C/

where �0 and � are as above.

PROPOSITION 7.13. Let a 2X.S/ be such that no ai is zero, and let !o be the differential

Y
a01
1 : : :Y

a0
nC1

nC1

dY1

Y1
^ : : :^

dYn

Yn

on V o, where a0i represents �ai , and a0i � 0. Then

(a) �!o D �a!o;

(b)
R
� !

o D
1
2�i

nC1Q
iD0

.1� �ai /�
�
�ai
d

�
.
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PROOF. (a) This is obvious since

�Yi D

�
�i

�0

��1
Yi :

(b) Z
�

!o D

Z
�0.�/

nC1Q
iD1

.1� �i /!
o

D

nC1Q
iD1

.1� �ai /

Z
�0.�/

!o

D
1

2�i

nC1Q
iD0

.1� �ai /�
�
�
ai
d

�
. �

REMARK 7.14. From the Gysin sequence

.C�/ Hn�2.V XV o;C/!Hn.V;C/!Hn.V o;C/! 0

we obtain an isomorphism

Hn.V;C/prim!Hn.V o;C/,

which shows that there is an isomorphism

Hn
dR.V=k/prim !Hn

dR.V
o=k/D � .V o;˝n/=d� .V o;˝nC1/:

The class Œ!o� of the differential !o lies in Hn
dR.V=k/a. Correspondingly, we get a C1

differential n-form on V.C/ such that

(a) the class Œ!� of ! in Hn
dR.V=C/ lies in Hn

dR.V=k/a, and

(b)
Z
�

! D
1

2�i

nC1Q
iD0

.1� �ai /�
�
�
ai
d

�
, where � D

nC1Q
iD1

.1� �
i
/�1�0.�/.

Note that, if we regard V as a variety over Q, then Œ!� even lies in Hn
dR.V=Q/.

The theorem
Recall that for a 2X.S/, we set

Q� .a/D .2�i/�hai
nC1Q
iD0

� .ai
d
/ .2 C=Q�/

and for p a prime ideal of k not dividing d , we set

g.p;a/D q�hai
nC1Q
iD0

g.p;ai ; /

g.p;ai ; /D�
P
x2Fq

t
�
x
1�q
d

�ai
 .x/

where q is the order of the residue field of p.
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THEOREM 7.15. Let a 2X.S/ have no ai D 0 and be such that huai D hai .D n=2C1/

for all u 2 .Z=dZ/�.

(a) Then Q� .a/ 2Q and generates an abelian extension of k def
DQ.e 2�id /:

(b) If Fp 2 Gal.Q=k/ab is the geometric Frobenius element at p, then

Fp. Q� .a//D g.p;a/ Q� .a/:

(c) For all � 2Gal.Q=Q/, �a.�/
def
D Q� .a/=� Q� .a/ lies in k; moreover, for all u2 .Z=dZ/�;

�u.�a.�//D �ua.�/

where �u is the element of Gal.k=Q/ defined by u.

PROOF. Choose � 2HB
n .V / and ! as in (7.14). Then all the conditions of (7.2) are fulfilled

with ˛ the character a. Moreover, (7.14) and (7.11) show respectively that

P.�;!/D �.a/ Q� .�a/; where �.a/D
QnC1
iD0 .1� �

ai /;

and
�.Fp/D g.p;a/�1.

As �.a/ 2 k, (7.2) shows that Q� .�a/ generates an abelian algebraic extension of k and that

Fp
Q� .�a/D g.p;a/�1 Q� .�a/:

It is clear from this equation that g.p;a/ has absolute value 1 (in fact, it is a root of 1); thus

g.p;a/�1 D g.p;a/D g.p;�a/.

This proves (a) and (b) for �a and hence for a.
To prove (c) we have to regard V as a variety over Q. If S is interpreted as an algebraic

group, then its action on V is rational over Q. This means that

�.�x/D �.�/�.x/; � 2 Gal.Q=Q/; � 2 S.Q/; x 2 V.Q/

and implies that

�.�/D �.�/�./; � 2 Gal.Q=Q/; � 2 S.Q/;  2 C nAH.V /.

Therefore Gal.Q=Q/ stabilizes C nAH.V /Œa� and, as this is a one-dimensional vector space
over QŒa�, there exists for any  2 C nAH.V /Œa� a crossed homomorphism �WGal.Q=Q/!
QŒa�� such that �./ D �.�/ for all � . On applying the canonical map C nAH.V /Œa� !�
C nAH.V /˝k

�
Œa� to this equality, we obtain

�.˝1/D �.�/a.˝1/:

We take  to be the image of � ˝ .2�i/�n=2 2HB
n .V /.�

n
2
/ in C nAH.V /Œa�. Then (cf.

7.3), .˝1/dR D P.�;!/
�1Œ!� if Œ!� is as in (7.14). Hence

�.�/a D
P.�;!/

�P.�;!/
D ��a.�/

�.a/
��.a/

.
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On comparing

�a.�/D �.�/
�a ��.�a/
�.�a/

and

�ua.�/D �.�/
�ua ��.�ua/

�.�ua/
,

and using that
�.�.�ua//D �.�u.�.�a///D �u.��.�a//;

one obtains (c) of the theorem. �

REMARK 7.16. (a) The first statement of the theorem, that Q� .a/ is algebraic, has an ele-
mentary proof; see the appendix by Koblitz and Ogus to Deligne 1979a. M.16

(b) Part (b) of the theorem has been proved up to sign by Gross and Koblitz (1979, 4.5)
using p-adic methods.

REMARK 7.17. Let Id be the group of ideals of k prime to d , and consider the character

aD
Q

prii 7! g.a;a/ def
D
Q
g.pi ;a/ri WId ! k�:

When a satisfies the conditions of the theorem, then this is an algebraic Hecke character
(Weil 1952, 1974; see also Deligne 1972, �6) . This means that there exists an ideal m
of k (dividing a power of d ) and a homomorphism �algWk

�! k� that is algebraic (i.e.,
defined by a map of tori) and such that, for all x 2 k� totally positive and � 1 mod m,
g..x/;a/D �alg.x/. There is then a unique character

�aWGal.Q=k/ab
! k�

such that �a.Fp/D g.p;a/ for all p prime to d . Part (b) of the theorem can be stated as

�. Q� .a//D �a.�/ Q� .a/, all � 2 Gal.k=k/:

(There is an elegant treatment of algebraic Hecke characters in Serre 1968, Chapter II. Such
a character with conductor dividing a modulus m corresponds to a character � of the torus
Sm (ibid. p. II-17) . The map �alg is

k�
�
! Tm ,! Sm

�
! k�.

One defines from � a character �1 of the idèle class group as in (ibid. II 2.7). Weil’s deter-
mination of �alg shows that �1 is of finite order; in particular, it is trivial on the connected
component of the idèle class group, and so gives rise to a character �aWGal.Q=k/ab! k�:/

Restatement of the theorem

For b 2 d�1Z=Z, we write hbi for the representative of b in d�1Z with 1
d
� hbi � 1. Let

bD
P
n.b/ıb be an element of the free abelian group generated by the set d�1Z=ZXf0g,

and assume that
P
n.b/hubi D c is an integer independent of u 2 Z=dZ. Define

Q� .b/D
1

.2�i/c

Y
b

� .hbi/n.b/.
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Let p be a prime ideal of k, not dividing d , and let Fq be the residue field at p. For  a
non-trivial additive character of Fq , define

g.p;b/D
1

qc

Y
b

g.p;b; /n.b/, where g.p;b; /D�
P
x2Fq

t .xb.1�q// .x/.

As in (7.17), p 7! g.p;b/ defines an algebraic Hecke character of k and a character
�bWGal.Q=Q/! C� such that �b.Fp/D g.p;b/ for all p − b.

THEOREM 7.18. Assume that b def
D
P
n.b/ıb satisfies the condition above.

(a) Then Q� .b/ 2 kab, and for all � 2 Gal.Q=k/ab;

� Q� .b/D �b.�/ Q� .b/:

(b) For � 2 Gal.Q=Q/, let �b.�/ D Q� .b/=� Q� .b/; then �b.�/ 2 k, and, for any u 2
.Z=dZ/�,

�u.�b.�//D �ub.�/.

PROOF. Suppose first that n.b/� 0 for all b. Let nC2D
P
n.b/, and let a be an .nC2/-

tuple in which each a 2 Z=dZ occurs exactly n a
d

times. Write aD .a0; : : : ;anC1/. ThenP
ai D d.

P
n.b/b/D dc .modd/D 0;

and so a 2X.S/. Moreover,

huai def
D
1

d

P
huai i D

P
n.b/hubi D c

for all u 2 Z=dZ. Thus huai is constant, and c D hai. We deduce that Q� .a/ D Q� .b/,
g.p;a/D g.p;b/, and �a D �b. Thus, in this case, (7.18) follows immediately from (7.15)
and (7.17).

Let b be arbitrary. For some N , bCNb0 has positive coefficients, where b0 D
P
ıb .

Thus (7.18) is true for bCNb0. Since

Q� .b1Cb2/D Q� .b1/ Q� .b2/ mod Q�

and
g.p;b1Cb2/D g.p;b1/g.p;b2/

this completes the proof. �

REMARK 7.19. (a) Part (b) of the theorem determines � .ub/ (up to multiplication by a
rational number) starting from � .b/.

(b) Conjecture 8.11 of Deligne 1979a is a special case of part (a) of the above theorem.
The more precise form of the conjecture, ibid. 8.13, can be proved by a modification of the
above methods.
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FINAL NOTE

The original seminar of Deligne comprised fifteen lectures, given between 29/10/78 and
15/5/79. The first six sections of these notes are based on the first eight lectures of the
seminar, and the seventh section on the last two lectures. The remaining five lectures, which
the writer of these notes was unable to attend, were on the following topics:

6/3/79 review of the proof that Hodge cycles on abelian varieties are absolutely Hodge;
discussion of the expected action of the Frobenius endomorphism on the image of an
absolute Hodge cycle in crystalline cohomology;

13/3/79 definition of the category of motives using absolute Hodge cycles; semisimplicity
of the category; existence of the motivic Galois group G;

20/3/79 fibre functors in terms of torsors; the motives of Fermat hypersurfaces and K3-
surfaces are contained in the category generated by abelian varieties;

27/3/79 Artin motives; the exact sequence

1!Gı!G
�
! Gal.Q=Q/! 1;

indentification of Gı with the Serre group, and description of the Gı-torsor ��1.�/;
3/4/79 action of Gal.Q=Q/ on Gı; study of G˝QQ`; Hasse principle for H 1.Q;Gı/.

Most of the material in these five lectures is contained in Deligne and Milne 1982, �6,
and Deligne 1982.

The writer of these notes is indebted to P. Deligne and A. Ogus for their criticisms of the
first draft of the notes and to Ogus for his notes on which section seven is largely based.
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M Endnotes (by J.S. Milne)
M.1. (p. 1) The following changes from the original have been made:

˘ Numerous minor improvements to the exposition.
˘ Numerous misprints fixed; major corrections have been noted in these endnotes.
˘ Part of the general introduction to the volume Deligne et al. 1982 (LNM 900) has been

placed at the start of the introduction.
˘ Some changes of notation have been made — the footnote DR has been replaced by dR,

Af has been replaced by Af , and� (isomorphism) has been distinguished from'
(canonical isomorphism).

˘ These endnotes and all footnotes marked “Added” have been added.
˘ The original numbering has been retained.

M.2. (p. 3) For a description of these consequences, see

Deligne, Pierre, Cycles de Hodge absolus et périodes des intégrales des variétés
abéliennes. Abelian functions and transcendental numbers (Colloq., École Polytech.,
Palaiseau, 1979). Mém. Soc. Math. France (N.S.) 1980/81, no. 2, 23–33.

For applications of the results of these notes to the periods of motives attached to Hecke
characters, see

Schappacher, Norbert, Periods of Hecke characters. Lecture Notes in Mathematics,
1301. Springer-Verlag, Berlin, 1988.

M.3. (p. 4) Say that a cohomology class in H 2p.A;Q/.p/ is a split Weil class if there
exists

˘ a CM-field E,
˘ a homomorphism �WE! End.A/, and
˘ a polarization � of A satisfying the conditions (a,b) of (4.8)

such that the class lies in the subspace
V2p
E H 1.A;Q/.p/ of H 2p.A;Q/.p/.

By assumption, the algebraic classes are accessible. The proof of Theorem 4.8 will
show that all split Weil classes are accessible once we check that the family in the proof
contains an abelian variety for which the Hodge conjecture is true. But, in the proof, we can
take A0 to be any abelian variety of dimension d=2, and it is well-known that the Hodge
conjecture holds for powers of an elliptic curve (see p. 107 of Tate, Algebraic cycles and
poles of zeta functions, 1965). Now the argument in �5 shows that all Hodge classes on
abelian varieties of CM-type are accessible, and Proposition 6.1 shows the same result for
all abelian varieties.

Condition (a) is checked in (2.1), (b) is obvious from the definition of absolute Hodge
cycle, (c) is proved in (3.8), and (d) is proved in (2.12).

M.4. (p. 7) The “and so” is misleading since the degeneration of the spectral sequence by
itself does not provide the Hodge decomposition. See mathoverflow questions 28265 and
311700 for a discussion of this.

From the spectral sequence, we get a descending filtration F p on the groups Hn.X;C/
such that

Hn
D .Hn

\F p/˚ .Hn
\F q/
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for all n;p;q with pCq D nC1. This implies that

Hn
D˚Hp;q

with
Hp;q

DHpCq
\F p\F q DH q.X;˝p/:

M.5. (p. 14) Grothendieck conjectured that the only relations between the periods come
from algebaic cycles.

. . . it is believed that if [the elliptic curve] is algebraic (i.e., its coefficients g2 and g3
are algebraic), then !2 and !3 are transcendental, and it is believed that if X has no
complex multiplication, then !1 and !2 are algebraically independent. This conjecture
extends in an obvious way to the set of periods .!1;!2;�1;�2/ and can be rephrased
also for curves of any genus, or rather for abelian varieties of dimension g, involving
4g periods. (Grothendieck 1966, p102).

Also:

For the period matrix itself, Grothendieck has made a very interesting conjecture
concerning its relations, and his conjecture applies to a general situation as follows.
Let V be a projective, nonsingular variety defined over the rational numbers. One can
define the cohomology of V with rational coefficients in two ways. First, by means of
differential forms (de Rham), purely algebraically, thereby obtaining a vector space
Hdiff.V;Q/ over Q. Secondly, one can take the singular cohomology Hsing.V;Q/ with
rational coefficients, i.e., the singular cohomology of the complex manifold VC. Let
us select a basis for each of these vector spaces over Q, and let us tensor these spaces
over C. Then there is a unique (period) matrix ˝ with complex coefficients which
transforms one basis into the other. Any algebraic cycle on V or the products of V
with itself will give rise to a polynomial relation with rational coefficients among the
coefficients of this matrix. Grothendieck’s conjecture is that the ideal generated by
these relations is an ideal of definition for the period matrix. (S. Lang, Introduction to
Transcendental Numbers, Addison-Wesley, 1966, pp42–43; Collected Works, Vol. I,
pp. 443–444.)

M.6. (p. 16) So far as I know, both (2.2) and (2.4) remain open.

M.7. (p. 19) (2.11) The theorem extends to one-motives (Théorème 2.2.5 of Brylinski,
Jean-Luc, “1-motifs” et formes automorphes. Journées Automorphes (Dijon, 1981), 43–106,
Publ. Math. Univ. Paris VII, 15, Univ. Paris VII, Paris, 1983.)

M.8. (p. 21) (2.14) By using the full strength of Deligne’s results on cohomology, it is
possible to avoid the use of the Gauss-Manin connection in the proof of Theorem 2.12
(Blasius, Don, A p-adic property of Hodge classes on abelian varieties. Motives (Seattle,
WA, 1991), 293–308, Proc. Sympos. Pure Math., 55, Part 2, Amer. Math. Soc., Providence,
RI, 1994, Theorem 3.1).

THEOREM (Deligne 1971a). Let � WX ! S be a smooth proper morphism of smooth vari-
eties over C.

(a) The Leray spectral sequence

H r.S;Rs��Q/)H rCs.X;Q/
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degenerates at E2; in particular, the edge morphism

Hn.X;Q/! � .S;Rn��Q/

is surjective.
(b) If X is a smooth compactification of X with X XX a union of smooth divisors with

normal crossings, then the canonical morphism

Hn.X;Q/! � .S;Rn��Q/

is surjective.
(c) Let .Rn��Q/0 be the largest constant local subsystem of Rn��Q (so .Rn��Q/0s D

� .S;Rn��Q/ for all s 2 S.C/). For each s 2 S , .Rn��Q/0s is a Hodge substructure
of .Rn��Q/s DHn.Xs;Q/, and the induced Hodge structure on � .S;Rn��Q/ is
independent of s.

In particular, the map
Hn.X;Q/!Hn.Xs;Q/

has image .Rn��Q/0s , and its kernel is independent of s.

THEOREM. Let � WX ! S be a smooth proper morphism of complex varieties with S
smooth and connected. Let  2 � .S;R2n��Q.n//.

(a) If s is a Hodge cycle for one s 2 S.C/, then it is a Hodge cycle for every s 2 S.C/;
(b) If s is an absolute Hodge cycle for one s 2 S.C/, then it is an absolute Hodge class

for every s 2 S.C/.

PROOF. (Blasius 1994, 3.1.) According to Deligne’s theorem, for s; t 2 S.C/, there is a
commutative diagram:

H 2n.Xs/.n/

H 2n.X;Q/.n/ � .S;R2n��Q.n//

H 2n.Xt /.n/

onto

injec
tive

injective

Let  2 � .S;R2n��Q.n//. According to (c) of the theorem, � .S;R2n��Q.n// has a
Hodge structure for which the diagonal maps are morphisms of Hodge structures. It follows
that if s is a Hodge cycle, then so also are  and t .

Identify H.X/˝A with HA.X/. Let � be an automorphism of C. If s is a Hodge
cycle on Xs relative to � , then there is a �s 2H

2n.�Xs/.n/ such that �s ˝1D �.s˝1/
in H 2n

A .�Xs/. Since �.s˝1/ is in the image of

H 2n.�X/.n/˝A!H 2n.�Xs/.n/˝A;

�s is in the image of
H 2n.�X/.n/!H 2n.�Xs/.n/
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(apply 2.13) — let Q� 2 H 2n.�X/.n/ map to �s . Because s and t have a common
pre-image in � .S;R2n��Q.n//, �.s ˝ 1/ and �.t ˝ 1/ have a common pre-image
in � .�S;R2n��Q.n//˝A. Therefore (see the diagram), Q� ˝ 1 maps to �.t ˝ 1/ in
H 2n.�Xt /˝A, and so t ˝1 is a Hodge cycle relative to � . �

M.9. (p. 26) (3.8) The motivic significance of Principle A is the following: by the usual
method (e.g., Saavedra 1972, VI 4.1) we can define a category of motives using the absolute
Hodge classes as correspondences; this will be a pseudo-abelian rigid tensor category, and it
will be Tannakian if and only if Principle A holds for all the varieties on which the category
is based.

M.10. (p. 30) (4.4) Let E be a CM-field, and let �WE! End.A/ be a homomorphism. The
pair .A;�/ is said to be of Weil type if Tgt0.A/ is a free E˝QC-module. The proposition
shows the following:

If .A;�/ is of Weil type, then the subspace
Vd
EH

1.A;Q/ of Hd .A;Q/ consists of
Hodge classes.

When E is quadratic over Q, these Hodge classes were studied by Weil (Abelian varieties
and the Hodge ring, 1977c in Collected Papers, Vol. III, Springer-Verlag, pp421–429), and
for this reason are called Weil classes.

A polarization of an abelian variety .A;�/ of Weil type is a polarization � of A whose
Rosati involution stabilizes E and induces complex conjugation on it.

The special Mumford-Tate group of a general polarized abelian variety .A;�;�/ of Weil
type is SU.�/ where � is the E-Hermitian form on H 1.A;Q/ defined by the polarization.
If the special Mumford-Tate group of .A;�/ equals SU.�/, then the Q-algebra of Hodge
cycles is generated by the divisor classes and the Weil classes (but not by the divisor classes
alone). When E is quadratic over Q, these statements are proved in Weil (ibid.), but the
same argument works in general.

For more on Weil classes, see

Moonen, B. J. J.; Zarhin, Yu. G. Weil classes on abelian varieties. J. Reine Angew.
Math. 496 (1998), 83–92.
Zarhin, Yu. G. and Moonen, B. J. J., Weil classes and Rosati involutions on complex
abelian varieties. Recent progress in algebra (Taejon/Seoul, 1997), 229–236, Contemp.
Math., 224, Amer. Math. Soc., Providence, RI, 1999.

In a small number of cases, the Weil classes are known to be algebraic even when they
are not contained in the Q-algebra generated by the divisor classes:

Schoen, Chad, Hodge classes on self-products of a variety with an automorphism.
Compositio Math. 65 (1988), no. 1, 3–32. Addendum, ibid., 114 (1998), no. 3,
329–336.
van Geemen, Bert, An introduction to the Hodge conjecture for abelian varieties.
Algebraic cycles and Hodge theory (Torino, 1993), 233–252, Lecture Notes in Math.,
1594, Springer, Berlin, 1994.

M.11. (p. 31) (4.5) It is tempting to think7 that
Vd
EH

1.A;Q/.d
2
/ must be the E-subspace

of Hd .A;Q/.d
2
/ spanned by the class of the algebraic cycle AŒE WQ��10 � f0g � A

ŒE WQ�
0 .

7Indeed, this is asserted in Blasius 1994, p. 305. If it had been true, it would have been possible to deduce the
Hodge conjecture for Weil classes on abelian varieties from the main theorem of Bloch, Semi-regularity and de
Rham cohomology, 1972 (Milne, unpublished manuscript, 1994).
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However, this is not true. For example, let E be the subfield of Q generated by
p
�n and

let � be the given embedding of E into Q. Let
p
�n 2E act on AD A20 as

�
0 �n
1 0

�
, and let

V DH 1.A0;Q/. Then, V ˝E ' V� ˚V� , and�Vd
E .V ˝E/

�
'
Vd
E .V� ˚V� /'

Vd
E V� ˚

Vd
E V� :

Let e1; : : : ; ed be a basis for V DH 1.A0;Q/ (first copy of A0), and let f1; : : : ;fd be the
same basis for the second copy. The elements ei C

p
�nfi form a basis for V� , and so�

e1C
p
�nf1

�
^
�
e2C
p
�nf2

�
^ : : :

is an E-basis for
Vd
EH

1.A;Q/ (not e1^ e2^ : : :). When d D 2, the elements

e1^ e2�nf1^f2;
p
�n.e1˝f2C e2˝f1/

form a Q-basis for
V2
EH

1.A;Q/, and the Weil classes are represented by the algebraic
cycles .0�A0/�n.A0�0/ and the .1;1/-components of the diagonal. See Murty, Hodge
and Weil classes on abelian varieties, 2000. It seems not to be known whether, in the
situation of the lemma, the space

Vd
EH

1.A;Q/.d
2
/ always consists of algebraic classes.

M.12. (p. 40) The proof shows that, in certain a Tannakian sense, the Q-algebra of Hodge
classes on an abelian variety of CM type is generated by the divisor classes and the split
Weil classes. Yves André (Une remarque à propos des cycles de Hodge de type CM, 1992)
proves a more precise result. As in the text, let A be an abelian variety over C with complex
multiplication by a CM-field E. We suppose that E is Galois over Q. Denote the inclusion
E! End0.A/ by �, and let � be the CM-type of .A;�/. Then .A;��/ is of CM-type ��.
Let J D f�1; : : : ;�2rg be a subset of Gal.E=Q/ such that

P
�i� D r , and let E act on

AJ
def
D A2r by x 7! .: : : ; .�i�/.x/; : : :/. Then the space^2r

E
H 1.AJ ;Q/.r/

of Weil classes in H 2r.AJ ;Q.r// consists of absolute Hodge classes (Theorem 4.8). Let
fJ WA! AJ denote the diagonal map. André shows that every Hodge class on A of
codimension r is a sum of classes of the form f �J ./ with  a Weil class on AJ .

M.13. (p. 42) We discuss some simplifications and applications of the proof of Theorem
2.11.

A CRITERION FOR A FAMILY OF HODGE CLASSES TO CONTAIN ALL HODGE CLASSES

THEOREM. Suppose that for each abelian variety A over C we have a Q-subspace C.A/ of
the Hodge classes on A. Assume:

(a) C.A/ contains all algebraic classes on A;
(b) pull-back by a homomorphism ˛WA! B maps C.B/ into C.A/;
(c) let � WA! S be an abelian scheme over a connected smooth variety S over C, and

let t 2 � .S;R2p��Q.p//; if ts is a Hodge cycle for all s and lies in C.As/ for one s,
then it lies in C.As/ for all s.

Then C.A/ contains all the Hodge classes on A.

PROOF. The proof of Theorem 4.8 shows that C.A/ contains all split Weil classes on A (see
endnote M.3), and then André’s improvement of �5 (see endnote M.12) proves the theorem
for all abelian varieties of CM-type. Now Proposition 6.1 completes the proof. �
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ALGEBRAIC CLASSES

In Steenbrink (Some remarks about the Hodge conjecture. Hodge theory (Sant Cugat, 1985),
165–175, Lecture Notes in Math., 1246, Springer, Berlin, 1987) we find the following:

[Grothendieck (1966), footnote 13] stated a conjecture which is weaker than the
Hodge .p;p/ conjecture:
(VHC) Suppose that f WX ! S is a smooth projective morphism with S con-
nected, smooth. Suppose that � 2H 0.S;R2pf�QX / is of type .p;p/ every-
where, and for some s0 2 S , �.s0/ is the cohomology class of an algebraic cycle
of codimension p on Xs0 . Then �.s/ is an algebraic cycle class for all s 2 S .
This “variational Hodge conjecture” . . . .

In fact, Grothendieck (1966, footnote 13) asks whether the following statement is true:

(VHCo) Let S be a connected reduced scheme of characteristic zero, and let
� WX ! S be a proper smooth morphism; then a section z of R2p��.˝�X=S / is
algebraic on every fibre if and only if it is horizontal for the canonical integral
connection and is algebraic on one fibre.

THEOREM. If the variational Hodge conjecture (either statement (VHC) or (VHCo)) is true
for abelian varieties, then so also is the Hodge conjecture.

PROOF. Assume (VHC), and let C.A/ be the Q-span of the classes of algebraic cycles on A.
Then the preceding theorem immediately shows that C.A/ contains all Hodge classes on A.

The proof that (VHCo) implies the Hodge conjecture is similar, but requires the remark
that all of ��2–6 still applies when the étale component is omitted. �

Although, we didn’t need Principle A for the last theorem, it should be noted that it does
hold for the algebraic classes on abelian varieties (those in the Q-subspace ofH 2p.A;Q.p//
spanned by the classes of algebraic cycles). This is a consequence of the following three
results (cf. endnote M.9):

˘ numerical equivalence coincides with homological equivalence on complex abelian
varieties (Lieberman, David I., Numerical and homological equivalence of algebraic
cycles on Hodge manifolds. Amer. J. Math. 90 1968 366–374, MR37 #5898);

˘ the category of motives defined using algebraic cycles modulo numerical equivalence is
an abelian category (even semisimple) (Jannsen, Uwe, Motives, numerical equivalence,
and semi-simplicity. Invent. Math. 107 (1992), no. 3, 447–452.);

˘ every abelian tensor category over a field of characteristic zero whose objects have
finite dimension is Tannakian (Théorème 7.1 of Deligne, P., Catégories tannakiennes.
The Grothendieck Festschrift, Vol. II, 111–195, Progr. Math., 87, Birkhäuser Boston,
Boston, MA, 1990).

DE RHAM-HODGE CLASSES (BLASIUS)

For a complete smooth variety X over Q and an embedding � WQ!Qp, there is a natural
isomorphism

I WH 2r
et .�X;Qp/.r/˝Qp BdR!H 2r

dR .�X/.r/˝Qp BdR

(Faltings, Tsuji) compatible with cycle maps. Call an absolute Hodge class  on X de Rham
if, for all � , I.�p˝1/D �dR˝1. The following is proved in Blasius 1994.
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THEOREM. Every absolute Hodge class on an abelian variety over Q is de Rham.

PROOF. The functor from abelian varieties over Q to abelian varieties over C is fully faithful
and the essential image contains the abelian varieties of CM-type. Using this, one sees by
the same arguments as above, that the theorem follows from the next result. �

THEOREM (BLASIUS 1994, 3.1). Let � WX ! S be a smooth proper morphism of smooth
varieties over Q�C with S connected, and let  2� .SC;R2n�C�Q.n//. If s 2H 2n

B .Xs/.n/

is absolutely Hodge and de Rham for one s 2 S.Q/, then it is absolutely Hodge and de Rham
for every s.

PROOF. Let s; t 2 S.Q/ and assume s is absolutely Hodge and de Rham. We know (see
endnote M.8) that t is absolutely Hodge, and we have to prove it is de Rham.

Let � WQ ,!Qp be an embedding. For a smooth compactification X of X (as in endnote
M.8) over Q, we have a commutative diagram

H 2n
et .�X;Qp/.n/˝BdR H 2n

dR .�X/.n/˝BdR

H 2n
et .�Xs;Qp/.n/˝BdR H 2n

dR .�Xs/.n/˝BdR:

I

I

There exists Q 2H 2n
B .X/.n/ mapping to  (see the diagram in endnote M.8). Let Qp

and QdR be the images of Q in H 2n
et .�X;Qp/.n/ and H 2n

dR .�X/.n/. Because s is de Rham,
I. Qp˝1/ differs from QdR˝1 by an element of�

Ker.H 2n
dR .�X/.n/!H 2n

dR .�Xs/.n/
�
˝BdR.

But this kernel is independent of s, and so t is also de Rham. �

MOTIVATED CLASSES (ABDULALI, ANDRÉ)

Recall that Grothendieck’s Lefschetz standard conjecture says that the Q-space of algebraic
classes on a smooth algebraic variety is invariant under the Hodge �-operator. Abdulali
(Algebraic cycles in families of abelian varieties. Canad. J. Math. 46 (1994), no. 6, 1121–
1134) shows that if the Q-spaces of algebraic cycles in the L2-cohomology of Kuga fibre
varieties (not necessarily compact) are invariant under the Hodge �-operator, then the Hodge
conjecture is true for all abelian varieties.

André (Pour une théorie inconditionnelle des motifs, Inst. Hautes Études Sci. Publ.
Math. No. 83 (1996), 5–49) proves a more precise result: every Hodge class on an abelian
variety A is a sum of classes of the form p�.˛[�Lˇ/ in which ˛ and ˇ are algebraic classes
on a product of A with an abelian variety and certain total spaces of compact pencils of
abelian varieties.

In outline, the proofs are similar to that of Theorem 2.11.

M.14. (p. 43) Since Theorem 2.11 is true for one-motives (see endnote M.7), so also is the
corollary. This raises the question of whether dim.GA/D tr:degk k.pij / for all one-motives.
For a discussion of the question, and its implications, see Bertolin, C., Périodes de 1-motifs
et transcendance. J. Number Theory 97 (2002), no. 2, 204–221.

M.15. (p. 46) (7.4) There are similar calculations in
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Ogus, A., Griffiths transversality in crystalline cohomology. Ann. of Math. (2) 108
(1978), no. 2, 395–419, MR 80d:14012 (�3),
Ran, Ziv Cycles on Fermat hypersurfaces. Compositio Math. 42 (1980/81), no. 1,
121–142,

and, in a more general setting,

Aoki, Noboru, A note on complete intersections of Fermat type. Comment. Math. Univ.
St. Paul. 35 (1986), no. 2, 231–245.

M.16. (p. 55) (7.16) For an elementary proof that Q.�d ; Q� .a// is Galois over Q, see

Das, Pinaki, Algebraic gamma monomials and double coverings of cyclotomic fields.
Trans. Amer. Math. Soc. 352 (2000), no. 8, 3557–3594.
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