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Introduction

For one who attempts to unravel the story, the
problems are as perplexing as a mass of hemp
with a thousand loose ends.

Dream of the Red Chamber, Tsao Hsueh-Chin.

Algebraic groups are groups of matrices determined by polynomial conditions. For
example, the group of matrices of determinant 1 and the orthogonal group of a symmetric
bilinear form are both algebraic groups. The elucidation of the structure of algebraic groups
and the classification of them were among the great achievements of twentieth century
mathematics (Borel, Chevalley, Tits and others, building on the work of the pioneers on
Lie groups). Algebraic groups are used in most branches of mathematics, and since the
famous work of Hermann Weyl in the 1920s they have also played a vital role in quantum
mechanics and other branches of physics (usually as Lie groups).

Arithmetic groups are groups of matrices with integer entries. They are an important
source of discrete groups acting on manifolds, and recently they have appeared as the sym-
metry groups of several string theories in physics.

These are the notes for a 40 hour course that I gave at CMS, Zhejiang University,
Hangzhou, in the spring of 2005. My goal was to give an introductory overview of al-
gebraic groups, Lie algebras, Lie groups, and arithmetic groups. However, to adequately
cover this topic would take twice as long and twice as many pages (but not more!). Thus,
the treatment is very sketchy in places, and some important topics (for example, the cru-
cial real case) are barely mentioned. Nevertheless, I hope that the notes may be useful for
someone looking for a rapid introduction to the subject. Sometime I plan to produce an
expanded version.

The approach to algebraic groups taken in these notes In most of the expository lit-
erature, the theory of algebraic groups is based (in spirit if not in fact) on the algebraic
geometry of Weil’s Foundationsﬂ Thus coordinate rings are not allowed to have nonzero
nilpotents, which means, for example, that the centre of SL, in characteristic p is vis-
ible only through its Lie algebra. Moreover, the isomorphism theorem in group theory,
HN/N >~ H/N N H, fails, and so the intuition provided by group theory is unavailable. It
is true that in characteristic zero, all algebraic groups are reduced, but this is a theorem that
can only be stated when nilpotents are allowed. Another problem is that an algebraic group
over a field k is defined to be an algebraic group over some large algebraically closed field
together with a k-structure. This leads to a confusing terminology in conflict with that of
today’s algebraic geometry and prevents, for example, the theory of split reductive groups
to be developed intrinsically over the base field.

Of course, the theory of algebraic groups should be based on Grothendieck’s theory
of schemes. However, the language of schemes is not entirely appropriate either, since
the nonclosed points are an unnecessary complication when working over a field and they
prevent the underlying space of an algebraic group from being a group. In these notes, we
usually regard algebraic groups as functors (or bi-algebras), except that, in order to be able
to apply algebraic geometry, we sometimes interpret them as algebraic varieties or algebraic
spaces (in the sense of AG §11).

'Weil, André. Foundations of algebraic geometry. AMS, 1962



The expert need only note that by “algebraic group over a field” we mean “affine alge-
braic group scheme over a field”, and that our ringed spaces have only closed points (thus,
we are using Spm rather than Spec).

Notations

We use the standard (Bourbaki) notations: N = {0, 1,2, ...}, Z = ring of integers, R =
field of real numbers, C = field of complex numbers, IF,, = Z/ pZ = field of p elements, p
a prime number. Given an equivalence relation, [*] denotes the equivalence class containing
x. A family of elements of a set A indexed by a second set I, denoted (a;);ery, is a function
i—ai:l — A _
Throughout, k is a field and & is an algebraic closure of k.
Rings will be commutative with 1 unless stated otherwise, and homomorphisms of rings
are required to map 1 to 1. A k-algebra is a ring A together with a homomorphism £k — A.
For aring A, A* is the group of units in A:
A* = {a € A | there exists a b € A such that ab = 1}.
We use Gothic (fraktur) letters for ideals:
abcmmngpgqgAB MNP Q
a b ¢c mnpgqg A B C M N P Q

X Ly X is defined to be Y, or equals Y by definition;

X CY X isasubsetof Y (not necessarily proper, i.e., X may equal Y);

X ~Y XandY areisomorphic;

X ~Y X andY are canonically isomorphic (or there is a given or unique isomorphism).
Prerequisites

¢ A standard course on algebra, for example, a good knowledge of the Artin 1991.
o Some knowledge of the language of algebraic geometry, for example, the first few
sections of AG.
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1 OVERVIEW AND EXAMPLES 4

1 Overview and examples

Loosely speaking, an algebraic group is a group defined by polynomials. Following Mike
Artin’s dictum (Artin 1991, p xiv), I give the main examples before the precise abstract
definition.
The determinant of an n X n matrix A = (a;;) is a polynomial in the entries of A,
specifically,
det(4) = Z (sgn(0))aio(1) *** dno(n)

o€eS,

where Sy, is the symmetric group on 7 letters, and sgn(o) is the sign of o. Moreover, the
entries of the product of two matrices are polynomials in the entries of the two matrices.
Therefore, for any field k, the group SL, (k) of n x n matrices with determinant 1 is an
algebraic group (called the special linear group).

The group GL, (k) of n x n matrices with nonzero determinant is also an algebraic
group (called the general linear group) because its elements can be identified with the
n? + 1-tuples ((@;j)1<i,j<n.t) such that

det(a;j)t = 1.

More generally, for a finite-dimensional vector space V', we define GL(V') (resp. SL(V))
to be the groups automorphisms of V' (resp. automorphisms with determinant 1). These are
again algebraic groups.

On the other hand, the subgroup

{(x,e¥) | x e R}

of R x R* is not an algebraic subgroup because any polynomial f(X,Y) € R[X, Y] zero
on it is identically zero.

An algebraic group is connected if it has no quotient algebraic group Q such that Q (k)
is finite and # 1.

The building blocks
Unipotent groups

Recall that an endomorphism « of a vector space V' is nilpotent if " = 0 for some n > 0
. . . L . 0

and that it is unipotent if 1 — « is nilpotent. For example, a matrix A of the form (8 § %)

.. . 1 . .

is nilpotent (4> = 0) and so a matrix of the form 1 — 4 = (8 z %) is unipotent.

An algebraic subgroup of GL(V) is unipotent if there exists a basis of V' relative to
which G is contained in the group of all n x n matrices of the form

1 *x - % x
0 * %
Do : ; (D
0 0 1 *
0 0 0 1

which we denote it Uy,. Thus, the elements of a unipotent group are unipotent.
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Algebraic tori

An endomorphism « of a vector space V' is diagonalizable if V' has a basis of eigenvectors
for o, and it is semisimple if it becomes diagonalizable after an extension of the field k. For
example, the linear map x +— Ax: k" — k" defined by an n x n matrix A is diagonalizable
if and only if there exists an invertible matrix P with entries in k such that PAP ™! is
diagonal, and it is semisimple if and only if there exists such a matrix P with entries in
some field containing k.

Let k be an algebraic closure of k. A connected algebraic subgroup T of GL(V) is an
algebraic torus if, over E, there exists a basis of V' relative to which T is contained in the
group of all diagonal matrices

* 0 0 0
0 =* 0 0
00 -~ % O
0 0 -+ 0 =%

which we denote I),,. Thus, the elements of 7" are semisimple.

Semisimple groups
Let G1, ..., G, be algebraic subgroups of an algebraic group G. If
(g1,...,.8r) > g1 grG1 X xGr > G

is a surjective homomorphism with finite kernel, then we say that G is the almost direct
product of the G;. In particular, this means that each G; is normal and that the G; commute
with each other. For example,

G =SL,xSLy /N, N ={(,1),(~1,—I)} )

is the almost direct product of SL, and SL», but it can’t be written as a direct product.

A connected algebraic group G is simple if it is non-commutative and has no normal
algebraic subgroups, and it is almost simpl if its centre Z is finite and G/Z is simple.
For example, SL;, is almost-simple because its centre

()]

is finite, and PSL,, = SL,, /Z is simple.

A connected algebraic group is semisimple if it is an almost direct product of almost-
simple subgroups. For example, the group G in (2) is semisimple.

A central isogeny of connected algebraic groups is a surjective homomorphism G —
H whose kernel is finite and contained in the centre of G (in characteristic zero, a finite
subgroup of a connected algebraic group is automatically central, and so “central” can be
omitted from these definitions). We say that two algebraic groups H; and H; are centrally
isogenous if there exist central isogenies

7/ =

Hy <~ G — H»,.

2 Also called “quasi-simple” or, often, just “simple”.
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Thus, two algebraic groups are centrally isogenous if they differ only by finite central sub-
group. This is an equivalence relation.
If k is algebraically closed, then every almost-simple algebraic group is centrally isoge-

nous to exactly one on the following list:

Ap (n > 1), the special linear group SL, 4+ consisting of all # + 1 xn + 1 matrices A with
det(A) = 1;

B, (n = 2), the special orthogonal group SO5,+1 consisting of all 2n + 1 x2n 4 1 matrices
A such that A’4 = I and det(4) = 1;

C, (n = 3), the symplectic group Sp,,, consisting of all invertible 2n x 2n matrices A such
that A’JA = J where J = (—(I) {)),

Dy, (n > 4), the special orthogonal group SO»y;

E¢, E7, Eg, F4, G, the five exceptional types.

Abelian varieties

Abelian varieties are algebraic groups that are complete (which implies that they are pro-
jective and commutativeﬁb. An abelian variety of dimension 1 is an elliptic curve, which
can be given by a homogeneous equation

Y2Z = X3 +aXZ?*+bZ3.

In these lectures, we shall not be concerned with abelian varieties, and so I’ll say nothing
more about them.

Finite groups

Every finite group can be regarded as an algebraic group. For example, let o be a per-
mutation of {1,...,n} and let /(o) be the matrix obtained from the identity matrix by
using o to permute the rows. Then, for any n x n matrix A, (o)A is obtained from A by
permuting the rows according to o. In particular, if o and ¢’ are two permutations, then
I(0)I(0") = I(00’). Thus, the matrices /(o) realize S, as a subgroup of GLj,. Since every
finite group is a subgroup of some S, this shows that every finite group can be realized as
a subgroup of GL,,, which is automatically algebraicE]

Extensions

For the remainder of this section, assume that k is perfect.

Solvable groups

An algebraic group G is solvable if it there exists a sequence of connected algebraic sub-
groups
G:GOD"'DGiD"'Danl

3See for example my Storrs lectures (available on my website under preprints/reprints 1986b).

4 Any finite subset of k" is algebraic. For example, {(ay, ..., an)} is the zero-set of the polynomials X; —a;,
1 <i<n,and{(ay.....an).(b1....,by)}is the zero-set of the polynomials (X; —a;) (X —b;),1 <i,j <n,
and so on.
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such that G; 4 is normal in G; and G; / G; 41 is commutative. According to the table below,
they are extensions of tori by unipotent groups. For example, the group of upper triangular
matrices T, is solvable:

1-0,—->T, —-D, - 1.

The Lie-Kolchin theorem says that, when k = k, for any connected solvable subgroup G
of GL(V), there exists a basis for V such that G C T,,.

Reductive groups

An algebraic group is reductive if it has no nontrivial connected unipotent subgroups. Ac-
cording to the table, they are extensions of semisimple groups by tori. For example, GL, is
reductive:

1 — G,, » GL, - PGL,, — 1.

Nonconnected groups

The orthogonal group. There is an exact sequence

1 = SO(n) = 0(n) <% (41} > 1

which shows that O(n) is not connected.

The monomial matrices. Let M be the group of monomial matrices, i.e., those with
exactly one nonzero element in each row and each column. Then M contains both D, and
the group S, of permutation matrices. Moreover, for any diagonal matrix diag(ay, ..., an),

I(0) - diag(ai, . ..,an) - 1(0) "' = diag(agq), - - - » o (n))- 3)

As M = D,S, and D N S, = 1, this shows that ID,, is normal in M and that M is the
semi-direct product
M == Dn X|0 Sn

where 0: S,, — Aut(ID,) sends o to Inn(/(0)).

Summary

When k is perfect, every smooth algebraic group has a composition series whose quotients
are (respectively) a finite group, an abelian variety, a semisimple group, a torus, and a
unipotent group.
More precisely (all algebraic groups are smooth):
¢ An algebraic group G contains a unique normal connected subgroup G° such that
G/G° is finite and smooth (see[8.13).
¢ A connected algebraic group G contains a unique normal affine algebraic subgroup
H such that G/H is an abelian variety (Barsotti-Chevalley theorem)E]

5B. Conrad, A modern proof of Chevalley’s theorem on algebraic groups, available at
www.math.Isa.umich.edu/~bdconrad/papers/chev.pdf.
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¢ A connected affine group G contains a largestlﬂ normal solvable subgroup (called the
radical RG of G) that contains all other normal solvable subgroups (see p94). The
quotient G/ RG is semisimple.
¢ A connected affine group G contains a largest normal unipotent subgroup (called the
unipotent radical R,,G of G) (see . The quotient G/R,G is reductive, and is
a torus if G is solvable. (When k = k, G contains reductive groups H, called Levi
subgroups, such that G = R,G x H.)
¢ The derived group DG of areductive group G is a semisimple algebraic group and the
connected centre Z(G)° of G is a torus; G is an extension of a semisimple algebraic
group by a torus (see [I5.1).
In the following tables, the group at left has a composition series whose quotients are the
groups at right.

General algebraic group Affine algebraic group Reductive
general @
| finite affine G
connected ® | finite
|  abelian variety connected  G° reductive @
connected affine @ | semisimple | semisimple
|  semisimple solvable RG torus @
solvable @ | torus | torus
| torus unipotent Ry, G {1} e
unipotent ® | unipotent
| unipotent {1}
1y e

ASIDE 1.1 We have seen that the theory of algebraic groups includes the theory of finite
groups and the theory of abelian varieties. In listing the finite simple groups, one uses the
listing of the almost-simple algebraic groups given above. The theory of abelian varieties
doesn’t use the theory of algebraic groups until one begins to look at families of abelian
varieties when one needs both the theory of algebraic groups and the theory of arithmetic
groups.

Exercises

1-1 Show that a polynomial f(X,Y) € R[X, Y] such that f(x,e*) = O forall x € R is
zero (as an element of R[X, Y]). Hence {(x,e*) | x € R} is not an algebraic subset of R?
(i.e., it is not the zero set of a collection of polynomials).

1-2 Let T be a commutative subgroup of GL(V') consisting of diagonalizable elements.
Show that there exists a basis for V relative to which T C ID,,.

1-3 Let ¢ be a positive definite bilinear form on a real vector space V', and let SO(¢) be
the algebraic subgroup of SL(V) of o such that ¢(ax,ay) = ¢(x,y) forall x,y € V.
Show that every element of SO(¢) is semisimple (but SO(¢) is not diagonalizable because
it is not commutative).

This means that RG is a normal solvable subgroup of G and that it contains all other normal solvable
subgroups of G.
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1-4 Let k be a field of characteristic zero. Show that every element of GL, (k) of fi-
nite order is semisimple. (Hence the group of permutation matrices in GL;, (k) consists of
semisimple elements, but it is not diagonalizable because it is not commutative).
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2 Definition of an affine algebraic group

In this section, I assume known some of the language of categories and functors (see, for
example, AG §1).

Principle of permanence of identities

Let f(X1,...,Xm) and g(Xy,..., Xu) be two polynomials with coefficients in Z such
that

flai,...,am) =glai,...,am) 4)
for all real numbers a;. Then f(X1,..., Xm) = g(X1,..., Xm) as polynomials with coef-
ficients in R — see Artin 1991, Chapter 12, 3.8, or (4.1)) below — and hence as polynomials

with coefficients in Z. Therefore, @) is true with the a; in any ring R.
Application. When we define the determinant of an n x n matrix M = (m;;) by

det(M) = > (sgn(0))M15(1)*** Mno(n).

o€S,
then
det(MN) = det(M) - det(N) 5)
and
adj(M) - M = det(M)I = M - adj(M) (Cramer’s rule). (6)

Here I is the identity matrix, and adj(M) is the n x n matrix whose (i, /) entry is
(—=1)/*/ det M;; with M;; the matrix obtained from M by deleting the i*" row and the
7t column.

For matrices with entries in the field of real numbers, this is proved, for example, in
Artin 1991, Chapter I, §5, but we shall need the result for matrices with entries in any com-
mutative ring R. There are two ways of proving this: observe that Artin’s proof applies in
general, or by using the above principle of permanence of identities. Briefly, when we con-
sider a matrix M whose entries are symbols Xj;, (E]) becomes an equality of polynomials
in Z[X11, ..., Xun]. Because it becomes true when we replace the X;; with real numbers,
it is true when we replace the X;; with elements of any ring R. A similar argument applies
to @ (regard it as a system of n? equalities).

Affine algebraic groups

In §1, I said that an algebraic group over k is a group defined by polynomial equations with
coefficients in k. Given such an object, we should be able to look at the solutions of the
equations in any k-algebra, and so obtain a group for every k-algebra. We make this into a
definition.

Thus, let G be a functor from k-algebras to groups. Recall that this means that for each
k-algebra R we have a group G(R) and for each homomorphism of k-algebras o: R — S
we have a homomorphism G(«): G(R) — G(S); moreover,

G(idR) = idG(R) all R
G(B oa) = G(B) o G(w) all composable «, .
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We say that G is an affine algebraic grou if there exists a finitely generated k-algebra A
such that
G(R) = Homk—algebra(A» R)

functorially in R. Since we shall be considering only affine algebraic groups in these lec-
tures (no abelian varieties), I’ll omit the “affine”.

In the following examples, we make repeated use of the following observation. Let
A = k[X1,..., Xm]; then a k-algebra homomorphism A — R is determined by the images
a; of the X;, and these are arbitrary. Thus, to give such a homomorphism amounts to giving
an m-tuple (a;)1<i<m in R. Let A = k[X1,..., X;y]/a where a is the ideal generated by
some polynomials f;(X1,..., X;»). The homomorphism X; +— a;:k[X1,..., Xm] = R
factors through A if and only if the a; satisfy the equations fj (a1, ...,am) = 0. Therefore,
to give a k-algebra homomorphism A — R amounts to giving an m-tuple ay, . .., dz, such
that f(ai,...,am) = 0forall ;.

EXAMPLE 2.1 Let G, be the functor sending a k-algebra R to R considered as an additive
group, i.e., G4(R) = (R, +). Then
Ga(R) =~ Homk—alg(k [X], R),

and so G, is an algebraic group, called the additive group.

EXAMPLE 2.2 Let G, (R) = (R, x). Let k(X) be the field of fractions of k[X], and let
k[X, X 1] be the subring of k(X) of polynomials in X and X ~!. Then

Gm(R) ~ Homy g (k[X, X '], R),
and so G, is an algebraic group, called the multiplicative group.

EXAMPLE 2.3 From and the fact that det(/) = 1, we see that if M is an invert-
ible matrix in M, (R), then det(M) € R*. Conversely, Cramer’s rule (6) shows that if
det(M) € R*, then M in invertible (and it gives an explicit polynomial formula for the
inverse). Therefore, the n x n matrices of determinant 1 with entries in a k-algebra R form
a group SL,(R), and R — SL,(R) is a functor. Moreover,

k[X11,..., Xun] R)
(det(Xij) — 1) ’

SLn(R) >~ Homy_y, (

and so SL, is an algebraic group, called the special linear group. Here det(X;;) is the
polynomial ) sgn(0)X15(1)X20(2) - -

EXAMPLE 2.4 The arguments in the last example show that the n x n matrices with entries
in a k-algebra R and determinant a unit in R form a group GL,(R), and R — GL,(R) is
a functor. Moreoverﬁ

GLn(R) ~ Homk_alg (k[Xll’ LI "an’l’ Y] R)

(det(X;)Y —1)

and so GL, is an algebraic group, called the general linear group.

"When k has characteristic zero, this definition agrees with that in Borel 1991, Humphreys 1975, and
Springer 1998; when k has nonzero characteristic, it differs (but is better) — see below.

8To give an element on the right is to given an n x n matrix M with entries in R and an element ¢ € R such
that det(M)c = 1. Thus, ¢ is determined by M (it must be det(M)~1), and M can be any matrix such that
det(M) € R*.
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EXAMPLE 2.5 For a k-algebra R, let G(R) be the group of invertible matrices in M, (R)
having exactly one nonzero element in each row and column. For each o € S, (symmetric
group), let

Ao = K[GL)/(Xij | j # 0()

and let k[G] = [[,¢ s, Ao The k[G] represents G, and so G is an algebraic group, called
the group of monomial matrices.

EXAMPLE 2.6 Let C be a symmetric matrix with entries in R. An automorphﬂ of C is an
invertible matrix 7 such that 7/ - C - T = C, in other words, such that

Z[jicjktklzcil’ il=1,...,n.
Jk

Let G be the functor sending R to the group of automorphs of C with entries in R. Then
G(R) = Homy_y,(A, R) with A the quotient of k[X11, ..., Xun, Y] by the ideal generated
by the polynomials

{ det(X;;)Y —1
Zj,k XjicjxXep = ¢y, 1,1 =1,...,n.

EXAMPLE 2.7 Let G be the functor such that G(R) = {1} for all k-algebras R. Then
G(R) =~ Homy _gigepra(k, R), and so G is an algebraic group, called the trivial algebraic

group.

EXAMPLE 2.8 Let uy be the functor u,(R) = {r € R | r" = 1}. Then
pn(R) >~ Homy o, (k[X]/(X" — 1), R).

and so [, is an algebraic group with k[u,] = k[X]/(X" —1).

EXAMPLE 2.9 In characteristic p # 0, the binomial theorem takes the form (a + b)? =
a? + bP. Therefore, for any k-algebra R over a field k of characteristic p # 0,

ap(R)={reR|r? =0}

is a group, and R + ap(R) is a functor. Moreover, a,(R) = Homy o, (K[T]/(T?), R),
and so « is an algebraic group.

EXAMPLE 2.10 There are abstract versions of the above groups. Let V' be a finite-dimensional
vector space over k, and let ¢» be a symmetric bilinear V' x V' — k. Then there are algebraic
groups with

SLy (R) = {automorphisms of R ®; V with determinant 1},
GLy (R) = {automorphisms of R ®; V'},
O(¢) = {automorphisms & of R ®; V such that ¢ (av,cw) = ¢(v,w) allv,w € R Q V}.

oIf we let ¢(x, y) = x'Cy, x, y € k™, then the automorphs of C are the linear isomorphisms T: k" — k"
such that ¢ (Tx, Ty) = ¢(x, y).
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Homomorphisms of algebraic groups

A homomorphism of algebraic groups over k is a natural homomorphisnm G — H,ie,
a family of homomorphisms «(R): G(R) — H(R) such that, for every homomorphism of
k-algebras R — S, the diagram

GR) 22 H(R)

! |

G(s) =& Hes)

commutes. For example, the determinant defines a homomorphism

det: GL,, — G,

and the homomorphisms

I
R — SLy(R), a+ (0 ‘f) :

define a homomorphism G, — SL,.

The Yoneda lemma

Any k-algebra A defines a functor / 4 from k-algebras to sets, namely,
R ha(R) £ Homy_y,(A, R).
A homomorphism «: A — B defines a morphism of functors g — h 4, namely,
B Boa:hp(R) — hy(R).

Conversely, a morphism of functors hip — h4 defines a homomorphism o«: A — B,
namely, the image of idg under Ag(B) — h4(B).
It is easy to check that these two maps are inverse (exercise!), and so

Homy_y,(A, B) ~ Hom(hp, h4). @)

This remarkably simple, but useful result, is known as the Yoneda lemma.

A functor F from k-algebras to sets is representable if it is isomorphic to /& 4 for some
k-algebra A (we then say that A represents F). With this definition, an algebraic group is
a functor from k-algebras to groups that is representable (as a functor to sets) by a finitely
generated k-algebra.

Let A! be the functor sending a k-algebra R to R (as a set); then k[X] represents Al

R ~ Homy_y,(k[X], R).

Note that
Yoneda

Homyunctors (R 4, Al) = Homk-alg(k [X], 4) ~ A. ®)

10Als0 called a natural transformation or a morphism of functors.
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The coordinate ring of an algebraic group

A coordinate ring of an algebraic group G is a finitely generated k-algebra A together with
an isomorphism of functors h4 — G. If h4, — G and h4, — G are coordinate rings,
then we get an isomorphism

ha, = G — hy,

by inverting the first isomorphism. Hence, by the Yoneda lemma, we get an isomorphism
A1 — Az,

and so the coordinate ring of an algebraic group is uniquely determined up to a unique
isomorphism. We sometimes write it k[G].

Let (A,hy = G) be a coordinate ring for G. Then

A = Hom(h4,Al) ~ Hom(G, Al).

Thus, an f € A defines a natural maﬂ G(R) — R, and each such natural map arises from
a unique f.
For examplef}]

kL. Xij...]

KIGLn] = 7 der) — 1

=k[....xij,....p]

and x;; sends a matrix in GL, (R) toiits (i, j)"'-entry and y to the inverse of its determinant.

Very brief review of tensor products.

Let A and B be k-algebras. A k-algebra C together with homomorphisms i: 4 — C
and j: B — C is called the tensor product of A and B if it has the following universal
property: for every pair of homomorphisms (of k-algebras) «: 4 — R and f: B — R,
there is a unique homomorphism y: C — R suchthaty oi = andyo j = f:

A-—tsc<!l B

S

If it exists, the tensor product, is uniquely determlned up to a unique isomorphism by this
property. We write it A ®j B.is an isomorphism. For its construction, see AG §1.

EXAMPLE 2.11 For aset X and a k-algebra R, let A be the set of maps X — R. Then A
becomes a k-algebra with the structure

(f +8)x) = f(x) +g(x), (f2)x) = fx)gx).

Let Y be a second set and let B be the k-algebra of maps ¥ — R. Then the elements of
A ®j B definemaps X x Y — R by

(f ®g)(x,y)= f(x)gy).

""That is, a natural transformation of functors from k-algebras to sets.
12Here, and elsewhere, I use x; ;7 to denote the image of X;; in the quotient ring.
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The maps X x Y — R arising from elements of A ®; B are exactly those that can be
expressed as

(x.3) = Y fi(x)gi(y)
for some maps f;: X — Rand g;:Y — R.

EXAMPLE 2.12 Let A be a k-algebra and let k' be a field containing k. The homomor-
phism i: k" — kK’ ®; A makes k" ®; A into a k’-algebra. If R is a second k’-algebra, a
k’-algebra homomorphism y: k' ® A — R is simply a k-algebra homomorphism such that

i Yoo . . N
k' — k' ® A —> R is the given homomorphism. Therefore, in this case, (9) becomes

Homk’—alg(k/ ®k A, R) =~ Homk—alg(A, R). (10)

Products of algebraic groups
Let G and H be algebraic groups, and let G x H be the functor
(G xH)(R) =G(R) x H(R).
Then,
(G x H)(R) 2 Homy .y (kG ®4 k[H]. R).

and so G x H is an algebraic group with coordinate ring

k(G x H] = k[G] ® k[H]. (11)

Fibred products of algebraic groups

Let Gi - H < G, be homomorphisms of algebraic groups, and let G; xg G be the
functor sending a k-algebra R to the set (G X g G2)(R) of pairs (g1, g2) € G1(R)xG2(R)
having the same image in H(R). Then G; xg G is an algebraic group with coordinate
ring

k(G1 xu G2] = k[G1] Qk[m) k[G2]. (12)

This follows from a standard property of tensor products, namely, that A1 ® p A» is the
largest quotient of A7 ®j A» such that

B —— Ar

! l

A —— A1 ®p Ay

commutes.

Extension of the base field (extension of scalars)

Let G be an algebraic group over k, and let k' be a field containing k. Then each k’-algebra
R can be regarded as a k-algebra through k — k' — R, and so G(R) is defined; moreover

(10)
G(R) ~ Homk_alg(k[G], R) g Homk/_alg(k’ ®r k[G], R).

Therefore, by restricting the functor G to k’-algebras, we get an algebraic group Gy, over
k’ with coordinate ring k[G/] = k' ®; k[G].
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Algebraic groups and bi-algebras

Let G be an algebraic group over k with A = k[G]. The functor G x G is represented by
A ® A, and the functor R — {1} is represented by k. Therefore, by the Yoneda lemma,
the maps of functors

(m)ultiplication: G x G — G, (i)dentity: {1} — G, (inv)erse:G — G
define homomorphisms of k-algebras
AiA—> AR A, €¢A—k, S:A— A

Le f € A. Then A(f) is the (unique) element of A ®j A such that, for any k-algebra R
and elements x, y € G(R),

(Af)(x, ) = fxy). (13)
Similarly,
(efH(M) = f(1) (14)
and
(S/Hx) = f(x71), x € G(R). (15)
For example,
points ring A € S
Ga (R, +) k[X] AX)=XQ®1+1®X €X)=0 X > —X
Gm (R*,x) k[x,x 1 AX)=X®X e(X) 1 X+ Xx1
Axip) = Xij @ X; xji =1
GL, GLan(R) W g j=12,;--,n ’ I xjj+—0,i # j  Cramer’s rule.
Y Ay)=y®y Y1

In more detail: k[X] ® k[X] is a polynomial ring in the symbols X ® 1 and 1 ® X, and we
mean (for G,) that A is the unique homomorphism of k-algebras k[X] — k[X ® 1,1 ® X]
sending X to X ® 1 + 1 ® X; thus, a polynomial f(X)in X mapsto f(X ® 1 +1® X).

For G = GLj,, S maps xi; to the (k,[)"™-entry of y(—1)¥*! det M;; where My, is
the matrix obtained from the matrix (x;;) by omitting the k*'-row and /*®-column (see
Cramer’s rule).

We should check that these maps of k-algebras have the properties (13|[T4][T3), at least
for GLj. For equation (13)),

(Axi) (i), Big) = (3 xij ® %) (@), (i) (definition of 4)
j=1,..., n
=S aibji (recall that xx;((a;j)) = ax;)
J
= xik((aij)(bij)).

Also, we defined € so that e(x;;) is the (i, j)*"-entry of /, and we defined S so that
(Sxij)(M) = (i, /)™ entry of M1,

13The picture to think of:

G(R) x G(R) N G(R) {1} —l> G(R) G(R) an G(R)

A
A4 & 4k &£ 4 4 Sy
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The diagrams below on the left commute by definition, and those on the right commute
because the maps all come from those on the left via the Yoneda lemma:

id xm

GxGxG —/—=GxG

e I

GxG—" -G

associativity

id xi

{}xG———>GxG

- \\\jf\\\le

GxG ——G

identity

(inv,i)
G Z2G6GxG

(i,inv)

{1 —"—sG

inverse

id®A

ARQr AR A <—— AR A

seid] [a

A@QpAd<—2 4

coassociativity

k®kA id @€ A®kA

cou] A\ la

AQA<~————A4

coidentity
(S.id)
AT A A
(id,S)
T E
k < A
coinverse

We define a bi-algebra (or bialgebra) over k to be a finitely generated k-algebra A
together with maps A, €, and S such that the three diagrams commute, i.e., such that

(id®A)oA=(A®id)o A (co-associativity) (16)

a =Y €(a;)b;  (co-identity)
€(a) =Y S(a;)b; (co-inverse)
(Terminology varies — sometimes this is called a Hopf algebra, or a Hopf algebra with
identity, or bi-algebra with antipode, or ....)

if A(a) = Za,- ® b;, then { (17)

PROPOSITION 2.13 The functor G +— k[G] is a contravariant equivalence from the cate-
gory of algebraic groups over k to the category of bi-algebras over k.

PROOF. We have seen that an algebraic group defines a bi-algebra, and conversely the
structure of a bi-algebra on A makes 4 4 a functor to groups (rather than sets). For example,

G(R)x G(R) = Homk—alg(A, R) x Homk—alg(fL R)
~ Homy _yo(4 ® A, R) (see ()
and A defines a map from Homy_y0(4 ®f A, R) to Homy_y0(A4, R). Thus, A defines a law

of composition on G which the existence of € and S and the axioms show to be a group
law. The rest of the verification is completely straightforward. O

EXAMPLE 2.14 Let F be a finite group, and let A be the set of maps FF' — k with its
natural k-algebra structure. Then A is a product of copies of k£ indexed by the elements of
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F. More precisely, let e5 be the function that is 1 on o and 0 on the remaining elements of
F. Then the e4’s are a complete system of orthogonal idempotents for A:

e?, =ey, eger=0foro #1, Zeg = 1.
The maps

1 ifo=1

0 otherwise ’ S(es) = e5—1.

Alep) = ) ec ®er, e(ea)={

oT=p
define a bi-algebra structure on A. Let F be the associated algebraic group, so that
F(R) = Homy_ys(4, R).

If R has no idempotents other than O or 1, then a k-algebra homomorphism A — R must
send one e to 1 and the remainder to 0. Therefore, F(R) ~ I', and one checks that
the group structure provided by the maps A, €, S is the given one. For this reason, F is
called the constant algebraic group defined by F and often denoted by F (even though for
k-algebras R with more idempotents than 0 and 1, F'(R) will be bigger than F).

Homogeneity

Let G be an algebraic group over a field k. An a € G(k) defines an element of G(R) for
each k-algebra, which we denote ag (or just a). Let e denote the identity element of G (k).

PROPOSITION 2.15 For each a € G(k), the natural map
Ta:G(R) — G(R), g+ agg.
is an isomorphism of set-valued functors. Moreover,

T, = idg
TyoTy =Ty, alla,be G(k).

PROOF. Itis obvious that T, is a natural map (i.e., a morphism of set-valued functors) and
that T, = idg and T, o T, = T,p. From this it follows that 7; o T,—1 = idg, and so T is
an isomorphism. O

For a € G(k), we let m, denote the kernel of a: k[G] — k. Then k[G]/m, ~ k,
and so m, is a maximal ideal in k[G]. Let k[G]n,, denote the ring of fractions obtained by
inverting the elements of

S ={f €klG]| f ¢ ma} ={f €k[G]]| f(a) # O}.
Then k[G]n, is a local ring with maximal ideal m k[G|qm, (AG 1.28).

PROPOSITION 2.16 Foreacha € G(k), k[G]m, >~ k[G]m,.

PROOF. The homomorphism ¢: k[G] — k[G] corresponding (by the Yoneda lemma) to 7,
is defined by 7(f)(g) = f(ag), all g € G(R). Therefore, t~'m, = mg, and so ¢ extends
to an isomorphism k[Glm, — k[G]m, . o
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REMARK 2.17 The map T}, corresponds to the map

K[G] <25 k[G] @ k[G] "N k @y k[G] ~ K[G]

of k-algebras.

Warning: For an algebraic group G over a nonalgebraically closed field k, it is not true
that the local rings of k[G] are all isomorphic. For example, if G = w3 over Q, then

k[G] = Q x Q[v=3].

Reduced algebras and their tensor products

Recall that a ring is reduced if it has no nonzero nilpotents, i.e., no elements a # 0 such
that a” = 0 for n > 1. For example, A = k[X]/(X") is not reduced if n > 2.

PROPOSITION 2.18 A finitely generated k -algebra A is reduced if and only if
m{m | m maximal ideal in A} = 0.

PROOF. <= : When m is maximal, A/m is reduced, and so every nilpotent element of A
lies in m. Therefore, every nilpotent element of A lies in [ \m = 0.

— : Let @ be a nonnilpotent element of A. The map A — k Qi Ais injective, and
S0 a is not nilpotent in k ®; A. It follows from the strong Nullstellensatz (AG 2.11), that
there exists a k-algebra homomorphism f:k ®j A — k such that f(a) # 0 Then f(A)
is a field, and so its kernel is a maximal ideal not containing a. o

For a nonperfect field k of characteristic p # 0, there exists an element a of k that is
not a pth power. Then X? — g is irreducible in k[X], but X? —a = (X — )? in k[X].
Therefore, A = k[X]/(XP —a)isafield, butk ® A = k[X]/(X — )P is not reduced. We
now show that such things do not happen when k is perfect.

PROPOSITION 2.19 Let A be a finitely generated k-algebra over a pertect field k. If A is
reduced, then so also is K ®j, A for all fields K D k.

PROOF. Let (e;) be a basis for K as a k-vector space, and suppose @ = Y e; ® a; is a
nonzero nilpotent in K ®; A. Because A is reduced, the intersection of the maximal ideals
in it is zero. Let m be a maximal ideal in A that does not contain all of the a;. The image o
of @ in K ®j (A/m) is a nonzero nilpotent, but A/m is a finite separable field extension of
k, and so this is impossibleE] o

PROPOSITION 2.20 Let A and B be finitely generated k algebras. If A and B are reduced,
then so also is A Q. B.

PROOF. Let (e;) be a basis for B as a k-vector space, and suppose ¢ = Y a; ® ¢; is a
nonzero nilpotent element of A ®; B. Choose a maximal ideal m in A not containing all of
the a;. Then the image @ of @ in (4/m) ®; B is a nonzero nilpotent. But A/m is a field,
and so this is impossible by (2.19). O

4Write k @y A = k[X1, ..., X»n]/a, and take f to be evaluation at a point not in the zero-set of (a) in V(a).
I5Every separable field extension of k is of the form k[X]/(f(X)) with f(X) separable and therefore with-
out repeated factors in any extension field of k (see FT, especially 5.1).
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Reduced algebraic groups and smooth algebraic groups

DEFINITION 2.21 An algebraic group G over k is reduced if k[G] is reduced, and it is
smooth if Gy is reduced. (Thus, the notions coincide when k = k.)

PROPOSITION 2.22 If G is smooth, then it is reduced; the converse is true when k is
perfect.

PROOF. Since k[G] — k ®y k[G] ~ E[GE] is injective, the first part of the statement is
obvious, and the second part follows (2.19). o

REMARK 2.23 Let k be perfect. Let G be an algebraic group over k with coordinate ring
A, and let A be the quotient of A by its nilradical 91 (ideal of nilpotent elements). Because
A®y A is reduced (2.20)), the map A: A — A®y, A factors through A. Similarly, S and € are
defined on 4, and it follows easily that there exists a unique structure of a k-bi-algebra on
A such that A — A is a homomorphism. Let G — G be the corresponding homomorphism
of algebraic groups over k. Then G is smooth, and any homomorphism H — G with H
smooth factors through G — G. We denote G by Gred, and called it the reduced algebraic
group attached to G.

Smooth algebraic groups and group varieties

In this subsection, k is algebraically closed.
In this subsection and the next, I assume the reader is familiar with §§1,2,3,5 of my
notes AG. In particular, I make use of the isomorphisms

A/m* ~ A /v, m"/m" >~ /n" (18)

which hold when m is a maximal ideal of a noetherian ring A and n = mAy, (AG 1.31). To
avoid confusion, I shall refer to an algebraic variety G over k equipped with regular maps

mGxG—G, inv:G—G, i:A°—>G

making G into a group in the usual sense as a group variety (see AG 4.23). For any reduced
k-bi-algebra A, the maps A, S, € define on Spm A the structure of a group variety.

PROPOSITION 2.24 The functor G — Spm k[G] defines an equivalence from the category
of smooth algebraic groups to the category of affine group varieties (k algebraically closed).

PROOF. The functors sending a smooth algebraic group or an affine group variety to its co-
ordinate ring are both contravariant equivalences to the category of reduced k-bi-algebras.q

Recall that the (Krull) dimension of a local noetherian ring A is the greatest length of a
chain of prime ideals
m=pg OPi—12-2Po
with strict inclusions. For a local noetherian ring A with maximal ideal m, the associated
graded ring is gr(A) = @,>om"/ m”*1 with the multiplication defined as follows: for
aem®anda’ € m”,

(Cl +mn+1)‘(a/+mn/+1) :aa/+mn+"/+1.
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PROPOSITION 2.25 For a noetherian local ring A of dimension d and residue field kg =
A/m, the following conditions are equivalent:

(a) gr(A) is a polynomial ring over k¢ in d symbols;

(b) dimy,(m/m?) =d;

(¢) m can be generated by d elements.
Moreover, any ring satisfying these conditions is an integral domain.

PROOF. Atiyah and MacDonald 1969, 11.22, 11.23. o

A noetherian local ring satisfying the equivalent conditions of the proposition is said to
be regular.

PROPOSITION 2.26 An algebraic group G over k (algebraically closed) is smooth if and
only if k[G)m, is regular for alla € G(k).

PROOF. As k is algebraically closed, the ideals my, a € G(k), are exactly the maximal
ideals of k[G] (AG 2.14). If each k[G]m, is regular, then it is reduced, which implies
that k[G] is reduced (Atiyah and MacDonald 1969, 3.8). Conversely, if G is smooth, then
k[G] = k[G’] for G’ a group variety, but it is known that the local rings of a group variety
are regular (AG 5.20, 5.25). o

For the next section, we need the following criterion.

PROPOSITION 2.27 An algebraic group G over k (algebraically closed) is smooth if every
nilpotent element of k[G] is contained in m2.

PROOF. Let ¢ G be the associated reduced algebraic group 1' and let e be the neutral
element of G (k). Then k[G] = k[G]/MN, and so k[G ], and k[G ]y, have the same Krull
dimension. The hypothesis implies that

me/mg — mg/mé

is an isomorphism of k-vector spaces, and so k[G]y, is regular. Now (2.16) shows that
k[G]m is regular for all maximal ideals m in k[G], and we can apply (2.26). o

ASIDE 2.28 Now allow k to be an arbitrary field.

(a) In AG, §11, I define an affine algebraic space to be the max spectrum of a fi-
nitely generated k-algebra A. Define an affine group space to be an affine algebraic space
equipped with regular maps

mGxG—G, inv:G— G, iA° = G

making G(R) into a group for all k-algebras R. Then G — Spm G is an equivalence from
the category of algebraic groups over k to the category of affine group spaces over k (and
each is contravariantly equivalent with the category of k-bi-algebras).

(b) The functor G — Spec G defines an equivalence from the category of algebraic
groups over k to the category of affine group schemes of finite type over k.
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Algebraic groups in characteristic zero are smooth

LEMMA 2.29 Let (A, A, S, €) be a k-bi-algebra, and let m = Ker(¢).
(a) Asak-vector space, A = k & m.
(b) Foranya € m,
Ala)=a®1+1®a modm@m.

PROOF. (a) The maps k — A <5 kare k-linear, and compose to the identity.
(b) Choose a basis (f;) for m as a k-vector space, and extend it to a basis for A by
taking fo = 1. Write

Aa = Zizodi ® fi, d; € A.

From the identities
(idg,€) 0o A =idg = (€,idg) 0 A

we find that

dofo=a=),  ed)fi

Therefore,

A@-a®l—-1®a=) (di—ed)®fi em@m.

LEMMA 2.30 LetV and V' be vector spaces, and let W be a subspace of V such that V /W
is finite-dimensional['| Forx e V,y e V/,

XR@yeWV < xeWory=0.

PROOF. Because V/ W is finite dimensional, there exists a finite set S in I/ whose image
in V/ W is a basis. The subspace W’ of V spanned by S is a complement to W in V, i.e.,
V =W @& W, and so x decomposes uniquely as x = xw + xp~ with xy € W and
xwr € W'. As

VeV =weV)ie W eV,

we see that x ® y € W ® V' if and only if xp» ® y = 0, which holds if and only if xyp-
or y is zero. o

THEOREM 2.31 (CARTIER) Every algebraic group over a field of characteristic zero is
smooth.

PROOF. We may replace k with its algebraic closure. Thus, let G be an algebraic group
over an algebraically closed field k of characteristic zero, and let A = k[G]. Let m = m,.
According to (2.27)), it suffices to show that every nilpotent element a of 4 lies in m2.

If @ maps to zero in Ay, then then it maps to zero in A/m? = Am/(mAm)?, and there
is nothing to prove. Thus, we may suppose that a” = 0in Ay, but a”~! # 0in Ay,. Now
sa™ = 0in A for some s ¢ m. On replacing a with sa, we may suppose that a” = 0in A4
but a” ! #£ 0in Am,.

Now a € m (because A/m = k has no nilpotents), and so (see

Ala)=a®@1+1®a+y with yemQ;m.

16We assume this only to avoid using Zorn’s lemma.
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Because A is a homomorphism of k-algebras,
0=A@")=Aa)"=@1+1®a+ y)".
When expanded, the right hand side becomes a sum of terms
@ D'1®a)y/, h+i+j=n.
Those withi 4+ j > 2 lie in A ®j m?2, and so
na" 'Qaca" 'mr A+ A® m* (inside A ® A).

In the quotient A ® (4/m?) this becomes

na" '®aead" 'mer A/m*> (inside A @ A/m?). (19)
As k has characteristic zero, n is a nonzero element of k, and hence it is a unit in
A. On the other hand, a”~! ¢ a" 'm, because if a”~! = 4" !m with m € m, then
(1 —=m)a"! =0;as 1 —m is a unit in Ay, this would imply a”~! = 0 in Ap,.
Hence na”~! ¢ a”~'m, and so (see[2.30), @ € m?. This completes the proof. o
Cartier duality

To give a k-bi-algebra is to give a multiplication map A ®; A — A, a homomorphism
itk — A, and maps A, €, S satisfying certain conditions which can all be expressed by the
commutativity of certain diagrams.

Now suppose that A4 is finite-dimensional as a k-vector space. Then we can form its
dual AY = Homy j;, (A4, k) and tensor products and Homs behave as you would hope with
respect to duals. Thus, from the k-linear maps at left, we get the k-linear maps at right.

mAQr A— A mY:AY — AY @ AV
itk — A iViAY -k

S:4A— A SV:4Y — 4V

e A—k eVik - AY

AiA— AQr A AV:AY @ AY — AV.

This raises the natural question: does A become a k-bi-algebra with these structures? The
answer is “no”, because the multiplication m is commutative but there is no commutativity
condition on A. In turns out that this is the only problem. Call a k-bialgebra A cocommu-

tative if the diagram

AR A 280—b®a a®br—>b®a A® A

A

A\/®A\/ a®b|—>b®a AV®AV

DA

commutes. Then
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commutes, and so AV is a commutative k-algebra. Now one can show that 4 — A" sends
cocommutative finite k-bi-algebras to cocommutative finite k-bi-algebras (and AYY ~ A)
(Waterhouse 1979, 2.4).

Obviously, the algebraic group G corresponding to the k-bi-algebra A is commutative
if and only A is cocommutative. We say that an algebraic group G is finite if A is finite-
dimensional as a k-vector space. Thus commutative finite algebraic groups correspond
to finite-dimensional cocommutative k-bialgebras, and so the functor A — A" defines a
functor G — GV such that G¥Y ~ G. The group GV is called the Cartier dual of G.
For example, if G is the constant algebraic group defined by a finite commutative group I,
then GV is the constant algebraic group defined by the dual group Hom(I", Q/Z) provided
the order of I is not divisible by the characteristic. If k has characteristic p, then a\’f =ap
and (Z/ pZ)" = pp, where i, is the algebraic group R > {r € R* | r? = 1}.

Exercises

2-1 Show that there is no algebraic group G over k such that G(R) has two elements for
every k-algebra R.

2-2 Verify directly that k[G,] and k[G,] (as described in the table) satisfy the axioms to
be a bi-algebra.

2-3 Verify all the statements in|2.14

NOTES In most of the literature, for example, Borel 1991, Humphreys 1975, and Springer 1998,
“algebraic group” means “smooth algebraic group” in our sense. Our definition of “algebraic group”
is equivalent to “affine group scheme algebraic over a field”. The approach through functors can be
found in Demazure and Gabriel 1970 and Waterhouse 1979. The important Theorem [2.31] was
announced in a footnote to Cartier 196 The proof given here is from Oort 1966

17Cartier, P. Groupes algébriques et groupes formels. 1962 Collog. Théorie des Groupes Algébriques (Brux-
elles, 1962) pp. 87-111, GauthierVillars, Paris.
8Qort, F. Algebraic group schemes in characteristic zero are reduced. Invent. Math. 2 1966 79-80.
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3 Linear representations

The main result in this section is that all affine algebraic groups can be realized as subgroups
of GL,, for some n. At first sight, this is a surprising result. For example, it says that all
possible multiplications in algebraic groups are just matrix multiplication in disguise.

Before looking at the case of algebraic groups, we should review how to realize a finite
group as a matrix group. Let G be a finite group. A representation of G on a k-vector space
V is a homomorphism of groups G — Autg;,(V), i.e., an action G X V — V in which
each y € G acts as a k-linear map. Let X x G — X be a (right) action of G on a finite set
X. Define V to be the k-vector space of maps X — k, and let G act on V' by the rule:

)x) = flxy) veG, feV,xeX

This defines a representation of G on V', which is injective if G acts effectively on X. The
vector space V has a natural basis consisting of the maps that send one element of X to 1
and the remaining elements to 0, and so this gives a homomorphism G — GLj, (k) where
n=+#X.

For example, for S, acting on {1,2,...,n}, this gives the map 0 — I(0):S, —
GLy (k) in §1. When we take X = G, the representation we get is called the regular
representation, and the map G — Auty_jinear(V) 18 injective.

Linear representations and comodules

Let G be an algebraic group over k, and let V' be a vector space over k (not necessarily
finite dimensional). A linear representation of G on V is a natural homomorphisn|"]

®@:G(R) — Autp.in(V ®% R).
In other words, for each k-algebra R, we have an action
GIR)X(V®,R)—V QR

of G(R) on V ®j R in which each g € G(R) acts R-linearly, and for each homomorphism
of k-algebras R — §, the following diagram

G(R) x V&R — V&R

i \ i
GIS) x VersS — Vs

commutes. We often drop the “linear”.
Let @ be a linear representation of G on V. Given a homomorphism «: R — S and an
element g € G(R) mapping to & in G(S), we get a diagram:

RGR) g VerRZLve,R

[P A T

SGS)h verSsPlyg s

19The reader should attach no importance to the fact that I sometimes write R ®, V and sometimes V ®, R.
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Now let g € G(R) = Homy_44(4, R). Then g: A — R sends the “universal” element
idg € G(A) = Homy_y,(A, A) to g, and so the picture becomes the bottom part of

V=VQrk
l p=d(id4)|V @k
A G(A) idy V @) A —2uda)Adinearsy, o
\Lg \L :L lidv ®g \Lidv ®g
R G(R) 4 V @ R @(g),R-linear V @ R

In particular, we see that @ defines a k-linear map p =g @(dy)|V:V — V ®; A.
Moreover, it is clear from the diagram that p determines @, because @(id4) is the uniquePE]
A-linear extension of p to V ®; A, and ®@(g) is the unique R-linear extension of @(id4) to
V ®k R.

Conversely, suppose we have a k-linear map p: V — V ®j A. Then the diagram shows
that we get a natural map

& G(R) — AutR_hn(V Rk R),
namely, given g: A — R, @(g) is the unique R-linear map making

v Lo ved

| Jiv o

D(g)
V&R — VR

commute. These maps will be homomorphisms if and only if the following diagrams
commute:
vV L ovepda V—F v eid

\ \Lidv ®e€ pl iidv ®A (20)

Verk VerAdl2%4ye e A

For example, we must have @(1g(r)) = idy g, r- By definition, 1g(g) = (4 k- R)
as an element of Homy_y,(A4, R), and so the following diagram must commute

v 2 ve4

k-linear

| [ oo

Vek —— VRrk

l l

idy

Rk R
V& R—— V ®r R.

201t R — S be a homomorphism of rings, and let M be an R-module. Thenm — 1@ m: M — S Qg M
is R-linear and universal: any other R-linear map M — N from M to an S-module factors uniquely through
it

HOHlR_lin(M, N) — HOmS_hn(M ®R S, N)
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This means that the upper part of the diagram must commute with the map V ®; k —
V ®y k being the identity map, which is the first of the diagrams in (20). Similarly, the
second diagram in (20) commutes if and only if the formula

D(gh) = @(g)P(h)
holds21]

DEFINITION 3.1 A comodule over a k-bialgebra A is a k-linear map V' — V & A such
that the diagrams commute.

The above discussion has proved the following proposition:

PROPOSITION 3.2 Let G be an algebraic group over k with corresponding bialgebra A,
and let V be a k-vector space. To give a linear representation of G on V is the same as to
give an A-comodule structure on V.

An element g of G(R) = Homy_y,(k[G], R) acts on v € V ®; R according to the
rule:

gv = ((idy, g) o p)(v). (23)

EXAMPLE 3.3 For any k-bialgebra A, the map A: 4 — A ®j A is a comodule structure
on A. The corresponding representation of A is called the regular representation.

A k-subspace W of an A-comodule V is a subcomodule if p(W) C W ®; A. Then W
itself is an A-comodule, and the linear representation of G on W defined by this comodule
structure is the restriction of thaton V.

PROPOSITION 3.4 Let (V, p) be a comodule over a k-bialgebra A. Every finite subset of
V' is contained in a sub-comodule of V having finite dimension over k.

PROOF. Since a finite sum of (finite-dimensional) subcomodules is again a (finite-dimensional)
subcomodule, it suffices to show that each element v of V' is contained in finite-dimensional
subcomodule. Let {a; } be a basis (possibly infinite) for A as a k-vector space, and let

p(v) = Zvi ®aj, v €V,

1

2'Here (from Waterhouse 1979, p23) is the argument that the commutativity of the second diagram in (20)
means that @(gh) = @ (g)®@(h) for g, h € G(R). By definition, gh is the composite

A ,h
A4 Aw 40 R

and so @(gh) is the extension of

idy ®A idy ®(g.h
v 2 ve,ats V®kA®kA1V—($g )V®kR @21
to V' ®g R. On the other hand, ®(g) o ®(h) is given by
idy ®h ®id id ®(g,id
Vv e a Y v e RPE v g e, R VEEY Y g R,
which equals
®id id®(g,h
Vv A" v e e, 4 28 v o R, (22)

Now and agree for all g, & if and only if the second diagram in commutes.
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(finite sum, i.e., only finitely many v; are nonzero). Write

Alai) =) rijrlaj ®ag), rijk €k.
j.k

‘We shall show that
p(vg) = E Vi ® rijka; (24)
i,j

from which it follows that the k-subspace of V' spanned by v and the v; is a subcomodule
containing v. Recall from (20) that

(p®idg)op = (idy ®A4)op.

On applying the left hand side to v, we get

(p®ida)(p(v) = D p(vi) ®a;  (inside V ® A ® A).

1

On applying the right hand side to v, we get

(dy ®A)(p(v) = Y vi ® rijra; ® ag.
i,j,k

On comparing the coefficients of 1 ® 1 ® aj, we obtain (24} O

Let @ be a linear representation of G on finite-dimensional vector space V. On choos-
ing a basis (€;)1<i<n for V, we get a homomorphism G — GL,, and hence a homomor-
phism of k-algebras

k[GL,] = k[...., Xij. ... ,det(X,-j)_l] — A.
Let
plej) =) ei®ajj. aij € A.
i
LEMMA 3.5 The image of X;; in A is a;;.
PROOF. Routine. o

DEFINITION 3.6 A homomorphism G — H of algebraic groups is an embedding if the
corresponding map of algebras k[H] — k[G] is surjective. We then call G an algebraic
subgroup of H.

PROPOSITION 3.7 If G — H is an embedding, then the homomorphisms G(R) — H(R)
are all injective.

22The choice of a basis (a;);< for A as a k-vector space determines an isomorphism
A~kD
(direct sum of copies of k indexed by I). When tensored, this becomes
VerA®r A~ (Ver AWD.

We are equating the components in the above decomposition corresponding to the index k.
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PROOF. When k[H] — k[G] is surjective, two homomorphisms k[G] — R that become
equal when composed with it must already be equal. O

THEOREM 3.8 Let G be an algebraic group. For some n, there exists an embedding G —
GLn .

PROOF. Let A = k[G], and let V be a finite-dimensional subcomodule of A containing a
set of generators for A as a k-algebra. Let (e;)1<i<n be a basis for V', and write A(e;) =
Y i e ®ajj. According to (3.5)), the image of k[GLy ] — A contains the a;;. But

e; (e ®idg)Ale)) = Ze(ei)aij, e(ei) €k,

1

and so the image contains V'; it therefore equals A. o

In other words, every algebraic group can be realized as an algebraic subgroup of a GL,,
for some n. The theorem is analogous to the theorem that every finite-dimensional vector
space is isomorphic to k" for some n. Just as that theorem does not mean that we should
consider only the vector spaces k", Theorem does not mean that we should consider
only subgroups of GL;, because realizing an algebraic group in this way involves many
choices.

PROPOSITION 3.9 Let G — GLy be a faithful representation of G. Then every other
representation of G can be obtained from V' by forming tensor products, direct sums, duals,
and subquotients.

PROOF. Omitted for the present (see Waterhouse 1979, 3.5). o
EXAMPLE 3.10 Let G be the functor sending a k-algebra R to R x R x R with
(x,y,2)- (X, 2) = (x +x",y + ¥z + 2"+ x)).

This is an algebraic group because it is representable by k[X, Y, Z], and it is noncommuta-
tive. The map

1 x z
(x,y,2)=> [0 1 y
0 0 1

is an embedding of G into GL3. Note that the functor R — R x R X R also has an obvious
commutative group structure (componentwise addition), and so the k-algebra k[X, Y, Z]
has more than one bialgebra structure.

REMARK 3.11 In the notes, we make frequent use of the fact that, when k is a field, V
V ®j W is an exact functor (not merely right exact). To prove it, note that any subspace V'
of V has a complement, V = V' @ V", and — ®; W preserves direct sums (see also|[6.3).
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Stabilizers of subspaces

PROPOSITION 3.12 Let G — GLy be a representation of G, and let W subspace of V.
For a k-algebra R, define

Gw(R) ={g € G(R) | g(W ®k R) =W ®x R}.
Then the functor Gy is an algebraic subgroup of G.
PROOF. Leteq,...,e, be abasis for W, and extend it to a basis ey, ..., e, for V. Write
plej) = Zei ® ajj.
Let g € G(R) = Homy_4,(4, R). Then
gej =Y e ®glai).

Thus, g(W ®; R) C W ®x R if and only if g(a;;) = 0for j < m,i > m. Hence Gy is
represented by the quotient of A by the ideal generated by {a;; | j < m,i > m}. 0

The algebraic group G is called the stabilizer of W in G.

THEOREM 3.13 (CHEVALLEY) Every algebraic subgroup of an algebraic group G arises
as the stabilizer of a subspace in some finite-dimensional linear representation of G ; the
subspace can even be taken to be one-dimensional.

PROOF. Waterhouse 1979, 16.1. o
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Summary of formulas

k is a field. A functor G such that G ~ h 4 for some k-algebra A is said to be representable
(by A).

Algebra Functor
Functor £ 4: k-algebras— Sets
k-algebra A ha(R) = Homy _4(A4, R)

ha(R—S) = (gr>aog)
Law of composition
AA—> AQr A G(R) x G(R) - G(R)

—0A
ha(R) x ha(R) >~ hag, a(R) — ha(R)
Natural map {1} — G(R)

€A—k —oe
hi(R) — ha(R)
Natural map G(R) — G(R)
S:A— A —oSp
| ha(R) —=> ha(R)
A®kA®kAMA®kA
T ) T The law of composition
A®id 4 A . ..
is associative.
AgpAd<—2 4
4 < €®da Qi A
) T id4 T The element 1 € G(R)
idg ®¢ A . .
given by € is neutral.
A A<y
!S,idA)
Gaas) A SkA
A Forg € G(R),go S
is an inverse.

k<" 4

k-bialgebra algebraic group if A f.g.

k-vector space V

Natural map
@:G(R) — EndR.jinear (V ®% R)

vV P Sy R A
p: V>V Rk A k-linear k
l/ \Lidv ®g
@(g) unique
VOrR ——V Q¢ R
R-linear
Vv P Ver A
= \Lidv ®e¢ P(lgr)) = idve,r
V ®rk
1% ko VoA
P iidv ®A | P(g-g') = P(g) o @(g).

V®kA@>V®kA®kA
A-comodule linear representation of G on V
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4 Matrix Groups

In this section, k is an infinite field.

An algebraic subgroup G of GL, defines a subgroup G (k) of GL, (k). In this section,
we determine the subgroups I of GL, (k) that arise in this way from algebraic subgroups
of GL,, and we shall see that this gives an elementary way of defining many algebraic
groups.

An elementary result

PROPOSITION 4.1 Let f € k[X1,...,Xy]. If f(ay,...,a) =O0forall (ay,...a,) € k",
then f is the zero polynomial (i.e., all its coefficients are zero).

PROOF. We use induction on n. For n = 1, it becomes the statement that a nonzero
polynomial in one variable has only finitely many roots (which follows from unique fac-
torization, for example). Now suppose n > 1 and write f = ) g; X,i with each g; €
k[X1,...,Xu—1]. Forevery (ay,...,an—1) € k"1, f(ay,....an—1. Xy,) is a polynomial

of degree 1 with infinitely many zeros, and so each of its coefficients g; (a1, ...,an—1) = 0.

By induction, this implies that each g; is the zero polynomial. O

COROLLARY 4.2 Let f,g € k[X1, ..., X,] with g not the zero polynomial. If f is zero at

every (ai,...,an) withg(ay,...,an) # 0, then f is the zero polynomial.

PROOF. The polynomial fg is zero on all of k”. o
The proposition shows that we can identify k[ X7, ..., X,]| with a ring of functions on

k™ (the ring of polynomial functions).

How to get bialgebras from groups

For a set X, let R(X) be the ring of maps X — k. Forsets X and Y, let R(X) ®; R(Y)
acton X x Y by (f ® g)(x,y) = f(x)g(y).

LEMMA 4.3 The map R(X) ®; R(Y) — R(X x Y) just defined is injective.

PROOF. Let (g;);es be a basis for R(Y) as a k-vector space, and let h = > f; ® g; be a
nonzero element of R(X) ®; R(Y). Some f;, say f;,, is not the zero function. Let x € X
be such that fi,(x) # 0. Then > f; (x)g; is a linear combination of the g; with at least one
coefficient nonzero, and so is nonzero. Thus, there exists a y such that Y f; (x)g;(y) # 0;
hence h(x, y) # 0. a)

Let I" be a group. From the group structure on I", we get the following maps:

eR(I) =k, e(f)=f(r),
S:R(I') = R(I'), (Sf)(g) = f(g™H.
A:R(I') — R('xT), (Af)(g.g) = f(gg).

PROPOSITION 4.4 If A maps R(I") into the subring R(I") ®; R(I") of R(I" x I'), then
(R(I"),€,S,A) is a k-bialgebra.
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PROOF. We have to check (see that, for example,

((d®A4) o A)(f) = (A®id) o A)(f)

forall f € R(I"), but, because of the lemma it suffices to prove that the two sides are equal
as functionson I' X I’ x I'. Let A(f) = )_ fi ® gi, sothat ) fi(x)gi(y) = f(xy) for
all x,y € I'. Then

(([d®A) 0 A)(N)(x,y,2) = (O fi ® Agi))(x,y,2)
=Y fi(0)gi(y2)
= f(x(y2)).

Similarly,

(A®id) o A)(f) = f((xy)2). o

A little algebraic geometry

A subset V of k" isFEI closed if it is the set of common zeros of some set S of polynomials
V={(ay,....an) €k™| f(ay,...,ap) =0all f(Xy1,...,X,) €S}

We write V(S) for the zero-set (set of common zeros) of S.

The ideal a generated by S consists of all finite sums ) f; g; with f; € k[X1,..., X,]
and g; € S. Clearly, V(a) = V(S), and so the algebraic subsets can also be described as
the zero-sets of ideals in k[ X7, ..., X,]. According to the Hilbert basis theorem (AG, 2.2),
every ideal in k[X1, ..., X,] is finitely generated, and so every algebraic set is the zero-set
of a finite set of polynomials.

If the sets V; are closed, then so also is (") V;. Moreover, if W is the zero-set of some
polynomials f; and V is the zero-set of the polynomials g, then V' U W is the zero—se
of the polynomials f;g;. As @ = V(1) and k" = V/(0) are both closed, this shows that the
closed sets are the closed sets for a topology on k", called the Zariski topology.

Note that

D(h) ={P € k" | h(P) # 0}

is an open subset of k", being the complement of V (k). Moreover, D(h1) U ... U D(hy)
is the complement of V(hy,...,hy,), and so every open subset of k” is a finite union of
D(h)’s; in particular, the D(h)’s form a base for the topology on k.

Let V be a closed set, and let /(1) be the set of polynomials zero on V. Then

kV]1 E k[Xy, ..., Xa]/I(V)

can be identified with the ring of functions V' — k defined by polynomials.
We shall need two easy facts.

230r algebraic, but that would cause confusion for us.
24Certainly, the fig; are zero on V U W, conversely, if f;(P)g;(P) = Oforalli, j and g;(P) # 0 for
some j, then f;(P) =0foralli,andso P € V.
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4.5 Let W be a closed subset of £ and let V' be a closed subset of k”. Let ¢: k™ — k"

be the map defined by polynomials f;(X1,...,Xm), 1 <i < n. Then o(W) C V if and
only if the map X; — fi:k[X1,...,Xn] = k[X1,..., X;n] sends I(V) into (W), and so
gives rise to a commutative diagram

Kk L= k"

K[X1s. o Xm] <o Kk[X1,..., Xn]

U U l l

W——=V k(W] «— k[V].

4.6 Let W C k™ and V C k" be closed sets. Then W x V' C k™ x k™ is a closed subset
of k™17 and the canonical map

kW] @i k[V] = k[W x V]

is an isomorphism. In more detail, let a = (W) C k[X1,...,Xm]and b = I(V) C
k[Y1,...,Yy]; then

kW] @k k[V] ~ k[X1,. .., Xm, Yi,. ..., Yul/(a, b)

where (a, b) is the ideal generated by a and b (see AG 4.14). Certainly (a,b) C I(W x V),
but because of (4.3) it equals /(W x V). Moreover, we have a commutative diagram

X, ®1—~X;
19X, —~>X,p 4
(X1 Xl @ k[X1s o Xn] b X Xomtn]

l !

k(W] ® k[V] SN k(W x V]

The radical of an ideal a, rad(a), is { f | f" € a for some n > 1}. Clearly, it is again
an ideal. An ideal a is radical if a = rad(a), i.e., if k[X1,..., Xp]/a is reduced.

For asubset S of k", let I(S) bethe setof f € k[X1,..., Xu]suchthat f(ay,...,a,) =
0 forall (ay,...,an) €S.

THEOREM 4.7 (STRONG NULLSTELLENSATZ) For any ideal a, IV (a) D rad(a), and
equality holds if k is algebraically closed.

PROOF. If f" € a, then clearly f is zero on V(a), and so the inclusion is obvious. For a
proof of the second part, see AG 2.11. O

When £ is not algebraically closed, then in general / V(a) # a. For example, let k = R
andlet a = (X2 + Y2 + 1). Then V(a) is empty, and so I V(a) = k[X1,..., X,].

Variant

Let k(X1,...,Xn) be the field of fractions of k[Xy,..., X,]. Then, for any nonzero
polynomial 4, the subring k[ X1, ..., Xy, %] of k(X1,..., Xy) is the ring obtained from
k[X1,...,X,] by inverting & (AG 1.27). Because of {.2), it can be identified with a
ring of functions on D(h). The closed subsets of D(h) (as a subspace of k™), are just
the zero-sets of collections of functions in k[X1,..., X,, %] Now the above discussion
holds with k" and k[X1,..., X,] replaced by D(h) and k[X1,..., X, %]. This can be
proved directly, or by identifying D () with the closed subset V(72 X, 11 — 1) of k1 via
(X1, .. Xn) > (X1, X, B(xt, .. xn)7h).
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Closed subgroups of GL,, and algebraic subgroups
We now identify k[GL,] with the subring k[X11, ..., Xun, WX”)] ofk(...,Xjj,...),and
apply the last paragraph. Because k[GL,] is obtained from k[X11, ..., Xu,] by inverting
det(X;;), a k-algebra homomorphism k[..., X;;,..., m] — R is determined by the
images of the X;;, and these can be any values r;; such that det(r;;) is a unit.

Let G — GLj be an algebraic subgroup of GL,. By definition, the embedding G —
GL, is defined by a surjective homomorphism «: k[GL,] — k[G]. Let a be the kernel of
o. Then

G(k) = Homyyg(4. k)
= {p: k[GL,] — k | Ker(¢) D Ker(x)}
~ V(a).

Thus, G (k) is a closed subgroup of GL;, (k).

Conversely, let I" be a closed subgroup GL;, (k) and let k[I"] be the ring of polynomial
functions on I" (i.e., functions defined by elements of k[GLj,]). The map S sends polyno-
mial functions on I" to polynomial functions on I" because it is defined by a polynomial
(Cramer’s rule). Similarly, A sends polynomial functions on I" to polynomial functions on
I' x I',i.e., toelements of k[I" x I'] >~ k[I"'] ® k[I"]. Now one sees as in the proof of
that (k[I"],€, S, A) is a k-bialgebra. Moreover, it is clear that the algebraic subgroup
G of GL,, corresponding to it has G(k) = I".

From an algebraic subgroup G of GL,, we get

Gw I =Gk)w G (25)

If k[G] is the quotient of k[GL;,] by the ideal a, then k[G'] is the quotient of k[GL;] by the
ideal I V(a). Therefore, when k = k the strong Nullstellensatz shows that G = G’ if and
only if G is smooth (i.e., k[G] is reduced).

In summary:

THEOREM 4.8 Let I be a subgroup of GL, (k). There exists an algebraic subgroup G of
GL, suchthat G(k) = I" ifand only if I is closed, in which case there exists a well-defined
reduced G with this property (that for which k[G] is the ring of polynomial functions on
I'). When k is algebraically closed, the algebraic subgroups of GL,, arising in this way are
exactly the smooth algebraic groups.

The algebraic group G corresponding to I" can be described as follows: let a C k[GLy]
be the ideal of polynomials zero on I"; then G(R) is the zero-set of a in GL, (R).

ASIDE 4.9 When k is not algebraically closed, then not every reduced algebraic subgroup
of GL;, arises from an closed subgroup of GL, (k). For example, consider w3 regarded as
a subgroup of G,, = GLj over R. Then u3(R) = 1, and the algebraic group associated
with 1 is 1. Assume, for simplicity, that k has characteristic zero, and let G be an algebraic
subgroup of GLy. Then, with the notation of (25), G = G’ if and only if G(k) is dense in
G (k) for the Zariski topology. It is known that this is always true when G (k) is connected
for the Zariski topology, but unfortunately, the proof uses the structure theory of algebraic
groups (Borel 1991, 18.3, p220).
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S Example: the spin group

Let ¢ be a nondegenerate bilinear form on a k-vector space V. The special orthogonal
group SO(¢) is connected and almost-simple, and it has a 2-fold covering Spin(¢) which
we now define.

Throughout this section, k is a field not of characteristic 2 and “k-algebra” means “as-
sociative (not necessarily commutative) k-algebra containing k its centre”. For example,
the n x n matrices with entries in k become such a k-algebra M, (k) once we identify an
element ¢ of k with the scalar matrix c/,.

Quadratic spaces

Let k be a field not of characteristic 2, and let V' be a finite-dimensional k-vector space. A
quadratic form on V is a mapping
q:V >k

such that g(x) = ¢4(x, x) for some symmetric bilinear form ¢,: V' x V' — k. Note that

g(x +y) =q(x) +q() +2¢4(x, y), (26)

and so ¢ is uniquely determined by q. A quadratic space is a pair (V,q) consisting of
a finite-dimensional vector space and a quadratic form ¢. Often I'll write ¢ (rather than
¢4) for the associated symmetric bilinear form and denote (V,q) by (V,¢q4) or (V,¢). A
nonzero vector x in V' is isotropic if g(x) = 0 and anisotropic if ¢(x) # 0.

Let (V1. q1) and (V2, g2) be quadratic spaces. An injective k-linear map o: V; — V5 is
an isometry if g2(0x) = q1(x) for all x € V (equivalently, ¢(ox,0y) = ¢(x,y) for all
x,y € V). By (V1,91) ® (V2, g2) we mean the quadratic space (V, g) with

V=rel
q(x1+x2) = q(x1) +¢q(x2).
Let (V,q) be quadratic space. A basis eq,...,e, for V is said to be orthogonal if
¢(ej,ej) =0foralli # j.
PROPOSITION 5.1 Every quadratic space has an orthogonal basis (and so is an orthogonal

sum of quadratic spaces of dimension 1).

PROOF. If g(V) = 0, every basis is orthogonal. Otherwise, there exist x, y € V such that
¢(x,y) # 0. From we see that at least one of the vectors x, y, x + y is anisotropic.
Thus, let e € V be such that g(e) # 0, and extend it to a basis e, ea, ..., e, for V. Then

poy P pleen)
) - sy e Epn —
q(e) q(e)
is again a basis for V', and the last n — 1 vectors span a subspace W for which ¢ (e, W) = 0.
Apply induction to W. O

An orthogonal basis defines an isometry (V, q¢) ~ (k",q’), where
q'(X1,....Xp) = C1X7 + -+ c,,x,%, ci =q(e;) €k.

If every element of k is a square, for example, if k = k, we can even scale the ¢; so that
eachcjisOor 1.
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Theorems of Witt and Cartan-Dieudonné

A quadratic space (V, g) is said to be regula@ (or nondegenerate,. . .) if for all x # 0 in
V, there exists a y such that ¢ (x, y) # 0. Otherwise, it is singular. Also, (V, q) is
o isotropic if it contains an isotropic vector, i.e., if g(x) = 0 for some x # 0,
< totally isotropic if every nonzero vector is isotropic, i.e., if g(x) = 0 for all x, and
¢ anistropic if it is not isotropic, i.e., if g(x) = 0 implies x = 0.
Let (V, g) be a regular quadratic space. Then for any nonzeroa € V,

(@t Lix eV @ x) =0}

is a hyperplane in V (i.e., a subspace of dimension dim V' — 1). For an anisotropica € V,
the reflection in the hyperplane orthogonal to a is defined to be

B 2¢(a,x)a'

Ra)=x== &)

Then R, sends a to —a and fixes the elements of W = (a). Moreover,

2¢(a, x) 4¢(a,x)?
qd(Ra(x)) = q(x) —4———¢(a,x) + ———5—¢q(a) = q(x),
q(a) q(a)
and so R, is an isometry. Finally, relative to a basis a, e, ..., e, with es, ..., e, a basis

for W, its matrix is diag(—1,1,...,1), and so det(R,) = —1.

THEOREM 5.2 Let (V,q) be a regular quadratic space, and let 0 be an isometry from a
subspace W of V into V. Then there exists a composite of reflections V — V extending .

PROOF. Suppose first that W = (x) with x anisotropic, and let ox = y. Geometry in the
plane suggests we should reflect in the line x 4+ y, which is the line orthogonal to x — y. In
fact, if x — y is anistropic,

Ry—y(x) =y

as required. To see this, note that

p(x—y.x) =—p(x—y.y)
because g(x) = ¢g(y), and so

$p(x—y,x—y) =2¢(x —y,x),
which shows that

2¢(x — y.x)

I A

(x=y)=x—(x—y)=y.

If x — y is isotropic, then
4g(x) =q(x +y) +q(x —y) = q(x + y)
and so x + y is anistropic. In this case,

Rxty 0 Rx(x) = Ry—(—y)(—=x) = y.

25With the notations of the last paragraph, (V, q) is regular if ¢ ...cp # 0.
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We now proceeﬂ by induction on
m(W) = dim W + 2dim(W N W).

CASE W NOT TOTALLY ISOTROPIC: As in the proof of (5.I)), there exists an anisotropic
vector x € W, and we let W/ = (x)- N W. Then, forw € W, w — %x e W',
and so W = (x) & W’ (orthogonal decomposition). As m(W') = m(W) — 1, we can
apply induction to obtain a composite X’ of reflections such that X/|W’ = o|W’. From

the definition of W', x € W'L; moreover, for any w’ € W/,
(X lox,w) =p(x, 07 Z'W) = p(x,w') =0,

df . . .
andso y = ¥~ lox € W'L. By the argument in the first paragraph, there exists reflections
(one or two) of the form R,, z € W'+, whose composite X" maps x to y. Because X"
acts as the identity on W/, X/ o X" is the map sought:

(X o XY (ex +w') =X (cy +w') = cox +ow'.

CASE W TOTALLY ISOTROPIC: Let V'V = Homy_j;,(V, k) be the dual vector space, and
consider the surjective map

o)y SoS W

oV wY

(so x € V is sent to the map y — ¢(x,y) on W). Let W’ be a subspace of V' mapped
isomorphically onto WVY. Then W N W’ = {0} and we claim that W + W' is a regular
subspace of V. Indeed, if x + x’ € W + W' with x’ # 0, then there exists a y € W such
that

0# ¢(x",y) =d(x +x".y);

if x # 0, there exists a y € W’ such that ¢(x, y) # 0.
Endow W @ WY with the symmetric bilinear form

(x, ). (< ) = fO) + f(x).
Relative to this bilinear form, the map
x+x' = @ alxX)W+W >WeaoeWwY (27)

is an isometry.
The same argument applied to o W gives a subspace W’ and an isometry

x+x" > (. ) oW+ W = oW @ (W)Y, (28)
Now the map

y o®ov !

27) 28)
W+W/W€BW GW@(OW)VGW—FW”CV
is an isometry extending 0. As

m(WeW)=2dimW <3dim W = m((W)

we can apply induction to complete the proof. O

26Following W. Scharlau, Quadratic and Hermitian Forms, 1985, Chapter 1, 5.5.
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COROLLARY 5.3 Every isometry of (V, q) is a composite of reflections.
PROOF. This is the special case of the theorem in which W = V. o
COROLLARY 5.4 (WITT CANCELLATION) Suppose (V, q) has orthogonal decompositions

V.q) = (V1,q1) ® (V2,92) = (V{,q1) @ (V3. 45)
with (V1,q1) and (V{, q}) regular and isometric. Then (V2,g2) and (V,, q5) are isometric.

PROOF. Extend an isometry V3 — V| C V to an isometry of V. It will map V> = V-
isometrically onto V, = V/*. 0

COROLLARY 5.5 All maximal totally isotropic subspace of (V, q) have the same dimen-
sion.

PROOF. Let W) and W, be maximal totally isotropic subspaces of V', and suppose that
dim W; < dim W,. Then there exists an injective linear map o: W; — W, C V, which is
automatically an isometry. Therefore, by Theorem 5.2]it extends to an isometry o: V' — V.
Now o~ W, is a totally isotropic subspace of V containing W;. Because W is maximal,
Wi = 6~ W,, and so dim Wy = dim o~ 1W, = dim W. o

REMARK 5.6 In the situation of Theorem [5.2] Witt’s theorem says simply that there exists
an isometry extending o to V' (not necessarily a composite of reflections), and the Cartan-
Dieudonné theorem says that every isometry is a composite of at most dim V' reflections.
When V is anisotropic, the proof of Theorem [5.2]shows this, but the general case is consid-
erably more difficult — see E Artin, Geometric Algebra, 1957.

DEFINITION 5.7 The (Witt) index of a regular quadratic space (V, g) is the maximum di-
mension of a totally isotropic subspace of V.

DEFINITION 5.8 A hyperbolic plane is a regular isotropic quadratic space (V, g) of dimen-
sion 2.

1
1 0

Equivalent conditions: for some basis, the matrix of the form is ( ); the discrim-

inant of (V, ¢g) is —1 (modulo squares).

THEOREM 5.9 (WITT DECOMPOSITION) A regular quadratic space (V, q) with Witt index
m has an orthogonal decomposition

V=H&® - ®H,®V, (29)

with the H; hyperbolic planes and V,, anisotropic; moreover, V, is uniquely determined up
to isometry.

PROOF. Let W be a maximal isotropic subspace of V, and let ey, ..., e, be a basis for
W. One easily extends the basis to a linearly independent set ey, ..., €mn, €m+1,---,€2m
such that ¢(e;, e+ ;) = 6;,; (Kronecker delta) and g(ep+;) = 0 fori < m. Then V
decomposes as Wit H; = (ej,em+i)and V, = {eq,..., eZm)J-. The uniqueness of
V, follows from Witt cancellation (5.4). o

2TWe often write (S) for the k-space spanned by a subset S of a vector space V.
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The orthogonal group

Let (V, g) be a regular quadratic space. Define O(g) to be the group of isometries of (V, q).
Relative to a basis for V', O(g) consists of the automorphs of the matrix M = (¢(e;,e;)),
i.e., the matrices T such that

T'-M-T =M.

Thus, O(g) is an algebraic subgroup of GLy (see [2.6), called the orthogonal group of g
(it is also called the orthogonal group of ¢, and denoted O(¢)).

Let T € O(q). As det M # 0, det(T)? = 1, and so det(7T) = % 1. The subgroup of
isometries with det = +1 is an algebraic subgroup of SLy, called the special orthogonal

group SO(q).
Super algebras

A super (or graded) k-algebra is k-algebra C together with a decomposition C = Co @ Cy
of C as a k-vector space such that

k C Co, CoC() C Co, COC1 C Cl, C1C0 C C1, C1C1 C Co.

Note that Cy is a k-subalgebra of C. A homomorphism of super k-algebras is a homomor-
phism ¢: C — D of algebras such that ¢(C;) C D; fori =0, 1.

EXAMPLE 5.10 Letcy,...,cn € k. Define C(cy,...,cy) to be the k-algebra with gener-
ators ey, ..., e, and relations

el-2 =ci, eje; =—eje; (i #J).
As a k-vector space, C(cq,...,cy) has basis {ei‘ .. .ef,” | i; € {0, 1}}, and so has dimen-

sion 2"*. With Cyp and C; equal to the subspaces
Co = (ei' ...ei{’ | i1 + -+ in even)
Ci = (el ...eln i1 + -+ iy 0dd),
C(cy,...,cn) becomes a superalgebra.

Let C = Cop @ Cy and D = Dy @ D; be two super k-algebras. The super tensor
product of C and D, C ®D,is C ® r D as a vector space, but

(C®D), = (Co® Do) ® (C ® Dy)
(C<§>D)1 = (Co® D1) ® (C1 ® Do)
(ci ®dj)(c, ®d)) = (—1)*(cic, ® d;d]) ¢ € Ci,dj € D etc..
The maps

iC:C—>C®D, c—c®1
ip:D—>C®D, d—~1®d

have the following universal property: for any homomorphisms of k-superalgebras

f:C—->T, gD-—>T
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whose images anticommute in the sense that
fleng(d)) = (=17 g(d)) f(ci), ¢ €Ci,dj € Dy,
there is a unique homomorphism #: C® D — T suchthat f = hoic,g=hoip.

EXAMPLE 5.11 As a k-vector space, C(c1)®C(c») has basis 1 ® 1 (= 1
e®1,1®e,e®e,and

CeNBC(er)”

ex1)? =201 =c
(l®e)2=1®e2=cz
EeR@NIRe)=e®e=—(1Re)e®1).

Therefore,
C(c1)®C(c2) =~ C(c1.c2)
e®1 < e
1 ®e < es.
Similarly,

C(ct,...,ci—1)®C(ci) ~ Clci,....ci),

and so, by induction,
C(c1)® - ®C(cy) =~ C(ct,...,cn).

EXAMPLE 5.12 Every k-algebra A can be regarded as a k-superalgebra by setting A9 = A
and A; = 0. If A, B are both k-algebras, then A @ B = A®yB.

EXAMPLE 5.13 Let X be a manifold. Then H(X) =4t D, H'(X,R) becomes an R-
algebra under cup-product, and even a superalgebra with H(X)o = @, H 2I(X,R) and
HX© =@, H 2i+1 (X,R). If Y is a second manifold, the Kiinneth formula says that

HX xY)=HX)®H(Y)

(super tensor product).

Brief review of the tensor algebra

Let V be a k-vector space. The tensor algebra of V is TV = (P, >, V®" where
Y0 _ k.
V®1 =V,
VO =V @ --- ® V (n copies of V)
with the algebra structure defined by juxtaposition, i.e.,
(V1 Q@ ®Um) (V41 @ Q@ Vntn) = V1 @+ ® Umn.

It is a k-algebra.

If V hasabasis ey, ..., ey, then TV is the k-algebra of noncommuting polynomials in
€1,...,€m.

There is a k-linear map V — TV, namely, V = V®! < @ _, V®", and any other
k-linear map from V to a k-algebra R extends uniquely to a k-algebra homomorphism
TV — R.
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The Clifford algebra
Let (V, g) be a quadratic space, and let ¢ be the corresponding bilinear form on V.

DEFINITION 5.14 The Clifford algebra C(V, q) is the quotient of the tensor algebra T'(V)
of V by the two-sided ideal /(g) generated by the elements x ® x — g(x) (x € V).

Let p: V — C(V, q) be the composite of the canonical map V' — T (V') and the quotient
map T (V) — C(V,q). Then p is k-linear, anﬂ

o(x)? =g(x),allx € V. (30)
Note that if x is anisotropic in V then p(x) is invertible in C(V, ¢), because shows that

p(x)
px) - —— =1
q(x)
EXAMPLE 5.15 If V' is one-dimensional with basis e¢ and g(e) = c, then T(V) is a
polynomial algebra in one symbol e, T(V) = kle], and I(q) = (e?> — ¢). Therefore,
C(V.q) = C(c).

EXAMPLE 5.16 If ¢ = 0, then C(V,q) is the exterior algebra on V, i.e., C(V, q) is the
quotient of 7 (V) by the ideal generated by all squares x2, x € V. In C(V, q),

0= (p(x) + p(»))* = p(x)* + p(x)p(y) + p(¥)p(x) + p(»)* = p(x)p(¥) + p(¥)p(x)
and so p(x)p(y) = —p(y)p(x).

PROPOSITION 5.17 Let r be a k-linear map from V to a k-algebra D such that r(x)? =
q(x). Then there exists a unique homomorphism of k-algebras 7: C(V,q) — D such that
rop=r:
V" C(V.9)

K

\%
D.
PROOF. By the universal property of the tensor algebra, r extends uniquely to a homomor-
phism of k-algebras r’: T (V) — D, namely,

r(x1 ® - ® xp) =71(x1) -7 (xp).

As
r'(x @ x —q(x)) = (r(x)*> —q(x)) = 0.
r’ factors uniquely through C(V, q). 0

As usual, (C(V, q), p) is uniquely determined up to a unique isomorphism by the uni-
versal property in the proposition.

28More careful authors define a k-algebra to be a ring R together with a homomorphism k& — R (instead of
containing k), and so write as
p()* =4() - lew,g):-
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The map C(cy,...,cn) = C(V,q)
Because p is linear,
p(x +3)* = (p(x) + p(y)* = p(x)* + p(x)p(¥) + P(M)P(X) + p(¥)*.

On comparing this with

(3o}
oG+ 32 B g(x + ) = g(0) + q() + 26(x. ),
we find that
p(xX)p(y) + p(y)p(x) = 2¢(x, y). (31
In particular, if £, ..., f, is an orthogonal basis for V, then

p(f)? =q(fi).  p(fp(fi) =—p(fi)p(f7) (i # J).

Let ¢; = g( fi). Then there exists a surjective homomorphism
ei — p(fi):C(ct,....cn) = C(V,9). (32)

The grading (superstructure) on the Clifford algebra

Decompose

TV)=TWV)e®T(V)

T(V)o= E vo"
m even

T(V) =  veom
m odd

As I(q) is generated by elements of T'(V')o,

I(q) =U(@NTV)o)®U(@NTV)1),

and so
CV.q)=Co® Cy with C;=T(V);/I(qNTV);.

Clearly this decomposition makes C(V, ¢) into a super algebra.
In more down-to-earth terms, Cy is spanned by products of an even number of vectors
from V', and C; is spanned by products of an odd number of vectors.

The behaviour of the Clifford algebra with respect to direct sums

Suppose
V.q) = V1.q1) @ (V2,q2).

Then the k-linear map

V = el —  C(Vi.q)®C(Va,q)
x = (x1,x2) = p1(x1) ®@1+1Q® pa(x2).
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has the property that

r(x)* = (p1(x1) ® 1 + 1 ® pa(x2))?
= (q(x1) +q(x2)(1® 1)
=q(x),

because

(p(x1) ® D(1 ® p(x2)) = p(x1) ® p(x2) = =(1 @ p(x2))(p(x1) ® 1)).

Therefore, it factors uniquely through C(V, g):
C(V,q) = C(V1,q1)®C(V2,q2). (33)

Explicit description of the Clifford algebra

THEOREM 5.18 Let (V, q) a quadratic space of dimension n.
(a) For every orthogonal basis for (V, q), the homomorphism

C(cr,....cn) = C(V,q)

is an isomorphism.
(b) For every orthogonal decomposition (V,q) = (V1,q1) ® (V2,q2), the homomor-

phism
C(V.q) > C(V1,q1)®C(V2,q2)

is an isomorphism.
(c) The dimension of C(V, q) as a k-vector space is 2".

PROOF. If n = 1, all three statements are clear from (5.15). Assume inductively that they
are true for dim(V') < n. Certainly, we can decompose (V, g) = (V1,41) D (V2, g2) in such
a way that dim(V;) < n. The homomorphism is surjective because its image contains
p1(V1) ® 1 and 1 ® pa(V>), which generate C(Vi, ¢1)®C(Va, ¢2), and so

dim(C(V, q)) > 28mV)pdim(V2) — o
From an orthogonal basis for (V, g), we get a surjective homomorphism . Therefore,
dim(C(V, q)) < 2".

It follows that dim(C(V, q)) = 2". By comparing dimensions, we deduce that the homo-
morphism and are isomorphisms. o

COROLLARY 5.19 The map p: V — C(V, q) is injective.

From now on, we shall regard V' as a subset of C(V, g) (i.e., we shall omit p).

REMARK 5.20 Let L be a field containing k. Then ¢ extends uniquely to an L-bilinear
form
V' xV' - L, V=L@V,

and
C(V',¢')~ L C(V, o).
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The centre of the Clifford algebra

Assume that (V, g) is regular, and that n = dim V' > 0. Let ey, ..., e, be an orthogonal
basis for (V, ¢), and let g(e;) = ¢;. Let

nn—1) n(n—1)
A=(-1)"2 c1-cp=(=1) 2 det(e).
We saw in (5.18) that
Clcy,....cn) = C(V,q).
Note that, in C(cq,...,cp), (e1 ---e,,)2 = A. Moreover,

ei(e1--en) = (=) "ci(er-+-ej—1€i41-+-ep)

(e1-+-en)-ei = (—1)""ci(er - ei—teit1 - en).
Therefore, e; - - - e, lies in the centre of C(V, ¢) if and only if n is odd.

PROPOSITION 5.21 (a) If n is even, the centre of C(V, q) is k; if n is odd, it is of degree 2
over k, generated by e - - - e,. In particular, Cy N Centre(C(q)) = k.
(b) No nonzero element of Cy centralizes Cy.

PROOF. First show that a linear combination of reduced monomials is in the centre (or cen-
tralizes Cp) if and only if each monomial does, and then find the monomials that centralize
the e; (or the e;je;). o

In Scharlau 1985, Chapter 9, 2.10, there is the following description of the complete
structure of C(V, q):

If n is even, C(V, q) is a central simple algebra over k, isomorphic to a tensor
product of quaternion algebras. If n is odd, the centre of C(V, ¢) is generated
over k by the element e - - - e, whose square is A, and, if A is not a square in
k, then C(V, q) is a central simple algebra over the field k[v/A].

The involution *

An involution of a k-algebra D is a k-linear map *: D — D such that (ab)* = b*a™ and
a** = 1. For example, M +— M (transpose) is an involution of M, (k).
Let C(V, q)°PP be the opposite k-algebra to C(V, gq), i.e., C(V,q)°?* = C(V,q) as a
k-vector space but
abin C(V,q)°®® = ba in C(V,q).

The map p: V. — C(V,q)°P is k-linear and has the property that p(x)?> = ¢(x). Thus,
there exists an isomorphism *: C(V, g) — C(V, ¢)°PP inducing the identity map on V', and
which therefore has the property that

(xl...xr)* = Xy X1

for x1,...,x, € V. We regard * as an involution of A. Note that, for x € V, x*x = g(x).
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The Spin group
Initially we define the spin group as an abstract group.

DEFINITION 5.22 The group Spin(q) consists of the elements ¢ of Co(V, ¢) such that
(a) t*t =1,
o) tViTl =V,
(c) the map x +— txt~':V — V has determinant 1.

REMARK 5.23 (a) The condition (a) implies that ¢ is invertible in Cy(V, g), and so (b)
makes sense.
(b) We shall see in (5.27) below that the condition (c) is implied by (a) and (b).

The map Spin(g) — SO(g)

Let # be an invertible element of C(V, ¢) such that 1V¢t~! = V. Then the mapping x >
txt~1:V — V is an isometry, because

1 1

gxt™) = (txt™H)? = tx%t7 = tq(x)t7! = q(x).

Therefore, an element ¢ € Spin(g) defines an element x — rxt~!of SO(q).

THEOREM 5.24 The homomorphism

Spin(g) — SO(q)
just defined has kernel of order 2, and it is surjective if k is algebraically closed.

PROOF. The kernel consists of those ¢ € Spin(¢) such that rxt~! = x forall x € V. As
V generates C, such a t must lie in the centre of C. Since it is also in Cy, it must lie in k.
Now the condition *¢ = 1 implies that t = +1.

For an anisotropic a € V, let R, be the reflection in the hyperplane orthogonal to a.
According to Theorem each element o of SO(g) can be expressed 0 = Ry, -+ Ry, for
some a;. As det(Rg, -+ Rg,,) = (—1)™, we see that m is even, and so SO(q) is generated
by elements R, Ry, with a, b anisotropic elements of V. If k is algebraically closed, we can
even scale a and b so that g(a) = 1 = q(b).

Now
axa~! = (—xa 4+ 2¢(a, x))a ! as (ax + xa = 2¢(a, x), see (1))
_ _(x__2¢(“’x)a) as @ = (a)
q(a)
= —Ry(x).
Moreover,

(ab)*ab = baab = q(a)q(b).

Therefore, if g(a)q(b) = 1, then R, Ry is in the image of Spin(g) — SO(g). As we noted
above, such elements generate SO when k is algebraically closed. o

In general, the homomorphism is not surjective. For example, if k = R, then Spin(g)
is connected but SO(g) will have two connected components when ¢ is indefinite. In this
case, the image is the identity component of SO(g).
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The Clifford group
Write y for the automorphism of C(V, ¢g) that acts as 1 on Co(V,g) and as —1 on C1(V, q).

DEFINITION 5.25 The Clifford group is
I'(q) ={t € C(V,q) | t invertible and y(£) V™! = V }.
Fort € I'(q), let a(¢) denote the homomorphism x > y(t)xt~1:V — V.

PROPOSITION 5.26 Forallt € I'(q), «(t) is an isometry of V', and the sequence
1 > kX > I'(q) — 0(q) — 1
is exact (no condition on k).

PROOF. Lett € I'(q). On applying y and * to y(¢)V = Vi, we find that y(t*)V = Vit*,
and so t* € I'(q). Now, because * and y actas 1 and —1on V,

y(@) - x-t7 = —y(y(0) - x- 17 = —y(* T xy () = y(e* T Hxr*,

and so
y(*)y(t)x = xt*t. (34)

We use this to prove that «(¢) is an isometry:

q(@()(x) = (@) * - (@)(x) = Ty -y@)xt™ = Tl nT! = q(x).

As k is in the centre of I'(q), k™ is in the kernel of a. Conversely, let ¢t = o + 1 be an
invertible element of C(V, g) such that y(¢)xt~! = x forall x € V, i.e., such that

tox = xtog, X = —XI1

for all x € V. As V generates C(V, q) these equations imply that #y lies in the centre of
C(V,q), and hence in k (5.21f), and that 71 centralizes Cp, and hence is zero (5.21p). We
have shown that

Ker(a) = k*.
It remains to show that « is surjective. Fort € V, a(t)(y) = —tyt~! and so (see the
proof of (5.24)), () = R;. Therefore the surjectivity follows from Theorem o

COROLLARY 5.27 For an invertible element t of Co(V,q) such that tVt~! = V, the
determinant of x — txt~':V — V is one.

PROOF. According to the proposition, every element ¢ € I'(g) can be expressed in the
form
t=cay--am

with ¢ € k™ and the a; anisotropic elements of V. Such an element acts as Ry, - -+ Rg,, on

m

V, and has determinant (—1)". If t € Co(V, q), then m is even, and so det(t) = 1. o

Hence, the condition (c) in the definition of Spin (g) is superfluous.
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Action of O(g) on Spin(q)

5.28 An element o of O(q) defines an automorphism of C(V,¢q) as follows. Consider
poo:V — C(¢). Then (p(o(x))? = ¢p(o(x)) -1 = ¢(x) - 1 forevery x € V. Hence, by
the universal property, there is a unique homomorphism 6: C — C rendering

vy -2, ¢

ol

vy -2, ¢

commutative. Clearly 61 0 6, = 671 o 62 and id = id, and so 0~! = 7!, and so & is an
automorphism. If ¢ € SO(¢), it is known that & is an inner automorphism of C(¢) by an
invertible element of C *(¢).

Restatement in terms of algebraic groups

Let (V, g) be quadratic space over k, and let g g be the unique extension of ¢ to a quadratic
form on K ®; V. As we noted in (5.20), C(qx) = K ® C(q).

THEOREM 5.29 There exists a naturally defined algebraic group Spin(q) over k such that

Spin(¢g)(K) ~ Spin(gk)

for all fields K containing k. Moreover, there is a homomorphism of algebraic groups

Spin(g) — SO(g)

giving the homomorphism in for each field K containing k. Finally, the action of
O(q) on C(V,q) described in defines an action of O(q) on Spin(g).

PROOF. Omiitted for the present (it is not difficult). O

In future, we shall write Spin(qg) for the algebraic group Spin(g).

NOTES A representation of a semisimple algebraic group G gives rise to a representation of its
Lie algebra g, and all representations of g arise from G only if G has the largest possible centre.
“When E. Cartan classified the simple representations of all simple Lie algebras, he discovered
a new representation of the orthogonal Lie algebra [not arising from the orthogonal group]. But
he did not give a specific name to it, and much later, he called the elements on which this new
representation operates spinors, generalizing the terminology adoped by physicists in a special case
for the rotation group of the three dimensional space” (C. Chevalley, The Construction and Study of
Certain Important Algebras, 1955, III 6). This explains the origin and name of the Spin group.



6 GROUP THEORY 49

6 Group Theory

Review of group theory

For a group G, we have the notions of
¢ asubgroup H,
¢ anormal subgroup N,
o aquotient map G — Q (surjective homomorphism).
There are the following basic results (see for example my course notes Group Theory §1,3).

6.1 (Existence of quotients). The kernel of a quotient map G — Q is a normal subgroup
of G, and every normal subgroup arises as the kernel of a quotient map.

6.2 (Factorization theorem). Every homomorphism G — G’ factors into

G—————>G

quotien$\\4 _Aoup

G

6.3 (Isomorphism theorem). Let H be a subgroup of G and N a normal subgroup of G;
then HN is a subgroup of G, H N N is a normal subgroup of H, and the map

h(HNN)—~hN:H/HNN — HN/H
is an isomorphism.

In this section, we shall see that, appropriately interpreted, all these statements hold for
algebraic groups. The proofs involve only basic commutative algebra.

Review of flatness

Let R — S be a homomorphism of rings. If the sequence of R-modules
0O-M ->M-—->M' -0 (35)
is exact, then the sequence of S-modules
SrRM - SQRrM > SFRM' -0

is exact, but S @ g M’ — S ® g M need not be injective. For example, when we tensor the
exact sequence of Z-modules

07 257 —>7)27 — 0
with Z /27, we get the sequence
222223 7,27 — 7.)27 — 0.

Moreover, if the R-module M is nonzero, then the S-module N need not be nonzero.
For example,
7/27 Q7 7./37 = 0

because it is killed by both 2 and 3.
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DEFINITION 6.4 A homomorphism of rings R — S is flat (and S is a flat R-algebra) if
M — N injective — S ®r M — S ®r N is injective.
It is faithfully flat if, in addition,
SQrRM =0 —= M =0.
Thus, if R — § is flat if and only if S ® g — is an exact functor, i.e.,
0->SRrM - SRrM > SRRRM’ -0 (36)

is exact whenever (33)) is exact.

PROPOSITION 6.5 A homomorphism k — R with k a field is always flat, and it is faith-
fully flat if and only if R is nonzero.

PROOF. For an injective map M — N of k-vector spaces, there exists a k-linear map
N — M such that the composite M — N — M is idys. On tensoring with R, we get
R-linear maps R ®, M — R ® N — R ®; M whose composite is idgg, pr, Which
shows that the first map is injective. Similarly, if R # 0, then there exists a k-linear map
R — k such that composite k — R — k is idg. On tensoring with M # 0 we get R-linear
maps M — R ®; M — M whose composite is idps, which shows that R @ M # 0. o

PROPOSITION 6.6 Leti: R — S be faithfully flat.

(a) A sequence (33)) is exact if and only if (36) is exact.

(b) Let M be an R-module. The mapm +— 1 @ m: M — S @ g M is injective, and its
image consists of the elements of S ® g M on which the two maps SQrM — SQrRSQrM

sAmi—>1®sQm
SQ@mi>s®1Q@m

coincide.

PROOF. (a) We have to show that (33) is exact if (36) is exact. Let N be the kernel of
M’ — M. Then, because R — S isflat, S @ g N isthe kernel of S Qg M’ — S Qr M,
which is zero by assumption. Because R — S is faithfully flat, this implies that N = 0.
This proves the exactness at M’, and the proof of exactness elsewhere is similar.

(b) We have to show that the sequence

d d
0> M -2SQrM 5> S®rSQr M (*)
do(m) =1Q®m,

dis®@m)=19s@m—sR1Qm

is exact.
Assume first that there exists an R-linear sectionto R — §,i.e.,a R-linearmap f:S —
R such that f oi = idg, and define

ko:S ®r M — M, ko(s @m) = f(s)m
ki:SQRSQrM — S Qr M, kis®s' @m) = f(s)s' @ m.
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Then kodoy = idps, which shows that dj is injective. Moreover,
kl Odl + do Ok() == idS®RM

which shows that if d1(x) = 0 then x = dy(ko(x)), as required.

We now consider the general case. Because R — S is faithfully flat, it suffices to prove
that (*) becomes exact after tensoring in S. But the sequence obtained from (*) by tensoring
with S can be shown to be isomorphic to the sequence (*) for the homomorphism of rings
s> 1®s:5 > S ®g S and the S-module S ® g M. Now S — S ®g S has an S-linear
section, namely, /(s ® s”) = ss’, and so we can apply the first part. O

COROLLARY 6.7 If R — S is faithfully flat, then it is injective with image the set of
elements on which the maps S — S ®gr S

s 1®s, s—s®1
coincide.
PROOF. This is the special case M = R of the Proposition. o

PROPOSITION 6.8 Let R — R’ be a homomorphism of rings. If R — S is flat (or faith-
fully flat), so alsois R" — S ®g R'.

PROOF. For any R’-module,
SRR Qr M ~ S Qr M,

from which the statement follows. o

The faithful flatness of bialgebras

THEOREM 6.9 Let A C B be k-bialgebras for some field k (inclusion respecting the bial-
gebra structure). Then B is faithfully flat over A.

PROOF. See Waterhouse 1979, Chapter 14. [Let A C B be finitely generated k-algebras
with A an integral domain. Then “generic faithful flatness” says that for some nonzero
elements a of A and b of B, the map A, — By, is faithfully flat (ibid. 13.4). Here A,
and By, denote the rings of fractions in which a and b have been inverted. Geometrically
A C B corresponds to a homomorphism G — H, and geometrically “generic faithful
flatness” says that when we replace G and H with open subsets, the map on the coordinate
rings is faithfully flat. Now we can translate these open sets by elements of G in order to
get that the coordinate ring of the whole of G is faithfully flat over H (cf. dallb).] O

Definitions; factorization theorem

DEFINITION 6.10 Let H — G be a homomorphism of algebraic groups with correspond-
ing map of coordinate rings k[G] — k[H].
(a) If k[G] — k[H] is surjective, we call H — G an embedding (and we call H and
algebraic subgroup{z_gl of G).

29In Waterhouse 1979, p13, these are called a closed embedding and a closed subgroup respectively.
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(b) If k[G] — k[H] is injective, we call H — G a quotient map.

THEOREM 6.11 Every homomorphism of algebraic groups is the composite of a quotient
map and an embedding.

PROOF. The image «(A) of any homomorphism «: A — B of k-bialgebras is a sub-
bialgebra. Corresponding to the factorization A — «(A) < B of @ into homomorphisms
of bialgebras, we get a factorization into homomorphisms of algebraic groups. O

Embeddings; subgroups.
Recall (3.7) that if H — G is an embedding, then H(R) — G(R) is injective for all R.

THEOREM 6.12 A homomorphism H — G of algebraic groups is an embedding if and
only if H(R) — G(R) is injective for all k-algebras R.

PROOF. Assume H(R) — G(R) is injective for all k-algebras R. According to Theorem
- 1, H — G factors into H — H — G where H — H is a quotient map and H — G is
an embedding. We have to show that H — H is an isomorphism. This is the next lemma.p

LEMMA 6.13 A quotient map H — G such that H(R) — G(R) is injective for all R is
an isomorphism.

PROOF. The homomorphism H — G corresponds to an injective homomorphism k[G] —
k[H] of bialgebras. The homomorphisms

x> x®1,1®x:k[H] - k[H] ®k[g) k[H]

agree on k[G], and so define elements of H(k[H] ®g[g] k[H]) which map to the same
element in G(k[H] ®k[G) k[H]). Therefore they are equal. Because k[H] is a faithfully
flat k[G]-algebra (6.9), the subset of k[H] on which the two maps agree is k[G] (6.7).
Therefore k[G] = k[H], as required. o

Kernels

Let «: H — G be a homorphism of algebraic groups with corresponding map k[G] —
k[H] of coordinate rings. The kernel of « is the functor R — N(R) with

R
N(R) = Ker(H(R) ™8 G(R))
for all R. Recall that the identity element in G(R) is the map €:k[G] — k. Therefore,
h:k[H] — R lies in N(R) if and only if its composite with k[G] — k[H ] factors through
€

k[H] <— k[G]
) S k

Let /g be the kernel of €: k[G] — k (this is often called the augmentation ideal), and
let Igk[H] denote the ideal generated by its image in k[H]. Then the elements of N(R)
correspond to the homomorphisms k[H] zero on Igk[H], i.e.,

N(R) = Homy o (k[H]/Igk[H]. R).
We have proved:
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PROPOSITION 6.14 For any homomorphism H — G of algebraic group, there is an alge-
braic group N (called the kernel of the homomorphism) such that

N(R) = Ker(H(R) — G(R))
for all R. It is represented by the k -bialgebra k[H]/Igk[H].

Alternatively, note that the kernel of « is the fibred product of H — G <« {lg}, and
so is an algebraic group with coordinate ring k[H] ®x[g] (k[G]/Ic) ~ k[H]/Ick[H] —
see p13}

For example, consider the map g — g":G,, — G,,. This corresponds to the map
on bialgebrag™| ¥ +> X":k[Y,Y '] — k[X, X~!]. The map e:k[V,Y '] — k sends
f(Y)to f(1), and so Ig,, = (Y — 1). Thus, the kernel is represented by the bialgebra
k[X,X~1]/(X™ —1). In this quotient, k[x,x~ '], x” = 1, and so x~! = x"~!. Thus,
klx, x™1] = k[x] ~ k[X]/(X" = D]

s@]For example, consider the map (a;;) — det(a;;): GL, — G,,. The map on k-algebras
i
X > det(X;;): k[ X, X1 — k.., Xij,....det(X;;)"1].

The augmentation ideal /g,, = (X — 1), so

k[...,X,-j,...,det(X,-j)_l] - kl....Xij....]
(det(X;;)—1) — (det(Xij) — 1)’

k[SLn] =

PROPOSITION 6.15 If'k has characteristic zero, a homomorphism G — H is an embed-
ding if and only it G(k) — H (k) is injective.

PROOF. We have to show that the condition implies that N = 1. According to Theorem
2.31} the kernel N of the homomorphism of a smooth algebraic group. This means that
k[N] =4t k[N]®p k is areduced k-algebra, and so the next lemma shows that kK[N] = k.o

LEMMA 6.16 Letk be an algebraically closed field, and let A be a reduced finitely gener-
ated k -algebra. If there exists only one homomorphism of k -algebras A — k, then A = k.

PROOF. Write A = k[X1,..., Xn]/a. Because A is reduced, a = rad(a) = IV(a) (in
the terminology of §4). A point (a1,...,a,) of V(a) defines a homomorphism 4 — k,

namely, f(X1,...,Xn) — f(ai,...,an). Since there is only one homomorphism, V' (a)
consists of a single point (ay,...,a,) and I'V(a) = (X —ay,...,X — ap). Therefore
A=k[Xy,....Xnl/(X —a1,...., X —ay) ~ k. o

EXAMPLE 6.17 Let k be a field of characteristic p # 0, and consider the homomorphism
x = x?:G4, — G,. For any field K, x — x?: K — K is injective, but G, — G is
not an embedding (it corresponds to the homomorphism of rings X +— X?:k[X] — k[X],
which is not surjective).

30Check: let r € Gy (R); then Y(r™) = r™ = X" (r).

3More precisely, the map k[X] — k[X,X1]/(X"™ — 1) defines a isomorphism k[X]/(X" — 1) =~
kX, x1/(x™ -1).

32Check: for (a;;) € GLn(R), X(det(a;;)) = det(a;;) = det(X;;)(a;;)-
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Quotient maps

What should a quotient map be? One might first guess that it is a homomorphism H — G
such that H(R) — G(R) is surjective for all R, but this is too stringent. For example,
it would say that x — x":G,, — Gy, is not a quotient map. But the cokernel functor,
R — R*/R*" is not representable because it fails the following obvious test: if F is
representable and R — R’ is injective, then F(R) — F(R’) is injective. In fact, any
homomorphism of algebraic groups G, — G zero on the image of x + x” has zero
image. This suggests that x — x": G, — G, should be a quotient map, and, according to
our deﬁnition itis: the map X — X":k[X, X~'] — k[X, X~!] is injective.

The next two theorems indicate that our definition of a quotient map is the correct one.

THEOREM 6.18 (a) A homomorphism G — Q of algebraic groups is a quotient map if
and only if, for every k-algebra R and g € Q(R), there exists a finitely generated faithfully
flat R-algebra R" and a g € G(R') mapping to q in Q(R’):

G(R) — Q(R) grH——>x

] |

G(R) — Q(R) q-

(b) If G — Q is a quotient map, then G (k) — Q (k) is surjective; the converse is true if Q
is smooth.

PROOF. =— : Suppose G — Q is a quotient map, so that k[Q] — k[G] is injective
(and hence faithfully flat (6.9)). Let ¢ € Q(R) = Homy_ye(k[Q], R), and form the tensor
product R" = k[G] ®k[p] R:

k[G] faithfully ﬂsz k[Q]

o

R’ =k|[G] ®kjo] R<——R

l

R'/m

The map R — R’ is faithfully flat (6.8), and R’ is a finitely generated R-algebra because
k[G] is a finitely generated k-algebra. Because the upper square commutes, g € G(R')
maps to the image ¢’ of ¢ in Q(R').

Now suppose R = k. Let m be a maximal ideal in R’. Then R’/m is a field that is
finitely generated as a k-algebra, and hence is a finite extension of k (Zariski’s Lemma AG
2.7). In particular, if k is algebraically closed, then k = R’/m. The element of G (k) given
by the homomorphism k[G] — R’/m = k in the diagram maps to ¢ € Q (k).

&= :Let g = idgg; € Q(k[Q]).Then, there exists a g € G(R’) for some R’
faithfully flat over k[Q] such that g and ¢ map to the same element of Q(R’), i.e., such that

k[G]  «~——  k[0]

lg lidk[Q]

faithfully flat

R «——— Kk[Q]
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commutes. The map k[Q] — R/, being faithfully flat, is injective , which shows that
k[Q] — k[G] is injective (and G — @ is a quotient map).

Now suppose that k is algebraically closed and Q is smooth. In this case, we saw
that the homomorphism k[Q] — Map(Q (k), k) is injective. If G(k) — Q (k) is surjective,
then Map(Q(k), k) — Map(G(k), k) is injective, and so k[Q] — k[G] is injective. o

EXAMPLE 6.19 Let k be a field of characteristic p # 0, and consider the homomorphism
1 — ap, where o, is the algebraic group such that «,(R) = {r € R | r? = 0}. This
homomorphism is not a quotient map — the map on coordinate rings is k[X]/(X?) — k
which is not injective — even though the map 1(k) — « P (k) is surjective.

THEOREM 6.20 Let G — Q be a quotient map with kernel N. Then any homomorphism
G — Q' sending N to 1 factors uniquely through Q.

PROOF. Note that, if g, g’ are elements in G with the same image in Q, then g~ 'g’ € N
and so maps to 1 in Q(R). Therefore g, g’ have the same image in G'.
This shows that the composites of the homomorphisms

GxpG=2G— o’
are equal. Therefore, the composites of the homomorphisms
k[G] ®k[0) k[G] & k[G] < k[Q]

are equal. Since the pair of maps coincides on k[Q] (see [6.7), the map k[Q'] — k[G]
factors through k[Q] < k[G]; therefore G — Q' factors through G — Q. o

COROLLARY 6.21 If6: H — Q and0': H — Q' are quotient maps with the same kernel,
then there is a unique homomorphism «: Q — Q' such that @ o § = 6’, and « is an
isomorphism.

PROOF. Immediate consequence of the theorem. O

Existence of quotients

An algebraic subgroup N of G is normal if N(R) is a normal subgroup of G(R) for all
k-algebras R. Clearly, the kernel of any homomorphism is normal.

THEOREM 6.22 Let N be a normal subgroup of G. Then there exists a quotient map
G — Q with kernel N .

PROOF. Waterhouse 1979, Chapter 16. [The idea of the proof is to find, starting from
Chevalley’s theorem (3.13)), a representation G — GL(V) of G and a subspace W of V,
stable under G, such that N, and only N, acts trivially on W. Then the homomorphism
G — GLw has kernel N, and (according to[6.10) it factors into

G — Q < GLy .| o
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Warning: Let G — Q be the quotient map with kernel N. By definition
1 > N(R) - G(R) - Q(R)

is exact for all R, but the map G(R) — Q(R) need not be surjective — all you can say is
what is said by Theorem [6.18] In particular,

1 - Nk)— Gk) = Q(k) — 1
is exact.

EXAMPLE 6.23 Let PGL, be the quotient of GL, by its centre, and let PSL, be the
quotient of SL,, by its centre:

PGL, = GL, /Gy, PSL, = SLy, /un.
The homomorphism SL, — GL, — PGL,, defines a homomorphism
PSL, — PGL, (37)
(apply [6.20). Is this an isomorphism? Note that
SLn (k) /pn (k) — GLn (k) /Gm (k) (38)

is injective, but not in general surjective: not every invertible #n X n matrix can be written as
the product of a matrix with determinant 1 and a scalar matrix (for example, such a matrix
has determinant in k*"). Nevertheless, I claim that is an isomorphism of algebraic
groups. In characteristic zero, this follows from the fact that is an isomorphism when
k = k (apply and ). In the general case, we have to apply and ).

Let g # 1 € PSL,(R). For some faithfully flat R-algebra R’, there exists a g €
SL, (R") mapping to ¢ in PSL, (R’). The image of g in GL, (R’) is not in G, (R’) (because
q # 1); therefore, the image of g in PGL, (R’) is # 1, which implies that the image of ¢
in PGL(R) is # 1:

PSL,(R") — PGL,(R')

[

PSL,(R) —> PGL,(R).

We have shown that is an embedding.

Let ¢ € PGL,(R). For some faithfully flat R-algebra R’, there exists a g € GL,(R’)
mapping to ¢. Let a = det(g), and let R” = R'[T]/(T" —a). In R”, a is an n*" power
a = t", and so g = got with det(go) = 1. Thus, the image of g in GL,(R")/G,,(R") is
in the image of SL, (R")/un(R"). Hence, the image of ¢ in PGL,(R") is in the image of
PSL, (R”). As an R’-module, R” is free of finite rank; hence it is a faithfully flat R-algebra,
and we have shown that is a quotient map.

The isomorphism theorem

THEOREM 6.24 Let H be an algebraic subgroup of an algebraic group G, and let N be a
normal algebraic subgroup of G. Then:
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(a) there exists an algebraic subgroup HN of G such that, for any k -algebra R, (HN )(R)
consists of the elements of G(R) that lie in H(R')N(R’) for some finitely generated
faithfully flat R-algebra R’ (and (HN)(k) = H(k)N(k));

(b) there exists a normal algebraic subgroup H N N of H such that (H N N)(R) =
H(R) N N(R) for all k-algebras R;

(c) the natural map

H/HNN — HN/N (39)

is an isomorphism.

PROOF. Omiitted (for the present). (For (a), cf. Waterhouse 1979, Chapter 15, Exercise
6.) o

EXAMPLE 6.25 Let G = GL,, H = SL,, and N = Gy, (scalar matrices in G). Then
N N H = p, (obviously), HN = GL, (by the arguments in [6.23)), and (39) becomes the
isomorphism

SLy /un — GL, /Gy,

REMARK 6.26 The category of commutative algebraic groups over a field is an abelian
category (SGA3, Vg, 5.4).

NOTES As noted earlier, in much of the expository literature (e.g., Humphreys 1975, Borel 1991,
Springer 1998), “algebraic group” means “smooth algebraic group”. With this terminology, almost
all the results in this section become falsePE] Fortunately, because of Theorem this is only
a problem in nonzero characteristic. The importance of allowing nilpotents was pointed out by
Cartie more than forty years ago, but, except for Gabriel and Demazure 1970 and Waterhouse
1979, this point-of-view has not been adopted in the expository literature.

33The situation is even worse, because these books use a terminology based on Weil’s Foundations, which
sometimes makes it difficult to understand their statements. For example, in Humphreys 1975, p218, one finds
the following statement: “for a homomorphism ¢: G — G’ of k-groups, the kernel of ¢ need not be defined
over k.” By this, he means the following: form the kernel N of g G? — G/F (in our sense); then Ny.q need
not arise from a smooth algebraic group over k.

34Cartier P, Groupes algébriques et groupes formels, In Collog. Théorie des Groupes Algébriques (Bruxelles,
1962), pp. 87-111, Librairie Universitaire Louvain.
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7 Finite (étale) algebraic groups

All rings and k-algebras are commutative.

Separable k-algebras

Let A be a finite k-algebra (i.e., a k-algebra that is of finite dimension [A: k] as a k-vector
space). There are two reasons why A ® k may not be reduced (i.e., have nilpotents).
o Aditself may not be reduced. For example, if A = k[X]/(X"),n > 2, then AQy k =
k[X]/(X™) contains a nonzero element x, namely, the class of X, such that x” = 0.
¢ A may be an inseparable field extension of k. For example, if k has characteristic
p # 0and a € k is not a p** power, then X? — a is irreducible in k[X] and
A = k[X]/(X? —a) = k[x] is a field. However, k contains a (unique) element o
such that «? = a, and

A®k k =k[X]/(XP —a) = k[X]/((X —a)?),

which contains a nonzero element x — « such that (x — «)? = 0.
On the other hand, if A is a separable field extension of k, then A ® k is reduced. From
the primitive element theorem (FT 5.1), A = k[«] for some o whose minimum polynomial
f(X) is separable, which means that

X)) =[x —e). o #ej.

in k[X]. By the Chinese remainder theorem (AG 1.1)

A®k2%§[X]/(f):l_L_E[X]/(X—a,-):Ex---xk

Moreover, the maps « — «; are [A: k] distinct k-algebra homomorphisms K — k.

PROPOSITION 7.1 The following conditions on a finite k-algebra A are equivalent:
(a) A is a product of separable field extensions of k ;
(b) AQrkisa product of copies of k;
(c) there are [A: k] distinct k-algebra homomorphisms A — k;
(d) A®; k is reduced.

PROOF. We have seen that (a) implies the remaining statements. That each of (b) and
(c) implies (a) is similarly straightforward. That (d) implies (a) requires a little more (see
Waterhouse 1979, 6.2) [but we may not need it].

It remains to show that (d) implies (b). For this, we may assume that k = k. For any
finite set S of maximal ideals in A4, the Chinese remainder theorem (AG 1.1) says that the
map A — [[,es A/m is surjective with kernel (),,cg m. In particular, #S < [A:k], and
so A has only finitely many maximal ideals. For S equal to the set of all maximal ideals in

A, (mes m = 0by (2.18), and so A ~ [ A/m ~ [] k. 5

DEFINITION 7.2 A finite k-algebra satisfying the equivalent conditions of the proposition
is said to be separable.

PROPOSITION 7.3 Finite products, tensor products, and quotients of separable k -algebras
are separable.
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PROOF. This is obvious from the condition (b). o

COROLLARY 7.4 The composite of any finite set of separable subalgebras of a k-algebra
is separable.

PROOF. Let A; be separable subalgebras of B. Then A; --- A, is the image of the map
a1® - ®ay > ay---an: Ay ® -+ ® Ay — B,
and so is separable. o

PROPOSITION 7.5 Let K be a field extension of k. If A is separable over k, then A @ K
is separable over K.

PROOF. Let K be an algebraic closure of K, and let k be the algebraic closure of k in K.
Then

K ——
k

(AR K) ®g K ~ (A@kE) ®r K~ (kx-xk)y®K~Kx-xK.

Sp—

_—

is commutative, and so

Classification of separable k-algebras

Let k°°P be the composite of the separable subfields of k. If k is perfect, for example, of
characteristic zero, then kP = k. Let I" be the group of k-automorphisms of k%°P. For
any subfield K of k%P, finite and Galois of k, an easy Zorn’s lemma argument shows that

oc—0o|lK: I' - Gal(K/k)
is surjective. Let X be a finite set with an actio of I',
I'xX — X.

We say that the action isPE] continuous if it factors through I’ — Gal(K/k) for some
subfield K of k5P finite and Galois over k.
For a separable k-algebra A, let

F(A) = Homyy(A. k) = Homy_ gy (4. K*P).
Then I" acts on F(A) through its action on k5P
(0f)a)=0a(f(a), oel, feF(A),acA.

The images of all homomorphisms A — k%P will lie in some finite Galois extension of k,
and so the action of I" on F(A) is continuous.

35This means 1px = x and (07)x = o(tx) forall 0,7 € I" and x € X, ie., that ' — Aut(X)is a
homomorphism.

36Equivalently, the action is continuous relative to the discrete topology on X and the Krull topology on I
(FT §7).
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THEOREM 7.6 The map A — F(A) is a contravariant equivalence from the category sep-
arable k -algebras to the category of finite sets with a continuous action of I".

PROOF. This is mainly a restatement of the fundamental theorem of Galois theory (FT §3),
and is left as an exercise (or see Waterhouse 1979, 6.3). o

Let A = k[X]/(f(X)) = k[x]. Then A is separable if and only if f(X) is separable,
i.e., has distinct roots in k. Assume this, and (for simplicity) that f(X) is monic. A k-
algebra homomorphism A — k%P is determined by the image of x, which can be any root
of f in k%°P. Therefore, F(A) can be identified with the set of roots of f. Suppose F(A)
decomposes into r orbits under the action of I", and let f1, ..., f, be the monic polynomials
whose roots are the orbits. Then each f; is stable under I", and so has coefficients in k (FT
7.8). Tt follows that f = f1--- f; is the decomposition of f into its irreducible factors
over k, and that A = [[, _; ., K[X]/(fi(X)) is the decomposition of A into a product of
fields.

Etale algebraic groups

Recall that an algebraic group G is said to be finite if k[G] is finite-dimensional as a k-
vector space. We say G is étale if in addition k[G] is separable.

REMARK 7.7 (a) When k has characteristic zero, Theorem [2.31]says that every finite alge-
braic group is étale.

(b) Algebraic geometers will recognize that an algebraic group G is étale if and only if
the morphism of schemes G — Speck is étale.

According to Theorem to give a separable k-algebra is to give a finite set with a
continuous action of I". To give a bialgebra structure on a separable k-algebra is equivalent
to giving a group structure on the set for which I" acts by group homomorphisms (cf. 4.4).
As

Homy_y, (k[G], £*P) = G(k*P),

we have the following theorem.

THEOREM 7.8 The functor G — G(k*°P) is an equivalence from the category of étale
algebraic groups over k to the category of finite groups endowed with a continuous action
of I'.

Let K be a subfield of kP containing k, and let I"” be the subgroup of I" consisting of
the o fixing the elements of K. Then K is the subfield of k5P of elements fixed by I’ (see
FT 7.10), and it follows that G(K) is the subgroup G (k*°P) of elements fixed by I"’.

Examples

The order of a finite algebraic group G is defined to be [k[G]: k]. For an étale algebraic
group G, it is the order of G (k).

Since Aut(X) = 1 when X is a group of order 1 or 2, we see that over any field k, there
is exactly one étale algebraic group of order 1 and one of order 2 (up to isomorphism).

Let X be a group of order 3. Such a group is cyclic and Aut(X) = Z/27Z. Therefore
the étale algebraic groups of order 3 over k correspond to homomorphisms I" — Z/27Z
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factoring through Gal(K/ k) for some finite Galois extension K of k. A separable quadratic
extension K of k defines such a homomorphism, namely,

o o|K:I' > Gal(K/k) >~ 7/27

and all nontrivial such homomorphisms arise in this way (see FT §7). Thus, up to isomor-
phism, there is exactly one étale algebraic group GX of order 3 over k for each separa-
ble quadratic extension K of k, plus the constant group Gg. For Go, Go(k) has order 3.
For GK, GX(k) has order 1 but GX(K) has order 3. There are infinitely many distinct
quadratic extensions of Q, for example, Q[v/—1], Q[v/2], Q[v/3], ..., Q[/P], - ... Since
w3(Q) = 1 but u3(Q[¥/1]) = 3, 3 must be the group corresponding to Q[/1].

Exercise

7-1 How many finite algebraic groups of orders 1,2, 3, 4 are there over R (up to isomor-
phism)?
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8 The connected components of an algebraic group

Recall that a topological space X is disconnected if it is a disjoint union of two nonempty
open subsets; equivalently, if it contains a nonempty proper closed-open subset. Otherwise,
it is connected. The maximal connected subspaces of X are called the connected com-
ponents of X, and X is a disjoint union of them. Write mo(X) for the set of connected
components of X (for good spaces it is finite).

For a topological group G, mo(G) is again a group, and the kernel of G — ¢ (G)
is a normal connected subgroup G° of G, called the identity (connected) component of
G. For example, GL,(R) has two connected components, namely, the identity component
consisting of the matrices with determinant > 0 and another component consisting of the
matrices with determinant < 0.

Some algebraic geometry

The max spectrum of a commutative ring A, spm A, is the set of maximal ideals m in A.
For an ideal a in A, let
V() ={m|m D a}.

Then V(ab) = V(a) U V(b) and V(> _a;) = () V(a;), and so there is a topology on spm A
(called the Zariski topology) whose closed sets are exactly the V(a). For each f € A, the
set D(f) = {m | f ¢ m} is open, and these sets form a base for the topology.

EXAMPLE 8.1 Letk = k,and let A = k[X1,...,Xn]/c. Foreach pointa = (ay,...,an)
in the zero-set of ¢, we get a homomorphism A — k, f(X1,...,Xn) — f(ay,...,as),
whose kernel is the maximal ideal

My = (X1 —di1,...,Xn —day).

The Nullstellensatz implies that every maximal ideal m of A has a zero in the zero-set of c,
and therefore is of this form. Thus, we have a one-to-one correspondence

a< m,

between the zero-set of ¢ and spm A. Under this correspondence, the topologies correspond
(cf. AG §3).

For the remainder of this subsection, 4 is a finitely generated k-algebra.

PROPOSITION 8.2 The space spm A is noetherian (i.e., has the ascending chain condition
on open subsets; equivalently, has the descending chain condition on closed subsets).

PROOF. A descending chain of closed subsets gives rise to an ascending chain of ideals in
A, which terminates because A is noetherian (Hilbert basis theorem; AG 2.2). o

PROPOSITION 8.3 For any ideal a in A,

ﬂ{m | m maximal, m D a} = rad(a).



8 THE CONNECTED COMPONENTS OF AN ALGEBRAIC GROUP 63

PROOF. When m is maximal, A/m is reduced, and so
m>Da = m D rad(a).

This shows that the left hand side contains the right, and the reverse inclusion follows from
Proposition 2.18]applied to A/rad(a). o

COROLLARY 8.4 The intersection of all maximal ideals in A is the nilradical )t of A (ideal
consisting of the nilpotent elements).

PROOF. The nilradical is the radical of the ideal (0). O

Because all maximal ideals contain 1,
spm A >~ spm A/MN. (40)

Recall that a nonempty topological space is irreducible if it is not the union of two
proper closed subsets.

PROPOSITION 8.5 Let A be reduced. Then spm A is irreducible if and only if A is an
integral domain.

PROOF. = : Suppose fg = 0in A. For each maximal ideal m, either f or g is in m.
Therefore, spm A = V(f)UV(g). Because spm A4 is irreducible, this means spm A equals

V(f)orV(g). Butif spm A = V(f), then f = 0 by (8.4).
<= : Suppose spm A = V(a) U V(b). If V(a) and V(b) are proper sets, then there
exist nonzero f € aand g € b. Then fg € aNb C () m = 0, which is a contradiction.

COROLLARY 8.6 The space spm A is irreducible if and only if A/ is an integral domain.

PROOF. Apply #0). o
PROPOSITION 8.7 Leteq,...,e, be elements of A such that

e? =ealli, ee;=0alli #j, e +---+ey,=1. (41)
Then

spmA = D(e;) U...U D(ep)

is a decomposition of spm A into a disjoint union of open subsets. Conversely, every such
decomposition arises from a family of idempotents satisfying (41)).

PROOF. Letey, ..., e, satisfy (#I). For a maximal ideal m, the map A — A/m must send
exactly one of the e; to a nonzero element (cf. [2.14). This shows that spm A is a disjoint
union of the D(e;), each of which is open.

For the converse, we take n = 2 to simplify the notation. Each of thhe open sets is
also closed, and so spm A = V(a) U V(b) for some ideals a and b. Because the union is
disjoint, no maximal ideal contains both a and b, and so a + b = A. Thusa + b = 1 for
somea € aand b € b. Asab € a N b, all maximal ideals contain ab, which is therefore
nilpotent, say (ab)™ = 0. Any maximal ideal containing a™ contains a; similarly, any
maximal ideal containing " contains b; thus no maximal ideal contains both ¢ and b,
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which shows that the ideal they generate is A. Therefore, we can write 1 = ra™ + sb™ for
some 7,5 € A. Now

(ra™)(sb™) =0, (ra™)? = (ra™)(1 —sb™) = ra™, ra™ + sb™ = 1.
Finally, V(a) C V(ra™) and V(b) C V(sb™). As V(ra™) N V(sb™) = 0, we see that
spm A = V(ra™)u V(sb™) = D(sb™) U D(ra™).

For n > 2, the above argument doesn’t work directly. Either do it two at a time, or use
a different argument to show that taking products of rings corresponds to taking disjoint
unions of spm’s. O

COROLLARY 8.8 The space spm A is disconnected if and only if A contains an idempotent
e #0,1.

PROOF. <= : If e is an idempotent, then the pair e, f = 1 — e satisfies (1)), and so
spm(A) = V(e) U V(f). If V(e) = spm(A), then e is nilpotent by and hence 0; if
V(e) =@,then f =0ande = 1.

= : Immediate from the proposition. O

ASIDE 8.9 On C”" there are two topologies: the Zariski topology, whose closed sets are the
zero sets of collections of polynomials, and the complex topology. Clearly Zariski-closed
sets are closed for the complex topology, and so the complex topology is the finer than the
Zariski topology. It follows that a subset of C” that is connected in the complex topology
is connected in the Zariski topology. The converse is false. For example, if we remove
the real axis from C, the resulting space is not connected for the complex topology but it
is connected for the topology induced by the Zariski topology (a nonempty Zariski-open
subset of C can omit only finitely many points). Thus the next result is a surprise:

If V' C C" is closed and irreducible for the Zariski topology, then it is con-
nected for the complex topology.

For the proof, see Shafarevich, Basic Algebraic Geometry, 1994, VII 2.

Separable subalgebras

Recall that a k-algebra B is finite if it has finite dimension as a k-vector space, in which
case we write [B: k] for this dimension (and call it the degree of B over k).

LEMMA 8.10 Let A be a finitely generated k -algebra. The degrees of the separable subal-
gebras of A are bounded.

PROOF. A separable subalgebra of A will give a separable subalgebra of the same degree
of A ® k, and so we can assume k = k. Then a separable subalgebra is of the form
k x --- x k. For such a subalgebra, the elements e; = (1,0,...),...,e; = (0,...,0,1)
satisfy (#1). Therefore D(ey),..., D(e,) are disjoint open subsets of spm A. Because
spm A is noetherian, it is a finite union of its irreducible components (AG 2.21). Each
connected component of spm A is a finite union of irreducible components, and so there
are only finitely many of them. Hence r < #mo(spm A4) < oo. O
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Let A be a finitely generated k-algebra. The composite of two separable subalgebras of
A is separable (7.4), and so, because of the lemma, there is a largest separable subalgebra
1o (A) of A containing all other.

Let K be a field containing k. Then 79(A) ®; K is a separable subalgebra of A ®; K
(see[7.5). We shall need to know that it contains all other such subalgebras.

PROPOSITION 8.11 Let A be a finitely generated k -algebra, and let K be a field containing
k. Then
7o(A ®k K) = mo(A4) Q K.

PRrROOF. Waterhouse 1979, 6.5. o

Let A and A’ be finitely generated k-algebras. Then mo(A) ®x mo(A’) is a separable
subalgebra of A ®; A’ (see . We shall need to know that it contains all other such
subalgebras.

PROPOSITION 8.12 Let A and A’ be finitely generated k -algebras. Then
mo(A @k A') = 7o (A) ®p 7o(A").

PROOF. Waterhouse 1979, 6.5. o

The group of connected components of an algebraic group

Let G be an algebraic group with coordinate ring A = k[G]. The map A: A — A Q@ A is
a k-algebra homomorphism, and so sends 7g(A4) into (A Q A) EL2 mo(A) ®p mo(A).
Similarly, S: A — A sends 7mo(A) into mo(A), and we can define € on my(A4) to be the
restriction of € on A. With these maps 7o(A) becomes a sub-bialgebra of A.

THEOREM 8.13 Let G — mo(G) be the quotient map corresponding to the inclusion of
bialgebras mo(A) — A.
(a) Every quotient map from G to an étale algebraic group factors uniquely through

G — 71o(G).
(b) Let G° = Ker(G — mo(G)). Then G° is the unique normal algebraic subgroup of
G such that
) m(G°) =1,

ii) G/G° is étale.

PROOF. (a) A quotient map G — H corresponds to an injective homomorphism k[H] —
k|[G] of k-bialgebras. If H is étale, then k[H ] is separable, and so the image of the homo-
morphism is contained in 7o (k[G]) = k[mo(G)]. This proves (a).
(b) The k-algebra homomorphism €: 7o (k[G]) — k decomposes 7o (k[G]) into a direct
product
wo(k[G]) = k x B.

Let e = (1, 0). Then the augmentation ideal of 7o (k[G]) is (1 — e), and
k[G] = ek[G] x (1 — e)k[G]

with ek[G] =~ k[G]/(1 — e)k[G] = k[G°] (see [6.14). Clearly, k = mo(ek[G]) =~
70(k[G®]). This shows that G° has the properties (i) and (ii).
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Suppose H is a second normal algebraic subgroup of G satisfying (i) and (ii). Because
G/H is étale, the homomorphism G — G/H factors through 79(G), and so we get a
commutative diagram

1 G° G 70(G) ——> 1
| | |
1 H G G/H — 1

with exact rows. The similar diagram with each * replaced with x(R) gives, for each k-
algebra R, an exact sequence

1 - G°(R) - H(R) — mo(G)(R). (42)
Since this functorial in R, it gives a sequence of algebraic groups
1> G°— H — m9(G).

The exactness of shows that G° is the kernel of H — mo(G). Because mo(H) = 1,
the kernel is H, and so G° ~ H. o

DEFINITION 8.14 The subgroup G° is called identity component of G.

Recall (p13) that from an algebraic group G over k and a field extension K DO k we
get an algebraic group G g over K: for any K-algebra R, Gx(R) = G(R), and K[Gg] =
K ®y k[G].

THEOREM 8.15 For any field extension K O k, no(Gg) =~ mo(G)g and (Gg)° =~
(G°)k-

PROOF. Apply (8.TI). O
THEOREM 8.16 For any algebraic groups G and G', mo(G x G') ~ mo(G) x mo(G’).
PROOF. Apply (8.12). O

Connected algebraic groups

DEFINITION 8.17 An algebraic group G is connected if 7o(G) = 1 (i.e., mo(k[G]) = k).

Then Theorem [8.13] says that, for any algebraic group G, there is a unique exact se-
quence
1> G°— G — m(G) = 1

with G° connected and 7o (G) étale.

REMARK 8.18 (a) Let K be a field containing k. Then Theorem implies that G is
connected if and only if G is connected.

(b) Let G and G’ be algebraic groups over k. Then Theorem|[8.16|shows that G x G is
connected if and only if both G and G’ are connected.

THEOREM 8.19 The following conditions on an algebraic group G are equivalent:
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(a) G is connected;

(b) the topological space spm(k[G]) is connected;
(¢) the topological space spm(k|[G]) is irreducible;
(d) the ring k[G]/ is an integral domain.

PROOF. (a) = (b). If e € k[G] is idempotent, then k[e] is a separable subalgebra of
k[G], and so equals k. Therefore, e = 0 or 1, and Corollary [8.8|implies that spm(k[G]) is
connected.

(b) = (a). If k[G] contains no idempotents other than 0, 1, then 7 (k[G]) is a field
K containing k. The existence of the k-algebra homomorphism €: k[G] — k implies that
K =k.

(c) <= (d). This is (8.6).

(¢) = (b). Trivial.

(b) = (c). Since (a) and (d) hold over k if and only if they hold over k, it suffices to
prove this in the case that k = k. Write spm k[G] as a union of its irreducible components
(AG 2.21). No irreducible component is contained in the union of the remainder. Therefore,
there exists a point that lies on exactly one irreducible component. By homogeneity (2.15)),
all points have this property, and so the irreducible components are disjoint. As spm k[G]
is connected, there must be only one. O

EXAMPLE 8.20 The groups G4, GL,, T, (upper triangular), U, (strictly upper triangular),
D, are connected because in each case k[G] is an integral domain. For example,

k[']rn] = k[GLn]/(Xij | i > ]),

which is isomorphic to the polynomial ring in the symbols X;;, 1 < i < j < n, with
X11 - Xppn inverted.

EXAMPLE 8.21 For the group G of monomial matrices (2.5), 7o(k[G]) is a product of
copies of k indexed by the elements of S,,. Thus, 7o(G) = S, (regarded as a constant

algebraic group (2.14)), and G° = D,.

EXAMPLE 8.22 The group SL;, is connected. Every invertible matrix A can written uniquely
in the form

a 0

0 1

A=A ] , detd =1.
0 1

Therefore GL,, ~ SL, xG,, (isomorphism as set-valued functors, not as group-valued
functors). Therefore k[GL,] >~ k[SL,]®xk[G] (by the Yoneda lemma p13)). In particular,
k[SLy] is a subring of k[GLy], and so is an integral domain.

EXAMPLE 8.23 For any nondegenerate quadratic space (V,q), the groups Spin(g) and
SO(q) are connected. It suffices to prove this after replacing k with k, and so we may
suppose that g is the standard quadratic form X 12 + .-+ + X2, in which case we write
SO(g) = SO,,. The latter is shown to be connected in the exercise below.

The determinant defines a quotient map O(g) — {£1} with kernel SO(g). Therefore
0(q)° = SO(g) and mo(0O(q)) = {£1} (constant algebraic group).
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EXAMPLE 8.24 The symplectic group Sp,,, is connected (for some hints on how to prove
this, see Springer 1998, 2.2.9).

EXAMPLE 8.25 Let k be a field of characteristic p # 0, and let n = p"ng with ng not
divisible by

ASIDE 8.26 According to and (8.19), an algebraic group G over C is connected if and
only if G(C) is connected for the complex topology. Thus, we could for example deduce
that GL;, is a connected algebraic group from knowing that GL, (C) is connected for the
complex topology. However, it is easier to deduce that GL, (C) is connected from knowing
that GL,, is connected (of course, this requires the serious theorem stated in (8.9)).

Warning: For an algebraic group G over R, G may be connected without G(R) being
connected, and conversely. For example, GL» is connected as an algebraic group, but
GL2(R) is not connected for the real topology, and (3 is not connected as an algebraic
group, but u3(R) = {1} is certainly connected for the real topology.

Exact sequences and connectedness

PROPOSITION 8.27 Let
1> N—->G—-0—1

be an exact sequence of algebraic groups (i.e., G — Q is a quotient map with kernel N ).
If N and Q are connected, so also is G ; conversely, if G is connected, so also is .

PROOF. Assume N and Q are connected. Then N is contained in the kernel of G —
70(G), so this map factors through G — Q (see|6.20), and therefore has image {1}. Con-
versely, since G maps onto 7o (Q), it must be trivial if G is connected. o

Exercises

8-1 What is the map k[SL,] — k[GL,] defined in example [8.22)?
8-2 Prove directly that o (k[O,]) = k x k.

8-3 (Springer 1998, 2.2.2). For any k-algebra R, let V(R) be the set of skew-symmetric
matrices, i.e., the matrices such that A¥ = —A.
(a) Show that the functor R — V(R) is represented by a finitely generated k-algebra A,
and that A is an integral domain.
(b) Show that A — (I,, + A)~' (I, — A) defines a bijection from a nonempty open subset
of SO, (k) onto an open subset of V' (k).
(¢c) Deduce that SO,, is a connected.

8-4 Let A be a product copies of k indexed by the elements of a finite set S. Show that
the k-bialgebra structures on A are in natural one-to-one correspondence with the group
structures on .S.
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Where we are

As discussed in the first lecture, every affine algebraic group has a composition series with
the quotients listed at right:

affine G
| finite étale
connected G°
|  semisimple
solvable e
| torus
unipotent @
| unipotent
1

1t

We have constructed the top segment of this picture. Next we look at tori and unipotent

groups. Then we study the most interesting groups, the semisimple ones, and finally, we
put everything together.
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9 Diagonalizable groups; tori

Recall for reference that

Gm(R) = R™ pn(R) ={ € R|{" =1}
k[Gm] = k[X, X™'] klpn] = k[X]/(X™ = 1) = k[x]
AX)=X®X AX) =xQ®x

€e(X)=1 e(x) =1

S(X)=Xx"1 S(x) = x""1

A remark about homomorphisms

9.1 Recall that a homomorphism G — H of groups is defined to be a map preserving
products; it then automatically preserves neutral elements and inverses.

Now let G and H be algebraic groups. A homomorphism of k-algebras a: k[H] —
k[G] preserving A defines a natural map G(R) — H/(R) preserving products, and hence
also neutral elements and inverses. Therefore o preserves € and S.

In other words, let A and B be k-bialgebras; in order to show that a homomorphism of
k-algebras A — B is a homomorphism of k-bialgebras, it suffices to check that it sends
A4 to Ap; it then automatically sends € 4 to eg and S4 and Sp.

Group-like elements in a bialgebra

DEFINITION 9.2 A group-like element in a k-bialgebra A is an invertible element a of A
such that A(a) = a ® a.

Note that if a is group-like, then (see p31)
a = ((e,idg) o A)(a) = (¢,idg)(a ® a) = €(a)a,
and so €(a) = 1. Moreover,

€(a) = ((S,idyg) o A)(a) = (S,idyg)(a ® a) = S(a)a

and so S(a) = a~ L.
The group-like elements form subgroup of A*. For example, if a,a’ are group-like,
then
A(aa’) = A(a)A(a)) (A is a k-algebra homomorphism)
=@®a)d ®d)
=ad ®ad’,

and so aa’ is again group-like.
The characters of an algebraic group
DEFINITION 9.3 A character of an algebraic group G is a homomorphism G — G,.

PROPOSITION 9.4 There is a canonical one-to-one correspondence between the characters
of G and the group-like elements of k[G].
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PROOF. According to (9.1)), characters of G correspond to homomorphisms of k-algebras
k[Gp] — k[G] respecting A. To give a homomorphism of k-algebras k[G,,] — k[G]
amounts to giving an invertible element a of k[G] (the image of X), and the homomorphism
respects A if and only if a is group-like. O

For characters y, x’, define
1+ x:G(R) - R®

by
(x + 1)) = x(8) - x'(9)

Then y + x’ is again a character, and the set of characters is an abelian group, denoted
X(G). The correspondence in the proposition is an isomorphism of groups.
The algebraic group D(M)

Let M be a finitely generated abelian group (written multiplicatively), and let k[M] be the
k-vector space with basis M. Thus, the elements of k[M] are finite sums

Z.aimi» aj €k, m;eM,
l

ank[M ] becomes a k-algebra (called the group algebra of M) when we set

(Zi aimi) (Zl bj”j) = Zi,j aibjm,-nj_

It becomes a bialgebra when we set
Am)y=m®@m, em)=1, Sm)=m""'.

Note that k[M] is generated as a k-algebra by any set of generators for M, and so it is
finitely generated.

EXAMPLE 9.5 Let M be a cyclic group, generated by e.

(a) Case e has infinite order. Then the elements of k[M] are the finite sums ) ; ., aje
with the obvious addition and multiplication, and A(e) = e®e, e(e) = 1, S(e) = e.
Clearly, k[M] >~ k[G,].

(b) Case e is of order n. Then the elements of k[M ] are sums ag +aje+---+ap—1e
with the obvious addition and multiplication (using e¢” = 1), and A(e) = ¢ ® e,
€(e) = 1,and S(e) = " 1. Clearly, k[M] ~ k[un].

n—1

EXAMPLE 9.6 If W and V are vector spaces with bases (e;);ey and (f;) jes,then W @ V
is a vector space with basis (¢; ® f;)(, j)erxs- This shows thatif M = My & M>, then

(m1,mz) <> my @ ma:k[M] < k[M1] ® k[M-]

is an isomorphism of k-vector spaces, and one checks easily that it respects the k-bialgebra
structures.

37Bad notation — don’t confuse this with the coordinate ring of an algebraic group.
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PROPOSITION 9.7 For any finitely generated abelian M , the functor D(M)
R — Hom(M, R*) (homomorphisms of abelian groups)

is an algebraic group, with bialgebra k[M]. It is isomorphic to a finite product of copies of
Gy and various iy ’s.

PROOF. To give a k-linear map k[M] — Risto giveamap M — R. The map k[M] — R
is a k-algebra homomorphism if and only if M — R has image in R* and is a homomor-
phism M — R*. This shows that D(M) is represented by k[M], and is therefore an
algebraic group.

A decomposition of abelian groups

M~Z7&® - ®LZLDZL/n1® - DZ/n,7Z,
defines a decomposition of k-bialgebras
kIM] ~ k[Gm] ®k - @k k[Gm] ®k klpn,] ®k -+ ®k klun,]

(9.519.6). Since every finitely generated abelian group M has such a decomposition, this
proves the second statement. O

Characterizing the groups D(M)
LEMMA 9.8 The group-like elements in any k-bialgebra A are linearly independent.
PROOF. If not, it will be possible to express one group-like element e in terms of other

group-like elements e¢; # e:
e = Zi ciei, c; €k.

We may even assume the e; to be linearly independent. Now

A(e)ze®e=2ijcic]~ei®ej

Ae) = Zi ciAej) = Zi ciei @e;.

The e¢; ® e; are also linearly independent, and so this implies that

cici = ¢ ifi=j
71 0 otherwise

Hence, each ¢; = O or 1. But

€le) =1
€(e) = Zcie(ei) = Zci.

Therefore exactly one of the ¢; = 1, so e = ¢; for some 7, contradicting our assumption. o

LEMMA 9.9 The group-like elements of k[M | are exactly the elements of M .
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PROOF. Leta € k[M] be group-like. Then
a= Zcimi for some ¢; € k,m; € M.
The argument in the above proof shows that a = m; for some i. O

PROPOSITION 9.10 An algebraic group G is isomorphic to D(M) for some M if and only
if the group-like elements in k[G| span it (i.e., generate it as a k -vector space).

PROOF. Certainly, the group-like elements of k[M ] span it. Conversely, suppose the group-
like elements M span k[G]. Then they form a basis for k[G] (as a k-vector space), and so
the inclusion M < k[G] extends to an isomorphism k[M] — k[G] of vector spaces. It is
automatically a homomorphism of k-algebras, and it preserves A because the elements of
M are group-like. It is therefore an isomorphism of k-bialgebras (by [9.1). O

Diagonalizable groups

DEFINITION 9.11 An algebraic group G is diagonalizable if k[G] is spanned by group-
like elements.

THEOREM 9.12 (a) The map M — D(M) is a contravariant equivalence from the cate-
gory of finitely generated abelian groups to the category of diagonalizable algebraic groups
(with quasi-inverse G — X(G)).
(b) If

O—-M —->M->M"-0

is an exact sequence, then D(M) — D(M') is a quotient map with kernel D(M").
(c) Subgroups and quotients of diagonalizable algebraic groups are diagonalizable.
PROOF. (a) Certainly, we have a contravariant functor
D: {finitely generated abelian groups} — {diagonalizable groups}.
We show that D is fully faithful, i.e., that
Hom(M, M") — Hom(D(M'), D(M)) (43)

is an isomorphism for all M, M’. As D sends direct sums to products, it suffices to do this
when M, M’ are cyclic. If, for example, M and M are both infinite cyclic groups, then

Hom(M, M') = Hom(Z,Z) = 7Z,

and
Hom(D(M'), D(M)) = Hom(G,, G,,) = {Xi |i e Z} ~7Z,

and so (3) is an isomorphism. The remaining cases are similarly easy.
Finally, (9.10) shows that the functor is essentially surjective, and so is an equivalence.
(b) The map k[M'] — k[M] is injective, and so D(M) — D(M’) is a quotient map
(by definition). Its kernel is represented by k[M ]/ I [ps:], Where I a7 is the augmentation
ideal of k[M'] (see . But ;[ is the ideal generated the elements m — 1 form € M’,
and so k[M]/Ixp is the quotient ring obtained by putting m = 1 for allm € M'.
Therefore M — M" defines an isomorphism k[M]/Ixar) — k[M"].
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(c) If H is an algebraic subgroup of G, then k[G] — k[H] is surjective, and so if the
group-like elements of k[G] span it, the same is true of k[H].

Let D(M) — Q be a quotient map, and let H be its kernel. Then H = D(M") for
some quotient M” of M. Let M’ be the kernel of M — M"”. Then D(M) — D(M’) and
D(M) — Q are quotient maps with the same kernel, and so are isomorphic (6.21). o

Diagonalizable groups are diagonalizable

Recall that D, is the group of invertible diagonal n x n matrices; thus
Dy >~ Gy x -+ X Gy (n copies).

THEOREM 9.13 Let V be a finite-dimensional vector space, and let G be an algebraic
subgroup of GLy . There exists a basis of V for which G C Dy, if and only if G is diago-
nalizable.

In more down-to-earth terms, the theorem says that for an algebraic subgroup G of
GLj, there exists an invertible matrix P in M, (k) such that, for all k-algebras R and all
g € G(R),

* 0
PgPle .
0 *
if and only if G is diagonalizable (according to definition [9.11).

PROOF. = : This follows from (9.12).
<= :Let A = k[G], and let p:V — V ®; A be the comodule corresponding to
the representation G < GLy (see §3). We have to show that V' is a direct sum of one-
dimensional representations or, equivalently, that there exists a basis for V' consisting of
vectors v such that p(v) € (v) ®; A.
Let (e;);cs be the basis for A = k[G] of group-like elements, and write

p) =) vi®er.

Applying the identity (see p31)

(idy ®A)op = (p®idg)op

to v gives
Zi vi ®ei ®e; = Zi p(vi) ® e
Hence
p(vi) = vi @ e; € (vi) ® A.
Since (see p31)

v = (idy ®e) 0 p(v)
= vie(e) =) v

is in the span of the v;, we see that by taking enough v’s we get enough v;’sto span V.
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Split tori and their representations

DEFINITION 9.14 An algebraic group is a split torus if it is isomorphic to a product of
copies of Gy, and it is a forus if it becomes a split torus over k.

In other words, the split tori are the diagonalizable groups D (M) with M torsion-free.
The functor M +— D(M) is a contravariant equivalence from the category of free abelian
groups of finite rank to the category of split tori, with quasi-inverse T +— X (7).

For example, let T = G, X Gy,. Then X(T) = Z @ Z. The character corresponding
to(my,my) € Z D Zis

(1, 12) = 17" 1)"*: T(R) = Gm(R).

A quotient group of a torus is again a torus (because it corresponds to a subgroup of a
free abelian group of finite rank), but a subgroup of a torus need not be a torus. For example,
WUn is a subgroup of Gy, (the map w,, — Gy, corresponds to Z — Z/n7.).

A character y: T — Gy, defines a representation of 7' on any finite-dimensional space
V:lett € T(R) acton R ®; V as multiplication by y(¢) € R*. For example, y defines a
representation of 7" on k" by

x() 0
I — :

0 x()
Let p: T — GLy be a representation of 7. We say that T acts on V through y if

p(t)v = y@)vallt e T(R),v e R V.

More precisely, this means that the image of p is contained in the centre G,, of GLy and is
the composite of

T 2% Gp < GLy .
If V is 1-dimensional, then GLy = G, and so T always acts on V' through some character.

THEOREM 9.15 Letr: T — GL (V) be a representation of a split torus on a finite dimen-
sional vector space V. For each character y, let V), be the largest subspace of V' on which
T acts through the character y. Then

V= EBXGX - Vy.

PROOF. Theorem 9.13[ shows that V' = @lsisr Vy,; for certain characters yi,..., xr.
Thus, V =3 ex(r) Vx> and (11.20) below shows that the sum is direct. o

For example, let T = Gy, X Gy, and let r: T — GL(V) be a representation of 7' on
a finite-dimensional vector space V. Then V decomposes into a direct sum of subspaces
Vimyma)> (m1.m2) € Z x Z, such that (t1,12) € T(k) acts on Vip, my) as 1] 152 (of
course, all but a finite number of the V(,,, ;u,) are zero).
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Rigidity
By an action of algebraic group on another algebraic group, we mean natural actions
G(R) x H(R) - H(R)

such that the elements of G(R) act on H(R) by group homomorphisms. We shall need the
following result:

THEOREM 9.16 Every action of a connected algebraic group G on a torus T is trivial.

The proof is based on the following result:

PROPOSITION 9.17 Every action of a connected algebraic group G on a product of copies
of W, 18 trivial.

PROOF. (SKETCH) Let H be a product of copies of i, and let A = k[H]. The functor
sending R to

M(H)(R) g AUtR-bialgebras (R Rk A)

is an étale algebraic group (cf. exercise below). The action of G on H defines a
homomorphism G — Aut(H ) of algebraic groups, which is trivial because G is connected
(see §8). o

We now sketch the proof of the theorem. It suffices to show that each element g of
G (k) defines the trivial automorphism of Ty Thus, we can replace k with k and take k to
be algebraically closed. The kernel of x — x™:T — T is a product of copies of jt,,, and
so G acts trivially on it. Because of the category equivalence T + X (T'), it suffices to show
that g acts trivially on the X(7"), and because g acts trivially on the kernel of m: T — T it
acts trivially on X(7')/mX(T). We can now apply the following elementary lemma.

LEMMA 9.18 Let M be a free abelian group of finite rank, and let «: M — M be a

homomorphism such that
M — M

! !

M/mM —2 M/mM

commutes for all m. Then ¢ = id.

PROOF. Choose a basis e; for M, and write a(e;) = ) ; a;je;, a;j € 7. The hypothesis is
that, for every integer m,
(aij) =1, modm,

i.e., that m|a;; fori # j and m|a;; — 1. Clearly, this implies that (a;;) = I. 0

Groups of multiplicative type

DEFINITION 9.19 An algebraic group G is of multiplicative type if Gy is diagonalizable.
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Assume (for simplicity) that k is perfect. Let M be a finitely generated abelian group,
and let I" be the group of automorphisms of k over k. A continuous action of I' on M
is a homomorphism I — Aut(M) factoring through Gal(K/k) for some finite Galois
extension K of k contained in k.

For an algebraic group G, we define

X*(G) = Hom(Gg, Gp).

Then I acts continuously on X *(G), because X *(G) is finitely generators, and each of its
generators is defined over a finite extension of k.

THEOREM 9.20 The functor G — X *(G) is a contravariant equivalence from the category
of algebraic groups of multiplicative type over k to the category of finitely generated abelian
groups with a continuous action of I .

PROOF. Omiitted (for the present). See Waterhouse 7.3. o
Let G be a group of multiplicative type over k. For any K C k,
G(K) = Hom(X*(G),k )T

where Ik is the subgroup of I of elements fixing K, and the notation means the G(K)
equals the group of homomorphisms X *(G) — K commuting with the actions of I'k.

EXAMPLE 9.21 Take k = R, so that I" is cyclic of order 2, and let X *(G) = Z. There are
two possible actions of I on X *(G).
(a) Trivial action. Then G(R) = R*, and G >~ Gy,.
(b) The generator ¢ of I" acts on Z as m — —m. Then G(R) = Hom(Z, C*)" consists
of the elements of C* fixed under the following action of ¢,

1z=z1,

Thus G(R) = {z € C* | zZ = 1}, which is compact.

EXAMPLE 9.22 Let K be a finite extension of k. Let T be the functor R — (R ®; K)*.
Then T is an algebraic group, in fact, the group of multiplicative type corresponding to

the I"-module 7z Hom (K k) (families of elements of Z indexed by the k-homomorphisms
K — k).

Exercises

9-1 Show that Aut(um) >~ (Z/mZ)* (constant group defined by the group of invertible
elements in the ring Z/mZ). Hint: To recognize the elements of Aut(i,,)(R) as complete
systems of orthogonal idempotents, see the proof of (9.8).
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10 Jordan decompositions

An endomorphism « of a finite-dimensionsl vector space V' over k is semisimple if it be-
comes diagonalizable on k® & V. For example, for an n x n matrix A, the endomorphism
X > Ax:k™ — k" is semisimple if and only if there exists an invertible matrix P with
entries in k such that PAP ! is diagonal.

From linear algebra, we know that ¢ is semisimple if and only if its minimum polyno-
mial m (7T) has distinct roots; in other words, if and only if the subring k[«] >~ k[T]/(mu(T))
of Endg (V') generated by « is separable.

An endomorphism « of V' is nilpotent if o' = 0 for some m > 0, and it is unipotent
if idy —« is nilpotent. Clearly, if « is nilpotent, then its minimum polynomial divides 7™
for some m, and so the eigenvalues of « are all zero, even in k. From linear algebra, we
know that the converse is also true, and so « is unipotent if and only if its eigenvalues in k
all equal 1.

In this section, we prove the following theorem:

THEOREM 10.1 Let G be an algebraic group over a perfect field k. For any g € G(k)
there exist unique elements gs, gy € G(k) such that

(@) & = gs8u = 8ugs:
(b) for all representations ¢: G — GL(V'), ¢(gs) is semisimple and ¢(g,,) is unipotent.

Then g5 and g,, are called the semisimple and unipotent parts of g, and g = gsgy is the
Jordan decomposition of g.
Jordan normal forms

Let @ be an endomorphism of a finite-dimensional vector space V over k. We say that o
has all its eigenvalues in k if the characteristic polynomial P, (T) of « splits in k[ X],

Po(T) = (T —a))"' -+ (T —ay)", aj €k.

THEOREM 10.2 Let @ be an endomorphism of a finite-dimensional vector space V with
all its eigenvalues in k, and let ay, ..., a, be its distinct eigenvalues. Then there exists a
basis for V relative to which the matrix of « is

A 0 ai  * %

0 A, !
A= ) where A; = %
. a

A,

In fact, of course, one can even do a little better. This theorem is usually proved at
the same time as the following theorem. For each eigenvalue a of « in k, the generalized
eigenspace is defined to be:

Vo={veV|(ax-— a)Nv =0, N sufficiently divisible}.

THEOREM 10.3 If« has all its eigenvalues in k, then V' is a direct sum of the generalized

eigenspaces:
V=Ep. V.
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To deduce this from the first theorem, note that Vj, is spanned by the basis vectors
corresponding to A; (so « acts on V,; through the matrix 4;). To deduce the first theorem
from the second amounts to studying the action of the nilpotent endomorphism o« — a; on
the subspace V; .

Jordan decomposition in GL, (V) (k = k)
In this subsection, k is algebraically closed.

PROPOSITION 10.4 For any automorphism o of a finite-dimensional vector space V, there
exist unique automorphisms og and o, such that

(a) @ = ag o0y = oy oy,

(b) oy is semisimple and oy, is unipotent.

PROOF. According to (I0.3), V is a direct sum of its generalized eigenspaces of: V =
P Vi, . Define s to be the automorphism of V' that acts as @ on V. Then « is a semisimple
automorphism of V', and oy, =q¢ @@ © as_l commutes with a; (because it does on each V)
and is unipotent (because its eigenvalues are 1).

Let o = B0 By be a second decomposition satisfying (a) and (b), and let V = @ V}, be
the decomposition of V' into the eigenspaces for B (corresponding to distinct eigenvalues).
Because 5 and 8,, commute, each V}, is stable under §,,

veVy = Bs(Bu(v)) = Pufsv = Pubv = b(Byv),

and hence under . Moreover, V}, is a generalized eigenspace for V' with eigenvalue b,
which shows that V' = @)V}, is the decomposition of V' into its generalized eigenspaces.
Since B acts on V} as multiplication by b, this proves that 85 = o5, andso By, = ay. o

The automorphisms « and «,, are called the semisimple and unipotent parts of o, and
o = 05 0y = Oy O Oy iS the Jordan decompostion of «.

PROPOSITION 10.5 Let o and S be automorphisms of V and W respectively, and let
@:V — W be alinear map such that poa = fo@. Then pous = Bsop and poay, = By 0¢.

PROOF. Foreacha € k, ¢ obviously maps V, into W, which implies that g ooy = B0 .
Hence also . .
ooy =go(aoay )= (fofy )op=Puogp. o

PROPOSITION 10.6 Leta = oy o oy, be the Jordan decomposition of o. Then s € k[a],
i.e., there exists a polyonomial P(T) € k[T] such that oy = P ().

PROOF. For each (distinct) eigenvalue a; of «, let n; be such that (¢ —a)"" = O on V,,. The
polynomials (7 — a;)"¢ are relatively prime, and so, according to the Chinese remainder
theorem, there exists a P € k[T] such that

P(T) =a; mod (T —ay)"**
P(T) = ay mod (T — ap)"e2

Then P(c) acts as a; on Vy;, and so P (o) = as. a)
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COROLLARY 10.7 Every subspace W of V stable under « is stable under ¢ and o, and
a|W = ag|W o ay|W is the Jordan decomposition of o|W.

PROOF. It follows from the proposition that W is stable under e, and therefore also ;!

and o, It is obvious that the decomposition o|W = a|W o o, |W has the properties to be
the Jordan decomposition. o

For the remainder of this section, & is perfect.

Jordan decomposition in GL(V), k perfect

Let o be an automorphism of a finite-dimensional vector space V' over a perfect field k,
and let K be a splitting field for the minimum polyomial of « (so K is generated by the
eigenvalues of o). Choose a basis for V, and use it to attach matrices to endomorphisms
of Vand K ®; V. Let A be the matrix of @. Theorem [10.3| allows us to write A =
AsAy = Ay As with Ag, Ay, respectively semisimple and unipotent matrices with entries in
K; moreover, this decomposition is unique.

Let 0 € Gal(K/k), and for a matrix B = (b;;), define 0B = (0b;;). Because A has
entries in k, 04 = A. Now

A = (045)(0A4y) = (04y)(0As)

is again a Jordan decomposition of A. By uniqueness, 0A; = A and 04,, = Ay. Since
this is true for all 0 € Gal(K/k), As and A, have entries in k. This shows that Jordan
decompositions exist over k.

THEOREM 10.8 Let« be an automomorphism of a finite-dimensional vector space V over
a perfect field. Then « has a unique (Jordan) decomposition @ = o5 © 0t = @y © oy With
oy and oy, semisimple and unipotent respectively. Any subspace W of V stable under o is
stable under oy and o, and o |W = (ag|W) o (ay|W) = (o | W) o (as|W).

For the last sentence, one needs that (K ®; W) NV = W. To prove this, choose a
basis (¢;)1<i<m for W, and extend it to a basis (e;)1<j<n for V. If > _aje; (a; € k), lies in
K ®; W,thena; = 0fori > m.

LEMMA 10.9 Let« and B be automorphisms of vector spaces V and W. Then

(a_l)s = O‘s_l (@ ®B)s = o5 ® Py (aV)s = 05;/ (0 @ B)s = a5 D Bs
(a_l)u = 0‘1;1 (@® By =0y @ By (av)u = 0‘1)/ (@ ® Blu = oy @ Bu

PROOF. It is obvious that ™! = (o) !(as)™! is the Jordan decomposition of o~ 1. It
suffices to prove the remaining statements in the top row, and it suffices to prove these after
passing to the algebraic closure of the ground field. Thus, we may choose bases for which
the matrices of @ and B are upper triangular. Note that the semisimple part of a triangular
matrix (upper or lower) is obtained by putting all off-diagonal entries equal to zero. Thus,
the equalities on the first row follow from the next statement. Let A and B be the matrices
of @ and B relative some choice of bases for V and W ; relative to the obvious bases, ¢ ® 3,
aV, and a @ f have the following matrices:

Ab11 Abip .-
Abzl Ab22 At (A O)
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EXAMPLE 10.10 Let k have characteristic 2 and be nonperfect, so that there exists an a €

k thatis not a square in k, and let A = (2 (1)) In k[+/a], A has the Jordan decomposition

(5 A

Since these matrices do not have coefficients in k, the uniqueness shows that A does not
have a Jordan decomposition in M5 (k).

Infinite-dimensional vector spaces

Let V be a vector space, possibly infinite dimensional, over k. An endomorphism « of V' is
locally finite if V is a union of finite-dimensional subspaces stable under . A locally finite
endomorphism is semisimple (resp. locally nilpotent, locally unipotent) if its restriction to
each stable finite-dimensional subspace is semisimple (resp. nilpotent, unipotent).

Let « be a locally finite automorphism of V. By assumption, every v € V is contained
in a finite-dimensional subspace W stable under «, and we define as(v) = (x|W)s(v).
According to (I0.8), this is independent of the choice of W, and so in this way we get a
semisimple automorphism of V. Similarly, we can define «,,. Thus:

THEOREM 10.11 For any locally finite automorphism o of V', there exist unique automor-
phisms ag and o, such that

() ¢ = agoay = ay oy,

(b) oy is semisimple and oy, is locally unipotent.
For any finite-dimensional subspace W of V stable under o, | W = (a5|W) o (ay|W) =
(o | W) o (s |W) is the Jordan decomposition of a|W .

The regular representation contains all

Let G be an algebraic group and let g € G(k). For any representation ¢: G — GLy,
we get a Jordan decomposition ¢(g) = ¢(g)s@(g)y in GL(V). We have to show that
there is a decomposition g = gsgy, in G(k) that gives the Jordan decomposition for every
representation ¢. One basic result we will need is that every representation of G occurs
already in a direct sum of copies of the regular representation, and so if we can find a
decomposition g = gsgy in G(k) that works for the regular representation it should work
for every representation.

PROPOSITION 10.12 Let V be a representation of G, and let Vy denote the underlying
vector space with the trivial representation. Then there is an injective homomorphisnEg]

V = Vo ® k[G]

38Compare the proposition with the following result for a finite group G of order n. Let k[G] be the group
algebra, and let V' be a k[G]-module. Let Vg be V regarded as a vector space. Then

-1 -1,.
V> deGg(X)g v:V — k[G] ®; Vo
is a G-homomorphism whose composite with
g, v guk[G] @ Vo =V

is the identity on V.
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of representations (i.e., V' embeds into a direct sum of copies of the regular representation).

PROOF. Let A = k[G]. The k-vector space V ®; A becomes a comodule (isomorphic to
a direct sum of copies of A) with the map

dy @AV @r A—>V Q@ A Qi A.

The commutative diagram (see p3 1))

1% L Vo Q A ~ A"

\Lp lidvo ®A lm

Vor AP V@ Ao A ~ (AR, A"

says exactly that the inclusion p: V' — V ®j A is homomorphism of comodules. O

The Jordan decomposition in the regular representation

Let G be an algebraic group. An element g of G(k) = Homy_y,(A4, k) defines a k-linear
automorphism ¢(g): A — A, namely,

a®a’'+—a-g(a’)

A
A— AR, A — A (44)

(¢ is the regular representation). Moreover, ¢(g) is locally finite (3.4), and so there is a
decomposition ¢(g) = ¢(g)sP(g), whose restriction to any ¢ (g)-stable subspace is the
Jordan decomposition.

PROPOSITION 10.13 Let g € GL(V), and let g = gsgy be its Jordan decomposition.
(a) Let¢ be the regular representation of GLy on A = k[GLy]; then ¢ (g) = ¢(gs)P(gu)

is the Jordan decomposition of ¢ (g) (i.e., p(g)s = ¢(gs) and ¢(g)u = P (gu)).
(b) Let G be an algebraic subgroup of GLy ; it g € G(k), then g, g, € G(k).

PROOF. (a) Let G = GLy acton V'V through the contragredient representation, i.e., g acts
as (g¥)~!. The actions of G on V and V'V define an injective map (compatible with the
actions of GL(V))

GL(V) — End(V) x End(V"Y)

whose image consists of the pairs («, 8) such that ¥ o 8 = idyv. When we choose a basis
for V, this equality becomes a polynomial condition on the entries of the matrices of o and
B, and so GLy is a closed subvariety of End(V) x End(V") (regarded as an algebraic
variety; cf. AG p55, affine space without coordinates). Therefore, there is a surjective map
of coordinate rings:

7:Sym(VY ®@ V) @k Sym(V ® V) — k[G].

Let @ be the natural representation of GLy on Sym(VY ® V) @ Sym(V ® V'V). It follows
from Lemma that @(g)s = D(gs). Forany h € GL(V), w o ®(h) = ¢(h) omw. In
particular,

Tod(g) =¢(g)om
(To®@(g)s =) mo®(gs) =¢(gs)om



10  JORDAN DECOMPOSITIONS 83

According to (10.5), the first of these implies that

To®(g)s =¢(g)som.

Since 7 is surjective, this shows that ¢(g)s = ¢(gs).
(b) Let k[G] = A/I. An element g of GLy (k) = Homy (A, k) lies in G(k) if and
only if g(/) = 0. Thus, we have to show that

g) =0 = gs(I)=0.
The composite of the maps in the top row of

A idg ®
O Agp A 25 seik

l l l

A id ®
AT =29 a1 e, AJT 25 4 1 e k

is ¢(g) (see {@4)). As the diagram commutes, we see that

P()U) C 1,

and so

¢(gs)() = ¢(g)s(I) C 1.

Because A — A/ is a homomorphism of bialgebras, €gr,,, (/) = 0. According to the next
lemma,

gs = €0 d(gs),

and so g sends 7 to 0. o

LEMMA 10.14 Let G be an algebraic group, and let ¢ be the regular representation. An
element g € G(k) can be recovered from ¢(g) by the formula

g=¢€od(g).

PROOF. Let A = k[G], and recall that g is a homomorphism A — k. When we omit the
identification A ®j k ~ k, ¢(g) is the composite,

$(g) = (dg®g)oA:A—> AR A—> AR k.

Therefore,
(e ®idg) o Pp(g) = (e ®idg) o (id4g ®g) o A.

Clearly,

(e®idg)o(dy4Rg) =€e® g (homomorphisms A ®; A — k ® k)
= (idg ®g) o (e ® idy).

But (¢ ® id4) o A is the canonical isomorphism i: A >~ k ®; A (see p31), and so
(e®idg)od(g) = idy ®goi (homomorphisms 4 — k ® k).

When we ignore i s, this becomes the required formula. o
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Proof of Theorem [10.1]

Let G be an algebraic group over k, and choose an embedding
¢:G — GLy

with V' a finite-dimensional vector space (we know ¢ exists by[3.8). Let g € G (k). Accord-
ing to (10.13])), there is a decomposition g = g5g,, in G (k) giving the Jordan decomposition
on V. Let ¢’: G — GLy- be a second representation, and consider the homomorphism

(¢.¢'):G — GLygp

defined by ¢, ¢’. According to (10.13)), there is a decomposition g = g4 g7, in G (k) giving
the Jordan decomposition on V' @ V', and in particular on V. Since G(k) — GL(V) is
injective, this shows that g; = g%, gu = g,, and that the decomposition g = gsgy gives
the Jordan decomposition on V. This proves the existence, and the uniqueness is obvious.

REMARK 10.15 (a) To check that a decomposition g = gsgy, is the Jordan decomposition,
it suffices to check that ¢(g) = ¢(gs)@(gy) is the Jordan decomposition of ¢(g) for a single
faithful representation of G.

(b) Homomorphisms of groups preserve Jordan decompositions. [Let «: G — G’ be
a homomorphism and g = gsg, a Jordan decomposition in G(k). For any representa-
tion ¢:G' — GLy, ¢ o « is a representation of G, and so (¢ o @)(g) = ((¢ o @)(gs)) -
((p o )(gy)) is the Jordan decomposition in GL(V'). If we choose ¢ to be faithful, this
implies that a(g) = a(gs) - ¢(gy) is the Jordan decomposition of «(g).]

NOTES The above proof of the Jordan decomposition can probably be simplified.
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11 Solvable algebraic groups

Brief review of solvable groups (in the usual sense)

Let G be a group (in the usual sense). Recall that the commutator of x, y € G is

[x,y] = xyx~1y™h = (xy)(yx) 7

Thus, [x,y] = 1 if and only if xy = yx, and G is commutative if and only if every
commutator equals 1. The (first) derived group G’ (or DG) of G is the subgroup generated
by commutators. Every automorphism of G maps a commutator to a commutator, and so
G’ is a characteristic subgroup of G (in particular, it is normal). In fact, it is the smallest
normal subgroup such that G/ G’ is commutative.

The map (not a group homomorphism)

(X15 Y15+ s Xns Yu) = [X1, 01 -+ - [Xn, Yyu: G — G

has image the set of elements of G that can be written as a product of (at most) » commu-
tators, and so DG is the union of the images of these maps. Note that G2"~2 — G factors
through G?" — G,

(XI, y17 LI 7xl’l—17 yn—l) g (xla y17 LI 7xl’l—17 yn—l, 19 1) g [xl’ yl]"‘[xn—l» yn—l]
A group G is said to be solvablePf] if the derived series
GO>DGOD*GD--

terminates with 1. For example, if n > 5, then S, (symmetric group on n letters) is not
solvable because its derived series S, O A, terminates with A,,.

In this section we’ll define the derived subgroup of an algebraic group, and we’ll call
an algebraic group solvable if the similar sequence terminates with {1}. Then we’ll study
the structure of solvable groups.

Remarks on algebraic subgroups

Recall that, when k = k, G(k) ~ spm k[G], and the Zariski topology on spm k[G] defines
a Zariski topology on G (k). For any embedding of G into GL,, this is the topology on
G (k) induced by the natural Zariski topology on GLj, (k).

PROPOSITION 11.1 For an algebraic group G over an algebraically closed field k, H <>
H (k) is a one-to-one correspondence between the smooth algebraic subgroups of G and
the Zariski-closed subgroups of G (k).

PROOF. Both correspond to reduced quotients of k[G] compatible with its bialgebra struc-
ture. o

PROPOSITION 11.2 Let G be an algebraic group over a perfect field k, and let I be the
Galois group of k over k. Then I" acts on G(k), and H < H(k) is a one-to-one corre-
spondence between the smooth algebraic subgroups of G and the Zariski-closed subgroups
of G (k) stable under I" (i.e., such that oH (k) = H(k) forallo € I").

PROOF. Both correspond to radical ideals a in the E—bialgebra k[G] stable under the action
of I' (see AG 16.7, 16.8). O

3Because a polynomial is solvable in terms of radicals if and only if its Galois group is solvable (FT 5.29).
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Commutative groups are triangulizable
We first prove a result in linear algebra.

PROPOSITION 11.3 LetV be a finite-dimensional vector space over an algebraically closed
field k, and let S be a set of commuting endomorphisms of V. There exists a basis for V
for which S is contained in the group of upper triangular matrices, i.e., a basis eq, ..., e,
such that

a({er,...,e)) C(er,...,e;) foralli. (45)

In more down-to-earth terms, let S be a set of commuting 7 X n matrices; then there
exists an invertible matrix P such that PAP~! is upper triangular for A € S.

PROOF. We prove this by induction on the dimension of V. If every @ € S is a scalar
multiple of the identity map, there is nothing to prove. Otherwise, there exists an o € S
and an eigenvalue a for o such that the eigenspace V; # V. Because every element of
S commutes with «, V, is stable under the action of the elements of S @ The induction
hypothesis applied to S acting on V,; and V/V, shows that there exist bases e, ..., ey for
Vg and ey 41, ..., ey, for V/V, such that

a({er,...,e)) Cler,...,ei)
a((gm_i-l, e ,Em+l>) C (Em+1, e ,Em_l’-l)

for all i. Write €,,4+; = em+; + Va. Theney,. .., ey is a basis for V satisfying (@3). o

PROPOSITION 11.4 LetV be a finite-dimensional vector space over an algebraically closed
field k, and let G be a commutative smooth algebraic subgroup of GLy . There exists a basis
for V for which G is contained in T,,.

PROOF. We deduce this from (T1.3)), using the following fact (4.8):

Let G be an algebraic subgroup of GL,; when k = k and G is smooth,
k[G] consists of the functions G(k) — k defined by elements of k[GL,] =
k[....Xij,..., det(X,’j)_l].

Consider:
G(k) = GL(V) k[G] << k[GLy] G —= GLy
: A :
v : v
Ty (k) = GLg(k) k[Tp] <<= k[GLa] T, — GLj,

The first square is a diagram of groups and group homomorphisms. We have used
to choose a basis for V' (hence an isomorphism V' — k™) so that the dotted arrow exists.

The second square is the diagram of bialgebras and bialgebra homomorphisms corre-
sponding to the first (cf. f.4); the dotted arrow in the first square defines a homomorphism
from k[T,] to the quotient k[G] of k[GLy].

The third square is the diagram of algebraic groups defined by the second square.

40Let B € S, and let x € V. Then
a(fx) = p(ax) = pax = a(Px).
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Decomposition of a commutative algebraic group

DEFINITION 11.5 Let G be an algebraic group over a perfect field k. An element g of
G (k) is semisimple (resp. unipotent) if g = g, (resp. g = gu).

Thus, g is semisimple (resp. unipotent) if and only if ¢(g) is semisimple (resp. unipo-
tent) for all representations ¢ of G.
Theorem [L0.1] shows that

G(k) = G(k)s x G(k)y (cartesian product of sets) (46)

where G(k)s (resp. G(k),) is the set of semisimple (resp. unipotent) elements in G (k).
However, this will not in general be a decomposition of groups, because Jordan decompo-
sitions don’t respect products, for example, (gh), # guhy in general. However, if G is
commutative, then
multiplication

GxG ——
is a homomorphism of groups, and so it does respect the Jordan decompositions (10.15])).
Thus, in his case realizes G (k) as a product of subgroups. We can do better.

THEOREM 11.6 Every commutative smooth algebraic group G over an algebraically closed
field is a direct product of two algebraic subgroups

G >~ G x Gy
such that Gs(k) = G(k)s and Gy (k) = G(k)y.

PROOF. Choose an embedding G < T, for some n, and let Gg; = G N D, and G, =
G N U,. Because G is commutative,

Gy xG, —> G “47)

is a homomorphism with kernel Gy N Gy, (cf. §6). Because D, N U, = {1} as algebraic
group Gs N Gy = {1}, and because G5(k)Gy, (k) = G(k) and G is smooth, Gy X G, —
G is a quotient map (6.18)). Thus, it is an isomorphism. o

REMARK 11.7 Let G be a smooth algebraic group over an algebraically closed field k. In
general, G (k) will not be closed for the Zariski topology. However, G(k), is closed. To
see this, embed G in GL, for some n. A matrix 4 is unipotent if and only if 1 is its only
eigenvalue, i.e., if and only if its characteristic polynomial is (7" — 1)". But the coefficients
of the characteristic polynomial of A are polynomials in the entries of A, and so this is a
polynomial condition.

ASIDE 11.8 In fact every commutative algebraic group over a perfect field decomposes
into a product of a group of multiplicative type and a unipotent group (Waterhouse 1979,
9.5)

41D, is defined as a subgroup of GLj, by the equations X jj = 0fori # j; Uy is defined by the equations
X;; = 1 etc. When combined, the equations certainly define the subgroup {/} (in any ring).
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The derived group of algebraic group

DEFINITION 11.9 The derived group DG (or G’ or GI°") of an algebraic group G is the
intersection of the normal algebraic subgroups N of G such that G/N is commutative.

Thus (cf. §6), DG is the smallest normal algebraic subgroup of G such that G/DG is
commutative. We shall need another description of it, analogous to the description of the
derived group as that generated by commutators.

As for groups, there exist maps of functors

G>?—>G*> ... > G >G.

Let I, be the kernel of the homomorphism k[G] — k[G?"] of k-algebras (not k-bialgebras)
defined by G?" — G. Then

Ihh>DL>-D>I D
andwelet I = () I,.

PROPOSITION 11.10 The coordinate ring of DG is k[G]/1.

PROOF. From the diagram of set-valued functors

G2n X G2n N G4n

+ 2 +

mult

G x GG — G
we get a diagram of k-algebras

klG]/In @k k[G]/In <« k[G]/I2n
1 1 1

KIGl  ®  kIGI < K[G)
(because k[G]/ I, is the image of k[G] in k[G?"]). It follows that A: k[G] — k[G]/] ®k
k[G]/I factors through k[G] — k[G]/I, and defines a k-bialgebra structure on k[G]/1,
which corresponds to the smallest algebraic subgroup G’ of G such that G’(R) contains all
the commutators for all R. Clearly, this is the smallest normal subgroup such that G/ G’ is
commutative. o

COROLLARY 11.11 Forany field K D k, DGx = (DG)k.
PROOF. The definition of I commutes with extension of the base field. O
COROLLARY 11.12 IfG is connected (resp. smooth), then DG is connected (resp. smooth).

PROOF. Recall that an algebraic group G is connected if and only if k[G] has no idempotent
# 0,1 (see g67), and that a product of connected algebraic groups is connected (8.16).
Since k[G]/I, < k[G?"], the ring k[G]/I, has no idempotent # 0, 1, and this implies
that the same is true of k[G]/I = k[DG]. A similar argument works for “smooth”. o

COROLLARY 11.13 PROPOSITION 11.14 Let G be a smooth connected algebraic group.
Then k[DG| = k[G]/ I, for some n, and (DG)(k) = D(G(k)).
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PROOF. As G is connected and smooth, so also is G2 . Therefore, each ideal
I, is prime, and an ascending sequence of prime ideals in a noetherian ring terminates. This
proves the first part of the statement.

Let V,, be the image of G2*(k) in G(k). Its closure in G (k) is the zero-set of I,,. Being
the image of a regular map, 1}, contains a dense open subset U of its closure (AG 10.2).
Choose 7 as in the first part, so that the zero-set of I, is DG (k). Then

U-U'CV, -V, CVan € DGK)) = Um Viw C DG (k).

It remains to show that U - U 1 = DG (k). Let g € DG (k). Because U is open and dense
DG(k), sois gU ™!, which must therefore meet U, forcing g to liein U - U. o

Definition of a solvable algebraic group

Write DG for D(DG), etc..

DEFINITION 11.15 An algebraic group G is solvable if the derived series
G>DGDO>D*GD -
terminates with 1.

LEMMA 11.16 An algebraic group G is solvable if and only if it has a sequence of alge-
braic subgroups
GDOGiD---DG,={l} (48)

with G; 1 normal in G; for each i, and G; /G;4+1 commutative.

PROOF. If G is solvable, then the derived series is such a sequence. Conversely, G D DG,
so G, D D?G, etc.. o

EXAMPLE 11.17 Let F be a finite group, and let I be the associated constant algebraic
group (2.14). Then F is solvable if and only if F is solvable. In particular, the theory
of solvable algebraic groups includes the theory of solvable finite groups, which is quite
complicated.

EXAMPLE 11.18 The group T,, of upper triangular matrices is solvable. For example,

G216}

(@52)1 =18 213501 2 1(858))

demonstrate that T, and T3 are solvable. In the first case, the quotients are G, x G, and
Gyg, and in the second the quotients are G, X Gy, X Gy, G4 X G, and Gy,.
More generally, let Go be the subgroup of T, consisting of the matrices (a;;) with
a;j = 1. Let G, be the subgroup of G of matrices (a;;) such thata;; = 0for0 < j —i <
r. The map
(ajj) = (@142, Qiptitt,--.)

is a homomorphism from G, onto G, X G, x --- with kernel G, 41.
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Alternatively, we can work abstractly. A full flag F in a vector space V' of dimension
n is a sequence of subspaces

V=V,2>---2V;2Vi.1D---DV; D{0}

with V; of dimension i. Let T be the algebraic subgroup of GLy such that T (k) consists of
the automorphisms preserving the flag, i.e., such that o(V;) C V;. When we take F to be
the obvious flag in k", G = T,. Let G be the algebraic subgroup of G of « acting as id
on the quotients V;/ V;_;; more precisely,

Go = Ker(G — [ [ GLy;/v,_,)-

Then Gy is a normal algebraic subgroup of T with quotient isomorphic to G,. Now de-
fine G, to be the algebraic subgroup of Gg of elements o acting as id on the quotients
Vi/Vi—r—1. Again, G4+ is a normal algebraic subgroup of G, with quotient isomorphic
to a product of copies of G.

EXAMPLE 11.19 The group of n x n monomial matrices is solvable if and only if n < 4
(because Sy, is solvable if and only if n < 4; GT 4.33).

Independence of characters

Let G, be the subgroup of GL, of scalar matrices, i.e., it is the subgroup defined by the
equations

Xij =0fori # j;
X11=Xp == Xun.

Thena € G, (R) = R* actson R" as (x1,...,xp) > (axi,...,axy).

Similarly, GLy contains a subgroup G, such that a € G,,(R) acts on R ®; V by the
homothety v + av. Under the isomorphism GLy — GL;, defined by any basis of V, the
Gy ’s correspond. In fact, G, is the centre of GLy .

Now let ¢: G — GLy be a representation of G on V. If ¢ factors through the centre
Gm of GLV,

G -2 G, cGLy

then ¢ is a character of G, and we say that G acts on V' through the character ¢ (cf. p75).
More generally, we say that G acts on a subspace W of V through a character y if W is
stable under G and G acts on W through y. Note that this means, in particular, that the
elements of W are common eigenvectors for the g € G(k): if w € W, then for every
g € G(k), p(g)w is a scalar multiple of w. For this reason, we also call Vy an eigenspace
for G with character .

Let ¢: G — GLy be a representation of G on V. If G acts on a subspaces W and
W' through a character y, then it acts on W + W' through y. Therefore, there is a largest
subspace Vy of V' on which G acts through y.

PROPOSITION 11.20 Assume G is smooth. If V is a sum of spaces V,, then it is a di-
rect sum. In other words, vectors lying in eigenspaces corresponding to x’s are linearly
independent.
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PROOF. As we saw in §9, characters of G correspond to group-like elements of k[G]. If
X <> a(y), then the representation p of G on V) is given by p(v) = v ® a(y).

Suppose V' = Vy, + --- + Vy, with the y; distinct characters of G. If the sum is not
direct, then there exists a relation

v+ v =0, v eV, v; # 0. (49)
Then
0= p) =Y v ®a(x)
which contradicts the linear independence of the a(y;) (see[9.8). O

REMARK 11.21 In characteristic zero, there is the following more direct proof. We may
assume k = k. On applying g € G(k) to , we get a new relation

x1(gvr + -+ xs—1(2vs—1 + xs(g)vs = 0. (50)

As xs # xs—1, there exists a g € G(k) such that y5(g) # xs—1(g). Multiply by
xs(g)~! and subtract from . This will give us a new relation of the same form but

with fewer terms. Continuing in this fashion, we arrive at a contradiction. [Perhaps this
argument works more generally.]

We saw in §9 that if G is a split torus, V' is always a sum of the eigenspace V). In
general, this will be far from true. For example, SL; has no nontrivial characters.

The Lie-Kolchin theorem

THEOREM 11.22 Let G be an algebraic subgroup of GLy . If G is connected, smooth, and
solvable, and k is algebraically closed, then there exists a basis for V such that G C T,.

Before proving this, it will be useful to see that the hypotheses are really needed.
solvable As T, is solvable and a subgroup of a solvable group is obviously solv-
able, this is necessary.
k algebraically closed If G(k) C T, (k), then the elements of G (k) have a common eigen-
vector, namely, e; = (10 - 0)". Unless k is algebraically closed, an endomorphism
need not have an eigenvector, and, for example,

{(42) | abeR da*>+b*=1}

is an commutative algebraic group over R that is not triangulizable over R.
connected The group G of monomial 2 x 2 matrices is solvable but no triagonalizable.

The only common eigenvectors of D(k) C G(k) are ey = () and ez = (9),

but the monomial matrix (‘1) (1)) interchanges e; and e, and so there is no common

eigenvector for the elements of G (k).

PROOF. By the argument in the proof of (IT.4), it suffices to show that there exists a basis
for V such that G(k) C T, (k).

Also, it suffices to show that the elements of G (k) have a common eigenvector, because
then we can apply induction on the dimension of V' (cf. the proof of [I1.3).

We prove this by induction on the length of the derived series G. If the derived series
has length zero, then G is commutative, and we proved the result in (IT.4). Let N = DG.
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Its derived series is one shorter than that of G, and so we can assume that the elements of
N have a common eigenvector, i.e., for some character y of N, the space V) (for N) is
nonzero.

Let W be the sum of the nonzero eigenspaces V), for N. According to , the sum

is direct,
W=y

and so the set {V/} of nonzero eigenspaces for N is finite.
Let x € V) for some y, and let g € G(k). Forn € N(k),

ngx = g(g 'ng)x = g- x(¢g 'ng)x = x(g"'ng) - gx

For the middle equality we used that N is normal in G. Thus, gx lies in the eigenspace for
the character ' = (n — x(g~'ng)) of N. This shows that G(k) permutes the finite set
V.

Choose a y and let H be the stabilizer of Vy in G (k). Thus, H is a subgroup of finite
index in G(k). Moreover, it is closed for the Zariski topology on G(k) because it is the
set where the characters y and y’ coincide. But every closed subgroup of finite index of a
topological group is ope and so H is closed and open in G (k). But G(k) is connected
for the Zariski topology , and so G(k) = H. This shows that W = V,,, and so G (k)
stabilizes Vy.

An element n € N(k) acts on V), as the homothety x — x(n)x, x(n) € k. But each
element n of N (k) is the commutator n = [x, y] of two elements of G (k) (see[l1.14), and
so n acts on Vy as an automorphism of determinant 1. This shows that ()™ Ve =1 and
so the image of y: G — G, is finite. Because N is connected, this shows that N (k) in fact
acts triviallyﬁ on Vy. Hence G(k) acts on V), through the quotient G(k)/N(k), which is
commutative. In this case, we know there is a common eigenvalue . O

Unipotent groups

There is the following statement in linear algebra.

PROPOSITION 11.23 Let V be a finite-dimensional vector space, and let G be a subgroup
of GL(V) consisting of unipotent endomorphisms. Then there exists a basis for V for which
G is contained in Uy, (in particular, G is solvable).

PROOF. Waterhouse 1979, 8.2. o

PROPOSITION 11.24 The following conditions on an algebraic group G are equivalent:
(a) in every nonzero representation of G has a nonzero fixed vector (i.e., anonzerov € V
such that p(v) = v ® 1 when V is regarded as a k[G]-comodule);
(b) G is isomorphic to a subgroup of U,, for some n; and
(¢) for smooth G, G(k) consists of unipotent elements.

PROOF. Waterhouse 1979, 8.3. [As in the proof of ((11.4), (c) implies that (b).] o

DEFINITION 11.25 An algebraic group G is unipotent if it satisfies the equivalent condi-

tions of (11.24).

42Because it is the complement of finite set of cosets, each of which is also closed.

43In more detail, the argument shows that the character y takes values in jt;; C Gy, where m = dim Vy If
k has characteristic zero, or characteristic p and p /m, then u,, is étale, and so, because N is connected, y
is trivial. If p|m, the argument only shows that y takes values in i, for p” the power of p dividing m. But
ppr (k) =1, and so the action of N (k) on V is trivial, as claimed.
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Structure of solvable groups

THEOREM 11.26 Let G be a connected solvable smooth group over a perfect field k. There
exists a unique connected normal algebraic subgroup G, of G such that

(a) Gy, is unipotent;

(b) G/G, is of multiplicative type.
The formation of G,, commutes with change of the base field.

PROOF. We first prove this when k = k. Embed G into T}, for some 1, and construct

1 Uy Ty Dy, 1
| I I
1 Gu G T 1

where G, = U, N G and T is the image of G in D,. Certainly G, is a normal algebraic
subgroup of G satisfying (a) and (b). We next prove that G, is connected.
Let Q = G/DG. It is commutative, so that (11.6)

Q >~ Qu x Qs.

This shows that Q,, is connected (if it had an étale quotient, so would Q). As G/ Gy, is
commutative, DG C G, and the diagram

1 DG Gy mo(Gy) —— 1

|

1 —— DG G 0 —> 1

A)
y)
A)

y)
A)
y)
A)

~ w

1 1

shows that T ~ Q/mo(Gy). Since n(Gy) C Qy, this shows that 79(Gy,) = Oy, and so
(18.27)
Qu, DG connected = Gy, connected.

For the uniqueness, note that G, is the largest connected normal unipotent subgroup of
G, or that G, (k) consists of the unipotent elements of G (k) (and apply ).

When k is only perfect, the uniqueness of (Gp), implies that it is stable under I,
and hence arises from a unique algebraic subgroup G, of G (11.2), which clearly has the
required properties. a]

Tori in solvable groups

PROPOSITION 11.27 Let G be a connected smooth solvable group over an algebraically
closed field. If T and T' are maximal tori in G, then T' = gTg~"! for some g € G(k).

PROOF. Omiitted for the present (cf. Humphreys 1975, 19.2). O



11 SOLVABLE ALGEBRAIC GROUPS 94

PROPOSITION 11.28 The centralizer of any torus in a connected smooth solvable group G
is connected.

PROOF. Omitted for the present (cf. Humphreys 1975, 19.4). O

The radical of an algebraic group

LEMMA 11.29 (a) Algebraic subgroups and quotient groups of solvable algebraic groups
are solvable.

(b) Let N be a normal algebraic subgroup of G. If N and G/N are solvable, then so
alsois G.

(c) Let N and H be algebraic subgroups of G with N normal. If H and N are solvable
(resp. connected), then HN is solvable (resp. connected).

PROOF. Only (c) is requires proof. The quotient HN/N is solvable (resp. connected)
because it is isomorphic to H/H NN (see|6.24)), and so this follows from (b) (resp. [8.27).0

It follows from (c) that for any algebraic algebraic group G over a perfect field &, there
exists a unique largest connected normal smooth solvable subgroup, which is called the
radical RG of G. The unipotent radical of G is defined to be R,G = (RG),,.

Structure of a general (affine) algebraic group

DEFINITION 11.30 A smooth connected algebraic group G # 1 is semisimple it has no
smooth connected normal commutative subgroup other than the identity, and it is reductive
if the only such subgroups are tori.

For example, SL,, SO, Sp,, are semisimple, and GL, is reductive.

PROPOSITION 11.31 Let G be a smooth connected algebraic group over a perfect field k .
(a) G is semisimple if and only if RG = 0.
(b) G isreductive if and only if R,G = 0.

PROOF. (a) If RG = 0, then obviously G is semisimple. For the converse, we use that, for
any algebraic group G, RG and DG are characteristic subgroups, i.e., every automorphism
of G maps RG onto RG and DG onto DG. This is obvious from their definitions: RG is
the largest connected normal solvable algebraic subgroup and DG is the smallest normal
algebraic subgroup such that G/DG is commutative. Therefore the chain

G D RG D D(RG) D D*(RG) D> ---D>D"(RG) D 1

is preserved by every automorphism of G. In particular, the groups are normal in G.
(b) Similar. |

REMARK 11.32 If one of the conditions, commutative, connected, normal, smooth, is
dropped, then a semisimple group may have such a subgroup. For example, SL, has the
commutative normal subgroup {£7} and the commutative connected subgroup U,. More-
over, SL, x SL5 is semisimple, but it has the connected normal subgroup {1} xSL,. Finally,
over a field of characteristic 2, SL; has the connected normal commutative subgroup (.
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EXAMPLE 11.33 Let G be the group of invertible matrices (1?) g) The unipotent radi-
. . I B . . .
cal of G is the subgroup of matrices 0o 1) The quotient of G by R, G is isomorphic to

the reductive group of invertible matrices of the form (13 C(’) ), i.e., to GL;, x GL,. The

radical of this is G, x Gy,.

ASIDE 11.34 A representation G — GL(V) is said to be semisimple (or completely re-
ducible) if every stable subspace W has a stable complement W’ (so V is a direct sum
V = W @& W’ of representations), or, equivalently, if V' is a direct sum of simple (i.¢., irre-
ducible) representations (those with no proper nonzero subrepresentations). For example,

the action of U, on k2,
I a\(x\ _(x+ay
0 1)\y) y)’

is not semisimple because the only stable one-dimensional subspace is the x-axis (the map
is a shear). In general, representations of unipotent groups are not semisimple; nor should
you expect the representations of a group containing a normal unipotent group to be semi-
simple. However, in characteristic zero, a connected algebraic group is reductive if and only
if all of its representations are semisimple (I5.6)). In characteristic p, a connected algebraic
group is reductive if and only if it is a torus.

Exercises

11-1 Give a geometric proof that G connected implies DG connected. [Show that the
image of connected set under a continuous map is connected (for the Zariski topology,
say), the closure of a connected set is connected, and a nested union of connected sets is
connected sets is connected; then apply the criterion (8.19).]

11-2 Show thatif 1 - N — G — Q — 1 is exact, so also is mg(N) — m9(G) —
wo(Q) — 1 (in an obvious sense). Give an example to show that wo(N) — m9(G) need
not be injective.
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12 The Lie algebra of an algebraic group: basics

According to any definition, an algebraic group gives a functor from k-algebras to groups.
The Lie algebra of the algebraic group is detemined by the value of the functor on only
the k-algebra of dual numbers, but nevertheless contains a surprisingly large amount of
information about the group. Since the study of Lie algebras is little more than linear
algebra, they are a valuable tool in the study of algebraic groups.

Lie algebras: basic definitions

DEFINITION 12.1 A Lie algebra over a field k is a finite-dimensional vector space V' over
k together with a k-bilinear map

[, LxL—L

(called the bracket) such that
(@) [x,x]=0forall x € L,
®) [x,[y.z]] + [y,[z,x]] + [z, [x,y]] = Oforall x, y,z € L.
A homomorphism of Lie algebras is a k-linear map «: L — L’ such that

[a(x), a(y)] = a([x, y])
forall x,y € L.

Condition (b) is called the Jacobi identity. Note that (a) applied to [x + y, x + y] implies
that
[x,y] =—[y,x],forall x,y € L.

A Lie subalgebra of a Lie algebra g is a k-subspace s such that [x, y] € s whenever
X,y €s.

EXAMPLE 12.2 Let gl, be space of all n x n matrices with entries in k, and let
[A, B] = AB — BA.

Then obviously [A, A] = 0 and a calculation shows that it satisfies the Jacobi identity. In
fact, on expanding out the left side of the Jacobi identity for A, B, C one obtains a sum
of 12 terms, 6 with plus signs and 6 with minus signs. By symmetry, each permutation of
A, B, C must occur exactly once with a plus sign and once with a minus sign.

A subspace a of g is an ideal if [g,a] C a,i.e., if [x,a] € aforallx € ganda € a.
The kernel of a homomorphism of Lie algebras is an ideal, and every ideal is the kernel of
a homomorphism: given an ideal a in g, define a bracket on the quotient vector space g/a
by setting

[x+ay+a=][xy]+a

The factorization theorem holds: every homomorphism of Lie algebras factors into a quo-
tient map and an injection. Moreover, the isomorphism theorem holds: let h be a Lie
subalgebra of g and a an ideal in g; then h + a is a Lie subalgebra of g, h N a is an ideal in
b, and the map

X+hNarx+abh/hNa— ha/a

is an isomorphism.
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The Lie algebra of an algebraic group
Let G be an algebraic group over a field k, and let k[¢] be the ring of dual numbers:
kle] = k[X]/(X?).
Thus k[e] = k @ ke as a k-vector space and €2 = 0. There are homomorphisms of k-

algebras
ar>a+0¢ e—>0

k ——— k[g] —— k
Ifa # 0,thena + be = a(l + gs) has inverse a = 1(1 — %8), and so
kle]* ={a + be|a # 0}.
DEFINITION 12.3 For an algebraic group G over k,
Lie(G) = Ker(G(k[e]) — G(k)).
Shortly we’ll see that this has a natural structure of a Lie algebra.

EXAMPLE 12.4 Take G = GL,. Note that, for any n X n matrix A4,
(In + eA)(I, —eA) = 1.
Thus, I, 4+ €A € Lie(GL,), and every element of Lie(GLy,) is of this form. The map
I, + eA — A:Lie(GLy) - My (k)
is an isomorphism.

REMARK 12.5 An element of Lie(G) is a k-algebra homomorphism «: A — k[¢] whose
composite with & = 0 is €. Therefore, elements of 4 not in the kernel m of € map to units
in k[e], and so « factors uniquely through A,,. This shows that Lie(G) depends only on Ay,.
In particular, Lie(G°) ~ Lie(G). Of course, experts will recognize Lie(G) as the tangent
space to G at the identity element.

Description in terms of derivations

DEFINITION 12.6 Let A be a k-algebra and M an A-module. A k-derivation is a k-linear
map D: A — M such that

D(fg)=f-D(g)+g-D(f) (Leibnizrule).

For example, D(1) = D(1 x 1) = 2D(1)and so D(1) = 0. By k-linearity, this implies
that
D(c) =0forall c € k. (51

Conversely, every additive map A — M satisfying the Leibniz rule and zero on k is a
k-derivation.
Leta: A — k|e] be a k-algebra homomorphism, and write

a(f) =ao(f) +ear(f).



12 THE LIE ALGEBRA OF AN ALGEBRAIC GROUP: BASICS 98

From a( fg) = a(f)a(g), we find that

ao(fg) = ao(f)ao(g)
ar(fg) = ao(flai(g) + ao(g)ar(f).

When we use o to make k into an A-module, the second condition says that oy is a k-
derivation A — k.

By definition, the elements of Lie(G) are the k-algebra homomorphisms k[G] — k|¢]
such that the composite

K[G] % k[s] 220 k

is € (the € that is part of the bialgebra structure on k[G]), i.e., such that «p = €. Thus, we
have proved the following statement.

PROPOSITION 12.7 There is a natural one-to-one correspondence between the elements of
Lie(G) and the k -derivations A — k (A acting on k through € ).

The correspondence is € + ¢D < D, and the Leibniz condition is
D(fg) =€(f)-D(g) +€(g)- D(f) (52)

The functor Lie

The description of Lie(G) in terms of derivations makes clear that it a functor from alge-
braic groups to k-vector spaces.

PROPOSITION 12.8 There is a unique way of making G + Lie(G) into a functor to Lie
algebras such that Lie(GL,) = gl,.

Without the condition on Lie(GLj), we could, for example, take the bracket to be zero.
It is clear from either description of Lie, that an embedding of algebraic groups G — H
defines an injection Lie G — Lie H. On applying this remark to an embedding of G into
GL,, we obtain the uniqueness assertion. The existence will be proved presently.

Examples

EXAMPLE 12.9 When we expand out det(/ + ¢A) as a sum of n! terms, the only nonzero
term is
l_[(l +eaj;) =1+ SZaii
because every other term includes at least two off-diagonal entries. Hence
det(I 4+ cA) = 1 + etrace(A)
and so

sly & Lie(SLy) = {1 + &4 | trace(4) = 0}
~ {A € M, (k) | trace(A) = 0}.

Certainly, [A, B] = AB — BA has trace zero (even if A and B don’t), and so sl, is a Lie
subalgebra of glj,.
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EXAMPLE 12.10 A

ap + * * e * *

0 ar+%x .- * *

Tn(kle]) = . : :
0 0 -+ ap—1+* *

0 o --- 0 a,+ *

with * € ¢k, we see that
tn £ Lie(Ty) ~ {(ai;) | aij = 0ifi > j}.
Similarly,
un £ Lie(Un) = {(aij) | aij = 0if i > j}
o, < Lie(Dy) = {(aij) | aij = 0if i # j}.
EXAMPLE 12.11 Assume the characteristic # 2, and let O,, be orthogonal group:
Op={AeGL, | A" -A=1}

(A" =transpose of A). This is the group of matrices preserving the quadratic form X 12 +
o4 X2. For I + A € My(k[e]),

(I +cA) (I +eA)=1+¢ecA" +¢A,
and so

Lie(Op) = {1 + ¢4 € My(kle]) | A" + A = 0}
~{Ae M,k)| A" + 4 =0}.

Similarly, Lie(SO,,) consists of the skew symmetric matrices with trace zero, but obviously
the second condition is redundant, and so

Lie(SOn) = Lie(0,).

EXAMPLE 12.12 Let G be a finite étale algebraic group, so k[G] is a separable algebra.
Every quotient of k[G] is also separable, but the only separable subalgebra of k[e] is k.
Therefore G([k[¢]) = G(k), and Lie(G) = 0.

EXAMPLE 12.13 Let k have characteristic p # 0, and let G = o, so that o, (R) = {r €
R | r? = 0} (see[2.9). Thus o (k) = {0}, and so

Lie(ap) = ap(kle]) = {ae|a € k} ~ k.

Similarly, Lie(up) >~ k.

44Recall that Ty, is the subgroup of GL;, defined by the equations X; j =0fori > j.
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EXAMPLE 12.14 Let V be a vector space over k. Then k[e] ®; V = V @ Ve as a k-vector
space, with ¢ acting as x + ¢y — ¢€x, i.e., when we write (3,‘) for x + ey,

e(3)=(18) ()= (%) =ex

Since

we see that the k[e]-linear maps k[e] @ V — k[g] ® V are given by matrices (%‘ 2), ie.,

the k[e]-linear maps are the maps o + ¢ where « and § are k-linear maps V — V and
(@ +ef)(x +ey) = a(x) + e(a(y) + B(x)). (53)
It follows that
Lie(GLy) = {id +¢a | « € Endg3;,(V)}

~ Endgjin (V).
with the bracket
[@,f]=aof—Poa. (54)
We denote this Lie algebra by gly .
Note that
(id4ea)(x + ey) = x + ey + ca(x). (55)

EXAMPLE 12.15 Let ¢: V x V — k be a k-bilinear form, and let G be the subgroup of
GLy of o preserving the form, i.e., such that

Y(ax,ax’) =y (x,x) alx,x' V.
Then Lie(G) consists of the endomorphisms id +e« of k[¢] @ V such that
V(x + ey, x +ey') = ¢((id +ea)(x + ey), (id +ea)(x" + &y'))
=y(x+ey+e-ax,x' +ey +e-ax)
=Y(x + ey, x +&y) + e(¥(ax, x) + ¥ (x,ax’)),
and so
Lie(G) ~ {o € Endgin(V) | ¥ (ax,x") + ¥ (x,ax’) =0all x,x’ € V}.
The bracket is given by (54).

EXAMPLE 12.16 Let G = D(M) (see p71)), so that G(R) = Hom(M, R*). On applying
Hom(M, —) to the exact sequence (of commutative groups)

a—>1+ae e—>0

0 k kle]* k* 0,

we find that
Lie(G) ~ Homy,_j;, (M, k) >~ Homy,_j;,(M,Z) ®z k.

A split torus 7 is the diagonalizable group associated with M = X(T'), and so
Lie(T') >~ Homy_j;n(X(T), k) =~ Homy_x(X(T), Z) ®z k.

Hence,
Homy_j;, (Lie(T), k) ~ k ®z X(T).
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Extension of the base field
PROPOSITION 12.17 For any extension K of k, Lie(Gg) >~ K ®; Lie(G).

PROOF. We use the description of the Lie algebra in terms of derivations (I12.§). Let ¢; be
a basis for A as a k-vector space, and let
ejej = Zaijkek, ajjk € k.

In order to show that a k-linear map D: A — k is a k-derivation, it suffices to check the
Leibniz condition the elements of the basis. Therefore, D is a k-derivation if and only if
the scalars ¢; = D(e;) satisfy

Zk ajjrcx = €(ej)cj +elej)ci

for all 7, j. This is a homogeneous system of linear equations in the ¢;, and sd*|a basis for
the solutions in k is also a basis for the solutions in K. O

REMARK 12.18 Let G be an algebraic group over k. For a k-algebra R, define
9(R) = Ker(G(R[¢]) — G(R))

where R[e] = R ®j k[e]. Then, as in (12.7), g(R) can be identified with the space of
k-derivations A — R (with R regarded as an A-module through ¢), and the argument in
the proposition shows that

a(R) ~ R ® g(k) (56)
where g(k) = Lie(G).

Definition of the bracket

An element g € G(k) defines an automorphism inn(g): x — gxg~! of G(R) for all R. In
other words, there is a homomorphism

inn: G(k) — Aut(G).

Because Lie is a functor, automorphisms of G define automorphisms of Lie(G), and we get
a homomorphism

Ad: G(k) 5 Aut(G) — Aut(Lie(G)).

Specifically, g defines an element g’ of G (k|[¢]) via k — k[e], and the action of inn(g’) on
G (k[e]) defines an automorphism of Lie(G) C G(k|[e]).

4SLet S be the space of solutions of a system of homogeneous linear equations with coefficients in k. Then
the space of solutions of the system of equations with coefficients in any k-algebra is R ®;. S. To see this, note
that S is the kernel of a linear map

0S—>Vv-Sw

and that tensoring this sequence with R gives an exact sequence

idr o
0>R®S—>R®V — RQW.

Alternatively, for a finite system, we can put the matrix of the system of equations in row echelon form (over
k), from which the statement is obvious.
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We can do this more generally: for any k-algebra R, an element g € G(R) defines
an element g’ of G(R[¢]) via R — R|[¢], and the action of inn(g’) on G(R[e]) defines an
automorphism of g(R). Therefore, we have a homomorphism

(56
G(R) — Autgin(@(R) E QLygo (R) (57)
which is natural in R, i.e., a homomorphism of algebraic groups
G — GLg(k) .

On applying the functor Lie to this, we get a homomorphism of k-vector spaces

ad: Lie G — Lie GLg) @ Endy ;. (g(k)).
DEFINITION 12.19 For A4, X € Lie(G),
[4, X] = ad(A)(X).
LEMMA 12.20 For G = GL,, the construction gives [A, X] = AX — XA.
PROOF. Ancelement I + ¢A € Lie(GLy) actson X + ¢Y € M,, ®; k[e] to give
(I +eA) (X +eY)I —cA) =X +eY +e(AX — XA).
On comparing this with (53], we see that ad(A) acts as id +sa where ¢(X) = AX — XA.o

LEMMA 12.21 The construction is functorial in G, i.e., the map Lie G — Lie H defined
by a homomorphism of algebraic groups G — H is compatible with the two brackets.

PROOF. The starting point of the proof is the observation that the homomorphisms (57))
give a commutative diagram

G(R) x g(R) — g(R)
) ) )
H(R) x bh(R) — bh(R).

We leave the rest to the reader. o

Because the bracket [A, X] = AX — XA on gl, satisfies the conditions in (12.1]) and
every G can be embedded in GL,, the bracket on Lie(G) makes it into a Lie algebra. This
completes the proof of (12.8)).

Alternative construction of the bracket.

Let A = k[G], and consider the space Dery (A4, A) of k-derivations A — A (with A re-
garded as an A-module in the obvious way). The composite of two k-derivations need not
be a k-derivation, but their bracket

D.,D1¥DoD' —D'oD

is, and it satisfies the Jacobi identity. One shows that the map Dery (A4, A) — Dery (4, k)
defined by €: A — k gives a bracket on Dery (A, k) with the required properties (see Wa-
terhouse 1979, Chapter 12).
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The unitary group

Let K be a separable k-algebra of degree 2. There is a unique k-automorphism a — a of
K such that ¢ = @ if and only if @ € k. There are only two possibilities:
(a) K is a separable field extension of k of degree 2 and a > @ is the nontrivial element
of the Galois group, or
(b) K =k x k and (a,b) = (b, a).
For an n x n matrix A = (a;;) with entries in K, define A tobe (a;;) and A to be the
transpose of A. Then there is an algebraic group G over k such that

Gk)={A e Muy(K)| A*A=1}.

More precisely, for a k-algebra R, definea @ r = a ® r fora ® r € K ®; R, and, with
the obvious notation, let

G(R) = {A € My(K ®; R) | A*A = 1.

Note that A*A = I implies det(A4) det(A) = 1. In particular, det(A) is a unit, and so
G(R) is a group.
In case (b),
G(R)={(A,B)e M,(R) | AB =1}

and so (A, B) — A is an isomorphism of G with GL,,.

In case (a), let e € K ~ k. Then e satisfies a quadratic polynomial with coefficients
in k. Assuming char(k) # 2, we can “complete the square” and choose e so that e? € k
and ¢ = —e. A matrix with entries in K ®; R can be written in the form A + eB with
A, B € M,(R). Itlies in G(R) if and only if

(A" —eB")(A+eB)=1
i.e., if and only if

A'A—e?BB' =1
A'B—B'A =0.

Evidently, G is represented by a quotient of k[..., X;;,...] ®x k[..., Yij,...].

Note that, for a field extension k — k’, Gy is the group obtained from the pair (K’ =
K ®; k'.a ® c = @ ® c). In particular, G ~ GLj, and so is connected.

The Lie algebra of G consists of the A € M, (K) such that

(I +eA)*(I +cA) =1
i.e., such that
A*+A=0.

Note that this is not a K-vector space, reflecting the fact that G is an algebraic group over
k,not K.

When k = R and K = C, G is called the unitary group U,. The subgroup of matrices
with determinant 1 is the special unitary group SU,,.
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Lie preserves fibred products

Recall ( that for any homomorphisms G — H < G’ of algebraic groups, there is an
algebraic group G xg G’ such that (G x g G’)(R) consists of the pairs g € G(R), g’ €
G’(R) having the same image in H(R). Thus, Lie(G x g G') consists of pairs g € G(k[e]),
g’ € G'(k[g]) having the same image in H (k[¢]) and mapping to 1 in G(k) and G'(k), i.e.,
of the pairs g € G(k[e]), g € G'(k[e]) mapping to 1 in G(k) and G’(k) and having the
same image in H (k[¢]). In other words,

Lie(G x g G') = Lie(G) Xpie(r) Lie(G). (58)

EXAMPLE 12.22 Let k be a field of characteristic p # 0. Consider the homomorphisms

1, Py) <—
Gy x=>(1,x) G,y x Gy O?,y) y Gy,

They give the fibred product diagrams:

id

MHp — Gm k —— k
Jv l lid lcn—)(o,c)
Gy —— Gy x Gy, c—(0,c)

k —— k xk.

EXAMPLE 12.23 Recall (6.14) that the kernel of a homomorphism a: G — H of algebraic
groups can be obtained as a fibred product:

Ker(w) —— {1y}
G — H
Therefore (58)) shows that
Lie(Ker(a)) = Ker(Lie(a)).

In other words, an exact sequence of algebraic groups | - N — G — H gives rise to an
exact sequence of Lie algebras

0 — LieN — LieG — Lie H.

EXAMPLE 12.24 Let G and G’ be algebraic subgroups of an algebraic group H. The
algebraic subgroup G N G’ with (G NG’)(R) = G(R) N G’(R) (inside H(R)) is the fibred
product of the inclusion maps, and so

Lie(G N G') = Lie(G) N Lie(G').

For example, in (12.22), G,, and G,, can be regarded as subgroups of G,, x G, with
intersection u p, and
Lie(up) = Lie(Gy) N Lie(Gp)

(intersection inside G, x Gyy).

REMARK 12.25 Example shows that Lie does not preserve fibred products in the
category of smooth algebraic groups.
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Commutative Lie algebras

A Lie algebra g is said to be commutative (or abelian) if [x, y] = 0 for all x, y € g. Thus,
to give a commutative Lie algebra amounts to giving a finite-dimensional vector space.

If G is commutative, then Lie(G) is commutative. This can be seen directly from our
definition of the bracket, or by observing that if G is a commutative subgroup of GL,, then
Lie(G) is a commutative subalgebra of Lie(GLj).

Normal subgroups and ideals

A normal algebraic subgroup N of an algebraic group G is the kernel of a quotient map
G — Q (seel6.22)); therefore, Lie(N) is the kernel of a homomorphism of Lie algebras
Lie G — Lie Q (see[I2.23), and so is an ideal in Lie G. Of course, this can also be proved
directly.
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13 The Lie algebra of an algebraic group

Following a standard convention, we usually write g for Lie(G), h for Lie(H ), and so on.

Some algebraic geometry
Recall the Noether normalization theorem:

THEOREM 13.1 Every finitely generated algebra A over a field k contains a finite set S of
elements such that

(a) k[S] is a polynomial ring in the elements of S, and

(b) A is finitely generated as a k|[S]-module.

PROOF. For integral domains and infinite k’s, see AG 8.13; for the general case, see Wa-
terhouse 1979, A.7. o

The number of elements of S depends only on A. We define the dimension of G to be
this number for the ring k[G].

REMARK 13.2 For any field &’ containing k, dim G = dim Gy, and when k is perfect,
dimG = dim Greq (cf. [2.23). Thus, readers of AG may prefer the following equiva-
lent definition: when k is algebraically closed, the dimension of G is the dimension of
Spm k[G]/1in the sense of AG p40, and otherwise it is the dimension of G.

THEOREM 13.3 Let H be an algebraic subgroup of a smooth connected algebraic group
G. Thendim H < dim G, with equality it and only it H = G.

PROOF. Since k[G] — k[H], dim H < dim G (without the conditions on G). For a proof
that H # G implies dim H < dim G, see Waterhouse 1979, 12.4, or apply AG 2.26 noting
that a connected algebraic group is automatically irreducible (8.19). o

THEOREM 13.4 If
1> N—->G—0—1

is exact, then
dimG = dim N + dim Q.

PROOF. Note that N x G >~ G x¢ G. Since k[G x¢ G] = k[G] ®k[p] k[G], it follows
from the definition of dimension that

dim(G xg G) = 2dim G —dim Q.

Therefore 2dim G — dim Q@ = dim N + dim G, from which the assertion follows. Alter-
natively, apply AG 10.9(b). O

THEOREM 13.5 For an algebraic group G, dim Lie G > dim G, with equality if and only
if G is smooth.

PROOF. We may suppose k = k. Let A = k[G]. Then (cf. AG §5),
Lie(G) ~ Homy_ji,(m/m?, k)

where m = Ker(4 = k). Therefore, dim Lie(G) > dim G, with equality if and only if

the local ring A, is regular (cf. 2.25)). But (see[2.26] 2.27), G is smooth if and only if A,
is regular. o
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Applications

PROPOSITION 13.6 Let H be a smooth algebraic subgroup of a connected algebraic group
G. IfLieH = LieG, then H = G.

PROOF. We have

H smooth

dim H dimLie H = dimLieG > dimG.

Now (13.3) implies that dim H = dim LieG = dim G, and so G is smooth (13.5) and
H = G (see[13.3). O

COROLLARY 13.7 Assume char(k) = 0 and G is connected. A homomorphism H — G
is a quotient map if Lie H — Lie G is surjective.

PROOF. We know (6.22) that H — G factors into
H—-H->G

with H — H a quotient map and H — G an embedding. Correspondingly, we get a
diagram
Lie H — Lie H — LieG.

Because H — G is an embedding, Lie H — Lie G is injective (12.23) and hence is an
isomorphism. As we are in characteristic zero, H is smooth (2.31)), and so (13.6) shows
that H = G. o

COROLLARY 13.8 Assume char(k) = 0. If
1> N—->G—-0—1
is exact and Q is connected, then
0 — Lie(N) — Lie(G) — Lie(Q) — 0
is exact.

PROOF. The sequence 0 — Lie(N) — Lie(G) — Lie(Q) is exact (by |12.23), and the
equality

dim 6 ¥ dim ¥ + dim 0
implies a similar statement for the Lie algebras (by [2.31]and [T3.5)). This implies (by linear
algebra) that Lie(G) — Lie(Q) is surjective. O

COROLLARY 13.9 The Lie algebra of G is zero if and only if G is étale; in particular, a
connected algebraic group with zero Lie algebra is 1.

PROOF. We have seen that the Lie algebra of an étale group is zero (12.12). Conversely, if
Lie G = 0 then {1} = G° by (13.6)), and so G = 7o (G) (see[8.13). 0
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EXAMPLE 13.10 The embedding o, — G, defines an isomorphism k — k on Lie alge-
bras. Thus, the condition that H be smooth is necessary in the proposition, and the condi-
tion that char(k) = 0 is necessary in the first two corollaries. The embedding SO, — O,
defines an isomorphism on the Lie algebras, and so it is necessary that G be connected in
the proposition.

PROPOSITION 13.11 Assume char(k) = 0 and G is connected. The map H — Lie H
from connected algebraic subgroups of G to Lie subalgebras of Lie G is injective and in-
clusion preserving.

PROOF. Let H and H’ be connected algebraic subgroups of G. Then (see
Lie(H N H') = Lie(H) N Lie H').
If Lie(H) = Lie(H’), then
Lie(H) = Lie(H N H') = Lie(H’),
and so (13.6)
H=HNH =H' O
PROPOSITION 13.12 Assume char(k) = 0. Let «, 8 be homomorphisms of algebraic
groups G — H. If Lie(a) = Lie(B8) and G is connected, then @ = B.
PROOF. The algebraic subgroup on which « and f agree is
(diagonal) N G xg G.

The hypothesis implies that its Lie algebra is the Lie algebra of the diagonal, and so it equals
the diagonal. O

Thus, when char(k) = 0, the functor G +— Lie(G) from connected algebraic groups to
Lie algebras is faithful. Of course, on étale algebraic groups (e.g., constant algebraic groups
(2.14)), the functor is trivial.

Stabilizers

LEMMA 13.13 Let G — GLy be a representation of G, and let W subspace of V. For a
k-algebra R, define

Gw(R) = {g € G(R) | g(W ®; R) = W ® R}.
Then the functor Gy is an algebraic subgroup of G.
PROOF. Leteq,..., e, be abasis for W, and extend it to a basis ey, ..., e, for V. Write
plej) = Zl_ e ®ajj, aj €A.
For g € G(R) = Homy_y,(A, R),
gej = Zei ® g(aij)

(see (23)). Thus, g(W ®k R) C W ® R if and only if g(a;;) = Ofor j < m,i > m. Hence
Gw is represented by the quotient of A by the ideal generated by {a;; | j <m,i > m}. o
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Recall that, for a finite-dimensional vector space V,

gty € Lie(GLy) ~ Endyi (V).

A representation of a Lie algebra g is a homomorphism «: g — gl(V). Thus, for every
X € g, a(x) is a k-linear endomorphism of V', and

a([x, y]) = a(x)a(y) —aly)a(x).

Let W be a subspace of V. The stabilizer gw of W in g is a Lie subalgebra of g: if
a(x)(W) C Wand a(y)(W) C W, then a([x, y]))(W) C W.

LEMMA 13.14 For any representation G — GLy,
Lie Gy = (Lie G)w.
PROOF. By definition, Lie Gy consists of the elements id +e« of G(k[g]) such that
(id4e)(W + We) CW + We,
i.e., such that (W) C W. a)

PROPOSITION 13.15 If W is stable under G, then it is stable under Lie(G), and the con-
verse holds when char(k) = 0 and G is connected.

PROOF. If G = Gw, then (Lie G)w (.14 Lie Gw = Lie G. Conversely, if W is stable
under Lie(G), then

Lie Gy 22 (Lic G)w = Lie G,
and so Gy = G provided char(k) = 0 and G is connected (13.6). o

Isotropy groups

PROPOSITION 13.16 Let G — GLy be a representation of G, and letv € V. Let Gy be
the functor of k -algebras

Gy(R)={geGR)|gwv®])=v®1}.
Then G, is an algebraic subgroup of G (the isotropy group of v in G ), with Lie algebra
gy =1{x €g|xv =0}

If v is fixed by G, then it is fixed by g, and the converse holds when char(k) = 0 and G is
connected.

PROOF. The proofs are similar to those of (13.13|[13.14][13.15). Note that id +c« € g fixes
v 1=v+4+0ceV Qkle] =V & Ve if and only if

id(v) + ex(v) = v + Oe,

i.e., if and only if ¢ (v) = 0. a)



13 THE LIE ALGEBRA OF AN ALGEBRAIC GROUP 110

COROLLARY 13.17 Let W be a subspace of V. For a k-algebra R, define
Cec(W)R)={geG(R)| gw=w forallw € W}.
Then Cg (W) is an algebraic subgroup of G (the centralizer of W in G ), with Lie algebra
cgW)=1{xeg|xw=0forallw e Wj.

If G centralizes W (i.e, Cqa(W) = G), then g centralizes it, and the converse holds when
char(k) = 0 and G is connected.

PROOF. For any (finite) set S spanning W, Cg (W) = (s Gw. and so this follows from
previous results. O

Normalizers and centralizers

The centre of a Lie algebra g is

z(g) ={x €g|[x.y] =0forall y € g}.

If x € z(g) and y € g, then [x, y] € z(g) because it is zero. Thus, z(g) is an ideal. For a
subalgebra h of g, the normalizer and centralizer of j in g are

ng(h) ={x eg|[x.b] Ch}
cg(h) ={x €g|[x,h] =O0forall h € b}.

PROPOSITION 13.18 Let G be an algebraic group. For an algebraic subgroup H of G, let
Ng(H) and Cg(H) be the functors

NG(H)(R) = Ngry(H(R)) £{g e G(R)|g-H(R)- g~ = H(R)}
Co(H)(R) = Cory(H(R)) £ {g € G(R) | gh = hg forall h € H(R)}.

(a) The functors Ng(H) and Cg(H ) are algebraic subgroups of G (the normalizer and
centralizer of H in G).
(b) Assume H is connected. Then

Lie(Ng(H)) C ng(h)
Lie(Cg(H)) C cq4(h)

with equality when char(k) = 0. If H is normal in G, then b is an ideal in Lie(G),
and the converse holds when char(k) = 0 and G is connected. If H lies in the centre
of G, then | lies in the centre of g, and the converse holds when char(k) = 0 and G
is connected.

PROOF. (a) Demazure and Gabriel 1970, 11, §1, 3.7.
(b) Demazure and Gabriel 1970, 11, §6, 2.1. o

COROLLARY 13.19 For any connected algebraic group G, Lie Z(G) C z(g), with equal-
ity when char(k) = 0. If a connected algebraic group G is commutative, then so also is g,
and the converse holds when char(k) = 0.

PROOF. Since Z(G) = Cg(G) and z(g) = cg4(g), the first statement follows from the
proposition, and the second follows from the first. o
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A nasty example

Let k be a field of characteristic p # 0. The following simple example illustrates some of
the things that can go wrong in this case. Define G to be the algebraic subgroup of GLj3
such that

u 0 0
G(R) = 0 u? a
0 0 1

In other words, G is algebraic subgroup defined by the equations X2, = X lp 1> X33 =1,
X12 = X13 = X1 = X371 = X3 = 0. Note that G is isomorphic to G4 x Gy, but with
the noncommutative group structure

(a,u)(b,v) = (a + bu?,uv).

In other words, G is the semi-direct product G4 x G, with u € G, (R) acting on G, (R) as
multiplication by u?. The Lie algebra of G is the semi-direct product Lie(G,) x Lie(G,)
with the trivial action of Lie(Gy,) on Lie(G,) and so is commutative. The centre of G is
1(0,u) | u? = 1} = pup, and the centre of G (k) is trivial. Thus,

Lie(Z(G)rea) S Lie(Z(G)) S Z(Lie(G)).

On the other hand
(Ad(a,u))(be, 1 + ve) = (buPe, 1 + ev)

and so the subset of Lie(G) fixed by Ad(G) is

0 x k = Lie(Z(G)).
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14 Semisimple algebraic groups and Lie algebras

Recall (I1.30] [T1.3T) that a nontrivial smooth connected algebraic group is semisimple
if it has no smooth connected normal commutative subgroup other than the identity, or,
equivalently, if its radical is trivial.

Semisimple Lie algebras

The derived series of a Lie algebra g is

g0¢ =lgglog" =[dg.dg]1D-.

A Lie algebra is said to be solvable if the derived series terminates with 0. Every Lie
algebra contains a largest solvable ideal, called its radical r(g). A nonzero Lie algebra g
is semisimple if r(g) = 0, i.e., if g has no nonzero solvable ideal. Similarly to the case of
algebraic groups, this is equivalent to g having no nonzero commutative ideal. (Humphreys
1972, 3.1.)

Semisimple Lie algebras and algebraic groups

THEOREM 14.1 Let G be a connected algebraic group. If Lie(G) is semisimple, then G is
semisimple, and the converse is true when char(k) = 0.

PROOF. Suppose Lie(G) is semisimple, and let N be a normal connected commutative
subgroup of G — we have to prove N = 1. But Lie(N) is a commutative ideal in Lie(G)

(13.19), and so is zero. Hence N = 1 (see[I13.9).

Conversely, suppose G is semisimple, and let n be a commutative ideal in g — we have
to prove n = 0. Let G act on g through the adjoint representation Ad: G — GLg, and let
H be the subgroup of G whose elements fix those of n (see [[3.17). Then (ibid.), the Lie
algebra of H is

h={xegl[x.n] =0}
which contains n. Because n is an ideal, so also is b:

([, x], n] = [h, [x, n]] =[x, [A,n]]

equals zero if # € h and n € n. Therefore, H® is normal in G (13.18]), and so its centre
Z(H?®) is normal in G. Because G is semisimple, Z(H°)° = 1, and so z(h) = 0 (13.19).
But z(h) D n, which must therefore be zero. O

COROLLARY 14.2 Assume char(k) = 0. For a connected algebraic group G, Lie(R(G)) =
r(g).

PROOF. From the exact sequence
l1-RG—-G—G/RG —1
we get an exact sequence (12.23)
1 — Lie(RG) — g — Lie(G/RG) — 1

in which Lie(RG) is solvable (obvious) and Lie(G/RG) is semisimple (14.1). Therefore
Lie RG is the largest solvable ideal in g. O
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The map ad
For a k-vector space with a k-bilinear pairing
a,b—ab:C xC — C,

we write Dery (C) for the space of k-derivations C — C, i.e., k-linear maps §:C — C
satisfying the Leibniz rule
8(ab) = ad(b) + 8(a)b.

If § and & are k-derivations, then § o §’ need not be, but § o 8’ — §’ o § is, and so Dery (C)
is a subalgebra of gl(C), not Endy _;;,(C).

For a Lie algebra g, the Jacobi identity says that the map ad(x) = (y — [x,y])isa
derivation of g:

[x.[y.zll = =[y. [z. x]| = [z. [x. ]| = [y. [x. 2]] + [[x. ). 2]
Thus, ad: g — Endy_;,(g) maps into Derg (g). The kernel of ad is the centre of g.

THEOREM 14.3 Let k be of characteristic zero. If g is semisimple, then ad: g — Der (g)
is surjective (and hence an isomorphism).

The derivations of g of the form ad(x) are often said to be inner (by analogy with the
automorphisms of G of the form inn(g)). Thus the theorem says that all derivations of a
semisimple Lie algebra are inner.

We discuss the proof of the theorem below (see Humphreys 1972, 5.3).

The Lie algebra of Aut;(C)
Again, let C be a finite-dimensional k-vector space with a k-bilinear pairing C x C — C.
PROPOSITION 14.4 The functor
R — Auty (R ®1 C)
is an algebraic subgroup of GL¢.

PROOF. Choose a basis for C. Then an element of Auty;,(R ® C) is represented by
a matrix, and the condition that it preserve the algebra product is a polynomial condition
on the matrix entries. [Of course, to be rigorous, one should write this out in terms of the
bialgebra.] O

Denote this algebraic group by Autc, so Autc (R) = Autg_g(R ® C).
PROPOSITION 14.5 The Lie algebra of Autc is gl(C) N Derg (C).

PROOF. Let id +ea € Lie(GL¢), and let a + a’e, b + b’e be elements of C ®y k[e] ~
C @ Ce. When we first apply id 4+-ea to the two elements and then multiply them, we get

ab + e(ab’ + a'b + aa(b) + a(a)b);
when we first multiply them, and then apply id +ea we get
ab + e(ab’ + a'b + a(ab)).

These are equal if and only if « satisfies the Leibniz rule. o
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The map Ad
Let G be a connected algebraic group. Recall (g102)) that there is a homomorphism
Ad:G — GLg.
Specifically, g € G(R) acts on g ®; R C G(R]¢]) as inn(g),
X = gxg_l.
On applying Lie, we get a homomorphism

ad: Lie(G) — Lie(GL4) ~ End(g),

and we defined
[x, y] = ad(x)(y).

LEMMA 14.6 The homomorphism Ad has image in Autgy; in other words, for all g €
G(R), the automorphism Ad(g) of g ®; R preserves the bracket. Therefore, ad maps into

Derk (g)

PROOF. Because of (3.8), it suffices to prove this for G = GL,. But A € GL(R) acts on
8 ®k R = My(R) as
X > AXA™L

Now

A[X, YA = A(XY —YX)A™!
= AXATTAYA™! — AYA 1 AXAT!
= [AXA™! AvA~Y). o

LEMMA 14.7 Let g € G(k). The functor Cg(g)

R {g' €eGR) |gg's™ =g}
is an algebraic subgroup of G with Lie algebra

cg(g) = {x € g | Ad(g)(x) = xj.

PROOF. Embed G in GL,. If we can prove the statement for GL,, then we obtain it for G,

because Cg(g) = Car,(g) N G and ¢cq4(g) = cgi,, (g) N g.
Let A € GLy (k). Then

CcL,(A)(R) = {B € GL,(R) | AB = BA}.
Clearly this is a polynomial (even linear) condition on the entries of B. Moreover,

Lie(Car, (A)) = {I + Be € Lie(GLy,) | A(I + Be)A™! = (I + Be)}
~{BeM,| ABA™! = B}. o
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PROPOSITION 14.8 For a connected algebraic group G over a field k of characteristic zero,
the kernel of Ad is the centre Z(G) of G.

PROOF. Clearly Z C N = Ker(Ad). It sufﬁces{‘ﬂ to prove Z = N when k = k. If
g € N(k), then c4(g) = g, and so Cg(g) = G (by|14.7). Therefore g € Z(k). We have
shown that Z(k) = N(k), and this implie that Z = N. o

THEOREM 14.9 For a semisimple algebraic group G over a field of characteristic zero, the
sequence
1—>Z(G)—>G—>Aut;—>1

is exact.
PROOF. On applying Lie to Ad: G — Autg, we get
ad: g — Lie(Autgy) C Der(g).

But, according to (14.3), the map g — Der(g) is surjective, which shows that ad:g —
Lie(Autg) is surjective, and implies that Ad: G — Aut; is a quotient map || o

Recall that two semisimple groups G, G, are said to be isogenous if G1/Z(G1) ~
G»/Z(G>3). The theorem gives an inclusion

{semisimple algebraic groups}/isogeny <> {semisimple Lie algebras}/isomorphism.

In Humphreys 1972, there is a complete classification of the semisimple Lie algebras up
to isomorphism over an algebraically closed field of characteristic zero, and all of them
arise from algebraic groups. Thus this gives a complete classification of the semisimple
algebraic groups up to isogeny. We will follow a slightly different approach which gives
more information about the algebraic groups.

For the remainder of this section, k is of characteristic zero.

Interlude on semisimple Lie algebras
Let g be a Lie algebra. A bilinear form B: g x g — k on g is said to be associative if
B([x,y],z) = B(x,[y,z]), allx,y,ze€g.

LEMMA 14.10 The orthogonal complement a™ of an ideal a in g with respect to an asso-
ciative form is again an ideal.

PROOF. By definition
at ={xeg|B(a,x)=0foralla €a}={x eg| B(a x) =0}
Leta’ € al and g € g. Then, fora € a,
B(a,[g.a']) = —B(a.ld’.g]) = —=B(la.a'].x) = 0

and so [g,a'] € a*t. a)

®Let Q = N/Z;if O = 0, then Q = 0.

4TThe map k[N] — k[Z] is surjective — let a be its kernel. Since N"m = 0 in k[N], if a # 0, then
there exists a maximal ideal m of k[N] not containing a. Because k = k, k[N]/m ~ k (AG 2.7), and the
homomorphism k[N] — k[N]/m — k is an element of N (k) ~ Z(k).
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The Killing form on g is

k(x,y) = Trg(ad(x) o ad(y)).

That is, x (x, y) is the trace of the k-linear map
ze[x [y.z]l:g — g

LEMMA 14.11 The form

K(x,y) = Trg(ad(x) o ad(y))
is associative and symmetric.
PROOF. It is symmetric because for matrices A = (a;;) and B = (b;;),

Tr(AB) = Z,-,j aijbji = Tr(BA).

By tradition, checking the associativity is left to the reader. O

EXAMPLE 14.12 The Lie algebra sl consists of the 2 x 2 matrices with trace zero. It has
as basis the elements

(O AU S (00
Vo o) "T\o 1) Y=\ o)

and
[e.y]=h [hx]=2x [hy]=-2y.
Then
0 -2 0 2 0 O 00 0
adx=|0 0 1], adh=|0 0 0], ady=|-1 0 0O
0O 00 0 0 -2 020

and so the top row (k(x, x), «(x, h), k(x, y)) of the matrix of k consists of the traces of

0 0 =2 00 O 2 00
00 0], 00 21, 02 0
00 O 00 O 0 00
0 0 4

In fact, x has matrix | O 8 O |, which has determinant —128.
4 0 0

Note that, for sl,, the matrix of k is n2 — 1 x n2 — 1, and so this is not something one
would like to compute.

LEMMA 14.13 Let a be an ideal in g. The Killing form on g restricts to the Killing form
ona,i.e.,
Kg(X,J’) = Ka(an) al]x’y €a.
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PROOF. Let o be an endomorphism of a vector space V such that (V) C W; then
Try(e) = Trw (a|W), because when we choose a basis for W and extend it to a basis
for V', the matrix for « takes the form (‘3 g ) where A is the matrix of «|W. If x,y € a,
then adx o ady is an endomorphism of g mapping g into a, and so its trace (on g), k(x, y),

equals
Tra(adx o ady|a) = Trg(adex o aday) = Ka(x, y). o

PROPOSITION 14.14 (Cartan’s Criterion). A Lie subalgebra g of gl(V) is solvable if
Try(xoy)=0forallx € [g,g] and y € g.

PROOF. If g is solvable, then an analogue of the Lie-Kolchin theorem shows that, for some
choice of a basis for V, g C t,. Then [g, g] C u, and [[g, g], g] C u,, which implies the
traces are zero. For the converse, which is what we’ll need, see Humphreys 1972, 4.5, p20
(the proof is quite elementary, involving only linear algebra)F’E] O

COROLLARY 14.15 If«([g,g],9) = O, then g is solvable; in particular, if k(g,g) = 0,
then g is solvable.

PROOF. The map ad: g — gl(V) has kernel the centre z(g) of g, and the condition implies
that its image is solvable. Therefore g is solvable. o

THEOREM 14.16 (Cartan-Killing criterion). A nonzero Lie algebra g is semisimple if and
only if its Killing form is nondegenerate, i.e., the orthogonal complement of g is zero.

PROOF. = : Let a be the orthogonal complement of g,

a={x €g]«(g,x) =0}

It is an ideal (T4.10), and certainly
k(a,a) =0

and so it is solvable by (14.13)) and (14.15)). Hence, a = 0 if g is semisimple.
<= Let a be a commutative ideal of g. Leta € a and g € g. Then

adg ada adg ada
g—g—a—a— 0.

Therefore, (ada o adg)? = 0, and so@ Tr(ada o adg) = 0. In other words, x(a,g) = 0,
and so a = 0 if « is nondegenerate. o

A Lie algebra g is said to be a direct sum of ideals a1, ..., a, if it is a direct sum of
them as subspaces, in which case we write g = a1 @ --- @ a,. Then [a;,a;] Ca; Na; =0
fori # j, and so g is a direct product of the Lie subalgebras a;. A nonzero Lie algebra is
simple if it is not commutative and has no proper nonzero ideals.

In a semisimple Lie algebra, the minimal nonzero ideals are exactly the ideals that are
simple as Lie subalgebras (but a simple Lie subalgebra need not be an ideal).

48In Humphreys 1972, this is proved only for algebraically closed fields k, but this condition is obviously
unnecessary since the statement is true over k if and only if it is true over k.
1 @2 = 0, the minimum polynomial of  divides X2, and so the eigenvalues of o are zero.
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THEOREM 14.17 Every semisimple Lie algebra is a direct sum
g — al @ cee @ ar

of its minimal nonzero ideals. In particular, there are only finitely many such ideals. Every
ideal in a is a direct sum of certain of the a;.

PROOF. Let a be an ideal in g. Then the orthogonal complement a' of a is also an ideal
, and so a N at is an ideal. By Cartan’s criterion , it is solvable, and
hence zero. Therefore, g = a @ at.

If g is not simple, then it has a nonzero proper ideal a. Write g = a @ a. If and a and

at are not simple (as Lie subalgebras) we can decompose them again. Eventually,

g=a1d---Day

with the a; simple (hence minimal) ideals.
Let a be a minimal nonzero ideal in g. Then [a, g] is an ideal contained in a, and it is
nonzero because z(g) = 0, and so [a, g]= a. On the other hand,

[a.g] =[a,a1] D - D [a,ar],

and so a = [a, a;] for exactly one i. Then a C a;, and so a = a; (simplicity of a;). This
shows that {ay,...a;} is a complete set of minimal nonzero ideals in g.

Let a be an ideal in g. The same argument shows that a is the direct sum of the minimal
nonzero ideals contained in a. o

COROLLARY 14.18 All nonzero ideals and quotients of a semisimple Lie algebra are semi-
simple.

PROOF. Obvious from the theorem. o
COROLLARY 14.19 Ifg is semisimple, then [g, g] = g.

PROOF. If g is simple, then certainly [g, g] = g, and so this is also true for direct sums of
simple algebras. o

REMARK 14.20 The theorem is surprisingly strong: a finite-dimensional vector space is a
sum of its minimal subspaces but is far from being a direct sum (and so the theorem fails
for commutative Lie algebras). Similarly, it fails for commutative groups: for example, if
Co denotes a cyclic group of order 9, then

C9 X C9 = {(x,x) S Cg X Cg} X {(X,—)C) S Cg X Cg}

If a is a simple Lie algebra, one might expect that a embedded diagonally would be another
simple ideal in a & a. It is a simple Lie subalgebra, but it is not an ideal.

LEMMA 14.21 For any Lie algebra g, the space {ad(x) | x € g} of inner derivations of g
is an ideal in Dery. (g).
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PROOF. Recall that Derg (g) is the space of k-linear endomorphisms of g satisfying the
Leibniz condition; it is made into a Lie algebra by [§,6'] = § 0 8’ — §’ o §. For a derivation
dofgand x,y € g,

[6,adx](y) = (6 o ad(x) — ad(x) o 8)(y)
= 8([x, y]) = [x,8(y)]
= [6(x), y] + [x,8(»)] = [x,8(y)]
= [6(x), y].

Thus,
[6,ad(x)] = ad(6x) (59)

is inner. o

THEOREM 14.22 If g is semisimple, then ad: g — Der(g) is a bijection: every derivation
of g is inner.

PROOF. Let adg denote the (isomorphic) image of g in Der(g). It suffices to show that the
orthogonal complement (adg)® of adg in D for kp is zero.

Because adg and (adg)~ are ideals in Der(g) (see ,
[adg, (adg)™] C adg N (adg)™.
Because k p |adg = kadg is nondegenerate (14.16),
adg N (adg)t = 0.
Let § € (adg)™. Forx € g,

ad(dx) 2 (5, ad(x)] = 0.

As ad: g — Der(g) is injective, this shows that §x = 0. Since this is true for all x € g,
5=0. o

Semisimple algebraic groups

A connected algebraic group G is simple if it is noncommutative and has no normal al-
gebraic subgroup except G and 1, and it is almost simple if it is noncommutative and has
no proper normal algebraic subgroup of dimension > 0. Thus, for n > 1, SL, is almost
simple and PSL, =g4¢ SL, /i, is simple. An algebraic group G is said to be the almost
direct product of its algebraic subgroups Gy, ..., G, if the map

(g1,....gn) > g1 gnG1 X+ xGp > G

is a quotient map (in particular, a homomorphism) with finite kernel. In particular, this
means that the G; commute and each G; is normal.

THEOREM 14.23 Every semisimple group G is an almost direct product
Gy x--xGr—>G

of its minimal connected normal algebraic subgroups of dimension > 0. In particular, there
are only finitely many such subgroups. Every connected normal algebraic subgroup of G is
a product of those G; that it contains, and is centralized by the remaining ones.
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PROOF. Write
Lie(G) = g1 ® - ® gr

with the g; simple ideals. Let G be the identity component of Cg (g2 @ - - - D g, ) (notation
as in . Then Lie(Gq) 1317 cg(g2 @ -+ ® gr) = g1, and so it is normal in G
(13.18). If G, had a proper normal connected algebraic subgroup of dimension > 0, then
giwould have an ideal other than g; and 0, contradicting its simplicity. Therefore G is
almost simple. Construct G2, ..., G, similarly. Then [g;, g;] = 0 implies that G; and G
commute (I3.18). The subgroup Gy --- G, of G has Lie algebra g, and so equals G (13.6).
Finally,

Lie(GiN...nGH 25 0. ng =0
and so G1 N ... N Gy is étale (13.9).
Let H be a connected algebraic subgroup of G. If H is normal, then Lie H is an ideal,

and so is a direct sum of those g; it contains and centralizes the remainder. This implies
that H is a product of those G; it contains, and is centralized by the remaining ones. O

COROLLARY 14.24 All nontrivial connected normal subgroups and quotients of a semi-
simple algebraic group are semisimple.

PROOF. Obvious from the theorem. o

COROLLARY 14.25 If G is semisimple, then DG = G, i.e., a semisimple group has no
commutative quotients.

PROOF. This is obvious for simple groups, and the theorem then implies it for semisimple
groups. o
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15 Reductive algebraic groups

Throughout this section, k has characteristic zero.

Recall (I1.30] [TT.3T) that a nontrivial connected algebraic group is reductive if it has
no connected normal commutative subgroup except tori, or, equivalently, if its unipotent
radical is trivial.

Structure of reductive groups

THEOREM 15.1 If G is reductive, then the derived group GI* of G is semisimple, the
connected centre Z(G)° of G is a torus, and Z(G) N G is the (finite) centre of G4°*;
moreover, Z(G)° - GI* = G.

PROOF. It suffices to prove this with k = k. By definition, (RG), = 0, and so
shows that RG is a torus T'. Rigidity implies that the action of G on RG by inner
automorphisms is trivial, and so RG C Z(G)°. Since the reverse inclusion always holds,
this shows that

R(G) = Z(G)° = torus.

We next show that Z(G)° N G is finite. Choose an embedding G — GLy, and write
V as a direct sum
V=Vi®---V,

of eigenspaces for the action of Z(G)®° (see(9.15). When we choose bases for the V;, then
Z(G)°(k) consists of the matrices

A1 0 O
0O . 0
0 0 A,

with each A; nonzero and scalar@] and so its centralizer in GLy consists of the matrices of
this shape with the A; arbitrary. Since G9°* (k) consists of commutators , it consists
of such matrices with determinant 1. As SL(V;) contains only finitely many scalar matrices,
this shows that Z(G)° N G9°* s finite.

Note that Z(G)®-G9°" is a normal algebraic subgroup of G such that G/(Z(G)® - G")
is commutative (being a quotient of G/ G 9°") and semisimple (being a quotient of G/R(G)).

Now (14.25) shows that
G = Z(G)°- G,

Therefore
G — G/R(G)
is surjective with finite kernel. As G/R(G) is semisimple, so also is G,
Certainly Z(G) N G C Z(G9r), but, because G = Z(G)° - G and Z(G)° is
commutative, Z(G") C Z(G). a)

REMARK 15.2 From a reductive group G, we obtain a semisimple group G’ (its derived
group), a group Z of multiplicative type (its centre), and a homomorphism ¢: Z(G') — Z.
Moreover, G can be recovered from (G’, Z, ¢) as the quotient

z(6) "L

50That is, of the form diag(a,..., a) witha # 0.

ZxG -G —1. (60)
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Clearly, every reductive group arises from such a triple (G’, Z, ¢) (and G’ can even be
chosen to be simply connected).

Generalities on semisimple modules

Let k be a field, and let A be a k-algebra (not necessarily commutative). An A-module is
simple if it does not contain a nonzero proper submodule.

PROPOSITION 15.3 The following conditions on an A-module M of finite dimensiorF_T]
over k are equivalent:

(a) M is a sum of simple modules;

(b) M is a direct sum of simple modules;

(c) for every submodule N of M, there exists a submodule N' such that M = N & N'.

PROOF. Assume (a), and let N be a submodule of M. Let I be the set of simple modules
of M. For J C I,let N(J) = ) gc; S. Let J be maximal among the subsets of / for
which

(i) thesum ) ¢ S is direct and

(i) N(J)NN =0.
I claim that M is the direct sum of N(J) and N. To prove this, it suffices to show that each
S C N + N(J). Because S is simple, S N (N + N(J)) equals S or 0. In the first case,
S C N + N(J), and in the second J U {S} has the properties (i) and (ii). Because J is
maximal, the first case must hold. Thus (a) implies (b) and (c), and it is obvious that (b) and
(c) each implies (a). o

DEFINITION 15.4 An A-module is semisimple if it satisfies the equivalent conditions of
the proposition.

Representations of reductive groups

Throughout this subsection, k is algebraically closed. Representations are always on finite-
dimensional k-vector spaces. We shall sometimes refer to a vector space with a representa-
tion of G on it as a G-module. The definitions and result of the last subsection carry over
to G-modules.

Our starting point is the following result.

THEOREM 15.5 If g is semisimple, then all g-modules are semisimple.

PROOF. Omitted — see Humphreys 1972, pp25-28 (the proof is elementary but a little
complicated). O

THEOREM 15.6 Let G be an algebraic group. All representations of G are semisimple if
and only if G° is reductive.

LEMMA 15.7 The restriction to any normal algebraic subgroup of a semisimple represen-
tation is again semisimple.

511 assume this only to avoid using Zorn’s lemma in the proof.
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PROOF. Let G — GLy be a representation of G, which we may assume to be simple, and
let N be a normal algbraic subgroup of G. Let S be a simple N -submodule of V. For any
g € G(k), g§ is a simple N -submodule, and V is a sum of the g§S (because the sum is a
nonzero G-submodule of V). o

LEMMA 15.8 All representations of G are semisimple if and only if all representations of
G° are semisimple

PROOF. = : Since G° is a normal algebraic subgroup of G (8.13), this follows from the
preceding lemma.

<= : Let V be a G-module, and let W be a sub G-module (i.e., a subspace stable
under G). Then W is also stable under G°, and so V = W @& W' for some G°-stable
subspace W'. Let p be the projection map V — W itis a G°—equivarian@ map whose
restriction to W is idy . Define

1 _
GV =W, g=-% epg,

where n = (G(k): G°(k)) and g runs over a set of coset representatives for G°(k) in G(k).
One checks directly that g has the following properties:

(a) itis independent of the choice of the coset representatives;

(b) forallw € W, g(w) = w;

(c) itis G-equivariant.
Now (b) implies that V = W @ W”, where W” = Ker(q), and (c) implies that W" is
stable under G. o

REMARK 15.9 The lemma implies that the representations of a finite group are semisim-
ple. This would fail if we allowed the characteristic to divide the order of the finite group.

LEMMA 15.10 Every representation of a semisimple algebraic group is semisimple.

PROOF. From a representation G — GLy of G on V we get a representation g — gly
of gon V, and a subspace W of V is stable under G if and only if it is stable under g (see
13.15)). Therefore, the statement follows from (15.5)). O

Proof of Theorem

Lemmal 5.8 allows us to assume G is connected.

= : Let G — GLy be a faithful semisimple representation of G, and let N be
the unipotent radical of G. Lemma shows V is semisimple as an N-module, say
V = @ V; with V; simple. Because N is solvable, the Lie-Kolchin theorem shows
that the elements of N have a common eigenvector in V; (cf. the proof of the theorem) and
so V; has dimension 1, and because N is unipotent it must act trivially on V;. Therefore, N
acts trivially on V', but we chose V to be faithful. Hence N = 0.

<= : If G is reductive, then G = Z° - G’ where Z° is the connected centre of G (a
torus) and G’ is the derived group of G (a semisimple group) — see . Let G — GLy
be a representation of G. Then V = P, V; where V; is the subspace of V' on which Z°
acts through a character y; (see . Because Z° and G’ commute, each space V; is

52That is, it is a homomorphism of G°-representations.



15 REDUCTIVE ALGEBRAIC GROUPS 124

stable under G’, and because G’ is semisimple, V; = P ; Vij with each V;; simple as a G-
module (15.10). Now V = €P; ; Vi; is a decomposition of V' into a direct sum of simple
G-modules.

REMARK 15.11 It is not necessary to assume k is algebraically closed. In fact, for an
algebraic group G over k of characteristic zero, all representations of G are semisimple
if and only if all representations of Gy are semisimple (Deligne and Milne 1982, 2.25
However, as noted earlier , it is necessary to assume that k has characteristic zero,
even when G is connected.

REMARK 15.12 Classically, the proof was based on the following two results:

Every semisimple algebraic group G over C has a (unique) model G over R
such that Go(R) is compact, and Homg (Go, GLy) >~ Hom¢ (G, GLy).

For example, SL,, = (Go)c where Gy is the special unitary group (see p103).

Every representation of an algebraic group G over R such that G(R) is compact
is semisimple.

To prove this, let ( , ) be a positive definite form on V. Then (, )¢ = fG(]R) (x,y)dgisa
G (R)-invariant positive definite form on V. For any G-stable subspace W, the orthogonal
complement of W is a G-stable complement.

A criterion to be reductive

There is an isomorphism of algebraic groups GL, — GL, sending an invertible matrix 4
to the transpose (A1)’ of its inverse. The image of an algebraic subgroup H of GL,, under
this map is the algebraic subgroup H! of GL, such that H*(R) = {A’ | A € H(R)} for
all k-algebras R.

Now consider GLy . The choice of a basis for V' determines an isomorphism GLy =~
GL, and hence a transpose map on GLy , which depends on the choice of the basis.

PROPOSITION 15.13 Every connected algebraic subgroup G of GLy such that G = G!
for all choices of a basis for V is reductive.

PROOF. We have to show that (RG),, = 0. It suffices to check this after passing to the
algebraic closur k of k. Recall that the radical of G is the largest connected normal
solvable subgroup of G. It follows from (I1.29c) that RG is contained in every maximal
connected solvable subgroup of G. Let B be such a subgroup, and choose a basis for V
such that B C T, (Lie-Kolchin theorem [11.22). Then B is also a maximal connected
solvable subgroup of G, and so

RG C BN B' =D,.
This proves that RG is diagonalizable. o

EXAMPLE 15.14 The group GLy itself is reductive.

3 Deligne, P., and Milne, J., Tannakian Categories. In Hodge Cycles, Motives, and Shimura Varieties, Lec-
ture Notes in Math. 900 (1982), Springer, Heidelberg, 101-228.

5More precisely, one can prove that R (Gp) = (RG)g and similarly for the unipotent radial (provided k is
perfect).
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EXAMPLE 15.15 Since the transpose of a matrix of determinant 1 has determinant 1, SLy
is reductive.

It is possible to verify that SO,, and Sp,, are reductive using this criterion (to be added;
cf. Humphreys 1972, Exercise 1-12, p6). They are semisimple because their centres are
finite (this can be verified directly, or by studying their roots — see below).
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16 Split reductive groups: the program

In this, and all later sections, k is of characteristic zero.

Split tori

Recall that a split torus is a connected diagonalizable group. Equivalently, it is an algebraic
group isomorphic to a product of copies of G,,. A torus over k is an algebraic group that
becomes isomorphic to a split torus over k. A torus in GLy is split if and only if it is
contained in D, for some basis of V.

Consider for example
_ a b 2 2
T_{(—b a)la +b 750}.

The characteristic polynomial of such a matrix is
X% -2aX +a?+b*>=(X —a)®> +b?

and so its eigenvalues are

A=a+bv-1.

It is easy to see that 7 is split (i.e., diagonalizable over k) if and only if —1 is a square in k.

Recall (§9) that End(G,,) ~ Z: the only group-like elements in k[G,,] = k[X, X !]
are the powers of X, and the only homomorphisms G,, — G, are the maps ¢ +— " for
n € Z. For a split torus 7', we set

X*(T) = Hom(T, G,,) = group of characters of 7,
X«(T) = Hom(Gyy,, T') = group of cocharacters of T.

There is a pairing
(, ) X*(T)*x X«(T) - End(Gy) =~ Z, (x,A)=yoA. (61)

Thus
xO(0)) = 1'% fort € Gu(R) = R*.

Both X*(T') and X«(T) are free abelian groups of rank equal to the dimension of 7', and
the pairing { , ) realizes each as the dual of the other.
For example, let

Then X *(T') has basis y1,..., yn, Where
yi(diag(ay,...,an)) = a;,

and X« (7T') has basis A1, ..., A,, where

A (1) = diag(1,....1,...,1).



16 SPLIT REDUCTIVE GROUPS: THE PROGRAM 127

Note that
I O Ay
ie.,
=t if i=
O RS R
Some confusion is caused by the fact that we write X *(7) and X«(T) as additive
groups. For example, if a = diag(ay, as, as), then

(Sx2 +Tx3)a = x2(a)’ y3(a)” = a3a3.
For this reason, some authors use an exponentional notation y(a) = a*. With this notation,
the preceding equation becomes

a’xet7xs — 5x2,713 — aga;

Split reductive groups

Let G be an algebraic group over a field k. When k = k, atorus T C G is maximal if it
is not properly contained in any other torus. For example, D, is a maximal torus in GLj,
because it is equal to own centralizer in GL,. In general, T C G is said to be maximal if
T is maximal in Gg. A reductive group is split if it contains a split maximal torus.

Let G a reductive group over k. Since all tori over k are split, G is automatically
split. As we discuss below, there exists a split reductive group G¢ over k, unique up to
isomorphism, such that Gz ~ G.

EXAMPLE 16.1 The group GL, is a split reductive group (over any field) with split max-
imal torus D,,. On the other hand, let H be the quaternion algebra over R. As an R-vector
space, H has basis 1, i, j,ij, and the multiplication is determined by

i?=—-1, j?>=-1,ij =—ji.
It is a division algebra with centre R. There is an algebraic group G over R such that

G(R) = (R ®; H)*.

In particular, G(R) = H*. As C ®g H ~ M,(C), G becomes isomorphic to GL, over C,
but as an algebraic group over R it is not split

EXAMPLE 16.2 The group SL, is a split reductive (in fact, semisimple) group, with split
maximal torus the diagonal matrices of determinant 1.

EXAMPLE 16.3 Let (V, q) be a nondegenerate quadratic space (see §5), i.e., V' is a finite-
dimensional vector space and ¢ is a nondegenerate quadratic form on V' with associated
symmetric form ¢. Recall that the Witt index of (V, ¢) is the maximum dimension of
an isotropic subspace of V. If the Witt index is r, then V' is an orthogonal sum

V=HyL...1LH LV (Wittdecomposition)

551ts derived group G is the subgroup of elements of norm 1. As G'(R) is compact, it can’t contain a split
torus.
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where each H; is a hyperbolic plane and V; is anisotropic (5.9). It can be shown that the
associated algebraic group SO(gq) is split if and only if its Witt index is as large as possible.
(a) Case dim V' = n is even. When the Witt index is as large as possible, n = 2r, and

there is a basis for which the matri of the form is (? é), and so

(X1, ..., Xn) = X1Xp41 + -0+ XpX2p.
Note that the subspace of vectors
(*,...,%,0,...,0)
is totally isotropic. The algebraic subgroup consisting of the diagonal matrices of the form
diag(ay,... ,ar,al_l, - ,a,_l)

is a split maximal torus in SO(gq).
(b) Case dim V' = n is odd. When the Witt index is as large as possible, n = 2r + 1,

1 0 O
and there is a basis for which the matrix of the formis {0 O [ |, and so
07 O
G(X0, X1, -+ Xn) = X3 + X1Xp41 + -+ + XpXor.

The algebraic subgroup consisting of the diagonal matrices of the form
diag(1,ay,... ,ar,al_l, e ,ar_l)

is a split maximal torus in SO(g).

Notice that any two nondegenerate quadratic spaces with largest Witt index and the
same dimension are isomorphic.

In the rest of the notes, I’ll refer to these groups as the split SO,s.

EXAMPLE 16.4 LetV = k2" and let Y be the skew-symmetric form with matrix (_? é),

SO
V(X,Y) = X1Vn+1 + -+ XnYon — Xn41Y1 — *** — X2nVn-

The corresponding symplectic group Sp,, is split, and the algebraic subgroup consisting of
the diagonal matrices of the form

diag(al,...,ar,al_l,...,ar_l)

is a split maximal torus in Sp,,.

S6Moreover, SO(g) consists of the automorphs of this matrix with determinant 1, i.e., SO(q)(R) consists of

the n x n matrices A with entries in R and determinant 1 such that A’ (? f)) A= (? {)) .
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Program

Let G be a split reductive group over k. Then any two split maximal tori are conjugate by
an element of G (k). Rather than working with split reductive groups G, it turns out to be
better to work with pairs (G, T') with T a split maximal torus in G.

16.5 To each pair (G, T') consisting of a split reductive group and a maximal torus, we as-
sociate a more elementary object, namely, its root datum ¥ (G, T'). The root datum ¥ (G, T')
determines (G, T') up to isomorphism, and every root datum arises from a pair (G, T') (see
§817,20).

16.6 Classify the root data (see §§18,19).

16.7 Since knowing the root datum of (G, T') is equivalent to knowing (G, T'), we should
be able to read off information about the structure of G and its representations from the root
datum. This is true (see §§21,22,23).

16.8 The root data have nothing to do with the field! In particular, we see that for each
reductive group G over k, there is (up to isomorphism) exactly one split reductive group
over k that becomes isomorphic to G over k. However, there will in general be many
nonsplit groups, and so we are left with the problem of understanding them (§§26,27).

In linear algebra and the theory of algebraic groups, one often needs the ground field
to be algebraically closed in order to have enough eigenvalues (and eigenvectors). By re-
quiring that the group contains a split maximal torus, we are ensuring that there are enough
eigenvalues without requiring the ground field to be algebraically closed.

Example: the forms of GL,. What are the groups G over a field k such that G ~ GL,?
For any a, b € k™, define H(a, b) to be the algebra over k with basis 1,1, j,ij as a k-vector
space, and with the multiplication given by
i2=a,j>=0b,ij =—ji.

This is a k-algebra with centre k, and it is either a division algebra or is isomorphic to
M5 (k). For example, H(1,1) ~ M>(k) and H(—1, —1) is the usual quaternion algebra
when k = R.

Each algebra H(a, b) defines an algebraic group G = G(a, b) with G(R) = (R ®
H(a, b))*. These are exactly the algebraic groups over k becoming isomorphic to GL;

over k, and
G(a,b) ~ G(a',b') < H(a,b) ~ H(d',b").

Over R, every H is isomorphic to H(—1,—1) or M>(R), and so there are exactly two
forms of GL, over R.
Over Q, the isomorphism classes of H’s are classified by the subsets of

{2,3,5,7,11,13, ..., 00}

having a finite even number of elements. The proof of this uses the quadratic reciprocity
law in number theory. In particular, there are infinitely many forms of GL, over Q, exactly
one of which, GL;, is split.
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17 The root datum of a split reductive group

Recall that k has characteristic zero.

Roots

Let G be a split reductive group and 7" a split maximal torus. Then G acts on g = Lie(G)
via the adjoint representation
Ad:G — GL4.

In particular, 7" acts on g, and so it decomposes as

g=2g0®Pay

where go is the subspace on which 7" acts trivially, and g, is the subspace on which T" acts
through the nontrivial character y (see[9.15). The nonzero y occurring in this decomposi-
tion are called the roots of (G, T'). They form a finite subset @ of X*(T).

Example: GL,

Here

{3 Y | ]

+b
X*(T)="Zy1®Zy,, (’i)‘ )?2) axLTIX2 xi’xé’
g= Mz(k)’

and T acts on g by conjugation,

x1 0\ [a b\ [(xi! O_a;—;b
0 x2)\c d Oxz_l_fc—fc d]-

Write E;; for the matrix with a 1 in the ij th_position, and zeros elsewhere. Then T acts
trivially on go = (E11, E22), through the character « = y; — y2 on g4 = (Ej2), and
through the character —a = y2 — y1 on g—o = (E21).

Thus, @ = {o, —a} where @« = y1 — y2. When we use y; and y» to identify X *(T)
with Z @ Z, @ becomes identified with {£(e; — e2)}.

’

Example: SL,

Here

=6

XT)=Zy, (% %)+ x,

0 x!

g=1(24) e Mak) | a+d =0},
Again T acts on g by conjugation,
X 0\ (a b\ (x! 0\ _ a x%b
0 x'J\c —a 0 x) \x%¢ -—a

Therefore, the roots are « = 2y and —a = —2y. When we use y to identify X *(7") with
7, @ becomes identified with {2, —2}.
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Example: PGL,

Recall that this is the quotient of GL, by its centre: PGL, = GL3 /G,,. One can prove
that for all rings R, PGL,(R) = GL2(R)/R*. Here

T={(%2) | mmA0) {59 Ix#0).
xxmy=zy (32)5
X2

g= My(k)/{al} (quotient as a vector space).

and T acts on g by conjugation:

(x1 O) (a b) (xl_l 0) _ a %b
_1 - .
0 x2)\c d 0 x; %c d
Therefore, the roots are « = y and —a = —y. When we use x to identify X*(7') with Z,
@ becomes identified with {1, —1}.

Example: GL,

Here

X1 0
()| e
0 Xn

X1 0
* _ . . Xl .
X1 =€, _,_,Zxi ( . )Hxl,

0 Xn

g = Myu(k),
and T acts on g by conjugation:

ayp “Lain

n :
anl = Ann Xn
ﬂanl Ann

Write E;; for the matrix with a 1 in the ij th_position, and zeros elsewhere. Then T acts
trivially on go = (E11, ..., Enn) and through the character j; = y;— xj on go;; = (Eij),
and so

O ={ay | 1<i,j=<n, i#]}

When we use the y; to identify X *(T') with Z", then @ becomes identified with
{ei—ej|1<i,j<n, 1#]}

where eq, ..., ey is the standard basis for Z".
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Definition of a root datum

DEFINITION 17.1 A root datum is a quadruple ¥ = (X, ®, XV, ®") where
o X, XV are free Z-modules of finite rank in duality by a pairing { , }: X x XV — Z,
o @, PV are finite subsets of X and XV in bijection by a map o <> aV,

atisfying the following conditions

rdl (a,av) =2,

rd2 so(®) C @ where s, is the homomorphism X — X defined by

sa(X) =x—(x,aV)a, xeX,aed,
rd3 the group of automorphisms of X generated by the s, for « € @ is finite.

Note that (rd1) implies that
sa(0) = —a,

and that the converse holds if « # 0. Moreover, because sy (@) = —,

Sa($a(x)) = sa(x — (x,a")a) = (x — (x,a")a) — (x.a")sq(@) = x,

ie.,
s2=1.
Clearly, also sq(x) = x if (x,aY) = 0. Thus, sy should be considered an “abstract

reflection in the hyperplane orthogonal to o”.

The elements of @ and @V are called the roots and coroots of the root datum (and oV
is the coroot of o). The group W = W(¥) of automorphisms of X generated by the s, for
a € @ is called the Weyl group of the root datum.

We want to attach to each pair (G, T') consisting of a split reductive group G and split
maximal torus 7', a root datum ¥ (G, T') with

X = X*(T),

@ = roots,
XY = X«(T) with the pairing X *(T) x X«(T) — Z in (6]),
@Y = coroots (to be defined).

First examples of root data
EXAMPLE 17.2 Let G = SL,. Here

X=X*T) =2y, (32%) >«

XY = Xo(T) = ZA, 1+ (5,%)

® ={a,—a}, o=2y

oV ={aY,—av}, o' =2

57Thus, a root datum is really an ordered sextuple,
X, XV, (,),®,®Y,® >V,

but everyone says quadruple.
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Note that N
2x
t—> ((t) t_Ol) > 12
and so
(a,¥) =2
As always,
se(@) = —a, sq(—a) =«

etc., and so s14(P) C @. Finally, W(¥) = {1, sy} is finite, and so ¥ (SLy, T') is a root
system, isomorphic to
(Z’ {27 _2}’ Z? {1’ _1})

(with the canonical pairing (x, y) = xy and the bijection 2 <> 1, =2 <> —1).
EXAMPLE 17.3 Let G = PGL,. Here
oV ={aY, -V}, o' =2A.
In this case ¥ (PGL,, T) is a root system, isomorphic to
(Z,{1, -1}, Z,{2,-2}).

REMARK 17.4 If «a is aroot, so also is —a, and there exists an « ¥ such that (&, ¥) = 2. It
follows immediately, that the above are the only two root data with X = Z and @ nonempty.
There is also the root datum

(2,9,7,9),

which is the root datum of the reductive group Gy,.

EXAMPLE 17.5 Let G = GL,,. Here
. Xi
X=X"0n) =D, Zri. diagxi.....xn) = xi

Ai. ]
XY = X.Dn) = P, 2. 2 diag(1, ... 1,61, 1)

S ={ajj i #J} @y =xi—xj
@Vz{ai\;“;ﬁj}, ai\;zki—)tj.
Note that .
Ai—=Aj ' / Xi—Xj
t diag(l,...,;,...,t_l,...) 57 12

and so
Vy
(oij, 05) = 2.

Moreover, s, (@) C @ for all « € @. We have, for example,

Say; (@if) = —aij

Sazy (@) = Qi — (Xik, 07 )i
=ik — (Xi-Ai)aij  (Ek #i,))
=i — Xk — i —xj)
=ajk

Saj; (k1) = agr (fk #1,j,1#1,)).
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! rows have been

Finally, let E(ij) be the permutation matrix in which the i*® and ;'
swapped. The action

A E(ij)-A-E@ij)™!
of E;; on GL, by inner automorphisms stabilizes 7 and swaps x; and x;. Therefore, it
acts on X = X*(T') as sq;; . This shows that the group generated by the s, is isomorphic
to the subgroup of GL;, generated by the E(ij), which is isomorphic to S,. In particular,
W is finite.
Therefore, ¥ (GL,, D) is a root datum, isomorphic to

(Zns{ei_ej |i7éj}?va{el'_eJ. |l7é]}

1
where ¢; = (0,...,1,...,0), the pairing is the standard one (e;,e;) = J;;, and (e; —
ej) =e —ej.

In the above examples we wrote down the coroots without giving any idea of how to
find (or even define) them. Before defining them, we need to state some general results on
reductive groups.

Semisimple groups of rank 0 or 1

The rank of a reductive group is the dimension of a maximal torus, i.e., it is the largest
r such that Gy contains a subgroup isomorphic to Gy,. Since all maximal tori in Gz are
conjugate (see|l7.17|below), the rank is well-defined.

THEOREM 17.6 (a) Every semisimple group of rank O is trivial.
(b) Every semisimple group of rank 1 is isomorphic to SL, or PGLs;.

PROOF. (SKETCH) (a) Take k = k. If all the elements of G(k) are unipotent, then G
is solvable (I1.23), hence trivial. Otherwise, G(k) contains a semisimple element (10.I)).
The smallest algebraic subgroup H containing the element is commutative, and therefore
decomposes into Hy x Hy, (see[11.6). If all semisimple elements of G (k) are of finite order,
then G is finite (hence trivial, being connected). If G (k) contains a semisimple element of
infinite order, H{ is a nontrivial torus, and so G is not of rank 0.

(b) One shows that G contains a solvable subgroup B such that G/B ~ P'. From this
one gets a nontrivial homomorphism G — Aut(P!) ~ PGLs,. o

Centralizers and normalizers

Let T be a torus in an algebraic group G. Recall (13.18) that the centralizer of T in G is
the algebraic subgroup C = Cg(T) of G such that, for all k-algebras R,

C(R)={geG(R)| gt =tgforallt € T(R)}.

Similarly, the normalizer of T in G is the algebraic subgroup N = Ng(T') of G such that,
for all k-algebras R,

N(R) ={g € G(R) | gtg"' e T(R) forallt € T(R)}.

THEOREM 17.7 Let T be a torus in a reductive group G .
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(a) The centralizer Cq(T) of T in G is a reductive group; in particular, it is connected.

(b) The identity component of the normalizer Ng(T) of T in G is Cg(T); in particular,
Ng(T)/Cg(T) is a finite étale group.

(c) The torus T is maximal if and only if T = Cg(T).

PROOF. (a) Omitted. (When k = k, the statement is proved in Humphreys 1975, 26.2.)

(b) Certainly Ng(T)° D Cg(T)° = Cg(T). But Ng(T)°/Cg(T) acts faithfully on
T, and so is trivial by rigidity (9.16)). For the second statement, see §8.

(c) Certainly, if Cg(T) = T, then T is maximal because any torus containing 7 is
contained in Cg(T). Conversely, Cg(T) is a reductive group containing 7" as a maximal
torus, and so Z(Cg(T))° is a torus (15.1) containing 7" and therefore equal to it. Hence
Cg(T)/T is a semisimple group of rank 0, and hence is trivial. Thus Cg(T) =
Z(Cg(T))° =T. o

The quotient W(G,T) = Ng(T)/Cg(T) is called the Weyl group of (G, T). Itis a
constant étale algebraic grou when T is split, and so may be regarded simply as a finite
group.

Definition of the coroots

LEMMA 17.8 Let G be a split reductive group with split maximal torus T'. The action of
W(G,T) on X*(T) stabilizes ®.

PROOF. Take k = k. Let s normalize T (and so represent an element of W). Then s acts
on X *(T) (on the left) by

(s0(1) = x(s™"15).
Let o be a root. Then, for x € g, and t € T (k),

t(sx) = s(s'ts)x = s(a(sts)x) = a(s”'rs)sx,
and so T acts on sg,, through the character s, which must therefore be a root. o

For aroot @ of (G, T), let Ty = Ker(«)®, and let G be centralizer of Ty.

THEOREM 17.9 Let G be a split reductive group with split maximal torus T .
(a) Foreacha € @, W(Gy, T) contains exactly one nontrivial element s, and there is a
unique a” € X«(T) such that

se(x) = x — (x,a¥)a, forallx € X*(T). (62)
Moreover, (@, a) = 2.

(b) The system (X*(T), @, X«(T),®") with ®¥ = {aV | « € @} and the map o +>
av:® — @V is aroot datum.

58That is, W(R) is the same finite group for all integral domains R. Roughly speaking, the reason for this is
that W(k) equals the Weyl group of the root datum, which doesn’t depend on the base field (or base ring).
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PROOF. (SKETCH) (a) The key point is that the derived group of G, is a semisimple group
of rank one and 7T is a maximal torus of G,. Thus, we are essentially in the case of SL,
or PGL;, where everything is obvious (see below). Note that the uniqueness of ¥ follows
from that of s,.

(b) We noted in (a) that (rd1) holds. The s, attached to « lies in W(Gy, T) C W(G, T),
and so stabilizes @ by the lemma. Finally, all sq lie in the Weyl group W(G, T'), and so
they generate a finite group (in fact, the generate exactly W(G, T')). O

EXAMPLE 17.10 Let G = SLj, and let « be the root 2y. Then Ty, = 1 and Gy, = G. The
unique s # 1 in W(G, T) is represented by

0 1
-1 0)°
and the unique ¥ for which holds is A.
EXAMPLE 17.11 Let G = GL,, and let @ = a12 = y1 — x2. Then

Ty = {diag(x,x, x3,...,Xxn) | XxX3...x, # 1}

and G, consists of the invertible matrices of the form

* x 0 0

* *x 0 0

0 0 = 0

0 0 O *

Clearly

010 0
1 00 0
Ny = 0 01 0
000 --- 1

represents the unique nontrivial element s, of W(Gy, T'). It acts on T by
diag(x1, x2,x3,...,x,) —> diag(xz, X1, X3,..., Xn).
Forx =mix1+ - +muxn,

SqX =ma)Y1+myiy2+m3xs—+ -+ mMuyxn
=x—(x, A1 —A2)(x1 — x2)-

and
x—{(x, A1 —Aa=x—(2

Thus holds if and only if oV is taken to be A1 — A5.
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Computing the centre

PROPOSITION 17.12 Every maximal torus T in a reductive algebraic group G contains the
centre Z = Z(G) of G.

PROOF. Clearly Z C Cg(T), but (see(17.7), Ca(T) = T. o

Recall (14.8) that the kernel of the adjoint map Ad: G — GLg is Z(G), and so the
kernel of Ad: T — GLgis Z(G) N T = Z(G). Therefore

Z(G) = Ker(Ad|T) = ﬂae@ Ker(a).

We can use this to compute the centres of groups. For example,

X1 0
Z(GLy) = ﬂi#Ker(Xi —Xj) = { ( o ) xXp=xp=-=x #0p,
Z(SLy) = Ker(2y) = {(’6 x(_)l) | x2 = 1} = U2,
Z(PGLy) = Ker(y) = 1.
On applying X * to the exact sequence
t> (st (t),...)
0> Z(G) > T —2—2% ]‘[a@ Gm (63)

we get (see[9.12)) an exact sequence

@, 2 LTI () o XH(2(6)) - 0.

and so
X*(Z(G)) = X*(T)/{subgroup generated by @}. (64)
For example,
. . (@1sean)—Ya;
X*(Z(GLn)) = Z" /(e —ej | i # j) ——""=1% 7,

X*(Z(SLy)) ~ Z/(2),
X*(Z(PGLy)) ~ Z/Z = 0.

Semisimple and toral root data

DEFINITION 17.13 A root datum is semisimple if @ generates a subgroup of finite index
in X.

PROPOSITION 17.14 A split reductive group is semisimple if and only if its root datum is
semisimple.

PROOF. A reductive group is semisimple if and only if its centre is finite, and so this follows

from (64). o

DEFINITION 17.15 A root datum is foral if @ is empty.
PROPOSITION 17.16 A split reductive group is a torus if and only if its root datum is toral.

PROOF. If the root datum is toral, then shows that Z(G) = T. Hence DG has rank 0,
and so is trivial. It follows that G = T. Conversely, if G is a torus, the adjoint representa-
tion is trivial and so g = gy. O
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The main theorems.

From (G, T) we get a root datum ¥ (G, T).

THEOREM 17.17 Let T, T’ be split maximal tori in G. Then there exists a g € G (k) such
that T' = gTg~ ! (i.e., inn(g)(T) = T').

PROOF. Omiitted for the present. o

EXAMPLE 17.18 Let G = GLy, and let T be a split torus. A split torus is (by definition)
diagonalizable, i.e., there exists a basis for V' such that T C ID,. Since T is maximal, it
equals D,,. This proves the theorem for GLy .

It follows that the root datum attached to (G, T) depends only on G (up to isomor-
phism).

THEOREM 17.19 (ISOMORPHISM) Every isomorphism ¥(G,T) — W(G',T’) of root
data arises from an isomorphism ¢: G — G’ such that o(T) = T’.

PROOF. Springer 1998, 16.3.2. =

Later we shall define the notion of a base for a root datum. If bases are fixed for (G, T')
and (G’, T’), then ¢ can be chosen to send one base onto the other, and it is then unique up
to composition with a homomorphism inn(#) such that ¢ € T'(k) and «(¢) € k for all «.

THEOREM 17.20 (EXISTENCE) Every reduced root datum arises from a split reductive
group.
PROOF. Springer 1998, 16.5. o

A root datum is reduced if the only multiples of a root « that can also be a root are +o.

Examples

We now work out the root datum attached to each of the classical split semisimple groups.
In each case the strategy is the same. We work with a convenient form of the group G in
GL,. We first compute the weights of the split maximal torus on gl, and then check that
each nonzero weight occurs in g (in fact, with multiplicity 1). Then for each @ we find a
natural copy of SL, (or PGL,) centralizing Ty, and use it to find the coroot oV

Example (A;): SL;,+1.
Let G be SL;, 41 and let T be the algebraic subgroup of diagonal matrices:
{diag(t1,....ta1) [ t1 -+ tng1 = 1}
Then
EB diag(t ths1) ANy
X*(T)= ZXi/ZX’ 1,---stn41 i
X =2 X
2aiki
Xe(T)={) aidi | Y _a; =0}, 17" diagt™'.....1). a; €L,

with the obvious pairing ( , ). Write ; for the class of y; in X*(7"). Then all the characters
Xi — Xj» 1 # J,occur as roots, and their coroots are respectively A; — A;, i # j. This
follows easily from the calculation of the root datum of GLy,.
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Example (B,;): SO2,41 .
Consider the symmetric bilinear form ¢ on k2" +1,
¢()_é, )_;) =2x0Y0 + X1Yn+1 + Xnt1Y1 + -+ XnY2n + X2n¥n

Then SOz,4+1 =ar SO(¢) consists of the 2n + 1 x 2n + 1 matrices A of determinant 1
such that

P(AX, Ay) = ¢(X. ),

i.e., such that
1 0 0
A=10 0 I
07 O
The Lie algebra of SO5, +1 consists of the 2n + 1 x 2n + 1 matrices A of trace 0 such that
P(AX,y) = —p(X, AY),
(12.15), i.e., such that
1 0 0 1 0 0
A0 0 I|=—-|0 0 I]A.
0 1 0 0 I 0

Take T to be the maximal torus of diagonal matrices

diag(1,¢1, ... .ty t7 ot
Then
. _ 1\ Xi
X*(T)Z@lsignz)(i’ dlag(l,tl,...,tn,ll1,...,tn1)l—>ti
Ai . i+1
X*(T):@lsisnz/\i, t —> diag(l,..., t ,...,1)

with the obvious pairing { , ). All the characters

txi, Exitx;, i F#FJ
occur as roots, and their coroots are, respectively,

£2X;, A E£A;, P # )
Example (C,): Sp,,, -
Consider the skew symmetric bilinear form k2" x k2" — k,

¢(£,)7) = X1Yn+1 — Xn+1Y1 + -+ XnY2n — X2nYn-

Then Sp,,, consists of the 21 x 2n matrices A such that

P(AX, Ay) = ¢(X. ),

o a)=(o)

i.e., such that
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The Lie algebra of Sp,, consists of the 2n x 2n matrices A such that

(o) o)

Take T to be the maximal torus of diagonal matrices

i.e., such that

diag(ty, ... .tn. 27 ... 0]

stn
Then
. _ 1\ Xi
X*(T) = @151'9 Zyi, diag(ty,..., tn,1] 1,...,tn hES g
Ao, i
X«(T) = @lsisn ZAi, t+—>diag(l,....,t,...,1)
with the obvious pairing { , ). All the characters
F2xi, Exi £y, 1F]
occur as roots, and their coroots are, respectively,
A, XA EA;, D #
Example (D,): SO, .

Consider the symmetric bilinear form k2" x k2" — k,

$(X,Y) = X1Yn41 + Xnr1V1 + -+ XnYon + X2nY2n.

Then SO, = SO(¢) consists of the n x n matrices A of determinant 1 such that

P(AX, AY) = ¢(X.y).

(0= )

The Lie algebra of SO, consists of the n x n matrices A of trace 0 such that

P(AX.y) = —¢p(x, AY),

(7 o)=-(7 o)+

), then this last condition becomes

i.e., such that

i.e., such that

When we write the matrix as
(¢ &

A+ D=0, C+C'=0, B+ B!'=0.

Take T to be the maximal torus of matrices
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diag(ty,....tn 7. 151

and let y;, 1 <1i <r, be the character
. -1 -1
diag(t1,....th ty ... t, ) > 1.

All the characters
ity i #J

occur, and their coroots are, respectively,
A E£A;, P # )

REMARK 17.21 The subscript on A;, By, C,, Dy denotes the rank of the group, i.e., the
dimension of a maximal torus.
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18 Generalities on root data

Definition

The following is the standard definition.

DEFINITION 18.1 A root datum is an ordered quadruple ¥ = (X, ®, XV, ®V) where
¢ X, XY are free Z-modules of finite rank in duality by a pairing ( , ): X x XV — Z,
o @, PV are finite subsets of X and XV in bijection by a correspondence o <> oV,
satisfying the following conditions
RD1 (o, o) =2,
RD2 s54(P) C @, 55 (PY) C @V, where

Sa(x) =x —(x,a)a, forx e X,ac®,

sa()=y—(a,y)a”, forye XV, acd.

Recall that RD1 implies that s, (o) = —a and s(% =1

Se
0=7Z®CX Qv =7®Y Cc XV

V=0Q®z 0 VY =Q®z Q.
Xo={xeX|(x,®V) =0}

By Z® we mean the Z-submodule of X generated by the o € @.

LEMMA 18.2 Fora € ®,x € X,andy € XV,

(sa(x),y) = (x.55 (»)). (65)

and so
(sa(x), 554 (1)) = (x, ). (66)

PROOF. We have
(s¢(x),y) = (x = (x,a)a, y) = (x,y) = {x,a")(a, y)
(x50 (1) = (x,y = (e, y)a”) = (x,y) = (x,a")(a, y),

which gives the first formula, and the second is obtained from the first by replacing y with
Ser (¥)- o

In other words, as the notation suggests, s&’ (which is sometimes denoted sqv) is the
transpose of .

LEMMA 18.3 The following hold for the mapping

p:X = XY, pkx) = Z(x,av)av.

oaed

(a)Forall x € X,

(. p)) =Y _(x.a¥)>=0, (67)

with strict inequality holding if x € ®.

aed

9The notation QV is a bit confusing, because Q" is not in fact the dual of Q.
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(b)Forallx € X andw € W,

{wx, p(wx)) = (x, p(x)). (68)

(c)Foralla € D,
(o, p(a@))a” =2p(a), alla € P. (69)

PROOF. (a) This is obvious.
(b) It suffices to check this for w = s, but

(sax.a”) = (x.a”) = (x.a") o, a") = —(x,a")

and so each term on the right of is unchanged if x with replaced with sqx.
(c) Recall that, for y € XV,

Sa (V) =y — (e, y)a”.
On multiplying this by («, y) and re-arranging, we find that
(o, y)%aY = (o, y)y = (@, y)sq ().
But

—<Ol, y) = (Soz(a)’ y)

= (o, 57 ()

2

and so

(o, y)2aY = (o, »)y + (@ 5y (0)sa ().
As y runs through the elements of @V, so also does sy (y), and so when we sum over
y € @V, we obtain (69). o

REMARK 18.4 Suppose ma is also a root. On replacing « with ma in and using that
p is a homomorphism of Z-modules, we find that

m{a, p(a))(ma)Y =2p(a), alac€ ®.

Therefore,
(ma)Y =m V. (70)

In particular,
() = —(a). (71)

LEMMA 18.5 The map p: X — XV defines an isomorphism
1®p:V—> VY.
In particular, dim V = dim V'V.

PROOF. As («, p(a)) # 0, shows that p(Q) has finite index in QV. Therefore, when
we tensor p: Q — QV with Q, we get a surjective map 1 ® p:V — VV; in particu-
lar, dim V' > dim V'V. The definition of a root datum is symmetric between (X, @) and
(XY, ®V), and so the symmetric argument shows that dim V¥ < dim V. Hence

dimV =dim V",

and 1 ® p:V — V'V is an isomorphism. 0
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LEMMA 18.6 The kernel of p: X — XV is Xj.
PROOF. Clearly, Xo C Ker(p), but proves the reverse inclusion. o
PROPOSITION 18.7 We have
0NXo=0
0O + Xy is of finite index in X.

Thus, there is an exact sequence

(g:x)~>q+x ;
0— Q & Xo ——— X — finite group — 0.

PROOF. The map
1p: QX - VY

has kernel Q ® X (see|18.6) and maps the subspace V of Q ® X isomorphically onto V'
(see[18.5). This implies that

Q®zX)oV =0 X,
from which the proposition follows. o
LEMMA 18.8 The bilinear form ( , ) defines a nondegenerate pairing V x V¥ — Q.
PROOF. Letx € X. If (x,a¥) = Oforalla¥ € @V, then x € Ker(p) = Xp. 0
LEMMA 18.9 Foranyx € X andw € W, w(x) —x € Q.

PROOF. From (RD2),
Sa(x) —x = —({x,a¥)a € 0.

Now
(SDtl © SOlz)(x) — X = Say (Saz(x) - X) + Sa; (X) —X € Q?

and so on. o

Recall that the Weyl group W = W(¥) of ¥ is the subgroup of Aut(X) generated by
the sq, ¢ € ®. Weletw € W acton XV as (wY) ™1, i.e., so that

(wx,wy) = (x,y), alweW,xeX,yeX".
Note that this makes sq act on XV as (sy)~! = s (see|65).

PROPOSITION 18.10 The Weyl group W acts faithtully on @ (and so is finite).

PROOF. By symmetry, it is equivalent to show that W acts faithfully on @V. Let w be an
element of W such that w(a) = « forall« € @V, For any x € X,

(wx) —x.a”) = (wx),a’) — (x.a”)
= (x,w™ (@) - {x,a")
= 0.

Thus w(x) — x is orthogonal to @Y. As it lies in Q (see[18.9), this implies that it is zero
(18.8)), and so w = 1. o
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Thus, a root datum in the sense of (18.1)) is a root datum in the sense of (I7.1]), and the
next proposition proves the converse.

PROPOSITION 18.11 Let ¥ = (X,®, XY, ®Y) be a system satisfying the conditions
(rd1), (rd2), (rd3) of (I7.1). Then ¥ is a root datum.

PROOF. We have to show that
5o (@Y) C @Y where s, (y) =y — (@, y)a”.

As in Lemmal18.2] (sq(x), sy (¥)) = (x, y).
Leta, B € @, and lett = s5,(8)SaSgSa- An easy calculatioﬂ shows that

t(x) = x + ({x, 55 (BY)) = (x,50(B)))sa(B). allx € X.

Since

(5a(B), 54 (BY)) — (sa(B), 5a(B)”) = (B, BY) — (sa(B).5a(B)*) =22 =0,
we see that #(s4(8)) = 5¢(8). Thus,
(t—1)>=0,

and so the minimum polyonomial of ¢ acting on Q ®z X divides (T — 1)2. On the other
hand, since ¢ lies in a finite group, it has finite order, say t” = 1. Thus, the minimum
polynomial also divides 7" — 1, and so it divides

ged(T™ —1,(T-1)*>) =T —1.
This shows that # = 1, and so
(x,50(BY)) — (x,50(B)Y) = 0forall x € X.
Hence

So (BY) = sa(B)” € @Y. O

REMARK 18.12 To give a root datum amounts to giving a triple (X, @, f) where
¢ X is a free abelian group of finite rank,
¢ @ is a finite subset of X, and
¢ f is aninjective map « — " from @ into the dual X of X

satisfying the conditions (rd1), (rd2), (rd3) of (I7.1).

%00r so it is stated in Springer 1979, 1.4 (Corvallis).
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19 Classification of semisimple root data

Throughout this section, F is a field of characteristic zero, for example F = Q, R, or C.
An inner product on a real vector space is a positive-definite symmetric bilinear form.

Generalities on symmetries

Let V be a finite-dimensional vector space over F, and let o be a nonzero element of V.
A symmetry with vector « is an automorphism of V' such that s(«) = —«, and the set of
vectors fixed by s is a hyperplane H.
Then V = H @ (a) with s acting as 1 @ —1, and so 5% = 1.

Let V'V be the dual vector space Homg.jin(V, F) of V, and write (x, f) for f(x). The

composite

v > v/H

is the unique element o of V'V such that «(H) = 0 and (o, «) = 2; moreover,
s(x) =x—{x,a¥)a allx V. (72)

In this way, symmetries with vector « are in one-to-one correspondence with vectors "
such that (o, ) = 2.

LEMMA 19.1 Let @ be a finite subset of V' that spans V. Then, for any nonzero vector «
in V, there exists at most one symmetry s with vector « such that a(®) C ®.

PROOF. Let s, s’ be such symmetries, and let = ss’. Then ¢ defines the identity map on
both Fo and on V/ Fa, and so

(t—1D2V Cc(—1)Fa=0.

Thus the minimum polynomial of # divides (7 —1)2. On the other hand, because @ is finite,
there exists an integer m > 1 such that 1" (x) = x for all x € @ and hence forall x € V.
Therefore the minimum polyomial of ¢ divides 7™ — 1, and hence also

ged(T—1)2T"—1) =T —1.
This shows that t = 1. o

LEMMA 19.2 Let(, ) be an inner product on a real vector space V. Then, for any nonzero
vector « in V', there exists a unique symmetry s with vector « that is orthogonal for ( , ),
i.e., such that (sx,sy) = (x,y) forall x, y € V, namely

(x, )

s(x)y=x-—-2 a. (73)

(o, @)
PROOF. Certainly, does define an orthogonal symmetry with vector «. Suppose s’
is a second such symmetry, and let H = (¢)+. Then H is stable under s’, and maps

isomorphically on V/{«). Therefore s” acts as 1 on H. As V = H @ (&) and s’ acts as —1
on (&), it must coincide with s. o
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Generalities on lattices
In this subsection V is a finite-dimensional vector space over F.

DEFINITION 19.3 A subgroup of V is a lattice in V if it can be generated (as a Z-module)
by a basis for V. Equivalently, a subgroup X is a lattice if the natural map F ®z X — V
is an isomorphism.

REMARK 19.4 (a) When F' = Q, every finitely generated subgroup of V' that spans V' is a
lattice, but this is not true for F = R or C. For example, Z1 + Z+/2 is not a lattice in R.

(b) When F = R, the discrete subgroups of V' are the partial lattices, i.e., Z-modules
generated by an R-linearly independent set of vectors for V' (see my notes on algebraic
number theory 4.13).

DEFINITION 19.5 A perfect pairing of free Z-modules of finite rank is one that realizes
each as the dual of the other. Equivalently, it is a pairing into Z with discriminant £1.

PROPOSITION 19.6 Let
(, 2V xVY >k

be a nondegenerate bilinear pairing, and let X be a lattice in V. Then
Y={yeV'|(X.y)CZ}
is the unique lattice in V' such that ( , ) restricts to a perfect pairing

XxY — Z.

PROOF. Letey,...,e, be abasis for V' generating X, and let e/l, ..., e, be the dual basis.
Then
Y = Ze, + -+ Zel,

and so it is a lattice, and it is clear that { , ) restricts to a perfect pairing X x ¥ — Z.

Let Y/ be a second lattice in V'V such that (x, y) € Z forall x € X, y € Y'. Then
Y’ C Y, and an easy argument shows that the discriminant of the pairing X x Y’ — Z is
+(Y:Y’), and so the pairing on X x Y is perfect if and only if Y/ = Y. o

Root systems

DEFINITION 19.7 A root system is a pair (V, @) with V' a finite-dimensional vector space
over I and @ a finite subset of V' such that

RS1 & spans V' and does not contain 0;

RS2 for each o € @, there exists a symmetry s, with vector « such that s (@) C @;

RS3 foralla,f € @, (B,a") € Z.

In (RS3), aV is the element of VY corresponding to s. Note that shows that s,
(hence also a") is uniquely determined by «.

The elements of @ are called the roots of the root system. If « is a root, then s, () =
—a 1s also a root. If tor is also a root, then (RS3) shows that f = % or 2. A root system
(V, @) is reduced if no multiple of a root except its negative is a root.

The Weyl group W = W(®) of (V, @) is the subgroup of GL(V') generated by the
symmetries sq for ¢ € @. Because @ spans V, W acts faithfully on @; in particular, it is
finite.
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PROPOSITION 19.8 Let (V, @) be a root system over F, and let V be the Q-vector space
generated by @. Then

(a) the natural map F ®q Vo — V is an isomorphism;

(b) the pair (Vy, @) is a root system over Q.

PROOF. For a proof of the proposition, see Serre 1987, p42. O

Thus, to give a root system over R or C amounts to giving a root system over Q.

Root systems and semisimple root data

Compare (TETZ}[1977):

] Semisimple root datum Root system (over Q) ‘
X, o, a—~aV:®—> XV |V, @
@ is finite @ is finite
(X:Z) finite @ spans V
0¢ @

(a, V) =2,54(P) C D | Isy such that so(P) C D
(B,aV)€eZ,alla,B € ®

Weyl group finite

For aroot system (V, @), let Q = Z® be the Z-submodule of V' generated by @ and let
QV be the Z-submodule of V' generated by the @V, & € ®. Then, Q and Q" are lattices®]|
in V and V'V, and we let

P={xeV|{x.0Y)CZ.

Then P is alattice in V' (see[I9.6), and because of (RS3),
QCP. (74)

PROPOSITION 19.9 If (X, ®,a — «V) is a semisimple root datum, then (Q ®7 X, @) is a
root system over Q. Conversely, if (V, @) is root system over Q, then for any choice X of
a lattice in V such that

QcXcp (75)

(X, ®,a — aY) is a semisimple root datum.

PROOF. If (X, ®,a — V) is a semisimple root datum, then 0 ¢ @ because (o, aV) = 2,
and (B,a") € Z because a¥ € XV. Therefore (Q ®7 X, @) is a root system.

Conversely, let (V, @) be aroot system. Let X satisfy (73)), and let XV denote the lattice
in V'V in duality with X (see [19.6). For each @ € @, there exists an &V € V" such that
(o,aV) = 2 and 54(P) C @ (because (V, @) is a root datum), and shows that it is
unique. Therefore, we have a function @ +— aY:® — V" which takes its values in X
(because X C P implies XV D @V), and is injective. The Weyl group of (X, ®,a > a")
is the Weyl group of (V, @), which, as we noted above, is finite. Therefore (X, @, a > o)
is a semisimple root datum. O

61They are finitely generated, and @V spans V'V by Serre 1987, p28.
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The big picture
Recall that the base field k (for G) has characteristic zero.

Split reductive groups < Reduced root data

Split semisimple groups <«  Reduced semisimple root data

i \

. k=k
Lie algebras <~ Reduced root systems

19.10 As we discussed in (§17), the reduced root data classify the split reductive groups
over k.

19.11 As we discussed in (I5.I), from a reductive group G, we get semisimple groups
DG and G/ Z(G) together with an isogeny DG — G/Z(G). Conversely, every reductive
group G can be built up from a semisimple group and a torus (15.2).

19.12 As we discuss in the next section, the relation between reduced root data and re-
duced semisimple root data is the same as that between split reductive groups and split
semisimple groups. It follows that to show that the reduced root data classify split reduc-
tive groups, it suffices to show that reduced semisimple root data classify split semisimple
groups.

19.13 From a semisimple group G we get a semisimple Lie algebra Lie(G) (see [14.1)),
and from Lie(G) we can recover G/ Z(G) (see[14.9). Passing from G to Lie(G) amounts
to forgetting the centre of G.

19.14 From a semisimple root datum (X, @, « — «"), we get a root system (V = Q ®z
X, @). Passing from the semisimple root datum to the root system amounts to forgetting
the lattice X in V.

19.15 Take k = k, and let g be a semisimple Lie algebra over k. A Cartan subalgebra
b of g is a commutative subalgebra that is equal to its own centralizer. For example, the
algebra of diagonal matrices of trace zero in sl is a Cartan subalgebra. Then § acts on g
via the adjoint map ad: h — End(g), i.e., for & € b, x € g, ad(h)(x) = [k, x]. One shows
that g decomposes as a sum

=00, o
where gg is the subspace on which h acts trivially, and hence equals §j, and g is the subspace
on which b acts through the linear form «: ) — k, i.e., forh € h, x € gq, [k, x] = a(h)x.
The nonzero « occurring in the above decomposition form a reduced root system @ in b
(and hence in the Q-subspace of b spanned by @ — see . In this way, the semisimple
Lie algebras over k are classified by the reduced root systems (see Serre 1987, VI).

Classification of the reduced root system

After (19.8)), we may as well work with root systems over R.

PROPOSITION 19.16 For any root system (V, @), there exists an inner product (, ) on V
such that the s, act as orthogonal transformations, i.e., such that

(sax,8¢y) = (x,y), allae®, x,yelV.



19 CLASSIFICATION OF SEMISIMPLE ROOT DATA 150

PROOF. Let (, )’ be any inner product V x V — R, and define

= o (wxwy)

Then ( , ) is again symmetric and bilinear, and

_ /
(x,x) = Zwew(wx,wx) >0
if x # 0, and so (, ) is positive-definite. On the other hand, for wg € W,
(wox, woy) = Zwew(www, wwoy)'
= (x,y)
because as w runs through W, so also does wwy. o

REMARK 19.17 There is in fact a canonical inner product on V', namely, the form induced
by x,y = (x, p(x)) (see[18.3).
Thus, we may as well equip V' with an inner product ( , ) as in the proposition. On
comparing with
(x, )
o

Se(x) = x _Z(a,a) ,

Se(x) = x — (x, 0V,

we see that
(x, )

(o )

(x,a¥) =2 (76)

Thus (RS3) becomes the condition:

(B, @)

Y@

e€Z,alla,p € @.

Study of two roots

Let o, € @, and let n(B,a) = 2§€ g; We wish to examine the significance of the
condition n(8, @) € Z. Write
Bl

n(B,a) =2-—cos¢

[
where | - | denotes the length of a vector and ¢ is the angle between « and . Then
n(B,a)-n(a,B) =4cos’ ¢ € Z. 77

Excluding the possibility that 8 is a multiple of ¢, there are only the following possibilities
(in the table, we have chosen f to be the longer root).

n(p,o) -n(.p) | n(e.p) | nB.o)| ¢ | IBl/lel

0 0 0 )2

| 1 1| 7/3 |
1 1 | 2x2/3
1 2 | x4

2 1 2 | 37/4 V2
1 3 /6

3 ~1 3 | s5m/6 V3
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The proof of this is an exercise for the reader, who should also draw the appropriate pictures.

REMARK 19.18 Let « and B be roots with neither a multiple of the other. Clearly, n(«, B)
and n(f, a) are either both positive or both negative. From the table, we see that in the first
case at least one of n(«, B) or n(B, @) equals 1. If it is, say, n(8, «), then

Sa(B) =B —n(B.0)a =p —a,

and so +(«a — B) are roots.

Bases

DEFINITION 19.19 A base for @ is a subset S such that
(a) S is abasis for V (as an R-vector space), and
(b) when we express aroot 8 as a linear combination of elements of S,

'3 - Z(XGS Mo,

the m, are integers of the same sign (i.e., either all my > 0 or all my < 0).

The elements of a (fixed) base S are often called the simple roots(for the base).

PROPOSITION 19.20 There exists a base S for @.

PROOF. Serre 1987, V 8. The idea of the proof is the following. Choose a vector ¢ in the
dual vector space V' such that, for all « € @, («,t) # 0, and set

&t ={a | (a. 1) >0}
@7 ={a| {a,t) <0}

(so @ = @~ U PT). Say that an o € @ is decomposable if it can be written as a
suma = B + y with B,y € @7, and otherwise is indecomposable. One shows that the
indecomposable elements form base. o

REMARK 19.21 Let o and 8 be simple roots, and suppose (e, §) and n(B, ) are positive
(i.e., the angle between « and B is acute). Then (see [19.18), both of @ — B and B — « are
roots, and one of them, say, & — 8, will be in ® . But then « = (a — 8) + B, contradicting
the simplicity of «. We conclude that n(8, &) and n (o, 8) are negative.

EXAMPLE 19.22 Consider the root system of type A,, i.e., that attached to SL, ;1 (see
pl124). We can take V to be the subspace[g_zl of R"*1 of n + 1-tuples such that }_x; = 0
with the usual inner product, and @ = {e; —e; | i # j} withey,...,e,41 the standard
basis of R*t1. When we choose t = nej + --- + ey,

q§+:{el~—ej|i>j}.
Fori > j +1,
ej—ej = (e —ei—1)+--+(ej+1—ej)

is decomposable, and so the indecomposable elements are e — e, ...,e; — ey+1. They
obviously form a base.

%2The naturally occurring space is R* ! modulo the line R(e; + -+ + ep41), but V is the hyperplane
orthogonal to this line and contains the roots, and so this gives an isomorphic root system. Alternatively, it is
naturally the dual ®V.
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Action of the Weyl group

Recall that W = W(@) is the subgroup of GL(V') generated by {sy | o« € ®@}.

PROPOSITION 19.23 Let S be a base for ®@. Then
(a) W is generated by the s, fora € S;
b) W-S =o;
(c) if 8’ is a second base for @, then S’ = wS for some w € W.

PROOF. Serre 1987, V 10. o
EXAMPLE 19.24 For the root system A,
(X, aij)

Y (ctij, aij)

®jj, Qi =e —ej,
- i J
=x+(0,...,0,x; —x;,0,...,0,x; = x;,0,...,0)
i J
= (X1, s X)Xy oo oy Xpg1)-

Thus, sg;; switches the i ™™ and j*™ coordinates. It follows that W has a natural identifica-
tion with the symmetric group Sy +1, and it is certainly generated by the elements sq,, -
Moreover, W - S = @.

Cartan matrix

For a choice § of a base, the Cartan matrix is (n(«, ))q,ges- Thus, its diagonal terms
equal 2 and its off-diagonal terms are negative or zero ((19.21).

PROPOSITION 19.25 The Cartan matrix doesn’t depend on the choice of S, and it deter-

mines the root system up to isomorphism.

PROOF. The first assertion follows from (19.23k). For the second, let (V, @) and (V', @)
be root systems such that for some bases S and S’ there is a bijection ¢ +— «’: S — §’
such that n(a, B) = n(a’, B’). The bijection & — «’ extends uniquely to an isomorphism
of vector spaces x > x": V — V’. Because

sa(B) = B —n(B,o)a,
this isomorphism sends sq to so for @ € S. Because of (19.23h), it maps W onto W',

which (by [19.23p) implies that it maps @ onto @'. o
EXAMPLE 19.26 For the root system A, and the obvious base S, the Cartan matrix is
2 -1 0 0 0
-1 2 -1 0 0
0o -1 2 0 0
0 0 O 2 -1
0 0 O -1 2

because
(i —€it1,€i+1—€iy2)

2
(e; —ejy1.€;i —eit1)

-1,

for example.
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The Coxeter graph

This is the graph with nodes indexed by the elements of a base S for @ and with two nodes
joined by n(w, B) - n(B, o) edges.
We can define the direct sum of two root systems

V., @) = (V1,91) & (V2, P2)

by taking V' = V; @ V5 (as vector spaces with inner product) and by taking @ = &; U &,.
A root system is indecomposable if it can’t be written as a direct sum of two nonzero root
systems.

PROPOSITION 19.27 A root system is indecomposable if and only if its Coxeter graph is
connected.

PROOF. One shows that a root system is decomposable if and only if @ can be written as
a disjoint union @ = @; U P, with each root in P orthogonal to each root in @,. Since
roots «, 8 are orthogonal if and only n(a, B) - n(B, &) = 4 cos? ¢ = 0, this is equivalent to
the Coxeter graph being disconnected. O

Clearly, it suffices to classify the indecomposable root systems.

The Dynkin diagram

The Coxeter graph doesn’t determine the root system because for any two base roots «, 3,
it only gives the number n(a, 8)-n (8, o). However, for each value of n(a, 8) -n (B, ) there
is only one possibility for the unordered pair

{n(a, B),n(B,a)} = {2|a_| cos @, 2@ cos ¢}.
Bl [

Thus, if we know in addition which is the longer root, then we know the ordered pair. The
Dynkin diagram is the Coxeter graph with an arrow added pointing towards the shorter
root (if the roots have different lengths). It determines the Cartan matrix and hence the
root system. Specifically, to compute the Cartan matrix from the Dynkin diagram, number

the simple roots o1, ..., an, and let a;; = n(a;, B;) be the ij*® coefficient of the Cartan
matrix; then

foralli, a;; = 2;

if ; and o; are not joined by an edge, thena;; = 0 = a;;

if o; and o5 are joined by an edge and |o;| < |o/|, thena;; = —1;

if o; and o ; are joined by r edges and |o; | > ||, then a;; = —r.

THEOREM 19.28 The Dynkin diagrams arising from reduced indecomposable root sys-
tems are exactly those listed below.

PROOF. See Humphreys 1979, 11.4, pp 60-62. O
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Ay o o o o n>1
aq a2 Up—1 (047)
B,: o o o =0 (n>2)
o1 o2 Op—1 oy
C,. o o = o (n>3)
(231 (0% Up—1 (097}
(0
On—1
Dy: o o o (n>4)
o1 (%) Up—2
o
(047)
o wp
Ee¢: o o o
o1 o3 o4 o5 U6
o ap
E; o o o o
o1 o3 04 a5 (073 a7
o ap
Eg: o o o o
o1 (0%] 04 o5 (075 (0% og
Fy: o—o —0——0
o1 (25 a3 04

G:Omitted for the present.
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20 The construction of all split reductive groups

Throughout this section, k is a field of characteristic zero.

Preliminaries on root data/systems

Recall (19.9)) that semisimple root data (hence semisimple algebraic groups) correspond to
reduced root systems (V, @) together with a choice of a lattice X,

oQcXcprp
where Q = Z® and P is the lattice in duality with Z&® Y. Thus
={xeV|{x,a¥)eZ, alacd).

When we take V to be a real vector space and choose an inner product as in (19.16)), this
becomes
, )

(o, @)
Choose a base S = {«1,...,a,} for @ (see(19.19). Then

P:{er ' e Z, allae@}.

Q =701 D -+ D Loy,

and we want to find a basis for P. Let {A1,...,A,} be the basis of V' dual to the basis
{ 2 2 2 }
—_— 0, .,y e, ———Clpy ¢
(o1, 1) (i, i) (0, an)
i.e., (A;)1<i<n is characterized by
A ’
( %) = §;; (Kronecker delta).
(0‘/ .0j)

PROPOSITION 20.1 The set{A1,...,A,} is a basis for P, i.e.,
P=7M® - DZAy.

PROOF. Let A € V, and let
(A o)

(051»0‘1)

,i=1,...,n.

Then
(A= midi,a) =0
ifa € S. Since S is a basis for V/, this implies that A — > m;A; = 0 and

(A, )
A= Zmlk = Zz(%’al

Hence,
( 0‘1)

oG, O

AG@ZA — 2-2" cZfori=1,....n

and so P C EB ZA;. The reverse inclusion follows from the next lemma. o
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LEMMA 20.2 Let @ be a reduced root system, and let @’ be the root system consisting of

the vectors o’ = (a%)a fora € ®. For any base S for ®@, the set S’ = {a' | @ € S}isa
base for @’.
PROOF. See Serre 1987, V 9, Proposition 7. O

PROPOSITION 20.3 For each j,

_ (0, 0f)
o —leiSnZ Ai.

(i, o)

PROOF. This follows from the calculation in the above proof. o

Thus, we have
P =@iZli D0 =@iZ0{i

and when we express the «; in terms of the A;, the coefficients are the entries of the Cartan
matrix. Replacing the A;’s and «;’s with different bases amounts to multiplying the transi-
tion (Cartan) matrix on the left and right by invertible matrices. A standard algorithm allows
us to obtain new bases for which the transition matrix is diagonal, and hence expresses P/ Q
as a direct sum of cyclic groups. When one does this, one obtains the following table:

A, B, C, Dp(modd) D, (neven) E¢ E; Eg Fi Gy
Chr1 G G Cy CoxCy C3 G Cp G G

In the second row, C;, denotes a cyclic group of order m.
Also, by inverting the Cartan matrix one obtains an expression for the A;’s in terms of
the «;’s. Cf. Humphreys 1972, p69.

Brief review of diagonalizable groups

Recall from §9 that we have a (contravariant) equivalence M + D(M) from the category
of finitely generated abelian groups to the category of diagonalizable algebraic groups. For
example, D(Z/mZ) = puy and D(Z) = Gyy,. A quasi-inverse is provided by

D — X (D) =4t Hom(D, G,).
Moreover, these functors are exact. For example, an exact sequence
0—>D'—D-5D"—>0
of diagonalizable groups corresponds to an exact sequence
0— X(D") - X(D) — X(D') = 0
of abelian groups. Under this correspondence,

D' =Ker(D - D" & ] Gm)

XEX(D")

1.€.,
’_ mox
D = ﬂXGX(D”) Ker(D —> Gp). (78)
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Construction of all almost-simple split semisimple groups

Recall that the indecomposable reduced root systems are classified by the Dynkin diagrams,
and that from the Dynkin diagram we can read off the Cartan matrix, and hence the group
P/O.

THEOREM 20.4 For each indecomposable reduced Dynkin diagram, there exists an alge-
braic group G, unique up to isomorphism, with the given diagram as its Dynkin diagram
and equipped with an isomorphism X(ZG) ~ P/ Q.

For each diagram, one can simply write down the corresponding group. For example,
for A, it is SL,41 and for C, it Sp,,. For B, and Dj, one tries SO2,41 and SO,, (as
defined in [16.3)), but their centres are too small. In fact the centre of O,, is £/, and so
SO2,41 has trivial centre and O, has centre of order 2. The group one needs is the
corresponding spin group (see §5). The exceptional groups can be found, for example, in
Springer 1998.

The difficult part in the above theorem is the uniqueness. Also, one needs to know that
the remaining groups with the same Dynkin diagram are quotients of the one given by the
theorem (which has the largest centre, and is said to be simply connected).

Here is how to obtain the group G(X) corresponding to a lattice X,

POXDO.

As discussed earlier (p137)), the centre of G(X) has character group X/ Q, so, for example,
the group corresponding to P is the simply connected group G. The quotient of G by

N = ﬂXGX/Q Ker(y: Z(G) = Gum)

has centre with character group X/ Q (cf. (78)), and is G(X).
It should be noted that, because of the existence of outer automorphisms, it may happen
that G(X) is isomorphic to G(X') with X # X’.

Split semisimple groups.

These are all obtained by taking a finite product of split simply connected semisimple
groups and dividing out by a subgroup of the centre (which is the product of the centres
of the factor groups).

Split reductive groups

Let G’ be a split semisimple group, D a diagonalizable group, and Z(G’) — D a homo-
morphism from Z(G’) to D. Define G to be the quotient

Z(G)—= G xD -G —1.
All split reductive groups arise in this fashion (I5.1).

ASIDE 20.5 With only minor changes, the above description works over fields of nonzero
characteristic.
Exercise

20-1 Assuming Theorem [20.4] show that the split reductive groups correspond exactly to
the reduced root data.
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21 Borel fixed point theorem and applications

Brief review of algebraic geometry

We need the notions of an affine algebraic variety, a projective algebraic variety, and a
quasi-projective algebraic variety as, for example, in my notes AG. A projective variety is a
variety that can be realized as a closed subvariety of some projective space P”; in particular,
any closed subvariety of a projective variety is projective.

21.1 Let V be a vector space of dimension n over k.

(a) The set P(V') of lines in V is in a natural way a projective variety: in fact the choice
of a basis for V defines a bijection P(V) < P"~1,

(b) Let G4 (V) be the set of d-dimensional subspaces of V. When we fix a basis for V,
the choice of a basis for S determines a d xn matrix A(.S) whose rows are the coordinates of
the basis elements. Changing the basis for S multiplies A(S) on the left by an invertible d x
d matrix. Thus, the family of d x d minors of A(S) is determined by S up to multiplication
by a nonzero constant, and so defines a point P(S) of P(@)=1. One shows that S P(S)
is a bijection of G4(V') onto a closed subset of p(@)-1 (called a Grassmann variety; AG
6.26).

(c) For any sequence of integers n > d, > dy—1 > --- > dy > 0 the set of flags

Vov.>o---DV; D{0}

with V; a subspace of V' of dimenision d; has a natural structure of a projective algebraic
variety (called a flag variety; AG pl114).

21.2 If X is an affine algebraic variety, then the ring of regular functions on X is finite
over a polynomial ring in dim X symbols (Noether normalization theorem, AG 8.13). On
the other hand, the ring of regular functions on a connected projective variety consists only
of the constant functions (AG 7.7, 7.3e). Thus an affine algebraic variety isomorphic to a
projective algebraic variety has dimension zero.

21.3 Let f: X — Y be aregular map. Then f(X) contains an open subset of its closure
f(X) (AG 10.2). If X is projective, then f(X) is closed (AG 7.7, 7.3c).

21.4 A bijective regular map of algebraic varieties need not be an isomorphism. For
example, x — xP:Al — Al in characteristic p corresponds to the map of k-algebras
T +— TP?:k[T] — k[T], which is not an isomorphism, and

t (2,03 A > {y? = X3} Cc A?

corresponds to the map k[t2,13] < k[t], which is not an isomorphism. However, every
bijective regular map X — Y of varieties in characteristic zero with ¥ nonsingular is an
isomorphism (cf. AG 8.19).

21.5 The set of nonsingular points of a variety is dense and open (AG 5.18). Therefore, a
variety on which a group acts transitively by regular maps is nonsingular (cf. AG 5.20).

In order to be able to use algebraic geometry in its most naive form, for the remainder
of this section I take k to be algebraically closed of characteristic zero. This allows us
to regard algebraic groups as affine algebraic varieties (in the sense of AG) endowed with a
group structure defined by regular maps (2.24).
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The Borel fixed point theorem

THEOREM 21.6 (BOREL FIXED POINT THEOREM) Any connected solvable affine algebraic
group actin on a projective variety has a fixed point.

PROOF. Let G x X — X be the action. We use induction on the dimension of G.

Suppose G has dimension 1, and let O = Gx be an orbit in X. There are three
possibilities to consider:

(a) O has dimension 0;
(b) O has dimension 1, and is not closed;
(¢) O has dimension 1, and is closed.

In case (a), O consists of a single point (because G is connected), which is a fixed point.
In case (b), O is stable under G, and so O ~ O is a finite set of fixed points. Case (c) doesn’t
occur: the orbit O is nonsingular (21.5), and if it is closed then it is projective; the subgroup
N of G fixing x is normal (because G is commutative), and G/N — O is bijective, and is
therefore an isomorphism (21.4)); this contradicts because G/ N is affine (6.22).

In the general case, G has a normal subgroup H with G/H of dimension 1 — this
follows from the Lie-Kolchin theorem, or can be proved directly. The subvariety X 7 of
points fixed by H is nonempty by induction, and it is closed because X 7 = Mner X h,
where X" is the set on which the regular maps x — hx and x — x agree. Therefore X 7
is a projective variety on which G acts through its quotient G/H, which has a fixed point
by the first part of the proof. O

REMARK 21.7 Itis possible to recover the Lie-Kolchin theorem from the Borel fixed point
theorem. Let G be a connected solvable subgroup of GLy, and let X be the collection of
full flags in V' (i.e., the flags corresponding to the sequence dimV =n>n—1> --- >
1 > 0). As noted in (21.1]), this has a natural structure of a projective variety, and G acts on
it by a regular map

g F—gF:GxX—>X

where
EVu D Vi1 Do) =gV D gVy—1 Do

According to the theorem, there is a fixed point, i.e., a full flag such that gFF = F for all
g € G(k). Relative to a basis ey, .. ., e, adapted to the ﬂag G CT,.

Quotients

Earlier we discussed the quotient of an algebraic group G by a normal algebraic subgroup
N. Now we need to consider the quotient of G by an arbitrary subgroup H. Let 7: G —
G/H be the quotient map (of sets). Endow G/H with the quotient topology, and for U
an open subset of G/H, let Og,g (U) be the k-algebra of functions f:U — k such that
f o m is regular on 7~ 1(U). Then one can show that the ringed space so defined is a
quasi-projective algebraic variety. Moreover, it has the following universal property: every
regular map G — Y that is constant on each left coset of H in G factors uniquely through
.

63By this we mean that there is a regular map G x X — X defining an action of the group G(k) on the set
X (k) in the usual sense.
%4That is, such that e, . . ., e; is a basis of V.
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As in the case of a normal subgroup, a key tool in the proof Chevalley’s theorem (3.13):
there exists a representation G — GLy and a one-dimensional subspace L in V' such that

H(k) ={g € G(k) | gL = L}.

Then, the map g + gL defines an injection (of sets) G/H — P(V'), and one shows that
the image of the map is a quasi-projective subvariety of P(1") and that the bijection endows
G/H with the structure of a quasi-projective variety having the correct properties. See
Humphreys 1975, Chapter I'V.

*

EXAMPLE 21.8 Let G = GLyand H = T, = {(0

I)} . Then G acts on k2, and H

is the subgroup fixing the line ( ) Since G acts transitively on the set of lines, there is a

0
bijection G/H — P!, which endows G/H with the structure of a projective variety.

ASIDE 21.9 When k and G are arbitrary, quotients still exist. Let H be an algebraic sub-
group of G. Then there exists an algebraic space G/H and a map n: G — H such that

(a) for all k-algebras R, the fibres of the map G(R) — (G/H)(R) are the cosets of
H(R);

(b) for all k-algebras R and x € (G/H)(R), there exists a finitely generated faithfully
flat R-algebra R’ and an y € G(R’) such that x and y have the same image in
(G/H)(R).

See Demazure and Gabriel 1970, III §3 5.4.

Borel subgroups

DEFINITION 21.10 A Borel subgroup of an algebraic group G is a maximal connected
solvable algebraic subgroup.

For example, T is a Borel subgroup of GL; (it is certainly connected and solvable, and
the only connected subgroup properly containing it is GL,, which isn’t solvable).
For the remainder of this section, G is a connected algebraic group.

THEOREM 21.11 If B is a Borel subgroup of G, then G/ B is projective.

THEOREM 21.12 Any two Borel subgroups of G are conjugate, i.e., B’ = gBg™! for
some g € G(k).

PROOF. We first prove Theorem for B a connected solvable algebraic subgroup of
G of largest possible dimension. Apply the theorem of Chevalley quoted above to obtain a
representation G — GLy and a one-dimensional subspace L such that B is the subgroup
fixing L. Then B acts on V/L, and the Lie-Kolchin theorem gives us a full flag in V/L
stabilized by B. On pulling this back to V', we get a full flag,

F:V=V,DVy1 DDV =LDO0
in V. Not only does B stabilize F, but (because of our choice of V1),

H(k) ={g e G(k) | gF = F}.
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Thus G/B — G - F is bijective. This shows that, when we let G act on the variety of
full flags, G - F is the orbit of smallest dimension, because for any other full flag F’, the
stabilizer H of F’ is a solvable algebraic subgroup of dimension at most that of B, and so

dimG - F' ' =dimG —dim H > dimG —dim B = dimG - F.

This implies that G - F is closed, because otherwise G - F ~ G - F would be a union of
orbits of lower dimension. As a closed subset of the projective variety of full flags in V,
G - F is projective. By the universal property of quotients, G/B — G - F is regular, and
hence is an isomorphism 21.5). Therefore, G/B is also projective.

We now complete the proof of the theorems by showing that for any Borel subgroups
B and B’ with B of largest possible dimension, B’ C gBg~" for some g € G (k)| Let B/
acton G/B by b’, gB > b’gB. The Borel fixed point theorem shows that there is a fixed
point, i.e., for some g € G(k), B'gB C gB. Then B’'g C gB, and so B’ C gBg™! as
required. O

THEOREM 21.13 All maximal tori in G are conjugate.

PROOF. Let T and T’ be maximal tori. Being connected and solvable, they are contained
in Borel subgroups, say 7 C B, T’ C B’. Forsome g € G, gB’g”! = B, and so
gT’'g™" ¢ B. Now T and gT’g~! are maximal tori in the B, and we know that the
theorem holds for connected solvable groups (T1.27). O

THEOREM 21.14 For any Borel subgroup B of G, G = UgeG(k) gBg™ 1.

PROOF. (BRIEF SKETCH) Show that every element x of G is contained in a connected
solvable subgroup of G (sometimes the identity component of the closure of the group
generated by x is such a group), and hence in a Borel subgroup, which is conjugate to B

(2L.12). o
THEOREM 21.15 For any torus T in G, Cg(T) is connected.

PROOF. Let x € Cg(T)(k), and let B be a Borel subgroup of G. Then x is contained in a
connected solvable subgroup of G (see[21.14)), and so the Borel fixed point theorem shows
that the subset X of G/B of cosets gB such that xgB = gB is nonempty. It is also closed,
being the subset where the regular maps gB — xgB and gB +— gB agree. As T commutes
with x, it stabilizes X, and another application of the Borel fixed point theorem shows that
it has a fixed point in X. In other words, there exists a g € G such that

xgB =gB
TgB = gB.

Thus, both x and T liein gBg ™! and we know that the theorem holds for connected solvable
groups (11.28)). Therefore x € Cg(T)°. o

%5The maximality of B’ implies that B’ = gBg~ 1.
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Parabolic subgroups

DEFINITION 21.16 An algebraic subgroup P of G is parabolic if G/ P is projective.

THEOREM 21.17 Let G be a connected algebraic group. An algebraic subgroup P of G is
parabolic if and only if it contains a Borel subgroup.

PROOF. — : Let B be a Borel subgroup of G. According to the Borel fixed point
theorem, the action of B on G/P has a fixed point, i.e., there exists a g € G such that
BgP = gP. Then Bg C gP and g"!Bg C P.

<= : Suppose P contains the Borel subroup B. Then there is quotient map G/B —
G/ P. Recall that G/ P is quasi-projective, i.e., can be realized as a locally closed subvariety
of PV for some N. Because G/B is projective, the composite G/B — G/P — PV has
closed image (see[21.3)), but this image is G/ P, which is therefore projective. O

COROLLARY 21.18 Any connected solvable parabolic algebraic subgroup of a connected
algebraic group is a Borel subgroup.

PROOF. Because it is parabolic it contains a Borel subgroup, which, being maximal among
connected solvable groups, must equal it. O

Examples of Borel and parabolic subgroups
Example: GLy
Let G = GLy with V of dimension n. Let F be a full flag

and let G(F) be the stabilizer of F,
G(F)(k) ={geGL(V) | gV; CV;foralli}.

Then G(F) is connected and solvable (because the choice of a basis adapted to F defines
an isomorphism G(F) — T,), and GLy /G(F) is projective (because GL(V) acts transi-
tively on the space of all full flags in V). Therefore, G(F) is a Borel subgroup (21.18). For
g € GL(V),

G(gF) =g-G(F)-g~".

Since all Borel subgroups are conjugate, we see that the Borel subgroups of GLy are pre-
cisely the groups of the form G(F) with F a full flag.

Now consider G(F) with F a (not necessarily full) flag. Clearly F can be refined to a
full flag F’, and G(F) contains the Borel subgroup G(F’). Therefore it is parabolic. Later
we’ll see that all parabolic subgroups of GLy are of this form.

Example: SO,

Let V' be a vector space of dimension 2n, and let ¢ be a nondegenerate symmetric bilinear
form on V with Witt index n. By a totally isotropic flag we meanaflag--- D V; D Vi1 D
--- such that each V; is totally isotropic. We say that such a flag is full if it has the maximum
length n.



21 BOREL FIXED POINT THEOREM AND APPLICATIONS 163

Let
FVyi>2Vy1D---DV1 D0
be such a flag, and choose a basis eq,...,e, for V, such that V; = (eq,...,e;). Then
(e2....,en)T contains V;, and has dimension®|n + 1, and so it contains an x such that

(e1,x) # 0. Scale x so that (e;,x) = 1, and define e¢;,+; = x — %qﬁ(x,x)el. Then
d(en+1,en+1) = 0 and ¢(e1,e4,+1) = 1. Continuing in this fashion, we obtain a basis

€1,---,€n,€ntl,...,e2, for which the matrix of ¢ is (? {))

Now let F’ be a second such flag, and choose a similar basis e}, .. ., e, for it. Then the
linear map e; + e is orthogonal, and maps F onto F’. Thus O(¢) acts transitively on the
set X of full totally isotropic subspaces of V. One shows that X is closed (for the Zariski
topology) in the flag variety consisting of all flags V,;, D --- D V1 D 0 with dim V;, = n,
and is therefore a projective variety. It may fall into two connected components which are
the orbits of SO(qb)

Let G = SO(¢). The stabilizer G(F) of any totally isotropic flag is a parabolic sub-
group, and one shows as in the preceding case that the Borel subgroups are exactly the
stabilizers of full totally isotropic flags.

Example: Sp,,,
Again the stabilizers of totally isotropic flags are parabolic subgroups, and the Borel sub-
groups are exactly the stabilizers of full totally isotropic flags.

Example: SO5,4+1

Same as the last two cases.

Exercise

21-1 Write out a proof that the Borel subgroups of SO3,, Sp,,,, and SOz, 41 are those
indicated above.

66Recall that in a nondegenerate quadratic space (V, ¢),

dim W + dim W+ = dim V.

7Let (V, $) be a hyperbolic plane with its standard basis e, e3. Then the flags

Fi:{e1,e2) D {e1) DO
Fy:{e1,e2) D {e2) DO

fall into different SO(¢) orbits.
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22 Parabolic subgroups and roots

Throughout this section, k is algebraically closed of characteristic zero.
Recall (9.15) that for a representation ' — GLy of a (split) torus T,

V= 69xeX*(T) Vx

where V) is the subspace on which T acts through the character y. The y for which V; # 0
are called the weights of T in V, and the corresponding V) are called the weight spaces.
Clearly

Ker(T — GLy) = ﬂxaweight Ker(y).

Therefore T acts faithfully on V if and only if the weights generate X *(7') (by[0.12).
We wish to understand the Borel and parabolic subgroups in terms of root systems. We
first state a weak result.

THEOREM 22.1 Let G be a connected reductive group, T a maximal torus in G, and (V, @)
the corresponding root system (so V = R ®q Q where Q is the Z-module generated by
D).

(a) The Borel subgroups of G containing T' are in one-to-one correspondence with the
bases of @.

(b) Let B be the Borel subgroup of G corresponding to a base S for @. The number of
parabolic subgroups of G containing B is 2151,

We examine this statement for G = GLy . Letn = dim V.

22.2 The maximal tori of G are in natural one-to-one correspondence with the decompo-
sitions of V' into a direct sum V' = P ;¢ ; V; of one-dimensional subspaces.

Let T be a maximal torus of GLy . As the weights of T in V' generate X *(T'), there are
n of them, and so each weight space has dimension one. Conversely, given a decomposition
V = €P,e; Vj of V into one-dimensional subspaces, we take 7" to be the subgroup of g
such that gV; C V; forall j.

Now fix a maximal torus 7" in G, and let V = @j <y Vj be the corresponding weight
decomposition of V.

22.3 The Borel subgroups of G containing T are in natural one-to-one correspondence
with the orderings of J .

The Borel subgroups of V' are the stabilizers of full flags
FV=W,D>W—1D--

If T stabilizes F, then each W, is a direct sum of eigenspaces for T, but the V; are the
only eigenspaces, and so W; is a direct sum of r of the V;’s. Therefore, from F we obtain
a unique ordering j, > --- > j; of J such that W, = ), _, Vj;. Conversely, given an
ordering of J we can use this formula to define a full flag.

22.4 The bases for @ are in natural one-to-one correspondence with the orderings of J .
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The vector space V' has basis (x;)jes, and @ = {x; — x; | i # j}. Recall that to
define a base, we choose at € V'V that is not orthogonal to any root, and let S be the set of
indecomposable elements in @ = {y; — x; | (xi — xj-t) > 0}. Clearly, specifying @+
in this way amounts to choosing an ordering on J

22.5 Fix a Borel subgroup B of G containing T, and hence a base S for @. The parabolic
subgroups containing B are in one-to-one correspondence with the subsets of S.

Having fixed a Borel subgroup, we have an ordering of J, and so we may as well write
J ={1,2,...,n}. From a sequence ay, ..., a, of positive integers with sum n, we get a
parabolic subgroup, namely, the stabilizer of the flag

VoV:>---DV1 D0

with V; = @i <aj+-+ta; V;. Since the number of such sequenceﬂ is 271 the theorem
implies that this is a complete list of parabolic subgroups.

Lie algebras

Recall that sl consists of the 2 x 2 matrices with trace zero, and that for the basis
_ (0 1 h— 1 0 (0 O
*“loo) "Tlo 1) YT\ oo)

[X,y]=h, [h,x]=2x, [h,y]=—2y

and

A Lie algebra g is said to be reductive if it is the direct sum of a commutative Lie algebra
and a semisimple Lie algebra. Let h be a maximal subalgebra consisting of elements x such
that adx is semisimple. Then

s=g0® P _, o

where gg is the subspace of g on which § acts trivially, and g, is the subspace on which §
acts through the nonzero linear form «. The o occurring in the decomposition are called
the roots of g (relative to h).

THEOREM 22.6 Foreacha € @, the spaces gy and by =gr [ga» 9—a] are one-dimensional.
There is a unique element hy € by such that a(hy) = 2. For each nonzero element
Xo € Xg, there exists a unique y,, such that

[(Xa, Yol = ha,  [ha, Xa] = 2Xa,  [ha, Ya] = —2Va.
Hence go = g—o ® ha D g« is isomorphic to sl;.

PROOF. Serre 1987, Chapter VI. O

98Let (f;);es be the dual basis to (););e7. We can take ¢ to be any vector Y_ a; f; with the a; distinct. Then
@+ depends only on ordering of the a; (relative to the natural order on R), and it determines this ordering.

%Such sequences correspond to functions p: {1,...,n} — {0, 1} with 1(0) = 1 — the a; are the lengths of
the strings of zeros or ones.
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Algebraic groups

Let G be a reductive group containing a split maximal torus 7. Let Lie(G,T) = (g,b).
Then
Homy_jin (h, k) ~ k ®z X™*(T)

(see(12.16)), and so each « € @ defines a linear form o’ on f. It can be shown that these are
the roots of g. Every vector space W defines an algebraic group R — R ®; W (considered
as a group under addition).

THEOREM 22.7 For each « € @ there is a unique homomorphism exp,:gq — G of
algebraic groups such that

1 expy (¥)17 = exp(a(r)x)
Lie(expy) = (g2 = 9)-

PROOF. Omitted. o
EXAMPLE 22.8 Let G = GLj,, and let « = «;;. Then

expg(x) = Y (xE;j)" /n!

= I + xEjj
where E;; is the matrix with 1 in the (7, j )-position, and zeros elsewhere.
Let Uy denote the image of exp,, .

THEOREM 22.9 For any base S for @, the subgroup of G generated by T and the Uy, for
o € @71 is a Borel subgroup of G, and all Borel subgroups of G containing T arise in this
way from a unique base. The base corresponding to B is that for which

¢t ={aed|Uy € B}
is the set of positive roots (so S is the set of indecomposable elements in ®T).
PROOF. Omitted. a]

THEOREM 22.10 Let S be a base for @ and let B be the corresponding Borel subgroup.
For each subset I of @, there is a unique parabolic subgroup P containing B such that

U 4CP < «acel.
PROOF. Omitted. o

For example, the parabolic subgroup corresponding to the subset

X1 — X2, X2 — X3, X4 — X5}

of the simple roots of GLs5 is

S O * Kk X
S O ¥ % ¥
S O X * X
* K X X X
* X X X X
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23 Representations of split reductive groups

Throughout this section, k is algebraically closed of characteristic zero.

The dominant weights of a root datum

Let (X, ®, XV, ®") be aroot datum. We make the following definitions:
o Q = ZP (root lattice) is the Z-submodule of X generated by the roots;
o Xo={xeX|(x,a¥)=0foralla € ®};
o V=R®z0 CR®zX;
o P={AeV|{AaV)eZforall a € ®} (weight lattice).
Now choose a base S = {&y,...,a,} for @, so that:
o @ =0T Ud where dt = {> mja; | m; >0}and @~ = {> m;a; | m; <0};
o Q=Zo1®D - DZoy CV =Ry - D Ray,
o P =7ZA®- - ® L\, where A; is defined by ()L,-,oc}’) = §;j.
The A; are called the fundamental (dominant) weights. Define
o Pt={leP|{(ravY)>0allac ®V}.
An element A of X is dominant if (A,«V) > 0 forall € @T. Such a A can be written
uniquely

A=), miki+ Ao (79)
withm; € N, > m;A; € X, and Ag € X).

The dominant weights of a semisimple root datum

Recall (19.9) that to give a semisimple root datum amounts to giving a root system (V, @)
and a lattice X,
PD>XDO.

Choose an inner product (, ) on V for which the s, act as orthogonal transformations

(19.16)). Then, for A € V

A”
(h.a¥) = 2( o)
(o, @)
(see pg150). Since in this case X¢ = 0, the above definitions become:
o Q=71D =Za1® P Zay,
o P={eV|28Y cZallac®} =71 & LA, where A; is defined by

2(11',0!)

@

o Pt ={1=3,miAi | mi >0} = {dominant weights}.

The classification of representations

Let G be a reductive group. We choose a maximal torus 7" and a Borel subgroup B con-
taining 7' (hence, we get a root datum (X, ®, XV, ®") and a base S for @). As every
representation of G is (uniquely) a sum of simple representations (15.6), we only need to
classify them.

THEOREM 23.1 Letr: G — GLyw be a simple representation of G.
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(a) There exists a unique one-dimensional subspace L of W stabilized by B.
(b) The L in (a) is a weight space for T', say, L = W, .

(¢c) The A, in (b) is dominant.

(d) IfA is also a weight for T in W, then A = A, — Y m;o; withm; € N.

PROOF. Omitted. o

Note that the Lie-Kolchin theorem implies that there does exist a one-dimensional
eigenspace for B — the content of (a) is that when W is simple (as a representation of G),
the space is unique. Since L is mapped into itself by B, it is also mapped into itself by
T, and so lies in a weight space. The content of (b) is that it is the whole weight space.
Because of (d), A, is called the heighest weight of the simple representation r.

THEOREM 23.2 The map (W, r) +— A, defines a bijection from the set of isomorphism
classes of simple representations of G onto the set of dominant weights in X = X*(T).

PROOF. Omitted. o

Example:

Here the root datum is isomorphic to {Z, {+2},7Z,{%1}}. Hence Q = 27, P = Z, and
Pt = N. Therefore, there is (up to isomorphism) exactly one simple representation for
each m > 0. There is a natural action of SL; (k) on the ring k[ X, Y], namely, let

(¢ ) (G)=(xia)

FfAX.Y) = f(aX +bY,cX +4dY).

This is a right action, i.e., (f4)8 = f48. We turn it into a left action by setting Af =
f A" Then one can show that the representation of SL, on the homogeneous polynomials
of degree m is simple, and every simple representation is isomorphic to exactly one of these.

In other words,

Example: GL,

As usual, let T be Dy, and let B the standard Borel subgroup. The characters of T are
X1,---> Xn- Note that GL, has representations

d m
GLp ~5 Gp =5 GLy = Gy
for each m, and that any representation can be tensored with this one. Thus, given any
simple representation of GL, we can shift its weights by any integer multiple of y; +--- +

An-

In this case, the simple roots are y1 — x2, ..., Xn—1 — Xn, and the root datum is isomor-
phic to
(Z" {ei—ej i #j} 2" Aei—ej|i # ]}
In this notation the simple roots are e; — €3, ..., es—1 — €5, and the fundamental dominant
weights are A1, ..., A,—1 with

Ai=er+-+e—nti(er ++en).
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According to (79), the dominant weights are the expressions
aiA + -+ ap—1An—1 +mer +---+ey), ai €N, melZ.

These are the expressions
mier + -+ mpey

where the m; are integers with my > --- > my. The simple representation with highest
weight e; is the representation of GL, on k" (obviously), and the simple representation
with highest weight e1 +- - - +e¢; is the representation on /\" (k) (Springer, Linear algebraic
groups, Survey article, 1993, 4.6.2).

Example: SL,

Let T} be the diagonal in SL,,. Then X*(T}) = X*(T)/Z(x1 + --+ + yn) with T = D,,.
The root datum for SLj, is isomorphic to (Z"/Z(e1 + --- 4+ en),{ei —€j | i # j}....)
where ¢; is the image of e; in Z" /Z(e1 + - -+ + ep). It follows from the GL, case that the
fundamental dominant weights are A1, ..., A,—1 with

Ai =1+ +e&.

Again, the simple representation with highest weight ¢ is the representation of SL; on k",
and the simple representation with highest weight &1 + --- + ¢; is the representation SL;,

on A\ (k™) (ibid.).
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24 Tannaka duality

By a character of a topological group, I mean a continuous homomorphism to the circle
group {z € C | zz = 1}. A finite abelian group G can be recovered from its group G of
characters because the canonical homomorphism G — GV is an isomorphism.

More generally, a locally compact abelian topological group G can be recovered from
its character group because, again, the canonical homomorphism G — GV is an isomor-
phism (Pontryagin duality). Moreover, the dual of a compact abelian group is a discrete
abelian group, and so, the study of compact abelian topological groups is equivalent to that
of discrete abelian groups.

Clearly, “abelian” is required in the above statements, because any character will be
trivial on the derived group. However, Tannaka showed that it is possible to recover a
compact nonabelian group from its category of unitary reprsesentations.

In this section, I discuss an analogue of this for algebraic groups, which is usually called
Tannaka duality. For more details, see Deligne and Milne, Tannakian categories, in Hodge
Cycles, Motives, and Shimura Varieties, 1982 (available on my website).

Throughout this section, all vector spaces are finite-dimensional, and all representations
are on finite-dimensional vector spaces. The ground field k is of arbitrary characteristic.

Recovering a group from its representations

PROPOSITION 24.1 Let G be an algebraic group, and let R be a k-algebra. Suppose that
we are given, for each representation ry: G — GLy of G, an element Ay of Autg_jin(R ®p
V). If the family (Ay) satisfies the conditions,

(a) for all representations V, W,

Avew = Ay @ Aw,

(b) Aq = idq (here 1 = k with the trivial action),
(c) forall G-equivariant mapsca:V — W,

Aw o (idgr ®a) = (idgr ®«a) o Ay,
then there exists a g € G(R) such that A\x = rx(g) forall X.
PROOF. To be added (one page; cf. Deligne and Milne 1982, 2.8). O

Because there exists a faithful representation (3.8), g is uniquely determined by the
family (Ay). Moreover, each g € G(R) of course defines such a family. Thus, from the
category Repy (G) of representations of G on finite-dimensional k-vector spaces we can
recover G(R) for any k-algebra R, and hence the group G itself.

Properties of G versus those of Rep; (G)

Since each of G and Repy (G) determines the other, we should be able to see properties of
one reflected in the other.

PROPOSITION 24.2 An algebraic group G is finite if and only if there exists a representa-
tion (r, V') such that every representation of G is a subquotien of V" for somen > 0.

7OHere V" is a direct sum of n copies of V, and subquotient means any representation isomorphic to a
subrepresentation of a quotient (equivalently, to a quotient of a subrepresentation).
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PROOF. See Deligne and Milne 1982, 2.20. o

PROPOSITION 24.3 Let k be an algebraically closed field. A smooth algebraic group over
k is unipotent (resp. solvable) if and only if every nonzero representation of the group has
a nonzero fixed vector (resp. stable one-dimensional subspace).

PROOF. See (11.24) and (11.22)). O

PROPOSITION 24.4 The identity component G° of an algebraic group G over a field of
characteristic zero is reductive if and only if Repy (G) is semisimple.

PROOE. See (15.6] [15.T1). o

PROPOSITION 24.5 Let G and G’ be algebraic groups over a field k of characteristic zero,
and assume G° is reductive. Let f: G — G’ be a homomorphism, and let v/ : Rep(G') —
Rep(G) be the functor (r, V) + (r o A, V). Then:
(a) f isa quotient map if and only if o/ is fully faithful;
(b) f is an embedding if and if every object of Repy (G) is isomorphic to a direct factor
of an object of the form w” (V).

PROOF. See Deligne and Milne 1982, 2.21, 2.29. O

(Neutralized) Tannakian categories

For k-vector spaces U, V, W, there are canonical isomorphisms

duyw:UQr (VW)= UQrV)r W, URVRW) > URV)Qw
ouy:UQrV - VU, URV >V R U.

Let VV = Homy_j;,(V, k) be the dual of V. Then there are canonical linear maps

evy: VYV QrV —k, f®vi= f(v)
Sx:k>VeVvy, l—>Ye® f

where (e;) is any basis for V and ( f;) is the dual basis. Let Vec; denote the category of
finite-dimensional k-vector spaces.

DEFINITION 24.6 A neutralized Tannakian category over k is a triple (C, ®, w) consist-
ing of

¢ k-linear category C in which all morphisms have kernels and cokernels,

¢ @ is a k-bilinear functor C x C — C, and

¢ o is an exact faithful k-linear functor C — Vecy such that « is an isomorphism if

w(w) is,

satisfying the following conditions

(@ foral X, Y, w(X ® Y) = w(X) Qr w(Y);

(b) forall X, Y, Z, the isomorphisms ¢ x, 0y,0z and ¢4 x oy live in C;

(c) there exists an object 1 in C such that w(1) = k and the canonical isomorphisms

o(l) @ w(X) ~wlX) ~wlX)®w)

live in C;
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(d) for each X, there exists an XV in C such that w(XV) = w(X)Y and §,x and ev,x
live in C.
We say that C is algebraic if there exists an object X such that every other object can be
constructed by forming tensor products, direct sums, duals, and subquotients.

REMARK 24.7  (a) A category is k-linear if
i) every pair of objects has a direct sum and a direct product,
ii) the Hom sets are vector spaces over k and composition is k-bilinear, and
iii) there exists a zero object (object with id = 0).
(b) A k-linear category is abelian if each morphism o: X — Y has a kernel and cokernel
and the morphism X/ Ker(o) — Ker(Y — Coker(«)) is an isomorphism.
(c) By w being exact, I mean that it preserves kernels and cokernels. Notice that the
conditions imply that C is an abelian category.
(d) Byamap o: w(X) — w(Y) in Vecy “living in C”, I mean that it lie in Hom(X, Y) C
Hom(wX, wY'). For example, by ¢4 x 0y living in C, I mean that ¢, x, 0y = @(¢x,y)
for some isomorphism ¢y y: X ® ¥ — YV ® X.

From now on “Tannakian category”” means “neutralized Tannakian category”.

EXAMPLE 24.8 For every algebraic group G, Repy (G) is obviously a Tannakian category
over k, and (3.9) shows that it is algebraic.

EXAMPLE 24.9 For every Lie algebra g, the category of representations of g on finite-
dimensional vector spaces is Tannakian.

THEOREM 24.10 Every algebraic Tannakian category is the category of representations of
an algebraic group G .

PROOF. For a proof (and more precise statement), see Deligne and Milne 1982, 2.11. g

ASIDE 24.11 We have seen that algebraic Tannakian categories correspond to algebraic
groups. Without “algebraic” the categories correspond to functors from k-algebras to
groups that are represented by k-algebras, but not necessarily by finitely generated k-
algebras. Such a functor will be called a pro-algebraic group (they are, in fact, the pro-
jective limits of algebraic groups).

Applications

We now take k to be of characteristic zero. Then Ado’s theorem says that every Lie algebra
(meaning, of course, finite-dimensional) has a faithful representation (N. Jacobson, Lie
Algebras, Wiley, 1962, Chapter VI). A representation p: G — GLy of an algebraic group
defines a representation dp: g — gly of its Lie algebra (cf. [12.14).

PROPOSITION 24.12 Let g = Lie(G). Then the functor Rep;(G) — Repy(g) is fully
faithful.

PROOF. Let (r1, V1) and (2, V») be representations of G. Let a: Vi — V5, be a k-linear
map, and let # be the corresponding element of V¥ ®; V>. Then

the map « is a homomorphism of representations of G <—>

tisfixedby G <—

t is fixed by g (see[I3.16) <—
o is a homomorphism of representations of g. O
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For any Lie algebra g, Repy(g) is obviously Tannakian. When it is algebraic, we
let T'(g) denote the algebraic group attached to it by Theorem (so Repr(T'(g)) =~
Repy (9))-

In any Lie algebra g, there is a largest solvable ideal, called the radical of g. When the
radical of g is commutative, g is said to be reductive.

PROPOSITION 24.13 If g is reductive, then Repy (g) is algebrac, and T (g) is a reductive al-
gebraic group with the property that every algebraic group with Lie algebra g is canonically
a quotient of T (g).

PROOF. It follows from the representation theory of reductive Lie algebras that Repy (g)
has the following properties:

(a) itis a semisimple,

(b) it is algebraic,

(c) if V is an object on which g acts nontrivially, then the full subcategory of Repy (g)

whose objects are the direct factors of V" for some # is not stable under ®.
According to (24.10), (b) implies that there exists an algebraic group T'(g) with Rep (7'(g)) ~

Repy (g), and (a) implies that 7'(g)° is reductive (15.6). Also (c) implies that 7'(g) has no
finite quotient (24.2)), and so it is connected. That every algebraic group with Lie algebra g
is a quotient of 7'(g) follows from (24.12) and (24.5). o

PROPOSITION 24.14 If g is semisimple, then T (g) is the simply connected semisimple
algebraic group with Lie algebra g.

PROOF. The category Repy (g) is a semisimple category whose simple objects are indexed
by the dominant weights (Serre 1987, VII). Let G be the simply connected semisimple
algebraic group with Lie algebra g. Then Repy(G) — Repy(g) is fully faithful (24.12),
and shows that it is essentially surjective. Hence G = T'(g). O

REMARK 24.15 Let g be a semisimple Lie algebra. We have P O Q and P . The simple
objects in Repy (g) are indexed by the elements of P, Let X be a lattice P D> X D O,
and let Repy (g)x be the tensor subcategory of Repy(g) whose simple objects are those
indexed by the elements of P N X. Then Rep; (g)x = Rep(Gx) where G is the group
corresponding to X. In other words, every representation of g arises from a representation
of G p, and the simple representations with heighest weight in X are exactly those for which
the representation factors through the quotient Gx of Gp.

ASIDE 24.16 Suppose that, for every split semisimple Lie algebra over a field k in charac-
teristic zero, we know that there is P/ Q-grading on the Tannakian category Rep(g), but no
grading by any abelian group properly containing P/Q (cf. Deligne and Milne 1982, §5).
Then we can deduce that G = T'(g) is a semisimple algebraic group such that:
¢ Lie(G) = g, and every other algebraic group with this property is a quotient of G;
¢ the centre of G is the group of multiplicative type with character group P/ Q (ibid.);
¢ Repg(G) >~ Repg(g).
From this we can read off the existence and uniqueness theorems for split reductive
groups and their representations from the similar results for semisimple Lie algebras.
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25 Algebraic groups over R and C; relation to Lie groups

The theory of algebraic groups can be described as that part of the theory of Lie groups that
can be developed using only polynomials (not convergent power series), and hence works
over any field. Alternatively, it is the elementary part that doesn’t require analysis. As we’ll
see, it does in fact capture an important part of the theory of Lie groups.

Throughout this section, k = R or C.

The Lie group attached to an algebraic group

DEFINITION 25.1 (a) A real Lie group is a smooth manifold G with a group structure such
that both the multiplication map G x G — G and the inverse map G — G are smooth.

(b) A complex Lie group is a complex manifold G with a group structure such that both
the multiplication map G x G — G and the inverse map G — G are holomorphic.

Here “smooth” means infinitely differentiable.

THEOREM 25.2 There is a canonical functor L from the category of real (resp. complex)
algebraic groups to real (resp. complex) Lie groups, which respects Lie algebras and takes
GL, to GL,(R) (resp. GL,(C)) with its natural structure as a Lie group. It is faithful on
connected algebraic groups (all algebraic groups in the complex case).

According to taste, the functor can be constructed in two ways.

(a) Choose an embedding G < GL,. Then G (k) is a closed subgroup of GL,(C), and
it is known that every such subgroup has a unique structure of a Lie group (it is real
or complex according to whether its tangent space is a real or complex Lie group).
See Hall 2003, 2.33.

(b) For k = R (or C), there is a canonical functor from the category of nonsingular real
(or complex) algebraic varieties to the category of smooth (resp. complex) manifolds
(I. Shafarevich, Basic Algebraic Geometry, 1994, II, 2.3, and VII, 1), which clearly
takes algebraic groups to Lie groups.

To prove that the functor is faithful in the real case, use (I13.12). In the complex case,
use §4.

Negative results

25.3 In the real case, the functor is not faithful on nonconnected algebraic groups.

Let G = H = u3. Thereal Lie group attached to 3 is w3 (R) = {1}, and so Hom(L(G), L(H)) =
1, but Hom(us, p3) is cyclic of order 3.

25.4 The functor is not full.

For example, the z + e¢: C — C* is a homomorphism of Lie groups not arising from a
homomorphism of algebraic groups G, — Gy,.

For another example, consider the quotient map of algebraic groups SLz — PSLs.
It is not an isomorphism of algebraic groups because its kernel is w3, but it does give an
isomorphism SL3(R) — PSL3(R) of Lie groups. The inverse of this isomorphism is not
algebraic.
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25.5 A Lie group can have nonclosed Lie subgroups (for which quotients don’t exist).

This is a problem with definitions, not mathematics. Some authors allow a Lie subgroup
of a Lie group G to be any subgroup H endowed with a Lie group structure for which the
inclusion map is a homomorphism of Lie groups. If instead one requires that a Lie sub-
group be a submanifold in a strong sense (for example, locally isomorphic to a coordinate
inclusion R™ — R™), these problems don’t arise, and the theory of Lie groups quite closely
parallels that of algebraic groups.

25.6 Not all Lie groups have a faithful representation.

For example, 71 (SL>(R)) ~ Z, and its universal covering space has a natural structure of a
Lie group. Every representation of this covering group on a finite-dimensional vector space
factors through SL(IR). Another (standard) example is the Lie group R! x R! x S! with
the group structure

(r1.y1.u1) - (X2, y2.u2) = (X1 + X2, y1 + y2. €1 2uquz).
This homomorphism

1
0 > (x,y,e'%),
0

O»—AR
—_

realizes this group as a quotient of U3 (IR), but it can not itself be realized as a matrix group
(see Hall 2003, C.3).

A related problem is that there is no very obvious way of attaching a complex Lie group
to a real Lie group (as there is for algebraic groups).

25.7 Even when a Lie group has a faithful representation, it need not be algebraic.

For example, the identity component of GL,(R) is not algebraic.

25.8 Let G be an algebraic group over C. Then the Lie group G(C) may have many more
representations than G.

Consider G,. Then the homomorphisms z + ¢“*:C — C* = GL;(C) and z

0 1
algebraic.

(1 Z) :C — GL,(C) are representations of the Lie group C, but only the second is

Complex groups

A Lie group (real or complex) is said to be linear if it admits a faithful representation (on
a finite-dimensional vector space, of course). For any complex Lie group G, the category
Repc(G) is obviously Tannakian.

THEOREM 25.9 For a complex linear Lie group G, the following conditions are equivalent:
(a) the Tannakian category Repc(G) is algebraic;
(b) there exists an algebraic group T (G) over C and a homomorphism G — T(G)(C)
inducing an equivalence of categories Repc(T(G)) — Repc(G).
(¢c) G is the semidirect product of a reductive subgroup and the radical of its derived

group.
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Moreover, when these conditions hold, the homomorphism G — T (G)(C) is an isomor-
phism.

PROOF. The equivalence of (a) and (b) follows from (24.8) and (24.10). For the remaining
statements, see Dong Hong Lee, The structure of complex Lie groups, Chapman and Hall,
2002, Theorem 5.20. o

COROLLARY 25.10 Let G be a complex analytic subgroup of GL(V') for some complex
vector space V. If Repc(G) is algebraic, then G is an algebraic subgroup of GLy, and
every complex analytic representation of G is algebraic.

PROOF. Ibid. 5.22. =

COROLLARY 25.11 The functors T and L are inverse equivalences between the categories
of complex reductive Lie groups and complex reductive algebraic groups (in particular,
every complex reductive Lie group has a faithful representation).

PROOF. Only the parenthetical statement requires proof (omitted for the moment). o

EXAMPLE 25.12 The Lie group C is algebraic, but nevertheless the conditions in (25.9)
fail for it — see (25.8]).

Real groups

We say that a real Lie group G is algebraic if G = H(R)™ for some algebraic group H
(as usual, T denotes the identity component for the real topology).

THEOREM 25.13 For every reductive real Lie group G, there exists an algebraic group

T (G) and a homomorphism G — T (G)(R) inducing an equivalence of categories Repg (G) —
Repr (T (G)). The Lie group T (G)(R) is the largest algebraic quotient of G, and equals G

if and only if G admits a faithful representation.

PROOF. For the first statement, one only has to prove that the Tannakian category Repgr (G)
is algebraic. For the last statement, see Dong Hoon Lee, J. Lie Theory, 9 (1999), 271-284.1

THEOREM 25.14 For every compact connected real Lie group K, there exists a semisimple
algebraic group T(K) and an isomorphism K — T (K)(R) which induces an equivalence
of categories Repg(K) — Repr(T(K)). Moreover, for any reductive algebraic group G’
over C,

Hom¢ algebraic groups(T(K)(Ca G/) >~ Homg je groups(Kv G/(C))

PROOF. See C. Chevalley, Theory of Lie groups, Princeton, 1946, Chapter 6, §§8—12, and
J-P. Serre, Gebres, L’Enseignement Math., 39 (1993), pp33-85. o
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26 The cohomology of algebraic groups; applications

Throughout this section, vector spaces and modules are finitely generated. In the early part
of the section, there is no need to assume & to be of characteristic zero.

Let A be a set with an equivalence relation ~, and let B be a second set. When there
exists a canonical surjection A — B whose fibres are the equivalence classes, I say that B
classifies the ~-classes of elements of A.

Introduction

Root data are also important in the nonsplit case. For a reductive group G, one chooses a
torus that is maximal among those that are split, and defines the root datum much as before
— in this case it is not necessarily reduced. This is an important approach to describing ar-
bitrary algebraic groups, but clearly it yields no information about anistropic groups (those
with no split torus). We give a different approach to describing nonsplit reductive algebraic
groups. In this section, we show that they are classified by certain cohomology groups, and
in the next section we show that certain algebras with involution are classified by the same
cohomology groups. In this way we obtain a description of the groups in terms of algebras.

Non-commutative cohomology.

Let I" be a group. A ['-set is a set A with an action
(o,a)>oa:I’' xA— A

of I" on A (so (06t)a = o(ra) and la = a). If, in addition, A has the structure of a group
and the action of G respects this structure (i.e., 0(aa’) = oa - 0a’), then we say A4 is a
G-group.

Definition of H°(I", A)

Fora I'-set A, HO(I", A) is defined to be the set AT of elements left fixed by the operation
of " on A, ie.,

H(Ir A)=A" ={aec A|oa=aforallo € I'}.
If A is a I"-group, then H°(I", A) is a group.

Definition of H!(I", A)

Let A be a I'-group. A mapping ¢ +— as of I" into A is said to be a 1-cocycle of I' in A if
the relation ayr = ag - 0a; holds for all 6,7 € I'. Two 1-cocycles (ay) and (by) are said
to be equivalent if there exists a ¢ € A such that

be =c Viag-oc forallo €.

This is an equivalence relation on the set of 1-cocycles of I" in A, and H!(I", A) is defined
to be the set of equivalence classes of 1-cocycles.

In general H!(I", A) is not a group unless A4 is commutative, but it has a distinguished
element, namely, the class of 1-cocycles of the form o +— b~ - ob, b € A.
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Homomorphisms

Let A be I'-group and B an A-group. Two homomorphisms f: 4 — B and g: A — I are
said to be compatible if

f(g(o)a) =o(f(a)) forallo € A, a € A.

When A = I' and g is the identity, then f is said to be a I"-homomorphism (or be I"-
equivariant). If (as) is a 1-cocycle for A4, then

bs = f(ag(a))

is a 1-cocycle of A in B, and this defines a mapping H'(I', A) — H'(A, B), which is a
homomorphism if A and B are commutative.

Exact sequences

PROPOSITION 26.1 An exact sequence
-4 —>A4A—-4" -1
of I'-groups gives rise to an exact sequence of cohomology sets
1> HYIA)— HY(I''A) - H(I'"A") > H\(I'' A"y > H'\(I', A) - H'(I", A")

Exactness at H%(I", A”) means that the fibres of H%(I", A”) — H(I", A’) are the
orbits of HO(I', A) acting on H°(I', A”). Exactness at H'(I', A’) means that fibre of
HYW(I', A’y — H(I', A) over the distinguished element is the image of H?(I", A”).

We now define the boundary map H°(I", A”) — H(I'", A’). For simplicity, regard A’
as a subgroup of A with quotient A”. Let a” be an element of A” fixed by I', and choose
an a in A mapping to it. Because a” is fixed by I", a~! - oa is an element of A’, which we
denote a,. The map o — ay is a 1-cocycle whose class in H ! (I", A’) is independent of the
choice of a. To define the remaining maps and check the exactness is now very easy.

Classification of bilinear forms

Let K be a finite Galois extension of k with Galois group I". Let V be a finite-dimensional
K-vector space. By a semi-linear action of I' on V, I mean a homomorphism I" —
Autg i, (V) such that

o(cv) =o0c-ov alloel,ceK,veV.

If V= K ® Vo, then there is a unique semi-linear action of I" on V for which VI =
1 ® Vp, namely,
o(c®v)=0c®v oel,ceK,velV.

PROPOSITION 26.2 The functor V — K ®; V from k-vector spaces to K -vector spaces

endowed with a semi-linear action of I is an equivalence of categories with quasi-inverse
Visvrl,

LEMMA 26.3 Let S be the standard M,, (k)-module, namely, k™ with M,, (k) acting by left
multiplication. The functor V +— S ®j V is an equivalence from the category of k-vector
spaces to that of left M, (k)-modules.
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PROOF. Note that S is a simple M}, (k)-module. Since
Endgin(k) = k = Endag, o (k")

and every k-vector space is isomorphic to a direct sum of copies of k, the functor is obvi-
ously fully faithful (i.e., gives isomorphisms on Homs). It remains to show that every left
M,, (k)-module is a direct sum of copies of S. This is certainly true of M, (k) itself:

m@:@hﬁﬁm(wmmmwmma

where L (i) is the set of matrices whose entries are zero except for those in the i " column.
Since every left M, (k)-module M is a quotient of a direct sum of copies of M, (k), this
shows that such an M is a sum of copies of S. Let I be the set of submodules of M
isomorphic to S, and let J be a subset that is maximal among those for which )y 7 N is

direct. Then M = @ yey N (see[15.3). O

LEMMA 26.4 For any k-vector space W, the functor V +— W ®;. V is an equivalence from
the category of k-vector spaces to that of left Endy (W)-modules.

PROOF. When we choose a basis for W, this becomes the previous lemma. o

PROOF. (OF THE PROPOSITION) Let K[I'] be the K-vector space with basis the elements
of I', made into a k-algebra by the rule

(ao)-(bt) =a-ob-ot, a,beK, o,tel.
Then K[I'] acts k-linearly on K by
O _ago)c =Y agoc,
and the resulting homomorphism
K[I'l - Endg(K)

is injective by Dedekind’s theorem on the independence of characters (FT 5.14). Since
K|[I'] and Endg (K) have the same dimension as k-vector spaces, the map is an isomor-
phism. Therefore, the corollary shows that

VisK®rV

is an equivalence from the category of k-vector spaces to that of left modules over Endy (K) ~
K|[I']. This is the statement of the proposition. 0

Let (Vo, ¢po) be a k-vector space with a bilinear form V' x V — k, and write (Vo, ¢o) x
for the similar pair over K obtained by extending scalars. Let A(K) denote the set of

automorphisms of (Vo. ¢o)  ['']

THEOREM 26.5 The cohomology set H'(I'", A(K)) classifies the isomorphism classes of
pairs (V, ¢) over k that become isomorphic to (Vy, ¢o) over K.

"n more detail: (Vo, ¢0)x = Vok. dox) Where Vox = K ®; Vo and ¢gg is the unique K-bilinear map
Vok X Vok — K extending ¢¢; an element of A(K) is a K-linear isomorphism «: Vog — Vog such that
dok (ax,ay) = ok (x,y) forallx,y € Vog.
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PROOF. Suppose (V,¢)x = (Vo, ¢po) k., and choose an isomorphism

f:(Vo.90)k — (V. 9d)k.
Let
ag = f~'oof.
Then
ag-0a; = (f"'oaf)o(of tootrf)

=dot,

and so aq (f) is a 1-cocycle. Moreover, any other isomorphism f': (Vo, ¢o)x — (V. 9)k
differs from f by a g € A(K), and

ac(fog)=g '-as(f) og.

Therefore, the cohomology class of as( f) depends only on (V, ¢). It is easy to see that,
in fact, it depends only on the isomorphism class of (V, ¢), and that two pairs (V, ¢) and
(V', ¢") giving rise to the same class are isomorphic. It remains to show that every coho-
mology class arises from a pair (V, ¢). Let (as)ser be a 1-cocycle, and use it to define a
new action of I" on Vg =4 K ® V:

°x =ay5-0x, oc€l, x¢eVg.

Then
9(cv) =0c-%v,force',ce K,v eV,

and

U(fv) — a(arfv) =dg 007 0TV = U‘L’v’

and so this is a semilinear action. Therefore,

is a subspace of Vg such that K ® V1 >~ Vi (by[26.2). Because ¢k arises from a pairing
over k,

dox(ox,0y) =o¢(x,y), allx,ye Vk.
Therefore (because a, € A(K)),
dokx (°x.7 y) = gok(0x,0y) = 0ok (x,y).

Ifx,y € Vi, then ¢ok (“x.7 y) = ¢ok (x,y), and so pok (x, y) = ook (x, y). By Galois
theory, this implies that ¢pox (x, ¥) € k, and so ¢og induces a k-bilinear pairing on V;. g

Applications

Again let K be a finite Galois extension of & with Galois group I.

PROPOSITION 26.6 Foralln, H'(I", GL,(K)) = 1.
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PROOF. Apply Theorem with Vo = k™ and ¢ the zero form. It shows that H ! (I", GL, (K))
classifies the isomorphism classes of k-vector spaces V such that K ®; V' &~ K™. But such
k-vector spaces have dimension 7, and therefore are isomorphic. O

PROPOSITION 26.7 Foralln, H'(I",SL,(K)) = 1

PROOF. Because the determinant map det: GL, (K) — K is surjective,

| = SLp(K) — GLn(K) <5 K% - 1

is an exact sequence of I"-groups. It gives rise to an exact sequence

QL (k) 25 k% > HY(I',SLy) — H'(I', GLy)
from which the statement follows. o

PROPOSITION 26.8 Let ¢pg be a nondegenerate alternating bilinear form on Vy, and let Sp
be the associated symplectic grou Then H'(I",Sp(K)) = 1.

PROOF. According to Theorem H(I', Sp(K)) classifies isomorphism classes of pairs
(V, ¢) over k that become isomorphic to (Vp, ¢pg) over K. But this condition implies that
¢ is a nondegenerate alternating form and that dim V' = dim V. All such pairs (V, ¢) are
isomorphic. o

REMARK 26.9 Let ¢¢ be a nondegenerate bilinear symmetric form on Vj, and let O be
the associated orthogonal group. Then H ! (I', O(K)) classifies the isomorphism classes of
quadratic spaces over k that become isomorphic to (V, ¢) over K. This is commonly a large
set.

Classifying the forms of an algebraic group

Again let K be a finite Galois extension of & with Galois group I". Let G be an algebraic
group over k, and let A(K) be the group of automorphisms «: Gg — Gg. Then I acts on

A(K) in a natural way:

oo =coaog L.

THEOREM 26.10 The cohomology set H'(I', A(K)) classifies the isomorphism classes of
algebraic groups G over k that become isomorphic to Go over K.

PROOF. Let G be such an algebraic group over k, choose an isomorphism

f:Gox — Gk,

and write
ag = floof.
As in the proof of Theorem[26.3] (a¢)oer is a 1-cocycle, and the map

G > class of (ag)ger in HY(I", A(K))

72S0 Sp(R) = {a € Endgin(R ®; V) | ¢(ax,ay) = ¢(x, )}
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is well-defined and its fibres are the isomorphism classes.

In proving that the map is surjective, it is useful to identify A4(K) with the automor-
phism group of the bialgebra K[Gox] = K ®1 k[Go]. Let Ag = k[Go] and A = K ®j Ap.
As in the proof of Theorem we use a 1-cocycle (aq)ger to twist the action of I” on
A; specifically, we define

°a=as00a, occl, acA.

Proposition in fact holds for infinite dimensional vector spaces V' with the samd’|
proof, and so the k-subspace

B={aeA|%a=ua}

of A has the property that
K®, B~A.

It remains to show that the bialgebra structure on A induces a bialgebra structure on B.
Consider for example the comultiplication. The k-linear map

Ag: Ag = Ao i Ao
has a unique extension to a K-linear map
A:A— ARk A.
This map commutes with the action of I':
A(oa) =0(A(a)), alloel,acA.
Because a, is a bialgebra homomorphism,
Aaga) = agA(a), allo el ,ac€ A.

Therefore,
ACCa) =%(A(a)), allo eTl,ac€ A

In particular, we see that A maps B into (4 ® g A)!', which equals B ®; B because the
functor in (26.2) preserves tensor products. Similarly, all the maps defining the bialgebra
structure on A preserve B, and therefore define a bialgebra structure on B. Finally, one
checks that the 1-cocycle attached to B and the given isomorphism K ®; B — A is (ag).o
Infinite Galois groups

For simplicity, we now assume k to be perfect. Let I' = Gal(k/ k) where k is the algebraic
closure of k. For any subfield K of k finite over k, we let

I'k ={ocel |ox =xforall x € K}.
We consider only I"-groups A for which

A=Ak (80)

73Except that the last step of the proof of li requires Zorn’s lemma.



26 THE COHOMOLOGY OF ALGEBRAIC GROUPS; APPLICATIONS 183
and we define H'(I', A) to be the equivalence classes of 1-cocycles that factor through
Gal(K/ k) for some subfield K of k finite and Galois over k. With these deﬁnitions

HY\(I' A) = @Hl(eal(K/k),AFK) (81)

where K runs through the subfields K of k finite and Galois over k.
When G is an algebraic group over £,

G(k) =UG(K). G(K)=G(k)¥,
and so G (k) satisfies . We write H! (k, G) for H (Gal(k/ k), G(k)).

Exact sequences

An exact sequence
1-G -G—-G" -1

of algebraic groups over k gives rise to an exact
1 - G'(k) - G(k) » G"(k) — 1
and hence (see[26.1)) an exact sequence
1 - G'(k) > G(k) > G"(k)y > H (k,G') - H'(k,G) - H'(k,G")
Examples
26.11 Foralln, H'(k,GL,) = 1.
This follows from (26.6) and (81).
26.12 Foralln, H'(k,SL,) = 1.
26.13 Foralln, H'(k,Sp,) = 1.

26.14 Let(V,¢) be a nondegenerate quadratic space overk. Then H'(k, O(¢)) classifies
the isomorphism classes of quadratic spaces over k with the same dimension as V.

PROOF. Over k, all nondegenerate quadratic spaces of the same dimension are isomor-
phic. O

26.15 Let G be an algebraic group of k. The isomorphism classes of algebraic groups
over k that become isomorphic to Gy over k are classified by H Y, A(k)). Here I' =

Gal(k/ k) and A(k) is the automorphism group of Gy

74Equivalently, we consider only I"-groups A for which the pairing I" x A — A is continuous relative to the
Krull topology on I' and the discrete topology on A, and we require that the 1-cocycles be continuous for the
same topologies.
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(Weil) restriction of the base field

Before considering the classification of algebraic groups, we need one more construction.
Let K be a finite extension of k, and let G be an algebraic group over K. Define a functor

G«(R) = G(K ®¢ R)
from k-algebras to groups.

PROPOSITION 26.16 The functor G is an algebraic group over k (i.e., it is represented by
a finitely generated k -algebra).

PROOF. Omitted (cf. AG 16.26). o

PROPOSITION 26.17 There is a canonical isomorphism

G~ ]_[MHE 0G. (82)

PROOF. The product is over the k—holnomorphisms K — k, and by pG, we mean the
algebraic group over k such that, for a k-algebra R,

(PG)(R) = G(R)
— on the right, R is regarded as a k-algebra via p. For a k-algebra R,
K ® R~ K ® (k ®; R)
~ (K ® k) ®¢ R
= (l_[p:K—>E E) B K.
Thus, G,z ~ ]_[p: k% PG as functors, and therefore as algebraic groups. O

From now on, we assume that & has characteristic zero.

Reductive algebraic groups

According to (15.2), to give a reductive algebraic group G over a field k amounts to giving
a simply connected semisimple group G over k, an algebraic group Z of multiplicative
type over k, and homomorphism Z(G) — Z. Because k has characteristic zero, Z(G)
is of multiplicative type (even étale), and according to Theorem [9.20] the functor sending
an algebraic group of multiplicative type to its character group is an equivalence to the
category finitely generated Z-modules with a continuous action of I". If we suppose this last
category to be known, then describing the reductive algebraic groups amounts to describing
the simply connected semisimple groups together with their centres.

Simply connected semisimple groups

Let G be a simply connected semisimple group over k. Then, according to Theorem|(14.23|
Gy decomposes into a product

GE:Glx---XG,- (83)
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of its almost-simple subgroups G;. The set {G1,...,G,} contains all the almost-simple
subgroups of G. When we apply o € I', equation becomes

Gz:gGE:aGlx-.-xaGr

with {odGq,...,0G,} a permutation of {Gq,...,G,}. Let Hy,..., Hy denote the products
of G; in the different orbits of I". Then 0 H; = H;, and so H; is defined over k (11.2)), and

G =Hj x-xH,

is a decomposition of G into a product of its almost-simple subgroups.
Now suppose that G itself is almost-simple, so that I acts transitively on the G; in (83).
Let
A={O’EF|O’G1=G1}.

—A _
Then G is defined over the subfield K = k  of k lb

PROPOSITION 26.18 We have G >~ G1x.

PROOF. We can rewrite (83) as
GE = l_[ o GIE
where o runs over a set of cosets for A in I". On comparing this with (82)), we see that there

is a canonical isomorphism
GE ~ Gl oy

In particular, it commutes with the action of I", and so is defined over k (AG 16.9). o

The group G over K is absolutely almost-simple, i.c., it remains almost-simple over
k. The discussion in this section shows that it suffices to consider such groups.

Absolutely almost-simple simply-connected semisimple groups
For an algebraic group G, let G*! = G/ Z(G).

PROPOSITION 26.19 For any simply connected semisimple group G, there is an exact
sequence _ _
1 - G*(k) - A(k) - Sym(D) — 1.

When G is split, I' acts trivially on Sym(D), and the sequence is split, i.e., there is a
subgroup of A(k) on which I' acts trivially and which maps isomorphically onto Sym(D).

PROOF. An element of G*d(k) = G(k)/Z(k) acts on Gy by an inner automorphism.
Here D is the Dynkin diagram of G, and Sym(D) is the group of symmetries of it. This
description of the outer automorphisms of G, at least in the split case, is part of the full
statement of the isomorphism theorem (17.19). o

The indecomposable Dynkin diagrams don’t have many symmetries: for D4 the sym-
metry group is S3 (symmetric group on 3 letters), for 4,, Dy, and Eg it has order 2, and
otherwise it is trivial.
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THEOREM 26.20 For each indecomposable Dynkin diagram D, there is a split, absolutely
almost-simple, simply connected algebraic group G over k such that Gy has the type of the
Dynkin diagram; moreover G is unique up to isomorphism. The isomorphism classes of al-
gebraic groups over k becoming isomorphic to G over k are classified by H'(k, A(k))
where A(k) is the automorphism group of Gy. For the split group G, X*(Z(G)) =
P(D)/Q(D) with I' acting trivially. For the form G’ of G defined by a 1-cocycle (as),
Z(G') = Z(G) but with I' acting through a .

We illustrate this last point. For A, the split group is SL,. This has centre u,, which
is the group of multiplicative type corresponding to Z/nZ with the trivial action of I". Let
Go and G be groups over k, and let f: G,z — Gz be an isomorphism over k. Write
ay = f~'oof. Then f defines an isomorphism

[:Zo(k) — Z(k)
on the points of their centres, and
flagox) = a(f(x)).

When use f to identify Zo(k) with Z(k), this says that I" acts on Z(k) by the twisted
action “x = a,0x.

REMARK 26.21 Let Gq be the split simply connected group of type X, and let G be a
form of Gg. Let ¢ be its cohomology class. If ¢ € H!(k, G?%), then G is called an inner
Jorm of G. In general, ¢ will map to a nontrivial element of

Hl(k, Sym(D)) = Homcontinuous(r’ Sym(D))
Let A be the kernel of this homomorphism, and let L be the corresponding exension field
of k. Letz = (I": A). Then we say G is of type X y.
The main theorems on the cohomology of groups

To complete the classification of algebraic groups, it remains to compute the cohomology
groups. This, of course, is an important problem. All I can do here is list some of the main
theorems.

26.22 Letk be finite. If G is connected, then H'(k, G) = 1.

26.23 Let k be a finite extension of the field of p-adic numbers Qp,. If G is simply
connected and semisimple, then H'(k, G) = 1.

26.24 Letk = Q, and let G be a semisimple group over Q.
(a) If G is simply connected, then

HY(Q,G) ~ H'(R,G).

(b) If G is an adjoint group (i.e., has trivial centre), or equals O(¢) for some nondegen-
erate quadratic space (V, ¢), then

H'(Q,G) — 1‘[1):233’5’__”00 H'(Q,,6)

is injective.
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Note that the last result implies that two quadratic spaces over Q are isomorphic if and
only if they become isomorphic over Q, for all p (including p = oo, for which we set
Qp = R). This is a very important, and deep result, in number theory.

The last statements extend in an obvious way (for those who know the language) to
finite extensions of K.

NOTES For more on the cohomology of algebraic groups, see Platonov and Rapinchuk 1994 or
Kneser, Lectures on Galois cohomology of classical groups, Tata, Bombay, 1969.
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27 Classical groups and algebras with involution

An absolutely almost-simple simply connected algebraic group is said to be classical if it
is of type A, By, Cy, or D, and becomes an inner form of the split form over a quadratic
extension of k. For all but groups of type D4, this last condition is automatic (see et
seq.). A semisimple group G is classical if, in the decomposition of its simply connected
covering, only classical groups occur. In this section, I will list all the absolutely almost-
simple, simply connected, classical groups over a field k of characteristic zero.

By a k-algebra A T will mean a ring (not necessarily commutative) containing k in its
centre, and of finite dimension as a k-vector space (the dimension is called the degree [A: k|
of A).

The forms of M, (k)

DEFINITION 27.1 A k-algebra A is central if its centre is k, and it is simple if it has no
2-sided ideals (except 0 and A). If all nonzero elements have inverses, it is called a division
algebra (or skew field).

EXAMPLE 27.2 (a) The ring M, (k) is central and simple.
(b) For any a, b € k*, the quaternion algebra H(a, b) is central and simple (see p115).
It is either a division algebra, or it is isomorphic to M5 (k).

THEOREM 27.3 (WEDDERBURN) For any division algebra D over k, M, (D) is a simple
k -algebra, and every simple k -algebra is of this form.

PROOF. See my notes on Class Field Theory, IV 1.9 (Chapter IV can be read independently
of the rest of the notes, and is fairly elementary). O

COROLLARY 27.4 Ifk is algebraically closed, the only central simple algebras over k are
the matrix algebras M, (k).

PROOF. Let D be a division algebra over k, and let « € D. Then k[«] is a commutative

integral domain of finite dimension over k, and so is a field. As k is algebraically closed,
klo] = k. 0

PROPOSITION 27.5 The k-algebras becoming isomorphic to My, (k) over k are the central

simple algebras over k of degree n?.

PROOF. Let A be a central simple algebra over k of degree n2. Then k®p Ais again central
simple (CFT 2.15), and so is isomorphic to My (k) (27.4). Conversely, if 4 is a k-algebra
that becomes isomorphic to My, (k) over k, then it is certainly central and simple, and has

degree n2. O

PROPOSITION 27.6 All automorphisms of the k -algebra M, (k) are inner, i.e., of the form
X +— YXY~! forsome?Y.

PROOF. Let S be k" regarded as an M (k)-module. It is simple, and every simple M, (k)-
module is isomorphic to it (see the proof of[26.3)). Let o be an automorphism of M, (k), and
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let S” denote S, but with X € M, (k) acting as a(X). Then S’ is a simple M, (k)-module,
and so there exists an isomorphism of My (k)-modules f:S — S’. Then

a(X)f% = fX% allX € My(k),%€S.

Therefore,
a(X)f = fX, alX e M,k).

As f is k-linear, it is multiplication by an invertible matrix Y, and so this equation shows

that
aX) =YXy L 5

COROLLARY 27.7 The isomorphism classes of k-algebras becoming isomorphic to My, (k)
over k are classified by H'(k, PGLy).

PROOF. The proposition shows that

AutE_alg(Mn(E)) = PGL,(k).

Let A be a k-algebra for which there exists an isomorphism f: M, (k) — k ® A, and let
ac = f o of.

Then a4 is a 1-cocycle, depending only on the k-isomorphism class of A.
Conversely, given a 1-cocycle, define

°X =ay-0X, oel,X e M, k).

This defines an action of I" on My k) and M, (k)" is a k-algebra becoming isomorphic to
M, (k) over k (cf. the proof of . o

REMARK 27.8 Let A be a central simple algebra over k. For some n, there exists an

isomorphism f:k ®4 A — M, (k), unique up to an inner automorphism 1, . Let
a € A, and let Nm(a) = det(f(a)). Then Nm(a) does not depend on the choice of f.
Moreover, it is fixed by I", and so lies in k. It is called the reduced norm of a.

The inner forms of SL,,

Consider B B
X +— X:SLy(k) > My(k).

The action of PGLy, (k) on M, (k) by inner automorphisms preserves SL, (k), and is the
full group of inner automorphisms of SL,.

THEOREM 27.9 The inner forms of SLy, are the groups SL,, (D) for D a division algebra
of degree n/m.

PROOF. The inner forms of SL,, and the forms of M,, (k) are both classified by H ! (k, PGL,),
and so correspond. The forms of M,, (k) are the k-algebras M, (D) (by[27.5}[27.3)), and the
form of SL,, is related to it exactly as SL,, is related to M. O

Here SL,, (D) is the group
R {a € My(RQ®; D) | Nm(a) = 1}.
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Involutions of k-algebras

DEFINITION 27.10 Let A be a k-algebra. An involution of k is a k-linear map a +—
a*: A — A such that

(ab)* =b*a™ alla,b e A,

a** =a.

The involution is said to be of the first or second kind according as it acts trivially on the
elements of the centre of k or not.

EXAMPLE 27.11 (a) On M, (k) there is the standard involution X + X’ (transpose) of
the first kind.

(b) On a quaternion algebra H(a, b), there is the standard involution i — —i, j > —j
of the first kind.

(¢) On a quadratic field extension K of k, there is a unique nontrivial involution (of the
second kind).

LEMMA 27.12 Let (A, x) be an k-algebra with involution. An inner automorphism x +>

axa~' commutes with x if and only if a*a lies in the centre of A.

PROOF. To say that inn(a) commutes with * means that the two maps

x > axa ' (@*) Ix*a*
x> x* > ax*a™!

coincide, i.e., that
x* = (a*a)x*(a*a)”!

forall x € A. As x — x™* is bijective, this holds if and only if a*a lies in the centre of .o

REMARK 27.13 Let A have centre k. We can replace a with ca, ¢ € k>, without changing
inn(a). This replaces a*a with ¢*c-a*a. When * is of the first kind, ¢c*c = ¢2. Therefore,
when £ is algebraically closed, we can choose ¢ to make a*a = 1.
All the forms of SL,,
According to (26.19), there is an exact sequence

1 - PGL, (k) — Aut(SL,z) — Sym(D) — 1,

and Sym(D) has order 2. In fact, X — (X~ 1)’ = (X?)~! is an outer automorphism of
SL;,.
Now consider the k-algebra with involution of the second kind

M, (k) x My,(k), (X,Y)* =" X").

Every automorphism of M, (k) x My (k) is either inner, or is the composite of an inner
automorphism with (X, Y) — (¥, X ) According to (27.12)), the inner automorphism by

73This isn’t obvious, but follows from the fact that the two copies of My, (k) are the only simple subalgebras
of My (k) x My (k) (see Farb and Dennis, Noncommutative algebra, GTM 144, 1993, 1.13, for a more general
statement).
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a € A commutes with x if and only if a*a € k x k. But (a*a)* = a*a, and so a*a € k.
When we work over k, we can scale a so that a*a = 1 (27.13): ifa = (X, Y), then

l=a%a=Y'X,X"Y),

and so a = (X, (X")™1). Thus, the automorphisms of (M, (k) x M, (k), *) are the in-
ner automorphisms by elements (X, (X?)~!) and composites of such automorphisms with
(X,Y)—~ (Y, X). When we embed

X — (X, (X)) Y):SL, (k) — My (k) x My (k), (84)

the image it is stable under the automorphisms of (M, (k) x M, (k), %), and this induces an
isomorphism B B
Aut(Mpy (k) x My (k), *) >~ Aut(SL, 7).

Thus, the forms of SL,, correspond to the forms of (M, (k) x My(k), ). Such a form is a
simple algebra A over k with centre K of degree 2 over k and an involution * of the second
kind.
The map identifies SL, (k) with the subgroup of My, (k) x M, (k) of elements such
that
a*a=1, Nm(a)=1.

Therefore, the form of SL, attached to the form (A4, %) is the group G such that G(R)
consists of the a € R ®; A such that

a*a=1, Nm(a)=1.
There is a commutative diagram

Aut(SL, %) —_— Sym(D)

| |

Aut(My, (k) x My (k), ¥) —> Autk_alg(% x k).

The centre K of A is the form of k x k corresponding to the image of the cohomology class
of G in Sym(D). Therefore, we see that G is an outer form if and only if K is a field.

Forms of Sp,,,

Here we use the k-algebra with involution of the first kind

Man(k). X* =SX's™', §= (_? f))

The inner automorphism defined by an invertible matrix U commutes with * if and only if
U*U € k (see[27.12). When we pass to k, we may suppose U*U = I, i.e., that

SutsT'u =1.
Because S~! = —S§, this says that

U'SU =S
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ie., that U € Sp,, (k). Since there are no symmetries of the Dynkin diagram C,, we see
that the inclusion _ _
X = X:Spy, (k) = My, (k) (85)

induces an isomorphism
Aut(Sp,,7) =~ Aut(May (k). *).

Therefore, the forms of Sp,,correspond to the forms of (M»,(k), *). Such a form is a
central simple algebra A over k with an involution * of the first kind.
The map li identifies Sp,,, (k) with the subgroup of M5, (k) of elements such that

aa=1.

Therefore, the form of Sp,,, attached to (A, ) is the group G such that G(R) consists of
the a € R ®; A for which

a*a =1.

The forms of Spin(¢)

Let (V, ¢) be a nondegenerate quadratic space over k with largest possible Witt index. The
action of O(¢) on itself preserves SO(¢), and there is also an action of O(¢) on Spin(¢)
given by (5.28). These actions are compatible with the natural homomorphism

Spin(¢) — SO(¢)

and realize O(¢) modulo its centre as the automorphism group of each. Therefore, the
forms of Spin(¢) are exactly the double covers of the forms of SO(¢).

The determination of the forms of SO(¢) is very similar to the last case. Let M be the
matrix of ¢ relative to some basis for V. We use the k-algebra with involution of the first
kind

M,(k), X*=MX'M~'

The automorphism group of (M, (k), *) is O(¢) modulo its centre, and so the forms of
SO(¢) correspond to the forms of (M»,(k), *). Such a form is a central simple algebra 4
over k with an involution * of the first kind, and the form of SO(¢) attached to (A, *) is the
group G such that G(R) consists of the a € R ®, A for which

a*a =1.

Algebras admitting an involution

To continue, we need a description of the algebras with involution over a field k. For an
arbitrary field, there is not much one can say, but for one important class of fields there is a
great deal.

PROPOSITION 27.14 If a central simple algebra A over k admits an involution of the first
kind, then
AR A~ Mp(k), n?=][A:k]. (86)
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PROOF. Recall that the opposite algebra A°PP of A equals A as a k-vector space but has its
multiplication reversed:

a®PPHOPP = (hg)°PP,
Let Ag denote A regarded as a k-vector space. There are commuting left actions of A and
A°PP on Ay, namely, A acts by left multiplication and A°PP by right multiplication, and

hence a homomorphism
A ®k APP — Endk_lin (AO) .

This is injective, and the source and target have the same dimension as k-vector spaces, and
so the map is an isomorphism. Since an involution on A is an isomorphism A — A°PP, the
proposition follows from this. o

Over all fields, matrix algebras and quaternion algebras admit involutions. For many
important fields, these are essentially the only such algebras. Consider the following con-
dition on a field k:

27.15 the only central division algebras over k or a finite extension of k satisfying
are the quaternion algebras and the field itself (i.e., they have degree 4 or 1).

THEOREM 27.16 The following fields satisfy (27.13)): algebraically closed fields, finite
fields, R, Q, and its finite extensions, and Q and its finite extensions.

PROOF. The proofs become successively more difficult: for algebraically closed fields
there is nothing to prove (27.4); for Q it requires the full force of class field theory (CFT).q

The involutions on an algebra

Given a central simple algebra admitting an involution, we next need to understand the set
of all involutions of it.

THEOREM 27.17 (NOETHER-SKOLEM) Let A be a central simple algebra over K, and let
* and T be involutions of A that agree on K ; then there exists an a € A such that

*

xT = axTa_l, all x € A. 87)
PROOF. See CFT 2.10. O

Let T be an involution (of the first kind, and so fixing the elements of K, or of the
second kind, and so fixing the elements of a subfield k of K such that [K:k] = 2). For
which invertible a in A does define an involution?

Note that

** = (@fa ™) x(@a™)
andsoa’a™! € K, say
at = ca, ce€K.
Now,
a’t = c(cTaT) =ccta
and so
cct =1.
If + is of the first kind, this implies that ¢> = 1, and so ¢ = +1.
If § is of the second kind, this implies that ¢ = d/dT for some d € K (Hilbert’s

theorem 90, FT 5.24). Since * is unchanged when we replace a with a/d, we see that in
this case holds with a satisfying a = a.
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Hermitian and skew-hermitian forms

We need some definitions. Let
o (D, *) be a division algebra with an involution =,
oV be aleft vector space over D, and
o ¢:V xV — D aformon V that is semilinear in the first variable and linear in the
second (so
¢(ax,by) = a*¢(x,y)b, a,b e D).

Then ¢ is said to hermitian if

p(x.y) =¢(.x)*, x,yeV,
and skew hermitian if

p(x.y) =—0p(y.x)*, x,yeV.

EXAMPLE 27.18 (a) Let D = k with * = idg. In this case, the hermitian and skew
hermitian forms are, respectively, symmetric and skew symmetric forms.

(b) Let D = C with * =complex conjugation. In this case, the hermitian and skew
hermitian forms are the usual objects.

To each hermitian or skew-hermitian form, we attach the group of automorphisms of
(V, ¢), and the special group of automorphisms of ¢ (the automorphisms with determinant
1, if this is not automatic).

The groups attached to algebras with involution

We assume the ground field k satisfies the condition (27.15)), and compute the groups at-
tached to the various possible algebras with involution.

Case A = M, (k); involution of the first kind.

In this case, the involution * is of the form
X*=aX'a !

where a’ = ca with ¢ = £1. Recall that the group attached to (M,,(k), *) consists of the
matrices X satisfying
X*X =1, det(X)=1,

1.€.,

aX'a X =1, det(X) =1,
or,

Xla'X =a, det(X) =1.

Thus, when ¢ = +1, we get the special orthogonal group for the symmetric bilinear form

attached to a~!, and when ¢ = —1, we get the symplectic group attached to the skew

symmetric bilinear form attached to a~!.

Case A = M, (K); involution of the second kind

Onmitted for the present.
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Case A = M,(D); D a quaternion division algebra.

Onmitted for the present.

Conclusion.

Let k be a field satisfying the condition (27.15). Then the absolutely almost-simple, simply

connected, classical groups over k are the following:

(A) The groups SL;, (D) for D a central division algebra over k (the inner forms of SL;);
the groups attached to a hermitian form for a quadratic field extension K of k (the
outer forms of SLj,).

(BD) The spin groups of quadratic forms, and the spin groups of skew hermitian forms
over quaternion division algebras.

(C) The symplectic groups, and unitary groups of hermitian forms over quaternion division
algebras.

It remains to classify the quaternion algebras and the various hermitian and skew her-
mitian forms. For the algebraically closed fields, the finite fields, R, Q,, Q and their finite
extensions, this has been done, but for Q and its extensions it is an application of class field
theory.
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28 Arithmetic subgroups

Commensurable groups

Subgroups H; and H» of a group are said to be commensurable it Hy N H is of finite
index in both H; and H>.

The subgroups aZ and bZ of R are commensurable if and only if a /b € Q; for example,
1Z and ~/27Z are not commensurable because they intersect in {0}. More generally, lattices
L and L’ in a real vector space V are commensurable if and only if they generate the same
Q-subspace of V.

Commensurability is an equivalence relation: obviously, it is reflexive and symmetric,
and if Hy, H> and H,, H3 are commensurable, one shows easily that H; N H N H3 is of
finite index in Hq, H,, and H3.

Definitions and examples

Let G be an algebraic group over Q. Let p: G — GLy be a faithful representation of G on
a finite-dimensional vector space V', and let L be a lattice in V. Define

GQL=1g€GQ)|p(gL =L}

An arithmetic subgroup of G(Q) is any subgroup commensurable with G(Q)z. For an
integer N > 1, the principal congruence subgroup of level N is

I'(N)L ={g€G(Q)r |gactsas lon L/NL}.
In other words, I"(N ) is the kernel of
G(Q)r — Aut(L/NL).

In particular, it is normal and of finite index in G(Q)z. A congruence subgroup of G(Q)
is any subgroup containing some I"(/N) as a subgroup of finite index, so congruence sub-
groups are arithmetic subgroups.

EXAMPLE 28.1 Let G = GL, with its standard representation on Q" and its standard
lattice L = Z". Then G(Q)f, consists of the A € GL,(Q) such that

AzZ" =7".

On applying A4 to ej,...,e,, we see that this implies that A has entries in Z. Since
A~17Z" = 7", the same is true of A~!. Therefore, G(Q) is

GL(Z) = {A € M, (Z) | det(A) = £1}.

The arithmetic subgroups of GL, (Q) are those commensurable with GL, (Z).
By definition,
I'(N)={AeGLy(Z)| A= 1 mod N}
= {(aij) € GLa(Z) | N|(aij — 8ij)}

which is the kernel of
GL,(Z) - GL,(Z/N7Z).
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EXAMPLE 28.2 Consider a triple (G, p, L) as in the definition of arithmetic subgroups.
The choice of a basis for L identifies G with a subgroup of GL, and L with Z". Then

GQL =G(Q NGL(Z)

and I'L,(N) for G is
G@Q) NI(N).

For a subgroup G of GL,,, one often writes G(Z) for G(Q) NGL, (Z). By abuse of notation,
given a triple (G, p, L), one often writes G(Z) for G(Q)r.

EXAMPLE 28.3 Let
Spon(Z) = {A € GLon(Z) | A" (% 5) A= (5 7))

is an arithmetic subgroup of Sp,, (Q), and all arithmetic subgroups are commensurable
with it.

EXAMPLE 28.4 Let (V, @) be a root system and X a lattice P D X D Q. Chevalley
showed that (V, @, X) defines an “algebraic group G over Z” which over Q becomes the
split semisimple algebraic group associated with (V, @, X), and G(Z) is a canonical arith-
metic group in G(Q).

EXAMPLE 28.5 Arithmetic groups may be finite. For example G,,(Z) = {£1}, and the
arithmetic subgroups of G(Q) will be finite if G(R) is compact (because arithmetic sub-
groups are discrete in G(R) — see later).

EXAMPLE 28.6 (for number theorists). Let K be a finite extension of QQ, and let U be the
group of units in K. For the torus 7" over Q such that 7(R) = (R ®q K)*, T(Z) = U.

Questions

The definitions suggest a number of questions and problems.

& Show the sets of arithmetic and congruence subgroups of G(Q) do not depend on the
choice of p and L.

¢ Examine the properties of arithmetic subgroups, both intrinsically and as subgroups
of G(R).

¢ Give applications of arithmetic subgroups.

& When are all arithmetic subgroups congruence?

¢ Are there other characterizations of arithmetic subgroups?

Independence of p and L.

LEMMA 28.7 Let G be a subgroup of GL,. For any representation p:G — GLy and
lattice L C V, there exists a congruence subgroup of G(Q) leaving L stable (i.e., for some
m>1,p(g)L = L forall g € I"(m)).

PROOF. When we choose a basis for L, p becomes a homomorphism of algebraic groups
G — GL,s. The entries of the matrix p(g) are polynomials in the entries of the matrix
g = (gij), i.e., there exist polynomials Py g € Q[..., X;;,...] such that

p(g)aﬂ = Pa,ﬂ(ﬁgl_]ﬁ)
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After a minor change of variables, this equation becomes

P(g)ap —Sap = Qap(.-..8ij —8ij....)

with Q4 8 € Q[..., Xj;,...] and § the Kronecker delta. Because p(I) = I, the Q4 g have
zero constant term. Let m be a common denominator for the coefficients of the Q, g, so
that

mQyp € Zl..., Xij,...].
If g = I mod m, then
Qup(....81 —8ij....) €L
Therefore, p(g)Z”/ C 7", and, as g ! also lies in I"(m), p(g)Z”/ =7gn o

PROPOSITION 28.8 For any faithful representations G — GLy and G — GLy+ of G and
lattices L and L’ in V and V', G(Q) 1, and G(Q) 1 are commensurable.

PROOF. According to the lemma, there exists a subgroup I” of finite index in G(Q), such
that I' C G(Q)r. Therefore,

GQL:6QLNGQL) = (GQr:T) < oo.

Similarly,

(GQr:6G(QLNGQL) < oo. o

Thus, the notion of arithmetic subgroup is independent of the choice of a faithful rep-
resentation and a lattice. The same is true for congruence subgroups, because the proof of
(28.7) shows that, for any N, there exists an m such that I'(Nm) C I'L (N).

Behaviour with respect to homomorphisms

PROPOSITION 28.9 Let I' be an arithmetic subgroup of G(Q), and let p: G — GLy be a
representation of G. Every lattice L of V is contained in a lattice stable under I .

PROOF. According to (28.7)), there exists a subgroup I’ leaving L stable. Let

L'=> p(g)L
where g runs over a set of coset representatives for I'' in I". The sum is finite, and so L’ is
again a lattice in V, and it is obviously stable under I". o

PROPOSITION 28.10 Let ¢9: G — G’ be a homomorphism of algebraic groups over Q.
For any arithmetic subgroup I" of G(Q), ¢(I") is contained in an arithmetic subgroup of

G'(Q.

PROOF. Let p: G’ — GLy be a faithful representation of G’, and let L be a lattice in
V. According to (28.9), there exists a lattice L’ D L stable under (p o ¢)(I"), and so
G'(Qr D o). o

REMARK 28.11 If ¢: G — G’ is a quotient map and I is an arithmetic subgroup of G(Q),
then one can show that ¢(I") is of finite index in an arithmetic subgroup of G’(Q) (Borel
1979, 8.9, 8.11). Therefore, arithmetic subgroups of G(Q) map to arithmetic subgroups of
G'(Q). (Because ¢(G(Q)) typically has infinite index in G’(Q), this is far from obvious.)
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Adelic description of congruence subgroups

In this subsection, which can be skipped, I assume the reader is familiar with adeles. The
ring of finite adéles is the restricted topological product

Ay =[]@Q¢:Ze)

where £ runs over the finite primes of Q. Thus, A  is the subring of [ [Q consisting of the
(ag) such that ay € Zjg for almost all £, and it is endowed with the topology for which [[Z,
is open and has the product topology.
Let V = Spm A be an affine variety over Q. The set of points of IV with coordinates in
a Q-algebra R is
V(R) = Homg(4, R).

When we write
A = Q[Xl,...,Xm]/a = Q[.xl,...,Xm],

themap P — (P (x1),..., P(xm)) identifies V(R) with
{(ay,...,am) € R™| f(ay,....am) =0, Vf €al
Let Z[x1, ..., X;] be the Z-subalgebra of A generated by the x;, and let
V(Z¢) = Homgz(Z[x1, . ... xm], Z¢) = V(Qp) N ZY' (inside Q7").

This set depends on the choice of the generators x; for A, but if A = Q[y1,..., ys], then
the y;’s can be expressed as polynomials in the x; with coefficients in QQ, and vice versa.
For some d € Z, the coefficients of these polynomials lie in Z[%], and so

ZIglr. o ] = ZLGIV1. o yal  (inside A).
It follows that for £ } d, the y;’s give the same set V(Zy) as the x;’s. Therefore,
V(A ) =TTV(Qo):V(Ze))

is independent of the choice of generators for A.
For an algebraic group G over Q, we define

G(Ay) =TI(G(Qp): G(Zy))
similarly. Now it is a topological groupE] For example,
Gm(hg) = [1QFZ7) = A%.

PROPOSITION 28.12 For any compact open subgroup K of G(A ), K N G(Q) is a con-
gruence subgroup of G(Q), and every congruence subgroup arises in this Waym

76The choice of generators determines a group structure on G(Zy) for almost all £, etc..

"1To define a basic compact open subgroup K of G (A #), one has to impose a congruence condition at each
of a finite set of primes. Then I = G(Q) N K is obtained from G(Z) by imposing the same congruence
conditions. One can think of I as being the congruence subgroup defined by the “congruence condition” K.
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PROOF. Fix an embedding G < GL;. From this we get a surjection QGL,] — Q[G] (of
(Q-algebras of regular functions), i.e., a surjection

QX11, ..., Xnn, T]/(det(X;)T — 1) — Q[G],
and hence Q[G] = Q[x11,...,Xnn, t]. For this presentation of Q[G],
G(Zg) = G(Qo) N GLu(Zy)  (inside GLx(Qy)).
For an integer N > 0, let

G(Zy) if €}N

K(N) =] K¢ where Ky = (g €G(Zy) | g =Iymod ™} if ry=ordy(N).

Then K(N) is a compact open subgroup of G(A f), and
K(N)NG(@Q) =T (N).

It follows that the compact open subgroups of G(A y) containing K(N) intersect G(Q)
exactly in the congruence subgroups of G(Q) containing I"(N). Since every compact open
subgroup of G (A ¢) contains K(N) for some N, this completes the proof. o

Applications to manifolds

Clearly 7"’ is a discrete subset of R”z, i.e., every point of Z"* has an open neighbourhood
(for the real topology) containing no other point of zn’. Therefore, GL,(Z) is discrete in
GL, (R), and it follows that every arithmetic subgroup I" of a group G is discrete in G(R).

Let G be an algebraic group over Q. Then G(R) is a Lie group, and for every compact
subgroup K of G(R), M = G(R)/K is a smooth manifold (J. Lee, Introduction to smooth
manifolds, 2003, 9.22).

THEOREM 28.13 For any discrete torsion-free subgroup I of G(R), I" acts freely on M,
and I'\M is a smooth manifold.

PROOF. Standard; see for example Lee 2003, Chapter 9, or 3.1 of my notes, Introduction
to Shimura varieties. o

Arithmetic subgroups are an important source of discrete groups acting freely on man-
ifolds. To see this, we need to know that there exist many forsion-free arithmetic groups.

Torsion-free arithmetic groups

Note that SL»(Z) is not torsion-free. For example, the following elements have finite order:
“1 0\> (10 0 —1\>_ (-1 0\ _ (0o -1\’
o -1/ \o 1)\t o ‘Lo -1) \1 1)~
THEOREM 28.14 Every arithmetic group contains a torsion-free subgroup of finite index.

For this, it suffices to prove the following statement.

LEMMA 28.15 For any prime p > 3, the subgroup I'(p) of GL, (Z) is torsion-free.
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PROOF. If not, it will contain an element of order a prime £, and so we will have an equation
(I +pma)f =1

with m > 1 and A a matrix in M, (Z) not divisible by p (i.e., not of the form pB with B
in M, (Z)). Since I and A commute, we can expand this using the binomial theorem, and

obtain an equation
L V4 o
m4 _ mi 4i
Ip™A = Zi=2<i)p A"

In the case that £ # p, the exact power of p dividing the left hand side is p™, but p?™
divides the right hand side, and so we have a contradiction.

In the case that £ = p, the exact power of p dividing the left hand side is p”* 1, but,
for2 <i < p, p?™t1 (f’)pmi because p|(€), and p?™*1| p™P because p > 3. Again we
have a contradiction. o

A fundamental domain for SL,

Let H be the complex upper half plane
H={zeC|3J(z)>0}.

= . 88
cz+d (83)

~faz+b (ad —bc)3(z2)
3 =
lcz + d|?

Therefore, SL,(R) acts on H by holomorphic maps
b) az+b
zZ =

a
SLa (R , .
2Ry xH —>H (c 1 d

The action is transitive, because

(?) a_lf) i =a?i + ab,
and the subgroup fixing i is

o-{(3 ) | oo

(compact circle group). Thus
H ~ (SLa(R)/0) i

as a smooth manifold.
PROPOSITION 28.16 Let D be the subset
{zeCl-1/2=0R()=1/2, |z|=1}

of H. Then
H = SLy(Z) - D,

and if two points of D lie in the same orbit then neither is in the interior of D.
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PROOF. Let zg € H. One checks that, for any constant A, there are only finitely many
¢,d € Z such that |czg + d| < A, and so (see (88)) we can choose a y € SLa(Z) such that

I(y(zo)) is maximal. As T = ((1) i) acts on H as z — z + 1, there exists an m such that

—1/2 <NW(T"y(z0)) < 1/2.

I claim that 7™y (z¢9) € D. To see this, note that S = (O ) actsby S(z) = —1/z, and

1 0
o) 30)
J(z
J(S(2)) = EER
If T™y(zo) ¢ D, then |T™"y(z9)| < 1, and I(S(T™y(z0))) > I(T™y(z0)), contradicting
the definition of y.
The proof of the second part of the statement is omitted. o

Application to quadratric forms

Consider a binary quadratic form:
q(x,y) = ax? + bxy + cy2, a,b,c eR.

Assume ¢ is positive definite, so that its discriminant A = % — 4ac < 0.

There are many questions one can ask about such forms. For example, for which inte-
gers N is there a solution to g(x, y) = N with x, y € Z? For this, and other questions,
the answer depends only on the equivalence class of g, where two forms are said to be
equivalent if each can be obtained from the other by an integer change of variables. More
precisely, ¢ and ¢’ are equivalent if there is a matrix A € SL,(Z) taking ¢ into ¢’ by the

change of variables,
/
(3)=2(3)
y y

q(x,y)z(x,y)-Q-(;), q’(x,y)z(x,y)-Q’.(;)

In other words, the forms

are equivalentif Q = A" - Q' - A for A € SLy(Z).
Every positive-definite binary quadratic form can be written uniquely

qg(x,y) =a(x —wy)(x —wy),a € Rsg, w € H.

If we let Q denote the set of such forms, there are commuting actions of R~ and SL(Z)
on it, and
Q/Rso ~H

as Sl (Z)-sets. We say that g is reduced if

1 1
|w| > 1and — = < RN(w) < =, or
2 2

1
|a)|=1and—§§§)‘t(a))50.
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More explicitly, g(x, y) = ax? + bxy + cy? is reduced if and only if either

—a<b<a<cor

0<b<a=c.

Theorem implies:

Every positive-definite binary quadratic form is equivalent to a reduced form;
two reduced forms are equivalent if and only if they are equal.

We say that a quadratic form is infegral if it has integral coefficients, or, equivalently, if
X,y €Z = q(x,y) € L.

There are only finitely many equivalence classes of integral definite binary
quadratic forms with a given discriminant.

Each equivalence class contains exactly one reduced form ax? + bxy + cy?2. Since
40> <dac=b*>*—-A<da*>-A

we see that there are only finitely many values of a for a fixed A. Since |b| < a, the same
is true of b, and for each pair (a, b) there is at most one integer ¢ such that b> — 4ac = A.

This is a variant of the statement that the class number of a quadratic imaginary field is
finite, and goes back to Gauss (cf. my notes on Algebraic Number Theory, 4.28, or, in more
detail, Borevich and Shafarevich, Number theory, 1966, especially Chapter 3, §6).

“Large” discrete subgroups

Let I' be a subgroup of a locally compact group G. A discrete subgroup I" of a locally
compact group G is said to cocompact (or uniform) it G/I" is compact. This is a way
of saying that I" is “large” relative to G. There is another weaker notion of this. On
each locally compact group G, there exists a left-invariant Borel measure, unique up to a
constant, called the left-invariant Haar measure{ﬁ which induces a measure p on I'\G.
If u(I'\G) < oo, then one says that I" has finite covolume, or that I" is a lattice in G. If
K is a compact subgroup of G, the measure on G defines a left-invariant measure on G/ K,
and u(I"'\G) < oo if and only if the measure u(I"\G/K) < oc.

EXAMPLE 28.17 Let G = R", and let I = Ze + --- + Ze;. Then I'\G(R) is compact
ifandonly ifi = n. If i < n, I" does not have finite covolume. (The left-invariant measure
on R” is just the usual Lebesgue measure.)

EXAMPLE 28.18 Consider, SL;(Z) C SL;(R). The left-invariant measure on SL(R)/ O >~
His d; 4y and

/ dxdy // dxdy / /‘1/2 dxdy /°° dy
> — < 00.
r\n Y V3212 Y2 V32 V2
Therefore, SL,(Z) has finite covolume in SL;(R) (but it is not cocompact — SL, (Z)\'H
is not compact).

78For real Lie groups, the proof of the existence is much more elementary than in the general case (cf.
Boothby 1975, VI 3.5).
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EXAMPLE 28.19 Consider G = G,,. The left-invariant measur on R is 4% , and

x
/ dx /‘°° dx
— = — = o0.
RX/{£1} X o X

Therefore, G(Z) is not of finite covolume in G(R).

Exercise

28-1 Show that, if a subgroup I" of a locally compact group is discrete (resp. is cocom-
pact, resp. has finite covolume), then so also is every subgroup commensurable with 1.
Reduction theory

In this section, I can only summarize the main definitions and results from A. Borel, Intro-
duction aux groupes arithmétiques, Hermann, 1969.
Any positive-definite real quadratic form in n variables can be written uniquely as

Q(SC)) =t1(x1 +ur2x2 + - + ulnxn)z + o1 (xp—1 F un—lnxn)z + tnx;%

=y -y
where
N 0 O\ /1 uiz -+ um\ [x1
N 0 \/5 0 0 1 .- Uon X2
y= y y : . (89)
0 0 V] \O 0 1 Xn

Let Q, be the space of positive-definite quadratic forms in n-variables,
Q={0eM®)|Q"=0, ¥0%>0}
Then GL, (R) acts on 9, by
B,0+ B'OB:GL,(R) x Q, — Q,.

The action is transitive, and the subgroup fixing the form / i@ On(R)y={A| A'A = I},
and so we can read off from a set of representatives for the cosets of O, (R) in GL, (R).
We find that

GL,(R)y~A-N-K

where
¢ K is the compact group Oy (R),
¢ A= T@R)" for T the split maximal torus in GL,, of diagonal matrices and

dax _ dx. :
<5, alternatively,

ax —
2 dx atz dx
f D og(ty) — log (1) = / g

n X aty X

T9Because

8050 we are reverting to using O, for the orthogonal group of the form x12 + 4 x,zl.
81The + denotes the identity component of T'(R) for the real topology. Thus, for example,

Gm@®"HT =R = (Roo)".
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o N is the group U, (R).
Since A normalizes N, we can rewrite this as

GL,(R)~ N -A-K.
For any compact neighbourhood @ of 1 in N and real number ¢ > 0, let
6t’w =w - At - K

where
A; :{a €A |a,~,,~ <1aj41,i+1, 1<i Sn—l}. (90)

Any set of this form is called a Siegel set.

THEOREM 28.20 Let I" be an arithmetic subgroup in G(Q) = GL,(Q). Then
(a) for some Siegel set S, there exists a finite subset C of G(Q) such that

GR)=T-C-6G;
(b) forany g € G(Q) and Siegel set G, the set of y € I" such that
g6 NyG #0
is finite.

Thus, the Siegel sets are approximate fundamental domains for I acting on G(R).

Now consider an arbitrary reductive group G over Q. Since we are not assuming G to
be split, it may not have a split maximal torus, but, nevertheless, we can choose a torus T’
that is maximal among those that are split. From (G, T'), we get a root system as before (not
necessarily reduced). Choose a base S for the root system. Then there is a decomposition
(depending on the choice of T and §)

GR)=N-A-K

where K is again a maximal compact subgroup and A = T(R)™ (Borel 1969, 11.4, 11.9).
The definition of the Siegel sets is the same except no

Ar ={a€ A|aa) <tforalla € S}. 9D

Then Theorem [28.20] continues to hold in this more general situation (Borel 1969, 13.1,
15.4).

EXAMPLE 28.21 The images of the Siegel sets for SL, in H are the sets
Giu={zeH|3(2) >t [N(2)| <u}
THEOREM 28.22 IfHomy (G, G,,) = 0, then every Siegel set has finite measure.

PROOF. Borel 1969, 12.5. o

82Recall that, with the standard choices, X1 = X2s-ees Xn—1— Xn is a base for the roots of T in GL,, so this
definition agrees with that in (90).
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THEOREM 28.23 Let G be a reductive group over Q, and let I' be an arithmetic subgroup
of G(Q).

(a) The volume of I'\ G (R) is finite if and only if G has no nontrivial character over Q
(for example, if G is semisimple).

(b) The quotient I'\ G (R) is compact if and only if it G has no nontrivial character over
Q and G(Q) has no unipotent element # 1.

PROOF. (a) The necessity of the conditions follows from (28.19). The sufficiency follows

from (28.21)) and (28.22).
(b) See Borel 1969, 8.4. o

EXAMPLE 28.24 Let B be a quaternion algebra, and let G be the associated group of
elements of B of norm 1 (we recall the definitions in [28.28| below).

(a) If B & M>(R), then G = SL,(R), and G(Z)\G(R) has finite volume, but is not
compact ((§ 1) is a unipotent in G(Q)).

(b) If B is a division algebra, but R ®g B ~ M>(R), then G(Z)\G(R) is compact (if
g € G(Q) is unipotent, then g — 1 € B is nilpotent, and hence zero because B is a
division algebra).

(c) If R ®q B is a division algebra, then G(R) is compact (and G(Z) is finite).

EXAMPLE 28.25 Let G = SO(q) for some nondegenerate quadratic form g over Q. Then

G(Z)\G(R) is compact if and only if ¢ doesn’t represent zero in Q, i.e., ¢(X¥) = 0 does not
have a nontrivial solution in Q" (Borel 1969, 8.6).

Presentations

In this section, I assume some familiarity with free groups and presentations (see, for ex-
ample, §2 of my notes on Group Theory).

PROPOSITION 28.26 The group SLy(Z)/{%1} is generated by S = (9 3!) and T =
(61)-
PROOF. Let I'’ be the subgroup of SL,(Z)/{+£1} generated by S and 7. The argument in
the proof of (28.16)) shows that I’ - D = H.

Let zg lie in the interior of D, and let y € I". Then there exist Y’ € I'" and z € D such
that yzg = y’z. Now y'~lyzg lies in D and zg lies in the interior of D, and so y'~ly = +1

(see[28.16). o

In fact SL,(Z)/{x1} has a presentation (S, TJSz, (ST)3). Tt is known that every
torsion-free subgroup I" of SLy(Z) is free on 1 + % generators For example,
the commutator subgroup of SL»(Z) has index 12, and is the free group on the generators

(F1)and (}3).
For a general algebraic group G over Q, choose G and C as in (28.20p), and let
D::ngang/K.
Then D is a closed subset of G(R)/K such that I"' - D = G(R)/K and
{rel' |yDND # 0}

is finite. One shows, using the topological properties of D, that this last set generates I,
and that, moreover, I has a finite presentation.

83Contrary to appearances, this statement is correct.
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The congruence subgroup problem

Consider an algebraic subgroup G of GL,,. Is every arithmetic subgroup congruence? That
is, does every subgroup commensurable with G(Z) contain

I['(N) =q¢ Ker(G(Z) — G(Z/NZ))

for some N.

That SL(Z) has noncongruence arithmetic subgroups was noted by Klein as early as
1880. For a proof that SL(Z) has infinitely many subgroups of finite index that are not
congruence subgroups see B. Sury, The congruence subgroup problem, Hindustan, 2003,
3-4.1. The proof proceeds by showing that the groups occurring as quotients of SL;(Z) by
principal congruence subgroups are of a rather special type, and then exploits the known
structure of SL;(7Z) as an abstract group (see above) to construct many finite quotients not
of his type. It is known that, in fact, congruence subgroups are sparse among arithmetic
groups: if N(m) denotes the number of congruence subgroups of SL;(Z) of index < m and
N’(m) the number of arithmetic subgroups, then N(m)/N'(m) — 0 as m — oc.

However, SL; is unusual. For split simply connected almost-simple groups other than
SL,, for example, for SL, (n > 3), Sp,,, (n > 2), all arithmetic subgroups are congruence.

In contrast to arithmetic subgroups, the image of a congruence subgroup under an
isogeny of algebraic groups need not be a congruence subgroup.

Let G be a semisimple group over Q. The arithmetic and congruence subgroups of
G (Q) define topologies on it, namely, the topologies for which the subgroups form a neigh-
bourhood base for 1. We and we denote the corresponding completions by G and G. Be-
cause every congruence group is arithmetic, the identity map on G(Q) gives a surjective
homomorphism G — G, whose kernel C (G) is called the congruence kernel. This kernel
is trivial if and only if all arithmetic subgroups are congruence. The modern congruence
subgroup problem is to compute C(G). For example, the group C(SL5) is infinite. There is
a precise conjecture predicting exactly when C(G) is finite, and what its structure is when
it is finite.

Now let G be simply connected, and let G’ = G/N where N is a nontrivial subgroup
of Z(G). Consider the diagram:

1 —— C(G) G G 1
| =
1 —— C(G)) G’ G 1.

It is known that G = G(A #), and that the kernel of 7 is N(Q), which is finite. On
the other hand, the kernel of 7 is N(A ), which is infinite. Because Ker(7w) # N(Q),
7:G(Q) — G'(Q) doesn’t map congruence subgroups to congruence subgroups, and be-
cause C(G’) contains a subgroup isomorphic to N(A )/ N(Q), G'(Q) contains a noncon-
gruence arithmetic subgroup.

It is known that C(G) is finite if and only if is contained in the centre of G/(\Q) For an
absolutely almost-simple simply connected algebraic group G over Q, the modern congru-
ence subgroup problem has largely been solved when C(G) is known to be central, because
then C(G) is the dual of the so-called metaplectic kernel which is known to be a subgroup
of the predicted group (except possibly for certain outer forms of SL;,) and equal to it many
cases (work of Gopal Prasad, Raghunathan, Rapinchuk, and others).
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The theorem of Margulis

DEFINITION 28.27 Let H be a semisimple algebraic group over R. A subgroup I' of
H (R) is arithmetic if there exists an algebraic group G over Q, a surjective map Gg — H
such that the kernel of ¢(R): G(R) — H(R) is compact, and an arithmetic subgroup I’ of
G (R) such that ¢(I'’) is commensurable with I".

EXAMPLE 28.28 Let B be a quaternion algebra over a finite extension F of Q,

B=F+Fi+Fj+ Fk

i2=a, j%2=0b, ij=k=—ji.
The norm of an element w + xi 4+ yj + zk of R ®q B is

(w~+ xi + yj + zk)(w — xi — yj — zk) = w? —ax? — by? + abz>.
Then B defines an almost-simple semisimple group G over QQ such that, for any (Q-algebra
* G(R) ={b € R®q B | Nm(b) = 1}.
Assume that F is totally real, i.e.,
F®R>Rx--- xR,
and that correspondingly,
BRogR~ MRy xH x---xH
where H is the usual quaternion algebra over R (corresponding to (a, b) = (—1,—1)). Then
G(R) ~ SLy(R) x H! x --- x H!
H' ={w+xi +yj +zk e H|w? +x%+y% +22 =1}

Nonisomorphic B’s define different commensurability classes of arithmetic subgroups of
SL,(R), and all such classes arise in this way.

Not every discrete subgroup in SL(R) (or SL,(R)/{=£1}) of finite covolume is arith-
metic. According to the Riemann mapping theorem, every compact riemann surface of
genus g > 2 is the quotient of H by a discrete subgroup of Aut(H) = SL(R)/{x1} act-
ing freely on H. Since there are continuous families of such riemann surfaces, this shows
that there are uncountably many discrete cocompact subgroups in SL; (R)/{%1} (therefore
also in SL» (IR)), but there only countably many arithmetic subgroups.

The following amazing theorem of Margulis shows that SL; is exceptional in this re-
gard:

THEOREM 28.29 LetI" be a discrete subgroup of finite covolume in a noncompact almost-
simple real algebraic group H ; then I" is arithmetic unless H is isogenous to SO(1, n) or
SU(1,n).

PROOF. The proof is given in G. Margulis, Discrete subgroups of semisimple Lie groups,
Springer, 1991. For a disussion of it, see D. Witte, Introduction to arithmetic groups,
arXiv:math.DG/0106063. o

Here

SO(1, n) correspond to x% ot x2 - xr21+1

SU(1,n) corresponds t0 21Z1 + ** + ZnZpn — Zn+1Zn+1-

Note that, because SL,(R) is isogenous to SO(1, 2), the theorem doesn’t apply to it.
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Shimura varieties

Let U; = {z € C | zZ = 1}. Recall that for a group G, G*! = G/Z(G) and that G is said
to be adjoint if G = G* (i.e., if Z(G) = 1).

THEOREM 28.30 Let G be a semisimple adjoint group over R, and let u: Uy — G(R) be
a homomorphism such that
(a) only the characters z71 1,z occur in the representation of Uy on Lie(G)c;
(b) the subgroup
Kc ={g € G(O) | g = inn(u(-1))(g)}

of G(C) is compact; and
(c) u(—1) does not project to 1 in any simple factor of G.
Then,
K =KcNGR)T

is a maximal compact subgroup of G(R)™, and there is a unique structure of a complex
manifold on X = G(R)™ /K such that G(R)" acts by holomorphic maps and u(z) acts on
the tangent space at p = 1K as multiplication by z. (Here G(R)™ denotes the identity for
the real topology.)

PROOF. S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Academic,
1978, VIII; see also my notes Introduction to Shimura varieties (ISV), 1.21. O

The complex manifolds arising in this way are the hermitian symmetric domains. They
are not the complex points of any algebraic variety, but certain quotients are.

THEOREM 28.31 Let G be a simply connected semisimple algebraic group over Q hav-
ing no simple factor H with H(R) compact. Let u:U; — G*Y(R) be a homomorphism
satistying (a) and (b) of , and let X = G*(R)T/K with its structure as a com-
plex manifold. For each torsion-free arithmetic subgroup I' of G(Q), I'\X has a unique
structure of an algebraic variety compatible with its complex structure.

PROOF. This is the theorem of Baily and Borel, strengthened by a theorem of Borel. See
ISV 3.12 for a discussion of the theorem. o

EXAMPLE 28.32 Let G = SL,. For z € C, choose a square root a + ib, and map z to
(4 Z) in SLy(R)/{=£1}. For example, u(—1) = (% }), and

Ke ={(%52) € SLa(©) [ al? + 161 = 13,
which is compact. Moreover,
KL KeNSLa@®) = {( 4 ) € SLa(R) [ o + b2 = 1}.
Therefore G(R)/ K ~ H.

THEOREM 28.33 Let G, u, and X be as in (28.31). If I" is a congruence subgroup, then
I'\ X has a canonical model over a specific finite extension Qp of Q.

PROOF. For a discussion of the theorem, see ISV §§12—14.Reference to be added. O
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The varieties arising in this way are called connected Shimura varieties. They are very
interesting. For example, let 15(N) be the congruence subgroup of SL;(Q) consisting of

d
algebraic curve I'o(N)\H has a canonical model Yo (N ) over Q. It is known that, for every
elliptic curve E over Q, there exists a nonconstant map Yo(N) — E for some N, and that
from this Fermat’s last theorem follows.

matrices the (i b) in SLy(Z) with ¢ divisible by N. Then Qr,(y) = Q, and so the
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