Addendum/Erratum for Elliptic Curves 2006

J.S. Milne

Last revised September 7, 2016.

In the blurb and introduction, I should have noted that the group is commutative. **p28.** The third cubic curve should be

$$\ell(R,Q) \cdot \ell(P,Q+R) \cdot \ell(PQ,O) = 0$$

(Dmitriy Zanin).

p36. In the definition of $k[C]_{\mathfrak{p}}$, the condition on h should be $h \notin \mathfrak{p}$ (Jochen Gerhard).

p39. In the definition of a regular map between projective plane curves, a_m should read a_2 (Rankeya Datta).

p100, 3.23b. The sign is wrong: it should read $4d - c^2 \ge 0$. As PENG Bo pointed out to me, I forgot to include the proof. Here it is.

Let

$$X^2 + c'X + d' = \det(X - n\alpha | T_{\ell}E).$$

By linear algebra, we see that c' = nc and $d' = n^2 d$. On substituting *m* for *X* in the equality, we find that

$$m^2 + cmn + n^2d = \det(m - n\alpha | T_{\ell}E).$$

According to Proposition 3.22, the right hand side equals the degree of $m \operatorname{id} - n\alpha$. Therefore

$$m^2 + cmn + n^2d \ge 0$$

for all $m, n \in \mathbb{Z}$, i.e.,

$$r^2 + cr + d \ge 0$$

for all $r \in \mathbb{Q}$. The minimum value of $r^2 + cr + d$, $r \in \mathbb{R}$, is $(\frac{c}{2})^2 + c(-\frac{c}{2}) + d = -\frac{c^2}{4} + d$, and so $4d \ge c^2$ (happily, this is how I used it on p150 in the proof of the congruence Riemann hypothesis).

p107, line 2 (exact sequence of cohomology groups): a bracket ")" is missing: $H^1(G, \mu(k^{al}))$ instead of $H^1(G, \mu(k^{al}))$ (Michael Mueller).

p148, 9.1b. Should read: The Frobenius map acts as zero... (*not* as zero acts; at least I not think).

p150, 9.5. Taylor et al. prove the conjecture of Sato and Tate only for elliptic curves that do not have potential good reduction at some prime *p*.

Bibliography: Fulton's book, Algebraic Curves, is now freely available on his website http: //www.math.lsa.umich.edu/~wfulton/CurveBook.pdf

From Stefan Müller:

page 7, line -7: the coordinates should be small x and y

page 9, line -13: k[X, Y] square brackets also inside the set definition

page 33: in my class I used K_C instead of W, since it is "the" usual notation, of course the letter K can be confused with the field K

page 36, line 18: *h* not in p, instead of non-zero.

page 37, section on Riemann-Roch: in contrast to the rest of the book the algebraic closure here is \bar{k} not k^{al} .

page 39, line -6: delete word before \mathbb{P}^2 .

page 51, line -12: in my opinion c must be u_1/u_2 not u_2/u_1 .

page 66, line -8: it is Corollary 4.2 not Prop. 4.2 (perhaps also at other places)

page 100, Corollary 3.23: In (b) the inequality sign seems wrong, at least it contradicts what you use of it later. The sign of the term $c\alpha$ seems also wrong, at least contradicts the proof. The proof of (b) is completely missing, but it is very important in the applications (Hasse-Weil). [See above.]

page 104, proof of Cor. 1.4: in my opinion it must be $\sigma c/c$ not $c/\sigma c$. At the blackboard I was fighting with this problem for about 10 minutes, still not sure.

page 105, footnote: element not elements

page 149, Thm. 9.4: square root of p ! Proof refers to Cor 3.23 (see above).

page 157, line 6: inverse roots not roots

From Nicholas Wilson:

On page 167, line -17, there is written "Coatesand Wiles (1977)...", which I believe should read "Coates and Wiles (1977)..