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Notations and conventions

The conventions concerning varieties are the same as those in my notes on Algebraic Ge-
ometry. For example, an affine algebra over a field k is a finitely generated k-algebra A
such that A˝k kal is has no nonzero nilpotents for one (hence every) algebraic closure kal

of k — this implies that A itself has no nilpotents. With such a k-algebra, we associate
a ringed space Specm.A/ (topological space endowed with a sheaf of k-algebras), and an
affine variety over k is a ringed space isomorphic to one of this form. A variety over k is
a ringed space .X;OX / admitting a finite open covering X D

S
Ui such that .Ui ;OX jUi /

is an affine variety for each i and which satisfies the separation axiom. We often use X to
denote .X;OX / as well as the underlying topological space. A regular map of varieties will
sometimes be called a morphism of varieties.

For those who prefer schemes, a variety is a separated geometrically reduced scheme
X of finite type over a field k with the nonclosed points omitted.

IfX is a variety over k andK � k, thenX.K/ is the set of points ofX with coordinates
in K and XK or X=K is the variety1 over K obtained from X . For example, if X D
Specm.A/, then X.K/ D Homk-alg.A;K/ and XK D Specm.A˝k K/. In general, X.K/
is just a set, but I usually endow X.C/ with its natural complex topology. A separable
closure ksep of a field k is a field algebraic over k such that every separable polynomial
with coefficients in k has a root in ksep.

Our terminology concerning schemes is standard, except that I shall always assume that
our rings are Noetherian and that our schemes are locally Noetherian.

Our terminology concerning rings is standard. In particular, a homomorphism A! B

of rings maps 1 to 1. A homomorphism A ! B of rings is finite, and B is a finite A-
algebra, if B is finitely generated as an A-module. When A is a local ring, I often denote its
(unique) maximal ideal by mA. A local homomorphism of local rings is a homomorphism
f WA! B such that f �1.mB/ D mA (equivalently, f .mA/ � mB ).

Generally, when I am drawing motivation from the theory of sheaves on a topological
space, I assume that the spaces are Hausdorff, i.e., not some weird spaces with points whose
closure is the whole space.
X � Y X is a subset of Y (not necessarily proper);
X

def
D Y X is defined to be Y , or equals Y by definition;

X � Y X is isomorphic to Y ;
X ' Y X and Y are canonically isomorphic (or there is a given or unique isomorphism)

Prerequisites and References

Homological algebra I shall assume some familiarity with the language of abelian cate-
gories and derived functors. There is a summary of these topics in my Class Field Theory
notes pp 69–76, and complete presentations in several books, for example, in
Weibel, C.A., An Introduction to Homological Algebra2, Cambridge U.P., 1994.

We shall not be able to avoid using spectral sequences — see pp 307–309 of my book
on Etale Cohomology for a brief summary of spectral sequences and Chapter 5 of Weibel’s
book for a complete treatment.

1Our terminology follows that of Grothendieck. There is a conflicting terminology, based on Weil’s Foun-
dations and frequently used by workers in the theory of algebraic groups, that writes these the other way round.

2On p 9, Weibel defines C Œp�n D Cn�p . The correct original definition, universally used by algebraic
and arithmetic geometers, is that C Œp�n D CnCp(see Hartshorne, R., Residues and Duality, 1966, p26). Also,
in Weibel, a “functor category” need not be a category.
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Sheaf theory Etale cohomology is modelled on the cohomology theory of sheaves in the
usual topological sense. Much of the material in these notes parallels that in, for example,

Iversen, B., Cohomology of Sheaves, Springer, 1986.

Algebraic geometry I shall assume familiarity with the theory of algebraic varieties, for
example, as in my notes on Algebraic Geometry (Math. 631). Also, sometimes I will men-
tion schemes, and so the reader should be familiar with the basic language of schemes as,
for example, the first 3 sections of Chapter II of Hartshorne, Algebraic Geometry, Springer
1977, the first chapter of Eisenbud and Harris, Schemes, Wadsworth, 1992, or Chapter V of
Shafarevich, Basic Algebraic Geometry, 2nd Edition, Springer, 1994.

For commutative algebra, I usually refer to
Atiyah, M., and MacDonald, I., Introduction to Commutative Algebra, Addison-Wesley,

1969.

Etale cohomology There are the following books:
Freitag, E., and Kiehl, R., Etale Cohomology and the Weil Conjecture, Springer, 1988.
Milne, J., Etale Cohomology, Princeton U.P. 1980 (cited as EC).
Tamme, Introduction to Etale Cohomology, Springer.

The original sources are:
Artin, M., Grothendieck Topologies, Lecture Notes, Harvard University Math. Dept. 1962.
Artin, M., Théorèmes de Représentabilité pour les Espace Algébriques, Presses de l’Université
de Montréal, Montréal, 1973
Grothendieck, A., et al., Séminaire de Géométrie Algébrique.

SGA 4 (with Artin, M., and Verdier, J.-L.). Théorie des topos et cohomologie étale des
schémas (1963–64). Springer Lecture Notes 1972–73.

SGA 4 1/2 (by Deligne, P., with Boutot, J.-F., Illusie, L., and Verdier, J.-L.) Cohomologie
étale. Springer Lecture Notes 1977.

SGA 5 Cohomologie l-adique et fonctions L (1965–66). Springer Lecture Notes 1977.

SGA 7 (with Deligne, P., and Katz, N.) Groupes de monodromie en géométrie algébriques
(1967–68). Springer Lecture Notes 1972–73.

Except for SGA 41
2

, these are the famous seminars led by Grothendieck at I.H.E.S..
I refer to the following of my notes.

FT Field and Galois Theory (v4.40 2013).

AG Algebraic Geometry (v5.22 2012).

AV Abelian Varieties (v2.00 2008).

CFT Class Field Theory (v4.01 2011).
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Comment.

The major theorems in étale cohomology are proved in SGA 4 and SGA 5, but often under
unnecessarily restrictive hypotheses. Some of these hypotheses were removed later, but by
proofs that used much of what is in those seminars. Thus the structure of the subject needs
to be re-thought. Also, algebraic spaces should be more fully incorporated into the subject
(see Artin 1973). It is likely that de Jong’s resolution theorem (Smoothness, semi-stability
and alterations. Inst. Hautes Études Sci. Publ. Math. No. 83 (1996), 51–93) will allow
many improvements. Finally, such topics as intersection cohomology and Borel-Moore
homology need to be added to the exposition. None of this will be attempted in these notes.

I think one reason why Grothendieck, after Serre’s talk at the Chevalley semi-
nar in 1958, was confident that étale localization would give the correct H i ’s
is that once you had the correct cohomology of curves, then by fibrations in
curves and dévissage you should also reach the higher H i ’s.” (Illusie NAMS
2010.)

Grothendieck came to Harvard for the first time in 1958. Artin: Yes. At that
time, I still didn’t have any idea what a scheme was. But the second time,
in ’61, I had heard that he had this idea for étale cohomology, and when he
arrived I asked him if it was all right if I thought about it, and so that was the
beginning. He wasn’t working on it then — he had the idea but had put it aside.
He didn’t work on it until I proved the first theorem. He was extremely active,
but this may have been the only thing in those years that he really didn’t do
right away, and it’s not clear why. I thought about it that fall, and we argued
about what the definition should be [laughs]. And then I gave a seminar, fall of
’62. (Recountings: conversations with MIT mathematicians, p.358.)
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Chapter I

Basic Theory

1 INTRODUCTION

For a varietyX over the complex numbers,X.C/ acquires a topology from that on C, and so
one can apply the machinery of algebraic topology to its study. For example, one can define
the Betti numbers ˇr.X/ ofX to be the dimensions of the vector spacesH r.X.C/;Q/, and
such theorems as the Lefschetz fixed point formula are available.

For a variety X over an arbitrary algebraically closed field k, there is only the Zariski
topology, which is too coarse (i.e., has too few open subsets) for the methods of algebraic
topology to be useful. For example, if X is irreducible, then the groups H r.X;Z/, com-
puted using the Zariski topology, are zero for all r > 0.

In the 1940s, Weil observed that some of his results on the numbers of points on certain
varieties (curves, abelian varieties, diagonal hypersurfaces..) over finite fields would be
explained by the existence of a cohomology theory giving vector spaces over a field of
characteristic zero for which a Lefschetz fixed point formula holds. His results predicted a
formula for the Betti numbers of a diagonal hypersurface in PdC1 over C which was later
verified by Dolbeault.

About 1958, Grothendieck defined the étale “topology” of a scheme, and the theory of
étale cohomology was worked out by him with the assistance of M. Artin and J.-L. Verdier.
The whole theory is closely modelled on the usual theory of sheaves and their derived
functor cohomology on a topological space. For a variety X over C, the étale cohomology
groups H r.Xet; �/ coincide with the complex groups H r.X.C/;�/ when � is finite, the
ring of `-adic integers Z`, or the field Q` of `-adic numbers (but not for � D Z). When X
is the spectrum of a field K, the étale cohomology theory for X coincides with the Galois
cohomology theory of K. Thus étale cohomology bridges the gap between the first case,
which is purely geometric, and the second case, which is purely arithmetic.

As we shall see in the course, étale cohomology does give the expected Betti numbers.
Moreover, it satisfies analogues of the Eilenberg-Steenrod axioms, the Poincaré duality the-
orem, the Lefschetz fixed point formula, the Leray spectral sequence, etc.. The intersection
cohomology of Goresky and MacPherson has an étale analogue, which provides a Poincaré
duality theorem for singular varieties. Etale cohomology has been brilliantly successful in
explaining Weil’s observation.

Algebraic Topology

We briefly review the origins of the theory on which étale cohomology is modelled.

7



8 CHAPTER I. BASIC THEORY

Algebraic topology had its origins in the late 19th century with the work of Riemann,
Betti, and Poincaré on “homology numbers”. After an observation of Emmy Noether, the
focus shifted to “homology groups”. By the 1950s there were several different methods of
attaching (co)homology groups to a topological space, for example, there were the singular
homology groups of Veblen, Alexander, and Lefschetz, the relative homology groups of
Lefschetz, the Vietoris homology groups, the C̆ech homology groups, and the Alexander
cohomology groups.

The situation was greatly clarified by Eilenberg and Steenrod 19531, which showed that
for any “admissible” category of pairs of topological spaces, there is exactly one cohomol-
ogy theory satisfying a certain short list of axioms. Consider, for example, the category
whose objects are the pairs .X;Z/ with X a locally compact topological space and Z a
closed subset of X , and whose morphisms are the continuous maps of pairs. A cohomol-
ogy theory on this category is a contravariant functor attaching to each pair a sequence of
abelian groups and maps

� � � ! H r�1.U /! H r
Z.X/! H r.X/! H r.U /! � � � ; U D X rZ;

satisfying the following axioms:

(a) (exactness axiom) the above sequence is exact;

(b) (homotopy axiom) the map f � depends only on the homotopy class of f ;

(c) (excision) if V is open in X and its closure is disjoint fromZ, then the inclusion map
.X r V;Z/! .X;Z/ induces an isomorphisms H r

Z.X/! H r
Z.X r V /;

(d) (dimension axiom) if X consists of a single point, then H r.P / D 0 for r ¤ 0.

The topologists usually write H r.X;U / for the group H r
Z.X/. The axioms for a ho-

mology theory are similar to the above except that the directions of all the arrows are re-
versed. If .X;Z/ 7! H r

Z.X/ is a cohomology theory such that the H r
Z.X/ are locally

compact abelian groups (e.g., discrete or compact), then .X;Z/ 7! H r
Z.X/

_ (Pontryagin
dual) is a homology theory. In this approach there is implicitly a single coefficient group.

In the 1940s, Leray attempted to understand the relation between the cohomology
groups of two spaces X and Y for which a continuous map Y ! X is given. This led
him to the introduction of sheaves (local systems of coefficient groups), sheaf cohomology,
and spectral sequences (about the same time as Roger Lyndon, who was trying to under-
stand the relations between the cohomologies of a group G, a normal subgroup N , and the
quotient group G=N ).

Derived functors were used systematically in Cartan and Eilenberg 19562, and in his
1955 thesis a student of Eilenberg, Buchsbaum, defined the notion of an abelian category
and extended the Cartan-Eilenberg theory of derived functors to such categories. (The name
“abelian category” is due to Grothendieck).

Finally Grothendieck, in his famous 1957 Tohôku paper3, showed that the category
of sheaves of abelian groups on a topological space is an abelian category with enough
injectives, and so one can define the cohomology groups of the sheaves on a space X as the
right derived functors of the functor taking a sheaf to its abelian group of global sections.
One recovers the cohomology of a fixed coefficient group � as the cohomology of the

1Foundations of Algebraic Topology, Princeton.
2Homological Algebra, Princeton.
3Sur quelques points d’algèbre homologique, Tôhoku Math. J. 9, 119–221.
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constant sheaf it defines. This is now the accepted definition of the cohomology groups,
and it is the approach we follow to define the étale cohomology groups. Instead of fixing
the coefficient group and having to consider all (admissible) pairs of topological spaces in
order to characterize the cohomology groups, we fix the topological space but consider all
sheaves on the space.

Brief review of sheaf cohomology

Let X be a topological space. We make the open subsets of X into a category with the
inclusions as the only morphisms, and define a presheaf to be a contravariant functor from
this category to the category Ab of abelian groups. Thus, such a presheaf F attaches to every
open subset U ofX an abelian group F.U / and to every inclusion V � U a restriction map
�UV WF.U /! F.V / in such way that �UU D idF.U / and, whenever W � V � U ,

�UW D �
V
W ı �

U
V :

For historical reasons, the elements of F.U / are called the sections of F over U , and the
elements of F.X/ the global sections of F . Also, one sometimes writes � .U;F/ for F.U /
and sjV for �UV .s/.

A presheaf F is said to be a sheaf if

(a) a section f 2 F.U / is determined by its restrictions �Ui

U .f / to the sets of an open
covering .Ui /i2I of U ;

(b) a family of sections fi 2 F.Ui / for .Ui /i2I an open covering of U arises by restric-
tion from a section f 2 F.U / if fi jUi \ Uj D fj jUi \ Uj for all i and j .

In other words, F is a sheaf if, for every open covering .Ui /i2I of an open subset U of X ,
the sequence

F.U /!
Y
i2I

F.Ui /⇒
Y

.i;j /2I�I

F.Ui \ Uj /;

is exact — by definition, this means that the first arrow maps F.U / injectively onto the
subset of

Q
F.Ui / on which the next two arrows agree. The first arrow sends f 2

F.U / to the family .f jUi /i2I , and the next two arrows send .fi /i2I to the families
.fi jUi \ Uj /.i;j /2I�I and .fj jUi \ Uj /.i;j /2I�I respectively. Since we are considering
only (pre)sheaves of abelian groups, we can restate the condition as: the sequence

0 ! F.U / !
Q
i2I F.Ui / !

Q
.i;j /2I�I F.Ui \ Uj /

f 7! .f jUi /;

.fi / 7! .fj jUi \ Uj � fi jUi \ Uj /

is exact. When applied to the empty covering of the empty set, the condition implies that
F.;/ D 0.4

For example, if � is a topological abelian group (e.g., R or C), then we can define
a sheaf on any topological space X by setting F.U / equal to the set of continuous maps
U ! � and taking the restriction maps to be the usual restriction of functions.

When � has the discrete topology, every continuous map f WU ! � is constant on
each connected component of U , and hence factors through �0.U /, the space of connected

4The empty set ; is covered by a family of maps indexed by the empty set, and so the sheaf condition says
that F.;/ is equal to a product of abelian groups indexed by ;. But in every category, a product over an empty
indexing set is the final object (when it exists), which, in the case of abelian groups, is zero.
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components ofU . When this last space is discrete, F.U / is the set of all maps �0.U /! �,
i.e., F.U / D ��0.U /. In this case, we call F the constant sheaf defined by the abelian group
�.

Grothendieck showed that, with the natural structures, the sheaves onX form an abelian
category. Thus, we have the notion of an injective sheaf: it is a sheaf I such that for any
subsheaf F 0 of a sheaf F , every homomorphism F 0 ! I extends to a homomorphism
F ! I. Grothendieck showed that every sheaf can be embedded into an injective sheaf.
The functor F 7! F.X/ from the category of sheaves on X to the category of abelian
groups is left exact but not (in general) right exact. We define H r.X; �/ to be its r th right
derived functor. Thus, given a sheaf F , we choose an exact sequence

0! F ! I0 ! I1 ! I2 ! � � �

with each Ir injective, and we set H r.X;F/ equal to the r th cohomology group of the
complex of abelian groups

I0.X/! I1.X/! I2.X/! � � �

While injective resolutions are useful for defining the cohomology groups, they are not
convenient for computing it. Instead, one defines a sheaf F to be flabby if the restriction
maps F.U /! F.V / are surjective for all open U � V , and shows that H r.X;F/ D 0 if
F is flabby. Thus, resolutions by flabby sheaves can be used to compute cohomology.

The inadequacy of the Zariski topology

As we noted above, for many purposes, the Zariski topology has too few open subsets. We
list some situations where this is evident.

The cohomology groups are zero Recall that a topological spaceX is said to be irreducible
if any two nonempty open subsets of X have nonempty intersection, and that a variety (or
scheme) is said to be irreducible if it is irreducible as a (Zariski) topological space.

THEOREM 1.1 (GROTHENDIECK’S THEOREM) If X is an irreducible topological space,
then H r.X;F/ D 0 for all constant sheaves and all r > 0.

PROOF. Clearly, every open subset U of an irreducible topological space is connected.
Hence, if F is the constant sheaf defined by the group �, then F.U / D � for every
nonempty open U . In particular, F is flabby, and so H r.X;F/ D 0 for r > 0. 2

REMARK 1.2 The C̆ech cohomology groups are also zero. Let U D .Ui /i2I be an open
covering of X . Then the C̆ech cohomology groups of the covering U are the cohomology
groups of a complex whose r th group is Y

.i0;:::;ir /2I rC1; Ui0
\:::\Uir¤;

�

with the obvious maps. For an irreducible spaceX , this complex is independent of the space
X ; in fact, it depends only on the cardinality of I (assuming the Ui are nonempty). It is
easy to construct a contracting homotopy for the complex, and so deduce that the complex
is exact.
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The inverse mapping theorem fails A C1 map 'WN ! M of differentiable manifolds is
said to be étale at n 2 N if the map on tangent spaces d'WTgtn.N /! Tgt'.n/.M/ is an
isomorphism.

THEOREM 1.3 (INVERSE MAPPING THEOREM) A C1 map of differentiable manifolds
is a local isomorphism at every point at which it is étale, i.e., if 'WN ! M is étale at
n 2 N , then there exist open neighbourhoods V and U of n and '.n/ respectively such that
' restricts to an isomorphism V ! U .

Let X and Y be nonsingular algebraic varieties over an algebraically closed field k. A
regular map 'WY ! X is said to étale at y 2 Y if d'WTgty.Y / ! Tgt'.y/.X/ is an
isomorphism.

For example, as we shall see shortly, x 7! xnWA1
k
! A1

k
is étale except at the origin

(provided n is not divisible by the characteristic of k). However, if n > 1 this map is not
a local isomorphism at any point; in fact, there do not exist nonempty open subsets V and
U of A1

k
such that map x 7! xn sends V isomorphically onto U . To see this, note that

x 7! xn corresponds to the homomorphism of k-algebras T 7! T nW kŒT � ! kŒT �. If
x 7! xn sends V into U , then the corresponding map k.U /! k.V / on the function fields
is T 7! T nW k.T /! k.T /. If V ! U were an isomorphism, then so would be the map on
the function fields, but it isn’t.

Take n D 2 and k D C, so that the map is z 7! z2WC! C. To prove that this is a local
isomorphism at z0 ¤ 0, we have to construct an inverse function z 7!

p
z to z 7! z2 on

some open set containing z20 . In order to do this complex analytically, we need to remove
a curve in the complex plane from 0 to1. The complement of such curve is open for the
complex topology but not for the Zariski topology.

Fibre bundles aren’t locally trivial A topology on a set allows us to speak of something
being true “near”, rather than “at”, a point and to speak of it being true “locally”, i.e., in a
neighbourhood of every point.

For example, suppose we are given a regular map of varieties 'WY ! X over an
algebraically closed field k and the structure of a k-vector space on each fibre '�1.x/.
The choice of a basis for '�1.x/ determines a k-linear isomorphism of algebraic varieties
'�1.x/! An

k
for some n. The map 'WY ! X is said to be a vector bundle if it is locally

trivial in the sense that every point x 2 X has an open neighbourhood U for which there is
a commutative diagram

'�1.U / U � An

U U

with the top arrow a k-linear isomorphism of algebraic varieties.
For a smooth variety over C, a regular map Y ! X as above is locally trivial for the

Zariski topology if it is locally trivial for complex topology. Thus the Zariski topology is
fine enough for the study of vector bundles (see Weil, A., Fibre spaces in algebraic geome-
try, Notes of a course 1952, University of Chicago). However, it is not fine enough for the
study of more exotic bundles. Consider for example a regular map � WY ! X endowed
with an action of an algebraic group G on Y over X , i.e., a regular map mWY � G ! Y

satisfying the usual conditions for a group action and such that �.yg/ D �.y/. In a talk
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in the Séminaire Chevalley in 1958, Serre called such a system locally isotrivial if, for each
x 2 X , there is a finite étale map U ! U 0 � X with U 0 a Zariski open neighbourhood of
x such that the pull-back of Y to U becomes isomorphic to the trivial system U �G ! U .

The usefulness of this notion, together with Weil’s observation, led Grothendieck to
introduce the étale topology.

Etale cohomology

Let X and Y be smooth varieties over an algebraically closed field k. A regular map
'WY ! X is said to be étale if it is étale at all points y 2 Y . An étale map is quasifinite
(its fibres are finite) and open.

The étale “topology” on X is that for which the “open sets” are the étale morphisms
U ! X . A family of étale morphisms .Ui ! U/i2I over X is a covering of U if U DS
'i .Ui /.
An étale neighbourhood of a point x 2 X is an étale map U ! X together with a point

u 2 U mapping to x.
Define Et=X to be the category whose objects are the étale maps U ! X and whose

arrows are the commutative diagrams

V U

X

with the maps V ! X and U ! X étale (then V ! U is also automatically étale).
A presheaf for the étale topology on X is a contravariant functor F WEt=X ! Ab. It is

a sheaf if the sequence

F.U /!
Y
i2I

F.Ui /⇒
Y

.i;j /2I�I

F.Ui �U Uj /

is exact for all étale coverings .Ui ! U/. One shows, much as in the classical case, that
the category of sheaves is abelian, with enough injectives. Hence one can define étale co-
homology groupsH r.Xet;F/ exactly as in the classical case, by using the derived functors
of F 7! F.X/.

The rest of the course will be devoted to the study of these groups and of their applica-
tions.

Comparison with the complex topology

Let X be a nonsingular algebraic variety over C. Which is finer, the étale topology on X
or the complex topology on X.C/? Strictly speaking, this question doesn’t make sense,
because they are not the same types of objects, but the complex inverse mapping theorem
shows that every étale neighbourhood of a point x 2 X “contains” a complex neighbour-
hood. More precisely, given an étale neighbourhood .U; u/ ! .X; x/ of x, there exists
a neighbourhood .V; x/ of x for the complex topology, such that the inclusion .V; x/ ,!
.X; x/ factors into

.V; x/! .U; u/! .X; x/

(the first of these maps is complex analytic and the second is algebraic).
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Thus, every étale covering of X can be “refined” by a covering for the complex topol-
ogy. From this one obtains canonical maps H r.Xet; �/ ! H r.X.C/;�/ for any abelian
group �.

THEOREM 1.4 (COMPARISON THEOREM) For every finite abelian group�, the canonical
maps H r.Xet; �/! H r.X.C/;�/ are isomorphisms.

By taking � D Z=`nZ and passing to the inverse limit over n, we obtain an isomor-
phism H r.Xet;Z`/ ! H r.X.C/;Z`/. When tensored with Q`, this becomes an isomor-
phism H r.Xet;Q`/! H r.X.C/;Q`/.

Applications of étale cohomology

Etale cohomology has become a prerequisite for arithmetic geometry, algebraic geometry
over ground fields other than C, parts of number theory, parts of K-theory, and the repre-
sentation theory of finite and p-adic groups. I hope to explain some of these applications
during the course. Here I briefly describe two.

Classical algebraic geometry Given an algebraic variety X over a field k, and a homo-
morphism of fields � W k ! K, we obtain an algebraic variety �X over K. For example, if
X is the affine (or projective) variety defined by equationsX

ai1���inT
i1
1 � � �T

in
n D 0;

then �X is the variety defined by the equationsX
�ai1���inT

i1
1 � � �T

in
n D 0:

Note that we also get a map .t1; : : : ; tn/ 7! .� t1; : : : ; � tn/WX.k/! X.K/.

QUESTION 1.5 Let X be a variety over C, and let � be an automorphism of C (as a field
only, i.e., not necessarily continuous). What is the relation between the cohomology groups
H r.X.C/;Q/ and H r.�X.C/;Q/?

The map .t1; : : : ; tn/ 7! .� t1; : : : ; � tn/WX.C/ ! X.C/ won’t be a homeomorphism
unless � is the identity map or complex conjugation. In fact, Serre5 constructed a non-
singular projective surface X over C such that X.C/ and .�X/.C/ have nonisomorphic
fundamental groups and so are not homeomorphic by any map. The theory of Shimura
varieties gives other examples of varietiesX such thatX.C/ and .�X/.C/ have nonisomor-
phic fundamental groups.6

The answer to (1.5) is: the groups H r.X.C/;Q/ and H r.�X.C/;Q/ become canoni-
cally isomorphic after they have been tensored with Q` (or C).

To prove this, use the comparison theorem and the fact thatH r.Xet;Q`/ is canonically
isomorphic to H r..�X/et;Q`/ (because the isomorphism � WC ! C carries étale maps
U ! X to étale maps �U ! �X etc.—it is an algebraic isomorphism, and the definition
of the étale cohomology groups is purely algebraic).

5Exemples de variétés projectives conjuguées non homéomorphes. C. R. Acad. Sci. Paris 258 (1964),
4194–4196.

6See Milne, James S.; Suh, Junecue. Nonhomeomorphic conjugates of connected Shimura varieties. Amer.
J. Math. 132 (2010), no. 3, 731–750. arXiv:0804.1953



14 CHAPTER I. BASIC THEORY

This implies that X and �X have the same Betti numbers, and so H r.X.C/;Q/ and
H r..�X/.C/;Q/ are isomorphic (but not canonically isomorphic). For a smooth projective
variety, this weaker statement was proved by Serre7 using Dolbeault’s theorem

ˇr.X/ D
X

pCqDr

dimH q.X.C/;˝p/

and his own comparison theorem

H r.X;F/ D H r.X.C/;Fh/

(F is a coherent sheaf of OX -modules for the Zariski topology on X , and Fh is the asso-
ciated sheaf of OXh-modules on X.C/ for the complex topology). The case of a general
variety was not known before Artin proved the Comparison Theorem.

Now I can explain why one should expect the groups H r.Xet;Q/ to be anomolous.
Given a variety X over C, there will exist a subfield k of C such that C is an infinite Galois
extension of k and such that X can be defined by equations with coefficients in k. Then
�X D X for all � 2 Gal.C=k/, and so Gal.C=k/ will act on the groupsH r.Xet;Q`/. It is
expected (in fact, the Tate conjecture implies) that the image of Gal.C=k/ in Aut.H r.Xet;Q`//
will usually be infinite (and hence uncountable). Since H r.Xet;Q/ is a finite dimensional
vector space over Q, Aut.H r.Xet;Q// is countable, and so the action of Gal.C=k/ on
H r.Xet;Q`/ can not arise from an action on H r.Xet;Q/.

Representation theory of finite groups LetG be a finite group and k a field of characteristic
zero. The group algebra kŒG� is a semisimple k-algebra, and so there exists a finite set
fV1; : : : ; Vrg of simple kŒG�-modules such that every kŒG�-module is isomorphic to a direct
sum of copies of the Vi and every simple kŒG�-module is isomorphic to exactly one of the
Vi . In fact, one knows that r is the number of conjugacy classes in G.

For each i , define �i .g/ for g 2 G to be the trace of g acting on Vi . Then �i .g/ depends
only on the conjugacy class of g. The character table of G lists the values of �1; : : : ; �r
on each of the conjugacy classes. One would like to compute the character table for each
simple finite group.

For the commutative simple groups, this is trivial. The representation theory of An is
closely related to that of Sn, and was worked out by Frobenius and Young between 1900
and 1930. The character tables of the sporadic groups are known—there are, after all, only
26 of them. That leaves those related to algebraic groups (by far the largest class).

The representation theory of GLn.Fq/was worked out by J.A. Green and that of Sp4.Fq/
by B. Srinivasan.

Let G be an algebraic group over Fq . Then G.Fq/ is the set of fixed points of the
Frobenius map t 7! tq acting on G.Fal

q /:

G.Fq/ D G.Fal
q /
F :

In order to get all the simple finite groups, one needs to consider reductive groups G over
Fal
p and a map F WG.Fal

p / ! G.Fal
p / such that some power Fm of F is the Frobenius map

of a model of G over Fq for some q; the finite group is again the set of fixed points of F on
G.Fal

p /.

7Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier, Grenoble 6 (1956), pp 1–42.
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Deligne and Lusztig 1976, and many subsequent papers of Lusztig, very successfully
apply étale cohomology to work out the representation theory of these groups. They con-
struct a variety X over F on which G acts. Then G acts on the étale cohomology groups
of X , and the Lefschetz fixed point formula can be applied to compute the traces of these
representations.



2 ÉTALE MORPHISMS

An étale morphism is the analogue in algebraic geometry of a local isomorphism of man-
ifolds in differential geometry, a covering of Riemann surfaces with no branch points in
complex analysis, and an unramified extension in algebraic number theory.

For varieties, it is possible to characterize étale morphisms geometrically; for arbitrary
schemes, there is only the commutative algebra.

Étale morphisms of nonsingular algebraic varieties.

Throughout this subsection, all varieties will be defined over an algebraically closed field
k. Let W and V be nonsingular algebraic varieties over k. As in the introduction, a regular
map 'WW ! V is said to be étale at Q 2 W if the map d'WTgtQ.W /! Tgt'.Q/.V / on
tangent spaces is an isomorphism, and ' is said to be étale if it is étale at every point of W .

PROPOSITION 2.1 Let V D Specm.A/ be a nonsingular affine variety over k, and let W
be the subvariety of V � An defined by the equations

gi .Y1; : : : ; Yn/ D 0; gi 2 AŒY1; : : : ; Yn�; i D 1; : : : ; n:

The projection map W ! V is étale at a point .P I b1; : : : ; bn/ of W if and only if the
Jacobian matrix

�
@gi

@Yj

�
is nonsingular at .P I b1; : : : ; bn/.

PROOF. Set
A D kŒX1; : : : ; Xm�=.F1; : : : ; Fr/

and
P D .a1; : : : ; am/:

The tangent space to V at P is the solution space of the system of linear equations

.dFi /P
def
D

mX
jD1

@Fi

@Xj

ˇ̌̌̌
P

.dXj /P D 0; i D 1; : : : r;

in the variables .dXj /P (see AG �5).
By definition, W D SpecmAŒY1; : : : ; Yn�=.g1; : : : ; gn/. For each i , choose a Gi 2

kŒX1; : : : ; Xm; Y1; : : : ; Yn� mapping to gi 2 AŒY1; : : : ; Yn�. Then

AŒY1; : : : ; Yn�=.g1; : : : ; gn/ D kŒX1; : : : ; Xm; Y1; : : : ; Yn�=.F1; : : : ; Fr ; G1; : : : ; Gn/;

and so the tangent space toW at .P I b1; : : : ; bn/ is the solution space of the system of linear
equations

mX
jD1

@Fi

@Xj

ˇ̌̌̌
P

.dXj /.P Ib/ D 0; i D 1; : : : r;

mX
jD1

@Gi

@Xj

ˇ̌̌̌
.P Ib/

.dXj /P C

nX
jD1

@Gi

@Yj

ˇ̌̌̌
.P Ib/

.dYj /.P Ib/ D 0; i D 1; : : : n;

(r C n equations in mC n variables). The map Tgt.P Ib/.W / ! TgtP .V / is the obvious
projection map. Thus ' is étale at .P Ib/ if and only if every solution of the first system of
equations extends uniquely to a solution of the second system. This will be so if and only

if the n � n matrix
�
@Gi

@Yj

ˇ̌̌
.P Ib/

�
is nonsingular. 2

16
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COROLLARY 2.2 Let 'WU ! V be a regular map, where U and V both equal Am. Then

' is étale at .a1; : : : ; am/ if and only if the Jacobian matrix
�
@.Xiı'/
@Yj

ˇ̌̌
.a1;:::;am/

�
is nonsin-

gular. (Here Xi is the i th coordinate function on V and Yj is the j th coordinate function
on U .)

PROOF. EachXiı' is a regular function onU D Am, and hence is a polynomialGi .Y1; : : : ; Ym/
in the coordinate functions Yj on U . The graph �' of ' is the subvariety of Am � Am de-
fined by the equations

Xi D Gi .Y1; : : : ; Ym/; i D 1; : : : ; m:

The map ' is the composite of the isomorphism P 7! .P; '.P //WV ! �' (see AG 4.26)
and the projection �' ! Am, and so is étale at P0 D .a1; : : : ; am/ if and only if the
projection map is étale at .P0; '.P0//. The statement now follows from the proposition. 2

REMARK 2.3 Note that the condition

the Jacobian matrix
�
@.Xiı'/
@Yj

ˇ̌̌
.a1;:::;am/

�
is nonsingular

is precisely the hypothesis of the Inverse Mapping Theorem in advanced calculus.

EXERCISE 2.4 (a) Prove the proposition using the definition of the tangent space in
terms of dual numbers (see AG 5.37).

(b) Prove the corollary with U replaced by an open subset of An.

EXAMPLE 2.5 Let V D Specm.A/ be a nonsingular affine variety over k, and let

f .T / D a0T
m
C � � � C am

be a polynomial with coefficients inA. Thus, each ai is a regular function on V , and we can
regard f .T / as a continuous family f .P IT / of polynomials parametrized by P 2 V . Let
W D Specm.AŒT �=.f .T // (assuming the ring to be reduced). Then W is the subvariety
of V � A1 defined by the equation

f .P IT / D 0;

and the inclusion A ,! AŒT �=.f .T // corresponds to the projection map � WW ! V ,
.P I c/ 7! P . For each P0 2 V , ��1.P0/ is the set of roots of f .P0IT / where

f .P0IT / D a0.P0/T
m
C � � � C am.P0/ 2 kŒT �:

We have:
(a) the fibre ��1.P0/ is finite if and only if P0 is not a common zero of the ai ; thus � is

quasi-finite (AG p8.5) if and only if the ideal generated by a0; a1; : : : ; am is A;

(b) the map � is finite if and only if a0 is a unit in A (cf. AG 8.1).

(c) the map � is étale at .P0I c/ if and only if c is a simple root of f .P0IT /.
To prove (c), note that c is a simple root of f .P0IT / if and only if c is not a root of
df .P0IT /
dT

. We can now apply the Proposition 2.1.

EXAMPLE 2.6 Consider the map x 7! xnWA1 ! A1. Since dXn

dX
D nXn�1, we see from

(2.2) that the map is étale at no point of A1 if the characteristic of k divides n, and that
otherwise it is étale at all x ¤ 0.
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Étale morphisms of arbitrary varieties.

The tangent space at a singular point of a variety says little about the point. Instead, one
must use the tangent cone (AG �5).

Recall that for an affine variety V D Specm kŒX1; : : : ; Xn�=a over an algebraically
closed field k, the tangent cone at the origin P is defined by the ideal a� D ff� j f 2 ag
where, for f 2 kŒX1; : : : ; Xn�, f� is the homogeneous part of f of lowest degree. The
geometric tangent cone at P is the zero set of a�. However, kŒX1; : : : ; Xn�=a� may have
nilpotents, and so (as in (2.7b) below) the geometric tangent cone may not determine this
ring. Instead, we define the tangent cone CP .V / to be the k-algebra kŒX1; : : : ; Xn�=a� (or,
equivalently but better, the affine k-scheme Spec kŒX1; : : : ; Xn�=a�).

Let 'WW ! V be a regular map of varieties over an algebraically closed field k. Then
' is said to be étale at Q 2 W if it induces an isomorphism C'.Q/.V / ! CQ.W / of
tangent cones (as k-algebras). For nonsingular varieties, this agrees with the definition in
the last subsection.

The tangent cone can be defined more canonically. Recall (Atiyah and MacDonald
1969, p111) that to every local ring A, one attaches a graded ring

gr.A/
def
D

M
n

mn=mnC1; m D mA:

The multiplication on gr.A/ is induced by the multiplication

a; b 7! abWmi �mj ! miCj :

A local homomorphism A! B defines a homomorphism of graded rings gr.A/! gr.B/.
It is easily shown that if gr.A/! gr.B/ is an isomorphism, so also is the map induced on
the completions OA ! OB (ibid. 10.23). The converse is also true, because gr.A/ D gr. OA/
(ibid. 10.22).8

EXAMPLE 2.7 (a) The tangent cone at the origin P to the curve

V W Y 2 D X3 CX2

is defined by the equation
Y 2 D X2:

Thus it is the union of the lines Y D ˙X . More precisely, let x and y denote the classes
of X and Y in mP =m

2
P ; then CP .V / D kŒx; y�=.y2 � x2/. Consider the map t 7!

.t2 � 1; t.t2 � 1//WA1 ! V . This corresponds to the map of k-algebras

X 7! T 2 � 1; Y 7! T .T 2 � 1/W kŒX; Y �=.Y 2 �X2 �X3/! kŒT �.

The tangent cone of A1 at Q D 1 is kŒs� where s denotes the class of T � 1 in mQ=m
2
Q.

The map CP ! CQ is the map of k-algebras

x 7! 2s; y 7! 2sW kŒx; y�=.y2 � x2/! kŒs�:

This is not an isomorphism, and so the map is not étale at Q.

8Recall that we are assuming that all rings are Noetherian.
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(b) The tangent cone at the origin to the curve

V W Y 2 D X3

is defined by the equation
Y 2 D 0:

Thus it is the line Y D 0 with multiplicity 2. The map t 7! .t2; t3/WA1 ! V is not étale at
the origin because the map

x 7! 0; y 7! 0W kŒx; y�=.y2/! kŒt �

it defines on the tangent cones is not an isomorphism.

For any point P on a variety V over an algebraically closed field k, CP .V / D gr.OP /
(AG 5.40). Thus we arrive at the following criterion:

a regular map 'WW ! V of varieties over an algebraically closed field k is
étale at a point Q of W if and only if the map OOV;'.Q/ ! OOW;Q induced by
' is an isomorphism.

In particular, if Q maps to P , then a necessary condition for ' to be étale at Q, is that V
must have the same type of singularity at P as W has at Q.

Étale morphisms of varieties over arbitrary fields Let 'WW ! V be a regular map of
varieties over a field k. We say that ' is étale at w 2 W if, for some algebraic closure kal

of k, 'kal WWkal ! Vkal is étale at the points of Wkal mapping to w.

EXERCISE 2.8 Make this condition explicit in terms of the tangent spaces to W and V
(nonsingular case) or the tangent cones (general case). Prove (or disprove) that 'WW ! V

is étale at w if and only if the map gr.OV;v/ ˝�.v/ �.w/ ! gr.OW;w/, v D 'w is an
isomorphism.

Étale morphisms of schemes.

For proofs of the statements in this subsection, see EC I.1–I.3.

Flat morphisms Recall that a homomorphism of rings A ! B is flat if the functor
M 7! B ˝A M from A-modules to B-modules is exact. One also says that B is a flat
A-algebra. To check that f WA ! B is flat, it suffices to check that the local homomor-
phism Af �1.m/ ! Bm is flat for every maximal ideal m in B .

If A is an integral domain, then x 7! axWA! A is injective for all nonzero a. There-
fore, so also is x 7! axWB ! B for any flat A-algebra B , and it follows that A ! B is
injective. For a Dedekind domain A the converse holds: a homomorphism A! B is flat if
(and only if) it is injective.

A morphism 'WY ! X of schemes (or varieties) is flat if the local homomorphisms
OX;'.y/ ! OY;y are flat for all y 2 Y . The remark following the definition of flatness
shows that it suffices to check this for the closed points y 2 Y .

A flat morphism 'WY ! X of varieties is the analogue in algebraic geometry of a
continuous family of manifolds Yx

def
D '�1.x/ parametrized by the points of X . If ' is flat,

then
dimYx D dimY � dimX
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for all (closed) x 2 X for which Yx ¤ ;; the converse is true if X and Y are nonsingular.
Moreover, a finite morphism 'WY ! X of varieties is flat if and only if each fibre '�1.x/
has the same number of points counting multiplicities. (If ' is the map of affine varieties
defined by the homomorphism A ! B of affine k-algebras, then the condition means that
dimA=mB=mB is independent of the maximal ideal m � A).

Let Z be a closed subscheme of X . Then the inclusion Z ,! X will be flat if and only
if Z is also open in X (and so is a connected component of X ).

Unramified morphisms A local homomorphism f WA! B of local rings is unramified if
B=f .mA/B is a finite separable field extension of A=mA, or, equivalently, if

(a) f .mA/B D mB , and

(b) the field B=mB is finite and separable over A=mA.

This agrees with the definition in algebraic number theory where one only considers discrete
valuation rings.

A morphism 'WY ! X of schemes is unramified if it is of finite type and if the maps
OX;f .y/ ! OY;y are unramified for all y 2 Y . It suffices to check the condition for the
closed points y of Y .

Let 'WY ! X be a morphism of finite type. Then ' is unramified if and only if the
sheaf ˝1

Y=X
is zero (see EC I.3.5).

Étale morphisms A morphism 'WY ! X of schemes is étale if it is flat and unramified.
In particular, this means that ' is of finite type.9

A homomorphism of rings f WA ! B is étale if SpecB ! SpecA is étale. Equiva-
lently, it is étale if

(a) B is a finitely generated A-algebra;

(b) B is a flat A-algebra;

(c) for all maximal ideals n of B , Bn=f .p/Bn is a finite separable field extension of
Ap=pAp, where p D f �1.n/.

Let X D SpecA where A is an integral domain. For any proper ideal a � A, the map
Z ,! X corresponding to the homomorphism A ! A=a is unramified, but not flat, and
hence not étale. This agrees with intuition of “étale” meaning “local isomorphism”: the
inclusion of a proper closed submanifold into a connected manifold is not a local isomor-
phism.

PROPOSITION 2.9 For a regular map 'WY ! X of varieties over an algebraically closed
field, the definition of “étale” in this subsection agrees with that in the previous subsection.

PROOF. Note first that every regular map of varieties is of finite type. Thus, it suffices to
show that, for every local homomorphism of local k-algebras f WA ! B arising from a
regular map of k-varieties, the homomorphism Of W OA! OB is an isomorphism if and only if
f is flat and unramified.

Certainly, if OA! OB is an isomorphism, then it is both flat and unramified. Thus for the
necessity it suffices to show that if OA ! OB flat or unramified, then A ! B has the same

9Grothendieck requires it to be only locally of finite type, or, for arbitrary (not necessarily Noetherian)
schemes that it be locally of finite presentation.
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property. If OA ! OB is flat, then an exact sequence of A-modules M 0 ! M ! M 00 gives
rise to an exact sequence of OB-modules

OB ˝AM
0
! OB ˝AM ! OB ˝AM

00

(because OA is a flat A-algebra — Atiyah and MacDonald 1969, 10.14), and this implies that

B ˝AM
0
! B ˝AM ! B ˝AM

00

is exact (because OB is a faithfully flat B-algebra, ibid. 10, Ex. 7). If OA ! OB is unram-
ified, then the ideals mB and mAB both generate the maximal ideal in OB , which implies
that they are equal (because10 aS \ R D a for any ideal a in a ring R and faithfully flat
homomorphism R! S .

The converse is less elementary. Zariski’s Main Theorem (EC I 1.8) allows us to as-
sume that B is the localization of a finite A-algebra C at a maximal ideal, and, in fact,
that C D AŒT �=.f .T // for some monic polynomial f .T /. Now OB is the completion of
OAŒT �=.f .T // at some maximal ideal lying over m OA. Because of Hensel’s lemma (Atiyah

and MacDonald 1969, 10, Ex. 9) a factorization Nf D ge1

1 � � �g
en
n in kŒT �, k D A=mA, with

the gi the distinct irreducible factors of Nf lifts to a factorization f D f1 � � � fn in OAŒT �.
Correspondingly, OAŒT �=.f .T // D

Q
i
OAŒT �=.fi .T //, and so OB D OAŒT �=.fi .T // for some

i . Thus, OA! OB is finite, and so we can apply the next lemma. 2

NOTES Alternative proof that a flat unramified homomorphism A ! B of local rings with the
same residue fields induces an isomorphism on the completions. By a result on flatness (Bour-
baki, Commutative Algebra, p.227; Matsumura, Commutative Ring Theory, p.74), the induced maps
mnA=m

nC1
A ! mnB=m

nC1
B are isomorphisms. Thus the maps A=mnA ! B=mnB are isomorphisms.

On passing to the limit over n, we find that the maps on the completions are isomorphisms.

LEMMA 2.10 Let 'WA! B be a local homomorphism of local rings. If

(a) ' is injective,

(b) the map on residue fields A=mA ! B=mB is an isomorphism,

(c) ' is unramified, and

(d) B is a finite A-algebra,

then ' is an isomorphism.

PROOF. Because of (a), we only have to show that ' is surjective. From (b) and (c) we see
that

B D '.A/CmB D '.A/CmAB:

Condition (d) allows us to apply Nakayama’s Lemma to the A-module B , which gives that
B D '.A/. 2

Examples

The Jacobian criterion Proposition 2.1 holds with V an affine scheme.

10Matsumura, H., Commutative Algebra, Benjamin, 1970, 4.C.
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Fields Let k be a field. A local k-algebra A is unramified if and only if it is a finite
separable field extension of k. Let A be an étale k-algebra. Because A is unramified over
k, no maximal ideal of A contains a proper prime ideal, and so A has dimension 0. It is
therefore an Artin ring (Atiyah and MacDonald 1969, 8.5), and so is a finite product of finite
separable field extensions of k (ibid. 8.7). Conversely, a finite product of finite separable
field extensions of k is an étale k-algebra.

Dedekind domains Let A be a Dedekind domain, and let L be a finite separable extension
of its field of fractions K. Let B be the integral closure of A in L, and let P be a prime
ideal of B . Then p

def
D P\A is a prime ideal of A, and P is said to be unramified in B=A if

(a) in the factorization of pB into a product of prime ideals, P occurs with exponent one;

(b) the residue field extension B=P � A=p is separable.

This is equivalent to the map Ap ! BP being unramified. Let b be an element of B that is

contained in all the ramified prime ideals of B . Then Bb
def
D BŒb�1� is an étale A-algebra,

and every étale A-algebra is a finite product of algebras of this type.

Standard étale morphisms Let A be a ring, and let f .T / be a monic polynomial with
coefficients in A. Because f .T / is monic, AŒT �=.f .T // is a free A-module of finite rank,
and hence flat. For any b 2 AŒT �=.f .T // such that f 0.T / is invertible in .AŒT �=.f .T //b ,
the homomorphism A ! .AŒT �=.f .T //b étale. An étale morphism 'WV ! U is said to
be standard if it is isomorphic to the Spec of such a homomorphism, i.e., if there exists a
ring A, a monic polynomial f .T / 2 AŒT �, and a b 2 AŒT �=.f .T // satisfying the above
condition for which there is a commutative diagram:

V Spec.AŒT �=.f .T ///b

U SpecA:

�

'

�

It is an important fact that locally every étale morphism is standard, i.e., for any étale mor-
phism 'WY ! X and y 2 Y , there exist open affine neighbourhoods V of y and U of '.y/
such that '.V / � U and 'jV WV ! U is standard (EC I 3.14).

Normal schemes Let X be a connected normal scheme (or variety); if X is affine, this
means that X is the spectrum of an integrally closed integral domain A. Let K be the field
of rational functions onX , and let L be a finite separable field extension ofK. Let Y be the
normalization of X in L: if X D SpecA, then Y D SpecB where B is the integral closure
of A in L. Then Y ! X is finite (Atiyah and MacDonald 1969, 5.17), and hence of finite
type. Let U be an open subset of Y excluding any closed points of y where ' is ramified.
Then U ! X is flat, and hence étale; moreover, every étale X -scheme is a disjoint union
of étale X -schemes of this type (EC I 3.20, 3.21).

Schemes with nilpotents Let X be a scheme, and let X0 be the subscheme of X defined
by a nilpotent ideal (so X0 and X have the same underlying topological space); then the
map U 7! U0

def
D U �X X0 is an equivalence from the category of étale X -schemes to the

category of étale X0-schemes.
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Properties of étale morphisms

Roughly speaking, étale morphisms have all the properties suggested by the analogy with
local isomorphisms. Here we confine ourselves to listing the most important properties with
a brief discussion of their proofs.

PROPOSITION 2.11 (a) Every open immersion is étale.

(b) The composite of two étale morphisms is étale.

(c) Every base change of an étale morphism is étale.

(d) If ' ı  and ' are étale, then so also is  .

Statement (a) says that if U is an open subscheme (or variety) of X , then the inclusion
U ,! X is étale — this is obvious from any definition.

Statement (b) is also obvious from any definition.
For the notion of fibre product of varieties and the base change of a regular map, see

(AG �4). Given a point .u; y/ 2 U �X Y , one shows easily (for example, by using dual
numbers, ibid. 5.37) that

Tgt.u;y/.U �X Y / D Tgtu.U / �Tgtx.X/
Tgty.Y /

where x is the common image of u and y in X . Thus, (c) is obvious for nonsingular
varieties.

Finally, (d) is obvious for varieties using the definition in terms of tangent cones, for
example. For schemes, see (EC I 3.6).

PROPOSITION 2.12 Let 'WY ! X be an étale morphism.

(a) For all y 2 Y , OY;y and OX;x have the same Krull dimension.

(b) The morphism ' is quasi-finite.

(c) The morphism ' is open.

(d) If X is reduced, then so also is Y .

(e) If X is normal, then so also is Y .

(f) If X is regular, then so also is Y .

When X and Y are connected varieties, (a) says that they have the same dimension —
this is obvious, because the tangent cone has the same dimension as the variety.

Statement (b) says that the fibres of ' are all finite.
Statement (c) follows from the more general fact that flat morphisms of finite type are

open (EC I 2.12).
Statement (e) is implied by our description of the étale morphisms to a normal scheme.
For varieties, (f) implies that if X is nonsingular and Y ! X is étale, then Y is also

nonsingular. This is obvious, because a point P is nonsingular if and only if the tangent
cone at P is a polynomial ring in dimX variables.

EXERCISE 2.13 Find a simple direct proof that a quasi-finite regular map Y ! X of
nonsingular varieties is open. (Such a map is flat, hence open; the problem is to find a
direct proof using only, for example, facts proved in AG.)
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PROPOSITION 2.14 Let 'WY ! X be a morphism of finite type. The set of points U � Y
where ' is étale is open in Y .

Of course, U may be empty. If X is normal, then U is the complement of the support
of the OY -sheaf ˝1

Y=X
.

PROPOSITION 2.15 Let 'WY ! X be an étale morphism of varieties. If X is connected,
then every section to ' is an isomorphism of X onto a connected component of Y .

PROOF. For simplicity, we assume that the ground field is algebraically closed. Let sWX !
Y be a section to ', i.e., a regular map such that ' ı s D idX . The graph �s

def
D f.x; s.x// j

x 2 Xg is closed in X � Y (see AG 4.26), and its inverse image under the regular map
y 7! .'.y/; y/WY ! X � Y is s.X/. Therefore, s.X/ is closed in Y . It is also open,
because s is étale (2.12c), and so is a connected component of Y . Thus 'js.X/ and s are
inverse isomorphisms. 2

COROLLARY 2.16 Let pWX ! S and qWY ! S be morphisms of varieties over an al-
gebraically closed field. Assume that p is étale and that Y is connected. Let '; '0 be
morphisms Y ! X such that p ı ' D q and p ı '0 D q. If ' and '0 agree at a single point
of Y , then they are equal on the whole of Y .

PROOF. The maps .1; '/; .1; '0/WY ! Y�SX are sections to the projection map .y; x/ 7!
yWY �S X ! Y , and the hypothesis says that they agree at some point y0 2 Y . As the
projection map is étale, .1; '/ and .1; '0/ are equal. But ' and '0 are the composites of
.1; '/ and .1; '0/ with the projection map X �S Y ! X , and so they are equal. 2

REMARK 2.17 Proposition 2.15 holds for schemes provided ' is assumed to be separated.
The corollary also holds for schemes provided that one assumes, not only that ' and '0

agree at a point, but also that they induce the same map on the residue field at the point. See
(EC I 3.12, I 3.13).



3 THE ÉTALE FUNDAMENTAL GROUP

The étale fundamental group classifies the finite étale coverings of a variety (or scheme) in
the same way that the usual fundamental group classifies the covering spaces of a topolog-
ical space. This section is only a survey of the topic—see the references at the end of the
section for full accounts.

We begin by reviewing the classical theory from a functorial point of view.

The topological fundamental group

Let X be a connected topological space. In order to have a good theory, we assume that
X is pathwise connected and semi-locally simply connected (i.e., every P 2 X has a
neighbourhood U such that every loop in U based at P can be shrunk in X to P ).

Fix an x 2 X . The fundamental group �1.X; x/ is defined to be the group of homotopy
classes of loops in X based at x.

A continuous map � WY ! X is a covering space of X if every P 2 X has an open
neighbourhood U such that ��1.U / is a disjoint union of open sets Ui each of which is
mapped homeomorphically onto U by � . A map of covering spaces .Y; �/ ! .Y 0; � 0/

is a continuous map ˛WY ! Y 0 such that � 0 ı ˛ D � . Under our hypotheses, there exists
a simply connected covering space Q� W QX ! X . Fix an Qx 2 QX mapping to x 2 X . Then
. QX; Qx/ has the following universal property: for any covering space Y ! X and y 2 Y
mapping to x 2 X , there is a unique covering space map QX ! Y sending Qx to y. In
particular, the pair . QX; Qx/ is unique up to a unique isomorphism; it is called the universal
covering space of .X; x/.

Let AutX . QX/ denote the group of covering space maps QX ! QX , and let ˛ 2 AutX . QX/.
Because ˛ is a covering space map, ˛ Qx also maps to x 2 X . Therefore, a path from Qx to ˛ Qx
is mapped by Q� to a loop in X based at x. Because QX is simply connected, the homotopy
class of the loop doesn’t depend on the choice of the path, and so, in this way, we obtain a
map AutX . QX/! �1.X; x/. This map an isomorphism.

For proofs of the above statements, see Part I of Greenberg, M., Lectures on Algebraic
Topology, Benjamin, 1966.

Let Cov.X/ be the category of covering spaces of X with only finitely many connected
components — the morphisms are the covering space maps. We define F WCov.X/! Sets
to be the functor sending a covering space � WY ! X to the set ��1.x/. This functor is
representable by QX , i.e.,

F.Y / ' HomX . QX; Y / functorially in Y:

Indeed, we noted above that to give a covering space map QX ! Y is the same as to give a
point y 2 ��1.x/.

If we let AutX . QX/ act on QX on the right, then it acts on HomX . QX; Y / on the left:

f̨
def
D f ı ˛; ˛ 2 AutX . QX/; f W QX ! Y:

Thus, we see that F can be regarded as a functor from Cov.X/ to the category of AutX . QX/
(or �1.X; x/) sets.

That �1.X; x/ classifies the covering spaces of X is beautifully summarized by the
following statement: the functor F defines an equivalence from Cov.X/ to the category of
�1.X; x/-sets with only finitely many orbits.

25
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The étale fundamental group

Let X be a connected variety (or scheme). We choose a geometric point Nx ! X , i.e., a
point of X with coordinates in a separably algebraically closed field. When X is a variety
over an algebraically closed field k, we can take Nx to be an element of X.k/. For a scheme
X , choosing Nx amounts to choosing a point x 2 X together with a separably algebraically
closed field containing the residue field �.x/ at x.

We can no longer define the fundamental group to consist of the homotopy classes of
loops. For example, if X is a smooth curve over C, then X.C/ is a Riemann surface and
a loop on X.C/ has complex (or algebraic) dimension 1

2
— not being physicists, we don’t

allow such objects. Instead, we mimic the characterization of the fundamental group as the
group of covering transformations of a universal covering space.

Recall that a finite étale map � WY ! X is open (because étale — see 2.12) and closed
(because finite — see AG 8.7) and so it is surjective (provided Y ¤ ;). If X is a variety
over an algebraically closed field and � WY ! X is finite and étale, then each fibre of �
has exactly the same number of points. Moreover, each x 2 X has an étale neighbourhood
.U; u/! .X; x/ such that Y �X U is a disjoint union of open subvarieties (or subschemes)
Ui each of which is mapped isomorphically onto U by � � 1 (see later). Thus, a finite étale
map is the natural analogue of a finite covering space.

We define FEt=X to be the category whose objects are the finite étale maps � WY !
X (sometimes referred to as finite étale coverings of X ) and whose arrows are the X -
morphisms.

Define F WFEt=X ! Sets to be the functor sending .Y; �/ to the set of Nx-valued points
of Y lying over x, so F.Y / D HomX . Nx; Y /. If X is a variety over an algebraically closed
field and Nx 2 X.k/, then F.Y / D ��1. Nx/.

We would like to define the universal covering space of X to be the object representing
F , but unfortunately, there is (usually) no such object. For example, let A1 be the affine line
over an algebraically closed field k of characteristic zero. Then the finite étale coverings of
A1 r f0g are the maps

t 7! tnWA1 r f0g ! A1 r f0g

(see Example 2.6). Among these coverings, there is no “biggest” one—in the topological
case, with k D C, the universal covering is

C
exp
��! Cr f0g;

which has no algebraic counterpart.
However, the functor F is pro-representable. This means that there is a projective

system QX D .Xi /i2I of finite étale coverings of X indexed by a directed set11 I such that

F.Y / D Hom. QX; Y /
def
D lim
�!i2I

Hom.Xi ; Y / functorially in Y:

In the example considered in the last paragraph, QX is the family t 7! tnWA1 r f0g !
A1 r f0g indexed by the positive integers partially ordered by division.

We call QX “the” universal covering space of X . It is possible to choose QX so that each
Xi is Galois over X , i.e., has degree over X equal to the order of AutX .Xi /. A map

11A directed set is a set A together with a reflexive and transitive binary relation � such that, for all a,
b 2 A, there exists a c 2 A such that a � c and b � c.
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Xj ! Xi , i � j , induces a homomorphism AutX .Xj /! AutX .Xi /, and we define

�1.X; Nx/ D AutX . QX/
def
D lim
 �i

AutX .Xi /;

endowed with its natural topology as a projective limit of finite discrete groups. If Xn !
A1 r f0g denotes the covering in the last paragraph, then

AutX .Xn/ D �n.k/ (group of nth roots of 1 in k)

with � 2 �n.k/ acting by x 7! �x. Thus

�1.A1 r 0; Nx/ D lim
 �n

�n.k/ � OZ:

Here OZ '
Q
` Z` is the completion of Z for the topology defined by the subgroups of finite

index. The isomorphism is defined by choosing a compatible system of isomorphisms
Z=nZ ! �n.k/ or, equivalently, by choosing primitive nth roots �n of 1 for each n such
that �mmn D �n for all m; n > 0.

The action of �1.X; Nx/ on QX (on the right) defines a left action of �1.X; Nx/ on F.Y /
for each finite étale covering Y of X . This action is continuous when F.Y / is given the
discrete topology—this simply means that it factors through a finite quotient AutX .Xi / for
some i 2 I .

THEOREM 3.1 The functor Y 7! F.Y / defines an equivalence from the category of finite
étale coverings of X to the category of finite discrete �1.X; Nx/-sets.

Thus �1.X; Nx/ classifies the finite étale coverings of X in the same way that the topo-
logical fundamental group classifies the covering spaces of a topological space.

EXAMPLE 3.2 Let P1 denote the projective line over an algebraically closed field. The
differential ! D dz on P1 has no poles except at1, where it has a double pole. For any
finite étale covering � WY ! P1 with Y connected, ��1.!/ will have double poles at each
of the deg.�/-points lying over 1, and no other poles. Thus the divisor of ��1.!/ has
degree �2 deg.�/. Since this equals 2genus.Y / � 2, deg.�/ must equal 1, and � is an
isomorphism. Therefore �1.P1; Nx/ D 1, as expected.

The same argument shows that �1.A1; Nx/ D 0 when the ground field has characteristic
zero. More generally, there is no connected curve Y and finite map Y ! P1 of degree > 1
that is unramified over A1 and tamely ramified over1.

The étale fundamental group of Pn is also zero.

REMARK 3.3 (a) If NNx is a second geometric point of X , then there is an isomorphism
�1.X; Nx/! �1.X; NNx/, well-defined up to conjugation.

(b) The fundamental group �1.X; Nx/ is a covariant functor of .X; Nx/.

(c) Let k � ˝ be algebraically closed fields of characteristic zero. For any variety X
over k, the functor Y 7! Y˝ WFEt=X ! FEt=X˝ is an equivalence of categories,
and so defines an isomorphism �1.X; Nx/ ' �1.X˝ ; Nx/ for any geometric point Nx
of X˝ . This statement is false for p-coverings in characteristic p; for example, for
each ˛ 2 kŒT � we have an Artin-Schreier finite étale covering of A1 defined by the
equation

Y p � Y C ˛;

and one gets more of these when k is replaced by a larger field.
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Varieties over C

Let X be a variety over C, and let Y ! X be a finite étale covering of X . If X is nonsin-
gular, so also is Y and, when X.C/ and Y.C/ are endowed with their complex topologies,
Y.C/! X.C/ becomes a finite covering space of X.C/.

The key result that allows us to relate the classical and étale fundamental groups is:

THEOREM 3.4 (RIEMANN EXISTENCE THEOREM) Let X be a nonsingular variety over
C. The functor sending a finite étale covering .Y; �/ of X to the finite covering space
.Y.C/; �/ of X.C/ is an equivalence of categories.

The difficult part of the proof is showing that the functor is essentially surjective, i.e.,
that every finite (topological) covering space of X.C/ has a natural algebraic structure. For
proofs, see: Grauert and Remmert, Math. Ann. (1958), 245–318; SGA 4, XI.4.3; and SGA
1, XII. Section 21 below contains a sketch of the last proof.

It follows from the theorem that the étale universal covering space QX D .Xi /i2I of X
has the property that every finite topological covering space of X.C/ is a quotient of some
Xi .C/. Let x D Nx be any element of X.C/. Then

�1.X; x/
def
D lim
 �i

AutX .Xi / D lim
 �i

AutX.C/.Xi .C// D �1.X.C/; x/O

where �1.X.C/; x/O is the completion of �1.X.C/; x/ for the topology defined by the sub-
groups of finite index.

Since �1.Cr f0g; x/ � Z, we recover the fact that �1.A1 r f0g; Nx/ � OZ.

REMARK 3.5 Let X be a nonsingular variety over an algebraically closed field k of char-
acteristic zero, and let � and � be embeddings of k into C. Then, for the étale fundamental
groups,

�1.X; Nx/ ' �1.�X; � Nx/ ' �1.�X; � Nx/

(by 3.3c). Hence
�1..�X/.C/; � Nx/O' �1..�X/.C/; � Nx/O:

As we noted in the introduction, there are examples where

�1..�X/.C/; � Nx/ 6� �1..�X/.C/; � Nx/:

The statements in this section (appropriately modified) hold for every connected scheme
X of finite type over C; in particular, �1.X; Nx/ ' �1.X.C/; x/Ofor such a scheme.

Examples

The spectrum of a field For X D Spec k, k a field, the étale morphisms Y ! X are the
spectra of étale k-algebras A, and each is finite. Thus, rather than working with FEt=X , we
work with the opposite category Et=k of étale k-algebras.

The choice of a geometric point forX amounts to the choice of a separably algebraically
closed field ˝ containing k. Define F WEt=k ! Sets by

F.A/ D Homk.A;˝/:

Let Qk D .ki /i2I be the projective system consisting of all finite Galois extensions of k
contained in ˝. Then Qk ind-represents F , i.e.,

F.A/ ' Homk.A; Qk/
def
D lim
�!i2I

Homk.A; ki / functorially in A;
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—this is obvious. Define

Autk. Qk/ D lim
 �i2I

Autk-alg.ki /:

Thus
Autk. Qk/ D lim

 �i
Gal.ki=k/ D Gal.ksep=k/

where ksep is the separable algebraic closure of k in˝. Moreover, F defines an equivalence
of categories from Et=k to the category of finite discrete Gal.ksep=k/-sets. This statement
summarizes, and is easily deduced from, the usual Galois theory of fields.

Normal varieties (or schemes) For a connected normal variety (or scheme) X , it is most
natural to take the geometric point Nx to lie over the generic point x of X . Of course, strictly
speaking, we can’t do this if X is a variety because varieties don’t have generic points, but
what it amounts to is choosing a separably algebraically closed field ˝ containing the field
k.X/ of rational functions on X . We let L be the union of all the finite separable field
extensions K of k.X/ in ˝ such that the normalization of X in K is étale over X ; then

�1.X; Nx/ D Gal.L=k.X//

with the Krull topology.

Albanese variety. [To be added.]

Computing the étale fundamental group For a connected variety over C, we can exploit
the relation to the classical fundamental group to compute the étale fundamental group.

For a connected variety over an arbitrary algebraically closed field of characteristic zero,
we can exploit the fact that the fundamental group doesn’t change when we make a base
change from one algebraically closed field to a second such field.

For a connected variety X0 over an algebraically closed field k of characteristic p ¤ 0
one can sometimes obtain information on the “non-p” part of �1.X0; x/ by lifting X0 to
characteristic zero. Suppose that there exists a complete discrete valuation ring R whose
residue field is k and whose field of fractions K is of characteristic zero, and a scheme
X smooth and proper over R whose special fibre is X0. There is a canonical surjective
homomorphism �1.XKal ; Nx/ ! �1.X0; Nx0/ whose kernel is contained in the kernel of
every homomorphism of �1.XKal ; Nx/ into a finite group of order prime to p; in particular,
the two groups have the same finite quotients of order prime to p. Since every smooth
projective curve X0 lifted to characteristic zero, one obtains a description of �1.X0; Nx0/
(ignoring p-quotients) as the completion of a free group on 2genus.X0/ generators subject
to the standard relation.12

Let X be a connected algebraic variety over a field k, and assume that Xksep is also
connected. Then there is an exact sequence

1! �1.Xksep ; Nx/! �1.X; Nx/! Gal.ksep=k/! 1:

The maps come from the functoriality of the fundamental group.

12The classification by Grothendieck of the finite étale coverings of a curve in characteristic p of degree
prime to p was one of his first major successes, illustrating the importance of his approach to algebraic geom-
etry. As far as I know, there is as yet no purely algebraic proof of the result.
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The most interesting object in mathematics Arguably, it is

�1.X; Nx/;

where X is the projective line over Q (not C!) with the three points 0; 1;1 removed. The
above exact sequence becomes in this case:

1! �1.XQal ; Nx/! �1.X; x/! Gal.Qal=Q/! 1:

Here �1.XQal ; Nx/ is canonically isomorphic to the completion of the fundamental group
of the Riemann sphere with three points removed, which is generated by loops 
0, 
1,

1 around the three deleted points with the single relation 
0
1
1 D 1. The group
Gal.Qal=Q/ is already very mysterious, and understanding this extension of it involves
mixed Tate motives, the K-groups of number fields, the special values of zeta functions,
etc.. See Deligne’s article in Galois Groups over Q, Springer, 1989, pp 79–297.

Apparently Grothendieck was the first to emphasize the significance of this group—see
Geometric Galois Actions, 1. Around Grothendieck’s Esquisse d’un Programme, (Schneps
and Lochak, Eds), Cambridge University Press, 1997. There are also several papers by Y.
Ihara, G. Anderson, Minhyong Kim, and others.

ASIDE 3.6 For a normal algebraic variety it is easy to define �1: it is the Galois group of the
maximal unramified extension of the function field. However, Grothendieck’s approach allows you
to vary the base point, define the fundamental groupoid, and so on.

References

The original source is Grothendieck’s seminar, SGA 1. The most useful account is in:
Murre, J.P., Lectures on an Introduction to Grothendieck’s Theory of the Fundamental
Group, Tata Institute, 1967.
See also:
Szamuely, Tamás. Galois groups and fundamental groups. Cambridge Studies in Advanced
Mathematics, 117. Cambridge University Press, Cambridge, 2009.



4 THE LOCAL RING FOR THE ÉTALE TOPOLOGY

Let X be a topological space endowed with a sheaf OX of functions. A germ of a function
at x is represented by a pair .U; f / consisting of an open neighbourhood U of x and a
function f on U ; two pairs .U; f / and .U 0; f 0/ represent the same germ if f jV D f 0jV

for some open neighbourhood V of x contained in U \ U 0. In other words, a germ of a
function at x is an element of the ring OX;x

def
D lim
�!

� .U;OX / where U runs over the open
neighbourhoods of x.

For example, if X D C endowed with the sheaf of holomorphic functions, then a germ
of a function at c 2 C defines a power series

P
n�0 an.z�c/

n that converges in some open
neighbourhood of c, and every such power series arises from a unique germ; thus OX;c is
the ring of such power series. If X is an algebraic variety over an algebraically closed field,
then, for every open affine subvariety U containing x, OX;x D Am where A D � .U;OX /
and m is the maximal ideal in A corresponding to x—see AG 3.6.

More generally, for any ringed space .X;OX / (so OX is not necessarily a sheaf of func-
tions on X ) and x 2 X , we define OX;x D lim

�!U
� .U;OX / where U runs over the open

neighbourhoods of x. For example, ifX is a scheme, then, for any open affine U containing
x, OX;x D Ap where A D � .U;OX / and p is the prime ideal in A corresponding to x.

A locally ringed space is a ringed space .X;OX / such that OX;x is a local ring for all
x 2 X—then OX;x is called the local ring at x (for the given ringed space structure). We
shall study the analogous ring for the étale topology.

The case of varieties

Throughout this subsection, X will be a variety over an algebraically closed field k.
Recall that an étale neighbourhood of a point x 2 X is an étale map U ! X to-

gether with a point u 2 U mapping to x. A morphism (or map) of étale neighbourhoods
.V; v/! .U; u/ is a regular map V ! U over X sending v to u. It follows from Corollary
2.16 that there is at most one map from a connected étale neighbourhood to a second étale
neighbourhood. The connected affine étale neighbourhoods form a directed set13 with the
definition,

.U; u/ � .U 0; u0/ if there exists a map .U 0; u0/! .U; u/;

and we define the local ring at x for the étale topology to be

OX; Nx D lim
�!.U;u/

� .U;OU /:

Since every open Zariski neighbourhood of x is also an étale neighbourhood of x, we
get a homomorphism OX;x ! OX; Nx . Similarly, we get a homomorphism OU;u ! OX; Nx
for any étale neighbourhood .U; u/ of x, and clearly

OX; Nx D lim
�!.U;u/

OU;u:

The transition maps OU;u ! OV;v in the direct system are all flat (hence injective) unram-
ified local homomorphisms of local rings with Krull dimension dimX .

13Actually, they don’t form a set — only a class. However, it is possible to replace the class with a set. For
example, if V is affine (which we may assume), say, V D Specm.A/, then we need only consider étale maps
SpecmB ! SpecmA with B a ring of fractions of a quotient of an A-algebra of the form AŒT1; : : : ; Tn�

(some fixed set of symbols T1; T2; : : :). Similar remarks apply elsewhere, and will generally be omitted.
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PROPOSITION 4.1 The ring OX; Nx is a local Noetherian ring with Krull dimension dimX .

PROOF. The direct limit of a system of local homomorphisms of local rings is local (with
maximal ideal the limit of the maximal ideals); hence OX; Nx is local. The maps on the
completions OOU;u ! OOV;v are all isomorphisms — see the proof of (2.9) — and it follows
that OOX; Nx D OOX;x . An argument of Nagata (Artin 1962, 4.2) now shows that OX; Nx is
Noetherian, and hence has Krull dimension dimX . 2

The ring OX; Nx is Henselian The most striking property of OX; Nx is that it satisfies the
conclusion of Hensel’s lemma — in fact (see the next subsection), it is characterized by
being the “smallest” local ring containing OX;x having this property.

DEFINITION 4.2 A local ring A is said to be Henselian if it satisfies the following condi-
tion:

let f .T / be a monic polynomial in AŒT �, and let Nf .T / denote its image in kŒT �,
k D A=mA; then every factorization of Nf into a product of two monic relatively prime
polynomials lifts to a factorization of f into the product of two monic polynomials, i.e., if
Nf D g0h0 with g0 and h0 monic and relatively prime in kŒT �, then f D gh with g and h

monic, Ng D g0, and Nh D h0.

REMARK 4.3 (a) The g and h in the above factorization are strictly coprime, i.e., AŒT � D
.g; h/. To see this, note that M def

D AŒT �=.g; h/ is finitely generated as an A-module (be-
cause g.T / is monic), and M D mAM (because .g0; h0/ D kŒT �). Now Nakayama’s
Lemma implies that M D 0.

(b) The g and h in the above factorization are unique, for let f D gh D g0h0 with
g; h; g0; h0 all monic and Ng D Ng0, Nh D Nh0. The argument in (a) shows that g and h0 are
strictly coprime, and so there exist r; s 2 AŒT � such that gr C h0s D 1. Now

g0 D g0gr C g0h0s D g0gr C ghs;

and so g divides g0. As they have the same degree and are monic, they must be equal.

THEOREM 4.4 Every complete local ring is Henselian.

PROOF. The standard proof of Hensel’s Lemma in number theory works for any complete
local ring—see Atiyah and MacDonald 1969, p115. 2

THEOREM 4.5 For any point x in X , OX; Nx is Henselian.

This follows from the next two lemmas.
Consider the following condition on a local ring A (again the quotient map AŒT � !

kŒT �, k D A=mA, is denoted by f 7! Nf ):

.�/ let f1; : : : ; fn 2 AŒT1; : : : ; Tn�; every common zero a0 in kn of the Nfi for
which Jac.f1; : : : ; fn/.a0/ is nonzero lifts to a common zero of the fi in An.

LEMMA 4.6 For any point x in X , OX; Nx satisfies .�/.
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PROOF. Let f1; f2; : : : ; fn 2 OX; NxŒT1; : : : ; Tn� and a0 2 k
n be as in .�/. By definition

OX; Nx D lim
�!

kŒU �; m Nx D lim
�!

mu

(direct limit over the étale neighbourhoods .U; u/ of x; kŒU � D � .U;OU / the ring of reg-
ular functions on U ; m Nx is the maximal ideal of OX; Nx; mu is the ideal of regular functions
on U zero at u). Because there are only finitely many fi ’s, and each has only finitely many
coefficients, there exists a .U; u/ such that the fi 2 BŒT1; : : : ; Tn�, B D kŒU �.

Let C D BŒT1; : : : ; Tn�=.f1; : : : ; fn/, and let V D Specm.C /. The homomorphism
B ! C defines a map V ! U . From a0, we obtain a point v 2 V lying over u, and the
condition Jac.f1; : : : ; fn/.a0/ ¤ 0 implies that V ! U is étale at v (see 2.1). Therefore,
by (2.14) there exists a g 2 C , g … mv such that D.g/ ! U is14 étale. Hence there is a
homomorphism Cg ! OX; Nx such that the inverse image of the maximal ideal of OX; Nx is
mv. But to give such a homomorphism is to give a common zero of the fi in OX; Nx lifting
a0. 2

LEMMA 4.7 Let A be a local ring. If A satisfies .�/, then it is Henselian.

PROOF. Let
f .T / D T n C a1T

n�1
C � � � C an;

and suppose Nf .T / D g0.T /h0.T / with g0 and h0 monic of degrees r and s respectively
and relatively prime. We seek a factorization

f .T / D .T r C x1T
r�1
C � � � C xr/.T

s
C y1T

s�1
C � � � C ys/

in AŒT � lifting the given factorization of Nf .T /. To obtain a factorization, we must solve the
equations

x1 C y1 D a1

x2 C x1y1 C y2 D a2

x3 C x2y1 C x1y2 C y3 D a3

: : :

xrys D an

(n equations in n unknowns). The factorization Nf D g0h0 provides a solution of the system
modulo mA. The Jacobian matrix of the system of equations is0BBBBBBBBBBBBBB@

1 0 0 : : : 0 1 0 0 : : : 0

y1 1 0 : : : 0 x1 1 0 : : : 0

y2 y1 1 : : : 0 x2 x1 1 : : : 0

: : : : : :

: : : : : :

ys ys�1 ys�2 : : : 1 : : :

0 ys ys�1 : : : y1 : : :

0 0 ys : : : y2 : : :

: : : : : :

: : : : : :

1CCCCCCCCCCCCCCA
14Notations as in AG: D.g/ is the open set where g is nonzero.
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The determinant of the transpose of this matrix is the resultant of T rCy1T r�1C� � �Cyr and
T sCx1T

s�1C� � �Cxs . Because g0 and h0 are monic and relatively prime, Res.g0; h0/ ¤ 0
(AG 7.11). Therefore the Jacobian matrix of the system of equations is nonzero at the
solution in k provided by the factorization Nf D g0h0. Now .�/ shows the factorization
lifts to A. 2

The local ring at a nonsingular point The local ring at a point on a differential manifold
depends only on the dimension of the manifold and whether the manifold is real or complex.
The next two results show that, similarly, the local ring for the étale topology at a nonsin-
gular point of a variety over an algebraically closed field depends only on the dimension of
the variety and the field.

PROPOSITION 4.8 If 'WY ! X is étale at y, then the map O
X;'.y/

! OY; Ny induced by
' is an isomorphism.

PROOF. After replacing Y by an open neighbourhood of y, we may suppose that it is
étale over X (see 2.14). Then every étale neighbourhood of y can be regarded also as
an étale neighbourhood of x, and such neighbourhoods are cofinal15 in the set of all étale
neighbourhoods of x. Therefore, the two direct limits are equal. 2

PROPOSITION 4.9 Let P be a nonsingular point on a variety X , and let d D dimX . Then
there is a regular map 'WU ! Ad étale at P .

PROOF. Choose any set of regular function f1; : : : ; fd defined in a neighbourhood U of P
for which .df1/P ; : : : ; .dfd /P is a basis of the dual space to

TgtP .U / (equivalently, that generate the maximal ideal in OX;P ). Then

'WU ! Ad ; '.Q/ D .f1.Q/; : : : ; fd .Q//;

is étale at P because the map dual to .d'/P is .dXi /origin 7! .dfi /P . (For more details,
see AG �5.) 2

Note that the map sends P to the origin in Ad .

PROPOSITION 4.10 The local ring for the étale topology at the origin in Ad is

kŒŒT1; : : : ; Td �� \ k.T1; : : : ; Td /
al;

i.e., it consists of the elements of the complete ring kŒŒT1; : : : ; Td �� that are roots of a
polynomial (not necessarily monic) in kŒT1; : : : ; Td �.

We discuss the proof below.

15A subset B of a preordered set .A;�/ is cofinal if, for every a 2 A, there exists a b 2 B such that a � b.
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Interlude on Henselian rings.

PROPOSITION 4.11 Let A be a local ring, and let k D A=mA. The following statements
are equivalent:

(a) A is Henselian;

(b) let f 2 AŒT �; if Nf D g0h0 with g0 monic and g0 and h0 relatively prime, then
f D gh with g monic and Ng D g0 and Nh D h0.

(c) A satisfies condition .�/ above;

(d) let B be an étale A-algebra; a decomposition B=mAB D k � NB 0 lifts to a decompo-
sition B D A � B 0.

PROOF. (d)) (c). Let f1; : : : ; fn and a0 be as in .�/. LetB D .AŒT1; : : : ; Tn�=.f1; : : : ; fn//b ,
where b has been chosen so that b.a0/ ¤ 0 and Jac.f1; : : : ; fn/ is a unit inB . ThenA! B

is étale. From a0, we obtain a decomposition B=mAB D k � NB 0, which (d) shows lifts to
a decomposition B D A � B 0. The image of the n-tuple .T1; : : : ; Tn/ under the projection
map B ! A is a lifting of a0 to A.

(c)) (b). The proof of Lemma 4.7 can be modified to show that .�/ implies (b).
(b)) (a). Trivial.
(a)) (d). We may suppose that A ! B is a standard étale homomorphism (see �2),

i.e., that B D .A=.f .T //b with f .T / a monic polynomial such that f 0.T / is invertible in
B . A decomposition B=mAB D k � NB 0 arises from a simple root a0 of Nf .T /, which (a)
implies lifts to a root of f .T / in A. Now the map B ! A, T 7! a, yields a decomposition
B D A � B 0. 2

DEFINITION 4.12 Let A be a local ring. A local homomorphism A ! Ah of local rings
with Ah Henselian is called the Henselization of A if every other local homomorphism
A! B with B Henselian factors uniquely into A! Ah ! B .

Clearly the Henselization of a local ring is unique (if it exists).

PROPOSITION 4.13 For a local ring A, Ah D lim
�!.B;q/

B , where the limit is over all pairs
.B; q/ consisting of an étale A-algebra B and a prime ideal q such that q \ A D mA and
the induced map A=mA ! B=q is an isomorphism.

We leave the proof as an exercise.

COROLLARY 4.14 Let X be a variety over an algebraically closed field k. For every x 2
X; OX; Nx is the Henselization of OX;x .

PROPOSITION 4.15 LetA be a local ring, and letB be the intersection of all local Henselian
rings H with

A � H � OA; mA � mH � OmA:

Then B is Henselian, and A! B is the Henselization of A.

PROOF. Let f .T / be a monic polynomial in BŒT � such that Nf D g0h0 with g0 and h0
monic and relatively prime. For each H , the factorization lifts uniquely to f D gh with
g; h 2 HŒT �. Because of the uniqueness, g and h have coefficients in\H D B . Therefore,
B is Henselian.

Let A! Ah be the Henselization of A. Because B is Henselian, there is a unique local
A-homomorphism Ah ! B . The image of the homomorphism is again Henselian, and
hence equals B (because B , by definition, contains no proper Henselian local subring). 2
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M. Artin has many theorems (and conjectures) stating that things that are known to
happen over the completion of a local ring happen already over the Henselization. We state
one of these.

THEOREM 4.16 Let k be a field, and let f1; : : : ; fm 2 kŒX1; : : : ; Xn; Y1; : : : ; Yr �. Let
a1; : : : ; ar 2 kŒŒX1; : : : ; Xn�� be formal power series such that

fi .X1; : : : ; Xn; a1; : : : ; ar/ D 0; i D 1; : : : ; m:

Let N 2 N. Then there exist elements b1; : : : ; br in the Henselization of

kŒX1; : : : ; Xn�.X1;:::;Xn/

such that
bj � aj mod .X1; : : : ; Xn/

N ; j D 1; : : : r I

fi .X1; : : : ; Xn; b1; : : : ; br/ D 0; i D 1; : : : ; m:

PROOF. See Artin 1973 , p48. 2

COROLLARY 4.17 The Henselization of A def
D kŒT1; : : : ; Td �.T1;:::;Td / is

B
def
D kŒŒT1; : : : ; Td �� \ k.T1; : : : ; Td /

al:

PROOF. Certainly, by construction, every element of Ah is algebraic over A, and so Ah �
B . Conversely, let ˛ 2 kŒŒT1; : : : ; Td �� be a root of a polynomial f 2 kŒT1; : : : ; Td ; X�.
For every N 2 N, there exists an a 2 Ah such that f .a/ D 0 and a � ˛ mod mNA . But
f 2 AŒX� has only finitely many roots. Thus if a � ˛ mod mNA for a large enough N ,
then a D ˛. 2

A local ring A is said to be strictly Henselian if it is Henselian and its residue field is
separably algebraically closed or, equivalently, if every monic polynomial f .T / 2 AŒT �
such that Nf .T / is separable splits into factors of degree 1 in AŒT �.

DEFINITION 4.18 Let A be a local ring. A local homomorphism A ! Ash from A into
a strictly Henselian ring Ash is a strict Henselization of A if every other local homomor-
phism from A into a strictly Henselian ringH extends to Ash, and, moreover, the extension
is uniquely determined once the map Ash=msh ! H=mH on residue fields has been spec-
ified.

For example, for a field k (regarded as a local ring), the Henselization is k itself, and
any separable algebraic closure of k is a strict Henselization of k.

Schemes

A geometric point of a schemeX is a morphism NxWSpec˝ ! X with˝ a separably closed
field. An étale neighbourhood of such a point Nx is an étale map U ! X together with a
geometric point NuW Spec˝ ! U lying over Nx. The local ring at Nx for the étale topology is

OX; Nx
def
D lim
�!.U; Nu/

� .U;OU /

where the limit is over the connected affine étale neighbourhoods .U; Nu/ of Nx.
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When X is a variety and x D Nx is a closed point of X , this agrees with the previous
definition.

Most of the results for varieties over algebraically closed fields extend mutatis mutandis
to schemes. For example, OX; Nx is a strict Henselization of OX;x .

In the remainder of these notes, the local ring for the étale topology at a geometric point
Nx of a scheme X (or variety) will be called the strictly local ring at Nx, OX; Nx .

The strictly local ring at a nonclosed point of an algebraic scheme is used in Section 15:
Cohomological Dimension.



5 SITES

In order to develop a sheaf theory, and a cohomology theory for sheaves, as for example
in Grothendieck’s 1957 Tohôku paper, it is not necessary to have a topological space in the
conventional sense. In fact, it suffices to have a category C together with, for each object
U of C, a distinguished set of families of maps .Ui ! U/i2I , called the coverings of U ,
satisfying the following axioms:

(a) for any covering .Ui ! U/i2I and any morphism V ! U in C, the fibre products16

Ui �U V exist, and .Ui �U V ! V /i2I is a covering of V ;

(b) if .Ui ! U/i2I is a covering of U , and if for each i 2 I , .Vij ! Ui /j2Ji
is a

covering of Ui , then the family .Vij ! U/i;j is a covering of U ;

(c) for any U in C, the family .U
id
�! U/ consisting of a single map is a covering of U .

In (b), the map Vij ! U is the composite of Vij ! Ui ! U .
The system of coverings is then called a (Grothendieck) topology, and C together with

the topology is called a site. If T is a site, then Cat.T/ denotes the underlying category.
For example, let X be a topological space, and let C be the category whose objects are

the open subsets of X and whose morphisms are the inclusion maps. Then the families
.Ui ! U/i2I such that .Ui /i2I is an open covering of U is a Grothendieck topology on
C. For open subsets U and U 0 of V , U �V U 0 D U \ U 0.

A presheaf of sets on a site T is a contravariant functor F WCat.T/ ! Sets. Thus,
to each object U in Cat.T/, F attaches a set F.U /, and to each morphism 'WU ! V

in Cat.T/, a map F.'/WF.V / ! F.U / in such a way that F. ı '/ D F.'/ ı F. /
and F.idU / D idF.U /. Note that the notion of a presheaf on T does not depend on the
coverings. We sometimes denote F.'/WF.V /! F.U / by a 7! ajU , although this is can
be confusing because there may be more than one morphism U ! V .

Similarly, a presheaf of (abelian) groups or rings on T is a contravariant functor from
Cat.T/ to the category of (abelian) groups or rings.

A sheaf on T is a presheaf F that satisfies the sheaf condition:

.S/ W F.U /!
Y
i2I

F.Ui /⇒
Y

.i;j /2I�I

F.Ui �U Uj /

16For X an object of a category C, C=X denotes the category whose objects are the morphisms U ! X in
C and whose arrows are the commutative diagrams

U U 0

X:

A morphism U ! U 0 making this diagram commute is also referred to as an X -morphism. The fibre product
U1 �X U2 of morphisms '1WU1 ! X , '2WU2 ! X in C is their product in the category C=X . Thus, there is
a commutative diagram

U1 �X U2 U2

U1 X

 2

 1 '2

'1

having the obvious universal property.
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is exact for every covering .Ui ! U/. Thus F is a sheaf if the map

f 7! .f jUi /WF.U /!
Y

F.Ui /

identifies F.U / with the subset of the product consisting of families .fi / such that

fi jUi �U Uj D fj jUi �U Uj

for all i; j 2 I � I .
When T is the site arising from a topological space, these definitions coincide with the

usual definitions.
A morphism of presheaves is simply a morphism of functors (alias, natural transforma-

tion) and a morphism of sheaves is a morphism of presheaves.
We now list some sites. In the remainder of this section, X will be a variety or a

scheme. A family of regular maps .'i WUi ! U/ of varieties will be said to be surjective if
U D

S
'i .Ui /, and similarly for a family of morphisms of schemes.

The Zariski site on X . The site Xzar is that associated (as above) with X regarded as a
topological space for the Zariski topology.

The étale site on X . The site Xet has as underlying category Et=X , whose objects are
the étale morphisms U ! X and whose arrows are the X -morphisms 'WU ! V . The
coverings are the surjective families of étale morphisms .Ui ! U/ in Et=X .

Variants of the étale site on X . Apparently, in Grothendieck’s original definition, the cov-
erings were taken to be surjective families of maps .Ui ! U/i2I each of which is a finite
étale map onto a Zariski open subset of U . In other words, the definition was chosen so
that being “trivial” for this topology coincides with being “isotrivial” in Serre’s terminol-
ogy (see the Introduction). This is the finite-étale topology, and the corresponding site is
denoted Xfet.17

Another variant, which was suggested by Nisnevich, and which has proved useful in
K-theory and in the study of the cohomology of group schemes takes as its coverings the
surjective families of étale maps .Ui ! U/i2I with the following property: for each u 2 U
there exists an i 2 I and ui 2 U such that map �.u/ ! �.ui / on the residue fields is an
isomorphism. The condition is imposed for all u 2 U , including the nonclosed points, and
so even for a variety over an algebraically closed field, this differs from the étale topology.
It is called the completely decomposed topology, and the corresponding site is denoted Xcd.
The local ring at a point x of X for this topology is the Henselization (rather than the strict
Henselization) of OX;x .

In the next two examples, we take X to be a scheme.

The flat site on X . The site XFl has as underlying category Sch=X , the category of all
X -schemes. The coverings are the surjective families of X -morphisms .Ui

'i
�! U/ with

each 'i flat and of finite-type.

17The correct definition was suggested to him by Artin.
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The big étale site on X . The site XEt has as underlying category Sch=X . The coverings
are the surjective families of étale X -morphisms .Ui ! U/i2I .

The site TG . To each profinite group G, there corresponds a site TG whose underlying
category is that of all finite discreteG-sets. A covering is any surjective family ofG -maps.

REMARK 5.1 (a) When U ! X is a member of a covering of X , we can think of U
as being an “open subset” of X for the “topology”. Note however that for the flat
site, U ! X and U 0 ! X may both be “open subsets” of X , but an X -morphism
U ! U 0 may not realize U as an “open subset” of U , i.e., U ! X and U 0 ! X can
be flat without U ! U 0 being flat.

(b) If all the schemes in the underlying category are quasicompact (e.g., varieties) then
one can take the coverings to be finite surjective families.

DEFINITION 5.2 Let T1 and T2 be two sites. A functor Cat.T2/ ! Cat.T1/ preserving
fibre products and transforming coverings into coverings is called a continuous map T1 !
T2.

For example, a map of topological spaces Y ! X defines a continuous map of the
corresponding sites if and only if it is continuous in the usual sense.

There are obvious continuous maps of sites

XFl ! XEt ! Xet ! Xcd ! Xzar:

IfX D Spec k with k a field, and ksep is an algebraic closure of k, then there are essentially-
inverse continuous maps

TG ! Xet; Xet ! TG

where G D Gal.kal=k/ — see �3.

REMARK 5.3 Note that a continuous map T1 ! T2 is actually a functor in the opposite
direction. This seemed so illogical to the participants in SGA 4 that they defined a contin-
uous map T1 ! T2 to be a functor Cat.T1/ ! Cat.T2/ preserving coverings. However,
this conflicts with our intuition from topological spaces and was abandoned in the published
version.

Dictionary What we have called a topology is called a pre-topology in SGA 4. There they
define a sieve (crible in French) to be a full18 subcategory containing with any object V ,
all objects of the category admitting a morphism to V . To give a topology on a category C
in the sense of SGA 4 is to give a set of sieves in C=U for each object U of C satisfying
certain natural axioms (ib. II.1). In SGA 4 a site is defined to be a category with a topology
in this sense.

Let T be a site according to the definition at the start of this section. To any covering
U D .Ui ! U/i2I one attaches the sieve s.U/whose objects are those in Cat.T/ admitting
a morphism to one of the Ui . The sieves arising from coverings define a topology in the
sense of SGA 4.

18This means that the Hom sets in the subcategory equal those in the ambient category.
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A topos is any category equivalent to the category of sheaves on a site. In SGA 4, p299,
it is argued that toposes are the natural objects of study rather than sites. However, I shall
not use the word again in these notes.

There are reasons to prefer pre-topologies to topologies and topoi. For example, the
étale and smooth pre-topologies on the category of all schemes define the same categories
of sheaves, but give different notions of “local”. See de Jong’s blog post of June 18, 2010.
In the Stacks Project, they define a site to be a category with a pre-topology.
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Let X be a variety (or scheme). According to the general definition, a sheaf F on Xet is a
contravariant functor Et=X ! Sets (or Ab, or . . . ) such that

(S): F.U /!
Y
i2I

F.Ui /⇒
Y

.i;j /2I�I

F.Ui �U Uj /

is exact for every U ! X étale and every étale covering .Ui ! U/.
Note that a sheaf F onXet defines by restriction a sheaf onUzar for everyU ! X étale.

In particular, if U D
`
Ui , then F.U / ��! ˘F.Ui /. On applying the sheaf condition in

the case that I is the empty set, one finds that F.;/ is a set with one element (or the zero
group if F is a sheaf of groups). Here ; is the empty variety (or scheme).

For a Zariski covering, the sheaf condition (S) is the familiar one. We next examine
what it means for Galois coverings.

Galois coverings

Let 'WY ! X be a morphism, and let G be a finite group. A right action of G on Y over
X is a map ˛WG ! AutX .Y / such that ˛.gh/ D ˛.h/ ı ˛.g/. If X and Y are affine, so
that ' corresponds to a map of rings A! B , then to give a right action of G on Y over X
is the same as to give a left action of G on the A-algebra B .

DEFINITION 6.1 Let Y ! X be a faithfully flat map, and let G be a finite group acting on
Y over X on the right. Then Y ! X is called a Galois covering of X with group G if the
morphism Y �G ! Y �X Y , .y; g/ 7! .y; yg/ is an isomorphism.

Here Y �G denotes a disjoint union of copies of Y indexed by the elements of G:

Y �G D
a

g
Yg ; Yg D Y:

The maps idWYg ! Y and gWYg ! Y define a map Yg ! Y �X Y and the condition in
the definition requires that these maps induce an isomorphismqYg ! Y �X Y .

If 'WY ! X is a Galois covering, then ' is surjective, finite, and étale of degree equal
to the order of G (because it becomes so after a flat base change). Conversely, it is possible
to prove that, if Y ! X is surjective, finite, and étale of degree equal to the order of
AutX .Y /, then it is Galois with group AutX .Y /.

REMARK 6.2 A morphism 'WY ! X of irreducible varieties is said to be generically
Galois if k.Y / is Galois over k.X/. Some miscreants drop the “generically” and call such
a morphism Galois.

An A-algebra B is said to be Galois if there is a group G acting on B (by A-algebra
automorphisms) in such a way that SpecB ! SpecA is Galois with group G. Explicitly,
this means that A! B is faithfully flat and that the homomorphism

B ˝A B !
Y
g2G

B; b ˝ b0 7! .� � � ; b � g.b0/; � � � /;

is an isomorphism. Here
Q
g2G B denotes a product of copies ofB indexed by the elements

of G.

42
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EXAMPLE 6.3 Let K D kŒT �=.f .T // where k is a field and f .T / is a monic irreducible
polynomial in kŒT �. If

f .T / D f1.T /
e1 � � � fr.T /

er

is the factorization of f .T / into powers of distinct irreducible polynomials in KŒT �, then

K ˝k K ' KŒT �=.f .T // '
Y

KŒT �=.fi .T /
ei /

by the Chinese Remainder Theorem. It follows that K is a Galois k-algebra if and only if
f .T / splits into distinct linear factors in KŒT �, i.e., f .T / is separable and K is its splitting
field.

For example, let f .T / be a monic irreducible separable polynomial of degree n. If
K D kŒT �=.f / is the splitting field of f , then K=k is Galois (by standard Galois theory)
with Galois group G a transitive subgroup of order n of the group of permutations of the n
roots of f .

Let Y ! X be Galois with group G. Then G acts on Y on the right, and hence, for any
presheaf P , it acts on P.Y / on the left because P is a contravariant functor.

PROPOSITION 6.4 Let Y ! X be Galois with groupG, and let F be a presheaf onXet that
takes disjoint unions to products. Then F satisfies the sheaf condition (S) for the covering
Y ! X if and only if the restriction map F.X/ ! F.Y / identifies F.X/ with the subset
F.Y /G of elements of F.Y / fixed by G.

PROOF. There is a commutative diagram

X  Y ⇔ Y �X Y

k k "�

X  Y ⇔ Y �G:

in which the projection maps .y; y0/ 7! y and .y; y0/ 7! y0 on the top row correspond
respectively to the maps .y; g/ 7! y and .y; g/ 7! yg on the bottom row. On applying F
to the diagram, we obtain a commutative diagram

F.X/ ! F.Y / ⇒ F.Y �X Y /
k k #�

F.X/ ! F.Y / ⇒
Q
g2G F.Y /

Here
Q
g2G F.Y / is a product of copies of F.Y / indexed by the elements of G, and the

maps F.Y /!
Q
g2G F.Y / are

s 7! .s; : : : ; s; : : : ; s/; s 7! .1s; : : : ; gs; : : :/

respectively. These maps agree on s 2 F.Y / if and only if gs D s for all g 2 G. 2

EXERCISE 6.5 (a) Let F be a sheaf of abelian groups on Xet, and let Y ! X be a
Galois covering with group G. Show that the complex

F.X/! F.Y /! F.Y �X Y /! F.Y �X Y �X Y /! � � �

is isomorphic to the complex of inhomogeneous cochains for G acting on F.Y / (see
CFT p62). Each map in the complex is the alternating sum of the maps given by the
various projection maps.

(b) Show that 6.3 remains true with k replaced by a local Henselian ring.
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A criterion to be a sheaf

The next result makes it easier to check that a presheaf is a sheaf.

PROPOSITION 6.6 In order to verify that a presheaf F onXet is a sheaf, it suffices to check
that F satisfies the sheaf condition (S) for Zariski open coverings and for étale coverings
V ! U (consisting of a single map) with V and U both affine.

PROOF. If F satisfies the sheaf condition for Zariski open coverings, then F.
`
Ui / DQ

F.Ui /. From this it follows that the sequence (S) for a covering .Ui ! U/i2I in which
the indexing set I is finite is isomorphic to the sequence (S) arising from a single morphism
.
`
Ui ! U/ because�a

Ui

�
�U

�a
Ui

�
D

a
.i;j /2I�I

�
Ui �U Uj

�
:

Since a finite disjoint union of affine varieties (or schemes) is again affine, the second
condition in the statement of the proposition implies that (S) is exact for coverings .Ui !
U/i2I in which the indexing set is finite and U and the Ui are affine.

For the rest of the proof, which involves only easy diagram chasing, see EC II 1.5. 2

REMARK 6.7 It is possible to show that every finite étale map V ! U is dominated by
a Galois map V 0 ! U , i.e., there exists a Galois covering V 0 ! U factoring through
V ! U and such that V 0 ! V is surjective. It follows from this and the proposition that
to verify that a presheaf F on Xfet (finite-étale topology — see �5) is a sheaf, it suffices
to check that F satisfies the sheaf condition (S) for Zariski open coverings and for Galois
coverings V ! U . These statements are not true for the étale topology.

Examples of sheaves on Xet.

Let A ! B be the homomorphism of rings corresponding to a surjective étale morphism
V ! U of affine varieties (or schemes). In checking the second condition in (6.6), we shall
usually make use only of the fact that A ! B is faithfully flat19 (i.e., we shall not need to
use that it is unramified).

The structure sheaf on Xet For any U ! X étale, define OXet.U / D � .U;OU /. Cer-
tainly, its restriction to Uzar is a sheaf for any U étale over X . That it is a sheaf on Xet

follows from Proposition 6.6 and the next proposition.

PROPOSITION 6.8 For every faithfully flat homomorphism A! B , the sequence

0! A! B
b 7!1˝b�b˝1
����������! B ˝A B

is exact.
19Recall that a flat homomorphism A ! B is faithfully flat if it satisfies one of following equivalent

conditions:

(a) if an A-module M is nonzero, then B ˝AM is nonzero;

(b) if a sequence of A-modules M 0 ! M ! M 00 is not exact, then neither is B ˝A M 0 ! B ˝A M !

B ˝AM
00;

(c) the map SpecB ! SpecA is surjective (for affine k-algebras, this is equivalent to SpecmB !

SpecmA being surjective).
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PROOF. Step 1: The statement is true if f WA! B admits a section, i.e., a homomorphism
sWB ! A such that s ı f D id.

To prove this, let kWB ˝A B ! B send b ˝ b0 7! b � f s.b0/. Then

k.1˝ b � b ˝ 1/ D f s.b/ � b:

Thus, if 1˝ b � b ˝ 1 D 0, then b D f s.b/ 2 f .A/.
Step 2: If the statement is true for a0 7! a0˝ 1WA0 ! A0˝AB , where A! A0 is some

faithfully flat homomorphism, then it is true for A! B .
The sequence for A0 ! A0˝B is obtained from that for A! B by tensoring with A0.
Step 3: The homomorphism b 7! b ˝ 1WB ! B ˝A B has a section, namely, the map

b ˝ b0 7! bb0.
Since, by assumption, A! B is faithfully flat, this completes the proof. 2

REMARK 6.9 Let K ! L be a map of fields that is Galois with group G in the above
sense. Then LG D K (by Propositions 6.4 and 6.8), and so L is Galois over K in the usual
sense (FT 3.9).

The sheaf defined by a scheme Z. An X -scheme Z defines a contravariant functor:

F WEt=X ! Sets; F.U / D HomX .U;Z/:

I claim that this is a sheaf of sets. It is easy to see that F satisfies the sheaf criterion for
open Zariski coverings. Thus it suffices to show that

Z.A/! Z.B/⇒ Z.B ˝A B/

is exact for any faithfully flat map A ! B . If Z is affine, defined say by the ring C , then
the sequence becomes

HomA-alg.C;A/! HomA-alg.C;B/⇒ HomA�alg.C;B ˝A B/

The exactness of this follows immediately from Proposition 6.8. We leave the case of a
nonaffine Z to the reader.

If Z has a group structure, then FZ is a sheaf of groups.

EXAMPLE 6.10 (a) Let �n be the variety (or scheme) defined by the single equation

T n � 1 D 0:

Then �n.U / is the group of nth roots of 1 in � .U;OU /.
(b) Let Ga be the affine line regarded as group under addition. Then Ga.U / D � .U;OU /

regarded as an abelian group.

(c) Let Gm be the affine line with the origin omitted, regarded as a group under multipli-
cation. Then Gm.U / D � .U;OU /�.

(d) Let GLn be the variety (or scheme) defined by the single equation

T � det.Tij / D 1

in the n2 C 1 variables T; T11; : : : ; Tnn. Then GLn.U / D GLn.� .U;OU //, the
group of invertible n�n-matrices with entries from the ring � .U;OU /. For example,
GL1 D Gm.
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Constant sheaves Let X be a variety or a quasi-compact scheme. For every set �, define

F�.U / D ��0.U /

— product of copies of � indexed by the set �0.U / of connected components of U . With
the obvious restriction maps, this is a sheaf, called the constant sheaf on Xet defined by �.
If � is finite, then it is the sheaf defined by scheme X � � (disjoint union of copies of X
indexed by �). When � is a group, then F� is a sheaf of groups.

The sheaf defined by a coherent OX -module. Let M be a sheaf of coherent OX -modules
onXzar in the usual sense of algebraic geometry. For every étale map 'WU ! X , we obtain
a coherent OU -module '�M on Uzar. For example, if U and X are affine, corresponding
to rings B and A, then M is defined by a finitely generated A-module M and '�M corre-
sponds to the B-module B ˝A M . There is a presheaf U 7! � .U; '�M/ on Xet, which
we denote Met. For example, .OXzar/

et D OXet . To verify that Met is a sheaf it suffices
(thanks to 6.6) to show that the sequence

0!M ! B ˝AM ⇒ B ˝A B ˝AM

is exact whenever A ! B is faithfully flat. This can be proved exactly as in the case
M D A: again one can assume that A! B has a section, which allows one to construct a
contracting homotopy.

EXAMPLE 6.11 Let X be variety over a field k. For every mophism 'WU ! X , there is
an exact sequence

'�˝1X=k ! ˝1U=k ! ˝1U=X ! 0

(Hartshorne 1977, II.8.11). If ' is étale, then ˝1
U=X

D 0, and so '�˝1
X=k
! ˝1

U=k
is

surjective—since they are locally free sheaves of the same rank, this implies20 that the map
is an isomorphism. Thus, the restriction of .˝1

X=k
/et to Uzar is ˝1

U=k
.

EXERCISE 6.12 Show that for every faithfully flat homorphismA! B andA-moduleM ,
the sequence

0!M ! B ˝AM ! B ˝A B ˝AM ! B ˝A B ˝A B ˝AM ! � � �

is exact. The map B˝i ˝AM ! B˝iC1˝AM is d i ˝ 1 where d i WB˝i ! B˝iC1 is the
alternating sum of the maps obtained by inserting a 1 in the various positions.

The sheaves on Spec.k/. Let k be a field. A presheaf F of abelian groups on .Spec k/et

can be regarded as a covariant functor Et=k ! Ab (recall Et=k is the category of étale
k-algebras). Such a functor will be a sheaf if and only if F.˘Ai / D ˚F.Ai / for every
finite family .Ai / of étale k-algebras and F.k0/ ��! F.K/Gal.K=k0/ for every finite Galois
extension K=k0 of fields with k0 of finite degree over k.

Choose a separable closure ksep of k, and let G D Gal.ksep=k/. For F a sheaf on
.Spec k/et, define

MF D lim
�!

F.k0/
20Hint: Use that a square matrix with entries in a field whose columns are linearly independent is invertible.
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where k0 runs through the subfields k0 of ksep that are finite and Galois over k. Then MF
is a discrete G-module.

Conversely, if M is a discrete G-module, we define

FM .A/ D HomG.F.A/;M/

where F.A/ is the G-set Homk�alg.A; k
sep/ (see � 3). Then FM is a sheaf on Spec k.

The functors F 7! MF and M 7! FM define an equivalence between the category of
sheaves on .Spec k/et and the category of discrete G-modules.

Stalks

Let X be a variety over an algebraically closed field, and let F be a presheaf or sheaf on
Xet. The stalk of F at a point x 2 X is

F Nx D lim
�!.U;u/

F.U /;

where the limit is over the étale neighbourhoods of x.
LetX be a scheme and let F be a presheaf or sheaf onXet. The stalk of F at a geometric

point Nx ! X is
F Nx D lim

�!.U;u/
F.U /;

where the limit is over the étale neighbourhoods of Nx.

EXAMPLE 6.13 (a) The stalk of OXet at Nx is OX; Nx , the strictly local ring at Nx.

(b) The stalk of FZ at Nx, Z a variety or a scheme of finite type over X , is Z.OX; Nx/. For
example, the stalks of �n, Ga, Gm, and GLn at Nx are �n.OX; Nx/, OX; Nx (regarded as
an abelian group), O�X; Nx , and GLn.OX; Nx/ respectively.

(c) The stalk of Met, M a coherent OX -module, at Nx is Mx ˝OX;x
OX; Nx where Mx is

the stalk of M at x (as a sheaf for the Zariski topology).

(d) For a sheaf F on Spec k, k a field, the stalk at Nx D Spec ksep ! Spec k is MF
regarded as an abelian group.

Skyscraper sheaves.

In general, a sheaf F is said to be a skyscraper sheaf if F Nx D 0 except for a finite number
of x. (Recall that Nx denotes a geometric point of X with image x 2 X ). We shall need
some special skyscraper sheaves.

Let X be a Hausdorff topological space, and let x 2 X . Let � be an abelian group.
Define

�x.U / D

�
� if x 2 U I
0 otherwise:

Then �x is a sheaf on X . Obviously the stalk of �x at y ¤ x is 0, and at x it is �. Let F
be a sheaf on X . From the definition of direct limits, we see that to give a homomorphism
Fx

def
D lim
�!U

F.U / ! � is the same as to give a compatible family of maps F.U / ! �,
one for each open neighbourhoodU of x, and to give such family is to give a map of sheaves
F ! �x . Thus

Hom.F ; �x/ ' Hom.Fx; �/:
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Now let X be a variety over an algebraically closed field, and let x 2 X . For an étale
map 'WU ! X , define

�x.U / D
M

u2'�1.x/

�:

Thus, �x.U / D 0 unless x 2 '.U /, in which case it is a sum of copies of � indexed
by the points of U mapping to x. Again, �x is a sheaf, and its stalks are zero except at
Nx, where it has stalk �. Let F be a sheaf on X , and let F Nx ! � be a homomorphism
of groups. A choice of a u 2 '�1.x/ realizes .U; u/ as an étale neighbourhood of x, and
hence determines a map F.U / ! F Nx ! �. On combining these maps for u 2 '�1.x/,
we obtain a homomorphism

F.U /! �x.U /
def
D ˚u�:

These are compatible with the restriction maps, and so define a homomorphism F ! �x .
In this way, we again obtain an isomorphism

Hom.F ; �x/ ' Hom.Fx; �/:

Let X be scheme, and let i W Nx ! X be a geometric point of X . For any étale map
'WU ! X , we define

� Nx.U / D
M

HomX . Nx;U /

�:

Again this gives a sheaf on Xet, and there is a natural isomorphism Hom.F ; � Nx/ !
Hom.F Nx; �/. However, if x def

D i. Nx/ is not closed, then it need not be true that .� Nx/ Ny D 0
when the image of Ny is not equal to x. Thus, unless x is closed,� Nx need not be a skyscraper
sheaf.

EXAMPLE 6.14 Let X D Spec k, and let Nx ! X correspond to the inclusion of k into
a separable closure ksep of k. Then � Nx is the sheaf on Xet corresponding to the discrete
G-module consisting of the continuous maps G ! � (an induced G-module — see Serre,
Cohomologie Galoisienne, 2.5.)

Locally constant sheaves

Let X be a topological space. A sheaf F on X is said to be locally constant if F jU is
constant for all U in some open covering of X .

When X is connected, locally arcwise connected, and locally simply connected, the
locally constant sheaves are classified by the fundamental group of X .

Fix a point x 2 X , and let F be a locally constant sheaf on X . Let 
 W Œ0; 1� ! X be
a continuous map with 
.0/ D x D 
.1/, i.e., 
 is a loop in X based at x. The inverse
image 
�.F/ of F on Œ0; 1� is constant. The choice of an isomorphism of 
�.F/ with
a constant sheaf � determines isomorphisms F
.a/ ! � for each 0 � a � 1. Since

.0/ D 
.1/ D x, we get two isomorphisms Fx ! �, which differ by an automorphism
˛.
/ of Fx . The map 
 7! ˛.
/ defines a homomorphism �1.X; x/ ! Aut.Fx/. The
following is well-known:

PROPOSITION 6.15 The map F 7! Fx defines an equivalence between the category of
locally constant sheaves of sets (resp. abelian groups) on X and the category of �1.X; x/-
sets (resp. modules).
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Let X be an algebraic variety (or a scheme). A sheaf F on Xet is locally constant if
F jU is constant for all U ! X in some étale covering of X .

PROPOSITION 6.16 Assume X is connected, and let Nx be a geometric point of X . The
map F 7! F Nx defines an equivalence between the category of locally constant sheaves of
sets (resp. abelian groups) with finite stalks on X and the category of finite �1.X; Nx/-sets
(resp. modules).

PROOF. In fact, one shows that, ifZ ! X is a finite étale map, then the sheaf FZ is locally
constant with finite stalks, and every such sheaf is of this form for some Z; more precisely,
Z 7! FZ defines an equivalence from FEt=X to the category of locally constant sheaves
on Xet with finite stalks. Now we can apply Theorem 3.1 to prove the proposition.

I sketch a proof of the above statement. Consider a surjective étale morphism Z !

X . As noted above 6.7, there exists a surjective finite étale map Z0 ! Z such that the
composite Z0 ! X is a Galois covering. One shows that Z �X Z0 is a disjoint union of
copies of Z0. The sheaf FZ restricts to the sheaf FZ�XZ0 on Z0, which is constant. This
shows that FZ is locally constant, and in fact becomes constant on a finite étale covering
Z0 ! Z.

Conversely, let F be a locally constant sheaf with finite fibres. By assumption, there
is an étale covering .Ui ! X/i2I such that F jUi is constant, and hence of the form FZi

for some Zi finite and étale over Ui (in fact, Zi is a disjoint union of copies of Ui ). The
isomorphisms .F jUi /jUi�XUj

�
�! .F jUj /jUi�XUj induce isomorphismsZi�Ui

.Ui�X
Uj / ! Zj �Uj

.Ui �X Uj /, and descent theory (cf. EC I 2.23) shows that the system
consisting of the Zi and the isomorphisms arises from a Z ! X . 2



7 THE CATEGORY OF SHEAVES ON Xet.

In this section, we study the category of sheaves of abelian groups on Xet. In particular, we
show that it is an abelian category.

Generalities on categories

Let T be an additive category — recall that this means that the sets Hom.A;B/ are endowed
with structures of abelian groups in such a way that the composition maps are bi-additive
and that every finite collection of objects in T has a direct sum. A sequence

0! A! B
˛
�! C

in T is exact if
0! Hom.T; A/! Hom.T; B/! Hom.T; C /

is exact for all objects T in T, in which case A is called the kernel of ˛. A sequence

A
ˇ
�! B ! C ! 0

is exact if
0! Hom.C; T /! Hom.B; T /! Hom.A; T /

is exact for all objects T in T, in which case C is called the cokernel of ˇ.
Let T be an additive category in which every morphism has both a kernel and cokernel.

Let ˛WA ! B be a morphism in T. The kernel of the cokernel of ˛ is called the image
of ˛, and the cokernel of the kernel of ˛ is called the co-image of ˛. There is a canonical
morphism from the co-image of ˛ to the image of ˛, and if this is always an isomorphism,
then T is called an abelian category.

Let T be an abelian category. On combining the two definitions, we obtain the notion
of a short exact sequence

0! A! B ! C ! 0;

and hence of a long exact sequence.
By a functor from one additive category to a second, we shall always mean an additive

functor, i.e., we require the maps Hom.X; Y /! Hom.FX; F Y / to be homomorphisms of
abelian groups.

Now let C be a small21 category, and let T be the category of contravariant functors
F WC! Ab from C to the category of abelian groups. A morphism ˛WF1 ! F2 is a natural
transformation. Thus, ˛ attaches to each object U of C a homomorphism ˛.U /WF1.U /!

F2.U / in such a way that, for every morphism 'WV ! U , the diagram

F1.U / F2.U /

F1.V / F2.V /

˛.U /

F1.'/ F2.'/

˛.V /

commutes.

21A category is small if its objects form a set (rather than a class).

50
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Clearly, T becomes an additive category with the obvious group structure on Hom.F1; F2/
and with direct sums defined by

.˚iFi /.U / D ˚iFi .U /:

We leave it as a (simple) exercise to the reader to verify the following statements:

7.1 (a) A sequence � � � ! Fi ! Gi ! Hi ! � � � of contraviant functors on C is exact
if and only if � � � ! Fi .U /! Gi .U /! Hi .U /! � � � is exact for all U in C.

(b) The category of contravariant functors on C is abelian.

REMARK 7.2 In the definition of a category, Hom.X; Y / is required to be a set (not a
class) for each pair of objects X and Y . If C is not small, then the natural transformations
˛WF ! G between two functors on C may not form a set.

Adjoint functors Let C1 and C2 be abelian categories. FunctorsLWC1 ! C2 andRWC2 !
C1 are said to be adjoint if

HomC2
.LX1; X2/ ' HomC1

.X1; RX2/;

functorially in X1 and X2. One also says that L is the left adjoint of R, and that R is the
right adjoint of L. If L admits a right adjoint, then the right adjoint is unique (up to a
unique isomorphism).

Recall that an object I of an additive category is said to be injective if Hom.�; I / is an
exact functor.

We leave it as a (simple) exercise to the reader to verify the following statements:

7.3 (a) A functor R that admits a left adjoint is left exact (and, in fact, preserves prod-
ucts and inverse limits).

(b) A functor L that admits a right adjoint is right exact (and, in fact, preserves direct
sums and direct limits).

(c) A functor R that admits an exact left adjoint preserves injectives.

The category of presheaves

Let X be a variety (or scheme). By definition, the presheaves of abelian groups on Xet are
the contravariant functors Et=X ! Ab. In order to apply the discussion in the above section
to them, we should, strictly speaking, replace Et=X by a small category. For example,
we could replace Et=X by the set of étale maps U ! X of the following form: U is
obtained by patching the varieties (or schemes) attached to quotients of rings of the form
AŒT1; T2; : : :� where A D � .V;OX / for some open affine V � X and fT1; T2; : : :g is a
fixed set of symbols. We shall ignore this problem, and speak of the category PreSh.Xet/ of
presheaves of abelian groups on Xet as if it were the category of all contravariant functors
on Et=X . It is an abelian category, in which P 0 ! P ! P 00 is exact if and only if
P 0.U / ! P.U / ! P 00.U / is exact for all U ! X étale. Kernels, cokernels, products,
direct sum, inverse limits, direct limits, etc., are formed in PreSh.Xet/ in the obvious way:
construct the kernel, cokernel, ... for each U ! X étale, and take the induced restriction
maps.
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The category of sheaves

Let X be a variety (or scheme). We define the category Sh.Xet/ to be the full subcategory
of PreSh.Xet/ whose objects are the sheaves of abelian groups on Xet. Thus, to give a
morphism F 0 ! F of sheaves on Xet is to give a natural transformation F 0 ! F of
functors. Clearly, Sh.Xet/ is an additive category. We examine what exactness means in
Sh.Xet/.

A morphism ˛WF ! F 0 of sheaves (or presheaves) is said to be locally surjective if,
for every U and s 2 F 0.U /, there exists a covering .Ui ! U/ such that sjUi is in the image
of F.Ui /! F 0.Ui / for each i .

LEMMA 7.4 Let ˛WF ! F 0 be a homomorphism of sheaves on Xet. The following are
equivalent:

(a) the sequence of sheaves F ˛
! F 0 ! 0 is exact;

(b) the map ˛ is locally surjective;

(c) for each geometric point Nx ! X , the map ˛ Nx WF Nx ! F 0
Nx is surjective.

PROOF. (b)) (a). Let ˇWF 0 ! T be a map of sheaves such that ˇ ı ˛ D 0; we have to
prove that this implies that ˇ D 0.

Let s0 2 F 0.U / for some étale U ! X . By assumption, there exists a covering .Ui !
U/i2I and si 2 F.Ui / such that ˛.si / D s0jUi . Now

ˇ.s0/jUi D ˇ.s
0
jUi / D ˇ ı ˛.si / D 0; all i:

Since T is a sheaf, this implies that ˇ.s0/ D 0.
(a) ) (c). Suppose ˛ Nx is not surjective for some Nx 2 X , and let � ¤ 0 be the

cokernel of F Nx ! F 0
Nx . Let�x be the sheaf defined in the last section; thus Hom.G; �x/ D

Hom.G Nx; �/ for any sheaf G on Xet. The map F 0
Nx ! � defines a nonzero morphism

F 0 ! �x , whose composite with F ! F 0 is zero (because it corresponds to the composite
F Nx ! F 0

Nx ! �). Therefore, F ˛
! F 0 ! 0 is not exact.

(c) ) (b). Let U ! X be étale, and let Nu ! U be a geometric point of U . The
composite Nu! U ! X is a geometric point; let’s denote it by Nx. An étale neighbourhood
of Nu gives, by composition with U ! X , and étale neighbourhood of Nx, and the étale
neighbourhoods of Nx arising in this fashion are cofinal; therefore F Nu ' F Nx for every sheaf
F on Xet.

Thus, the hypothesis implies that F Nu ! F 0
Nu is surjective for every geometric point

Nu ! U of U . Let s 2 F 0.U /. Let u 2 U , and let Nu ! U be a geometric point of U with
image u. Because F Nu ! F 0

Nu is surjective, there exists an étale map V ! U whose image
contains u and which is such that sjV is in the image F.V / ! F 0.V /. On applying this
statement for sufficiently many u 2 U , we obtain the covering sought. 2

PROPOSITION 7.5 Let
0! F 0 ! F ! F 00

be a sequence of sheaves on Xet. The following are equivalent:

(a) the sequence is exact in the category of sheaves;

(b) the sequence
0! F 0.U /! F.U /! F 00.U /

is exact for all étale U ! X ;
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(c) the sequence
0! F 0Nx ! F Nx ! F 00Nx

is exact for every geometric point Nx ! X of X .

PROOF. In the next subsection, we prove that the functor i WSh.Xet/ ! PreSh.Xet/ has a
left adjoint a. Therefore (see 7.3), i is left exact, which proves the equivalence of (a) and
(b).

Direct limits of exact sequences of abelian groups are exact, and so (b) implies (c). The
converse is not difficult, using that s 2 F.U / is zero if and only if s Nu D 0 for all geometric
points Nu of U (cf. the proof of (c) implies (b) for the preceding proposition). 2

PROPOSITION 7.6 Let
0! F 0 ! F ! F 00 ! 0

be a sequence of sheaves of abelian groups on Xet. The following are equivalent:

(a) the sequence is exact in the category of sheaves;

(b) the map F ! F 00 is locally surjective, and

0! F 0.U /! F.U /! F 00.U /

is exact for all open étale U ! X ;

(c) the sequence
0! F 0Nx ! F Nx ! F 00Nx ! 0

is exact for each geometric point Nx ! X .

PROOF. Combine the last two propositions. 2

REMARK 7.7 In (c) of the last three propositions, one need only check the condition for
one geometric point Nx ! x 2 X for each closed point x of a varietyX , or for one geometric
point Nx ! x 2 X for each point x of a scheme X .

PROPOSITION 7.8 The category of sheaves of abelian groups on Xet, Sh.Xet/, is abelian.

PROOF. The map from the co-image of a morphism to its image is an isomorphism because
it is on stalks. 2

EXAMPLE 7.9 (a) (Kummer sequence). Let n be an integer that is not divisible by the
characteristic of any residue field of X . For example, if X is a variety over a field k
of characteristic p ¤ 0, then we require that p not divide n. Consider the sequence

0! �n ! Gm
t 7!tn

����! Gm ! 0:

After (7.6) and (6.13b), in order to prove that this is exact, we have check that

0! �n.A/! A�
t 7!tn

����! A� ! 0

is exact for every strictly local ring A D OX; Nx of X . This is obvious except at the
second A�, and here we have to show that every element of A� is an nth power. But
d.T n�a/
dT

D nT n�1 ¤ 0 in the residue field of A, and so T n � a splits in AŒT �.
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(b) (Artin-Schreier sequence). Let X be a variety over a field k of characteristic p ¤ 0,
and consider the sequence

0! Z=pZ! Ga
t 7!tp�t
�����! Ga ! 0:

Again, in order to prove that this sequence is exact, we have to check that

0! Z=pZ! A
t 7!tp�t
�����! A! 0

is exact for every strictly local ring A D OX; Nx of X . This is obvious except at the
second A�, but d.T

p�T�a/
dT

D �1 ¤ 0 in the residue field of A, and so T p � T � a
splits in AŒT �.

REMARK 7.10 If p divides the characteristic of some residue field of X , then

0! �p ! Gm
t 7!tp

����! Gm ! 0

will not be exact for the étale topology onX . However, it will be exact for the flat topology,
because, for any a 2 � .U;OU /, U affine, the equation T p � a defines a flat covering of
U . Thus each element of Gm.U / is locally a pth power for the flat topology.

The sheaf associated with a presheaf

In this subsection, “sheaf” (or “presheaf”) will mean sheaf (or presheaf) of sets.

DEFINITION 7.11 Let P ! aP be a homomorphism from a presheaf P to a sheaf (on
some site); then aP is said to be the sheaf associated with P (or to be the sheafification of
P) if all other homomorphisms from P to a sheaf factor uniquely through P ! aP , i.e., if
Hom.P;F/ ' Hom.aP;F/ for all sheaves F .

Clearly aP , endowed with the map P ! aP , is unique up to a unique isomorphism if
it exists. In the remainder of this subsection, we construct aP in various contexts. First we
give a criterion for F to be the sheaf associated with P .

Let P be a presheaf. Sections s1; s2 2 P.U / are said to be locally equal if s1jUi D
s2jUi for all Ui in some covering .Ui ! U/i2I of U . The sheaf criterion implies that
locally equal sections of a sheaf are equal.

LEMMA 7.12 Let i WP ! F be a homomorphism from presheaf P to a sheaf F . Assume:

(a) the only sections of P to have the same image in F.U / are those that are locally
equal, and

(b) i is locally surjective.

Then .F ; i/ is the sheaf associated with P .

PROOF. Let i 0WP ! F 0 be a second map from P into a sheaf, and let s 2 F.U / for
some U . Thanks to (b), we know that for some covering .Ui ! U/ of U , there exist
si 2 P.Ui / such that i.si / D sjUi . Because of (a), i 0.si / 2 F 0.Ui / is independent of the
choice of si , and moreover that the restrictions of i 0.si / and i 0.sj / to F 0.Ui �U Uj / agree.
We define ˛.s/ to be the unique element of F 0.U / that restricts to i 0.si / for all i . Then
s 7! ˛.s/WF ! F 0 is the unique homomorphism such that i ı ˛ D i 0. 2
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LEMMA 7.13 Let P be a subpresheaf of a sheaf F . For each U , let P 0.U / be the set of
s 2 F.U / that are locally in P in the sense that there exists a covering .Ui ! U/i2I such
that sjUi 2 P.Ui / for each i . Then P 0 is a subsheaf of F , and P ! P 0 is locally surjective.

PROOF. The proof is trivial. 2

We call P 0 the subsheaf of F generated by P .
To construct aP , it suffices to construct a sheaf F and a homomorphism P ! F

satisfying (7.12a), because then the subsheaf of F generated by the image of P will be the
sheaf associated with P .

We now work with sheaves on Xet.

LEMMA 7.14 If i WP ! F satisfies the conditions (a) and (b) of Lemma 7.12, then

i Nx WP Nx ! F Nx

is an isomorphism for all geometric points Nx.

PROOF. This follows easily from the various definitions. 2

For each x 2 X , choose a geometric point Nx ! X with image x. For P a presheaf on
X , define P� D

Q
.P Nx/ Nx where .P Nx/ Nx is the sheaf associated with the abelian group P Nx as

in �6. Then P� is a sheaf, and the natural map P ! P� satisfies condition (a) of (7.12).

THEOREM 7.15 For every presheaf P on Xet, there exists an associated sheaf i WP ! aP .
The map i induces isomorphisms P Nx ! .aP/ Nx on the stalks. The functor aWPreSh.Xet/!

Sh.Xet/ is exact.

PROOF. Take aP to be the subsheaf of P� generated by i.P/. Then i WP ! aP satisfies
the conditions (a) and (b) of Lemma 7.12, from which the first two statements follow. If
P 0 ! P ! P 00 is an exact sequence of abelian groups, then P 0

Nx ! P Nx ! P 00
Nx is exact

for all x 2 X (because direct limits of exact sequences of abelian groups are exact). But
the last sequence can be identified with .aP 0/ Nx ! .aP/ Nx ! .aP 00/ Nx , which shows that
aP 0 ! aP ! aP 00 is exact. 2

EXAMPLE 7.16 A group � defines a constant presheaf P� such that P�.U / D � for all
U ¤ ;. The sheaf associated with P� is F� (see �6).

If P is a sheaf of abelian groups, then so also is aP .

REMARK 7.17 Let .Fi /i2I be a family of sheaves of abelian groups on Xet.
Let P be the presheaf with P.U / D

Q
i2I Fi .U / for all U ! X étale and the obvious

restriction maps. Then P is a sheaf, and it is the product of the Fi . A similar remark applies
to inverse limits and kernels.

Let P be the presheaf with P.U / D ˚i2IFi .U / for all U ! X étale and the obvious
restriction maps. In general, P will not be a sheaf, but aP is the direct sum of the Fi in
Sh.Xet/. A similar remark applies to direct limits and cokernels.

Lest the reader think that the category of sheaves is “just like the category of abelian
groups”, let me point out that in general it does not have enough projectives; nor is a product
of exact sequences of sheaves necessarily exact.
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ASIDE 7.18 Let P be a presheaf of sets on a topological space X . Define E.P/ to be
F
x2X Px ,

and let � WE.P/! X be the map sending each element of Px to x. An s 2 P.U / defines a section
sWU ! E.P/ to � over U , namely, x 7! sx . Give E.P/ the finest topology for which all the maps
sWU ! E.P/ are continuous: thus V � E.P/ is open if and only if, for all open U � X and
s 2 P.U /, s�1.V / is open in U .

[The reader is invited to draw a picture with X represented as a horizontal line and each stalk
Px represented as a short vertical line over x; the origin of the terminology “sheaf”, “stalk”, and
“section” should now be clear.]

For each open subset U of X , let F.U / be the set of all continuous sections sWU ! E.P/ to
� over U . The obvious map P ! F realizes F as the sheaf associated with P . [The space E.P/
is the “éspace étalé” associated with P — see Godement, R., Théorie des Faisceaux, Hermann,
1964, II 1.2. It is possible to avoid using these spaces — in fact, Grothendieck has banished them
from mathematics — but they are quite useful, for example, for defining the inverse image of a
sheaf. Interestingly, there is an analogue (requiring algebraic spaces) for the étale topology, which is
useful, for example, for defining the actions of Frobenius maps on cohomology groups. This aspect
is insufficiently emphasized in this version of the notes.

ASIDE 7.19 A presheaf of sets P on a site T is said to be separated if two sections are equal
whenever they are locally equal. For a presheaf P , define PC to be the presheaf with

PC.U / D lim
�!

Ker
�Y

P.Ui /⇒
Y

P.Ui �X Uj /
�
;

— limit over all coverings (assuming the limit exists). One proves without serious difficulty that:

(a) if P is separated, then PC is a sheaf;

(b) for an arbitrary P , PC is separated.

Thus, for every presheaf P , PCC is a sheaf. In fact, it is the sheaf associated with P .
As Waterhouse has pointed out (Pac. J. Math 57 (1975), 597–610), there exist sites for which

the limit does not exist: the problem is that the limit is over a class, not a set, and can not be replaced
by a limit over a set. This doesn’t seem to be a problem for any sites actually in use except perhaps
for the fpqc site.

Artin algebraic spaces.

The Zariski topology allows us to patch together affine varieties to obtain general varieties.
One can ask whether the étale topology allows us to patch together affine varieties to obtain
more general objects. The answer is yes!

For simplicity, I’ll work over a fixed algebraically closed field k, and consider only
k-varieties.

Endow Aff=k, the category of all affine k-varieties, with the étale topology. A sheaf
on this site is a contravariant functor AWAff=k ! Sets that satisfies the sheaf condition
for every surjective family of étale maps .Ui ! U/i2I in Aff=k. Note that A can also be
regarded as a covariant functor from affine k-algebras to Sets. For every k-variety V , the
functor A 7! V.A/ sending an affine k-algebra to the set of points of V with coordinates
in A is a sheaf on .Aff=k/et; moreover, because of the Yoneda Lemma, the category of
k-varieties can be regarded as a full subcategory of the category of sheaves on .Aff=k/et.

Let U be an affine k-variety. An étale equivalence relation on U is a subvariety R �
U � U such that:

(a) for each affine k-algebra A, R.A/ is an equivalence relation on U.A/ (in the usual
sense—these are sets);
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(b) the composites of the inclusion R ,! U � U with the projection maps U � U ⇒ U

are surjective and étale.

A sheaf A on .Aff=k/et is an algebraic space if there is an affine k-variety U , an étale
equivalence relation R on U , and a map U ! A of sheaves realizing A as the sheaf-
theoretic quotient of U by R. This last condition means that,

(a) for every affine k-algebra A and s1; s2 2 U.A/, s1 and s2 have the same image in
A.A/ if and only if .s1; s2/ 2 R.A/;

(b) the map U ! A of sheaves is locally surjective.

The category of algebraic varieties is a full subcategory of the category of algebraic
spaces. Algebraic spaces have many advantages over algebraic varieties, of which I mention
only two.

Quotients of algebraic spaces by group actions are more likely to exist. For example,
Hironaka has constructed a nonsingular 3-dimensional variety V and a free action of a group
G of order 2 on V such that the quotient V=G does not exist as an algebraic variety (the
problem is that there exist orbits of G not contained in any affine). Quotients of algebraic
spaces by free actions of finite groups always exist as algebraic spaces (Artin 1973, p109).
For a very general theorem on the existence of quotients of algebraic spaces, see Keel, S.,
and Mori, S., Quotients by groupoids, Annals of Mathematics, 145 (1997), 193–213.

There is a natural fully faithful functor V ! V.C/ from the category of complete
algebraic varieties over C to that of compact analytic spaces, but there is no convenient
description of the essential image of the functor. For the category of complete algebraic
spaces there is: it consists of compact analytic spaces M such that the field of meromor-
phic functions on M has transcendence degree equal to the dimension of M (these are the
Moishezon spaces).

Addendum

Let X be a variety (or quasicompact scheme). Then every open subset U of X is quasi-
compact, i.e., every covering of U by open subsets U D

S
Ui admits a finite subcovering.

Moreover, because I defined an étale morphism to be of finite type (rather than locally of
finite type), every U étale over X is quasicompact. Because étale morphisms are open, this
implies that every étale covering .Ui ! U/i2I has a finite subcovering. Sites such that
every covering family contains a finite covering subfamily are said to be Noetherian. Note
that the site defined by a topological space X will rarely be Noetherian: if X is Hausdorff,
its site will be Noetherian if and only if every open subset of X is compact.

7.20 For a Noetherian site, in order to prove that a presheaf is a sheaf, it suffices to check
the sheaf condition for finite coverings. It follows that direct sums and direct limits of
sheaves formed in the naive (i.e., presheaf) way are again sheaves, and from this it follows
that cohomology commutes with direct sums and direct limits (over directed sets). See EC
III.3.
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Direct images of sheaves

Let � WY ! X be a morphism of varieties (or schemes), and let P be a presheaf on Yet. For
U ! X étale, define

��P.U / D P.U �X Y /:
Since U �X Y ! Y is étale (see 2.11), this definition makes sense. With the obvious
restriction maps, ��P becomes a presheaf on Xet.

LEMMA 8.1 If F is a sheaf, so also is ��F .

PROOF. For a variety (or scheme) V overX , let VY denote the variety (or scheme) V �X Y
over Y . Then V 7! VY is a functor taking étale maps to étale maps, surjective families of
maps to surjective families, and fibre products over X to fibre products over Y .

Let .Ui ! U/ be a surjective family of étale maps in Et=X . Then .UiY ! UY / is a
surjective family of étale maps in Et=Y , and so

F.UY /!
Y

F.UiY /⇒
Y

F.UiY �Y UjY /

is exact. But this is equal to the sequence

.��F/.U /!
Y
.��F/.Ui /⇒

Y
.��F/.Ui �X Uj /;

which therefore is also exact. 2

Obviously, the functor

��WPreSh.Yet/! PreSh.Xet/

is exact. Therefore, its restriction

��WSh.Yet/! Sh.Xet/

is left exact. It is not usually right exact: F ! F 0 being locally surjective does not imply
that ��F ! ��F 0 is locally surjective. For example, if X is an algebraic variety over an
algebraically closed field and � WX ! P is the map fromX to a point, then �� is essentially
the functor taking a sheaf F to its group of global sections � .X;F/, and F ! F 0 being
locally surjective does not imply that � .X;F/! � .X;F 0/ is surjective.

EXAMPLE 8.2 Let i W Nx ! X be a geometric point of X . The functor F 7! F. Nx/ identifies
the category of sheaves on Nx with the category of abelian groups. Let� be an abelian group
regarded as a sheaf on Nx. Then i�� D � Nx , the skyscraper sheaf defined in the �6.

A geometric point Ny ! Y of Y defines a geometric point Ny ! Y
�
�! X of X , which

we denote Nx (or �. Ny/). Clearly

.��F/ Nx D lim
�!

F.V /

where the limit is over all étale neighbourhoods of Ny of the form UY for some étale neigh-
bourhood of Nx. Thus, there is a canonical map

.��F/ Nx ! F Ny :

In general, this map will be neither injective nor surjective.

58
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PROPOSITION 8.3 (a) Let � WV ,! X be an open immersion, i.e., the inclusion of an
open subvariety (or subscheme) into X . Then

.��F/ Nx D
�

F Nx x 2 V I

‹ x … V:

(b) Let � WZ ,! X be a closed immersion, i.e., the inclusion of a closed subvariety (or
subscheme) into X . Then

.��F/ Nx D
�

F Nx x 2 ZI

0 x … Z:

(c) Let � WY ! X be a finite map. Then

.��F/ Nx D ˚y 7!xFd.y/Ny

where d.y/ is the separable degree of �.y/ over �.x/. For example, if � is a finite
étale map of degree d of varieties over an algebraically closed field, then

.��F/ Nx D FdNx :

PROOF. When � WV ,! X is an immersion (either open or closed), the fibre product U �X
V D '�1.V / for any morphism 'WU ! X .

(a) If x 2 V , then for any “sufficiently small” étale neighbourhood 'WU ! X of Nx,
'.U / � V , and so U D '�1.V / D U �X V: Thus the étale neighbourhoods of Nx of the
form UV form a cofinal set, which proves the first equality. Concerning the second, there
is nothing to say except to point out that .��F/ Nx need not be zero when x … V (see the
examples below).

(b) If x … Z, then for any “sufficiently small” étale neighbourhood 'WU ! X of Nx,
'.U / \ Z D ;; and so U �X Z D '�1.Z/ D ;; thus F.UZ/ D 0. When x 2 Z,
we have to see that every étale map N'W NU ! Z with x 2 '. NU/ “extends” to an étale
map 'WU ! X . In terms of rings, this amounts to showing that an étale homomorphism
NA ! NB , NA D A=a, lifts to an étale homomorphism A ! B . But this is easy: we may

assume that NB D . NAŒT �=. Nf .T // Nb where Nf .T / is a monic polynomial such that Nf 0.T / is
invertible in . NAŒT �=. Nf .T // Nb—see �2 (standard étale morphisms); choose f .T / 2 AŒT �
lifting Nf .T /, and set B D .AŒT �=.f .T //b for an appropriate b.

(c) We omit the proof. 2

COROLLARY 8.4 The functor �� is exact if � is finite or a closed immersion.

PROOF. This follows from the proposition and (7.6). 2

EXAMPLE 8.5 We list some examples, all analogues.

(a) Let X be an open disk of radius 1 centred at the origin in R2, let U D X r f.0; 0/g,
and let j be the inclusion U ,! X . Let F be the locally constant sheaf on U
corresponding to a �1.U; u/-module F — recall �1.U; u/ D Z (see 6.15; here u is
any point of U ). Then

.j�F/.0;0/ D F �1.U;u/(elements fixed by �1):
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(b) Let X be the affine line over an algebraically closed field, let U D X r f0g, and let
j be the inclusion U ,! X . Let F be the locally constant sheaf on U corresponding
to a �1.U; Nu/-module F — recall �1.U; Nu/ D OZ. Then

.j�F/ N0 D F
�1.U; Nu/(elements fixed by �1):

(c) Let X D SpecR where R is a Henselian discrete valuation ring, let U D SpecK
where K is the field of fractions of R, and let j be the inclusion U ,! X . Let
F be the locally constant sheaf on U corresponding to a �1.U; Nu/-module F —
recall �1.U; Nu/ D Gal.Ksep=K/. Here Nu is the geometric point corresponding to
the inclusion K ,! Ksep. Let I (the inertia group) be the subgroup of �1.U; Nu/ of
elements acting trivially on the residue field. Then

.j�F/ Nx D F I (elements fixed by I )

where x is the closed point of SpecR.

PROPOSITION 8.6 For any morphisms Z
�
�! Y

� 0

�! X , .� 0 ı �/� D � 0� ı ��.

PROOF. This is obvious from the definition. 2

Inverse images of sheaves

Let � WY ! X be a morphism of varieties (or schemes). We shall define a left adjoint for
the functor ��. Let P be a presheaf on Xet. For V ! Y étale, define

P 0.V / D lim
�!

P.U /

where the direct limit is over the commutative diagrams

V U

Y X

with U ! X étale. One sees easily that, for any presheaf Q on Y , there are natural one-to-
one correspondences between

– morphisms P 0 ! Q;

– families of maps P.U / ! Q.V /, indexed by commutative diagrams as
above, compatible with restriction maps;

– morphisms P ! ��Q.
Thus

HomYet.P
0;Q/ ' HomXet.P; ��Q/;

functorially in P and Q. Unfortunately, P 0 need not be a sheaf even when P is. Thus, for
F a sheaf on Xet, we define ��F D a.F 0/. Then, for any sheaf G on Yet,

HomYet.�
�F ;G/ ' HomYet.F

0;G/ ' HomXet.F ; ��G/;

and so �� is a left adjoint to ��WSh.Yet/! Sh.Xet/.
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PROPOSITION 8.7 For any morphisms Z
�
�! Y

� 0

�! X , .� 0 ı �/� D �� ı � 0�.

PROOF. Both are left adjoints of .� 0 ı �/� D � 0� ı ��. 2

EXAMPLE 8.8 Let � WU ! X be an étale morphism. For any sheaves F on Xet and G on
Uet, one sees easily that

Hom.F jUet;G/ ' Hom.F ; ��G/

—in both cases, to give a morphism is to give a family of maps F.V / ! G.V / in-
dexed by the étale maps V ! U and compatible with restriction. Therefore, in this case
��WSh.Xet/! Sh.Uet/ is just the restriction map.

This can also be seen directly from the definition ��, because for each V ! U , there
is a final element in the family of diagrams over which the limit is taken, namely,

V V

U X:

REMARK 8.9 Let i W Nx ! X be a geometric point ofX . For any sheaf F onXet, .i�F/. Nx/ D
F Nx — this is clear from the definitions of i� and F Nx . Therefore, for any morphism
� WY ! X and geometric point i W Ny ! Y of Y ,

.��F/ Ny D i�.��F/. Ny/ D F Nx;

where Nx is the geometric point Ny
i
�! Y

�
�! X of X .

Since this is true for all geometric points of Y , we see that �� is exact and therefore
that �� preserves injectives (by 7.3).

REMARK 8.10 Let FZ be the sheaf on Xet defined by a variety Z. Then it is not always
true that ��.FZ/ is the sheaf defined by the variety Z �Y X . For example, if � WX ! P

is a map from a variety over an algebraically closed field k to a point, then ��.Ga/ is the
constant sheaf defined by the group Ga.k/ D k.

However, it is true that ��.FZ/ D FZ�YX when � is étale or Z ! X is étale.

REMARK 8.11 For a continuous map � WY ! X of topological spaces, there is a very
simple description of the inverse image of a sheaf in terms of its associated éspace étalé,
namely, ��.F/ is the sheaf whose sections over an open subset U � Y are the continous
maps sWU ! E.F/ such that s.u/ lies in the stalk over �.u/ for all u.

Existence of enough injectives

Let X be a variety (or scheme).

PROPOSITION 8.12 Every sheaf F on Sh.Xet/ can be embedded into an injective sheaf.

PROOF. For each x 2 X , choose a geometric point ix W Nx ! X with image x and an
embedding F Nx ,! I.x/ of the abelian group F Nx into an injective abelian group. Then
Ix def
D ix�.I.x// is injective (see 8.9). Since a product of injective objects is injective,

I def
D
Q

Ix will be an injective sheaf. The composite F ,! P� ,! I is the embedding
sought. 2
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Extension by zero.

Let X be a variety (or scheme), and let j WU ,! X be an open immersion. As we noted
above, for a sheaf F on Uet, the stalks of j�F need not be zero at points outside U . We
now define a functor jŠ, “extension by zero”, such that jŠF does have this property.

Let P be a presheaf on Uet. For any 'WV ! X étale, define

PŠ.V / D
�

P.V / if '.V / � U I
0 otherwise:

Then PŠ is a presheaf on Xet, and for any other presheaf Q on Xet, a morphism P ! QjU
extends uniquely to a morphism PŠ ! Q (obviously). Thus

HomXet.PŠ;Q/ ' HomUet.P;QjU/

functorially. Unfortunately, PŠ need not be a sheaf even when P is. Thus, for F a sheaf on
Uet, we define jŠF to be a.FŠ/. Then, for any sheaf G on Xet,

HomXet.jŠF ;G/ ' HomXet.FŠ;G/ ' HomUet.F ;GjU/;

and so jŠ is a left adjoint to j �WSh.Xet/! Sh.Uet/.

PROPOSITION 8.13 Let j W U ,! X be an open immersion. For any sheaf F on Uet and
geometric point Nx ! X ,

.jŠF/ Nx D
�

F Nx x 2 U I

0 x … U:

PROOF. Because of (7.14), it suffices to prove this with jŠF replaced by FŠ, in which case
it follows immediately from the definitions. 2

COROLLARY 8.14 The functor jŠW Sh.Uet/ ! Sh.Xet/ is exact, and j � preserves injec-
tives.

PROOF. The first part of the statement follows from the proposition and (7.6), and the
second part follows from the first part and (7.3). 2

Let Z be the complement of U in X , and denote the inclusion Z ,! X by i . Let F be
a sheaf on Xet. There is a canonical morphism jŠj

�F ! F , corresponding by adjointness
to the identity map on j �F , and a canonical morphism F ! i�i

�F , corresponding by
adjointness to the identity map on i�F .

PROPOSITION 8.15 For any sheaf F on X , the sequence

0! jŠj
�F ! F ! i�i

�F ! 0

is exact.

PROOF. This can be checked on stalks. For x 2 U , the sequence of stalks is

0! F Nx
id
�! F Nx ! 0! 0;

and for x … U , the sequence of stalks is

0! 0! F Nx
id
�! F Nx ! 0:

Both are visibly exact. 2
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REMARK 8.16 It is possible to define jŠ for any étale map j W U ! X . Let F be a sheaf
on Uet. For any 'W V ! X étale, define

FŠ.V / D
L
˛ F.V /

where the sum is over the morphisms ˛W V ! U such that j ı˛ D '. Then FŠ is a presheaf
on Xet, and we define jŠF to be its associated sheaf. Again jŠ is the left adjoint of j � and
is exact. Hence j � preserves injectives.

Sheaves on X D U [Z.

Let X be a variety (or scheme), and let

U
j
�! X

i
 � Z

be morphisms with j an open immersion, i a closed immersion, and X D j.U / [ i.Z/.
We identify U and Z with subvarieties (or subschemes) of X .

From a sheaf F on Xet, we obtain sheaves F1
def
D i�F on Z and F2 D j �F on U .

Moreover, there is a canonical homomorphism F ! j�j
�F corresponding by adjointness

to the identity map of j �F . On applying i� to it, we obtain a morphism �F W F1 ! i�j�F2.
Let T r.X;U;Z/ be the category whose objects are the triples .F1;F2; �/ with F1 a

sheaf on Zet, F2 a sheaf on Uet, and � a map F1 ! i�j�F2. A morphism .F1;F2; �/!
.F 01;F 02; �0/ is a pair of morphisms  1W F1 ! F 01 and  2W F2 ! F 02 such that the
following diagram commutes

F1 i�j�F2

F 01 i�j�F 02:

�

�0

PROPOSITION 8.17 The functor F 7! .F1;F2; �F / is an equivalence Sh.Xet/! T r.X;U;Z/.

PROOF. An essential inverse is provided by the functor

.F1;F2; �/ 7! i�F1 �i�i�j�F2
j�F2:

See EC p74 for the details. 2

Under this category equivalence,

0! jŠj
�F ! F ! i�i

�F ! 0

corresponds to the exact sequence

0! .0; j �F ; 0/! .i�F ; j �F ; �F /! .i�F ; 0; 0/! 0:

The sequence splits if and only if �F D 0.
Let Y be a subset of X . We say that a sheaf F has support in Y if F Nx D 0 whenever

x … Y .

COROLLARY 8.18 For any closed immersion i W Z ,! X , i� defines an equivalence be-
tween the category of sheaves on Zet and the category of sheaves on Xet with support in
Z.

PROOF. This follows from the proposition and the obvious fact that F has support in Z if
and only if it corresponds to a triple of the form .F1; 0; 0/. 2
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In the last section, we showed that the category of sheaves of abelian groups Sh.Xet/ is an
abelian category with enough injectives. The functor

F 7! � .X;F/WSh.Xet/! Ab

is left exact, and we define H r.Xet;�/ to be its r th right derived functor. Explicitly, for a
sheaf F , choose an injective resolution

0! F ! I0 ! I1 ! I2 ! � � � ;

and apply the functor � .X;�/ to obtain a complex

� .X; I0/! � .X; I1/! � .X; I2/! � � � :

This is no longer exact (in general), and H r.Xet;F/ is defined to be its r th cohomology
group. The theory of derived functors shows:

(a) for any sheaf F , H 0.Xet;F/ D � .X;F/;
(b) if I is injective, then H r.Xet; I/ D 0 for r > 0;

(c) a short exact sequence of sheaves

0! F 0 ! F ! F 00 ! 0

gives rise to a long exact sequence

0! H 0.Xet;F 0/! H 0.Xet;F/! H 0.Xet;F 00/! H 1.Xet;F 0/! � � � ;

and the association of the long exact sequence with the short exact sequence is func-
torial.

Moreover, the functors H r.Xet;�/ are uniquely determined (up to a unique isomorphism)
by the properties (a), (b), (c).

REMARK 9.1 We shall make frequent use of the following statement:
LetL D L2ıL1 whereL1 andL2 are both left exact functors from abelian cat-
egories with enough injectives. If L1 preserves injectives and .RrL1/.X/ D 0
for some object X , then .RrL/.X/ D .RrL2/.L1X/.

The proof is obvious: choose an injective resolution X ! I � of X , and note that the
hypotheses on L1 imply that L1X ! L1I

� is an injective resolution of L1X , which can
be used to compute .RrL2/.L1X/. Now both .RrL/.X/ and .RrL2/.L1X/ are the r th
cohomology groups of L2.L1I �/ D LI �.

REMARK 9.2 Let 'W U ! X be an étale morphism. As we noted in (8.16), '�W Sh.Xet/!

Sh.Uet/ is exact and preserves injectives. Since the composite

Sh.Xet/
'�

��! Sh.Uet/
� .U;�/
�����! Ab

is � .U;�/ (recall that in this situation, '� is just restriction), we see that the right derived
functors of F 7! F.U /W Sh.Xet/ ! Ab are F 7! H r.Uet;F jU/. We often denote
H r.Uet;F jU/ by H r.Uet;F/.

64
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REMARK 9.3 Let 'WY ! X be a morphism. We know that '� is exact (see 8.9), and
therefore a short exact sequence

0! F 0 ! F ! F 00 ! 0

of sheaves on X gives rise to a long exact sequence

0! H 0.Yet; '
�F 0/! � � � ! H r.Yet; '

�F 0/! H r.Yet; '
�F/! H r.Y; '�F 00/! � � �

of cohomology groups. By the universal property of derived functors (Weibel 2.4.7), the
natural map H 0.Xet;F/ ! H 0.Yet; '

�F/ extends uniquely to a family of natural maps
H r.Xet;F/! H r.Yet; '

�F/ compatible with the boundary maps.

In the remainder of this section, we verify that analogues of the Eilenberg-Steenrod
axioms hold.

The dimension axiom.

Let x D Spec k for some field k, and let Nx D Spec ksep for some separable closure ksep of
k. As we observed in �6, the functor

F 7!MF
def
D F Nx

defines an equivalence from the category of sheaves on xet to the category of discrete G-
modules where G D Gal.ksep=k/. Since .MF /

G D � .x;F/, the derived functors of
M 7!MG and F 7! � .x;F/ correspond. Thus

H r.x;F/ ' H r.G;MF /:

In order to have
H r.x;F/ D 0; for r > 0; for all F ;

as the dimension axiom demands, we should take x to be a geometric point, i.e., the spec-
trum of a separably closed field. Thus, as we have already seen in other contexts, it is
a geometric point that plays the role for the étale site that a point plays for a topological
space.

The exactness axiom

Let Z be a closed subvariety (or subscheme) of X , and let U D X r Z. For any sheaf F
on Xet, define

�Z.X;F/ D Ker.� .X;F/! � .U;F//:

Thus �Z.X;F/ is the group of sections of F with support on Z. We sometimes omit the
X from the notation. The functor F 7! �Z.X;F/ is obviously left exact, and we denote
its r th right derived functor by H r

Z.X;�/ (cohomology of F with support on Z).

THEOREM 9.4 For any sheaf F on Xet and closed Z � X , there is a long exact sequence

� � � ! H r
Z.X;F/! H r.X;F/! H r.U;F/! H rC1

Z .X;F/! � � � :

The sequence is functorial in the pairs .X;X rZ/ and F .

We shall prove this in the next subsection.
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Ext-groups

For a fixed sheaf F0,
F 7! HomX .F0;F/WSh.Xet/! Ab:

is left exact, and we denote its r th right derived functor by Extr.F0;�/. Thus,

(a) for any sheaf F , Ext0.F0;F/ D Hom.F0;F/;
(b) if I is injective, then Extr.F0; I/ D 0 for r > 0;

(c) a short exact sequence of sheaves

0! F 0 ! F ! F 00 ! 0

gives rise to a long exact sequence

� � � ! ExtrX .F0;F
0/! ExtrX .F0;F/! ExtrX .F0;F

00/! � � �

and the association of the long exact sequence with the short exact sequence is func-
torial.

EXAMPLE 9.5 Let Z denote the constant sheaf on X . For any sheaf F on X , the map
˛ 7! ˛.1/ is an isomorphism HomX .Z;F/

�
�! F.X/. Thus HomX .Z;�/ ' � .X;�/,

and so ExtrX .Z;�/ ' H
r.Xet;�/.

Because HomX .F0;�/ is functorial in F0, so also is ExtrX .F0;�/.

PROPOSITION 9.6 A short exact sequence

0! F 00 ! F0 ! F 000 ! 0

of sheaves on Xet gives rise to a long exact sequence

� � � ! ExtrX .F
00
0 ;F/! ExtrX .F0;F/! ExtrX .F

0
0;F/! � � �

for any sheaf F .

PROOF. If I is injective, then

0! HomX .F 000 ; I/! HomX .F0; I/! HomX .F 00; I/! 0

is exact. For any injective resolution F ! I� of F ,

0! HomX .F 000 ; I�/! HomX .F0; I�/! HomX .F 00; I�/! 0

is an exact sequence of complexes, which, according to a standard result in homological
algebra, gives rise to a long exact sequence of cohomology groups,

� � � ! ExtrX .F
00
0 ;F/! ExtrX .F0;F/! ExtrX .F

0
0;F/! � � � : 2
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We now prove Theorem 9.4. Let

U
j
�! X

i
 � Z

be as in the statement of the Theorem. Let Z denote the constant sheaf on X defined by Z,
and consider the exact sequence (8.15)

0! jŠj
�Z! Z! i�i

�Z! 0: .�/

For any sheaf F on Xet,

HomX .jŠj
�Z;F/ D HomU .j

�Z; j �F/ D F.U /;

and so ExtrX .jŠj
�Z;F/ D H r.Uet;F/. From the exact sequence

0! Hom.i�i
�Z;F/! Hom.Z;F/! Hom.jŠj

�Z;F/

we find that HomX .i�i
�Z;F/ D �Z.X;F/, and so ExtrX .i�i

�Z;F/ D H r
Z.X;F/.

Therefore, the long exact sequence sequence of Ext’s corresponding to .�/, as in (9.6),
is the sequence required for Theorem 9.4.

Excision

Excision for topological spaces says that cohomology with support on Z should depend
only on a neighbourhood of Z in X , e.g., replacing X with an open neighbourhood of
Z shouldn’t change H r

Z.X;F/. The following is the analogous statement for the étale
topology.

THEOREM 9.7 (EXCISION) Let � W X 0 ! X be an étale map and let Z0 � X 0 be a closed
subvariety (or scheme) of X 0 such that

(a) Z
def
D �.Z0/ is closed in X , and the restriction of � to Z0 is an isomorphism of Z0

onto Z, and

(b) �.X 0 rZ0/ � X rZ.

Then, for any sheaf F on Xet, the canonical map H r
Z.Xet;F/ ! H r

Z0.X
0
et;F jX 0/ is

an isomorphism for all r .

PROOF. Let U 0 D X 0 rZ0 and U D X rZ. We have a commutative diagram

U 0 X 0 Z0

U X Z:

j 0

�

i 0

�

j i

This gives rise to a diagram

0 �Z0.X
0; ��F/ � .X 0; ��F/ � .U 0; ��F/

0 �Z.X;F/ � .X;F/ � .U;F/:
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The first vertical arrow is induced by the remaining two. Because �� is exact and preserves
injectives, it suffices to prove the theorem for r D 0, i.e., to prove that the map �Z.X;F/!
�Z0.X

0;F jX 0/ in the above diagram is an isomorphism.
Suppose s 2 �Z.X;F/ maps to zero in �Z0.X 0;F jX 0/. Then s, regarded as an

element of � .X;F/, restricts to zero in � .X 0;F/ and � .U;F/. As the pair of maps
.X 0 ! X;U ! X/ is a covering of X and F is a sheaf, this implies that s D 0.

Let s0 2 �Z0.X 0;F jX 0/, and regard it as an element of � .X 0;F/. We have to find
an s 2 � .X;F/ restricting to s0 in � .X 0;F/ and 0 in � .U;F/. The sheaf criterion will
provide us with such a section once we have checked that the two section s0 and 0 agree on
“overlaps”. Note first that U �X X 0 D ��1.U / D U 0, and both sections restrict to zero
on U 0. It remains to check that the restrictions of s0 under the two maps X 0 ⇔ X 0 �X X

0

are equal, and this we can do on stalks. For a point in U 0 �X U 0, the two restrictions are
zero. The two maps Z0 ⇔ Z0 �X Z

0 are equal, and so the two restrictions agree at a point
of Z0 �X Z0. Since X 0 �X X 0 D U 0 �X U 0 [Z0 �X Z0, this completes the proof. 2

The situation in the theorem arises when � WX 0 ! X is étale and X contains a closed
subscheme for which there is a morphism sW Z ! X 0 such that � ıs D idZ and ��1.Z/ D
s.Z/.

COROLLARY 9.8 Let x be a closed point of X . For any sheaf F on X , there is an isomor-
phism H r

x .X;F/! H r
x .SpecOhX;x;F/ where OhX;x is the Henselization of OX;x .

PROOF. According to the theorem, H r
x .X;F/ D H r

u.U;F/ for any étale neighbourhood
.U; u/ of x such that u is the only point of U mapping to x. Such étale neighbourhoods
are cofinal, and on passing to the limit over them, we obtain the required isomorphism
(see below 10.9 for the behaviour of cohomology when one passes to an inverse limit over
schemes). 2

The homotopy axiom

Recall that the homotopy axiom says that homotopic maps induce the same maps on coho-
mology. There is an analogue of this statement in which homotopy equivalence is replaced
by rational equivalence.

For simplicity, let X be an algebraic variety over an algebraically closed field k. Let Z
be a closed subvariety of X � P1 whose image under the projection map � W X � P1 ! P1

is dense in P1. For any closed point t 2 P1, Z.t/ def
D Z \ .X � ftg/ is a closed subvariety

of X � ftg D X (the intersection should be formed in the sense of intersection theory, i.e.,
allowing multiplicities—see later). We can regard the Z.t/ for t 2 �.Z/ as a continuous
family of algebraic cycles on X , and we write Z1 � Z2 if Z1 and Z2 occur in such a
family. We say that two algebraic cycles Z and Z0 are rationally equivalent if there exist
algebraic cycles Z1; Z2; : : : ; Zr such that

Z � Z1 � � � � � Zr � Z
0:

THEOREM 9.9 Two morphisms '; '0 define the same map on étale cohomology if their
graphs are rationally equivalent.
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PROOF. The map on cohomology defined by a morphism depends only on the cohomol-
ogy class of the graph �' of ', and this cohomology class depends only on the rational
equivalence class of �' (see later �23). 2



10 ČECH COHOMOLOGY.

It is not practical to use the definition of the cohomology groups in terms of derived functors
to compute them directly. Under mild hypotheses on X , the derived functor groups agree
with the Čech groups, which are sometimes more manageable.

Definition of the Čech groups.

Let U D .Ui ! X/i2I be an étale covering ofX , and let P be a presheaf of abelian groups
on Xet. Define

C r.U ;P/ D
Y

.i0;:::;ir /2I rC1

P.Ui0:::ir /; where Ui0:::ir D Ui0 �X � � � �X Uir :

For s D .si0:::ir / 2 C
r.U ;P/, define d rs 2 C rC1.U ;P/ by the rule

.d rs/i0:::irC1
D

rC1X
jD0

.�1/j resj .si0:::ij�1ijC1:::irC1
/

where resj is the restriction map corresponding to the projection map

Ui0:::irC1
! Ui0:::ij�1ijC1:::irC1

:

As in the classical case, one verifies by a straightforward calculation that

C �.U ;P/ def
D C 0.U ;P/! � � � ! C r.U ;P/ d

r

��! C rC1.U ;P/! � � �

is a complex. Define
LH r.U ;P/ D H r.C �.U ;P//:

It is called the r th Čech cohomology group of P relative to the covering U .
Note that

LH 0.U ;P/ D Ker
�Y

P.Ui /⇒
Y

P.Uij /
�
:

Therefore, for a sheaf F ,
LH 0.U ;F/ D � .X;F/:

EXAMPLE 10.1 Let U be the covering of X consisting of a single Galois covering Y ! X

with Galois group G. If P is a presheaf on X carrying disjoint unions to products, then

LH r.U ;P/ D H r.G;P.Y // (group cohomology)I

see Exercise 6.5.

A second covering V D .Vj ! X/j2J of X is called a refinement of U if there is a
map � W J ! I such that Vj ! X factors through U�j ! X for all j 2 J . The choice of
a � and X -morphisms 'j W Vj ! U�j for each j determines a map of complexes

��WC �.U ;P/! C �.V;P/; .�rs/j0:::jr
D s�j0:::�jr

jVj0:::jr
:

As in the classical case, one verifies that the map on cohomology groups

�.V;U/W LH r.U ;P/! LH r.V;P/

70
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is independent of all choices. We may pass to the limit over all coverings, and so obtain the
Čech cohomology groups

LH r.X;P/ def
D lim
�!U

LH r.U ;P/:

They have the following properties:

(a) LH 0.X;F/ D � .X;F/ for any sheaf F on X ;

(b) LH r.X; I/ D 0, r > 0, for all injective sheaves I.

Statement (a) is obvious. Statement (b) is proved by showing that, for each covering
.Ui ! X/, there is an exact sequence of presheaves of abelian groups Z� such that

C �.U ;F/ D Hom.Z�;F/

for all sheaves F . If I is injective as a sheaf, then it is injective as a presheaf (because a is
an exact left adjoint to the inclusion functor; cf. 7.3c), and so Hom.Z�; I/ is exact. For the
details, see the proof of EC III 2.4.

It follows that the isomorphism LH 0.X;F/ ' H 0.X;F/ extends to an isomorphism for
all r and F if and only if every short exact sequence

0! F 0 ! F ! F 00 ! 0

of sheaves gives a long exact sequence

� � � ! LH r.X;F 0/! LH r.X;F/! LH r.X;F 00/! � � �

of Čech cohomology groups.

THEOREM 10.2 Assume that every finite subset of X is contained in an open affine and
thatX is quasi-compact (for example, X could be a quasi-projective variety). Then, for any
short exact sequence of sheaves

0! F 0 ! F ! F 00 ! 0;

the direct limit of the complexes

0! C �.U ;F 0/! C �.U ;F/! C �.U ;F 00/! 0

over the étale coverings of X is exact, and so gives rise to a long exact sequence of Čech
cohomology groups. Thus

LH r.X;F/ ' H r.X;F/

for all r and all sheaves F .

The difficulty in proving the exactness of the direct limit of the Čech complexes is the
following: because F ! F 00 ! 0 is exact, we know that F.Ui0:::in/ ! F 00.Ui0���in/
is locally surjective, i.e., that for each s 2 F 00.Ui0:::in/, there exists a covering .Vj !
Ui0:::in/j2J such that sjVj lifts to F.Vj / for each j ; the problem is that we don’t know in
general that the Vj can be chosen to be of the form Vi0:::in D Vi0 �X � � � �X Vin with Vim
mapping to Uim .

The key to the proof of the theorem is the following result of M. Artin (Advances in
Math. 7 (1971), 282–296.) (See also Hochster and Huneke, Ann. of Math., 135 (1992),
Theorem 9.2.):
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Let A be a ring, let p1; : : : ; pr be prime ideals in A, and let A1; : : : ; Ar be the
strict Henselizations of the local rings Ap1

; : : : ; Apr
. Then A0 def

D A1˝A � � �˝A
Ar has the property that any faithfully flat étale map A0 ! B has a section
B ! A0.

Almost by definition, a strictly local ring has this property. The interest of the statement
is that it holds for tensor products of strictly local rings obtained from a single ring.

For the rest of the proof of Theorem 10.2, see the paper of Artin or EC III 2.17.

REMARK 10.3 (a) For the Zariski topology, only a weaker result is true: for a variety or
separated scheme, the Čech cohomology of a coherent OX -module agrees with the
derived functor cohomology. This follows from the fact that, for any open affine U
and exact sequence

0!M0
!M!M00

! 0

of coherent OX -modules,

0! � .U;M0/! � .U;M/! � .U;M00/! 0

is exact. Thus the Čech complex corresponding to a covering X D
S
Ui of X by

open affines will be exact (because a finite intersection of open affines in a separated
space is affine — AG 4.27)
Of course, the Čech cohomology groups of constant sheaves agree with the derived
functor cohomology groups: both are zero when X is irreducible.

(b) Most of the formalism concerning the Čech cohomology of topological spaces ap-
plies in the setting of the étale site, but not all. For example, Čech cohomology
can not be computed using alternating cochains, as Example 10.1 demonstrates. The
usual proof breaks down because there may be several maps from one étaleX -variety
to a second.

Comparison of the first cohomology groups.

On any site, the first Čech cohomology group equals the first derived functor group. We
sketch the proof.

PROPOSITION 10.4 For a sheaf F on Xet, let Hr.F/ be the presheaf U 7! H r.U;F jU/.
For all r > 0, the sheaf associated with Hr.F/ is 0.

PROOF. Consider the functors

Sh.Xet/
i
�! PreSh.Xet/

a
�! Sh.Xet/:

Recall from �7 that i is left exact and that a is exact. Let F ! I� be an injective resolution
of F . Then

Hr.F/ D H r.iI�/:

Because a is exact and a ı i D id,

a.Hr.F// def
D a.H r.iI�// D H r.aiI�/ D H r.I�/ D 0 for r > 0 2
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COROLLARY 10.5 Let s 2 H r.X;F/ for some r > 0. Then there exists a covering
.Ui ! X/ such that the image of s in each group H r.Ui ;F/ is zero.

PROOF. Recall that, for any presheaf P , the only sections of P mapping to zero in aP are
those that are locally zero, i.e., become zero when restricted to the Ui in some covering of
X . 2

We now define a map H 1.X;F/! LH 1.X;F/. Choose an injective embedding F ,!

I of F , and let G be the cokernel. Thus, we have an exact sequence

0! F ! I ! G ! 0;

which gives rise to an exact cohomology sequence

0! F.X/! I.X/! G.X/! H 1.X;F/! 0:

Let s 2 H 1.X;F/, and let t 2 G.X/ map to s. According to the above corollary, there is a
covering .Ui ! X/ such that s restricts to zero on each Ui , and so t jUi lifts to an element
Qti 2 I.Ui /. Let sij D Qtj jUij � Qti jUij regarded as an element of F.Uij /. One checks easily
that sij is a one-cocycle.

PROPOSITION 10.6 The map s 7! .sij / defines an isomorphismH 1.X;F/! LH 1.X;F/.

PROOF. We leave it as an exercise to the reader to find a direct proof. Alternatively, we
give a proof below involving spectral sequences. 2

The spectral sequence relating Čech and derived-functor cohomology

Since we shall need to use it several times, I state Grothendieck’s theorem on the existence
of spectral sequences.

THEOREM 10.7 Let A, B, and C be abelian categories, and assume that A and B have
enough injectives. Let F W A ! B and GW B ! C be left exact functors, and assume that
.RrG/.FI / D 0 for r > 0 if I is injective (this is true for example if F takes injectives to
injectives). Then there is a spectral sequence

Ers2 D .R
rG/.RsF /.A/) RrCs.FG/.A/:

There is a three page explanation of spectral sequences in EC pp307–309, a 14 page
explanation in Shatz, Profinite Groups, Arithmetic, and Geometry, Princeton, 1972, II.4,
and a 45 page explanation in Weibel, Chapter V.

We now sketch the derivation of the spectral sequence relating Čech and derived-functor
cohomology.

One can show that the category of presheaves on Xet has enough injectives. The same
argument as in the sheaf case shows that, for I an injective presheaf, LH r.Xet; I/ D 0 for
r > 0. Since it is obvious that a short exact sequence of presheaves gives a long exact
sequence of Čech cohomology groups, we see that LH r.Xet;�/ is the r th right derived
functor of

P 7! LH 0.Xet;P/WPreSh.Xet/! Ab:
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Consider the sequence of functors

Sh.Xet/
i
�! PreSh.Xet/

LH0.Xet;�/
�������! Ab:

The r th right derived functor of i is Hr.�/. We have already noted that i preserves injec-
tives, and so a theorem of Grothendieck (Weibel 1994, 5.8.3) provides us with a spectral
sequence:

LH r.Xet;Hs.F//) H rCs.Xet;F/:

According to (10.5), LH 0.Xet;Hs.F// D 0 for s > 0. Thus, for a sheaf F ,

LH r.X;F/ ' H r.X;F/ for r D 0; 1;

and there is an exact sequence

0! LH 2.X;F/! H 2.X;F/! LH 1.X;H1.F//! LH 3.X;F/! H 3.X;F/:

Similarly, for any étale covering U D .Ui ! X/ of X , there exists a spectral sequence

LH r.U ;Hs.F//) H rCs.Xet;F/:

The Mayer-Vietoris sequence When U D .Ui ! X/ is a open covering of X (in the
Zariski sense), then the Čech cohomology groups can be computed using alternating cochains.
For example, if X D U0 [ U1, then the Čech cohomology groups of a presheaf P are the
cohomology groups of the complex

� .U0;P/ � � .U1;P/! � .U0 \ U1;P/I

in particular, LH r.U ;P/ D 0 for r � 2.

THEOREM 10.8 Let X D U0 [ U1 (union of two open subsets). For any sheaf F on Xet,
there is an infinite exact sequence

� � � ! H s.X;F/! H s.U0;F/˚H s.U1;F/! H s.U0\U1;F/! H sC1.X;F/! � � � :

PROOF. On taking P D Hs.F/, s > 0, in the above discussion, we obtain an exact se-
quence

0! LH 0.U ;H s.F//! H s.U0;F/˚H s.U1;F/! H s.U0\U1;F/! LH 1.U ;Hs.F//! 0:

In the spectral sequence

LH r.U ;Hs.F//) H rCs.X;F/;

LH r.U ;Hs.F// D 0 unless r D 0; 1. The spectral sequence therefore gives exact sequences

0! LH 1.U ;Hs.F//! H sC1.X;F/! LH 0.U ;HsC1.F//! 0; all s � 0:

We can splice the sequences together to get the sequence in the statement of the theorem.2
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Behaviour of cohomology with respect to inverse limits of schemes

Let I be a directed set, and let .Xi /i2I be a projective system of schemes indexed by I . If
the transition maps

Xi
'

j

i
 �� Xj ; i � j;

are affine, i.e., .'ji /
�1.U / is affine for any open affine U � Xi , then the inverse limit

scheme X1 D lim
 �

Xi exists. For example, if all the Xi are affine, say, Xi D Spec.Ai /,
then we have a direct system of rings .Ai /i2I and X1 D SpecA1 where A D lim

�!
Ai .

THEOREM 10.9 Let I be a directed set, and let .Xi /i2I be an inverse system of X -
schemes. Assume that all the Xi are quasicompact and that the maps Xi  Xj are all
affine. Let X1 D lim

 �
Xi , and, for any sheaf F on X , let Fi be its inverse image on Xi ,

i 2 I [ f1g. Then
lim
�!i

H r.Xi;et;Fi / ' H r.X1;F1/:

PROOF. The proof in the general case is rather difficult. It depends on the fact that the
category of étale schemes of finite type over X1 is the direct limit of the categories of such
schemes over the Xi . See SGA4, VII.5.8, or Artin 1962, III.3.

However, it is much easier to prove the theorem for the Čech cohomology (see EC
III.3.17). When 10.2 applies, one can recover the theorem for the derived functor groups.2



11 PRINCIPAL HOMOGENEOUS SPACES AND H 1.

In the last section, we showed that the H 1.Xet;F/ coincides with LH 1.Xet;F/. In this
section, we explain how to interpret LH 1.Xet;F/ as the group of principal homogeneous
spaces for F . Since it is no more difficult, except that we have to be a little more careful
with the definitions, we work with sheaves of noncommutative groups.

Definition of the first Čech group.

Let U D .Ui ! X/i2I be an étale covering of X , and let G be a sheaf of groups on Xet

(not necessarily commutative). As in the last section, we write Uij ::: for Ui �X Uj �X � � � .
A 1-cocycle for U with values in G is a family .gij /.i;j /2I�I with gij 2 G.Uij / such that

.gij jUijk/ � .gjkjUijk/ D gikjUijk , all i; j; k:

Two cocycles g and g0 are cohomologous, denoted g � g0, if there is a family .hi /i2I with
hi 2 G.Ui / such that

g0ij D .hi jUij / � gij � .hj jUij /
�1, all i; j:

The set of 1-cocycles modulo � is denoted LH 1.Xet;G/. It is not in general a group, but it
does have a distinguished element represented by the 1-cocycle .gij / with gij D 1 for all
i; j .

A sequence
1! G0 ! G ! G00 ! 0

of sheaves of groups is said to be exact if

1! G0.U /! G.U /! G00.U /

is exact for all U ! X étale and G ! G00 is locally surjective. Such a sequence gives rise
to a sequence of sets

1! G0.X/! G.X/! G00.X/! LH 1.X;G0/! LH 1.X;G/! LH 1.X;G00/

that is exact in the following sense: the image of each arrow is exactly the set mapped to
the distinguished element by the following arrow.

Principal homogeneous spaces

Let G be a group and S a set on which G acts on the right. Then S is said to be a principal
homogenous space (or torsor) forG if, for one (hence every) s 2 S , the map g 7! sgW G !

S is a bijection.
Let G be a sheaf of groups on Xet, and let S be a sheaf of sets on which G acts on the

right. Then S is called a principal homogeneous space for G if

(a) there exists a étale covering .Ui ! X/i2I of X such that, for all i , S.Ui / ¤ ;; and

(b) for every U ! X étale and s 2 � .U;S/, the map g 7! sgW GjU ! SjU is an
isomorphism of sheaves.
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A principal homogeneous space S is trivial if it is isomorphic (as a sheaf with a right
action of G) to G acting on itself by right multiplication, or, equivalently, if S.X/ ¤ ;. The
axioms require S to be locally isomorphic to the trivial principal homogenous space.

We say that the covering .Ui ! X/i2I splits S if S.Ui / ¤ ;.
Let S be a principal homogenous space for G. Let .Ui ! X/i2I be an étale covering

of X that splits S , and choose an si 2 S.Ui / for each i . Because of condition (b), there
exists a unique gij 2 G.Uij /, such that

.si jUij / � gij D sj jUij :

Then .gij /I�I is a cocycle, because (omitting the restrictions signs)

si � gij � gjk D sk D si � gik :

Moreover, replacing si with s0i D si � hi , hi 2 G.Ui / leads to a cohomologous cocycle.
Thus, S defines a class c.S/ in LH 1.U ;G/ where U D .Ui ! X/i2I .

PROPOSITION 11.1 The map S 7! c.S/ defines a bijection from the set of isomorphism
classes of principal homogenous spaces for G split by U to LH 1.U ;G/.

PROOF. Let ˛W S ! S 0 be an isomorphism of G-sheaves, and choose si 2 S.Ui /. Then
˛.si / 2 S 0, and (omitting the restriction signs)

si � gij D sj ) ˛.si / � gij D ˛.sj /:

Therefore the 1-cocycle defined by the family .˛.si // equals that defined by .si /. This
shows that c.S/ depends only on the isomorphism class of S, and so S 7! c.S/ does define
a map from the set of isomorphism classes.

Suppose that c.S/ D c.S 0/. Then we may choose sections si 2 S.Ui / and s0i 2 S 0.Ui /
that define the same 1-cocycle .gij /. Suppose there exists a t 2 S.X/. Then

t jUi D si � gi

for a unique gi 2 G.Ui /; from the equality .t jUi /jUij D .t jUj /jUj i , we find that

.gi jUij / D gij � .gj jUij / .�/

Because S is a sheaf, t 7! .gi /i2I is a bijection from S.X/ onto the set of families .gi /i2I ,
gi 2 G.Ui /, satisfying .�/. A similar statement holds for S 0, and so there is a canonical
bijection S.X/ ! S 0.X/. For any V ! X , we can apply the same argument to the
covering .Ui �X V ! V / of V and the elements si jUi �X V and s0i jUi �X V to obtain
a canonical bijection S.V /! S 0.V /. The family of these bijections is an isomorphism of
G-sheaves S ! S 0.

Thus, the map is an injection into LH 1.U ;G/, and it remains to prove that it is surjective.
Let .gij /I�I be a 1-cocycle for the covering U D .Ui ! X/. For any V ! X étale, let
.Vi ! V / be the covering of V with Vi D Ui �X V . Define S.V / to be the set of families
.gi /i2I , gi 2 G.Vi /, such that

.gi jVij / D gij � .gj jVij /:

Showing that this defines a sheaf of G-sets, and that c.S/ is represented by .gij / involves
only routine checking. 2
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REMARK 11.2 When G is the sheaf defined by a group schemeG overX , one would like to
know that every principal homogeneous space S for G is the sheaf defined by a scheme. In
general, this can be a difficult question in descent theory: we know that SjUi is represented
by a scheme over Ui for each i 2 I , namely, by GUi

, and would like to know that this
implies that S itself is represented by a scheme S over X .

It is known that S is defined by a scheme when, for example, G is defined by an scheme
affine over X . See EC III 4.3 for a summary of what was known in 1978—not much more
is known today.

EXAMPLE 11.3 Let G be the constant sheaf on Xet defined by a finite group G. A Galois
covering of X with group G is a principal homogeneous space for G, and every principal
homogeneous space arises from a Galois covering. WhenX is connected, the Galois cover-
ings of X with group G are classified by the continuous homomorphisms �1.X; Nx/ ! G,
where Nx ! X is any geometric point of X . Thus, for a connected X , there is a canonical
isomorphism

H 1.Xet;G/ ' Homconts.�1.X; Nx/;G/:

Interpretation of LH 1.X;GLn/.

Let Ln.X/ be the set of isomorphism classes of locally free sheaves of OX -modules of
rank n on X for the Zariski topology.

THEOREM 11.4 There are natural bijections

Ln.Xzar/$ LH 1.Xzar;GLn/$ LH 1.Xet;GLn/$ LH 1.Xf l ;GLn/:

PROOF. (Sketch). Let M be a locally free sheaf of OX -modules of rank n on Xzar. By
definition, this means that there is an open covering X D

S
Ui such that MjUi � OnUi

for
all i .

Observe, that we may take the Ui to be affine, say, Ui D SpecAi , and then MjUi is
the sheaf associated with the Ai -module Ani —in particular, M is coherent.

Now choose isomorphisms �i W MjUi ! OnUi
for each i . Then the family

�ij
def
D .�i jUij / ı .�j jUij /

�1
2 GLn.Uij /; .i; j / 2 I � I

is a one-cocycle, because (omitting the restriction signs)

�ij ı �jk D �i ı �
�1
j ı �j ı �

�1
k D �i ı �

�1
k D �ik (on Uijk/:

Moreover, if �i is replaced by hi ı �i , then �ij is replaced by

� 0ij D hi ı �ij ı h
�1
j ;

and so the class of .�ij / in LH 1.U ; GLn/, U D .Ui /, depends only on M. In this way, we
get a well-defined map from Ln.Xzar/ ! LH 1.Xzar; GLn/, and it is not difficult to show
that this is a bijection (cf. the proof of 11.1).

We can define Ln.Xet/ and Ln.Xfl/ similarly to Ln.Xzar/, and a similar argument
shows that there are bijections Ln.X�/! LH 1.X�;GLn/, � D et or f l . Thus, it remains
to show that the maps M 7!Met and M 7!Mfl give22 bijections Ln.Xzar/! Ln.Xet/

and Ln.Xzar/! Ln.Xfl/. We treat the flat case. We have to show:
22The sheaf Met is defined in �6; the definition of Mfl is similar.



11. PRINCIPAL HOMOGENEOUS SPACES AND H 1. 79

(a) every locally free sheaf of OXfl-modules is of the form Mfl for some coherent sheaf
M of OXzar-modules;

(b) let M be a coherent sheaf of OXzar-modules; if Mfl is locally free, then so also is
M.

(c) for M and N in Ln.Xzar/, M � N if and only if Mfl � N fl.

Clearly, it suffices to verify these statements for X affine.
In order to prove (b), we shall need the following result from commutative algebra.

11.5 Let A be a ring (commutative and Noetherian, as always), and let M be a finitely
generated A-module. The following are equivalent:

(a) for all maximal ideals (and hence for all prime ideals) m of A, the Am-module Mm is
free;

(b) there is a finite set of elements f1; : : : ; fn in A such that A D .f1; : : : ; fn/ and Mfi

is a free Afi
-module for all i ;

(c) M is projective.

See, for example, Eisenbud23 1995, A3.2. Of course, (b) says that the coherent sheaf
M on SpecA defined by M is locally free (for the Zariski topology).

Now let M be a finitely generated A-module, and let A! B be a faithfully flat homo-
morphism. Recall that for M to be projective means that HomA.M;�/ is an exact functor.
But, for any A-module N ,

B ˝A HomA.M;N / D HomB.B ˝AM;B ˝A N/;

and so if B ˝AM is projective, then so also is M .
Now suppose that the coherent sheaf M of OX -modules defined by M becomes free

on some flat covering .Ui
'i
�! X/i2I of X . At the cost of possibly enlarging I , we may

suppose that each Ui is affine. But 'i .Ui / is open in X , and X is quasicompact, and so we
may assume I to be finite. Then Y D

`
Ui is affine. Thus, there we have a faithfully flat

map A! B such that B ˝AM is free. In particular, B ˝AM is projective, and so M is
projective. This proves (b).

In order to prove (a), we shall again need a result from commutative algebra. Let
A ! B be a faithfully flat homomorphism. For a B-module N , let N0 and N1 be the
B ˝A B-modules obtained from N by tensoring with

b 7! 1˝ bWB ! B ˝A B; b 7! b ˝ 1WB ! B ˝A B

respectively. To give an A-module M such that B ˝A M D N is to give an isomorphism
� W N0 ! N1 satisfying a certain natural cocycle condition (see Waterhouse24 1979, 17.2).
Since the composites of the two maps with A! B are equal, .B ˝AM/0 D .B ˝AM/1
and so � for N D B ˝A M can be taken to be the identity map. Conversely, given a �
satisfying the cocycle condition, we defineM to be the submodule ofN on which the maps

N
canonical
������! N1 and N

canonical
������! N0

�
�! N1 agree.

Let M be a sheaf of OXfl-modules, and suppose that M becomes equal to N fl on some
flat covering, which (as before) we can take to consist of a single map Y ! X with Y

23Commutative Algebra, Springer.
24Introduction to Affine Group Schemes, Springer.
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affine. Thus Y ! X corresponds to a faithfully flat map A ! B , and MjY is the sheaf
defined by a B-module N . The composites Y �X Y ⇒ Y ! X are equal, and so the two
restrictions of M to Y �X Y are equal. The identity map MjY �X Y !MjY �X Y defines
an isomorphism � W N0 ! N1 which satisfies the cocycle condition in the last paragraph.
Therefore, the pair .N; �/ arises from an A-moduleM . Finally, because of the construction
of M , M is the sheaf associated with M .

This completes the sketch of the proof of (a), and we omit the proof of (c). 2

COROLLARY 11.6 There is a canonical isomorphism H 1.Xet;Gm/ ' Pic.X/.

PROOF. By definition, Pic.X/ is the group of isomorphism classes of locally free sheaves
of OX -modules of rank 1 for the Zariski topology. Thus the case n D 1 of the theo-
rem shows that Pic.X/ ' LH 1.Xet;Gm/. But, because Gm is commutative, this equals
H 1.Xet;Gm/. 2

In the case X D SpecK, K a field, the corollary says that H 1.Xet;Gm/ D 0. This
statement is often called Hilbert’s Theorem 90, although it is a considerable generaliza-
tion of the original theorem (see FT 5.25 for the original theorem). The corollary is often
referred to as Hilbert’s Theorem 90 also.

REMARK 11.7 It is in fact slightly easier to prove the corollary than the theorem. Corre-
sponding to the continuous morphism � W Xfl ! Xzar, there is a Leray spectral sequence
H r.Xzar; R

s��Gm/ ! H rCs.Xfl;Gm/ where Rs��Gm is the sheaf associated with the
presheaf U 7! H r.Uzar;Gm/ (see the next section). This spectral sequence gives a map
H 1.Xzar;Gm/! H 1.Xfl;Gm/, which will be an isomorphism ifR1��Gm D 0. To check
this, it suffices to show that the stalks of R1��Gm are zero, and this amounts to proving
that H 1.Yfl;Gm/ D 0 when Y D SpecOX;x for some x 2 X . Thus, we have to give the
argument in the above proof only in the case that A is a local ring and n D 1. This is a little
easier.

Nonabelian H 2

It is possible to define H 2.Xet;G/ for any sheaf of groups G, not necessarily abelian (in
fact, for a more general object called a band (lien in French)). The set classifies equivalence
classes of gerbs (gerbes in French) bound by G. For a brief, but not entirely reliable25,
summary of this theory, see Deligne et al, Hodge Cycles, Motives, and Shimura Varieties,
Lecture Notes in Math. 900, Springer, 1982, pp 220–228.

25Some of the statements in the first paragraph on p223 apply only when F is commutative.
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SEQUENCE.

Higher direct images

Let � W Y ! X be a morphism of varieties (or schemes). Recall that, for a sheaf F on Y et,
we defined ��F to be the sheaf on Xet with

� .U; ��F/ D � .UY ;F/; UY
def
D U �X Y:

The functor ��W Sh.Yet/ ! Sh.Xet/ is left exact, and hence we can consider its right
derived functors Rr��. We call the sheaves Rr��F the higher direct images of F .

PROPOSITION 12.1 For any � W Y ! X and sheaf F on Yet, Rr��F is the sheaf on Xet

associated with the presheaf U 7! H r.UY ;F/.

PROOF. Let �p be the functor PreSh.Yet/ ! PreSh.Xet/ sending a presheaf P on Yet to
the presheaf U 7! � .UY ;P/ on Xet — it is obviously exact. From the definition of ��,

PreSh.Yet/ PreSh.Xet/

Sh.Xet/ Sh.Xet/

�p

a

��

i

commutes .i is the functor “regard a sheaf as a presheaf”). Let F ! I� be an injective
resolution of F . Then, because a and �p are exact,

Rr��F
def
D H r.��I/ D H r.a ı �p ı iI�/ D a ı �p.H r.iI�//:

As we have already noted (proof of 10.4),H r.iI�/ is the presheaf U 7! H r.U;F/, and so
�p.H

r.iI �// is the presheaf U 7! H r.UY ;F/. 2

COROLLARY 12.2 The stalk of Rr��F at Nx ! X is lim
�!

H r.UY ;F/ where the limit is
over all étale neighbourhoods .U; u/ of Nx.

PROOF. By definition, lim
�!

H r.UY ;F/ is the stalk of �p.Rr i.F//, which equals the stalk
of a�p.Rr i.F// by (7.15). 2

EXAMPLE 12.3 If � W Y ,! X is a closed immersion, then �� is exact, and soRr��F D 0
for r > 0. More generally, if � W Y ! X is a finite map, then Rr��F D 0 for r > 0 (again
�� is exact 8.4).

EXAMPLE 12.4 Assume X is connected and normal, and let gW � ! X be the inclusion
of the generic point of X . Then

.Rrg�F/ Nx D H r.SpecK Nx;F/

where K Nx is the field of fractions of OX; Nx . Moreover, in this case g� takes a constant sheaf
on � to a constant sheaf. We make this explicit.

81



82 CHAPTER I. BASIC THEORY

Let Ksep be a separable closure of K, and let G D Gal.Ksep=K/. Let M D MF , the
G-module corresponding to F (as in �6). Then F is constant if G acts trivially on M and
locally constant if the action of G on M factors through a finite quotient.

The map SpecKsep ! SpecK ! X is a geometric point of X , which we denote N�.
The strictly local ring OX; N� is Ksep because the normalization of X in any finite extension
L of K contained in Ksep will be étale over X on some nonempty open subset. Thus
.Rrg�F/ N� DM if r D 0, and is 0 otherwise.

In general, K Nx will be the union of all finite extensions L of K contained in Ksep

such that the normalization of X in L is unramified at some point lying over x. Thus
.Rrg�F/ Nx D H r.H;M/ where H D Gal.Ksep=K Nx/.

For example, let X D SpecA with A a Dedekind domain. Let QA be the integral closure
of A in Ksep. A closed point x of X is a nonzero prime ideal p of A, and the choice of
a prime ideal Qp of QA lying over p determines a geometric point Nx ! x ! X of X . In
this case, K Nx D .Ksep/I.Qp/ where I.Qp/ � G is the inertia group of Qp. Thus .Rrg�F/ Nx D
H r.I.Qp/;M/.

EXAMPLE 12.5 Assume X is integral but not necessarily normal. Then gW � ! X will
factor as gW �! QX ! X where QX is the normalization of X in �. For example:

X D SpecA; A an integral domainI

� D SpecK; K the field of fractions of AI
QX D Spec QA; QA the integral closure of Ain K:

Since QX ! X is finite, this shows that g factors into a composite of maps of the type
considered in the two examples above.

For the map QX ! X , the direct image of a constant sheaf need not be constant. Con-
sider for example the map

� WA1 ! fY 2 D X3 CX2g; t 7! .t2 � 1; t.t2 � 1//

from A1 onto the nodal cubic. The map is one-to-one except that the two points˙1 map to
the point .0; 0/ on the curve. Therefore, for a constant sheaf � on A1, .���/ Nx D � unless
x D .0; 0/ in which case it is �˚�.

EXAMPLE 12.6 Let X be an integral scheme, and consider the inclusion i W z ! X of a
point of z of X , not necessarily generic or closed. Let Z be the closure of z in X , so that Z
is irreducible and z is its generic point. Then i factors into

z ! QZ ! Z ,! X;

which is a composite of maps of the types considered in the last three examples.

The Leray spectral sequence

THEOREM 12.7 (LERAY SPECTRAL SEQUENCE) Let � W Y ! X be a morphism of vari-
eties (or schemes). For any sheaf F on Yet, there is a spectral sequence

H r.Xet; R
s��F/) H rCs.Yet;F/:
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PROOF. The functors ��W Sh.Yet/ ! Sh.Xet/ and � .X;�/W Sh.Xet/ are both left exact,
and their composite is � .Y;�/. Since �� preserves injectives, this theorem is a special case
of Theorem 10.7. 2

The original Leray spectral sequence has exactly the same form as the above sequence:
for any continuous map � W Y ! X of topological spaces and sheaf F on Y , there is a
spectral sequence

H r.X;Rs��F/) H rCs.Y;F/:

EXAMPLE 12.8 Let X be a variety over a field k, and let � W X ! P be the map from X

to a point P D Specm.k/. Let Nk be the separable closure of k, and let NX be the variety
over Nk obtained from X by base change. Let � D Gal. Nk=k/. When we identify Sh.Pet/

with the category Mod� of discrete � -modules, �� becomes identified with the functor
Sh.Xet/ ! Mod� ; F 7! F. NX/ def

D lim
�!k0

F.Xk0/ (limit over the subfields k0 of Nk finite
over k). Thus, in this case, the Leray spectral sequence becomes

H r.�;H s. NXet;F//! H rCs.X;F/

where

H s. NX;F/ def
D lim
�!k0

H s.Xk0 ;F jXk0/ D H s. NX; '�F/; 'W NX ! X:



13 THE WEIL-DIVISOR EXACT SEQUENCE AND THE

COHOMOLOGY OF Gm.

We saw in the last section that H 1.Xet;Gm/ D H 1.Xzar;O�X / D Pic.X/, and so this
group is known (more accurately, it has a name, and so we can pretend we know it). We wish
now to try to compute H r.Xet;Gm/ for all r . This is a key case, because once we know
H r.Xet;Gm/, we will be able to use the Kummer sequence (7.9a) to computeH r.Xet; �n/

for all n prime to the residue characteristics.

The Weil-divisor exact sequence

The exact sequence for rings. We shall need to use some results from commutative alge-
bra.

13.1 Let A be an integrally closed integral domain. Then

A D
\

ht.p/D1

Ap

(intersection in the field of fractions K of A).

Recall that the height ht.p/ of a prime ideal in a Noetherian ring is the maximal length
of a chain p D ph � ph�1 � � � � of prime ideals. Therefore, the prime ideals of height
one in an integral domain are the minimal nonzero prime ideals. For such a prime ideal p,
Ap has exactly one nonzero prime ideal. Since Ap is again integrally closed, it is a discrete
valuation ring. Let ordp be the valuation on K defined by Ap, so that Ap D fa 2 K j

ordp.a/ � 0g. Then (13.1) says that A D fa 2 K j ordp.a/ � 0 all pg, which implies that
A� D fa 2 K j ordp.a/ D 0 all pg. In other words, the sequence

0 ! A� ! K� !
L

ht.p/D1 Z
a 7! .ordp.a//

is exact. The second map will not in general be surjective. For example, when A is a
Dedekind domain, its cokernel is the ideal class group ofA in the sense of algebraic number
theory.

We shall need two further results from commutative algebra.

13.2 (a) A (Noetherian) integral domain A is a unique factorization domain if and only
if every prime ideal p of height 1 in A is principal.

(b) A regular local ring is a unique factorization domain.

Thus, when A is an integral domain,

0! A� ! K�
.ordp/
����!

M
ht.p/D1

Z! 0

is exact if and only if A is a unique factorization domain.
Recall that a unique factorization domain is integrally closed.

84
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The exact sequence for the Zariski topology. 26Recall that a variety (or scheme) is said to
be normal if � .U;OX / is an integrally closed integral domain for every connected open
affine U � X , or, equivalently, if OX;x is an integrally closed integral domain for all x in
X .

In the remainder of this subsection, we assume X to be connected and normal. Then
there is a field K of rational functions on X that is the field of fractions of � .U;OX / for
any open affine U � X—whenX is a variety,K is denoted k.X/, and whenX is a scheme,
it is denoted R.X/.

A prime (Weil-) divisor on X is a closed irreducible subvariety (or closed integral sub-
scheme) Z of codimension 1, and a (Weil-) divisor on X is an elementD D

P
nZZ of the

free abelian group generated by the prime divisors. For any nonempty open subset U of X ,
the map Z 7! Z \ U is a bijection from the set of prime divisors of X meeting U to the
set of prime divisors of U—the inverse map sends a prime divisor of U to its closure in X .

If U is an open affine subset in X , with � .U;OX / D A say, then the map p 7! V.p/
(zero set of p) is a bijection from the set of prime ideals of A of height one to the set of
prime divisors of U—the inverse map sends a prime divisor Z of U to the ideal I.Z/ of
functions zero on Z.

In particular, every prime divisor Z on X defines a discrete valuation ordZ on K,
namely, that corresponding the ideal I.Z/ � � .U;OX / where U is an open affine meeting
Z. Intuitively, for f 2 K, ordZ.f / is the order of the zero (or pole) of f along Z.

PROPOSITION 13.3 There is a sequence of sheaves on Xzar

0! O�X ! K� ! Div! 0

where � .U;K�/ D K� for all nonempty open U and Div.U / is the group of divisors on
U . The sequence is always left exact, and it is exact when X is regular (e.g., a nonsingular
variety).

PROOF. For any open affine U in X , with � .U;OX / D A say, the sequence of sections
over U is the sequence

0! A� ! K� !
M

ht.p/D1
Z! 0

discussed earlier. For any x 2 X , the sequence of stalks at x has the same form with A
replaced by OX;x . Since OX;x is an integrally closed integral domain, this sequence is
always left exact, and it is exact if OX;x is regular. 2

Recall that, when considered as a scheme, an irreducible variety X has a generic point
� which has the property that it belongs to all nonempty open subsets of X . Thus, if K�

denotes the constant sheaf on the point � (Zariski topology), then � .U; g�K�/ D K� for
all nonempty open U � X where gW � ! X is the inclusion map. Similarly, let z be the
generic point of a prime divisor Z � X , and let iz W z ! X be the inclusion of z into X .
For an open subset U � X , z 2 U if and only if U \ Z is nonempty. By definition, the
Zariski closure of z isZ, which has codimension 1, and so one says that z has codimension
1. Therefore,

� .U;˚codim.z/D1iz�Z/ D Div.U /:

On combining these remarks, we see that the sequence in (13.3) can be rewritten

0! O�X ! g�K
�
!

M
codim.z/D1

iz�Z! 0:

26See also AG �10.
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The exact sequence for étale topology.

PROPOSITION 13.4 For any connected normal variety (or scheme) X , there is a sequence
of sheaves on Xet

0! Gm ! g�Gm;K !
M

codim.z/D1

iz�Z! 0:

It is always left exact, and it is exact if X is regular (e.g., a nonsingular variety).

PROOF. For any étale U ! X with U connected, the restriction of the sequence to Uzar is
the sequence in (13.3). Since U is regular if X is (see 2.12), the statement follows. 2

Application: the cohomology of Gm on a curve.

Let X be a complete nonsingular algebraic curve over an algebraically closed field k. We
shall use the Weil-divisor exact sequence to compute the cohomology of the sheaf Gm on
X .

In order to do this, we shall need to make use of some results from number theory.
A field k is said to be27 quasi-algebraically closed if every nonconstant homogeneous

polynomial f .T1; : : : ; Tn/ 2 kŒT1; : : : ; Tn� of degree d < n has a nontrivial zero in kn.
An algebraically closed field clearly satisfies this condition, because if T1 really occurs in
f .T1; : : : ; Tn/, the polynomial f .T1; c2; : : : ; cn/ will have degree > 1 for a suitable choice
of values ci for the Ti , and so will have a zero in k.

13.5 The following fields are quasi-algebraically closed:

(a) a finite field;

(b) a function field of dimension 1 over an algebraically closed field;

(c) the field of fractions K of a Henselian discrete valuation ring R with algebraically
closed residue field provided that the completion of K is separable over K.

A field K is said to be a function field in n variables over a subfield k if it is finitely
generated (as a field) over k and of transcendence degree n. Thus, such fields arise as the
field of rational functions on a connected variety of dimension n over k. The separability
condition in (c) holds, for example, when R D OhX;x for some point x on a scheme of finite
type over a field and (of course) when K has characteristic zero.

Statement (a) was conjectured by E. Artin, and proved by Chevalley (Shatz 1972, p109).
Statement (b) is a reformulation of the theorem of Tsen, and is usually referred to as Tsen’s
theorem (ib. pp 108–109). Statement (c) is a theorem of Lang (ib. p116).

The relevance of these results to Galois cohomology is shown by the following propo-
sition.

PROPOSITION 13.6 Let k be a quasi-algebraically closed field, and let G D Gal.ksep=k/.
Then:

(a) the Brauer group of k is zero, i.e., H 2.G; .ksep/�/ D 0;

(b) H r.G;M/ D 0 for r > 1 and any torsion discrete G-module M ;

(c) H r.G;M/ D 0 for r > 2 and any discrete G-module M .

27Such a field is also said to be C1; a field is Cr if it satisfies the condition but with d r < n.
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PROOF. (a). In order to prove (a), we must show that every central division algebraD over
k has degree 1 (see CFT Chapter IV). Let ŒDW k� D n2, and choose a basis for e1; : : : ; en2

for D as a k-vector space. Then there is a homogeneous polynomial f .X1; : : : ; Xn2/ of
degree n such that f .a1; : : : ; an2/ is the reduced norm of the element ˛ D

P
aiei of D.

The reduced norm of ˛ in D=k is NmQŒ˛�=Q.˛/
r , r D n

ŒQŒ˛�WQ� , which is nonzero if ˛ ¤ 0
(because QŒ˛� is a field). Thus f .X1; : : : ; Xn2/ has no nontrivial zero, which, because k is
quasi-algebraically closed, implies that n � n2. This is possible only if n D 1.

(b) One first shows that if k is quasi-algebraically closed, then so also is any finite
extension of k (Shatz 1972, p107). Together with (a), this remark shows that, for any finite
Galois extension L=K of finite extensions of k, H r.Gal.L=K/;L�/ D 0 for r D 1; 2.
Now Tate’s Theorem (CFT II 3.11) implies that H r.Gal.L=k/; L�/ D 0 for all r > 0 and
anyL=k finite and Galois. On passing to the inverse limit, one finds thatH r.G; .ksep/�/ D

0 for r > 0. From the cohomology sequence of the Kummer sequence

0! �n ! .ksep/�
n
�! .ksep/� ! 0

we find that H r.G;�n/ D 0 for all r > 1 and n relatively prime to the characteristic of k.
Let p be a prime ¤ char.k/. There exists a finite Galois extension K of k of degree prime
to p such that K contains a primitive pth root of 1. The composite

H r.G;Z=pZ/
Res
��! H r.H;Z=pZ/

corestriction
��������! H r.G;Z=pZ/; H D Gal.ksep=K/;

is multiplication by ŒKW k� (see CFT II 1.30), and so is an isomorphism. BecauseH r.H;Z=pZ/ D
H r.H;�p/ D 0, H r.G;Z=pZ/ D 0 for r > 1 (and the first remark then shows that this is
also true for any open subgroup of G).

Directly from the Artin-Scheier exact sequence

0! Z=pZ! k
t 7!tp�t
�����! k ! 0

and (CFT II 1.24) one finds that H r.G;Z=pZ/ D 0 for r > 1 for any field k of character-
istic p.

Now let M be a finite G-module. We want to show that H r.G;M/ D 0 for r > 1.
We may suppose that M has order a power of a prime p. The Sylow theorems and the
restriction-corestriction argument used above allows us to assume thatG acts onM through
a finite p-group NG. Now a standard result shows that the only simple NG-module of p-power
order is Z=pZ with the trivial action, and so M has a composition series whose quotients
are all Z=pZ. An induction argument now shows that H r.G;M/ D 0 for r > 1.

As any torsion G-module is a union of its finite submodules, and cohomology com-
mutes with direct limits, this completes the proof.

(c) We omit the proof. It is perhaps worth noting however that, for k a finite field,

H 2.G;Z/ ' H 1.G;Q=Z/ D Homconts.G;Q=Z/ D Q=Z ¤ 0: 2

THEOREM 13.7 For a connected nonsingular curve X over an algebraically closed field,

H r.Xet;Gm/ D

8<:
� .X;O�X /; r D 0

Pic.X/; r D 1

0; r > 1:
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This will follow from the Weil-divisor exact sequence once we have proved the next
lemma (because, for any regular scheme X , Pic.X/ D fdivisorsg=fprincipal divisorsg—
see Hartshorne, II.6.16).

LEMMA 13.8 The cohomology groupsH r.Xet; g�Gm;�/ andH r.Xet;DivX / are zero for
all r > 0.

PROOF. For x a closed point of X , ix� is exact, and so H r.Xet; ix�F/ D H r.xet;F/ D 0
for any sheaf F on xet. Hence H r.Xet;DivX / D 0 for r > 0.

Now consider Rrg�Gm;�. According to (12.4),

.Rrg�Gm;�/ Ny D
�
0 if y D � and r > 0
H r.SpecK Ny ;Gm/ if y D x ¤ �:

Here K Nx is the field of fractions of the Henselian discrete valuation ring OX; Nx , and so
Lang’s Theorem 13.5c shows thatH r.SpecK Nx;Gm/ D 0 for r > 0. ThereforeRrg�Gm;� D
0 for r > 0, and so the Leray spectral sequence for g shows that H r.Xet; g�Gm;�/ D
H r.G; .Ksep/�/ for all r , where G D Gal.Ksep=K/. Now H r.G; .Ksep/�/ D 0 for
r D 1 by Hilbert’s Theorem 90, and H r.G; .Ksep/�/ D 0 for r > 1 by Tsen’s Theorem
13.5b and (c) of Proposition 13.6. 2

Let X be a connected nonsingular variety (or a regular integral quasi-compact scheme)
and let K D k.X/ (or K D R.X/). Similar arguments to the above show that there is are
exact sequences

0! H 0.Xet;Gm/! K� !
M

codim.x/D1

Z! H 1.Xet;Gm/! 0

and
0! H 2.Xet;Gm/! H 2.K;Gm;�/:

Moreover,H r.Xet;Gm/ is torsion for r > 1. Here (and elsewhere)H r.K;�/ D H r.Spec.K/et;�/.
(See EC III 2.22.)

Now assume thatX has dimension 1, that its residue fields are perfect, and that eitherK
has characteristic zero or X is an algebraic curve over a field (so that the separability con-
dition in Lang’s Theorem holds). Then the last exact sequence extends to a long sequence

0! H 2.Xet;Gm/! H 2.K;Gm;�/!˚vH 1.�.v/;Q=Z/! � � �
� � � ! H r.Xet;Gm/! H r.K;Gm/!˚vH r�1.�.v/;Q=Z/! � � �

Here the sums are over the closed points v ofX , and �.v/ is the residue field at v. When
�.v/ is finite, H r.�.v/;Q=Z/ D 0 for r > 1.

Let X D SpecR, where R is the ring of integers in a totally imaginary number field
K. On comparing the above sequence with the fundamental sequence in global class field
theory (CFT VIII 4.2), namely, with

0! H 2.K;Gm/!
M

v
H 2.Kv;Gm/! Q=Z! 0;

one finds that
H 2.Xet;Gm/ D 0 and H 3.Xet;Gm/ D Q=Z:



14 THE COHOMOLOGY OF CURVES.

In this section, we study the étale cohomology of curves. Not only is this a paradigm for
the study of the étale cohomology of a general variety, but many proofs in the general case
are by induction on the dimension of a variety starting from the case of a curve.

The Picard group of a curve.

We saw in the last section that, for a connected nonsingular curve U over an algebraically
closed field k,

H r.Uet;Gm/ D

8<:
k�; r D 0;

Pic.U /; r D 1;

0; r > 1:

We wish to use the Kummer sequence to compute the cohomology of �n, but first we need
to know the structure of Pic.U /.

The Picard group of U can be defined by the exact sequence

K� !
M

x2U
Z! Pic.U /! 0:

Here K D k.U /, the field of rational functions on U , and the sum is over all closed points
of U . For a closed point x of U , let Œx� be the divisor corresponding to it. Thus any element
of Div.U / can be written as a finite sum D D

P
x2U nxŒx�, nx 2 Z. The degree of

D D
P
nxŒx� is

P
nx .

Now let X be a complete connected nonsingular curve over an algebraically closed
field. The divisor div.f / of a nonzero rational function f on X has degree zero (a rational
function has as many poles as zeros counting multiplicities). Let Div0.X/ denote the group
of divisors of degree 0, and Pic0.X/ the quotient of Div0.X/ by the subgroup of principal
divisors.

PROPOSITION 14.1 The sequence

0! Pic0.X/! Pic.X/! Z! 0

is exact. For any integer n relatively prime to the characteristic of k,

z 7! nzWPic0.X/! Pic0.X/

is surjective with kernel equal to a free Z=nZ-module of rank 2g, where g is the genus of
X .

PROOF. The sequence is part of the kernel-cokernel sequence28 of the pair of maps

K�
div
! Div0.X/ ,! Div.X/:

28The kernel-cokernel exact sequence of the pair A
f
�! B

g
�! C is

0! Ker.f /! Ker.g ı f /! Ker.g/! Coker.f /! Coker.g ı f /! Coker.g/! 0

(CFT II 4.2).
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The proof of the second statement is more difficult. Assume first that k D C. Choose
a basis !1; : : : ; !g for the holomorphic differentials on the Riemann surface X.C/ and a
basis 
1; : : : ; 
2g for H1.X.C/;Z/. Let � be the subgroup of Cg generated by the vectors�Z


i

!1; : : : ;

Z

i

!g

�
; i D 1; : : : ; 2g:

For each pair of points z0; z1 2 X.C/, choose a path 
.z0; z1/ from z0 to z1, and let

I.z0; z1/ D

 Z

.z0;z1/

!1; : : : ;

Z

.z0;z1/

!g

!
2 Cg :

Its image in Cg=� is independent of the choice of the path 
.z0; z1/, and the map Œz1� �
Œz0� 7! I.z0; z1/ extends by linearity to a homomorphism

i WDiv0.X/! Cg=�:

The famous theorem of Abel (Fulton, W., Algebraic Topology, Springer 1995, 21.18) says
that i.D/ D 0 if and only if D is principal, and the equally famous Jacobi Inversion Theo-
rem says that i is onto (ib. 21.32). Therefore, i induces an isomorphism

Pic0.X/
�
�! Cg=�:

Clearly, for any integer n, x 7! nxW Cg=�! Cg=� is surjective with kernel

1
n
�=� � .1

n
Z=Z/2g ' .Z=nZ/2g :

This completes the proof of the proposition in the case k D C.
For an arbitrary algebraically closed field k, the proof is similar, but requires the alge-

braic theory of the Jacobian variety. Briefly, there is an abelian variety J of dimension g,
called the Jacobian variety of X , such that Pic0.X/ ' J.k/. As for any abelian variety J
of dimension g over an algebraically closed field k and integer n prime to the characteristic
of k, nW J.k/ ! J.k/ is surjective with kernel a free Z=nZ-module of rank n2g (see, for
example, my articles in Arithmetic Geometry, Springer, 1986). 2

The cohomology of �n.

PROPOSITION 14.2 LetX be a complete connected nonsingular curve over an algebraically
closed field k. For any n prime to the characteristic of k,

H 0.X; �n/ D �n.k/; H 1.X; �n/ � .Z=nZ/2g ; H 2.X; �n/ ' Z=nZ;

and H r.X; �n/ D 0; r > 2.

PROOF. From the Kummer sequence (7.9), we obtain an exact sequence

� � � ! H r.Xet; �n/! H r.Xet;Gm/
n
�! H r.Xet;Gm/! � � � :

Thus, the statement can be read off from (14.1) and (13.7). 2
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PROPOSITION 14.3 Let U be a nonsingular curve over an algebraically closed field k. For
any n prime to the characteristic of k and closed point x 2 U ,

H 2
x .U; �n/ ' Z=nZ; H r

x .U; �n/ D 0 for r ¤ 2:

PROOF. Let R be the Henselization of OU;u. By excision (9.8),

H r
x .U; �n/ ' H

r
x .V; �n/; V D SpecR:

Now H r.V;Gm/ D 0 for r > 0 (Theorem 13.7 also applies to V ), and so the exact
sequence of the pair .V; V r x/

� � � ! H r
x .V;Gm/! H r.V;Gm/! H r.V r x;Gm/! � � �

provides us with isomorphisms

H r�1.V r x;Gm/! H r
x .V;Gm/

for all r ¤ 1. But V r x D SpecK, where K is the field of fractions of R, and Lang’s
Theorem (13.5c) and (13.6) show that H r.K;Gm/ D 0 for r � 1. Hence

H 1
x .V;Gm/ ' H

0.K;Gm/=H 0.V;Gm/ ' Z; H r
x .V;Gm/ D 0 for r ¤ 1:

The proposition now follows from the exact sequence of the Kummer sequence

� � � ! H r
x .V; �n/! H r

x .V;Gm/
n
�! H r

x .V;Gm/! � � � : 2

REMARK 14.4 LetM be a free Z=nZ-module of rank 1, and letM denote also the constant
sheaf on a variety (or scheme) Y defined by M . Then

H r.Yet;M/ ' H r.Yet;Z=nZ/˝M � H r.Yet;Z=nZ/:

This remark applies to M D �n when Y is a variety over a field k containing n distinct
roots of 1.

Cohomology with compact support for curves

We first recall some definitions. A function field in one variable over a field k is a field
K � k of transcendence degree 1 over k and finitely generated over k, i.e., K is a finite
extension of k.T / for some T transcendental over k. A curve U over k is regular if OU;u is
a discrete valuation ring for all u. A nonsingular curve is regular, but a regular curve need
not be nonsingular unless k is perfect (by definition a variety U over a field k is nonsingular
if Ukal is nonsingular over kal — in the language of schemes, U is smooth over Spec k).

Let U be a connected regular curve over a field k. ThenK def
D k.U / is a function field in

one variable over k, and the map u 7! OU;u is an injection from U into the set of discrete
valuation rings R � K satisfying the condition:

.�/ R contains k and has field of fractions K.
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The proof of injectivity uses that varieties are separated (see Notations and Conventions)
— the map is not injective for the “affine line with the origin doubled” (AG 4.10).

Conversely, every function field K in one variable has a connected complete regular
curve X canonically associated with it. In fact, we can define X to be the set of all discrete
valuation rings in K satisfying .�/, and endow it with the topology for which the proper
closed subsets are the finite sets. For each open U in X , define

� .U;OX / D \R2UR:

Then .X;OX / is a complete curve with K as its field of rational functions, and the local
ring at the point R of X is R itself. (See Hartshorne 1977, I.6.)

Let U be a connected regular curve over k, and letX be the connected complete regular
curve canonically associated with k.U /. Then the map

j WU ! X; j.u/ D OU;u;

realizes U as an open subvariety of X . For a sheaf F on U , we define

H r
c .U;F/ D H r.X; jŠF/

and refer to the H r
c .U;F/ as the cohomology groups of F with compact support. For an

explanation of this terminology, see �18 below.
Because jŠ is exact, a short exact sequence of sheaves on U gives a long exact sequence

of cohomology groups. However, because jŠ doesn’t preserve injectives, H r
c .U;F/ is not

the r th right derived functor of H 0
c .U;�/.

PROPOSITION 14.5 For any connected regular curve U over an algebraically closed field
k and integer n not divisible by the characteristic of k, there is a canonical isomorphism

H 2
c .U; �n/! Z=nZ:

PROOF. Let j W U ,! X be the canonical inclusion of U into a complete regular curve,
and let i W Z ,! X be the complement of U in X . Regard �n as a sheaf on X . From the
sequence (see 8.15)

0! jŠj
��n ! �n ! i�i

��n ! 0

we obtain an exact sequence

� � � ! H r
c .U; �n/! H r.X; �n/! H r.X; i�i

��n/! � � � :

But
H r.X; i�i

��n/ ' H
r.Z; i��n/ D 0 for r > 0;

and so
H 2
c .U; �n/ ' H

2.X; �n/ ' Z=nZ: 2

REMARK 14.6 For any x 2 U , sheaf F on U , and r � 0, there is a canonical map
H r
x .U;F/! H r

c .U;F/. For F D �n and r D 2, the map is compatible with the isomor-
phisms in (14.3) and (14.5).



14. THE COHOMOLOGY OF CURVES. 93

The Poincaré duality theorem.

Throughout this subsection, U is a connected regular curve over an algebraically closed
field k, and n is an integer not divisible by the characteristic of k.

By a finite locally constant sheaf F , I shall mean a locally constant sheaf, killed by n,
that has finite stalks. Thus, for some finite étale covering U 0 ! U , F jU 0 is the constant
sheaf defined by a finite Z=nZ-module M , and to give a finite locally constant sheaf F on
U is to give a finite Z=nZ-module endowed with a continuous action of �1.U; Nu/. (See �6.)

THEOREM 14.7 (POINCARÉ DUALITY) For any finite locally constant sheaf F on U and
integer r � 0, there is a canonical perfect pairing of finite groups

H r
c .U;F/ �H 2�r.U; LF.1//! H 2

c .U; �n/ ' Z=nZ:

A pairing M �N ! C is said to be perfect if the induced maps

M ! Hom.N; C /; N ! Hom.M;C /

are isomorphisms. The sheaf LF.1/ is

V 7! HomV .F jV;�njV /:

Note that, if G D LF.1/, then F D LG.1/.
For a discussion of the relation of the above theorem to the usual Poincaré duality

theorem for topological spaces, see �24.
I defer a description of the pairing until later. In the sketch of the proof of the theorem,

I omit proofs that the diagrams commute. It is important to understand though, that the
theorem is about a specific pairing, i.e., it doesn’t just say that the groups are dual, but that
they are dual with a specific pairing.

EXAMPLE 14.8 Let X be a complete connected nonsingular curve over an algebraically
closed field k. In this case, the pairing is

H r.X;F/ �H 2�r.X; LF.1//! H 2.X; �n/ ' Z=nZ:

On taking F D Z=nZ and tensoring two of the groups with �n (cf. 14.4), we obtain a
pairing

H r.X; �n/ �H
2�r.X; �n/! H 2.X; �n ˝ �n/ ' �n:

For r D 1, this can be identified with the Weil pairing

Jac.X/n � Jac.X/n ! �n

on the points of order n on the Jacobian of X (AV I �13).

Sketch of the proof of Poincaré duality

In the proof, we make frequent use of the the five-lemma in the following form. Consider a
commutative diagram with exact rows,

� � � �

� � � �I

a b c d



94 CHAPTER I. BASIC THEORY

then
b; d injective, a surjective ) c injectiveI

a; c surjective, d injective ) b surjective:

Step 0. For any torsion sheaf F , the groupsH r.U;F/ andH r
c .U;F/ are zero for r > 2.

PROOF. For the vanishing of H r.U;F/ D 0, see Theorem 15.1 below. It implies that
H r
c .U;F/

def
D H r.X; jŠF/ D 0 for r > 2. 2

Thus the theorem is true for r ¤ 0; 1; 2.
For convenience, write T r.U;F/ D H 2�r

c .U; LF.1//_ (the last _ means dual in the
sense Hom.�;Z=nZ/). We have to show that the map

�r.U;F/WH r.U;F/! T r.U;F/

defined by the pairing in the theorem (with F replaced by LF.1/) is an isomorphism of finite
groups for all finite locally constant sheaves F on U .

Because HomZ=nZ.�;Z=nZ/ preserves the exactness of sequences of Z=nZ-modules,
so also does F 7! LF.1/ (look on stalks). It follows that an exact sequence of finite locally
constant sheaves

0! F 0 ! F ! F 00 ! 0

gives rise to an exact sequence

� � � ! T s.U;F 0/! T s.U;F/! T s.U;F 00/! T sC1.U;F 0/! � � � :

Step 1: Let � W U 0 ! U be a finite map. The theorem is true for F on U 0 if and only
if it is true for ��F on U .

PROOF. Recall that �� is exact and preserves injectives, and soH r.U; ��F/ ' H r.U 0;F/
for all r . Since a similar statement is true for T s , we see that �r.U; ��F/ can be identified
with �r.U 0;F/. 2

Step 2: Let V D U r x for some point x 2 U . Then there is an exact commutative
diagram with isomorphisms where indicated:

H r
x .U; �n/ H r.U; �n/ H r.V; �n/ H rC1

x .U; �n/

H 2�r.x;Z=nZ/_ H 2�r
c .U;Z=nZ/_ H 2�r

c .V;Z=nZ/_ H 3�r.x;Z=nZ/_:

� �r .U;�n/ �r .V;�n/ �

PROOF. The upper sequence is the exact sequence of the pair .U; V /. According to (14.3),
H r
x .V; �n/ D H

0.x;Z=nZ/ when r D 2 and is zero otherwise.
The lower sequence is the compact cohomology sequence of

0! jŠZ=nZ! Z=nZ! i�i
�Z=nZ! 0;

where j and i are the inclusions of V and x into U respectively (see 8.16).
For r D 2, the unlabelled vertical map is the isomorphism given by the pairing

H 0.x;Z=nZ/ �H 0.x;Z=nZ/! H 0.x;Z=nZ/ ' Z=nZ

(Poincaré duality for the point x), and for r ¤ 2, it is a map between zero groups. 2
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Step 3: The map �0.U;Z=nZ/ is an isomorphism of finite groups.

PROOF. In this case, the pairing is

H 0.U;Z=nZ/ �H 2
c .U; �n/! H 2

c .U; �n/ ' Z=nZ:

HereH 0.U;Z=nZ/ D Z=nZ, and its action onH 2
c .U; �n/ is defined by the natural Z=nZ-

module structure on H 2
c .U; �n/. 2

Step 4: The theorem is true for r D 0 and F locally constant.

PROOF. Let U 0 ! U be a finite étale covering such that F jU 0 is constant. We can embed
F jU 0 into a sheaf F 0 D .Z=nZ/s on U 0 for some s. On applying �� to F jU 0 ,! F 0 and
composing the result with the natural inclusion F ,! ���

�F , we obtain the first map in
the sequence

0! F ! ��F 0 ! F 00 ! 0:

The cokernel F 00 is again locally constant (when U 0 ! U is chosen to be Galois, F 00
becomes constant on U 0). Consider the diagram

� � H 0.U;F/ H 0.U; ��F 0/ H 0.U;F 00/

� � T 0.U;F/ T 0.U; ��F 0/ T 0.U;F 00/:

� � �

The groups “�” are in fact zero, but all we need is that the arrows are isomorphisms. The
map �0.U; ��F 0/ is an isomorphism by Steps 1 and 3. The five-lemma shows that �0.U;F/
is a injective. Since this is true for all locally constant sheaves F , �0.U;F 00/ is injective,
and the five-lemma now shows that �0.U;F/ is surjective. Finally, H 0.U;F/ is obviously
finite. 2

Step 5: The map �1.U; �n/ is injective.

PROOF. Recall (11.3) thatH 1.U;Z=nZ/ D Homconts.�1.U; Nu/;Z=nZ/. Let s 2 H 1.U;Z=nZ/,
and let � W U 0 ! U be the Galois covering corresponding to the kernel of s. Then s maps to
zero in H 1.U 0;Z=nZ/, which is isomorphic to H 1.U; ��Z=nZ/. Let F 00 be the cokernel
of Z=nZ! ��.Z=nZ/, and consider

H 0.U; ��Z=nZ/ H 0.U;F 00/ H 1.U;Z=nZ/ H 1.U; ��Z=nZ/

T 0.U; ��Z=nZ/ T 0.U;F 00/ T 1.U;Z=nZ/ T 1.U; ��Z=nZ/:

� �

From our choice of � , s maps to zero inH 1.U; ��Z=nZ/, and a diagram chase shows that,
if s also maps to zero in T 1.U;Z=nZ/, then it is zero. 2

Step 6. The maps �r.U;Z=nZ/ are isomorphisms of finite groups for r D 1; 2.
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PROOF. First take U D X . For r D 1, � is a map H 1.X;Z=nZ/ ! H 1.X; �n/
_.

Because �1.X;Z=nZ/ is injective (Step 5), andH 1.X;Z=nZ/ is finite of the same order as
H 1.X; �n/ (14.2, 14.4), it is an isomorphism. For r D 2, we have to show that the pairing

H 2.X;Z=nZ/ � �n.k/! H 2.X; �n/

is perfect, but this follows from (14.4).
We have shown that �r.X;Z=nZ/ is an isomorphism of finite groups for r D 1; 2. To

deduce the same statement for �r.U;Z=nZ/, remove the points of X r U one at a time,
and apply the five-lemma to the diagram in Step 2. 2

Step 7. The maps �r.U;F/ are isomorphisms of finite groups for r D 1; 2 and F
locally constant.

PROOF. Apply the argument in Step 4, twice. 2

This completes the sketch of the proof of Theorem 14.7.

The Hochschild-Serre spectral sequence

In this subsection, X is an arbitrary variety (or scheme).

THEOREM 14.9 Let � W Y ! X be a Galois covering with Galois group G. For any sheaf
F on Xet, there is a spectral sequence

H r.G;H s.Yet;F jY //) H rCs.Xet;F/: (1)

PROOF. For any sheaf F on X , F.Y / is a left G-module, and F.X/ D F.Y /G (see 6.4).
Therefore the composite of the functors

Sh.Xet/
F 7!F.Y /
������! G-Mod

M 7!MG

������! Ab

is � .X;�/. The theorem will follow from (10.7) once we show that I injective implies
that H r.Y; I.Y // D 0 for r > 0. But if I is injective as a sheaf, then it is injective
as a presheaf, and so LH r.Y=X; I/ D 0 for r > 0 (see �10). As we observed in (10.1),
LH r.Y=X; I/ D LH r.G; I.Y //. 2

NOTES When Y and X are spectra of fields, (1) becomes the Hochschild-Serre spectral sequence,
and so it is usually also called the Hochschild-Serre spectral sequence. However, as Serre explains,29

“Cartan-Leray spectral sequence” would be more appropriate.

REMARK 14.10 Let

� � � ! Yi ! Yi�1 ! � � � ! Y1 ! Y0 D X

29“En septembre 1950, un peu avant de clarifier ce qui allait être ma thèse, j’ai vu que les suite spectrales de
Leray s’appliquaient aussi à la cohomologie des extensions de groupes. C’était d’ailleurs presque évident vu
ce qu’avaient déjà fait Cartan-Leray: ils avaient montré que, si X ! Y est un revêtement galoisien de groupe
� , il y a une suite spectrale qui part de H�.�;H�.X// et aboutit à H�.Y /. [Cette suite spectrale est souvent
appelée maintenant “de Hochschild-Serre”—je n‘y peux rien].” Serre, Notices AMS, Sept. 2011, p1087.
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be a tower in which each map Yi ! Yj is Galois. Let Gi be the Galois group of Yi over X ,
and let G D lim

 �
Gi . For each i , there is a spectral sequence

H r.Gi ;H
s.Yi ;Fi //) H rCs.X;F/; Fi D F jYi :

On passing to the inverse limit, we obtain a spectral sequence

H r.G;H s.Y1;F1//) H rCs.X;F/:

Here H r.G;�/ is the cohomology group of the profinite group G computed using contin-
uous cochains, Y1 D lim

 �
Yi , and F1 is the inverse image of F on Y1 (cf. 10.9 and CFT

II 4.4).

EXAMPLE 14.11 Let A be a Dedekind domain with field of fractions K, and let Ksep be
a separable closure of K. Let Kun be the composite of all subfields L of Ksep such that
ŒLW K� < 1 and the integral closure of A in L is unramified over A at all primes. Let
G D Gal.Kun=K/ — it is �1.U; N�/ where U D SpecA and N� is the geometric point
SpecKsep ! U . Let FM be the locally constant sheaf on U corresponding to the discrete
�1-module M . Then there is a spectral sequence

H r.�1.U; N�/;H
s. QU ;FM //) H rCs.U;FM /:

If H s. QU ;FM / D 0 for s > 0, then this gives isomorphisms

H r.�1.U; N�/;M/ ' H r.U;FM /

for all r .

Cohomology of locally constant sheaves on affine curves

Throughout this section, we assume that the sheaves have no p-torsion if char.k/ D p ¤ 0:
Let X be a complete connected nonsingular curve over a field k. For any nonempty

finite set S of closed points of X , U D X r S is affine. (The Riemann-Roch theorem
provides us with a nonconstant function f on U , i.e., a nonconstant function f W U ! A1.)

PROPOSITION 14.12 Let U be a nonsingular affine curve over an algebraically closed
field. For any locally constant torsion sheaf F on U , H r.Uet;F/ D 0 for r � 2.

PROOF. We first show that H 2.U; �n/ D 0. From the Weil-divisor sequence, we found
that H 1.U;Gm/ D Pic.U /, and that H r.U;Gm/ D 0 for r > 1, and so the Kummer
sequence shows that H 2.U; �n/ D Pic.U /=nPic.U / and that H r.U; �n/ D 0 for r > 2.
Let X be the complete nonsingular curve containing U . Since U omits at least one point of
X , the projection map

Div.X/ ! Div.U /
k kL
x2X Z

L
x2U Z

maps Div0.X/
def
D f

P
nxŒx� j

P
nx D 0g onto Div.U /. Since the projection map sends

principal divisors to principal divisors, we see that Pic.U / is a quotient of Pic0.X/, which
is divisible. Therefore Pic.U / is also divisible, and H 2.U; �n/ D 0.
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Next, let F be a locally constant sheaf on U with finite fibres. There exists a finite
Galois covering � WU 0 ! U such that F jU 0 is constant, and a surjective “trace map”
���

�F ! F . Because H r.U; ���
�F/ D 0 for r � 2, it follows that H 2.U;F/ D 0

for r � 2. (Let G be the Galois group of U 0 over U . For any étale map V ! U ,
� .V; ���

�F/ D � .U 0 �U V;F/, which is a G-module with fixed module � .V;F/. The
trace map is s 7!

P
g2G gs. To see that it is surjective, look on the stalks.)

Finally, a locally constant torsion sheaf is a direct limit of locally constant sheaves with
finite fibres. 2

PROPOSITION 14.13 Let U be a connected variety (or scheme) with �1.U; Nu/ D 1 for one
(hence, every) geometric point Nu! U . ThenH 1.U;F/ D 0 for any locally constant sheaf
on U .

PROOF. Because of (6.16), any locally constant sheaf is constant, and because of (11.3),
H 1.U;FM / D Hom.�1.U; Nu/;M/ D 0.

THEOREM 14.14 Let U be a smooth affine curve over an algebraically closed field k,
and let F be the locally constant torsion sheaf on U corresponding to a discrete �1.U; Nu/-
module M . Then H r.U;F/ ' H r.�1.U; Nu/;M/ for all r .

PROOF. Let QU be the universal covering variety of U . Then H r. QU ;F/ D 0 for r � 2 by
(14.12), and H 1. QU ;F/ D 0 because QU is simply connected. We can now apply (14.11). 2

Curves over finite fields.

Let k be a finite field, and let � D Gal.kal=k/. Then � ' OZ, with 1 2 OZ corresponding to
the Frobenius element F in � . Throughout, n is an integer prime to the characteristic of k.

There are canonical isomorphisms

H 1.�;Z=nZ/! Homconts.�;Z=nZ/
' 7!'.F /
������! Z=nZ:

Moreover, H r.�;M/ D 0 for r > 1 and any torsion discrete � -module (see 13.5 and
13.6).

PROPOSITION 14.15 Let M be a finite discrete � -module, and let LM D Hom.M;Z=nZ/
(dual abelian group). Then the cup-product pairing

H r.�;M/ �H 1�r.�; LM/! H 1.�;Z=nZ/ ' Z=nZ

is a perfect pairing of finite groups.

PROOF. By definition, H 0.�;M/ D M� , the largest subgroup of M on which � acts
trivially. The map sending a crossed homomorphism f W � ! M to its value on the
Frobenius element induces an isomorphism of H 1.�;M/ with M� , the largest quotient of
M on which � acts trivially. In the dualityM $ LM , the largest subgroup on which � acts
trivially corresponds to the largest quotient group on which it acts trivially, i.e., the perfect
pairing

M � LM ! Z=nZ

induces a perfect pairing
M�
� . LM/� ! Z=nZ: 2
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The proposition can be stated more succinctly as: for any finite � -module M killed by
n,

.M� /_ D .M_/� ; .M� /
_
D .M_/� :

Let U be a connected nonsingular curve over a finite field k, and let NU be the curve over
kal obtained by base change. For any torsion � -module M ,

H r.�;M/ DM� ;M� ; 0

respectively for r D 0; 1;� 2. Therefore, for any torsion sheaf F on U , the Hochschild-
Serre spectral sequence gives short exact sequences

0! H r�1. NU ;F/� ! H r.U;F/! H r. NU ;F/� ! 0; (2)

and similarly for the cohomology groups with compact support,

0! H r�1
c . NU ;F/� ! H r

c .U;F/! H r
c .
NU ;F/� ! 0:

If F is a finite locally constant sheaf on U killed by n, then the groups in this sequence are
finite, and according to Proposition 14.15, its dual is

0! .H r
c .
NU ;F/_/� ! H r

c .U;F/_ ! .H r�1
c . NU ;F/_/� ! 0:

On using Theorem 14.7 to replace two of the groups in this sequence, we obtain the se-
quence

0! H 2�r. NU ; LF.1//� ! H r
c .U;F/_ ! H 3�r. NU ; LF.1//� ! 0: (3)

A comparison of (2) with (3) suggests:

THEOREM 14.16 (POINCARÉ DUALITY) For any finite locally constant sheaf F onU and
integer r � 0, there is a canonical perfect pairing of finite groups

H r
c .U;F/ �H 3�r.U; LF.1//! H 3

c .U; �n/ ' Z=nZ:

PROOF. The only difficulty is in defining the pairing, and verifying that it is compatible
with the pairing over NU , i.e., in showing that

0 H r�1
c . NU ;F/� H r

c .U;F/ H r
c .
NU ;F/� 0

0 .H 3�r. NU ; LF.1//� /_ H 3�r.U; LF.1//_ .H 2�r. NU ; LF.1//� /_ 0

� �

commutes. 2
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An exact sequence in the Galois cohomology of a function field over a finite
field

Let X be a complete nonsingular connected curve over a finite field k, and let U be an open
subset of X . Let F be the sheaf on U corresponding to a finite �1.U; Nu/-module M of
order prime to the characteristic of k. We wish to interpret the exact sequence

� � � ! H r
Z.X; jŠF/! H r.X; jŠF/! H r.U;F/! � � �

purely in terms of Galois cohomology groups.
Let G D �1.U; Nu/ and for all v 2 X r U , let Gv be the decomposition group at v.

Then

H r.U;F/ ' H r.G;M/

H r.X; jŠF/
def
D H r

c .U;F/ ' H 3�r.U; LF.1//_ ' H 3�r.G; LM.1//_:

It remains to compute H r
Z.X; jŠF/. By excision, H r

Z.X; jŠF/ D ˚H
r
z .Xz; jŠF/ where

Xz D SpecOhX;z .

LEMMA 14.17 Let V D SpecA with A a discrete valuation ring, and let u and z respec-
tively be the open and closed points of V . For any sheaf F on u, H r.V; jŠF/ D 0 for all r ,
and so the boundary map in the exact sequence of the pair .V; u/,

H r�1.u;F/! H r
z .V;F/

is an isomorphism for all r .

PROOF. See my book Arithmetic Duality Theorems, II 1.1. 2

Thus
H r
Z.U; jŠF/ D ˚v2ZH

r�1.Gv;M/:

THEOREM 14.18 For any finite discreteG-moduleM of order relatively prime to the char-
acteristic of k, there is a canonical exact sequence

0 ! H 0.G;M/ !
L
v2ZH

0.Gv;M/ ! H 2.G; LM.1//_

#

H 1.G; LM.1//_  
L
v2ZH

1.Gv;M/  H 1.G;M/

#

H 2.G;M/ !
L
v2ZH

2.Gv;M/ ! H 0.G; LM.1//_ ! 0:

PROOF. Make the substitutions described above in the exact sequence of jŠF for the pair
.X;U /, where F is the locally constant sheaf on U corresponding to M . 2
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An exact sequence in the Galois cohomology of a number field.

Let K be a number field, and let S be a finite set of primes of K including the infinite
primes. Let RS be the ring of S -integers in K, i.e., the ring of elements a of K such that
ordv.a/ � 0 for v … S .

THEOREM 14.19 Let GS be the Galois group of the maximal extension of K unramified
outside S , and let M be a finite discrete GS -module whose order is a unit in RS . There is
a canonical exact sequence

0 ! H 0.GS ;M/ !
L
v2ZH

0.Gv;M/ ! H 2.GS ; LM.1//_

#

H 1.GS ; LM.1//_  
L
v2ZH

1.Gv;M/  H 1.GS ;M/

#

H 2.GS ;M/ !
L
v2ZH

2.Gv;M/ ! H 0.GS ; LM.1//_ ! 0:

Theorem 14.19 is a very important result of Tate — see his talk at ICM 1962 (Poitou
obtained similar results about the same time). For a direct proof of it (based on an unpub-
lished proof of Tate), see I.4 of my book, Arithmetic Duality Theorems. Alternatively, it can
be recovered from a theorem in the étale cohomology of RS (see (14.22) below).

Pairings and Ext-groups

In this subsection, we explain how to define the pairings in the above duality theorems, and
also how to extend the theorems to more general sheaves.

We first state a theorem generalizing (14.7), and then explain it.

THEOREM 14.20 Let U be a nonsingular curve over an algebraically closed field k. For all
constructible sheaves F of Z=nZ-modules on U and all r � 0, there is a canonical perfect
pairing of finite groups

H r
c .U;F/ � Ext2�rU;n .F ; �n/! H r

c .U; �n/ ' Z=nZ:

Constructible sheaves A sheaf F on a curve U over a field k is constructible if

(a) F jV is locally constant for some nonempty open subset V of U ;

(b) the stalks of F are finite.

Applying (8.17) and (6.16), we see that to give a constructible sheaf on U , we have to
give

(a) a finite set S of closed points of U ; let V D U r S ;

(b) a finite discrete �1.V; N�/-module MV (here � is the generic point of U );

(c) a finite discrete Gal.k.v/sep=k.v//-module Mv for each v 2 S ;

(d) a homomorphism Mv !MV that is equivariant for the actions of the groups.

A sheaf of abelian groups F can be regarded as a sheaf of Z-modules (here Z is the
constant sheaf). To say that it is a sheaf of Z=nZ-modules means simply that nF D 0.
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The Ext group For any variety (or scheme)X , let Sh.Xet; n/ be the category of sheaves of
Z=nZ-modules on Xet. Just as for the full category, Sh.Xet; n/ has enough injectives. For
a sheaf F on Sh.Xet; n/, H r.Xet;F/ will be the same whether computed using injective
resolutions in Sh.Xet/ or in Sh.Xet; n/ (see EC III 2.25). However, if F and G are two
sheaves killed by n, then Extr.F ;G/ will depend on which category we compute it in. This
can be seen already when X is the spectrum of an algebraically closed field. Here Sh.Xet/

is the category of Z-modules, and Sh.Xet; n/ is the category of Z=nZ-modules. In the first
category, Ext1.Z=nZ;Z=nZ/ ¤ 0, because

0! Z=nZ! Z=n2Z
n
�! Z=nZ! 0

doesn’t split, whereas in the second category Ext1.Z=nZ;Z=nZ/ D 0 because Z=nZ is
injective (as a Z=nZ-module).

By ExtrU;n.F ;G/ we mean the Ext group computed in the category Sh.Uet; n/.

LEMMA 14.21 If F is locally constant, then ExtrU;n.F ; �n/ ' H r.Uet; LF.1// where
LF.1/ is the sheaf

V 7! HomV .F jV;�n/:

PROOF. (SKETCH OF PROOF.) For sheaves F and G on an arbitrary variety (or scheme)
Y , we define Hom.F ;G/ to be the sheaf

V 7! HomVet.F jV;GjV /

— it is easy to check that Hom.F ;G/ is in fact a sheaf. Let F0 be a locally constant sheaf
of Z=nZ-modules with finite stalks. The functor

G 7! Hom.F0;G/WSh.Yet; n/! Sh.Yet; n/

is left exact, and so we can form its right derived functors Extr.F0;�/. These are called
the local Ext groups. They are related to the global Ext groups by a spectral sequence

H r.Yet;Exts.F0;G//) Exts.F0;G/:

Under the hypothesis on F0, the stalk

Extr.F0;G/ Ny D Extr..F0/ Ny ;G Ny/

for all geometric points Ny. The Ext at right is formed in the category of Z=nZ-modules.
Therefore, in the situation of the lemma

Extr.F ; �n/ Ny D Extr.F Ny ; �n/ � Extr.F Ny ;Z=nZ/ D 0 for r > 0;

and the spectral sequence gives isomorphisms

H r.Xet;Hom.F ; �n// ' ExtrX;n.F ; �n/;

as required. For more details, see EC II 3.20, III 1.22, III 1.31. 2

Thus, for a locally constant sheaf F , the pairing in Theorem 14.20 takes the form

H r
c .U;F/ �H 2�r.U; LF.1//! H 2

c .U; �n/ ' Z=nZ:
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The pairing There are various ways of defining the pairings, but (fortunately) they all
agree, at least up to sign. Perhaps the simplest is to interpret the Ext groups as equivalence
classes of extensions, and then define the pairing as an iterated boundary map.

In any abelian category, the elements of Extr.A;B/, r > 0, can be interpreted as
equivalence classes of r-fold extensions

0! B ! E1 ! � � � ! Er ! A! 0:

There is a natural pairing

Extr.A;B/ � Exts.B; C /! ExtrCs.A; C /

that can either be defined by splicing extensions, or as an iterated boundary map, i.e., break
the extension

0! C ! E1 ! � � � ! Es ! B ! 0

into short exact sequences

0 ! Ks ! Es ! B ! 0

0 ! Ks�1 ! Es�1 ! Ks ! 0

� � �

and form the boundary maps

Extr.A;B/! ExtrC1.A;Ks/! ExtrC2.A;Ks�1/! � � � ! ExtrCs.A; C /:

See Mitchell, B., Theory of Categories, Academic Press, 1965, VII.3 or Bourbaki, N.,
Algèbre, Chap. X.

In our case, an element of Exts.F ; �n/ is represented by an exact sequence

0! �n ! E1 ! � � � ! Es ! F ! 0:

Apply jŠ to get an extension

0! jŠ�n ! jŠE1 ! � � � ! jŠEs ! jŠF ! 0;

which defines an iterated boundary map

H r.X; jŠF/! H rCs.X; jŠ�n/:

The proof of Theorem 14.20 For a constructible sheaf F , ExtrX;n.F ; �/ D 0 for r � 2
and Ext1X;n.F ; �/ has support on a finite set (the complement of the open set V such that
F jV is locally constant), and so the vanishing of ExtrX;n.F ; �n/ follows from the first
statement and the spectral sequence in the proof of (14.21). Theorem 14.7 implies Theorem
14.20 in the case that F is locally constant, and a five-lemma argument then allows one to
obtain the full theorem (see EC p177, Step 2).
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Rings of integers in number fields

As before, letK be a totally imaginary number field, and let S be a finite set of primes ofK
including the infinite primes. Let RS be the ring of S -integers in K, and let n be an integer
that is a unit in RS .

THEOREM 14.22 Let U D SpecRS .

(a) There is a canonical isomorphism H 3
c .U; �n/ ' Z=nZ.

(b) For any constructible sheaf F of Z=nZ-modules on U , there is a canonical perfect
pairing

H r
c .U;F/ � Ext3�rU;n .F ; �n/! H 3

c .U; �n/ ' Q=Z

of finite groups.

For a proof of this theorem, see my Arithmetic Duality Theorems, II 3. Alternatively,
Theorem 14.19 implies Theorem 14.22 in the case that F is locally constant, and it is easy
to deduce from that the general case (ib. II 3.5).



15 COHOMOLOGICAL DIMENSION.

A variety (or scheme) X is said to have cohomological dimension c if c is the least integer
(or 1) such that H r.Xet;F/ D 0 for r > c and all torsion sheaves F on Xet. The
cohomological dimension c of a profinite group is defined similarly: H r.G;M/ D 0 for
r > c and M a discrete torsion G-module. For a field K,

cd.K/
def
D cd.SpecK/ D cd.Gal.Ksep=K//:

For example, cd.K/ D 0 if K is separably closed, cd.K/ D 1 if K is finite (although
H 2.Gal.Kal=K/;Z/ D Q=Z ¤ 0), and cd.R/ D 1 (because the cohomology of a cyclic
group is periodic).

A standard result in algebraic topology says that, for a manifold M of real dimension
d , H r.M;F/ D 0 for r > d , and a standard result in complex analysis says that for a
Stein manifoldM of complex dimension d (hence real dimension 2d ), H r.M;F/ D 0 for
r > d . The analogues of these statements are true for the étale topology.

THEOREM 15.1 For a variety X over an algebraically closed field k,

cd.X/ � 2 dim.X/:

If X is affine, then
cd.X/ � dim.X/:

In fact, as we shall see later,H 2dimX .X;Z=nZ/ ¤ 0 whenX is complete. Throughout
the proof, m D dimX .

We say that a sheaf F has support in dimension d if F D
S
iZ�FZ where the union is

over the irreducible closed subvarietiesZ ofX of dimension d , iZ is the inclusionZ ,! X ,
and FZ is a sheaf on Z. For such a sheaf

H r.X;F/ D lim
�!

H r.X; iZ�FZ/ D lim
�!

H r.Z;FZ/:

The cohomological dimension of fields

The starting point of the proof is the following result for fields (which was conjectured by
Grothendieck and proved by Tate).

THEOREM 15.2 Let K be a field of transcendence degree d over its subfield k. Then

cd.K/ � cd.k/C d:

PROOF. Tsen’s Theorem is the case d D 1, k algebraically closed. The general case is
proved by induction starting from this. See Shatz 1972, p119, Theorem 28. 2

Proof of the first statement of Theorem 15.1.

The theorem is proved by induction on the dimension of X . Thus, we may suppose that if
F has support in dimension d < m, then

H r.X;F/ D 0 for r > 2d:

We may assume X to be connected. Let gW � ,! X be the generic point of X . The
map F ! g�g

�F corresponding by adjointness to the identity map on g�F induces an
isomorphism F N� ! .g�g

�F/ N� on the generic stalks, and so every section of the kernel
and cokernel of the map has support on a proper closed subscheme. Thus, by induction, it
suffices to prove the theorem for a sheaf of the form g�F .
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Local and strictly local rings of subvarieties Let X be an irreducible algebraic variety
over a field k. To any irreducible closed subvariety Z of X we can attach a ring OX;Z . In
terms of varieties, it is lim

�!
� .U;OX / where U runs over the open subsets of X such that

U\Z ¤ ;: In terms of schemes, it is the local ring at the generic point ofZ. Its residue field
is the field k.Z/ of rational functions on Z, which has transcendence degree dimZ over
k. Moreover, k.Z/ is separable over k, i.e., there exist algebraically independent elements
T1; : : : ; Tm in k.Z/ such that k.Z/ is a separable algebraic extension of k.T1; : : : ; Tm/
(otherwise Z wouldn’t be a variety).

LEMMA 15.3 Let A be a Henselian local ring containing a field k. Let K be the residue
field of A, and assume thatK is separable over k. Then A contains a field L that is mapped
isomorphically onto K by the quotient map � W A! K.

PROOF. Let T1; : : : ; Tm be elements of A such that �.T1/; : : : ; �.Tm/ are algebraically
indpendent over k and K is a separable algebraic extension of k.�.T1/; : : : ; �.Tm//. Let
L be a maximal subfield of A containing k.T1; : : : ; Tm/ — such a field exists by Zorn’s
Lemma. Because mA \ L D f0g, � maps L isomorphically onto a subfield �L of K. Let
˛ 2 K. Then ˛ is a simple root of a polynomial f .T / 2 LŒT �. Because A is Henselian,
there exists an ˛0 2 A such that �.˛0/ D ˛ and ˛0 is a root of f .T /. NowLŒ˛0� is a subfield
of A containing L. Because L is maximal, ˛0 2 L, which shows that ˛ 2 �L. 2

LEMMA 15.4 LetZ be a closed irreducible subvariety of a varietyX , andA be the Henseliza-
tion of OX;Z . The field of fractions L of A contains k.Z/, and has transcendence degree
dimX � dimZ over k.Z/.

PROOF. The preceding lemma shows that L � k.Z/, and so it remains to compute its
transcendence degree. But L is an algebraic extension of k.X/, and so has transcendence
degree dimX over k, and k.Z/ has transcendence degree dimZ over k. 2

LEMMA 15.5 The sheaf Rsg�F has support in dimension � m � s.

PROOF. Let Z be a closed irreducible subvariety of X , and let z D Spec k.Z/ be its
generic point. The choice of a separable closure k.Z/sep of k.Z/ determines a geometric
point Nz ! z ,! X ofX , and the strictly local ring at Nz is the maximal unramified extension
of OhX;Z . Thus, its residue field is k.Z/sep, and its field of fractions K Nz is an algebraic
extension of k.X/. The same argument as above shows that it has transcendence degree
dimX � dimZ over k.Z/sep. According to (8.5),

.Rsg�F/ Nz D H s.K Nz;F/;

which is zero for s > m � dimZ by (15.2). Thus, .Rsg�F/ Nz ¤ 0) s � m � dimZ, as
claimed. 2

From the induction hypothesis, we find that

H r.X;Rsg�F/ D 0 whenever s ¤ 0 and r > 2.m � s/:

In the spectral sequence

H r.X;Rsg�F/) H rCs.�;F/;

the final termH rCs.�;F/ D 0 for rCs > n (by 15.2 again). It follows thatH r.X; g�F/ D
0 for r > 2m.
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QUESTION 15.6 It also follows that the complex

E
0;n
2 ! E

2;n�1
2 ! � � � ! E

2n;0
2

in the above spectral sequence must be exact. What is it?

Proof of the second statement

The proof of the second statement requires a complicated induction and limiting argument,
starting from the case m D 1 (which was proved in 14.12). It requires the Proper Base
Change Theorem �17.



16 PURITY; THE GYSIN SEQUENCE.

Fix an integer n > 0, let � D Z=nZ. For any ring R such that n1 is a unit in R, we define
�n.R/ to be the group of nth roots of 1 in R, and we define

�n.R/
˝r
D

8<:
�n.R/˝ � � � ˝ �n.R/; r copies, r > 0
�; r D 0

Hom�.�n.R/
˝�r ; �/; r < 0:

When R is an integral domain containing the nth roots of 1, then each of these groups is a
free module of rank 1 over �, and the choice of a primitive nth root of 1 determines bases
simultaneously for all of them.

Let X be a variety over a field k whose characteristic doesn’t divide n (or a scheme
such that nOX D OX ). We define �.r/ to be the sheaf on Xet such that

� .U;�.r// D �n.� .U;OU //˝r

for all U ! X étale and affine. If k contains the nth roots of 1, then each sheaf is isomor-
phic to the constant sheaf �, and the choice of a primitive nth root of 1 in k determines
isomorphisms �.r/

�
�! � for all r . In any case, each sheaf �.r/ is locally constant. For a

sheaf F on Xet killed by n, let

F.r/ D F ˝�.r/, all r 2 Z:

Statement of the theorem; consequences

For simplicity, now assume that k is algebraically closed.
A smooth pair .Z;X/ of k-varieties is a nonsingular k-variety X together with a non-

singular subvariety Z. We say that .Z;X/ has codimension c if every connected compo-
nent30 of Z has codimension c in the corresponding component of X .

THEOREM 16.1 For any smooth pair of k-varieties .Z;X/ of codimension c and locally
constant sheaf F of �-modules on X , there are canonical isomorphisms

H r�2c.Z;F.�c//! H r
Z.X;F/

for all r � 0.

COROLLARY 16.2 In the situation of the theorem, there are isomorphisms

H r.X;F/! H r.U;F/; 0 � r < 2c � 1

and an exact sequence ( the Gysin sequence)

0! H 2c�1.X;F/! H 2c�1.U;F jU/! � � �
! H r�2c.Z;F.�c//! H r.X;F/! H r.U;F/! � � � :

PROOF. Use the theorem to replace the groupsH r
Z.X;F/ in the exact sequence of the pair

.X;X rZ/ with the groups H r�2c.Z;F.�c//. 2

30Recall that every connected component of a nonsingular variety is irreducible.
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EXAMPLE 16.3 Recall that, for any nonsingular affine curve U over k, H 1.U;Gm/ D
Pic.U /, and that H r.U;Gm/ D 0 for r > 1. Therefore H 1.A1;Gm/ D 0, because kŒT � is
a principal ideal domain. The cohomology sequence of the Kummer sequence

0 H 0.A1; �n/ H 0.A1;Gm/ H 0.A1;Gm/ H 1.A1; �n/ 0

kŒT �� kŒT ��

k� k�

n

n

n

shows that H r.A1; �n/ D 0 for r > 0. The Künneth formula (�22) now implies that
H r.Am; �/ D 0 for r > 0, i.e., Am is “acyclic”. Therefore, the Gysin sequence for
.Pm�1;Pm/ shows that

H 0.Pm; �/ ' H 0.Am; �/ ' �
H 1.Pm; �/ ,! H 1.Am; �/ D 0

and that
H r�2.Pm�1; �.�1// ' H r.Pm; �/:

An induction argument now shows that

H r.Pm; �/ D �; 0; �.�1/; 0; �.�2/; : : : ; �.�m/;

r D 0 1 2 3 4 : : : 2m

that is, that

H r.Pm; �/ D
�
�.� r

2
/; r even, � 2mI
0; otherwise:

EXAMPLE 16.4 Let X be a nonsingular hypersurface in PmC1, i.e., a closed subvariety of
PmC1 whose homogeneous ideal I.X/ D .f / where f is a homogeneous polynomial in
kŒT0; : : : ; TmC1� such that

f;
@f

@T0
; : : : ;

@f

@TmC1

have no common zero in PmC1. Then U def
D PmC1 r X is affine (AG 6.21), and so

H r.U;�/ D 0 for r > mC 1. Therefore, the Gysin sequence provides us with maps

H r.X;�/! H rC2.PmC1; �.1//

that are isomorphisms for r > m and a surjection for r D m. Hence, H r.X;�/ '

H r.Pm; �/ for r > m, and Hm.X;�/ � Hm.Pm; �/ ˚ Hm.X;�/0 where Hm.X;�/0

is the kernel of Hm.X;�/ ! HmC2.PmC1; �.1//. Using Poincaré duality (see the next
aside), we obtain a canonical decomposition

H�.X;�/ ' H�.Pm; �/˚Hm.X;�/0

where H�.�; �/ denotes the graded �-module˚H r.�; �/.
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More generally, a closed subvariety X in PN of dimension m is said to be a complete
intersection if its homogeneous ideal is generated by N � m polynomials. Then there is a
chain

PN � XN�1 � � � � � Xm D X

with eachXr D Hr\XrC1 (as schemes) whereHr is a hypersurface in PN . We say thatX
is a smooth complete intersection if there exists such a chain with all Xr nonsingular. For
a smooth complete intersection X of dimension m, an induction argument using the Gysin
sequence and Poincaré duality again shows that there is a canonical decomposition

H�.X;�/ ' H�.Pm; �/˚Hm.X;�/0:

We shall see later that Hm.X;�/0 is a free �-module whose rank ˇ0m depends only
on m and the degrees of the polynomials generating I.X/, and, in fact, that there are ex-
plicit formulas for ˇ0m. For example, if X is a nonsingular hypersurface of degree d and
dimension m, then

ˇ0m D
.d � 1/mC2 C .�1/m.d � 1/

d
:

Later, we shall see that these results imply that if X is smooth complete intersection of
dimension m over a finite field Fq , i.e., the N � m polynomials generating I.X/ can be
chosen to have coefficients in Fq , then

j#X.Fq/ �#Pm.Fq/j � ˇ0mq
m
2 :

Compared with #X.Fq/ � qm, the error term ˇ0mq
m
2 is very small!

Unfortunately, smooth complete intersections are very special varieties. For example,
when we blow up a point P on a nonsingular variety X of dimension m > 1, P is replaced
by the projective space associated with the tangent space at P , i.e., with a copy of Pm�1.
Thus, for the new variety Y ,

#Y.Fq/ D #X.Fq/C#Pm�1.Fq/ � 1 D #X.Fq/C qm�1 C � � � C q:

If the above inequality holds for X , then it fails for Y .

ASIDE 16.5 Later we shall see that there is a Poincaré duality theorem of the following form: for a
nonsingular variety U of dimension m over k, there is a canonical perfect pairing

H r
c .U;�/ �H

2m�r .U;�.m//! H 2m
c .U;�.m// ' �:

HereH r
c is a “cohomology group with compact support”, which equals the usual cohomology group

when X is complete.

EXAMPLE 16.6 LetX be a connected nonsingular closed variety of dimensionm in projec-
tive space. According to Bertini’s Theorem (Hartshorne 1977, III.7.9.1) there is a sequence

X D Xm � Xm�1 � � � � � X1

of connected nonsingular varieties with each Xr a hyperplane section of the preceding
variety. From the Gysin sequence, we obtain maps

H 1.X1; �/
onto
���! H 3.X2; �.1//

�
�! � � �

�
�! H 2m�1.Xm; �.m � 1//:
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Using Poincaré duality, we obtain an injection .�/

H 1.X;�.1//! H 1.X1; �.1//:

The inclusion X1 ,! X defines a map

Pic.X/! Pic.X1/

on Picard groups. The map .�/ can be identified with

Pic.X/m ! Pic.X1/m:

The torsion points on an abelian variety over an algebraically closed field are Zariski dense,
and so this shows that the map

PicVar.X/! Jac.X1/

induced by X1 ,! X is injective. This result is known classically: for a “general” curve C
on a nonsingular variety X , the Picard variety of X is a subvariety of the Jacobian variety
of C .

Restatement of the theorem

We now allow k to be an arbitrary field.
LetZ be a closed subvariety of a varietyX (or a closed subscheme of a schemeX ), and

let i W Z ,! X be the inclusion map. As we saw in 8.18, the functors i� and i� define an
equivalence between the category of étale sheaves onX with support onZ and the category
of étale sheaves onZ. Since i� is exact and preserves injectives,H r.X; i�F/ D H r.Z;F/,
and it is sometimes permissible to confuse F with i�F .

As usual, we shall let U D X rZ and denote the inclusion U ,! X by j .
For a sheaf F on X , we define F Š to be the largest subsheaf of F with support on Z.

Thus, for any étale 'W V ! X ,

F Š.V / D �'�1.Z/.V;F/ D Ker.F.V /! F.'�1.U ///:

It is easy to see that this does in fact define a sheaf on X , and that

F Š D Ker.F ! j�j
�F/:

Let G be a sheaf onX with support onZ. Then the image of any homomorphism ˛W G ! F
lies in F Š, and so

HomX .G;F Š/ ' HomX .G;F/:

Now define i ŠF to be F Š regarded as a sheaf on Z, i.e., i ŠF D i�F Š. Then i Š is a functor
Sh.Xet/ ! Sh.Zet/, and the displayed isomorphism can be interpreted as a canonical
isomorphism

HomZ.G; i ŠF/ ' HomX .i�G;F/:

This shows that i Š is the right adjoint of i�. Because i Š has a left adjoint, it is left exact, and
because the left adjoint is exact, it preserves injectives.

THEOREM 16.7 (COHOMOLOGICAL PURITY) Let .Z;X/ be a smooth pair of algebraic
varieties of codimension c. For any locally constant sheaf of �-modules on X , R2ci ŠF '
.i�F/.�c/, and Rr i ŠF D 0 for r ¤ 2c.
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Why Theorem 16.7 implies Theorem 16.1. Consider the functors

Sh.Xet/
i Š

�! Sh.Zet/
� .Z;�/
�����! Ab:

These functors are left exact, i Š preserves injectives, and the composite is �Z.X;�/. There-
fore (see 10.7), there is a spectral sequence

E
r;s
2 D H

r.Z;Rsi ŠF/) H rCs
Z .X;F/:

From Theorem 16.7, we know that Er;s2 D 0 unless s D 2c. It follows that Er;s1 D E
r;s
2 ,

and hence
H r
Z.X;F/ ' H

r�2c.Z;R2ci ŠF/ ' H r�2c.Z;F.�c//:

Why Theorem 16.7 is true Once one defines the map, the problem is local for the étale
topology on X . The next lemma shows that any smooth pair of codimension c is locally
isomorphic (for the étale topology) to a standard smooth pair .Am�c ;Am/.

LEMMA 16.8 Let Z � X be a smooth pair of codimension c, and let P 2 Z. There exists
an open neighbourhood V of P and an étale map V ! Am,m D dimX , whose restriction
to V \Z is an étale map to Am�c .

PROOF. By assumption, TgtP .Z/ is a subspace of TgtP .X/ of codimension c. Choose
regular functions f1; : : : ; fm defined on an open neighbourhood V of P (in X ) such that
df1; : : : ; dfm�c form a basis for the dual space of TgtP .Z/ and df1; : : : ; dfm form a basis
for the dual space of TgtP .X/. Consider the map

˛WV ! Am; Q 7! .f1.Q/; : : : ; fm.Q//:

The map d˛W TgtP .X/ ! Tgt˛.P /.Am/ is v 7! .df1.v/; : : : ; dfm.v//, which is an iso-
morphism. Therefore, ˛ is étale at P . Similarly, its restriction to Z ! Am�c is étale at P
(regarded as a point of Z). 2

The proof of Theorem 16.7 is by induction, starting from the case m D 1 D c, which
was proved in (14.3).

Generalization

Recall that a schemeX is said to be regular if the local rings OX;x are regular for all x 2 X .
A morphism 'W X ! S of finite-type is said to be smooth if

(a) it is flat, and

(b) for every algebraically closed geometric point Ns ! S , the fibre XNs is regular.

The second condition means that, for any s 2 S , the fibre '�1.s/ is a nonsingular
variety. When X ! S is smooth, we say that X is smooth over S .

For a variety X over a field k, we say that X is nonsingular when X ! Spec k is
smooth. Thus, a nonsingular variety is regular, and a regular variety over an algebraically
closed field is smooth. A variety over a nonperfect field can be regular without being
nonsingular — for example, Y 2 D Xp � t is such a variety if t … k and p D char.k/.



16. PURITY; THE GYSIN SEQUENCE. 113

EXAMPLE 16.9 Let X1 be a nonsingular complete curve over Qp. Then there exists a
proper flat morphism X ! SpecZp whose generic fibre is X1 ! SpecQp. In fact, there
always exists a regular such X , but there does not always exist an X that is smooth over
SpecZp. For elliptic curves, this is discussed in �9 of my notes on elliptic curves.

The following conjecture remains open in general.

CONJECTURE 16.10 Let X be a regular scheme, and let i W Z ,! X be a regular closed
subscheme of X such that Z has codimension c in X at each point. Then, for all integers n
such that nOX D OX , R2ci Š� Š �.�c/ and Rr i Š� D 0 for r ¤ 2c.

The conjecture is proved in SGA4 when Z and X are both smooth over a base scheme
S . Under some hypotheses on X and n, Thomason was able to deduce the conjecture
from Quillen’s Localization Theorem, which is a purity statement forK-groups (Thomason,
R.W., Absolute Cohomological Purity, Bull. Soc. Math. France 112 (1984), 397–406).

PROPOSITION 16.11 Let .Z;X/ be a pair of codimension c for which the purity conjec-
ture (16.10) holds. Let U D X rZ, and let i; j be the inclusion maps as usual. Then

Rrj�� '

8<:
� r D 0

i��.�c/ r D 2c � 1

0 otherwise.

PROOF. The exact sequence of the pair .X;U / is

� � � ! H r
Z.X;�/! H r.X;�/! H r.U;�/! � � � :

For any 'W X 0 ! X étale we get a similar sequence with U and Z replaced with U 0 D
'�1.U / and Z0 D '�1.Z/. When we vary X 0, this becomes an exact sequence of
presheaves, which remains exact after we apply the “sheafification” functor a. Now the
sheaf associated with X 0 7! H r.X 0; �/ is zero for r > 0 and � for r D 0, and the
sheaf associated with X 0 7! H r.U 0; �/ is Rrj��. Finally, the sheaf associated with
X 0 7! H r

Z0.X
0; �/ is Rr i Š�, which is �.�c/Z for r D 2c and is zero otherwise. 2

NOTES For more general results on purity, see Joël Riou. Pureté (d’après Ofer Gabber). Notes des
exposés des 16 juin 2006 et 13 avril 2007 au groupe de travail sur les résultats récents de Gabber à
l’École Polytechnique, 2007 here.

http://www.math.u-psud.fr/~riou/doc/gysin.pdf


17 THE PROPER BASE CHANGE THEOREM.

The proper base change theorem in topology

In this subsection, all topological spaces are assumed to be Hausdorff.
Recall that the image of a compact space under a continuous map is compact, and hence

is closed. Moreover, a topological space X is compact if and only if, for all topological
spaces Y , the projection map X � Y ! Y is closed (Bourbaki, N., Topologie Générale, I,
� 10, Cor. 1 to Th. 1).

A continuous map � W X ! S is said to be proper if it is universally closed, i.e., if
X �S T ! T is closed for all continuous maps T ! S . When S is locally compact, a
continuous map � W X ! S is proper if and only if the inverse image of every compact
subset of S is compact, in which case X is also locally compact (ib. Proposition 7).

Let � W X ! S be a continuous map, and let F be a sheaf on X . For any s 2 S ,

.Rr��F/s D lim
�!V

H r.��1.V /;F/

where the limit is over the open neighbourhoods V of s in S (cf. 12.2). If � is closed, then,
for any open neighbourhood U of ��1.s/, �.X r U/ is closed and V def

D X r �.X r U/

is an open neighbourhood of s. Since ��1.V / � U , we see that

.Rr��F/s D lim
�!U

H r.U;F/

where the limit is now over all open neighbourhoods U of ��1.s/.

LEMMA 17.1 Let Z be a compact subset of a locally compact space X . Then, for any
sheaf F on X , there is a canonical isomorphism

lim
�!

H r.U;F/ ' H r.Z; i�F/

(limit over the open neighbourhoods U of Z in X ).

PROOF. Since both groups are zero on injective sheaves for r > 0, and transform short
exact sequences of sheaves to long exact sequences, it suffices (by the uniqueness of derived
functors) to verify the statement for r D 0. Here one uses the hypotheses on Z and X (see
Iversen 1986, III 2.2 for the case r D 0 and III 6.3 for the generalization to all r). 2

THEOREM 17.2 Let � W X ! S be a proper map where S is a locally compact topological
space. For any sheaf F on X and s 2 S , .Rr��F/s ' H r.Xs;F/ where Xs D ��1.s/.

PROOF. Combine the above statements. 2

Let � W X ! S and F be as in the theorem, and let f W T ! S be a continuous map.
Form the fibre product diagram

X X 0 D X �S T:

S T

�

f 0

� 0

f
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Let t 2 T map to s 2 S . Then f 0 defines an isomorphism X 0t ! Xs on the fibres, and so
the theorem implies that

.Rr��F/s ' H r.Xs;F/ ' H r.X 0t ; f
0�F/ ' .Rr� 0�.f 0�F//t :

THEOREM 17.3 In the above situation, there is a canonical isomorphism of sheaves on T

f �.Rr��F/! Rr� 0�.f
0�F/:

PROOF. We first define the map. Since f � and f� are adjoint, it suffices to define a mor-
phism of functors

Rr�� ! f� ıR
r� 0� ı f

0�:

This we take to be the composite of the morphisms

Rr�� ! Rr�� ı f
0
� ı f

0�

(induced by id! f 0� ı f
0�),

Rr�� ı f
0
� ı f

0�
! Rr.� ı f 0/� ı f

0�
D Rr.f ı �/� ı f

0�;

(the map Rr�� ı f 0� ! Rr.� ı f 0/� is given by the Leray spectral sequence), and

Rr.f ı � 0/� ı f
0�
! f� ıR

r� 0� ı f
0�:

Thus, we have a canonical map of sheaves f �.Rr��F/ ! Rr� 0�.f
0�F/, which is an

isomorphism because it is so on stalks. 2

REMARK 17.4 In fact, Theorem 17.2 is the special case of Theorem 17.3 in which T ! S

is taken to be s ! S .

The proper base change theorem in geometry

Recall (AG 7.1) that an algebraic variety X over k is said to be complete if, for all k-
varieties T , the projection map X � T ! T is closed (i.e., sends Zariski closed sets to
closed sets). For example, a projective variety over k is complete (AG 7.7), and an affine
variety is complete if and only if it is finite.

More generally, a regular map X ! S of varieties (or schemes) is said to be proper if,
for all T ! S , the projection map X �S T ! T is closed (and X ! S is separated). For
example, a finite morphism, for example, a closed immersion, is proper (ib. 6.24), and a
k-variety X is complete if and only if the map X ! P (the point) is proper.

Recall that a sheaf F onXet is locally constant if there is a covering .Ui ! X/i2I such
that F jUi is constant for all i 2 I . In the case that F has finite stalks, this is equivalent to
there existing a single finite surjective étale map U ! X such that F jU is constant.

Unfortunately, the class of locally constant sheaves is not stable under the formation of
direct images, even by proper maps (not even closed immersions), and so we shall need a
larger class that is.

DEFINITION 17.5 A sheaf F on Xet is constructible if
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(a) for every closed immersion i W Z ,! X with Z irreducible, there exists a nonempty
open subset U � Z such that .i�F/jU is locally constant;

(b) F has finite stalks.

REMARK 17.6 One can show that every torsion sheaf is the union of its constructible sub-
sheaves.

THEOREM 17.7 Let � W X ! S be a proper morphism, and let F be a constructible sheaf
on X . Then Rr��F is constructible for all r � 0, and .Rr��F/Ns D H r.XNs;F jXNs/ for
every geometric point Ns ! S of S .

Here XNs
def
D X �S Ns is the geometric fibre of � over Ns, and F jXNs is the inverse image of

F under the map XNs ! X .

COROLLARY 17.8 Let X be a complete variety over a separably closed field k and let F
be a constructible sheaf on X .

(a) The groups H r.Xet;F/ are finite for all r .

(b) For any separably closed field k0 � k, H r.X;F/ D H r.X 0;F/ where X 0 D Xk0 .

PROOF. (a) Consider the map � W X ! s from X to a point. The map G 7! � .s;G/ iden-
tifies the category of constructible sheaves on set with the category of finite abelian groups,
and Rr��F with H r.Xet;F/. The statement now follows from the theorem, because � is
proper.

(b) Let Ns D Spec k and Ns0 D Spec k0. The maps Ns ! s and Ns0 ! s corresponding to
the inclusions k ,! k (identity map) and k ,! k0 are geometric points of s. The stalk of a
sheaf at a geometric point Nt depends only on t , and so the theorem implies that,

H r.X;F/
17:7
' .Rr��F/Ns ' .Rr��F/Ns0

17:7
' H r.Xk0 ;F/: 2

REMARK 17.9 Statement (a) of the corollary is false without the condition that k be sepa-
rably closed, even for the pointP over Q and the sheaf Z=2Z, for in this caseH 1.P;Z=2Z/ D
H 1.P; �2/ ' Q�=Q�2, which is an infinite-dimensional vector space over F2 generated
by the classes of �1 and the prime numbers.

Statement (b) of the corollary is false without the condition that X be complete, even
for the sheaf Z=pZ on A1, because the inverse image of Z=pZ on A1

k0
is again Z=pZ, and

(see 7.9b)

H 1.A1;Z=pZ/ D kŒT �=.T p � T / ¤ k0ŒT �=.T p � T / D H 1.A1k0 ;Z=pZ/:

THEOREM 17.10 Let � W X ! S be proper, and let X 0 D X �S T for some morphism
f W T ! S :

X X 0

S T

�

f 0

� 0

f

For any torsion sheaf on X , there is a canonical isomorphism

f �.Rr��F/! Rr� 0�.f
0�F/:
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PROOF. This may be deduced from the Theorem 17.7 exactly as Theorem 17.3 is deduced
from Theorem 17.2: first one uses the adjointness of the functors to construct the map, and
then one uses the theorem to verify that the map is an isomorphism on stalks. 2

Theorem 17.10 is the Proper Base Change Theorem.

Remarks on the Proofs

Theorems 17.7 and 17.10 are the most difficult of the basic theorems in étale cohomology
to prove. I explain why. Throughout, I consider only varieties over an algebraically closed
field.

Let S be a variety, and let SEt be the big étale site on S : the underlying category
of SEt is the category of all varieties over S , and the covering families are the surjective
families .Ti ! T / of étale maps of S -varieties. A sheaf on SEt is a contravariant functor
F W Cat.SEt/! Ab that satisfies the sheaf condition (�5, S) for all coverings, i.e., such that
the restriction of F to Tet is a sheaf for every regular map T ! S .

Let f W SEt ! Set be the obvious continuous morphism. Consider the following con-
ditions on a sheaf F on SEt:

(a) F �
�! f �f�F ;

(b) f�F is constructible.

Note that f�F is the restriction of F to Set . Thus (a) says that F is determined (in
a natural way) by its restriction to Set and (b) says that the restriction of F to Set is con-
structible.

PROPOSITION 17.11 A sheaf F on SEt satisfies (a) and (b) if and only if it is representable
by a variety F ! S quasi-finite over S , i.e., if and only F.T / D HomS .T; F / for all
T ! S .

PROOF. For a discussion of the proof, see EC V.1. 2

Now let � W X ! S be a proper map, and let F be a constructible sheaf on Xet. Define
Fr to be the sheaf on SEt such that Fr jT D Rr� 0�.f

0�F/ (notations as in the theorem).
The restriction maps Fr.T / ! Fr.T 0/ when T 0 ! T is not étale are given by the base
change maps in the theorem. Alternatively, one can define Fr to be Rr��.f 0�F/ where
f 0�F is inverse image of F on XEt and Rr�� is computed on the big étale sites. The
theorem asserts that Fr satisfies (a) and (b). According to the proposition, this is equivalent
to asserting that Fr is representable by a variety quasi-finite over S .

Hence the difficulty: we have a functor defined on the category of all S -varieties and
wish to prove that it is representable by a variety quasi-finite over S . Such statements are
usually very difficult to prove.

The starting point of the proof in this case is the following theorem of Grothendieck: let
� W X ! S be a proper regular map; then R1��Gm is representable on SEt by the Picard
scheme PicX=S — this is an infinite union of varieties over S . From the Kummer sequence,
we find that

R1���n D Ker.PicX=S
n
�! PicX=S /;

and hence is representable. This argument suffices to prove the theorem when the fibres of
� are curves, and the general case is proved by induction on the relative dimension of X
over S . See the last chapter of Artin 1973.



18 COHOMOLOGY GROUPS WITH COMPACT SUPPORT.

Heuristics from topology.

It is important in étale cohomology, as it is topology, to define cohomology groups with
compact support — we saw this already in the case of curves in �14. They should be dual
to the ordinary cohomology groups.

The traditional definition (Greenberg 1967, p162) is that, for a manifold U ,

H r
c .U;Z/ D lim

�!Z
H r
Z.U;Z/

where Z runs over the compact subsets of U . More generally (Iversen 1986, III.1) when F
is a sheaf on a locally compact topological space U , define

�c.U;F/ D lim
�!Z

�Z.U;F/

where Z again runs over the compact subsets of U , and let H r
c .U;�/ D R

r�c.U;�/.
For an algebraic variety U and a sheaf F on Uet, this suggests defining

�c.U;F/ D lim
�!Z

�Z.U;F/;

whereZ runs over the complete subvarietiesZ ofU , and settingH r
c .U;�/ D R

r�c.U;�/.
However, this definition leads to anomolous groups. For example, if U is an affine variety
over an algebraically closed field, then the only complete subvarieties of U are the finite
subvarieties (AG 7.5), and for a finite subvariety Z � U ,

H r
Z.U;F/ D ˚z2ZH

r
z .U;F/:

Therefore, if U is smooth of dimension m and � is the constant sheaf Z=nZ, then

H r
c .U;�/ D lim

�!
H r
Z.U;�/ D ˚z2UH

r
z .U;�/ D

�
˚z2U�.�m/ if r D 2m;

0 otherwise.

These groups are not even finite. We need a different definition.
If j W U ! X is a homeomorphism of the topological space U onto an open subset of

a locally compact space X , then

H r
c .U;F/ D H r.X; jŠF/

(Iversen 1986, p184). In particular, when X is compact, then

H r
c .U;F/ D H r.X;F/:

We make this our definition.

Cohomology with compact support

DEFINITION 18.1 For any torsion sheaf F on a variety U , we define

H r
c .U;F/ D H r.X; jŠF/;

where X is any complete variety containing U as a dense open subvariety and j is the
inclusion map.

118
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An open immersion j W U ,! X from U into a complete variety X such that j.U / is
dense in X is called a completion (or compactification) of U . Following the terminology in
topology, we call theH r

c .U;F/ the cohomology groups of F with compact support (rather
than the more logical complete support).

This definition31 raises two questions:

(a) Does every variety admit a completion?

(b) Are the cohomology groups with compact support independent of the completion?

The first question was shown to have a positive answer by Nagata in 196232 More
generally, he showed that, for any separated morphism � W U ! S of finite type from
one Noetherian scheme to a second, there is a proper morphism N� W X ! S and an open
immersion j W U ! X such that � D N� ı j :

U X

S

�

j

N�

Nagata’s original proof was in terms of valuation rings. More modern, scheme-theoretic,
proofs can be found in Lütkebohmert, W., On compactification of schemes, Manuscripta
Math. 80 (1993), 95–111, and in Deligne, Pierre, Le théorème de plongement de Nagata.
Kyoto J. Math. 50 (2010), no. 4, 661–670.

Note, unlike the case of curves, in higher dimensions the embedding will not be unique:
from any completion, we can construct others by blowing up and blowing down subvarieties
of the boundary. Nevertheless, the next proposition shows that the answer to (b) is also
positive — we need to require F to be torsion in order to be able to apply the proper base
change theorem.

PROPOSITION 18.2 When F is a torsion sheaf, the groupsH r.X; jŠF/ are independent of
the choice of the embedding j W U ,! X .

PROOF. Let j1W U ,! X1 and j2W U ,! X2 be two completions of U . Consider the
diagonal mapping into the product, j W U ,! X1 � X2, and let X be the closure of U in
X1�X2. Then j W U ,! X is a completion of U , and the projections are proper mapsX !
X1, X ! X2 inducing the identity map on U . It suffices to prove that H r

c .X1; j1ŠF/ '
H r
c .X; jŠF/. Consider:

U
j
,! X

k # �

U
j1

,! X1:

The Leray spectral sequence reads

H r.X1; R
s��.jŠF//) H rCs.X; j1ŠF/:

31For disciples of the nineteenth century superstition, that all varieties come naturally endowed with em-
beddings into a projective space, neither problem will arise.

32Nagata, Masayoshi, Imbedding of an abstract variety in a complete variety, J. Math. Kyoto Univ. 2 (1962),
1–10.

Nagata, Masayoshi, A generalization of the imbedding problem of an abstract variety in a complete variety,
J. Math. Kyoto Univ. 3 (1963), 89–102.
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According to Theorem 17.7, the stalks of .Rr��/.jŠF/ can be computed on the geometric
fibres of X=X1. But the fibre of � over Nx consists of a single point if x 2 U , and jŠF
is zero on the fibre if x … U . It follows that Rr��.jŠF/ D jŠF for r D 0, and is zero
otherwise. 2

PROPOSITION 18.3 (a) A short exact sequence of sheaves gives rise to a long exact
sequence of cohomology groups with compact support.

(b) For any complete subvarietyZ ofU , there is a canonical mapH r
Z.U;F/! H r

c .U;F/;
for r D 0, these maps induce an isomorphism

H 0
c .U;F/ ' lim

�!
H 0
Z.U;F/;

(limit over the complete subvarieties Z of U ).

(c) If F is constructible, then H r
c .U;F/ is finite.

PROOF. (a) As jŠ is exact (8.13), a short exact sequence of sheaves on U

0! F 0 ! F ! F 00 ! 0

gives rise to a short exact sequence

0! jŠF 0 ! jŠF ! jŠF 00 ! 0

of sheaves on X , and hence to an exact cohomology sequence

� � � ! H r
c .U;F 0/! H r

c .U;F/! H r
c .U;F 00/! � � � :

(b) Let j W U ,! X be a completion ofU , and let i W XrU ,! X be the complementary
closed immersion. From the exact sequence

0! jŠF ! j�F ! i�i
�j�F ! 0

(see 8.15), we find that

H 0
c .U;F/ D Ker.� .U;F/! � .X r U; i�j�F/:

But, from the definitions of i� and j�, we see that33

� .X r U; i�j�F/ D lim
�!

� .V �X U;F/

where the limit is over étale maps 'W V ! X whose image contains X r U . Therefore,
H 0
c .U;F/ is the subgroup of � .U;F/ consisting of sections that vanish on V �X U for

some étale V ! X whose image contains X r U .
Let Z be a complete subvariety of U , and let s 2 �Z.U;F/. Thus s 2 � .U;F/ and

sjU rZ D 0. Because Z is complete, it is closed in X . Now s vanishes on V \ U where
V is the (open) complement of Z in X , which shows that s 2 H 0

c .U;F/. We have shown
that

�Z.U;F/ � H 0
c .U;F/:

33In fact, this is not quite correct, since in forming the inverse image we need to sheafify (see �8).
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Conversely, let s 2 H 0
c .U;F/. Then s vanishes on V �X U for some étale 'W V ! X

whose image contains X r U . Now Z
def
D X r '.V / is a complete subvariety of U , and

UrZ D U \'.V /. Because V �XU ! U \'.V / is an étale covering and sjV �XU D 0,
we have that sjU rZ D 0. Therefore, s 2 �Z.U;F/, and so[

Z

�Z.U;F/ D H 0
c .U;F/:

In the course of the above proof, we showed that, for any completeZ � U ,H 0
Z.U;F/ �

H 0
c .U;F/. A general result about ı-functors shows that the morphism H 0

Z.U;�/ !

H 0
c .U;�/ extends uniquely to a morphism of ı-functors. Explicitly, suppose that the mor-

phism has been extended to dimensions� r in a way that is compatible with the connecting
homomorphisms. Given F , embed it into an injective sheaf, F ,! I, and let F 0 be the quo-
tient. There is a unique map H rC1

Z .U;F/ ! H rC1
c .U;F/ making the following diagram

commute:

� � � H r
Z.U; I/ H r

Z.U;F
0/ H rC1

Z .U;F/ 0 � � �

� � � H r
c .U; I/ H r

c .U;F 0/ H rC1
c .U;F/ H rC1

c .U; I/ � � �

(c) If F is constructible, then so also is jŠF , and so this follows from Corollary 17.8. 2

Note that H r
c .U;�/ is not the r th right derived functor of H 0

c .U;�/ (and hence it is
not a derived functor). This is unfortunate: althoughH r

c .U;�/ is independent of the choice
of a completion of U , there seems to be no way of defining it without first choosing a
completion: although H r

c .U;�/ is intrinsic to U , there seems to be no purely intrinsic
definition of it.

Higher direct images with proper support

By using the full strength of Nagata’s theorem, it is possible to define higher direct images
with proper support (here the terminology from topology coincides with that required by
logic). Let � W U ! S be a regular map of varieties (or a separated morphism of finite
type of schemes), and let N� W X ! S be a proper morphism for which there is an open
immersion j W U ! X such that � D N� ı j and j.U / is dense in X . For any torsion sheaf
F on U , define

Rr�ŠF D Rr N��.jŠF/:

PROPOSITION 18.4 (a) The sheaf Rr�ŠF is independent of the choice of the factoriza-
tion � D N� ı j .

(b) A short exact sequence of sheaves gives rise to a long exact sequence of higher direct
images with proper support.

(c) If F is constructible, then so also is Rr�ŠF .

(d) For any pair U1
�1
�! U2

�2
�! S of regular maps, and torsion sheaf F on U1, there is

a spectral sequence

Rr�2Š.R
s�1ŠF/) RrCs.�2 ı �1/Š.F/:
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PROOF. The proofs of (a), (b), and (c) are similar to those of corresponding statements in
Proposition 18.3. The proof of (d) is complicated by the need to construct a “compactifica-
tion” of �2 ı �1 lying over a “compactification” of �1 — see EC p229. 2

Again Rr�Š is not the rth right derived functor of R0�Š. It would be more accurate to
denote it by Rrc��.



19 FINITENESS THEOREMS; SHEAVES OF Z`-MODULES.

Finiteness Theorems

THEOREM 19.1 LetX be a variety over a separably closed field k, and let F a constructible
sheaf on Xet. The groups H r.Xet;F/ are finite in each of the following two cases.

(a) X is complete, or

(b) F has no p-torsion, where p is the characteristic of k.

PROOF. Case (a) is part of the proper base change theorem, discussed in Section 17.
For a nonsingular variety X and locally constant sheaf F on Xet, it is possible to prove

that H r.Xet;F/ is finite by using induction on the dimension of X and making use of the
existence of elementary fibrations (�21) below — see SGA 4, VI.5.2.

Alternatively, in this case, it follows from the Poincaré duality theorem (see later),
which shows that H r.X;F/ is dual to H 2m�r

c .X; LF.m//, where m D dimX .
The general case is more difficult — see SGA 41

2
, p233–261. [But surely, the proof can

be simplified by using de Jong’s resolution theorem.] 2

Sheaves of Z`-modules

So far, we have talked only of torsion sheaves. However, it will be important for us to have
cohomology groups that are vector spaces over a field of characteristic zero in order, for
example, to have a good Lefschetz fixed-point formula. However, the étale cohomology
groups with coefficients in nontorsion sheaves are anomolous. For example, when X is
normal,

H 1.Xet;Z/ D Homconts.�1.X; Nx/;Z/;

.Z with the discrete topology), which is zero because a continuous homomorphism

f W �1.X; Nx/! Z

must be zero on an open subgroup of �1.X; Nx/, and such a subgroup is of finite index
.�1.X; Nx/ being compact).34 Similarly, with the obvious definition, H 1.Xet;Z`/ D 0 (it
consists of homomorphisms �1.X; Nx/ ! Z` that are continuous for the discrete topology
on Z`). The solution is to define

H r.Xet;Z`/ D lim
 �n

H r.Xet;Z=`nZ/

— cohomology does not commute with inverse limits of sheaves. With this definition,

H 1.Xet;Z`/
def
D lim
 �n

H 1.Xet;Z=`nZ/ ' lim
 �n

Homconts.�1.X; Nx/;Z=`nZ/

' Homconts.�1.X; Nx/;Z`/

where Z=`nZ has its discrete topology and Z` its `-adic topology (the reader should check
the last').

To give a finitely generated Z`-moduleM is the same as to give a family .Mn; fnC1W MnC1 !

Mn/n2N such that
34Better, assume that X is normal, and let i W x ! X be the inclusion of the generic point. Then ZX ' i�Z

and Rj i�Z D 0 for j D 1, and so H1.Xet;ZX / ' H1.Xet; i�Z/ ' H1.xet;Z/, which is zero. When X is
a connected curve with a single node as singularity, H1.Xet;Z/ ' Z. To see this, examine the cohomology of
the exact sequence 0! Z! ��Z! ��Z=Z! 0, where � W QX ! X is the normalization of X .

123
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(a) for all n, Mn is a finite Z=`nZ-module;

(b) for all n, the map fnC1W MnC1 !Mn induces an isomorphismMnC1=`
nMnC1 !

Mn:

Given M , we take Mn D M=`nM and fnC1 to be the quotient map. Conversely, given
.Mn; fnC1/, we define M D lim

 �n
Mn. In fact, the correspondence M $ .Mn; fnC1/ can

be turned into an equivalence35 of categories.
Let .Mn; fn/n2N be a system satisfying (a,b). By induction, we obtain a canonical

isomorphism MnCs=`
nMnCs 'Mn. On tensoring

0! Z=`sZ
“`n”
���! Z=`nCsZ! Z=`nZ! 0

with M , we obtain a sequence

0!Ms !MnCs !Mn ! 0;

which is exact if M is flat (equivalently, torsion-free).
The above discussion motivates the following definition: a sheaf of Z`-modules on X

(or an `-adic sheaf) is a family .Mn; fnC1W MnC1 !Mn/ such that

(a) for each n, Mn is a constructible sheaf of Z=`nZ-modules;

(b) for each n, the map fnC1WMnC1 !Mn induces an isomorphism MnC1=`
nMnC1 !

Mn:

Let .Mn; fn/n2N be a sheaf of Z`-modules on X . By induction, we obtain a canonical
isomorphism MnCs=`

nMnCs 'Mn. On tensoring

0! Z=`sZ
“`n”
���! Z=`nCsZ! Z=`nZ! 0

with MnCs , we obtain a sequence

0!Ms !MnCs !Mn ! 0:

We say that M is flat if this sequence is exact for all n and s.
For a sheaf M D .Mn/ of Z`-modules, we define

H r.Xet;M/ D lim
 �n

H r.Xet;Mn/; H r
c .Xet;M/ D lim

 �n
H r
c .Xet;Mn/:

For example, if we let Z` denote the sheaf of Z`-modules with Mn the constant sheaf
Z=`nZ and the obvious fn, then

H r.Xet;Z`/
def
D lim
 �

H r.Xet;Z=`nZ/:

35Let
Mn D Z=`nZ � Z=`n�1Z � � � � � Z=`Z

and let MnC1 ! Mn be the obvious quotient map. Then M D lim
 �

Mn D
Q

Z` (product of copies of Z`
indexed by the positive integers). This example shows that an inverse limit of finite Z`-modules needn’t be
a finitely generated Z`-module. However, this example fails the condition that Mn D MnC1=`

nMnC1, and
so it doesn’t contradict the statements in this paragraph. Nevertheless, perhaps one should add the condition

that, for some n0, the system Nn
def
D `n0MnCn0

is flat. Any system M=`nM arising from a finitely generated
Z`-module M satisfies this condition with n0 chosen to be the number such that `n0 kills the torsion in M .
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THEOREM 19.2 Let M D .Mn/ be a flat sheaf of Z`-modules on a variety X over a
field k. Assume k is separably closed, and that either X is complete or that ` ¤ char.k/.
Then eachH r.Xet;M/ is finitely generated, and there is an exact sequence of cohomology
groups

� � � ! H r.Xet;M/
`n

�! H r.Xet;M/! H r.Xet;Mn/! H rC1.Xet;M/! � � � :

PROOF. For each s � 0, we get an exact sequence

0!Ms !MnCs !Mn ! 0:

These are compatible in the sense that

0 MsC1 MnC1Cs Mn 0

0 Ms MnCs Mn 0

`n

fsC1 fnCsC1 id

`n

commutes. On forming the cohomology sequence for each n and passing to the inverse
limit over all n, we obtain an exact sequence

� � � ! H r.M/
`n

�! H r.M/! H r.Mn/! H rC1.M/! � � � :

This gives an exact sequence

0! H r.M/=`nH r.M/! H r.Mn/! H rC1.M/`n ! 0:

As H r.M/ is an inverse limit of `-power-torsion finite groups, no nonzero element of
it is divisible by all powers of `. Thus lim

 �
H rC1.M/`n D 0 (the transition maps are

H rC1.M/`n

`
 � H rC1.M/`nC1) and lim

 �
H r.M/=`nH r.M/ ' H r.M/. It follows that

H r.M/ is generated by any subset that generates it modulo `. 2

REMARK 19.3 A compact Z`-module need not be finitely generated — consider, for ex-
ample, a product of an infinite number of copies of F`.

A sheaf M D .Mn/ of Z`-modules is said to be locally constant if each Mn is lo-
cally constant. To give a locally constant sheaf M on a connected variety X is to give
a finitely generated Z`-module M together with a continuous action of �1.X; Nx/ on M
.`-adic topology on M ). Then

H 1.Xet;M/ D H 1
conts.�1.X; Nx/;M/

where H 1
conts.�1.X; Nx/;M/ consists of equivalence classes of crossed homomorphisms

f W �1.X; Nx/!M that are continuous for the `-adic topology on M .
Note that a locally constant sheaf of Z`-modules need not become trivial on any étale

covering of X , i.e., it is not locally constant. In order for this to happen, the action of
�1.X; Nx/ would have to factor through a finite quotient. Thus the term “locally constant
sheaf of Z`-modules” is an abuse of terminology. Usually they are called “constant-tordu”,
“lisse”, or “smooth”.
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Sheaves of Q`-modules

A sheaf of Q`-vector spaces is just a Z`-sheaf M D .Mn/, except that we define

H r.Xet;M/ D .lim
 �

H r.Xet;Mn//˝Z`
Q`:

For example,

H r.Xet;Q`/ D .lim
 �

H r.Xet;Z=`nZ//˝Z`
Q` D H r.Xet;Z`/˝Q`:

For the remainder of the notes,H r.X;Z`/will denote lim
 �

H r.Xet;Z=`nZ/ andH r.Xet;Q`/
will denote H r.Xet;Z`/˝Q`

NOTES For more general finiteness theorems, see Gabber’s notes,

“Finiteness theorems for étale cohomology of excellent schemes” here, and “A finite-
ness theorem for non abelian H 1 of excellent schemes” here,

and the notes of Illusie et al.

“Travaux de Gabber sur l’uniformisation et la cohomologie étale des schémas quasi-
excellents” here.

http://www.math.polytechnique.fr/~laszlo/gdtgabber/abelien.pdf
http://www.math.polytechnique.fr/~laszlo/gdtgabber/non-abelien.pdf
http://www.math.polytechnique.fr/~orgogozo/travaux_de_Gabber/GTG/GTG.pdf


20 THE SMOOTH BASE CHANGE THEOREM.

This is a brief summary only.

The proper-smooth base change theorem in topology

Let � W X ! S be a proper map of manifolds. If � is smooth, i.e., the map d� on tangent
spaces is surjective at all points of X , then � is a fibration, and it follows that, for any
locally constant sheaf F on X , Rr��F is locally constant.

The smooth base change theorem

In the remainder of this section, we consider only varieties over an algebraically closed field
k.

Consider a diagram:

X X 0 D X �S T:

S T:

�

f 0

� 0

f

For any sheaf F on X , there is a canonical morphism of sheaves on T

f �.Rr��F/! Rr� 0�.f
0�F/;

called the base change morphism (or map) — see the proof of 17.3.

THEOREM 20.1 (SMOOTH BASE CHANGE) If f W T ! S is smooth, then the base change
morphism is an isomorphism for all constructible sheaves F whose torsion is prime to the
characteristic of k.

The proper-smooth base change theorem

Recall that the finiteness part of the proper base change theorem says that, if � W X ! S is
proper and F is constructible, then Rr��F is constructible.

THEOREM 20.2 (PROPER-SMOOTH BASE CHANGE) If � W X ! S is proper and smooth
and F is locally constant with finite stalks, thenRr��F is locally constant with finite stalks,
provided the torsion in F is prime to the characteristic of k.

Let x0 and x1 be points of X regarded as a scheme (so x0 and x1 need not be closed).
We say that x0 is a specialization of x1 if it is contained in the closure of x1. Then every
Zariski open subset of X containing x0 also contains x1. Choose geometric points Nx0 !
x0 ,! X and Nx1 ! x1 ,! X . Then an étale neighbourhood .U; u/ of Nx0 can be given the
structure of an étale neighbourhood of Nx1 (the image of U ! X contains x1, and so we
can choose a morphism Nx1 ! U lifting Nx1 ! X ). Once this has been done compatibly for
every étale neighbourhood of Nx0, then we get a cospecialization map

F Nx0
! F Nx1

for every sheaf F on Xet. For example, taking F D Ga, we get a map on the strictly local
rings

OX; Nx0
! OX; Nx1

:

127
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The definition of the cospecialization maps involve choices, but once we fix the map OX; Nx0
!

OX; Nx1
, then the map F Nx0

! F Nx1
becomes canonical in F . In other words, there is no one

canonical map F Nx0
! F Nx1

but rather, a distinguished class of maps, whose members we
call cospecialization maps. If one in the class is an isomorphism, so are they all.

PROPOSITION 20.3 A constructible sheaf F on Xet is locally constant if and only if the
cospecialization maps F Nx0

! F Nx1
are all isomorphisms.

Compare this with the following topological situation. Let F be a locally constant sheaf
on the punctured disk U , and let j W U ,! X be the inclusion of U into the full disk. The
sheaf F corresponds to a module M endowed with an action of �1.U; u/, u 2 U . The
stalk of j�F at u is M , and its stalk at o is M�1.U;u/. Thus, the special stalk .j�F/o is
isomorphic to the general stalk .j�F/u (by a cospecialization map) if and only if �1 acts
trivially on M , which means that j�F is constant.

Now we can restate the proper-smooth base change theorem as follows.

THEOREM 20.4 Let � W X ! S be proper and smooth, and let F be a locally constant
sheaf on X with finite stalks whose torsion is prime to the characteristic of k. For any pair
of geometric points Ns0 and Ns1 with s0 a specialization of s1, the cospecialization map

H r.XNs0 ;F/! H r.XNs1 ;F/

is an isomorphism. Here XNs D X �S Ns, the geometric fibre of � over Ns.

Applications

The above results also hold for schemes, and here we have a remarkable application. Let
X be a complete nonsingular variety over an algebraically closed field k of characteristic
p ¤ 0. We say that X can be lifted to characteristic zero if

(a) there is a discrete valuation ring R with field of fractionsK of characteristic zero and
residue field k; and

(b) a scheme � W X ! S , S D SpecR, proper and smooth over S whose special fibre is
X .

For example, a subvariety X of Pn can be lifted to characteristic zero if there exist
homogeneous polynomials fi .T0; : : : ; Tn/ 2 RŒT0; : : : ; Tn� such that

(a) modulo mR, the fi generate the homogeneous ideal of X embedded in Pn;

(b) when regarded as polynomials in KŒT0; : : : ; Tn�, the fi define a variety X1 over K
with the same dimension as that of X .

Clearly, any nonsingular hypersurface in Pn can be lifted — just lift the single poly-
nomial defining X from kŒT0; : : : ; Tn� to RŒT0; : : : ; Tn�. Similarly, any smooth complete
intersection in Pn can be lifted to characteristic zero. Curves and abelian varieties can be
lifted to characteristic zero, but otherwise little is known. Certainly, many varieties can
not be lifted. The problem is the following: suppose X has codimension r in Pn, but its
homogeneous ideal I.X/ needs s > r generators; when the generators of I.X/ are lifted to
RŒT0; : : : ; Tn�, in general, they will define a variety X1 in characteristic zero of dimension
less than that of X — all one can say in general is that

n � s � dimX1 � dimX D n � r:
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THEOREM 20.5 Suppose that a variety X0 over an algebraically closed field k of charac-
teristic p ¤ 0 can be lifted to a variety X1 over a field K of characteristic zero. For any
finite abelian group �,

H r.X0; �/ � H
r.X1;Kal ; �/:

In particular, the Betti numbers of X0 are equal to the Betti numbers of X1. In the next
section, we shall show that the cohomology groups of X1 equal those of the topological
space X1.C/ (assuming K can be embedded in C).



21 THE COMPARISON THEOREM.

Let X be a nonsingular variety. Then X can be endowed in a natural way with the structure
of a complex manifold. I write Xan for X regarded as a complex manifold and Xcx for X
regarded as a topological space with the complex topology (thus Xan is Xcx together with
a sheaf of rings).

THEOREM 21.1 LetX be a nonsingular variety over C. For any finite abelian group� and
r � 0, H r.Xet; �/ ' H

r.Xcx; �/.

REMARK 21.2 The theorem holds also for singular varieties, but then it becomes a little
more difficult to state (one needs to know about analytic varieties), and the proof is a little
longer. The theorem holds also for all constructible sheaves. See SGA 4, XVI 4.

In both topologies, H 0.X;�/ D ��0.X/, where �0.X/ is the set of connected compo-
nents of X . Thus, for r D 0, the theorem simply asserts that the set of connected compo-
nents of X with respect to the Zariski topology is the same as the set of connected compo-
nents of Xcx with respect to the complex topology, or, equivalently, that if X is connected
for the Zariski topology, then it is connected for the complex topology.

This is a slightly surprising result. Let X D A1. Then, certainly, it is connected for
both the Zariski topology (that for which the nonempty open subsets are those that omit only
finitely many points) and the complex topology (that for which X is homeomorphic to R2).
When we remove a circle from X , it becomes disconnected for the complex topology, but
remains connected for the Zariski topology. This doesn’t contradict the theorem, because
A1C with a circle removed is not an algebraic variety.

Let X be a connected nonsingular (hence irreducible) curve. We prove that it is con-
nected for the complex topology. Removing or adding a finite number of points to X will
not change whether it is connected for the complex topology, and so we can assume that X
is projective. Suppose X is the disjoint union of two nonempty open (hence closed) sets
X1 and X2. According to the Riemann-Roch theorem, there exists a nonconstant rational
function f on X having poles only in X1. Therefore, its restriction to X2 is holomorphic.
Because X2 is compact, f is constant on each connected component of X2 (Cartan, H.,
Elementary Theory of Analytic Functions of One or Several Variables, Addison-Wesley,
1963, VI.4.5) say, f .z/ D a on some infinite connected component. Then f .z/ � a has
infinitely many zeros, which contradicts the fact that it is a rational function.

A connected nonsingular variety X can be shown to be connected for the complex
topology by using induction on the dimension — see Remark 21.9 below (also Shafarevich,
I., Basic Algebraic Geometry, 1994, VII.2).

For r D 1, the theorem asserts that there is a natural one-to-one correspondence be-
tween the finite étale coverings of X and Xan.

THEOREM 21.3 (RIEMANN EXISTENCE THEOREM) For any nonsingular algebraic vari-
ety X over C, the functor Y 7! Y an defines an equivalence between the categories of finite
étale coverings of X and Xan.

PROOF. Apparently, this was proved for Riemann surfaces by Riemann. The general case
is due to Grauert and Remmert. The proof can be shortened by using resolution of singu-
larities. I sketch the proof from (SGA 1, XII).

130
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STEP 1. For any projective nonsingular algebraic variety X , the functor Y 7! Y an

defines an equivalence from the category of finite coverings of X to the category of finite
coverings of Xan.

In fact, for a complete variety X , the functor M 7! Man is an equivalence from the
category of coherent OX -modules on Xzar to the category of coherent OXan-modules on
Xan (see Serre, GAGA36, 1956). To give a finite covering of X is to give a coherent OX -
module together with an OX -algebra structure. Since the same is true forXan, the statement
is obvious.

STEP 2. The functor Y 7! Y an from the category of finite coverings of X to the
category of finite coverings of Xan is fully faithful.

We have to prove that

HomX .Y; Y
0/
�
�! HomXan.Y an; Y 0an/

for any finite étale coverings Y and Y 0 of X . We may suppose that X is connected. To
give an X -morphism Y ! Y 0 is to give a section to Y �X Y 0 ! Y , which is the same as
to give a connected component � of Y �X Y 0 such that the morphism � ! X induced
by the projection Y �X Y 0 ! Y is an isomorphism (see 2.15). But, as we have just
noted, the connected components of Y �X Y 0 coincide with the connected components of
Y an�Xan Y 0an, and if � is a connected component of Y �X Y 0, then the projection � ! Y

is an isomorphism if and only if � an ! Y an is an isomorphism.
It remains to prove that the functor Y 7! Y an is essentially surjective.
STEP 3. The problem is local for the Zariski topology on X .
By this we mean that if the functor is essentially surjective for all Xi in some Zariski

open covering of X , then it is essentially surjective for X itself. This follows immediately
from Step 2: from a finite étale covering Y ! Xan, we obtain finite étale coverings Yi !
Xan
i plus patching data Yij ! Yj i ; if each Yi ! Xan

i is algebraic, then (because of Step
2), the patching data will also be algebraic, and so will give an algebraic étale covering of
X .

We may now suppose that X is affine. According to resolution of singularities (Hi-
ronaka), there exists a nonsingular projective variety NX and an open immersion X ,! NX

identifying X with a dense open subset of NX and such that NX rX is a divisor with normal
crossings. Under these hypotheses, one can show that every finite étale covering Y ! Xan

extends to a finite covering of NXan (SGA 1, XII 5.3) to which one can apply Step 1. 2

EXAMPLE 21.4 The hypotheses that Y is étale over Xan is needed in the last paragraph.
Let X be the unit disk in the complex plane, U the complement of the origin in X , and U 0

the covering of U defined by the equation

T 2 D sin
1

z

where z is the coordinate function on U . Then U 0 doesn’t extend to a finite covering of X ,
for suppose it did; then the set of points where X 0 ! X is not étale is a closed analytic set
containing all the points z such that sin 1

z
D 0, which is absurd.

Assume from now on that X is connected. Theorem 21.3 implies that, for any x 2 X ,
�1.Xcx; x/ and �1.Xet; x/ have the same finite quotients. Therefore, there is a natural

36Géométrie algébrique et géométrie analytique. Ann. Inst. Fourier, Grenoble 6 (1955–1956), 1–42.
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one-to-one correspondence F $ Fcx between the locally constant sheaves F on Xet with
finite stalks and the locally constant sheaves on Xcx with finite stalks. We now restate the
theorem in stronger form as:

THEOREM 21.5 LetX be a connected nonsingular variety over C. For any locally constant
sheaf F on Xet with finite stalks, H r.Xet;F/ ' H r.Xcx;Fcx/ for all r � 0.

From now on, I’ll drop the superscript on Fcx .
Consider the following situation: X is a set with two topologies, T1 and T2 (in the

conventional sense), and assume that T2 is finer than T1. Let Xi denote X endowed with
the topology Ti . Because T2 is finer than T1, the identity map f W X2 ! X1 is continuous.
We ask the question: for a sheaf F on X2, when is H r.X1; f�F/ ' H r.X2;F/ for all
r � 0? Note that f�F is simply the restriction of F toX1. An answer is given by the Leray
spectral sequence

H r.X1; R
sf�F/) H rCs.X2;F/:

Namely, the cohomology groups agree if Rsf�F D 0 for s > 0. But Rsf�F is the
sheaf associated with the presheaf U 7! H s.U2;F/ (here U is an open subset of X1, and
U2 denotes the same set endowed with the T2-topology). Thus we obtain the following
criterion for H r.X1; f�F/ ' H r.X2;F/:

for any open U � X1 and any t 2 H s.U2;F/, s > 0, there exists a covering
U D

S
U.i/ (for the T1-topology) such that t maps to zero in H s.U.i/2;F/

for all i .

Loosely speaking, we can say that the topology T1 is sufficiently fine to compute the
T2-cohomology of F if it is sufficiently fine to kill T2-cohomology classes.

A similar remark applies to continuous maps of sites. Let Xecx denote X endowed
with the Grothendieck topology for which the coverings are surjective families of étale
maps .Ui ! U/ of complex manifolds over X . There are continuous morphisms (of sites)

Xcx  Xecx ! Xet:

The inverse mapping theorem shows that every complex-étale covering .Ui ! U/ of a
complex manifold U has a refinement that is an open covering (in the usual sense). There-
fore, the left hand arrow gives isomorphisms on cohomology. It remains to prove that the
right hand arrow does also, and for this, the above discussion shows that it suffices to prove
the following statement:

LEMMA 21.6 Let U be a connected nonsingular variety, and let F be a locally constant
sheaf on Uecx with finite stalks. For any t 2 H s.Ucx;F/, s > 0, there exists an étale
covering Ui ! U (in the algebraic sense), such that t maps to zero in H s.Ui;cx;F/ for
each i .

The idea of the proof of the lemma is as follows. We use induction on the dimension
of U . Clearly the problem is local on U for the étale topology, i.e., it suffices to prove the
statement for the image ti of t in H r.Ui ;F/ for each Ui in some étale covering .Ui !
U/i2I of U . Thus we can assume that F is constant, and that U has been replaced by
some “Zariski-small” set U . We then find a morphism f W U ! S from U to a nonsingular
variety S of lower dimension such that Rsf�F is zero for s ¤ 0; 1 and is locally constant
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for s D 0; 1 (direct images for the complex topology). The Leray spectral sequence for f
gives an exact sequence

� � � ! H s.Scx; f�F/! H s.Ucx;F/! H s�1.Scx; R
1f�F/! � � � :

Let t map to t 00 inH s�1.Scx; R
1f�F/. If s�1 > 0, then, by induction, there is an étale cov-

ering Si ! S (algebraic sense) such that t 00 restricts to zero in each H s�1.Sicx; R
1f�F/.

After replacing U with U �S Si , we may assume that t is the image of an element t 0 2
H r.Scx; f�F/, and apply induction again. This completes the proof for s > 1. The case
s D 1 follows from the Riemann Existence Theorem.

DEFINITION 21.7 An elementary fibration is a regular map of varieties f W U ! S that
can be embedded into a commutative diagram

U Y Z

S

j

f
h

i

g

in which:

(a) j is an open immersion, j.U / is dense in every fibre of h, and Y D i.Z/ [ j.U /;

(b) h is smooth and projective, with geometrically irreducible fibres of dimension 1;

(c) g is finite and étale, and each fibre of g is nonempty.

PROPOSITION 21.8 Let X be a nonsingular variety over an algebraically closed field k.
For any closed point x of X , there is an elementary fibration U ! S with U an open
neighbourhood of x and S nonsingular.

PROOF. The idea is to find an embedding U ,! Pr such that the closure NU of U is normal,
and for which there is a particularly good projection map Pr r E ! Pm�1, m D dimU .
After blowing up U at the centre of the projection map, one obtains an elementary fibration
U ! S . See SGA 4, XI (maybe I’ll put this in AG one day). 2

REMARK 21.9 Using the proposition, we may easily complete the proof of Theorem 21.1
for r D 0. Since removing or adding a component of real codimension� 2will not connect
or disconnect a manifold, we may replace X by an open subset U as in the proposition, and
then by Y . Thus, we have to prove that Y is connected for the complex topology (assuming
that S is). Suppose Y D Y1tY2 with Y1 and Y2 both open and closed. Because the fibres of
h are connected, each of Y1 and Y2 must be a union of fibres, i.e., Yi D h�1h.Yi /. Because
h is proper, h.Y1/ and h.Y2/ are closed, and therefore they will disconnect S unless one is
empty.

We now prove Lemma 21.6. Because the statement is local for the étale topology on
U , we may assume that U admits an elementary fibration and that F is constant, F D �.
There is also an exact Gysin sequence

� � � ! H r�2.Zcx; �.�1//! H r.Ycx; �/! H r.Ucx; �/! � � �
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for the analytic topology. For any complex-open subset S 0 � S , we obtain a similar se-
quence with Y;Z;U replaced with h�1.S 0/, g�1.S 0/, f �1.U /. In this way, we obtain an
exact sequence of presheaves on Scx , and the associated sequence of sheaves is

� � � ! Rr�2g��.�1/! Rrh��! Rrf��! � � �

(higher direct images for the complex topology). From this, it follows that the sheaves
Rrf�� are locally constant, and that for all s 2 S , the natural map .Rrf��/s ! H r.Us; �/

is an isomorphism (apply the topological proper base change theorem to g and h, and use
the five-lemma). Hence Rrf�� D 0 for r > 1. The discussion preceding (21.7) shows that
this completes the proof of Theorem 21.5.

REMARK 21.10 We now know that, for any complete nonsingular variety X0 over an al-
gebraically closed field k of characteristic p ¤ 0 that is liftable to a complete nonsingular
variety X1 in characteristic zero, H r.X0; �/ � H

r.X1cx; �/ for all r .



22 THE KÜNNETH FORMULA.

This is a brief summary only. Formally, the theory of the Künneth formula is the same for
the étale topology as for topological spaces — one only has to replace the easy topological
proper base change theorems with the much harder étale versions. See Iversen 1986, VII.2,
for the topological version.

Cup-products Let F and G be sheaves on X . Then there are cup-product maps

H r.Xet;F/ �H s.Xet;G/! H rCs.Xet ;F ˝ G/:

The easiest way to define them is to identify the groups with Čech cohomology groups and
set

.f [ g/i0���irCs
D fi0���ir ˝ gir ���irCs

:

The Künneth Formula

Let � be a finite ring. A map A� ! B� of complexes of �-modules is called a quasi-
isomorphism if it induces isomorphisms on the cohomology groups of the complexes.

Let X and Y be algebraic varieties over an algebraically closed field k, and let F and G
be sheaves on X and Y respectively. Consider

X � Y

Z Y

p q

On combining the restriction maps

H r.X;F/! H r.X � Y; p�F/
H s.Y;G/! H s.X � Y; q�G/

with the cup-product map

H r.X � Y; p�F/ �H s.X � Y; q�F/! H rCs.X � Y; p�F ˝ q�G/

we obtain a map

H r.X;F/ �H s.Y;G/! H rCs.X � Y; p�F ˝ q�G/:

The Künneth formula studies the extent to which the mapM
rCsDn

H r.X;F/˝H s.Y;G/! Hn.X � Y; p�F ˝ q�G/

is an isomorphism.

THEOREM 22.1 Let X and Y be complete varieties; there exists an quasi-isomorphism

H.X;�/˝� H.Y;�/! H.X � Y;�/

where H.X;�/, H.Y;�/, and H.X � Y;�/ are complexes of �-modules such that

135
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(a) H r.H.X;�// ' H r.Xet; �/, and similarly for the other two;

(b) H.X;�/ is a complex of flat �-modules.

COROLLARY 22.2 There is a spectral sequenceX
iCjDs

Tor��r.H
i .Xet; �/;H

j .Yet; �//) H rCs.X � Y;�/:

PROOF. That the quasi-isomorphism in the theorem yields such a spectral sequence is a
standard result in homological algebra. 2

REMARK 22.3 (a) Unfortunately, in general the spectral sequence in the corollary is
infinite. For example, let � D Z=`2Z. There are exact sequences of any length

0! Z=`Z! Z=`2Z! � � � ! Z=`2Z
`
! Z=`2Z! Z=`Z! 0:

This shows that Tor
Z=`2Z
r .Z=`Z;Z=`Z/ is nonzero for infinitely many r .

(b) The proof of the theorem (see below) uses the proper base change theorem. It also
holds for noncomplete varieties and cohomology with compact support, and for or-
dinary cohomology if the varieties are smooth or one assumes a theorem of Deligne
(24.3) below).

(c) To state, and prove, the theorem, it is most natural to use derived categories.

(d) The theorem holds with constructible sheaves of � modules F and G, provided at
least one of them is a flat sheaf of �-modules (i.e., F ˝� � is exact).

For � D Z=`nZ, it is possible to define the complexes and the quasi-isomorphism
compatibly for varying n, so that we can pass to the inverse limit, and obtain a quasi-
isomorphism

H.X;Z`/˝Z`
H.Y;Z`/! H.X � Y;Z`/:

Because Z` is a principal ideal domain, this yields a Künneth formula in its usual form.

THEOREM 22.4 For varieties X and Y , there is a canonical exact sequence

0!
X

rCsDm

H r.X;Z`/˝H s.Y;Z`/! Hm.X � Y;Z`/

!

X
rCsDmC1

TorZ`

1 .H
r.X;Z`/;H s.Y;Z`//! 0

(and similarly for cohomology with compact support).

The Proof

The first step is to prove a projection formula.

PROPOSITION 22.5 (PROJECTION FORMULA) Consider a regular map f W X ! S . Then,
for any flat sheaf F of �-modules on X and bounded above complex of sheaves G� on S ,
there is a quasi-isomorphism

.Rf�F/˝ G� ��! Rf�.F ˝ f �G�/:
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PROOF. To prove this, one reduces the general case to the case G� D �, which is obvious.2

Next, consider

X �S Y

X Y

S

p

h

q

f g

Let F be a flat constructible sheaf of �-modules on X , and let G be a constructible sheaf
on �-modules on Y . Then, in the language of derived categories,

Rf�F ˝Rg�G

k (projection formula)

Rf�.F ˝ f �Rg�G/

k (base change)

Rf�.F ˝Rp�.q�G//

k (projection formula)

Rf�.Rp�.p
�F ˝ q�G//

k .Rf� ıRp� D R.f ı p/�)

Rh�.p
�F ˝ q�G/:

In order to be able to apply the base change theorem, we need that

(a) g is proper (use the proper base change theorem), or

(b) f is smooth (use the smooth base change theorem), or

(c) S is the spectrum of a field (use Deligne’s theorem).
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We want to associate a cohomology class with an algebraic cycle on a variety. The direct
definition is quite short, but, unfortunately, it is difficult to derive the properties one wants
from it. Another definition, using Chern classes, yields all the general properties, but is not
very explicit. The best approach is to give both definitions, and to verify that they coincide.

Throughout this section, all varieties will over an algebraically closed field k, and � D
Z=`nZ with ` ¤ char.k/. We also allow � to be Z`, or Q`, although this requires minor
modifications to the exposition. We set H�.X/ D

L
r�0H

2r.X;�.r// (notation as at the
start of �16) — it becomes a ring under cup-product.

For reference, we note that given a variety and open subvarieties X � U � V , we get
an exact sequence (of the triple) of étale cohomology groups

� � � ! H r
X�U .X/! H r

X�V .X/! H r
U�V .U /! � � � :

When V is empty, this is the exact sequence of the pair .X;U /.

Preliminaries

Let X be a nonsingular variety over k. A prime cycle on X is an irreducible closed
subvariety. Let C r.X/ be the free abelian group generated by the prime cycles of codi-
mension r — its elements are called the algebraic cycles of codimension r on X . Thus
C 1.X/ D Div.X/. We let C �.X/ D

L
r�0 C

r.X/.
We refer the reader to Hartshorne 1977, Appendix A, for the notion of two algebraic

cycles being rationally equivalent and for the intersection product of two algebraic cycles.
The quotient CH�.X/ of C �.X/ by rational equivalence becomes a ring relative to

intersection product. It is called the Chow ring.
For example, CH1.X/ D Pic.X/. Recall that Pic.X/ D H 1.Xet;Gm/, and so the

cohomology sequence of the Kummer sequence gives a homorphism

Pic.X/! H 2.Xet; �.1//:

Our object in this section is to define a canonical homomorphism of graded rings

cl�X WCH�.X/! H�.X/

such that cl1X W CH1.X/! H 2.Xet; �.1// is the map just defined.

Direct definition of the cycle map

Again X is nonsingular. When Z is nonsingular, we let clX .Z/ be the image of 1 under
the Gysin map

� D H 0.Z;�/! H 2r
Z .X;�.r//! H 2r.X;�.r//:

To extend this definition to singular prime cycles, we need the following lemma.

LEMMA 23.1 (SEMI-PURITY) For any closed subvarietyZ of codimension c inX ,H r
Z.X;�/ D

0 for r < 2c.

138
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PROOF. WhenZ is nonsingular,H s
Z.X;�/ ' H

s�2c.Z;�.�c//, which is 0 for s�2c <
0 (see 16.1). We prove the lemma for a generalZ by induction on the dimension ofZ. IfZ
has dimension 0, it is nonsingular, and so the statement is true. LetZ be a closed subvariety
of codimension c. Its singular locus, Y , is a closed subvariety of dimension less than that
of Z, and the exact sequence of the triple .X;X r Y;X rZ/ is

� � � ! H r
Y .X;�/! H r

Z.X;�/! H r
ZrY .X r Y;�/! � � � :

NowH r
ZrY .X rY;�/ D 0 for r < 2c because ZrY is nonsingular, andH r

Y .X;�/ D 0

for r < 2c C 2 by induction, and this implies that H r
Z.X;�/ D 0 for r < 2c. 2

Now let Z be a prime cycle in X of codimension c, and let Y be the singular locus of
Z. From the exact sequence of the triple .X;X r Y;X r Z/ we obtain (using the lemma)
an isomorphism

H 2c
Z .X;�/ ' H 2c

ZrY .X r Y;�/:

We define clX .Z/ to be the image of 1 under the composite of the maps

� ' H 0.Z r Y;�.c// ' H 2c
ZrY .X r Y;�.c// ' H 2c

Z .X;�.c//! H 2c.X;�.c//:

We extend this by linearity to a homomorphism

clr WC r.X/! H 2r.X;�.r//:

For r D 1, this is the map defined by the Kummer sequence (see 7.9a).

Chern classes

We now take X to be a nonsingular projective variety.
LetE be a vector space of dimensionmC1 over k. We define P.E/ to be the projective

space of lines in E. The choice of a basis for E determines an isomorphism P.E/! Pm.
More generally, let E be a locally free sheaf of OX -modules of rank m C 1 on a non-

singular variety X (for the Zariski topology). Then (see Hartshorne 1977, p162) there is a
projective space bundle P.E/ associated with E . This is a nonsingular variety equipped
with a regular map � W P.E/ ! X and a canonical invertible sheaf O.1/. The fibre
��1.x/ D P.Ex/ where Ex is the fibre of E at x (a k-vector space of dimensionmC1). If E
is free over a Zariski open subsetU ofX , then the choice of an isomorphism OmC1U ! E jU
determines an isomorphism PmU ! P.E jU/

THEOREM 23.2 Let E be a locally free sheaf rank mC 1 on Xzar, and let � W P.E/ ! X

be the associated projective bundle. Let � be the class of O.1/ in H 2.P.E/;�.1//. Then
�� makes H�.P.E// into a free H�.X/-module with basis 1; �; : : : ; �m:

PROOF. There is an isomorphism of graded rings

�ŒT �=.TmC1/
�
�! H�.Pm/

sending T to the class � of the hyperplane section; in particular,H�.Pm/ is a free�-module
with basis 1; : : : ; �m (see �16).

If E is free, the choice of an isomorphism ˛W E � OmC1X determines an isomorphism
P.E/ � X � Pm

k
, and the Künneth formula shows that H�.X � Pm

k
/ ' H�.X/ ˝
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H�.Pm/, which is a free module over H�.X/ with basis 1; T; : : : ; Tm. The isomor-
phism H�.P.E// � H�.X � Pm

k
/ is an H�.X/-isomorphism and sends � to T . Therefore

H�.P.E// is a free module over H�.X/ with basis 1; �; : : : ; �m.
Next, if U D X0 [X1 and we know the proposition for X0, X1, and X0 \X1, then the

Mayer-Vietoris sequence (Theorem 10.8) allows us to prove it for U . Since we know the
proposition for any Zariski-open subset of X over which E is trivial, this argument allows
us to obtain it for X step-by-step. 2

The proposition shows that, when we regard H�.P.E// as an H�.X/-module, there is
a linear relation between 1; �; : : : ; �mC1, which is unique if we normalize the coefficient of
�mC1 to be 1. In other words, there are unique elements chr.E/ 2 H 2r.X;�.r// such that� PmC1

rD0 chr.E/ � �mC1�r D 0

ch0.E/ D 1:

Then chr.E/ is called the rth Chern class of E , ch.E/ D
P
chr.E/ the total Chern class

of E , and
cht .E/ D 1C ch1.E/t C � � �

the Chern polynomial of E :

THEOREM 23.3 The Chern classes have the following properties:

(a) (Functoriality). If � W Y ! X is morphism of smooth varieties and E is a vector
bundle on X , then chr.��1.E// D ��.chr.E//.

(b) (Normalization). If E is an invertible sheaf onX , then ch1.E/ is the image of E under
the map Pic.X/! H 2.X;�.1// given by the Kummer sequence.

(c) (Additivity). If
0! E 0 ! E ! E 00 ! 0

is an exact sequence of vector bundles on a smooth variety X , then

cht .E/ D cht .E 0/ � cht .E 00/:

PROOF. See Grothendieck, A., La théorie des classes de Chern, Bull. Soc. Math. France
86 (1958), 137-158. 2

The above reference may appear to be an anachronism, but Grothendieck proves an
abstract theorem. He assumes only that there is

(i) a functor from the category of nonsingular projective varieties X to graded anti-
commutative rings,

(ii) a functorial homomorphism Pic.X/! H 2.X/, and

(iii) for every closed immersion Z ,! X of (smooth projective) varieties, a “Gysin map”
H�.Z/! H�.X/,

all satisfying certain natural axioms. He then shows that there is a theory of Chern classes
satisfying conditions (a,b,c) of the Theorem.

LetK.X/ be the Grothendieck group of locally free sheaves of finite rank onX . Part (c)
of the theorem shows that E 7! ch.E/ factors through K.X/. Because X is smooth, K.X/
is also the Grothendieck group of coherent OX -modules (standard result). This allows us to
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define a map 
 W C �.X/! K.X/W given a prime cycleZ, resolve OZ by free OX -modules
of finite rank,

0! En ! En�1 ! � � � ! E0 ! OZ ! 0

and set 
.Z/ D
P
.�1/ich.Ei / (here OZ is the structure sheaf of Z, regarded as an OX -

module with support on Z/: In sum: we have maps

C �.X/! K.X/! H�.X/:

In order to get homorphisms of graded groups, we need to replace K.X/ with a graded
group.

There is a filtration on K.X/. Define Kr.X/ to be the subgroup of K.X/ generated by
coherent OX -modules with support in codimension � r . The groups Kr define a filtration
of K.X/. Let

GK�.X/ D gr.K.X//
def
D ˚Kr.X/=KrC1.X/:

Then GK�.X/ becomes a group under the product law

ŒM�ŒN � D
X

.�1/r ŒTorOr .M;N /�:

Here Œ�� denotes the class of � in the Grothendieck group. The map C �.X/ ! K.X/ is
clearly compatible with the filtration, and so defines a homomorphism of graded modules

 W C �.X/! GK�.X/:

Set
CH�.X/ D C �.X/=(rational equivalence).

It becomes a ring under intersection product. Cycles rationally equivalent to zero map to
zero under 
 , and so 
 defines a map 
 W CH�.X/! GK�.X/. Serre’s description of inter-
section products shows that this is compatible with intersection products. See Hartshorne
1977, Appendix A.

The map chW K�.X/ ! H�.X/ induces a map GK�.X/ ! H�.X/, but unfortu-
nately, this isn’t quite a ring homomorphism: let H�.X/0 D H�.X/ as an abelian group,
but give it the multiplicative structure

xr � xs D
�.r C s � 1/Š

.r � 1/Š.s � 1/Š
xrxs , xr 2 H r.X/, xs 2 H s.X/:

Then chW GK�.X/! H�.X/0 is a homomorphism.
When .2 dimX � 1/Š is invertible in �, the map

xr 7! xr=.�1/
r�1.r � 1/ŠWH�.X/0 ! H�.X/

is an isomorphism. On composing, the maps

CH�.X/


! GK�.X/

ch
! H�.X/0 ! H�.X/;

we obtain a homomorphism

clX WCH�.X/! H�.X/:

This has the following properties:
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(a) it is a homomorphism of graded rings (doubling degrees); in particular, intersection
products map to cup-products;

(b) it is functorial in X:

THEOREM 23.4 This chern-class cycle map agrees with the directly-defined cycle map.

PROOF. A correct proof is quite long. 2

EXERCISE 23.5 Find the error in the proof of EC VI 10.6.

In the above, we have taken � D Z=`nZ. For different n, the cycle maps are compati-
ble, and so we can pass to the inverse limit to get a homomorphism of graded rings

CH�.X/!
M

H 2r.X;Z`.r//

provided ` � 2 dimX . On tensoring with Q, we get a homomorphism

CH�.X/!
M

H 2r.X;Q`.r//

(no longer need ` � 2 dimX/:

NOTES This subsection needs to be rewritten: from Carl Mautner et al. (UT Austin)—The notes
are a bit confusing here. You seem to have left out the definition of the Chern character which is
then used. For example, following 23.3 you set 
.Z/ D

P
.�1/ich.Ei /, which makes sense and

maps to cohomology (not to K.X/ as you say it will in the previous paragraph) if ‘ch’ means the
Chern character, but you seem to have forgotten to define it.

Application

Assume X to be projective of dimension d . The group C d .X/ consists of finite (formal)
sums

P
nPP , nP 2 Z, P a closed point of X . The degree mapX

nPP 7!
X

nP WC
d .X/! Z

factors through CHd .X/. Therefore, we have a pairing

Z; Y 7! .Z � Y /WCHr.X/ � CHd�r.X/! Z:

An algebraic cycle Z is said to be numerically equivalent to zero if .Z � Y / D 0 for
all algebraic cycles Y of complementary codimension. We let N r.X/ be the quotient of
CHr.X/ by numerical equivalence. We now have the following remarkable theorem.

THEOREM 23.6 The groups N r.X/ are finitely generated.

PROOF. Choose Y1; : : : ; Yn 2 CHd�r.X/ so that their images in H 2d�2r.X;Q`.d � r//
form a basis for the Q-space generated by cl.CHd�r.X//. The kernel of the homomor-
phism

Z 7! .Z � Y1; : : : ; Z � Yn/WCHr.X/! Zn

consists exactly of the classes numerically equivalent to zero, and so the homomorphism
defines an injection N r.X/ ,! Zn. 2
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REMARK 23.7 To show N r.X/ finitely generated, it would not be sufficient to prove that
there is an injection N r ,! H 2r.X;Q`.r//. For example, there is an injection Q ,! Q`,
but Q is not a finitely generated abelian group.

Let X be a variety over a separably closed field k, and let Z be an irreducible closed
subvariety of X . Then, because X and Z are defined by finitely many polynomials, each
with finitely many coefficients, there will exist models of X and Z defined over a field k0
that is finitely generated over the prime field. Therefore the cohomology class of Z will be
“defined over” k0. Tate conjectures that this can be used to characterize algebraic classes.
More precisely, for each model X0 of X over a field k0 finitely generated over the prime
field, let

T r.X0=k0/ D H
2r.Xet;Q`.r//Gal.k

sep
0 =k0/:

AsH 2r.X;�/ D H 2r.X0;ksep
0
;�/ (see 17.8), this makes sense. Then Tate conjectures that

T r.X=k/
def
D

[
T r.X0=k0/

is the Q`-subspace of H 2r.X;Q`.r// generated by the classes of algebraic cycles. Al-
though we all hope that the conjecture is true, there is no real reason for believing that
it is. For abelian varieties and r D 1, it has been proved (Tate, Zarhin, Faltings). It is
known that, for abelian varieties over C, the Tate conjecture implies the Hodge conjecture
(Piatetski-Shapiro, Deligne), and it is known that the Hodge conjecture for abelian varieties
of CM-type over C implies the Tate conjecture for all abelian varieties over finite fields
(all r) (Milne). However, although abelian varieties of CM-type are very special — they
correspond to a set of dimension zero in the moduli space — there seems to be little hope
that the complex analysts/classical algebraic geometers will prove it any time soon.
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Poincaré duality for topological spaces

The classical Poincaré duality theorem (Greenberg, M., Lectures on Algebraic Topology,
Benjamin, 1967, 26.6) says that, for an oriented connected m-dimensional manifold U ,
there is a canonical isomorphism H r

c .U;Z=nZ/ ! Hm�r.U;Z=nZ/. Using the duality
between Hs and H s , we can rewrite this as a perfect pairing of finite groups

H r
c .U;Z=nZ/ �H

m�r.U;Z=nZ/! Hm
c .U;Z=nZ/ ' Z=nZ:

A better approach (e.g., Iversen 1986, V.3) avoids the choice of an orientation. Instead, one
introduces an “orientation sheaf” o for which there is a canonical isomorphismHm

c .U; o/ '

Z=nZ. The Poincaré duality theorem then becomes a perfect pairing

H r
c .U; o/ �H

m�r.U;Z=nZ/! Hm
c .U; o/ ' Z=nZ:

The manifold is orientable if and only if there is an isomorphism Z=nZ! o, and the choice
of such an isomorphism is an orientation of U .

Define C to be the algebraic closure of R. To give an orientation of C regarded as a
real manifold is the same as to give a choice of

p
�1 (and hence a choice e2�

p
�1=n of a

primitive nth root of 1 for all n). Once an orientation of C has been chosen, one obtains an
orientation of any complex manifold of dimension 1 (conformal mappings preserve orienta-
tion), and, indeed, of a complex manifold of any dimension. Thus, for a connected complex
manifold U of complex dimensionm, the classical Poincaré duality theorem takes the form

H r
c .U;Z=nZ/ �H

2m�r.U;Z=nZ/! H 2m
c .U;Z=nZ/ ' Z=nZ

once one has chosen a primitive 4th root of 1.
More generally, there is fancy duality theorem, usually called Verdier duality, for any

locally compact space of finite dimension.

Poincaré duality for nonsingular algebraic varieties

Let k be an algebraically closed field, and let � D Z=nZ for some n prime to the char-
acteristic of k. For a sheaf of �-modules F , we set LF.m/ D Hom.F ; �.m//: Here
�.m/ D �˝mn .

Let X be a nonsingular variety of dimension d . For any closed point P 2 X , the Gysin
map is an isomorphism

H 0.P;�/! H 2d
P .X;�.d//:

There is a canonical mapH 2d
P .X;�.d//! H 2d

c .X;�.d//, and we let cl.P / be the image
of 1 under the composite of these maps.

THEOREM 24.1 Let X be a nonsingular variety of dimension d over an algebraically
closed field k:

(a) There is a unique map �.X/W H 2d
c .X;�.d//! � sending cl.P / to 1 for any closed

point P on X ; it is an isomorphism .� is called the trace map.)

(b) For any locally constant sheaf F of �-modules, there are canonical pairings

H r
c .X;F/ �H 2d�r.X;F_.d//! H 2d

c .X;�.d// ' �;

which are perfect pairings of finite groups.

144
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One way to define the pairings is to identifyH 2d�r.X; LF.d//with Ext2d�rX .F ; �.d//,
which can be regarded as a group of extensions of length 2d � r , and then to use re-
peated coboundary maps (see the discussion following Theorem 14.20). When X is quasi-
projective, the groups can be identified with the Čech groups, and the pairing can be defined
by the usual cup-product formula.

The Gysin map

Let � W Y ! X be a proper map of smooth separated varieties over an algebraically closed
field k; let a D dim X , d D dim Y , and e D d � a. There is a restriction map

��WH 2d�r
c .X;�.d//! H 2d�r

c .Y;�.d//:

By duality, we get a map

��WH
r.Y;�/! H r�2c.X;�.�e//:

REMARK 24.2 (a) The map �� is uniquely determined by the equation:

�X .��.y/ [ x/ D �Y .y [ �
�.x//; x 2 H 2d�r

c .X;�.d//; y 2 H r.Y;�/:

This is the definition.

(b) If � is closed immersion Y ,! Z, �� is the Gysin map defined in �16 — this is
a consequence of the proof of the duality theorem. Note that in this case �e is the
codimension of Y in X . In particular,

��.1Y / D clX .Y /;

where 1Y is the identity element of H 0.Y;�/ D �.

(c) For a composite of mappings

�1� ı �2� D .�1 ı �2/�

This follows directly from the definition, because .�1 ı �2/� D ��2 ı �
�
1 .

(d) If Y and X are complete, then

�X .��.y// D �Y .y/, for y 2 H 2d .Y;�.d//;

because �X .��.y// D �X .��.y/[1X /
(a)
D �Y .y[�

�.1X // D �Y .y[1Y / D �Y .y/:

(e) (Projection formula) If Y and X are complete, then

��.y [ �
�.x// D ��.y/ [ x for x 2 H r.X/ and y 2 H s.Y /:

To prove this, apply �X to ��.y [ ��.x// [ x0 for x0 2 H 2d�r�s.X/:

(f) If � W Y ! X is a finite map of degree ı, then �� ı �� D ı. [Exercise] Since, ��

acts as the identity on H 0.X/, �� acts as the identity on H 2dimX .X/. Moreover,
�� acts as multiplication by ı on H 2dimX .X/ and �� acts as multiplication by ı on
H 0.X/.

Sometimes, �� is also called the Gysin map.
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Application to base change theorems

THEOREM 24.3 Let � W Y ! X be a regular map of varieties over a field k (not necessarily
algebraically closed). Let F be a constructible sheaf on Y . Then Rr��F is constructible
for all r and zero for all but finitely many r . Moreover, the formation of Rr�� commutes
with all base changes T ! Specm k.

The proof uses the proper base change theorem and Poincaré duality. See Deligne, P.,
Théorèmes de finitude en cohomologie `-adique, SGA 41

2
, pp 233–251.

Sketch of the proof of Poincaré duality

Omitted for the present.

Verdier duality

Omitted for the present. A recent reference on fancy duality theorems is:
Neeman, A., The Grothendieck duality theorem via Bousfield’s techniques and Brown rep-
resentability, Jour. Amer. Math. Soc. 9 (1996), 205–236.

NOTES For more general duality theorems, see Riou’s notes, Dualité (d’après Ofer Gabber), here
and the notes of Illusie et al. p.126.

http://www.math.u-psud.fr/~riou/doc/dualite.pdf


25 LEFSCHETZ FIXED-POINT FORMULA.

Here we show that the existence of a Lefschetz fixed-point formula is a formal consequence
of the existence of a cycle map with good properties, the Künneth formula, and Poincaré
duality. Throughout this section, X is a nonsingular variety (usually complete) over an
algebraically closed field k.

Let V be a vector space, and let 'W V ! V be a linear map. If .aij / is the matrix of
' with respect to a basis .ei / of V , then the trace of ', denoted Tr.'jV /, is

P
ai i . It is

independent of the choice of the basis. If .fi / is the dual basis of the dual vector space LV ,
so that ei � fj D ıij , thenX

i
'.ei / � fi D

X
i

�X
j
aj iej

�
� fi D

X
ai i D Tr.'jV /:

THEOREM 25.1 (LEFSCHETZ FIXED-POINT FORMULA) LetX be a complete nonsingular
variety over an algebraically closed field k, and let 'W X ! X be a regular map. Then

.�' ��/ D
X

.�1/r Tr.'jH r.X;Q`/:

Here �' is the graph of ', and� is the diagonal in X �X . Thus .�' ��/ is the number
of fixed points of ' counted with multiplicities.

EXAMPLE 25.2 Consider the map

'WP1 ! P1; .x0W x1/ 7! .x0 C x1W x1/:

On the affine piece where x1 ¤ 0, ' is x 7! x C 1, and on the affine piece where x0 ¤ 0

it is x 7! x
1Cx

. Since ' acts as 1 on H 0.P1/ and on H 2.P1/ (because it has degree 1),
the right hand side of the Lefschetz fixed-point formula is 2. The only fixed point of ' is
1D .1W 0/ (the origin in the affine piece where x0 ¤ 0). To compute .�' ��/1, we have
to compute the intersection number of the curves

y.1C x/ D x; y D x

at .0; 0/. It is the dimension of

kŒx; y�=.y � x; y.1C x/ � x/ D kŒx�=.x C x2 � x/ D kŒx�=.x2/;

which is 2, as Theorem 25.1 predicts.

In order to simplify the exposition, we fix an isomorphism Q` ! Q`.1/; this amounts
to choosing compatible isomorphisms Z=`nZ! �`n.k/ for all n.

Write H�.X/ D ˚H r.X;Q`/ — it is a Q`-algebra. The Künneth formula allows us
to identify H�.X �X/ with H�.X/˝H�.X/ by identifying p�.a/ [ q�.b/ with a˝ b:
Here p and q are the projection maps X �X ⇒ X .

Poincaré duality gives a nondegenerate pairing

H�.X/ �H�.X/! H 2d .X;Q`/ ' Q`:

Write e2d for the canonical generator of H 2d .X/ (the class of any point P ).
The proof of Theorem 25.1 that follows was copied almost word for word from a topol-

ogy book.
Let 'W X ! Y be a regular map. The next lemma shows that the map '�W H�.Y /!

H�.X/ is equal to that defined by the correspondence �' on X � Y .
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LEMMA 25.3 For any regular map 'W X ! Y and any y 2 H�.Y /;

p�.clX�Y .�'/ [ q
�y/ D '�.y/:

PROOF. We compute:

p�.clX�Y .�'/ [ q
�y/ D p�..1; '/�.1/ [ q

�y/ .24:2b/

D p�.1; '/�.1 [ .1; '/
�q�y/ .24:2e/

D .p ı .1; '//�.1 [ .q ı .1; '//
�y/ .24:2c/

D id�.1X [ '
�y/

D '�.y/: 2

LEMMA 25.4 Let .ei / be a basis for H�.X/, and let .fi / be the basis of H�.X/ that is
dual relative to cup-product, so that ei [ fj D ıij e

2d .ıij DKronecker delta). For any
regular map 'W X ! X ,

clX�X .�'/ D
X

'�.ei /˝ fi

PROOF. As the fi form a basis for H�.X/ as a Q`-vector space, they also form a basis for
H�.X �X/ D H�.X/˝Q`

H�.X/ as an H�.X/-module. Therefore,

clX�X .�'/ D
X

ai ˝ fi

for unique elements ai 2 H�.X/. According to Lemma 25.3,

'�.ej / D p�..
X
i

ai ˝ fi / [ .1˝ ej // D p�.aj ˝ e
2d / D aj :

2

PROOF. (PROOF OF THE THEOREM) Let eri be a basis for H r , and let f 2d�ri be the dual
basis for H 2d�r . Then

cl.�'/ D
X
r;i

'�.eri /˝ f
2d�r
i ; and

cl.�/ D
X
r;i

eri ˝ f
2d�r
i D

X
r;i

.�1/r.2d�r/f 2d�ri ˝ eri D
X
r;i

.�1/rf 2d�ri ˝ eri :

On taking the products of these two expressions we find that

clX�X .�' ��/ D
X
r;i

.�1/r '�.eri /f
2d�r
i ˝ e2d D

X
r

.�1/rT r.'�jH r/.e2d ˝ e2d /:

Now apply �X�X both sides. 2

REMARK 25.5 Although in the above discussion, we have identified Q` with Q`.1/, the
above theorem holds as stated without this identification. The point is that

H r.X;Q`.s// D H r.X;Q`/˝Q`.s/

and ' acts throughH r.X;Q`/. Tensoring with the one-dimensional Q`-vector space Q`.s/
doesn’t change the trace.
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It will be useful to have a criterion for when .�' ��/P D 1 for a fixed point P of '.
Let Y and Z be closed subvarieties of a nonsingular variety X , and suppose that the

point P is an irreducible component of Y \Z. Then .Y �Z/P D 1 if

(a) Y and Z are nonsingular at P ,

(b) TgtP .Y / \ TgtP .Z/ D 0, and

(c) dimY C dimZ D dimX .

Condition (b) means that Y and Z cross transversally at P , and condition (c) mean that
Y and Z intersect properly at P (i.e., codimP D codimY C codimZ).

LEMMA 25.6 Let 'W X ! X be a regular map, and let P 2 X be a fixed point of '. Then
.�' ��/P D 1 if 1 is not an eigenvalue of .d'/P W TgtP .X/! TgtP .X/.

PROOF. We apply the preceding remark to the point .P; P / on �' \ �. Because �' and
� are both isomorphic to X , conditions (a) and (c) hold. Because Tgt.P;P /.�'/ is the
graph of .d'/P W TgtP .X/! TgtP .X/ and Tgt.P;P /.�/ is the graph of the identity map
TgtP .X/! TgtP .X/, condition (b) holds if and only if 1 is not an eigenvalue of .d'/P .2





Chapter II

Proof of the Weil Conjectures.

Throughout, Fq is a field with q D pa elements and F is an algebraic closure of Fq . For a
variety X0 over Fq , X denotes X0 regarded as a variety over F. We shall now assume that
varieties are absolutely irreducible (unless stated otherwise) — for a nonsingular varietyX0
over Fq , this means that X is connected. Unless stated otherwise, ` is a prime¤ p.

26 THE WEIL CONJECTURES

Let X0 be a nonsingular projective variety over Fq . For each m, we let Nm be the number
of points on X0 with coordinates in Fqm , and we define the zeta function of X0 to be

Z.X0; t / D exp

0@X
m�1

Nm
tm

m

1A
D 1C

X
m�1

Nm
tm

m
C
1

2Š
.
X
m�1

Nm
tm

m
/2 C � � �

It is a formal power series with coefficients in Q, i.e., Z.X0; t / 2 QŒŒt ��. Note that

d

dt
logZ.X0; t / D

X
m�1

Nmt
m�1:

Thus d
dt

logZ.X0; t / is essentially the generating function for the sequenceN1; N2; N3; : : :.
Apart from minor changes of notation, the following is quoted verbatim from Weil,

Numbers of solutions of equations in finite fields, Bull. AMS 55 (1949), 497–508.
... This, and other examples which we cannot discuss here, seem to lend some
support to the following conjectural statements, which are known to be true for
curves, but which I have not so far been able to prove for varieties of higher
dimension.
Let X0 be a variety1 without singular points, of dimension d , defined over a
finite field Fq with q elements. Let Nm be the number of rational points on X0
over the extension Fqm of Fq with degree m. Then we have

1X
1

Nmt
m�1
D
d

dt
logZ.t/;

1In the paper, Weil seems to be using “variety” to mean “projective variety”.
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where Z.t/ is a rational function of t , satisfying a functional equation

Z. 1
qd t
/ D ˙qd�=2 � t� �Z.t/

with � equal to the Euler-Poincaré characteristic of X (intersection number of
the diagonal with itself in the product X �X ).
Furthermore, we have:

Z.t/ D
P1.t/P3.t/ � � �P2d�1.t/

P0.t/P2.t/ � � � P2d .t/

with P0.t/ D 1 � t , P2d .t/ D 1 � qd t , and, for 1 � r � 2d � 1:

Pr.t/ D

ˇrY
iD1

.1 � ˛r;i t /

where the ˛r;i are algebraic integers of absolute value qr=2.
Finally, let us call the degrees ˇr of the polynomials Pr.t/ the Betti numbers
of the variety X ; the Euler-Poincaré characteristic � is then expressed by the
usual formula � D

P
r.�1/

rˇr . The evidence at hand seems to suggest that,
if Y is a variety without singular points, defined over a field K of algebraic
numbers, the Betti numbers of the varieties Y.p/, derived from Y by reduction
modulo a prime ideal p in K, are equal to the Betti numbers of Y (considered
as a variety over the complex numbers) in the sense of combinatorial topology,
for all except at most a finite number of prime ideals p.

The remainder of the course is devoted to the proof of these remarkable conjectures.
The condition j˛r;i j D qr=2 is usually called the Riemann hypothesis.

Although Weil doesn’t explicitly say so in his 1949 paper,2 it is clear that the form of
his conjectures was suggested in part by the formalism of algebraic topology (see Weil,
Œuvres, I, p568). In particular, the functional equation is suggested by Poincaré duality,
and the form of zeta function as a rational function is suggested by the Lefschetz fixed-
point formula.

REMARK 26.1 Let Y be a scheme of finite type over SpecZ. The residue field at a closed
point y of Y is finite — let N.y/ be its order. The zeta function of Y is defined to be

�.Y; s/ D
Y
y

1

1 � N.y/�s

where y runs over the closed points of Y . The product converges, and defines �.Y; s/ as a
holomorphic function, for <.s/ > dimY . For example, if Y D SpecZ, then �.Y; s/ is the
original zeta function of Riemann. A variety X0 over Fq can be regarded as a scheme of
finite type over SpecZ by means of

X0 ! SpecFq ! SpecZ
2Or anywhere else that I know of, despite numerous statements to the contrary by various authors in the

literature. Probably Weil was aware that there couldn’t be a good cohomology theory in characteristic p with
Q-coefficients because of the existence of supersingular elliptic curves, and was unwilling to conjecture the
existence of a good cohomology theory with coefficients in a field of characteristic 0 (a “Weil cohomology” in
current terminology). Recall that Weil was careful to distinguish a conjecture from speculation.
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(the second map is defined by Z! Z=pZ ,! Fq), and we shall see in the next section (4),
p.158) that

Z.X0; t / D
Y
x

1

1 � tdegx
;

and so
�.X0; s/ D Z.X0; q

�s/:

Therefore, the Riemann hypothesis for X0 says that �.X0; s/ has its poles on the lines
<.s/ D 0; 1; 2; : : : ;dimX and its zeros on the lines <.s/ D 1

2
; 3
2
; : : : ; dimX�1

2
. The

analogy with the original Riemann hypothesis is evident.



27

Proof of the Weil Conjectures, except. . . ] Proof of the Weil Conjectures, except for the
Riemann Hypothesis

The Frobenius map

Let A0 be an affine Fq-algebra. Then a 7! aq is a homomorphism f0W A0 ! A0 of
Fq-algebras. By extension of scalars, we get a homomorphism f W A ! A of F-algebras,
where A D A0˝Fq

F. The corresponding regular map F W SpecmA! SpecmA is called
the Frobenius map.

For a variety X0 over Fq , the Frobenius map F W X ! X is the unique regular map
such that, for every open affine U0 � X0, F.U / � U and F jU is the Frobenius map on U .

One checks easily:

(a) the Frobenius map F W An ! An is .t1; : : : ; tn/ 7! .t
q
1 ; : : : ; t

q
n /;

(b) the Frobenius map F W Pn ! Pn is .t0W : : : W tn/ 7! .t
q
0 W : : : W t

q
n /;

(c) for any regular map '0W Y0 ! X0 over Fq , the diagram

Y X

Y X

'

F F

'

commutes.

On combining these statements, we see that the Frobenius map acts on any subvariety
of An as .t1; : : : ; tn/ 7! .t

q
1 ; : : : ; t

q
n /, and on any subvariety of Pn as .t0W : : : W tn/ 7!

.t
q
0 W : : : W t

q
n /.

LEMMA 27.1 The Frobenius map F W X ! X has degree qdimX (in fact, it is finite of this
degree).

PROOF. On An, F corresponds to the homomorphism of F-algebras

Ti 7! T
q
i WFŒT1; : : : ; Tn�! FŒT1; : : : ; Tn�:

The image of this homomorphism is FŒT q1 ; : : : ; T
q
n �, and FŒT1; : : : ; Tn� is free of rank qn

over FŒT q1 ; : : : ; T
q
n � (with basis the elements T i11 � � �T

in
n , 0 � ij � q � 1). Similarly,

F.T1; : : : ; Tn/ has degree qn over its subfield F.T q1 ; : : : ; T
q
n /. This shows that F W An !

An is finite of degree qn.
In the general case, we choose a transcendence basis T1; : : : ; Tn for the function field

Fq.X0/ ofX0. Let f W F.X/! F.X/ be the homomorphism defined by F W X ! X . Then
f F.X/ \ F.T1; : : :/ D f F.T1; : : :/ and F.X/ D f F.X/ � F.T1; : : :/ and so

ŒF.X/Wf F.X/� D ŒF.T1; : : :/Wf F.T1; : : :/� D qn;

which shows that F has degree qn. 2

LEMMA 27.2 The fixed points of F on X are the points of X0 with coordinates in Fq .
Each occurs with multiplicity 1 in .�F ��/.
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PROOF. An element a of F lies in Fq if and only if aq D a, and so it is clear from the
description of F in terms of the coordinates of points that the XF D X.Fq/.

I claim that .dF /P D 0 at any fixed point P of F , and so F satisfies the conditions of
Lemma 25.6. In proving this, we can replace X0 with an affine neighbourhood U0 of P ,
say U0 D SpecmA0, A0 D FqŒt1; : : : ; tn� D FqŒT1; : : : ; Tn�=a. Then ti ı F D t

q
i , and so

.dti /P ı .dF /P D .dt
q
i /P D qt

q�1
i .dti /P D 0, as claimed. 2

An expression of Nm as a trace

PROPOSITION 27.3 Let X0 be a complete nonsingular variety over Fq . For any m,

Nm D
X
r

.�1/r Tr.FmjH r.X;Q`//:

PROOF. From the Lemma 27.2, we see that .�F ��/ is the numberN1 of points ofX0 with
coordinates in Fq , which, according to the Lefschetz Fixed Point Formula (25.1), equalsP
r.�1/

r Tr.F jH r.X;Q`//. To obtain the general case, note that Fm is the Frobenius
map of X relative to X0;Fqm , and so XF

m

D X.Fqm/. 2

REMARK 27.4 (a) LetX0 be a complete nonsingular variety over Fq . ThenF W X ! X

defines maps F �W H r.X;Q`/! H r.X;Q`/ and (see �24) maps F�W H r.X;Q`/!
H r.X;Q`/. Because F is finite of degree qdimX , the composite F� ı F � D qd

(24.2f).

(b) Let 'W Y0 ! X0 be a regular map of complete nonsingular varieties over Fq . Then

F �'� D q
dimX�dimY '�F

�:

To prove this, we apply F� to each side. On the left we get

F�F
�'� D q

dimX'�

and on the right we get

qdimX�dimYF�'�F
�
D qdimX�dimY '�F�F

�
D qdimX'�:

Note that this argument also works on the cohomology groups with coefficients in
Z=`nZ, ` ¤ p.

Rationality

We need an elementary lemma.

LEMMA 27.5 Define the characteristic polynomial of an endomorphism 'W V ! V of a
vector space over a field k to be

P'.t/ D det.1 � 't jV /:

If P'.t/ D
Q
.1 � ci t /, then Tr.'mjV / D

P
cmi . Therefore

log
1

P'.t/
D

1X
mD1

Tr.'mjV /
tm

m

(equality of elements of kŒŒt ��).
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PROOF. After possibly extending k, we may assume that there exists a basis relative to

which the matrix of ' is upper triangular

0B@ c1 �

: : :

0 cd

1CA. Relative to this basis, 'm has

matrix

0B@ cm1 �

: : :

0 cm
d

1CA, from which the statement is obvious.

On summing both sides of

log
1

1 � ci t
D

1X
mD1

cmi
tm

m
:

over i , we obtain the second formula. 2

THEOREM 27.6 For any complete nonsingular variety X0 of dimension d over Fq;

Z.X0; t / D
P1.X0; t / � � �P2d�1.X0; t /

P0.X0; t / � � � P2d .X0; t /

where
Pr.X; t/ D det.1 � F t jH r.X;Q`//:

PROOF. We have

Z.X0; t / D exp.
P
mNm

tm

m
/ (definition)

D exp.
P
m.
P2d
rD0.�1/

r Tr.FmjH r// t
m

m
/ (27.3)

D

2dY
rD0

�
exp.

P
mTr.FmjH r/ t

m

m

�.�1/r
(move the inner sum outside)

D

2dY
rD0

Pr.t/
.�1/rC1

(27.5):

2

REMARK 27.7 Because F acts as 1 onH 0.X;Q`/, P0.X0; t / D 1� t , and because F acts
as qd on H 2d .X;Q`/, P2d .X0; t / D 1 � qd t . In general, Pr.X0; t / D 1C � � � 2 Q`Œt �.

COROLLARY 27.8 The power series Z.X0; t / is a rational function with coefficients in Q,
i.e., it lies in Q.t/.

PROOF. Note that
Z.X0; t /

def
D exp.

X
m�1

Nmt
m=m/

is a power series with coefficients in Q. Theorem 27.6 shows that it is a rational function
with coefficients in Q`, which, according to the next lemma, implies that it is a rational
function with coefficients in Q. 2

LEMMA 27.9 Let k � K be fields, and let f .t/ 2 kŒŒt ��; if f .t/ 2 K.t/, then f .t/ 2 k.t/.
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PROOF. From Bourbaki, Algèbre, IV.5, Exercise 3:
Let f .t/ D

P1
nD0 ai t

i be a formal power series over a field k.
(a) The power series f .t/ lies in k.t/ if and only if there exists a finite sequence �1; : : : ; �r

of elements of k, not all zero, and an integer d such that, for all n � d ,

�1an C �2anC1 C � � � C �ranCr�1 D 0:

(b) Let

H .k/
n D

ˇ̌̌̌
ˇ̌̌̌
ˇ

an anC1 : : : anCk�1
anC1 anC2 : : : anCk
:::

:::
:::

anCk�1 anCk : : : anC2k�2

ˇ̌̌̌
ˇ̌̌̌
ˇ

(Hankel determinant). If, for some d and all j � 0, H .rC1/

dCj
D 0 and H .r/

dCj
¤ 0,

then f .t/ 2 k.t/.

(c) Show that
H .k/
n H

.k/
nC2 �H

.kC1/
n H

.k�1/
nC2

is a power of H .k/
nC1. Deduce that if H .kC1/

mCj D 0 for 0 � j � s � 1, then the s

determinants H .k/
mCj , 1 � j � s, are all zero or all nonzero.

(d) Deduce from (b) and (c) that f .X/ 2 k.t/ if and only if there exist two integers d
and r such that H .rC1/

dCj
D 0 for all integers j � 1.

Obviously, if the condition in (d) is satisfied in K, then it is satisfied in k: 2

The corollary doesn’t imply that the polynomials Pr.X0; t / have rational coefficients
(much less that they are independent of `). It says that, once any common factors have been
removed, the numerator and denominator of the expression in (27.6) will be polynomials
with coefficients in Q, and will be independent of `.

Integrality

Let x be a closed point of X0. The residue field �.x/ def
D OX0;x=mx is a finite extension of

Fq; we set deg x D Œ�.x/W Fq�.
A point ofX0 with coordinates in Fqm is a map SpecmFqm ! X0. To give such a map

with image x is the same as to give an Fq-homomorphism �.x/! Fqm . The contribution
Nm.x/ of x to Nm is the number of such homomorphisms. From the theory of finite fields
(FT 4.26), we see that

Nm.x/ D

�
deg x if deg xjm

0 otherwise:

Recall, that log. 1
1�s

/ D
P
m�1

sn

n
, and so

log
1

1 � tdegx
D

X
n�1

tn�degx

n
:

The coefficient of tm=m in this sum is 0 unless deg xjm, in which case it is deg x. Therefore

log
1

1 � tdegx
D

X
m

Nm.x/
tm

m
:
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On summing over all the closed points of X0 and taking exponentials, we find that

Z.X0; t / D
Y
x2X0

1

1 � tdegx
: (4)

Hence
Z.X0; t / 2 1C tZŒŒt ��:

In the next lemma, ` is any prime number (e.g., p).

LEMMA 27.10 Let f .t/ D g.t/=h.t/ where

f .t/ 2 1C t � Z`ŒŒt ��
g.t/; h.t/ 2 1C t �Q`Œt �:

If g and h are relatively prime, then they have coefficients in Z`.

PROOF. We have to show that the coefficients of g and h have `-adic absolute values � 1.
After possibly replacing Q` with a finite extension field, we may assume h.t/ splits, say
h.t/ D

Q
.1 � ci t /. If jci j` > 1, then jc�1i j` < 1, and the power series f .c�1i / converges.

But then
f .t/ � h.t/ D g.t/) f .c�1i / � h.c�1i / D g.c�1i /:

Since h.c�1i / D 0 but g.c�1i / ¤ 0, this is impossible. Therefore jci j` < 1. As this is true
for all i , h.t/ 2 Z`Œt �.

Because f .t/�1 2 1 C t � Z`ŒŒt ��, the same argument applied to f .t/�1 shows that
g.t/ 2 Z`Œt �. 2

PROPOSITION 27.11 Let

Z.X0; t / D
P.t/

Q.t/

where P.t/,Q.t/ 2 QŒt � are relatively prime .P andQ exist by 27.8). When P.X0; t / and
Q.X0; t / are chosen to have constant terms 1, they have coefficients in Z.

PROOF. The hypotheses of the preceding lemma hold for all primes ` (including p). There-
fore, the coefficients of P.X0; t / and Q.X0; t / are `-adic integers for all `, which implies
that they are integers. 2

Functional equation

THEOREM 27.12 For any complete nonsingular variety X0 over Fq ,
Z.X0; 1=q

d t / D ˙qd�=2t�Z.X0; t /,
where � D

P
.�1/rˇr D .� ��/:

PROOF. Consider the pairing

H 2d�r.X;Q`/ �H r.X;Q`.d//! H 2d .X;Q`/
�X
��! Q`; d D dimX:

By definition of F�,

�X .F�.x/ [ x
0/ D �X .x [ F

�.x0//; x 2 H 2d�r.X/; x0 2 H r.X/:

Therefore, the eigenvalues of F � acting on H r.X/ are the same as the eigenvalues of F�
acting onH 2d�r.X/. But F � D qd=F� (see 27.4a), and so if ˛1; :::; ˛s are the eigenvalues
of F � acting on H r.X;Q`/, then qd=˛1; : : : ; qd=˛s are the eigenvalues of F � acting on
H 2d�r.X;Q`/. This implies the statement. 2
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REMARK 27.13 The sign is C if d is odd or qd=2 occurs an even number of times as an
eigenvalue of F acting on Hd .X;Q`/, and is � otherwise.

Summary

27.14 Let X0 be a complete nonsingular variety over Fq .

(a) Then Z.X0; t / 2 Q.t/, and satisfies the functional equation

Z
�
1
qd t

�
D ˙qd�=2 � t� �Z.t/

with � D .� ��/.

(b) Furthermore, for each ` ¤ p, we have an expression,

Z.t/ D
P1;`.t/P3;`.t/ � � �P2d�1;`.t/

P0;`.t/P2;`.t/ � � � P2d;`.t/

with P0;`.t/ D 1 � t , P2d;`.t/ D 1 � qd t .

(c) If, for a fixed `, the Pr;` are relatively prime in pairs, then, for 1 � r � 2d � 1,

Pr;`.t/ D 1C
X

ai;r t
i
2 ZŒt �:

(d) If, for all ` ¤ p, the inverse roots of Pr;` have absolute value qr=2, then the Pr;`.t/ 2
1C tZŒt � and are independent of `.

(e) Let ˇr D degPr.t/. Then � D
P
r.�1/

rˇr , and if X0 lifts to a variety X1 in
characteristic zero, then the ˇr are the Betti numbers of X1 considered as a variety
over the complex numbers.

Statement (a) was proved in (27.8), (27.12), and (b) in (27.6). If thePr;`.t/ are relatively
prime in pairs, then (27.11) shows thatY

r odd

Pr;`.t/ 2 1C tZŒt �;
Y
r even

Pr;`.t/ 2 1C tZŒt �:

Therefore the inverse roots of Pr;`.t/ are algebraic integers, which implies that Pr;`.t/ 2
1 C tZŒt �, whence (c). The hypothesis of (d) implies that of (c), and so the Pr;`.t/ have
integer coefficients; moreover, Pr;`.t/ is characterized independently of ` as the factor of
the numerator or denominator of Z.X0; t / whose roots have absolute value qr=2. Finally,
(e) follows from 25.1 and 20.5.

The statement 27.15 below implies that the hypotheses of (c) and (d) hold, and it com-
pletes the proof of the Weil conjectures.

An element ˛ of some field containing Q (e.g., Q`) will be called an algebraic number
if it is the root of a polynomial P.T / 2 QŒT �. We can choose P.T / to be monic and
irreducible; then the roots of P.T / in C will be called the complex conjugates of ˛. Equiv-
alently, ˛ is algebraic if it generates a finite extension QŒ˛� of Q; the complex conjugates
of ˛ are its images under the various homomorphisms QŒ˛�! C.

THEOREM 27.15 LetX0 be a nonsingular projective variety over Fq . Then the eigenvalues
of F acting on H r.X;Q`/ are algebraic numbers, all of whose complex conjugates have
absolute value qr=2:
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It is highly unusual for an algebraic number to have all its complex conjugates with the
same absolute value. For example, 1C

p
2 doesn’t have this property.

The rest of the course is devoted to Deligne’s proof of Theorem 27.15.
The notes of this part of the course are based on Deligne’s original article:

Deligne, Pierre, La conjecture de Weil. I, Inst. Hautes Études Sci. Publ. Math. No. 43
(1974), 273–307; MR 49 #5013

and
Katz, N., Deligne’s Proof of the Weil-Riemann Conjectures. Handwritten notes (by S.
Bloch) of a course at Princeton University, 1973–74.



28 PRELIMINARY REDUCTIONS

We shall show that it suffices to prove Theorem 27.15 for the middle cohomology groups of
varieties of even dimension, and even for those groups, that it suffices to prove an approxi-
mate result.

LEMMA 28.1 It suffices to prove Theorem 27.15 after Fq has been replaced by Fqm :

PROOF. The Frobenius map FmW X ! X defined relative to the field Fqm is Fm. There-
fore, if ˛1; ˛2; : : : are the eigenvalues of F on H r.X;Q`/, then ˛m1 ; ˛

m
2 ; ::: are the eigen-

values of Fm on H r.X;Q`/. If ˛m satisfies the condition of 27.15 relative to qm, then ˛
satisfies the condition relative to q: 2

Thus, Theorem 27.15 is really a statement about X=F: if it is true for one model of X
over a finite field, then it is true for all.

EXERCISE 28.2 Let X0 be a cubic surface over Fq . Use (28.1) to prove the Riemann
hypothesis for X0. (Hint: It is known that X is a rational surface. Hence its Albanese
variety is zero, and so H 1.X;Q`/ D 0. Moreover, H 2.X;Q`.1// is generated by the
classes of algebraic cycles on X ; in fact, it has as basis the classes of any 6 skew lines on
X together with any nonsingular hyperplane intersection.)

PROPOSITION 28.3 Assume that for all nonsingular projective varieties X0 of even di-
mension d over Fq , every eigenvalue ˛ of F on Hd .X;Q`/ is an algebraic number such
that

q
d
2
� 1

2 < j˛0j < q
d
2
C 1

2

for all complex conjugates ˛0 of ˛. Then Theorem 27.15 holds for all nonsingular projective
varieties.

PROOF. Let X0 be a smooth projective variety of dimension d (not necessarily even) over
Fq , and let ˛ be an eigenvalue of F on Hd .X;Q`/. The Künneth formula shows that ˛m

occurs among the eigenvalues of F acting on Hdm.Xm;Q`/. The statement in the lemma
applied to an even power of X0 shows that

q
md

2
� 1

2 < j˛0jm < q
md

2
C 1

2 :

On taking the mth root, and let m tend to1 over even integers, we find that

j˛0j D q
d
2 :

We now prove (27.15) by induction on the dimension of X0 (under the assumption of
the proposition). For dimX0 D 0, it is obvious, and for d D 1 only case r D 1 isn’t
obvious, and this we have just proved. Thus we may assume that d � 2:

Recall from the proof of (27.12), that the Poincaré duality theorem implies that if ˛ is
an eigenvalue of F on H r.X;Q`/, then qd=˛ is an eigenvalue of F on H 2d�r.X;Q`/.
Thus it suffices to prove the theorem for r > d . Bertini’s Theorem (Hartshorne, II.8.18)
shows that there is a hyperplane H in Pm such that Z def

D H \ X is a nonsingular variety.
Lemma 28.1 allows us to assume that H (and hence Z/ is defined over Fq . Then the Gysin
sequence (16.2) reads

� � � ! H r�2.Z;Q`.�1//! H r.X;Q`/! H r.X rZ;Q`/! � � � :

161
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Because X rZ is affine, H r.X rZ;Q`/ D 0 for r > d (weak Lefschetz theorem, 15.1).
Thus the Gysin map

i�WH
r�2.Z;Q`.�1//! H r.X;Q`/

is surjective for r > d . By induction that the eigenvalues of F on H r�2.Z;Q`/ are
algebraic numbers whose conjugates have absolute value q.r�2/=2. Since F ıi� D q.i�ıF /
(27.4), the eigenvalues of F acting on H r.X;Q`/ are algebraic numbers whose conjugates
have absolute value qr=2.3 2

The rest of the proof.

In �29, we prove a Lefschetz formula for nonconstant sheaves on affine curves, and apply
it in �30 to prove the “Main Lemma”, which gives a criterion on a locally constant sheaf
E on an open affine subset U0 of P1

=Fq
for the eigenvalues ˛ of the Frobenius map on

H 1.P1; j�E/ to satisfy the inequalities

q
n
2 < j˛j < q

n
2
C1:

In �31, we study how to fibre a varietyX with a pencil .Xt /t2P1 of hypersurface sections
having especially good properties (it is a Lefschetz pencil). After blowing up X at \Xt , we
obtain a variety X� and a map � WX� ! P1. In �32 we study the higher direct images of
Q` under � .

In �33, we combine these themes to complete the proof of the Weil conjectures.

3From Behrooz Mirzaii and Steven Spallone: It is possible to simplify the proof of (27.15) in this section,
and avoid the use of the weak Lefschetz theorem by using another Künneth formula argument. We know how
the Frobenius acts on H0.X/ and H2d .X/. Suppose d < r . We can tensor H r .X/ by itself d times, and
H0.X/ by itself r � d times, and the whole product lands in H rd .Xrd / which we know from the above.
Similarly for d > r . [Proof due to A. Mellit.]



29 THE LEFSCHETZ FIXED POINT FORMULA FOR

NONCONSTANT SHEAVES.

We shall need a Lefschetz fixed point formula for noncomplete varieties, nonconstant sheaves,
and for sheaves of modules over a finite ring. Each of these generalizations cause problems,
which we now discuss.

Noncomplete varieties Let U be an open subset of a complete nonsingular variety X over
an algebraically closed field k, and assume that the complementZ ofU inX is nonsingular.
Let � D Q`. From the exact sequence (8.15)

0! jŠ�! �! i��! 0

we obtain a long exact sequence

� � � ! H r
c .U;�/! H r.X;�/! H r.Z;�/! � � � :

Let 'W X ! X be a finite regular map. If ' preserves the decomposition X D U [Z, then
it acts on the complex, and soX

r

.�1/r Tr.'jH r.X// D
X
r

.�1/r Tr.'jH r
c .U //C

X
r

.�1/r Tr.'jH r.Z//:

Let �' denote the set of closed points of � fixed by '. If

#X' D #U ' C#Z' ;

then we obtain a fixed-point formula

#U ' D
X

.�1/r Tr.'jH r
c .U;�//

as the difference of the fixed-point formulas for X and Z. However, as the next example
shows, this argument can be misleading.

EXAMPLE 29.1 Consider the map

'WP1 ! P1; .x0W x1/ 7! .x0 C x1W x1/

of (25.2). Let U D f.x0W x1/ j x1 ¤ 0g ' A1, and Z D f.1W 0/g D f1g. Then
H r
c .U;Q`/ D 0 for r ¤ 2, and ' acts on H 2

c .U;Q`/ ' H 2.P1;Q`/ as the identity map.
Hence

P
.�1/r Tr.'jH r

c .U;Q`// D 1 despite the fact that 'jU has no fixed point (' acts
on U as x 7! x C 1) — the Lefschetz fixed point formula fails for U and 'jU .

The problem is that1 has multiplicity 1 as a fixed point of 'jZ but multiplicity 2 as a
fixed point fo '. Therefore, when we count multiplicities, the equation

#X' ¤ #U ' C#Z' :

Thus, we should only expect to have a Lefschetz fixed point formula for a noncomplete
variety when the map extends to a map on a completion of the variety and has only simple
fixed points on the complement of variety — in fact, the above argument does correctly
show that we get a fixed-point formula (with constant coefficients) in this case.
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Nonconstant sheaves LetX be a complete variety over an algebraically closed field k, and
let E be a locally constant sheaf of �-modules on X . A regular map 'W X ! X defines a
map H r.X; E/! H r.X; '�E/ — this is a map between different vector spaces, and so its
trace is not defined. In order to have a trace, we need also a homomorphism 'E W '

�E ! E .
Such a pair .'; 'E/ defines a maps

H r.X; E/! H r.X; '�E/! H r.X; E/

whose composite we denote .'; 'E/�. For each closed point x of X , 'E defines a map on
stalks:

'x W .'�E/x ! Ex
k

E'.x/:

When x is a fixed point of ', this becomes

'x W Ex ! Ex :

We may hope that, under suitable hypotheses, there is a formula,X
x2X'

Tr.'xjEx/ D
X

.�1/r Tr..'; '0/�jH r.X; E//

where X' is the set of closed fixed points of '.
When E is constant, say defined by a group E, then '�E is also the constant sheaf

defined by E. Therefore, in this case the map 'E is the identity. For example, if E D Q`,
the formula becomes

#X' D
X

.�1/r Tr.'jH r.X;Q`//

where #X' is the number of fixed points not counting multiplicities.

REMARK 29.2 Let X be a finite set, and regard X as a discrete topological space. To give
a sheaf E of finite-dimensional Q-vector spaces on X amounts to giving a family of finite-
dimensional vector spaces .Ex/x2X indexed by the elements of X . A pair of maps .'; 'E/
as above is a map 'W X ! X of sets and a family of maps 'x W E'.x/ ! Ex indexed by
the elements of X . The map .'; 'E/�W H 0.X; E/ ! H 0.X; E/ is the direct sum of the
maps 'x W E'.x/ ! Ex . Clearly, 'x does not contribute to Tr..'; 'E/

�jH 0.X; E// unless
'.x/ D x, in which case it contributes Tr.'x/. Thus the formula is true in this case.

Coefficient ring finite If � is not a field, then H r.X; E/ may not be a free �-module, in
which case the trace of an endomorphism is not defined. Since this problem doesn’t arise
until the proof of the Theorem 29.4, we defer discussion of it.

Statement of the Theorem

LEMMA 29.3 Let X0 be a variety over Fq , and let E0 be a sheaf on X0et . Let E be the
inverse image of E0 on X . Then there is a canonical homomorphism FE W F

�E ! E of
sheaves on X .



29. THE LEFSCHETZ FIXED POINT FORMULA FOR NONCONSTANT SHEAVES.165

PROOF. (Sketch) We describe FE only in the case that E0 is the sheaf defined by a variety
�0W E0 ! X0 over X0. Then E is the sheaf defined by � W E ! X . Consider the diagram:

E E

X X

F

� �

FF

s0s00 s

To give an element of � .X; E/ is to give a section sW X ! E such that � ı s D id; to give
an element of � .X; F �E/ is to give a map s0W X ! E such that � ı s0 D F . The map
� .X; E/ ! � .X; F �E/ sends s 7! s0

def
D s ı F and FE W � .X; F

�E/ ! � .X; E/ sends s0

to the unique s00 such that F ı s00 D s0. Since all constructible sheaves are representable by
algebraic spaces, the argument applies to all such sheaves. 2

A nonsingular curveU0 over Fq can be embedded (essentially uniquely) into a complete
nonsingular curve X0 over Fq . The Frobenius map F W X ! X preserves U and its fixed
points in X rU have multiplicity 1. Therefore, the following theorem is at least plausible.

THEOREM 29.4 Let U0 be a nonsingular curve over Fq , and let E0 be a locally constant
sheaf of Q`-vector spaces on U0. ThenX

x2UF

Tr.FxjEx/ D
X

.�1/r Tr.F jH r
c .U; E//:

The sum at left is over the closed points of U fixed by F (which are in natural one-to-
one correspondence with the elements of U0.Fq/), Ex is the stalk of E at x (regarded as a
geometric point), and Fx is the map on stalks induced by FE . On the right, F is the map
induced by .F; FE/.

EXAMPLE 29.5 Let � W Y0 ! U0 be a family of complete nonsingular curves over U0,
and let E0 D R1��Q`. For x 2 U0.Fq/, let Yx D ��1.x/. It is a curve over Fq , and
Tr.FxjEx/ D Tr.F jH 1.Yx;Q`//.

Before explaining the proof of Theorem 29.4, we discuss some applications, and we
re-interprete the theorem in terms of �1.U0/-modules.

The zeta function of a locally constant sheaf

Let U0 be a nonsingular curve over Fq , and let E0 be a locally constant sheaf of Q`-vector
spaces on U0. Define Z.U0; E0; t / by

logZ.U0; E0; t / D
X
m>0

0@ X
x2UF m

Tr.Fmx jEx/

1A tm
m
:

For example,

Z.U0;Q`; t / D exp

 X
m>0

Nm
tm

m

!
D Z.U0; t /:
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The same argument as in �27 (see 27.9.1) shows that

Z.U0; E0; t / D
Y
x2U0

1

det.1 � FxtdegxjEx/
:

THEOREM 29.6 With the above notations

Z.U0; E0; t / D
det.1 � F t jH 1

c .U; E//
det.1 � F t jH 0

c .U; E// � det.1 � F t jH 2
c .U; E//

:

The deduction of this theorem from 29.4 is the same as the deduction of Theorem 27.6
from Theorem 25.1. In fact, Theorem 29.6 is often called the multiplicative form of the
fixed-point formula.

REMARK 29.7 When U0 is affine, H 0
c .U; E/ D 0 (no section of a locally constant sheaf

on U has support on a complete subvariety of U ), and so the equation becomes

Z.U0; E0; t / D
det.1 � F t jH 1

c .U; E//
det.1 � F t jH 2

c .U; E//
:

The zeta function of an arbitrary variety

We define the zeta function Z.X0; t / of an arbitrary (possibly singular and not complete)
variety over Fq as in the good4 case:

Z.X0; t / D exp.
X
m�1

Nm
tm

m
/ D

Y
x2X0

1

1 � tdegx

where Nm is the number of points on X0 with coordinates in Fqm and the product is over
the closed points of X0.

THEOREM 29.8 Let X0 be a variety over Fq . Then

Z.X0; t / D
P1.X0; t / � � �P2d�1.X0; t /

P0.X0; t / � � � P2d .X0; t /

where
Pr.X; t/ D det.1 � F t jH r

c .X;Q`//:

For the proof that Theorem 29.8 follows from Theorem 29.4, see EC pp 289–298.
The Theorem shows that Z.X0; t / 2 Q.t/, but at present it is not known whether the

Pr.X; t/ are independent of `, or even whether they have coefficients in Q.

4The study of Shimura varieties suggests that this, in fact, is not the correct definition for noncomplete
varieties.
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Re-interpretation in terms of �1.U /-modules; Frobenius elements

We now assume that U0 is an affine nonsingular curve over Fq , and we letK be the function
field Fq.U0/ of U . Fix an algebraic closure ˝ of K. Then U0 D SpecmA with A D
� .U0;OU0

/ � K a Dedekind domain, and we identify �1.U0/ with Gal.Kun=K/ where
Kun is the union of the subfields of ˝ unramified over K at all the primes of A. Note that
K � F � Kun; we identify �1.U / with Gal.Kun=K � F/.

Let � D Z=`nZ or Q`.

PROPOSITION 29.9 Let E be a locally constant sheaf of �-modules on an affine curve U
over an algebraically closed field k, and let E be the corresponding �1.U /-module. Then

H 0.U; E/ ' E�1.U / H 0
c .U; E/ D 0

H 1.U; E/ ' H 1.�1.U /; E/ H 1
c .U; E/ ' H 1.�1.U /; LE.1//

_

H 2.U; E/ D 0 H 2
c .U; E/ ' E�1.U /.�1/:

Here E�1.U / is the largest submodule of E on which �1.U / acts trivially, and E�1.U /

is the largest quotient module of E on which �1.U / acts trivially.

PROOF. For the statements concerning H r.U; E/, see �14. The statements concerning
H r
c .U; E/ follow by duality. For example

H 2
c .U; E/ D H 0.U; LE.1//_ D . LE.1/�1/_ D . LE.1/_/�1

D .E.�1//�1
D E�1

.�1/: 2

An isomorphism ˛W k ! k0 of fields defines a one-to-one correspondence X $ X 0

between k-varieties and k0-varieties under which étale maps correspond to étale maps and
étale coverings to étale coverings. It therefore also defines a one-to-one correspondence
E $ E 0 between sheaves onXet and sheaves onX 0et under whichH r.X; E/ ' H r.X 0; E 0/.

We apply this remark to 'W F! F (the Frobenius automorphism x 7! xq). If X and E
arise from objects X0 and E0 over Fq , then X 0 D X and E 0 D E . Therefore, for any variety
X0 over Fq and sheaf E0 on X0, ' defines an automorphism ofH r.X; E/ (and similarly for
cohomology with compact support).

PROPOSITION 29.10 For any varietyX0 over Fq and sheaf E0 onX0, the endomorphism of
H r.X; E/ defined by .F; FE/ is inverse to that defined by ' (and similarly for cohomology
with compact support).

The proof is omitted, but I recommend that the reader verify the proposition for the
sheaf Ga on A1. For this, one must verify that the maps

H 0.A1;Ga/! H 0.A1; F �Ga/
FGa
���! H 0.A1;Ga/

send
P.T / 7! P.T q/ 7! P.T q/

1
q D .'�1P /.T /:

Here P.T / 2 FŒT � regarded as the ring of regular functions on A1 and '�1 acts on the
coefficients of P .

REMARK 29.11 Recall the following conventions.
When a group G acts on the left on a vector space V , then it acts on the dual LV of V by

the rule
.gf /.v/ D f .g�1v/; f 2 LV ; g 2 G; v 2 V:
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This is the only natural way of defining a left action on G on LV . This representation of
G on LV is called the contragredient of the original representation.

When a k-algebra R acts on the left on k-vector space V , then R acts on LV by the rule

.f r/.v/ D f .rv/; f 2 LV ; r 2 R; v 2 V:

The left action of R on V becomes a right action on LV — in general, there will be no
natural way to define a left action of R on LV .

Note that, if 
 2 G has eigenvalues a; b; : : : on V , then it will have eigenvalues
a�1; b�1; : : : on LV . However, if 
 2 R has eigenvalues a; b; : : : on V , then it will have
eigenvalues a; b; : : : on LV . When 
 can be considered both as an element of a ring and of a
group, this can lead to confusion.

Consider an elliptic curve E0 over Fq . The number theorists define the “eigenvalues
of the Frobenius” to be the eigenvalues of ' 2 Gal.F=Fq/ acting on T`E. But T`E is
the dual of H 1.E;Z`/, and so these are also the eigenvalues of '�1 acting on H 1.E;Z`/.
According to Proposition 29.10, they are also the eigenvalues of F acting on H 1.E;Z`/.
Thus, happily, the number theorists agree with the geometers.

The endomorphism ring ofE also contains a Frobenius element � . How does it act? By
definition, � D F , and so it acts onH 1.E;Z`/ as F (hence, with eigenvalues with absolute
value q

1
2 ). And it acts on T`E with the same eigenvalues. Because H 1 is a contravariant

functor, End.E/ acts on it on the right; because T` is a covariant functor, it acts on it on the
left. In fact, � 2 End.E/ will be a root of a polynomial with integer coefficients and with
roots that have absolute value q

1
2 . Thus, when End.E/ acts on a space, � will always have

eigenvalues of absolute value q
1
2 .

PROPOSITION 29.12 Let E0 be the locally constant sheaf onU0 corresponding to a �1.U0/-
module E. For any x 2 UF , there is an isomorphism .Ex; Fx/ � .E; '�1x /. Here 'x is a
Frobenius element in Gal.Kun=K/ corresponding to x ('x is well-defined up to conjuga-
tion).

The isomorphism in the proposition is noncanonical, necessarily so because 'x is only
defined up to conjugation, but its existence implies that

Tr.FxjEx/ D Tr.'�1x jE/:

Thus, the theorem can be rewritten as:

THEOREM 29.13 Let E be a finite-dimensional Q`-vector space on which �1.U0/ acts
continuously. ThenX

x2UF

Tr.'�1x jE/ D �Tr.'�1jH 1.�1.U /; LE.1//
_/C Tr.'�1jE�1.U /.�1//:

EXAMPLE 29.14 Let K be a function field in one variable over Fq , and let L be a finite
Galois extension of K with Galois group G. Let �W G ! GL.V / be a representation of
G on a finite-dimensional vector space over Q (or a finite extension of Q). Let A be a
Dedekind domain in K with field of fractions K whose integral closure in L is unramified
over A. Define

LArtin.s; �/ D
Y
p�A

1

det.1 � �.'x/Np�sjV /
; s 2 C:
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Here the product is over the nonzero prime ideals of A, and Np D .AW p/. This is the Artin
L-series of �, except that I’ve omitted some factors.

Let U0 D SpecmA. Then G is a quotient of �1.U0/, and we let E0 be the sheaf of
Q`-vector spaces on U0 corresponding to the �1.U0/-module LV ˝Q Q`. Then

LArtin.s; �/ D L.U0; E ; q�s/:

It follows from the multiplicative form of Theorem 29.13 that LArtin.s; �/ D P.q�s/
Q.q�s/

where

P.t/;Q.t/ 2 QŒt �. Moreover, Q.t/ D det.1 � 't j LV NG.�1//, where NG is the image of G in
�1.U /. Therefore, LArtin.s; �/ is a meromorphic function of the complex variable s, which
is even holomorphic when V NG D 0.

Restatement of the theorem for finite sheaves

Roughly speaking, the idea of the proof of Theorem 29.4 is to pass to a finite étale covering
V0 ! U0 where E becomes constant, and then apply the usual Lefschetz fixed-point for-
mula on V0. The problem is that, in general, a locally constant sheaf of Q`-vector spaces
will not become constant on any finite covering (the action of �1.U0/ on a stalk of the
sheaf need not factor through a finite quotient). Thus we need to work with sheaves of
�-modules, where � D Z=`nZ. But then H r

c .U; E/ need not be a free �-module, and so
it is no longer clear how to define the trace. Nevertheless, we state the theorem:

THEOREM 29.15 Let U0 be a nonsingular affine geometrically connected curve over Fq ,
and let E0 be a flat constructible locally constant sheaf of �-modules on U0. ThenX

x2UF

Tr.FxjEx/ D
X
r

.�1/r Tr.F jH r
c .U; E//:

The conditions on E mean that it corresponds to a �1.U0/-module E that is free and
finitely generated as a �-module. Our first task will be to explain what the right hand side
means. Recall that a locally constant sheaf E of Q`-vector spaces on U0 is a family .En; fn/
in which each En is a flat constructible locally constant sheaf of Z=`nZ-modules. Theorem
29.4 is proved by applying Theorem 29.15 to each En and then forming the inverse limits
(of course, it has to be checked that this is possible).

REMARK 29.16 It will be useful to note that we need to prove Theorem 29.15 only in the
case thatUF is empty. Let V0 be an open subset ofU0 omitting all Fq-rational points ofU0.
Then Theorem 29.15 for the pair .V0; E/ and the pair .U0 r V0; E/ implies it for .U0; E/
(cf. the discussion at the start of this section). Since U r V is finite, that the Lefschetz
fixed-point formula for .U0 r V0; E/ is is essentially (29.2).

Perfect complexes

Let R be a ring (Noetherian as always). A complex

� � � !M r
!M rC1

! � � �

of R-modules is said to be perfect if it is bounded (only finitely many of the M r are
nonzero) and each M r is a finitely generated projective R-module. Recall that for mod-
ules over commutative Noetherian local rings
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projective and finitely generatedD free and finitely generated.
Because such a module has a finite basis, it is possible to define the trace of an endomor-
phism.

PROPOSITION 29.17 Let R be a commutative local Noetherian ring. Let M � be a com-
plex of R-modules, and let ˛W M � ! M � be an endomorphism of M �. For any quasi-
isomorphism 
 W P � ! M � with P � perfect, there exists an endomorphism ˇ of P �,
unique up to homotopy, such that 
 ı ˇ D ˛ ı 
 :

P � P �

M � M �:

ˇ


 


˛

Moreover, the element
Tr.ˇjP �/

def
D

X
r

.�1/r Tr.ˇjP r/

of R is independent of the choice of P �, 
 , and ˇ. When the R-modules H r.M �/ are all
free,

Tr.ˇjP �/ D
X

.�1/r Tr.˛jH r.M//:

If R is an integral domain with field of fractions K, then

Tr.ˇjP �/ D
X

.�1/r Tr.˛jH r.M/˝R K/:

PROOF. The proof is elementary — see, for example, EC VI 13.10. 2

We next need a criterion on a complexM � to ensure the existence of a perfect complex
P � and a quasi-isomorphism P � ! M �. Since H r.P �/ is finite for all r and zero for
all but finitely many r , the H r.M �/ must satisfy the same conditions. However, these
conditions are not sufficient: for example, if � D Z=`2Z and M 0 D Z=`Z and is 0
otherwise then no P � exists, because it is not possible to truncate

� � �
`
�! �

`
�! �

`
�! � � �

`
�! � ! 0 ! � � �

k

Z=`Z

at the left.

PROPOSITION 29.18 Let R be local Noetherian ring, and let M � be a complex of R-
modules such that H r.M �/ is finitely generated for all r and zero for r > m, some m.
Then there exists a quasi-isomorphismQ� !M � withQ� a complex of finitely generated
free R-modules such that Qr D 0 for r > m. If H r.Q� ˝R N/ D 0 for r < 0 and all
finitely generated R-modules N , then there exists a quasi-isomorphism 
 W Q� ! P � with
P � a perfect complex of R-modules such that P r is nonzero only for 0 � r � m.

PROOF. The existence of Q� is a standard result (see, for example, Mumford, Abelian
Varieties, Lemma 1, p47).

Consider the sequence
Q�2 ! Q�1 ! Q0:
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Under the hypothesis that H r.Q� ˝R N/ D 0 for r < 0 and all N , this is exact, and
remains so after it has been tensored with N . Let B be the image of Q�1 in Q0. Then

Q�2 ˝R N ! Q�1 ˝R N ! B ˝R N

is a complex, and Q�1˝R N ! B ˝R N is surjective (tensor products are right exact). It
follows that B ˝R N ! Q0 ˝R N is injective, and identifies B ˝R N with the image of
Q�1˝RN inQ0˝RN . Hence, for any submodule N 0 of N , B˝RN 0 is a submodule of
B˝RN . This implies that B is flat. AsQ0 is also flat, and B˝N ! Q0˝N is injective
for every N , it follows thatQ0=B is flat (as Torr.Q

0=B;N / D 0 for r > 0). Define P � to
be the complex

� � � ! 0! Q0=B ! Q1 ! Q2 ! � � � : 2

Note that, if M r D 0 for r < 0, then the map Q� !M � induces a map P � !M �.
Let � D Z=`nZ, and let E be a flat constructible sheaf of �-modules on a variety

U over an algebraically closed field. Let j W U ,! X be a completion of U , and let
jŠE ! I� be an injective resolution of jŠE . Theorems 15.1, 19.1, and the Künneth formula
show that M � def

D � .X; I�/ (and Q�) satisfy the hypotheses of the Proposition. We write
P �.U; E/ for any perfect complex of �-modules for which there is a quasi-isomorphism
P �.U; E/! � .X; I�/. Thus, P �.U; E/ is a perfect complex representing the cohomology
of E on U with compact support:

H r.P �.U; E// D H r
c .U; E/:

In the situation of Theorem 29.15, the constructions that gave us endomorphisms F of
H r
c .U; E/ give us an endomorphism F of � .X; I�/. We choose an endomorphism F of

P �.U; E/ lying over F , and defineX
.�1/r Tr.F jH r

c .U; E// D Tr.F jP �.U; E//:

It is possible to choose the complexes P �.U;Z=`nZ/ for n varying to form a projective
system such that the map P r.U;Z=`nC1Z/ ! P r.U;Z=`nZ/ induces an isomorphism
P r.U;Z=`nC1Z/=`nP r.U;Z=`nZ/ ! P r.U;Z=`nZ/ for all r and n. We let P �.U;Z`/
be the inverse limit. This is a perfect complex of Z`-modules such that H r.P �.U;Z`// D
H r
c .U;Z`/.

The proof of Theorem 29.15

Fix a finite Galois covering �0W V0 ! U0 such that E0jV0 is constant, and let G denote the
Galois group of V0 over U0. Then E0 corresponds to a finite free �-module E endowed
with an action of G. Let V D V0 �SpecmFq

F — it is a variety (not necessarily connected)
over F, and � W V ! U is again a Galois covering with Galois group G. Let R D �ŒG�.
Then R acts on the cohomology groups H r.V; E/ through the action of G on V and on E .

Let G�1 be the set of regular maps ˛W V ! V such that F ı � D � ı ˛. Clearly, the
Frobenius map F W V ! V lies in G�1, and G�1 D fF ı g j g 2 Gg. The group G acts on
G�1 by conjugation, and for any ˛ 2 G�1 we let z.˛/ be the order of the centralizer Z.˛/
of ˛ in G.
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PROPOSITION 29.19 For all ˛ 2 G�1, the `-adic integer TrZ`
.˛jP �.V;Z`// is divisible

by z.˛/, and

Tr.F jP �.U; E// D
X

˛2G�1=G

TrZ`
.˛jP �.V;Z`//
z.˛/

� Tr�.F
�1
ı ˛jE/

(equality of elements of Z=`nZ).

The sum is over a set of representatives ˛ for the orbits of G acting on G�1. Since
F�1 ı˛ 2 G and E is a finitely generated free�-module, Tr.F�1 ı˛jE/ is a well-defined
element of � D Z=`nZ. Neither trace depends on the choice of ˛ in the orbit. Thus the
right hand side is a well-defined element of �.

We now explain why the proposition completes the proof of the Theorem 29.15. As
noted above, we may assume thatUF is empty, and then have to show that Tr.F jP �.U; E// D
0. For this it suffices to show that Tr.˛jP �.V;Z`// D 0 for all ˛, but

Tr.˛jP �.V;�//
29:17
D

X
.�1/r Tr.˛jH r

c .V;Q`//:

We wish to apply the Lefschetz fixed-point formula with constant coefficients to show thatP
.�1/r Tr.˛jH r

c .V;Q`// D 0. For this, we need to know that

(a) ˛ extends to a regular map ˛W Y ! Y where Y is a complete nonsingular curve
containing V ;

(b) the fixed points of ˛ in Y have multiplicity one;

(c) ˛ has no fixed points in V .

Statements (a) and (b) will show that there is a Lefschetz fixed-point formula with constant
coefficients for the noncompact curve V (cf. the discussion at the start of this section), and
(c) shows that the trace is zero.

Statement (a) is a general fact about curves and their completions — ˛ defines an en-
domorphism of the field F.V / of regular functions on V , which extends to a regular map
on the complete nonsingular curve Y canonically attached to F.V / — see �14. In fact, the
action of G on V extends uniquely to an action on Y , and if ˛ D g ıF on V , then the same
equation holds on Y . For any closed point Q of Y ,

.d˛/Q D .dg/F.Q/ ı .dF /Q

which is zero, because .dF /Q D 0. This implies (b) (cf. 27.2).
For (c), note that a fixed point of ˛ in V would lie over a fixed point of F in U , and we

are assuming that UF D ;.
It remains to prove Proposition 29.19.

PROPOSITION 29.20 (a) For each N , the complex P �.V;Z=`NZ/ can be chosen to be
a perfect complex of .Z=`NZ/ŒG�-modules. For varying N , and they can be chosen
to form a projective system whose limit P �.V;Z`/ is a perfect Z`ŒG�-complex with
the property that P �.V;Z`/=`NP �.V;Z`/ D P �.V;Z=`NZ/ for all N .

(b) There is a quasi-isomorphism P �.U; E/ �! P �.V;�/˝R E.
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PROOF. (a) The proof of the first statement is a straightforward extension of that following
29.18. (That R is noncommutative causes no problems; that G acts on both Y and E
compatibly requires one to write out the definitions of what this means.)

(b) The Künneth formula (better the projection formula 22.5), shows that

P �.V; E/ �! P �.V;�/˝� E:

For anyG-moduleP , the trace map IndG.P /! P induces an isomorphism IndG.P /G !
P . Therefore

P �.V; E/G
�
! P �.U; E/;

and
P �.V; E/G

�
! .P �.V;�/˝� E/G D P

�.V;�/˝R E: 2

REMARK 29.21 Let N and M be R-modules. Then N˝�M is an R-module with � 2 G
acting according to the rule: �.n ˝ m/ D �n ˝ �m. Let M0 denote M as an R-module
withG acting trivially. Then �˝m 7! �˝�mW R˝�M0 ! R˝�M is an isomorphism
ofR-modules. Therefore, ifM is free as a�-module thenR˝�M is free as anR-module;
it follows that if N is a projective R-module, then N ˝�M is a projective R-module.

Interlude on noncommutative traces

When R is a noncommutative ring. The trace of an endomorphism ˛ of a free R-module
M of finite rank is not well-defined as an element of R. Suppose, for example, that M has
rank 1, and let e and e0 def

D be be basis elements. If ˛.e/ D ae, then ˛.e0/ D ˛.be/ D bae,
which need not equal a.be/ because ab ¤ ba in general. Let R\ be the quotient of the
additive group of R by the subgroup generated by the elements of the form ab � ba. For
an endomorphism ˛ of a free R-module of finite rank M , we define Tr.˛jM/ to be the
image of

P
ai i in R\, where .aij / is the matrix of ˛ relative to some basis for M — it is

independent of the choice of the basis.

LEMMA 29.22 Let M1 and M2 be free R-modules of finite rank, and let ˛ be an endo-

morphism of M1 ˚M2. Write ˛ D
�
˛11 ˛12
˛21 ˛22

�
where ˛ij is a map Mj ! Mi . Then

TrR.˛jM1 ˚M2/ D TrR.˛11jM1/C TrR.˛22jM2/.

PROOF. Compute TrR.˛jM1˚M2/ relative to the union of a basis for M1 and a basis for
M2. 2

For an endomorphism ˛ of a finitely generated projective R-module M , we define
Tr.˛jM/ D Tr.˛˚ 0jM ˚N/ where N is chosen so that M ˚N is free of finite rank —
it is independent of the choice of N .

Let R be the group ring �ŒG� where � is a commutative (Noetherian) ring, and G is a
finite group. The map

P
a�� 7! ae, where e is the identity element of G, induces a map

"W R\ ! �, and for any endomorphism ˛ of a finitely generated projective R-module M ,
we define

TrG�.˛jM/ D ".TrR.˛jM//:
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LEMMA 29.23 For any finitely generated projective R-module M ,

Tr�.˛jM/ D ŒG�TrG�.˛jM/;

with ŒG� equal to the order of G.

PROOF. We may assume that M is free, and as the traces depend only on the diagonal
terms of the matrix of ˛, that M D R. Then ˛ acts as multiplication on the right by some
element

P
a�� of R. For any � 2 G, ˛.�/ D ae� C � � � , and so Tr�.˛jM/ D ŒG�ae:

Since TrG�.˛jM/ D ae, the lemma is true in this case. 2

This lemma explains the significance of noncommutative traces for the proof of Theo-
rem 29.15: they allow one to “divide” the usual trace over� by the order of the group, even
when � is finite.

LEMMA 29.24 Let ˛ and ˇ be endomorphisms of P and M respectively, where P is a
finitely generated projective R-module and M is a finitely generated R-module that is free
as a �-module. Then

TrG�.˛ ˝ ˇjP ˝�M/ D TrG�.˛jP / � Tr�.ˇjM/:

PROOF. Note that, according to (29.21), P ˝�M is a projective R-module, and so all the
terms are defined. We need only consider the case that P D R. Then ˛ is multiplication on
the right by some element

P
a�� , and the isomorphism R˝�M ! R˝�M0 of (29.21)

transforms ˛ ˝ ˇ into the endomorphism

r ˝m 7!
X
�

a�r� ˝ �
�1ˇ.m/

of R˝�M0. The trace of

r ˝m 7! a�r� ˝ �
�1ˇ.m/WR˝�M ! R˝LM

is ae Tr�.ˇjM/ if � D e and is 0 otherwise. This completes the proof. 2

Suppose now that there is an exact sequence

1! G ! W
degree
����! Z! 1:

Define G�1 to be the inverse image of �1 in W . Then G acts on G�1 by conjugation, and
for ˛ 2 G�1 we let Z.˛/ be the centralizer of ˛ and z.˛/ the order of ˛. Let W � be set
of elements of W mapping to nonpositive integers. Let P be a �-module on which the
monoid W � acts �-linearly and which is projective when regarded as an R-module. Then
PG is a projective �-module, and every w 2 W � defines an endomorphism of PG that
depends only on the degree.w/.

LEMMA 29.25 With the above notations,

Tr�.
X
˛2G�1

ˇjP / D Tr�.
X
˛2G�1

ˇjPG/ D Tr�.
X
˛2G�1

ˇjPG/:
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PROOF. Fix an element ˛0 of G�1, and let � D
P
�2G � . Then

PG ,! P
�
! PG

is multiplication by ŒG�. This gives the middle equality in

Tr�.
X
˛2G�1

˛jP / D Tr�.˛0�jP / D Tr.ŒG�˛0jP
G/ D Tr.

X
˛2G�1

˛jPG/:

Multiplication by � defines an isomorphism PG ! PG (Serre, J.-P., Corps Locaux, VIII.1,
Prop. 1), and so PG may be replaced by PG . 2

PROPOSITION 29.26 For any ˛0 2 G�1,

Tr�.˛0jPG/ D
X

˛2G�1=G

Tr
Z.˛/
� .˛jP /:

PROOF. See EC, VI.13.19. 2

Completion of the proof

It remains to prove Proposition 29.19.

Tr�.F jP
�.U; E// D Tr�.'

�1jP �.V;�/˝R E/ .29:20/

D Tr�.'
�1j.P �.V;�/˝� E/G/ (obvious)

D
P
˛2G�1=G

.Tr
Z.˛/
� .˛jP �.V;�/˝� E// .29:26/

D
P
˛2G�1=G

Tr
Z.˛/
� .˛jP �.V;�// � Tr�.F

�1 ı ˛jE/ .29:24/

D
P
˛2G�1=G

Tr
Z.˛/
Z`

.˛jP �.V;Z`/ � Tr�.F
�1 ı ˛jE/ .29:20/

D
P
˛2G�1=G

TrZ`
.˛jP �.V;Z`/

z.˛/
� Tr�.F

�1 ı ˛jE/: .29:23/:
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Review of notations

Again, U0 is a nonsingular affine curve over Fq and U denotes U0 regarded as a curve
over F. Thus U0 D SpecmA0 for some affine Fq-algebra A0, and we let K be the field of
fractions ofA0. ThusK is the field of rational functions onU0. Choose an algebraic closure
˝ of K0, and identify �1.U0/ with Gal.Kun=K/, where Kun is the maximal unramified
extension of K in ˝ (relative to A0), and identify �1.U / with Gal.Kun=K � F/. Then a
locally constant sheaf E0 of Q`-vector spaces on U0 corresponds to a finite-dimensional
Q`-vector space E endowed with a continuous action of �1.U0/. The inverse image of E
on U corresponds to E regarded as a �1.U /-module. Here E is the stalk E N� of E at the
geometric point of U0 defined by Specm˝ ! SpecmK ! U0.

We have an exact sequence

0! �1.U /! �1.U0/! Gal.F=Fq/! 0:

For each closed point x 2 U0, we have a Frobenius element 'x 2 �1.U0/ (well-defined
up to conjugacy) that fixes some prime ideal P of the integral closure Aun of A in Kun

lying over p and acts as a 7! aq
deg x

on Aun=P. The image of 'x in Gal.F=Fq/ is 'degx .
Following Deligne, I set

Fx D '
�1
x 2 �1.U0/; F D '�1 2 Gal.F=Fq/:

Thus the actions of Fx and F on Ex D E and H r
c .U; E/ respectively coincide with those

of their namesakes defined geometrically (29.10; 29.12).

Preliminaries on linear algebra

LEMMA 30.1 Let ˛ and ˇ be endomorphisms of finite-dimensionalK-vector spaces V and
W respectively. Then the trace of ˛˝ ˇW V ˝W ! V ˝W is the product of the traces of
˛ and ˇ.

PROOF. Choose bases .ei / and .fi / for V and W respectively, and set

˛ei D
X

aj iej ; f̌i D
X

bj ifj :

Then .ei ˝ fi 0/ is basis for V ˝W and

.˛ ˝ ˇ/.ei ˝ fi 0/ D
X
j;j 0

aj ibj 0i 0ej ˝ fj 0 :

Therefore, the trace of ˛ ˝ ˇ is

Tr.˛ ˝ ˇ/ D
X
i;i 0

ai ibi 0i 0 D .
X

ai i /.
X

bi i / D .Tr.˛//.Tr.ˇ//:

2

LEMMA 30.2 Let K be a field containing Q, and let ˛W V ! V be an endomorphism of a
K-vector space V . The characteristic polynomial of ˛ has coefficients in Q if and only if
there is a basis for V relative to which the matrix of ˛ has its entries in Q.

176
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PROOF. Certainly, if the matrix A of ˛ with respect to some basis of V has entries in Q,
then the characteristic polynomial det.1 � At/ lies in QŒt �. The converse follows from the
theory of rational canonical forms for matrices. 2

DEFINITION 30.3 An endomorphism of a vector space over a field containing Q is said to
be rational when it satisfies the equivalent conditions of Lemma 30.2.

For a vector space V , V ˝m denotes the tensor product of m copies of V . An endo-
morphism ˛ of V defines an endomorphism ˛˝m of V ˝m. From Lemma 30.1, we see
that

Tr.˛˝mjV ˝m/ D .Tr.˛jV //m:

Clearly ˛˝m is rational if ˛ is. Often, we write ˛ for ˛˝m.

Statement of the Theorem

DEFINITION 30.4 Let n 2 Z.

(a) A locally constant sheaf E0 of Q`-vector spaces on U0 is said to have weight n if for
all closed points x of U0, each eigenvalue of Fx W Ex ! Ex is an algebraic number
whose complex conjugates have absolute value qdeg.x/n=2.

(b) A finite-dimensional Q`-vector spaceE endowed with a continuous action of �1.U0/
has weight n if, for all closed points x of U0 (i.e., nonzero prime ideals p of A0), each
eigenvalue of 'x W Ex ! Ex is an algebraic number whose complex conjugates have
absolute value q�deg.x/n=2.

When E is the �1.U0/-module corresponding to E0, these notions coincide: E0 has
weight n if and only if E has weight n.

EXAMPLE 30.5 (a) The sheaf Q`.1/ corresponds to the �1.U0/-module .lim
 �n

�`n.Kun//˝Z`

Q`. Because ` ¤ p, �`n.F/ D �`n.Kun/ is a free Z=`nZ-module of rank 1W
m 2 Z=`nZ acts according to the rule .m; �/ 7! �m. Therefore lim

 �n
�`n.F/ is a

free Z`-module of rank 1, and Q`.1/ is a Q`-vector space of dimension 1. The group
�1.U0/ acts on Q`.1/ through its quotient Gal.F=Fq/, and the canonical generator
' D .z 7! zq/ of Gal.F=Fq/ acts on Q`.1/ as multiplication by q. The Frobenius
element 'x has image 'degx in Gal.F=Fq/, and so acts on Q`.1/ as qdegx . Thus,
Q`.1/ has weight �2.

(b) If E0 is of weight ˇ, then E˝m0 is of weight mˇ: For example, Q`.m/ has weight
�2m.

The next theorem is often referred to as the MAIN Lemma (restricted form).

THEOREM 30.6 Let E be the �1.U0/-module corresponding to a locally constant sheaf E0
of Q`-vector spaces. Let n be an integer. Assume:

(a) (Rationality.) For all closed points x 2 U0, the action of Fx on E is rational (30.3);

(b) There exists a nondegenerate �1.U0/-invariant skew-symmetric form

 WE �E ! Q`.�n/:

(c) (Big geometric monodromy.) The image of �1.U / in Sp.E; / is open (for the
`-adic topology).
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Then:

(a) E is of weight n, i.e., the eigenvalues of Fx acting on Ex have absolute value
.qdegx/n=2.

(b) The action of F on H 1
c .U; E/ is rational, and its eigenvalues all have absolute value

� qn=2C1.

(c) Let j be the inclusion of U into P1. The action of F onH 1.P1; j�E/ is rational, and
its eigenvalues ˛ satisfy

qn=2 < j˛j < qn=2C1:

Here Sp.E; / denotes the symplectic group of  , i.e.,

Sp.E; / D f˛ 2 GL.E/ j  .˛e; ˛e0/ D  .e; e0/; e; e0 2 Eg:

Let � 2 �1.U0/ be such that � jF D 'm for some m 2 Z. That  is �1.U0/-invariant
means that

 .�e; �e0/ D q�nm .e; e0/; e; e0 2 E:

In particular, if � 2 �1.U /, then it acts on E as an element of the symplectic group, and so
(c) makes sense.

EXAMPLE 30.7 Let d be an odd integer, and suppose we have a regular map

� WY0 ! U0

such that, for each closed point x of U0, ��1.x/ is a nonsingular hypersurface Y.x/0
in PdC1 defined over �.x/ D Fqdeg x . Let E D Rd��Q`. Then E is locally constant
(by the proper-smooth base change theorem 20.2), and for any closed point x of U0,
Ex ' Hd .Y.x/;Q`/ (proper base change theorem 17.2). Moreover Fx acts on Ex as
the Frobenius map of Y.x/ acts on Hd .Y.x/;Q`/, and so

det.1 � Fxt jEx/ D det.1 � F t jHd .Y.x/;Q`//:

Now, H r.Y.x/;Q`/ is zero for odd r ¤ d and equals H r.Pd ;Q`/ ' Q`.� r2/ for r even
(see 16.4) and so

Z.Y.x/0; t / D
det.1 � F t jHd .Y.x/;Q`/

.1 � t /.1 � qt/ � � � .1 � qd t /
:

As Z.Y.x/0; t / 2 Q.t/ (see 27.8), det.1�F t jHd .Y.x/;Q`/ has rational coefficients, and
so E satisfies condition (a) of the theorem.

There is a canonical pairing of sheaves

Rd��Q` �Rd��Q` ! R2d��Q` ' Q`.�d/

which on each stalk becomes cup-product

Hd .Y.x/;Q`/ �Hd .Y.x/;Q`/! H 2d .Y.x/;Q`/ ' Q`.�d/:

Therefore, the pairing on sheaves corresponds to a pairing

 WE �E ! Q`.�d/
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which is skew-symmetric (because d is odd) non-degenerate (by Poincaré duality for the
geometric generic fibre of � defined by Spec˝ ! U0) and �1.U0/-invariant (because it
is defined by a morphism of sheaves on U0). Therefore, E satisfies condition (b) of the
theorem. If it satisfies condition (c), then it has weight d and the Riemann hypothesis holds
for every Y.x/!

In fact it is possible to realize every nonsingular hypersurface Y0 of odd dimension over
Fq as a member of a family satisfying (c) (after possibly extending Fq), and so prove the
Riemann hypothesis for Y0 this way. This is a geometric problem: if we can find a family
� W Y ! U � A1 of nonsingular hypersurfaces over F containing Y0=F as a member and
satisfying condition (c), then the family will be defined over a finite extension of Fq .

Let ı be the degree of Y0. We consider the set of all homogeneous polynomials of
degree ı in d C 2 variables considered up to multiplication by a nonzero scalar. This set

can be identified with PN , N D
�
d C ı C 1

ı

�
(see AG 6.20). We obtain a map

H PN � PdC1

Pn

�

such that, for each P 2 PN , ��1.P / is the hypersurface (possibly reducible) in PdC1
defined by P regarded as a homogeneous polynomial. Now Y0=F corresponds to a point P
in PN , and the problem is to show that there is a line through P for which the “geometric
monodromy” is big.

Outline of the Proof of (a) of the Theorem

Recall that

Z.U0; E
˝2k; t /

def
D

Y
x2U0

1

det.1 � FxtdegxjE˝2k/
D

Y
x

 X
m

Tr.Fmx jE
˝2k/

tm

m

!
:

The first equality is the definition, and the second follows from the elementary Lemma 27.5.
Condition (a) of the Theorem implies that Z.U0; E˝2k; t / 2 QŒŒt ��, and so it makes sense
to speak of its radius of convergence for t 2 C.

We shall prove (under the hypotheses of the theorem):

(I) For all positive integers k, .˝2kE/�1.U / is isomorphic to a direct sum of copies of
Q`.�kn/.

(A) If, for all positive integers k, Z.U0; E˝2k; t / converges for jt j < 1
qknC1 , then E has

weight n.

We explain how the two statements imply the part (a) of the theorem. As have already
noted, Z.U0; E˝2k; t / is a power series with coefficients in Q. The multiplicative form of
the Lefschetz fixed-point formula (29.6),

Z.U0; E
˝2k; t / D

det.1 � F t jH 1
c .U; E˝2k//

det.1 � F t jH 2
c .U; E˝2k//

;
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shows thatZ.U0; E; t/ 2 Q`.t/\QŒŒt �� D Q.t/. Recall (29.9) thatH 2
c .U; E/ ' E�1.U /.�1/,

and so (I) implies that

det.1 � F t jH 2
c .U; E˝2k// D .1 � qknC1t /N ; some N:

Thus

Z.U0; E
˝2k; t / D

polynomial in QŒt �
.1 � qknC1t /N

:

Obviously, this converges for jqknC1t j < 1, i.e., for jt j < 1=qknC1. Now we can apply
(A) to show that E has weight n.

The proof of (A)

Throughout, E satisfies the condition (a) and (b) of the theorem.

LEMMA 30.8 For all positive integers k, the coefficients of the power series
1

det.1 � FxtdegxjE˝2k/

are positive rational numbers.

PROOF. According to the elementary Lemma 27.5, we have

log
1

det.1 � FxtdegxjE˝2k/
D

1X
mD1

Tr.Fmx jE
˝2k/

tmdeg.x/

m
:

But Tr.Fmx jE
˝2k/ D Tr.Fmx jE/

2k . Under the hypothesis (a) of the theorem, Tr.Fmx jE/ 2
Q, and so Tr.Fmx jE

˝2k/ is a positive rational number. Thus the coefficients of the power
series log 1

det.1�Fxtdeg x jE˝2k/
are positive rational numbers, and the same is true of exp of

it. 2

LEMMA 30.9 If, for all positive integers k, Z.U0; E˝2k; t / converges for jt j < 1
qknC1 ,

then E has weight n.

PROOF. Consider

Z.U0; E
˝2k; t /

def
D

Y
x2U0

1

det.1 � FxtdegxjE˝2k/
:

If am is the coefficient of tm in the power series expansion of Z.U0; E˝2k; t /, and am;x
is the coefficient of tm in the expansion of 1=det.1�Fxt

degxjE˝2k/, then am � am;x (be-
cause a0;x D 1 and am;x � 0 all x/. Therefore the radius of convergence ofZ.U0; E˝2k; t /
is� the radius of convergence of 1=det.1�Fxt

degxjE˝2k/. The hypothesis of the lemma
therefore implies that 1=det.1 � Fxt

degxjE˝2k/ converges for jt j < 1=qknC1.
If ˛ is an eigenvalue of Fx on E, ˛2k is an eigenvalue of Fx on E˝2k , and so 1=˛

2k
deg x

is a pole of 1=det.1 � Fxt
deg xjE˝2k/. Therefore,ˇ̌̌̌

ˇ 1

˛
2k

deg x

ˇ̌̌̌
ˇ � 1

qknC1

and so j˛2kj � .qdegx/knC1x . On taking the 2kth root and letting k ! 1, we find that
j˛j � .qdegx/n=2 for all eigenvalues ˛ of Fx on E. The existence of the pairing in (b) of
the theorem shows that, for each eigenvalue ˛ there is an eigenvalue ˛0 such that ˛˛0 D
.qdegx/n, and this completes the proof. 2
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Proof of (I)

LEMMA 30.10 Condition (c) of the theorem implies that �1.U / is Zariski dense in Sp. /,
and therefore that

Hom.E˝2k;Q`/�1.U / D Hom.E˝2k;Q`/Sp. /:

PROOF. Let N� be the image of �1.U / in Sp. ;Q`/. Because �1.U / is compact (it is a
Galois group), N� is compact, and therefore closed in Sp. ;Q`/. The `-adic version of
Cartan’s theorem (Serre, Lie Algebras and Lie Groups, LG 5.42) then says that it a Lie
subgroup of Sp. ;Q`/. Since it is open, it has the same dimension as Sp. ;Q`/ as a Lie
group. LetG � Sp be the Zariski closure of N� in Sp (soG is the smallest closed subvariety
of Sp defined over Q` such that G.Q`/ � N� . Then G is an algebraic subgroup of Sp, and

Tgte. N�/ � Tgte.G/ � Tgte.Sp/:

But, Tgte. N�/ D Tgte.Sp/, and so dimG D dimSp. As Sp is connected, this implies that
G D Sp, and so N� is Zariski dense in Sp.

Finally, let f W E˝2k ! Q` be a linear map fixed by �1.U /. For g 2 Sp. / to fix f is
an algebraic condition on g: if f is fixed by N� , then it is fixed by the Zariski closure of N� .2

Obviously,

Hom.E˝2k;Q`/Sp. / D Hom..E˝2k/Sp. /;Q`/:

If f1; f2; : : : ; fN is a basis for Hom.E˝2k;Q`/Sp. /, then the map

a 7! .f1.a/; : : : ; fN .a//WE
˝2k
! QN`

induces an isomorphism
.E˝2k/Sp. / ! .Q`/N :

We shall use invariant theory to choose a basis .fi / for which we shall be able to see how
the action of Gal.F=Fq/ transfers to an action on .Q`/N .

Consider the following general question: given a vector space V over a field K of
characteristic zero and a nondegenerate skew-symmetric form  on V , what are the Sp-
invariant linear forms f W V ˝2k ! K‹ That is, what is Hom.V ˝2k; K/Sp‹ Note that a
linear form f W V ˝2k ! K can be regarded as a multi-linear form

f WV � V � � � � � V ! K:

For example,
.v1; : : : ; v2k/ 7!  .v1; v2/ � � � .v2k�1; v2k/

is such a multi-linear form, and it is obviously Sp-invariant. More generally, for any par-
tition of f1; :::; 2kg into k-disjoint sets P W ffa1; b1g; :::; fak; bkgg, ai < bi , we get an
invariant form:

fP WV
2k
! K, .v1; :::; v2k/!

Y
 .vai

; vbi
/:

PROPOSITION 30.11 The invariant forms fP span Hom.V ˝2k; K/Sp:
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PROOF. See H. Weyl, The Classical Groups, PUP, VI.1, 1939 (Rev. edn 1946). Alterna-
tively, see Fulton, W., and Harris, J., Representation Theory, Springer Verlag, 1991, Ap-
pendix F. 2

A basis of forms of the type fP for Hom.V ˝2k; K/Sp, gives a �1.U0/-equivariant map

E˝2k ! Q`.�kn/N

inducing an isomorphism .E˝2k/�1.U / ! Q`.�kn/N . This proves (I).

Proof of (b) of the theorem

As U is affine, H 0
c .U; E/ D 0. On the other hand,

H 2
c .U; E/ D E�1.U /.�1/,

which is zero because hypothesis (c) implies that �1.U / is Zariski dense in Sp.E; / and
there are no Sp.E; /-invariant linear forms E ! Q` (or on E˝n for any odd n, by
invariant theory). Therefore, the Lefschetz Fixed Point Formula 29.6 shows that

Z.U0; E0; t / D det.1 � F t jH 1
c .U; E//:

By definition

Z.U0; E0; t / D
Y
x2U0

1

.1 � FxtdegxjE/
;

and so
1

det.1 � F t jH 1
c .U; E//

D

Y
x

det.1 � Fxt
degx
jE/:

Hypothesis (a) implies that, when expanded out, the right hand side is a power series in t
with coefficients in Q. To complete the proof, we show that it converges for jt j < 1=q

n
2
C1.

Recall from complex analysis, that if p1; p2; : : : is an infinite sequence of complex
numbers, none of which is zero, then

Q
pn is said to converge if the partial products con-

verge to a nonzero complex number. An infinite product
Q
.1C an/ converges absolutely

if and only if the series
P
janj converges.

Let d D dimension of E, and let ax;i , 1 � i � d , be the eigenvalues of Fx acting on
E, so that

1

Z.U0; E0; t /
D

Y
x;i

.1 � ax;i t
degx/:

We shall show that X
x;i

jax;i t
degx
j

converges for jt j < 1=q
n
2
C1. The two facts we shall need are:

– jax;i j D .qdegx/
n
2 ;

– the number of closed points x on U0 of degree m is � qm.
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The first statement was proved in (a). The second follows from the fact that each closed
point x of U0 of degree m contributes at least 1 (in fact exactly m) elements to U0.Fqm/,
which has � qm elements since U0 � A1. Put jt j D 1

q
n
2
C1C"

, " > 0. The first fact implies

that X
i

j˛i;xt
degx
j �

d

.qdegx/1C"
;

and the second that X
x

1

.qdegx/1C"
�

X
m

qm

qm.1C"/
D

X
m

1

qm"
<1:

Note that the proof used only that E has weight n and that E�1.U / D 0.

Proof of (c) of the theorem

From the cohomology sequence of

0! jŠE ! j�E ! i�i
�j�E ! 0;

(see 8.15), we obtain a surjection

H 1
c .U; E/! H 1.P1; j�E/:

Hence (b) implies that F acts rationally on H 1.P1; j�E/ and its eigenvalues satisfy

j˛j < q
n
2
C1:

The sheaf LE.1/ satisfies the same hypotheses as E with n replaced by �2� n. Therefore, F
acts rationallly on H 1.P1; j� LE.1// and its eigenvalues ˇ satisfy

jˇj < q
�2�n

2
C1
D q�

n
2 :

Now the duality theorem (32.3, below) gives a canonical nondegenerate pairing

H r.P1; j�E/ �H 2�r.P1; j� LE.1//! H 2.P1;Q`.1// ' Q`:

Hence, each ˛ is the inverse of a ˇ, and so

j˛j > q
n
2 :



31 THE GEOMETRY OF LEFSCHETZ PENCILS

In this section, we see how to fibre a variety over P1 in such a way that the fibres have only
very simple singularities, and in the next section we use the fibring to study the cohomology
of the variety. This approach to the study of the cohomology of varieties goes back to
Lefschetz in the complex case. Throughout this section, we work over an algebraically
closed field k.

Definition

A linear form H D
Pm
iD0 aiTi defines hyperplane in Pm, and two linear forms define the

same hyperplane if and only if one is a nonzero multiple of the other. Thus the hyperplanes
in Pm form a projective space, called the dual projective space LPm.

A line D in LPm is called a pencil of hyperplanes in Pm. If H0 and H1 are any two
distinct hyperplanes in D, then the pencil consists of all hyperplanes of the form ˛H0 C

ˇH1 with .˛W ˇ/ 2 P1.k/. If P 2 H0 \H1, then it lies in every hyperplane in the pencil
— the axis A of the pencil is defined to be the set of such P . Thus

A D H0 \H1 D \t2DHt :

The axis of the pencil is a linear subvariety of codimension 2 in Pm, and the hyperplanes of
the pencil are exactly those containing the axis. Through any point in Pm not on A, there
passes exactly one hyperplane in the pencil. Thus, one should imagine the hyperplanes in
the pencil as sweeping out Pm as they rotate about the axis.

Let X be a nonsingular projective variety of dimension d � 2, and embed X in some
projective space Pm. By the square of an embedding, we mean the composite of X ,! Pm
with the Veronese mapping (AG 6.20)

.x0W : : : W xm/ 7! .x20 W : : : W xixj W : : : W x
2
m/WP

m
! P

.mC2/.mC1/
2 :

DEFINITION 31.1 A line D in LPm is said to be a Lefschetz pencil for X � Pm if

(a) the axis A of the pencil .Ht /t2D cuts X transversally;

(b) the hyperplane sections Xt
def
D X \ Ht of X are nonsingular for all t in some open

dense subset U of DI

(c) for t … U , Xt has only a single singularity, and the singularity is an ordinary double
point.

Condition (a) means that, for any closed point P 2 A \ X , TgtP .A/ \ TgtP .X/ has
codimension 2 in TgtP .X/.

The intersectionX\Ht in (b) should be taken scheme-theoretically, i.e., ifX is defined
by the homogeneous ideal a, then X \Ht is defined by aC .Ht /. Condition (b) means that
Xt is reduced and nonsingular as an algebraic variety.

A point P on a varietyX of dimension d is an ordinary double point if the tangent cone
at P is isomorphic to the subvariety of AdC1 defined by a nondegenerate quadratic form
Q.T1; : : : ; TdC1/, or, equivalently, if

OOX;P � kŒŒT1; : : : ; TdC1��=.Q.T1; : : : ; TdC1//:

184
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THEOREM 31.2 There exists a Lefschetz pencil for X (after possibly replacing the projec-
tive embedding of X by its square).

PROOF. (Sketch). Let Y � X � LPm be the closed variety whose points are the pairs .x;H/
such that H contains the tangent space to X at x. For example, if X has codimension 1 in
Pm, then .x;H/ 2 Y if and only if H is the tangent space at x. In general,

.x;H/ 2 Y ” x 2 H and H does not cut X transversally at x:

The image of Y in LPm under the projectionX� LPm ! LPm is called the dual variety LX ofX .
The fibre of Y ! X over x consists of the hyperplanes containing the tangent space at x,
and these hyperplanes form an irreducible subvariety of LPm of dimensionm� .dimXC1/;
it follows that Y is irreducible, complete, and of dimension m � 1 (see AG 10.11) and that
LX is irreducible, complete, and of codimension � 1 in LPm (unless X D Pm, in which case

it is empty). The map 'W Y ! LX is unramified at .x;H/ if and only if x is an ordinary
double point on X \ H (see SGA 7, XVII 3.7). Either ' is generically unramified, or it
becomes so when the embedding is replaced by its square (so, instead of hyperplanes, we
are working with quadric hypersurfaces) (ibid. 3.7). We may assume this, and then (ibid.
3.5), one can show that for H 2 LX r LXsing, X \H has only a single singularity and the
singularity is an ordinary double point. Here LXsing is the singular locus of LX .

By Bertini’s theorem (Hartshorne II.8.18) there exists a hyperplaneH0 such thatH0\X
is irreducible and nonsingular. Since there is an .m�1/-dimensional space of lines through
H0, and at most an .m�2/-dimensional family will meet LXsing, we can chooseH1 so that
the line D joining H0 and H1 does not meet LXsing. Then D is a Lefschetz pencil for X:2

THEOREM 31.3 Let D D .Ht / be a Lefschetz pencil for X with axis A D \Ht . Then
there exists a variety X� and maps

X  X�
�
�! D:

such that:

(a) the map X� ! X is the blowing up of X along A \X I

(b) the fibre of X� ! D over t is Xt D X \Ht .

Moreover, � is proper, flat, and has a section.

PROOF. (Sketch) Through each point x of X rA\X , there will be exactly one Hx in D.
The map

'WX r A \X ! D, x 7! Hx;

is regular. Take the closure of its graph �' in X �D; this will be the graph of �: 2

REMARK 31.4 The singular Xt may be reducible. For example, if X is a quadric surface
in P3, then Xt is curve of degree 2 in P2 for all t , and such a curve is singular if and only if
it is reducible (look at the formula for the genus). However, if the embedding X ,! Pm is
replaced by its cube, this problem will never occur.

References The only modern reference I know of is SGA 7, Exposé XVII. (Perhaps one
day I’ll include it in AG.)
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Throughout this section, k is an algebraically closed field of characteristic p (possibly 0).

Preliminaries on locally constant sheaves

Let U be an open subset of a complete curve X , and let � be a commutative ring (for
example, � D Z=`nZ, � D Z`, � D Q`). We have seen that to give a constructible
locally constant sheaf of �-modules on U is to give a finitely generated �-module on
which �1.U / acts continuously.

When we consider constructible sheaves of �-modules on X whose restriction to U is
locally constant, the picture is more complicated: it is possible to change the stalks of the
sheaf over the points of X r U almost at will (see 8.17). However, there is a special class
of such sheaves for which F is determined by F jU , namely, those for which the canonical
map F ! j�j

�F is an isomorphism. Here, as usual, j is the inclusion U ,! X .

PROPOSITION 32.1 Let U be an open subset of a complete nonsingular curve X over
an algebraically closed field k, and let � D Z=`nZ, Z`, or Q` with ` distinct from the
characteristic of k.

(a) Let F be a sheaf of �-modules on X ; the canonical map F ! j�j
�F is an iso-

morphism if and only if, for all s 2 X r U; the cospecialization map Fs ! F N� is
injective and has image FIs

N� (here N� is a generic geometric point, and Is � �1.U; N�/
is an inertia group at s).

(b) For any locally constant sheaf of Q`-vector spaces F on U , the cup-product pairing

H r.X; j�F/ �H 2�r.X; j� LF.1//! H 2.X;Q`.1// ' Q`

is nondegenerate.

PROOF. (a) The map F ! j�j
�F induces an isomorphism on the stalks for all x 2 U .

For s 2 X r U , the stalks of the two sheaves are Fs and FIs

N� respectively, and so the
map induces an isomorphism on the stalks at s if and only if the cospecialization map is an
isomorphism Fs ! FIs

N� .
(b) This can be deduced from the usual Poincaré duality theorem 14.7 by a local calcu-

lation. See EC V 2.2b. 2

The tame fundamental group

The local case Let K D k..T //, the field of Laurent series over k. Then K is the field
of fractions of the complete valuation ring kŒŒT ��, and so we can study its extension fields
as we do in number theory. In one respect this field is simpler: since the residue field is
algebraically closed, there are no unramified extensions. Thus, for a finite extensionL ofK,
the ramification degree is equal to the degree. In particular, the tamely ramified extensions
of K are precisely those of degree prime to p. The tamely ramified extensions are exactly
the Kummer extensions of the form KŒT

1
d � for gcd.p; d/ D 1.

Fix an algebraic closure Kal of K, and let Ktame be the composite of all the tame
extensions of K contained in Kal. For each � 2 Gal.Ktame=K/ and d not divisible by p,

186
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�T
1
d D �T

1
d for some � 2 �d .k/. Thus, we have a well-defined map Gal.Ktame=K/!

�d . On passing to the limit over d , we obtain an isomorphism

t WGal.Ktame=K/!
Y
`¤p

Z`.1/:

The global case Now let K D k.T /, the field of rational functions in the symbol T over
k. Then K is the field of fractions of the Dedekind domain kŒT �, and we can study its
extensions as in the number field case. The prime ideals of kŒT � are of the form .T �a/ for
some a 2 k, and the completion of k.T / with respect to the valuation defined by .T � a/ is
k..T � a//. There is one additional prime, namely, the “prime at1” corresponding to the
prime ideal .T �1/ in kŒT �1�. Let S be a finite set of prime ideals of kŒT �.

Fix an algebraic closure Kal of K, and let Ktame be the composite of all the finite
extensions L=K contained in Kal that are unramified at all primes of kŒT � not in S and
tamely ramified at all primes s 2 S . LetKs be the completion ofK at the prime s 2 S , and
letKtame

s be a maximal tamely ramified extension ofKs . The choice of an extension of the
embedding of K into Ks to Ktame, i.e., to a commutative diagram

Ktame K tame
s

K Ks

determines an injective homomorphism Gal.Ktame
s =Ks/! Gal.Ktame=K/. Its image, Is ,

is uniquely determined by s up to conjugation. For each s 2 S , we have a subgroup Is of
Gal.Ktame=K/ and a surjective homomorphism t W Is ! Z`.1/. The subgroups Is needn’t
generate Gal.Ktame=K/, because there may be a proper extension of K unramified at all
primes in kŒT � but wildly ramified at the infinite prime (see 3.2).

The geometric case Let U be an open subset of the projective line P1 over k, and let S
be the complement of U in P1. We wish to study finite maps V ! P1 that are unramified
over the points of U and tamely ramified over the points in S . Essentially, this is the same
as the last case, except that we have one extra prime corresponding to the point at infinity.
Fix an algebraic closureKal ofK def

D k.P1/, and let N�! U be the corresponding geometric
point. Let �tame

1 .U; N�/ D Gal.Ktame=K/ where Ktame is the composite of the subfields
of Kal that are unramified at all primes corresponding to points of U and tamely ramified
at those corresponding to points in S . Then �tame

1 .U; N�/ contains a subgroup Is for each
s 2 S , and it is now generated by these subgroups (see 3.2). For each s, there is a canonical
epimorphism t W Is ! Z`.1/.

The Cohomology

We wish to the study how the cohomology varies in a Lefschetz pencil, but first we should
look at the case of curves. Throughout this subsection, the base field k will be algebraically
closed.
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Pencils of curves Consider a proper flat map � W X ! P1 whose fibres are irreducible
curves, nonsingular except for s in a finite set S , and such that Xs for s 2 S has a single
node as its singularity. Then

�.Xt ;OXt
/

def
D dimkH

0.Xt ;OXt
/ � dimkH

1.Xt ;OXt
/

is constant in the family (Mumford, Abelian Varieties, p50), andH 0.Xt ;OXt
/ D k for all t

(because Xt is irreducible). Therefore, dimkH
1.Xt ;OXt

/ will be constant, equal to g say.
By definition, dimkH

1.Xt ;OXt
/ is the arithmetic genus of Xt . When Xt is nonsingular,

it is the usual genus, and when Xt has a single node, the genus of the normalization of
Xt is g � 1 (Serre, J.-P., Groupes Algébriques et Corps de Classes, Hermann, 1959, IV.7,
Proposition 3).

When Xt is nonsingular,H 1.Xt ;Q`/ has dimension 2g (see 14.2). As in the nonsingu-
lar case, in order to compute H 1.Xs;Q`/, s 2 S , we must first compute the Picard variety
of Xs .

Let 'W QXs ! Xs be the normalization of Xs . It is an isomorphism, except that two
points P1 and P2 of QXs map to the singular point P on Xs . The map f 7! f ı ' identifies
the functions on an open neighbourhood U of P to the functions on '�1.U / � QXs that take
the same value at P1 and P2. Therefore, we have an exact sequence of sheaves on .Xs/et,

0! Gm;Xs

f 7!f ı'
������! '�.Gm; QXs

/
f 7!

f .P1/

f .P2/

�������! Gm;P ! 0:

The cohomology sequence of this is

0! Gm ! Pic.Xs/! Pic. QXs/! 0;

from which we can extract an exact sequence

0! Gm ! Pic0.Xs/! Pic0. QXs/! 0:

One can show (Serre, ib.) that Pic0.Xs/ is equal to the group of divisors of degree zero
on Xs � fP g modulo principal divisors of the form .f / with f .P / D 1. The first map
in the sequence can be described as follows: let a 2 Gm.k/ D k�; because the regular
functions on QXs separate points, there exists an f 2 k. QXs/ D k.Xs/ such that f .P1/ D a
and f .P2/ D 1; the image of a is .f /.

Note that descriptions of the maps in the sequence involves choosing an ordering of the
points P1, P2 mapping to the singular point P . The opposite choice gives the negative of
the maps. This sign indeterminacy persists throughout the theory.

From the above exact sequence and the cohomology sequence of the Kummer sequence,
we obtain an exact sequence

0! Q`.1/! H 1.Xs;Q`.1//! H 1. QXs;Q`.1//! 0;

and hence (twisting by �1, i.e., tensoring with Q.�1/) an exact sequence

0! Q` ! H 1.Xs;Q`/! H 1. QXs;Q`/! 0:

In particular,H 1.Xs;Q`/ is of dimension 2g�1. WriteEs for the kernel ofH 1.Xs;Q`/!
H 1. QXs;Q`/. It is the group of vanishing cycles.5 Note that Es ' Q` (the isomorphism is
well-defined up to sign) — we denote the element of Es corresponding to 1 by ıs .

5The topologists have a way of visualizing things in which the vanishing cycle (in homology) moves in a
family and does vanish at the point s. I have never been able to understand the picture, but look forward to the
movie.
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Let V D R1��Q`. Thus V N� � H 1.Xt ;Q`/ for all t … S , and Vs ' H 1.Xs;Q`/. Let
V D V N�. One can show that the cospecialization map Vs ! V N� is injective, with image
V Is where Is � �1.U / is the inertia group at s. Moreover, in the cup-product pairing

H 1.Xt ;Q`/ � H 1.Xt ;Q`/ ! H 2.Xt ;Q`/;
k k k

V V Q`.�1/

Es is the exact annihilator of Vs . In other words, the sequence

0! H 1.Xs;Q`/! H 1.X N�;Q`/
x 7!x[ı
�����! Q`.�1/! 0

is exact. The theory of Lefschetz pencils shows that there is a similar sequence for any
Lefschetz pencil with odd fibre dimension.

Cohomology in a Lefschetz Pencil

Let � W X� ! P1 be the map arising from a Lefschetz pencil, and let S � P1 be the subset
of P1 such that Xs is singular. Let n D 2mC 1 be the dimension of the fibres of � — thus
we are assuming that the fibre dimension is odd. We set

U D P1 r S;
�1.U / D �

tame
1 .U; N�/;

Is D the tame fundamental group at s

(subgroup of �1.U / well-defined up to conjugacy).
Let V D .Rn��Q`/ N�, and V.r/ D V ˝Q`.r/. Then the following are true.

– For r ¤ n; nC1, the sheavesRr��Q` are locally constant (hence constant)
on P1, i.e., they don’t “see” the singularities.

– The proper-smooth base change theorem implies thatRn��Q`jU is locally
constant, and so V is a �1.U; N�/-module. In fact, the action factors through
the tame fundamental group �1.U /.

– For each s 2 S there is a “vanishing cycle” ıs 2 V.m/ (well-defined up
to sign). Let E.m/ be the subspace of V.m/ generated by the ıs — then
E � V is the space of vanishing cycles.

If one vanishing cycle is zero, they all are. In the following, I assume that no vanishing
cycle is zero. This is the typical case, and the proof of the Riemann hypothesis is much
easier in the other case. Under this hypothesis, RnC1��Q` also is constant. The only sheaf
left to understand is Rn��Q`.

– For each s 2 S , the sequence

0! Hn.Xs;Q`/! Hn.X N�;Q`/
x 7!.x[ı/
������! Q`.m � n/! 0

is exact. Here .x [ ı/ is the image of .x; ı/ under the pairing

Hn.X N�;Q`/ �Hn.X N�;Q`.m//! H 2n.X N�;Q`.m// Š Q`.m � n/:
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– An element �s 2 Is acts on V according the following rule:

�s.x/ D x ˙ t .�s/.x [ ıs/ıs

(Picard-Lefschetz formula). Here t is the map Is ! Z`.1/ defined ear-
lier, and so t .�s/.x[ ıs/ıs 2 V.1C .m�n/Cm/ D V . The sign depends
only on n modulo 4.

It follows from these two statements, that for all s 2 S the mapHn.Xs;Q`/! Hn.X N�;Q`/
is injective with image Hn.X N�;Q`/Is , and hence that Rn��Q`

�
�! j�j

�Rn��Q` (see
32.1).

Let  be the form V � V ! Q`.�n/ defined by cup-product. It is nondegenerate
(Poincaré duality) and skew-symmetric (because n is odd).

PROPOSITION 32.2 The space E of vanishing cycles is stable under the action of �1. Let
E? be the orthogonal complement of E in Hn.X N�;Q`/ under the pairing  . Then E? D
Hn.X N�;Q`/�1 :

PROOF. Both statements follow from the Picard-Lefschetz formula. For example, the
Picard-Lefschetz formula with ıs0 for x

�s.ıs0/ D ıs0 ˙ t .�s/.ıs0 [ ıs/ıs; �s 2 Is;

implies the first statement, and

�s.x/ � x D ˙t .�s/.x [ ıs/ıs

implies the second (because the Is generate �1 and the ıs are nonzero). 2

THEOREM 32.3 (LEFSCHETZ IN THE CLASSICAL CASE) The vanishing cycles are conju-
gate under the action of �1 up to sign, i.e., given s; s0 2 S , there exists a � 2 �1 such that
�ıs0 D ıs or �ıs .

PROOF. (Sketch). Let D.D P1/ be the line in the construction of the Lefschetz pencil.
Recall that D � LPN and that S D D \ LX .

Fact 1: The map P1 r S ! LPm r LX induces a surjective map �1.P1 r S/ !

�1. LPN r LX/.
This follows from a theorem of Bertini, viz, that if Y is irreducible and Y ! LP is

dominating, then the pull-back of Y to a “generic” line in LP is also irreducible.
Fact 2: The action of �1.P1 r S/ on V factors through �1. LPN r LX/.
Fact 3: Choose a generator ı of Z`.1/, and for each s 2 S choose a �s 2 Is such that

t .�s/ D ı. Then the �s become conjugate in �1. LPN r LX/.
In the classical case, there is a simple geometric proof of Fact 3. The abstract case is

more difficult.
We now use the Picard-Lefschetz formula to complete the proof. First note that the

formula
�sx � x D ˙t .�s/.x [ ıs/ıs; x 2 V;

determines ıs up to sign. Next note that for 
 2 �1.P1 r S/,

.
�s

�1/x D 
.
�1x ˙ t .�s/.


�1x [ ıs/ıs/ D x ˙ t .�s/.x [ 
ıs/
ıs:

In fact, this formula holds for 
 2 �1. LPN r LX/, and so the “facts” complete the proof. 2
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COROLLARY 32.4 The spaceE=E\E? is an absolutely simple �1.P1rS/-module, i.e.,
it contains no nonzero proper submodule stable under �1.P1 r S/ even after it has been
tensored with an extension field of Q`.

PROOF. Let x 2 E. If x … E?, then there exists an s such that x [ ıs ¤ 0, and so the
formula �sx D x˙ t .�s/.x[ıs/ıs shows that the space spanned by x and all its transforms
by elements of �1.U / contains ıs , and hence all the vanishing cycles. It therefore equals
E. This argument works over any extension of Q`: 2

REMARK 32.5 Let  be the form V � V ! Q`.�n/ defined by cup-product; it is skew-
symmetric because n is odd, and it is nondegenerate on E=E \ E?. It is respected by the
monodromy group �1.U0/, and so �1.U / maps into Sp.E=E \E?;  /:

THEOREM 32.6 (KAZHDAN AND MARGULIS) (n odd). The image of �1.P1 r S; N�/ in
Sp.E=E \E?;  / is open.

This follows from the results reviewed above and the next lemma. Note that, because
�1.P1 r S; N�/ is compact, its image in Sp.E=E \E?;  / is closed.

LEMMA 32.7 Let  be a nondegenerate form on a vector space W over Q`. Let G �
Sp.W; / be a closed subgroup such that:

(a) W is a simple G-module;

(b) G is generated topologically by automorphisms of the form

x 7! x ˙  .x; ı/ı

for certain ı 2 G.

Then G contains an open subgroup of Sp.W; /:

PROOF. We shall need to use a little of the theory of Lie groups over Q`, for which I refer
to Serre, J.-P., Lie Algebras and Lie Groups, Benjamin, 1965. As G is closed in Sp, it
is a Lie group over Q` (by the `-adic analogue of Cartan’s Theorem). Let L D Lie.G/

(equal to the tangent space to G at 1). To prove the lemma, it suffices to show that L equals
Lie.Sp/, because the exponential map sends any sufficiently small neighbourhood of 0 in
the Lie algebra of a Lie group onto a neighbourhood of 1 in the Lie group.

There is also a map logW G ! LieG (defined on a neighbourhood of 1). Let ı 2 W
and let ˛ be the endomorphism x 7! x ˙  .x; ı/ı of W . Then

log.˛/ D log.1 � .1 � ˛// D �
X .1 � ˛/n

n
:

But .1 � ˛/.x/ D ˙ .x; ı/ı, and so .1 � ˛/2 D 0 because  .ı; ı/ D 0. Hence Lie.G/
contains the endomorphisms

N.ı/W x 7! ˙ .x; ı/ı

and it is generated by them. Thus, the following statement about Lie algebras will complete
the proof. 2

LEMMA 32.8 Let W be a vector space over a field k of characteristic zero, and let  be
a nondegenerate form on W . Let L be a sub-Lie-algebra of the Lie algebra of Sp.W; /
such that
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(a) W is a simple L-module;

(b) L is generated by certain endomorphisms of the form N.ı/, for certain ı 2 W:

Then L equals the Lie algebra of Sp.W; /.

The proof is omitted (for the present) — it is about 2 pages and is elementary.
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Let X0 be a smooth projective variety of even dimension 2mC 2 D nC 1 over Fq . After
(28.3), it remains to show that:

(*) F acts rationally on HnC1.X;Q`/ and its eigenvalues ˛ satisfy

qn=2 < j˛j < qn=2C1:

We prove .�/ by induction on m.
We say that an endomorphism 'W V ! V of a finite-dimensional vector space V over

Q` satisfies �.n/ if it acts rationally and its eigenvalues ˛ satisfy

q
n�1

2 < j˛j < q
nC1

2 :

LEMMA 33.1 (a) If V satisfies �.n/ andW is a subspace of V stable under ', then both
W and V=W satisfy �.n/.

(b) If there exists a filtration
V � V1 � � � � � Vr � 0

stable under the action of ' such that, for all i , the endomorphism of Vi=ViC1 defined
by ' satisfies �.n/, then ' satisfies �.n/.

PROOF. Easy exercise for the reader. 2

The same argument as in the proof of (28.1) shows that we can extend the ground field
Fq . This allows us to assume that there is a Lefschetz pencil for X0 rational over Fq;
write D0 (D P1/ for the pencil, S � D for the set of singular hyperplane sections, and
U0 D D0 � S . We may assume (after extending Fq):

(a) each s 2 S is rational over Fq , and the quadratic form defining the tangent cone at s
can be expressed (over Fq) as

Q.T1; : : : ; Tn/ D

mX
iD1

TiTiC1 C T
2
2mC1I

(b) there is a u0 2 P1.Fq/ such that the fibre Xu0

def
D ��1.u0/ is nonsingular, and Xu0

admits a nonsingular hyperplane section Y0 defined over Fq .

Note that X has dimension nC 1 D 2mC 2, the fibres have dimension n D 2mC 1,
and Y0 has dimension n � 1 D 2m.

Then the variety X� obtained from X by blowing up along the axis A \ X is also
defined over Fq , and we have a map �0W X�0 ! P1 defined over Fq . We write P10 for the
projective line over Fq , and P1 for the projective line over F.

Let u denote the point of U mapping to u0 .u0 as in (b)). Then u can be regarded as a
geometric point of U0. We write �1.U0/ for �tame

1 .U0; u/ and �1.U / for �tame
1 .U; u/. Re-

call that there is an isomorphism �1.U0; N�/! �1.U0; u/ (well-defined up to conjugation).

LEMMA 33.2 It suffices to prove (*) for X�:

193
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PROOF. The variety X� is obtained by blowing up X along A \ X . Because A crosses X
transversally, A \ X is a nonsingular subvariety of codimension 2 in X , and so the inverse
image .A\X/� ofA\X inX� is isomorphic to P.NX=A\X /whereNX=A\X is the normal
bundle (see Shafarevich, Vol 2, p73). Now (23.2) shows that

H�..A \X/�;Q`/ ' H�.A \X;Q`/˚H��2.A \X;Q`/.�1/:

The map 'W X� ! X is proper, and so we can apply the proper base change the-
orem (�17) to it. We find that the canonical map Q` ! '�Q` is an isomorphism, that
R2'�Q` has support on A\X , and that Rr'�Q` D 0 for r ¤ 0; 2. Moreover, R2'�Q` D
i�.R

2'0�Q`/ where '0 D 'j.A \ X/�, and R2'0�Q` D Q`.�1/. The Leray spectral se-
quence for '� degenerates at E2 (because that for '0 does), and so

H�.X�;Q`/ ' H�.X;Q`/˚H��2.A \X;Q`/.�1/: 2

From the Leray spectral sequence of � , we see that it suffices to prove .�/.nC 1/ for
F acting on each of the three groups:

H 2.P1; Rn�1��Q`/, H 1.P1; Rn��Q`/, H 0.P1; RnC1��Q`/:

For a constant sheaf V on P1,

H 0.P1;V/ D Vu;
H 1.P1;V/ D Hom.�1.P1/;Vu/ D 0;
H 2.P1;V/ D H 0.P1; LV.1/L/ D Vu.�1/:

The group H 2.P1; Rn�1��Q`/ From the theory of Lefschetz pencils Rn�1��Q` is a
constant sheaf on P1, and .Rn�1��Q`/u D Hn�1.Xu;Q`/. Therefore,

H 2.P1; Rn�1��Q`/ D Hn�1.Xu;Q`/.�1/:

Consider the cohomology sequence

� � � ! Hn�1
c .Xu r Y;Q`/! Hn�1.Xu;Q`/! Hn�1.Y;Q`/! � � �

of
0! jŠj

�Q` ! Q` ! i�i
�Q` ! 0:

Here Y0 is the nonsingular hyperplane section of X0, and so X0 r Y0 is affine. The
Poincaré duality theorem shows that Hn�1

c .Xu r Y;Q`/ � HnC1.Xu r Y;Q`/_, which
the weak Lefschetz theorem shows to be zero. Thus Hn�1.Xu;Q`/ ! Hn�1.Y;Q`/ is
injective. By induction .�/ holds for Y , and this implies that the eigenvalues of F on
H 2.P1; Rn�1��Q`/ are algebraic numbers ˛ with

q
n
2 < j˛j < q

n
2
C1:

The groupH 0.P1; RnC1��Q`/ Under our assumption that the vanishing cycles are nonzero,
RnC1��Q` is constant, and H 0.P1; RnC1��Q`/ D HnC1.Xu;Q`/. The weak Lefschetz
theorem shows that the Gysin map

Hn�1.Y;Q`/.�1/! HnC1.Xu;Q`/

is surjective, and we can apply the induction hypothesis to Y again.
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The group H 1.P1; Rn��Q`/ Finally, we have to treat H 1.P1; Rn��Q`/. Let V D
.Rn��Q`/u. We have a filtration

V � E � E \E? � 0:

It follows from the Picard-Lefschetz formula that �1.U / acts trivially on V=E and on E \
E?. In particular, this is a filtration of �1.U /-modules, and hence corresponds to a filtration
of sheaves on U :

V � E � E \ E? � 0

On applying j�, we get a filtration

Rn��Q` � j�E � j�.E \ E?/ � 0:

constant interesting constant

We are using that Rn��Q`
�
�! j�j

�Rn��Q`.

The quotient E=E \ E? We wish to apply the Main Lemma (Theorem 30.6) to E=E \
E?.

LEMMA 33.3 (RATIONALITY LEMMA) For all closed points x 2 U0; the action of Fx on
E=E \E? is rational.

PROOF. We defer the proof to the next subsection. (The proof is quite intricate; see Deligne
1974, �6). 2

The cup-product pairing

Hn.Xu;Q`/ �Hn.Xu;Q`/! H 2n.Xu;Q`/ ' Q`.�n/

is skew-symmetric (because n is odd) and nondegenerate. Because it is canonical (in fact,
it arises from a canonical pairing on Rn��Q`), it is invariant under �1.U0/. Recall that
V D Hn.Xu;Q`/, and so we can rewrite the pairing as

V � V ! Q`.�n/:

Now E is a �1.U0/-invariant subspace of V , and E? is the orthogonal complement of E
for this pairing. Hence, the pairing induces a nondegenerate pairing

 WE=E \E? �E=E \E? ! Q`.�n/:

Finally, the theorem of Kazhdan and Margulis (32.6) shows that the image of �1.U / is
open in Sp.E=E \ E?;  /. Thus, the Main Lemma (30.6) shows that the action of F on
j�.E=E \ E?/ satisfies �.nC 1/.

The constant quotients Recall that E=E \ E? is a simple �1-module. Therefore, either
it is nonzero (and no vanishing cycle is in E \E?), or it is zero and E � E?.

First case: No vanishing cycle is in E \ E?. This means that for any s 2 S , EIs has
codimension 1 in E. Since V Is has codimension 1 in V , and Is acts trivially on V=E, the
sequence

0! E ! V ! V=E ! 0
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remains exact when we take Is-invariants. This implies that when we apply j� to the
corresponding sequence of locally constant sheaves on U ,

0! E ! V ! V=E ! 0;

the sequence we obtain on P1, namely,

0! j�E ! Rn��Q` ! j�.V=E/! 0;

is exact. Because j�.V=E/ is constant, the map

H 1.P1; j�E/! H 1.P1; Rn��Q`/

is surjective, and so it suffices to prove �.nC 1/ for H 1.P1; j�E/.
Again, because EIs has codimension 1 in E, the sequence

0! E \E? ! E ! E=E \E? ! 0

remains exact when we take Is-invariants. Therefore,

0! j�.E \ E?/! j�E ! j�.E=E \ E?/! 0

is exact, and, because j�.E \ E?/ is constant

H 1.P1; j�E/! H 1.P1; j�.E=E \ E?//

is injective, and so �.nC 1/ forH 1.P1; j�E/ follows from �.nC 1/ forH 1.P1; j�.E=E \
E?//.

Second case: The vanishing cycles are in E \ E?, i.e., E � E?. In this case, we
define F to be the quotient Rn��Q`=j�E?. We then have exact sequences

0! j�E? ! Rn��Q` ! F ! 0

0! F ! j�j
�F !˚sQ`.m � n/s ! 0:

The sheaves j�E? and j�j �F are constant, and so the corresponding cohomology se-
quences are

0! H 1.P1; Rn��Q`/! H 1.P1;F/

˚s2SQ`.m � n/! H 1.P1;F/! 0:

As F acts on Q`.m � n/ as qn�m D q
nC1

2 .
This completes the proof of the Weil conjectures.

The proof of the rationality lemma

Omitted for the present.

The proof when the vanishing cycles vanish

Since the vanishing cycles are conjugate (up to sign) — see Theorem 32.3 — they are either
all zero or all nonzero. In the above, we assumed that they are nonzero (see �32). In the
case that the vanishing cycles are all zero, the proof is easier (but is omitted for the present).



34 THE GEOMETRY OF ESTIMATES

The Weil conjectures show that the number of solutions of a system of equations over a
finite field is controlled by the topological properties of the complex variety defined by any
lifting of the equations to characteristic zero.

In this section, I explain how estimates of the sizes of exponential (and similar) sums
reflect properties of monodromy actions on certain sheaves.

For example, let X be a smooth projective surface over Fq and let � WX ! P1 be a
regular map whose fibres Xt are elliptic curves, except for a finite number of t 2 F. For
t 2 P1.Fq/, let

#Xt .Fq/ D q � e.t/C 1:

If we ignore the singular fibres, then the Weil conjectures tell us

j2e.t/j < 2
p
q:

Are there similar estimates forX
t

e.t/;
X
t

e.t/2;
X
t

e.t/e.t C u/;
X

t1Ct2Dt3Ct4

e.t1/e.t2/e.t3/e.t4/‹

The sums are over the t 2 Fq . Analytic number theorists have a heuristic method for
guessing estimates for such sums. For example, in

P
e.t/ there are q terms, each with

size about 2
p
q, and so trivially the sum is � Cq

3
2 for some constant C (independent of

the power q of p). However, unless the family is constant, one expects the e.t/ to vary
randomly, and this suggests ˇ̌̌̌

ˇX
t

e.t/

ˇ̌̌̌
ˇ � Cq:

This particular inequality has an elementary proof, but in general the results one wants are
not obtainable by the methods of analytic number theory. The theorems of Deligne give
a very powerful approach to obtaining such estimates. One interprets the sum as the trace
of a Frobenius operator on the cohomology groups of a sheaf on a curve, and obtains the
estimate as a consequence of an understanding of the geometry (monodromy) of the sheaf
and Deligne’s theorems. For example, the following results can be obtained in this fashion.

THEOREM 34.1 Let e.t/ be as above.

(a) If the j invariant of the family is not constant, thenˇ̌̌̌
ˇX
t

e.t/

ˇ̌̌̌
ˇ � .ˇ2.X/ � 2/q

where ˇ2.X/ is the second Betti number of X .

(b) If j is not constant, then X
t

e.t/2 D q2 CO.q
3
2 /:

197
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(c) Let S be the set of t 2 F for which Xt is singular; if the sets S and fs � u j s 2 Sg
are disjoint, then X

t

e.t/e.t C u/ D O.q
3
2 /:

The fourth sum is much more difficult, but the following is known. Suppose that � is
such that Xt is the intersection of the projective surface

X3 C Y 3 CZ3 D nW 3

with the plane
˛X C ˇY C 
Z D tW:

Then, under some hypotheses on q,X
t1Ct2Dt3Ct4

e.t1/e.t2/e.t3/e.t4/ � 2q
4
� Bq7=2

for6 some constant B (Milne, J., Estimates from étale cohomology, Crelle 328, 1981, 208–
220).

For comprehensive accounts of the applications of étale cohomology to the estimation
of various sums, see:

Katz, N., Sommes exponentielles. Course taught at the University of Paris, Orsay, Fall
1979. With a preface by Luc Illusie. Notes written by Gérard Laumon. Astérisque, 79.
Société Mathématique de France, Paris, 1980. 209 pp.

Katz, N., Gauss sums, Kloosterman sums, and monodromy groups. Annals of Mathe-
matics Studies, 116. Princeton University Press, Princeton, NJ, 1988. x+246 pp.

The correspondence between number-theoretic estimates and the monodromy of sheaves
can be used in both directions: N. Katz has used some estimates of Davenport and Lewis
concerning the solutions of polynomials over finite fields to prove the following theorem
(Monodromy of families of curves: applications of some results of Davenport-Lewis. Sem-
inar on Number Theory, Paris 1979–80, pp. 171–195, Progr. Math., 12, Birkhäuser, Boston,
Mass., 1981):

THEOREM 34.2 Let f .X; Y / 2 CŒX; Y � be a polynomial in two variables. Suppose that
for indeterminates a; b; c the complete nonsingular model of the affine curve

f .X; Y /C aX C bY C c D 0

over the field C.a; b; c/ has genus g � 1. Then for any nonempty Zariski open set S � A3C
over which the complete nonsingular model extends “nicely” to a morphism f WC ! S ,
the fundamental group of S acts absolutely irreducibly on a general stalk ofR1f�Q (higher
direct image for the complex topology).

The interplay between the number-theoretic estimates and the geometry of the étale
sheaves is fascinating, but requires an understanding of both analytic number theory and
étale cohomology for its full appreciation.

6The inequality was proved at the request of C. Hooley, and allowed him to obtain an asymptotic estimate
for the number of ways an integer can be written as the sum of 3 cubes and 2 squares, a problem he had worked
on unsuccessfully for over 20 years. See his plenary talk at International Congress of Mathematicians, Warsaw
1983, which fails to acknowledge the crucial role played by étale cohomology in his final success.
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Review of Katz 1980 (MR 82m:10059).

These notes use etale cohomology to prove two theorems of a very general nature concern-
ing the sizes of exponential sums.

For any q D pn, let  WFq ! C� be the additive character a 7! exp.2�i
p

TrFq=Fp
a/.

Let V be a variety (or scheme of finite-type) over Fp, and let f WV ! A1Fp
be a regular

function on V . The exponential sum assocated with V , f , and q D pn is Sq.V; f / DP
 .f .x// where the sum is over all x 2 V.Fq/. For example, if V is defined by XY D a

and f is the function .x; y/ 7! x C y, then

Sp.V; f / D
X
xyDa

exp.
2�i

p
.x C y// D

X
x¤0

exp.
2�i

p
.x C

a

x
//

is a Kloosterman sum.
The first theorem treats the following question: suppose V is defined by equations with

coefficients in Z and f is a mapping V ! A1Z, so that, for all p, there is a pair .Vp; fp/
over Fp obtained by reducing .V; f / modulo p; then is it possible to uniformly bound the
sums Sq.Vp; fp/? The answer given is that, for a fixed .V; f /, there is a constant A such
that for all sufficiently large p and all q divisible by such a p, jSq.Vp; fp/j � AqN , where
N is the largest dimension of a geometric fibre of f and the generic fibre is assumed to
be geometrically irreducible or have dimension < N . The proof uses standard arguments
to interpret Sq as an alternating sum of traces of the Frobenius endomorphism on certain
étale cohomology spaces, and then uses general results from étale cohomology and from
P. Deligne [Inst. Hautes Etudes Sci. Publ. Math. No. 52 (1980), 137 - 252] to bound the
dimensions and the weights, respectively, of the spaces.

The second theorem provides, for a fixed p, an explicit constant A in a situation where
the geometry is particularly easy to handle. Consider for example a nonsingular projec-
tive surface V 0 defined by a homogeneous equation P.X0; X1; X2; X3/ D 0 of degree
D with coefficients in Fp. Let H be the hyperplane defined by X0 D 0 and let F be
a linear form a1X1 C a2X2 C a3X3. Assume that .D; p/ D 1, that C D V 0 \ H is
a smooth curve of degree D, and that the plane F D 0 cuts C transversally. Let V be
the affine surface V 0 r C (defined by P.1;X1; X2; X3/ D 0) and let f be the function
.x1; x2; x3/ 7!

P
aixi WV ! A1Fp

. Then it follows fairly directly from Deligne (loc. cit.)
and the Grothendieck - Ogg - Shafarevich formula that jSq.V; f /j � D.D � 1/2q. In the
notes, this result is generalized to the case that V 0 is any smooth projective variety, H is
the hyperplane defined by an equation s D 0, and f is the function on V D V 0 r V 0 \H

defined by F=sd where F is a homogeneous polynomial of degree d . There are similar pri-
mality and transversality assumptions, and the constant A is expressed in terms of various
Euler - Poincaré characteristics.

The proofs of these two theorems occupy the last two chapters of the notes. The first
three chapters, which will be accessible to those with only a limited knowledge of étale
cohomology, contain the following: a brief general discussion of questions, both answered
and unanswered, concerning exponential sums; a review of the L-series associated with ex-
ponential sums and examples where the Weil conjectures can be applied; an explanation of
how to express exponential sums in terms of traces of endomorphisms on étale cohomology
groups, and a statement of the main theorems.

James Milne (1-MI).



At the ceremony announcing the award of the 2013 Abel Prize to Deligne, Gowers
telephoned Deligne. Below is my transcription of part of the conversation.

Gowers: Another question I had. Given the clearly absolutely remarkable nature of
your proof of the last remaining Weil conjecture, it does make one very curious to know
what gave you the idea that you had a chance of proving it at all. Given that the proof
was very unexpected, it’s hard to understand how you could have known that it was worth
working on.

Deligne: That’s a kind of nice story. In part because of Serre, and also from listening to
lectures of Godement, I had some interest in automorphic forms. Serre understood that the
p11=2 in the Ramanujan conjecture should have a relation with the Weil conjecture itself. A
lot of work had been done by Eichler and Shimura, and by Verdier, and so I understood the
connection between the two. Then I read about some work of Rankin, which proved, not
the estimate one wanted, but something which was a 1=4 off — the easy results were 1=2
off from what one wanted to have. As soon as I saw something like that I knew one had to
understand what he was doing to see if one could do something similar in other situations.
And so I looked at Rankin, and there I saw that he was using a result of Landau — the idea
was that when you had a product defining a zeta function you could get information on the
local factors out of information on the pole of the zeta function itself. The poles were given
in various cases quite easily by Grothendieck’s theory. So then it was quite natural to see
what one could do with this method of Rankin and Landau using that we had information
on the pole. I did not know at first how far I could go. The first case I could handle was
a hypersurface of odd dimension in projective space. But that was a completely new case
already, so then I had confidence that one could go all the way. It was just a matter of
technique.

Gowers: It is always nice to hear that kind of thing. Certainly, that conveys the idea
that there was a certain natural sequence of steps that eventually led to this amazing proof.

Deligne: Yes, but in order to be able to see those steps it was crucial that I was not
only following lectures in algebraic geometry but some things that looked quite different
(it would be less different now) the theory of automorphic forms. It was the discrepancy in
what one could do in the two areas that gave the solution to what had to be done.

Gowers: Was that just a piece of good luck that you happened to know about both
things.

Deligne: Yes.
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