
CHAPTER 18
Algebraic Schemes and Algebraic

Spaces

In this course, we have attached an affine algebraic variety to any algebra finitely generated
over a field k. For many reasons, for example, in order to be able to study the reduction
of varieties to characteristic p ¤ 0, Grothendieck realized that it is important to attach a
geometric object to every commutative ring. Unfortunately, A 7! spmA is not functorial in
this generality: if 'WA! B is a homomorphism of rings, then '�1.m/ for m maximal need
not be maximal — consider for example the inclusion Z ,!Q. Thus he was forced to replace
spm.A/ with spec.A/, the set of all prime ideals in A. He then attaches an affine scheme
Spec.A/ to each ring A, and defines a scheme to be a locally ringed space that admits an
open covering by affine schemes.

There is a natural functor V 7! V � from the category of algebraic spaces over k to
the category of schemes of finite-type over k, which is an equivalence of categories. The
algebraic varieties correspond to geometrically reduced schemes. To construct V � from
V , one only has to add one point pZ for each irreducible closed subvariety Z of V of
dimension > 0; in other words, V � is the set of irreducible closed subsets of V (and V is
the subset of V � of zero-dimensional irreducible closed subsets of V , i.e., points). For any
open subset U of V , let U � be the subset of V � containing the points of U together with
the points pZ such that U \Z is nonempty. Thus, U 7! U � is a bijection from the set of
open subsets of V to the set of open subsets of V �. Moreover, � .U �;OV �/D � .U;OV /

for each open subset U of V . Therefore the topologies and sheaves on V and V � are the
same — only the underlying sets differ. For a closed irreducible subset Z of V , the local
ring OV �;pZ

D lim
�!U\Z¤;

� .U;OU /. The reverse functor is even easier: simply omit the

nonclosed points from the base space.1
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1Some authors call a geometrically reduced scheme of finite-type over a field a variety. Despite their
similarity, it is important to distinguish such schemes from varieties (in the sense of these notes). For example, if
W andW 0 are subvarieties of a variety, their intersection in the sense of schemes need not be reduced, and so may
differ from their intersection in the sense of varieties. For example, if W D V.a/� An and W 0 D V.a0/� An0

with a and a0 radical, then the intersection W and W 0 in the sense of schemes is SpeckŒX1; : : : ;XnCn0 �=.a;a
0/

while their intersection in the sense of varieties is SpeckŒX1; : : : ;XnCn0 �=rad.a;a0/ (and their intersection in the
sense of algebraic spaces is SpmkŒX1; : : : ;XnCn0 �=.a;a

0/.
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2 18. ALGEBRAIC SCHEMES AND ALGEBRAIC SPACES

Every aspiring algebraic and (especially) arithmetic geometer needs to learn the basic
theory of schemes, and for this I recommend reading Chapters II and III of Hartshorne 1997.
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