Errata in Class Field Theory

Jungin Lee

Page 22, Last Line : [\cdots tamely ramified if and only if it has conductor 0] should be [\cdots tamely ramified if and only if it has conductor 0 or 1]. (Since unramified extensions are tamely ramified, it should contain conductor 0 case.)

Page 52, Example A.5(b) : Change $0 \le a_i < p-1$ to $0 \le a_i \le p-1$, $\xi_{p^r}^u = \xi_{p^r}^{a_0+a_1p+\cdots+a_sp^s}$ to $\xi_{p^r}^u = \xi_{p^r}^{a_0+a_1p+\cdots+a_sp^s}$ and s > r to $s \ge r-1$.

Page 62, boundary map of homogeneous r-cochains : [··· induced by d_r] should be [··· induced by d_{r+1}].

Page 97, Line 4 : Change $v = \lim_{m \to \infty} \prod_{j=1}^{m} v_j$ to $v = \lim_{m \to \infty} \prod_{j=0}^{m} v_j$.

Page 99, Proof of proposition 1.8: Change $\sigma_L \mid K = \sigma_K^f$ to $\sigma_L \mid K^{un} = \sigma_K^f$.

Page 100, Line 7: $[\cdots \sigma^i \mapsto \frac{i}{m}$ where $0 \le i < m-1]$ should be $[\cdots \sigma^i \mapsto \frac{i}{n}$ where $0 \le i \le n-1]$.

Page 100, Line -3 : Change NL^{\times} to $Nm(L^{\times})$.

Page 104, The fundamental class : L should be a finite Galois extension of K in the definition of fundamental class and lemma 2.7.

Page 111, Line 1 : Change \overline{K}^{\times} to $K^{al \times}$.

Page 112, Proof of proposition 4.1: Change \mathbb{Q} to \mathbb{Q}_p and (a, b) = 0 to (a, b) = 1.

Page 113, Remark 4.8 : Change 5.4 below to V 5.4.

Page 125, Line 3 : Change $c \in k$ to $c \in k \setminus \{0\}$.

Page 152, After theorem 2.4: Change $\log \frac{1}{1-s}$ to $\log \frac{1}{s-1}$ two times. Also [··· prime ideals in T] should be [··· prime ideals in K].

Page 165, Line -6 : $[1 + \hat{\mathfrak{p}}_v \supset 1 + \hat{\mathfrak{p}}_v^2 \supset 1 + \hat{\mathfrak{p}}^3 \supset \cdots]$ should be $[1 + \hat{\mathfrak{p}}_v \supset 1 + \hat{\mathfrak{p}}_v^2 \supset 1 + \hat{\mathfrak{p}}_v^3 \supset \cdots]$.

Page 174, norm group : The norm group in \mathbf{C}_K should be defined by a subgroup of \mathbf{C}_K of the form $Nm_{L/K}(\mathbf{C}_L)$ for some finite abelian extension L/K. (The definition in the book is not compatible with Chapter VII.9.)

Page 203 : Change II 1.3 to I 1.3.

Page 212, Line 6-10: [··· finite set T' of primes of L] should be [··· finite set T' of primes of M]. [··· basis for Gal(M/K)] should be [··· basis for Gal(M/L)]. Change $(\mathfrak{p}_w, M/L) = (\mathfrak{p}_{w_K}, M/K)$ to $(\mathfrak{p}_w, M/L) = (\mathfrak{p}_w, M/K)$.

Page 216, Line -7: Change
$$(\mathbb{Z}/l^r\mathbb{Z}) \approx \begin{cases} \Delta \times C(l^{r-2}) \ l \ odd \\ \Delta \times C(2^{r-3}) \ l=2 \end{cases}$$
 to $(\mathbb{Z}/l^r\mathbb{Z})^{\times} \approx \begin{cases} \Delta \times C(l^{r-1}) \ l \ odd \\ \Delta \times C(2^{r-2}) \ l=2 \end{cases}$

Page 218: Change \mathbb{I}'_K in the diagram to $\mathbb{I}_{K'}$. [··· carries K^{\times} into \mathbb{Q}^{\times}] should be [··· carries K'^{\times} into K^{\times}]. Change (5.10) to (V 5.10).

Page 222, Proof of lemma 9.4 : Change Lemma 8.6 to Lemma 9.1.

Page 222, Proof of theorem 9.5 : Change $Nm_{K'/K}\mathbb{I}_{K'} = U_1$ to $Nm_{K'/K}\mathbf{C}_{K'} = U_1$.

Page 237, Line 4 : [According to , \cdots] should be [According to the reciprocity law \cdots].

Page 241, 5.3 : Change $\zeta(\mathfrak{p})(a^{\frac{1}{n}}) \equiv x^{\frac{N\mathfrak{p}}{n}} \mod \mathfrak{p}$ to $\zeta(\mathfrak{p})(a^{\frac{1}{n}}) \equiv a^{\frac{N\mathfrak{p}}{n}} \mod \mathfrak{p}$.

Page 243, Theorem 5.11 : Change $\binom{c}{b} = \prod_{v \in S} (c, b)_v$ to $\binom{c}{b} = \prod_{v \in S} (b, c)_v$.

Page 246, Proof of theorem 5.14 : Change $Tr - \frac{y\pi}{x+y}$ to $Tr - \frac{y}{x+y}$.

Page 279, Index : Change Dirchlet character to Dirichlet character.

Page 70, Exact sequence : (not an erratum) $H^3(G/H, M^H)$ can be added to the six-term exact sequence. (This result can be found in [1], p.257).

References

[1] C. H. Sah, Cohomology of split group extensions, J. Algebra. 29 (1974) 255–302.