Addendum/Erratum for Elliptic Curves 2006

J.S. Milne

Last revised September 7, 2016.

In the blurb and introduction, I should have noted that the group is commutative.

p28. The third cubic curve should be
\[\ell(R, Q) \cdot \ell(P, Q + R) \cdot \ell(PQ, O) = 0 \]
(Dmitriy Zanin).

p36. In the definition of \(k[C]_p \), the condition on \(h \) should be \(h \not\equiv p \) (Jochen Gerhard).

p39. In the definition of a regular map between projective plane curves, \(a_m \) should read \(a_2 \) (Rankeya Datta).

p100, 3.23b. The sign is wrong: it should read \(4d - c^2 \geq 0 \). As PENG Bo pointed out to me, I forgot to include the proof. Here it is.

Let
\[X^2 + c' X + d' = \det(X - n\alpha|T_\ell E). \]
By linear algebra, we see that \(c' = nc \) and \(d' = n^2d \). On substituting \(m \) for \(X \) in the equality, we find that
\[m^2 + cmn + n^2d = \det(m - n\alpha|T_\ell E). \]
According to Proposition 3.22, the right hand side equals the degree of \(m\text{id} - n\alpha \). Therefore
\[m^2 + cmn + n^2d \geq 0 \]
for all \(m, n \in \mathbb{Z} \), i.e.,
\[r^2 + cr + d \geq 0 \]
for all \(r \in \mathbb{Q} \). The minimum value of \(r^2 + cr + d \), \(r \in \mathbb{R} \), is \(\left(\frac{c}{2} \right)^2 + c \left(-\frac{c}{2} \right) + d = \frac{c^2}{4} + d \), and so
\[4d \geq c^2 \] (happily, this is how I used it on p150 in the proof of the congruence Riemann hypothesis).

p107, line 2 (exact sequence of cohomology groups): a bracket “\(\)" is missing: \(H^1(G, \mu(k^a_l)) \) instead of \(H^1(G, \mu(k^a_l)) \) (Michael Mueller).

p148, 9.1b. Should read: The Frobenius map acts as zero... \(\) (not as zero acts; at least I not think).

p150, 9.5. Taylor et al. prove the conjecture of Sato and Tate only for elliptic curves that do not have potential good reduction at some prime \(p \).

Bibilography: Fulton’s book, Algebraic Curves, is now freely available on his website http://www.math.lsa.umich.edu/~wfulton/CurveBook.pdf

From Stefan Müller:

page 7, line -7: the coordinates should be small \(x \) and \(y \)

page 9, line -13: \(k[X, Y] \) square brackets also inside the set definition
page 33: in my class I used K_C instead of W, since it is "the" usual notation, of course the letter K can be confused with the field K

page 36, line 18: h not in p, instead of non-zero.

page 37, section on Riemann-Roch: in contrast to the rest of the book the algebraic closure here is \bar{k} not k^al.

page 39, line -6: delete word before P^2.

page 51, line -12: in my opinion c must be u_1/u_2 not u_2/u_1.

page 66, line -8: it is Corollary 4.2 not Prop. 4.2 (perhaps also at other places)

page 100, Corollary 3.23: In (b) the inequality sign seems wrong, at least it contradicts what you use of it later. The sign of the term $c\alpha$ seems also wrong, at least contradicts the proof. The proof of (b) is completely missing, but it is very important in the applications (Hasse-Weil). [See above.]

page 104, proof of Cor. 1.4: in my opinion it must be $\sigma c/c$ not $c/\sigma c$. At the blackboard I was fighting with this problem for about 10 minutes, still not sure.

page 105, footnote: element not elements

page 149, Thm. 9.4: square root of p ! Proof refers to Cor 3.23 (see above).

page 157, line 6: inverse roots not roots

From Nicholas Wilson:

On page 167, line -17, there is written "Coates and Wiles (1977)...", which I believe should read "Coates and Wiles (1977)."