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Introduction
For one who attempts to unravel the story, the
problems are as perplexing as a mass of hemp
with a thousand loose ends.
Dream of the Red Chamber, Tsao Hsueh-Chin.

Algebraic groups are groups of matrices determined by polynomial conditions. For
example, the group of matrices of determinant 1 and the orthogonal group of a symmetric
bilinear form are both algebraic groups. The elucidation of the structure of algebraic groups
and the classification of them were among the great achievements of twentieth century
mathematics (Borel, Chevalley, Tits and others, building on the work of the pioneers on
Lie groups). Algebraic groups are used in most branches of mathematics, and since the
famous work of Hermann Weyl in the 1920s they have also played a vital role in quantum
mechanics and other branches of physics (usually as Lie groups).

Arithmetic groups are groups of matrices with integer entries. They are an important
source of discrete groups acting on manifolds, and recently they have appeared as the sym-
metry groups of several string theories in physics.

These are the notes for a 40 hour course that I gave at CMS, Zhejiang University,
Hangzhou, in the spring of 2005. My goal was to give an introductory overview of al-
gebraic groups, Lie algebras, Lie groups, and arithmetic groups. However, to adequately
cover this topic would take twice as long and twice as many pages (but not more!). Thus,
the treatment is very sketchy in places, and some important topics (for example, the cru-
cial real case) are barely mentioned. Nevertheless, I hope that the notes may be useful for
someone looking for a rapid introduction to the subject. Sometime I plan to produce an
expanded version.

The approach to algebraic groups taken in these notes In most of the expository lit-
erature, the theory of algebraic groups is based (in spirit if not in fact) on the algebraic
geometry of Weil’s Foundations.1 Thus coordinate rings are not allowed to have nonzero
nilpotents, which means, for example, that the centre of SLp in characteristic p is vis-
ible only through its Lie algebra. Moreover, the isomorphism theorem in group theory,
HN=N ' H=N \H , fails, and so the intuition provided by group theory is unavailable. It
is true that in characteristic zero, all algebraic groups are reduced, but this is a theorem that
can only be stated when nilpotents are allowed. Another problem is that an algebraic group
over a field k is defined to be an algebraic group over some large algebraically closed field
together with a k-structure. This leads to a confusing terminology in conflict with that of
today’s algebraic geometry and prevents, for example, the theory of split reductive groups
to be developed intrinsically over the base field.

Of course, the theory of algebraic groups should be based on Grothendieck’s theory
of schemes. However, the language of schemes is not entirely appropriate either, since
the nonclosed points are an unnecessary complication when working over a field and they
prevent the underlying space of an algebraic group from being a group. In these notes, we
usually regard algebraic groups as functors (or bi-algebras), except that, in order to be able
to apply algebraic geometry, we sometimes interpret them as algebraic varieties or algebraic
spaces (in the sense of AG �11).

1Weil, André. Foundations of algebraic geometry. AMS, 1962
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The expert need only note that by “algebraic group over a field” we mean “affine alge-
braic group scheme over a field”, and that our ringed spaces have only closed points (thus,
we are using Spm rather than Spec).

Notations

We use the standard (Bourbaki) notations: N D f0; 1; 2; : : :g, Z D ring of integers, R D
field of real numbers, C D field of complex numbers, Fp D Z=pZ D field of p elements, p
a prime number. Given an equivalence relation, Œ�� denotes the equivalence class containing
�. A family of elements of a set A indexed by a second set I , denoted .ai /i2I , is a function
i 7! ai W I ! A.

Throughout, k is a field and k is an algebraic closure of k.
Rings will be commutative with 1 unless stated otherwise, and homomorphisms of rings

are required to map 1 to 1. A k-algebra is a ring A together with a homomorphism k ! A.
For a ring A, A� is the group of units in A:

A�
D fa 2 A j there exists a b 2 A such that ab D 1g:

We use Gothic (fraktur) letters for ideals:

a b c m n p q A B C M N P Q

a b c m n p q A B C M N P Q

X
df
D Y X is defined to be Y , or equals Y by definition;

X � Y X is a subset of Y (not necessarily proper, i.e., X may equal Y );
X � Y X and Y are isomorphic;
X ' Y X and Y are canonically isomorphic (or there is a given or unique isomorphism).

Prerequisites

˘ A standard course on algebra, for example, a good knowledge of the Artin 1991.
˘ Some knowledge of the language of algebraic geometry, for example, the first few

sections of AG.
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1 Overview and examples

Loosely speaking, an algebraic group is a group defined by polynomials. Following Mike
Artin’s dictum (Artin 1991, p xiv), I give the main examples before the precise abstract
definition.

The determinant of an n � n matrix A D .aij / is a polynomial in the entries of A,
specifically,

det.A/ D
X

�2Sn

.sgn.�//a1�.1/ � � � an�.n/

where Sn is the symmetric group on n letters, and sgn.�/ is the sign of � . Moreover, the
entries of the product of two matrices are polynomials in the entries of the two matrices.
Therefore, for any field k, the group SLn.k/ of n � n matrices with determinant 1 is an
algebraic group (called the special linear group).

The group GLn.k/ of n � n matrices with nonzero determinant is also an algebraic
group (called the general linear group) because its elements can be identified with the
n2 C 1-tuples ..aij /1�i;j �n; t / such that

det.aij /t D 1:

More generally, for a finite-dimensional vector space V , we define GL.V / (resp. SL.V /)
to be the groups automorphisms of V (resp. automorphisms with determinant 1). These are
again algebraic groups.

On the other hand, the subgroup

f.x; ex/ j x 2 Rg

of R � R� is not an algebraic subgroup because any polynomial f .X; Y / 2 RŒX; Y � zero
on it is identically zero.

An algebraic group is connected if it has no quotient algebraic groupQ such thatQ.k/
is finite and¤ 1.

The building blocks

Unipotent groups

Recall that an endomorphism ˛ of a vector space V is nilpotent if ˛n D 0 for some n > 0
and that it is unipotent if 1 � ˛ is nilpotent. For example, a matrix A of the form

�
0 � �
0 0 �
0 0 0

�
is nilpotent (A3 D 0) and so a matrix of the form 1 � A D

�
1 � �
0 1 �
0 0 1

�
is unipotent.

An algebraic subgroup of GL.V / is unipotent if there exists a basis of V relative to
which G is contained in the group of all n � n matrices of the form0BBBBB@

1 � � � � � �

0 1 � � � � �
:::

:::
: : :

:::
:::

0 0 � � � 1 �

0 0 � � � 0 1

1CCCCCA ; (1)

which we denote it Un. Thus, the elements of a unipotent group are unipotent.
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Algebraic tori

An endomorphism ˛ of a vector space V is diagonalizable if V has a basis of eigenvectors
for ˛, and it is semisimple if it becomes diagonalizable after an extension of the field k. For
example, the linear map x 7! AxW kn ! kn defined by an n� n matrix A is diagonalizable
if and only if there exists an invertible matrix P with entries in k such that PAP�1 is
diagonal, and it is semisimple if and only if there exists such a matrix P with entries in
some field containing k.

Let k be an algebraic closure of k. A connected algebraic subgroup T of GL.V / is an
algebraic torus if, over k, there exists a basis of V relative to which T is contained in the
group of all diagonal matrices 0BBBBB@

� 0 � � � 0 0

0 � � � � 0 0
:::

:::
: : :

:::
:::

0 0 � � � � 0

0 0 � � � 0 �

1CCCCCA ;

which we denote Dn. Thus, the elements of T are semisimple.

Semisimple groups

Let G1; : : : ; Gr be algebraic subgroups of an algebraic group G. If

.g1; : : : ; gr/ 7! g1 � � �gr WG1 � � � � �Gr ! G

is a surjective homomorphism with finite kernel, then we say that G is the almost direct
product of theGi . In particular, this means that eachGi is normal and that theGi commute
with each other. For example,

G D SL2 �SL2 =N; N D f.I; I /; .�I;�I /g (2)

is the almost direct product of SL2 and SL2, but it can’t be written as a direct product.
A connected algebraic group G is simple if it is non-commutative and has no normal

algebraic subgroups, and it is almost simple2 if its centre Z is finite and G=Z is simple.
For example, SLn is almost-simple because its centre

Z D

( 
� 0

:::
0 �

! ˇ̌̌̌
ˇ �n

D 1

)
is finite, and PSLn D SLn =Z is simple.

A connected algebraic group is semisimple if it is an almost direct product of almost-
simple subgroups. For example, the group G in (2) is semisimple.

A central isogeny of connected algebraic groups is a surjective homomorphism G !

H whose kernel is finite and contained in the centre of G (in characteristic zero, a finite
subgroup of a connected algebraic group is automatically central, and so “central” can be
omitted from these definitions). We say that two algebraic groups H1 and H2 are centrally
isogenous if there exist central isogenies

H1  G ! H2:

2Also called “quasi-simple” or, often, just “simple”.
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Thus, two algebraic groups are centrally isogenous if they differ only by finite central sub-
group. This is an equivalence relation.

If k is algebraically closed, then every almost-simple algebraic group is centrally isoge-
nous to exactly one on the following list:
An .n � 1/; the special linear group SLnC1 consisting of all nC1�nC1matrices A with

det.A/ D 1I
Bn .n � 2/; the special orthogonal group SO2nC1 consisting of all 2nC1�2nC1matrices

A such that AtA D I and det.A/ D 1;
Cn .n � 3/; the symplectic group Sp2n consisting of all invertible 2n�2nmatricesA such

that AtJA D J where J D
�

0 I

�I 0

�
;

Dn .n � 4/; the special orthogonal group SO2n;
E6; E7; E8; F4; G2 the five exceptional types.

Abelian varieties

Abelian varieties are algebraic groups that are complete (which implies that they are pro-
jective and commutative3). An abelian variety of dimension 1 is an elliptic curve, which
can be given by a homogeneous equation

Y 2Z D X3
C aXZ2

C bZ3:

In these lectures, we shall not be concerned with abelian varieties, and so I’ll say nothing
more about them.

Finite groups

Every finite group can be regarded as an algebraic group. For example, let � be a per-
mutation of f1; : : : ; ng and let I.�/ be the matrix obtained from the identity matrix by
using � to permute the rows. Then, for any n � n matrix A, I.�/A is obtained from A by
permuting the rows according to � . In particular, if � and � 0 are two permutations, then
I.�/I.� 0/ D I.�� 0/. Thus, the matrices I.�/ realize Sn as a subgroup of GLn. Since every
finite group is a subgroup of some Sn, this shows that every finite group can be realized as
a subgroup of GLn, which is automatically algebraic.4

Extensions

For the remainder of this section, assume that k is perfect.

Solvable groups

An algebraic group G is solvable if it there exists a sequence of connected algebraic sub-
groups

G D G0 � � � � � Gi � � � � � Gn D 1

3See for example my Storrs lectures (available on my website under preprints/reprints 1986b).
4Any finite subset of kn is algebraic. For example, f.a1; : : : ; an/g is the zero-set of the polynomialsXi�ai ,

1 � i � n, and f.a1; : : : ; an/; .b1; : : : ; bn/g is the zero-set of the polynomials .Xi�ai /.X�bj /, 1 � i; j � n,
and so on.
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such thatGiC1 is normal inGi andGi=GiC1 is commutative. According to the table below,
they are extensions of tori by unipotent groups. For example, the group of upper triangular
matrices Tn is solvable:

1! Un ! Tn ! Dn ! 1.

The Lie-Kolchin theorem says that, when k D k, for any connected solvable subgroup G
of GL.V /, there exists a basis for V such that G � Tn.

Reductive groups

An algebraic group is reductive if it has no nontrivial connected unipotent subgroups. Ac-
cording to the table, they are extensions of semisimple groups by tori. For example, GLn is
reductive:

1! Gm ! GLn ! PGLn ! 1:

Nonconnected groups

The orthogonal group. There is an exact sequence

1! SO.n/! O.n/
det
�! f˙1g ! 1

which shows that O.n/ is not connected.

The monomial matrices. Let M be the group of monomial matrices, i.e., those with
exactly one nonzero element in each row and each column. Then M contains both Dn and
the group Sn of permutation matrices. Moreover, for any diagonal matrix diag.a1; : : : ; an/;

I.�/ � diag.a1; : : : ; an/ � I.�/
�1
D diag.a�.1/; : : : ; a�.n//. (3)

As M D DnSn and D \ Sn D 1, this shows that Dn is normal in M and that M is the
semi-direct product

M D Dn Ì� Sn

where � WSn ! Aut.Dn/ sends � to Inn.I.�//.

Summary

When k is perfect, every smooth algebraic group has a composition series whose quotients
are (respectively) a finite group, an abelian variety, a semisimple group, a torus, and a
unipotent group.
More precisely (all algebraic groups are smooth):
˘ An algebraic group G contains a unique normal connected subgroup Gı such that

G=Gı is finite and smooth (see 8.13).
˘ A connected algebraic group G contains a unique normal affine algebraic subgroup

H such that G=H is an abelian variety (Barsotti-Chevalley theorem).5

5B. Conrad, A modern proof of Chevalley’s theorem on algebraic groups, available at
www.math.lsa.umich.edu/�bdconrad/papers/chev.pdf.
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˘ A connected affine group G contains a largest6 normal solvable subgroup (called the
radical RG of G) that contains all other normal solvable subgroups (see p94). The
quotient G=RG is semisimple.

˘ A connected affine group G contains a largest normal unipotent subgroup (called the
unipotent radical RuG of G) (see p94). The quotient G=RuG is reductive, and is
a torus if G is solvable. (When k D k, G contains reductive groups H , called Levi
subgroups, such that G D RuG ÌH .)

˘ The derived groupDG of a reductive groupG is a semisimple algebraic group and the
connected centre Z.G/ı of G is a torus; G is an extension of a semisimple algebraic
group by a torus (see 15.1).

In the following tables, the group at left has a composition series whose quotients are the
groups at right.

General algebraic group Affine algebraic group Reductive
general �

j finite

connected �

j abelian variety

connected affine �

j semisimple

solvable �

j torus

unipotent �

j unipotent

f1g �

affine G

j finite

connected Gı

j semisimple

solvable RG

j torus

unipotent RuG

j unipotent

f1g

reductive �

j semisimple

torus �

j torus

f1g �

ASIDE 1.1 We have seen that the theory of algebraic groups includes the theory of finite
groups and the theory of abelian varieties. In listing the finite simple groups, one uses the
listing of the almost-simple algebraic groups given above. The theory of abelian varieties
doesn’t use the theory of algebraic groups until one begins to look at families of abelian
varieties when one needs both the theory of algebraic groups and the theory of arithmetic
groups.

Exercises

1-1 Show that a polynomial f .X; Y / 2 RŒX; Y � such that f .x; ex/ D 0 for all x 2 R is
zero (as an element of RŒX; Y �). Hence f.x; ex/ j x 2 Rg is not an algebraic subset of R2

(i.e., it is not the zero set of a collection of polynomials).

1-2 Let T be a commutative subgroup of GL.V / consisting of diagonalizable elements.
Show that there exists a basis for V relative to which T � Dn.

1-3 Let � be a positive definite bilinear form on a real vector space V , and let SO.�/ be
the algebraic subgroup of SL.V / of ˛ such that �.˛x; ˛y/ D �.x; y/ for all x; y 2 V .
Show that every element of SO.�/ is semisimple (but SO.�/ is not diagonalizable because
it is not commutative).

6This means that RG is a normal solvable subgroup of G and that it contains all other normal solvable
subgroups of G.
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1-4 Let k be a field of characteristic zero. Show that every element of GLn.k/ of fi-
nite order is semisimple. (Hence the group of permutation matrices in GLn.k/ consists of
semisimple elements, but it is not diagonalizable because it is not commutative).
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2 Definition of an affine algebraic group

In this section, I assume known some of the language of categories and functors (see, for
example, AG �1).

Principle of permanence of identities

Let f .X1; : : : ; Xm/ and g.X1; : : : ; Xm/ be two polynomials with coefficients in Z such
that

f .a1; : : : ; am/ D g.a1; : : : ; am/ (4)

for all real numbers ai . Then f .X1; : : : ; Xm/ D g.X1; : : : ; Xm/ as polynomials with coef-
ficients in R — see Artin 1991, Chapter 12, 3.8, or (4.1) below — and hence as polynomials
with coefficients in Z. Therefore, (4) is true with the ai in any ring R.
Application. When we define the determinant of an n � n matrix M D .mij / by

det.M/ D
X

�2Sn

.sgn.�//m1�.1/ � � �mn�.n/;

then
det.MN/ D det.M/ � det.N / (5)

and
adj.M/ �M D det.M/I DM � adj.M/ (Cramer’s rule). (6)

Here I is the identity matrix, and adj.M/ is the n � n matrix whose .i; j /th entry is
.�1/iCj detMj i with Mij the matrix obtained from M by deleting the i th row and the
j th column.

For matrices with entries in the field of real numbers, this is proved, for example, in
Artin 1991, Chapter I, �5, but we shall need the result for matrices with entries in any com-
mutative ring R. There are two ways of proving this: observe that Artin’s proof applies in
general, or by using the above principle of permanence of identities. Briefly, when we con-
sider a matrix M whose entries are symbols Xij , (5) becomes an equality of polynomials
in ZŒX11; : : : ; Xnn�. Because it becomes true when we replace the Xij with real numbers,
it is true when we replace the Xij with elements of any ring R. A similar argument applies
to (6) (regard it as a system of n2 equalities).

Affine algebraic groups

In �1, I said that an algebraic group over k is a group defined by polynomial equations with
coefficients in k. Given such an object, we should be able to look at the solutions of the
equations in any k-algebra, and so obtain a group for every k-algebra. We make this into a
definition.

Thus, let G be a functor from k-algebras to groups. Recall that this means that for each
k-algebra R we have a group G.R/ and for each homomorphism of k-algebras ˛WR ! S

we have a homomorphism G.˛/WG.R/! G.S/; moreover,

G.idR/ D idG.R/ all R

G.ˇ ı ˛/ D G.ˇ/ ıG.˛/ all composable ˛; ˇ:
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We say that G is an affine algebraic group7 if there exists a finitely generated k-algebra A
such that

G.R/ D Homk-algebra.A;R/

functorially in R. Since we shall be considering only affine algebraic groups in these lec-
tures (no abelian varieties), I’ll omit the “affine”.

In the following examples, we make repeated use of the following observation. Let
A D kŒX1; : : : ; Xm�; then a k-algebra homomorphism A! R is determined by the images
ai of theXi , and these are arbitrary. Thus, to give such a homomorphism amounts to giving
an m-tuple .ai /1�i�m in R. Let A D kŒX1; : : : ; Xm�=a where a is the ideal generated by
some polynomials fj .X1; : : : ; Xm/. The homomorphism Xi 7! ai W kŒX1; : : : ; Xm� ! R

factors through A if and only if the ai satisfy the equations fj .a1; : : : ; am/ D 0. Therefore,
to give a k-algebra homomorphism A! R amounts to giving an m-tuple a1; : : : ; am such
that fj .a1; : : : ; am/ D 0 for all j .

EXAMPLE 2.1 Let Ga be the functor sending a k-algebra R to R considered as an additive
group, i.e., Ga.R/ D .R;C/. Then

Ga.R/ ' Homk-alg.kŒX�; R/;

and so Ga is an algebraic group, called the additive group.

EXAMPLE 2.2 Let Gm.R/ D .R�;�/. Let k.X/ be the field of fractions of kŒX�, and let
kŒX;X�1� be the subring of k.X/ of polynomials in X and X�1. Then

Gm.R/ ' Homk-alg.kŒX;X
�1�; R/;

and so Gm is an algebraic group, called the multiplicative group.

EXAMPLE 2.3 From (5) and the fact that det.I / D 1, we see that if M is an invert-
ible matrix in Mn.R/, then det.M/ 2 R�. Conversely, Cramer’s rule (6) shows that if
det.M/ 2 R�, then M in invertible (and it gives an explicit polynomial formula for the
inverse). Therefore, the n � n matrices of determinant 1 with entries in a k-algebra R form
a group SLn.R/, and R 7! SLn.R/ is a functor. Moreover,

SLn.R/ ' Homk-alg

�
kŒX11; : : : ; Xnn�

.det.Xij / � 1/
; R

�
and so SLn is an algebraic group, called the special linear group. Here det.Xij / is the
polynomial

P
sgn.�/X1�.1/X2�.2/ � � � :

EXAMPLE 2.4 The arguments in the last example show that the n�nmatrices with entries
in a k-algebra R and determinant a unit in R form a group GLn.R/, and R 7! GLn.R/ is
a functor. Moreover,8

GLn.R/ ' Homk-alg

�
kŒX11; : : : ; Xnn; Y �

.det.Xij /Y � 1/
; R

�
and so GLn is an algebraic group, called the general linear group.

7When k has characteristic zero, this definition agrees with that in Borel 1991, Humphreys 1975, and
Springer 1998; when k has nonzero characteristic, it differs (but is better) — see below.

8To give an element on the right is to given an n� n matrixM with entries in R and an element c 2 R such
that det.M/c D 1. Thus, c is determined by M (it must be det.M/�1/, and M can be any matrix such that
det.M/ 2 R�.
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EXAMPLE 2.5 For a k-algebra R, let G.R/ be the group of invertible matrices in Mn.R/

having exactly one nonzero element in each row and column. For each � 2 Sn (symmetric
group), let

A� D kŒGLn�=.Xij j j ¤ �.i//

and let kŒG� D
Q

�2Sn
A� . The kŒG� represents G, and so G is an algebraic group, called

the group of monomial matrices.

EXAMPLE 2.6 Let C be a symmetric matrix with entries in R. An automorph9 of C is an
invertible matrix T such that T t � C � T D C , in other words, such thatX

j;k

tj icjktkl D cil ; i; l D 1; : : : ; n:

Let G be the functor sending R to the group of automorphs of C with entries in R. Then
G.R/ D Homk-alg.A;R/ with A the quotient of kŒX11; : : : ; Xnn; Y � by the ideal generated
by the polynomials �

det.Xij /Y � 1P
j;k Xj icjkXkl D cil ; i; l D 1; : : : ; n:

EXAMPLE 2.7 Let G be the functor such that G.R/ D f1g for all k-algebras R. Then
G.R/ ' Homk-algebra.k; R/, and so G is an algebraic group, called the trivial algebraic
group.

EXAMPLE 2.8 Let �n be the functor �n.R/ D fr 2 R j r
n D 1g. Then

�n.R/ ' Homk-alg.kŒX�=.X
n
� 1/; R/;

and so �n is an algebraic group with kŒ�n� D kŒX�=.X
n � 1/.

EXAMPLE 2.9 In characteristic p ¤ 0, the binomial theorem takes the form .a C b/p D

ap C bp. Therefore, for any k-algebra R over a field k of characteristic p ¤ 0,

˛p.R/ D fr 2 R j r
p
D 0g

is a group, and R 7! ˛p.R/ is a functor. Moreover, ˛p.R/ D Homk-alg.kŒT �=.T
p/; R/,

and so ˛p is an algebraic group.

EXAMPLE 2.10 There are abstract versions of the above groups. Let V be a finite-dimensional
vector space over k, and let � be a symmetric bilinear V �V ! k. Then there are algebraic
groups with

SLV .R/ D fautomorphisms of R˝k V with determinant 1g,

GLV .R/ D fautomorphisms of R˝k V g,

O.�/ D fautomorphisms ˛ of R˝k V such that �.˛v; ˛w/ D �.v;w/ all v;w 2 R˝k V g.

9If we let �.x; y/ D xtCy, x; y 2 kn, then the automorphs of C are the linear isomorphisms T W kn ! kn

such that �.T x; Ty/ D �.x; y/.
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Homomorphisms of algebraic groups

A homomorphism of algebraic groups over k is a natural homomorphism10 G ! H , i.e.,
a family of homomorphisms ˛.R/WG.R/! H.R/ such that, for every homomorphism of
k-algebras R! S , the diagram

G.R/
˛.R/
����! H.R/??y ??y

G.S/
˛.S/
����! H.S/

commutes. For example, the determinant defines a homomorphism

detWGLn ! Gm;

and the homomorphisms

R! SL2.R/; a 7!

�
1 a

0 1

�
;

define a homomorphism Ga ! SL2.

The Yoneda lemma

Any k-algebra A defines a functor hA from k-algebras to sets, namely,

R 7! hA.R/
df
D Homk-alg.A;R/:

A homomorphism ˛WA! B defines a morphism of functors hB ! hA, namely,

ˇ 7! ˇ ı ˛W hB.R/! hA.R/:

Conversely, a morphism of functors hB ! hA defines a homomorphism ˛WA ! B ,
namely, the image of idB under hB.B/! hA.B/.

It is easy to check that these two maps are inverse (exercise!), and so

Homk-alg.A;B/ ' Hom.hB ; hA/: (7)

This remarkably simple, but useful result, is known as the Yoneda lemma.
A functor F from k-algebras to sets is representable if it is isomorphic to hA for some

k-algebra A (we then say that A represents F ). With this definition, an algebraic group is
a functor from k-algebras to groups that is representable (as a functor to sets) by a finitely
generated k-algebra.

Let A1 be the functor sending a k-algebra R to R (as a set); then kŒX� represents A1:

R ' Homk-alg.kŒX�; R/.

Note that
Homfunctors.hA;A1/

Yoneda
' Homk-alg.kŒX�; A/ ' A: (8)

10Also called a natural transformation or a morphism of functors.
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The coordinate ring of an algebraic group

A coordinate ring of an algebraic groupG is a finitely generated k-algebra A together with
an isomorphism of functors hA ! G. If hA1

! G and hA2
! G are coordinate rings,

then we get an isomorphism
hA2
! G ! hA1

by inverting the first isomorphism. Hence, by the Yoneda lemma, we get an isomorphism

A1 ! A2,

and so the coordinate ring of an algebraic group is uniquely determined up to a unique
isomorphism. We sometimes write it kŒG�:

Let .A; hA
'
�! G/ be a coordinate ring for G. Then

A
.8/
' Hom.hA;A1/ ' Hom.G;A1/:

Thus, an f 2 A defines a natural map11 G.R/! R, and each such natural map arises from
a unique f .

For example,12

kŒGLn� D
kŒ: : : ; Xij ; : : :�

.Y det.Xij / � 1/
D kŒ: : : ; xij ; : : : ; y�;

and xij sends a matrix in GLn.R/ to its .i; j /th-entry and y to the inverse of its determinant.

Very brief review of tensor products.

Let A and B be k-algebras. A k-algebra C together with homomorphisms i WA ! C

and j WB ! C is called the tensor product of A and B if it has the following universal
property: for every pair of homomorphisms (of k-algebras) ˛WA ! R and ˇWB ! R,
there is a unique homomorphism 
 WC ! R such that 
 ı i D ˛ and 
 ı j D ˇ:

A
i

> C <
j

B

R

9Š 


_

......... ˇ
<

˛
>

(9)

If it exists, the tensor product, is uniquely determined up to a unique isomorphism by this
property. We write it A˝k B .is an isomorphism. For its construction, see AG �1:

EXAMPLE 2.11 For a set X and a k-algebra R, let A be the set of maps X ! R. Then A
becomes a k-algebra with the structure

.f C g/.x/ D f .x/C g.x/; .fg/.x/ D f .x/g.x/.

Let Y be a second set and let B be the k-algebra of maps Y ! R. Then the elements of
A˝k B define maps X � Y ! R by

.f ˝ g/.x; y/ D f .x/g.y/.

11That is, a natural transformation of functors from k-algebras to sets.
12Here, and elsewhere, I use xij to denote the image of Xij in the quotient ring.
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The maps X � Y ! R arising from elements of A ˝k B are exactly those that can be
expressed as

.x; y/ 7!
X

fi .x/gi .y/

for some maps fi WX ! R and gi WY ! R.

EXAMPLE 2.12 Let A be a k-algebra and let k0 be a field containing k. The homomor-
phism i W k0 ! k0 ˝k A makes k0 ˝k A into a k0-algebra. If R is a second k0-algebra, a
k0-algebra homomorphism 
 W k0˝kA! R is simply a k-algebra homomorphism such that

k0
i
�! k0 ˝k A



�! R is the given homomorphism. Therefore, in this case, (9) becomes

Homk0-alg.k
0
˝k A;R/ ' Homk-alg.A;R/. (10)

Products of algebraic groups

Let G and H be algebraic groups, and let G �H be the functor

.G �H/.R/ D G.R/ �H.R/:

Then,

.G �H/.R/
.9/
' Homk-alg.kŒG�˝k kŒH�;R/;

and so G �H is an algebraic group with coordinate ring

kŒG �H� D kŒG�˝k kŒH�: (11)

Fibred products of algebraic groups

Let G1 ! H  G2 be homomorphisms of algebraic groups, and let G1 �H G2 be the
functor sending a k-algebraR to the set .G1�HG2/.R/ of pairs .g1; g2/ 2 G1.R/�G2.R/

having the same image in H.R/. Then G1 �H G2 is an algebraic group with coordinate
ring

kŒG1 �H G2� D kŒG1�˝kŒH� kŒG2�: (12)

This follows from a standard property of tensor products, namely, that A1 ˝B A2 is the
largest quotient of A1 ˝k A2 such that

B ����! A2??y ??y
A1 ����! A1 ˝B A2

commutes.

Extension of the base field (extension of scalars)

LetG be an algebraic group over k, and let k0 be a field containing k. Then each k0-algebra
R can be regarded as a k-algebra through k ! k0 ! R, and so G.R/ is defined; moreover

G.R/ ' Homk-alg.kŒG�; R/
.10/
' Homk0-alg.k

0
˝k kŒG�; R/:

Therefore, by restricting the functor G to k0-algebras, we get an algebraic group Gk0 over
k0 with coordinate ring kŒGk0 � D k0 ˝k kŒG�.
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Algebraic groups and bi-algebras

Let G be an algebraic group over k with A D kŒG�. The functor G � G is represented by
A˝k A, and the functor R 7! f1g is represented by k. Therefore, by the Yoneda lemma,
the maps of functors

(m)ultiplicationWG �G ! G; (i)dentityW f1g ! G; (inv)erseWG ! G

define homomorphisms of k-algebras

�WA! A˝k A; �WA! k; S WA! A.

Let13 f 2 A. Then�.f / is the (unique) element of A˝k A such that, for any k-algebra R
and elements x; y 2 G.R/,

.�f /.x; y/ D f .xy/: (13)

Similarly,
.�f /.1/ D f .1/ (14)

and
.Sf /.x/ D f .x�1/; x 2 G.R/: (15)

For example,

points ring � � S

Ga .R;C/ kŒX� �.X/ D X ˝ 1C 1˝X �.X/ D 0 X 7! �X

Gm .R�;�/ kŒX;X�1� �.X/ D X ˝X �.X/ 7! 1 X 7! X�1

GLn GLn.R/
kŒX11;:::;Xnn;Y �
.Y det.Xij /�1/

(
�.xik/ D

P
j D1;:::;n

xij ˝ xjk

�.y/ D y ˝ y

8<:
xi i 7! 1

xij 7! 0, i ¤ j
y 7! 1

Cramer’s rule.

In more detail: kŒX�˝k kŒX� is a polynomial ring in the symbolsX˝1 and 1˝X , and we
mean (for Ga) that� is the unique homomorphism of k-algebras kŒX�! kŒX˝1; 1˝X�

sending X to X ˝ 1C 1˝X ; thus, a polynomial f .X/ in X maps to f .X ˝ 1C 1˝X/.
For G D GLn, S maps xkl to the .k; l/th-entry of y.�1/kCl detMlk where Mkl is

the matrix obtained from the matrix .xij / by omitting the kth-row and lth-column (see
Cramer’s rule).

We should check that these maps of k-algebras have the properties (13,14,15), at least
for GLn. For equation (13),

.�xik/..aij /; .bij // D .
X

j D1;:::;n

xij ˝ xjk/..aij /; .bij // (definition of �)

D

X
j

aij bjk (recall that xkl..aij // D akl )

D xik..aij /.bij //:

Also, we defined � so that �.xij / is the .i; j /th-entry of I , and we defined S so that
.Sxij /.M/ D .i; j /th entry of M�1.

13The picture to think of:

G.R/ �G.R/
m
�! G.R/ f1g

i
�! G.R/ G.R/

inv
�! G.R/

A˝ A
�
 A k

�
 A A

S
 A
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The diagrams below on the left commute by definition, and those on the right commute
because the maps all come from those on the left via the Yoneda lemma:

G �G �G
id �m

> G �G A˝k A˝k A <
id ˝�

A˝k A

G �G

m�id

_
m

> G

m

_

A˝k A

�˝id

^

<
�

A

�

^

associativity coassociativity

f1g �G
id �i

> G �G k ˝k A <
id ˝�

A˝k A

G �G

i�id

_
m

> G

m

_

'

>
A˝ A

�˝id

^

<
�

A

�

^
'

<

identity coidentity

G
.inv;i/

>

.i;inv/
> G �G A <

.S;id/

<
.id;S/

A˝k A

f1g
_

i
> G

m

_

k

^

<
�

A

�

^

inverse coinverse
We define a bi-algebra (or bialgebra) over k to be a finitely generated k-algebra A

together with maps �, �, and S such that the three diagrams commute, i.e., such that

.id˝�/ ı� D .�˝ id/ ı� (co-associativity) (16)

if �.a/ D
X

ai ˝ bi , then
�

a D
P
�.ai /bi (co-identity)

�.a/ D
P
S.ai /bi (co-inverse)

(17)

(Terminology varies — sometimes this is called a Hopf algebra, or a Hopf algebra with
identity, or bi-algebra with antipode, or . . . .)

PROPOSITION 2.13 The functor G 7! kŒG� is a contravariant equivalence from the cate-
gory of algebraic groups over k to the category of bi-algebras over k.

PROOF. We have seen that an algebraic group defines a bi-algebra, and conversely the
structure of a bi-algebra on Amakes hA a functor to groups (rather than sets). For example,

G.R/ �G.R/ D Homk-alg.A;R/ �Homk-alg.A;R/

' Homk-alg.A˝k A;R/ (see (9))

and� defines a map from Homk-alg.A˝k A;R/ to Homk-alg.A;R/. Thus,� defines a law
of composition on G which the existence of � and S and the axioms show to be a group
law. The rest of the verification is completely straightforward. 2

EXAMPLE 2.14 Let F be a finite group, and let A be the set of maps F ! k with its
natural k-algebra structure. Then A is a product of copies of k indexed by the elements of
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F . More precisely, let e� be the function that is 1 on � and 0 on the remaining elements of
F . Then the e� ’s are a complete system of orthogonal idempotents for A:

e2
� D e� ; e�e� D 0 for � ¤ �;

X
e� D 1.

The maps

�.e�/ D
X

��D�

e� ˝ e� ; �.e� / D

�
1 if � D 1
0 otherwise

; S.e� / D e��1 :

define a bi-algebra structure on A. Let F be the associated algebraic group, so that

F .R/ D Homk-alg.A;R/:

If R has no idempotents other than 0 or 1, then a k-algebra homomorphism A ! R must
send one e� to 1 and the remainder to 0. Therefore, F .R/ ' � , and one checks that
the group structure provided by the maps �; �; S is the given one. For this reason, F is
called the constant algebraic group defined by F and often denoted by F (even though for
k-algebras R with more idempotents than 0 and 1, F .R/ will be bigger than F ).

Homogeneity

Let G be an algebraic group over a field k. An a 2 G.k/ defines an element of G.R/ for
each k-algebra, which we denote aR (or just a). Let e denote the identity element of G.k/.

PROPOSITION 2.15 For each a 2 G.k/, the natural map

TaWG.R/! G.R/; g 7! aRg;

is an isomorphism of set-valued functors. Moreover,

Te D idG

Ta ı Tb D Tab; all a; b 2 G.k/:

PROOF. It is obvious that Ta is a natural map (i.e., a morphism of set-valued functors) and
that Te D idG and Ta ı Tb D Tab . From this it follows that Ta ı Ta�1 D idG , and so Ta is
an isomorphism. 2

For a 2 G.k/, we let ma denote the kernel of aW kŒG� ! k. Then kŒG�=ma ' k,
and so ma is a maximal ideal in kŒG�. Let kŒG�ma

denote the ring of fractions obtained by
inverting the elements of

S D ff 2 kŒG� j f … mag D ff 2 kŒG� j f .a/ ¤ 0g:

Then kŒG�ma
is a local ring with maximal ideal makŒG�ma

(AG 1.28).

PROPOSITION 2.16 For each a 2 G.k/, kŒG�ma
' kŒG�me

:

PROOF. The homomorphism t W kŒG�! kŒG� corresponding (by the Yoneda lemma) to Ta

is defined by t .f /.g/ D f .ag/, all g 2 G.R/. Therefore, t�1me D ma, and so t extends
to an isomorphism kŒG�ma

! kŒG�me
. 2
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REMARK 2.17 The map Ta corresponds to the map

kŒG�
�
�! kŒG�˝k kŒG�

a˝idkŒG�

�! k ˝k kŒG� ' kŒG�

of k-algebras.

Warning: For an algebraic group G over a nonalgebraically closed field k, it is not true
that the local rings of kŒG� are all isomorphic. For example, if G D �3 over Q, then
kŒG� D Q �QŒ

p
�3�:

Reduced algebras and their tensor products

Recall that a ring is reduced if it has no nonzero nilpotents, i.e., no elements a ¤ 0 such
that an D 0 for n > 1. For example, A D kŒX�=.Xn/ is not reduced if n � 2.

PROPOSITION 2.18 A finitely generated k-algebra A is reduced if and only if\
fm j m maximal ideal in Ag D 0:

PROOF. (H : When m is maximal, A=m is reduced, and so every nilpotent element of A
lies in m. Therefore, every nilpotent element of A lies in

T
m D 0.

H) : Let a be a nonnilpotent element of A. The map A ! k ˝k A is injective, and
so a is not nilpotent in k ˝k A. It follows from the strong Nullstellensatz (AG 2.11), that
there exists a k-algebra homomorphism f W k˝k A! k such that f .a/ ¤ 0.14 Then f .A/
is a field, and so its kernel is a maximal ideal not containing a. 2

For a nonperfect field k of characteristic p ¤ 0, there exists an element a of k that is
not a pth power. Then Xp � a is irreducible in kŒX�, but Xp � a D .X � ˛/p in kŒX�.
Therefore, A D kŒX�=.Xp � a/ is a field, but k˝A D kŒX�=.X �˛/p is not reduced. We
now show that such things do not happen when k is perfect.

PROPOSITION 2.19 Let A be a finitely generated k-algebra over a perfect field k. If A is
reduced, then so also is K ˝k A for all fields K � k.

PROOF. Let .ei / be a basis for K as a k-vector space, and suppose ˛ D
P
ei ˝ ai is a

nonzero nilpotent in K ˝k A. Because A is reduced, the intersection of the maximal ideals
in it is zero. Let m be a maximal ideal in A that does not contain all of the ai . The image ˛
of ˛ inK˝k .A=m/ is a nonzero nilpotent, but A=m is a finite separable field extension of
k, and so this is impossible.15

2

PROPOSITION 2.20 Let A and B be finitely generated k algebras. If A and B are reduced,
then so also is A˝k B .

PROOF. Let .ei / be a basis for B as a k-vector space, and suppose ˛ D
P
ai ˝ ei is a

nonzero nilpotent element of A˝k B . Choose a maximal ideal m in A not containing all of
the ai . Then the image ˛ of ˛ in .A=m/ ˝k B is a nonzero nilpotent. But A=m is a field,
and so this is impossible by (2.19). 2

14Write k˝kA D kŒX1; : : : ; Xn�=a, and take f to be evaluation at a point not in the zero-set of .a/ in V.a/.
15Every separable field extension of k is of the form kŒX�=.f .X// with f .X/ separable and therefore with-

out repeated factors in any extension field of k (see FT, especially 5.1).
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Reduced algebraic groups and smooth algebraic groups

DEFINITION 2.21 An algebraic group G over k is reduced if kŒG� is reduced, and it is
smooth if G

k
is reduced. (Thus, the notions coincide when k D k.)

PROPOSITION 2.22 If G is smooth, then it is reduced; the converse is true when k is
perfect.

PROOF. Since kŒG� ! k ˝k kŒG� ' kŒG
k
� is injective, the first part of the statement is

obvious, and the second part follows (2.19). 2

REMARK 2.23 Let k be perfect. Let G be an algebraic group over k with coordinate ring
A, and let A be the quotient of A by its nilradical N (ideal of nilpotent elements). Because
A˝kA is reduced (2.20), the map�WA! A˝kA factors throughA. Similarly, S and � are
defined on A, and it follows easily that there exists a unique structure of a k-bi-algebra on
A such that A! A is a homomorphism. LetG ! G be the corresponding homomorphism
of algebraic groups over k. Then G is smooth, and any homomorphism H ! G with H
smooth factors through G ! G. We denote G by Gred, and called it the reduced algebraic
group attached to G.

Smooth algebraic groups and group varieties

In this subsection, k is algebraically closed.
In this subsection and the next, I assume the reader is familiar with ��1,2,3,5 of my

notes AG. In particular, I make use of the isomorphisms

A=mn
' Am=n

n; mr=mn
' nr=nn (18)

which hold when m is a maximal ideal of a noetherian ring A and n D mAm (AG 1.31). To
avoid confusion, I shall refer to an algebraic variety G over k equipped with regular maps

mWG �G ! G; invWG ! G; i WA0
! G

makingG into a group in the usual sense as a group variety (see AG 4.23). For any reduced
k-bi-algebra A, the maps �;S; � define on SpmA the structure of a group variety.

PROPOSITION 2.24 The functorG 7! Spm kŒG� defines an equivalence from the category
of smooth algebraic groups to the category of affine group varieties (k algebraically closed).

PROOF. The functors sending a smooth algebraic group or an affine group variety to its co-
ordinate ring are both contravariant equivalences to the category of reduced k-bi-algebras.2

Recall that the (Krull) dimension of a local noetherian ring A is the greatest length of a
chain of prime ideals

m D pd � pd�1 � � � � � p0

with strict inclusions. For a local noetherian ring A with maximal ideal m, the associated
graded ring is gr.A/ D

L
n�0 mn=mnC1 with the multiplication defined as follows: for

a 2 mn and a0 2 mn0

;

.aCmnC1/ � .a0
Cmn0C1/ D aa0

CmnCn0C1:
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PROPOSITION 2.25 For a noetherian local ring A of dimension d and residue field k0 D

A=m, the following conditions are equivalent:
(a) gr.A/ is a polynomial ring over k0 in d symbols;
(b) dimk0

.m=m2/ D d ;
(c) m can be generated by d elements.

Moreover, any ring satisfying these conditions is an integral domain.

PROOF. Atiyah and MacDonald 1969, 11.22, 11.23. 2

A noetherian local ring satisfying the equivalent conditions of the proposition is said to
be regular.

PROPOSITION 2.26 An algebraic group G over k (algebraically closed) is smooth if and
only if kŒG�ma

is regular for all a 2 G.k/.

PROOF. As k is algebraically closed, the ideals ma, a 2 G.k/, are exactly the maximal
ideals of kŒG� (AG 2.14). If each kŒG�ma

is regular, then it is reduced, which implies
that kŒG� is reduced (Atiyah and MacDonald 1969, 3.8). Conversely, if G is smooth, then
kŒG� D kŒG0� for G0 a group variety, but it is known that the local rings of a group variety
are regular (AG 5.20, 5.25). 2

For the next section, we need the following criterion.

PROPOSITION 2.27 An algebraic group G over k (algebraically closed) is smooth if every
nilpotent element of kŒG� is contained in m2

e .

PROOF. Let G be the associated reduced algebraic group (2.23), and let e be the neutral
element of G.k/. Then kŒG� D kŒG�=N, and so kŒG�me

and kŒG�me
have the same Krull

dimension. The hypothesis implies that

me=m
2
e ! me=m

2
e

is an isomorphism of k-vector spaces, and so kŒG�me
is regular. Now (2.16) shows that

kŒG�m is regular for all maximal ideals m in kŒG�, and we can apply (2.26). 2

ASIDE 2.28 Now allow k to be an arbitrary field.
(a) In AG, �11, I define an affine algebraic space to be the max spectrum of a fi-

nitely generated k-algebra A. Define an affine group space to be an affine algebraic space
equipped with regular maps

mWG �G ! G; invWG ! G; i WA0
! G

making G.R/ into a group for all k-algebras R. Then G 7! SpmG is an equivalence from
the category of algebraic groups over k to the category of affine group spaces over k (and
each is contravariantly equivalent with the category of k-bi-algebras).

(b) The functor G 7! SpecG defines an equivalence from the category of algebraic
groups over k to the category of affine group schemes of finite type over k.
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Algebraic groups in characteristic zero are smooth

LEMMA 2.29 Let .A;�; S; �/ be a k-bi-algebra, and let m D Ker.�/.
(a) As a k-vector space, A D k ˚m.
(b) For any a 2 m,

�.a/ D a˝ 1C 1˝ a mod m˝m.

PROOF. (a) The maps k �! A
�
�! k are k-linear, and compose to the identity.

(b) Choose a basis .fi / for m as a k-vector space, and extend it to a basis for A by
taking f0 D 1. Write

�a D
X

i�0
di ˝ fi ; di 2 A:

From the identities
.idA; �/ ı� D idA D .�; idA/ ı�

we find that
d0f0 D a D

X
i�1

�.di /fi :

Therefore,

�.a/ � a˝ 1 � 1˝ a D
X

i�1
.di � �.di //˝ fi 2 m˝m:

2

LEMMA 2.30 Let V and V 0 be vector spaces, and letW be a subspace of V such that V=W
is finite-dimensional.16 For x 2 V , y 2 V 0,

x ˝ y 2 W ˝ V 0
” x 2 W or y D 0:

PROOF. Because V=W is finite dimensional, there exists a finite set S in V whose image
in V=W is a basis. The subspace W 0 of V spanned by S is a complement to W in V , i.e.,
V D W ˚ W 0, and so x decomposes uniquely as x D xW C xW 0 with xW 2 W and
xW 0 2 W 0. As

V ˝ V 0
D .W ˝ V 0/˚ .W 0

˝ V 0/;

we see that x ˝ y 2 W ˝ V 0 if and only if xW 0 ˝ y D 0, which holds if and only if xW 0

or y is zero. 2

THEOREM 2.31 (CARTIER) Every algebraic group over a field of characteristic zero is
smooth.

PROOF. We may replace k with its algebraic closure. Thus, let G be an algebraic group
over an algebraically closed field k of characteristic zero, and let A D kŒG�. Let m D me.
According to (2.27), it suffices to show that every nilpotent element a of A lies in m2.

If a maps to zero in Am, then then it maps to zero in A=m2
.18/
' Am=.mAm/

2, and there
is nothing to prove. Thus, we may suppose that an D 0 in Am but an�1 ¤ 0 in Am. Now
san D 0 in A for some s … m. On replacing a with sa, we may suppose that an D 0 in A
but an�1 ¤ 0 in Am.

Now a 2 m (because A=m D k has no nilpotents), and so (see 2.29)

�.a/ D a˝ 1C 1˝ aC y with y 2 m˝k m.

16We assume this only to avoid using Zorn’s lemma.
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Because � is a homomorphism of k-algebras,

0 D �.an/ D .�a/n D .a˝ 1C 1˝ aC y/n.

When expanded, the right hand side becomes a sum of terms

.a˝ 1/h.1˝ a/iyj ; hC i C j D n:

Those with i C j � 2 lie in A˝k m2, and so

nan�1
˝ a 2 an�1m˝k AC A˝k m2 (inside A˝k A).

In the quotient A˝k

�
A=m2

�
this becomes

nan�1
˝ a 2 an�1m˝k A=m

2 (inside A˝k A=m
2). (19)

As k has characteristic zero, n is a nonzero element of k, and hence it is a unit in
A. On the other hand, an�1 … an�1m, because if an�1 D an�1m with m 2 m, then
.1 �m/an�1 D 0; as 1 �m is a unit in Am, this would imply an�1 D 0 in Am.

Hence nan�1 … an�1m, and so (see 2.30), a 2 m2. This completes the proof. 2

Cartier duality

To give a k-bi-algebra is to give a multiplication map A ˝k A ! A, a homomorphism
i W k ! A, and maps �, �, S satisfying certain conditions which can all be expressed by the
commutativity of certain diagrams.

Now suppose that A is finite-dimensional as a k-vector space. Then we can form its
dual A_ D Homk-lin.A; k/ and tensor products and Homs behave as you would hope with
respect to duals. Thus, from the k-linear maps at left, we get the k-linear maps at right.

mWA˝k A! A m_WA_ ! A_ ˝k A
_

i W k ! A i_WA_ ! k

S WA! A S_WA_ ! A_

�WA! k �_W k ! A_

�WA! A˝k A �_WA_ ˝ A_ ! A_:

This raises the natural question: does A_ become a k-bi-algebra with these structures? The
answer is “no”, because the multiplication m is commutative but there is no commutativity
condition on �. In turns out that this is the only problem. Call a k-bialgebra A cocommu-
tative if the diagram

A˝ A
a˝b 7!b˝a

> A˝ A

A

�

>

�

<

commutes. Then
A_
˝ A_ a˝b 7!b˝a

> A_
˝ A_

A_

�_

<
�_ >
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commutes, and so A_ is a commutative k-algebra. Now one can show that A 7! A_ sends
cocommutative finite k-bi-algebras to cocommutative finite k-bi-algebras (and A__ ' A)
(Waterhouse 1979, 2.4).

Obviously, the algebraic group G corresponding to the k-bi-algebra A is commutative
if and only A is cocommutative. We say that an algebraic group G is finite if A is finite-
dimensional as a k-vector space. Thus commutative finite algebraic groups correspond
to finite-dimensional cocommutative k-bialgebras, and so the functor A 7! A_ defines a
functor G 7! G_ such that G__ ' G. The group G_ is called the Cartier dual of G.
For example, if G is the constant algebraic group defined by a finite commutative group � ,
then G_ is the constant algebraic group defined by the dual group Hom.�;Q=Z/ provided
the order of � is not divisible by the characteristic. If k has characteristic p, then ˛_

p D ˛p

and .Z=pZ/_ D �p, where �p is the algebraic group R 7! fr 2 R� j rp D 1g.

Exercises

2-1 Show that there is no algebraic group G over k such that G.R/ has two elements for
every k-algebra R.

2-2 Verify directly that kŒGa� and kŒGm� (as described in the table) satisfy the axioms to
be a bi-algebra.

2-3 Verify all the statements in 2.14:

NOTES In most of the literature, for example, Borel 1991, Humphreys 1975, and Springer 1998,
“algebraic group” means “smooth algebraic group” in our sense. Our definition of “algebraic group”
is equivalent to “affine group scheme algebraic over a field”. The approach through functors can be
found in Demazure and Gabriel 1970 and Waterhouse 1979. The important Theorem 2.31 was
announced in a footnote to Cartier 196217. The proof given here is from Oort 1966.18

17Cartier, P. Groupes algébriques et groupes formels. 1962 Colloq. Théorie des Groupes Algébriques (Brux-
elles, 1962) pp. 87–111, GauthierVillars, Paris.

18Oort, F. Algebraic group schemes in characteristic zero are reduced. Invent. Math. 2 1966 79–80.
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3 Linear representations

The main result in this section is that all affine algebraic groups can be realized as subgroups
of GLn for some n. At first sight, this is a surprising result. For example, it says that all
possible multiplications in algebraic groups are just matrix multiplication in disguise.

Before looking at the case of algebraic groups, we should review how to realize a finite
group as a matrix group. LetG be a finite group. A representation ofG on a k-vector space
V is a homomorphism of groups G ! Autk-lin.V /, i.e., an action G � V ! V in which
each 
 2 G acts as a k-linear map. Let X �G ! X be a (right) action of G on a finite set
X . Define V to be the k-vector space of maps X ! k, and let G act on V by the rule:

.
f /.x/ D f .x
/ 
 2 G, f 2 V , x 2 X:

This defines a representation of G on V , which is injective if G acts effectively on X . The
vector space V has a natural basis consisting of the maps that send one element of X to 1
and the remaining elements to 0, and so this gives a homomorphism G ! GLn.k/ where
n D #X .

For example, for Sn acting on f1; 2; : : : ; ng, this gives the map � 7! I.�/WSn !

GLn.k/ in �1. When we take X D G, the representation we get is called the regular
representation, and the map G ! Autk-linear.V / is injective.

Linear representations and comodules

Let G be an algebraic group over k, and let V be a vector space over k (not necessarily
finite dimensional). A linear representation of G on V is a natural homomorphism19

˚ WG.R/! AutR-lin.V ˝k R/.

In other words, for each k-algebra R, we have an action

G.R/ � .V ˝k R/! V ˝k R

of G.R/ on V ˝k R in which each g 2 G.R/ acts R-linearly, and for each homomorphism
of k-algebras R! S , the following diagram

G.R/ � V ˝k R ! V ˝k R

# # #

G.S/ � V ˝k S ! V ˝k S:

commutes. We often drop the “linear”.
Let ˚ be a linear representation of G on V . Given a homomorphism ˛WR! S and an

element g 2 G.R/ mapping to h in G.S/, we get a diagram:

R G.R/ g V ˝k R
˚.g/

> V ˝k R

S

˛

_

G.S/
_

h
_

V ˝k S

idV ˝˛

_
˚.h/

> V ˝k S

idV ˝˛

_

19The reader should attach no importance to the fact that I sometimes write R˝k V and sometimes V ˝k R.
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Now let g 2 G.R/ D Homk-alg.A;R/. Then gWA ! R sends the “universal” element
idA 2 G.A/ D Homk-alg.A;A/ to g, and so the picture becomes the bottom part of

V D V ˝k k

A G.A/ idA V ˝k A
_

˚.idA/;A-linear
> V ˝k A

�D˚.idA/jV ˝k

>

R

g

_

G.R/
_

g
_

V ˝k R

idV ˝g

_
˚.g/;R-linear

> V ˝k R

idV ˝g

_

In particular, we see that ˚ defines a k-linear map � Ddf ˚.idA/jV WV ! V ˝k A.
Moreover, it is clear from the diagram that � determines ˚ , because ˚.idA/ is the unique20

A-linear extension of � to V ˝k A, and ˚.g/ is the unique R-linear extension of ˚.idA/ to
V ˝k R.

Conversely, suppose we have a k-linear map �WV ! V ˝k A. Then the diagram shows
that we get a natural map

˚ WG.R/! AutR-lin.V ˝k R/,

namely, given gWA! R, ˚.g/ is the unique R-linear map making

V
�

����! V ˝k A??y ??yidV ˝g

V ˝k R
˚.g/
����! V ˝k R

commute. These maps will be homomorphisms if and only if the following diagrams
commute:

V
�
> V ˝k A V

�
> V ˝k A

V ˝k k

idV ˝�

_
D >

V ˝k A

�

_
�˝idA

> V ˝k A˝k A

idV ˝�

_

(20)

For example, we must have ˚.1G.R// D idV ˝kR. By definition, 1G.R/ D .A
�
�! k ! R/

as an element of Homk-alg.A;R/, and so the following diagram must commute

V
�

����!
k-linear

V ˝k A??y ??yidV ˝�

V ˝ k ����! V ˝k k??y ??y
V ˝k R

idV ˝kR

������! V ˝k R:

20Let R! S be a homomorphism of rings, and let M be an R-module. Then m 7! 1˝mWM ! S ˝R M

is R-linear and universal: any other R-linear map M ! N from M to an S -module factors uniquely through
it:

HomR-lin.M;N /
'
�! HomS -lin.M ˝R S;N /:



3 LINEAR REPRESENTATIONS 27

This means that the upper part of the diagram must commute with the map V ˝k k !

V ˝k k being the identity map, which is the first of the diagrams in (20). Similarly, the
second diagram in (20) commutes if and only if the formula

˚.gh/ D ˚.g/˚.h/

holds.21

DEFINITION 3.1 A comodule over a k-bialgebra A is a k-linear map V ! V ˝k A such
that the diagrams (20) commute.

The above discussion has proved the following proposition:

PROPOSITION 3.2 Let G be an algebraic group over k with corresponding bialgebra A,
and let V be a k-vector space. To give a linear representation of G on V is the same as to
give an A-comodule structure on V .

An element g of G.R/ D Homk-alg.kŒG�; R/ acts on v 2 V ˝k R according to the
rule:

gv D ..idV ; g/ ı �/.v/: (23)

EXAMPLE 3.3 For any k-bialgebra A, the map �WA ! A ˝k A is a comodule structure
on A. The corresponding representation of A is called the regular representation.

A k-subspace W of an A-comodule V is a subcomodule if �.W / � W ˝k A. Then W
itself is an A-comodule, and the linear representation of G on W defined by this comodule
structure is the restriction of that on V .

PROPOSITION 3.4 Let .V; �/ be a comodule over a k-bialgebra A. Every finite subset of
V is contained in a sub-comodule of V having finite dimension over k.

PROOF. Since a finite sum of (finite-dimensional) subcomodules is again a (finite-dimensional)
subcomodule, it suffices to show that each element v of V is contained in finite-dimensional
subcomodule. Let faig be a basis (possibly infinite) for A as a k-vector space, and let

�.v/ D
X

i

vi ˝ ai ; vi 2 V;

21Here (from Waterhouse 1979, p23) is the argument that the commutativity of the second diagram in (20)
means that ˚.gh/ D ˚.g/˚.h/ for g; h 2 G.R/. By definition, gh is the composite

A
�
�! A˝k A

.g;h/
�! R

and so ˚.gh/ is the extension of

V
�
�! V ˝k A

idV ˝�
�! V ˝k A˝k A

idV ˝.g;h/
�! V ˝k R (21)

to V ˝k R. On the other hand, ˚.g/ ı ˚.h/ is given by

V
�
�! V ˝k A

idV ˝h
�! V ˝k R

�˝idR
�! V ˝k A˝k R

id ˝.g;id/
�! V ˝R;

which equals

V
�
�! V ˝k A

�˝idA
�! V ˝k A˝k A

id ˝.g;h/
�! V ˝R: (22)

Now (21) and (22) agree for all g; h if and only if the second diagram in (20) commutes.
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(finite sum, i.e., only finitely many vi are nonzero). Write

�.ai / D
X
j;k

rijk.aj ˝ ak/; rijk 2 k.

We shall show that
�.vk/ D

X
i;j

vi ˝ rijkaj (24)

from which it follows that the k-subspace of V spanned by v and the vi is a subcomodule
containing v. Recall from (20) that

.�˝ idA/ ı � D .idV ˝�/ ı �:

On applying the left hand side to v, we get

.�˝ idA/.�.v// D
X

i

�.vi /˝ ai (inside V ˝k A˝k A/:

On applying the right hand side to v, we get

.idV ˝�/.�.v// D
X
i;j;k

vi ˝ rijkaj ˝ ak :

On comparing the coefficients of 1˝ 1˝ ak , we obtain (24)22. 2

Let ˚ be a linear representation of G on finite-dimensional vector space V . On choos-
ing a basis .ei /1�i�n for V , we get a homomorphism G ! GLn, and hence a homomor-
phism of k-algebras

kŒGLn� D kŒ: : : ; Xij ; : : : ;det.Xij /
�1�! A.

Let
�.ej / D

X
i

ei ˝ aij ; aij 2 A:

LEMMA 3.5 The image of Xij in A is aij .

PROOF. Routine. 2

DEFINITION 3.6 A homomorphism G ! H of algebraic groups is an embedding if the
corresponding map of algebras kŒH� ! kŒG� is surjective. We then call G an algebraic
subgroup of H .

PROPOSITION 3.7 If G ! H is an embedding, then the homomorphisms G.R/! H.R/

are all injective.

22The choice of a basis .ai /i2I for A as a k-vector space determines an isomorphism

A ' k.I /

(direct sum of copies of k indexed by I ). When tensored, this becomes

V ˝k A˝k A ' .V ˝k A/
.I /:

We are equating the components in the above decomposition corresponding to the index k.
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PROOF. When kŒH� ! kŒG� is surjective, two homomorphisms kŒG� ! R that become
equal when composed with it must already be equal. 2

THEOREM 3.8 Let G be an algebraic group. For some n, there exists an embedding G !
GLn.

PROOF. Let A D kŒG�, and let V be a finite-dimensional subcomodule of A containing a
set of generators for A as a k-algebra. Let .ei /1�i�n be a basis for V , and write �.ej / DP

i ei ˝ aij . According to (3.5), the image of kŒGLV �! A contains the aij . But

ej
.20/
D .� ˝ idA/�.ej / D

X
i

�.ei /aij ; �.ei / 2 k;

and so the image contains V ; it therefore equals A. 2

In other words, every algebraic group can be realized as an algebraic subgroup of a GLn

for some n. The theorem is analogous to the theorem that every finite-dimensional vector
space is isomorphic to kn for some n. Just as that theorem does not mean that we should
consider only the vector spaces kn, Theorem 3.8 does not mean that we should consider
only subgroups of GLn because realizing an algebraic group in this way involves many
choices.

PROPOSITION 3.9 Let G ! GLV be a faithful representation of G. Then every other
representation ofG can be obtained from V by forming tensor products, direct sums, duals,
and subquotients.

PROOF. Omitted for the present (see Waterhouse 1979, 3.5). 2

EXAMPLE 3.10 Let G be the functor sending a k-algebra R to R �R �R with

.x; y; z/ � .x0; y0; z0/ D .x C x0; y C y0; z C z0
C xy0/:

This is an algebraic group because it is representable by kŒX; Y;Z�, and it is noncommuta-
tive. The map

.x; y; z/ 7!

0@1 x z

0 1 y

0 0 1

1A
is an embedding of G into GL3. Note that the functor R! R�R�R also has an obvious
commutative group structure (componentwise addition), and so the k-algebra kŒX; Y;Z�
has more than one bialgebra structure.

REMARK 3.11 In the notes, we make frequent use of the fact that, when k is a field, V 7!
V ˝k W is an exact functor (not merely right exact). To prove it, note that any subspace V 0

of V has a complement, V D V 0 ˚ V 00, and �˝k W preserves direct sums (see also 6.5).
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Stabilizers of subspaces

PROPOSITION 3.12 Let G ! GLV be a representation of G, and let W subspace of V .
For a k-algebra R, define

GW .R/ D fg 2 G.R/ j g.W ˝k R/ D W ˝k Rg:

Then the functor GW is an algebraic subgroup of G.

PROOF. Let e1; : : : ; em be a basis for W , and extend it to a basis e1; : : : ; en for V . Write

�.ej / D
X

ei ˝ aij :

Let g 2 G.R/ D Homk-alg.A;R/. Then

gej D

X
ei ˝ g.aij /:

Thus, g.W ˝k R/ � W ˝k R if and only if g.aij / D 0 for j � m; i > m. Hence GW is
represented by the quotient of A by the ideal generated by faij j j � m; i > mg: 2

The algebraic group GW is called the stabilizer of W in G.

THEOREM 3.13 (CHEVALLEY) Every algebraic subgroup of an algebraic group G arises
as the stabilizer of a subspace in some finite-dimensional linear representation of G; the
subspace can even be taken to be one-dimensional.

PROOF. Waterhouse 1979, 16.1. 2
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Summary of formulas

k is a field. A functor G such that G � hA for some k-algebra A is said to be representable
(by A).

Algebra Functor

k-algebra A
Functor hAW k-algebras!Sets
hA.R/ D Homk-alg.A;R/

hA.R
˛
�! S/ D .g 7! ˛ ı g/

�WA! A˝k A

Law of composition
G.R/ �G.R/! G.R/

hA.R/ � hA.R/ ' hA˝kA.R/
�ı�
�! hA.R/

�WA! k
Natural map f1g ! G.R/

hk.R/
�ı�
�! hA.R/

S WA! A
Natural map G.R/! G.R/

hA.R/
�ıS
�! hA.R/

A˝k A˝k A <
idA ˝�

A˝k A

A˝k A

�˝idA

^

<
�

A

�

^ The law of composition
is associative.

A <
�˝idA

A˝k A

A˝k A

idA ˝�

^

<
�

A

�

^idA

<

The element 1 2 G.R/
given by � is neutral.

A <
.S;idA/

.idA;S/
A˝k A

k

^

<
�

A

^

�
For g 2 G.R/, g ı S
is an inverse.

k-bialgebra algebraic group if A f.g.
k-vector space V

�WV ! V ˝k A

Natural map
˚ WG.R/! EndR-linear .V ˝k R/

V
�

k-linear
> V ˝k A

V ˝R R
_

˚.g/ unique

R-linear
> V ˝k R

idV ˝g

_

V
�
> V ˝k A

V ˝k k

idV ˝�

_

'

>
˚.1G.R// D idV ˝kR

V
�

> V ˝k A

V ˝k A

�

_
�˝idA

> V ˝k A˝k A

idV ˝�

_

˚.g � g0/ D ˚.g/ ı ˚.g0/:

A-comodule linear representation of G on V
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4 Matrix Groups

In this section, k is an infinite field.
An algebraic subgroup G of GLn defines a subgroup G.k/ of GLn.k/. In this section,

we determine the subgroups � of GLn.k/ that arise in this way from algebraic subgroups
of GLn, and we shall see that this gives an elementary way of defining many algebraic
groups.

An elementary result

PROPOSITION 4.1 Let f 2 kŒX1; : : : ; Xn�. If f .a1; : : : ; an/ D 0 for all .a1; : : : an/ 2 k
n,

then f is the zero polynomial (i.e., all its coefficients are zero).

PROOF. We use induction on n. For n D 1, it becomes the statement that a nonzero
polynomial in one variable has only finitely many roots (which follows from unique fac-
torization, for example). Now suppose n > 1 and write f D

P
giX

i
n with each gi 2

kŒX1; : : : ; Xn�1�. For every .a1; : : : ; an�1/ 2 k
n�1, f .a1; : : : ; an�1; Xn/ is a polynomial

of degree 1with infinitely many zeros, and so each of its coefficients gi .a1; : : : ; an�1/ D 0.
By induction, this implies that each gi is the zero polynomial. 2

COROLLARY 4.2 Let f; g 2 kŒX1; : : : ; Xn� with g not the zero polynomial. If f is zero at
every .a1; : : : ; an/ with g.a1; : : : ; an/ ¤ 0, then f is the zero polynomial.

PROOF. The polynomial fg is zero on all of kn. 2

The proposition shows that we can identify kŒX1; : : : ; Xn� with a ring of functions on
kn (the ring of polynomial functions).

How to get bialgebras from groups

For a set X , let R.X/ be the ring of maps X ! k. For sets X and Y , let R.X/˝k R.Y /

act on X � Y by .f ˝ g/.x; y/ D f .x/g.y/.

LEMMA 4.3 The map R.X/˝k R.Y /! R.X � Y / just defined is injective.

PROOF. Let .gi /i2I be a basis for R.Y / as a k-vector space, and let h D
P
fi ˝ gi be a

nonzero element of R.X/˝k R.Y /. Some fi , say fi0
, is not the zero function. Let x 2 X

be such that fi0
.x/ ¤ 0. Then

P
fi .x/gi is a linear combination of the gi with at least one

coefficient nonzero, and so is nonzero. Thus, there exists a y such that
P
fi .x/gi .y/ ¤ 0;

hence h.x; y/ ¤ 0. 2

Let � be a group. From the group structure on � , we get the following maps:

�WR.� /! k; �.f / D f .1� /;

S WR.� /! R.� /; .Sf /.g/ D f .g�1/;

�WR.� /! R.� � � /; .�f /.g; g0/ D f .gg0/.

PROPOSITION 4.4 If � maps R.� / into the subring R.� /˝k R.� / of R.� � � /, then
.R.� /; �; S;�/ is a k-bialgebra.
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PROOF. We have to check (see p17) that, for example,

..id˝�/ ı�/.f / D ..�˝ id/ ı�/.f /

for all f 2 R.� /, but, because of the lemma it suffices to prove that the two sides are equal
as functions on � � � � � . Let �.f / D

P
fi ˝ gi , so that

P
fi .x/gi .y/ D f .xy/ for

all x; y 2 � . Then

..id˝�/ ı�/.f //.x; y; z/ D .
X

fi ˝�.gi //.x; y; z/

D

X
fi .x/gi .yz/

D f .x.yz//:

Similarly,
..�˝ id/ ı�/.f / D f ..xy/z/: 2

A little algebraic geometry

A subset V of kn is23 closed if it is the set of common zeros of some set S of polynomials

V D f.a1; : : : ; an/ 2 k
n
j f .a1; : : : ; an/ D 0 all f .X1; : : : ; Xn/ 2 Sg.

We write V.S/ for the zero-set (set of common zeros) of S .
The ideal a generated by S consists of all finite sums

P
figi with fi 2 kŒX1; : : : ; Xn�

and gi 2 S . Clearly, V.a/ D V.S/, and so the algebraic subsets can also be described as
the zero-sets of ideals in kŒX1; : : : ; Xn�. According to the Hilbert basis theorem (AG, 2.2),
every ideal in kŒX1; : : : ; Xn� is finitely generated, and so every algebraic set is the zero-set
of a finite set of polynomials.

If the sets Vi are closed, then so also is
T
Vi . Moreover, if W is the zero-set of some

polynomials fi and V is the zero-set of the polynomials gj , then V [W is the zero-set24

of the polynomials figj . As ; D V.1/ and kn D V.0/ are both closed, this shows that the
closed sets are the closed sets for a topology on kn, called the Zariski topology.

Note that
D.h/ D fP 2 kn

j h.P / ¤ 0g

is an open subset of kn, being the complement of V.h/. Moreover, D.h1/ [ : : : [D.hn/

is the complement of V.h1; : : : ; hn/, and so every open subset of kn is a finite union of
D.h/’s; in particular, the D.h/’s form a base for the topology on kn.

Let V be a closed set, and let I.V / be the set of polynomials zero on V . Then

kŒV �
df
D kŒX1; : : : ; Xn�=I.V /

can be identified with the ring of functions V ! k defined by polynomials.
We shall need two easy facts.

23Or algebraic, but that would cause confusion for us.
24Certainly, the figj are zero on V [ W ; conversely, if fi .P /gj .P / D 0 for all i; j and gj .P / ¤ 0 for

some j , then fi .P / D 0 for all i , and so P 2 V .
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4.5 Let W be a closed subset of km and let V be a closed subset of kn. Let 'W km ! kn

be the map defined by polynomials fi .X1; : : : ; Xm/, 1 � i � n. Then '.W / � V if and
only if the map Xi 7! fi W kŒX1; : : : ; Xn�! kŒX1; : : : ; Xm� sends I.V / into I.W /, and so
gives rise to a commutative diagram

km '
> kn

[ [

W > V

kŒX1; : : : ; Xm�
'�

 ���� kŒX1; : : : ; Xn�??y ??y
kŒW �  ���� kŒV �:

4.6 Let W � km and V � kn be closed sets. Then W � V � km � kn is a closed subset
of kmCn, and the canonical map

kŒW �˝k kŒV �! kŒW � V �

is an isomorphism. In more detail, let a D I.W / � kŒX1; : : : ; Xm� and b D I.V / �

kŒY1; : : : ; Yn�; then

kŒW �˝k kŒV � ' kŒX1; : : : ; Xm; Y1; : : : ; Yn�=.a; b/

where .a; b/ is the ideal generated by a and b (see AG 4.14). Certainly .a; b/ � I.W � V /,
but because of (4.3) it equals I.W � V /. Moreover, we have a commutative diagram

kŒX1; : : : ; Xm�˝k kŒX1; : : : ; Xn�

Xi ˝1 7!Xi

1˝Xi 7!XmCi

����������! kŒX1; : : : ; XmCn�??y ??y
kŒW �˝k kŒV � ����! kŒW � V �

The radical of an ideal a, rad.a/, is ff j f n 2 a for some n � 1g. Clearly, it is again
an ideal. An ideal a is radical if a D rad.a/, i.e., if kŒX1; : : : ; Xn�=a is reduced.

For a subset S of kn, let I.S/ be the set of f 2 kŒX1; : : : ; Xn� such that f .a1; : : : ; an/ D

0 for all .a1; : : : ; an/ 2 S .

THEOREM 4.7 (STRONG NULLSTELLENSATZ) For any ideal a, IV.a/ � rad.a/, and
equality holds if k is algebraically closed.

PROOF. If f n 2 a, then clearly f is zero on V.a/, and so the inclusion is obvious. For a
proof of the second part, see AG 2.11. 2

When k is not algebraically closed, then in general IV.a/ ¤ a. For example, let k D R
and let a D .X2 C Y 2 C 1/. Then V.a/ is empty, and so IV.a/ D kŒX1; : : : ; Xn�.

Variant

Let k.X1; : : : ; Xn/ be the field of fractions of kŒX1; : : : ; Xn�. Then, for any nonzero
polynomial h, the subring kŒX1; : : : ; Xn;

1
h
� of k.X1; : : : ; Xn/ is the ring obtained from

kŒX1; : : : ; Xn� by inverting h (AG 1.27). Because of (4.2), it can be identified with a
ring of functions on D.h/. The closed subsets of D.h/ (as a subspace of kn), are just
the zero-sets of collections of functions in kŒX1; : : : ; Xn;

1
h
�. Now the above discussion

holds with kn and kŒX1; : : : ; Xn� replaced by D.h/ and kŒX1; : : : ; Xn;
1
h
�. This can be

proved directly, or by identifying D.h/ with the closed subset V.hXnC1 � 1/ of knC1 via
.x1; : : : ; xn/ 7! .x1; : : : ; xn; h.x1; : : : ; xn/

�1/.
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Closed subgroups of GLn and algebraic subgroups

We now identify kŒGLn�with the subring kŒX11; : : : ; Xnn;
1

det.Xij /
� of k.: : : ; Xij ; : : :/, and

apply the last paragraph. Because kŒGLn� is obtained from kŒX11; : : : ; Xnn� by inverting
det.Xij /, a k-algebra homomorphism kŒ: : : ; Xij ; : : : ;

1
det.Xij /

� ! R is determined by the
images of the Xij , and these can be any values rij such that det.rij / is a unit.

Let G ! GLn be an algebraic subgroup of GLn. By definition, the embedding G ,!

GLn is defined by a surjective homomorphism ˛W kŒGLn� ! kŒG�. Let a be the kernel of
˛. Then

G.k/ D Homk-alg.A; k/

D f'W kŒGLn�! k j Ker.'/ � Ker.˛/g
' V.a/.

Thus, G.k/ is a closed subgroup of GLn.k/.
Conversely, let � be a closed subgroup GLn.k/ and let kŒ� � be the ring of polynomial

functions on � (i.e., functions defined by elements of kŒGLn�). The map S sends polyno-
mial functions on � to polynomial functions on � because it is defined by a polynomial
(Cramer’s rule). Similarly, � sends polynomial functions on � to polynomial functions on
� � � , i.e., to elements of kŒ� � � � ' kŒ� � ˝k kŒ� �. Now one sees as in the proof of
(4.4) that .kŒ� �; �; S;�/ is a k-bialgebra. Moreover, it is clear that the algebraic subgroup
G of GLn corresponding to it has G.k/ D � .

From an algebraic subgroup G of GLn, we get

G  � D G.k/ G0. (25)

If kŒG� is the quotient of kŒGLn� by the ideal a, then kŒG0� is the quotient of kŒGLn� by the
ideal IV.a/. Therefore, when k D k the strong Nullstellensatz shows that G D G0 if and
only if G is smooth (i.e., kŒG� is reduced).

In summary:

THEOREM 4.8 Let � be a subgroup of GLn.k/. There exists an algebraic subgroup G of
GLn such thatG.k/ D � if and only if � is closed, in which case there exists a well-defined
reduced G with this property (that for which kŒG� is the ring of polynomial functions on
� ). When k is algebraically closed, the algebraic subgroups of GLn arising in this way are
exactly the smooth algebraic groups.

The algebraic groupG corresponding to � can be described as follows: let a � kŒGLn�

be the ideal of polynomials zero on � ; then G.R/ is the zero-set of a in GLn.R/.

ASIDE 4.9 When k is not algebraically closed, then not every reduced algebraic subgroup
of GLn arises from an closed subgroup of GLn.k/. For example, consider �3 regarded as
a subgroup of Gm D GL1 over R. Then �3.R/ D 1, and the algebraic group associated
with 1 is 1. Assume, for simplicity, that k has characteristic zero, and let G be an algebraic
subgroup of GLn. Then, with the notation of (25), G D G0 if and only if G.k/ is dense in
G.k/ for the Zariski topology. It is known that this is always true when G.k/ is connected
for the Zariski topology, but unfortunately, the proof uses the structure theory of algebraic
groups (Borel 1991, 18.3, p220).
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5 Example: the spin group

Let � be a nondegenerate bilinear form on a k-vector space V . The special orthogonal
group SO.�/ is connected and almost-simple, and it has a 2-fold covering Spin.�/ which
we now define.

Throughout this section, k is a field not of characteristic 2 and “k-algebra” means “as-
sociative (not necessarily commutative) k-algebra containing k its centre”. For example,
the n � n matrices with entries in k become such a k-algebra Mn.k/ once we identify an
element c of k with the scalar matrix cIn.

Quadratic spaces

Let k be a field not of characteristic 2, and let V be a finite-dimensional k-vector space. A
quadratic form on V is a mapping

qWV ! k

such that q.x/ D �q.x; x/ for some symmetric bilinear form �qWV � V ! k. Note that

q.x C y/ D q.x/C q.y/C 2�q.x; y/, (26)

and so �q is uniquely determined by q. A quadratic space is a pair .V; q/ consisting of
a finite-dimensional vector space and a quadratic form q. Often I’ll write � (rather than
�q) for the associated symmetric bilinear form and denote .V; q/ by .V; �q/ or .V; �/. A
nonzero vector x in V is isotropic if q.x/ D 0 and anisotropic if q.x/ ¤ 0.

Let .V1; q1/ and .V2; q2/ be quadratic spaces. An injective k-linear map � WV1 ! V2 is
an isometry if q2.�x/ D q1.x/ for all x 2 V (equivalently, �.�x; �y/ D �.x; y/ for all
x; y 2 V ). By .V1; q1/˚ .V2; q2/ we mean the quadratic space .V; q/ with

V D V1 ˚ V2

q.x1 C x2/ D q.x1/C q.x2/.

Let .V; q/ be quadratic space. A basis e1; : : : ; en for V is said to be orthogonal if
�.ei ; ej / D 0 for all i ¤ j .

PROPOSITION 5.1 Every quadratic space has an orthogonal basis (and so is an orthogonal
sum of quadratic spaces of dimension 1).

PROOF. If q.V / D 0, every basis is orthogonal. Otherwise, there exist x; y 2 V such that
�.x; y/ ¤ 0. From (26) we see that at least one of the vectors x; y; x C y is anisotropic.
Thus, let e 2 V be such that q.e/ ¤ 0, and extend it to a basis e; e2; : : : ; en for V . Then

e; e2 �
�.e; e2/

q.e/
; : : : ; en �

�.e; en/

q.e/

is again a basis for V , and the last n�1 vectors span a subspaceW for which �.e;W / D 0.
Apply induction to W . 2

An orthogonal basis defines an isometry .V; q/ � .kn; q0/, where

q0.x1; : : : ; xn/ D c1x
2
1 C � � � C cnx

2
n; ci D q.ei / 2 k:

If every element of k is a square, for example, if k D k, we can even scale the ei so that
each ci is 0 or 1.



5 EXAMPLE: THE SPIN GROUP 37

Theorems of Witt and Cartan-Dieudonné

A quadratic space .V; q/ is said to be regular25 (or nondegenerate,. . . ) if for all x ¤ 0 in
V , there exists a y such that �.x; y/ ¤ 0. Otherwise, it is singular. Also, .V; q/ is
˘ isotropic if it contains an isotropic vector, i.e., if q.x/ D 0 for some x ¤ 0;
˘ totally isotropic if every nonzero vector is isotropic, i.e., if q.x/ D 0 for all x, and
˘ anistropic if it is not isotropic, i.e., if q.x/ D 0 implies x D 0.

Let .V; q/ be a regular quadratic space. Then for any nonzero a 2 V ,

hai?
df
D fx 2 V j �.a; x/ D 0g

is a hyperplane in V (i.e., a subspace of dimension dimV � 1). For an anisotropic a 2 V ,
the reflection in the hyperplane orthogonal to a is defined to be

Ra.x/ D x �
2�.a; x/

q.a/
a.

Then Ra sends a to �a and fixes the elements of W D hai?. Moreover,

q.Ra.x// D q.x/ � 4
2�.a; x/

q.a/
�.a; x/C

4�.a; x/2

q.a/2
q.a/ D q.x/;

and so Ra is an isometry. Finally, relative to a basis a; e2; : : : ; en with e2; : : : ; en a basis
for W , its matrix is diag.�1; 1; : : : ; 1/, and so det.Ra/ D �1.

THEOREM 5.2 Let .V; q/ be a regular quadratic space, and let � be an isometry from a
subspaceW of V into V . Then there exists a composite of reflections V ! V extending � .

PROOF. Suppose first that W D hxi with x anisotropic, and let �x D y. Geometry in the
plane suggests we should reflect in the line xC y, which is the line orthogonal to x � y. In
fact, if x � y is anistropic,

Rx�y.x/ D y

as required. To see this, note that

�.x � y; x/ D ��.x � y; y/

because q.x/ D q.y/, and so

�.x � y; x � y/ D 2�.x � y; x/;

which shows that

Rx�y.x/ D x �
2�.x � y; x/

�.x � y; x � y/
.x � y/ D x � .x � y/ D y.

If x � y is isotropic, then

4q.x/ D q.x C y/C q.x � y/ D q.x C y/

and so x C y is anistropic. In this case,

RxCy ıRx.x/ D Rx�.�y/.�x/ D y:

25With the notations of the last paragraph, .V; q/ is regular if c1 : : : cn ¤ 0.
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We now proceed26 by induction on

m.W / D dimW C 2dim.W \W ?/:

CASE W NOT TOTALLY ISOTROPIC: As in the proof of (5.1), there exists an anisotropic
vector x 2 W , and we let W 0 D hxi? \ W . Then, for w 2 W , w � �.w;x/

q.x/
x 2 W 0;

and so W D hxi ˚ W 0 (orthogonal decomposition). As m.W 0/ D m.W / � 1, we can
apply induction to obtain a composite ˙ 0 of reflections such that ˙ 0jW 0 D � jW 0. From
the definition of W 0, x 2 W 0?; moreover, for any w0 2 W 0,

�.˙ 0�1�x;w0/ D �.x; ��1˙ 0w0/ D �.x;w0/ D 0;

and so y df
D ˙ 0�1�x 2 W 0?. By the argument in the first paragraph, there exists reflections

(one or two) of the form Rz , z 2 W 0?, whose composite ˙ 00 maps x to y. Because ˙ 00

acts as the identity on W 0, ˙ 0 ı˙ 00 is the map sought:

.˙ 0
ı˙ 00/.cx C w0/ D ˙ 0.cy C w0/ D c�x C �w0:

CASE W TOTALLY ISOTROPIC: Let V _ D Homk-lin.V; k/ be the dual vector space, and
consider the surjective map

˛WV
x 7!�.x;�/
�������! V _

f 7!f jW
������! W _

(so x 2 V is sent to the map y 7! �.x; y/ on W ). Let W 0 be a subspace of V mapped
isomorphically onto W _. Then W \ W 0 D f0g and we claim that W C W 0 is a regular
subspace of V . Indeed, if x C x0 2 W CW 0 with x0 ¤ 0, then there exists a y 2 W such
that

0 ¤ �.x0; y/ D �.x C x0; y/;

if x ¤ 0, there exists a y 2 W 0 such that �.x; y/ ¤ 0.
Endow W ˚W _ with the symmetric bilinear form

.x; f /; .x0; f 0/ 7! f .x0/C f 0.x/.

Relative to this bilinear form, the map

x C x0
7! .x; ˛.x0//WW CW 0

! W ˚W _ (27)

is an isometry.
The same argument applied to �W gives a subspace W 00 and an isometry

x C x00
7! .x; : : :/W �W CW 00

! �W ˚ .�W /_: (28)

Now the map

W CW 0
.27/
�! W ˚W _ �˚�_�1

������! �W ˚ .�W /_
.28/
�! �W CW 00

� V

is an isometry extending � . As

m.W ˚W 0/ D 2dimW < 3dimW D m.W /

we can apply induction to complete the proof. 2

26Following W. Scharlau, Quadratic and Hermitian Forms, 1985, Chapter 1, 5.5.
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COROLLARY 5.3 Every isometry of .V; q/ is a composite of reflections.

PROOF. This is the special case of the theorem in which W D V . 2

COROLLARY 5.4 (WITT CANCELLATION) Suppose .V; q/ has orthogonal decompositions

.V; q/ D .V1; q1/˚ .V2; q2/ D .V
0

1; q
0
1/˚ .V

0
2; q

0
2/

with .V1; q1/ and .V 0
1; q

0
1/ regular and isometric. Then .V2; q2/ and .V 0

2; q
0
2/ are isometric.

PROOF. Extend an isometry V1 ! V 0
1 � V to an isometry of V . It will map V2 D V ?

1

isometrically onto V 0
2 D V

0?
1 . 2

COROLLARY 5.5 All maximal totally isotropic subspace of .V; q/ have the same dimen-
sion.

PROOF. Let W1 and W2 be maximal totally isotropic subspaces of V , and suppose that
dimW1 � dimW2. Then there exists an injective linear map � WW1 ! W2 � V , which is
automatically an isometry. Therefore, by Theorem 5.2 it extends to an isometry � WV ! V .
Now ��1W2 is a totally isotropic subspace of V containing W1. Because W1 is maximal,
W1 D �

�1W2, and so dimW1 D dim ��1W2 D dimW2. 2

REMARK 5.6 In the situation of Theorem 5.2, Witt’s theorem says simply that there exists
an isometry extending � to V (not necessarily a composite of reflections), and the Cartan-
Dieudonné theorem says that every isometry is a composite of at most dimV reflections.
When V is anisotropic, the proof of Theorem 5.2 shows this, but the general case is consid-
erably more difficult — see E Artin, Geometric Algebra, 1957.

DEFINITION 5.7 The (Witt) index of a regular quadratic space .V; q/ is the maximum di-
mension of a totally isotropic subspace of V .

DEFINITION 5.8 A hyperbolic plane is a regular isotropic quadratic space .V; q/ of dimen-
sion 2.

Equivalent conditions: for some basis, the matrix of the form is
�
0 1

1 0

�
; the discrim-

inant of .V; q/ is �1 (modulo squares).

THEOREM 5.9 (WITT DECOMPOSITION) A regular quadratic space .V; q/with Witt index
m has an orthogonal decomposition

V D H1 ˚ � � � ˚Hm ˚ Va (29)

with the Hi hyperbolic planes and Va anisotropic; moreover, Va is uniquely determined up
to isometry.

PROOF. Let W be a maximal isotropic subspace of V , and let e1; : : : ; em be a basis for
W . One easily extends the basis to a linearly independent set e1; : : : ; em; emC1; : : : ; e2m

such that �.ei ; emCj / D ıi;j (Kronecker delta) and q.emCi / D 0 for i � m. Then V
decomposes as (29) with27 Hi D hei ; emCi i and Va D he1; : : : ; e2mi

?. The uniqueness of
Va follows from Witt cancellation (5.4). 2

27We often write hSi for the k-space spanned by a subset S of a vector space V .
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The orthogonal group

Let .V; q/ be a regular quadratic space. DefineO.q/ to be the group of isometries of .V; q/.
Relative to a basis for V , O.q/ consists of the automorphs of the matrix M D .�.ei ; ej //,
i.e., the matrices T such that

T t
�M � T DM:

Thus, O.q/ is an algebraic subgroup of GLV (see 2.6), called the orthogonal group of q
(it is also called the orthogonal group of �, and denoted O.�/).

Let T 2 O.q/. As detM ¤ 0, det.T /2 D 1, and so det.T / D ˙1. The subgroup of
isometries with det D C1 is an algebraic subgroup of SLV , called the special orthogonal
group SO.q/.

Super algebras

A super (or graded) k-algebra is k-algebra C together with a decomposition C D C0˚C1

of C as a k-vector space such that

k � C0; C0C0 � C0; C0C1 � C1; C1C0 � C1; C1C1 � C0:

Note that C0 is a k-subalgebra of C . A homomorphism of super k-algebras is a homomor-
phism 'WC ! D of algebras such that '.Ci / � Di for i D 0; 1:

EXAMPLE 5.10 Let c1; : : : ; cn 2 k. Define C.c1; : : : ; cn/ to be the k-algebra with gener-
ators e1; : : : ; en and relations

e2
i D ci ; ej ei D �eiej (i ¤ j ).

As a k-vector space, C.c1; : : : ; cn/ has basis fei1

1 : : : e
in
n j ij 2 f0; 1gg, and so has dimen-

sion 2n. With C0 and C1 equal to the subspaces

C0 D he
i1

1 : : : e
in
n j i1 C � � � C in eveni

C1 D he
i1

1 : : : e
in
n j i1 C � � � C in oddi;

C.c1; : : : ; cn/ becomes a superalgebra.

Let C D C0 ˚ C1 and D D D0 ˚ D1 be two super k-algebras. The super tensor
product of C and D; C b̋D, is C ˝k D as a vector space, but�

C b̋D�
0
D .C0 ˝D0/˚ .C1 ˝D1/�

C b̋D�
1
D .C0 ˝D1/˚ .C1 ˝D0/

.ci ˝ dj /.c
0
k ˝ d

0
l / D .�1/

jk.cic
0
k ˝ djd

0
l / ci 2 Ci , dj 2 Dj etc..

The maps

iC WC ! C b̋D; c 7! c ˝ 1

iDWD ! C b̋D; d 7! 1˝ d

have the following universal property: for any homomorphisms of k-superalgebras

f WC ! T; gWD ! T
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whose images anticommute in the sense that

f .ci /g.dj / D .�1/
ijg.dj /f .ci /; ci 2 Ci ; dj 2 Dj ;

there is a unique homomorphism hWC b̋D ! T such that f D h ı iC , g D h ı iD .

EXAMPLE 5.11 As a k-vector space, C.c1/b̋C.c2/ has basis 1 ˝ 1 (D 1
C.c1/b̋C.c2/

),
e ˝ 1, 1˝ e, e ˝ e, and

.e ˝ 1/2 D e2
˝ 1 D c1

.1˝ e/2 D 1˝ e2
D c2

.e ˝ 1/.1˝ e/ D e ˝ e D �.1˝ e/.e ˝ 1/:

Therefore,

C.c1/b̋C.c2/ ' C.c1; c2/

e ˝ 1$ e1

1˝ e $ e2:

Similarly,
C.c1; : : : ; ci�1/b̋C.ci / ' C.c1; : : : ; ci /,

and so, by induction,
C.c1/b̋ � � � b̋C.cn/ ' C.c1; : : : ; cn/:

EXAMPLE 5.12 Every k-algebraA can be regarded as a k-superalgebra by settingA0 D A

and A1 D 0. If A;B are both k-algebras, then A˝k B D Ab̋kB .

EXAMPLE 5.13 Let X be a manifold. Then H.X/ Ddf
L

i H
i .X;R/ becomes an R-

algebra under cup-product, and even a superalgebra with H.X/0 D
L

i H
2i .X;R/ and

H.X/1 D
L

i H
2iC1.X;R/. If Y is a second manifold, the Künneth formula says that

H.X � Y / D H.X/b̋H.Y /
(super tensor product).

Brief review of the tensor algebra

Let V be a k-vector space. The tensor algebra of V is T V D
L

n�0 V
˝n, where

V ˝0
D k;

V ˝1
D V;

V ˝n
D V ˝k � � � ˝k V .n copies of V /

with the algebra structure defined by juxtaposition, i.e.,

.v1 ˝ � � � ˝ vm/ � .vmC1 ˝ � � � ˝ vmCn/ D v1 ˝ � � � ˝ vmCn:

It is a k-algebra.
If V has a basis e1; : : : ; em, then T V is the k-algebra of noncommuting polynomials in

e1; : : : ; em.
There is a k-linear map V ! T V , namely, V D V ˝1 ,!

L
n�0 V

˝n, and any other
k-linear map from V to a k-algebra R extends uniquely to a k-algebra homomorphism
T V ! R.
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The Clifford algebra

Let .V; q/ be a quadratic space, and let � be the corresponding bilinear form on V .

DEFINITION 5.14 The Clifford algebra C.V; q/ is the quotient of the tensor algebra T .V /
of V by the two-sided ideal I.q/ generated by the elements x ˝ x � q.x/ .x 2 V /.

Let �WV ! C.V; q/ be the composite of the canonical map V ! T .V / and the quotient
map T .V /! C.V; q/. Then � is k-linear, and28

�.x/2 D q.x/, all x 2 V: (30)

Note that if x is anisotropic in V then �.x/ is invertible in C.V; q/, because (30) shows that

�.x/ �
�.x/

q.x/
D 1.

EXAMPLE 5.15 If V is one-dimensional with basis e and q.e/ D c, then T .V / is a
polynomial algebra in one symbol e, T .V / D kŒe�, and I.q/ D .e2 � c/. Therefore,
C.V; q/ � C.c/.

EXAMPLE 5.16 If q D 0, then C.V; q/ is the exterior algebra on V , i.e., C.V; q/ is the
quotient of T .V / by the ideal generated by all squares x2, x 2 V . In C.V; q/,

0 D .�.x/C �.y//2 D �.x/2 C �.x/�.y/C �.y/�.x/C �.y/2 D �.x/�.y/C �.y/�.x/

and so �.x/�.y/ D ��.y/�.x/.

PROPOSITION 5.17 Let r be a k-linear map from V to a k-algebra D such that r.x/2 D
q.x/. Then there exists a unique homomorphism of k-algebras r WC.V; q/ ! D such that
r ı � D r :

V
�
> C.V; �/

D:

r

_
r

>

PROOF. By the universal property of the tensor algebra, r extends uniquely to a homomor-
phism of k-algebras r 0WT .V /! D, namely,

r 0.x1 ˝ � � � ˝ xn/ D r.x1/ � � � r.xn/.

As
r 0.x ˝ x � q.x// D .r.x/2 � q.x// D 0;

r 0 factors uniquely through C.V; q/. 2

As usual, .C.V; q/; �/ is uniquely determined up to a unique isomorphism by the uni-
versal property in the proposition.

28More careful authors define a k-algebra to be a ring R together with a homomorphism k ! R (instead of
containing k), and so write (30) as

�.x/2 D q.x/ � 1C.V;q/:
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The map C.c1; : : : ; cn/! C.V; q/

Because � is linear,

�.x C y/2 D .�.x/C �.y//2 D �.x/2 C �.x/�.y/C �.y/�.x/C �.y/2:

On comparing this with

�.x C y/2
.30/
D q.x C y/ D q.x/C q.y/C 2�.x; y/;

we find that
�.x/�.y/C �.y/�.x/ D 2�.x; y/: (31)

In particular, if f1; : : : ; fn is an orthogonal basis for V , then

�.fi /
2
D q.fi /; �.fj /�.fi / D ��.fi /�.fj / .i ¤ j /:

Let ci D q.fi /. Then there exists a surjective homomorphism

ei 7! �.fi /WC.c1; : : : ; cn/! C.V; �/: (32)

The grading (superstructure) on the Clifford algebra

Decompose

T .V / D T .V /0 ˚ T .V /1

T .V /0 D
M

m even

V ˝m

T .V /1 D
M

m odd

V ˝m:

As I.q/ is generated by elements of T .V /0,

I.q/ D .I.q/ \ T .V /0/˚ .I.q/ \ T .V /1/ ;

and so
C.V; q/ D C0 ˚ C1 with Ci D T .V /i=I.q/ \ T .V /i :

Clearly this decomposition makes C.V; q/ into a super algebra.
In more down-to-earth terms, C0 is spanned by products of an even number of vectors

from V , and C1 is spanned by products of an odd number of vectors.

The behaviour of the Clifford algebra with respect to direct sums

Suppose
.V; q/ D .V1; q1/˚ .V2; q2/:

Then the k-linear map

V D V1 ˚ V2
r
�! C.V1; q1/b̋C.V2; q2/

x D .x1; x2/ 7! �1.x1/˝ 1C 1˝ �2.x2/:
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has the property that

r.x/2 D .�1.x1/˝ 1C 1˝ �2.x2//
2

D .q.x1/C q.x2//.1˝ 1/

D q.x/;

because

.�.x1/˝ 1/.1˝ �.x2// D �.x1/˝ �.x2/ D �.1˝ �.x2//.�.x1/˝ 1//:

Therefore, it factors uniquely through C.V; q/:

C.V; q/! C.V1; q1/b̋C.V2; q2/. (33)

Explicit description of the Clifford algebra

THEOREM 5.18 Let .V; q/ a quadratic space of dimension n.
(a) For every orthogonal basis for .V; q/, the homomorphism (32)

C.c1; : : : ; cn/! C.V; q/

is an isomorphism.
(b) For every orthogonal decomposition .V; q/ D .V1; q1/ ˚ .V2; q2/, the homomor-

phism (33)
C.V; q/! C.V1; q1/b̋C.V2; q2/

is an isomorphism.
(c) The dimension of C.V; q/ as a k-vector space is 2n.

PROOF. If n D 1, all three statements are clear from (5.15). Assume inductively that they
are true for dim.V / < n. Certainly, we can decompose .V; q/ D .V1; q1/˚.V2; q2/ in such
a way that dim.Vi / < n. The homomorphism (33) is surjective because its image contains
�1.V1/˝ 1 and 1˝ �2.V2/, which generate C.V1; q1/b̋C.V2; q2/, and so

dim.C.V; q// � 2dim.V1/2dim.V2/
D 2n:

From an orthogonal basis for .V; q/, we get a surjective homomorphism (33). Therefore,

dim.C.V; q// � 2n:

It follows that dim.C.V; q// D 2n. By comparing dimensions, we deduce that the homo-
morphism (32) and (33) are isomorphisms. 2

COROLLARY 5.19 The map �WV ! C.V; q/ is injective.

From now on, we shall regard V as a subset of C.V; q/ (i.e., we shall omit �).

REMARK 5.20 Let L be a field containing k. Then � extends uniquely to an L-bilinear
form

�0
WV 0
� V 0

! L; V 0
D L˝k V;

and
C.V 0; �0/ ' L˝k C.V; �/:
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The centre of the Clifford algebra

Assume that .V; q/ is regular, and that n D dimV > 0. Let e1; : : : ; en be an orthogonal
basis for .V; q/, and let q.ei / D ci . Let

� D .�1/
n.n�1/

2 c1 � � � cn D .�1/
n.n�1/

2 det.�/.

We saw in (5.18) that
C.c1; : : : ; cn/ ' C.V; q/:

Note that, in C.c1; : : : ; cn/, .e1 � � � en/
2 D �. Moreover,

ei � .e1 � � � en/ D .�1/
i�1ci .e1 � � � ei�1eiC1 � � � en/

.e1 � � � en/ � ei D .�1/
n�ici .e1 � � � ei�1eiC1 � � � en/.

Therefore, e1 � � � en lies in the centre of C.V; q/ if and only if n is odd.

PROPOSITION 5.21 (a) If n is even, the centre of C.V; q/ is k; if n is odd, it is of degree 2
over k, generated by e1 � � � en: In particular, C0 \ Centre.C.q// D k.

(b) No nonzero element of C1 centralizes C0.

PROOF. First show that a linear combination of reduced monomials is in the centre (or cen-
tralizes C0) if and only if each monomial does, and then find the monomials that centralize
the ei (or the eiej ). 2

In Scharlau 1985, Chapter 9, 2.10, there is the following description of the complete
structure of C.V; q/:

If n is even, C.V; q/ is a central simple algebra over k, isomorphic to a tensor
product of quaternion algebras. If n is odd, the centre of C.V; q/ is generated
over k by the element e1 � � � en whose square is �, and, if � is not a square in
k, then C.V; q/ is a central simple algebra over the field kŒ

p
��.

The involution �

An involution of a k-algebra D is a k-linear map �WD ! D such that .ab/� D b�a� and
a�� D 1. For example, M 7!M t (transpose) is an involution of Mn.k/.

Let C.V; q/opp be the opposite k-algebra to C.V; q/, i.e., C.V; q/opp D C.V; q/ as a
k-vector space but

ab in C.V; q/opp
D ba in C.V; q/.

The map �WV ! C.V; q/opp is k-linear and has the property that �.x/2 D q.x/. Thus,
there exists an isomorphism �WC.V; q/! C.V; q/opp inducing the identity map on V , and
which therefore has the property that

.x1 � � � xr/
�
D xr � � � x1

for x1; : : : ; xr 2 V . We regard � as an involution of A. Note that, for x 2 V , x�x D q.x/.
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The Spin group

Initially we define the spin group as an abstract group.

DEFINITION 5.22 The group Spin.q/ consists of the elements t of C0.V; q/ such that
(a) t�t D 1;
(b) tV t�1 D V ,
(c) the map x 7! txt�1WV ! V has determinant 1:

REMARK 5.23 (a) The condition (a) implies that t is invertible in C0.V; q/, and so (b)
makes sense.

(b) We shall see in (5.27) below that the condition (c) is implied by (a) and (b).

The map Spin.q/! SO.q/

Let t be an invertible element of C.V; q/ such that tV t�1 D V . Then the mapping x 7!
txt�1WV ! V is an isometry, because

q.txt�1/ D .txt�1/2 D tx2t�1
D tq.x/t�1

D q.x/.

Therefore, an element t 2 Spin.q/ defines an element x 7! txt�1of SO.q/.

THEOREM 5.24 The homomorphism

Spin.q/! SO.q/

just defined has kernel of order 2, and it is surjective if k is algebraically closed.

PROOF. The kernel consists of those t 2 Spin.�/ such that txt�1 D x for all x 2 V . As
V generates C , such a t must lie in the centre of C . Since it is also in C0, it must lie in k.
Now the condition t�t D 1 implies that t D ˙1.

For an anisotropic a 2 V , let Ra be the reflection in the hyperplane orthogonal to a.
According to Theorem 5.2, each element � of SO.q/ can be expressed � D Ra1

� � �Ram
for

some ai . As det.Ra1
� � �Ram

/ D .�1/m, we see that m is even, and so SO.q/ is generated
by elements RaRb with a; b anisotropic elements of V . If k is algebraically closed, we can
even scale a and b so that q.a/ D 1 D q.b/.

Now

axa�1
D .�xaC 2�.a; x// a�1 as .ax C xa D 2�.a; x/, see (31))

D �

�
x �

2�.a; x/

q.a/
a

�
as a2

D q.a/

D �Ra.x/:

Moreover,
.ab/�ab D baab D q.a/q.b/:

Therefore, if q.a/q.b/ D 1, then RaRb is in the image of Spin.q/! SO.q/. As we noted
above, such elements generate SO when k is algebraically closed. 2

In general, the homomorphism is not surjective. For example, if k D R, then Spin.q/
is connected but SO.q/ will have two connected components when � is indefinite. In this
case, the image is the identity component of SO.q/.
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The Clifford group

Write 
 for the automorphism of C.V; q/ that acts as 1 on C0.V; q/ and as �1 on C1.V; q/.

DEFINITION 5.25 The Clifford group is

� .q/ D ft 2 C.V; q/ j t invertible and 
.t/V t�1
D V g:

For t 2 � .q/, let ˛.t/ denote the homomorphism x 7! 
.t/xt�1WV ! V .

PROPOSITION 5.26 For all t 2 � .q/, ˛.t/ is an isometry of V , and the sequence

1! k�
! � .q/

˛
�! O.q/! 1

is exact (no condition on k).

PROOF. Let t 2 � .q/. On applying 
 and � to 
.t/V D V t , we find that 
.t�/V D V t�,
and so t� 2 � .q/. Now, because � and 
 act as 1 and �1 on V ,


.t/ � x � t�1
D �
.
.t/ � x � t�1/� D �
.t��1x
.t�// D 
.t��1/xt�;

and so

.t�/
.t/x D xt�t: (34)

We use this to prove that ˛.t/ is an isometry:

q.˛.t/.x// D .˛.t/.x//� � .˛.t/.x// D t��1x
.t/� �
.t/xt�1 .34/
D t��1xxt�t t�1

D q.x/:

As k is in the centre of � .q/, k� is in the kernel of ˛. Conversely, let t D t0C t1 be an
invertible element of C.V; q/ such that 
.t/xt�1 D x for all x 2 V , i.e., such that

t0x D xt0; t1x D �xt1

for all x 2 V . As V generates C.V; q/ these equations imply that t0 lies in the centre of
C.V; q/, and hence in k (5.21a), and that t1 centralizes C0, and hence is zero (5.21b). We
have shown that

Ker.˛/ D k�:

It remains to show that ˛ is surjective. For t 2 V , ˛.t/.y/ D �tyt�1 and so (see the
proof of (5.24)), ˛.t/ D Rt . Therefore the surjectivity follows from Theorem 5.2. 2

COROLLARY 5.27 For an invertible element t of C0.V; q/ such that tV t�1 D V , the
determinant of x 7! txt�1WV ! V is one.

PROOF. According to the proposition, every element t 2 � .q/ can be expressed in the
form

t D ca1 � � � am

with c 2 k� and the ai anisotropic elements of V . Such an element acts as Ra1
� � �Ram

on
V , and has determinant .�1/m. If t 2 C0.V; q/, then m is even, and so det.t/ D 1. 2

Hence, the condition (c) in the definition of Spin .q/ is superfluous.
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Action of O.q/ on Spin.q/

5.28 An element � of O.q/ defines an automorphism of C.V; q/ as follows. Consider
� ı � WV ! C.�/. Then .�.�.x//2 D �.�.x// � 1 D �.x/ � 1 for every x 2 V . Hence, by
the universal property, there is a unique homomorphism Q� WC ! C rendering

V
�

����! C??y�

??yQ�

V
�

����! C

commutative. Clearly B�1 ı �2 D e�1 ı e�2 and eid D id, and so e��1 D Q��1, and so Q� is an
automorphism. If � 2 SO.�/, it is known that Q� is an inner automorphism of C.�/ by an
invertible element of CC.�/.

Restatement in terms of algebraic groups

Let .V; q/ be quadratic space over k, and let qK be the unique extension of q to a quadratic
form on K ˝k V . As we noted in (5.20), C.qK/ D K ˝k C.q/.

THEOREM 5.29 There exists a naturally defined algebraic group Spin.q/ over k such that

Spin.q/.K/ ' Spin.qK/

for all fields K containing k. Moreover, there is a homomorphism of algebraic groups

Spin.q/! SO.q/

giving the homomorphism in (5.24) for each field K containing k. Finally, the action of
O.q/ on C.V; q/ described in (5.24) defines an action of O.q/ on Spin.q/.

PROOF. Omitted for the present (it is not difficult). 2

In future, we shall write Spin.q/ for the algebraic group Spin.q/.

NOTES A representation of a semisimple algebraic group G gives rise to a representation of its
Lie algebra g, and all representations of g arise from G only if G has the largest possible centre.
“When E. Cartan classified the simple representations of all simple Lie algebras, he discovered
a new representation of the orthogonal Lie algebra [not arising from the orthogonal group]. But
he did not give a specific name to it, and much later, he called the elements on which this new
representation operates spinors, generalizing the terminology adoped by physicists in a special case
for the rotation group of the three dimensional space” (C. Chevalley, The Construction and Study of
Certain Important Algebras, 1955, III 6). This explains the origin and name of the Spin group.
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6 Group Theory

Review of group theory

For a group G, we have the notions of
˘ a subgroup H ,
˘ a normal subgroup N ,
˘ a quotient map G ! Q (surjective homomorphism).

There are the following basic results (see for example my course notes Group Theory �1,3).

6.1 (Existence of quotients). The kernel of a quotient map G ! Q is a normal subgroup
of G, and every normal subgroup arises as the kernel of a quotient map.

6.2 (Factorization theorem). Every homomorphism G ! G0 factors into

G > G0

G
subgroup

�

>

quotient map >>

6.3 (Isomorphism theorem). Let H be a subgroup of G and N a normal subgroup of G;
then HN is a subgroup of G, H \N is a normal subgroup of H , and the map

h.H \N/ 7! hN WH=H \N ! HN=H

is an isomorphism.

In this section, we shall see that, appropriately interpreted, all these statements hold for
algebraic groups. The proofs involve only basic commutative algebra.

Review of flatness

Let R! S be a homomorphism of rings. If the sequence of R-modules

0!M 0
!M !M 00

! 0 (35)

is exact, then the sequence of S -modules

S ˝R M
0
! S ˝R M ! S ˝R M

00
! 0

is exact, but S ˝R M
0 ! S ˝R M need not be injective. For example, when we tensor the

exact sequence of Z-modules

0! Z
2
�! Z! Z=2Z! 0

with Z=2Z, we get the sequence

Z=2Z
2D0
�! Z=2Z! Z=2Z! 0:

Moreover, if the R-module M is nonzero, then the S -module N need not be nonzero.
For example,

Z=2Z˝Z Z=3Z D 0

because it is killed by both 2 and 3.
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DEFINITION 6.4 A homomorphism of rings R! S is flat (and S is a flat R-algebra) if

M ! N injective H) S ˝R M ! S ˝R N is injective.

It is faithfully flat if, in addition,

S ˝R M D 0 H) M D 0:

Thus, if R! S is flat if and only if S ˝R � is an exact functor, i.e.,

0! S ˝R M
0
! S ˝R M ! S ˝R M

00
! 0 (36)

is exact whenever (35) is exact.

PROPOSITION 6.5 A homomorphism k ! R with k a field is always flat, and it is faith-
fully flat if and only if R is nonzero.

PROOF. For an injective map M ! N of k-vector spaces, there exists a k-linear map
N ! M such that the composite M ! N ! M is idM . On tensoring with R, we get
R-linear maps R ˝k M ! R ˝k N ! R ˝k M whose composite is idR˝kM , which
shows that the first map is injective. Similarly, if R ¤ 0, then there exists a k-linear map
R! k such that composite k ! R! k is idk . On tensoring withM ¤ 0 we get R-linear
maps M ! R˝k M !M whose composite is idM , which shows that R˝k M ¤ 0. 2

PROPOSITION 6.6 Let i WR! S be faithfully flat.
(a) A sequence (35) is exact if and only if (36) is exact.
(b) Let M be an R-module. The map m 7! 1˝mWM ! S ˝R M is injective, and its

image consists of the elements of S˝RM on which the two maps S˝RM ! S˝RS˝RM

s ˝m 7! 1˝ s ˝m

s ˝m 7! s ˝ 1˝m

coincide.

PROOF. (a) We have to show that (35) is exact if (36) is exact. Let N be the kernel of
M 0 ! M . Then, because R! S is flat, S ˝R N is the kernel of S ˝R M

0 ! S ˝R M ,
which is zero by assumption. Because R ! S is faithfully flat, this implies that N D 0.
This proves the exactness at M 0, and the proof of exactness elsewhere is similar.

(b) We have to show that the sequence

0!M
d0
�!S ˝R M

d1
�! S ˝R S ˝R M (*)

d0.m/ D 1˝m;

d1.s ˝m/ D 1˝ s ˝m � s ˝ 1˝m

is exact.
Assume first that there exists anR-linear section toR! S , i.e., aR-linear map f WS !

R such that f ı i D idR, and define

k0WS ˝R M !M; k0.s ˝m/ D f .s/m

k1WS ˝R S ˝R M ! S ˝R M; k1.s ˝ s
0
˝m/ D f .s/s0

˝m:
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Then k0d0 D idM , which shows that d0 is injective. Moreover,

k1 ı d1 C d0 ı k0 D idS˝RM

which shows that if d1.x/ D 0 then x D d0.k0.x//, as required.
We now consider the general case. Because R! S is faithfully flat, it suffices to prove

that (*) becomes exact after tensoring in S . But the sequence obtained from (*) by tensoring
with S can be shown to be isomorphic to the sequence (*) for the homomorphism of rings
s 7! 1˝ sWS ! S ˝R S and the S -module S ˝R M . Now S ! S ˝R S has an S -linear
section, namely, f .s ˝ s0/ D ss0, and so we can apply the first part. 2

COROLLARY 6.7 If R ! S is faithfully flat, then it is injective with image the set of
elements on which the maps S ! S ˝R S

s 7! 1˝ s; s 7! s ˝ 1

coincide.

PROOF. This is the special case M D R of the Proposition. 2

PROPOSITION 6.8 Let R ! R0 be a homomorphism of rings. If R ! S is flat (or faith-
fully flat), so also is R0 ! S ˝R R

0.

PROOF. For any R0-module,

S ˝R R
0
˝R0 M ' S ˝R M;

from which the statement follows. 2

The faithful flatness of bialgebras

THEOREM 6.9 Let A � B be k-bialgebras for some field k (inclusion respecting the bial-
gebra structure). Then B is faithfully flat over A.

PROOF. See Waterhouse 1979, Chapter 14. [Let A � B be finitely generated k-algebras
with A an integral domain. Then “generic faithful flatness” says that for some nonzero
elements a of A and b of B , the map Aa ! Bb is faithfully flat (ibid. 13.4). Here Aa

and Bb denote the rings of fractions in which a and b have been inverted. Geometrically
A � B corresponds to a homomorphism G ! H , and geometrically “generic faithful
flatness” says that when we replace G and H with open subsets, the map on the coordinate
rings is faithfully flat. Now we can translate these open sets by elements of G in order to
get that the coordinate ring of the whole of G is faithfully flat over H (cf. da11b).] 2

Definitions; factorization theorem

DEFINITION 6.10 Let H ! G be a homomorphism of algebraic groups with correspond-
ing map of coordinate rings kŒG�! kŒH�.

(a) If kŒG� ! kŒH� is surjective, we call H ! G an embedding (and we call H and
algebraic subgroup29 of G).

29In Waterhouse 1979, p13, these are called a closed embedding and a closed subgroup respectively.
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(b) If kŒG�! kŒH� is injective, we call H ! G a quotient map.

THEOREM 6.11 Every homomorphism of algebraic groups is the composite of a quotient
map and an embedding.

PROOF. The image ˛.A/ of any homomorphism ˛WA ! B of k-bialgebras is a sub-
bialgebra. Corresponding to the factorization A� ˛.A/ ,! B of ˛ into homomorphisms
of bialgebras, we get a factorization into homomorphisms of algebraic groups. 2

Embeddings; subgroups.

Recall (3.7) that if H ! G is an embedding, then H.R/! G.R/ is injective for all R.

THEOREM 6.12 A homomorphism H ! G of algebraic groups is an embedding if and
only if H.R/! G.R/ is injective for all k-algebras R.

PROOF. Assume H.R/ ! G.R/ is injective for all k-algebras R. According to Theorem
6.11,H ! G factors intoH ! H ! G whereH ! H is a quotient map andH ! G is
an embedding. We have to show thatH ! H is an isomorphism. This is the next lemma.2

LEMMA 6.13 A quotient map H ! G such that H.R/ ! G.R/ is injective for all R is
an isomorphism.

PROOF. The homomorphismH ! G corresponds to an injective homomorphism kŒG�!

kŒH� of bialgebras. The homomorphisms

x 7! x ˝ 1; 1˝ xW kŒH�! kŒH�˝kŒG� kŒH�

agree on kŒG�, and so define elements of H.kŒH� ˝kŒG� kŒH�/ which map to the same
element in G.kŒH� ˝kŒG� kŒH�/. Therefore they are equal. Because kŒH� is a faithfully
flat kŒG�-algebra (6.9), the subset of kŒH� on which the two maps agree is kŒG� (6.7).
Therefore kŒG� D kŒH�, as required. 2

Kernels

Let ˛WH ! G be a homorphism of algebraic groups with corresponding map kŒG� !
kŒH� of coordinate rings. The kernel of ˛ is the functor R 7! N.R/ with

N.R/ D Ker.H.R/
˛.R/
�! G.R//

for all R. Recall that the identity element in G.R/ is the map �W kŒG� ! k. Therefore,
hW kŒH�! R lies in N.R/ if and only if its composite with kŒG�! kŒH� factors through
�

kŒH� < kŒG�

R
_

<............. k

�

_

Let IG be the kernel of �W kŒG� ! k (this is often called the augmentation ideal), and
let IGkŒH� denote the ideal generated by its image in kŒH�. Then the elements of N.R/
correspond to the homomorphisms kŒH� zero on IGkŒH�, i.e.,

N.R/ D Homk-alg.kŒH�=IGkŒH�;R/:

We have proved:
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PROPOSITION 6.14 For any homomorphism H ! G of algebraic group, there is an alge-
braic group N (called the kernel of the homomorphism) such that

N.R/ D Ker.H.R/! G.R//

for all R. It is represented by the k-bialgebra kŒH�=IGkŒH�.

Alternatively, note that the kernel of ˛ is the fibred product of H ! G  f1Gg, and
so is an algebraic group with coordinate ring kŒH�˝kŒG� .kŒG�=IG/ ' kŒH�=IGkŒH� —
see p15.

For example, consider the map g 7! gnWGm ! Gm. This corresponds to the map
on bialgebras30 Y 7! XnW kŒY; Y �1� ! kŒX;X�1�. The map �W kŒY; Y �1� ! k sends
f .Y / to f .1/, and so IGm

D .Y � 1/. Thus, the kernel is represented by the bialgebra
kŒX;X�1�=.Xn � 1/. In this quotient, kŒx; x�1�, xn D 1, and so x�1 D xn�1. Thus,
kŒx; x�1� D kŒx� ' kŒX�=.Xn � 1/.31

For example, consider the map .aij / 7! det.aij /WGLn ! Gm. The map on k-algebras
is32

X 7! det.Xij /W kŒX;X
�1�! kŒ: : : ; Xij ; : : : ;det.Xij /

�1�:

The augmentation ideal IGm
D .X � 1/, so

kŒSLn� D
kŒ: : : ; Xij ; : : : ;det.Xij /

�1�

.det.Xij / � 1/
'
kŒ: : : ; Xij ; : : :�

.det.Xij / � 1/
:

PROPOSITION 6.15 If k has characteristic zero, a homomorphism G ! H is an embed-
ding if and only if G.k/! H.k/ is injective.

PROOF. We have to show that the condition implies that N D 1. According to Theorem
2.31, the kernel N of the homomorphism of a smooth algebraic group. This means that
kŒN � Ddf kŒN �˝k k is a reduced k-algebra, and so the next lemma shows that kŒN � D k.2

LEMMA 6.16 Let k be an algebraically closed field, and let A be a reduced finitely gener-
ated k-algebra. If there exists only one homomorphism of k-algebras A! k, then A D k.

PROOF. Write A D kŒX1; : : : ; Xn�=a. Because A is reduced, a D rad.a/ D IV.a/ (in
the terminology of �4). A point .a1; : : : ; an/ of V.a/ defines a homomorphism A ! k,
namely, f .X1; : : : ; Xn/ 7! f .a1; : : : ; an/. Since there is only one homomorphism, V.a/
consists of a single point .a1; : : : ; an/ and IV.a/ D .X � a1; : : : ; X � an/. Therefore
A D kŒX1; : : : ; Xn�=.X � a1; : : : ; X � an/ ' k. 2

EXAMPLE 6.17 Let k be a field of characteristic p ¤ 0, and consider the homomorphism
x 7! xpWGa ! Ga. For any field K, x 7! xpWK ! K is injective, but Ga ! Ga is
not an embedding (it corresponds to the homomorphism of rings X 7! XpW kŒX�! kŒX�,
which is not surjective).

30Check: let r 2 Gm.R/; then Y.rn/ D rn D Xn.r/.
31More precisely, the map kŒX� ! kŒX;X�1�=.Xn � 1/ defines a isomorphism kŒX�=.Xn � 1/ '

kŒX;X�1�=.Xn � 1/.
32Check: for .aij / 2 GLn.R/, X.det.aij // D det.aij / D det.Xij /.aij /:
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Quotient maps

What should a quotient map be? One might first guess that it is a homomorphism H ! G

such that H.R/ ! G.R/ is surjective for all R, but this is too stringent. For example,
it would say that x 7! xnWGm ! Gm is not a quotient map. But the cokernel functor,
R 7! R�=R�n is not representable because it fails the following obvious test: if F is
representable and R ! R0 is injective, then F.R/ ! F.R0/ is injective. In fact, any
homomorphism of algebraic groups Gm ! G zero on the image of x 7! xn has zero
image. This suggests that x 7! xnWGm ! Gm should be a quotient map, and, according to
our definition 6.10, it is: the map X 7! XnW kŒX;X�1�! kŒX;X�1� is injective.

The next two theorems indicate that our definition of a quotient map is the correct one.

THEOREM 6.18 (a) A homomorphism G ! Q of algebraic groups is a quotient map if
and only if, for every k-algebra R and q 2 Q.R/, there exists a finitely generated faithfully
flat R-algebra R0 and a g 2 G.R0/ mapping to q in Q.R0/:

G.R0/ > Q.R0/ g > �

G.R/

^

> Q.R/

^

q:

^

(b) If G ! Q is a quotient map, then G.k/! Q.k/ is surjective; the converse is true if Q
is smooth.

PROOF. H) : Suppose G ! Q is a quotient map, so that kŒQ� ! kŒG� is injective
(and hence faithfully flat (6.9)). Let q 2 Q.R/ D Homk-alg.kŒQ�; R/, and form the tensor
product R0 D kŒG�˝kŒQ� R:

kŒG� <
faithfully flat

� kŒQ�

R0
DkŒG�˝kŒQ� R

gD1˝q

_

< �

q0

<
R

q

_

R0=m
_

<

The map R ! R0 is faithfully flat (6.8), and R0 is a finitely generated R-algebra because
kŒG� is a finitely generated k-algebra. Because the upper square commutes, g 2 G.R0/

maps to the image q0 of q in Q.R0/.
Now suppose R D k. Let m be a maximal ideal in R0. Then R0=m is a field that is

finitely generated as a k-algebra, and hence is a finite extension of k (Zariski’s Lemma AG
2.7). In particular, if k is algebraically closed, then k D R0=m. The element of G.k/ given
by the homomorphism kŒG�! R0=m D k in the diagram maps to q 2 Q.k/.

(H W Let q D idkŒQ� 2 Q.kŒQ�/:Then, there exists a g 2 G.R0/ for some R0

faithfully flat over kŒQ� such that g and q map to the same element ofQ.R0/, i.e., such that

kŒG�  ���� kŒQ�??yg

??yidkŒQ�

R0
faithfully flat
 ������� kŒQ�
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commutes. The map kŒQ� ! R0, being faithfully flat, is injective (6.7), which shows that
kŒQ�! kŒG� is injective (and G ! Q is a quotient map).

Now suppose that k is algebraically closed and Q is smooth. In this case, we saw (4.8)
that the homomorphism kŒQ�! Map.Q.k/; k/ is injective. IfG.k/! Q.k/ is surjective,
then Map.Q.k/; k/! Map.G.k/; k/ is injective, and so kŒQ�! kŒG� is injective. 2

EXAMPLE 6.19 Let k be a field of characteristic p ¤ 0, and consider the homomorphism
1 ! ˛p, where ˛p is the algebraic group such that ˛p.R/ D fr 2 R j r

p D 0g. This
homomorphism is not a quotient map — the map on coordinate rings is kŒX�=.Xp/ ! k

which is not injective — even though the map 1.k/! ˛p.k/ is surjective.

THEOREM 6.20 Let G ! Q be a quotient map with kernel N . Then any homomorphism
G ! Q0 sending N to 1 factors uniquely through Q.

PROOF. Note that, if g; g0 are elements in G with the same image in Q, then g�1g0 2 N

and so maps to 1 in Q.R/. Therefore g; g0 have the same image in G0.
This shows that the composites of the homomorphisms

G �Q G � G ! Q0

are equal. Therefore, the composites of the homomorphisms

kŒG�˝kŒQ� kŒG�� kŒG� kŒQ0�

are equal. Since the pair of maps coincides on kŒQ� (see 6.7), the map kŒQ0� ! kŒG�

factors through kŒQ� ,! kŒG�; therefore G ! Q0 factors through G ! Q. 2

COROLLARY 6.21 If � WH ! Q and � 0WH ! Q0 are quotient maps with the same kernel,
then there is a unique homomorphism ˛WQ ! Q0 such that ˛ ı � D � 0, and ˛ is an
isomorphism.

PROOF. Immediate consequence of the theorem. 2

Existence of quotients

An algebraic subgroup N of G is normal if N.R/ is a normal subgroup of G.R/ for all
k-algebras R. Clearly, the kernel of any homomorphism is normal.

THEOREM 6.22 Let N be a normal subgroup of G. Then there exists a quotient map
G ! Q with kernel N .

PROOF. Waterhouse 1979, Chapter 16. [The idea of the proof is to find, starting from
Chevalley’s theorem (3.13), a representation G ! GL.V / of G and a subspace W of V ,
stable under G, such that N , and only N , acts trivially on W . Then the homomorphism
G ! GLW has kernel N , and (according to 6.10) it factors into

G� Q ,! GLW :] 2
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Warning: Let G ! Q be the quotient map with kernel N . By definition

1! N.R/! G.R/! Q.R/

is exact for all R, but the map G.R/ ! Q.R/ need not be surjective — all you can say is
what is said by Theorem 6.18. In particular,

1! N.k/! G.k/! Q.k/! 1

is exact.

EXAMPLE 6.23 Let PGLn be the quotient of GLn by its centre, and let PSLn be the
quotient of SLn by its centre:

PGLn D GLn =Gm; PSLn D SLn =�n:

The homomorphism SLn ! GLn ! PGLn defines a homomorphism

PSLn ! PGLn (37)

(apply 6.20). Is this an isomorphism? Note that

SLn.k/=�n.k/! GLn.k/=Gm.k/ (38)

is injective, but not in general surjective: not every invertible n� n matrix can be written as
the product of a matrix with determinant 1 and a scalar matrix (for example, such a matrix
has determinant in k�n). Nevertheless, I claim that (37) is an isomorphism of algebraic
groups. In characteristic zero, this follows from the fact that (38) is an isomorphism when
k D k (apply 6.15 and 6.18b). In the general case, we have to apply (6.12) and (6.18a).

Let q ¤ 1 2 PSLn.R/. For some faithfully flat R-algebra R0, there exists a g 2
SLn.R

0/mapping to q in PSLn.R
0/. The image of g in GLn.R

0/ is not in Gm.R
0/ (because

q ¤ 1/; therefore, the image of g in PGLn.R
0/ is ¤ 1, which implies that the image of q

in PGL.R/ is¤ 1:
PSLn.R

0/ > PGLn.R
0/

PSLn.R/

^

> PGLn.R/:
[

^

We have shown that (37) is an embedding.
Let q 2 PGLn.R/. For some faithfully flat R-algebra R0, there exists a g 2 GLn.R

0/

mapping to q. Let a D det.g/, and let R00 D R0ŒT �=.T n � a/. In R00, a is an nth power
a D tn, and so g D g0t with det.g0/ D 1. Thus, the image of g in GLn.R

00/=Gm.R
00/ is

in the image of SLn.R
00/=�n.R

00/. Hence, the image of q in PGLn.R
00/ is in the image of

PSLn.R
00/. As anR0-module,R00 is free of finite rank; hence it is a faithfully flatR-algebra,

and we have shown that (37) is a quotient map.

The isomorphism theorem

THEOREM 6.24 Let H be an algebraic subgroup of an algebraic group G, and let N be a
normal algebraic subgroup of G. Then:
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(a) there exists an algebraic subgroupHN ofG such that, for any k-algebraR, .HN/.R/
consists of the elements of G.R/ that lie in H.R0/N.R0/ for some finitely generated
faithfully flat R-algebra R0 (and .HN/.k/ D H.k/N.k/);

(b) there exists a normal algebraic subgroup H \ N of H such that .H \ N/.R/ D
H.R/ \N.R/ for all k-algebras RI

(c) the natural map
H=H \N ! HN=N (39)

is an isomorphism.

PROOF. Omitted (for the present). (For (a), cf. Waterhouse 1979, Chapter 15, Exercise
6.) 2

EXAMPLE 6.25 Let G D GLn, H D SLn, and N D Gm (scalar matrices in G). Then
N \H D �n (obviously), HN D GLn (by the arguments in 6.23), and (39) becomes the
isomorphism

SLn =�n ! GLn =Gm:

REMARK 6.26 The category of commutative algebraic groups over a field is an abelian
category (SGA3, VIA, 5.4).

NOTES As noted earlier, in much of the expository literature (e.g., Humphreys 1975, Borel 1991,
Springer 1998), “algebraic group” means “smooth algebraic group”. With this terminology, almost
all the results in this section become false.33 Fortunately, because of Theorem 2.31, this is only
a problem in nonzero characteristic. The importance of allowing nilpotents was pointed out by
Cartier34 more than forty years ago, but, except for Gabriel and Demazure 1970 and Waterhouse
1979, this point-of-view has not been adopted in the expository literature.

33The situation is even worse, because these books use a terminology based on Weil’s Foundations, which
sometimes makes it difficult to understand their statements. For example, in Humphreys 1975, p218, one finds
the following statement: “for a homomorphism 'WG ! G0 of k-groups, the kernel of ' need not be defined
over k.” By this, he means the following: form the kernel N of '

k
WG

k
! G0

k
(in our sense); then Nred need

not arise from a smooth algebraic group over k.
34Cartier P, Groupes algébriques et groupes formels, In Colloq. Théorie des Groupes Algébriques (Bruxelles,

1962), pp. 87–111, Librairie Universitaire Louvain.
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7 Finite (étale) algebraic groups

All rings and k-algebras are commutative.

Separable k-algebras

Let A be a finite k-algebra (i.e., a k-algebra that is of finite dimension ŒAW k� as a k-vector
space). There are two reasons why A˝k k may not be reduced (i.e., have nilpotents).
˘ A itself may not be reduced. For example, if A D kŒX�=.Xn/, n > 2, then A˝k k D

kŒX�=.Xn/ contains a nonzero element x, namely, the class of X , such that xn D 0:

˘ A may be an inseparable field extension of k. For example, if k has characteristic
p ¤ 0 and a 2 k is not a pth power, then Xp � a is irreducible in kŒX� and
A D kŒX�=.Xp � a/ D kŒx� is a field. However, k contains a (unique) element ˛
such that ˛p D a, and

A˝k k D kŒX�=.X
p
� a/ D kŒX�=..X � ˛/p/;

which contains a nonzero element x � ˛ such that .x � ˛/p D 0.
On the other hand, ifA is a separable field extension of k, thenA˝k k is reduced. From

the primitive element theorem (FT 5.1), A D kŒ˛� for some ˛ whose minimum polynomial
f .X/ is separable, which means that

f .X/ D
Y
.X � ˛i /; ˛i ¤ ˛j ;

in kŒX�. By the Chinese remainder theorem (AG 1.1)

A˝k k � kŒX�=.f / '
Y

i
kŒX�=.X � ˛i / ' k � � � � � k.

Moreover, the maps ˛ 7! ˛i are ŒAW k� distinct k-algebra homomorphisms K ! k.

PROPOSITION 7.1 The following conditions on a finite k-algebra A are equivalent:
(a) A is a product of separable field extensions of k;
(b) A˝k k is a product of copies of k;
(c) there are ŒAW k� distinct k-algebra homomorphisms A! k;
(d) A˝k k is reduced.

PROOF. We have seen that (a) implies the remaining statements. That each of (b) and
(c) implies (a) is similarly straightforward. That (d) implies (a) requires a little more (see
Waterhouse 1979, 6.2) [but we may not need it].

It remains to show that (d) implies (b). For this, we may assume that k D k. For any
finite set S of maximal ideals in A, the Chinese remainder theorem (AG 1.1) says that the
map A !

Q
m2S A=m is surjective with kernel

T
m2S m. In particular, #S � ŒAW k�, and

so A has only finitely many maximal ideals. For S equal to the set of all maximal ideals in
A,
T

m2S m D 0 by (2.18), and so A '
Q
A=m '

Q
k: 2

DEFINITION 7.2 A finite k-algebra satisfying the equivalent conditions of the proposition
is said to be separable.

PROPOSITION 7.3 Finite products, tensor products, and quotients of separable k-algebras
are separable.
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PROOF. This is obvious from the condition (b). 2

COROLLARY 7.4 The composite of any finite set of separable subalgebras of a k-algebra
is separable.

PROOF. Let Ai be separable subalgebras of B . Then A1 � � �An is the image of the map

a1 ˝ � � � ˝ an 7! a1 � � � anWA1 ˝k � � � ˝k An ! B;

and so is separable. 2

PROPOSITION 7.5 Let K be a field extension of k. If A is separable over k, then A˝k K

is separable over K.

PROOF. Let K be an algebraic closure of K, and let k be the algebraic closure of k in K.
Then

K > K

k

^

> k

^

is commutative, and so

.A˝k K/˝K K '
�
A˝k k

�
˝

k
K ' .k � � � � � k/˝

k
K ' K � � � � �K:

2

Classification of separable k-algebras

Let ksep be the composite of the separable subfields of k. If k is perfect, for example, of
characteristic zero, then ksep D k. Let � be the group of k-automorphisms of ksep. For
any subfield K of ksep, finite and Galois of k, an easy Zorn’s lemma argument shows that

� 7! � jKW� ! Gal.K=k/

is surjective. Let X be a finite set with an action35 of � ,

� �X ! X:

We say that the action is36 continuous if it factors through � ! Gal.K=k/ for some
subfield K of ksep finite and Galois over k.

For a separable k-algebra A, let

F.A/ D Homk-alg.A; k/ D Homk-alg.A; k
sep/:

Then � acts on F.A/ through its action on ksep:

.�f /.a/ D �.f .a//; � 2 � , f 2 F.A/, a 2 A:

The images of all homomorphisms A! ksep will lie in some finite Galois extension of k,
and so the action of � on F.A/ is continuous.

35This means 1� x D x and .��/x D �.�x/ for all �; � 2 � and x 2 X , i.e., that � ! Aut.X/ is a
homomorphism.

36Equivalently, the action is continuous relative to the discrete topology on X and the Krull topology on �
(FT �7).
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THEOREM 7.6 The map A 7! F.A/ is a contravariant equivalence from the category sep-
arable k-algebras to the category of finite sets with a continuous action of � .

PROOF. This is mainly a restatement of the fundamental theorem of Galois theory (FT �3),
and is left as an exercise (or see Waterhouse 1979, 6.3). 2

Let A D kŒX�=.f .X// D kŒx�. Then A is separable if and only if f .X/ is separable,
i.e., has distinct roots in k. Assume this, and (for simplicity) that f .X/ is monic. A k-
algebra homomorphism A! ksep is determined by the image of x, which can be any root
of f in ksep. Therefore, F.A/ can be identified with the set of roots of f . Suppose F.A/
decomposes into r orbits under the action of � , and let f1; : : : ; fr be the monic polynomials
whose roots are the orbits. Then each fi is stable under � , and so has coefficients in k (FT
7.8). It follows that f D f1 � � � fr is the decomposition of f into its irreducible factors
over k, and that A D

Q
1�i�r kŒX�=.fi .X// is the decomposition of A into a product of

fields.

Etale algebraic groups

Recall that an algebraic group G is said to be finite if kŒG� is finite-dimensional as a k-
vector space. We say G is étale if in addition kŒG� is separable.

REMARK 7.7 (a) When k has characteristic zero, Theorem 2.31 says that every finite alge-
braic group is étale.

(b) Algebraic geometers will recognize that an algebraic group G is étale if and only if
the morphism of schemes G ! Spec k is étale.

According to Theorem 7.6, to give a separable k-algebra is to give a finite set with a
continuous action of � . To give a bialgebra structure on a separable k-algebra is equivalent
to giving a group structure on the set for which � acts by group homomorphisms (cf. 4.4).
As

Homk-alg.kŒG�; k
sep/ D G.ksep/;

we have the following theorem.

THEOREM 7.8 The functor G 7! G.ksep/ is an equivalence from the category of étale
algebraic groups over k to the category of finite groups endowed with a continuous action
of � .

Let K be a subfield of ksep containing k, and let � 0 be the subgroup of � consisting of
the � fixing the elements of K. Then K is the subfield of ksep of elements fixed by � 0 (see
FT 7.10), and it follows that G.K/ is the subgroup G.ksep/ of elements fixed by � 0:

Examples

The order of a finite algebraic group G is defined to be ŒkŒG�W k�. For an étale algebraic
group G, it is the order of G.k/.

Since Aut.X/ D 1whenX is a group of order 1 or 2, we see that over any field k, there
is exactly one étale algebraic group of order 1 and one of order 2 (up to isomorphism).

Let X be a group of order 3. Such a group is cyclic and Aut.X/ D Z=2Z. Therefore
the étale algebraic groups of order 3 over k correspond to homomorphisms � ! Z=2Z
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factoring through Gal.K=k/ for some finite Galois extensionK of k. A separable quadratic
extension K of k defines such a homomorphism, namely,

� 7! � jKW� ! Gal.K=k/ ' Z=2Z

and all nontrivial such homomorphisms arise in this way (see FT �7). Thus, up to isomor-
phism, there is exactly one étale algebraic group GK of order 3 over k for each separa-
ble quadratic extension K of k, plus the constant group G0. For G0, G0.k/ has order 3.
For GK , GK.k/ has order 1 but GK.K/ has order 3. There are infinitely many distinct
quadratic extensions of Q, for example, QŒ

p
�1�, QŒ

p
2�, QŒ

p
3�, : : :, QŒpp�, : : :. Since

�3.Q/ D 1 but �3.QŒ 3
p
1�/ D 3, �3 must be the group corresponding to QŒ 3

p
1�.

Exercise

7-1 How many finite algebraic groups of orders 1; 2; 3; 4 are there over R (up to isomor-
phism)?
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8 The connected components of an algebraic group

Recall that a topological space X is disconnected if it is a disjoint union of two nonempty
open subsets; equivalently, if it contains a nonempty proper closed-open subset. Otherwise,
it is connected. The maximal connected subspaces of X are called the connected com-
ponents of X , and X is a disjoint union of them. Write �0.X/ for the set of connected
components of X (for good spaces it is finite).

For a topological group G, �0.G/ is again a group, and the kernel of G ! �0.G/

is a normal connected subgroup Gı of G, called the identity (connected) component of
G. For example, GL2.R/ has two connected components, namely, the identity component
consisting of the matrices with determinant > 0 and another component consisting of the
matrices with determinant < 0.

Some algebraic geometry

The max spectrum of a commutative ring A, spmA, is the set of maximal ideals m in A.
For an ideal a in A, let

V.a/ D fm j m � ag:

Then V.ab/ D V.a/[V.b/ and V.
P

ai / D
T
V.ai /, and so there is a topology on spmA

(called the Zariski topology) whose closed sets are exactly the V.a/. For each f 2 A, the
set D.f / D fm j f … mg is open, and these sets form a base for the topology.

EXAMPLE 8.1 Let k D k, and let A D kŒX1; : : : ; Xn�=c. For each point a D .a1; : : : ; an/

in the zero-set of c, we get a homomorphism A ! k; f .X1; : : : ; Xn/ 7! f .a1; : : : ; an/,
whose kernel is the maximal ideal

ma D .x1 � a1; : : : ; xn � an/:

The Nullstellensatz implies that every maximal ideal m of A has a zero in the zero-set of c,
and therefore is of this form. Thus, we have a one-to-one correspondence

a$ ma

between the zero-set of c and spmA. Under this correspondence, the topologies correspond
(cf. AG �3).

For the remainder of this subsection, A is a finitely generated k-algebra.

PROPOSITION 8.2 The space spmA is noetherian (i.e., has the ascending chain condition
on open subsets; equivalently, has the descending chain condition on closed subsets).

PROOF. A descending chain of closed subsets gives rise to an ascending chain of ideals in
A, which terminates because A is noetherian (Hilbert basis theorem; AG 2.2). 2

PROPOSITION 8.3 For any ideal a in A,\
fm j m maximal, m � ag D rad.a/.
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PROOF. When m is maximal, A=m is reduced, and so

m � a H) m � rad.a/:

This shows that the left hand side contains the right, and the reverse inclusion follows from
Proposition 2.18 applied to A=rad.a/. 2

COROLLARY 8.4 The intersection of all maximal ideals in A is the nilradical N of A (ideal
consisting of the nilpotent elements).

PROOF. The nilradical is the radical of the ideal .0/. 2

Because all maximal ideals contain N,

spmA ' spmA=N: (40)

Recall that a nonempty topological space is irreducible if it is not the union of two
proper closed subsets.

PROPOSITION 8.5 Let A be reduced. Then spmA is irreducible if and only if A is an
integral domain.

PROOF. H) W Suppose fg D 0 in A. For each maximal ideal m, either f or g is in m.
Therefore, spmA D V.f /[V.g/. Because spmA is irreducible, this means spmA equals
V.f / or V.g/. But if spmA D V.f /, then f D 0 by (8.4).
(H W Suppose spmA D V.a/ [ V.b/. If V.a/ and V.b/ are proper sets, then there

exist nonzero f 2 a and g 2 b. Then fg 2 a \ b �
T

m D 0, which is a contradiction. 2

COROLLARY 8.6 The space spmA is irreducible if and only if A=N is an integral domain.

PROOF. Apply (40). 2

PROPOSITION 8.7 Let e1; : : : ; en be elements of A such that

e2
i D ei all i; eiej D 0 all i ¤ j , e1 C � � � C en D 1. (41)

Then
spmA D D.e1/ t : : : tD.en/

is a decomposition of spmA into a disjoint union of open subsets. Conversely, every such
decomposition arises from a family of idempotents satisfying (41).

PROOF. Let e1; : : : ; en satisfy (41). For a maximal ideal m, the map A! A=m must send
exactly one of the ei to a nonzero element (cf. 2.14). This shows that spmA is a disjoint
union of the D.ei /, each of which is open.

For the converse, we take n D 2 to simplify the notation. Each of thhe open sets is
also closed, and so spmA D V.a/ t V.b/ for some ideals a and b. Because the union is
disjoint, no maximal ideal contains both a and b, and so aC b D A. Thus a C b D 1 for
some a 2 a and b 2 b. As ab 2 a \ b, all maximal ideals contain ab, which is therefore
nilpotent, say .ab/m D 0. Any maximal ideal containing am contains a; similarly, any
maximal ideal containing bm contains b; thus no maximal ideal contains both am and bm,
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which shows that the ideal they generate is A. Therefore, we can write 1 D ramC sbm for
some r; s 2 A. Now

.ram/.sbm/ D 0; .ram/2 D .ram/.1 � sbm/ D ram, ram
C sbm

D 1:

Finally, V.a/ � V.ram/ and V.b/ � V.sbm/. As V.ram/ \ V.sbm/ D ;, we see that

spmA D V.ram/ t V.sbm/ D D.sbm/ tD.ram/:

For n > 2, the above argument doesn’t work directly. Either do it two at a time, or use
a different argument to show that taking products of rings corresponds to taking disjoint
unions of spm’s. 2

COROLLARY 8.8 The space spmA is disconnected if and only ifA contains an idempotent
e ¤ 0; 1.

PROOF. (H : If e is an idempotent, then the pair e; f D 1 � e satisfies (41), and so
spm.A/ D V.e/ t V.f /. If V.e/ D spm.A/, then e is nilpotent by (8.4) and hence 0; if
V.e/ D ;, then f D 0 and e D 1.
H) : Immediate from the proposition. 2

ASIDE 8.9 On Cn there are two topologies: the Zariski topology, whose closed sets are the
zero sets of collections of polynomials, and the complex topology. Clearly Zariski-closed
sets are closed for the complex topology, and so the complex topology is the finer than the
Zariski topology. It follows that a subset of Cn that is connected in the complex topology
is connected in the Zariski topology. The converse is false. For example, if we remove
the real axis from C, the resulting space is not connected for the complex topology but it
is connected for the topology induced by the Zariski topology (a nonempty Zariski-open
subset of C can omit only finitely many points). Thus the next result is a surprise:

If V � Cn is closed and irreducible for the Zariski topology, then it is con-
nected for the complex topology.

For the proof, see Shafarevich, Basic Algebraic Geometry, 1994, VII 2.

Separable subalgebras

Recall that a k-algebra B is finite if it has finite dimension as a k-vector space, in which
case we write ŒBW k� for this dimension (and call it the degree of B over k).

LEMMA 8.10 Let A be a finitely generated k-algebra. The degrees of the separable subal-
gebras of A are bounded.

PROOF. A separable subalgebra of A will give a separable subalgebra of the same degree
of A ˝k k, and so we can assume k D k. Then a separable subalgebra is of the form
k � � � � � k. For such a subalgebra, the elements e1 D .1; 0; : : :/; : : : ; er D .0; : : : ; 0; 1/

satisfy (41). Therefore D.e1/; : : : ;D.er/ are disjoint open subsets of spmA. Because
spmA is noetherian, it is a finite union of its irreducible components (AG 2.21). Each
connected component of spmA is a finite union of irreducible components, and so there
are only finitely many of them. Hence r � #�0.spmA/ <1. 2
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Let A be a finitely generated k-algebra. The composite of two separable subalgebras of
A is separable (7.4), and so, because of the lemma, there is a largest separable subalgebra
�0.A/ of A containing all other.

Let K be a field containing k. Then �0.A/˝k K is a separable subalgebra of A˝k K

(see 7.5). We shall need to know that it contains all other such subalgebras.

PROPOSITION 8.11 LetA be a finitely generated k-algebra, and letK be a field containing
k. Then

�0.A˝k K/ D �0.A/˝k K:

PROOF. Waterhouse 1979, 6.5. 2

Let A and A0 be finitely generated k-algebras. Then �0.A/ ˝k �0.A
0/ is a separable

subalgebra of A ˝k A
0 (see 7.3). We shall need to know that it contains all other such

subalgebras.

PROPOSITION 8.12 Let A and A0 be finitely generated k-algebras. Then

�0.A˝k A
0/ D �0.A/˝k �0.A

0/:

PROOF. Waterhouse 1979, 6.5. 2

The group of connected components of an algebraic group

Let G be an algebraic group with coordinate ring A D kŒG�. The map �WA! A˝k A is
a k-algebra homomorphism, and so sends �0.A/ into �0.A˝k A/

8:12
D �0.A/˝k �0.A/.

Similarly, S WA ! A sends �0.A/ into �0.A/, and we can define � on �0.A/ to be the
restriction of � on A. With these maps �0.A/ becomes a sub-bialgebra of A.

THEOREM 8.13 Let G ! �0.G/ be the quotient map corresponding to the inclusion of
bialgebras �0.A/! A.

(a) Every quotient map from G to an étale algebraic group factors uniquely through
G ! �0.G/.

(b) Let Gı D Ker.G ! �0.G//. Then Gı is the unique normal algebraic subgroup of
G such that

i) �0.G
ı/ D 1,

ii) G=Gı is étale.

PROOF. (a) A quotient map G ! H corresponds to an injective homomorphism kŒH�!

kŒG� of k-bialgebras. If H is étale, then kŒH� is separable, and so the image of the homo-
morphism is contained in �0.kŒG�/ D kŒ�0.G/�. This proves (a).

(b) The k-algebra homomorphism �W�0.kŒG�/! k decomposes �0.kŒG�/ into a direct
product

�0.kŒG�/ D k � B .

Let e D .1; 0/. Then the augmentation ideal of �0.kŒG�/ is .1 � e/, and

kŒG� D ekŒG� � .1 � e/kŒG�

with ekŒG� ' kŒG�=.1 � e/kŒG� D kŒGı� (see 6.14). Clearly, k D �0.ekŒG�/ '

�0.kŒG
ı�/. This shows that Gı has the properties (i) and (ii).
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Suppose H is a second normal algebraic subgroup of G satisfying (i) and (ii). Because
G=H is étale, the homomorphism G ! G=H factors through �0.G/, and so we get a
commutative diagram

1 ����! Gı ����! G ����! �0.G/ ����! 1??y 


 ??y
1 ����! H ����! G ����! G=H ����! 1

with exact rows. The similar diagram with each � replaced with �.R/ gives, for each k-
algebra R, an exact sequence

1! Gı.R/! H.R/! �0.G/.R/: (42)

Since this functorial in R, it gives a sequence of algebraic groups

1! Gı
! H ! �0.G/:

The exactness of (42) shows that Gı is the kernel of H ! �0.G/. Because �0.H/ D 1,
the kernel is H , and so Gı ' H . 2

DEFINITION 8.14 The subgroup Gı is called identity component of G.

Recall (p13) that from an algebraic group G over k and a field extension K � k we
get an algebraic group GK over K: for any K-algebra R, GK.R/ D G.R/, and KŒGK � D

K ˝k kŒG�.

THEOREM 8.15 For any field extension K � k, �0.GK/ ' �0.G/K and .GK/
ı '

.Gı/K .

PROOF. Apply (8.11). 2

THEOREM 8.16 For any algebraic groups G and G0, �0.G �G
0/ ' �0.G/ � �0.G

0/.

PROOF. Apply (8.12). 2

Connected algebraic groups

DEFINITION 8.17 An algebraic group G is connected if �0.G/ D 1 (i.e., �0.kŒG�/ D k).

Then Theorem 8.13 says that, for any algebraic group G, there is a unique exact se-
quence

1! Gı
! G ! �0.G/! 1

with Gı connected and �0.G/ étale.

REMARK 8.18 (a) Let K be a field containing k. Then Theorem 8.15 implies that G is
connected if and only if GK is connected.

(b) Let G and G0 be algebraic groups over k. Then Theorem 8.16 shows that G �G0 is
connected if and only if both G and G0 are connected.

THEOREM 8.19 The following conditions on an algebraic group G are equivalent:
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(a) G is connected;
(b) the topological space spm.kŒG�/ is connected;
(c) the topological space spm.kŒG�/ is irreducible;
(d) the ring kŒG�=N is an integral domain.

PROOF. (a) H) (b). If e 2 kŒG� is idempotent, then kŒe� is a separable subalgebra of
kŒG�, and so equals k. Therefore, e D 0 or 1, and Corollary 8.8 implies that spm.kŒG�/ is
connected.

(b) H) (a). If kŒG� contains no idempotents other than 0; 1, then �0.kŒG�/ is a field
K containing k. The existence of the k-algebra homomorphism �W kŒG� ! k implies that
K D k.

(c)” (d). This is (8.6).
(c) H) (b). Trivial.
(b) H) (c). Since (a) and (d) hold over k if and only if they hold over k, it suffices to

prove this in the case that k D k. Write spm kŒG� as a union of its irreducible components
(AG 2.21). No irreducible component is contained in the union of the remainder. Therefore,
there exists a point that lies on exactly one irreducible component. By homogeneity (2.15),
all points have this property, and so the irreducible components are disjoint. As spm kŒG�

is connected, there must be only one. 2

EXAMPLE 8.20 The groups Ga, GLn, Tn (upper triangular), Un (strictly upper triangular),
Dn are connected because in each case kŒG� is an integral domain. For example,

kŒTn� D kŒGLn�=.Xij j i > j /;

which is isomorphic to the polynomial ring in the symbols Xij , 1 � i � j � n, with
X11 � � �Xnn inverted.

EXAMPLE 8.21 For the group G of monomial matrices (2.5), �0.kŒG�/ is a product of
copies of k indexed by the elements of Sn. Thus, �0.G/ D Sn (regarded as a constant
algebraic group (2.14)), and Gı D Dn.

EXAMPLE 8.22 The group SLn is connected. Every invertible matrixA can written uniquely
in the form

A D A0
�

0BBB@
a 0

0 1
: : : 0

0 1

1CCCA ; detA0
D 1:

Therefore GLn ' SLn �Gm (isomorphism as set-valued functors, not as group-valued
functors). Therefore kŒGLn� ' kŒSLn�˝kkŒGm� (by the Yoneda lemma p13). In particular,
kŒSLn� is a subring of kŒGLn�, and so is an integral domain.

EXAMPLE 8.23 For any nondegenerate quadratic space .V; q/, the groups Spin.q/ and
SO.q/ are connected. It suffices to prove this after replacing k with k, and so we may
suppose that q is the standard quadratic form X2

1 C � � � C X2
n , in which case we write

SO.q/ D SOn. The latter is shown to be connected in the exercise below.
The determinant defines a quotient map O.q/ ! f˙1g with kernel SO.q/. Therefore

O.q/ı D SO.q/ and �0.O.q// D f˙1g (constant algebraic group).
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EXAMPLE 8.24 The symplectic group Sp2n is connected (for some hints on how to prove
this, see Springer 1998, 2.2.9).

EXAMPLE 8.25 Let k be a field of characteristic p ¤ 0, and let n D prn0 with n0 not
divisible by

ASIDE 8.26 According to (8.9) and (8.19), an algebraic groupG over C is connected if and
only if G.C/ is connected for the complex topology. Thus, we could for example deduce
that GLn is a connected algebraic group from knowing that GLn.C/ is connected for the
complex topology. However, it is easier to deduce that GLn.C/ is connected from knowing
that GLn is connected (of course, this requires the serious theorem stated in (8.9)).

Warning: For an algebraic group G over R, G may be connected without G.R/ being
connected, and conversely. For example, GL2 is connected as an algebraic group, but
GL2.R/ is not connected for the real topology, and �3 is not connected as an algebraic
group, but �3.R/ D f1g is certainly connected for the real topology.

Exact sequences and connectedness

PROPOSITION 8.27 Let
1! N ! G ! Q! 1

be an exact sequence of algebraic groups (i.e., G ! Q is a quotient map with kernel N ).
If N and Q are connected, so also is G; conversely, if G is connected, so also is Q.

PROOF. Assume N and Q are connected. Then N is contained in the kernel of G !
�0.G/, so this map factors through G ! Q (see 6.20), and therefore has image f1g. Con-
versely, since G maps onto �0.Q/, it must be trivial if G is connected. 2

Exercises

8-1 What is the map kŒSLn�! kŒGLn� defined in example 8.22?

8-2 Prove directly that �0.kŒOn�/ D k � k.

8-3 (Springer 1998, 2.2.2). For any k-algebra R, let V.R/ be the set of skew-symmetric
matrices, i.e., the matrices such that At D �A.

(a) Show that the functor R 7! V.R/ is represented by a finitely generated k-algebra A,
and that A is an integral domain.

(b) Show that A 7! .InCA/
�1.In�A/ defines a bijection from a nonempty open subset

of SOn.k/ onto an open subset of V.k/.
(c) Deduce that SOn is a connected.

8-4 Let A be a product copies of k indexed by the elements of a finite set S . Show that
the k-bialgebra structures on A are in natural one-to-one correspondence with the group
structures on S .
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Where we are

As discussed in the first lecture, every affine algebraic group has a composition series with
the quotients listed at right:

affine G

j finite étale

connected Gı

j semisimple

solvable �

j torus

unipotent �

j unipotent

f1g

We have constructed the top segment of this picture. Next we look at tori and unipotent
groups. Then we study the most interesting groups, the semisimple ones, and finally, we
put everything together.
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9 Diagonalizable groups; tori

Recall for reference that

Gm.R/ D R
� �n.R/ D f� 2 R j �

n D 1g

kŒGm� D kŒX;X
�1� kŒ�n� D kŒX�=.X

n � 1/ D kŒx�

�.X/ D X ˝X �.x/ D x ˝ x

�.X/ D 1 �.x/ D 1

S.X/ D X�1 S.x/ D xn�1

A remark about homomorphisms

9.1 Recall that a homomorphism G ! H of groups is defined to be a map preserving
products; it then automatically preserves neutral elements and inverses.

Now let G and H be algebraic groups. A homomorphism of k-algebras ˛W kŒH� !
kŒG� preserving � defines a natural map G.R/ ! H.R/ preserving products, and hence
also neutral elements and inverses. Therefore ˛ preserves � and S .

In other words, let A and B be k-bialgebras; in order to show that a homomorphism of
k-algebras A ! B is a homomorphism of k-bialgebras, it suffices to check that it sends
�A to �B ; it then automatically sends �A to �B and SA and SB .

Group-like elements in a bialgebra

DEFINITION 9.2 A group-like element in a k-bialgebra A is an invertible element a of A
such that �.a/ D a˝ a.

Note that if a is group-like, then (see p31)

a D ..�; idA/ ı�/.a/ D .�; idA/.a˝ a/ D �.a/a;

and so �.a/ D 1. Moreover,

�.a/ D ..S; idA/ ı�/.a/ D .S; idA/.a˝ a/ D S.a/a

and so S.a/ D a�1.
The group-like elements form subgroup of A�. For example, if a; a0 are group-like,

then

�.aa0/ D �.a/�.a0/ (� is a k-algebra homomorphism)

D .a˝ a/.a0
˝ a0/

D aa0
˝ aa0;

and so aa0 is again group-like.

The characters of an algebraic group

DEFINITION 9.3 A character of an algebraic group G is a homomorphism G ! Gm.

PROPOSITION 9.4 There is a canonical one-to-one correspondence between the characters
of G and the group-like elements of kŒG�.
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PROOF. According to (9.1), characters of G correspond to homomorphisms of k-algebras
kŒGm� ! kŒG� respecting �. To give a homomorphism of k-algebras kŒGm� ! kŒG�

amounts to giving an invertible element a of kŒG� (the image ofX ), and the homomorphism
respects � if and only if a is group-like. 2

For characters �; �0, define

�C �0
WG.R/! R�

by
.�C �0/.g/ D �.g/ � �0.g/:

Then � C �0 is again a character, and the set of characters is an abelian group, denoted
X.G/. The correspondence in the proposition is an isomorphism of groups.

The algebraic group D.M/

Let M be a finitely generated abelian group (written multiplicatively), and let kŒM� be the
k-vector space with basis M . Thus, the elements of kŒM� are finite sumsX

i
aimi ; ai 2 k; mi 2M;

and37 kŒM� becomes a k-algebra (called the group algebra of M ) when we set�X
i
aimi

� �X
j
bjnj

�
D

X
i;j
aibjminj :

It becomes a bialgebra when we set

�.m/ D m˝m; �.m/ D 1; S.m/ D m�1:

Note that kŒM� is generated as a k-algebra by any set of generators for M , and so it is
finitely generated.

EXAMPLE 9.5 Let M be a cyclic group, generated by e.
(a) Case e has infinite order. Then the elements of kŒM� are the finite sums

P
i2Z aie

i

with the obvious addition and multiplication, and�.e/ D e˝e, �.e/ D 1, S.e/ D e.
Clearly, kŒM� ' kŒGm�.

(b) Case e is of order n. Then the elements of kŒM� are sums a0Ca1eC� � �Can�1e
n�1

with the obvious addition and multiplication (using en D 1), and �.e/ D e ˝ e,
�.e/ D 1, and S.e/ D en�1. Clearly, kŒM� ' kŒ�n�.

EXAMPLE 9.6 IfW and V are vector spaces with bases .ei /i2I and .fj /j 2J , thenW ˝kV

is a vector space with basis .ei ˝ fj /.i;j /2I�J . This shows that if M DM1 ˚M2, then

.m1; m2/$ m1 ˝m2W kŒM�$ kŒM1�˝k kŒM2�

is an isomorphism of k-vector spaces, and one checks easily that it respects the k-bialgebra
structures.

37Bad notation — don’t confuse this with the coordinate ring of an algebraic group.
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PROPOSITION 9.7 For any finitely generated abelian M , the functor D.M/

R 7! Hom.M;R�/ (homomorphisms of abelian groups)

is an algebraic group, with bialgebra kŒM�. It is isomorphic to a finite product of copies of
Gm and various �n’s.

PROOF. To give a k-linear map kŒM�! R is to give a mapM ! R. The map kŒM�! R

is a k-algebra homomorphism if and only if M ! R has image in R� and is a homomor-
phism M ! R�. This shows that D.M/ is represented by kŒM�, and is therefore an
algebraic group.

A decomposition of abelian groups

M � Z˚ � � � ˚ Z˚ Z=n1 ˚ � � � ˚ Z=nrZ;

defines a decomposition of k-bialgebras

kŒM� � kŒGm�˝k � � � ˝k kŒGm�˝k kŒ�n1
�˝k � � � ˝k kŒ�nr

�

(9.5,9.6). Since every finitely generated abelian group M has such a decomposition, this
proves the second statement. 2

Characterizing the groups D.M/

LEMMA 9.8 The group-like elements in any k-bialgebra A are linearly independent.

PROOF. If not, it will be possible to express one group-like element e in terms of other
group-like elements ei ¤ e:

e D
X

i
ciei , ci 2 k:

We may even assume the ei to be linearly independent. Now

�.e/ D e ˝ e D
X

i;j
cicj ei ˝ ej

�.e/ D
X

i
ci�.ei / D

X
i
ciei ˝ ei :

The ei ˝ ej are also linearly independent, and so this implies that

cicj D

�
ci if i D j
0 otherwise

Hence, each ci D 0 or 1. But

�.e/ D 1

�.e/ D
X

ci�.ei / D
X

ci :

Therefore exactly one of the ci D 1, so e D ei for some i , contradicting our assumption. 2

LEMMA 9.9 The group-like elements of kŒM� are exactly the elements of M .
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PROOF. Let a 2 kŒM� be group-like. Then

a D
X

cimi for some ci 2 k, mi 2M:

The argument in the above proof shows that a D mi for some i . 2

PROPOSITION 9.10 An algebraic groupG is isomorphic toD.M/ for someM if and only
if the group-like elements in kŒG� span it (i.e., generate it as a k-vector space).

PROOF. Certainly, the group-like elements of kŒM� span it. Conversely, suppose the group-
like elements M span kŒG�. Then they form a basis for kŒG� (as a k-vector space), and so
the inclusion M ,! kŒG� extends to an isomorphism kŒM�! kŒG� of vector spaces. It is
automatically a homomorphism of k-algebras, and it preserves � because the elements of
M are group-like. It is therefore an isomorphism of k-bialgebras (by 9.1). 2

Diagonalizable groups

DEFINITION 9.11 An algebraic group G is diagonalizable if kŒG� is spanned by group-
like elements.

THEOREM 9.12 (a) The map M 7! D.M/ is a contravariant equivalence from the cate-
gory of finitely generated abelian groups to the category of diagonalizable algebraic groups
(with quasi-inverse G 7! X.G/).
(b) If

0!M 0
!M !M 00

! 0

is an exact sequence, then D.M/! D.M 0/ is a quotient map with kernel D.M 00/.
(c) Subgroups and quotients of diagonalizable algebraic groups are diagonalizable.

PROOF. (a) Certainly, we have a contravariant functor

DW ffinitely generated abelian groupsg ! fdiagonalizable groupsg:

We show that D is fully faithful, i.e., that

Hom.M;M 0/! Hom.D.M 0/;D.M// (43)

is an isomorphism for all M;M 0. As D sends direct sums to products, it suffices to do this
when M;M 0 are cyclic. If, for example, M and M 0 are both infinite cyclic groups, then

Hom.M;M 0/ D Hom.Z;Z/ D Z;

and
Hom.D.M 0/;D.M// D Hom.Gm;Gm/ D fX

i
j i 2 Zg ' Z;

and so (43) is an isomorphism. The remaining cases are similarly easy.
Finally, (9.10) shows that the functor is essentially surjective, and so is an equivalence.
(b) The map kŒM 0� ! kŒM� is injective, and so D.M/ ! D.M 0/ is a quotient map

(by definition). Its kernel is represented by kŒM�=IkŒM 0�, where IkŒM 0� is the augmentation
ideal of kŒM 0� (see 6.14). But IkŒM 0� is the ideal generated the elementsm�1 form 2M 0,
and so kŒM�=IkŒM 0� is the quotient ring obtained by putting m D 1 for all m 2 M 0.
Therefore M !M 00 defines an isomorphism kŒM�=IkŒM 0� ! kŒM 00�.
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(c) If H is an algebraic subgroup of G, then kŒG� ! kŒH� is surjective, and so if the
group-like elements of kŒG� span it, the same is true of kŒH�.

Let D.M/ ! Q be a quotient map, and let H be its kernel. Then H D D.M 00/ for
some quotient M 00 of M . Let M 0 be the kernel of M ! M 00. Then D.M/! D.M 0/ and
D.M/! Q are quotient maps with the same kernel, and so are isomorphic (6.21). 2

Diagonalizable groups are diagonalizable

Recall that Dn is the group of invertible diagonal n � n matrices; thus

Dn ' Gm � � � � �Gm (n copies).

THEOREM 9.13 Let V be a finite-dimensional vector space, and let G be an algebraic
subgroup of GLV . There exists a basis of V for which G � Dn if and only if G is diago-
nalizable.

In more down-to-earth terms, the theorem says that for an algebraic subgroup G of
GLn, there exists an invertible matrix P in Mn.k/ such that, for all k-algebras R and all
g 2 G.R/,

PgP�1
2

8̂<̂
:
0B@� 0

: : :

0 �

1CA
9>=>;

if and only if G is diagonalizable (according to definition 9.11).

PROOF. H) : This follows from (9.12c).
(H W Let A D kŒG�, and let �WV ! V ˝k A be the comodule corresponding to

the representation G ,! GLV (see �3). We have to show that V is a direct sum of one-
dimensional representations or, equivalently, that there exists a basis for V consisting of
vectors v such that �.v/ 2 hvi ˝k A.

Let .ei /i2I be the basis for A D kŒG� of group-like elements, and write

�.v/ D
X

i
vi ˝ ei :

Applying the identity (see p31)

.idV ˝�/ ı � D .�˝ idA/ ı �

to v gives X
i
vi ˝ ei ˝ ei D

X
i
�.vi /˝ ei :

Hence
�.vi / D vi ˝ ei 2 hvi i ˝k A:

Since (see p31)

v D .idV ˝�/ ı �.v/

D

X
vi�.ei / D

X
vi

is in the span of the vi , we see that by taking enough v’s we get enough vi ’s to span V . 2
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Split tori and their representations

DEFINITION 9.14 An algebraic group is a split torus if it is isomorphic to a product of
copies of Gm, and it is a torus if it becomes a split torus over k.

In other words, the split tori are the diagonalizable groups D.M/ with M torsion-free.
The functor M 7! D.M/ is a contravariant equivalence from the category of free abelian
groups of finite rank to the category of split tori, with quasi-inverse T 7! X.T /.

For example, let T D Gm � Gm. Then X.T / D Z˚ Z. The character corresponding
to .m1; m2/ 2 Z˚ Z is

.t1; t2/ 7! t
m1

1 t
m2

2 WT .R/! Gm.R/.

A quotient group of a torus is again a torus (because it corresponds to a subgroup of a
free abelian group of finite rank), but a subgroup of a torus need not be a torus. For example,
�n is a subgroup of Gm (the map �n ! Gm corresponds to Z! Z=nZ).

A character �WT ! Gm defines a representation of T on any finite-dimensional space
V : let t 2 T .R/ act on R ˝k V as multiplication by �.t/ 2 R�. For example, � defines a
representation of T on kn by

t 7!

0B@�.t/ 0
: : :

0 �.t/

1CA :
Let �WT ! GLV be a representation of T . We say that T acts on V through � if

�.t/v D �.t/v all t 2 T .R/, v 2 R˝k V:

More precisely, this means that the image of � is contained in the centre Gm of GLV and is
the composite of

T
�
�! Gm ,! GLV :

If V is 1-dimensional, then GLV D Gm, and so T always acts on V through some character.

THEOREM 9.15 Let r WT ! GL .V / be a representation of a split torus on a finite dimen-
sional vector space V . For each character �, let V� be the largest subspace of V on which
T acts through the character �. Then

V D
M

�2X.T /
V�:

PROOF. Theorem 9.13 shows that V D
L

1�i�r V�i
for certain characters �1; : : : ; �r .

Thus, V D
P

�2X.T / V�, and (11.20) below shows that the sum is direct. 2

For example, let T D Gm � Gm, and let r WT ! GL.V / be a representation of T on
a finite-dimensional vector space V . Then V decomposes into a direct sum of subspaces
V.m1;m2/, .m1; m2/ 2 Z � Z, such that .t1; t2/ 2 T .k/ acts on V.m1;m2/ as tm1

1 t
m2

2 (of
course, all but a finite number of the V.m1;m2/ are zero).
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Rigidity

By an action of algebraic group on another algebraic group, we mean natural actions

G.R/ �H.R/! H.R/

such that the elements of G.R/ act on H.R/ by group homomorphisms. We shall need the
following result:

THEOREM 9.16 Every action of a connected algebraic group G on a torus T is trivial.

The proof is based on the following result:

PROPOSITION 9.17 Every action of a connected algebraic group G on a product of copies
of �m is trivial.

PROOF. (SKETCH) Let H be a product of copies of �m, and let A D kŒH�. The functor
sending R to

Aut.H/.R/ df
D AutR-bialgebras .R˝k A/

is an étale algebraic group (cf. exercise 9-1 below). The action of G on H defines a
homomorphismG ! Aut.H/ of algebraic groups, which is trivial becauseG is connected
(see �8). 2

We now sketch the proof of the theorem. It suffices to show that each element g of
G.k/ defines the trivial automorphism of T

k
. Thus, we can replace k with k and take k to

be algebraically closed. The kernel of x 7! xmWT ! T is a product of copies of �m, and
soG acts trivially on it. Because of the category equivalence T 7! X.T /, it suffices to show
that g acts trivially on the X.T /, and because g acts trivially on the kernel of mWT ! T it
acts trivially on X.T /=mX.T /. We can now apply the following elementary lemma.

LEMMA 9.18 Let M be a free abelian group of finite rank, and let ˛WM ! M be a
homomorphism such that

M ����! M??y ??y
M=mM

id
����! M=mM

commutes for all m. Then ˛ D id.

PROOF. Choose a basis ei for M , and write ˛.ej / D
P

i aij ei , aij 2 Z. The hypothesis is
that, for every integer m,

.aij / � In mod m;

i.e., that mjaij for i ¤ j and mjai i � 1. Clearly, this implies that .aij / D In. 2

Groups of multiplicative type

DEFINITION 9.19 An algebraic group G is of multiplicative type if G
k

is diagonalizable.



9 DIAGONALIZABLE GROUPS; TORI 77

Assume (for simplicity) that k is perfect. Let M be a finitely generated abelian group,
and let � be the group of automorphisms of k over k. A continuous action of � on M
is a homomorphism � ! Aut.M/ factoring through Gal.K=k/ for some finite Galois
extension K of k contained in k.

For an algebraic group G, we define

X�.G/ D Hom.G
k
;Gm/:

Then � acts continuously on X�.G/, because X�.G/ is finitely generators, and each of its
generators is defined over a finite extension of k.

THEOREM 9.20 The functorG ! X�.G/ is a contravariant equivalence from the category
of algebraic groups of multiplicative type over k to the category of finitely generated abelian
groups with a continuous action of � .

PROOF. Omitted (for the present). See Waterhouse 7.3. 2

Let G be a group of multiplicative type over k. For any K � k,

G.K/ D Hom.X�.G/; k
�
/�K

where �K is the subgroup of � of elements fixing K, and the notation means the G.K/
equals the group of homomorphisms X�.G/! k

�
commuting with the actions of �K .

EXAMPLE 9.21 Take k D R, so that � is cyclic of order 2, and let X�.G/ D Z. There are
two possible actions of � on X�.G/:

(a) Trivial action. Then G.R/ D R�, and G ' Gm.
(b) The generator � of � acts on Z as m 7! �m. Then G.R/ D Hom.Z;C�/� consists

of the elements of C� fixed under the following action of �,

�z D z�1:

Thus G.R/ D fz 2 C� j zz D 1g, which is compact.

EXAMPLE 9.22 Let K be a finite extension of k. Let T be the functor R 7! .R ˝k K/
�.

Then T is an algebraic group, in fact, the group of multiplicative type corresponding to
the � -module ZHomk.K;k/ (families of elements of Z indexed by the k-homomorphisms
K ! k).

Exercises

9-1 Show that Aut.�m/ ' .Z=mZ/� (constant group defined by the group of invertible
elements in the ring Z=mZ). Hint: To recognize the elements of Aut.�m/.R/ as complete
systems of orthogonal idempotents, see the proof of (9.8).



10 JORDAN DECOMPOSITIONS 78

10 Jordan decompositions

An endomorphism ˛ of a finite-dimensionsl vector space V over k is semisimple if it be-
comes diagonalizable on k ˝k V . For example, for an n � n matrix A, the endomorphism
x 7! AxW kn ! kn is semisimple if and only if there exists an invertible matrix P with
entries in k such that PAP�1 is diagonal.

From linear algebra, we know that ˛ is semisimple if and only if its minimum polyno-
mialm˛.T / has distinct roots; in other words, if and only if the subring kŒ˛� ' kŒT �=.m˛.T //

of Endk.V / generated by ˛ is separable.
An endomorphism ˛ of V is nilpotent if ˛m D 0 for some m > 0, and it is unipotent

if idV �˛ is nilpotent. Clearly, if ˛ is nilpotent, then its minimum polynomial divides Tm

for some m, and so the eigenvalues of ˛ are all zero, even in k. From linear algebra, we
know that the converse is also true, and so ˛ is unipotent if and only if its eigenvalues in k
all equal 1.

In this section, we prove the following theorem:

THEOREM 10.1 Let G be an algebraic group over a perfect field k. For any g 2 G.k/
there exist unique elements gs; gu 2 G.k) such that

(a) g D gsgu D gugs ,
(b) for all representations 'WG ! GL.V /, '.gs/ is semisimple and '.gu/ is unipotent.

Then gs and gu are called the semisimple and unipotent parts of g, and g D gsgu is the
Jordan decomposition of g.

Jordan normal forms

Let ˛ be an endomorphism of a finite-dimensional vector space V over k. We say that ˛
has all its eigenvalues in k if the characteristic polynomial P˛.T / of ˛ splits in kŒX�,

P˛.T / D .T � a1/
n1 � � � .T � ar/

nr ; ai 2 k:

THEOREM 10.2 Let ˛ be an endomorphism of a finite-dimensional vector space V with
all its eigenvalues in k, and let a1; : : : ; ar be its distinct eigenvalues. Then there exists a
basis for V relative to which the matrix of ˛ is

A D

0BBB@
A1 0

0 A2

: : :

Ar

1CCCA where Ai D

0B@ai � �

: : : �

ai

1CA :
In fact, of course, one can even do a little better. This theorem is usually proved at

the same time as the following theorem. For each eigenvalue a of ˛ in k, the generalized
eigenspace is defined to be:

Va D fv 2 V j .˛ � a/
N v D 0; N sufficiently divisibleg:

THEOREM 10.3 If ˛ has all its eigenvalues in k, then V is a direct sum of the generalized
eigenspaces:

V D
M

i
Vai

.
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To deduce this from the first theorem, note that Vai
is spanned by the basis vectors

corresponding to Ai (so ˛ acts on Vai
through the matrix Ai ). To deduce the first theorem

from the second amounts to studying the action of the nilpotent endomorphism ˛ � ai on
the subspace Vai

:

Jordan decomposition in GLn.V / (k D k)

In this subsection, k is algebraically closed.

PROPOSITION 10.4 For any automorphism ˛ of a finite-dimensional vector space V , there
exist unique automorphisms ˛s and ˛u such that

(a) ˛ D ˛s ı ˛u D ˛u ı ˛s;

(b) ˛s is semisimple and ˛u is unipotent.

PROOF. According to (10.3), V is a direct sum of its generalized eigenspaces of: V DL
Va . Define ˛s to be the automorphism of V that acts as a on Va. Then ˛s is a semisimple

automorphism of V , and ˛u Ddf ˛ ı ˛
�1
s commutes with ˛s (because it does on each Va)

and is unipotent (because its eigenvalues are 1).
Let ˛ D ˇs ıˇu be a second decomposition satisfying (a) and (b), and let V D

L
Vb be

the decomposition of V into the eigenspaces for ˇs (corresponding to distinct eigenvalues).
Because ˇs and ˇu commute, each Vb is stable under ˇu,

v 2 Vb H) ˇs.ˇu.v// D ˇuˇsv D ˇubv D b.ˇuv/;

and hence under ˛. Moreover, Vb is a generalized eigenspace for V with eigenvalue b,
which shows that V D

L
Vb is the decomposition of V into its generalized eigenspaces.

Since ˇs acts on Vb as multiplication by b, this proves that ˇs D ˛s , and so ˇu D ˛u. 2

The automorphisms ˛s and ˛u are called the semisimple and unipotent parts of ˛, and
˛ D ˛s ı ˛u D ˛u ı ˛s is the Jordan decompostion of ˛.

PROPOSITION 10.5 Let ˛ and ˇ be automorphisms of V and W respectively, and let
'WV ! W be a linear map such that 'ı˛ D ˇı'. Then 'ı˛s D ˇsı' and 'ı˛u D ˇuı'.

PROOF. For each a 2 k, ' obviously maps Va intoWa, which implies that ' ı˛s D ˇs ı'.
Hence also

' ı ˛u D ' ı .˛ ı ˛
�1
s / D .ˇ ı ˇ�1

s / ı ' D ˇu ı ': 2

PROPOSITION 10.6 Let ˛ D ˛s ı ˛u be the Jordan decomposition of ˛. Then ˛s 2 kŒ˛�,
i.e., there exists a polyonomial P.T / 2 kŒT � such that ˛s D P.˛/.

PROOF. For each (distinct) eigenvalue ai of ˛, let ni be such that .˛�a/ni D 0 on Vai
. The

polynomials .T � ai /
nai are relatively prime, and so, according to the Chinese remainder

theorem, there exists a P 2 kŒT � such that

P.T / � a1 mod .T � a1/
na1

P.T / � a2 mod .T � a2/
na2

� � �

Then P.˛/ acts as ai on Vai
, and so P.˛/ D ˛s . 2
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COROLLARY 10.7 Every subspace W of V stable under ˛ is stable under ˛s and ˛u, and
˛jW D ˛sjW ı ˛ujW is the Jordan decomposition of ˛jW:

PROOF. It follows from the proposition that W is stable under ˛s , and therefore also ˛�1
s

and ˛u. It is obvious that the decomposition ˛jW D ˛sjW ı ˛ujW has the properties to be
the Jordan decomposition. 2

For the remainder of this section, k is perfect.

Jordan decomposition in GL.V /, k perfect

Let ˛ be an automorphism of a finite-dimensional vector space V over a perfect field k,
and let K be a splitting field for the minimum polyomial of ˛ (so K is generated by the
eigenvalues of ˛). Choose a basis for V , and use it to attach matrices to endomorphisms
of V and K ˝k V . Let A be the matrix of ˛. Theorem 10.3 allows us to write A D
AsAu D AuAs with As; Au respectively semisimple and unipotent matrices with entries in
K; moreover, this decomposition is unique.

Let � 2 Gal.K=k/, and for a matrix B D .bij /, define �B D .�bij /. Because A has
entries in k, �A D A. Now

A D .�As/.�Au/ D .�Au/.�As/

is again a Jordan decomposition of A. By uniqueness, �As D As and �Au D Au. Since
this is true for all � 2 Gal.K=k/, As and Au have entries in k. This shows that Jordan
decompositions exist over k.

THEOREM 10.8 Let ˛ be an automomorphism of a finite-dimensional vector space V over
a perfect field. Then ˛ has a unique (Jordan) decomposition ˛ D ˛s ı ˛u D ˛u ı ˛s with
˛s and ˛u semisimple and unipotent respectively. Any subspace W of V stable under ˛ is
stable under ˛s and ˛u, and ˛jW D .˛sjW / ı .˛ujW / D .˛ujW / ı .˛sjW /.

For the last sentence, one needs that .K ˝k W / \ V D W . To prove this, choose a
basis .ei /1�i�m forW , and extend it to a basis .ei /1�i�n for V . If

P
aiei (ai 2 k/, lies in

K ˝k W , then ai D 0 for i > m.

LEMMA 10.9 Let ˛ and ˇ be automorphisms of vector spaces V and W . Then

.˛�1/s D ˛
�1
s .˛ ˝ ˇ/s D ˛s ˝ ˇs .˛_/s D ˛

_
s .˛ ˚ ˇ/s D ˛s ˚ ˇs

.˛�1/u D ˛
�1
u .˛ ˝ ˇ/u D ˛u ˝ ˇu .˛_/u D ˛

_
u .˛ ˚ ˇ/u D ˛u ˚ ˇu

PROOF. It is obvious that ˛�1 D .˛u/
�1.˛s/

�1 is the Jordan decomposition of ˛�1. It
suffices to prove the remaining statements in the top row, and it suffices to prove these after
passing to the algebraic closure of the ground field. Thus, we may choose bases for which
the matrices of ˛ and ˇ are upper triangular. Note that the semisimple part of a triangular
matrix (upper or lower) is obtained by putting all off-diagonal entries equal to zero. Thus,
the equalities on the first row follow from the next statement. Let A and B be the matrices
of ˛ and ˇ relative some choice of bases for V andW ; relative to the obvious bases, ˛˝ˇ,
˛_, and ˛ ˚ ˇ have the following matrices:0B@Ab11 Ab12 � � �

Ab21 Ab22
:::

1CA At

�
A 0

0 B

�
2
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EXAMPLE 10.10 Let k have characteristic 2 and be nonperfect, so that there exists an a 2

k that is not a square in k, and let A D
�
0 1

a 0

�
. In kŒ

p
a�, A has the Jordan decomposition

A D

�p
a 0

0
p
a

��
0 1=

p
a

p
a 0

�
:

Since these matrices do not have coefficients in k, the uniqueness shows that A does not
have a Jordan decomposition in M2.k/.

Infinite-dimensional vector spaces

Let V be a vector space, possibly infinite dimensional, over k. An endomorphism ˛ of V is
locally finite if V is a union of finite-dimensional subspaces stable under ˛. A locally finite
endomorphism is semisimple (resp. locally nilpotent, locally unipotent) if its restriction to
each stable finite-dimensional subspace is semisimple (resp. nilpotent, unipotent).

Let ˛ be a locally finite automorphism of V . By assumption, every v 2 V is contained
in a finite-dimensional subspace W stable under ˛, and we define ˛s.v/ D .˛jW /s.v/.
According to (10.8), this is independent of the choice of W , and so in this way we get a
semisimple automorphism of V . Similarly, we can define ˛u. Thus:

THEOREM 10.11 For any locally finite automorphism ˛ of V , there exist unique automor-
phisms ˛s and ˛u such that

(a) ˛ D ˛s ı ˛u D ˛u ı ˛s;

(b) ˛s is semisimple and ˛u is locally unipotent.
For any finite-dimensional subspace W of V stable under ˛, ˛jW D .˛sjW / ı .˛ujW / D

.˛ujW / ı .˛sjW / is the Jordan decomposition of ˛jW .

The regular representation contains all

Let G be an algebraic group and let g 2 G.k/. For any representation 'WG ! GLV ,
we get a Jordan decomposition '.g/ D '.g/s'.g/u in GL.V /. We have to show that
there is a decomposition g D gsgu in G.k/ that gives the Jordan decomposition for every
representation '. One basic result we will need is that every representation of G occurs
already in a direct sum of copies of the regular representation, and so if we can find a
decomposition g D gsgu in G.k/ that works for the regular representation it should work
for every representation.

PROPOSITION 10.12 Let V be a representation of G, and let V0 denote the underlying
vector space with the trivial representation. Then there is an injective homomorphism38

V ! V0 ˝ kŒG�

38Compare the proposition with the following result for a finite group G of order n. Let kŒG� be the group
algebra, and let V be a kŒG�-module. Let V0 be V regarded as a vector space. Then

v 7! n�1
X

g2G
g ˝ g�1vWV ! kŒG�˝k V0

is a G-homomorphism whose composite with

g; v 7! gvW kŒG�˝k V0 ! V

is the identity on V .
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of representations (i.e., V embeds into a direct sum of copies of the regular representation).

PROOF. Let A D kŒG�. The k-vector space V ˝k A becomes a comodule (isomorphic to
a direct sum of copies of A) with the map

idV ˝�WV ˝k A! V ˝k A˝k A:

The commutative diagram (see p31)

V
�

> V0 ˝k A � An

V ˝k A

�

_
�˝1

> V0 ˝k A˝k A

idV0
˝�

_

� .A˝k A/
n

�n

_

says exactly that the inclusion �WV ! V ˝k A is homomorphism of comodules. 2

The Jordan decomposition in the regular representation

Let G be an algebraic group. An element g of G.k/ D Homk-alg.A; k/ defines a k-linear
automorphism �.g/WA! A, namely,

A
�
�! A˝k A

a˝a0 7!a�g.a0/
�! A (44)

(� is the regular representation). Moreover, �.g/ is locally finite (3.4), and so there is a
decomposition �.g/ D �.g/s�.g/u whose restriction to any �.g/-stable subspace is the
Jordan decomposition.

PROPOSITION 10.13 Let g 2 GL.V /, and let g D gsgu be its Jordan decomposition.
(a) Let � be the regular representation of GLV onA D kŒGLV �; then �.g/ D �.gs/�.gu/

is the Jordan decomposition of �.g/ (i.e., �.g/s D �.gs/ and �.g/u D �.gu/).
(b) Let G be an algebraic subgroup of GLV ; if g 2 G.k/, then gs; gu 2 G.k/.

PROOF. (a) LetG D GLV act on V _ through the contragredient representation, i.e., g acts
as .g_/�1. The actions of G on V and V _ define an injective map (compatible with the
actions of GL.V /)

GL.V /! End.V / � End.V _/

whose image consists of the pairs .˛; ˇ/ such that ˛_ ıˇ D idV _ . When we choose a basis
for V , this equality becomes a polynomial condition on the entries of the matrices of ˛ and
ˇ, and so GLV is a closed subvariety of End.V / � End.V _/ (regarded as an algebraic
variety; cf. AG p55, affine space without coordinates). Therefore, there is a surjective map
of coordinate rings:

� WSym.V _
˝ V /˝k Sym.V ˝ V _/� kŒG�.

Let˚ be the natural representation of GLV on Sym.V _˝V /˝k Sym.V ˝V _/. It follows
from Lemma 10.9 that ˚.g/s D ˚.gs/. For any h 2 GL.V /, � ı ˚.h/ D �.h/ ı � . In
particular,

� ı ˚.g/ D �.g/ ı �

.� ı ˚.g/s D/ � ı ˚.gs/ D �.gs/ ı �
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According to (10.5), the first of these implies that

� ı ˚.g/s D �.g/s ı �:

Since � is surjective, this shows that �.g/s D �.gs/.
(b) Let kŒG� D A=I . An element g of GLV .k/ D Homk-alg.A; k/ lies in G.k/ if and

only if g.I / D 0. Thus, we have to show that

g.I / D 0 H) gs.I / D 0:

The composite of the maps in the top row of

A
�GLV
����! A˝k A

idA ˝g
�����! A˝k k??y ??y ??y

A=I
�G
����! A=I ˝k A=I

idA=I ˝g
������! A=I ˝k k

is �.g/ (see (44)). As the diagram commutes, we see that

�.g/.I / � I;

and so
�.gs/.I / D �.g/s.I / � I:

Because A! A=I is a homomorphism of bialgebras, �GLV
.I / D 0. According to the next

lemma,
gs D � ı �.gs/;

and so gs sends I to 0. 2

LEMMA 10.14 Let G be an algebraic group, and let � be the regular representation. An
element g 2 G.k/ can be recovered from �.g/ by the formula

g D � ı �.g/:

PROOF. Let A D kŒG�, and recall that g is a homomorphism A ! k. When we omit the
identification A˝k k ' k, �.g/ is the composite,

�.g/ D .idA˝g/ ı� W A! A˝k A! A˝k k:

Therefore,
.� ˝ idk/ ı �.g/ D .� ˝ idk/ ı .idA˝g/ ı�:

Clearly,

.� ˝ idk/ ı .idA˝g/ D � ˝ g (homomorphisms A˝k A! k ˝k k)

D .idk˝g/ ı .� ˝ idA/:

But .� ˝ idA/ ı� is the canonical isomorphism i WA ' k ˝k A (see p31), and so

.� ˝ idk/ ı �.g/ D idk˝g ı i (homomorphisms A! k ˝ k).

When we ignore i ’s, this becomes the required formula. 2
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Proof of Theorem 10.1

Let G be an algebraic group over k, and choose an embedding

'WG ! GLV

with V a finite-dimensional vector space (we know ' exists by 3.8). Let g 2 G.k/. Accord-
ing to (10.13), there is a decomposition g D gsgu inG.k/ giving the Jordan decomposition
on V . Let '0WG ! GLV 0 be a second representation, and consider the homomorphism

.'; '0/WG ! GLV ˚V 0

defined by '; '0. According to (10.13), there is a decomposition g D g0
sg

0
u in G.k/ giving

the Jordan decomposition on V ˚ V 0, and in particular on V . Since G.k/ ! GL.V / is
injective, this shows that gs D g0

s , gu D g0
u, and that the decomposition g D gsgu gives

the Jordan decomposition on V 0. This proves the existence, and the uniqueness is obvious.

REMARK 10.15 (a) To check that a decomposition g D gsgu is the Jordan decomposition,
it suffices to check that '.g/ D '.gs/'.gu/ is the Jordan decomposition of '.g/ for a single
faithful representation of G.

(b) Homomorphisms of groups preserve Jordan decompositions. [Let ˛WG ! G0 be
a homomorphism and g D gsgu a Jordan decomposition in G.k/. For any representa-
tion 'WG0 ! GLV , ' ı ˛ is a representation of G, and so .' ı ˛/.g/ D ..' ı ˛/.gs// �

..' ı ˛/.gu// is the Jordan decomposition in GL.V /. If we choose ' to be faithful, this
implies that ˛.g/ D ˛.gs/ � ˛.gu/ is the Jordan decomposition of ˛.g/.]

NOTES The above proof of the Jordan decomposition can probably be simplified.
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11 Solvable algebraic groups

Brief review of solvable groups (in the usual sense)

Let G be a group (in the usual sense). Recall that the commutator of x; y 2 G is

Œx; y� D xyx�1y�1
D .xy/.yx/�1:

Thus, Œx; y� D 1 if and only if xy D yx, and G is commutative if and only if every
commutator equals 1. The (first) derived group G0 (or DG) of G is the subgroup generated
by commutators. Every automorphism of G maps a commutator to a commutator, and so
G0 is a characteristic subgroup of G (in particular, it is normal). In fact, it is the smallest
normal subgroup such that G=G0 is commutative.

The map (not a group homomorphism)

.x1; y1; : : : ; xn; yn/ 7! Œx1; y1� � � � Œxn; yn�WG
2n
! G

has image the set of elements of G that can be written as a product of (at most) n commu-
tators, and so DG is the union of the images of these maps. Note that G2n�2 ! G factors
through G2n ! G,

.x1; y1; : : : ; xn�1; yn�1/ 7! .x1; y1; : : : ; xn�1; yn�1; 1; 1/ 7! Œx1; y1� � � � Œxn�1; yn�1�:

A group G is said to be solvable39 if the derived series

G � DG � D2G � � � �

terminates with 1. For example, if n � 5, then Sn (symmetric group on n letters) is not
solvable because its derived series Sn � An terminates with An.

In this section we’ll define the derived subgroup of an algebraic group, and we’ll call
an algebraic group solvable if the similar sequence terminates with f1g. Then we’ll study
the structure of solvable groups.

Remarks on algebraic subgroups

Recall that, when k D k, G.k/ ' spm kŒG�, and the Zariski topology on spm kŒG� defines
a Zariski topology on G.k/. For any embedding of G into GLn, this is the topology on
G.k/ induced by the natural Zariski topology on GLn.k/.

PROPOSITION 11.1 For an algebraic group G over an algebraically closed field k, H $
H.k/ is a one-to-one correspondence between the smooth algebraic subgroups of G and
the Zariski-closed subgroups of G.k/.

PROOF. Both correspond to reduced quotients of kŒG� compatible with its bialgebra struc-
ture. 2

PROPOSITION 11.2 Let G be an algebraic group over a perfect field k, and let � be the
Galois group of k over k. Then � acts on G.k/, and H $ H.k/ is a one-to-one corre-
spondence between the smooth algebraic subgroups of G and the Zariski-closed subgroups
of G.k/ stable under � (i.e., such that �H.k/ D H.k/ for all � 2 � ).

PROOF. Both correspond to radical ideals a in the k-bialgebra kŒG� stable under the action
of � (see AG 16.7, 16.8). 2

39Because a polynomial is solvable in terms of radicals if and only if its Galois group is solvable (FT 5.29).
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Commutative groups are triangulizable

We first prove a result in linear algebra.

PROPOSITION 11.3 Let V be a finite-dimensional vector space over an algebraically closed
field k, and let S be a set of commuting endomorphisms of V . There exists a basis for V
for which S is contained in the group of upper triangular matrices, i.e., a basis e1; : : : ; en

such that
˛.he1; : : : ; ei i/ � he1; : : : ; ei i for all i: (45)

In more down-to-earth terms, let S be a set of commuting n � n matrices; then there
exists an invertible matrix P such that PAP�1 is upper triangular for A 2 S .

PROOF. We prove this by induction on the dimension of V . If every ˛ 2 S is a scalar
multiple of the identity map, there is nothing to prove. Otherwise, there exists an ˛ 2 S
and an eigenvalue a for ˛ such that the eigenspace Va ¤ V . Because every element of
S commutes with ˛, Va is stable under the action of the elements of S .40 The induction
hypothesis applied to S acting on Va and V=Va shows that there exist bases e1; : : : ; em for
Va and emC1; : : : ; en for V=Va such that

˛.he1; : : : ; ei i/ � he1; : : : ; ei i

˛.hemC1; : : : ; emCi i/ � hemC1; : : : ; emCi i

for all i: Write emCi D emCi C Va. Then e1; : : : ; en is a basis for V satisfying (45): 2

PROPOSITION 11.4 Let V be a finite-dimensional vector space over an algebraically closed
field k, and letG be a commutative smooth algebraic subgroup of GLV . There exists a basis
for V for which G is contained in Tn.

PROOF. We deduce this from (11.3), using the following fact (4.8):

Let G be an algebraic subgroup of GLn; when k D k and G is smooth,
kŒG� consists of the functions G.k/ ! k defined by elements of kŒGLn� D

kŒ: : : ; Xij ; : : : ;det.Xij /
�1�.

Consider:

G.k/ � > GL.V / kŒG� << kŒGLV � G � > GLV

  

Tn.k/
_

........
� > GLn.k/

_

�

kŒTn�

.̂.......
<< kŒGLn�

^

�

Tn

_

.........
� > GLn

_

�

The first square is a diagram of groups and group homomorphisms. We have used (11.3)
to choose a basis for V (hence an isomorphism V ! kn) so that the dotted arrow exists.

The second square is the diagram of bialgebras and bialgebra homomorphisms corre-
sponding to the first (cf. 4.4); the dotted arrow in the first square defines a homomorphism
from kŒTn� to the quotient kŒG� of kŒGLV �.

The third square is the diagram of algebraic groups defined by the second square. 2

40Let ˇ 2 S , and let x 2 Va. Then

˛.ˇx/ D ˇ.˛x/ D ˇax D a.ˇx/:
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Decomposition of a commutative algebraic group

DEFINITION 11.5 Let G be an algebraic group over a perfect field k. An element g of
G.k/ is semisimple (resp. unipotent) if g D gs (resp. g D gu).

Thus, g is semisimple (resp. unipotent) if and only if '.g/ is semisimple (resp. unipo-
tent) for all representations ' of G.

Theorem 10.1 shows that

G.k/ D G.k/s �G.k/u (cartesian product of sets) (46)

where G.k/s (resp. G.k/u) is the set of semisimple (resp. unipotent) elements in G.k/.
However, this will not in general be a decomposition of groups, because Jordan decompo-
sitions don’t respect products, for example, .gh/u ¤ guhu in general. However, if G is
commutative, then

G �G
multiplication
��������! G

is a homomorphism of groups, and so it does respect the Jordan decompositions (10.15).
Thus, in his case (46) realizes G.k/ as a product of subgroups. We can do better.

THEOREM 11.6 Every commutative smooth algebraic groupG over an algebraically closed
field is a direct product of two algebraic subgroups

G ' Gs �Gu

such that Gs.k/ D G.k/s and Gu.k/ D G.k/u.

PROOF. Choose an embedding G ,! Tn for some n, and let Gs D G \ Dn and Gu D

G \ Un. Because G is commutative,

Gs �Gu ! G (47)

is a homomorphism with kernel Gs \ Gu (cf. �6). Because Dn \ Un D f1g as algebraic
groups41, Gs\Gu D f1g, and becauseGs.k/Gu.k/ D G.k/ andG is smooth, Gs �Gu !

G is a quotient map (6.18). Thus, it is an isomorphism. 2

REMARK 11.7 Let G be a smooth algebraic group over an algebraically closed field k. In
general, G.k/s will not be closed for the Zariski topology. However, G.k/u is closed. To
see this, embed G in GLn for some n. A matrix A is unipotent if and only if 1 is its only
eigenvalue, i.e., if and only if its characteristic polynomial is .T � 1/n. But the coefficients
of the characteristic polynomial of A are polynomials in the entries of A, and so this is a
polynomial condition.

ASIDE 11.8 In fact every commutative algebraic group over a perfect field decomposes
into a product of a group of multiplicative type and a unipotent group (Waterhouse 1979,
9.5)

41Dn is defined as a subgroup of GLn by the equations Xij D 0 for i ¤ j ; Un is defined by the equations
Xi i D 1 etc. When combined, the equations certainly define the subgroup fI g (in any ring).
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The derived group of algebraic group

DEFINITION 11.9 The derived group DG (or G0 or Gder) of an algebraic group G is the
intersection of the normal algebraic subgroups N of G such that G=N is commutative.

Thus (cf. �6), DG is the smallest normal algebraic subgroup of G such that G=DG is
commutative. We shall need another description of it, analogous to the description of the
derived group as that generated by commutators.

As for groups, there exist maps of functors

G2
! G4

! � � � ! G2n
! G:

Let In be the kernel of the homomorphism kŒG�! kŒG2n� of k-algebras (not k-bialgebras)
defined by G2n ! G: Then

I1 � I2 � � � � � In � � � �

and we let I D
T
In.

PROPOSITION 11.10 The coordinate ring of DG is kŒG�=I .

PROOF. From the diagram of set-valued functors

G2n � G2n ! G4n

# # #

G � G
mult
��! G

we get a diagram of k-algebras

kŒG�=In ˝k kŒG�=In  kŒG�=I2n

" " "

kŒG� ˝k kŒG�
�
 � kŒG�

(because kŒG�=In is the image of kŒG� in kŒG2n� ). It follows that �W kŒG�! kŒG�=I ˝k

kŒG�=I factors through kŒG� ! kŒG�=I , and defines a k-bialgebra structure on kŒG�=I ,
which corresponds to the smallest algebraic subgroup G0 of G such that G0.R/ contains all
the commutators for all R. Clearly, this is the smallest normal subgroup such that G=G0 is
commutative. 2

COROLLARY 11.11 For any field K � k, DGK D .DG/K :

PROOF. The definition of I commutes with extension of the base field. 2

COROLLARY 11.12 IfG is connected (resp. smooth), thenDG is connected (resp. smooth).

PROOF. Recall that an algebraic groupG is connected if and only if kŒG� has no idempotent
¤ 0; 1 (see p67), and that a product of connected algebraic groups is connected (8.16).
Since kŒG�=In ,! kŒG2n�, the ring kŒG�=In has no idempotent ¤ 0; 1, and this implies
that the same is true of kŒG�=I D kŒDG�. A similar argument works for “smooth”. 2

COROLLARY 11.13 PROPOSITION 11.14 Let G be a smooth connected algebraic group.
Then kŒDG� D kŒG�=In for some n, and .DG/.k/ D D.G.k//.
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PROOF. As G is connected and smooth, so also is G2n (8.16, 2.20). Therefore, each ideal
In is prime, and an ascending sequence of prime ideals in a noetherian ring terminates. This
proves the first part of the statement.

Let Vn be the image of G2n.k/ in G.k/. Its closure in G.k/ is the zero-set of In. Being
the image of a regular map, Vn contains a dense open subset U of its closure (AG 10.2).
Choose n as in the first part, so that the zero-set of In is DG.k/. Then

U � U�1
� Vn � Vn � V2n � D.G.k// D

[
m
Vm � DG.k/:

It remains to show that U � U�1 D DG.k/. Let g 2 DG.k/. Because U is open and dense
DG.k/, so is gU�1, which must therefore meet U , forcing g to lie in U � U . 2

Definition of a solvable algebraic group

Write D2G for D.DG/, etc..

DEFINITION 11.15 An algebraic group G is solvable if the derived series

G � DG � D2G � � � �

terminates with 1.

LEMMA 11.16 An algebraic group G is solvable if and only if it has a sequence of alge-
braic subgroups

G � G1 � � � � � Gn D f1g (48)

with GiC1 normal in Gi for each i , and Gi=GiC1 commutative.

PROOF. IfG is solvable, then the derived series is such a sequence. Conversely,G1 � DG,
so G2 � D2G, etc.. 2

EXAMPLE 11.17 Let F be a finite group, and let F be the associated constant algebraic
group (2.14). Then F is solvable if and only if F is solvable. In particular, the theory
of solvable algebraic groups includes the theory of solvable finite groups, which is quite
complicated.

EXAMPLE 11.18 The group Tn of upper triangular matrices is solvable. For example,

f. � �
0 � /g �

˚�
1 �
0 1

�	
�
˚�

1 0
0 1

�	
and n�

� � �
0 � �
0 0 �

�o
�

n�
1 � �
0 1 �
0 0 1

o�
�

n�
1 0 �
0 1 0
0 0 1

�o
�

n�
1 0 0
0 1 0
0 0 1

�o
demonstrate that T2 and T3 are solvable. In the first case, the quotients are Gm � Gm and
Ga, and in the second the quotients are Gm �Gm �Gm, Ga �Ga, and Ga.

More generally, let G0 be the subgroup of Tn consisting of the matrices .aij / with
ai i D 1. Let Gr be the subgroup of G0 of matrices .aij / such that aij D 0 for 0 < j � i �
r . The map

.aij / 7! .a1;rC2; : : : ; ai;rCiC1; : : :/

is a homomorphism from Gr onto Ga �Ga � � � � with kernel GrC1.
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Alternatively, we can work abstractly. A full flag F in a vector space V of dimension
n is a sequence of subspaces

V D Vn � � � � � Vi � Vi�1 � � � � � V1 � f0g

with Vi of dimension i . Let T be the algebraic subgroup of GLV such that T.k/ consists of
the automorphisms preserving the flag, i.e., such that ˛.Vi / � Vi . When we take F to be
the obvious flag in kn, G D Tn. Let G0 be the algebraic subgroup of G of ˛ acting as id
on the quotients Vi=Vi�i ; more precisely,

G0 D Ker.G !
Y

GLVi =Vi�i
/:

Then G0 is a normal algebraic subgroup of T with quotient isomorphic to Gn
m. Now de-

fine Gr to be the algebraic subgroup of G0 of elements ˛ acting as id on the quotients
Vi=Vi�r�1: Again, GrC1 is a normal algebraic subgroup of Gr with quotient isomorphic
to a product of copies of Ga.

EXAMPLE 11.19 The group of n � n monomial matrices is solvable if and only if n � 4
(because Sn is solvable if and only if n � 4; GT 4.33).

Independence of characters

Let Gm be the subgroup of GLn of scalar matrices, i.e., it is the subgroup defined by the
equations

Xij D 0 for i ¤ j I

X11 D X22 D � � � D Xnn:

Then a 2 Gm.R/ D R
� acts on Rn as .x1; : : : ; xn/ 7! .ax1; : : : ; axn/.

Similarly, GLV contains a subgroup Gm such that a 2 Gm.R/ acts on R ˝k V by the
homothety v 7! av. Under the isomorphism GLV ! GLn defined by any basis of V , the
Gm’s correspond. In fact, Gm is the centre of GLV .

Now let 'WG ! GLV be a representation of G on V . If ' factors through the centre
Gm of GLV ,

G
'
�! Gm � GLV

then ' is a character of G, and we say that G acts on V through the character ' (cf. p75).
More generally, we say that G acts on a subspace W of V through a character � if W is
stable under G and G acts on W through �. Note that this means, in particular, that the
elements of W are common eigenvectors for the g 2 G.k/: if w 2 W , then for every
g 2 G.k/, '.g/w is a scalar multiple of w. For this reason, we also call V� an eigenspace
for G with character �.

Let 'WG ! GLV be a representation of G on V . If G acts on a subspaces W and
W 0 through a character �, then it acts on W CW 0 through �. Therefore, there is a largest
subspace V� of V on which G acts through �.

PROPOSITION 11.20 Assume G is smooth. If V is a sum of spaces V�, then it is a di-
rect sum. In other words, vectors lying in eigenspaces corresponding to �’s are linearly
independent.



11 SOLVABLE ALGEBRAIC GROUPS 91

PROOF. As we saw in �9, characters of G correspond to group-like elements of kŒG�. If
�$ a.�/, then the representation � of G on V� is given by �.v/ D v ˝ a.�/.

Suppose V D V�1
C � � � C V�r

with the �i distinct characters of G. If the sum is not
direct, then there exists a relation

v1 C � � � C vs D 0; vi 2 V�i
; vi ¤ 0: (49)

Then
0 D

X
�.vi / D

X
vi ˝ a.�i /

which contradicts the linear independence of the a.�i / (see 9.8). 2

REMARK 11.21 In characteristic zero, there is the following more direct proof. We may
assume k D k. On applying g 2 G.k/ to (49), we get a new relation

�1.g/v1 C � � � C �s�1.g/vs�1 C �s.g/vs D 0: (50)

As �s ¤ �s�1, there exists a g 2 G.k/ such that �s.g/ ¤ �s�1.g/. Multiply (50) by
�s.g/

�1 and subtract from (49). This will give us a new relation of the same form but
with fewer terms. Continuing in this fashion, we arrive at a contradiction. [Perhaps this
argument works more generally.]

We saw in �9 that if G is a split torus, V is always a sum of the eigenspace V�. In
general, this will be far from true. For example, SLn has no nontrivial characters.

The Lie-Kolchin theorem

THEOREM 11.22 LetG be an algebraic subgroup of GLV . IfG is connected, smooth, and
solvable, and k is algebraically closed, then there exists a basis for V such that G � Tn.

Before proving this, it will be useful to see that the hypotheses are really needed.
solvable As Tn is solvable (11.18) and a subgroup of a solvable group is obviously solv-

able, this is necessary.
k algebraically closed IfG.k/ � Tn.k/, then the elements ofG.k/ have a common eigen-

vector, namely, e1 D . 1 0 ��� 0 /t . Unless k is algebraically closed, an endomorphism
need not have an eigenvector, and, for example,˚�

a b
�b a

� ˇ̌
a; b 2 R; a2

C b2
D 1

	
is an commutative algebraic group over R that is not triangulizable over R.

connected The group G of monomial 2 � 2 matrices is solvable but no triagonalizable.
The only common eigenvectors of D2.k/ � G.k/ are e1 D

�
1
0

�
and e2 D

�
0
1

�
,

but the monomial matrix
�

0 1
1 0

�
interchanges e1 and e2, and so there is no common

eigenvector for the elements of G.k/.

PROOF. By the argument in the proof of (11.4), it suffices to show that there exists a basis
for V such that G.k/ � Tn.k/.

Also, it suffices to show that the elements ofG.k/ have a common eigenvector, because
then we can apply induction on the dimension of V (cf. the proof of 11.3).

We prove this by induction on the length of the derived series G. If the derived series
has length zero, then G is commutative, and we proved the result in (11.4). Let N D DG.
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Its derived series is one shorter than that of G, and so we can assume that the elements of
N have a common eigenvector, i.e., for some character � of N , the space V� (for N ) is
nonzero.

Let W be the sum of the nonzero eigenspaces V� for N . According to (11.20), the sum
is direct,

W D
M

V�

and so the set fV�g of nonzero eigenspaces for N is finite.
Let x 2 V� for some �, and let g 2 G.k/. For n 2 N.k/,

ngx D g.g�1ng/x D g � �.g�1ng/x D �.g�1ng/ � gx

For the middle equality we used that N is normal in G. Thus, gx lies in the eigenspace for
the character �0 D .n 7! �.g�1ng// of N . This shows that G.k/ permutes the finite set
fV�g.

Choose a � and let H be the stabilizer of V� in G.k/. Thus, H is a subgroup of finite
index in G.k/. Moreover, it is closed for the Zariski topology on G.k/ because it is the
set where the characters � and �0 coincide. But every closed subgroup of finite index of a
topological group is open42, and so H is closed and open in G.k/. But G.k/ is connected
for the Zariski topology (8.19), and so G.k/ D H . This shows that W D V�, and so G.k/
stabilizes V�.

An element n 2 N.k/ acts on V� as the homothety x 7! �.n/x, �.n/ 2 k: But each
element n of N.k/ is the commutator n D Œx; y� of two elements of G.k/ (see 11.14), and
so n acts on V� as an automorphism of determinant 1. This shows that �.n/dim V� D 1, and
so the image of �WG ! Gm is finite. Because N is connected, this shows that N.k/ in fact
acts trivially43 on V�. Hence G.k/ acts on V� through the quotient G.k/=N.k/, which is
commutative. In this case, we know there is a common eigenvalue (11.3). 2

Unipotent groups

There is the following statement in linear algebra.

PROPOSITION 11.23 Let V be a finite-dimensional vector space, and let G be a subgroup
of GL.V / consisting of unipotent endomorphisms. Then there exists a basis for V for which
G is contained in Un (in particular, G is solvable).

PROOF. Waterhouse 1979, 8.2. 2

PROPOSITION 11.24 The following conditions on an algebraic group G are equivalent:
(a) in every nonzero representation ofG has a nonzero fixed vector (i.e., a nonzero v 2 V

such that �.v/ D v ˝ 1 when V is regarded as a kŒG�-comodule);
(b) G is isomorphic to a subgroup of Un for some n; and
(c) for smooth G, G.k/ consists of unipotent elements.

PROOF. Waterhouse 1979, 8.3. [As in the proof of ((11.4), (c) implies that (b).] 2

DEFINITION 11.25 An algebraic group G is unipotent if it satisfies the equivalent condi-
tions of (11.24).

42Because it is the complement of finite set of cosets, each of which is also closed.
43In more detail, the argument shows that the character � takes values in �m � Gm where m D dimV�. If

k has characteristic zero, or characteristic p and p 6 jm, then �m is étale, and so, because N is connected, �
is trivial. If pjm, the argument only shows that � takes values in �pr for pr the power of p dividing m. But
�pr .k/ D 1, and so the action of N.k/ on V is trivial, as claimed.
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Structure of solvable groups

THEOREM 11.26 LetG be a connected solvable smooth group over a perfect field k. There
exists a unique connected normal algebraic subgroup Gu of G such that

(a) Gu is unipotent;
(b) G=Gu is of multiplicative type.

The formation of Gu commutes with change of the base field.

PROOF. We first prove this when k D k. Embed G into Tn for some n, and construct

1 ����! Un ����! Tn ����! Dn ����! 1x?? x?? x??
1 ����! Gu ����! G ����! T ����! 1

where Gu D Un \ G and T is the image of G in Dn. Certainly Gu is a normal algebraic
subgroup of G satisfying (a) and (b). We next prove that Gu is connected.

Let Q D G=DG. It is commutative, so that (11.6)

Q ' Qu �Qs .

This shows that Qu is connected (if it had an étale quotient, so would Q). As G=Gu is
commutative, DG � Gu, and the diagram

1 ����! DG ����! Gu ����! �0.Gu/ ����! 1


 ??y ??y
1 ����! DG ����! G ����! Q ����! 1??y ??y

T ����! Q=�Gu??y ??y
1 1

shows that T ' Q=�0.Gu/. Since �.Gu/ � Qu, this shows that �0.Gu/ D Qu, and so
(8.27)

Qu, DG connected H) Gu connected.

For the uniqueness, note that Gu is the largest connected normal unipotent subgroup of
G, or that Gu.k/ consists of the unipotent elements of G.k/ (and apply (11.1)).

When k is only perfect, the uniqueness of .G
k
/u implies that it is stable under � ,

and hence arises from a unique algebraic subgroup Gu of G (11.2), which clearly has the
required properties. 2

Tori in solvable groups

PROPOSITION 11.27 Let G be a connected smooth solvable group over an algebraically
closed field. If T and T 0 are maximal tori in G, then T 0 D gTg�1 for some g 2 G.k/.

PROOF. Omitted for the present (cf. Humphreys 1975, 19.2). 2
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PROPOSITION 11.28 The centralizer of any torus in a connected smooth solvable groupG
is connected.

PROOF. Omitted for the present (cf. Humphreys 1975, 19.4). 2

The radical of an algebraic group

LEMMA 11.29 (a) Algebraic subgroups and quotient groups of solvable algebraic groups
are solvable.

(b) Let N be a normal algebraic subgroup of G. If N and G=N are solvable, then so
also is G.

(c) Let N andH be algebraic subgroups of G with N normal. IfH and N are solvable
(resp. connected), then HN is solvable (resp. connected).

PROOF. Only (c) is requires proof. The quotient HN=N is solvable (resp. connected)
because it is isomorphic toH=H \N (see 6.24), and so this follows from (b) (resp. 8.27).2

It follows from (c) that for any algebraic algebraic group G over a perfect field k, there
exists a unique largest connected normal smooth solvable subgroup, which is called the
radical RG of G. The unipotent radical of G is defined to be RuG D .RG/u.

Structure of a general (affine) algebraic group

DEFINITION 11.30 A smooth connected algebraic group G ¤ 1 is semisimple it has no
smooth connected normal commutative subgroup other than the identity, and it is reductive
if the only such subgroups are tori.

For example, SLn, SOn, Spn are semisimple, and GLn is reductive.

PROPOSITION 11.31 Let G be a smooth connected algebraic group over a perfect field k.
(a) G is semisimple if and only if RG D 0.
(b) G is reductive if and only if RuG D 0.

PROOF. (a) If RG D 0, then obviously G is semisimple. For the converse, we use that, for
any algebraic groupG,RG andDG are characteristic subgroups, i.e., every automorphism
of G maps RG onto RG and DG onto DG. This is obvious from their definitions: RG is
the largest connected normal solvable algebraic subgroup and DG is the smallest normal
algebraic subgroup such that G=DG is commutative. Therefore the chain

G � RG � D.RG/ � D2.RG/ � � � � � Dr.RG/ � 1

is preserved by every automorphism of G. In particular, the groups are normal in G.
(b) Similar. 2

REMARK 11.32 If one of the conditions, commutative, connected, normal, smooth, is
dropped, then a semisimple group may have such a subgroup. For example, SL2 has the
commutative normal subgroup f˙I g and the commutative connected subgroup U2. More-
over, SL2 �SL2 is semisimple, but it has the connected normal subgroup f1g�SL2. Finally,
over a field of characteristic 2, SL2 has the connected normal commutative subgroup �2.
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EXAMPLE 11.33 Let G be the group of invertible matrices
�
A B

0 C

�
. The unipotent radi-

cal of G is the subgroup of matrices
�
I B

0 I

�
. The quotient of G by RuG is isomorphic to

the reductive group of invertible matrices of the form
�
A 0

0 C

�
, i.e., to GLm �GLn. The

radical of this is Gm �Gm.

ASIDE 11.34 A representation G ! GL.V / is said to be semisimple (or completely re-
ducible) if every stable subspace W has a stable complement W 0 (so V is a direct sum
V D W ˚W 0 of representations), or, equivalently, if V is a direct sum of simple (i.e., irre-
ducible) representations (those with no proper nonzero subrepresentations). For example,
the action of U2 on k2, �

1 a

0 1

��
x

y

�
D

�
x C ay

y

�
;

is not semisimple because the only stable one-dimensional subspace is the x-axis (the map
is a shear). In general, representations of unipotent groups are not semisimple; nor should
you expect the representations of a group containing a normal unipotent group to be semi-
simple. However, in characteristic zero, a connected algebraic group is reductive if and only
if all of its representations are semisimple (15.6). In characteristic p, a connected algebraic
group is reductive if and only if it is a torus.

Exercises

11-1 Give a geometric proof that G connected implies DG connected. [Show that the
image of connected set under a continuous map is connected (for the Zariski topology,
say), the closure of a connected set is connected, and a nested union of connected sets is
connected sets is connected; then apply the criterion (8.19).]

11-2 Show that if 1 ! N ! G ! Q ! 1 is exact, so also is �0.N / ! �0.G/ !

�0.Q/ ! 1 (in an obvious sense). Give an example to show that �0.N / ! �0.G/ need
not be injective.
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12 The Lie algebra of an algebraic group: basics

According to any definition, an algebraic group gives a functor from k-algebras to groups.
The Lie algebra of the algebraic group is detemined by the value of the functor on only
the k-algebra of dual numbers, but nevertheless contains a surprisingly large amount of
information about the group. Since the study of Lie algebras is little more than linear
algebra, they are a valuable tool in the study of algebraic groups.

Lie algebras: basic definitions

DEFINITION 12.1 A Lie algebra over a field k is a finite-dimensional vector space V over
k together with a k-bilinear map

Œ ; �WL � L! L

(called the bracket) such that
(a) Œx; x� D 0 for all x 2 L,
(b) Œx; Œy; z��C Œy; Œz; x��C Œz; Œx; y�� D 0 for all x; y; z 2 L.

A homomorphism of Lie algebras is a k-linear map ˛WL! L0 such that

Œ˛.x/; ˛.y/� D ˛.Œx; y�/

for all x; y 2 L.

Condition (b) is called the Jacobi identity. Note that (a) applied to ŒxCy; xCy� implies
that

Œx; y� D �Œy; x�, for all x; y 2 L:

A Lie subalgebra of a Lie algebra g is a k-subspace s such that Œx; y� 2 s whenever
x; y 2 s.

EXAMPLE 12.2 Let gln be space of all n � n matrices with entries in k, and let

ŒA; B� D AB � BA:

Then obviously ŒA;A� D 0 and a calculation shows that it satisfies the Jacobi identity. In
fact, on expanding out the left side of the Jacobi identity for A;B;C one obtains a sum
of 12 terms, 6 with plus signs and 6 with minus signs. By symmetry, each permutation of
A;B;C must occur exactly once with a plus sign and once with a minus sign.

A subspace a of g is an ideal if Œg; a� � a, i.e., if Œx; a� 2 a for all x 2 g and a 2 a.
The kernel of a homomorphism of Lie algebras is an ideal, and every ideal is the kernel of
a homomorphism: given an ideal a in g, define a bracket on the quotient vector space g=a

by setting
Œx C a; y C a� D Œx; y�C a:

The factorization theorem holds: every homomorphism of Lie algebras factors into a quo-
tient map and an injection. Moreover, the isomorphism theorem holds: let h be a Lie
subalgebra of g and a an ideal in g; then hC a is a Lie subalgebra of g, h \ a is an ideal in
h, and the map

x C h \ a 7! x C aW h=h \ a! ha=a

is an isomorphism.
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The Lie algebra of an algebraic group

Let G be an algebraic group over a field k, and let kŒ"� be the ring of dual numbers:

kŒ"� D kŒX�=.X2/:

Thus kŒ"� D k ˚ k" as a k-vector space and "2 D 0. There are homomorphisms of k-
algebras

k
a 7!aC0"
������! kŒ"�

"7!0
����! k

If a ¤ 0, then aC b" D a.1C b
a
"/ has inverse a�1.1 � b

a
"/, and so

kŒ"�� D faC b" j a ¤ 0g:

DEFINITION 12.3 For an algebraic group G over k,

Lie.G/ D Ker.G.kŒ"�/! G.k//:

Shortly we’ll see that this has a natural structure of a Lie algebra.

EXAMPLE 12.4 Take G D GLn. Note that, for any n � n matrix A;

.In C "A/.In � "A/ D In:

Thus, In C "A 2 Lie.GLn/, and every element of Lie.GLn/ is of this form. The map

In C "A 7! AWLie.GLn/!Mn.k/

is an isomorphism.

REMARK 12.5 An element of Lie.G/ is a k-algebra homomorphism ˛WA ! kŒ"� whose
composite with " 7! 0 is �. Therefore, elements of A not in the kernel m of � map to units
in kŒ"�, and so ˛ factors uniquely throughAm. This shows that Lie.G/ depends only onAm.
In particular, Lie.Gı/ ' Lie.G/. Of course, experts will recognize Lie.G/ as the tangent
space to G at the identity element.

Description in terms of derivations

DEFINITION 12.6 Let A be a k-algebra and M an A-module. A k-derivation is a k-linear
map DWA!M such that

D.fg/ D f �D.g/C g �D.f / (Leibniz rule).

For example, D.1/ D D.1� 1/ D 2D.1/and so D.1/ D 0. By k-linearity, this implies
that

D.c/ D 0 for all c 2 k: (51)

Conversely, every additive map A ! M satisfying the Leibniz rule and zero on k is a
k-derivation.

Let ˛WA! kŒ"� be a k-algebra homomorphism, and write

˛.f / D ˛0.f /C "˛1.f /:
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From ˛.fg/ D ˛.f /˛.g/, we find that

˛0.fg/ D ˛0.f /˛0.g/

˛1.fg/ D ˛0.f /˛1.g/C ˛0.g/˛1.f /:

When we use ˛0 to make k into an A-module, the second condition says that ˛1 is a k-
derivation A! k.

By definition, the elements of Lie.G/ are the k-algebra homomorphisms kŒG� ! kŒ"�

such that the composite

kŒG�
˛
�! kŒ"�

"7!0
�! k

is � (the � that is part of the bialgebra structure on kŒG�), i.e., such that ˛0 D �. Thus, we
have proved the following statement.

PROPOSITION 12.7 There is a natural one-to-one correspondence between the elements of
Lie.G/ and the k-derivations A! k (A acting on k through �).

The correspondence is � C "D $ D, and the Leibniz condition is

D.fg/ D �.f / �D.g/C �.g/ �D.f / (52)

The functor Lie

The description of Lie.G/ in terms of derivations makes clear that it a functor from alge-
braic groups to k-vector spaces.

PROPOSITION 12.8 There is a unique way of making G 7! Lie.G/ into a functor to Lie
algebras such that Lie.GLn/ D gln.

Without the condition on Lie.GLn/, we could, for example, take the bracket to be zero.
It is clear from either description of Lie, that an embedding of algebraic groups G ,! H

defines an injection LieG ! LieH . On applying this remark to an embedding of G into
GLn, we obtain the uniqueness assertion. The existence will be proved presently.

Examples

EXAMPLE 12.9 When we expand out det.I C "A/ as a sum of nŠ terms, the only nonzero
term is Y

.1C "ai i / D 1C "
X

ai i

because every other term includes at least two off-diagonal entries. Hence

det.I C "A/ D 1C "trace.A/

and so

sln
df
D Lie.SLn/ D fI C "A j trace.A/ D 0g

' fA 2Mn.k/ j trace.A/ D 0g:

Certainly, ŒA; B� D AB � BA has trace zero (even if A and B don’t), and so sln is a Lie
subalgebra of gln.
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EXAMPLE 12.10 As44

Tn.kŒ"�/ D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

0BBBBB@
a1 C � � � � � � �

0 a2 C � � � � � �

:::
:::
: : :

:::
:::

0 0 � � � an�1 C � �

0 0 � � � 0 an C �

1CCCCCA

9>>>>>=>>>>>;
with � 2 "k, we see that

tn
df
D Lie.Tn/ ' f.aij / j aij D 0 if i > j g:

Similarly,

un
df
D Lie.Un/ ' f.aij / j aij D 0 if i � j g

dn
df
D Lie.Dn/ ' f.aij / j aij D 0 if i ¤ j g:

EXAMPLE 12.11 Assume the characteristic¤ 2, and let On be orthogonal group:

On D fA 2 GLn j A
t
� A D I g

(At Dtranspose of A). This is the group of matrices preserving the quadratic form X2
1 C

� � � CX2
n . For I C "A 2Mn.kŒ"�/,

.I C "A/t � .I C "A/ D I C "At
C "A;

and so

Lie.On/ D fI C "A 2Mn.kŒ"�/ j A
t
C A D 0g

' fA 2Mn.k/ j A
t
C A D 0g:

Similarly, Lie.SOn/ consists of the skew symmetric matrices with trace zero, but obviously
the second condition is redundant, and so

Lie.SOn/ D Lie.On/:

EXAMPLE 12.12 Let G be a finite étale algebraic group, so kŒG� is a separable algebra.
Every quotient of kŒG� is also separable, but the only separable subalgebra of kŒ"� is k.
Therefore G.ŒkŒ"�/ D G.k/, and Lie.G/ D 0:

EXAMPLE 12.13 Let k have characteristic p ¤ 0, and let G D ˛p, so that ˛p.R/ D fr 2

R j rp D 0g (see 2.9). Thus ˛p.k/ D f0g, and so

Lie.˛p/ D ˛p.kŒ"�/ D fa" j a 2 kg ' k:

Similarly, Lie.�p/ ' k.

44Recall that Tn is the subgroup of GLn defined by the equations Xij D 0 for i > j .
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EXAMPLE 12.14 Let V be a vector space over k. Then kŒ"�˝k V D V ˚V" as a k-vector
space, with " acting as x C "y 7! "x, i.e., when we write

�
x
y

�
for x C "y,

"
�

x
y

�
D
�

0 0
1 0

� �
x
y

�
D
�

0
x

�
D "x:

Since �
˛ ˇ

 ı

� �
0 0
1 0

�
D

�
ˇ 0
ı 0

�
�

0 0
1 0

� � ˛ ˇ

 ı

�
D

�
0 0
˛ ˇ

�
we see that the kŒ"�-linear maps kŒ"�˝k V ! kŒ"�˝k V are given by matrices

�
˛ 0
ˇ ˛

�
, i.e.,

the kŒ"�-linear maps are the maps ˛ C "ˇ where ˛ and ˇ are k-linear maps V ! V and

.˛ C "ˇ/.x C "y/ D ˛.x/C ".˛.y/C ˇ.x//: (53)

It follows that

Lie.GLV / D fidC"˛ j ˛ 2 Endk-lin.V /g

' Endk-lin.V /:

with the bracket
Œ˛; ˇ� D ˛ ı ˇ � ˇ ı ˛: (54)

We denote this Lie algebra by glV .

Note that
.idC"˛/.x C "y/ D x C "y C "˛.x/. (55)

EXAMPLE 12.15 Let  WV � V ! k be a k-bilinear form, and let G be the subgroup of
GLV of ˛ preserving the form, i.e., such that

 .˛x; ˛x0/ D  .x; x0/ all x; x0
2 V:

Then Lie.G/ consists of the endomorphisms idC"˛ of kŒ"�˝k V such that

 .x C "y; x0
C "y0/ D  ..idC"˛/.x C "y/; .idC"˛/.x0

C "y0//

D  .x C "y C " � ˛x; x0
C "y0

C " � ˛x0/

D  .x C "y; x0
C "y0/C ". .˛x; x0/C  .x; ˛x0//;

and so

Lie.G/ ' f˛ 2 Endk-lin.V / j  .˛x; x
0/C  .x; ˛x0/ D 0 all x; x0

2 V g:

The bracket is given by (54).

EXAMPLE 12.16 Let G D D.M/ (see p71), so that G.R/ D Hom.M;R�/. On applying
Hom.M;�/ to the exact sequence (of commutative groups)

0 ����! k
a 7!1Ca"
������! kŒ"��

"7!0
����! k� ����! 0;

we find that
Lie.G/ ' Homk-lin.M; k/ ' Homk-lin.M;Z/˝Z k:

A split torus T is the diagonalizable group associated with M D X.T /, and so

Lie.T / ' Homk-lin.X.T /; k/ ' Homk-lin.X.T /;Z/˝Z k:

Hence,
Homk-lin.Lie.T /; k/ ' k ˝Z X.T /:
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Extension of the base field

PROPOSITION 12.17 For any extension K of k, Lie.GK/ ' K ˝k Lie.G/.

PROOF. We use the description of the Lie algebra in terms of derivations (12.8). Let ei be
a basis for A as a k-vector space, and let

eiej D

X
aijkek; aijk 2 k:

In order to show that a k-linear map DWA ! k is a k-derivation, it suffices to check the
Leibniz condition the elements of the basis. Therefore, D is a k-derivation if and only if
the scalars ci D D.ei / satisfyX

k
aijkck D �.ei /cj C �.ej /ci

for all i; j . This is a homogeneous system of linear equations in the ci , and so45 a basis for
the solutions in k is also a basis for the solutions in K. 2

REMARK 12.18 Let G be an algebraic group over k. For a k-algebra R, define

g.R/ D Ker.G.RŒ"�/! G.R//

where RŒ"� D R ˝k kŒ"�. Then, as in (12.7), g.R/ can be identified with the space of
k-derivations A ! R (with R regarded as an A-module through �), and the argument in
the proposition shows that

g.R/ ' R˝k g.k/ (56)

where g.k/ D Lie.G/.

Definition of the bracket

An element g 2 G.k/ defines an automorphism inn.g/W x 7! gxg�1 of G.R/ for all R. In
other words, there is a homomorphism

innWG.k/! Aut.G/:

Because Lie is a functor, automorphisms ofG define automorphisms of Lie.G/, and we get
a homomorphism

AdWG.k/
inn
�! Aut.G/! Aut.Lie.G//:

Specifically, g defines an element g0 of G.kŒ"�/ via k ! kŒ"�, and the action of inn.g0/ on
G.kŒ"�/ defines an automorphism of Lie.G/ � G.kŒ"�/.

45Let S be the space of solutions of a system of homogeneous linear equations with coefficients in k. Then
the space of solutions of the system of equations with coefficients in any k-algebra is R˝k S . To see this, note
that S is the kernel of a linear map

0! S ! V
˛
�! W

and that tensoring this sequence with R gives an exact sequence

0! R˝k S ! R˝k V
idR ˝˛
�! R˝k W:

Alternatively, for a finite system, we can put the matrix of the system of equations in row echelon form (over
k), from which the statement is obvious.
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We can do this more generally: for any k-algebra R, an element g 2 G.R/ defines
an element g0 of G.RŒ"�/ via R ! RŒ"�, and the action of inn.g0/ on G.RŒ"�/ defines an
automorphism of g.R/. Therefore, we have a homomorphism

G.R/! AutR-lin.g.R//
.56/
D GLg.k/.R/ (57)

which is natural in R, i.e., a homomorphism of algebraic groups

G ! GLg.k/ :

On applying the functor Lie to this, we get a homomorphism of k-vector spaces

adWLieG ! Lie GLg.k/

12:14
' Endk-lin.g.k//:

DEFINITION 12.19 For A;X 2 Lie.G/,

ŒA;X� D ad.A/.X/:

LEMMA 12.20 For G D GLn, the construction gives ŒA;X� D AX �XA.

PROOF. An element I C "A 2 Lie.GLn/ acts on X C "Y 2Mn ˝k kŒ"� to give

.I C "A/.X C "Y /.I � "A/ D X C "Y C ".AX �XA/:

On comparing this with (55), we see that ad.A/ acts as idC"˛ where ˛.X/ D AX �XA.2

LEMMA 12.21 The construction is functorial in G, i.e., the map LieG ! LieH defined
by a homomorphism of algebraic groups G ! H is compatible with the two brackets.

PROOF. The starting point of the proof is the observation that the homomorphisms (57)
give a commutative diagram

G.R/ � g.R/ ! g.R/

# # #

H.R/ � h.R/ ! h.R/:

We leave the rest to the reader. 2

Because the bracket ŒA;X� D AX � XA on gln satisfies the conditions in (12.1) and
every G can be embedded in GLn, the bracket on Lie.G/ makes it into a Lie algebra. This
completes the proof of (12.8).

Alternative construction of the bracket.

Let A D kŒG�, and consider the space Derk.A;A/ of k-derivations A ! A (with A re-
garded as an A-module in the obvious way). The composite of two k-derivations need not
be a k-derivation, but their bracket

ŒD;D0�
df
D D ıD0

�D0
ıD

is, and it satisfies the Jacobi identity. One shows that the map Derk.A;A/ ! Derk.A; k/

defined by �WA ! k gives a bracket on Derk.A; k/ with the required properties (see Wa-
terhouse 1979, Chapter 12).
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The unitary group

Let K be a separable k-algebra of degree 2. There is a unique k-automorphism a 7! a of
K such that a D a if and only if a 2 k. There are only two possibilities:

(a) K is a separable field extension of k of degree 2 and a 7! a is the nontrivial element
of the Galois group, or

(b) K D k � k and .a; b/ D .b; a/:
For an n � n matrix A D .aij / with entries in K, define A to be .aij / and A� to be the

transpose of A. Then there is an algebraic group G over k such that

G.k/ D fA 2Mn.K/ j A
�A D I g:

More precisely, for a k-algebra R, define a˝ r D a ˝ r for a ˝ r 2 K ˝k R, and, with
the obvious notation, let

G.R/ D fA 2Mn.K ˝k R/ j A
�A D I g:

Note that A�A D I implies det.A/det.A/ D 1. In particular, det.A/ is a unit, and so
G.R/ is a group.

In case (b),
G.R/ D f.A;B/ 2Mn.R/ j AB D I g

and so .A;B/ 7! A is an isomorphism of G with GLn.
In case (a), let e 2 K X k. Then e satisfies a quadratic polynomial with coefficients

in k. Assuming char.k/ ¤ 2, we can “complete the square” and choose e so that e2 2 k

and e D �e. A matrix with entries in K ˝k R can be written in the form A C eB with
A;B 2Mn.R/. It lies in G.R/ if and only if

.At
� eB t /.AC eB/ D I

i.e., if and only if

AtA � e2BB t
D I

AtB � B tA D 0:

Evidently, G is represented by a quotient of kŒ: : : ; Xij ; : : :�˝k kŒ: : : ; Yij ; : : :�.
Note that, for a field extension k ! k0, Gk0 is the group obtained from the pair .K 0 D

K ˝k k
0; a˝ c 7! a˝ c/. In particular, G

k
' GLn, and so is connected.

The Lie algebra of G consists of the A 2Mn.K/ such that

.I C "A/�.I C "A/ D I

i.e., such that
A�
C A D 0:

Note that this is not a K-vector space, reflecting the fact that G is an algebraic group over
k, not K.

When k D R and K D C, G is called the unitary group Un. The subgroup of matrices
with determinant 1 is the special unitary group SUn.
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Lie preserves fibred products

Recall (p15) that for any homomorphisms G ! H  G0 of algebraic groups, there is an
algebraic group G �H G0 such that .G �H G0/.R/ consists of the pairs g 2 G.R/, g0 2

G0.R/ having the same image inH.R/. Thus, Lie.G�H G0/ consists of pairs g 2 G.kŒ"�/,
g0 2 G0.kŒ"�/ having the same image in H.kŒ"�/ and mapping to 1 in G.k/ and G0.k/, i.e.,
of the pairs g 2 G.kŒ"�/, g0 2 G0.kŒ"�/ mapping to 1 in G.k/ and G0.k/ and having the
same image in H.kŒ"�/. In other words,

Lie.G �H G0/ D Lie.G/ �Lie.H/ Lie.G0/: (58)

EXAMPLE 12.22 Let k be a field of characteristic p ¤ 0. Consider the homomorphisms

Gm

x 7!.1;x/
������! Gm �Gm

.yp;y/ < y
 ����������� Gm:

They give the fibred product diagrams:

�p ����! Gm??y ??y
Gm ����! Gm �Gm

k
id

����! k??yid

??yc 7!.0;c/

k
c 7!.0;c/
������! k � k:

EXAMPLE 12.23 Recall (6.14) that the kernel of a homomorphism ˛WG ! H of algebraic
groups can be obtained as a fibred product:

Ker.˛/ ����! f1H g??y ??y
G

˛
����! H

Therefore (58) shows that

Lie.Ker.˛// D Ker.Lie.˛//:

In other words, an exact sequence of algebraic groups 1! N ! G ! H gives rise to an
exact sequence of Lie algebras

0! LieN ! LieG ! LieH:

EXAMPLE 12.24 Let G and G0 be algebraic subgroups of an algebraic group H . The
algebraic subgroup G\G0 with .G\G0/.R/ D G.R/\G0.R/ (insideH.R/) is the fibred
product of the inclusion maps, and so

Lie.G \G0/ D Lie.G/ \ Lie.G0/:

For example, in (12.22), Gm and Gm can be regarded as subgroups of Gm � Gm with
intersection �p, and

Lie.�p/ D Lie.Gm/ \ Lie.Gm/

(intersection inside Gm �Gm).

REMARK 12.25 Example 12.22 shows that Lie does not preserve fibred products in the
category of smooth algebraic groups.
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Commutative Lie algebras

A Lie algebra g is said to be commutative (or abelian) if Œx; y� D 0 for all x; y 2 g. Thus,
to give a commutative Lie algebra amounts to giving a finite-dimensional vector space.

If G is commutative, then Lie.G/ is commutative. This can be seen directly from our
definition of the bracket, or by observing that if G is a commutative subgroup of GLn, then
Lie.G/ is a commutative subalgebra of Lie.GLn/.

Normal subgroups and ideals

A normal algebraic subgroup N of an algebraic group G is the kernel of a quotient map
G ! Q (see 6.22); therefore, Lie.N / is the kernel of a homomorphism of Lie algebras
LieG ! LieQ (see 12.23), and so is an ideal in LieG. Of course, this can also be proved
directly.
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13 The Lie algebra of an algebraic group

Following a standard convention, we usually write g for Lie.G/, h for Lie.H/, and so on.

Some algebraic geometry

Recall the Noether normalization theorem:

THEOREM 13.1 Every finitely generated algebra A over a field k contains a finite set S of
elements such that

(a) kŒS� is a polynomial ring in the elements of S , and
(b) A is finitely generated as a kŒS�-module.

PROOF. For integral domains and infinite k’s, see AG 8.13; for the general case, see Wa-
terhouse 1979, A.7. 2

The number of elements of S depends only on A. We define the dimension of G to be
this number for the ring kŒG�.

REMARK 13.2 For any field k0 containing k, dimG D dimGk0 , and when k is perfect,
dimG D dimGred (cf. 2.23). Thus, readers of AG may prefer the following equiva-
lent definition: when k is algebraically closed, the dimension of G is the dimension of
Spm kŒG�=N in the sense of AG p40, and otherwise it is the dimension of G

k
.

THEOREM 13.3 Let H be an algebraic subgroup of a smooth connected algebraic group
G. Then dimH � dimG, with equality if and only if H D G.

PROOF. Since kŒG�� kŒH�, dimH � dimG (without the conditions onG). For a proof
thatH ¤ G implies dimH < dimG, see Waterhouse 1979, 12.4, or apply AG 2.26 noting
that a connected algebraic group is automatically irreducible (8.19). 2

THEOREM 13.4 If
1! N ! G ! Q! 1

is exact, then
dimG D dimN C dimQ:

PROOF. Note that N � G ' G �Q G. Since kŒG �Q G� D kŒG�˝kŒQ� kŒG�, it follows
from the definition of dimension that

dim.G �Q G/ D 2dimG � dimQ:

Therefore 2dimG � dimQ D dimN C dimG, from which the assertion follows. Alter-
natively, apply AG 10.9(b). 2

THEOREM 13.5 For an algebraic group G, dim LieG � dimG, with equality if and only
if G is smooth.

PROOF. We may suppose k D k. Let A D kŒG�. Then (cf. AG �5),

Lie.G/ ' Homk-lin.m=m
2; k/

where m D Ker.A
�
�! k/. Therefore, dim Lie.G/ � dimG, with equality if and only if

the local ring Am is regular (cf. 2.25). But (see 2.26, 2.27), G is smooth if and only if Am

is regular. 2
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Applications

PROPOSITION 13.6 LetH be a smooth algebraic subgroup of a connected algebraic group
G. If LieH D LieG, then H D G.

PROOF. We have

dimH
H smooth
D dim LieH D dim LieG

13:5
� dimG:

Now (13.3) implies that dimH D dim LieG D dimG, and so G is smooth (13.5) and
H D G (see 13.3). 2

COROLLARY 13.7 Assume char.k/ D 0 and G is connected. A homomorphism H ! G

is a quotient map if LieH ! LieG is surjective.

PROOF. We know (6.22) that H ! G factors into

H ! H ! G

with H ! H a quotient map and H ! G an embedding. Correspondingly, we get a
diagram

LieH ! LieH ! LieG:

Because H ! G is an embedding, LieH ! LieG is injective (12.23) and hence is an
isomorphism. As we are in characteristic zero, H is smooth (2.31), and so (13.6) shows
that H D G. 2

COROLLARY 13.8 Assume char.k/ D 0. If

1! N ! G ! Q! 1

is exact and Q is connected, then

0! Lie.N /! Lie.G/! Lie.Q/! 0

is exact.

PROOF. The sequence 0 ! Lie.N / ! Lie.G/ ! Lie.Q/ is exact (by 12.23), and the
equality

dimG
13:4
D dimN C dimQ

implies a similar statement for the Lie algebras (by 2.31 and 13.5). This implies (by linear
algebra) that Lie.G/! Lie.Q/ is surjective. 2

COROLLARY 13.9 The Lie algebra of G is zero if and only if G is étale; in particular, a
connected algebraic group with zero Lie algebra is 1.

PROOF. We have seen that the Lie algebra of an étale group is zero (12.12). Conversely, if
LieG D 0 then f1g D Gı by (13.6), and so G D �0.G/ (see 8.13). 2
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EXAMPLE 13.10 The embedding ˛p ! Ga defines an isomorphism k ! k on Lie alge-
bras. Thus, the condition that H be smooth is necessary in the proposition, and the condi-
tion that char.k/ D 0 is necessary in the first two corollaries. The embedding SOn ! On

defines an isomorphism on the Lie algebras, and so it is necessary that G be connected in
the proposition.

PROPOSITION 13.11 Assume char.k/ D 0 and G is connected. The map H 7! LieH
from connected algebraic subgroups of G to Lie subalgebras of LieG is injective and in-
clusion preserving.

PROOF. Let H and H 0 be connected algebraic subgroups of G. Then (see 12.24)

Lie.H \H 0/ D Lie.H/ \ LieH 0/:

If Lie.H/ D Lie.H 0/, then

Lie.H/ D Lie.H \H 0/ D Lie.H 0/;

and so (13.6)
H D H \H 0

D H 0: 2

PROPOSITION 13.12 Assume char.k/ D 0. Let ˛; ˇ be homomorphisms of algebraic
groups G ! H . If Lie.˛/ D Lie.ˇ/ and G is connected, then ˛ D ˇ:

PROOF. The algebraic subgroup on which ˛ and ˇ agree is

.diagonal/ \G �H G:

The hypothesis implies that its Lie algebra is the Lie algebra of the diagonal, and so it equals
the diagonal. 2

Thus, when char.k/ D 0, the functor G 7! Lie.G/ from connected algebraic groups to
Lie algebras is faithful. Of course, on étale algebraic groups (e.g., constant algebraic groups
(2.14)), the functor is trivial.

Stabilizers

LEMMA 13.13 Let G ! GLV be a representation of G, and let W subspace of V . For a
k-algebra R, define

GW .R/ D fg 2 G.R/ j g.W ˝k R/ D W ˝k Rg:

Then the functor GW is an algebraic subgroup of G.

PROOF. Let e1; : : : ; em be a basis for W , and extend it to a basis e1; : : : ; en for V . Write

�.ej / D
X

i
ei ˝ aij ; aij 2 A:

For g 2 G.R/ D Homk-alg.A;R/,

gej D

X
ei ˝ g.aij /

(see (23)). Thus, g.W ˝kR/ � W ˝kR if and only if g.aij / D 0 for j � m; i > m. Hence
GW is represented by the quotient of A by the ideal generated by faij j j � m; i > mg: 2



13 THE LIE ALGEBRA OF AN ALGEBRAIC GROUP 109

Recall that, for a finite-dimensional vector space V ,

glV
df
D Lie.GLV / ' Endk-lin.V /:

A representation of a Lie algebra g is a homomorphism ˛W g ! gl.V /. Thus, for every
x 2 g, ˛.x/ is a k-linear endomorphism of V , and

˛.Œx; y�/ D ˛.x/˛.y/ � ˛.y/˛.x/:

Let W be a subspace of V . The stabilizer gW of W in g is a Lie subalgebra of g: if
˛.x/.W / � W and ˛.y/.W / � W , then ˛.Œx; y�/.W / � W .

LEMMA 13.14 For any representation G ! GLV ,

LieGW D .LieG/W :

PROOF. By definition, LieGW consists of the elements idC"˛ of G.kŒ"�/ such that

.idC"˛/.W CW"/ � W CW";

i.e., such that ˛.W / � W . 2

PROPOSITION 13.15 If W is stable under G, then it is stable under Lie.G/, and the con-
verse holds when char.k/ D 0 and G is connected.

PROOF. If G D GW , then .LieG/W
13:14
D LieGW D LieG. Conversely, if W is stable

under Lie.G/, then
LieGW

13:14
D .LieG/W D LieG;

and so GW D G provided char.k/ D 0 and G is connected (13.6). 2

Isotropy groups

PROPOSITION 13.16 Let G ! GLV be a representation of G, and let v 2 V . Let Gv be
the functor of k-algebras

Gv.R/ D fg 2 G.R/ j g.v ˝ 1/ D v ˝ 1g:

Then Gv is an algebraic subgroup of G (the isotropy group of v in G), with Lie algebra

gv D fx 2 g j xv D 0g:

If v is fixed by G, then it is fixed by g, and the converse holds when char.k/ D 0 and G is
connected.

PROOF. The proofs are similar to those of (13.13,13.14,13.15). Note that idC"˛ 2 g fixes
v ˝ 1 D v C 0" 2 V ˝k kŒ"� D V ˚ V" if and only if

id.v/C "˛.v/ D v C 0";

i.e., if and only if ˛.v/ D 0. 2
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COROLLARY 13.17 Let W be a subspace of V . For a k-algebra R, define

CG.W /.R/ D fg 2 G.R/ j gw D w for all w 2 W g:

Then CG.W / is an algebraic subgroup of G (the centralizer of W in G), with Lie algebra

cg.W / D fx 2 g j xw D 0 for all w 2 W g:

If G centralizes W (i.e, CG.W / D G), then g centralizes it, and the converse holds when
char.k/ D 0 and G is connected.

PROOF. For any (finite) set S spanningW , CG.W / D
T

w2S Gw , and so this follows from
previous results. 2

Normalizers and centralizers

The centre of a Lie algebra g is

z.g/ D fx 2 g j Œx; y� D 0 for all y 2 gg:

If x 2 z.g/ and y 2 g, then Œx; y� 2 z.g/ because it is zero. Thus, z.g/ is an ideal. For a
subalgebra h of g, the normalizer and centralizer of h in g are

ng.h/ D fx 2 g j Œx; h� � hg

cg.h/ D fx 2 g j Œx; h� D 0 for all h 2 hg:

PROPOSITION 13.18 Let G be an algebraic group. For an algebraic subgroup H of G, let
NG.H/ and CG.H/ be the functors

NG.H/.R/ D NG.R/.H.R//
df
D fg 2 G.R/ j g �H.R/ � g�1

D H.R/g

CG.H/.R/ D CG.R/.H.R//
df
D fg 2 G.R/ j gh D hg for all h 2 H.R/g.

(a) The functors NG.H/ and CG.H/ are algebraic subgroups of G (the normalizer and
centralizer of H in G).

(b) Assume H is connected. Then

Lie.NG.H// � ng.h/

Lie.CG.H// � cg.h/

with equality when char.k/ D 0. If H is normal in G, then h is an ideal in Lie.G/,
and the converse holds when char.k/ D 0 and G is connected. IfH lies in the centre
of G, then h lies in the centre of g, and the converse holds when char.k/ D 0 and G
is connected.

PROOF. (a) Demazure and Gabriel 1970, II, �1, 3.7.
(b) Demazure and Gabriel 1970, II, �6, 2.1. 2

COROLLARY 13.19 For any connected algebraic group G, LieZ.G/ � z.g/, with equal-
ity when char.k/ D 0. If a connected algebraic group G is commutative, then so also is g,
and the converse holds when char.k/ D 0.

PROOF. Since Z.G/ D CG.G/ and z.g/ D cg.g/, the first statement follows from the
proposition, and the second follows from the first. 2
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A nasty example

Let k be a field of characteristic p ¤ 0. The following simple example illustrates some of
the things that can go wrong in this case. Define G to be the algebraic subgroup of GL3

such that

G.R/ D

8<:
0@ u 0 0

0 up a

0 0 1

1A9=; :
In other words, G is algebraic subgroup defined by the equations X22 D X

p
11, X33 D 1,

X12 D X13 D X21 D X31 D X32 D 0. Note that G is isomorphic to Ga � Gm but with
the noncommutative group structure

.a; u/.b; v/ D .aC bup; uv/:

In other words, G is the semi-direct product GaÌGm with u 2 Gm.R/ acting on Ga.R/ as
multiplication by up. The Lie algebra of G is the semi-direct product Lie.Ga/ Ì Lie.Gm/

with the trivial action of Lie.Gm/ on Lie.Ga/ and so is commutative. The centre of G is
f.0; u/ j up D 1g ' �p, and the centre of G.k/ is trivial. Thus,

Lie.Z.G/red/ ¤ Lie.Z.G// ¤ Z.Lie.G//:

On the other hand
.Ad.a; u//.b"; 1C v"/ D .bup"; 1C "v/

and so the subset of Lie.G/ fixed by Ad.G/ is

0 � k D Lie.Z.G//:
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14 Semisimple algebraic groups and Lie algebras

Recall (11.30, 11.31) that a nontrivial smooth connected algebraic group is semisimple
if it has no smooth connected normal commutative subgroup other than the identity, or,
equivalently, if its radical is trivial.

Semisimple Lie algebras

The derived series of a Lie algebra g is

g � g0
D Œg; g� � g00

D Œg0; g0� � � � � :

A Lie algebra is said to be solvable if the derived series terminates with 0. Every Lie
algebra contains a largest solvable ideal, called its radical r.g/. A nonzero Lie algebra g

is semisimple if r.g/ D 0, i.e., if g has no nonzero solvable ideal. Similarly to the case of
algebraic groups, this is equivalent to g having no nonzero commutative ideal. (Humphreys
1972, 3.1.)

Semisimple Lie algebras and algebraic groups

THEOREM 14.1 Let G be a connected algebraic group. If Lie.G/ is semisimple, then G is
semisimple, and the converse is true when char.k/ D 0.

PROOF. Suppose Lie.G/ is semisimple, and let N be a normal connected commutative
subgroup of G — we have to prove N D 1. But Lie.N / is a commutative ideal in Lie.G/
(13.19), and so is zero. Hence N D 1 (see 13.9).

Conversely, suppose G is semisimple, and let n be a commutative ideal in g — we have
to prove n D 0. Let G act on g through the adjoint representation AdWG ! GLg, and let
H be the subgroup of G whose elements fix those of n (see 13.17). Then (ibid.), the Lie
algebra of H is

h D fx 2 g j Œx; n� D 0g;

which contains n. Because n is an ideal, so also is h:

ŒŒh; x�; n� D Œh; Œx; n�� � Œx; Œh; n��

equals zero if h 2 h and n 2 n. Therefore, H ı is normal in G (13.18), and so its centre
Z.H ı/ is normal in G. Because G is semisimple, Z.H ı/ı D 1, and so z.h/ D 0 (13.19).
But z.h/ � n, which must therefore be zero. 2

COROLLARY 14.2 Assume char.k/ D 0. For a connected algebraic groupG, Lie.R.G// D
r.g/.

PROOF. From the exact sequence

1! RG ! G ! G=RG ! 1

we get an exact sequence (12.23)

1! Lie.RG/! g! Lie.G=RG/! 1

in which Lie.RG/ is solvable (obvious) and Lie.G=RG/ is semisimple (14.1). Therefore
LieRG is the largest solvable ideal in g. 2
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The map ad

For a k-vector space with a k-bilinear pairing

a; b 7! abWC � C ! C;

we write Derk.C / for the space of k-derivations C ! C , i.e., k-linear maps ıWC ! C

satisfying the Leibniz rule
ı.ab/ D aı.b/C ı.a/b:

If ı and ı0 are k-derivations, then ı ı ı0 need not be, but ı ı ı0 � ı0 ı ı is, and so Derk.C /

is a subalgebra of gl.C /, not Endk-lin.C /.
For a Lie algebra g, the Jacobi identity says that the map ad.x/ D .y 7! Œx; y�/ is a

derivation of g:

Œx; Œy; z�� D �Œy; Œz; x�� � Œz; Œx; y�� D Œy; Œx; z��C ŒŒx; y�; z�:

Thus, adW g! Endk-lin.g/ maps into Derk.g/. The kernel of ad is the centre of g.

THEOREM 14.3 Let k be of characteristic zero. If g is semisimple, then adW g! Derk.g/

is surjective (and hence an isomorphism).

The derivations of g of the form ad.x/ are often said to be inner (by analogy with the
automorphisms of G of the form inn.g/). Thus the theorem says that all derivations of a
semisimple Lie algebra are inner.

We discuss the proof of the theorem below (see Humphreys 1972, 5.3).

The Lie algebra of Autk.C /

Again, let C be a finite-dimensional k-vector space with a k-bilinear pairing C � C ! C .

PROPOSITION 14.4 The functor

R 7! Autk-alg.R˝k C/

is an algebraic subgroup of GLC .

PROOF. Choose a basis for C . Then an element of Autk-lin.R ˝k C/ is represented by
a matrix, and the condition that it preserve the algebra product is a polynomial condition
on the matrix entries. [Of course, to be rigorous, one should write this out in terms of the
bialgebra.] 2

Denote this algebraic group by AutC , so AutC .R/ D Autk-alg.R˝k C/.

PROPOSITION 14.5 The Lie algebra of AutC is gl.C / \Derk.C /.

PROOF. Let idC"˛ 2 Lie.GLC /, and let a C a0", b C b0" be elements of C ˝k kŒ"� '

C ˚ C". When we first apply idC"˛ to the two elements and then multiply them, we get

ab C ".ab0
C a0b C a˛.b/C ˛.a/b/I

when we first multiply them, and then apply idC"˛ we get

ab C ".ab0
C a0b C ˛.ab//:

These are equal if and only if ˛ satisfies the Leibniz rule. 2
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The map Ad

Let G be a connected algebraic group. Recall (p102) that there is a homomorphism

AdWG ! GLg :

Specifically, g 2 G.R/ acts on g˝k R � G.RŒ"�/ as inn.g/;

x 7! gxg�1:

On applying Lie, we get a homomorphism

adWLie.G/! Lie.GLg/ ' End.g/;

and we defined
Œx; y� D ad.x/.y/:

LEMMA 14.6 The homomorphism Ad has image in Autg; in other words, for all g 2
G.R/, the automorphism Ad.g/ of g˝k R preserves the bracket. Therefore, ad maps into
Derk.g/.

PROOF. Because of (3.8), it suffices to prove this for G D GLn. But A 2 GL.R/ acts on
g˝k R DMn.R/ as

X 7! AXA�1:

Now

AŒX; Y �A�1
D A.XY � YX/A�1

D AXA�1AYA�1
� AYA�1AXA�1

D ŒAXA�1; AYA�1�: 2

LEMMA 14.7 Let g 2 G.k/. The functor CG.g/

R 7! fg0
2 G.R/ j gg0g�1

D g0
g

is an algebraic subgroup of G with Lie algebra

cg.g/ D fx 2 g j Ad.g/.x/ D xg:

PROOF. Embed G in GLn. If we can prove the statement for GLn, then we obtain it for G,
because CG.g/ D CGLn

.g/ \G and cg.g/ D cgln.g/ \ g.
Let A 2 GLn.k/. Then

CGLn
.A/.R/ D fB 2 GLn.R/ j AB D BAg:

Clearly this is a polynomial (even linear) condition on the entries of B . Moreover,

Lie.CGLn
.A// D fI C B" 2 Lie.GLn/ j A.I C B"/A

�1
D .I C B"/g

' fB 2Mn j ABA
�1
D Bg: 2
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PROPOSITION 14.8 For a connected algebraic groupG over a field k of characteristic zero,
the kernel of Ad is the centre Z.G/ of G.

PROOF. Clearly Z � N D Ker.Ad/. It suffices46 to prove Z D N when k D k. If
g 2 N.k/, then cg.g/ D g, and so CG.g/ D G (by 14.7). Therefore g 2 Z.k/. We have
shown that Z.k/ D N.k/, and this implies47 that Z D N . 2

THEOREM 14.9 For a semisimple algebraic group G over a field of characteristic zero, the
sequence

1! Z.G/! G ! Autı
g ! 1

is exact.

PROOF. On applying Lie to AdWG ! Autg, we get

adW g! Lie.Autg/ � Der.g/:

But, according to (14.3), the map g ! Der.g/ is surjective, which shows that adW g !
Lie.Autg/ is surjective, and implies that AdWG ! Autı

g is a quotient map (13.7). 2

Recall that two semisimple groups G1, G2 are said to be isogenous if G1=Z.G1/ �

G2=Z.G2/. The theorem gives an inclusion

fsemisimple algebraic groupsg=isogeny ,! fsemisimple Lie algebrasg=isomorphism.

In Humphreys 1972, there is a complete classification of the semisimple Lie algebras up
to isomorphism over an algebraically closed field of characteristic zero, and all of them
arise from algebraic groups. Thus this gives a complete classification of the semisimple
algebraic groups up to isogeny. We will follow a slightly different approach which gives
more information about the algebraic groups.

For the remainder of this section, k is of characteristic zero.

Interlude on semisimple Lie algebras

Let g be a Lie algebra. A bilinear form BW g � g! k on g is said to be associative if

B.Œx; y�; z/ D B.x; Œy; z�/; all x; y; z 2 g:

LEMMA 14.10 The orthogonal complement a? of an ideal a in g with respect to an asso-
ciative form is again an ideal.

PROOF. By definition

a?
D fx 2 g j B.a; x/ D 0 for all a 2 ag D fx 2 g j B.a; x/ D 0g:

Let a0 2 a? and g 2 g. Then, for a 2 a,

B.a; Œg; a0�/ D �B.a; Œa0; g�/ D �B.Œa; a0�; x/ D 0

and so Œg; a0� 2 a?. 2

46Let Q D N=Z; if Q
k
D 0, then Q D 0.

47The map kŒN � ! kŒZ� is surjective — let a be its kernel. Since \m D 0 in kŒN �, if a ¤ 0, then
there exists a maximal ideal m of kŒN � not containing a. Because k D k, kŒN �=m ' k (AG 2.7), and the
homomorphism kŒN �! kŒN �=m! k is an element of N.k/ XZ.k/:
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The Killing form on g is

�.x; y/ D Trg.ad.x/ ı ad.y//:

That is, �.x; y/ is the trace of the k-linear map

z 7! Œx; Œy; z��W g! g:

LEMMA 14.11 The form

�.x; y/ D Trg.ad.x/ ı ad.y//

is associative and symmetric.

PROOF. It is symmetric because for matrices A D .aij / and B D .bij /,

Tr.AB/ D
X

i;j
aij bj i D Tr.BA/:

By tradition, checking the associativity is left to the reader. 2

EXAMPLE 14.12 The Lie algebra sl2 consists of the 2 � 2 matrices with trace zero. It has
as basis the elements

x D

�
0 1

0 0

�
; h D

�
1 0

0 �1

�
; y D

�
0 0

1 0

�
;

and
Œx; y� D h; Œh; x� D 2x; Œh; y� D �2y:

Then

adx D

0@0 �2 0

0 0 1

0 0 0

1A ; adh D

0@2 0 0

0 0 0

0 0 �2

1A ; ady D

0@ 0 0 0

�1 0 0

0 2 0

1A
and so the top row .�.x; x/; �.x; h/; �.x; y// of the matrix of � consists of the traces of0@0 0 �2

0 0 0

0 0 0

1A ;
0@0 0 0

0 0 �2

0 0 0

1A ;
0@2 0 0

0 2 0

0 0 0

1A :

In fact, � has matrix

0@0 0 4

0 8 0

4 0 0

1A, which has determinant �128:

Note that, for sln, the matrix of � is n2 � 1 � n2 � 1, and so this is not something one
would like to compute.

LEMMA 14.13 Let a be an ideal in g. The Killing form on g restricts to the Killing form
on a, i.e.,

�g.x; y/ D �a.x; y/ all x; y 2 a:
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PROOF. Let ˛ be an endomorphism of a vector space V such that ˛.V / � W ; then
TrV .˛/ D TrW .˛jW /, because when we choose a basis for W and extend it to a basis
for V , the matrix for ˛ takes the form

�
A B
0 0

�
where A is the matrix of ˛jW . If x; y 2 a,

then adx ı ady is an endomorphism of g mapping g into a, and so its trace (on g), �.x; y/,
equals

Tra.adx ı adyja/ D Tra.adax ı aday/ D �a.x; y/: 2

PROPOSITION 14.14 (Cartan’s Criterion). A Lie subalgebra g of gl.V / is solvable if
TrV .x ı y/ D 0 for all x 2 Œg; g� and y 2 g.

PROOF. If g is solvable, then an analogue of the Lie-Kolchin theorem shows that, for some
choice of a basis for V , g � tn. Then Œg; g� � un and ŒŒg; g�; g� � un, which implies the
traces are zero. For the converse, which is what we’ll need, see Humphreys 1972, 4.5, p20
(the proof is quite elementary, involving only linear algebra).48

2

COROLLARY 14.15 If �.Œg; g�; g/ D 0, then g is solvable; in particular, if �.g; g/ D 0,
then g is solvable.

PROOF. The map adW g! gl.V / has kernel the centre z.g/ of g, and the condition implies
that its image is solvable. Therefore g is solvable. 2

THEOREM 14.16 (Cartan-Killing criterion). A nonzero Lie algebra g is semisimple if and
only if its Killing form is nondegenerate, i.e., the orthogonal complement of g is zero.

PROOF. H) : Let a be the orthogonal complement of g,

a D fx 2 g j �.g; x/ D 0g:

It is an ideal (14.10), and certainly
�.a; a/ D 0

and so it is solvable by (14.13) and (14.15). Hence, a D 0 if g is semisimple.
(H : Let a be a commutative ideal of g. Let a 2 a and g 2 g. Then

g
adg
�! g

ada
�! a

adg
�! a

ada
�! 0:

Therefore, .ada ı adg/2 D 0, and so49 Tr.ada ı adg/ D 0. In other words, �.a; g/ D 0,
and so a D 0 if � is nondegenerate. 2

A Lie algebra g is said to be a direct sum of ideals a1; : : : ; ar if it is a direct sum of
them as subspaces, in which case we write g D a1˚ � � � ˚ ar . Then Œai ; aj � � ai \ aj D 0

for i ¤ j , and so g is a direct product of the Lie subalgebras ai . A nonzero Lie algebra is
simple if it is not commutative and has no proper nonzero ideals.

In a semisimple Lie algebra, the minimal nonzero ideals are exactly the ideals that are
simple as Lie subalgebras (but a simple Lie subalgebra need not be an ideal).

48In Humphreys 1972, this is proved only for algebraically closed fields k, but this condition is obviously
unnecessary since the statement is true over k if and only if it is true over k.

49If ˛2 D 0, the minimum polynomial of ˛ divides X2, and so the eigenvalues of ˛ are zero.
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THEOREM 14.17 Every semisimple Lie algebra is a direct sum

g D a1 ˚ � � � ˚ ar

of its minimal nonzero ideals. In particular, there are only finitely many such ideals. Every
ideal in a is a direct sum of certain of the ai .

PROOF. Let a be an ideal in g. Then the orthogonal complement a? of a is also an ideal
(14.10, 14.11), and so a \ a? is an ideal. By Cartan’s criterion (14.15), it is solvable, and
hence zero. Therefore, g D a˚ a?.

If g is not simple, then it has a nonzero proper ideal a. Write g D a˚ a?. If and a and
a? are not simple (as Lie subalgebras) we can decompose them again. Eventually,

g D a1 ˚ � � � ˚ ar

with the ai simple (hence minimal) ideals.
Let a be a minimal nonzero ideal in g. Then Œa; g� is an ideal contained in a, and it is

nonzero because z.g/ D 0, and so Œa; g�D a. On the other hand,

Œa; g� D Œa; a1�˚ � � � ˚ Œa; ar �;

and so a D Œa; ai � for exactly one i . Then a � ai , and so a D ai (simplicity of ai ). This
shows that fa1; : : : arg is a complete set of minimal nonzero ideals in g.

Let a be an ideal in g. The same argument shows that a is the direct sum of the minimal
nonzero ideals contained in a. 2

COROLLARY 14.18 All nonzero ideals and quotients of a semisimple Lie algebra are semi-
simple.

PROOF. Obvious from the theorem. 2

COROLLARY 14.19 If g is semisimple, then Œg; g� D g.

PROOF. If g is simple, then certainly Œg; g� D g, and so this is also true for direct sums of
simple algebras. 2

REMARK 14.20 The theorem is surprisingly strong: a finite-dimensional vector space is a
sum of its minimal subspaces but is far from being a direct sum (and so the theorem fails
for commutative Lie algebras). Similarly, it fails for commutative groups: for example, if
C9 denotes a cyclic group of order 9, then

C9 � C9 D f.x; x/ 2 C9 � C9g � f.x;�x/ 2 C9 � C9g:

If a is a simple Lie algebra, one might expect that a embedded diagonally would be another
simple ideal in a˚ a. It is a simple Lie subalgebra, but it is not an ideal.

LEMMA 14.21 For any Lie algebra g, the space fad.x/ j x 2 gg of inner derivations of g

is an ideal in Derk.g/.
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PROOF. Recall that Derk.g/ is the space of k-linear endomorphisms of g satisfying the
Leibniz condition; it is made into a Lie algebra by Œı; ı0� D ı ı ı0 � ı0 ı ı. For a derivation
ı of g and x; y 2 g,

Œı; adx�.y/ D .ı ı ad.x/ � ad.x/ ı ı/.y/
D ı.Œx; y�/ � Œx; ı.y/�

D Œı.x/; y�C Œx; ı.y/� � Œx; ı.y/�

D Œı.x/; y�:

Thus,
Œı; ad.x/� D ad.ıx/ (59)

is inner. 2

THEOREM 14.22 If g is semisimple, then adW g! Der.g/ is a bijection: every derivation
of g is inner.

PROOF. Let adg denote the (isomorphic) image of g in Der.g/. It suffices to show that the
orthogonal complement .adg/? of adg in D for �D is zero.

Because adg and .adg/? are ideals in Der.g/ (see 14.21, 14.10),

Œadg; .adg/?� � adg \ .adg/?:

Because �Djadg D �adg is nondegenerate (14.16),

adg \ .adg/? D 0:

Let ı 2 .adg/?. For x 2 g,

ad.ıx/
.59/
D Œı; ad.x/� D 0:

As adW g ! Der.g/ is injective, this shows that ıx D 0. Since this is true for all x 2 g,
ı D 0. 2

Semisimple algebraic groups

A connected algebraic group G is simple if it is noncommutative and has no normal al-
gebraic subgroup except G and 1, and it is almost simple if it is noncommutative and has
no proper normal algebraic subgroup of dimension > 0. Thus, for n > 1, SLn is almost
simple and PSLn Ddf SLn =�n is simple. An algebraic group G is said to be the almost
direct product of its algebraic subgroups G1; : : : ; Gn if the map

.g1; : : : ; gn/ 7! g1 � � �gnWG1 � � � � �Gn ! G

is a quotient map (in particular, a homomorphism) with finite kernel. In particular, this
means that the Gi commute and each Gi is normal.

THEOREM 14.23 Every semisimple group G is an almost direct product

G1 � � � � �Gr ! G

of its minimal connected normal algebraic subgroups of dimension > 0. In particular, there
are only finitely many such subgroups. Every connected normal algebraic subgroup of G is
a product of those Gi that it contains, and is centralized by the remaining ones.
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PROOF. Write
Lie.G/ D g1 ˚ � � � ˚ gr

with the gi simple ideals. Let G1 be the identity component of CG.g2˚� � �˚ gr/ (notation
as in 13.17). Then Lie.G1/

13:17
D cg.g2 ˚ � � � ˚ gr/ D g1, and so it is normal in G

(13.18). If G1 had a proper normal connected algebraic subgroup of dimension > 0, then
g1would have an ideal other than g1 and 0, contradicting its simplicity. Therefore G1 is
almost simple. Construct G2; : : : ; Gr similarly. Then Œgi ; gj � D 0 implies that Gi and Gj

commute (13.18). The subgroup G1 � � �Gr of G has Lie algebra g, and so equals G (13.6).
Finally,

Lie.G1 \ : : : \Gr/
12:24
D g1 \ : : : \ gr D 0

and so G1 \ : : : \Gr is étale (13.9).
Let H be a connected algebraic subgroup of G. If H is normal, then LieH is an ideal,

and so is a direct sum of those gi it contains and centralizes the remainder. This implies
that H is a product of those Gi it contains, and is centralized by the remaining ones. 2

COROLLARY 14.24 All nontrivial connected normal subgroups and quotients of a semi-
simple algebraic group are semisimple.

PROOF. Obvious from the theorem. 2

COROLLARY 14.25 If G is semisimple, then DG D G, i.e., a semisimple group has no
commutative quotients.

PROOF. This is obvious for simple groups, and the theorem then implies it for semisimple
groups. 2
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15 Reductive algebraic groups

Throughout this section, k has characteristic zero.
Recall (11.30, 11.31) that a nontrivial connected algebraic group is reductive if it has

no connected normal commutative subgroup except tori, or, equivalently, if its unipotent
radical is trivial.

Structure of reductive groups

THEOREM 15.1 If G is reductive, then the derived group Gder of G is semisimple, the
connected centre Z.G/ı of G is a torus, and Z.G/ \ Gder is the (finite) centre of Gder;
moreover, Z.G/ı �Gder D G.

PROOF. It suffices to prove this with k D k. By definition, .RG/u D 0, and so (11.26)
shows that RG is a torus T . Rigidity (9.16) implies that the action of G on RG by inner
automorphisms is trivial, and so RG � Z.G/ı. Since the reverse inclusion always holds,
this shows that

R.G/ D Z.G/ı D torus.

We next show thatZ.G/ı\Gder is finite. Choose an embeddingG ,! GLV , and write
V as a direct sum

V D V1 ˚ � � � ˚ Vr

of eigenspaces for the action of Z.G/ı (see 9.15). When we choose bases for the Vi , then
Z.G/ı.k/ consists of the matrices 0B@A1 0 0

0
: : : 0

0 0 Ar

1CA
with each Ai nonzero and scalar,50 and so its centralizer in GLV consists of the matrices of
this shape with the Ai arbitrary. Since Gder.k/ consists of commutators (11.14), it consists
of such matrices with determinant 1. As SL.Vi / contains only finitely many scalar matrices,
this shows that Z.G/ı \Gder is finite.

Note thatZ.G/ı �Gder is a normal algebraic subgroup ofG such thatG=.Z.G/ı �Gder/

is commutative (being a quotient ofG=Gder) and semisimple (being a quotient ofG=R.G/).
Now (14.25) shows that

G D Z.G/ı �Gder:

Therefore
Gder

! G=R.G/

is surjective with finite kernel. As G=R.G/ is semisimple, so also is Gder.
Certainly Z.G/ \ Gder � Z.Gder/, but, because G D Z.G/ı � Gder and Z.G/ı is

commutative, Z.Gder/ � Z.G/. 2

REMARK 15.2 From a reductive group G, we obtain a semisimple group G0 (its derived
group), a group Z of multiplicative type (its centre), and a homomorphism 'WZ.G0/! Z.
Moreover, G can be recovered from .G0; Z; '/ as the quotient

Z.G0/
z 7!.'.z/�1;z/
�! Z �G0

! G ! 1: (60)
50That is, of the form diag.a; : : : ; a/ with a ¤ 0.
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Clearly, every reductive group arises from such a triple .G0; Z; '/ (and G0 can even be
chosen to be simply connected).

Generalities on semisimple modules

Let k be a field, and let A be a k-algebra (not necessarily commutative). An A-module is
simple if it does not contain a nonzero proper submodule.

PROPOSITION 15.3 The following conditions on an A-module M of finite dimension51

over k are equivalent:
(a) M is a sum of simple modules;
(b) M is a direct sum of simple modules;
(c) for every submodule N of M , there exists a submodule N 0 such that M D N ˚N 0.

PROOF. Assume (a), and let N be a submodule of M . Let I be the set of simple modules
of M . For J � I , let N.J / D

P
S2J S . Let J be maximal among the subsets of I for

which
(i) the sum

P
S2J S is direct and

(ii) N.J / \N D 0.
I claim that M is the direct sum of N.J / and N . To prove this, it suffices to show that each
S � N C N.J /. Because S is simple, S \ .N C N.J // equals S or 0. In the first case,
S � N C N.J /, and in the second J [ fSg has the properties (i) and (ii). Because J is
maximal, the first case must hold. Thus (a) implies (b) and (c), and it is obvious that (b) and
(c) each implies (a). 2

DEFINITION 15.4 An A-module is semisimple if it satisfies the equivalent conditions of
the proposition.

Representations of reductive groups

Throughout this subsection, k is algebraically closed. Representations are always on finite-
dimensional k-vector spaces. We shall sometimes refer to a vector space with a representa-
tion of G on it as a G-module. The definitions and result of the last subsection carry over
to G-modules.

Our starting point is the following result.

THEOREM 15.5 If g is semisimple, then all g-modules are semisimple.

PROOF. Omitted — see Humphreys 1972, pp25–28 (the proof is elementary but a little
complicated). 2

THEOREM 15.6 Let G be an algebraic group. All representations of G are semisimple if
and only if Gı is reductive.

LEMMA 15.7 The restriction to any normal algebraic subgroup of a semisimple represen-
tation is again semisimple.

51I assume this only to avoid using Zorn’s lemma in the proof.
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PROOF. Let G ! GLV be a representation of G, which we may assume to be simple, and
let N be a normal algbraic subgroup of G. Let S be a simple N -submodule of V . For any
g 2 G.k/, gS is a simple N -submodule, and V is a sum of the gS (because the sum is a
nonzero G-submodule of V ). 2

LEMMA 15.8 All representations of G are semisimple if and only if all representations of
Gı are semisimple

PROOF. H) : Since Gı is a normal algebraic subgroup of G (8.13), this follows from the
preceding lemma.
(H : Let V be a G-module, and let W be a sub G-module (i.e., a subspace stable

under G). Then W is also stable under Gı, and so V D W ˚ W 0 for some Gı-stable
subspace W 0. Let p be the projection map V ! W ; it is a Gı-equivariant52 map whose
restriction to W is idW . Define

qWV ! W; q D
1

n

X
g
gpg�1;

where n D .G.k/WGı.k// and g runs over a set of coset representatives for Gı.k/ in G.k/.
One checks directly that q has the following properties:

(a) it is independent of the choice of the coset representatives;
(b) for all w 2 W , q.w/ D w;
(c) it is G-equivariant.

Now (b) implies that V D W ˚ W 00, where W 00 D Ker.q/, and (c) implies that W 00 is
stable under G. 2

REMARK 15.9 The lemma implies that the representations of a finite group are semisim-
ple. This would fail if we allowed the characteristic to divide the order of the finite group.

LEMMA 15.10 Every representation of a semisimple algebraic group is semisimple.

PROOF. From a representation G ! GLV of G on V we get a representation g ! glV
of g on V , and a subspace W of V is stable under G if and only if it is stable under g (see
13.15). Therefore, the statement follows from (15.5). 2

Proof of Theorem 15.6

Lemma 15.8 allows us to assume G is connected.
H) : Let G ! GLV be a faithful semisimple representation of G, and let N be

the unipotent radical of G. Lemma 15.7 shows V is semisimple as an N -module, say
V D

L
Vi with Vi simple. Because N is solvable, the Lie-Kolchin theorem (11.22) shows

that the elements of N have a common eigenvector in Vi (cf. the proof of the theorem) and
so Vi has dimension 1, and because N is unipotent it must act trivially on Vi . Therefore, N
acts trivially on V , but we chose V to be faithful. Hence N D 0.
(H : If G is reductive, then G D Zı � G0 where Zı is the connected centre of G (a

torus) and G0 is the derived group of G (a semisimple group) — see (15.1). Let G ! GLV

be a representation of G. Then V D
L

i Vi where Vi is the subspace of V on which Zı

acts through a character �i (see 9.15). Because Zı and G0 commute, each space Vi is

52That is, it is a homomorphism of Gı-representations.
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stable under G0, and because G0 is semisimple, Vi D
L

j Vij with each Vij simple as a G0-
module (15.10). Now V D

L
i;j Vij is a decomposition of V into a direct sum of simple

G-modules.

REMARK 15.11 It is not necessary to assume k is algebraically closed. In fact, for an
algebraic group G over k of characteristic zero, all representations of G are semisimple
if and only if all representations of G

k
are semisimple (Deligne and Milne 1982, 2.25)53.

However, as noted earlier (11.34), it is necessary to assume that k has characteristic zero,
even when G is connected.

REMARK 15.12 Classically, the proof was based on the following two results:

Every semisimple algebraic group G over C has a (unique) model G0 over R
such that G0.R/ is compact, and HomR.G0;GLV / ' HomC.G;GLV /.

For example, SLn D .G0/C where G0 is the special unitary group (see p103).

Every representation of an algebraic groupG over R such thatG.R/ is compact
is semisimple.

To prove this, let h ; i be a positive definite form on V . Then h ; i0 D
R

G.R/hx; yidg is a
G.R/-invariant positive definite form on V . For any G-stable subspace W , the orthogonal
complement of W is a G-stable complement.

A criterion to be reductive

There is an isomorphism of algebraic groups GLn ! GLn sending an invertible matrix A
to the transpose .A�1/t of its inverse. The image of an algebraic subgroupH of GLn under
this map is the algebraic subgroup H t of GLn such that H t .R/ D fAt j A 2 H.R/g for
all k-algebras R.

Now consider GLV . The choice of a basis for V determines an isomorphism GLV �

GLn and hence a transpose map on GLV , which depends on the choice of the basis.

PROPOSITION 15.13 Every connected algebraic subgroup G of GLV such that G D Gt

for all choices of a basis for V is reductive.

PROOF. We have to show that .RG/u D 0. It suffices to check this after passing to the
algebraic closure54 k of k. Recall that the radical of G is the largest connected normal
solvable subgroup of G. It follows from (11.29c) that RG is contained in every maximal
connected solvable subgroup of G. Let B be such a subgroup, and choose a basis for V
such that B � Tn (Lie-Kolchin theorem 11.22). Then B t is also a maximal connected
solvable subgroup of G, and so

RG � B \ B t
D Dn:

This proves that RG is diagonalizable. 2

EXAMPLE 15.14 The group GLV itself is reductive.

53Deligne, P., and Milne, J., Tannakian Categories. In Hodge Cycles, Motives, and Shimura Varieties, Lec-
ture Notes in Math. 900 (1982), Springer, Heidelberg, 101-228.

54More precisely, one can prove that R.G
k
/ D .RG/

k
and similarly for the unipotent radial (provided k is

perfect).
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EXAMPLE 15.15 Since the transpose of a matrix of determinant 1 has determinant 1, SLV

is reductive.

It is possible to verify that SOn and Spn are reductive using this criterion (to be added;
cf. Humphreys 1972, Exercise 1-12, p6). They are semisimple because their centres are
finite (this can be verified directly, or by studying their roots — see below).
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16 Split reductive groups: the program

In this, and all later sections, k is of characteristic zero.

Split tori

Recall that a split torus is a connected diagonalizable group. Equivalently, it is an algebraic
group isomorphic to a product of copies of Gm. A torus over k is an algebraic group that
becomes isomorphic to a split torus over k. A torus in GLV is split if and only if it is
contained in Dn for some basis of V:

Consider for example

T D

��
a b

�b a

�
j a2
C b2

¤ 0

�
:

The characteristic polynomial of such a matrix is

X2
� 2aX C a2

C b2
D .X � a/2 C b2

and so its eigenvalues are
� D a˙ b

p
�1:

It is easy to see that T is split (i.e., diagonalizable over k) if and only if �1 is a square in k:
Recall (�9) that End.Gm/ ' Z: the only group-like elements in kŒGm� D kŒX;X�1�

are the powers of X , and the only homomorphisms Gm ! Gm are the maps t 7! tn for
n 2 Z. For a split torus T , we set

X�.T / D Hom.T;Gm/ D group of characters of T;

X�.T / D Hom.Gm; T / D group of cocharacters of T:

There is a pairing

h ; iWX�.T / �X�.T /! End.Gm/ ' Z; h�; �i D � ı �: (61)

Thus
�.�.t// D t h�;�i for t 2 Gm.R/ D R

�:

Both X�.T / and X�.T / are free abelian groups of rank equal to the dimension of T , and
the pairing h ; i realizes each as the dual of the other.

For example, let

T D Dn D

8̂<̂
:
0B@a1 0

: : :

0 an

1CA
9>=>; :

Then X�.T / has basis �1; : : : ; �n, where

�i .diag.a1; : : : ; an// D ai ;

and X�.T / has basis �1; : : : ; �n, where

�i .t/ D diag.1; : : : ;
i
t ; : : : ; 1/:
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Note that

h�j ; �i i D

�
1 if i D j

0 if i ¤ j
;

i.e.,

�j .�i .t// D

�
t D t1 if i D j

1 D t0 if i ¤ j
:

Some confusion is caused by the fact that we write X�.T / and X�.T / as additive
groups. For example, if a D diag.a1; a2; a3/, then

.5�2 C 7�3/a D �2.a/
5�3.a/

7
D a5

2a
7
3:

For this reason, some authors use an exponentional notation �.a/ D a�. With this notation,
the preceding equation becomes

a5�2C7�3 D a5�2a7�3 D a5
2a

7
3.

Split reductive groups

Let G be an algebraic group over a field k. When k D k, a torus T � G is maximal if it
is not properly contained in any other torus. For example, Dn is a maximal torus in GLn

because it is equal to own centralizer in GLn. In general, T � G is said to be maximal if
T

k
is maximal in G

k
. A reductive group is split if it contains a split maximal torus.

Let G a reductive group over k. Since all tori over k are split, G is automatically
split. As we discuss below, there exists a split reductive group G0 over k; unique up to
isomorphism, such that G

0k
� G.

EXAMPLE 16.1 The group GLn is a split reductive group (over any field) with split max-
imal torus Dn. On the other hand, let H be the quaternion algebra over R. As an R-vector
space, H has basis 1; i; j; ij , and the multiplication is determined by

i2 D �1; j 2
D �1, ij D �j i:

It is a division algebra with centre R. There is an algebraic group G over R such that

G.R/ D .R˝k H/�:

In particular, G.R/ D H�. As C˝R H � M2.C/, G becomes isomorphic to GL2 over C,
but as an algebraic group over R it is not split.55

EXAMPLE 16.2 The group SLn is a split reductive (in fact, semisimple) group, with split
maximal torus the diagonal matrices of determinant 1.

EXAMPLE 16.3 Let .V; q/ be a nondegenerate quadratic space (see �5), i.e., V is a finite-
dimensional vector space and q is a nondegenerate quadratic form on V with associated
symmetric form �. Recall (5.7) that the Witt index of .V; q/ is the maximum dimension of
an isotropic subspace of V . If the Witt index is r , then V is an orthogonal sum

V D H1 ? : : : ? Hr ? V1 (Witt decomposition)

55Its derived group G0 is the subgroup of elements of norm 1. As G0.R/ is compact, it can’t contain a split
torus.
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where each Hi is a hyperbolic plane and V1 is anisotropic (5.9). It can be shown that the
associated algebraic group SO.q/ is split if and only if its Witt index is as large as possible.

(a) Case dimV D n is even. When the Witt index is as large as possible, n D 2r , and

there is a basis for which the matrix56 of the form is
�
0 I

I 0

�
, and so

q.x1; : : : ; xn/ D x1xrC1 C � � � C xrx2r :

Note that the subspace of vectors

.�; : : : ;
r
�; 0; : : : ; 0/

is totally isotropic. The algebraic subgroup consisting of the diagonal matrices of the form

diag.a1; : : : ; ar ; a
�1
1 ; : : : ; a�1

r /

is a split maximal torus in SO.q/.
(b) Case dimV D n is odd. When the Witt index is as large as possible, n D 2r C 1,

and there is a basis for which the matrix of the form is

0@1 0 0

0 0 I

0 I 0

1A, and so

q.x0; x1; : : : ; xn/ D x
2
0 C x1xrC1 C � � � C xrx2r :

The algebraic subgroup consisting of the diagonal matrices of the form

diag.1; a1; : : : ; ar ; a
�1
1 ; : : : ; a�1

r /

is a split maximal torus in SO.q/.
Notice that any two nondegenerate quadratic spaces with largest Witt index and the

same dimension are isomorphic.
In the rest of the notes, I’ll refer to these groups as the split SOns.

EXAMPLE 16.4 Let V D k2n, and let be the skew-symmetric form with matrix
�

0 I

�I 0

�
,

so
 .Ex; Ey/ D x1ynC1 C � � � C xny2n � xnC1y1 � � � � � x2nyn:

The corresponding symplectic group Spn is split, and the algebraic subgroup consisting of
the diagonal matrices of the form

diag.a1; : : : ; ar ; a
�1
1 ; : : : ; a�1

r /

is a split maximal torus in Spn.

56Moreover, SO.q/ consists of the automorphs of this matrix with determinant 1, i.e., SO.q/.R/ consists of

the n � n matrices A with entries in R and determinant 1 such that At

�
0 I

I 0

�
A D

�
0 I

I 0

�
:
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Program

Let G be a split reductive group over k. Then any two split maximal tori are conjugate by
an element of G.k/. Rather than working with split reductive groups G, it turns out to be
better to work with pairs .G; T / with T a split maximal torus in G.

16.5 To each pair .G; T / consisting of a split reductive group and a maximal torus, we as-
sociate a more elementary object, namely, its root datum	.G; T /. The root datum	.G; T /

determines .G; T / up to isomorphism, and every root datum arises from a pair .G; T / (see
��17,20).

16.6 Classify the root data (see ��18,19).

16.7 Since knowing the root datum of .G; T / is equivalent to knowing .G; T /, we should
be able to read off information about the structure ofG and its representations from the root
datum. This is true (see ��21,22,23).

16.8 The root data have nothing to do with the field! In particular, we see that for each
reductive group G over k, there is (up to isomorphism) exactly one split reductive group
over k that becomes isomorphic to G over k. However, there will in general be many
nonsplit groups, and so we are left with the problem of understanding them (��26,27).

In linear algebra and the theory of algebraic groups, one often needs the ground field
to be algebraically closed in order to have enough eigenvalues (and eigenvectors). By re-
quiring that the group contains a split maximal torus, we are ensuring that there are enough
eigenvalues without requiring the ground field to be algebraically closed.

Example: the forms of GL2. What are the groupsG over a field k such thatG
k
� GL2?

For any a; b 2 k�, define H.a; b/ to be the algebra over k with basis 1; i; j; ij as a k-vector
space, and with the multiplication given by

i2 D a, j 2
D b, ij D �j i .

This is a k-algebra with centre k, and it is either a division algebra or is isomorphic to
M2.k/. For example, H.1; 1/ � M2.k/ and H.�1;�1/ is the usual quaternion algebra
when k D R.

Each algebra H.a; b/ defines an algebraic group G D G.a; b/ with G.R/ D .R ˝

H.a; b//�. These are exactly the algebraic groups over k becoming isomorphic to GL2

over k, and
G.a; b/ � G.a0; b0/ ” H.a; b/ � H.a0; b0/:

Over R, every H is isomorphic to H.�1;�1/ or M2.R/, and so there are exactly two
forms of GL2 over R.

Over Q, the isomorphism classes of H’s are classified by the subsets of

f2; 3; 5; 7; 11; 13; : : : ;1g

having a finite even number of elements. The proof of this uses the quadratic reciprocity
law in number theory. In particular, there are infinitely many forms of GL2 over Q, exactly
one of which, GL2, is split.
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17 The root datum of a split reductive group

Recall that k has characteristic zero.

Roots

Let G be a split reductive group and T a split maximal torus. Then G acts on g D Lie.G/
via the adjoint representation

AdWG ! GLg :

In particular, T acts on g, and so it decomposes as

g D g0 ˚

M
g�

where g0 is the subspace on which T acts trivially, and g� is the subspace on which T acts
through the nontrivial character � (see 9.15). The nonzero � occurring in this decomposi-
tion are called the roots of .G; T /. They form a finite subset ˚ of X�.T /.

Example: GL2

Here

T D

��
x1 0

0 x2

� ˇ̌̌̌
x1x2 ¤ 0

�
;

X�.T / D Z�1 ˚ Z�2;
�

x1 0
0 x2

�
a�1Cb�2
�! xa

1x
b
2 ;

g DM2.k/;

and T acts on g by conjugation,�
x1 0

0 x2

��
a b

c d

��
x�1

1 0

0 x�1
2

�
D

 
a x1

x2
b

x2

x1
c d

!
:

Write Eij for the matrix with a 1 in the ij th-position, and zeros elsewhere. Then T acts
trivially on g0 D hE11; E22i, through the character ˛ D �1 � �2 on g˛ D hE12i, and
through the character �˛ D �2 � �1 on g�˛ D hE21i.

Thus, ˚ D f˛;�˛g where ˛ D �1 � �2. When we use �1 and �2 to identify X�.T /

with Z˚ Z, ˚ becomes identified with f˙.e1 � e2/g:

Example: SL2

Here

T D

��
x 0

0 x�1

��
;

X�.T / D Z�;
�

x 0
0 x�1

� �
7�! x;

g D f
�

a b
c d

�
2M2.k/ j aC d D 0g:

Again T acts on g by conjugation,�
x 0

0 x�1

��
a b

c �a

��
x�1 0

0 x

�
D

�
a x2b

x�2c �a

�
Therefore, the roots are ˛ D 2� and �˛ D �2�. When we use � to identify X�.T / with
Z, ˚ becomes identified with f2;�2g:
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Example: PGL2

Recall that this is the quotient of GL2 by its centre: PGL2 D GL2 =Gm. One can prove
that for all rings R, PGL2.R/ D GL2.R/=R

�. Here

T D
n�

x1 0
0 x2

� ˇ̌̌
x1x2 ¤ 0

o.˚�
x 0
0 x

�
j x ¤ 0

	
;

X�.T / D Z�;
�

x1 0
0 x2

�
�
7�!

x1

x2
;

g DM2.k/=faI g (quotient as a vector space).

and T acts on g by conjugation:�
x1 0

0 x2

��
a b

c d

��
x�1

1 0

0 x�1
2

�
D

 
a x1

x2
b

x2

x1
c d

!
:

Therefore, the roots are ˛ D � and �˛ D ��. When we use � to identify X�.T / with Z,
˚ becomes identified with f1;�1g.

Example: GLn

Here

T D

( 
x1 0

:::
0 xn

! ˇ̌̌̌
ˇ x1 � � � xn ¤ 0

)
;

X�.T / D
M

1�i�n
Z�i ;

 
x1 0

:::
0 xn

!
�i
7�! xi ;

g DMn.k/;

and T acts on g by conjugation:

 
x1 0

:::
0 xn

!0B@
a11 ��� ��� a1n

::: aij

:::
:::

:::
an1 ��� ��� ann

1CA
0@ x�1

1 0

:::
0 x�1

n

1A D
0BBB@

a11 ��� ���
x1
xn

a1n

::: xi
xj

aij

:::

:::
:::

xn
x1

an1 ��� ��� ann

1CCCA :
Write Eij for the matrix with a 1 in the ij th-position, and zeros elsewhere. Then T acts
trivially on g0 D hE11; : : : ; Enni and through the character ˛ij D �i��j on g˛ij

D hEij i,
and so

˚ D f˛ij j 1 � i; j � n; i ¤ j g:

When we use the �i to identify X�.T / with Zn, then ˚ becomes identified with

fei � ej j 1 � i; j � n; i ¤ j g

where e1; : : : ; en is the standard basis for Zn.
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Definition of a root datum

DEFINITION 17.1 A root datum is a quadruple 	 D .X;˚;X_; ˚_/ where
˘ X;X_ are free Z-modules of finite rank in duality by a pairing h ; iWX �X_ ! Z,
˘ ˚;˚_ are finite subsets of X and X_ in bijection by a map ˛ $ ˛_,

57satisfying the following conditions
rd1 h˛; ˛_i D 2;

rd2 s˛.˚/ � ˚ where s˛ is the homomorphism X ! X defined by

s˛.x/ D x � hx; ˛
_
i˛; x 2 X , ˛ 2 ˚;

rd3 the group of automorphisms of X generated by the s˛ for ˛ 2 ˚ is finite.

Note that (rd1) implies that
s˛.˛/ D �˛;

and that the converse holds if ˛ ¤ 0. Moreover, because s˛.˛/ D �˛,

s˛.s˛.x// D s˛.x � hx; ˛
_
i˛/ D .x � hx; ˛_

i˛/ � hx; ˛_
is˛.˛/ D x;

i.e.,
s2
˛ D 1:

Clearly, also s˛.x/ D x if hx; ˛_i D 0. Thus, s˛ should be considered an “abstract
reflection in the hyperplane orthogonal to ˛”.

The elements of ˚ and ˚_ are called the roots and coroots of the root datum (and ˛_

is the coroot of ˛). The group W D W.	/ of automorphisms of X generated by the s˛ for
˛ 2 ˚ is called the Weyl group of the root datum.

We want to attach to each pair .G; T / consisting of a split reductive group G and split
maximal torus T , a root datum 	.G; T / with

X D X�.T /;

˚ D roots;

X_
D X�.T / with the pairing X�.T / �X�.T /! Z in (61),

˚_
D coroots (to be defined).

First examples of root data

EXAMPLE 17.2 Let G D SL2. Here

X D X�.T / D Z�;
�

x 0
0 x�1

� �
7�! x

X_
D X�.T / D Z�; t

�
7�!

�
t 0
0 t�1

�
˚ D f˛;�˛g; ˛ D 2�

˚_
D f˛_;�˛_

g; ˛_
D �:

57Thus, a root datum is really an ordered sextuple,

X;X_; h ; i; ˚;˚_; ˚ ! ˚_;

but everyone says quadruple.
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Note that
t

�
7�!

�
t 0
0 t�1

� 2�
7�! t2

and so
h˛; ˛_

i D 2:

As always,
s˛.˛/ D �˛; s˛.�˛/ D ˛

etc., and so s˙˛.˚/ � ˚ . Finally, W.	/ D f1; s˛g is finite, and so 	.SL2; T / is a root
system, isomorphic to

.Z; f2;�2g;Z; f1;�1g/

(with the canonical pairing hx; yi D xy and the bijection 2$ 1, �2$ �1).

EXAMPLE 17.3 Let G D PGL2. Here

˚_
D f˛_;�˛_

g; ˛_
D 2�:

In this case 	.PGL2; T / is a root system, isomorphic to

.Z; f1;�1g;Z; f2;�2g/:

REMARK 17.4 If ˛ is a root, so also is�˛, and there exists an ˛_ such that h˛; ˛_i D 2. It
follows immediately, that the above are the only two root data withX D Z and˚ nonempty.
There is also the root datum

.Z;;;Z;;/;

which is the root datum of the reductive group Gm.

EXAMPLE 17.5 Let G D GLn. Here

X D X�.Dn/ D
M

i
Z�i ; diag.x1; : : : ; xn/

�i
7�! xi

X_
D X�.Dn/ D

M
i
Z�i ; t

�i
7�! diag.1; : : : ; 1;

i
t ; 1; : : : ; 1/

˚ D f˛ij j i ¤ j g; ˛ij D �i � �j

˚_
D f˛_

ij j i ¤ j g; ˛_
ij D �i � �j :

Note that

t
�i ��j

7�! diag.1; : : : ;
i
t ; : : : ;

j

t�1; : : :/
�i ��j

7�! t2

and so
h˛ij ; ˛

_
ij i D 2:

Moreover, s˛.˚/ � ˚ for all ˛ 2 ˚ . We have, for example,

s˛ij
.˛ij / D �˛ij

s˛ij
.˛ik/ D ˛ik � h˛ik; ˛

_
ij i˛ij

D ˛ik � h�i ; �i i˛ij .if k ¤ i; j )

D �i � �k � .�i � �j /

D ˛jk

s˛ij
.˛kl/ D ˛kl .if k ¤ i; j , l ¤ i; j ).
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Finally, let E.ij / be the permutation matrix in which the i th and j th rows have been
swapped. The action

A 7! E.ij / � A �E.ij /�1

of Eij on GLn by inner automorphisms stabilizes T and swaps xi and xj . Therefore, it
acts on X D X�.T / as s˛ij

. This shows that the group generated by the s˛ij
is isomorphic

to the subgroup of GLn generated by the E.ij /, which is isomorphic to Sn. In particular,
W is finite.

Therefore, 	.GLn;Dn/ is a root datum, isomorphic to

.Zn; fei � ej j i ¤ j g;Zn; fei � ej j i ¤ j g

where ei D .0; : : : ;
i

1; : : : ; 0/, the pairing is the standard one hei ; ej i D ıij , and .ei �

ej /
_ D ei � ej .

In the above examples we wrote down the coroots without giving any idea of how to
find (or even define) them. Before defining them, we need to state some general results on
reductive groups.

Semisimple groups of rank 0 or 1

The rank of a reductive group is the dimension of a maximal torus, i.e., it is the largest
r such that G

k
contains a subgroup isomorphic to Gr

m. Since all maximal tori in G
k

are
conjugate (see 17.17 below), the rank is well-defined.

THEOREM 17.6 (a) Every semisimple group of rank 0 is trivial.
(b) Every semisimple group of rank 1 is isomorphic to SL2 or PGL2.

PROOF. (SKETCH) (a) Take k D k. If all the elements of G.k/ are unipotent, then G
is solvable (11.23), hence trivial. Otherwise, G.k/ contains a semisimple element (10.1).
The smallest algebraic subgroup H containing the element is commutative, and therefore
decomposes intoHs�Hu (see 11.6). If all semisimple elements ofG.k/ are of finite order,
then G is finite (hence trivial, being connected). If G.k/ contains a semisimple element of
infinite order, H ı

s is a nontrivial torus, and so G is not of rank 0.
(b) One shows that G contains a solvable subgroup B such that G=B � P1. From this

one gets a nontrivial homomorphism G ! Aut.P1/ ' PGL2. 2

Centralizers and normalizers

Let T be a torus in an algebraic group G. Recall (13.18) that the centralizer of T in G is
the algebraic subgroup C D CG.T / of G such that, for all k-algebras R,

C.R/ D fg 2 G.R/ j gt D tg for all t 2 T .R/g:

Similarly, the normalizer of T in G is the algebraic subgroup N D NG.T / of G such that,
for all k-algebras R,

N.R/ D fg 2 G.R/ j gtg�1
2 T .R/ for all t 2 T .R/g:

THEOREM 17.7 Let T be a torus in a reductive group G.
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(a) The centralizer CG.T / of T in G is a reductive group; in particular, it is connected.
(b) The identity component of the normalizer NG.T / of T in G is CG.T /; in particular,

NG.T /=CG.T / is a finite étale group.
(c) The torus T is maximal if and only if T D CG.T /:

PROOF. (a) Omitted. (When k D k, the statement is proved in Humphreys 1975, 26.2.)
(b) Certainly NG.T /

ı � CG.T /
ı D CG.T /. But NG.T /

ı=CG.T / acts faithfully on
T , and so is trivial by rigidity (9.16). For the second statement, see �8.

(c) Certainly, if CG.T / D T , then T is maximal because any torus containing T is
contained in CG.T /. Conversely, CG.T / is a reductive group containing T as a maximal
torus, and so Z.CG.T //

ı is a torus (15.1) containing T and therefore equal to it. Hence
CG.T /=T is a semisimple group (15.1) of rank 0, and hence is trivial. Thus CG.T / D

Z.CG.T //
ı D T . 2

The quotient W.G; T / D NG.T /=CG.T / is called the Weyl group of .G; T /. It is a
constant étale algebraic group58 when T is split, and so may be regarded simply as a finite
group.

Definition of the coroots

LEMMA 17.8 Let G be a split reductive group with split maximal torus T . The action of
W.G; T / on X�.T / stabilizes ˚ .

PROOF. Take k D k. Let s normalize T (and so represent an element of W ). Then s acts
on X�.T / (on the left) by

.s�/.t/ D �.s�1ts/:

Let ˛ be a root. Then, for x 2 g˛ and t 2 T .k/,

t .sx/ D s.s�1ts/x D s.˛.s�1ts/x/ D ˛.s�1ts/sx;

and so T acts on sg˛ through the character s˛, which must therefore be a root. 2

For a root ˛ of .G; T /, let T˛ D Ker.˛/ı, and let G˛ be centralizer of T˛.

THEOREM 17.9 Let G be a split reductive group with split maximal torus T .
(a) For each ˛ 2 ˚ , W.G˛; T / contains exactly one nontrivial element s˛, and there is a

unique ˛_ 2 X�.T / such that

s˛.x/ D x � hx; ˛
_
i˛; for all x 2 X�.T /: (62)

Moreover, h˛; ˛_i D 2.
(b) The system .X�.T /; ˚;X�.T /; ˚

_/ with ˚_ D f˛_ j ˛ 2 ˚g and the map ˛ 7!
˛_W˚ ! ˚_ is a root datum.

58That is, W.R/ is the same finite group for all integral domains R. Roughly speaking, the reason for this is
that W.k/ equals the Weyl group of the root datum, which doesn’t depend on the base field (or base ring).
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PROOF. (SKETCH) (a) The key point is that the derived group of G˛ is a semisimple group
of rank one and T is a maximal torus of G˛. Thus, we are essentially in the case of SL2

or PGL2, where everything is obvious (see below). Note that the uniqueness of ˛_ follows
from that of s˛.

(b) We noted in (a) that (rd1) holds. The s˛ attached to ˛ lies inW.G˛; T / � W.G; T /,
and so stabilizes ˚ by the lemma. Finally, all s˛ lie in the Weyl group W.G; T /, and so
they generate a finite group (in fact, the generate exactly W.G; T /). 2

EXAMPLE 17.10 Let G D SL2, and let ˛ be the root 2�. Then T˛ D 1 and G˛ D G. The
unique s ¤ 1 in W.G; T / is represented by�

0 1

�1 0

�
;

and the unique ˛_ for which (62) holds is �.

EXAMPLE 17.11 Let G D GLn, and let ˛ D ˛12 D �1 � �2. Then

T˛ D fdiag.x; x; x3; : : : ; xn/ j xxx3 : : : xn ¤ 1g

and G˛ consists of the invertible matrices of the form0BBBBB@
� � 0 0

� � 0 0

0 0 � 0
: : :

:::

0 0 0 � � � �

1CCCCCA :

Clearly

n˛ D

0BBBBB@
0 1 0 0

1 0 0 0

0 0 1 0
: : :

:::

0 0 0 � � � 1

1CCCCCA
represents the unique nontrivial element s˛ of W.G˛; T /. It acts on T by

diag.x1; x2; x3; : : : ; xn/ 7�! diag.x2; x1; x3; : : : ; xn/:

For x D m1�1 C � � � Cmn�n,

s˛x D m2�1 Cm1�2 Cm3�3 C � � � Cmn�n

D x � hx; �1 � �2i.�1 � �2/:

and
x � hx; �1 � �2i˛ D x � .2

Thus (62) holds if and only if ˛_ is taken to be �1 � �2.
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Computing the centre

PROPOSITION 17.12 Every maximal torus T in a reductive algebraic groupG contains the
centre Z D Z.G/ of G.

PROOF. Clearly Z � CG.T /, but (see 17.7), CG.T / D T . 2

Recall (14.8) that the kernel of the adjoint map AdWG ! GLg is Z.G/, and so the
kernel of AdWT ! GLg is Z.G/ \ T D Z.G/. Therefore

Z.G/ D Ker.Ad jT / D
\

˛2˚
Ker.˛/:

We can use this to compute the centres of groups. For example,

Z.GLn/ D
\

i¤j
Ker.�i � �j / D

( 
x1 0

:::
0 xn

! ˇ̌̌̌
ˇ x1 D x2 D � � � D xn ¤ 0

)
;

Z.SL2/ D Ker.2�/ D
˚�

x 0
0 x�1

�
j x2
D 1

	
D �2;

Z.PGL2/ D Ker.�/ D 1:

On applying X� to the exact sequence

0! Z.G/! T
t 7!.:::;˛.t/;:::/
����������!

Y
˛2˚

Gm (63)

we get (see 9.12) an exact sequenceM
˛2˚

Z
.:::;m˛;:::/ 7!

P
m˛˛

�������������! X�.T /! X�.Z.G//! 0;

and so
X�.Z.G// D X�.T /=fsubgroup generated by ˚g. (64)

For example,

X�.Z.GLn// ' Zn=hei � ej j i ¤ j i
.a1;:::;an/ 7!

P
ai

������������!
'

Z;

X�.Z.SL2// ' Z=.2/;
X�.Z.PGL2// ' Z=Z D 0:

Semisimple and toral root data

DEFINITION 17.13 A root datum is semisimple if ˚ generates a subgroup of finite index
in X .

PROPOSITION 17.14 A split reductive group is semisimple if and only if its root datum is
semisimple.

PROOF. A reductive group is semisimple if and only if its centre is finite, and so this follows
from (64). 2

DEFINITION 17.15 A root datum is toral if ˚ is empty.

PROPOSITION 17.16 A split reductive group is a torus if and only if its root datum is toral.

PROOF. If the root datum is toral, then (64) shows that Z.G/ D T . Hence DG has rank 0,
and so is trivial. It follows that G D T . Conversely, if G is a torus, the adjoint representa-
tion is trivial and so g D g0. 2
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The main theorems.

From .G; T / we get a root datum 	.G; T /:

THEOREM 17.17 Let T; T 0 be split maximal tori in G. Then there exists a g 2 G.k/ such
that T 0 D gTg�1 (i.e., inn.g/.T / D T 0).

PROOF. Omitted for the present. 2

EXAMPLE 17.18 Let G D GLV , and let T be a split torus. A split torus is (by definition)
diagonalizable, i.e., there exists a basis for V such that T � Dn. Since T is maximal, it
equals Dn. This proves the theorem for GLV .

It follows that the root datum attached to .G; T / depends only on G (up to isomor-
phism).

THEOREM 17.19 (ISOMORPHISM) Every isomorphism 	.G; T / ! 	.G0; T 0/ of root
data arises from an isomorphism 'WG ! G0 such that '.T / D T 0.

PROOF. Springer 1998, 16.3.2. 2

Later we shall define the notion of a base for a root datum. If bases are fixed for .G; T /
and .G0; T 0/, then ' can be chosen to send one base onto the other, and it is then unique up
to composition with a homomorphism inn.t/ such that t 2 T .k/ and ˛.t/ 2 k for all ˛.

THEOREM 17.20 (EXISTENCE) Every reduced root datum arises from a split reductive
group.

PROOF. Springer 1998, 16.5. 2

A root datum is reduced if the only multiples of a root ˛ that can also be a root are˙˛.

Examples

We now work out the root datum attached to each of the classical split semisimple groups.
In each case the strategy is the same. We work with a convenient form of the group G in
GLn. We first compute the weights of the split maximal torus on gln, and then check that
each nonzero weight occurs in g (in fact, with multiplicity 1). Then for each ˛ we find a
natural copy of SL2 (or PGL2) centralizing T˛, and use it to find the coroot ˛_.

Example (An): SLnC1.

Let G be SLnC1 and let T be the algebraic subgroup of diagonal matrices:

fdiag.t1; : : : ; tnC1/ j t1 � � � tnC1 D 1g:

Then

X�.T / D
M

Z�i

.
Z�;

(
diag.t1; : : : ; tnC1/

�i
7�! ti

� D
P
�i

X�.T / D f
X

ai�i j

X
ai D 0g; t

P
ai �i
7�! diag.ta1 ; : : : ; tan/; ai 2 Z;

with the obvious pairing h ; i. Write �i for the class of �i inX�.T /. Then all the characters
�i � �j , i ¤ j , occur as roots, and their coroots are respectively �i � �j , i ¤ j . This
follows easily from the calculation of the root datum of GLn.
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Example (Bn): SO2nC1 :

Consider the symmetric bilinear form � on k2nC1,

�.Ex; Ey/ D 2x0y0 C x1ynC1 C xnC1y1 C � � � C xny2n C x2nyn

Then SO2nC1 Ddf SO.�/ consists of the 2n C 1 � 2n C 1 matrices A of determinant 1
such that

�.AEx;A Ey/ D �.Ex; Ey/;

i.e., such that

At

0@1 0 0

0 0 I

0 I 0

1AA D
0@1 0 0

0 0 I

0 I 0

1A :
The Lie algebra of SO2nC1 consists of the 2nC 1� 2nC 1 matrices A of trace 0 such that

�.AEx; Ey/ D ��.Ex;A Ey/;

(12.15), i.e., such that

At

0@1 0 0

0 0 I

0 I 0

1A D �
0@1 0 0

0 0 I

0 I 0

1AA:
Take T to be the maximal torus of diagonal matrices

diag.1; t1; : : : ; tn; t�1
1 ; : : : ; t�1

n /

Then

X�.T / D
M

1�i�n
Z�i ; diag.1; t1; : : : ; tn; t�1

1 ; : : : ; t�1
n /

�i
7�! ti

X�.T / D
M

1�i�n
Z�i ; t

�i
7�! diag.1; : : : ;

iC1
t ; : : : ; 1/

with the obvious pairing h ; i. All the characters

˙�i ; ˙�i ˙ �j ; i ¤ j

occur as roots, and their coroots are, respectively,

˙2�i ; ˙�i ˙ �j ; i ¤ j:

Example (Cn): Sp2n :

Consider the skew symmetric bilinear form k2n � k2n ! k;

�.Ex; Ey/ D x1ynC1 � xnC1y1 C � � � C xny2n � x2nyn:

Then Sp2n consists of the 2n � 2n matrices A such that

�.AEx;A Ey/ D �.Ex; Ey/;

i.e., such that

At

�
0 I

�I 0

�
A D

�
0 I

�I 0

�
:
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The Lie algebra of Spn consists of the 2n � 2n matrices A such that

�.AEx; Ey/ D ��.Ex;A Ey/;

i.e., such that

At

�
0 I

�I 0

�
D �

�
0 I

�I 0

�
A:

Take T to be the maximal torus of diagonal matrices

diag.t1; : : : ; tn; t�1
1 ; : : : ; t�1

n /:

Then

X�.T / D
M

1�i�n
Z�i ; diag.t1; : : : ; tn; t�1

1 ; : : : ; t�1
n /

�i
7�! ti

X�.T / D
M

1�i�n
Z�i ; t

�i
7�! diag.1; : : : ;

i
t ; : : : ; 1/

with the obvious pairing h ; i. All the characters

˙2�i ; ˙�i ˙ �j ; i ¤ j

occur as roots, and their coroots are, respectively,

˙�i ; ˙�i ˙ �j ; i ¤ j:

Example (Dn): SO2n :

Consider the symmetric bilinear form k2n � k2n ! k;

�.Ex; Ey/ D x1ynC1 C xnC1y1 C � � � C xny2n C x2ny2n:

Then SOn D SO.�/ consists of the n � n matrices A of determinant 1 such that

�.AEx;A Ey/ D �.Ex; Ey/;

i.e., such that

At

�
0 I

I 0

�
A D

�
0 I

I 0

�
:

The Lie algebra of SOn consists of the n � n matrices A of trace 0 such that

�.AEx; Ey/ D ��.Ex;A Ey/;

i.e., such that

At

�
0 I

I 0

�
D �

�
0 I

I 0

�
A:

When we write the matrix as
�
A B

C D

�
, then this last condition becomes

ACDt
D 0; C C C t

D 0; B C B t
D 0:

Take T to be the maximal torus of matrices
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diag.t1; : : : ; tn; t�1
1 ; : : : ; t�1

n /

and let �i , 1 � i � r , be the character

diag.t1; : : : ; tn; t�1
1 ; : : : ; t�1

n / 7! ti :

All the characters
˙�i ˙ �j ; i ¤ j

occur, and their coroots are, respectively,

˙�i ˙ �j ; i ¤ j:

REMARK 17.21 The subscript on An, Bn, Cn, Dn denotes the rank of the group, i.e., the
dimension of a maximal torus.
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18 Generalities on root data

Definition

The following is the standard definition.

DEFINITION 18.1 A root datum is an ordered quadruple 	 D .X;˚;X_; ˚_/ where
˘ X;X_ are free Z-modules of finite rank in duality by a pairing h ; iWX �X_ ! Z,
˘ ˚;˚_ are finite subsets of X and X_ in bijection by a correspondence ˛ $ ˛_,

satisfying the following conditions
RD1 h˛; ˛_i D 2;

RD2 s˛.˚/ � ˚ , s_
˛ .˚

_/ � ˚_, where

s˛.x/ D x � hx; ˛
_
i˛; for x 2 X , ˛ 2 ˚;

s_
˛ .y/ D y � h˛; yi˛

_; for y 2 X_; ˛ 2 ˚:

Recall that RD1 implies that s˛.˛/ D �˛ and s2
˛ D 1.

Set59

Q D Z˚ � X Q_ D Z˚_ � X_

V D Q˝Z Q V _ D Q˝Z Q
_:

X0 D fx 2 X j hx;˚
_i D 0g

By Z˚ we mean the Z-submodule of X generated by the ˛ 2 ˚ .

LEMMA 18.2 For ˛ 2 ˚ , x 2 X , and y 2 X_,

hs˛.x/; yi D hx; s
_
˛ .y/i; (65)

and so
hs˛.x/; s

_
˛ .y/i D hx; yi: (66)

PROOF. We have

hs˛.x/; yi D hx � hx; ˛
_
i˛; yi D hx; yi � hx; ˛_

ih˛; yi

hx; s_
˛ .y/i D hx; y � h˛; yi˛

_
i D hx; yi � hx; ˛_

ih˛; yi;

which gives the first formula, and the second is obtained from the first by replacing y with
s_
˛ .y/. 2

In other words, as the notation suggests, s_
˛ (which is sometimes denoted s˛_) is the

transpose of s˛.

LEMMA 18.3 The following hold for the mapping

pWX ! X_; p.x/ D
X
˛2˚

hx; ˛_
i˛_:

(a) For all x 2 X ,
hx; p.x/i D

X
˛2˚
hx; ˛_

i
2
� 0; (67)

with strict inequality holding if x 2 ˚:

59The notation Q_ is a bit confusing, because Q_ is not in fact the dual of Q.
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(b) For all x 2 X and w 2 W ,

hwx; p.wx/i D hx; p.x/i: (68)

(c) For all ˛ 2 ˚ ,
h˛; p.˛/i˛_

D 2p.˛/; all ˛ 2 ˚: (69)

PROOF. (a) This is obvious.
(b) It suffices to check this for w D s˛, but

hs˛x; ˛
_
i D hx; ˛_

i � hx; ˛_
ih˛; ˛_

i D �hx; ˛_
i

and so each term on the right of (67) is unchanged if x with replaced with s˛x.
(c) Recall that, for y 2 X_,

s_
˛ .y/ D y � h˛; yi˛

_:

On multiplying this by h˛; yi and re-arranging, we find that

h˛; yi2˛_
D h˛; yiy � h˛; yis_

˛ .y/:

But

�h˛; yi D hs˛.˛/; yi

.65/
D h˛; s_

˛ .y/i

and so
h˛; yi2˛_

D h˛; yiy C h˛; s_
˛ .y/is

_
˛ .y/:

As y runs through the elements of ˚_, so also does s_
˛ .y/, and so when we sum over

y 2 ˚_, we obtain (69). 2

REMARK 18.4 Suppose m˛ is also a root. On replacing ˛ with m˛ in (69) and using that
p is a homomorphism of Z-modules, we find that

mh˛; p.˛/i.m˛/_ D 2p.˛/; all ˛ 2 ˚:

Therefore,
.m˛/_ D m�1˛_: (70)

In particular,
.�˛/_ D �.˛_/: (71)

LEMMA 18.5 The map pWX ! X_ defines an isomorphism

1˝ pWV ! V _:

In particular, dimV D dimV _.

PROOF. As h˛; p.˛/i ¤ 0, (69) shows that p.Q/ has finite index in Q_. Therefore, when
we tensor pWQ ! Q_ with Q, we get a surjective map 1 ˝ pWV ! V _; in particu-
lar, dimV � dimV _. The definition of a root datum is symmetric between .X;˚/ and
.X_; ˚_/, and so the symmetric argument shows that dimV _ � dimV . Hence

dimV D dimV _;

and 1˝ pWV ! V _ is an isomorphism. 2
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LEMMA 18.6 The kernel of pWX ! X_ is X0.

PROOF. Clearly, X0 � Ker.p/, but (67) proves the reverse inclusion. 2

PROPOSITION 18.7 We have

Q \X0 D 0

QCX0 is of finite index in X:

Thus, there is an exact sequence

0! Q˚X0

.q;x/ 7!qCx
��������! X ! finite group! 0:

PROOF. The map
1˝ pWQ˝X ! V _

has kernel Q˝X0 (see 18.6) and maps the subspace V of Q˝X isomorphically onto V _

(see 18.5). This implies that

.Q˝Z X0/˚ V ' Q˝X;

from which the proposition follows. 2

LEMMA 18.8 The bilinear form h ; i defines a nondegenerate pairing V � V _ ! Q.

PROOF. Let x 2 X . If hx; ˛_i D 0 for all a_ 2 ˚_, then x 2 Ker.p/ D X0. 2

LEMMA 18.9 For any x 2 X and w 2 W , w.x/ � x 2 Q.

PROOF. From (RD2),
s˛.x/ � x D �hx; ˛

_
i˛ 2 Q:

Now
.s˛1
ı s˛2

/.x/ � x D s˛1
.s˛2

.x/ � x/C s˛1
.x/ � x 2 Q;

and so on. 2

Recall that the Weyl group W D W.	/ of 	 is the subgroup of Aut.X/ generated by
the s˛, ˛ 2 ˚ . We let w 2 W act on X_ as .w_/�1, i.e., so that

hwx;wyi D hx; yi; all w 2 W , x 2 X , y 2 X_:

Note that this makes s˛ act on X_ as .s_
˛ /

�1 D s_
˛ (see 65).

PROPOSITION 18.10 The Weyl group W acts faithfully on ˚ (and so is finite).

PROOF. By symmetry, it is equivalent to show that W acts faithfully on ˚_. Let w be an
element of W such that w.˛/ D ˛ for all ˛ 2 ˚_. For any x 2 X ,

hw.x/ � x; ˛_
i D hw.x/; ˛_

i � hx; ˛_
i

D hx;w�1.˛_/i � hx; ˛_
i

D 0:

Thus w.x/ � x is orthogonal to ˚_. As it lies in Q (see 18.9), this implies that it is zero
(18.8), and so w D 1. 2
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Thus, a root datum in the sense of (18.1) is a root datum in the sense of (17.1), and the
next proposition proves the converse.

PROPOSITION 18.11 Let 	 D .X;˚;X_; ˚_/ be a system satisfying the conditions
(rd1), (rd2), (rd3) of (17.1). Then 	 is a root datum.

PROOF. We have to show that

s_
˛ .˚

_/ � ˚_ where s_
˛ .y/ D y � h˛; yi˛

_:

As in Lemma 18.2, hs˛.x/; s_
˛ .y/i D hx; yi:

Let ˛; ˇ 2 ˚ , and let t D ss˛.ˇ/s˛sˇ s˛. An easy calculation60 shows that

t .x/ D x C .hx; s_
˛ .ˇ

_/i � hx; s˛.ˇ/
_
i/s˛.ˇ/; all x 2 X:

Since

hs˛.ˇ/; s
_
˛ .ˇ

_/i � hs˛.ˇ/; s˛.ˇ/
_
i D hˇ; ˇ_

i � hs˛.ˇ/; s˛.ˇ/
_
i D 2 � 2 D 0;

we see that t .sa.ˇ// D s˛.ˇ/. Thus,

.t � 1/2 D 0;

and so the minimum polyonomial of t acting on Q ˝Z X divides .T � 1/2. On the other
hand, since t lies in a finite group, it has finite order, say tm D 1. Thus, the minimum
polynomial also divides Tm � 1, and so it divides

gcd.Tm
� 1; .T � 1/2/ D T � 1:

This shows that t D 1, and so

hx; s_
˛ .ˇ

_/i � hx; s˛.ˇ/
_
i D 0 for all x 2 X:

Hence
s_
˛ .ˇ

_/ D s˛.ˇ/
_
2 ˚_: 2

REMARK 18.12 To give a root datum amounts to giving a triple .X;˚; f / where
˘ X is a free abelian group of finite rank,
˘ ˚ is a finite subset of X , and
˘ f is an injective map ˛ 7! ˛_ from ˚ into the dual X_ of X

satisfying the conditions (rd1), (rd2), (rd3) of (17.1).

60Or so it is stated in Springer 1979, 1.4 (Corvallis).
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19 Classification of semisimple root data

Throughout this section, F is a field of characteristic zero, for example F D Q, R, or C.
An inner product on a real vector space is a positive-definite symmetric bilinear form.

Generalities on symmetries

Let V be a finite-dimensional vector space over F , and let ˛ be a nonzero element of V .
A symmetry with vector ˛ is an automorphism of V such that s.˛/ D �˛, and the set of
vectors fixed by s is a hyperplane H .
Then V D H ˚ h˛i with s acting as 1˚�1, and so s2 D 1.

Let V _ be the dual vector space HomQ-lin.V; F / of V , and write hx; f i for f .x/. The
composite

V ! V=H
˛CH 7!2
�! F

is the unique element ˛_ of V _ such that ˛.H/ D 0 and h˛; ˛_i D 2; moreover,

s.x/ D x � hx; ˛_
i˛ all x 2 V: (72)

In this way, symmetries with vector ˛ are in one-to-one correspondence with vectors ˛_

such that h˛; ˛_i D 2.

LEMMA 19.1 Let ˚ be a finite subset of V that spans V . Then, for any nonzero vector ˛
in V , there exists at most one symmetry s with vector ˛ such that ˛.˚/ � ˚ .

PROOF. Let s; s0 be such symmetries, and let t D ss0. Then t defines the identity map on
both F˛ and on V=F˛, and so

.t � 1/2V � .t � 1/F˛ D 0:

Thus the minimum polynomial of t divides .T �1/2. On the other hand, because˚ is finite,
there exists an integer m � 1 such that tm.x/ D x for all x 2 ˚ and hence for all x 2 V .
Therefore the minimum polyomial of t divides Tm � 1, and hence also

gcd..T � 1/2; Tm
� 1/ D T � 1:

This shows that t D 1. 2

LEMMA 19.2 Let . ; / be an inner product on a real vector space V . Then, for any nonzero
vector ˛ in V , there exists a unique symmetry s with vector ˛ that is orthogonal for . ; /,
i.e., such that .sx; sy/ D .x; y/ for all x; y 2 V , namely

s.x/ D x � 2
.x; ˛/

.˛; ˛/
˛: (73)

PROOF. Certainly, (73) does define an orthogonal symmetry with vector ˛. Suppose s0

is a second such symmetry, and let H D h˛i?. Then H is stable under s0, and maps
isomorphically on V=h˛i. Therefore s0 acts as 1 on H . As V D H ˚ h˛i and s0 acts as �1
on h˛i, it must coincide with s. 2
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Generalities on lattices

In this subsection V is a finite-dimensional vector space over F .

DEFINITION 19.3 A subgroup of V is a lattice in V if it can be generated (as a Z-module)
by a basis for V . Equivalently, a subgroup X is a lattice if the natural map F ˝Z X ! V

is an isomorphism.

REMARK 19.4 (a) When F D Q, every finitely generated subgroup of V that spans V is a
lattice, but this is not true for F D R or C. For example, Z1C Z

p
2 is not a lattice in R.

(b) When F D R, the discrete subgroups of V are the partial lattices, i.e., Z-modules
generated by an R-linearly independent set of vectors for V (see my notes on algebraic
number theory 4.13).

DEFINITION 19.5 A perfect pairing of free Z-modules of finite rank is one that realizes
each as the dual of the other. Equivalently, it is a pairing into Z with discriminant˙1.

PROPOSITION 19.6 Let
h ; iWV � V _

! k

be a nondegenerate bilinear pairing, and let X be a lattice in V . Then

Y D fy 2 V _
j hX; yi � Z g

is the unique lattice in V _ such that h ; i restricts to a perfect pairing

X � Y ! Z:

PROOF. Let e1; : : : ; en be a basis for V generating X , and let e0
1; : : : ; e

0
n be the dual basis.

Then
Y D Ze0

1 C � � � C Ze0
n;

and so it is a lattice, and it is clear that h ; i restricts to a perfect pairing X � Y ! Z.
Let Y 0 be a second lattice in V _ such that hx; yi 2 Z for all x 2 X , y 2 Y 0. Then

Y 0 � Y , and an easy argument shows that the discriminant of the pairing X � Y 0 ! Z is
˙.Y WY 0/, and so the pairing on X � Y 0 is perfect if and only if Y 0 D Y . 2

Root systems

DEFINITION 19.7 A root system is a pair .V; ˚/ with V a finite-dimensional vector space
over F and ˚ a finite subset of V such that
RS1 ˚ spans V and does not contain 0I
RS2 for each ˛ 2 ˚ , there exists a symmetry s˛ with vector ˛ such that s˛.˚/ � ˚ I
RS3 for all ˛; ˇ 2 ˚ , hˇ; ˛_i 2 Z.

In (RS3), ˛_ is the element of V _ corresponding to s˛. Note that (19.1) shows that s˛
(hence also ˛_) is uniquely determined by ˛.

The elements of ˚ are called the roots of the root system. If ˛ is a root, then s˛.˛/ D
�˛ is also a root. If t˛ is also a root, then (RS3) shows that t D 1

2
or 2. A root system

.V; ˚/ is reduced if no multiple of a root except its negative is a root.
The Weyl group W D W.˚/ of .V; ˚/ is the subgroup of GL.V / generated by the

symmetries s˛ for ˛ 2 ˚ . Because ˚ spans V , W acts faithfully on ˚ ; in particular, it is
finite.
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PROPOSITION 19.8 Let .V; ˚/ be a root system over F , and let V0 be the Q-vector space
generated by ˚ . Then

(a) the natural map F ˝Q V0 ! V is an isomorphism;
(b) the pair .V0; ˚/ is a root system over Q.

PROOF. For a proof of the proposition, see Serre 1987, p42. 2

Thus, to give a root system over R or C amounts to giving a root system over Q.

Root systems and semisimple root data

Compare (18.12; 19.7):

Semisimple root datum Root system (over Q)
X;˚; ˛ 7! ˛_W˚ ,! X_ V;˚

˚ is finite ˚ is finite
.X WZ˚/ finite ˚ spans V

0 … ˚

h˛; ˛_i D 2, s˛.˚/ � ˚ 9s˛ such that s˛.˚/ � ˚
hˇ; ˛_i 2 Z, all ˛; ˇ 2 ˚

Weyl group finite

For a root system .V; ˚/, letQ D Z˚ be the Z-submodule of V generated by ˚ and let
Q_ be the Z-submodule of V _ generated by the ˛_, ˛ 2 ˚ . Then,Q andQ_ are lattices61

in V and V _, and we let
P D fx 2 V j hx;Q_

i � Zg:

Then P is a lattice in V (see 19.6), and because of (RS3),

Q � P . (74)

PROPOSITION 19.9 If .X;˚; ˛ 7! ˛_/ is a semisimple root datum, then .Q˝ZX;˚/ is a
root system over Q. Conversely, if .V; ˚/ is root system over Q, then for any choice X of
a lattice in V such that

Q � X � P (75)

.X;˚; ˛ 7! ˛_/ is a semisimple root datum.

PROOF. If .X;˚; ˛ 7! ˛_/ is a semisimple root datum, then 0 … ˚ because h˛; ˛_i D 2,
and hˇ; ˛_i 2 Z because ˛_ 2 X_. Therefore .Q˝Z X;˚/ is a root system.

Conversely, let .V; ˚/ be a root system. LetX satisfy (75), and letX_ denote the lattice
in V _ in duality with X (see 19.6). For each ˛ 2 ˚ , there exists an ˛_ 2 V _ such that
h˛; ˛_i D 2 and s˛.˚/ � ˚ (because .V; ˚/ is a root datum), and (19.1) shows that it is
unique. Therefore, we have a function ˛ 7! ˛_W˚ ! V _ which takes its values in X_

(because X � P implies X_ � ˚_/, and is injective. The Weyl group of .X;˚; ˛ 7! ˛_/

is the Weyl group of .V; ˚/, which, as we noted above, is finite. Therefore .X;˚; ˛ 7! ˛_/

is a semisimple root datum. 2

61They are finitely generated, and ˚_ spans V _ by Serre 1987, p28.
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The big picture

Recall that the base field k (for G) has characteristic zero.

Split reductive groups $ Reduced root data
:::

:::

Split semisimple groups $ Reduced semisimple root data
# #

Lie algebras
kDk
$ Reduced root systems

19.10 As we discussed in (�17), the reduced root data classify the split reductive groups
over k:

19.11 As we discussed in (15.1), from a reductive group G, we get semisimple groups
DG and G=Z.G/ together with an isogeny DG ! G=Z.G/. Conversely, every reductive
group G can be built up from a semisimple group and a torus (15.2).

19.12 As we discuss in the next section, the relation between reduced root data and re-
duced semisimple root data is the same as that between split reductive groups and split
semisimple groups. It follows that to show that the reduced root data classify split reduc-
tive groups, it suffices to show that reduced semisimple root data classify split semisimple
groups.

19.13 From a semisimple group G we get a semisimple Lie algebra Lie.G/ (see 14.1),
and from Lie.G/ we can recover G=Z.G/ (see 14.9). Passing from G to Lie.G/ amounts
to forgetting the centre of G.

19.14 From a semisimple root datum .X;˚; ˛ 7! ˛_/, we get a root system .V D Q˝Z
X;˚/. Passing from the semisimple root datum to the root system amounts to forgetting
the lattice X in V .

19.15 Take k D k, and let g be a semisimple Lie algebra over k. A Cartan subalgebra
h of g is a commutative subalgebra that is equal to its own centralizer. For example, the
algebra of diagonal matrices of trace zero in sln is a Cartan subalgebra. Then h acts on g

via the adjoint map adW h! End.g/, i.e., for h 2 h, x 2 g; ad.h/.x/ D Œh; x�. One shows
that g decomposes as a sum

g D g0 ˚

M
˛2h_

g˛

where g0 is the subspace on which h acts trivially, and hence equals h, and g˛ is the subspace
on which h acts through the linear form ˛W h! k, i.e., for h 2 h, x 2 g˛, Œh; x� D ˛.h/x.
The nonzero ˛ occurring in the above decomposition form a reduced root system ˚ in h_

(and hence in the Q-subspace of h_ spanned by ˚ — see 19.8). In this way, the semisimple
Lie algebras over k are classified by the reduced root systems (see Serre 1987, VI).

Classification of the reduced root system

After (19.8), we may as well work with root systems over R.

PROPOSITION 19.16 For any root system .V; ˚/, there exists an inner product . ; / on V
such that the s˛ act as orthogonal transformations, i.e., such that

.s˛x; s˛y/ D .x; y/; all ˛ 2 ˚ , x; y 2 V:
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PROOF. Let . ; /0 be any inner product V � V ! R, and define

.x; y/ D
X

w2W
.wx;wy/0:

Then . ; / is again symmetric and bilinear, and

.x; x/ D
X

w2W
.wx;wx/0 > 0

if x ¤ 0, and so . ; / is positive-definite. On the other hand, for w0 2 W;

.w0x;w0y/ D
X

w2W
.ww0x;ww0y/

0

D .x; y/

because as w runs through W , so also does ww0. 2

REMARK 19.17 There is in fact a canonical inner product on V , namely, the form induced
by x; y 7! .x; p.x// (see 18.3).

Thus, we may as well equip V with an inner product . ; / as in the proposition. On
comparing (73) with (72)

s˛.x/ D x � 2
.x; ˛/

.˛; ˛/
˛;

s˛.x/ D x � hx; ˛
_
i˛;

we see that

hx; ˛_
i D 2

.x; ˛/

.˛; ˛/
: (76)

Thus (RS3) becomes the condition:

2
.ˇ; ˛/

.˛; ˛/
2 Z, all ˛; ˇ 2 ˚:

Study of two roots

Let ˛; ˇ 2 ˚ , and let n.ˇ; ˛/ D 2 .ˇ;˛/
.˛;˛/

. We wish to examine the significance of the
condition n.ˇ; ˛/ 2 Z. Write

n.ˇ; ˛/ D 2
jˇj

j˛j
cos�

where j � j denotes the length of a vector and � is the angle between ˛ and ˇ. Then

n.ˇ; ˛/ � n.˛; ˇ/ D 4 cos2 � 2 Z: (77)

Excluding the possibility that ˇ is a multiple of ˛, there are only the following possibilities
(in the table, we have chosen ˇ to be the longer root).

n.ˇ; ˛/ � n.˛; ˇ/ n.˛; ˇ/ n.ˇ; ˛/ � jˇj=j˛j

0 0 0 �=2

1
1

�1

1

�1

�=3

2�=3
1

2
1

�1

2

�2

�=4

3�=4

p
2

3
1

�1

3

�3

�=6

5�=6

p
3
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The proof of this is an exercise for the reader, who should also draw the appropriate pictures.

REMARK 19.18 Let ˛ and ˇ be roots with neither a multiple of the other. Clearly, n.˛; ˇ/
and n.ˇ; ˛/ are either both positive or both negative. From the table, we see that in the first
case at least one of n.˛; ˇ/ or n.ˇ; ˛/ equals 1. If it is, say, n.ˇ; ˛/, then

s˛.ˇ/ D ˇ � n.ˇ; ˛/˛ D ˇ � ˛;

and so˙.˛ � ˇ/ are roots.

Bases

DEFINITION 19.19 A base for ˚ is a subset S such that
(a) S is a basis for V (as an R-vector space), and
(b) when we express a root ˇ as a linear combination of elements of S ,

ˇ D
X

˛2S
m˛˛;

the m˛ are integers of the same sign (i.e., either all m˛ � 0 or all m˛ � 0).

The elements of a (fixed) base S are often called the simple roots(for the base).

PROPOSITION 19.20 There exists a base S for ˚ .

PROOF. Serre 1987, V 8. The idea of the proof is the following. Choose a vector t in the
dual vector space V _ such that, for all ˛ 2 ˚ , h˛; ti ¤ 0, and set

˚C
D f˛ j h˛; ti > 0g

˚�
D f˛ j h˛; ti < 0g

(so ˚ D ˚� t ˚C). Say that an ˛ 2 ˚C is decomposable if it can be written as a
sum ˛ D ˇ C 
 with ˇ; 
 2 ˚C, and otherwise is indecomposable. One shows that the
indecomposable elements form base. 2

REMARK 19.21 Let ˛ and ˇ be simple roots, and suppose n.˛; ˇ/ and n.ˇ; ˛/ are positive
(i.e., the angle between ˛ and ˇ is acute). Then (see 19.18), both of ˛ � ˇ and ˇ � ˛ are
roots, and one of them, say, ˛�ˇ, will be in ˚C. But then ˛ D .˛�ˇ/Cˇ, contradicting
the simplicity of ˛. We conclude that n.ˇ; ˛/ and n.˛; ˇ/ are negative.

EXAMPLE 19.22 Consider the root system of type An, i.e., that attached to SLnC1 (see
p124). We can take V to be the subspace62 of RnC1 of n C 1-tuples such that

P
xi D 0

with the usual inner product, and ˚ D fei � ej j i ¤ j g with e1; : : : ; enC1 the standard
basis of RnC1. When we choose t D ne1 C � � � C en,

˚C
D fei � ej j i > j g:

For i > j C 1,
ei � ej D .ei � ei�1/C � � � C .ej C1 � ej /

is decomposable, and so the indecomposable elements are e1 � e2; : : : ; en � enC1. They
obviously form a base.

62The naturally occurring space is RnC1 modulo the line R.e1 C � � � C enC1/, but V is the hyperplane
orthogonal to this line and contains the roots, and so this gives an isomorphic root system. Alternatively, it is
naturally the dual ˚_.
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Action of the Weyl group

Recall that W D W.˚/ is the subgroup of GL.V / generated by fs˛ j ˛ 2 ˚g.

PROPOSITION 19.23 Let S be a base for ˚ . Then
(a) W is generated by the s˛ for ˛ 2 S ;
(b) W � S D ˚ ;
(c) if S 0 is a second base for ˚ , then S 0 D wS for some w 2 W .

PROOF. Serre 1987, V 10. 2

EXAMPLE 19.24 For the root system An,

s˛ij
.Ex/ D Ex � 2

.Ex; ˛ij /

.˛ij ; ˛ij /
˛ij ; ˛ij D ei � ej ;

D Ex C .0; : : : ; 0;
i

xj � xi ; 0; : : : ; 0;
j

xi � xj ; 0; : : : ; 0/

D .x1; : : : ;
i
xj ; : : : ;

j
xi ; : : : ; xnC1/:

Thus, s˛ij
switches the i th and j th coordinates. It follows that W has a natural identifica-

tion with the symmetric group SnC1, and it is certainly generated by the elements s˛iiC1
.

Moreover, W � S D ˚ .

Cartan matrix

For a choice S of a base, the Cartan matrix is .n.˛; ˇ//˛;ˇ2S : Thus, its diagonal terms
equal 2 and its off-diagonal terms are negative or zero (19.21).

PROPOSITION 19.25 The Cartan matrix doesn’t depend on the choice of S , and it deter-
mines the root system up to isomorphism.

PROOF. The first assertion follows from (19.23c). For the second, let .V; ˚/ and .V 0; ˚ 0/

be root systems such that for some bases S and S 0 there is a bijection ˛ 7! ˛0WS ! S 0

such that n.˛; ˇ/ D n.˛0; ˇ0/. The bijection ˛ 7! ˛0 extends uniquely to an isomorphism
of vector spaces x 7! x0WV ! V 0. Because

s˛.ˇ/ D ˇ � n.ˇ; ˛/˛;

this isomorphism sends s˛ to s˛0 for ˛ 2 S . Because of (19.23a), it maps W onto W 0,
which (by 19.23b) implies that it maps ˚ onto ˚ 0. 2

EXAMPLE 19.26 For the root system An and the obvious base S , the Cartan matrix is0BBBBBBB@

2 �1 0 0 0

�1 2 �1 0 0

0 �1 2 0 0
: : :

0 0 0 2 �1

0 0 0 �1 2

1CCCCCCCA
because

2
.ei � eiC1; eiC1 � eiC2/

.ei � eiC1; ei � eiC1/
D �1;

for example.
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The Coxeter graph

This is the graph with nodes indexed by the elements of a base S for ˚ and with two nodes
joined by n.˛; ˇ/ � n.ˇ; ˛/ edges.

We can define the direct sum of two root systems

.V; ˚/ D .V1; ˚1/˚ .V2; ˚2/

by taking V D V1˚ V2 (as vector spaces with inner product) and by taking ˚ D ˚1 [˚2.
A root system is indecomposable if it can’t be written as a direct sum of two nonzero root
systems.

PROPOSITION 19.27 A root system is indecomposable if and only if its Coxeter graph is
connected.

PROOF. One shows that a root system is decomposable if and only if ˚ can be written as
a disjoint union ˚ D ˚1 t ˚2 with each root in ˚1 orthogonal to each root in ˚2. Since
roots ˛; ˇ are orthogonal if and only n.˛; ˇ/ � n.ˇ; ˛/ D 4 cos2 � D 0, this is equivalent to
the Coxeter graph being disconnected. 2

Clearly, it suffices to classify the indecomposable root systems.

The Dynkin diagram

The Coxeter graph doesn’t determine the root system because for any two base roots ˛; ˇ,
it only gives the number n.˛; ˇ/ �n.ˇ; ˛/. However, for each value of n.˛; ˇ/ �n.ˇ; ˛/ there
is only one possibility for the unordered pair

fn.˛; ˇ/; n.ˇ; ˛/g D f2
j˛j

jˇj
cos�; 2

jˇj

j˛j
cos�g:

Thus, if we know in addition which is the longer root, then we know the ordered pair. The
Dynkin diagram is the Coxeter graph with an arrow added pointing towards the shorter
root (if the roots have different lengths). It determines the Cartan matrix and hence the
root system. Specifically, to compute the Cartan matrix from the Dynkin diagram, number
the simple roots ˛1; : : : ; ˛n, and let aij D n.˛i ; ˇj / be the ij th coefficient of the Cartan
matrix; then

for all i , ai i D 2;
if ˛i and ˛j are not joined by an edge, then aij D 0 D aj i ;
if ˛i and ˛j are joined by an edge and j˛i j � j˛j j, then aij D �1I

if ˛i and ˛j are joined by r edges and j˛i j > j˛j j, then aij D �r .

THEOREM 19.28 The Dynkin diagrams arising from reduced indecomposable root sys-
tems are exactly those listed below.

PROOF. See Humphreys 1979, 11.4, pp 60–62. 2
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An: ı ı � � � ı ı n � 1

˛1 ˛2 ˛n�1 ˛n

Bn: ı ı � � � ıDDDD)ı .n � 2/

˛1 ˛2 ˛n�1 ˛n

Cn: ı ı � � � ı(DDDDı .n � 3/

˛1 ˛2 ˛n�1 ˛n

ı

˛n�1

Dn: ı ı � � � ı .n � 4/

˛1 ˛2 ˛n�2

ı

˛n

ı ˛2

E6: ı ı ı ı ı

˛1 ˛3 ˛4 ˛5 ˛6

ı ˛2

E7: ı ı ı ı ı ı

˛1 ˛3 ˛4 ˛5 ˛6 ˛7

ı ˛2

E8: ı ı ı ı ı ı ı

˛1 ˛3 ˛4 ˛5 ˛6 ˛7 ˛8

F4: ı ıDDDD)ı ı

˛1 ˛2 ˛3 ˛4

G2:Omitted for the present.
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20 The construction of all split reductive groups

Throughout this section, k is a field of characteristic zero.

Preliminaries on root data/systems

Recall (19.9) that semisimple root data (hence semisimple algebraic groups) correspond to
reduced root systems .V; ˚/ together with a choice of a lattice X ,

Q � X � P

where Q D Z˚ and P is the lattice in duality with Z˚_. Thus

P D fx 2 V j hx; ˛_
i 2 Z; all ˛ 2 ˚g:

When we take V to be a real vector space and choose an inner product as in (19.16), this
becomes

P D

�
x 2 V

ˇ̌̌̌
2
.x; ˛/

.˛; ˛/
2 Z; all ˛ 2 ˚

�
:

Choose a base S D f˛1; : : : ; ˛ng for ˚ (see 19.19). Then

Q D Z˛1 ˚ � � � ˚ Z˛n;

and we want to find a basis for P . Let f�1; : : : ; �ng be the basis of V dual to the basis�
2

.˛1; ˛1/
˛1; : : : ;

2

.˛i ; ˛i /
˛i ; : : : ;

2

.˛n; ˛n/
˛n

�
;

i.e., .�i /1�i�n is characterized by

2
.�i ; ˛j /

.˛j ; ˛j /
D ıij (Kronecker delta).

PROPOSITION 20.1 The set f�1; : : : ; �ng is a basis for P , i.e.,

P D Z�1 ˚ � � � ˚ Z�n:

PROOF. Let � 2 V , and let

mi D 2
.�; ˛i /

.˛i ; ˛i /
, i D 1; : : : ; n:

Then
.� �

X
mi�i ; ˛/ D 0

if ˛ 2 S . Since S is a basis for V , this implies that � �
P
mi�i D 0 and

� D
X

mi�i D

X
2
.�; ˛i /

.˛i ; ˛i /
�i :

Hence,

� 2
M

Z�i ” 2
.�; ˛i /

.˛i ; ˛i /
2 Z for i D 1; : : : ; n;

and so P �
L

Z�i . The reverse inclusion follows from the next lemma. 2
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LEMMA 20.2 Let ˚ be a reduced root system, and let ˚ 0 be the root system consisting of
the vectors ˛0 D

2
.˛;˛/

˛ for ˛ 2 ˚ . For any base S for ˚ , the set S 0 D f˛0 j ˛ 2 Sg is a
base for ˚ 0.

PROOF. See Serre 1987, V 9, Proposition 7. 2

PROPOSITION 20.3 For each j ,

˛j D

X
1�i�n

2
.˛i ; ˛j /

.˛i ; ˛i /
�i :

PROOF. This follows from the calculation in the above proof. 2

Thus, we have
P D

M
i
Z�i � Q D

M
i
Z˛i

and when we express the ˛i in terms of the �i , the coefficients are the entries of the Cartan
matrix. Replacing the �i ’s and ˛i ’s with different bases amounts to multiplying the transi-
tion (Cartan) matrix on the left and right by invertible matrices. A standard algorithm allows
us to obtain new bases for which the transition matrix is diagonal, and hence expressesP=Q
as a direct sum of cyclic groups. When one does this, one obtains the following table:

An Bn Cn Dn (n odd/ Dn (n even) E6 E7 E8 F4 G2

CnC1 C2 C2 C4 C2 � C2 C3 C2 C1 C1 C1

In the second row, Cm denotes a cyclic group of order m.
Also, by inverting the Cartan matrix one obtains an expression for the �i ’s in terms of

the ˛i ’s. Cf. Humphreys 1972, p69.

Brief review of diagonalizable groups

Recall from �9 that we have a (contravariant) equivalence M 7! D.M/ from the category
of finitely generated abelian groups to the category of diagonalizable algebraic groups. For
example, D.Z=mZ/ D �m and D.Z/ D Gm. A quasi-inverse is provided by

D 7! X.D/ Ddf Hom.D;Gm/:

Moreover, these functors are exact. For example, an exact sequence

0! D0
! D

�
�! D00

! 0

of diagonalizable groups corresponds to an exact sequence

0! X.D00/! X.D/! X.D0/! 0

of abelian groups. Under this correspondence,

D0
D Ker.D ! D00

�
,!

Y
�2X.D00/

Gm/

i.e.,
D0
D

\
�2X.D00/

Ker.D
�ı�
�! Gm/: (78)
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Construction of all almost-simple split semisimple groups

Recall that the indecomposable reduced root systems are classified by the Dynkin diagrams,
and that from the Dynkin diagram we can read off the Cartan matrix, and hence the group
P=Q.

THEOREM 20.4 For each indecomposable reduced Dynkin diagram, there exists an alge-
braic group G, unique up to isomorphism, with the given diagram as its Dynkin diagram
and equipped with an isomorphism X.ZG/ ' P=Q.

For each diagram, one can simply write down the corresponding group. For example,
for An it is SLnC1 and for Cn it Sp2n. For Bn and Dn one tries SO2nC1 and SO2n (as
defined in 16.3), but their centres are too small. In fact the centre of Om is ˙I , and so
SO2nC1 has trivial centre and O2n has centre of order 2. The group one needs is the
corresponding spin group (see �5). The exceptional groups can be found, for example, in
Springer 1998.

The difficult part in the above theorem is the uniqueness. Also, one needs to know that
the remaining groups with the same Dynkin diagram are quotients of the one given by the
theorem (which has the largest centre, and is said to be simply connected).

Here is how to obtain the group G.X/ corresponding to a lattice X ,

P � X � Q:

As discussed earlier (p137), the centre of G.X/ has character group X=Q, so, for example,
the group corresponding to P is the simply connected group G. The quotient of G by

N D
\

�2X=Q
Ker.�WZ.G/! Gm/

has centre with character group X=Q (cf. (78)), and is G.X/.
It should be noted that, because of the existence of outer automorphisms, it may happen

that G.X/ is isomorphic to G.X 0/ with X ¤ X 0:

Split semisimple groups.

These are all obtained by taking a finite product of split simply connected semisimple
groups and dividing out by a subgroup of the centre (which is the product of the centres
of the factor groups).

Split reductive groups

Let G0 be a split semisimple group, D a diagonalizable group, and Z.G0/ ! D a homo-
morphism from Z.G0/ to D. Define G to be the quotient

Z.G0/! G0
�D ! G ! 1:

All split reductive groups arise in this fashion (15.1).

ASIDE 20.5 With only minor changes, the above description works over fields of nonzero
characteristic.

Exercise

20-1 Assuming Theorem 20.4, show that the split reductive groups correspond exactly to
the reduced root data.
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21 Borel fixed point theorem and applications

Brief review of algebraic geometry

We need the notions of an affine algebraic variety, a projective algebraic variety, and a
quasi-projective algebraic variety as, for example, in my notes AG. A projective variety is a
variety that can be realized as a closed subvariety of some projective space Pn; in particular,
any closed subvariety of a projective variety is projective.

21.1 Let V be a vector space of dimension n over k.
(a) The set P.V / of lines in V is in a natural way a projective variety: in fact the choice

of a basis for V defines a bijection P.V /$ Pn�1.
(b) Let Gd .V / be the set of d -dimensional subspaces of V . When we fix a basis for V ,

the choice of a basis for S determines a d�nmatrixA.S/whose rows are the coordinates of
the basis elements. Changing the basis for S multipliesA.S/ on the left by an invertible d�
d matrix. Thus, the family of d �d minors of A.S/ is determined by S up to multiplication
by a nonzero constant, and so defines a point P.S/ of P.

n
d/�1: One shows that S 7! P.S/

is a bijection of Gd .V / onto a closed subset of P.
n
d/�1 (called a Grassmann variety; AG

6.26).
(c) For any sequence of integers n > dr > dr�1 > � � � > d1 > 0 the set of flags

V � Vr � � � � � V1 � f0g

with Vi a subspace of V of dimenision di has a natural structure of a projective algebraic
variety (called a flag variety; AG p114).

21.2 If X is an affine algebraic variety, then the ring of regular functions on X is finite
over a polynomial ring in dimX symbols (Noether normalization theorem, AG 8.13). On
the other hand, the ring of regular functions on a connected projective variety consists only
of the constant functions (AG 7.7, 7.3e). Thus an affine algebraic variety isomorphic to a
projective algebraic variety has dimension zero.

21.3 Let f WX ! Y be a regular map. Then f .X/ contains an open subset of its closure
f .X/ (AG 10.2). If X is projective, then f .X/ is closed (AG 7.7, 7.3c).

21.4 A bijective regular map of algebraic varieties need not be an isomorphism. For
example, x 7! xpWA1 ! A1 in characteristic p corresponds to the map of k-algebras
T 7! T pW kŒT �! kŒT �, which is not an isomorphism, and

t 7! .t2; t3/WA1
! fy2

D x3
g � A2

corresponds to the map kŒt2; t3� ,! kŒt �, which is not an isomorphism. However, every
bijective regular map X ! Y of varieties in characteristic zero with Y nonsingular is an
isomorphism (cf. AG 8.19).

21.5 The set of nonsingular points of a variety is dense and open (AG 5.18). Therefore, a
variety on which a group acts transitively by regular maps is nonsingular (cf. AG 5.20).

In order to be able to use algebraic geometry in its most naive form, for the remainder
of this section I take k to be algebraically closed of characteristic zero. This allows us
to regard algebraic groups as affine algebraic varieties (in the sense of AG) endowed with a
group structure defined by regular maps (2.24).
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The Borel fixed point theorem

THEOREM 21.6 (BOREL FIXED POINT THEOREM) Any connected solvable affine algebraic
group acting63 on a projective variety has a fixed point.

PROOF. Let G �X ! X be the action. We use induction on the dimension of G.
Suppose G has dimension 1, and let O D Gx be an orbit in X . There are three

possibilities to consider:
(a) O has dimension 0;
(b) O has dimension 1, and is not closed;
(c) O has dimension 1, and is closed.

In case (a),O consists of a single point (becauseG is connected), which is a fixed point.
In case (b),O is stable underG, and soOXO is a finite set of fixed points. Case (c) doesn’t
occur: the orbitO is nonsingular (21.5), and if it is closed then it is projective; the subgroup
N of G fixing x is normal (because G is commutative), and G=N ! O is bijective, and is
therefore an isomorphism (21.4); this contradicts (21.2) because G=N is affine (6.22).

In the general case, G has a normal subgroup H with G=H of dimension 1 — this
follows from the Lie-Kolchin theorem, or can be proved directly. The subvariety XH of
points fixed by H is nonempty by induction, and it is closed because XH D

T
h2H Xh,

where Xh is the set on which the regular maps x 7! hx and x 7! x agree. Therefore XH

is a projective variety on which G acts through its quotient G=H , which has a fixed point
by the first part of the proof. 2

REMARK 21.7 It is possible to recover the Lie-Kolchin theorem from the Borel fixed point
theorem. Let G be a connected solvable subgroup of GLV , and let X be the collection of
full flags in V (i.e., the flags corresponding to the sequence dimV D n > n � 1 > � � � >

1 > 0). As noted in (21.1), this has a natural structure of a projective variety, and G acts on
it by a regular map

g; F 7! gF WG �X ! X

where
g.Vn � Vn�1 � � � � / D gVn � gVn�1 � � � � :

According to the theorem, there is a fixed point, i.e., a full flag such that gF D F for all
g 2 G.k/. Relative to a basis e1; : : : ; en adapted to the flag,64 G � Tn.

Quotients

Earlier we discussed the quotient of an algebraic group G by a normal algebraic subgroup
N . Now we need to consider the quotient of G by an arbitrary subgroup H . Let � WG !
G=H be the quotient map (of sets). Endow G=H with the quotient topology, and for U
an open subset of G=H , let OG=H .U / be the k-algebra of functions f WU ! k such that
f ı � is regular on ��1.U /. Then one can show that the ringed space so defined is a
quasi-projective algebraic variety. Moreover, it has the following universal property: every
regular map G ! Y that is constant on each left coset of H in G factors uniquely through
� .

63By this we mean that there is a regular map G � X ! X defining an action of the group G.k/ on the set
X.k/ in the usual sense.

64That is, such that e1; : : : ; ei is a basis of Vi .
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As in the case of a normal subgroup, a key tool in the proof Chevalley’s theorem (3.13):
there exists a representation G ! GLV and a one-dimensional subspace L in V such that

H.k/ D fg 2 G.k/ j gL D Lg.

Then, the map g 7! gL defines an injection (of sets) G=H ! P.V /, and one shows that
the image of the map is a quasi-projective subvariety of P.V / and that the bijection endows
G=H with the structure of a quasi-projective variety having the correct properties. See
Humphreys 1975, Chapter IV.

EXAMPLE 21.8 Let G D GL2 and H D T2 D

��
� �

0 �

��
. Then G acts on k2, and H

is the subgroup fixing the line
�
�

0

�
. Since G acts transitively on the set of lines, there is a

bijection G=H ! P1, which endows G=H with the structure of a projective variety.

ASIDE 21.9 When k and G are arbitrary, quotients still exist. Let H be an algebraic sub-
group of G. Then there exists an algebraic space G=H and a map � WG ! H such that

(a) for all k-algebras R, the fibres of the map G.R/ ! .G=H/.R/ are the cosets of
H.R/;

(b) for all k-algebras R and x 2 .G=H/.R/, there exists a finitely generated faithfully
flat R-algebra R0 and an y 2 G.R0/ such that x and y have the same image in
.G=H/.R0/.

See Demazure and Gabriel 1970, III �3 5.4.

Borel subgroups

DEFINITION 21.10 A Borel subgroup of an algebraic group G is a maximal connected
solvable algebraic subgroup.

For example, T2 is a Borel subgroup of GL2 (it is certainly connected and solvable, and
the only connected subgroup properly containing it is GL2, which isn’t solvable).

For the remainder of this section, G is a connected algebraic group.

THEOREM 21.11 If B is a Borel subgroup of G, then G=B is projective.

THEOREM 21.12 Any two Borel subgroups of G are conjugate, i.e., B 0 D gBg�1 for
some g 2 G.k/.

PROOF. We first prove Theorem 21.11 for B a connected solvable algebraic subgroup of
G of largest possible dimension. Apply the theorem of Chevalley quoted above to obtain a
representation G ! GLV and a one-dimensional subspace L such that B is the subgroup
fixing L. Then B acts on V=L, and the Lie-Kolchin theorem gives us a full flag in V=L
stabilized by B . On pulling this back to V , we get a full flag,

F WV D Vn � Vn�1 � � � � � V1 D L � 0

in V . Not only does B stabilize F , but (because of our choice of V1),

H.k/ D fg 2 G.k/ j gF D F g:
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Thus G=B ! G � F is bijective. This shows that, when we let G act on the variety of
full flags, G � F is the orbit of smallest dimension, because for any other full flag F 0, the
stabilizer H of F 0 is a solvable algebraic subgroup of dimension at most that of B , and so

dimG � F 0
D dimG � dimH � dimG � dimB D dimG � F:

This implies that G � F is closed, because otherwise G � F X G � F would be a union of
orbits of lower dimension. As a closed subset of the projective variety of full flags in V ,
G � F is projective. By the universal property of quotients, G=B ! G � F is regular, and
hence is an isomorphism (21.4, 21.5). Therefore, G=B is also projective.

We now complete the proof of the theorems by showing that for any Borel subgroups
B and B 0 with B of largest possible dimension, B 0 � gBg�1 for some g 2 G.k/.65 Let B 0

act on G=B by b0; gB 7! b0gB . The Borel fixed point theorem shows that there is a fixed
point, i.e., for some g 2 G.k/, B 0gB � gB . Then B 0g � gB , and so B 0 � gBg�1 as
required. 2

THEOREM 21.13 All maximal tori in G are conjugate.

PROOF. Let T and T 0 be maximal tori. Being connected and solvable, they are contained
in Borel subgroups, say T � B , T 0 � B 0. For some g 2 G, gB 0g�1 D B , and so
gT 0g�1 � B . Now T and gT 0g�1 are maximal tori in the B , and we know that the
theorem holds for connected solvable groups (11.27). 2

THEOREM 21.14 For any Borel subgroup B of G, G D
S

g2G.k/ gBg
�1.

PROOF. (BRIEF SKETCH) Show that every element x of G is contained in a connected
solvable subgroup of G (sometimes the identity component of the closure of the group
generated by x is such a group), and hence in a Borel subgroup, which is conjugate to B
(21.12). 2

THEOREM 21.15 For any torus T in G, CG.T / is connected.

PROOF. Let x 2 CG.T /.k/, and let B be a Borel subgroup of G. Then x is contained in a
connected solvable subgroup of G (see 21.14), and so the Borel fixed point theorem shows
that the subset X of G=B of cosets gB such that xgB D gB is nonempty. It is also closed,
being the subset where the regular maps gB 7! xgB and gB 7! gB agree. As T commutes
with x, it stabilizes X , and another application of the Borel fixed point theorem shows that
it has a fixed point in X . In other words, there exists a g 2 G such that

xgB D gB

TgB D gB:

Thus, both x and T lie in gBg�1 and we know that the theorem holds for connected solvable
groups (11.28). Therefore x 2 CG.T /

ı: 2

65The maximality of B 0 implies that B 0 D gBg�1.
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Parabolic subgroups

DEFINITION 21.16 An algebraic subgroup P of G is parabolic if G=P is projective.

THEOREM 21.17 Let G be a connected algebraic group. An algebraic subgroup P of G is
parabolic if and only if it contains a Borel subgroup.

PROOF. H) : Let B be a Borel subgroup of G. According to the Borel fixed point
theorem, the action of B on G=P has a fixed point, i.e., there exists a g 2 G such that
BgP D gP . Then Bg � gP and g�1Bg � P .
(H : Suppose P contains the Borel subroup B . Then there is quotient map G=B !

G=P . Recall thatG=P is quasi-projective, i.e., can be realized as a locally closed subvariety
of PN for some N . Because G=B is projective, the composite G=B ! G=P ! PN has
closed image (see 21.3), but this image is G=P , which is therefore projective. 2

COROLLARY 21.18 Any connected solvable parabolic algebraic subgroup of a connected
algebraic group is a Borel subgroup.

PROOF. Because it is parabolic it contains a Borel subgroup, which, being maximal among
connected solvable groups, must equal it. 2

Examples of Borel and parabolic subgroups

Example: GLV

Let G D GLV with V of dimension n. Let F be a full flag

F WV D Vn � Vn�1 � � � � � V1 � 0

and let G.F / be the stabilizer of F ,

G.F /.k/ D fg 2 GL.V / j gVi � Vi for all ig:

Then G.F / is connected and solvable (because the choice of a basis adapted to F defines
an isomorphism G.F /! Tn), and GLV =G.F / is projective (because GL.V / acts transi-
tively on the space of all full flags in V ). Therefore, G.F / is a Borel subgroup (21.18). For
g 2 GL.V /,

G.gF / D g �G.F / � g�1:

Since all Borel subgroups are conjugate, we see that the Borel subgroups of GLV are pre-
cisely the groups of the form G.F / with F a full flag.

Now consider G.F / with F a (not necessarily full) flag. Clearly F can be refined to a
full flag F 0, and G.F / contains the Borel subgroup G.F 0/. Therefore it is parabolic. Later
we’ll see that all parabolic subgroups of GLV are of this form.

Example: SO2n

Let V be a vector space of dimension 2n, and let � be a nondegenerate symmetric bilinear
form on V with Witt index n. By a totally isotropic flag we mean a flag � � � � Vi � Vi�1 �

� � � such that each Vi is totally isotropic. We say that such a flag is full if it has the maximum
length n.
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Let
F WVn � Vn�1 � � � � � V1 � 0

be such a flag, and choose a basis e1; : : : ; en for Vn such that Vi D he1; : : : ; ei i. Then
he2; : : : ; eni

? contains Vn and has dimension66 n C 1, and so it contains an x such that
he1; xi ¤ 0. Scale x so that he1; xi D 1, and define enC1 D x � 1

2
�.x; x/e1. Then

�.enC1; enC1/ D 0 and �.e1; enC1/ D 1. Continuing in this fashion, we obtain a basis

e1; : : : ; en; enC1; : : : ; e2n for which the matrix of � is
�
0 I

I 0

�
.

Now let F 0 be a second such flag, and choose a similar basis e0
1; : : : ; e

0
n for it. Then the

linear map ei 7! e0
i is orthogonal, and maps F onto F 0. Thus O.�/ acts transitively on the

set X of full totally isotropic subspaces of V . One shows that X is closed (for the Zariski
topology) in the flag variety consisting of all flags Vn � � � � � V1 � 0 with dimVn D n,
and is therefore a projective variety. It may fall into two connected components which are
the orbits of SO.�/.67

Let G D SO.�/. The stabilizer G.F / of any totally isotropic flag is a parabolic sub-
group, and one shows as in the preceding case that the Borel subgroups are exactly the
stabilizers of full totally isotropic flags.

Example: Sp2n

Again the stabilizers of totally isotropic flags are parabolic subgroups, and the Borel sub-
groups are exactly the stabilizers of full totally isotropic flags.

Example: SO2nC1

Same as the last two cases.

Exercise

21-1 Write out a proof that the Borel subgroups of SO2n, Sp2n, and SO2nC1 are those
indicated above.

66Recall that in a nondegenerate quadratic space .V; �/,

dimW C dimW ?
D dimV:

67Let .V; �/ be a hyperbolic plane with its standard basis e1; e2. Then the flags

F1W he1; e2i � he1i � 0

F2W he1; e2i � he2i � 0

fall into different SO.�/ orbits.
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22 Parabolic subgroups and roots

Throughout this section, k is algebraically closed of characteristic zero.
Recall (9.15) that for a representation T ! GLV of a (split) torus T ,

V D
M

�2X�.T /
V�

where V� is the subspace on which T acts through the character �. The � for which V� ¤ 0

are called the weights of T in V , and the corresponding V� are called the weight spaces.
Clearly

Ker.T ! GLV / D
\

� a weight
Ker.�/:

Therefore T acts faithfully on V if and only if the weights generate X�.T / (by 9.12).
We wish to understand the Borel and parabolic subgroups in terms of root systems. We

first state a weak result.

THEOREM 22.1 LetG be a connected reductive group, T a maximal torus inG, and .V; ˚/
the corresponding root system (so V D R ˝Q Q where Q is the Z-module generated by
˚ ).

(a) The Borel subgroups of G containing T are in one-to-one correspondence with the
bases of ˚ .

(b) Let B be the Borel subgroup of G corresponding to a base S for ˚ . The number of
parabolic subgroups of G containing B is 2jS j.

We examine this statement for G D GLV . Let n D dimV .

22.2 The maximal tori of G are in natural one-to-one correspondence with the decompo-
sitions of V into a direct sum V D

L
j 2J Vj of one-dimensional subspaces.

Let T be a maximal torus of GLV . As the weights of T in V generate X�.T /, there are
n of them, and so each weight space has dimension one. Conversely, given a decomposition
V D

L
j 2J Vj of V into one-dimensional subspaces, we take T to be the subgroup of g

such that gVj � Vj for all j .
Now fix a maximal torus T in G, and let V D

L
j 2J Vj be the corresponding weight

decomposition of V .

22.3 The Borel subgroups of G containing T are in natural one-to-one correspondence
with the orderings of J .

The Borel subgroups of V are the stabilizers of full flags

F WV D Wn � Wn�1 � � � �

If T stabilizes F , then each Wr is a direct sum of eigenspaces for T , but the Vj are the
only eigenspaces, and so Wr is a direct sum of r of the Vj ’s. Therefore, from F we obtain
a unique ordering jn > � � � > j1 of J such that Wr D

L
i�r Vji

. Conversely, given an
ordering of J we can use this formula to define a full flag.

22.4 The bases for ˚ are in natural one-to-one correspondence with the orderings of J .
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The vector space V has basis .�j /j 2J , and ˚ D f�i � �j j i ¤ j g. Recall that to
define a base, we choose a t 2 V _ that is not orthogonal to any root, and let S be the set of
indecomposable elements in ˚C D f�i � �j j h�i � �j ; ti > 0g. Clearly, specifying ˚C

in this way amounts to choosing an ordering on J .68

22.5 Fix a Borel subgroup B of G containing T , and hence a base S for ˚ . The parabolic
subgroups containing B are in one-to-one correspondence with the subsets of S .

Having fixed a Borel subgroup, we have an ordering of J , and so we may as well write
J D f1; 2; : : : ; ng. From a sequence a1; : : : ; ar of positive integers with sum n, we get a
parabolic subgroup, namely, the stabilizer of the flag

V � Vr � � � � � V1 � 0

with Vj D
L

i�a1C���Caj
Vi . Since the number of such sequences69 is 2n�1, the theorem

implies that this is a complete list of parabolic subgroups.

Lie algebras

Recall that sl2 consists of the 2 � 2 matrices with trace zero, and that for the basis

x D

�
0 1

0 0

�
; h D

�
1 0

0 �1

�
; y D

�
0 0

1 0

�
;

and
Œx; y� D h; Œh; x� D 2x; Œh; y� D �2y:

A Lie algebra g is said to be reductive if it is the direct sum of a commutative Lie algebra
and a semisimple Lie algebra. Let h be a maximal subalgebra consisting of elements x such
that adx is semisimple. Then

g D g0 ˚

M
˛2˚

g˛

where g0 is the subspace of g on which h acts trivially, and g˛ is the subspace on which h

acts through the nonzero linear form ˛. The ˛ occurring in the decomposition are called
the roots of g (relative to h).

THEOREM 22.6 For each ˛ 2 ˚ , the spaces g˛ and h˛ Ddf Œg˛; g�˛� are one-dimensional.
There is a unique element h˛ 2 h˛ such that ˛.h˛/ D 2. For each nonzero element
x˛ 2 X˛, there exists a unique y˛ such that

Œx˛; y˛� D h˛; Œh˛; x˛� D 2x˛; Œh˛; y˛� D �2y˛:

Hence g˛ D g�˛ ˚ h˛ ˚ g˛ is isomorphic to sl2.

PROOF. Serre 1987, Chapter VI. 2

68Let .fi /i2I be the dual basis to .�i /i2I . We can take t to be any vector
P
aifi with the ai distinct. Then

˚C depends only on ordering of the ai (relative to the natural order on R), and it determines this ordering.
69Such sequences correspond to functions �W f1; : : : ; ng ! f0; 1g with �.0/ D 1 — the ai are the lengths of

the strings of zeros or ones.
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Algebraic groups

Let G be a reductive group containing a split maximal torus T . Let Lie.G; T / D .g; h/.
Then

Homk-lin.h; k/ ' k ˝Z X
�.T /

(see 12.16), and so each ˛ 2 ˚ defines a linear form ˛0 on h. It can be shown that these are
the roots of g. Every vector spaceW defines an algebraic group R 7! R˝k W (considered
as a group under addition).

THEOREM 22.7 For each ˛ 2 ˚ there is a unique homomorphism exp˛W g˛ ! G of
algebraic groups such that

t exp˛.x/t
�1
D exp.˛.t/x/

Lie.exp˛/ D .g˛ ,! g/:

PROOF. Omitted. 2

EXAMPLE 22.8 Let G D GLn, and let ˛ D ˛ij . Then

exp˛.x/ D
X

.xEij /
n=nŠ

D I C xEij

where Eij is the matrix with 1 in the .i; j /-position, and zeros elsewhere.

Let U˛ denote the image of exp˛.

THEOREM 22.9 For any base S for ˚ , the subgroup of G generated by T and the U˛ for
˛ 2 ˚C is a Borel subgroup of G, and all Borel subgroups of G containing T arise in this
way from a unique base. The base corresponding to B is that for which

˚C
D f˛ 2 ˚ j U˛ 2 Bg

is the set of positive roots (so S is the set of indecomposable elements in ˚C).

PROOF. Omitted. 2

THEOREM 22.10 Let S be a base for ˚ and let B be the corresponding Borel subgroup.
For each subset I of ˚ , there is a unique parabolic subgroup P containing B such that

U�˛ � P ” ˛ 2 I:

PROOF. Omitted. 2

For example, the parabolic subgroup corresponding to the subset

f�1 � �2; �2 � �3; �4 � �5g

of the simple roots of GL5 is 8̂̂̂̂
<̂
ˆ̂̂:

0BBBB@
� � � � �

� � � � �

� � � � �

0 0 0 � �

0 0 0 � �

1CCCCA
9>>>>=>>>>; :
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23 Representations of split reductive groups

Throughout this section, k is algebraically closed of characteristic zero.

The dominant weights of a root datum

Let .X;˚;X_; ˚_/ be a root datum. We make the following definitions:
˘ Q D Z˚ (root lattice) is the Z-submodule of X generated by the roots;
˘ X0 D fx 2 X j hx; ˛

_i D 0 for all ˛ 2 ˚g;
˘ V D R˝Z Q � R˝Z X ;
˘ P D f� 2 V j h�; ˛_i 2 Z for all ˛ 2 ˚g (weight lattice).

Now choose a base S D f˛1; : : : ; ˛ng for ˚ , so that:
˘ ˚ D ˚C t ˚� where ˚C D f

P
mi˛i j mi � 0g and ˚� D f

P
mi˛i j mi � 0gI

˘ Q D Z˛1 ˚ � � � ˚ Z˛n � V D R˛1 ˚ � � � ˚ R˛n,
˘ P D Z�1 ˚ � � � ˚ Z�n where �i is defined by h�i ; ˛

_
j i D ıij .

The �i are called the fundamental (dominant) weights. Define
˘ PC D f� 2 P j h�; ˛_i � 0 all ˛ 2 ˚_g:

An element � of X is dominant if h�; ˛_i � 0 for all ˛ 2 ˚C. Such a � can be written
uniquely

� D
X

1�i�n
mi�i C �0 (79)

with mi 2 N,
P
mi�i 2 X , and �0 2 X0.

The dominant weights of a semisimple root datum

Recall (19.9) that to give a semisimple root datum amounts to giving a root system .V; ˚/

and a lattice X ,
P � X � Q:

Choose an inner product . ; / on V for which the s˛ act as orthogonal transformations
(19.16). Then, for � 2 V

h�; ˛_
i D 2

.�; ˛/

.˛; ˛/

(see p150). Since in this case X0 D 0, the above definitions become:
˘ Q D Z˚ D Z˛1 ˚ � � � ˚ Z˛n;

˘ P D f� 2 V j 2 .�;˛/
.˛;˛/

2 Z all ˛ 2 ˚g D Z�1 ˚ � � � ˚ Z�n where �i is defined by

2
.�i ; ˛/

.˛; ˛/
D ıij :

˘ PC D f� D
P

i mi�i j mi � 0g D fdominant weightsg.

The classification of representations

Let G be a reductive group. We choose a maximal torus T and a Borel subgroup B con-
taining T (hence, we get a root datum .X;˚;X_; ˚_/ and a base S for ˚ ). As every
representation of G is (uniquely) a sum of simple representations (15.6), we only need to
classify them.

THEOREM 23.1 Let r WG ! GLW be a simple representation of G.
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(a) There exists a unique one-dimensional subspace L of W stabilized by B .
(b) The L in (a) is a weight space for T , say, L D W�r

.
(c) The �r in (b) is dominant.
(d) If � is also a weight for T in W , then � D �r �

P
mi˛i with mi 2 N.

PROOF. Omitted. 2

Note that the Lie-Kolchin theorem (11.22) implies that there does exist a one-dimensional
eigenspace for B — the content of (a) is that when W is simple (as a representation of G),
the space is unique. Since L is mapped into itself by B , it is also mapped into itself by
T , and so lies in a weight space. The content of (b) is that it is the whole weight space.
Because of (d), �r is called the heighest weight of the simple representation r .

THEOREM 23.2 The map .W; r/ 7! �r defines a bijection from the set of isomorphism
classes of simple representations of G onto the set of dominant weights in X D X�.T /.

PROOF. Omitted. 2

Example:

Here the root datum is isomorphic to fZ; f˙2g;Z; f˙1gg. Hence Q D 2Z, P D Z, and
PC D N. Therefore, there is (up to isomorphism) exactly one simple representation for
each m � 0. There is a natural action of SL2.k/ on the ring kŒX; Y �, namely, let�

a b

c d

��
X

Y

�
D

�
aX C bY

cX C dY

�
:

In other words,
f A.X; Y / D f .aX C bY; cX C dY /:

This is a right action, i.e., .f A/B D f AB . We turn it into a left action by setting Af D
f A�1

. Then one can show that the representation of SL2 on the homogeneous polynomials
of degreem is simple, and every simple representation is isomorphic to exactly one of these.

Example: GLn

As usual, let T be Dn, and let B the standard Borel subgroup. The characters of T are
�1; : : : ; �n. Note that GLn has representations

GLn
det
�! Gm

t 7!tm

�! GL1 D Gm

for each m, and that any representation can be tensored with this one. Thus, given any
simple representation of GLn we can shift its weights by any integer multiple of �1C� � �C

�n.
In this case, the simple roots are �1��2; : : : ; �n�1��n, and the root datum is isomor-

phic to
.Zn; fei � ej j i ¤ j g;Zn; fei � ej j i ¤ j g/:

In this notation the simple roots are e1 � e2; : : : ; en�1 � en, and the fundamental dominant
weights are �1; : : : ; �n�1 with

�i D e1 C � � � C ei � n
�1i .e1 C � � � C en/ :
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According to (79), the dominant weights are the expressions

a1�1 C � � � C an�1�n�1 Cm.e1 C � � � C en/; ai 2 N; m 2 Z:

These are the expressions
m1e1 C � � � Cmnen

where the mi are integers with m1 � � � � � mn. The simple representation with highest
weight e1 is the representation of GLn on kn (obviously), and the simple representation
with highest weight e1C� � �Cei is the representation on

Vi
.kn/ (Springer, Linear algebraic

groups, Survey article, 1993, 4.6.2).

Example: SLn

Let T1 be the diagonal in SLn. Then X�.T1/ D X�.T /=Z.�1 C � � � C �n/ with T D Dn.
The root datum for SLn is isomorphic to .Zn=Z.e1 C � � � C en/; f"i � "j j i ¤ j g; : : :/

where "i is the image of ei in Zn=Z.e1 C � � � C en/. It follows from the GLn case that the
fundamental dominant weights are �1; : : : ; �n�1 with

�i D "1 C � � � C "i :

Again, the simple representation with highest weight "1 is the representation of SLn on kn,
and the simple representation with highest weight "1 C � � � C "i is the representation SLn

on
Vi
.kn/ (ibid.).
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24 Tannaka duality

By a character of a topological group, I mean a continuous homomorphism to the circle
group fz 2 C j zz D 1g. A finite abelian group G can be recovered from its group G_ of
characters because the canonical homomorphism G ! G__ is an isomorphism.

More generally, a locally compact abelian topological group G can be recovered from
its character group because, again, the canonical homomorphism G ! G__ is an isomor-
phism (Pontryagin duality). Moreover, the dual of a compact abelian group is a discrete
abelian group, and so, the study of compact abelian topological groups is equivalent to that
of discrete abelian groups.

Clearly, “abelian” is required in the above statements, because any character will be
trivial on the derived group. However, Tannaka showed that it is possible to recover a
compact nonabelian group from its category of unitary reprsesentations.

In this section, I discuss an analogue of this for algebraic groups, which is usually called
Tannaka duality. For more details, see Deligne and Milne, Tannakian categories, in Hodge
Cycles, Motives, and Shimura Varieties, 1982 (available on my website).

Throughout this section, all vector spaces are finite-dimensional, and all representations
are on finite-dimensional vector spaces. The ground field k is of arbitrary characteristic.

Recovering a group from its representations

PROPOSITION 24.1 Let G be an algebraic group, and let R be a k-algebra. Suppose that
we are given, for each representation rV WG ! GLV ofG, an element �V of AutR-lin.R˝k

V /. If the family .�V / satisfies the conditions,
(a) for all representations V;W ,

�V ˝W D �V ˝ �W ;

(b) �11 D id11 (here 11 D k with the trivial action),
(c) for all G-equivariant maps ˛WV ! W ,

�W ı .idR˝˛/ D .idR˝˛/ ı �V ;

then there exists a g 2 G.R/ such that �X D rX .g/ for all X .

PROOF. To be added (one page; cf. Deligne and Milne 1982, 2.8). 2

Because there exists a faithful representation (3.8), g is uniquely determined by the
family .�V /. Moreover, each g 2 G.R/ of course defines such a family. Thus, from the
category Repk.G/ of representations of G on finite-dimensional k-vector spaces we can
recover G.R/ for any k-algebra R, and hence the group G itself.

Properties of G versus those of Repk.G/

Since each of G and Repk.G/ determines the other, we should be able to see properties of
one reflected in the other.

PROPOSITION 24.2 An algebraic group G is finite if and only if there exists a representa-
tion .r; V / such that every representation of G is a subquotient70 of V n for some n � 0.

70Here V n is a direct sum of n copies of V , and subquotient means any representation isomorphic to a
subrepresentation of a quotient (equivalently, to a quotient of a subrepresentation).
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PROOF. See Deligne and Milne 1982, 2.20. 2

PROPOSITION 24.3 Let k be an algebraically closed field. A smooth algebraic group over
k is unipotent (resp. solvable) if and only if every nonzero representation of the group has
a nonzero fixed vector (resp. stable one-dimensional subspace).

PROOF. See (11.24) and (11.22). 2

PROPOSITION 24.4 The identity component Gı of an algebraic group G over a field of
characteristic zero is reductive if and only if Repk.G/ is semisimple.

PROOF. See (15.6, 15.11). 2

PROPOSITION 24.5 Let G and G0 be algebraic groups over a field k of characteristic zero,
and assume Gı is reductive. Let f WG ! G0 be a homomorphism, and let !f WRep.G0/!

Rep.G/ be the functor .r; V / 7! .r ı �; V /. Then:
(a) f is a quotient map if and only if !f is fully faithful;
(b) f is an embedding if and if every object of Repk.G/ is isomorphic to a direct factor

of an object of the form !f .V /.

PROOF. See Deligne and Milne 1982, 2.21, 2.29. 2

(Neutralized) Tannakian categories

For k-vector spaces U; V;W , there are canonical isomorphisms

�U;V;W WU ˝k .V ˝k W /! .U ˝k V /˝k W; u˝ .v ˝ w/ 7! .u˝ v/˝ w

�U;V WU ˝k V ! V ˝ U; u˝ v 7! v ˝ u:

Let V _ D Homk-lin.V; k/ be the dual of V . Then there are canonical linear maps

evX WV
_ ˝k V ! k; f ˝ v 7! f .v/

ıX W k ! V ˝ V _; 1 7!
P
ei ˝ fi

where .ei / is any basis for V and .fi / is the dual basis. Let Veck denote the category of
finite-dimensional k-vector spaces.

DEFINITION 24.6 A neutralized Tannakian category over k is a triple .C;˝; !/ consist-
ing of
˘ k-linear category C in which all morphisms have kernels and cokernels,
˘ ˝ is a k-bilinear functor C � C! C, and
˘ ! is an exact faithful k-linear functor C ! Veck such that ˛ is an isomorphism if

!.˛/ is,
satisfying the following conditions

(a) for all X; Y , !.X ˝ Y / D !.X/˝k !.Y /I

(b) for all X; Y;Z; the isomorphisms �!X;!Y;!Z and �!X;!Y live in C;
(c) there exists an object 11 in C such that !.11/ D k and the canonical isomorphisms

!.11/˝ !.X/ ' !.X/ ' !.X/˝ !.11/

live in C;
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(d) for each X , there exists an X_ in C such that !.X_/ D !.X/_ and ı!X and ev!X

live in C.
We say that C is algebraic if there exists an object X such that every other object can be
constructed by forming tensor products, direct sums, duals, and subquotients.

REMARK 24.7 (a) A category is k-linear if
i) every pair of objects has a direct sum and a direct product,

ii) the Hom sets are vector spaces over k and composition is k-bilinear, and
iii) there exists a zero object (object with id D 0).

(b) A k-linear category is abelian if each morphism ˛WX ! Y has a kernel and cokernel
and the morphism X=Ker.˛/! Ker.Y ! Coker.˛// is an isomorphism.

(c) By ! being exact, I mean that it preserves kernels and cokernels. Notice that the
conditions imply that C is an abelian category.

(d) By a map ˛W!.X/! !.Y / in Veck “living in C”, I mean that it lie in Hom.X; Y / �
Hom.!X; !Y /. For example, by �!X;!Y living in C, I mean that �!X;!Y D !.�X;Y /

for some isomorphism �X;Y WX ˝ Y ! Y ˝X:

From now on “Tannakian category” means “neutralized Tannakian category”.

EXAMPLE 24.8 For every algebraic group G, Repk.G/ is obviously a Tannakian category
over k, and (3.9) shows that it is algebraic.

EXAMPLE 24.9 For every Lie algebra g, the category of representations of g on finite-
dimensional vector spaces is Tannakian.

THEOREM 24.10 Every algebraic Tannakian category is the category of representations of
an algebraic group G.

PROOF. For a proof (and more precise statement), see Deligne and Milne 1982, 2.11. 2

ASIDE 24.11 We have seen that algebraic Tannakian categories correspond to algebraic
groups. Without “algebraic” the categories correspond to functors from k-algebras to
groups that are represented by k-algebras, but not necessarily by finitely generated k-
algebras. Such a functor will be called a pro-algebraic group (they are, in fact, the pro-
jective limits of algebraic groups).

Applications

We now take k to be of characteristic zero. Then Ado’s theorem says that every Lie algebra
(meaning, of course, finite-dimensional) has a faithful representation (N. Jacobson, Lie
Algebras, Wiley, 1962, Chapter VI). A representation �WG ! GLV of an algebraic group
defines a representation d�W g! glV of its Lie algebra (cf. 12.14).

PROPOSITION 24.12 Let g D Lie.G/. Then the functor Repk.G/ ! Repk.g/ is fully
faithful.

PROOF. Let .r1; V1/ and .r2; V2/ be representations of G. Let ˛WV1 ! V2 be a k-linear
map, and let t be the corresponding element of V _

1 ˝k V2. Then
the map ˛ is a homomorphism of representations of G ”
t is fixed by G ”
t is fixed by g (see 13.16) ”
˛ is a homomorphism of representations of g. 2
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For any Lie algebra g, Repk.g/ is obviously Tannakian. When it is algebraic, we
let T .g/ denote the algebraic group attached to it by Theorem 24.10 (so Repk.T .g// '

Repk.g/).
In any Lie algebra g, there is a largest solvable ideal, called the radical of g. When the

radical of g is commutative, g is said to be reductive:

PROPOSITION 24.13 If g is reductive, then Repk.g/ is algebrac, and T .g/ is a reductive al-
gebraic group with the property that every algebraic group with Lie algebra g is canonically
a quotient of T .g/.

PROOF. It follows from the representation theory of reductive Lie algebras that Repk.g/

has the following properties:
(a) it is a semisimple,
(b) it is algebraic,
(c) if V is an object on which g acts nontrivially, then the full subcategory of Repk.g/

whose objects are the direct factors of V n for some n is not stable under˝.
According to (24.10), (b) implies that there exists an algebraic group T .g/with Repk.T .g// '

Repk.g/, and (a) implies that T .g/ı is reductive (15.6). Also (c) implies that T .g/ has no
finite quotient (24.2), and so it is connected. That every algebraic group with Lie algebra g

is a quotient of T .g/ follows from (24.12) and (24.5). 2

PROPOSITION 24.14 If g is semisimple, then T .g/ is the simply connected semisimple
algebraic group with Lie algebra g.

PROOF. The category Repk.g/ is a semisimple category whose simple objects are indexed
by the dominant weights (Serre 1987, VII). Let G be the simply connected semisimple
algebraic group with Lie algebra g. Then Repk.G/ ! Repk.g/ is fully faithful (24.12),
and (23.2) shows that it is essentially surjective. Hence G D T .g/. 2

REMARK 24.15 Let g be a semisimple Lie algebra. We have P � Q and PC. The simple
objects in Repk.g/ are indexed by the elements of PC. Let X be a lattice P � X � Q,
and let Repk.g/X be the tensor subcategory of Repk.g/ whose simple objects are those
indexed by the elements of PC \X . Then Repk.g/X D Rep.GX / where GX is the group
corresponding to X . In other words, every representation of g arises from a representation
ofGP , and the simple representations with heighest weight inX are exactly those for which
the representation factors through the quotient GX of GP .

ASIDE 24.16 Suppose that, for every split semisimple Lie algebra over a field k in charac-
teristic zero, we know that there is P=Q-grading on the Tannakian category Rep.g/, but no
grading by any abelian group properly containing P=Q (cf. Deligne and Milne 1982, �5).

Then we can deduce that G D T .g/ is a semisimple algebraic group such that:
˘ Lie.G/ D g, and every other algebraic group with this property is a quotient of G;
˘ the centre of G is the group of multiplicative type with character group P=Q (ibid.);
˘ Repk.G/ ' Repk.g/.

From this we can read off the existence and uniqueness theorems for split reductive
groups and their representations from the similar results for semisimple Lie algebras.
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25 Algebraic groups over R and C; relation to Lie groups

The theory of algebraic groups can be described as that part of the theory of Lie groups that
can be developed using only polynomials (not convergent power series), and hence works
over any field. Alternatively, it is the elementary part that doesn’t require analysis. As we’ll
see, it does in fact capture an important part of the theory of Lie groups.

Throughout this section, k D R or C.

The Lie group attached to an algebraic group

DEFINITION 25.1 (a) A real Lie group is a smooth manifoldG with a group structure such
that both the multiplication map G �G ! G and the inverse map G ! G are smooth.

(b) A complex Lie group is a complex manifoldG with a group structure such that both
the multiplication map G �G ! G and the inverse map G ! G are holomorphic.

Here “smooth” means infinitely differentiable.

THEOREM 25.2 There is a canonical functor L from the category of real (resp. complex)
algebraic groups to real (resp. complex) Lie groups, which respects Lie algebras and takes
GLn to GLn.R/ (resp. GLn.C/) with its natural structure as a Lie group. It is faithful on
connected algebraic groups (all algebraic groups in the complex case).

According to taste, the functor can be constructed in two ways.
(a) Choose an embedding G ,! GLn. Then G.k/ is a closed subgroup of GLn.C/, and

it is known that every such subgroup has a unique structure of a Lie group (it is real
or complex according to whether its tangent space is a real or complex Lie group).
See Hall 2003, 2.33.

(b) For k D R (or C), there is a canonical functor from the category of nonsingular real
(or complex) algebraic varieties to the category of smooth (resp. complex) manifolds
(I. Shafarevich, Basic Algebraic Geometry, 1994, II, 2.3, and VII, 1), which clearly
takes algebraic groups to Lie groups.

To prove that the functor is faithful in the real case, use (13.12). In the complex case,
use �4.

Negative results

25.3 In the real case, the functor is not faithful on nonconnected algebraic groups.

LetG D H D �3. The real Lie group attached to�3 is�3.R/ D f1g, and so Hom.L.G/; L.H// D
1, but Hom.�3; �3/ is cyclic of order 3.

25.4 The functor is not full.

For example, the z 7! ez WC ! C� is a homomorphism of Lie groups not arising from a
homomorphism of algebraic groups Ga ! Gm.

For another example, consider the quotient map of algebraic groups SL3 ! PSL3.
It is not an isomorphism of algebraic groups because its kernel is �3, but it does give an
isomorphism SL3.R/ ! PSL3.R/ of Lie groups. The inverse of this isomorphism is not
algebraic.
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25.5 A Lie group can have nonclosed Lie subgroups (for which quotients don’t exist).

This is a problem with definitions, not mathematics. Some authors allow a Lie subgroup
of a Lie group G to be any subgroup H endowed with a Lie group structure for which the
inclusion map is a homomorphism of Lie groups. If instead one requires that a Lie sub-
group be a submanifold in a strong sense (for example, locally isomorphic to a coordinate
inclusion Rm ! Rn), these problems don’t arise, and the theory of Lie groups quite closely
parallels that of algebraic groups.

25.6 Not all Lie groups have a faithful representation.

For example, �1.SL2.R// � Z, and its universal covering space has a natural structure of a
Lie group. Every representation of this covering group on a finite-dimensional vector space
factors through SL2.R/. Another (standard) example is the Lie group R1 � R1 � S1 with
the group structure

.x1; y1; u1/ � .x2; y2; u2/ D .x1 C x2; y1 C y2; e
ix1y2u1u2/:

This homomorphism 0@1 x a

0 1 y

0 0 1

1A 7! .x; y; eia/;

realizes this group as a quotient of U3.R/, but it can not itself be realized as a matrix group
(see Hall 2003, C.3).

A related problem is that there is no very obvious way of attaching a complex Lie group
to a real Lie group (as there is for algebraic groups).

25.7 Even when a Lie group has a faithful representation, it need not be algebraic.

For example, the identity component of GL2.R/ is not algebraic.

25.8 Let G be an algebraic group over C. Then the Lie group G.C/ may have many more
representations than G.

Consider Ga. Then the homomorphisms z 7! ecz WC ! C� D GL1.C/ and z 7!�
1 z

0 1

�
WC ! GL2.C/ are representations of the Lie group C, but only the second is

algebraic.

Complex groups

A Lie group (real or complex) is said to be linear if it admits a faithful representation (on
a finite-dimensional vector space, of course). For any complex Lie group G, the category
RepC.G/ is obviously Tannakian.

THEOREM 25.9 For a complex linear Lie groupG, the following conditions are equivalent:
(a) the Tannakian category RepC.G/ is algebraic;
(b) there exists an algebraic group T .G/ over C and a homomorphism G ! T .G/.C/

inducing an equivalence of categories RepC.T .G//! RepC.G/.
(c) G is the semidirect product of a reductive subgroup and the radical of its derived

group.
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Moreover, when these conditions hold, the homomorphism G ! T .G/.C/ is an isomor-
phism.

PROOF. The equivalence of (a) and (b) follows from (24.8) and (24.10). For the remaining
statements, see Dong Hong Lee, The structure of complex Lie groups, Chapman and Hall,
2002, Theorem 5.20. 2

COROLLARY 25.10 Let G be a complex analytic subgroup of GL.V / for some complex
vector space V . If RepC.G/ is algebraic, then G is an algebraic subgroup of GLV , and
every complex analytic representation of G is algebraic.

PROOF. Ibid. 5.22. 2

COROLLARY 25.11 The functors T andL are inverse equivalences between the categories
of complex reductive Lie groups and complex reductive algebraic groups (in particular,
every complex reductive Lie group has a faithful representation).

PROOF. Only the parenthetical statement requires proof (omitted for the moment). 2

EXAMPLE 25.12 The Lie group C is algebraic, but nevertheless the conditions in (25.9)
fail for it — see (25.8).

Real groups

We say that a real Lie group G is algebraic if GC D H.R/C for some algebraic group H
(as usual, C denotes the identity component for the real topology).

THEOREM 25.13 For every reductive real Lie group G, there exists an algebraic group
T .G/ and a homomorphismG ! T .G/.R/ inducing an equivalence of categories RepR.G/!
RepR.T .G//. The Lie group T .G/.R/ is the largest algebraic quotient of G, and equals G
if and only if G admits a faithful representation.

PROOF. For the first statement, one only has to prove that the Tannakian category RepR.G/
is algebraic. For the last statement, see Dong Hoon Lee, J. Lie Theory, 9 (1999), 271-284.2

THEOREM 25.14 For every compact connected real Lie groupK, there exists a semisimple
algebraic group T .K/ and an isomorphism K ! T .K/.R/ which induces an equivalence
of categories RepR.K/ ! RepR.T .K//. Moreover, for any reductive algebraic group G0

over C,
HomC algebraic groups.T .K/C; G

0/ ' HomR Lie groups.K;G
0.C//

PROOF. See C. Chevalley, Theory of Lie groups, Princeton, 1946, Chapter 6, ��8–12, and
J-P. Serre, Gèbres, L’Enseignement Math., 39 (1993), pp33-85. 2
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26 The cohomology of algebraic groups; applications

Throughout this section, vector spaces and modules are finitely generated. In the early part
of the section, there is no need to assume k to be of characteristic zero.

Let A be a set with an equivalence relation �, and let B be a second set. When there
exists a canonical surjection A! B whose fibres are the equivalence classes, I say that B
classifies the �-classes of elements of A.

Introduction

Root data are also important in the nonsplit case. For a reductive group G, one chooses a
torus that is maximal among those that are split, and defines the root datum much as before
— in this case it is not necessarily reduced. This is an important approach to describing ar-
bitrary algebraic groups, but clearly it yields no information about anistropic groups (those
with no split torus). We give a different approach to describing nonsplit reductive algebraic
groups. In this section, we show that they are classified by certain cohomology groups, and
in the next section we show that certain algebras with involution are classified by the same
cohomology groups. In this way we obtain a description of the groups in terms of algebras.

Non-commutative cohomology.

Let � be a group. A � -set is a set A with an action

.�; a/ 7! �aW� � A! A

of � on A (so .��/a D �.�a/ and 1a D a). If, in addition, A has the structure of a group
and the action of G respects this structure (i.e., �.aa0/ D �a � �a0), then we say A is a
G-group.

Definition of H 0.�; A/

For a � -set A,H 0.� ; A/ is defined to be the set A� of elements left fixed by the operation
of � on A, i.e.,

H 0.� ; A/ D A�
D fa 2 A j �a D a for all � 2 � g:

If A is a � -group, then H 0.�; A/ is a group.

Definition of H 1.� ; A/

Let A be a � -group. A mapping � 7! a� of � into A is said to be a 1-cocycle of � in A if
the relation a�� D a� � �a� holds for all �; � 2 � . Two 1-cocycles .a� / and .b� / are said
to be equivalent if there exists a c 2 A such that

b� D c
�1
� a� � �c for all � 2 � .

This is an equivalence relation on the set of 1-cocycles of � in A, andH 1.� ; A/ is defined
to be the set of equivalence classes of 1-cocycles.

In general H 1.� ; A/ is not a group unless A is commutative, but it has a distinguished
element, namely, the class of 1-cocycles of the form � 7! b�1 � �b, b 2 A.



26 THE COHOMOLOGY OF ALGEBRAIC GROUPS; APPLICATIONS 178

Homomorphisms

Let A be � -group and B an�-group. Two homomorphisms f WA! B and gW�! � are
said to be compatible if

f .g.�/a/ D �.f .a// for all � 2 �, a 2 A.

When � D � and g is the identity, then f is said to be a � -homomorphism (or be � -
equivariant). If .a� / is a 1-cocycle for A, then

b� D f .ag.�//

is a 1-cocycle of � in B , and this defines a mapping H 1.�; A/ ! H 1.�;B/, which is a
homomorphism if A and B are commutative.

Exact sequences

PROPOSITION 26.1 An exact sequence

1! A0
! A! A00

! 1

of � -groups gives rise to an exact sequence of cohomology sets

1! H 0.�; A0/! H 0.�; A/! H 0.�; A00/! H 1.�; A0/! H 1.�; A/! H 1.�; A00/

Exactness at H 0.�; A00/ means that the fibres of H 0.�; A00/ ! H 1.�; A0/ are the
orbits of H 0.�; A/ acting on H 0.�; A00/. Exactness at H 1.�; A0/ means that fibre of
H 1.�; A0/! H 1.�; A/ over the distinguished element is the image of H 0.�; A00/.

We now define the boundary map H 0.�; A00/ ! H 1.�; A0/. For simplicity, regard A0

as a subgroup of A with quotient A00. Let a00 be an element of A00 fixed by � , and choose
an a in A mapping to it. Because a00 is fixed by � , a�1 � �a is an element of A0, which we
denote a� . The map � 7! a� is a 1-cocycle whose class inH 1.�; A0/ is independent of the
choice of a. To define the remaining maps and check the exactness is now very easy.

Classification of bilinear forms

Let K be a finite Galois extension of k with Galois group � . Let V be a finite-dimensional
K-vector space. By a semi-linear action of � on V , I mean a homomorphism � !

Autk-lin.V / such that

�.cv/ D �c � �v all � 2 � , c 2 K, v 2 V:

If V D K ˝k V0, then there is a unique semi-linear action of � on V for which V � D

1˝ V0, namely,
�.c ˝ v/ D �c ˝ v � 2 � , c 2 K, v 2 V:

PROPOSITION 26.2 The functor V 7! K ˝k V from k-vector spaces to K-vector spaces
endowed with a semi-linear action of � is an equivalence of categories with quasi-inverse
V 7! V � .

LEMMA 26.3 Let S be the standardMn.k/-module, namely, kn withMn.k/ acting by left
multiplication. The functor V 7! S ˝k V is an equivalence from the category of k-vector
spaces to that of left Mn.k/-modules.
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PROOF. Note that S is a simple Mn.k/-module. Since

Endk-lin.k/ D k D EndMn.k/.k
n/

and every k-vector space is isomorphic to a direct sum of copies of k, the functor is obvi-
ously fully faithful (i.e., gives isomorphisms on Homs). It remains to show that every left
Mn.k/-module is a direct sum of copies of S . This is certainly true of Mn.k/ itself:

Mn.k/ D
M

1�i�n
L.i/ (as a left Mn.k/-module)

where L.i/ is the set of matrices whose entries are zero except for those in the i th column.
Since every left Mn.k/-module M is a quotient of a direct sum of copies of Mn.k/, this
shows that such an M is a sum of copies of S . Let I be the set of submodules of M
isomorphic to S , and let J be a subset that is maximal among those for which

P
N 2J N is

direct. Then M D
L

N 2J N (see 15.3). 2

LEMMA 26.4 For any k-vector spaceW , the functor V 7! W ˝kV is an equivalence from
the category of k-vector spaces to that of left Endk.W /-modules.

PROOF. When we choose a basis for W , this becomes the previous lemma. 2

PROOF. (OF THE PROPOSITION) Let KŒ� � be the K-vector space with basis the elements
of � , made into a k-algebra by the rule

.a�/ � .b�/ D a � �b � ��; a; b 2 K; �; � 2 �:

Then KŒ� � acts k-linearly on K by

.
P
a��/c D

P
a��c;

and the resulting homomorphism

KŒ� �! Endk.K/

is injective by Dedekind’s theorem on the independence of characters (FT 5.14). Since
KŒ� � and Endk.K/ have the same dimension as k-vector spaces, the map is an isomor-
phism. Therefore, the corollary shows that

V 7! K ˝k V

is an equivalence from the category of k-vector spaces to that of left modules over Endk.K/ '

KŒ� �. This is the statement of the proposition. 2

Let .V0; �0/ be a k-vector space with a bilinear form V � V ! k, and write .V0; �0/K
for the similar pair over K obtained by extending scalars. Let A.K/ denote the set of
automorphisms of .V0; �0/K .71

THEOREM 26.5 The cohomology set H 1.�;A.K// classifies the isomorphism classes of
pairs .V; �/ over k that become isomorphic to .V0; �0/ over K.

71In more detail: .V0; �0/K D .V0K ; �0K/ where V0K D K ˝k V0 and �0K is the unique K-bilinear map
V0K � V0K ! K extending �0; an element of A.K/ is a K-linear isomorphism ˛WV0K ! V0K such that
�0K.˛x; ˛y/ D �0K.x; y/ for all x; y 2 V0K .
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PROOF. Suppose .V; �/K � .V0; �0/K , and choose an isomorphism

f W .V0; �0/K ! .V; �/K :

Let
a� D f

�1
ı �f:

Then

a� � �a� D .f
�1
ı �f / ı .�f �1

ı ��f /

D a�� ;

and so a� .f / is a 1-cocycle. Moreover, any other isomorphism f 0W .V0; �0/K ! .V; �/K
differs from f by a g 2 A.K/, and

a� .f ı g/ D g
�1
� a� .f / � �g:

Therefore, the cohomology class of a� .f / depends only on .V; �/. It is easy to see that,
in fact, it depends only on the isomorphism class of .V; �/, and that two pairs .V; �/ and
.V 0; �0/ giving rise to the same class are isomorphic. It remains to show that every coho-
mology class arises from a pair .V; �/. Let .a� /�2� be a 1-cocycle, and use it to define a
new action of � on VK Ddf K ˝k V :

�x D a� � �x; � 2 �; x 2 VK :

Then
� .cv/ D �c � �v, for � 2 � , c 2 K, v 2 V;

and
� .�v/ D � .a��v/ D a� � �a� � ��v D

��v;

and so this is a semilinear action. Therefore,

V1
df
D fx 2 VK j

�x D xg

is a subspace of VK such thatK˝k V1 ' VK (by 26.2). Because �0K arises from a pairing
over k,

�0K.�x; �y/ D ��.x; y/; all x; y 2 VK :

Therefore (because a� 2 A.K/),

�0K.
�x;� y/ D �0K.�x; �y/ D ��0K.x; y/:

If x; y 2 V1, then �0K.
�x;� y/ D �0K.x; y/, and so �0K.x; y/ D ��0K.x; y/. By Galois

theory, this implies that �0K.x; y/ 2 k, and so �0K induces a k-bilinear pairing on V1. 2

Applications

Again let K be a finite Galois extension of k with Galois group � .

PROPOSITION 26.6 For all n, H 1.�;GLn.K// D 1:
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PROOF. Apply Theorem 26.5 with V0 D k
n and �0 the zero form. It shows thatH 1.�;GLn.K//

classifies the isomorphism classes of k-vector spaces V such thatK˝k V � K
n. But such

k-vector spaces have dimension n, and therefore are isomorphic. 2

PROPOSITION 26.7 For all n, H 1.�;SLn.K// D 1

PROOF. Because the determinant map detWGLn.K/! K� is surjective,

1! SLn.K/! GLn.K/
det
�! K�

! 1

is an exact sequence of � -groups. It gives rise to an exact sequence

GLn.k/
det
�! k�

! H 1.�;SLn/! H 1.�;GLn/

from which the statement follows. 2

PROPOSITION 26.8 Let �0 be a nondegenerate alternating bilinear form on V0, and let Sp
be the associated symplectic group72. Then H 1.�;Sp.K// D 1.

PROOF. According to Theorem 26.5,H 1.�;Sp.K// classifies isomorphism classes of pairs
.V; �/ over k that become isomorphic to .V0; �0/ over K. But this condition implies that
� is a nondegenerate alternating form and that dimV D dimV0. All such pairs .V; �/ are
isomorphic. 2

REMARK 26.9 Let �0 be a nondegenerate bilinear symmetric form on V0, and let O be
the associated orthogonal group. Then H 1.�;O.K// classifies the isomorphism classes of
quadratic spaces over k that become isomorphic to .V; �/ overK. This is commonly a large
set.

Classifying the forms of an algebraic group

Again let K be a finite Galois extension of k with Galois group � . Let G0 be an algebraic
group over k, and letA.K/ be the group of automorphisms ˛WGK ! GK . Then � acts on
A.K/ in a natural way:

�˛ D � ı ˛ ı ��1:

THEOREM 26.10 The cohomology setH 1.�;A.K// classifies the isomorphism classes of
algebraic groups G over k that become isomorphic to G0 over K.

PROOF. Let G be such an algebraic group over k, choose an isomorphism

f WG0K ! GK ;

and write
a� D f

�1
ı �f:

As in the proof of Theorem 26.5, .a� /�2� is a 1-cocycle, and the map

G 7! class of .a� /�2� in H 1.�; A.K//

72So Sp.R/ D fa 2 EndR-lin.R˝k V / j �.ax; ay/ D �.x; y/g
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is well-defined and its fibres are the isomorphism classes.
In proving that the map is surjective, it is useful to identify A.K/ with the automor-

phism group of the bialgebraKŒG0K � D K˝k kŒG0�. Let A0 D kŒG0� and A D K˝kA0.
As in the proof of Theorem 26.5, we use a 1-cocycle .a� /�2� to twist the action of � on
A; specifically, we define

�a D a� ı �a; � 2 �; a 2 A.

Proposition 26.2 in fact holds for infinite dimensional vector spaces V with the same73

proof, and so the k-subspace

B D fa 2 A j �a D ag

of A has the property that
K ˝k B ' A:

It remains to show that the bialgebra structure on A induces a bialgebra structure on B .
Consider for example the comultiplication. The k-linear map

�0WA0 ! A0 ˝k A0

has a unique extension to a K-linear map

�WA! A˝K A:

This map commutes with the action of � :

�.�a/ D �.�.a//; all � 2 � , a 2 A.

Because a� is a bialgebra homomorphism,

�.a�a/ D a��.a/; all � 2 � , a 2 A.

Therefore,
�.�a/ D � .�.a//; all � 2 � , a 2 A.

In particular, we see that � maps B into .A ˝K A/� , which equals B ˝k B because the
functor in (26.2) preserves tensor products. Similarly, all the maps defining the bialgebra
structure on A preserve B , and therefore define a bialgebra structure on B . Finally, one
checks that the 1-cocycle attached to B and the given isomorphismK˝k B ! A is .a� /.2

Infinite Galois groups

For simplicity, we now assume k to be perfect. Let � D Gal.k=k/ where k is the algebraic
closure of k. For any subfield K of k finite over k, we let

�K D f� 2 � j �x D x for all x 2 Kg:

We consider only � -groups A for which

A D
S
A�K (80)

73Except that the last step of the proof of (26.3) requires Zorn’s lemma.
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and we define H 1.�; A/ to be the equivalence classes of 1-cocycles that factor through
Gal.K=k/ for some subfield K of k finite and Galois over k. With these definitions,74

H 1.�; A/ D lim
�!

H 1.Gal.K=k/; A�K / (81)

where K runs through the subfields K of k finite and Galois over k.
When G is an algebraic group over k,

G.k/ D
S
G.K/; G.K/ D G.k/�K ;

and so G.k/ satisfies (80). We write H i .k;G/ for H i .Gal.k=k/;G.k//.

Exact sequences

An exact sequence
1! G0

! G ! G00
! 1

of algebraic groups over k gives rise to an exact

1! G0.k/! G.k/! G00.k/! 1

and hence (see 26.1) an exact sequence

1! G0.k/! G.k/! G00.k/! H 1.k;G0/! H 1.k;G/! H 1.k;G00/

Examples

26.11 For all n, H 1.k;GLn/ D 1.

This follows from (26.6) and (81).

26.12 For all n, H 1.k;SLn/ D 1:

26.13 For all n, H 1.k;Spn/ D 1:

26.14 Let .V; �/ be a nondegenerate quadratic space over k. ThenH 1.k;O.�// classifies
the isomorphism classes of quadratic spaces over k with the same dimension as V .

PROOF. Over k, all nondegenerate quadratic spaces of the same dimension are isomor-
phic. 2

26.15 Let G be an algebraic group of k. The isomorphism classes of algebraic groups
over k that become isomorphic to G

k
over k are classified by H 1.�;A.k//. Here � D

Gal.k=k/ and A.k/ is the automorphism group of G
k

.

74Equivalently, we consider only � -groups A for which the pairing � �A! A is continuous relative to the
Krull topology on � and the discrete topology on A, and we require that the 1-cocycles be continuous for the
same topologies.
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(Weil) restriction of the base field

Before considering the classification of algebraic groups, we need one more construction.
Let K be a finite extension of k, and let G be an algebraic group over K. Define a functor

G�.R/ D G.K ˝k R/

from k-algebras to groups.

PROPOSITION 26.16 The functorG� is an algebraic group over k (i.e., it is represented by
a finitely generated k-algebra).

PROOF. Omitted (cf. AG 16.26). 2

PROPOSITION 26.17 There is a canonical isomorphism

G
�k
'

Y
�WK!k

�G: (82)

PROOF. The product is over the k-homomorphisms K ! k, and by �G, we mean the
algebraic group over k such that, for a k-algebra R,

.�G/.R/ D G.R/

— on the right, R is regarded as a k-algebra via �. For a k-algebra R,

K ˝k R ' K ˝k .k ˝k
R/

' .K ˝k k/˝k
R

'

�Y
�WK!k

k
�
˝

k
R:

Thus, G
�k
'
Q

�WK!k
�G as functors, and therefore as algebraic groups. 2

From now on, we assume that k has characteristic zero.

Reductive algebraic groups

According to (15.2), to give a reductive algebraic group G over a field k amounts to giving
a simply connected semisimple group G over k, an algebraic group Z of multiplicative
type over k, and homomorphism Z.G/ ! Z. Because k has characteristic zero, Z.G/
is of multiplicative type (even étale), and according to Theorem 9.20, the functor sending
an algebraic group of multiplicative type to its character group is an equivalence to the
category finitely generated Z-modules with a continuous action of � . If we suppose this last
category to be known, then describing the reductive algebraic groups amounts to describing
the simply connected semisimple groups together with their centres.

Simply connected semisimple groups

Let G be a simply connected semisimple group over k. Then, according to Theorem 14.23,
G

k
decomposes into a product

G
k
D G1 � � � � �Gr (83)



26 THE COHOMOLOGY OF ALGEBRAIC GROUPS; APPLICATIONS 185

of its almost-simple subgroups Gi . The set fG1; : : : ; Grg contains all the almost-simple
subgroups of G. When we apply � 2 � , equation (83) becomes

G
k
D �G

k
D �G1 � � � � � �Gr

with f�G1; : : : ; �Grg a permutation of fG1; : : : ; Grg. Let H1; : : : ;Hs denote the products
of Gi in the different orbits of � . Then �Hi D Hi , and so Hi is defined over k (11.2), and

G D H1 � � � � �Hs

is a decomposition of G into a product of its almost-simple subgroups.
Now suppose thatG itself is almost-simple, so that � acts transitively on theGi in (83).

Let
� D f� 2 � j �G1 D G1g:

Then G1 is defined over the subfield K D k
�

of k (11.2).

PROPOSITION 26.18 We have G ' G1�.

PROOF. We can rewrite (83) as
G

k
D

Y
�G

1k

where � runs over a set of cosets for� in � . On comparing this with (82), we see that there
is a canonical isomorphism

G
k
' G

1�k
:

In particular, it commutes with the action of � , and so is defined over k (AG 16.9). 2

The group G1 over K is absolutely almost-simple, i.e., it remains almost-simple over
k. The discussion in this section shows that it suffices to consider such groups.

Absolutely almost-simple simply-connected semisimple groups

For an algebraic group G, let Gad D G=Z.G/.

PROPOSITION 26.19 For any simply connected semisimple group G, there is an exact
sequence

1! Gad.k/! A.k/! Sym.D/! 1:

When G is split, � acts trivially on Sym.D/, and the sequence is split, i.e., there is a
subgroup ofA.k/ on which � acts trivially and which maps isomorphically onto Sym.D/.

PROOF. An element of Gad.k/ D G.k/=Z.k/ acts on G
k

by an inner automorphism.
Here D is the Dynkin diagram of G, and Sym.D/ is the group of symmetries of it. This
description of the outer automorphisms of G, at least in the split case, is part of the full
statement of the isomorphism theorem (17.19). 2

The indecomposable Dynkin diagrams don’t have many symmetries: for D4 the sym-
metry group is S3 (symmetric group on 3 letters), for An, Dn, and E6 it has order 2, and
otherwise it is trivial.
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THEOREM 26.20 For each indecomposable Dynkin diagram D, there is a split, absolutely
almost-simple, simply connected algebraic group G over k such that G

k
has the type of the

Dynkin diagram; moreoverG is unique up to isomorphism. The isomorphism classes of al-
gebraic groups over k becoming isomorphic to G over k are classified by H 1.k;A.k//
where A.k/ is the automorphism group of G

k
. For the split group G, X�.Z.G// D

P.D/=Q.D/ with � acting trivially. For the form G0 of G defined by a 1-cocycle .a� /,
Z.G0/ D Z.G/ but with � acting through a� .

We illustrate this last point. For An, the split group is SLn. This has centre �n, which
is the group of multiplicative type corresponding to Z=nZ with the trivial action of � . Let
G0 and G be groups over k, and let f WG

0k
! G

k
be an isomorphism over k. Write

a� D f
�1 ı �f . Then f defines an isomorphism

f WZ0.k/! Z.k/

on the points of their centres, and

f .a��x/ D �.f .x//:

When use f to identify Z0.k/ with Z.k/, this says that � acts on Z.k/ by the twisted
action �x D a��x.

REMARK 26.21 Let G0 be the split simply connected group of type Xy , and let G be a
form of G0. Let c be its cohomology class. If c 2 H 1.k;Gad/, then G is called an inner
form of G. In general, c will map to a nontrivial element of

H 1.k; Sym.D// D Homcontinuous.�; Sym.D//:

Let � be the kernel of this homomorphism, and let L be the corresponding exension field
of k. Let z D .� W�/. Then we say G is of type zXy .

The main theorems on the cohomology of groups

To complete the classification of algebraic groups, it remains to compute the cohomology
groups. This, of course, is an important problem. All I can do here is list some of the main
theorems.

26.22 Let k be finite. If G is connected, then H 1.k;G/ D 1:

26.23 Let k be a finite extension of the field of p-adic numbers Qp. If G is simply
connected and semisimple, then H 1.k;G/ D 1.

26.24 Let k D Q, and let G be a semisimple group over Q.
(a) If G is simply connected, then

H 1.Q; G/ ' H 1.R; G/:

(b) If G is an adjoint group (i.e., has trivial centre), or equals O.�/ for some nondegen-
erate quadratic space .V; �/, then

H 1.Q; G/!
Y

pD2;3;5;:::;1
H 1.Qp; G/

is injective.
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Note that the last result implies that two quadratic spaces over Q are isomorphic if and
only if they become isomorphic over Qp for all p (including p D 1, for which we set
Qp D R). This is a very important, and deep result, in number theory.

The last statements extend in an obvious way (for those who know the language) to
finite extensions of K.

NOTES For more on the cohomology of algebraic groups, see Platonov and Rapinchuk 1994 or
Kneser, Lectures on Galois cohomology of classical groups, Tata, Bombay, 1969.
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27 Classical groups and algebras with involution

An absolutely almost-simple simply connected algebraic group is said to be classical if it
is of type An, Bn, Cn, or Dn and becomes an inner form of the split form over a quadratic
extension of k. For all but groups of type D4, this last condition is automatic (see 26.19 et
seq.). A semisimple group G is classical if, in the decomposition of its simply connected
covering, only classical groups occur. In this section, I will list all the absolutely almost-
simple, simply connected, classical groups over a field k of characteristic zero.

By a k-algebra A I will mean a ring (not necessarily commutative) containing k in its
centre, and of finite dimension as a k-vector space (the dimension is called the degree ŒAW k�
of A).

The forms of Mn.k/

DEFINITION 27.1 A k-algebra A is central if its centre is k, and it is simple if it has no
2-sided ideals (except 0 and A). If all nonzero elements have inverses, it is called a division
algebra (or skew field).

EXAMPLE 27.2 (a) The ring Mn.k/ is central and simple.
(b) For any a; b 2 k�, the quaternion algebra H.a; b/ is central and simple (see p115).

It is either a division algebra, or it is isomorphic to M2.k/.

THEOREM 27.3 (WEDDERBURN) For any division algebra D over k, Mn.D/ is a simple
k-algebra, and every simple k-algebra is of this form.

PROOF. See my notes on Class Field Theory, IV 1.9 (Chapter IV can be read independently
of the rest of the notes, and is fairly elementary). 2

COROLLARY 27.4 If k is algebraically closed, the only central simple algebras over k are
the matrix algebras Mn.k/.

PROOF. Let D be a division algebra over k, and let ˛ 2 D. Then kŒ˛� is a commutative
integral domain of finite dimension over k, and so is a field. As k is algebraically closed,
kŒ˛� D k. 2

PROPOSITION 27.5 The k-algebras becoming isomorphic to Mn.k/ over k are the central
simple algebras over k of degree n2.

PROOF. LetA be a central simple algebra over k of degree n2. Then k˝kA is again central
simple (CFT 2.15), and so is isomorphic to Mn.k/ (27.4). Conversely, if A is a k-algebra
that becomes isomorphic to Mn.k/ over k, then it is certainly central and simple, and has
degree n2. 2

PROPOSITION 27.6 All automorphisms of the k-algebra Mn.k/ are inner, i.e., of the form
X 7! YXY �1 for some Y .

PROOF. Let S be kn regarded as anMn.k/-module. It is simple, and every simpleMn.k/-
module is isomorphic to it (see the proof of 26.3). Let ˛ be an automorphism ofMn.k/, and
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let S 0 denote S , but with X 2 Mn.k/ acting as ˛.X/. Then S 0 is a simple Mn.k/-module,
and so there exists an isomorphism of Mn.k/-modules f WS ! S 0. Then

˛.X/f Ex D fX Ex; all X 2Mn.k/, Ex 2 S:

Therefore,
˛.X/f D fX; all X 2Mn.k/:

As f is k-linear, it is multiplication by an invertible matrix Y , and so this equation shows
that

˛.X/ D YXY �1: 2

COROLLARY 27.7 The isomorphism classes of k-algebras becoming isomorphic toMn.k/

over k are classified by H 1.k;PGLn/.

PROOF. The proposition shows that

Aut
k-alg.Mn.k// D PGLn.k/:

Let A be a k-algebra for which there exists an isomorphism f WMn.k/! k ˝k A, and let

a� D f
�1
ı �f:

Then a� is a 1-cocycle, depending only on the k-isomorphism class of A.
Conversely, given a 1-cocycle, define

�X D a� � �X; � 2 � , X 2Mn.k/:

This defines an action of � on Mn.k/ and Mn.k/
� is a k-algebra becoming isomorphic to

Mn.k/ over k (cf. the proof of 26.5). 2

REMARK 27.8 Let A be a central simple algebra over k. For some n, there exists an
isomorphism f W k ˝k A! Mn.k/, unique up to an inner automorphism (27.5, 27.6). Let
a 2 A, and let Nm.a/ D det.f .a//. Then Nm.a/ does not depend on the choice of f .
Moreover, it is fixed by � , and so lies in k. It is called the reduced norm of a.

The inner forms of SLn

Consider
X 7! X WSLn.k/!Mn.k/:

The action of PGLn.k/ on Mn.k/ by inner automorphisms preserves SLn.k/, and is the
full group of inner automorphisms of SLn.

THEOREM 27.9 The inner forms of SLn are the groups SLm.D/ for D a division algebra
of degree n=m.

PROOF. The inner forms of SLn and the forms ofMn.k/ are both classified byH 1.k;PGLn/,
and so correspond. The forms ofMn.k/ are the k-algebrasMm.D/ (by 27.5, 27.3), and the
form of SLn is related to it exactly as SLn is related to Mn. 2

Here SLm.D/ is the group

R 7! fa 2Mm.R˝k D/ j Nm.a/ D 1g:
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Involutions of k-algebras

DEFINITION 27.10 Let A be a k-algebra. An involution of k is a k-linear map a 7!
a�WA! A such that

.ab/� D b�a� all a; b 2 A;

a��
D a:

The involution is said to be of the first or second kind according as it acts trivially on the
elements of the centre of k or not.

EXAMPLE 27.11 (a) On Mn.k/ there is the standard involution X 7! X t (transpose) of
the first kind.

(b) On a quaternion algebra H.a; b/, there is the standard involution i 7! �i , j 7! �j
of the first kind.

(c) On a quadratic field extension K of k, there is a unique nontrivial involution (of the
second kind).

LEMMA 27.12 Let .A;�/ be an k-algebra with involution. An inner automorphism x 7!

axa�1 commutes with � if and only if a�a lies in the centre of A.

PROOF. To say that inn.a/ commutes with � means that the two maps

x 7! axa�1
7! .a�/�1x�a�

x 7! x�
7! ax�a�1

coincide, i.e., that
x�
D .a�a/x�.a�a/�1

for all x 2 A. As x 7! x� is bijective, this holds if and only if a�a lies in the centre of a.2

REMARK 27.13 Let A have centre k. We can replace a with ca, c 2 k�, without changing
inn.a/. This replaces a�a with c�c �a�a. When � is of the first kind, c�c D c2. Therefore,
when k is algebraically closed, we can choose c to make a�a D 1.

All the forms of SLn

According to (26.19), there is an exact sequence

1! PGLn.k/! Aut.SL
nk
/! Sym.D/! 1;

and Sym.D/ has order 2. In fact, X 7! .X�1/t D .X t /�1 is an outer automorphism of
SLn.

Now consider the k-algebra with involution of the second kind

Mn.k/ �Mn.k/; .X; Y /� D .Y t ; X t /:

Every automorphism of Mn.k/ � Mn.k/ is either inner, or is the composite of an inner
automorphism with .X; Y / 7! .Y;X/.75 According to (27.12), the inner automorphism by

75This isn’t obvious, but follows from the fact that the two copies of Mn.k/ are the only simple subalgebras
of Mn.k/ �Mn.k/ (see Farb and Dennis, Noncommutative algebra, GTM 144, 1993, 1.13, for a more general
statement).
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a 2 A commutes with � if and only if a�a 2 k � k. But .a�a/� D a�a, and so a�a 2 k.
When we work over k, we can scale a so that a�a D 1 (27.13): if a D .X; Y /, then

1 D a�a D .Y tX;X tY /;

and so a D .X; .X t /�1/. Thus, the automorphisms of .Mn.k/ � Mn.k/;�/ are the in-
ner automorphisms by elements .X; .X t /�1/ and composites of such automorphisms with
.X; Y / 7! .Y;X/. When we embed

X 7! .X; .X t /�1/WSLn.k/ ,!Mn.k/ �Mn.k/; (84)

the image it is stable under the automorphisms of .Mn.k/�Mn.k/;�/, and this induces an
isomorphism

Aut.Mn.k/ �Mn.k/;�/ ' Aut.SL
nk
/:

Thus, the forms of SLn correspond to the forms of .Mn.k/ �Mn.k/;�/. Such a form is a
simple algebra A over k with centreK of degree 2 over k and an involution � of the second
kind.

The map (84) identifies SLn.k/ with the subgroup ofMn.k/�Mn.k/ of elements such
that

a�a D 1; Nm.a/ D 1:

Therefore, the form of SLn attached to the form .A;�/ is the group G such that G.R/
consists of the a 2 R˝k A such that

a�a D 1; Nm.a/ D 1:

There is a commutative diagram

Aut.SL
nk
/ ����! Sym.D/


 




Aut.Mn.k/ �Mn.k/;�/ ����! Autk-alg.k � k/:

The centreK of A is the form of k�k corresponding to the image of the cohomology class
of G in Sym.D/. Therefore, we see that G is an outer form if and only if K is a field.

Forms of Sp2n

Here we use the k-algebra with involution of the first kind

M2n.k/; X�
D SX tS�1; S D

�
0 I

�I 0

�
:

The inner automorphism defined by an invertible matrix U commutes with � if and only if
U �U 2 k (see 27.12). When we pass to k, we may suppose U �U D I , i.e., that

SU tS�1U D I .

Because S�1 D �S , this says that

U tSU D S
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i.e., that U 2 Sp2n.k/. Since there are no symmetries of the Dynkin diagram Cn, we see
that the inclusion

X 7! X WSp2n.k/ ,!M2n.k/ (85)

induces an isomorphism

Aut.Sp
2nk

/ ' Aut.M2n.k/;�/:

Therefore, the forms of Sp2ncorrespond to the forms of .M2n.k/;�/. Such a form is a
central simple algebra A over k with an involution � of the first kind.

The map (85) identifies Sp2n.k/ with the subgroup of M2n.k/ of elements such that

a�a D 1:

Therefore, the form of Sp2n attached to .A;�/ is the group G such that G.R/ consists of
the a 2 R˝k A for which

a�a D 1:

The forms of Spin.�/

Let .V; �/ be a nondegenerate quadratic space over k with largest possible Witt index. The
action of O.�/ on itself preserves SO.�/, and there is also an action of O.�/ on Spin.�/
given by (5.28). These actions are compatible with the natural homomorphism

Spin.�/! SO.�/

and realize O.�/ modulo its centre as the automorphism group of each. Therefore, the
forms of Spin.�/ are exactly the double covers of the forms of SO.�/.

The determination of the forms of SO.�/ is very similar to the last case. Let M be the
matrix of � relative to some basis for V . We use the k-algebra with involution of the first
kind

Mn.k/; X�
DMX tM�1:

The automorphism group of .Mn.k/;�/ is O.�/ modulo its centre, and so the forms of
SO.�/ correspond to the forms of .M2n.k/;�/. Such a form is a central simple algebra A
over k with an involution � of the first kind, and the form of SO.�/ attached to .A;�/ is the
group G such that G.R/ consists of the a 2 R˝k A for which

a�a D 1:

Algebras admitting an involution

To continue, we need a description of the algebras with involution over a field k. For an
arbitrary field, there is not much one can say, but for one important class of fields there is a
great deal.

PROPOSITION 27.14 If a central simple algebra A over k admits an involution of the first
kind, then

A˝k A �Mn2.k/; n2
D ŒAW k�: (86)
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PROOF. Recall that the opposite algebra Aopp of A equals A as a k-vector space but has its
multiplication reversed:

aoppbopp
D .ba/opp.

Let A0 denote A regarded as a k-vector space. There are commuting left actions of A and
Aopp on A0, namely, A acts by left multiplication and Aopp by right multiplication, and
hence a homomorphism

A˝k A
opp
! Endk-lin .A0

/ :

This is injective, and the source and target have the same dimension as k-vector spaces, and
so the map is an isomorphism. Since an involution on A is an isomorphism A! Aopp, the
proposition follows from this. 2

Over all fields, matrix algebras and quaternion algebras admit involutions. For many
important fields, these are essentially the only such algebras. Consider the following con-
dition on a field k:

27.15 the only central division algebras over k or a finite extension of k satisfying (86)
are the quaternion algebras and the field itself (i.e., they have degree 4 or 1).

THEOREM 27.16 The following fields satisfy (27.15): algebraically closed fields, finite
fields, R, Qp and its finite extensions, and Q and its finite extensions.

PROOF. The proofs become successively more difficult: for algebraically closed fields
there is nothing to prove (27.4); for Q it requires the full force of class field theory (CFT).2

The involutions on an algebra

Given a central simple algebra admitting an involution, we next need to understand the set
of all involutions of it.

THEOREM 27.17 (NOETHER-SKOLEM) Let A be a central simple algebra overK, and let
� and � be involutions of A that agree on K; then there exists an a 2 A such that

x�
D ax�a�1; all x 2 A: (87)

PROOF. See CFT 2.10. 2

Let � be an involution (of the first kind, and so fixing the elements of K, or of the
second kind, and so fixing the elements of a subfield k of K such that ŒKW k� D 2). For
which invertible a in A does (87) define an involution?

Note that
x��
D .a�a�1/�1x.a�a�1/

and so a�a�1 2 K, say
a�
D ca; c 2 K:

Now,
a��
D c.c�a�/ D cc�

� a

and so
cc�
D 1:

If � is of the first kind, this implies that c2 D 1, and so c D ˙1.
If � is of the second kind, this implies that c D d=d� for some d 2 K (Hilbert’s

theorem 90, FT 5.24). Since � is unchanged when we replace a with a=d , we see that in
this case (87) holds with a satisfying a� D a.
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Hermitian and skew-hermitian forms

We need some definitions. Let
˘ .D;�/ be a division algebra with an involution �,
˘ V be a left vector space over D, and
˘ �WV � V ! D a form on V that is semilinear in the first variable and linear in the

second (so
�.ax; by/ D a��.x; y/b; a; b 2 D/:

Then � is said to hermitian if

�.x; y/ D �.y; x/�; x; y 2 V;

and skew hermitian if
�.x; y/ D ��.y; x/�; x; y 2 V:

EXAMPLE 27.18 (a) Let D D k with � D idk . In this case, the hermitian and skew
hermitian forms are, respectively, symmetric and skew symmetric forms.

(b) Let D D C with � Dcomplex conjugation. In this case, the hermitian and skew
hermitian forms are the usual objects.

To each hermitian or skew-hermitian form, we attach the group of automorphisms of
.V; �/, and the special group of automorphisms of � (the automorphisms with determinant
1, if this is not automatic).

The groups attached to algebras with involution

We assume the ground field k satisfies the condition (27.15), and compute the groups at-
tached to the various possible algebras with involution.

Case A DMn.k/; involution of the first kind.

In this case, the involution � is of the form

X�
D aX ta�1

where at D ca with c D ˙1. Recall that the group attached to .Mn.k/;�/ consists of the
matrices X satisfying

X�X D I; det.X/ D 1;

i.e.,
aX ta�1X D I; det.X/ D 1;

or,
X ta�1X D a�1; det.X/ D 1:

Thus, when c D C1, we get the special orthogonal group for the symmetric bilinear form
attached to a�1, and when c D �1, we get the symplectic group attached to the skew
symmetric bilinear form attached to a�1.

Case A DMn.K/; involution of the second kind

Omitted for the present.
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Case A DMn.D/; D a quaternion division algebra.

Omitted for the present.

Conclusion.

Let k be a field satisfying the condition (27.15). Then the absolutely almost-simple, simply
connected, classical groups over k are the following:
(A) The groups SLm.D/ for D a central division algebra over k (the inner forms of SLn);

the groups attached to a hermitian form for a quadratic field extension K of k (the
outer forms of SLn).

(BD) The spin groups of quadratic forms, and the spin groups of skew hermitian forms
over quaternion division algebras.

(C) The symplectic groups, and unitary groups of hermitian forms over quaternion division
algebras.

It remains to classify the quaternion algebras and the various hermitian and skew her-
mitian forms. For the algebraically closed fields, the finite fields, R, Qp, Q and their finite
extensions, this has been done, but for Q and its extensions it is an application of class field
theory.
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28 Arithmetic subgroups

Commensurable groups

Subgroups H1 and H2 of a group are said to be commensurable if H1 \ H2 is of finite
index in both H1 and H2.

The subgroups aZ and bZ of R are commensurable if and only if a=b 2 Q; for example,
1Z and

p
2Z are not commensurable because they intersect in f0g. More generally, lattices

L and L0 in a real vector space V are commensurable if and only if they generate the same
Q-subspace of V .

Commensurability is an equivalence relation: obviously, it is reflexive and symmetric,
and if H1;H2 and H2;H3 are commensurable, one shows easily that H1 \H2 \H3 is of
finite index in H1;H2; and H3.

Definitions and examples

Let G be an algebraic group over Q. Let �WG ! GLV be a faithful representation of G on
a finite-dimensional vector space V , and let L be a lattice in V . Define

G.Q/L D fg 2 G.Q/ j �.g/L D Lg:

An arithmetic subgroup of G.Q/ is any subgroup commensurable with G.Q/L. For an
integer N > 1, the principal congruence subgroup of level N is

� .N/L D fg 2 G.Q/L j g acts as 1 on L=NLg:

In other words, � .N/L is the kernel of

G.Q/L ! Aut.L=NL/:

In particular, it is normal and of finite index in G.Q/L. A congruence subgroup of G.Q/
is any subgroup containing some � .N/ as a subgroup of finite index, so congruence sub-
groups are arithmetic subgroups.

EXAMPLE 28.1 Let G D GLn with its standard representation on Qn and its standard
lattice L D Zn. Then G.Q/L consists of the A 2 GLn.Q/ such that

AZn
D Zn:

On applying A to e1; : : : ; en, we see that this implies that A has entries in Z. Since
A�1Zn D Zn, the same is true of A�1. Therefore, G.Q/L is

GLn.Z/ D fA 2Mn.Z/ j det.A/ D ˙1g.

The arithmetic subgroups of GLn.Q/ are those commensurable with GLn.Z/.
By definition,

� .N/ D fA 2 GLn.Z/ j A � I mod N g

D f.aij / 2 GLn.Z/ j N j.aij � ıij /g;

which is the kernel of
GLn.Z/! GLn.Z=NZ/:
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EXAMPLE 28.2 Consider a triple .G; �; L/ as in the definition of arithmetic subgroups.
The choice of a basis for L identifies G with a subgroup of GLn and L with Zn. Then

G.Q/L D G.Q/ \GLn.Z/

and �L.N / for G is
G.Q/ \ � .N/:

For a subgroupG of GLn, one often writesG.Z/ forG.Q/\GLn.Z/. By abuse of notation,
given a triple .G; �; L/, one often writes G.Z/ for G.Q/L.

EXAMPLE 28.3 Let

Sp2n.Z/ D
˚
A 2 GL2n.Z/ j At

�
0 I

�I 0

�
A D

�
0 I

�I 0

�	
is an arithmetic subgroup of Sp2n.Q/, and all arithmetic subgroups are commensurable
with it.

EXAMPLE 28.4 Let .V; ˚/ be a root system and X a lattice P � X � Q. Chevalley
showed that .V; ˚;X/ defines an “algebraic group G over Z” which over Q becomes the
split semisimple algebraic group associated with .V; ˚;X/, and G.Z/ is a canonical arith-
metic group in G.Q/:

EXAMPLE 28.5 Arithmetic groups may be finite. For example Gm.Z/ D f˙1g, and the
arithmetic subgroups of G.Q/ will be finite if G.R/ is compact (because arithmetic sub-
groups are discrete in G.R/ — see later).

EXAMPLE 28.6 (for number theorists). Let K be a finite extension of Q, and let U be the
group of units in K. For the torus T over Q such that T .R/ D .R˝Q K/

�, T .Z/ D U .

Questions

The definitions suggest a number of questions and problems.
˘ Show the sets of arithmetic and congruence subgroups of G.Q/ do not depend on the

choice of � and L.
˘ Examine the properties of arithmetic subgroups, both intrinsically and as subgroups

of G.R/.
˘ Give applications of arithmetic subgroups.
˘ When are all arithmetic subgroups congruence?
˘ Are there other characterizations of arithmetic subgroups?

Independence of � and L.

LEMMA 28.7 Let G be a subgroup of GLn. For any representation �WG ! GLV and
lattice L � V , there exists a congruence subgroup of G.Q/ leaving L stable (i.e., for some
m � 1, �.g/L D L for all g 2 � .m/).

PROOF. When we choose a basis for L, � becomes a homomorphism of algebraic groups
G ! GLn0 . The entries of the matrix �.g/ are polynomials in the entries of the matrix
g D .gij /, i.e., there exist polynomials P˛;ˇ 2 QŒ: : : ; Xij ; : : :� such that

�.g/˛ˇ D P˛;ˇ .: : : ; gij ; : : :/:
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After a minor change of variables, this equation becomes

�.g/˛ˇ � ı˛;ˇ D Q˛;ˇ .: : : ; gij � ıij ; : : :/

with Q˛;ˇ 2 QŒ: : : ; Xij ; : : :� and ı the Kronecker delta. Because �.I / D I , the Q˛;ˇ have
zero constant term. Let m be a common denominator for the coefficients of the Qa;ˇ , so
that

mQ˛;ˇ 2 ZŒ: : : ; Xij ; : : :�:

If g � I mod m, then
Q˛;ˇ .: : : ; gij � ıij ; : : :/ 2 Z:

Therefore, �.g/Zn0

� Zn0

, and, as g�1 also lies in � .m/, �.g/Zn0

D Zn0

. 2

PROPOSITION 28.8 For any faithful representations G ! GLV and G ! GLV 0 of G and
lattices L and L0 in V and V 0, G.Q/L and G.Q/L0 are commensurable.

PROOF. According to the lemma, there exists a subgroup � of finite index in G.Q/L such
that � � G.Q/L0 . Therefore,

.G.Q/LWG.Q/L \G.Q/L0/ � .G.Q/LW� / <1:

Similarly,
.G.Q/L0 WG.Q/L \G.Q/L0/ <1: 2

Thus, the notion of arithmetic subgroup is independent of the choice of a faithful rep-
resentation and a lattice. The same is true for congruence subgroups, because the proof of
(28.7) shows that, for any N , there exists an m such that � .Nm/ � �L.N /.

Behaviour with respect to homomorphisms

PROPOSITION 28.9 Let � be an arithmetic subgroup of G.Q/, and let �WG ! GLV be a
representation of G. Every lattice L of V is contained in a lattice stable under � .

PROOF. According to (28.7), there exists a subgroup � 0 leaving L stable. Let

L0
D

X
�.g/L

where g runs over a set of coset representatives for � 0 in � . The sum is finite, and so L0 is
again a lattice in V , and it is obviously stable under � . 2

PROPOSITION 28.10 Let 'WG ! G0 be a homomorphism of algebraic groups over Q.
For any arithmetic subgroup � of G.Q/, '.� / is contained in an arithmetic subgroup of
G0.Q/.

PROOF. Let �WG0 ! GLV be a faithful representation of G0, and let L be a lattice in
V . According to (28.9), there exists a lattice L0 � L stable under .� ı '/.� /, and so
G0.Q/L � '.� /. 2

REMARK 28.11 If 'WG ! G0 is a quotient map and � is an arithmetic subgroup ofG.Q/,
then one can show that '.� / is of finite index in an arithmetic subgroup of G0.Q/ (Borel
1979, 8.9, 8.11). Therefore, arithmetic subgroups of G.Q/ map to arithmetic subgroups of
G0.Q/. (Because '.G.Q// typically has infinite index in G0.Q/, this is far from obvious.)
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Adèlic description of congruence subgroups

In this subsection, which can be skipped, I assume the reader is familiar with adèles. The
ring of finite adèles is the restricted topological product

Af D

Y
.Q`WZ`/

where ` runs over the finite primes of Q. Thus, Af is the subring of
Q

Q` consisting of the
.a`/ such that a` 2 Z` for almost all `, and it is endowed with the topology for which

Q
Z`

is open and has the product topology.
Let V D SpmA be an affine variety over Q. The set of points of V with coordinates in

a Q-algebra R is
V.R/ D HomQ.A;R/:

When we write
A D QŒX1; : : : ; Xm�=a D QŒx1; : : : ; xm�;

the map P 7! .P .x1/ ; : : : ; P.xm// identifies V.R/ with

f.a1; : : : ; am/ 2 R
m
j f .a1; : : : ; am/ D 0; 8f 2 ag:

Let ZŒx1; : : : ; xm� be the Z-subalgebra of A generated by the xi , and let

V.Z`/ D HomZ.ZŒx1; : : : ; xm�;Z`/ D V.Q`/ \ Zm
` (inside Qm

` ).

This set depends on the choice of the generators xi for A, but if A D QŒy1; : : : ; yn�, then
the yi ’s can be expressed as polynomials in the xi with coefficients in Q, and vice versa.
For some d 2 Z, the coefficients of these polynomials lie in ZŒ 1

d
�, and so

ZŒ 1
d
�Œx1; : : : ; xm� D ZŒ 1

d
�Œy1; : : : ; yn� (inside A).

It follows that for ` − d , the yi ’s give the same set V.Z`/ as the xi ’s. Therefore,

V.Af / D
Q
.V .Q`/WV.Z`//

is independent of the choice of generators for A.
For an algebraic group G over Q, we define

G.Af / D
Q
.G.Q`/WG.Z`//

similarly. Now it is a topological group.76 For example,

Gm.Af / D
Q
.Q�

` WZ
�
` / D A�

f .

PROPOSITION 28.12 For any compact open subgroup K of G.Af /, K \ G.Q/ is a con-
gruence subgroup of G.Q/, and every congruence subgroup arises in this way.77

76The choice of generators determines a group structure on G.Z`/ for almost all `, etc..
77To define a basic compact open subgroup K of G.Af /, one has to impose a congruence condition at each

of a finite set of primes. Then � D G.Q/ \ K is obtained from G.Z/ by imposing the same congruence
conditions. One can think of � as being the congruence subgroup defined by the “congruence condition” K.
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PROOF. Fix an embedding G ,! GLn. From this we get a surjection QŒGLn�! QŒG� (of
Q-algebras of regular functions), i.e., a surjection

QŒX11; : : : ; Xnn; T �=.det.Xij /T � 1/! QŒG�;

and hence QŒG� D QŒx11; : : : ; xnn; t �. For this presentation of QŒG�,

G.Z`/ D G.Q`/ \GLn.Z`/ (inside GLn.Q`/).

For an integer N > 0, let

K.N/ D
Q

`K`; where K` D

�
G.Z`/ if ` − N
fg 2 G.Z`/ j g � In mod `r`g if r` D ord`.N /:

Then K.N/ is a compact open subgroup of G.Af /, and

K.N/ \G.Q/ D � .N/.

It follows that the compact open subgroups of G.Af / containing K.N/ intersect G.Q/
exactly in the congruence subgroups of G.Q/ containing � .N/. Since every compact open
subgroup of G.Af / contains K.N/ for some N , this completes the proof. 2

Applications to manifolds

Clearly Zn2

is a discrete subset of Rn2

, i.e., every point of Zn2

has an open neighbourhood
(for the real topology) containing no other point of Zn2

. Therefore, GLn.Z/ is discrete in
GLn.R/, and it follows that every arithmetic subgroup � of a group G is discrete in G.R/.

Let G be an algebraic group over Q. Then G.R/ is a Lie group, and for every compact
subgroup K of G.R/, M D G.R/=K is a smooth manifold (J. Lee, Introduction to smooth
manifolds, 2003, 9.22).

THEOREM 28.13 For any discrete torsion-free subgroup � of G.R/, � acts freely on M ,
and � nM is a smooth manifold.

PROOF. Standard; see for example Lee 2003, Chapter 9, or 3.1 of my notes, Introduction
to Shimura varieties. 2

Arithmetic subgroups are an important source of discrete groups acting freely on man-
ifolds. To see this, we need to know that there exist many torsion-free arithmetic groups.

Torsion-free arithmetic groups

Note that SL2.Z/ is not torsion-free. For example, the following elements have finite order:�
�1 0

0 �1

�2

D

�
1 0

0 1

�
,

�
0 �1

1 0

�2

D

�
�1 0

0 �1

�
D

�
0 �1

1 1

�3

:

THEOREM 28.14 Every arithmetic group contains a torsion-free subgroup of finite index.

For this, it suffices to prove the following statement.

LEMMA 28.15 For any prime p � 3, the subgroup � .p/ of GLn.Z/ is torsion-free.
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PROOF. If not, it will contain an element of order a prime `, and so we will have an equation

.I C pmA/` D I

with m � 1 and A a matrix in Mn.Z/ not divisible by p (i.e., not of the form pB with B
in Mn.Z/). Since I and A commute, we can expand this using the binomial theorem, and
obtain an equation

`pmA D �
X`

iD2

 
`

i

!
pmiAi :

In the case that ` ¤ p, the exact power of p dividing the left hand side is pm, but p2m

divides the right hand side, and so we have a contradiction.
In the case that ` D p, the exact power of p dividing the left hand side is pmC1, but,

for 2 � i < p, p2mC1j
�
p
i

�
pmi because pj

�
p
i

�
, and p2mC1jpmp because p � 3. Again we

have a contradiction. 2

A fundamental domain for SL2

LetH be the complex upper half plane

H D fz 2 C j =.z/ > 0g:

For
�
a b

c d

�
2 GL2.R/,

=

�
az C b

cz C d

�
D
.ad � bc/=.z/

jcz C d j2
: (88)

Therefore, SL2.R/ acts onH by holomorphic maps

SL2.R/ �H! H;
�
a b

c d

�
z D

az C b

cz C d
:

The action is transitive, because�
a b

0 a�1

�
i D a2i C ab;

and the subgroup fixing i is

O D

��
a b

�b a

� ˇ̌̌̌
a2
C b2

D 1

�
(compact circle group). Thus

H ' .SL2.R/=O/ � i

as a smooth manifold.

PROPOSITION 28.16 Let D be the subset

fz 2 C j �1=2 � <.z/ � 1=2; jzj � 1g

ofH. Then
H D SL2.Z/ �D;

and if two points of D lie in the same orbit then neither is in the interior of D.
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PROOF. Let z0 2 H. One checks that, for any constant A, there are only finitely many
c; d 2 Z such that jcz0C d j � A, and so (see (88)) we can choose a 
 2 SL2.Z/ such that

=.
.z0// is maximal. As T D
�
1 1

0 1

�
acts onH as z 7! zC 1, there exists anm such that

�1=2 � <.Tm
.z0// � 1=2:

I claim that Tm
.z0/ 2 D. To see this, note that S D
�
0 �1

1 0

�
acts by S.z/ D �1=z, and

so

=.S.z// D
=.z/

jzj2
:

If Tm
.z0/ … D, then jTm
.z0/j < 1, and =.S.Tm
.z0/// > =.T
m
.z0//, contradicting

the definition of 
 .
The proof of the second part of the statement is omitted. 2

Application to quadratric forms

Consider a binary quadratic form:

q.x; y/ D ax2
C bxy C cy2; a; b; c 2 R:

Assume q is positive definite, so that its discriminant � D b2 � 4ac < 0.
There are many questions one can ask about such forms. For example, for which inte-

gers N is there a solution to q.x; y/ D N with x; y 2 Z? For this, and other questions,
the answer depends only on the equivalence class of q, where two forms are said to be
equivalent if each can be obtained from the other by an integer change of variables. More
precisely, q and q0 are equivalent if there is a matrix A 2 SL2.Z/ taking q into q0 by the
change of variables, �

x0

y0

�
D A

�
x

y

�
:

In other words, the forms

q.x; y/ D .x; y/ �Q �

�
x

y

�
; q0.x; y/ D .x; y/ �Q0

�

�
x

y

�
are equivalent if Q D At �Q0 � A for A 2 SL2.Z/.

Every positive-definite binary quadratic form can be written uniquely

q.x; y/ D a.x � !y/.x � !y/, a 2 R>0, ! 2 H:

If we let Q denote the set of such forms, there are commuting actions of R>0 and SL2.Z/
on it, and

Q=R>0 ' H

as SL2.Z/-sets. We say that q is reduced if

j!j > 1 and �
1

2
� <.!/ <

1

2
, or

j!j D 1 and �
1

2
� <.!/ � 0:
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More explicitly, q.x; y/ D ax2 C bxy C cy2 is reduced if and only if either

�a < b � a < c or

0 � b � a D c:

Theorem 28.16 implies:

Every positive-definite binary quadratic form is equivalent to a reduced form;
two reduced forms are equivalent if and only if they are equal.

We say that a quadratic form is integral if it has integral coefficients, or, equivalently, if
x; y 2 Z H) q.x; y/ 2 Z.

There are only finitely many equivalence classes of integral definite binary
quadratic forms with a given discriminant.

Each equivalence class contains exactly one reduced form ax2 C bxy C cy2. Since

4a2
� 4ac D b2

�� � a2
��

we see that there are only finitely many values of a for a fixed �. Since jbj � a, the same
is true of b, and for each pair .a; b/ there is at most one integer c such that b2 � 4ac D �.

This is a variant of the statement that the class number of a quadratic imaginary field is
finite, and goes back to Gauss (cf. my notes on Algebraic Number Theory, 4.28, or, in more
detail, Borevich and Shafarevich, Number theory, 1966, especially Chapter 3, �6).

“Large” discrete subgroups

Let � be a subgroup of a locally compact group G. A discrete subgroup � of a locally
compact group G is said to cocompact (or uniform) if G=� is compact. This is a way
of saying that � is “large” relative to G. There is another weaker notion of this. On
each locally compact group G, there exists a left-invariant Borel measure, unique up to a
constant, called the left-invariant Haar measure78, which induces a measure � on � nG.
If �.� nG/ < 1, then one says that � has finite covolume, or that � is a lattice in G. If
K is a compact subgroup of G, the measure on G defines a left-invariant measure on G=K,
and �.� nG/ <1 if and only if the measure �.� nG=K/ <1.

EXAMPLE 28.17 Let G D Rn, and let � D Ze1 C � � � C Zei . Then � nG.R/ is compact
if and only if i D n. If i < n, � does not have finite covolume. (The left-invariant measure
on Rn is just the usual Lebesgue measure.)

EXAMPLE 28.18 Consider, SL2.Z/ � SL2.R/. The left-invariant measure on SL2.R/=O '
H is dxdy

y2 , andZ
� nH

dxdy

y2
D

“
D

dxdy

y2
�

Z 1

p
3=2

Z 1=2

�1=2

dxdy

y2
D

Z 1

p
3=2

dy

y2
<1:

Therefore, SL2.Z/ has finite covolume in SL2.R/ (but it is not cocompact — SL2 .Z/nH
is not compact).

78For real Lie groups, the proof of the existence is much more elementary than in the general case (cf.
Boothby 1975, VI 3.5).
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EXAMPLE 28.19 Consider G D Gm. The left-invariant measure79 on R� is dx
x

, andZ
R�=f˙1g

dx

x
D

Z 1

0

dx

x
D1:

Therefore, G.Z/ is not of finite covolume in G.R/.

Exercise

28-1 Show that, if a subgroup � of a locally compact group is discrete (resp. is cocom-
pact, resp. has finite covolume), then so also is every subgroup commensurable with � .

Reduction theory

In this section, I can only summarize the main definitions and results from A. Borel, Intro-
duction aux groupes arithmétiques, Hermann, 1969.

Any positive-definite real quadratic form in n variables can be written uniquely as

q.Ex/ D t1.x1 C u12x2 C � � � C u1nxn/
2
C � � � C tn�1.xn�1 C un�1nxn/

2
C tnx

2
n

D Eyt
� Ey

where

Ey D

0BBB@
p
t1 0 0

0
p
t2 0

: : :

0 0
p
tn

1CCCA
0BBB@
1 u12 � � � u1n

0 1 � � � u2n

: : :
:::

0 0 1

1CCCA
0BBB@
x1

x2
:::

xn

1CCCA : (89)

Let Qn be the space of positive-definite quadratic forms in n-variables,

Qn D fQ 2Mn.R/ j Qt
D Q; ExtQEx > 0g:

Then GLn.R/ acts on Qn by

B;Q 7! B tQBWGLn.R/ �Qn ! Qn:

The action is transitive, and the subgroup fixing the form I is80 On.R/ D fA j AtA D I g,
and so we can read off from (89) a set of representatives for the cosets ofOn.R/ in GLn.R/.
We find that

GLn.R/ ' A �N �K

where
˘ K is the compact group On.R/,
˘ A D T .R/C for T the split maximal torus in GLn of diagonal matrices,81 and

79Because dax
ax D

dx
x ; alternatively,Z t2

t1

dx

x
D log.t2/ � log .t1/ D

Z at2

at1

dx

x
:

80So we are reverting to using On for the orthogonal group of the form x2
1 C � � � C x

2
n.

81The C denotes the identity component of T .R/ for the real topology. Thus, for example,

.Gm.R/r /C D .Rr /C D .R>0/
r :
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˘ N is the group Un.R/.
Since A normalizes N , we can rewrite this as

GLn.R/ ' N � A �K:

For any compact neighbourhood ! of 1 in N and real number t > 0, let

St;! D ! � At �K

where
At D fa 2 A j ai;i � taiC1;iC1; 1 � i � n � 1g: (90)

Any set of this form is called a Siegel set.

THEOREM 28.20 Let � be an arithmetic subgroup in G.Q/ D GLn.Q/. Then
(a) for some Siegel set S, there exists a finite subset C of G.Q/ such that

G.R/ D � � C �SI

(b) for any g 2 G.Q/ and Siegel set S, the set of 
 2 � such that

gS \ 
S ¤ ;

is finite.

Thus, the Siegel sets are approximate fundamental domains for � acting on G.R/.
Now consider an arbitrary reductive group G over Q. Since we are not assuming G to

be split, it may not have a split maximal torus, but, nevertheless, we can choose a torus T
that is maximal among those that are split. From .G; T /, we get a root system as before (not
necessarily reduced). Choose a base S for the root system. Then there is a decomposition
(depending on the choice of T and S )

G.R/ D N � A �K

where K is again a maximal compact subgroup and A D T .R/C (Borel 1969, 11.4, 11.9).
The definition of the Siegel sets is the same except now82

At D fa 2 A j ˛.a/ � t for all ˛ 2 Sg. (91)

Then Theorem 28.20 continues to hold in this more general situation (Borel 1969, 13.1,
15.4).

EXAMPLE 28.21 The images of the Siegel sets for SL2 inH are the sets

St;u D fz 2 H j =.z/ � t; j<.z/j � ug:

THEOREM 28.22 If Homk.G;Gm/ D 0, then every Siegel set has finite measure.

PROOF. Borel 1969, 12.5. 2

82Recall that, with the standard choices, �1 ��2; : : : ; �n�1 ��n is a base for the roots of T in GLn, so this
definition agrees with that in (90).
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THEOREM 28.23 Let G be a reductive group over Q, and let � be an arithmetic subgroup
of G.Q/.

(a) The volume of � nG.R/ is finite if and only if G has no nontrivial character over Q
(for example, if G is semisimple).

(b) The quotient � nG.R/ is compact if and only if it G has no nontrivial character over
Q and G.Q/ has no unipotent element¤ 1.

PROOF. (a) The necessity of the conditions follows from (28.19). The sufficiency follows
from (28.21) and (28.22).

(b) See Borel 1969, 8.4. 2

EXAMPLE 28.24 Let B be a quaternion algebra, and let G be the associated group of
elements of B of norm 1 (we recall the definitions in 28.28 below).

(a) If B � M2.R/, then G D SL2.R/, and G.Z/nG.R/ has finite volume, but is not
compact (

�
1 1
0 1

�
is a unipotent in G.Q/).

(b) If B is a division algebra, but R ˝Q B � M2.R/, then G.Z/nG.R/ is compact (if
g 2 G.Q/ is unipotent, then g � 1 2 B is nilpotent, and hence zero because B is a
division algebra).

(c) If R˝Q B is a division algebra, then G.R/ is compact (and G.Z/ is finite).

EXAMPLE 28.25 Let G D SO.q/ for some nondegenerate quadratic form q over Q. Then
G.Z/nG.R/ is compact if and only if q doesn’t represent zero in Q, i.e., q.Ex/ D 0 does not
have a nontrivial solution in Qn (Borel 1969, 8.6).

Presentations

In this section, I assume some familiarity with free groups and presentations (see, for ex-
ample, �2 of my notes on Group Theory).

PROPOSITION 28.26 The group SL2.Z/=f˙I g is generated by S D
�

0 �1
1 0

�
and T D�

1 1
0 1

�
.

PROOF. Let � 0 be the subgroup of SL2.Z/=f˙I g generated by S and T . The argument in
the proof of (28.16) shows that � 0 �D D H.

Let z0 lie in the interior of D, and let 
 2 � . Then there exist 
 0 2 � 0 and z 2 D such
that 
z0 D 


0z. Now 
 0�1
z0 lies inD and z0 lies in the interior ofD, and so 
 0�1
 D ˙I

(see 28.16). 2

In fact SL2.Z/=f˙I g has a presentation hS; T jS2; .ST /3i. It is known that every
torsion-free subgroup � of SL2.Z/ is free on 1 C .SL2.Z/W� /

12
generators.83 For example,

the commutator subgroup of SL2.Z/ has index 12, and is the free group on the generators�
2 1
1 1

�
and

�
1 1
1 2

�
:

For a general algebraic group G over Q, choose S and C as in (28.20a), and let

D D
[

g2C
gS=K:

Then D is a closed subset of G.R/=K such that � �D D G.R/=K and

f
 2 � j 
D \D ¤ ;g

is finite. One shows, using the topological properties of D, that this last set generates � ,
and that, moreover, � has a finite presentation.

83Contrary to appearances, this statement is correct.
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The congruence subgroup problem

Consider an algebraic subgroup G of GLn. Is every arithmetic subgroup congruence? That
is, does every subgroup commensurable with G.Z/ contain

� .N/ Ddf Ker.G.Z/! G.Z=NZ//

for some N .
That SL2.Z/ has noncongruence arithmetic subgroups was noted by Klein as early as

1880. For a proof that SL2.Z/ has infinitely many subgroups of finite index that are not
congruence subgroups see B. Sury, The congruence subgroup problem, Hindustan, 2003,
3-4.1. The proof proceeds by showing that the groups occurring as quotients of SL2.Z/ by
principal congruence subgroups are of a rather special type, and then exploits the known
structure of SL2.Z/ as an abstract group (see above) to construct many finite quotients not
of his type. It is known that, in fact, congruence subgroups are sparse among arithmetic
groups: ifN.m/ denotes the number of congruence subgroups of SL2.Z/ of index� m and
N 0.m/ the number of arithmetic subgroups, then N.m/=N 0.m/! 0 as m!1.

However, SL2 is unusual. For split simply connected almost-simple groups other than
SL2, for example, for SLn (n � 3), Sp2n (n � 2/, all arithmetic subgroups are congruence.

In contrast to arithmetic subgroups, the image of a congruence subgroup under an
isogeny of algebraic groups need not be a congruence subgroup.

Let G be a semisimple group over Q. The arithmetic and congruence subgroups of
G.Q/ define topologies on it, namely, the topologies for which the subgroups form a neigh-
bourhood base for 1. We and we denote the corresponding completions by bG and G. Be-
cause every congruence group is arithmetic, the identity map on G.Q/ gives a surjective
homomorphism bG ! G, whose kernel C.G/ is called the congruence kernel. This kernel
is trivial if and only if all arithmetic subgroups are congruence. The modern congruence
subgroup problem is to compute C.G/. For example, the group C.SL2/ is infinite. There is
a precise conjecture predicting exactly when C.G/ is finite, and what its structure is when
it is finite.

Now let G be simply connected, and let G0 D G=N where N is a nontrivial subgroup
of Z.G/. Consider the diagram:

1 ����! C.G/ ����! bG ����! G ����! 1??y ??yb� ??y�

1 ����! C.G0/ ����! bG0 ����! G
0
����! 1:

It is known that G D G.Af /, and that the kernel of b� is N.Q/, which is finite. On
the other hand, the kernel of � is N.Af /, which is infinite. Because Ker.�/ ¤ N.Q/,
� WG.Q/ ! G0.Q/ doesn’t map congruence subgroups to congruence subgroups, and be-
cause C.G0/ contains a subgroup isomorphic to N.Af /=N.Q/, G0.Q/ contains a noncon-
gruence arithmetic subgroup.

It is known that C.G/ is finite if and only if is contained in the centre of 1G.Q/. For an
absolutely almost-simple simply connected algebraic group G over Q, the modern congru-
ence subgroup problem has largely been solved when C.G/ is known to be central, because
then C.G/ is the dual of the so-called metaplectic kernel which is known to be a subgroup
of the predicted group (except possibly for certain outer forms of SLn) and equal to it many
cases (work of Gopal Prasad, Raghunathan, Rapinchuk, and others).
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The theorem of Margulis

DEFINITION 28.27 Let H be a semisimple algebraic group over R. A subgroup � of
H.R/ is arithmetic if there exists an algebraic group G over Q, a surjective map GR ! H

such that the kernel of '.R/WG.R/! H.R/ is compact, and an arithmetic subgroup � 0 of
G.R/ such that '.� 0/ is commensurable with � .

EXAMPLE 28.28 Let B be a quaternion algebra over a finite extension F of Q,

B D F C F i C Fj C Fk

i2 D a; j 2
D b; ij D k D �j i:

The norm of an element w C xi C yj C zk of R˝Q B is

.w C xi C yj C zk/.w � xi � yj � zk/ D w2
� ax2

� by2
C abz2:

Then B defines an almost-simple semisimple group G over Q such that, for any Q-algebra
R,

G.R/ D fb 2 R˝Q B j Nm.b/ D 1g:

Assume that F is totally real, i.e.,

F ˝Q R ' R � � � � � R;

and that correspondingly,

B ˝Q R �M2.R/ �H � � � � �H

where H is the usual quaternion algebra over R (corresponding to .a; b/ D .�1;�1/). Then

G.R/ � SL2.R/ �H1
� � � � �H1

H1
D fw C xi C yj C zk 2 H j w2

C x2
C y2

C z2
D 1g:

Nonisomorphic B’s define different commensurability classes of arithmetic subgroups of
SL2.R/, and all such classes arise in this way.

Not every discrete subgroup in SL2.R/ (or SL2.R/=f˙I g) of finite covolume is arith-
metic. According to the Riemann mapping theorem, every compact riemann surface of
genus g � 2 is the quotient of H by a discrete subgroup of Aut.H/ D SL2.R/=f˙I g act-
ing freely on H: Since there are continuous families of such riemann surfaces, this shows
that there are uncountably many discrete cocompact subgroups in SL2.R/=f˙I g (therefore
also in SL2.R/), but there only countably many arithmetic subgroups.

The following amazing theorem of Margulis shows that SL2 is exceptional in this re-
gard:

THEOREM 28.29 Let � be a discrete subgroup of finite covolume in a noncompact almost-
simple real algebraic group H ; then � is arithmetic unless H is isogenous to SO.1; n/ or
SU.1; n/:

PROOF. The proof is given in G. Margulis, Discrete subgroups of semisimple Lie groups,
Springer, 1991. For a disussion of it, see D. Witte, Introduction to arithmetic groups,
arXiv:math.DG/0106063. 2

Here
SO.1; n/ correspond to x2

1 C � � � C x
2
n � x

2
nC1

SU.1; n/ corresponds to z1z1 C � � � C znzn � znC1znC1.
Note that, because SL2.R/ is isogenous to SO.1; 2/, the theorem doesn’t apply to it.
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Shimura varieties

Let U1 D fz 2 C j zz D 1g. Recall that for a group G, Gad D G=Z.G/ and that G is said
to be adjoint if G D Gad (i.e., if Z.G/ D 1).

THEOREM 28.30 Let G be a semisimple adjoint group over R, and let uWU1 ! G.R/ be
a homomorphism such that

(a) only the characters z�1; 1; z occur in the representation of U1 on Lie.G/CI
(b) the subgroup

KC D fg 2 G.C/ j g D inn.u.�1//.g/g

of G.C/ is compact; and
(c) u.�1/ does not project to 1 in any simple factor of G.

Then,
K D KC \G.R/C

is a maximal compact subgroup of G.R/C, and there is a unique structure of a complex
manifold on X D G.R/C=K such that G.R/C acts by holomorphic maps and u.z/ acts on
the tangent space at p D 1K as multiplication by z. (Here G.R/C denotes the identity for
the real topology.)

PROOF. S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Academic,
1978, VIII; see also my notes Introduction to Shimura varieties (ISV), 1.21. 2

The complex manifolds arising in this way are the hermitian symmetric domains. They
are not the complex points of any algebraic variety, but certain quotients are.

THEOREM 28.31 Let G be a simply connected semisimple algebraic group over Q hav-
ing no simple factor H with H.R/ compact. Let uWU1 ! Gad.R/ be a homomorphism
satisfying (a) and (b) of (28.30), and let X D Gad.R/C=K with its structure as a com-
plex manifold. For each torsion-free arithmetic subgroup � of G.Q/, � nX has a unique
structure of an algebraic variety compatible with its complex structure.

PROOF. This is the theorem of Baily and Borel, strengthened by a theorem of Borel. See
ISV 3.12 for a discussion of the theorem. 2

EXAMPLE 28.32 Let G D SL2. For z 2 C, choose a square root a C ib, and map z to�
a b

�b a

�
in SL2.R/=f˙I g. For example, u.�1/ D

�
0 1

�1 0

�
, and

KC D f
�

a b

�b a

�
2 SL2.C/ j jaj2 C jbj2 D 1g;

which is compact. Moreover,

K
df
D KC \ SL2.R/ D f

�
a b

�b a

�
2 SL2.R/ j a2

C b2
D 1g:

Therefore G.R/=K � H.

THEOREM 28.33 Let G; u, and X be as in (28.31). If � is a congruence subgroup, then
� nX has a canonical model over a specific finite extension Q� of Q.

PROOF. For a discussion of the theorem, see ISV ��12–14.Reference to be added. 2
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The varieties arising in this way are called connected Shimura varieties. They are very
interesting. For example, let �0.N / be the congruence subgroup of SL2.Q/ consisting of

matrices the
�
a b

c d

�
in SL2.Z/ with c divisible by N . Then Q�0.N / D Q, and so the

algebraic curve �0.N /nH has a canonical model Y0.N / over Q. It is known that, for every
elliptic curve E over Q, there exists a nonconstant map Y0.N /! E for some N , and that
from this Fermat’s last theorem follows.
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compatible, 178
completely reducible, 95
complex Lie group, 174
congruence kernel, 207
congruence subgroup, 196
connected, 4, 66
connected Shimura varieties, 210
constant algebraic group defined, 18
continuous action, 77
coordinate ring, 14
coroot, 132
coroots, 132

decomposable, 151
degree, 64, 188
derivation, 97
derived group, 88
derived series, 85, 89, 112
determinant, 10
diagonalizable, 5, 73
dimension, 106
direct sum, 117
division algebra, 188
dominant, 167
dual numbers, 97
Dynkin diagram, 153

embedding, 28, 51
equivalent, 177, 202
equivariant, 178
exact, 68

faithfully flat, 50
finite, 24
finite covolume, 203
first, 190
flag variety, 158
flat, 50
full, 162
full flag, 90
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fundamental (dominant) weights, 167

general linear group, 4, 11
generalized eigenspace, 78
graded, 40
Grassmann variety, 158
group, 177
group algebra, 71
group of monomial matrices, 7, 12
group variety, 20
group-like, 70

has all its eigenvalues, 78
heighest weight, 168
hermitian, 194
hermitian symmetric domains, 209
homomorphism, 40, 178
homomorphism of Lie algebras, 96
hyperbolic plane, 39

ideal, 96
identity component, 66
indecomposable, 151, 153
inner, 113
inner form, 186
inner product, 146
integral, 203
involution, 45, 190
irreducible, 63, 95
isometry, 36
isotropic, 36, 37
isotropy group, 109

Jacobi identity, 96
Jordan decomposition, 78
Jordan decompostion, 79

kernel, 53
Killing form, 116

lattice, 147, 203
left-invariant Haar measure, 203
Levi subgroups, 8
Lie algebra, 96
Lie subalgebra, 96
linear, 172, 175
linear representation, 25
living in, 172
locally finite, 81

locally nilpotent, 81
locally unipotent, 81

max spectrum, 62
maximal, 127
multiplicative group, 11
multiplicative type, 76

nilpotent, 4, 78
nondegenerate, 37
normal, 55
normalizer, 110, 134

opposite, 45
order, 60
ordered, 153
orthogonal, 36
orthogonal group, 40

parabolic, 162
partial lattices, 147
perfect pairing, 147
polynomial functions, 32
principal congruence subgroup of level, 196
pro-algebraic group, 172

quadratic form, 36
quadratic space, 36
quotient map, 52

radical, 8, 34, 94, 112, 173
rank, 134
real Lie group, 174
reduced, 19, 20, 138, 147, 202
reduced algebraic group attached to, 20
reduced norm, 189
reductive, 7, 94, 165, 173
reflection in the hyperplane orthogonal, 37
regular, 21, 37
regular representation, 25, 27
representable, 13
representation, 109
represents, 13
ring of finite adèles, 199
root datum, 132
root lattice, 167
root system, 147
roots, 130, 132, 147, 165

second kind, 190
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semi-linear action, 178
semisimple, 5, 78, 79, 81, 87, 94, 95, 112,

122, 137
separable, 58
set, 177
Siegel set, 205
Siegel sets, 205
simple, 5, 95, 117, 119, 122, 188
simple roots, 151
simply connected, 157
singular, 37
skew field, 188
skew hermitian, 194
smooth, 20
solvable, 6, 85, 89, 112
special linear group, 4, 11
special orthogonal group, 40
special unitary group, 103
split, 127
split torus, 75
stabilizer, 30, 109
subcomodule, 27
super, 40
super tensor product, 40
symmetry with vector, 146

Tannakian category, 171
tensor algebra, 41
tensor product, 14
through, 75
toral, 137
torus, 75
totally isotropic, 37
totally isotropic flag, 162
trivial algebraic group, 12

uniform, 203
unipotent, 4, 78, 87, 92
unipotent , 4
unipotent parts, 78, 79
unipotent radical, 8, 94
unitary group, 103

weight lattice, 167
weight spaces, 164
weights, 164
Weyl group, 132, 135, 147

Yoneda lemma, 13

Zariski topology, 33, 62
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